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Abstract 

Hydrological models are a simplified representation of hydrological processes and can 

be very used for the water resources assessment and gain an integral view of the water 

resources status for integrated water resources management IWRM. Furthermore, 

they can be used to investigate the possible impacts and trends resulting from 

different types of scenarios, such as climate change impact studies.  

 

Accordingly, with IWRM as the future application, the primary objectives of this 

study is to use a hydrological model, SWAT for the modelling of a highly-regulated 

river basin through the physical flow control (reservoirs release in the upstream 

region), the Dee River Watershed in the United Kingdom. Moreover, an essential 

aspect of model input uncertainty, i.e. precipitation is investigated on the simulated 

streamflow where different methods of rainfall pre-processing are used. Furthermore, 

a quantile regression method is employed for analysing the long-term historical trend 

of rainfall, river flow and catchment water yields focusing on the patterns of the data 

close to 'extreme' regimes, to link them to the events of interests for the climate 

change impact studies. 

 

Additionally, a reliable simulation of both land surface and groundwater hydrological 

processes is a far important step for IWRM. One way to achieve such purpose is the 

coupling of surface and groundwater models. The land surface model (SWAT) is 

coupled with the groundwater flow model (MODFLOW) to improve the baseflow 

simulation of the SWAT standalone in the study area. Another critical aspect of this 

study is the investigation of parameter uncertainty of the coupled SWAT-

MODFLOW. Finally, the climate projection data from the CMIP5 project is utilised 

with allocation model, Water Evaluation and Planning software WEAP to address 

climate change impact for future scenarios on water resources. 

 

All presented models performed well in demonstrating the study conditions, as 

indicated by the statistical performance. The research approach of the integrated 

models can generally apply to any catchment and inspired by the need of considering 

all aspects related to hydrological models for IWRM to bridge the gap of between 

stakeholder involvement and natural hydrological processes in building and applying 

integrated models to ensure acceptability and application in decision-making for 

IWRM. 
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Chapter 1: Introduction 

Chapter 1: Introduction  

Integrated water resources management (IWRM) is an approach to formulating, 

utilising and implementing management and planning strategies for ecologically and 

sustainably developing water resources by considering the temporal and spatial 

interconnections with human, natural resources and environmental aspects among 

water users. It is seen as an umbrella concept under which more coordinated, and 

holistically methods are sought as there is a complex interaction between water 

resources systems (WRS) and environmental and social sub-systems (Gain et al., 

2013). Recently, it has been considered as a global paradigm for water resources 

management and has been broadly used in dealing with practical water resources 

management problem (Gain et al., 2012). 

 

According to Agyenim and Gupta (2012), Integrated Water Resources Management 

IWRM is one of the most proper techniques for the management of water resources 

for three main reasons: 

1) It is a holistically thorough approach that considers all type of water resources; 

2) It makes a connection between water resources and catchment’s livelihood; 

and 

3) It integrates the aspects of good governance. 

 

The primary objective of sustainable river basin management needs a sound 

understanding of water resources systems and their types and relationships (e.g. 

groundwater, surface water, quantity and quality, biotic components, upstream and 

downstream interactions). The water resources systems should be fully considered 

and dealt with as part of the broader environment and about socio-economic demands 

under the effects of the political and cultural situations. 

 

Evidently, water resources management cannot be treated in separation; it is essential 

to consider the performance of ecosystems simultaneously at different levels and 
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different spatial and temporal scales. This often involves management and planning of 

water system at the various local levels such as field, farm, and village and at the 

regional levels such as catchments and river basins (Jain and Singh, 2003). 

 

Computer models are abundant when it comes to applications in hydrology and water 

resources analysis. Hydrological models come as a big group aiming to reveal the 

processes within a catchment and beyond; hydrodynamic models, on the other hand, 

are made to account for more detailed physical processes in river channels and 

floodplains. In the context of IWRM, these models are indispensable tools as to 

answering the questions related to water quantity, quality, distribution and the impacts 

of the changes in underlying conditions.  

 

Hydrological models can be used for quantitative studies of IWRM to access surface 

water resources (runoff) which is often generated by rainfall storms. On the other 

hand, hydrogeologists make use of groundwater models to simulate the movement of 

water within water-bearing layers and predict of aquifer system conditions for several 

purposes such as irrigation development. Sensibly, some output results that are 

generated from hydrological modelling might be utilised as input for groundwater 

modelling and vice versa for a more accurate result of available water resources from 

the natural process. 

 

Operationally, hydrological modelling is a powerful technique through which the 

hydrological cycle in the real world is presented for prediction of hydrological 

processes such as surface runoff, evapotranspiration and groundwater recharge. 

Ordinarily, hydrological models can be divided into two main groups: stochastic and 

deterministic (Process-based model). Stochastic hydrological models utilise statistical 

or mathematical techniques (e.g. transfer functions, regression…etc.) to connect input 

data such as precipitation to the output such as runoff. Whereas, deterministic 

hydrological models are more complicated as they characterise the physical processes 



 

3 | P a g e  

 

Chapter 1: Introduction 

in the water resources system (e.g. streamflow, evapotranspiration, subsurface 

flow…etc.) and they can be a single-event model or continuous simulation model. 

 

What makes the models in IWRM different from those generic, natural-process 

oriented models, however, is that not only does IWRM need to know ‘how much’, it 

also has to deal with policy problems such as ‘what can be done with that’ in terms of 

allocation, planning, and the necessary optimisation and decision-making. It is the 

latter factors that bring in more management-orientated models on top of the 

traditional, engineering-focused hydrological models and hydrodynamic models. 

 

Model integration or integrated models are a prerequisite for using models to support 

IWRM. The reason why integrated models are preferred over a single ‘super’ model is 

that in any model certain technical compromises always have to be made to 

competently represent the main processes while purposefully simplifying or even 

ignoring other less significant ones. Specifically, those already-specialised individual 

models, if wisely integrated, will outperform a single, supermodel that attempts to 

address everything. 

 

While integration of water resources management aims to find an optimised approach 

for addressing and balancing the needs of multiple stakeholders, participants as well 

as numerous natural components, the use of computer models does not appear to be in 

an integrated fashion in the first place. However, integration of computer models in 

IWRM has gradually become significant as the problem of IWRM develops more and 

more complex requiring more detailed, refined, and dynamic solution to more 

challenging situations such as climate change impact.  

 

1.1. Motivations and research questions 

As discussed above, IWRM is a complicated process and needs integration at a 

different level. It is essential to study hydrological and groundwater flow models and 
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all processes affect this model to assess the availability of water resources and 

investigate the climate change impact on the water resources.  

 

This study aims to use the hydrological model for integrated water resources 

management under climate change for the highly-regulated river basin. Most studies 

focused only on one or two aspects of modelling for integrated water resources 

management where a systematic approach is needed to address issues: 

1) How to represent complex human activities in models? 

2) How to address input data uncertainties and their implication in IWRM? 

3) How to use quantile-based regression to investigate the trend of possible 

floods and droughts? 

4) How to use coupled models to improve baseflow simulation (coupling SWAT-

MODFLOW) and allocation/management (coupling SWAT-WEAP)? 

5) Addressing parameters uncertainties of a coupled surface-groundwater 

modelling (SWAT-MODFLOW)? 

6) Understanding the uncertainty in climate projections.  

 

To achieve the study’s aims, the research strategy has been designed as follows: 

1) A quasi-distributed hydrological model is set up for a highly-regulated river 

basin, the Dee River watershed in the United Kingdom involving calibration 

and validation using historical streamflow observation. 

2) Use three different methods of precipitation pre-processing to examine their 

effects on the simulated river flow of the selected study area, fed with both the 

observed daily rain gauges and the newly gridded rainfall model (Centre for 

Ecology and Hydrology- Gridded Estimates Areal Rainfall, CEH-GEAR), 

including cross-calibration and validation. 

3) Use quantile regression (linear and nonlinear) to study the trend of the likely 

floods and droughts based upon the observed rainfall and simulated 
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streamflow and water yield of SWAT model for an extended period (more 

than 30 years). 

4) Construct a groundwater flow model and couple it with a calibrated 

hydrological model to improve the simulation of baseflow. 

5) Use the SAFE Toolbox (Sensitivity Analysis for Everybody) to conduct the 

sensitivity analysis of the of the coupled hydrological-groundwater model. 

6) Study the reliability of climate projections by analysing the trends of the 

observed and simulated precipitation of 18 models of CMIP5 projects with a 

larger case study area (Iraq) owing to its coarse spatial resolution. 

7) Design a range of scenario simulations based on the future climate conditions 

and feed them into the coupled model to identify the future probably Unmet 

Demand at four sites with considerable water use for the public water supply. 

8) Summarise and conclude the study and with recommendations for future 

work. 

 

1.2. Structure of the thesis 

This thesis consists of ten chapters including the introduction in Chapter 1 and 

conclusion in Chapter 10.  

Chapter 2 is a review of the literature of modelling support for integrated water 

resources management. The classification of models has been discussed and 

applications are also summarised. 

Chapter 3 introduces the study area highlighting the problems of this catchment and 

building of hydrological modelling using the SWAT model of the complex highly-

regulated watershed, the Dee River in the UK. It involves model description, structure 

and calibration and validation. A summary of the limitations follows the detailed 

discussion of the model set up. 
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Chapter 4 illustrates the use of three techniques of rainfall pre-processing on the 

simulated streamflow of the SWAT model using rain gauges and gridded precipitation 

mode (CEH-GEAR model). This setup includes cross-calibration and validation.  

Chapter 5 describes the use of linear and non-linear quantile regression to study the 

trend of regional water resources using the observation (e.g. precipitation) and the 

simulated results of SWAT model (e.g. streamflow and water yield) for the likely 

flooding and drought events.  

Chapter 6 studies the coupling of the land surface process model (SWAT) with a 

physically based fully distributed groundwater flow model (MODFLOW) to improve 

simulation of the baseflow. It includes the steps of model integration and discussion 

of current application and limitations.  

Chapter 7 investigates the parameters uncertainties of SWAT and the coupled SWAT-

MODFLOW using MATLAB toolbox (SAFE). 

Chapter 8 examines the reliability of climate projections from CMIP5 to reveal the 

trend of the historically observed precipitation. Owing to the coarse spatial resolution 

of the climate model, a larger study area is used, Iraq. 

Chapter 9 scrutinises the integration of a simulation model SWAT with an allocation 

model WEAP as well as the climate model from projections of CMIP5 to develop 

future scenarios of water uses and evaluate the likely unmet demands.  

Chapter 10 concludes the results and identifies the recommendations for future works. 
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Chapter 2: A Review on Modelling Support for Water 

Resources Management 

Computer models play an indispensable role in integrated water resources 

management (IWRM) providing support to a range of critical components ranging 

from water resources assessment to management and decision making. This chapter 

offers a review of computer modelling for integrated water resources management. 

Firstly, the concept of IWRM is presented in its historical context together with a 

classification of various related computer models; the two main groups of models: 

simulation models and the allocation models are then discussed in detail with regards 

to their structure, conceptualisation, and applications. Finally, this chapter investigates 

the issues and challenges arising from model integration with a new perspective.  

 

2.1. Overview  

Integrated Water Resources Management (IWRM) is “an empirical concept built up 

from on-the-ground experience of practitioners. Although many parts of the concept 

have been around for several decades - in fact since the first global water conference 

in Mar del Plata in 1977- it was not until after Agenda 21 and the World Summit on 

Sustainable Development in 1992 in Rio that the concept was made the object of 

extensive discussions as to what it means in practice” (Hassing, 2009). It is also an 

umbrella concept under which more coordinated and holistically methods are pursued 

as there are complex interactions among water resources systems (WRS) and 

environmental and social sub-systems (Gain et al., 2013). Recently, IWRM has been 

considered as a global paradigm for water resources management and has been widely 

practised to tackle water resources management problem (Gain et al., 2012). 

 

Water resources management has never lacked of attention. The efforts of exploring 

effective methods for managing limited and yet sometimes excessive water resources 

can be traced back to as early as the 1930s. Andrews (2006) revealed that the 

Tennessee Valley Authority in the US was one of the first taking an integrated 
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approach to water resources management in 1933. However, the modern form of 

water resources management is thought evolve from 1970s when water management 

began to be categorised as an engineering paradigm based on “predict and provide”, 

project-led and sub-sectorial technique to water services (Savenije and Van der Zaag, 

2008), with societies capable of various essential engineering measures, such as 

construction of large-scale irrigation facilities, building dams and reservoirs. 

 

Many researchers in the 1990s, such as Mitchell (1990) addressed those related 

aspects of water resources management. It was from the early 1990’s that water 

resources management was gradually recognised as a multi-sectoral, multi-regional 

and multi-dimensional problem-solving process and hence requiring a new concept 

(Biswas, 2008). A key following-up to this recognition was the proposal of a new 

paradigm IWRM in river basin management and planning in the early 1990s.  

 

This new approach was one of the first systematic attempts to address many related 

aspects in WRM practice including environmental protection, stakeholder 

participation, equity, and efficiency. The concept of IWRM was then summarised in a 

series of internationally recognised principles, such as the Dublin Principles proposed 

at the International Conference on Water and the Environment and Rio UNCED 

Agenda 21. Subsequently, more related standards were used to develop IWRM as a 

management paradigm by the end of the 1990s when IWRM started to be recognised 

by a number of key international organisations such as the World Water Partnership 

(WWP), the UN’s Global Water Partnership (GWP) and the World Bank (see Biswas, 

2008; Molle, 2009). 

