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Abstract

Answer set programming (ASP) is a declarative problem-
solving technique that uses the computation of answer set se-
mantics to provide solutions. Despite comprehensive imple-
mentations and a strong theoretical basis, ASP has yet to be
used for more than a handful of large-scale applications. This
paper describes such a large-scale application and presents
some preliminary results. The TOAST (Total Optimisation
using Answer Set Technology) project seeks to generate opti-
mal machine code for simple, acyclic functions using a tech-
nique known as superoptimisation. ASP is used as a scalable
computational engine for conducting searches over complex,
non-regular domains. The experimental results suggest this
is a viable approach to the optimisation problem and demon-
strates the value of using parallel answer set solvers.

Introduction
Answer set programming (ASP) is a relatively new tech-
nology, with the first computation tools (referred to as an-
swer set solvers) only appearing in the late 1990s (Niemelä
& Simons 1997). Initial studies have demonstrated (WASP
2004) that it has great potential in many application ar-
eas, including automatic diagnostics (Eiter et al. 2000;
Nogueira et al. 2001), agent behaviour and communica-
tion (De Vos et al. 2006), security engineering (P. Giorgini
& Zannone 2004) and information integration (S. Costantini
& Omodeo 2003). However, larger production scale appli-
cations are comparatively scarce. One of the few examples
of such a system is the USA-Advisor decision support sys-
tem for the NASA Space Shuttle (Nogueira et al. 2001). It
modelled an extremely complex domain in a concise way;
although of great significance to the field it is, in computa-
tional terms, relatively small. The only large and difficult
programs most answer set solvers have been tested on are
synthetic benchmarks. How well do the algorithms and im-
plementations scale? How much memory and how much
time is required? This paper makes an initial attempt to an-
swer some of these questions.

This paper investigates the possibility of using ASP tech-
nology to generate optimal machine code for simple func-
tions. Modern compilers apply a fixed set of code improve-
ment techniques using a range of approximations rather than
aiming to generate optimal code. None of the existing tech-
niques, or approaches to creating new techniques, are likely

to change the current state of play.
An approach to obtaining optimal code sequences is

called superoptimisation (Massalin 1987). One of the main
bottlenecks in this process is the size of the space of pos-
sible instruction sequences, with most superoptimising im-
plementations relying on brute force searches to locate can-
didate sequences and approximate equivalence verification.
The TOAST project presents a new approach to the search
and verification problems using ASP.

From an ASP perspective, the TOAST project provides a
large-scale, real-world application with some programs con-
taining more than a million ground rules. From a compiler
optimisation perspective, it might be a step towards tools
that can generate truly optimal code, benefiting many areas,
especially embedded systems and high performance com-
puting.

This paper presents the results of the first phase of the
TOAST project, with the overall infrastructure complete and
three machine architectures implemented. We have used off-
the-shelf solvers without any domain-specific optimisations,
so the results we present also provide useful benchmarks for
these answer set solvers.

The rest of this paper is structured as follows: in the next
section, we provide a short introduction to modern compiler
technology. In two subsections we explain the mechanisms
of code optimisation, superoptimisation and verifiable code
generation. In a third subsection we investigate the chal-
lenges of producing verifiable superoptimised sequences in
terms of the length of input code sequences and word length
of the target machine. We then give an overview of ASP
from a programming language viewpoint. After these two
background sections, we introduce the TOAST system and
present the preliminary results. The analysis of these results
leads to a section detailing the future work of the project.

The Problem Domain
Before describing the TOAST system and how it uses an-
swer set technology, it is important to consider the problem
that it seeks to solve and how this fits into the larger field of
compiler design.

Compilers and Optimisation
Optimisation, as commonly used in the field of compiler
research and implementation, is something of a misnomer.



A typical compiler targeting assembly language or machine
code will include an array of code improvement techniques,
from the relatively cheap and simple (identification of com-
mon sub-expressions and constant folding) (Aho, Sethi, &
Ullmann 1986) to the costly and esoteric (auto-vectorisation
and inter-function register allocation) (Appel 2004). How-
ever, none of these generate optimal code; the code that they
output is only improved (though often to a significant de-
gree). As all of these techniques identify and remove cer-
tain inefficiencies, it is impossible to guarantee that the code
could not be further improved.

