&

Swansea University ‘C ronfa

Prifysgol Abertawe Setting Research Free

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
Proceedings of 14th International Workshop on Automated Verification of Critical Systems

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa43775

Conference contribution :
Donaghy, D. & Crick, T. (2014). No-Test Classes in C through Restricted Types. Proceedings of 14th International
Workshop on Automated Verification of Critical Systems, Enschede, Netherlands: University of Twente.

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/


http://cronfa.swan.ac.uk/Record/cronfa43775
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

Electronic Communications of the EASST

Volume XXX (2014)

Proceedings of the
14th International Workshop on
Automated Verification of Critical Systems (AVoCS 2014)

No-Test Classes in C through Restricted Types
Dave Donaghy and Tom Crick

3 pages

Guest Editors: Marieke Huisman, Jaco van de Pol

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122




Eg ECEASST

No-Test Classes in C through Restricted Types

Dave Donaghy' and Tom Crick’

I dave.donaghy @hp.com
HP Bristol, UK

2 terick @cardiffmet.ac.uk
Department of Computing
Cardiff Metropolitan University, UK

Abstract: Object-oriented programming (OOP) languages allow for the creation
of rich new types through, for example, the class mechanism found in C++ and
Python (among others).

These techniques, while certainly rich in the functionality they provide, additionally
require users to develop and test new types; while resulting software can be elegant
and easy to understand (and indeed these were some of the aspirations behind the
OOP paradigm), there is a cost associated to the addition of the new code required
to implement such new types. Such a cost will typically be at least linear in the
number of new types introduced.

One potential alternative to the creation of new types through extension is the cre-
ation of new types through restriction; in appropriate circumstances, such types can
provide the same elegance and ease of understanding, but without a corresponding
linear development and maintenance cost.

Keywords: Verification, Restricted Types, Compilers, Plug-ins

1 Introduction

Object-oriented programming (OOP) languages allow for the creation of rich new types through,
for example, the c1ass mechanism found in C++ and Python. However, it might be possible to
obtain some of the gains of such techniques without the associated overheads in cost.

2 Development Cost of New Types

In an object-oriented development environment, it can reasonably be said that all software is
encapsulated as methods on various types; indeed, Java, for example, requires that all executable
code be written as type methods, allowing for the notion that static methods are still a kind of
type method.

At the very least, then, the development of new types has some cost (and in particular, some
financial or resource cost) associated to it. While we do not intend to directly measure this cost,
a fair starting assumption might be that is linear in the number of new types introduced.

1/3 Volume XXX (2014)



No-Test Classes in C through Restricted Types Eﬁ

3 Restricted Types

One potential alternative to the creation of new types through extension is the creation of new
types through restriction [NSPGOS]; in appropriate circumstances, such types can provide the
same elegance and ease of understanding, but without a corresponding linear development and
maintenance cost.

As an example, consider an integer counter, intended to represent the number of occurrences
of a certain event: the operations one might like to have on such an entity can be described as
follows:

1. Create a new counter, with a value of zero.
2. Increment the counter by one.

3. Compare the value of the counter against a given integer.

Note that we might want to describe such operations explicitly, with the assumption that all
other operations (for example, multiplying the counter by 8, or setting bits 2, 3 and 7), are
disallowed.

One could clearly create such an object simply (and elegantly) in C++ or Java using a class
construct, but the point here is that creation of such a new type would involve new, deployable,
testable software with a non-trivial associated cost; a counter such as this is, mathematically
and naturally speaking, a special kind of integer, and therefore we already have all the required
software (built into the hardware and run-time environment) that we need. In particular, what we
really need is a constraint: we must promise not to use disallowed “non-counter” operations on
counters.

4 Open Questions

We can ask the following questions to frame future work in this area:

1. What existing common (or indeed uncommon) types naturally present themselves as re-
strictions of existing types, either built-in/primitive types or other existing types?

2. What amount of software is involved in the definition of those types, for example appro-
priate compiler/toolchain support? (e.g. [ANMMO6, NS07, MME" 10, GCC10, LLV14])

3. How can we ensure that these restrictions, especially as compiler plugins, are harm-
less? [Nys11]

4. (Harder) What financial cost has historically been involved in the creation and maintenance
of those types?

5. What proportion of that cost might be saved by new techniques for developing restricted
types?

Proc. AVoCS 2014 2/3



E

ECEASST

Bibliography

[ANMMO6] C. Andreae, J. Noble, S. Markstrum, T. Millstein. A framework for implementing

[GCC10]
[LLV14]

[MME*10]

[NSO7]

[NSPGOS]

[Nys11]

pluggable type systems. In Proceedings of the 21st ACM SIGPLAN Conference
on Object-Oriented Programming Systems Languages and Applications (OOP-
SLA’06). Pp. 57-74. ACM Press, 2006.

GCC. Compiler Plugins. https://gcc.gnu.org/wiki/plugins, 2010.
LLVM. Clang Plugins. http://clang.llvm.org/docs/ClangPlugins.html, 2014.

S. Markstrum, D. Marino, M. Esquivel, T. Millstein, C. Andreae, J. Noble. Java-
COP: Declarative pluggable types for Java. ACM Transactions on Programming
Languages and Systems 32(2), 2010.

N. Nystrom, V. Saraswat. An annotation and compiler plugin system for X10:
A High-level Design Document. Technical report RC24198, IBM TJ Watson Re-
search Center, 2007.

N. Nystrom, V. Saraswat, J. Palsberg, C. Grothoff. Constrained types for object-
oriented languages. In Proceedings of the 23rd ACM SIGPLAN Conference
on Object-Oriented Programming Systems Languages and Applications (OOP-
SLA’08). Pp. 457—474. ACM Press, 2008.

N. Nystrom. Harmless compiler plugins. In Proceedings of the 13th Workshop on
Formal Techniques for Java-Like Programs (FTfJP’11). ACM Press, 2011.

3/3

Volume XXX (2014)