 

Arguably, one of the most preferred definitions of IWRM was given by the Global 

Water Partnership (GWP, 2012) as “a process which promotes the coordinated 

development and management of water, land and related resources in order to 

maximise economic and social welfare in an equitable manner without compromising 

the sustainability of vital ecosystems and the environment”. Some variations were 
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also introduced about particular components, processes or mechanisms. For instance, 

Ballweber (2006) highlighted the role of participants, suggesting that “IWRM is 

blending or integrating actions and objectives favoured by different players to achieve 

the best total result within a river basin or watershed”. Other researchers associated 

IWRM with scales and institutions such as River Boards (Maganga et al., 2004), 

Poverty Index (Mulwafu and Msosa, 2005), Social Learning (Mostert et al., 2008) or 

even Adaptive Management (Engle et al., 2011). Others such as Savenije and Van der 

Zaag (2008) used four key dimensions to define IWRM: water resources, water users, 

temporal and spatial scale.  

 

The practice of IWRM relies heavily on the use of computer-based models from the 

very beginning, mainly because both assessing and allocating water resources are 

non-trivial processes. The use of computer models in water resources management 

naturally followed the two needs in the beginning, i.e., to obtain the knowledge of 

water resources at given place quantitatively and then to allocate them in an efficient 

and optimised manner under specific constraints. The former group of computer 

models is slightly different from those that have been used in studying natural 

processes in the water cycle, such as hydrological models. IWRM community tends to 

use more generic names, such as simulation models, to highlight their leading role in 

IWRM, i.e., simulating natural process to produce resources with different initial and 

boundary conditions and to form the basis for ‘what-if’ analysis further. 

 

Computer models in the latter group mathematically resemble an optimisation 

problem-solving process with the primary objective set as efficient/effective water use 

under various constraints. Since water use represented by the models in this category 

is often referred to as allocations of a different part of water resources, these models 

are also named as allocation models, though, strictly speaking, an allocation is merely 

a small part of their purposes whereas nowadays more complicated models are 

focused on decision making in general. The earliest attempt of using computer models 

in IWRM was probably due to Sheer (1981) where the Potomac Reservoir and River 

Simulation Model (PRRISM) was used from the late 1960s to early 1970s, to simulate 
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the water use from the reservoirs during drought season in the Potomac River Basin 

for providing public Water supply in Metropolitan area Washington, D.C., USA. 

 

Along with IWRM, models in this field started to grow since the 1960s (Wurbs, 

1994). It is fair to say that the modern IWRM would not be able to fully develop 

without the support of computer-based models. Over the last two decades, the need 

for detailed, finely granulated models has increased dramatically with many models 

having been put into use, such as MODFLOW (Niswonger et al., 2011) and PDM 

(Moore, 2007). While this move, in general, helps practitioners to refine individual 

models and improve the governance in return, it has fragmented the idea of 

integration. 

 

Consequently, the more highly refined, specialised models come into use, the less 

attention is paid to the link between these models. In other words, modelling efforts 

somewhat has worked in the opposite direction as to the IWRM. Thankfully, over the 

last decade, researchers have increasingly recognised the problem of using highly-

specialised, fragmenting models in IWRM. Research on model integration in the 

context of IWRM has appeared in many research agenda, with some promising 

outcomes as revealed in, e.g., SWAT-MODFLOW (Bailey et al. 2016). Their overall 

results prove that the model can represent the integrated watershed modelling results 

that comprise surface hydrological components and groundwater hydrological 

components with or without well pumping.  

 

Besides, results improve understanding regarding the spatial patterns of groundwater 

impact on streamflow, which can aid in watershed management schemes of surface-

groundwater conjunctive use. Moreover, in regards to the protection of aquatic 

species and their sensitivity to streamflow, areas of high groundwater discharge rates 

and associated baseflow can be identified for protection under changing climate 

patterns. 
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2.2. Water resources management models  

Computer models, in general, are abundant when it comes to applications in 

hydrology and water resources analysis. As such, hydrological models come as a big 

group aiming to reveal the processes within a catchment and beyond; hydrodynamic 

models, on the other hand, are made to account for more detailed physical processes 

in river channels and floodplains. In the context of IWRM, those models are 

indispensable tools as to answering the questions related to water quantity, quality, 

distribution and the impacts of the changes on underlying conditions.  

 

What makes the models in IWRM different from those generic, natural-process 

oriented models, however, is that not only does IWRM need to know ‘how much’, it 

also has to deal with policy problems such as ‘what can be done with that’ in terms of 

allocation, planning, and the necessary optimisation and decision-making. It is the 

latter factors that bring in more management-orientated models on top of the 

traditional, engineering-focused hydrological models and hydrodynamic models. 

 

Another key point when using traditionally process-based or physically-based hydro-

models in the IWRM context is that they are more often run in a ‘simulation’ mode 

under predefined conditions, than being used with real and current situations. This is 

because those models are used to facilitate the designing and planning of water 

resources systems or to construct policies that can maximise the favourable impacts 

and minimise the undesirable ones (Loucks, 2008). From this perspective, models 

used in IWRM are therefore more often grouped into two categories: the simulation 

models that answer ‘what-if’ questions under a set of predefined conditions; and the 

allocation models that address ‘what-should-be-done’ questions by seeking optimum 

operation conditions and policies to meet the increasing water demand (Loucks et al., 

2005; Loucks, 2008; Condon and Maxwell, 2013). Figure 2-1 shows the distinction 

between the two groups of the models used in IWRM. 
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2.2.1. Allocation models  

Allocation models “usually employ some sort of optimisation to maximise the 

satisfaction of demand while adhering to a variety of system-specific rules and 

priorities” (Condon and Maxwell, 2013). Allocation models can be part of a decision-

making process while being linked to different human activities. They are often 

formulated to represent interactions among various stakeholders to optimise 

allocations under specific predefined constraints. As such, allocation models are 

usually based on a simpler form of governing equations and sometimes are data-

driven. Accordingly, those models are less computationally expensive compared with 

the simulation models. It also implies that a Monte-Carlo based operation can be 

comfortably implemented to account for the stochastic nature of stakeholder 

interaction and decision-making process.  

 

 

Fig. 2-1 Characteristics of simulation and optimisation models 
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While many allocation models are sufficiently competent as far as allocation and 

decision making are concerned, the main drawback is their inability to account for the 

feedback from decision’s side to the supply side of the resource. In other words, the 

management practice based on the allocation modelling result may well affect the 

water supply by altering environments that further change the physical and socio-

economical processes. In fact, the lack of this in allocation models highlights the very 

need for model integration in IWRM. Several allocation models have been developed 

and applied, among which the Water Evaluation and Planning System WEAP (Yates 

et al., 2005), the Resources Allocation Model REALM (Perera et al., 2005) and 

MODSIM (Ashraf Vaghefi et al., 2017) are three typical models that have been 

reported in many pieces of literature.  

 

The WEAP (Water Evaluation and Planning) system is “a user-friendly software tool 

that takes an integrated approach to water resources planning” (Yates et al., 2005). 

The WEAP model is designed to optimise the allocation of water resources among 

various users (e.g., municipal, environmental and agricultural) and integrate water 

quality, water supply and demand. It also offers a link to other simulation models such 

as groundwater simulation model (MODFLOW), as well as economic model and 

water quality model (Droogers, 2009). The REALM model aims to simulate the 

operation of rural and urban, simple and complex water supply systems. Furthermore, 

the REALM can easily model problems 'what if'. REALM makes use of linear 

programming to optimise water distribution within a network.  

 

MODSIM (Ashraf Vaghefi et al., 2017) has been applied in complex river basin 

management that may involve surface-groundwater interaction for conjunctive use of 

surface and subsurface water resources. MODSIM can also be linked with water 

quality models for pollution control strategies. Other examples of allocation models 

include WaterWare (Condon and Maxwell, 2013) and RiverWare (Zagona et al., 

2001).  
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Table 2-1: Summary of Allocation models 

Main objective Optimise the allocation of water resources from various sources 

(surface and subsurface water) as a supply to different stockholders 

(e.g. Irrigation uses, domestic uses, industrial uses…etc.) 

Formation Formed around an objective function of various unknown variables 

(decision-variables) to be minimised or maximised with parameter 

values assumed to be known and constraints presented as inequalities 

and equations.  

Numerical solution Normally, data were driven and used to solve a simple form of the 

governing equations (i.e. linear optimisation algorithm).  

Interface Some models such as WEAP are designed to be able to interact with 

other physical models or economic models. 

Decision Making 

Support 

Naturally, a part of decision making since it assesses a wide range of 

management options and policy scenarios. 

Applications Many applications including: development of planning framework 

for short-term scenario (land use change) and long-term scenario 

(climate change) (Mehta et al., 2013); simulation crop 

evapotranspiration (demand) for agricultural land (Joyce et al., 2011); 

linking with other models (Ashraf Vaghefi et al., 2015).  

Advantages Simply posed with much lower demand for computing resources and 

data; thus, suitable for Monte-Carlo based stochastic analysis. It is 

also relatively easy for users to prepare input data and assess a sort of 

operating policies.  

Disadvantages Lack of ability to simulating feedbacks to the physical system and 

have limited ability to simulate connections within complex, 

heterogeneous, conjunctively management water system. 

 

Allocation models can be readily characterised by different sub-groups as well. For 

example, depending on how the allocation process is modelled, the model can be 

probabilistic, deterministic or a combination of both; subject to the consideration of 
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time dependency in the optimisation components, they may be called static or 

dynamic models; or from perspective of different model structures and algorithms, 

they are referred to as linear or nonlinear models (Loucks et al., 2005). Table 2-1 

summarises the formation and the applications of allocation models. 

 

2.2.2. Simulation models 

The key input to allocation models is the information of available water resources of 

the area in question. Model-based evaluation and assessment of water resources have 

been widely practised long before IWRM started to be implemented. From IWRM 

perfective, those models fall into another large group – the simulation models, as they 

are employed to simulate natural processes under given conditions so that water 

resources can be adequately accounted. Among many other choices, hydrological 

models that simulate surface water resources and specialised groundwater models are 

the two main types of models widely used by IWRM practitioners. 

 

Simulation models present certain advantages over allocation tools as some of them 

can support physically based solutions by solving partial differential forms of the flow 

equations (Condon and Maxwell, 2013). However, they are often restricted by the 

expense of computation and are subject to a limited group of operating policies. The 

use of simulation models allows for integrating physical processes and offers spatially 

distributed outputs of a wide range of variables. They usually require a wide range of 

spatially distributed parameters as far as IWRM is concerned.  

 

One must be aware that most models in this group are in fact able to serve different 

purposes, and water resources management is merely one of them. Besides, models in 

this groups often have been categorised differently already by other user communities. 

In the case of hydrological models, they are often referred to as a lumped model 

versus distributed model, process-based versus physical based, to name just a few. 

The discussion of these models indeed goes beyond the scope of this chapter, and 
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there are large numbers of publications in the relevant fields that can be referred. A 

distinction, however, does exist between the model being used for its ‘normal’ 

purposes and that for serving water management. 

 

 

Fig. 2-2 Types of simulation models 

 

Compared with the normal use, water management often needs larger time steps, such 

as month or year, for planning purposes, and thus requires models to be able to deal 

with predefined conditions translated from various management options and policies. 

Therefore, the computing-intensive model with a detailed spatial-temporal output, 

such as distributed hydrological models may not be necessary for IWRM. 

 

Loucks et al. (2005) further refined the category of simulation models into statistical 

Black box models), process-oriented (Grey box models) and the combination of both 

White box models) types, subject to the availability of measured data. Specifically, 

• Solely based on field observed data

• Create relationship between input (cause) 
and output (effect) such as least square 
regression

• Low level of complexity

Black box models

• Need certain amount of fundamental process 
knowledge and measured data

• Combination of process relationship into 
statistical technique

• Modrate level of complexity

• present certain amount of unceratainty

Grey box models

• Knowledge of fundamental process with 
few observations to perform calibration and 
validation

• Simulate Physical process within water 
resources system

• High complexity

White box models
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statistical models are driven by a significant amount of measurement conducted in the 

field so that statistical nature can be revealed. Meanwhile, process-oriented models 

need the understanding and knowledge of fundamental processes with less availability 

of data. Figure 2-2 illustrates various types of simulation models. Examples of 

simulation models used in IWRM are also abundant. Readers can refer to Penn State 

Integrated Hydrological Modelling System PIHM (Qu and Duffy, 2007), Integrated 

Water Flow Model IWFM (Miller et al., 2009), Cetemps Hydrological Model CHYM 

(Verdecchia et al., 2009) and HydroGeoSphere HGS (Brunner and Simmons, 2012). 

Table 2-2 gives a summary of the simulation models. 

 

Table 2-2: Summary of Simulation models 

Main objective Simulating physical processes of the natural water system to assess 

the available surface and groundwater resources. 

Numerical solution Some of the simulation models need numerical solutions to partial 

differential forms of the flow equations and providing support for 

physically based solutions.  