Further confusion is created by complications in defining
optimality. In the linear case, a shorter instruction sequence
is clearly better1. If the code branches but is not cyclic, a
number of definitions are possible: shortest average path,
shortest over all sequence, etc. However, for code including
cycles, it is not possible to define optimality in the general
case. To do so would require calculating how many time the
body of loop would be executed – a problem equivalent to
the halting problem. To avoid this, and problems with other
areas such as equivalence of floating point operations, this
paper only considers optimality in terms of the number of
instructions used in acyclic, integer-based code.

Finally, it is important to consider the scale of the likely
savings. The effect of improvements in code generation for
an average program have been estimated as a 4% speed in-
crease2 per year (Proebsting 1998). In this context, saving
just one or two instructions is significant, particularly if the
technique is widely applicable, or can be used to target ‘hot
spots’, CPU-intensive sections of code.

Superoptimisation

Superoptimisation is a radically different approach to code
generation, first described in (Massalin 1987). Rather than
starting with crudely generated code and improving it, a su-
peroptimiser starts with the specification of a function and
performs an exhaustive search for a sequence of instructions
that meets this specification. Clearly, as the length of the se-
quence increases, the search space potentially rises at an ex-
ponential rate. This makes the technique unsuitable for use
in normal compilers, but for improving the code generators
of compilers and for targeting key sections of performance-
critical functions, the results can be quite impressive.

A good example of superoptimisation is the sign func-
tion (Massalin 1987), which returns the sign of a binary in-
teger, or zero if the input is zero:

1Although the TOAST approach could be generalised to handle
them, this paper ignores complications such as pipelining, caching,
pre-fetching, variable-instruction latency and super-scalar execu-
tion.

2This may seem very low in comparison with the increase in
processing power created by advances in microprocessor manufac-
turing. However, it is wise to consider the vast disparity in research
spending in the two areas, as well as the link between them: most
modern processors would not achieve such drastic improvements
without advanced compilers to generate efficient code for them.

int signum (int x) {

if (x > 0) return 1;

else if (x < 0) return -1;

else return 0;

}

A naı̈ve compilation of this function would produce ap-
proximately ten instructions, including at least two condi-
tional branch instructions. A skilled assembly language pro-
grammer may manage to implement it in four instructions
with one conditional branch. At the time of writing, this is
the best that state of the art compilation can produce. How-
ever, superoptimisation (in this case for the SPARC-V7 ar-
chitecture) gives the following:

! input in %i0

addcc %i0 %i0 %l1

subxcc %i0 %l1 %l2

addx %l2 %i0 %o1

! output in %o1

Not only is this sequence only three instructions long,
it does not require any conditional branches, a significant
saving on modern pipelined processors. This example also
demonstrates another interesting property of code produced
by superoptimisation: it is not obvious that this computes
the sign of a number or how it does so. The pattern of ad-
dition and subtraction essentially ‘cancels out’, with the ac-
tual computation done by how the carry flag is set and used
by each instruction (instructions whose name includes cc
set the carry flag, whereas instructions with x use the carry
flag). Such inventive use of a processor’s features are com-
mon in superoptimised sequences; when the GNU Superop-
timizer (GSO) (Granlund & Kenner 1992) was first used to
superoptimise sequences for the GCC port to the POWER
architecture, it produced a number of sequences that were
shorter than the processor’s designers thought possible!

Despite significant potential, superoptimisation has re-
ceived relatively little attention within the field of compiler
research. Following Massalin’s work, the next published su-
peroptimiser was GSO, a portable superoptimiser developed
to aid the development of GCC. It improved on Massalin’s
search strategy by attempting to apply constraints while gen-
erating elements of the search space, rather than generat-
ing all possible sequences and then skipping those that were
marked as clearly redundant. The most recent work on su-
peroptimisation have been from the Denali project (Joshi,
Nelson, & Randall 2002; Joshi, Nelson, & Zhou 2003).
Their approach was much closer to that of the TOAST sys-
tem, using automatic theorem-proving technology to handle
the large search spaces.

Analysis of Problem Domain
Superoptimisation naturally breaks into two sub-problems:
searching for sequences that meet some limited criteria and
verifying which of these candidates are fully equivalent to
the input function.

