

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Proceedings of 14th International Workshop on Automated Verification of Critical Systems

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa43773

Conference contribution :

Donaghy, D. & Crick, T. (2014). Physical Type Tracking through Minimal Source-Code Annotation. Proceedings of

14th International Workshop on Automated Verification of Critical Systems, Enschede, Netherlands: University of

Twente.

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43773
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Electronic Communications of the EASST
Volume XXX (2014)

Proceedings of the
14th International Workshop on

Automated Verification of Critical Systems (AVoCS 2014)

Physical Type Tracking through Minimal Source-Code Annotation

Dave Donaghy and Tom Crick

3 pages

Guest Editors: Marieke Huisman, Jaco van de Pol
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

ECEASST

Physical Type Tracking through Minimal Source-Code Annotation

Dave Donaghy1 and Tom Crick2

1 dave.donaghy@hp.com
HP Bristol, UK

2 tcrick@cardiffmet.ac.uk
Department of Computing

Cardiff Metropolitan University, UK

Abstract: One of many common artefacts of complex software systems that often
needs to be tracked through the entirety of the software system is the underlying
type to which numerical variables refer. Commonly-used languages used in indus-
try provide complex mechanisms through which general objects are associated to a
given type: for example, the class (and template) mechanisms in Python (and C++)
are extremely rich mechanisms for the construction of types with almost entirely
arbitrary associated operation sets.

However, one often deals with software objects that ultimately represent numerical
entities corresponding to real-world measurements, even through standardised SI
units: metres per second, kilogram metres per second-squared, etc. In such situa-
tions, one can be left with insufficient and ineffective type-checking: for example,
the C double type will not prevent the erroneous addition of values representing
velocity (with SI units metre per second) to values representing mass (SI unit kilo-
gram).

We present an addition to the C language, defined through the existing attribute
mechanism, that allows automatic control of physical types at compile-time; the
only requirement is that individual variables be identified at declaration time with
appropriate SI (or similar) units.

Keywords: Verification, Software Engineering, Type-Checking, Units, Compilers,
Plug-ins

1 Introduction

Large (and indeed small) software systems typically track data, stored in a variety of different
types; in fact, “bytes in, bytes out” is a fairly accurate description of a massive portion of the
functionality of large software systems. While this is clearly true, it is of course an extraordinary
over-simplification: the nature of the data we track through software systems ultimately maps all
of the data that humankind has, can, or ever will, encompass.

It is not much of an understatement to say that tracking the types and content of these data rep-
resents the whole job of software development. Indeed, whole paradigms (for example, object-
oriented development) may be thought of as addressing this one significant issue. However, such
paradigms, while rich and functional, can also be cumbersome.

1 / 3 Volume XXX (2014)

Physical Type Tracking through Minimal Source-Code Annotation

2 Simple Techniques for Data Tracking

In certain scenarios, the nature of the data we track may make it amenable to simpler repre-
sentation: from a mathematical point of view, while a C++ class representing a command-line
instruction to be parsed and executed is not a mathematical object in any useful sense; whereas
a C++ object representing the distance from a geographical point to another most assuredly is.

Nevertheless, it is common to either use the same complex, powerful techniques to track these
mathematical objects as to track non-mathematical ones; or indeed not to effectively track them
at all. To contrast that idea, it might be possible to track these fundamentally mathematical items
in C-like languages in ways that allow minimal additional effort at development time, and no
maintenance effort at all.

For example, there is no meaningful way in which one can (or should) add 10 metres to 20
kilograms [Fos13]; there is, however, a way in which we can multiply the two: the result has a
value of 200, and a unit of “kilogram metre” (one has to understand slightly more physics that
the authors to recall the precise physical meaning of a unit of “kilogram metre”, but one certainly
exists) [Bur14]. Units-of-measure are to science what types are to programming; over the years,
a number of attempts have been suggested to extend programming languages with support for
static checking of units-of-measure [Ken97, EB02, Ken09], alongside bespoke languages (e.g.
Frink [Eli08]).

3 Implicit Type Operation and Restricted Types

Imagine, then, that a variable declaration can be tagged with a unit; that two variables can be
arbitrarily multiplied; that two variables can be added if and only if their underlying units match
exactly. With these abilities in place, we could simply manipulate all physical types (kilograms,
metres, farads etc) as built-in numerical types, without resorting to the complex class mecha-
nisms that we might otherwise need.

We might call such a declaration a restricted type: being based on a built-in type (or indeed,
any arbitrary type) it is then further restricted by constraining the operations allowed on it: no
additional software is written to define the type, and the only distinction between it and the type
from which it is defined is this: that with the new type, either the software compiled and behaves
identically, or it does not compile at all [DC14]. While similar features exist for certain pro-
gramming paradigms (for example, functional e.g. Haskell), there are significant opportunities
for their implementation in the languages commonly used for industrial software development.
Such a feature could improve the code quality for critical systems, as well as detecting errors
earlier, lowering software development costs.

4 Open Questions

We can ask the following questions to frame future work in this area:

1. Which existing definitions of complex types (for example, C++ classes) can be replaced
with restricted types?

Proc. AVoCS 2014 2 / 3

ECEASST

2. By how much might software development effort be reduced using such techniques?

3. How much more effective might such techniques be at detecting software errors?

Bibliography

[Bur14] Bureau International des Poids et Mesures. The International System of Units (SI).
http://www.bipm.org/en/si/, 2014.

[DC14] D. Donaghy, T. Crick. No-Test Classes in C through Restricted Types. In Proceedings of
the 14th International Workshop on Automated Verification of Critical Systems (AVoCS
2014). 2014.

[EB02] M. Erwig, M. M. Burnett. Adding Apples and Oranges. In Proceedings of the 4th Inter-
national Symposium on Practical Aspects of Declarative Languages (PADL’02). Lec-
ture Notes in Computer Science 2257, pp. 173–191. Springer, 2002.

[Eli08] A. Eliasen. Frink. http://futureboy.us/frinkdocs, 2008.

[Fos13] M. P. Foster. Quantities, units and computing. Computer Standards & Interfaces
35(5):529–535, 2013.

[Ken97] A. J. Kennedy. Relational parametricity and units of measure. In Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’97). Pp. 442–455. ACM Press, 1997.

[Ken09] A. J. Kennedy. Types for units-of-measure: theory and practice. In Proceedings of the
3rd Central European Functional Programming School (CEFP’09). Lecture Notes in
Computer Science 6299, pp. 268–305. Springer, 2009.

3 / 3 Volume XXX (2014)