Decision Making 

Support 

Insufficient ability to dynamically simulate water management 

operations decisions 

Applications Various examples, including: calculate conditions of surface and 

shallow groundwater in the study basin under different management 

scenarios (Scherberg et al., 2014); conducted a computation of 

groundwater recharge and subdivision water budgets under climate 

and topographical gradients (Duffy, 2004); quantified the influence 

the shallow tile drain networks on the flow pattern of groundwater 

(De Schepper et al., 2015). 

Advantages Detailed representation of the physical system of water resources. 

Disadvantages Normally restricted by the expense of computation and subject to a 

limited group of operating policies and often required a significant 

amount of data. 
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2.2.3. Hydrological models  

The rainfall-runoff models or hydrological models range from black box models to be 

more complicated, differential, distributed models (Tan et al., 2005). Consequently, 

hydrological models can be classified regarding representing of hydrological 

processes, space and time scale that is utilised and what techniques of solving model 

equations (Singh, 1995). The primary features for differentiating the methods are the 

nature of basic algorithms (i.e. process-based, empirical and conceptual), whether a 

deterministic or stochastic approach is taken to define input and parameters and 

whether the spatial representation is distributed or lumped (Melone et al., 2005). 

 

Hydrologic models can be categorised into the following classes based on the 

existence of random variables, temporal variation and their spatial distribution (Chow 

et al., 1988): 

 

1) Deterministic models: in this type of models the randomness does not consider, in 

other words, a specific value of input always results in the same output. 

Consequently, these models can be utilised for forecasting which is concerned the 

decision maker for water resources management. 

a) Deterministic lumped model: A lumped model takes the spatial average of 

model parameters of a catchment and does not consider the spatial distribution 

of the inputs and parameters, and therefore, the basin is treated as a single unit 

(Cheng, 2011). Thus, the conceptual parameterisation of these is simple and 

computationally efficient. Lumped models do not provide a reliable and 

adequate forecast (Melone et al., 2005) which is concerned the decision 

making for water resources management; for that reason, they are unsuitable 

for application in this study. 

b) Deterministic semi-distributed model: In this kind of model, the basin will be 

divided into Hydrological Response Units (HRUs) giving the unique value of 

land use, soil type and slope and simulates the several hydrological processes 

in each HRU. 
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c) Deterministic distributed model: In this type of models, hydrological processes 

are taking place at each grid and describes the model variables as functions of 

the space dimensions (Feyen et al., 2000). 

2) Stochastic models: The output of these models is at least partially random. Thus, 

these models create statistical predictions. These models are also classified as 

space correlated and space independent conditional on whether random variables 

in space effect on each other. 

 

The broad classification of hydrologic models is shown in Fig. 2-3. The hydrological 

models can also be classified according to whether the hydrological processes are 

described as: 

1) Empirical models: These models, such as Fuzzy Logic and Artificial Neural 

Networks, are utilised to create a relationship between rainfall and runoff to 

predict runoff in different catchments (Chen et al., 2013). These models do not 

contain physical transformation function to relate input to output; 

2) Conceptual models: These model are simplifications of the complex processes 

of runoff generation in a watershed. The specific components of conceptual 

models frequently have to be described by empirical functions based on the 

observation of some processes; and 

3) Physical models: These models are distributed based which can explicitly 

represent the spatial distribution of the mainland surface characteristics such 

as climatic variables, soil and topographic elevation (Wijesekara et al., 2012). 

 

Catchment models can also be categorised as either continuous or event-based 

models. On the one hand, event-based models are short-term models utilised for 

simulating individual storm events, and they form the basis for the design of 

stormwater infrastructure and as operational models (Melone et al., 2005). 

Comprehensibly, the main limitation to the use of event-based models is the problem 

of unknown initial conditions (e.g. initial soil moisture) that cannot be measured and 

might affect the forecasts in real time (Melone et al., 2005). 
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Fig. 2-3 Classification of hydrological models 

 

On the other hand, continuous based models simulate a catchment’s overall water 

balance over an extended period considering all runoff components with providing 

soil moisture redistribution between storm events (Melone et al., 2005). These models 

form the basis for water resources planning and management. Accordingly, the use of 

hydrological models depends mainly (Sahoo et al., 2006) on: 

1) Type of model; 

2) Modelling skills; 

3) Availability of input data; 

4) Project requirements and study objectives; 

5) Time to process input; and 

6) Structure and support to new users. 

 

2.3. Approaches to model integration  

The classification of models in IWRM reflects the modelling needs in water resources 

management about various stakeholders, different environment components and 

heterogeneous water demands. This inevitably assumes allocation models a central 
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role while being fed by the simulation models with assessments of water resources. 

The concept of IWRM in effect requires a closer link between these two types of 

models. In other words, model integration or integrated models are a prerequisite for 

using models to support IWRM. 

 

Integrated use of models in water resources management practice has been a 

continuing effort, from early attempts aiming to partially solve the related problems, 

such as running the European Hydrological Modelling System SHE (Abbott et al., 

1986) to nowadays the so-called seamless integration of several models using specific 

industrial interface stands such as the Open Modelling Interface OpenMI (Gregersen 

et al., 2007). The fundamental drive of model integration, if sifted thoroughly, is the 

need of solving a range of different problems that require multi-instances runs of two 

or more models working collaboratively. As far as physical problems are concerned, 

there always should be a single model that can address those entirely related 

problems, at least in theory. 

 

More recently, there is a trend to use the concept of coupling fine-scale atmospheric 

models with high-resolution hydrological models (coupled hydro-meteorological 

models) to decrease uncertainties related to the spatial distribution and timing of 

heavy precipitation. This is predominantly significant for complex terrain regions 

(Naabil et al., 2017). One such example is WRF-Hydro model (Gochis et al., 2013) 

which have been used to successfully predict streamflow and flood forecasting when 

operating at effective grid resolutions of a few kilometres or even less (e.g. Senatore 

et al., 2015; Arnault et al., 2015). It also has been applied as an operational tool in 

assessing water resources such as Naabil et al. (2017). The WRF-Hydro modelling 

method has been employed in various regions around the world either in a coupled or 

uncoupled mode (e.g. Fersch, 2014; Kerandi et al., 2018). 

 

Another example is Hydro-JULES programme (the Joint UK Land Environment 

Simulator) that aims to generate a 3 dimensional model to represent the land-
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atmosphere interactions of water and energy together with terrestrial earth system 

components such as carbon and nitrogen cycling as well as dynamic vegetation Best 

et al. (2011) and Clark et al. (2011). The Natural Environment Research Council 

(NERC) offers the support to its centres for JULES activities including UK 

Environmental Prediction projects and the Earth System Modelling and other related 

research for technical development and management with partners. 

 

2.3.1. Integrated models versus supermodels 

The reason why multiple models are preferred over a single ‘super’ model is that in 

any model certain technical compromises always have to be made to competently 

represent the key processes while purposefully ignore or simplify other less important 

ones. In other words, those already-specialised individual models, if wisely integrated, 

will outperform a single, supermodel that attempts to address everything. One of such 

typical scenarios, for example, is the integration of hydrological model (for the 

rainfall-runoff process) and the hydrodynamic models (to represent channel and 

overland surface flow) or even the hydro-meteorological models in many flood risk 

related modelling efforts, such as Tang et al. (2009). 

 

For IWRM, model integration is naturally a preferred approach. Many practices and 

case studies, despite having not an explicitly made reference to model integration, 

have in effect practised in similar fashions. It is because: 

1) Allocation models need to have input from simulation models that can assess 

the available water resources under prescribed conditions; and 

2) Decision-based on the model outputs have to be tried out regarding building 

new conditions on both models to evaluate the impact. 

 

In addition to the traditional approach of model integration between physical models, 

IWRM has a social dimension that also needs to be integrated, for example, 

translating the human-made decision into the scenario of integrated models. It is this 

dimension that distinguishes model integration in IWRM from others that are mainly 
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focused on solving physical problems. This also makes it more challenging due to the 

involvement of translating decisions in the social domain into what can be understood 

by the physical models. 

 

2.3.2. Model integration at various levels 

In this section, it is proposed a new, multi-level framework to help pinpoint the model 

integration problem in IWRM, as shown in Fig. 2-4, a structure that sees the model 

integration as process-orientated model integration, dataflow-orientated integration, 

implementation-orientated integration, and finally the presentation-orientated 

integration. 

Fig. 2-4 Multi-level framework of IWRM model integration problems 

 

Adjusting model dynamical process representation and sufficiently arranging the data 

flow across model boundaries is the first step towards model integration in IWRM. 

They are also like the traditional model integration among physical models. The need 

of integrating multiple dynamical processes usually arises from simulation models 

where a more comprehensive physical process needs to be represented. For example, 

surface water resources and groundwater resources are typically represented by the 

surface hydrological model and groundwater models and a comprehensive process 
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representation of the surface and groundwater interaction would require the integrated 

use of the two models. In contrast, the dataflow-orientated integration is needed when 

dealing with data translation, feeding and feedback across different model categories, 

i.e., simulation models, allocation models and decision support (often included in the 

allocation models). 

 

When models are linked by certain data flow routes, they are often termed as coupled 

models. The model coupling can be achieved by linking two simulation models 

focusing on different processes and/or models belonging to different groups, such as 

an allocation model driven by a simulation model. Depending on whether the data 

flow is only one direction or bi-directional, the coupling is often referred to as a ‘one-

way’ or ‘two-way’ coupling. The use of coupled models has been reported by many 

researchers, such as: SWAT-MODFLOW (Kim et al., 2008), HEC-RAS-MODFLOW 

(Rodriguez et al., 2008), SWAT-WEAP (Tegegne et al., 2013), WEAP-Parflow 

(Condon and Maxwell, 2013) and MODFLOW-WEAP (Hadded et al., 2013). 

 

In IWRM, the importance of interaction between surface and groundwater system is 

well recognised. However, many models in a coupled mode suffer from inadequate 

feedback from model boundaries as they have a limited physical representation of the 

hydrological process. Apart from surface-groundwater interaction, the interaction 

between allocation and simulation models is far more vital for the decision-making 

process. 

 

A fully integrated surface-groundwater model would be able to assess the spatially 

distributed hydrological variables such as river flow, groundwater table and soil 

moisture content. More significantly, it would also be able to simulate the surface and 

groundwater interaction in a heterogeneous and complex domain as well as land use 

change impact on these variables. Construction of coupled surface-groundwater 

model will need a range of input data such as land use map, soil map, topographic 

map, aquifer properties data and climate data.  
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The accuracy of these kinds of models will be the central part of an IWRM system 

where water allocation models are driven by the outputs from the integrated surface-

groundwater model to further simulate water management operations for defined 

operating policies and priorities. This integration framework is beneficial to grasp 

how the hydrological cycle is affected by management decisions.  

 

A good example of model integration between allocation and simulation models is 

demonstrated by (Condon and Maxwell, 2013). They developed a water management 

tool and coupled it with an integrated hydrology model (ParFlow) at the regional scale 

hydrological system, the Little Washita catchment in the US. The water allocation 

module illustrated in their study employs a similar linear optimisation method to the 

Water Evaluation and Planning (WEAP) model. The allocation module they 

demonstrated is unique because it is coupled with a fully integrated hydrological 

model and it needed for the better understanding of how management decisions 

impact the entire hydrological cycle and the coupled water-energy balance. The water 

management problem reflects the capability of the model to evaluate facing demands 

and manage unmet water needs in a limited water resources system. Moisture-

dependent irrigation was utilised for the agricultural demands. Their approach 

allowed for investigation of managed systems in an integrated fashion not possible 

with other tools. 

 

2.3.3. Scaling and uncertainty issues in implementation  

The implementation of model integration, which aims at a higher level of integration, 

shifts the focus from modelling process of individual models to the more technical 

side regarding running several models collectively and collaboratively on an 

integrated Information and Communication Technologies (ICTs) platform. The 

technical questions at this level include model interface design and implementation, 

common shared software (operating systems) and hardware (network) platforms 

support. 
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Apart from this seemingly ICT-focused work, there are other critical issues from 

modeller’s viewpoint, among which many integration processes share two challenges:  

1) How to match the time scales between two connected models; and 

2) How to deal with the uncertainties propagating from one model to another. 

Matching different scales among models is one of the necessary steps in model 

integration. The fundamental reason that individual model chooses to work on 

different temporal and spatial scales follows the same explanation made above 

regarding the choice of a single supermodel or running several models in an 

‘integrated’ mode – simply because each model may need to focus on different 

processes, hence the preferred. 

 

There are two typical scenarios in IWRM where scale matching needs more attention: 

1) Integration of spatially distributed or semi-distributed model and spatially 

lumped model; and 

2) The interaction between the fast components (such as surface water) and the 

slow component (such as groundwater flow).  

The so-called distributed model can account for the spatial heterogeneity of processes 

by discretising large area into detailed, smaller areas that yet can be treated 

homogeneously, whereas the lumped model regards typically the study area as a 

single entity by using various parameterisation schemes to represent spatial 

heterogeneity.  

 

For the mismatch in temporal scales, a good example is that the coupling of a surface 

hydrological model such as SWAT (Arnold et al., 1998) and groundwater model such 

as MODFLOW (Niswonger et al., 2011). On the one hand, the SWAT model runs on 

the sub-daily, daily, monthly and yearly time strep to simulate landscape hydrological 

processes focusing on the surface phase. On the other hand, the computational time 

intervals for the MODFLOW is called 'stress periods'. For the steady-state 

groundwater flow model, stress periods is dimmed. Meanwhile, for the transient-state 

groundwater flow model, the transient stresses (pumping rates, river stages, etc.) can 
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only change at the beginning of each stress period which can be seasons, months, etc. 