The search space of possible sequences of a given length
is very large, at least the number of instructions available to
the power of the length of the sequences (thus growing at
least exponentially as the length rises). However, a number
of complex constraints exist that reduce the space that has



to be searched. For example, if a sub-sequence is known
to be non-optimal then anything that includes it will also be
non-optimal and thus can be discarded. Managing the size
and complexity of this space is the current limit on superop-
timiser performance.

Verifying that two code sequences are equivalent also in-
volves a large space of possibilities (for single input se-
quences it is 2

w where w is the word length (number of
bits per register) of the processor). However, it is a space
that has a number of unusual properties. Firstly, verifica-
tion of two sequences is a reasonably simple task for human
experts, suggesting there may be a strong set of heuristics.
Secondly, sequences of instructions that are equivalent on a
reasonably small subset of the space of possible inputs tend
to be equivalent on all of it. Both GSO and Massalin’s orig-
inal superoptimiser handled verification by testing the new
sequence for correctness of a small number of inputs and
declaring it equivalent if it passed. Although non-rigorous,
this approach seemed to work in practise (Granlund & Ken-
ner 1992).

Answer Set Programming
Answer set programming is a declarative problem solving
technique based on research on the semantics of logic pro-
gramming languages and non-monotonic reasoning (Gel-
fond & Lifschitz 1988; 1991). For reasons of compactness,
this paper only includes a brief summary of answer set se-
mantics; a more in-depth discussion can be found in (Baral
2003).

Answer set semantics are defined with respect to pro-
grams, sets of Horn clause-style rules composed of literals.
Two forms of negation are described, negation as failure and
explicit (or classical) negation. The first (denoted as not) is
interpreted as not knowing that the literal is true, while the
second (denoted as ¬) is knowing that the literal is not true.
For example:

a ← b, not c.

¬b ← not a.

is interpreted as “a is known to be true if b is known to be
true and c is not known to be true. b is known to be not true if
a is not known to be true” (the precise declarative meaning is
an area of ongoing work, see (Denecker 2004)). Constraints
are also supported, which allow conjunctions of literals to
be ruled as inconsistent. Answer sets are sets of literals that
are consistent (do not contain both a and ¬a or the bodies of
any constraints) and supported (every literal has at least one,
acyclic way of concluding its truth). A given program may
have zero or more answer sets.

Answer set programming is describing a problem as a pro-
gram under answer set semantics in such a way that the an-
swer sets of the program correspond to the solutions of the
problem. In many cases, this is simply a case of encoding
the description of the problem domain and the description
of what constitutes a solution. Thus solving the problem is
reduced to computing the answer sets of the program.

Computing an answer set of a program is an NP-complete
task, but there are a number of sophisticated tools, known
as answer set solvers, that can perform this computation.

The first generation of efficient solvers (such as SMOD-
ELS (Niemelä & Simons 1997) and DLV (Leone et al.
2006)) use a DPLL-style algorithm (Davis, Logemann, &
Loveland 1962). Before computation, the answer set pro-
gram is grounded (an instantiation process that creates
copies of the rules for each usable value of each variable)
by using tools such as LPARSE (Syrjänen 2000), to remove
variables. The answer sets are then computed using a back-
tracking algorithm; at each stage the sets of literals that are
known to be true and known to be false are expanded ac-
cording to a set of simple rules (similar to unit propaga-
tion in DPLL), then a branching literal is chosen accord-
ing to heuristics and both possible branches (asserting the
literal to be true or false) are explored. An alternative ap-
proach is to use a SAT solver to generate candidate answer
sets and then check whether these meet all criteria. This
is the approach used by CMODELS (Giunchiglia, Lierler, &
Maratea 2004). More recent work has investigated using
‘Beowulf’-style parallel systems to explore possible models
in parallel (Pontelli, Balduccini, & Bermudez 2003). One
such system, PLATYPUS (Gressmann et al. 2005) is used in
the TOAST system.

