

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Proceedings of 14th International Workshop on Automated Verification of Critical Systems

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa43776

Conference contribution :

Donaghy, D. & Crick, T. (2014). Efficacy Measurement of Early Intervention Techniques. Proceedings of 14th

International Workshop on Automated Verification of Critical Systems, Enschede, Netherlands: University of Twente.

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43776
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Electronic Communications of the EASST
Volume XXX (2014)

Proceedings of the
14th International Workshop on

Automated Verification of Critical Systems (AVoCS 2014)

Efficacy Measurement of Early Intervention Techniques

Dave Donaghy and Tom Crick

3 pages

Guest Editors: Marieke Huisman, Jaco van de Pol
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

ECEASST

Efficacy Measurement of Early Intervention Techniques

Dave Donaghy1 and Tom Crick2

1 dave.donaghy@hp.com
HP Bristol, UK

2 tcrick@cardiffmet.ac.uk
Department of Computing

Cardiff Metropolitan University, UK

Abstract: Compiler technology has, for some considerable time, been sufficiently
advanced that individual programmers are able to produce, in reasonably short pe-
riods of time, tools that might aid with the development process in novel ways: for
example, one can easily produce a C compiler tool that will detect uncommon uses
of integer arithmetic (such as the rare multiplication of values that are commonly
only added) and flag such uses as potential errors.

However, there is currently no convenient way to measure the efficacy of such tech-
niques: where one might assume that uncommon uses of integer arithmetic might be
erroneous, we do not have a way of measuring the cost saving associated with the
potential early detection of occurrences of such things.

We present a method of measuring the efficacy of a single early intervention, based
on the replaying of previous executions of a compile-build-test cycle. This measure-
ment process allows us to identify the software errors that were introduced during
an original development and subsequently fixed; additionally, it allows us to identify
the subset of such errors that would have been identified by the early intervention.
By these means, we can take an existing historical record of a development, and
extract from it meaningful information about the value of a proposed new early in-
tervention technique.

Keywords: Verification, Software Engineering, Efficiency, Version Control Sys-
tems, Repository Mining

1 Introduction

It is possible for software developers to utilise all manner of tools that will analyse practically
any aspect of their source code and report on it in any way they choose; while this freedom will
allow arbitrary invention on the part of the software developer, it might also allow construction
of analysis tools that seem effective, but in reality are not; additionally, individual developers
might have different ideas of what constitutes an effective tool [ZVDv08]. It would be useful,
therefore, to formalise two separate ideas:

1. What constitutes effectiveness in the realm of compilation tools?

2. Is my tool effective?

1 / 3 Volume XXX (2014)

Efficacy Measurement of Early Intervention Techniques

2 Robust Efficacy Measurement

Some notions of tool effectiveness during code development and compilation might be as fol-
lows:

1. Will my tool make my code better?

2. Since the beginning of my current project, how many errors would have been detected
using my tool, which was not in use (or in fact conceived) at the time?

Clearly these two criteria have been written deliberately to highlight the difference between
objective, measurable criteria and subjective, hard-to-measure ones. We thus propose (and sug-
gest ways for answering) the following question: how can we phrase objective questions about
measuring the effectiveness of tools run at the time of software compilation?

3 Retrospective Measurements

We often have access to massive amounts of historical data in the form of a source-code repos-
itory [BKPS97, ZZWD05], such as those used by Subversion or Git (among many other tools
used for such purposes). Often, though, while these repositories provide the ability to take time-
based snapshots of workspaces that “work” (in some loose sense) at a given point in time, we
may not take full advantage of the information in them [BRB+09, SK12].

Imagine that we have access to a new compiler option that will allow us to simply prevent
compilation of code where a certain kind of error is detected. Assuming we have access to full
historical information in our source-code repository, perhaps from repository mining, we can
simply re-run our compile-test cycle with the new tool in place, and see which errors would have
been identified before their actual detection time. Again, with full historical information, we can
identify how much earlier each would have been identified, and then make judgments about the
benefits of the new tool.

The remaining question, then, is this: if we do not have full historical information (and it is
likely that we do not), then how much information do we need to judge the efficacy of our new
techniques?

4 Open Questions

The following questions may be answered by constructing suitable experiments with data from
historical repositories:

1. What build system changes are necessary to allow the retrospective addition of compiler
tools to the build cycle?

2. What artefacts must be stored in a repository in order to reproduce compile-build test
cycles and identify all errors?

Proc. AVoCS 2014 2 / 3

ECEASST

3. How often must snapshots be taken in order to identify the points in time where errors
were identified and fixed?

4. What is the potential for false alarms raised by error-checking tools in this proposed sys-
tem?

Bibliography

[BKPS97] T. Ball, J.-M. Kim, A. A. Porter, H. P. Siy. If Your Version Control System Could
Talk... In Proceedings of the ICSE’97 Workshop on Process Modeling and Empirical
Studies of Software Evolution. 1997.

[BRB+09] C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German, P. Devanbu. The promises and
perils of mining git. Pp. 1–10. IEEE Press, 2009.

[SK12] B. Sisman, A. Kak. Incorporating version histories in Information Retrieval based
bug localization. In Proceedings of the 9th IEEE International Working Conference
on Mining Software Repositories (MSR’12). Pp. 50–59. IEEE Press, 2012.

[ZVDv08] A. Zaidman, B. Van Rompaey, S. Demeyer, A. van Deursen. Mining Software
Repositories to Study Co-Evolution of Production & Test Code. In Proceedings of
the 1st International Conference on Software Testing, Verification and Validation.
Pp. 220–229. IEEE Press, 2008.

[ZZWD05] T. Zimmermann, A. Zeller, P. Weissgerber, S. Diehl. Mining version histories to
guide software changes. IEEE Transactions on Software Engineering 31(6):429–445,
2005.

3 / 3 Volume XXX (2014)