If desired, stress periods can be subdivided into smaller time steps. 

 

Uncertainty in model simulations have been extensively studied in recent years, 

especially when it comes to hydrological simulations, for example (Shen et al., 2012; 

Jin et al., 2010; Butts et al., 2004). While the uncertainties associated with a 

standalone model can well be represented and reduced to some extent, those 

propagating through model chains or in a coupled model scenario, have yet to be fully 

explored. In the case of IWRM, there are very few studies having recognised such 

issue (Hassanzadeh et al., 2016).  

 

Proper accounting for the uncertainty when using multiple, linked models is more 

paramount than running a single model, since the former scenario may have 

uncertainty amplified so much that in the end no useful signal can be picked up for 

decision making. It envisaged that these areas need immediate attention when using 

multiple models to support IWRM: 

1) Implementation of Monte-Carlo based probabilistic simulations and its 

interpretation by allocation/DSS models; 

2) Uncertainty representation and reduction in a coupled model scenario, 

especially when the coupling is made two-way, with strong feedback within; 

and 

3) Uncertainty-awareness in decision making and optimisation. 

 

To end with, the presentation layer of the model integration works on top of the 

implementation to present and interact with the relevant stakeholders in an integrated 

way. Rather than providing static information, such as reports, the integrated 

presentation should be able to communicate with the users (stakeholders) and conduct 

what-if analysis based upon the inputs. In addition to serving such purposes, the 

integrated presentation also needs to efficiently present uncertainty information along 

with the decision was taken by the user/stakeholder as well as in the final impacts. 
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2.4. Proposed research 

A review of the computer modelling support to water resource management present in 

the context of IWRM has been carried out. Model classification and their individual 

development have been discussed focusing on the needs of simulating natural process 

(simulation models) and the management process (allocation models). It is also 

argued for even closer integration of those models to support IWRM. Several 

fundamental issues, such as scaling issues among multiple processes as well as the 

uncertainty measurement and reduction have been highlighted. 

 

While integration of water resources management aims to find an optimised approach 

to address, balance the needs of multiple stakeholders, participants as well as multiple 

natural components, the use of computer models does not appear to be in an 

integrated fashion in the first place. However, integration of computer modelling in 

IWRM has become increasingly significant as the problem of IWRM grows more and 

more complex requiring more detailed, refined, and dynamic solution to more 

challenging situations such as climate change impact. There are several areas 

identified in computer modelling where more efforts are worth spending in the 

context of IWRM: 

1) Modelling of management practice and decision-making process. There is an 

apparent gap in comparison with physical process modelling; 

2) Integration of models or modelling systems that belong to two different 

domains, i.e., the physical process domain and social interaction domain, 

especially, the understanding of the feedbacks over a range of different 

temporal scales; and 

3) Understanding and managing the uncertainties from the coupled/integrated 

models. Topics such as decision making under uncertainty should gain more 

attention. 

 

In this study, The Soil and Water Assessment Tool, SWAT (Arnold et al., 1998) is 

selected for the following reasons: 

1) It is a robust multidisciplinary watershed model; 
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2) It is a semi-distributed model that can be used to model spatial heterogeneity 

of catchment characteristics even without the extensive data requirements of 

fully distributed models; and 

3) The possibility of interfacing this model with other models to develop a range 

of scenarios to be investigated and analysed. 

 

 

SWAT model is a physically based, basin scale, quasi-distributed, continuous time 

hydrological model that operates on a daily time step. This model is designed to 

predict the impact of management on water, agricultural chemical yields and sediment 

fluxes in ungauged catchments. SWAT model is computationally efficient and 

capable of continuous simulation over long time periods which concerns water 

resources managers. 

 

SWAT model will be utilised to create a hydrological model for the highly-regulated 

river basin, the Dee River catchment in the United Kingdom to model the interaction 

of flow regulation, through the physical flow control of reservoirs released in the 

upstream region, and water abstraction interaction. Two scenarios considered related 

to the reservoir releases to investigate the impact on the simulated streamflow. The 

model can be used for climate change impact studies. 

 

The long-term trend of precipitation, as well as the simulated flow and water yields 

from the SWAT model, will be investigated by using quantile regression. This 

technique allows for studying the trend for desire quantile rather than average value. 

In this study, trends of likely flooding (higher quantile) and likely drought (lower 

quantile) will be considered. The state-of-the-art interfacing of the SWAT model with 

other environmental models has been achieved to develop the range of scenarios. One 

of such example is the coupling with MODFLOW, the groundwater flow model, 

which have been carried out by many researchers such as Kim et al. (2008); Guzman 

et al. (2015); Bailey et al. (2016) and Bailey et al. (2017).  
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SWAT model has a limitation in terms of dealing with groundwater since its 

groundwater module is lumped and accordingly parameters such as hydraulic 

conductivity could not be spatially represented (Kim et al., 2008). It also has a 

limitation to expressing recharge rates and spatial distribution of groundwater levels. 

On the other hand, in the MODFLOW model, one of the key components is an 

accurate and reliable calculation of recharge rates within the input data. The 

groundwater flow of MODFLOW often overlooks the precision of the recharge rates 

that are needed to be calculated into the model. Therefore, there is significant 

uncertainty in the simulated results of groundwater flow (Kim et al., 2008). 

 

In this study, the new interface of SWAT-MODFLOW developed by Bailey et al. 

(2017) will be used in a highly-regulated River basin, the Dee River basin in the 

United Kingdom to construct daily SWAT-MODFLOW model to improve estimation 

baseflow of SWAT model in the study area. The SWAT-MODFLOW coupling will 

be useful for decision makers for water resources planning and management since the 

coupling of SWAT-MODFLOW reveals the fully distributed water resources model. 

This model can be used for climate change impact studies. 

 

Moreover, parameters uncertainty of the standalone SWAT and the coupled SWAT-

MODFLOW will be investigated. Apart from the coupling of simulation models 

(surface and groundwater models), the interaction of simulation and allocation models 

is far important. In this study, the calibrated SWAT model of the Dee River basin is 

coupled with climate change data from the CMIP5 project, and then a range of future 

scenarios are created in allocation model, Water Evaluation and Planning Software 

WEAP to investigate the likely future unmet water demand for public water supply in 

the downstream of the study area. 
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Chapter 3: Hydrological Modelling of a Highly-regulated 

River Basin 

As reviewed in Chapter 2, the first group of computer models is typically used in 

studying natural processes in the water cycle (e.g. hydrological models, hydraulic 

models and hydrodynamic models). IWRM community tends to use more generic 

names such as simulation models, to highlight their crucial role in IWRM. The 

hydrological models are utilised to simulate physical processes of the natural water 

system to assess the available surface and groundwater resources with different initial 

and boundary conditions and to form the basis for ‘what-if’ analysis further.  

 

Hydrological modelling is one of the necessary steps for assessing climate change 

impact on water resources in river basins. However, many river basins in question 

already have flow regulations in place which inevitably makes it difficult to model the 

underlying hydrological process. On the other hand, stakeholders become increasingly 

keen for more finely-granulated information when it comes to the climate change 

impacts, such as spatially distributed of water resources under different river flow 

regulating rules or management practices. 

 

In this chapter, a semi-distributed hydrological model SWAT is utilised as an example 

of a hydrological model (i.e. simulation model) to model a highly-regulated river 

basin, the Dee River catchment in the UK which is studied at refined sub-catchment 

level, with different river flow regulating rules in place as predefined scenarios. The 

modelling of the Dee River watershed is a challenging process because of its physical 

flow control through the storage structures from four reservoirs in the upstream side 

of this river. The Natural Resources Wales in the UK is operating this river to protect 

the Dee River watershed from flooding in winter and provide water for large surface 

water abstraction for public water supply PWS in summer.  

 

3.1. Introduction 

Climate change impact on water-related issues such as floods and droughts have been 

an active research area thanks to the fact that those physical phenomena and their 
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variations are more easily and directly perceived than those that can only be remotely 

sensed or over a long time, for example, biodiversity (Solomon, 2007). Technically 

speaking, it is relatively straightforward to make use of many existing hydrological 

models with climate change projections, especially when rapid advancing computing 

power makes more climate simulation data available at increasingly high resolutions. 

It is now possible to simulate regional climate at 1 km spatial resolution with monthly 

and daily time step output (Keller et al., 2015). 

 

Accordingly, there have been plenty of studies on climate change impact at river basin 

level; and unsurprisingly, a key feature shared by them is the use of hydrological 

models driven by long-term historical forcing fields (such as precipitation) or climate 

projections for future scenarios, e.g., see (Abbaspour et al., 2009; Ficklin et al., 2013; 

Jin and Sridhar, 2011; Abdo et al., 2009). More recently, researchers are gradually 

paying more attention to the uncertainties and biases in such projection driven 

hydrological simulations (Cannon et al., 2015; Maurer and Pierce, 2014; Miao et al., 

2016). For instance, Miao et al. (2016) reported that the bias correction technique they 

used was beneficial to reduce over 80 % for temperature and 83 % for precipitation of 

model bias compared with the raw climate model outputs. They also found their 

method can remove over 40% and 60% of the uncertainty in global model 

temperature and precipitation projections. 

 

Unlike many previously reported studies of climate change impact on general flow 

trends of largely 'natural' catchments such as Schneider et al. (2013), the literature of 

those applied to highly-regulated river basins are scarce. There are, however, some 

attempts, such as Dutta et al. (2015), Yoon et al. (2016), but their focuses were mainly 

on the modelling procedure per se, whereas, separating anthropogenic impacts from 

climate change is yet to be addressed. The human activities or physical flow control 

effects such as hydropower, reservoir, influent return and development of surface and 

groundwater abstractions become more significant issues in river basins; these 

activities can cause changes to the hydrology of streams. 

 

The regulated river flow highlights the importance of water in particular river basin, 

regardless of the management practices are utilised to prevent flooding or provide 
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water for various uses. For most rivers, natural river flow data cannot obtain without 

getting information about human activities. Also, actual evapotranspiration cannot be 

measured directly for a watershed. For that reason, hydrological models are a 

powerful tool for the investigating of the hydrological trend and used to separate 

natural state and management practice within the catchment.  

 

In this chapter, a hydrological model built for a highly-regulated river basin is 

presented. A medium-sized, highly-regulated (with reservoirs and licensed water 

withdraws) river basin, the Dee river basin in the UK is studied using the river flow 

data over more than 30 years (1970-2003). The catchment is modelled using the Soil 

and Water Assessment Tool (SWAT) focusing on separation and representation of the 

flow regulation and water abstraction in the sense of restoring the basin to its 'natural' 

state. The model is then calibrated and validated against the observed data before the 

two scenarios (with and without regulations) are designed to simulate long-term 

simulations (1970-2003) of river flow and sub-catchment water yields under the 

conditions specified by both scenarios. The method can be readily extended to study 

future climate change impact, and it is also able to incorporate future changes to the 

regulating rules.  

 

3.2. Study area 

The Dee River originates from the mountainous region of the Snowdonia National 

Park in North Wales in the United Kingdom. The main-stream of the river is 

measured 113 km long with a catchment area of 2,215 km2 as shown in Fig. 3-1. It 

flows eastward to the Wales-England border at the City of Chester before discharging 

into the Irish Sea at the Liverpool Bay. The annual precipitation over the basin shows 

a clear west-east declining trend with 1,700 mm in the western part quickly reducing 

to 685 mm in the east where flat, lowland dominates as revealed in Fig. 3-2. The 

temporal distribution of annual precipitation also demonstrates a definite seasonal 

pattern with wet winters (178-578) mm in DJF (December, January and February) and 

ordinarily dry summers (165-278 mm) in JJA (June, July and August). Consequently, 

the Dee river basin experiences both flooding and droughts in different seasons. 
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Records show that the storms and subsequent flooding in the winter of 2013/2014 had 

a significant impact on some communities, businesses, infrastructure and the 

environment. There could be more extremes in the weather with a changing climate 

leading to more frequent and more severe flooding (Natural Resources Wales and 

Environmental Agency, 2014). Additionally, the droughts in 1995 and 1996 are the 

most notable recorded drought event of the Dee River basin (Mayall, 2000).  

 

According to Natural Resources Wales (2015), the Dee River basin is one of its 

examples of advanced river basin management that is mainly achieved by: 

1) Regulating the upstream river flow through controlling the release of water 

from the four main reservoirs: Celyn, Brinig, Bala and Alwen;  

2) Sustaining substantial surface water withdraws by adjusting reservoir release 

in summer in the middle and downstream for industrial and public water 

supply; and 

3) Reducing flood risks in the middle and downstream during wet seasons. 

 

 

Fig. 3-1 River Dee catchment location  
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The management of the river basin has been aimed to maintain industrial and 

domestic water supply to over three million people for regions of Wirral, Cheshire, 

Shropshire and north-east Wales (Natural Resources Wales, 2009). In the meantime, 

flood risks in the downstream urban areas such as the city of Chester have been 

effectively reduced (Natural Resources Wales and Environmental Agency, 2014).  