TOAST
The existence of a clear NP algorithm, as well as the causal
nature of the problem and the need for high expressive and
computational power, suggest ASP as a suitable approach
to the superoptimisation problem. The TOAST system con-
sists of a number of components that generate answer set
programs and parse answer sets, with a ‘front end’ that uses
these components to produce a superoptimised version of an
input function. Data is passed between components either
as fragments of answer set programs or in an architecture-
independent, assembly language-like format. An answer
set solver is used as a ‘black box’ tool, currently either
SMODELS or PLATYPUS, although experiments with other
solvers are ongoing. Although the grounding tool of DLV
is stronger in some notable examples, it has not been tested
yet due to syntax incompatibilities with many of the features
required.

System Components
Four key components provide most of the functionality of
the TOAST system:

pickVectors Given the specification of the input to an in-
struction sequence, pickVectors creates a representative
set of inputs, known as input vectors, and outputs it as
an ASP program fragment.

execute This component takes an ASP program fragment
describing an input vector (as generated by pickVector or
verify) and emulates running an instruction sequence with
that input. The output is the given as another ASP pro-
gram fragment containing constraints on the instruction
sequence’s outputs.

search Taking ASP fragments giving ‘input’ and ‘output’
values (from pickVectors / verify and execute respec-
tively), this component searches for all instruction se-



quences of a given length that produce the required ‘out-
put’ for the given ‘input’ values.

verify Takes two instruction sequences with the same input
specification and tests if they are equivalent. If they are
not, an input vector on which they differ can be generated,
in the format used by execute and search.

The TOAST system is fully architecture-independent.
Architecture-specific information is stored in a description
file which provides meta-information about the architecture,
as well as which operations from the library of instructions
are available. At the time of writing, TOAST supports the
MIPS R2000 and SPARC V7/V8 processors. Porting to a
new architecture is simple and takes between a few hours
and a week, depending on how many of the instructions have
already been modelled.

System Architecture
The key observation underlying the design of the TOAST
system is that any correct superoptimised sequence will be
returned by running search for the appropriate instruction
length; however, not everything that search returns is nec-
essarily a correct answer. Thus to generate superoptimised
sequences, the front end uses pickVector and execute on the
input instruction sequence to create criteria for search. In-
struction sequence lengths from one up to one less than the
length of the original input sequence are then sequentially
searched. If answers are generated, another set of criteria
are created and the same length searched again. The two
sets are then intersected, as any correct answer must appear
in both sets. This process is repeated until either the inter-
section becomes empty, in which case the search moves on
to the next sequence length, or until the intersection does not
decrease in size. verify can then be used to check members
of this set for equivalence to the original input program.

The Answer Set Programs
In the following section we give a brief overview of the ba-
sic categories of answer set programs generated within the
system: flow control, flag control, instruction sequences, in-
struction definitions, input vectors and output constraints.

The flow control rules set which instruction will be ‘exe-
cuted’ at a given time step by controlling the pc (program
counter) literal. An example set of flow control rules are
given in Figure 1. The rules are simple, such as an in-
struction that asserts jump(C,T,J) would move the pro-
gram’s execution on J instructions, otherwise it will just
move on by one. As the ASP programs may need to si-
multaneously model multiple independent code streams (for
example, when trying to verify their equivalence), all literals
are tagged with a abstract entity called ‘colour’. The inclu-
sion of the colour(C) literal in each rule allows copies
to be created for each separate code stream during instantia-
tion. In most cases, when only one code stream is used, only
one value of colour is defined and only one copy of each
set of rules is produced; the overhead involved is negligible.

Flag control rules control the setting and maintenance of
processor flags such as carry, overflow, zero and negative.
Although generally only used for controlling conditional

haveJumped(C,T) :- jump(C,T,J), jumpSize(C,J),
time(C,T), colour(C).

pc(C,PCV+J,T+1) :- pc(C,PCV,T), jump(C,T,J), jumpSize(C,J),
time(C,T), colour(C), position(C,PCV).

pc(C,PCV+1,T+1) :- pc(C,PCV,T), not haveJumped(C,T),
time(C,T), colour(C), position(C,PCV).

pc(C,1,1).

Figure 1: Flow Control Rules in ASP

value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
value(C,R1,B), -value(C,R2,B),
register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
-value(C,R1,B), value(C,R2,B),
register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

-value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
not value(C,T,B), register(R1), register(R2),
colour(C), position(C,P), time(C,T), bit(B).

symmetricInstruction(lxor).

