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Abstract: Object-oriented programming (OOP) languages allow for the creation
of rich new types through, for example, the class mechanism found in C++ and
Python (among others).

These techniques, while certainly rich in the functionality they provide, additionally
require users to develop and test new types; while resulting software can be elegant
and easy to understand (and indeed these were some of the aspirations behind the
OOP paradigm), there is a cost associated to the addition of the new code required
to implement such new types. Such a cost will typically be at least linear in the
number of new types introduced.

One potential alternative to the creation of new types through extension is the cre-
ation of new types through restriction; in appropriate circumstances, such types can
provide the same elegance and ease of understanding, but without a corresponding
linear development and maintenance cost.
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1 Introduction

Object-oriented programming (OOP) languages allow for the creation of rich new types through,
for example, the c1ass mechanism found in C++ and Python. However, it might be possible to
obtain some of the gains of such techniques without the associated overheads in cost.

2 Development Cost of New Types

In an object-oriented development environment, it can reasonably be said that all software is
encapsulated as methods on various types; indeed, Java, for example, requires that all executable
code be written as type methods, allowing for the notion that static methods are still a kind of
type method.

At the very least, then, the development of new types has some cost (and in particular, some
financial or resource cost) associated to it. While we do not intend to directly measure this cost,
a fair starting assumption might be that is linear in the number of new types introduced.
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3 Restricted Types

One potential alternative to the creation of new types through extension is the creation of new
types through restriction [NSPGOS]; in appropriate circumstances, such types can provide the
same elegance and ease of understanding, but without a corresponding linear development and
maintenance cost.

As an example, consider an integer counter, intended to represent the number of occurrences
of a certain event: the operations one might like to have on such an entity can be described as
follows:

1. Create a new counter, with a value of zero.
2. Increment the counter by one.

3. Compare the value of the counter against a given integer.

Note that we might want to describe such operations explicitly, with the assumption that all
other operations (for example, multiplying the counter by 8, or setting bits 2, 3 and 7), are
disallowed.

One could clearly create such an object simply (and elegantly) in C++ or Java using a class
construct, but the point here is that creation of such a new type would involve new, deployable,
testable software with a non-trivial associated cost; a counter such as this is, mathematically
and naturally speaking, a special kind of integer, and therefore we already have all the required
software (built into the hardware and run-time environment) that we need. In particular, what we
really need is a constraint: we must promise not to use disallowed “non-counter” operations on
counters.

4 Open Questions

We can ask the following questions to frame future work in this area:

1. What existing common (or indeed uncommon) types naturally present themselves as re-
strictions of existing types, either built-in/primitive types or other existing types?

2. What amount of software is involved in the definition of those types, for example appro-
priate compiler/toolchain support? (e.g. [ANMMO6, NS07, MME" 10, GCC10, LLV14])

3. How can we ensure that these restrictions, especially as compiler plugins, are harm-
less? [Nys11]

4. (Harder) What financial cost has historically been involved in the creation and maintenance
of those types?

5. What proportion of that cost might be saved by new techniques for developing restricted
types?
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