 

 

Fig. 3-2 Average annual precipitation in the Dee River basin 

 

The Dee River is managed by Natural Resources Wales (NRW) through a regulatory 

scheme. The PWS surface water abstractions from the River Dee are governed by the 

River Dee General Directions which set out rules for the licensed water withdraws 

during drought conditions and are approved by the statutory Dee Consultative 

Committee (DEFRA, 2014). 

 

If storage in the regulating reservoirs falls to the drought action trigger level, a 

meeting of the Committee will take place to discuss the introduction of drought 

alleviation measures as enshrined in the Dee General Directions. To a large extent, 
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water flow in the Dee and certain of its tributaries is regulated under a set of rules 

called the Dee General Directions, a requirement of the Dee and Clwyd River 

Authority Act 1973 (DEFRA, 2014). They comprise: 

1) “Normal General Directions” which are employed during times of “normal” 

flows; and 

2) “Drought General Directions” which are specified to define the principles and 

detail under which the prescribed flows and abstractions must be reduced in a 

drought, more severe than the design drought. 

 

 

Fig. 3-3 Land use and soil maps in the Dee River basin 

 

These rules are introduced when the total storage of the Llyn Celyn and the Llyn 

Brenig reservoirs fall below the seasonal “System Conservation Rule Curve” (SCRC). 

The flows in the Dee are controlled by the River Dee regulation scheme which 

comprises a system of flow balancing along the River Dee. There are four main 

lakes/reservoirs in the upstream of the Dee River Basin: The Bala Lake, the Celyn 

Reservoir, the Brenig Reservoir and the Alwen Reservoir which are used primarily as 

a water supply reservoir for Welsh Water (DEFRA, 2014). 
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The River Dee Regulation Scheme utilises the storage in the Celyn reservoir, the 

Brenig reservoir, and the Bala Lake to ensure that up to 733 Ml/day can be abstracted 

in the lower reaches for public water supply. In terms of a hierarchy of the use of the 

water from the reservoirs, the release of water is as follows (DEFRA, 2014): 

1) Bala lake; 

2) Celyn Reservoir; and 

3) Brenig Reservoir. 

 

The Bala lake is controlled to hold a” buffer” of 0 to 20 m3/s. of water. Once it holds 

more than this, it will “spill” (DEFRA, 2014). Figure 3-3 shows land use and soil map 

of the study area. The mainland use categories in the study area are range-grasses (67 

%), forest (12 %), agriculture (13 %), residential region (7 %) and wetland (1 %). The 

most dominant soils are loam and sand as presented in Fig. 3-3. 

 

3.3. Data collection 

There are four categories of data collected to model the catchment, namely:  

1) The static dataset, such as DEM, land use and soil type data that are presumed 

to be static over the study period; 

2) The historical observations of precipitation and river flow data, as well as 

temperature data; 

3) CEH-GEAR daily data; and 

4) The operational data of flow regulation and water abstraction data that 

represent management practice. 

 

Most data used are available in the public domain except those requested from the 

water management authority subject to an academic license. The summary of the data 

is illustrated in Table 3-1.  
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Table 3-1: Collected data for the SWAT model 

Data  Resolution Source 

Digital Elevation 

Model DEM 

25 m ASTER Global Digital Elevation Model 

Version 2. NASA. 

Land Use Map 25 m Centre for Ecology and Hydrology 

Soil Map 3.5 km Digital Soil Map of the World and Derived 

Soil Properties. FAO. 

River Network 1:15,000 to 

1:30,000  

OS Open Rivers Ordnance Survey (GB), 

EDINA maps 

River Flow Data Daily (1970-2003) National River Flow Archive, CEH  

Precipitation Daily (1970-2003) Met Office - MIDAS Land Surface Stations 

data. British Atmospheric Data Centre. 

CEH-GEAR 

precipitation 

1 km The Centre for Ecology and Hydrology  

Air Temperature Daily (1970-2003) Met Office - MIDAS Land Surface Stations 

data 

Reservoir Release  Daily (1970-2003) Natural Resources Wales. 

Surface and 

Groundwater 

withdraws 

-- Natural Resources Wales (2015). 

 

3.4. Methodology 

As mentioned before, hydrological modelling of the river basin is widely used to 

reveal regional water resources and their variability. In this study, the Soil Water 

Assessment Tool SWAT (Arnold et al., 1998) is chosen for this purpose. This model 

is wide-reaching used to successfully investigate the impact of catchment 

management on: 

1) Water availability (e.g. Wang et al., 2016); 

2) Nutrients fluxes (e.g. Malagó et al., 2017); 

3) Sediments transports (e.g. Vigiak et al., 2017); 

4) Climate change (e.g. Kankam-Yeboah et al., 2013); 

5) Agricultural yields (e.g. Bannwarth et al., 2014); and 

6) Land use impact studies (e.g. Babar and Ramesh, 2015). 
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However, it is the treatment of river flow regulation and the representation of water 

use and abstraction that makes this study distinctive from others. Two scenarios 

concerning the choices of river flow regulation are constructed to assess the impact of 

the management practice. Then in the next chapter, different methods of precipitation 

pre-processing on the hydrological modelling performance and model calibration and 

validation. 

 

3.4.1. Flow regulation- water abstraction interaction 

The observed river flow data are in fact the result of the natural flow process 

regulated by the management rules which in turn is based upon the estimate of 

probable water use in the central water withdraw area. In other words, the natural 

rainfall-runoff relationship cannot be revealed only by the data per se. For the Dee 

catchment, releases from the four upstream reservoirs contribute substantially to the 

river flow; for instance, the catchment area above Chester Weir is 1,816 km2 with an 

average natural runoff of 36.8 m3/sec (639 mm/year) and sixteen percent of the area, 

and 33% of this runoff are controlled by the regulating reservoirs (DEFRA, 2014). 

 

Water released from the Celyn Reservoir goes into the River Tryweryn and then flows 

into the River Dee. Most of the water passes through a small hydro-electricity plant to 

generate electricity. There are three hydropower licences. The catchment of the 

Brenig reservoir is significantly “over-reservoired” (DEFRA, 2014). It means that the 

reservoir cannot usually fill from its own watershed within one annual hydrological 

cycle.  

 

When the reservoir level is drawn down, it can take several years for it to completely 

re-fill again. The Brenig Reservoir is therefore only used during drought conditions 

when the capacity of the Celyn and the Bala Reservoirs are no longer predicted to be 

capable of maintaining the flow in the River Dee. The Bala Lake is a natural lake but 

now forms part of the River Dee regulation system and the level of its outflow is 

automatically controlled. The Alwen Reservoir is used as a direct source for public 

water supply. It is not part of the Dee regulation system. Table 3-2 provides the main 
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reservoir characteristics of the main reservoirs in the upper reaches of the Dee 

catchment. 

 

Table 3-2: Characteristics of the major reservoirs in the Dee River basin (Natural 

Resources Wales, 2015) 

Reservoir 

Name 

The 

height of 

Dam (m) 

Total Storage 

Volume (106 m3) 

Surface Area 

(hectares) 

Average 

Runoff 

(m3/s)  

Average 

Runoff 

(mm/year) 

Celyn 58 81 325 3.10 1590 

Brenig 50 60 370 0.62 884 

Alwen 30 15 150 0.73 899 

Bala Lake N/A 18 400 11.50 1380 

 

There are circa 30 Public Water Supply (PWS) licences with substantial abstractions 

in the area. In 2009, the PWS abstracted a total of 197,042 million litres which 

accounted for approximately 93% of all the water abstracted in the Dee Catchment 

Abstraction Management Strategy (CAM) area. Of the water abstracted by PWS 

companies in 2009 only around 1% was taken from groundwater sources (DEFRA, 

2014). The locations of these PWS licenses are shown in Fig. 3-4. Although the 

metric capacity data of the water abstraction points along with their positions are 

known, the real-time water abstraction data are not available. According to the 

management practice where the planned water abstraction determines reservoir 

releases on the day, the following procedure to inversely represent the day water 

abstraction at each site of PWS can be used. 

 

To conserve water supplies and ensure efficiency of operation, the PWS companies 

provide a weekly abstraction forecast to Natural Resources Wales to assist in 

calculating the required releases from the reservoirs (DEFRA, 2014). An inversion of 

this procedure is used to estimate the daily water withdrawal amount at the water 

abstraction points, as this amount is not available from the data collected.  
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Fig. 3-4 Significant Water Abstraction Points in the Dee River basin 

 

The 𝑖th day water withdrawal at an abstraction point 𝑘, denoted as 𝑊𝑖,𝑘 can be 

estimated as: 

 

 𝑊𝑖,𝑘 = CNR𝑖 ×𝑀𝐷𝐿𝐴𝑘 (3-1) 

 

where CNR𝑖 is the coefficient of the normalised reservoir release on the 𝑖th day, and 

MDLA𝑘 refers to the Maximum Daily Licensed Abstraction at point 𝑘. The 

normalised reservoir release from the three reservoirs (Celyn, Brinig and Alwen) 

NR𝑖,𝑗 , 𝑗 = 1,2,3 is calculated by nomarlising the 𝑖th day release over the span between 

the minimum and maximum releases over the entire period of simulation, i.e., 1970-

2003: 

 

 𝑁𝑅𝑖,𝑗 =
𝑅𝑖,𝑗 −𝑀𝐼𝑁𝑅𝑗

𝑀𝐴𝑋𝑅𝑗 −𝑀𝐼𝑁𝑅𝑗
, 𝑗 = 1,2,3 (3-2) 

 

The coefficient is then calculated by summing up the three normalised releases: 
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CNR𝑖 = ∑ 𝑁𝑅𝑖,𝑗
3
𝑗=1  . It is possible that CNR𝑖 may exceed 1 in which case 1 is used as 

the upper limit. The main reason of aggregating reservoir releases is due to a 

hierarchy of the use of the water from the reservoirs (larger amount from Celyn 

reservoir and smaller from Alwen reservoir). Following the procedure above, a 

'restored' daily flow time series is produced and ready to be used for the subsequent 

modelling purposes.  

 

Understandably, this method, although helps to represent the interaction between flow 

regulation and water abstraction, it also brings in uncertainties. It can be improved by 

further modelling the probabilistic nature of water abstraction or by conditioning them 

on other variables such as temperature. 

 

 

3.4.2. Modelling streamflow using SWAT 

The Soil and Water Assessment Tool, SWAT (Arnold et al., 1998) is a public domain 

hydrological model which has been tested in many applications in different parts of 

the world. It is a physically-based continuous river basin scale model and is designed 

to simulate the rainfall-runoff process under various spatial and temporal scales. 

Moreover, this model is a spatially quasi-distributed using hydrological response units 

(HRUs) to describe the spatial distribution of soil characteristics, land use, topography 

within a catchment. The simulation of the hydrology of a watershed can be divided 

into two main divisions (Neitsch et al., 2011):  

1) The land phase of the hydrological cycle which controls the amount of water, 

sediment, nutrient and pesticide loadings to the main channel in each sub-

basin; and 

2)  The routing phase which can be defined as the movement of variables 

mentioned above through the stream networks of the watershed to the outlet.  

The calculations in SWAT are performed for each HRU and then scaled up to the sub-

basin outlet by the per cent of an area of the HRU within the sub-basin. This approach 

results in the HRUs lacking spatial relations typically seen in a fully distributed model 

but yield a computationally efficient calculation scheme allowing for rapid watershed 
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simulation over long time periods (Bailey et al., 2016). The details of the model 

structure, applications as well as model set-up are widely available, e.g., in Abbaspour 

et al. (2015).  

 

 

Fig. 3-5 Schematic representation of conceptual water balance of SWAT model 

 

The division of the watershed enables the model to reflect differences in 

evapotranspiration for different soil and crops. Runoff is calculated separately for 

each HRU and routed to obtain the total runoff for the watershed. This increases the 

accuracy and provides a better physical representation of the water balance (Neitsch et 

al., 2011). Figure 3-5 shows a schematic representation of a conceptual water balance 

of the SWAT model. It is of particular interests to mention that in the land phase, 

SWAT simulates the hydrological cycle based on the water balance equation (Neitsch 

et al., 2011) as follows: 

 

 𝑆𝑊𝑡 = 𝑆𝑊𝑜 +∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑖  

𝑡

𝑖=1

 (3-3) 

  

where:  

SWt: Final soil water content (mm), 

 

 

(Rday) 

(QSurf) 

(Ea) 

(WSeep) 

(Qgw) 

(SWo) 
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SWo: Initial soil water content on day i (mm), 

t: time in (days), 

Rday: the amount of precipitation on day i (mm), 

Qsurf: the amount of surface runoff on day i (mm), 

Ea: the amount of evapotranspiration on day i (mm), 

Wseep: the amount of water entering the vadose zone from soil profile on day i (mm), 

Qgw: the amount of return flow on day i (mm). 

 

The surface runoff 𝑄𝑠𝑢𝑟𝑓 is predicted for daily rainfall using SCS curve number 

equation (USDA-SCS, 1972) as: 

 

 𝑄𝑠𝑢𝑟𝑓 =
(𝑅− 0.2 𝑠)2

𝑅+ 0.8 𝑠
, 𝑅 > 0.2 𝑠 (3-4) 

 

 𝑄𝑠𝑢𝑟𝑓 = 0.0, 𝑅 ≤ 0.2 𝑠 (3-5) 

 

where s is a retention parameter. The retention parameter is varied (Arnold et al., 

1998): 

1) Among watershed, because land use, soil, slope and management all vary; and 

2) With time owing to changes in soil moisture content. 