Figure 2: Modelling of a Logical XOR Instruction in ASP

branches and multi-word arithmetic, the flags are a source
of many superoptimised sequences and are thus of prime im-
portance when modelling.

The instruction sequence itself is represented as a series of
facts, or in the case of search, a set of choice rules (choice
rules are a syntactic extension to ASP, see (Niemelä & Si-
mons 1997)). The literals are then used by the instruction
definitions to control the value literals that give the value
of various registers within the processor. If the literal is
in the answer set, the given bit is taken to be a 1, if the
classically-negated version of the literal is in the answer set
then it is a 0. An example instruction definition, for a logical
XOR (exclusive or) between registers, is given in Figure 2.
Note the use of negation as failure to reduce the number of
rules required and the declaration that lxor is symmetric,
which is used to reduce the search space.

The input vectors and output constraints are the program
fragments created by pickVectors and execute respectively.

The ASP programs generated do not contain disjunction,
aggregates or any other non-syntactic extensions to answer
set semantics.

Results

Tests were run on a Beowulf-style cluster of 20 x 800MHz
Intel Celeron, 512MB RAM machines connected by 100Mb
Ethernet, running SuSE Linux 9.2. Results are given for
SMODELS v2.28 (denoted s) and the initial MPI version
of PLATYPUS running on n nodes (denoted p/n). LPARSE
v1.0.17 was used in all cases to ground the programs. The
timings displayed are from the SMODELS internal timing
mechanism and the PLATYPUS MPI wall time respectively.
Values for LPARSE are the user times given via the system
time command.



Search Time
search was used to generate programs that searched the
space of SPARC-V7 instructions for candidate superoptimi-
sations for the following instruction sequence:

! input in %i0, %i1

and %i0 %i1 %l1

add %i0 %l1 %l2

add %i0 %l2 %l3

sub 0 %l3 %o1

! output in %o1

This sequence was selected as a ‘worst case’, an exam-
ple of a sequence that cannot be superoptimised, giving an
approximate ceiling on the performance of the system.

Statistics on the programs used can be found in Figure 3,
with the timing results are given in Figure 4.

Verification Time
verify was used to create a verification program for the fol-
lowing two code sequences:

! input in %i0

add %i0 %i0 %o1

! output in %o1

! input in %i0

umult %i0 2 %o1

! output in %o1

using the SPARC-V83 architecture but varying the proces-
sor word length (the number of bits per register). This pair
of programs were chosen as, although they are clearly equiv-
alent, the modelling and reasoning required to show this is
non-trivial. Timing results for a variety of solver configura-
tions and different word lengths can be found in Figure 7,
program statistics can be found in Figure 5.

Analysis
The experimental results presented suggest a number of in-
teresting points. Firstly, superoptimisation using ASP is fea-
sible, but work is needed to make it more practical. Given
that only a few constraints were used in the programs gener-
ated by search, increasing the length of the maximum prac-
tical search space seems eminently possible. The result from
verify are less encouraging; although it shows it is possible
using ASP, it also suggests that attempting to verify instruc-
tion sequences of more than 32 bits of input is likely to re-
quire significant resources.

The graph in Figure 6 also shows some interesting proper-
ties of the parallel solver. The overhead of the solver appears
to be near constant, regardless of the number of processors
used. For the simpler problems, the overhead of the paral-
lel solver is greater than any advantages, but for the larger
problems it makes a significant difference and the speed-up
is approximately proportional to the number of processors
used.

Finally, the figures suggest that the SMODELS algorithm
does not scale linearly on some programs. The programs
output by verify double in search space size for each increase
in word length, but the time required by SMODELS rises by
significantly more than a factor of two. Strangely, this addi-
tional overhead appears to be less significant as the number
of processors used by PLATYPUS rises.

3SPARC-V8 is a later, minimal extension of SPARC-V7 with
the addition of the umult instruction.

The simplified graph in Figure 6 shows these effects, with
time graphs for SMODELS against PLATYPUS with 4, 8 and
16 processors.

Future Development

One of the key targets in the development of TOAST is to
reduce the amount of time required in searching. Doing so
will also increase the length of instruction sequence that can
be found. This requires improvements to both the programs
that are generated and the tools used to solve them.