The retention parameter s is related to curve number CN in the following equation: 

 

 𝑠 = 254 (
100

𝐶𝑁
− 1) (3-6) 

 

The constant, 254, gives s in mm. Fluctuation in water content makes s parameter to 

be changed according to the following equation: 

 

 𝑠 = 𝑠1  (1 −
𝐹𝐹𝐶

𝐹𝐹𝐶 + exp[𝑤1 − 𝑤2(𝐹𝐹𝐶)]
) (3-7) 
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where 𝑠1 is the value of s associated with CN1, 𝐹𝐹𝐶 is the fraction of field capacity 

and 𝑤1 and 𝑤2 are shape parameters. 𝐹𝐹𝐶 can be calculated as follow: 

 

 𝐹𝐹𝐶 =
𝑆𝑊 −𝑊𝑃

𝐹𝐶 −𝑊𝑃
 (3-8) 

 

where 𝑆𝑊: is the soil water content in the root zone (mm). 𝑊𝑃 is the welting point 

water content (mm), (1,500 kPa for many soils), 𝐹𝐶 is the field capacity water content 

(mm) (33 kPa for many soils).The values of 𝑤1 and 𝑤2 are determined from a 

simultaneous solution of Equation (3-7) according to the assumption of s=𝑠1 when 

𝐹𝐹𝐶 = 0.6 and s=𝑠3 when (SW-FC)/( 𝑊𝑠𝑒𝑒𝑝 , 𝑜-FC)= 0.5 (Arnold et al., 1998). 

 

SWAT provides two methods to calculate surface runoff: SCS curve number (USDA-

SCS, 1972) and Green Ampt infiltration (Green and Ampt, 1911). The choice of the 

rainfall-runoff model is often a trade-off between model complexity (simple vs 

complex) and the availability of required input data. While the curve number has been 

considered to produce satisfactory results, it is a theoretically simple model based on 

empirical relationships between daily rainfall, type of soil and land use category 

without considering rainfall intensity or duration of storm events. On the contrary, the 

Green Ampt is a physically-based method and can model storm events owing to the 

condition of sub-daily precipitation, a model input that can be challenging to get. In 

this study, the technique of the SCS curve number is utilised to estimate the surface 

runoff since the objective of the study is to create a daily hydrological model. 

 

The peak in this model is calculated using the modified rational method. Additionally, 

SWAT model offers three techniques to estimate potential evapotranspiration (PET): 

Penman-Monteith method (Monteith, 1965), Priestley-Taylor method (Priestley and 

Taylor, 1972) and Hargreaves method (Hargreaves et al., 1985). In this study, the 

Hargreaves method is employed to estimate potential evapotranspiration since this 

technique required only temperature data and this variable is available for long 

records. The actual evapotranspiration (ET) is computed based on Ritchie (Ritchie, 

1972).  
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In this study, the standard approach of the SWAT model setup is mostly followed. 

However, to measure the impact of management practice, the entire river basin is 

modelled with two different configurations: Scenario I and II, which differ from their 

objectives as well as the areas they represent. Considering data availability, the entire 

catchment of Dee is separated into three parts (Fig. 3-6). The two upper-stream sub-

catchments cover the three water supply reservoirs whose releases are measured at the 

two inlets to the central part – sub-catchment C which constitutes the main study area. 

Correspondingly, there are three SWAT models set up for sub-catchments A, B and 

C, namely models A, B and C.  

 

Scenario I focuses on a so-called 'real-life' situation, i.e., to model the catchment as it 

is. In this setting, the observed flow at the outlets of both sub-catchments A and B 

(i.e., the two inlets to sub-catchment C) are used to build Model C alongside historical 

datasets. The daily water abstractions at the PWS sites are estimated using the method 

presented above. Neither of the sub-catchments in the upper stream are modelled. In 

other words, Scenario I takes reservoir releases as the known boundary conditions to 

study the impact of water management practice in the central part of the catchment 

under the current regulation. 

 

Scenario II takes a different stand, aiming to reveal the 'natural state' of the catchment 

by modelling not only the sub-catchment C but also both sub-catchments in the upper 

streams. In this scenario, all reservoirs in the upper streams are modelled (by models 

A and B) as natural lakes with no flow control imposed. The same model C is used as 

in scenario I, but instead of being driven by the historical observed flow data at the 

two inlets, the simulation of model C takes inputs from the simulation of model A and 

B at the inlets. The same representation of water abstraction in sub-catchment C is 

adopted. In other words, scenario II is not a 'pure' natural flow simulation as it 

considers the water abstraction; however, it does offer an insight of the impact of flow 

regulation. 
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Fig. 3-6 The main and the upstream catchments of Dee River basin 

 

3.4.3. Model calibration and validation 

The SWAT model is calibrated and validated using the Sequential Uncertainty Fitting 

algorithm, SUFI2 (Abbaspour et al., 2004, 2007). In SUFI2, the uncertainties of input 

parameters are presented as uniform distribution. In this algorithm, the uncertainty of 

the model output is measured by 95% prediction uncertainty (95PPU) which is 

computed at the 97.5% and 2.5% levels of the cumulative distribution of output 

variables obtained through the Latin hypercube sampling (Abbaspour et al., 2007). 

The concept of the uncertainty analysis of the SUFI2 algorithm is graphically 

illustrated in Fig. 3-7. 

 

As in Fig. 3-7, a single parameter value (revealed by point, Fig. 3-7a) will result in a 

single model response. Meanwhile, promulgation of the uncertainty in a parameter 

will cause the 95PPU illustrated by the shaded region (Fig. 3-7b) and as the 

uncertainty of parameter increase, the output uncertainty will also increase (Fig. 3-7c). 

In the case of Fig. 3-7d, the range of parameter must be changed in a proper direction, 

and if this range already corresponds to the limits of physically meaningful values, 
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then the problem is not one of parameter calibration and the conceptual model must 

be re-examined (Abbaspour et al., 2007). 

 

The SUFI2 algorithm starts by assuming a considerable uncertainty of parameter, 

thus, that the measured data initially fall within the 95PPU, then decrease this 

uncertainty in steps until two rules are satisfied (Abbaspour et al., 2007): 

(1) The 95PPU band brackets ‘most of the observations’; and 

(2) The average distance between the upper (at 97.5% level) and the lower (at 

2.5% level) parts of the 95PPU is ‘small’.  

 

 

Fig. 3-7 Graphical representation of the relationship between the uncertainty of 

parameter and the prediction uncertainty of SUIFI2 algorithm (After Abbaspour et al., 

2007) 

 

The quantification of the two rules is some-what problem dependent. If measurements 

are of high quality, then 80–100% of the measured data should be bracketed by the 

95PPU, while a low-quality data may contain many outliers and it may be sufficient 

to account only for 50% of the data in the 95PPU (Abbaspour et al., 2007). For the 
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second rule, it is required that the average distance between the lower and the upper 

95PPU be smaller than the standard deviation of the measured data. While looking for 

the smallest possible uncertainty band, a balance between the two rules ensures 

bracketing most of the data within the 95PPU. The two measures are used the above 

to quantify the strength of calibration and accounting of the combined parameter, 

model and input uncertainties. For detailed information about this algorithm, readers 

can refer to Abbaspour et al. (2004, 2007). 

 

The goodness of fit is quantified using the Nash-Sutcliffe Efficiency Index NSE 

(Nash and Sutcliffe, 1970), Determination Coefficient R2 and Percent of Bias PBIAS 

as defined by equations:  

 

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜,𝑡 − 𝑄𝑠,𝑡)

2𝑇
𝑡=1

∑ (𝑄𝑜,𝑡 − 𝑄𝑜̅̅̅̅ )
2𝑇

𝑡=1

 (3-9) 

 

 𝑅2 = [
∑ (𝑄𝑜,𝑡 − 𝑄𝑜̅̅̅̅ )(𝑄𝑠,𝑡 − 𝑄𝑠̅̅ ̅)
𝑇
𝑡=1

∑ [(𝑄𝑜,𝑡 − 𝑄𝑜̅̅̅̅ )2]
0.5𝑇

𝑡=1 ∑ [(𝑄𝑠,𝑡 − 𝑄𝑠̅̅ ̅)2]
0.5𝑇

𝑡=1

]

2

 (3-10) 

 

 

 𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑄𝑠,𝑡 − 𝑄𝑜,𝑡)
𝑇
𝑡=1

∑ 𝑄𝑜,𝑡
𝑇
𝑡=1

] × 100 % (3-11) 

 

where Qo,t is the observed data value at time t and Qs,t is the simulated data value at 

time t. It was found that the natural process plays a secondary role and surface water 

abstractions have a considerable impact on the river flow regime. Historical flow 

records at six river gauge stations are used to measure the performance of model C 

whereas that of model A and B are checked again the records at the two inlets as 

revealed in Fig. 3-8. Table 3-3 shows the river gauges’ station used in the model 

calibration and validation. Table 3-4 summaries the calibration and validation of three 

models. 
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Fig. 3-8 Locations of the main inlets and the river gauge stations in Dee River basin  

 

Table 3-3: The river gauge stations utilised in the calibration and validation of the 

hydrological model (Source: Centre for Ecology and Hydrology, 2015) 

Station Name 
Latitude Longitude 

General Description 

Manley Hall 52.966 -2.972 A symmetrical compound Crump 

weir. 

Chester Iron bridge 53.134 -2.873 Station utilises Ultra-Sonic to derive 

flow.  

Chester Suspension 

Bridge 

53.187 -2.884 Ultra-Sonic flow gauge. 

Alyn at Pont-y-

Capel 

53.079 -2.994 A symmetrical compound crump 

weir.  

Clywedog at 

Bowling Bank 

53.027 -2.903 Simple Crump profile weir. 

Ceiriog at 

Brynkinalt Weir 

52.928 -3.050 Compound broad-crested weir.  

Alwen at Druid 52.981 -3.431 Reservoirs (Brenig and Alwen)  

Bala Lake 52.908 -3.577 Reservoir(s) in catchment affect 

runoff.  
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Table 3-4: The calibrations and validations of the three models A, B and C in the two scenarios. 

Scenario I ('real-life' case) II ('natural-flow' case) 

Sub-catchments A B C A B C 

Models Measured flow at 

the outlet is used 

to drive Model C 

Measured flow at 

the outlet is used 

to drive Model C 

Model C Model A where 

reservoirs are 

modelled as natural 

lakes 

Model B where 

reservoirs are 

modelled as natural 

lakes 

Same as Model C 

Calibration Period N/A N/A (1995-2000) (1995-2000) (1995-2000) (1995-2000) 

Validation Period N/A N/A (2001-2003) (2001-2003) (2001-2003) (2001-2003) 

Simulation N/A N/A River flow + 

water yield. 

Daily flow as one 

of the main inlet to 

model C 

Daily flow as one of 

the main inlet to 

model C 

Same as in scenario I 

but driven by the 

simulated inlets flow 

from Model A and B 

Gauge stations 

used to measure 

the performance 

N/A N/A Stations no. 

(1, 2, 3, 4, 5 

and 6) 

Alwen at Druid 

 

Dee at Bala 

 

N/A 
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3.5. Results and discussion 

In this study, the Dee River watershed was subdivided into 57 sub-basins and 1074 

HRUs. The watershed parameterisation and the model input are derived using the 

ArcSWAT interface (SWAT 2012, revision 627) in ArcMap 10.2 environment, which 

offers the graphical support to the disaggregation scheme and allows the construction 

of the model input from digital maps. The underlying data sets required to develop the 

model input are: topographical, land use, soil, and climatic data. The SWAT model is 

constructed for the study area based on daily time step with 3 years warm-up period 

(1992-1994) and for the calibration period of 1995-2000, and validation period of 

2001-2003 (with a warm-up period of 1992-2000). Abbaspour (2013) recommended a 

warm-up period of 2‐3 years for hydrological models with the SWAT software. 

 

 

Fig. 3-9 Flow hydrograph at Manley Hall station over both the calibration and the 

validation periods (Catchment C) 

 

The model was calibrated based on the daily measured discharge at six stations for the 

main catchment (Catchment C, Fig. 3-6) and one station for catchment B and one for 

catchment A. The comparison between the calibrated stream flow and observations 

using observed rain gauges at 8 locations revealed a good model performance in term 

of statistical performance of R2, NSE and PBIAS as illustrated in table 3-5 and the 

hydrograph of observed and simulated flow for Manley Hall station shown in Fig. 3-9 
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(Catchment C), Druid station in Fig. 3-10 (Catchment A) and Bala station in Fig. 3-11 

(Catchment B).  

 

Table 3-5: Calibration (1995-2000) and validation (2001-2003) of the SWAT model  

Station  

Calibration Validation 

NSE R2 PBIAS NSE R2 PBIAS 

Manley Hall 0.93 0.98 -1.60 0.92 0.93 -0.10 

       

Ironbridge 0.82 0.82 -3.50 0.79 0.80 -4.90 

       

Suspension 

bridge 

0.78 0.80 -7.70 0.70 0.73 -18.00 

       

Pont-y-Capel 0.74 0.75 -7.90 0.71 0.73 -11.20 

       

Bowling Bank 0.62 0.63 0.10 0.42 0.44 3.70 

       

Brynkinalt 

Weir 

0.54 0.62 29.00 0.53 0.60 23.50 

       

Druid 

(Catchment A) 

0.72 0.73 -9.90 0.65 0.66 -9.90 

       

Bala 

(Catchment B) 

0.76 0.79 16.40 0.75 0.77 8.30 

 

 

Fig. 3-10 Flow hydrograph at Druid station over both the calibration and the 

validation periods (Catchment A) 
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Fig. 3-11 Flow hydrograph at Bala station over both the calibration and the validation 

periods (Catchment B) 

 

While, in general, the SWAT model of the Dee River basin reveals a good 

performance in most stations, some other stations such as Brynkinalt Weir and 

Bowling Bank show a low performance. The likely reasons are: 

1) The way of rainfall input in the SWAT model which takes only one rain gauge 

station nearest to the centroid of a sub-basin. This crude estimations of rainfall 

might have an impact on model performance especially in mountainous areas 

and when the size of sub-basin is large (i.e. Brynkinalt Weir); and 

2) The modelling of highly-regulated river basins is a challenging process 

because the natural processes play a secondary role in the catchment and there 

is a need of a proper approach to estimate water withdraws (i.e. Bowling 

Bank). 

 

The precipitation impact on the model performance outputs will be fully explored in 

the next chapter with the focus on Brynkinalt Weir. Table 3-6 shows the significant 

SWAT parameters with their typical ranges that used in the calibration process (SUFI 

2) that mostly control the streamflow. 
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Table 3-6: Main SWAT parameters used in the calibration process 

Parameters Description Typical range 

CN2 SCS runoff curve number 35-98 

SOL_AWC Available water capacity of the soil layer 0-1 

ESCO Soil evaporation compensation factor 0-1 

HRU_SLP Average slope steepness 0-1 

OV_N Manning's "n" value for the overland flow 0.008-0.6 

SLSUBBSN Average slope length 10-150 

GWQMN  Threshold depth of water in the shallow aquifer required for 

return flow to occur (mm) 

0-5000 

GW_REVAP Groundwater "revap" coefficient 0.02-0.2 

REVAPMN Threshold depth of water in the shallow aquifer for "revap" to 

occur (mm) 

0-500 

SOL_K Saturated hydraulic conductivity (mm/hr) 0-2000 

ALPHA_BF Baseflow alpha factor (days) 0-1 

GW_DELAY Groundwater delay (days) 1-450 

SOL_BD Moist bulk density 0.9-2.5 

CH_S2 The average slope of the main channel -0.001-10 

CH_N2 Manning's “n” value for the main channel -0.01-0.3 

 

The SUFI 2 algorithm in the SWAT-CUP software package (Abbaspour, 2013) is 

used for the calibration and validation of the daily SWAT model in the Dee River 

basin at eight river gauges stations. A total of 12-15 SWAT parameters were selected 

for the calibration for the streamflow prediction with 500 iterations at each river 

station based on earlier studies and SWAT documentation (e.g. Abbaspour et al., 

2015). For time-consuming large-scale models, SUFI 2 was found to be reasonably 

effective (Yang et al., 2008). 

 

Dotty plots were used here at Brynkinalt Weir station (as an example) to illustrate the 

sensitivity of the model parameters utilised for the calibration of the SWAT (Fig. 3-

12). The results of the model run with NSE as an objective function during the 

calibration process.  
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Fig. 3-12 Dotty plots with the objective function of NSE coefficient against each 

relative change of SWAT parameters at Brynkinalt Weir station 
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When a sharp and clear peak is detected for a parameter, it can be treated as the 

parameter with the highest likelihood. In a similar manner, the insensitive parameters 

were gotten by diffused peak characterised by cumulative distributions which in turn 

signalise that a parameter is less proficient for the river flow prediction in Brynkinalt 

Weir station. The sensitivity analysis of model parameters at Brynkinalt Weir 

revealed that the lower performances might be instigated by structural inadequacies in 

model components.  

 

Table (3-7) reveals details of the parameters being applied for calibration of the 

SWAT model in the Brynkinalt Weir station. The results of calibration have 

confirmed that all the 12 sensitive parameters are considered to apply to surface 

runoff, groundwater, soil properties and channel routing. The results of global 

sensitivity analysis with the t-test in Table (3-7) and Fig. 3-12 show that the most 

sensitive parameters are Curve number (CN2) followed by Groundwater ‘revap’ 

coefficient (GW-Revap). 

 

Table 3-7: Sensitivity of SWAT parameters included in the final calibration and t-Stat 

and p-values at Brynkinalt Weir station 

Parameters Min. value Max. value Fitted value t-Stat P-Value 

r*_CN2 0.00 0.80 0.02640 -39.84 0.00 

r_GW_REVAP -0.40 0.40 -0.08560 -2.35 0.02 

r_SOL_BD -0.50 0.50 0.43700 1.49 0.14 

r_SOL_K -0.50 0.50 0.34700 1.12 0.26 

r_SOL_AWC -0.40 0.40 0.10640 -1.07 0.28 

r_GWQMN -0.40 0.40 0.19440 -0.82 0.41 

r_ALPHA_BF -0.40 0.40 0.25520 -0.62 0.53 

r_ CH_N2 -0.40 0.00 -0.07800 0.56 0.58 

r_ESCO -0.40 0.40 -0.33520 0.48 0.63 

r_REVAPMN -0.40 0.40 -0.19600 0.11 0.91 

r_GW_DELAY -0.40 0.40 0.02000 0.07 0.94 

r_CH_S2 0.00 0.80 0.33840 0.03 0.97 

*r: refers to the relative change 
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3.6. Summary 

Many river basins around the world are highly-regulated with a range of water 

abstraction rules and regulations and several physical flow control and storage 

structures. Most existing hydrological models do not represent the modifications to 

the hydrological regimes introduced by water management such as reservoirs and 

water abstractions. The interactions between natural hydrological processes and 

changes in energy fluxes, water and storage attributable to human interventions are 

essential for water resources managers for the understanding of how these systems 

might respond to climate change among other drivers for change and the evaluation of 

their feedbacks to the climate system at regional scales. One such river basin is the 

Dee River catchment in the United Kingdom. 

 

This study shows an integrated modelling method to include human interventions 

within natural hydrological systems using the SWAT model. Three daily SWAT 

models are set up to simulate the hydrological processes in the Dee River catchment 

with physical flow control and water withdrawal process explicitly represented. Two 

scenarios (with and without flow control) are constructed to explore the impact of 

management practice. The representation of the management practice such as flow 

control and water withdraw in the modelling process can help reveal the effect from 

the latter, and as such lays a foundation for further study on how various management 

practice can mitigate the impact of other sources such as climate change on catchment 

water resources management which will be discussed later.  

 

An inversion approach was used to estimate the daily water withdrawal amount at the 

water abstraction points, as this amount is not available from the data collected. The 

estimation was based on the information from PWS companies who offer a weekly 

abstraction forecast to Natural Resources Wales to assist in calculating the required 

releases from the reservoirs. Justifiably, although this technique helps to show the 

interaction between flow regulation and water abstraction, it also has a certain amount 

of uncertainties. It can be developed by further modelling the probabilistic nature of 

water abstraction or by conditioning them on other variables such as temperature. 
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Chapter 4: Model Input Uncertainty 

A hydrological model (SWAT) was used in the previous chapter to simulate land 

surface processes in a highly-regulated river basin to study the intervention of natural 

processes and human activities within the watershed. It can be deemed as the first step 

for IWRM framework. Another significant issue needs to scrutinise is the uncertainty 

identification due to input data, i.e. rainfall. Data uncertainty arises owing to the error 

in measurement and data handling and limitation of data in time and space, which 

results in an insufficient representation of the study area. 

 

The focus of this chapter is to examine the impact of different precipitation pre-

processing methods on model calibration and the overall model performance with 

regards to its operational use. The same Dee River (refer to the model in chapter 3) is 

modelled to test against the three pre-processing methods of precipitation: The 

Centroid Point Estimation Method (CPEM), the Grid Area Method (GAM) and the 

GridPoint Method (GPM). Benefited from the newly produced, the high-resolution 

Gridded Estimate Areal Rainfall (CEH-GEAR) dataset, cross-calibration and 

validation are made possible. The primary focus of this chapter is the study of the 

impact of precipitation pre-processing on SWAT model calibration and validation as 

well as operational use. 

 

4.1. Introduction 

Precipitation is one of the vital forcing factors in hydrological modelling practices. 

The accuracy of precipitation input and its representation have a direct impact on the 

overall model performance. In the last few decades, many studies were reported to 

have looked into this, mainly due to the drive of quantifying modelling uncertainties 

where the inputs such precipitation have to be taken into account, for example (Masih 

et al., 2011; Schuurmans et al., 2007).  
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Alongside the concerns of accuracy, the importance of spatial variability of rainfall 

has also been highlighted, especially over large watersheds where it is crucial to gain 

insight of day-to-day spatial variability of groundwater level, stream flow discharge 

and soil moisture content (Schuurmans et al., 2007). At smaller scales, rainfall 

variability also has a considerable impact on peak flow estimation (Mandapaka et al., 

2009). Segond et al. (2007) reported that as the scale increases, the effect of rainfall 

distribution decreases and there is a transfer from the spatial variability of rainfall to 

catchment response time distribution as the dominant factor governing runoff 

generation. 

 

The effect of various spatiotemporal resolutions of precipitation on simulated runoff 

has also been widely investigated by, e.g., Tetzlaff and Uhlenbrook (2005); Maskey et 

al. (2004) which agreed on the necessity of adopting better rain representation input in 

modelling structure. However, most of these studies are focused on a specific model 

or models because that precipitation pre-processing is often model-dependant, 

although many different models use specific common methods such as Thiessen 

polygon method. 

 

The density of rain-gauges over the forecast watersheds is one of the key factors in 

succeeding forecast accuracy during an extreme event that gives rise to substantial 

flooding in a major metropolitan region (Looper and Vieux, 2011). Consequently, the 

precipitation data should be processed as spatially distributed input before being 

forced into hydrological models. However, measuring at every point is prohibited by 

the high costs associated. Caruso and Quarta (1998) reported that spatially distributed 

precipitation could be interpolated using a range of various techniques. Nevertheless, 

the complexity depends on selecting the one that best reproduces the most precise 

data. 

 

Shah et al. (1996b) argued that the average of the precipitation inputs reduces the 

accuracy of the model’s results. Under such conditions, catchment response is highly 
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non-linear, which means that the response to an averaged input will differ much more 

from the response to a distributed input. When a single rain gauge is used to model 

the catchment response, the results become less accurate at both the sub-basin and 

basins scales, and this also affects the production of the hydrograph (Segond et al., 

2007). 

 

Spatial variability in precipitation influences on hydrological model outputs (e.g. Bell 

et al., 2000; Segond et al., 2007; Cole and Moore, 2008; Collischonn et al., 2008), the 

estimation of model parameters (Chaubey et al., 1999), the catchment response (Shah 

et al., 1996a; Shah et al., 1996b) and the timing of peak runoff (Singh, 1997). 

Schuurmans et al. (2007) state that failing to consider a satisfactorily spatial 

distribution of precipitation will result in errors in the values of the model parameters 

that will be wrongly changed to compensate for errors in the rainfall input. A large 

number of interpolation methods that have been introduced and employed in the 

literature that create the spatial distribution of precipitation based on rain-gauges 

measurements. These methods can generally be classified into two main groups: 

deterministic and geostatistical methods (Ly et al., 2011). 

 

The first group of spatial interpolation methods for measuring precipitation, which 

probably is one of the most frequently used deterministic techniques, includes the 

Inverse Distance Weighting (IDW) and Thiessen polygon (THI), which are based on 

the location of the measured stations and measured values. The Arithmetic Means, the 

simplest spatial interpolation method, can also be used in relatively flat regions. 

Nevertheless, use of this technique has decreased as it does not provide demonstrative 

measurements of precipitation in most cases (Ly et al., 2011). 

 

The other group of spatial interpolation methods is geostatistical techniques, 

establishing a discipline connecting earth sciences with mathematics (Ly et al., 2011). 

Kriging is an example of geostatistical techniques used in a random field to 



 

62 | P a g e  

 

Chapter 4: Model Input Uncertainty 

interpolate a variable. The geostatistical methods can create a prediction surface and 

offer some measurements of the accuracy of the predictions. 

 

Dirks et al. (1998) pointed out that deterministic interpolation methods revealed a 

better performance than geostatistical ones. They also evaluated the performance of 

three interpolation methods THI, IDW and Kriging in Norfolk Island by using rainfall 

data of 13 rain gauges considering time steps of an hour, day, month and year. The 

authors have recommended the IDW interpolation method. Meanwhile, other 

researchers such as Nalder and Wein (1998) found that IDW had a similar error with 

Ordinary and Universal Kriging in the interpolation of monthly rainfall. 

 

Thanks to its open-source strategy and easy-to-use GUI, the Soil and Water 

Assessment Tool (SWAT) has gained a large user base. Many studies using SWAT 

have endeavoured to address the issues of precipitation input such as the one by 

Chaplot et al. (2005). They studied the effect of rain gauge density on streamflow, 

sediment and nitrogen fluxes simulations in two small watersheds in the United States 

and they found that the use of higher rain gauge densities could lead to better 

simulations, especially for sediment fluxes. Jayakrishnan et al. (2005) compared 

annual and monthly river flows simulated by SWAT for four catchments in the U.S. 

using both weather radar (Next Generation Weather Radar, NEXRAD) and rain 

gauges. They concluded that input of areal rainfall measured by radar gave the best 

estimation, despite some inherent limitations, especially the accuracy at daily time 

scale. 