A key improvement to the generated programs will be
to remove all short sequences that are known to be non-
optimal. search can be used to generate all possible instruc-
tion sequences of a given length. By superoptimising each
one of these for the smaller lengths, it is then possible to
build a set of equivalence categories of instructions. Only
the shortest member of each category needs to be in the
search space and thus a set of constraints can be added to
the programs that search generates. This process only ever
needs to be done once for each processor architecture and
will give significant improvements in terms of search times.
The equivalence classes generated may also be useful to im-
prove verification.

The other developments needed to reduce the search time
are in the tools used. Addressing the amount of memory
consumed by LPARSE and attempting to improve the scaling
of the SMODELS algorithm are both high priorities.

The performance of verify also raises some interesting
questions. At present, is possible to verify programs for
some of the smaller, embedded processors. However, in its
current form it is unlikely to scale to high-end, 64 bit proces-
sors. A number of alternative approaches are being consid-
ered, such as attempting to prove equivalence results about
the generated ASP programs, reducing the instructions to
a minimal/pseudo-normal form (an approach first used by
Massalin), using some form of algebraic theorem-proving
(as in the Denali project) or attempting to formalise and
prove the observation that sequences equivalent on a small
set of points tend to be equivalent on all of them.

Using the TOAST system to improve the code generated
by tools such as GCC is also a key target for the project. By
implementing tools that translate between the TOAST inter-
nal assembly-like format and processor-specific assembly, it
will be possible to check the output of GCC for sequences
that can be superoptimised. Patterns that occur regularly can
then be added to the instruction generation phases of GCC.
Performance-critical system libraries, such as the GNU Mul-
tiple Precision Arithmetic Library (GMP) (Granlund 2006)
and code generators used by Just In Time (JIT) compilers
could also be interesting application areas.

It is hoped that it will not only prove useful as a tool for
optimising sections of performance critical code, but that the
ASP programs could be used as benchmarks for solver per-
formance and the basis of other applications which reason
about machine code.



Length of Sequence No. rules Grounding time No. ground rules No. of atoms
1 530 20.100 95938 1018
2 534 65.740 298312 1993
3 538 142.22 643070 3428
4 542 - 1197182 6873

Figure 3: Search Program Sizes

Length of Sequence s p/2 p/4 p/6 p/8 p/10 p/12 p/14 p/16 p/18 p/20
1 3.057 10.4647 10.4813 10.4761 10.5232 10.5023 10.4674 10.4782 10.4833 10.4915 10.5040
2 99.908 104.710 123.312 120.984 135.733 136.057 139.944 139.000 135.539 139.271 138.288
3 81763.9 63644.4 19433.4 12641.0 6008.20 7972.73 9097.83 6608.64 6063.08 4629.90 5419.08
4 > 237337.35 - - - - - - - - - -

Figure 4: Search Space Size v Compute Time (secs)

Word Length No. rules Grounding time No. ground rules No. of atoms
8 779 1.220 1755 975
9 780 1.320 2063 1099

10 781 1.430 2402 1235
11 782 1.480 2772 1383
12 783 1.330 3173 1543
13 784 1.350 3605 1715
14 785 1.450 4068 1899
15 786 1.480 4562 2095
16 787 1.480 5087 2303
17 788 1.640 5645 2527
18 789 1.680 6234 2763
19 790 1.690 6854 3011
20 791 1.550 7505 3271
21 792 1.590 8187 3543
22 793 1.670 8900 3827
23 794 1.900 9644 4123
24 795 1.830 10419 4431

Figure 5: Verification Program Sizes

Conclusion

This paper suggests that ASP can be used to solve large-
scale, real-world problems. Future work will hopefully
show this is also a powerful approach to the superoptimi-
sation problem and perhaps even a ‘killer application’ for
ASP.

However, it is not without challenges. Although savings
to both size of the ASP programs used and their search
spaces are possible, this will remain a high-end application
for answer set solvers. Some of the features required, such as
the handling of large, sparse search spaces and efficiency in
producing all possible answer sets (or traversing the search
space of programs without answer sets) are unfortunately
not key targets of current solver development.

The TOAST project demonstrates that answer set technol-
ogy is ready to be used in large-scale applications, although
more work is required to make it competitive.
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