 

While in general, most of those studies tend to agree that denser rain gauge network 

(hence being capable of better spatial representation of precipitation) can lead to 

improved model performance, there are others, however, do not share such a view. 

Cho and Olivera (2009) investigated the effect of the resolution of land use, soil type 

and rainfall data on simulating river flow in three catchments in the U.S constructing 
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18 models of each basin by combining three land use categories, three soil types, and 

two precipitation input scenarios. The two rainfall scenarios employed were: 

1) Data from all available rain gauges; and 

2) Data from a single rain gauge for the whole catchment area. 

 

It was found that all models produced comparable values of Nash-Sutcliffe efficiency 

indices. Their main findings were that more refined representation of spatial data 

might not necessarily result in improved SWAT river flow simulations in small 

catchments. It may well be attributed to other factors such as soil types and land use 

possibly being more dominating than the rainfall. 

 

Remote-sensing-based rainfall measurements, such as those from weather radars and 

satellites excel in providing much more detailed spatial structures compared with 

gauge measurements, but in the meantime, they suffer from low accuracy as well (Zhu 

et al., 2014). Tobin and Bennett (2009) compared monthly river flow simulated by 

SWAT using precipitation data collected through satellites observations (Tropical 

Rainfall Measurement Mission), weather radar (NEXRAD) and rain gauges at the 

outlet of the two rivers in the U.S. They concluded that stream flows were better 

simulated using the radar data compared to the other two sources of rainfall input. 

This is indeed encouraging as it may support the idea that better spatial representation 

outweighs accuracy in some cases. 

 

A more comprehensive account is given by Starks and Moriasi (2009) who compared 

streamflow simulations from a SWAT model using four different resolutions of 

rainfall data in three experimental catchments of different sizes. The number of rain 

gauges in three scenarios varied from 1 to 7. The rainfall data obtained through 

weather radar, available at 4 km grids, were used in the fourth scenario. Their study 

produced satisfactorily calibrations for all four cases, even though the scenarios with 

higher rain gauge density and the radar-based rainfall showed relatively better river 

flow simulations.  
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A more recent study by Masih et al. (2011) used a SWAT model to evaluate its 

performance using two interpolation methods: standard precipitation input and an 

areal precipitation input obtained through using the Inverse Distance and Elevation 

Weighting (IDEW) interpolation. This study found that the use of areal precipitation, 

obtained through the interpolation improved simulated stream flow. It is worth noting 

that most of those studies are based upon model simulations at a larger temporal scale, 

e.g., monthly or yearly, which has two significant implications: 

1) The contribution of better spatial representation from using either denser 

gauge networks or remote sensing data might well be smoothed away; and 

2) They may not fit the needs of day-to-day operational use.  

 

Daily precipitation has a specific stochastic nature which differs from monthly rainfall 

(Johnson and Hanson, 1995; Ly et al., 2011). From a modeller's viewpoint, it would 

be more intriguing to explore how the way of model handling precipitation input can 

be improved across different scales.  

 

There is another problematic aspect of conducting such assessment in an existing 

modelling system like SWAT attributable to their parameterisations. Discussion of the 

benefits, as well as the drawbacks of model parameterisation, goes beyond the scope 

of this chapter, readers can refer to Cheng et al. (2014); Abbaspour et al. (2007); Li et 

al. (2013) and Shrestha et al. (2016). An immediate impact of model parameterisation, 

however, is that at times model can be calibrated equally well even though they are 

fed with input data (such as precipitation) that apparently are of different quality. This 

so-called 'compensation of parametrisation' makes it challenging to identify and 

isolate the impact of various inputs by only considering model calibrations and their 

comparisons.  

 

In this chapter, a study on the impact of various precipitation pre-processing methods 

is presented on model performance over Dee River basin. A most recent, high 

resolution, gridded rainfall dataset – the CEH Gridded Estimates of Areal Rainfall 
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(Keller et al., 2015) is used as a reference in addition to the conventional gauged 

rainfall data. Three different pre-processing methods are tested including:  

1) The default SWAT method which uses the rainfall value from the nearest 

gauge to the centroid of the (sub-)basin in question (Centroid Point Estimate 

Method, CPEM);  

2) The gird-area method (GAM) which takes the averaged value of all grids of 

the GEAR dataset falling in the area of the sub-basin in question; and  

3) The grid point method (GPM) which is similar to CPEM, but instead of using 

the value from the nearest gauge, it takes value from the grid of the GEAR 

dataset where the centroid of the sub-basin is located within.  

 

Cross-calibration and validation of the combination of the three methods using both 

gauge data and GEAR data are conducted over the Dee river catchment (daily time 

step) in the UK, aiming to isolate the 'compensation' effect due to model 

parameterisation. The principal objectives of this chapter are:  

1) To assess the impact on hydrological model performance from using various 

methods of rainfall pre-processing above and further give recommendation 

where possible;  

2) To evaluate model parameterisation (via calibration) with different rainfall 

inputs on the overall model performance; and 

3) To test the utility of the new GEAR dataset in the context of calibrating 

hydrological models. The in-depth discussion of the three pre-processing 

methods as well as the way of model calibration and cross-validation is given 

in the section of methodology. 

 

4.2. The CEH-GEAR precipitation dataset 

The Centre for Ecology and Hydrology – Gridded Estimates of Areal Rainfall (CEH-

GEAR), is a new precipitation dataset developed to provide reliable 1 km gridded 

estimates of daily and monthly rainfall over the UK and 3,500 km2 of catchment area 

in the Republic of Ireland from 1890 to 2012 (Keller et al., 2015). The rainfall 
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estimates are created from the Met Office historical weather observations for the UK. 

The natural neighbour interpolation method (Ledoux and Gold, 2005) including a 

normalisation step based on average annual rainfall (AAR), was employed to create 

the daily and monthly precipitation over the regular 1-km grids.  

 

A schematic representation of the interpolation procedure used to derive the CEH-

GEAR daily and monthly 1 km grids is shown in Fig. 4-1. The grids are generated 

using the natural neighbour interpolation alongside a normalisation step based on 

AAR which involves two steps: 

1) An initial estimate from daily gauges alone; and 

2) Multiplication by a correction grid to give consistency with monthly grids that 

have been created from all available daily and monthly gauged data– daily and 

monthly.  

 

Readers can be referred to Keller et al. (2015) for the detailed discussion of the 

derivation. It should be noted that weather radar data are not used in the production of 

the current version of CEH-GEAR although such merging would be able to improve 

the spatial representation of the interpolated field. This is, in part, due to the 

comparatively short duration available for the radar rainfall estimates (around 30 

years) compared to the rain-gauge observations. Accordingly, CEH-GEAR data 

would have greater temporal consistency if it is solely based on rain gauge 

observations (Keller et al., 2015). 

 

4.3. Methodology 

4.3.1. SWAT simulations 

For the study of the precipitation pre-processing, only Scenario I ‘real-life’ situation is 

considered (refer to section 3.4.2). When it comes to how the precipitation amount is 

represented, the default setting of SWAT uses the values from the gauge located 

closest the centroid of each sub-basin to represent the areal value for the sub-basin 

(Masih et al., 2011). To consider the orographic effects on temperature and rainfall in 
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mountainous areas, SWAT makes use of the elevation bands method which allows for 

up to 10 elevation bands in each sub-basin that enable the model to assess the 

differences in snow cover and snowmelt caused by orographic variation in the rainfall 

and temperature. This method adjusts the regional precipitation by weighting the 

elevation difference between the band of the rain gauge and the other bands.  

 

 

Fig. 4-1 Derivation of daily and monthly gridded rainfall estimates of CEH-GEAR 

(After Keller et al., 2015) 

 

Most applications of SWAT follow this approach as there is no explicit entry in the 

model user interface to alter this setting conveniently. Evidently, in some cases, such 

treatment does not represent well the spatial variation of precipitation field hence 

ignoring spatial heterogeneity. One can see the impact of such treatment even without 

experiment because:  

1) The nearest gauge value may not be able to precisely estimates the rainfall 

amount at the centroid; and 
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2) Even if precipitation is accurately estimated at the centroid, this centroid value 

may not be able to represent the areal value of the sub-basin in question. 

 

However, even using such crude estimate of sub-basin precipitation, some 

applications of SWAT are reported to work well. The reason lies in two folds: on the 

one hand, a denser gauge network and/or less intermittent rainfall events can mitigate 

the poor spatial representation of the model; on the other, model parameterisation can 

also ‘compensate’ (Starks and Moriasi, 2009). This, in fact, inspires this study as it is 

hoped to isolate the impacts of pre-processing techniques from the two factors 

mentioned, by applying cross-calibration and validation to separate model 

parameterisation. 

 

4.3.2. Precipitation pre-processing methods  

As previously listed, there are two types of precipitation input data used in this study. 

First, the measured rainfall at the 13 rain-gauges in the Dee river basin has been 

aggregated temporally into daily and monthly respectively. The missing data gaps in 

gauge observations are filled by using the IDW method. Second, the CEH-GEAR data 

(at 1 km spatial resolution) are taken without any further data screening and gap-

filling operations. 

 

The following three methods to pre-process the precipitation data are applied before 

using them to represent (sub-) basin areal values in SWAT: 

1) The centroid point estimate method (CPEM): this is the default method used 

by SWAT which estimates the areal precipitation of a sub-basin utilising the 

rainfall at the gauge closest to the centroid of the sub-basin (see Fig. 4-2a). 

Only gauge data are used in this case for every sub-basin; 

2) The grid-area method (GAM): this method 'cuts off' the target sub-basin area 

out of the GEAR grids and takes the average of all values of the grids that 

either is entirely within the area or intersect with it (Fig. 4-2b); and 
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3) The grid-point method (GPM): this method again uses the GEAR dataset 

except that instead of taking the average of the intersecting areas, it estimates 

the value at the centroid of the target sub-basin by interpolating the values of 

GEAR grids nearby (within a 1-km search radius) using the IDW method (see 

Fig. 4-2c). The estimated centroid value is then used to represent the areal 

precipitation over the target sub-basin as done in CPEM. 

 

 

Fig. 4-2 Methods of precipitation pre-processing for a selected sub-basin in Dee River 

basin 

  

Inverse Distance Weighting interpolation (IDW) computes values at un-sampled 

points by the weighted average of observed data at surrounding points. Accordingly, 

this can be defined as a distance reverse function of each point from nearby points 

(Teegavarupu and Chandramouli, 2005). The values at un-sampled points can be 

determined by using a linear combination of values at a known sampled point. IDW 

depends on the theory that the unknown value of a point is more affected by closer 

points than by points further away. The weight can be computed by: 
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where Di is the distance between sampled and un-sampled points. The d parameter is 

specified as a geometric form for the weight while other specifications are possible. 

This specification implies that if the power d is larger than 1, the so-called distance-

decay effect will be more than proportional to an increase in distance, and vice versa 

(Ly et al., 2011). Hence, small power d tends to give estimated values as averages of 

in the neighbourhood, while large power d tends to give larger weights to the nearest 

points and increasingly down-weights points further away (Lu and Wong, 2008).  

 

Using a power value of 2 for daily and monthly time steps, 3 for hourly and 1 for 

yearly would appear to minimise the interpolation errors (Dirks et al., 1998). 

Moreover, this power d usually sets to 2, following Lloyd (2005) and hence inverse 

square distances are used in the estimation. Consequently, a power value of 2 was 

adopted for IDW in this study. 

 

In a nutshell, the three proposed methods utilise both the gauge measurements 

(CPEM) and the CEH-GEAR dataset (for GAM and GPM). It should be noted that the 

CEH-GEAR data are also derived from gauge measurements that have been further 

gridded by applying natural neighbour interpolation. Consequently, to a certain 

degree, the GAM method effectively resembles the common Thiessen method which 

obtains areal rainfall using the underlying gauge measurements averaged over the 

polygons.  

 

However, there are still some subtle differences which are: 

1) The Thiessen polygon method is nearest neighbour interpolation whereas the 

GEAR data are derived from using the natural neighbour interpolation; and 
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2) They may not use the same set of rain gauges and more sophisticated 

approaches of errors corrections have been applied to produce the GEAR 

dataset.  

 

Nevertheless, in terms of accounting for spatial heterogeneity, the GAM method 

should be the best choice followed by GPM while the default method CPEM falls 

behind. Thus, it is hypothesised that correspondingly, models calibrated using the 

techniques are expected to rank in the same order regarding their performances.  

 

4.3.3. Cross-calibration and validation 

The standard approach to setting up SWAT models is mostly followed for the study 

area. For the Dee catchment, the two upper-stream sub-basins are not modelled so as 

to avoid the complexity of representing reservoir regulation, instead, the releases from 

the four water supply reservoirs and the lake (measured at the two inlets: Druid and 

Bala) are used as the boundary condition for the main part of Dee River which 

constitutes the main study area.  

 

Rainfall data from the 13 gauges are used to construct the CPEM time series from 

1995 to 2003 whereas the other two-time series produced from the CEH-GEAR 

dataset utilising the GAM and GPM methods respectively are also generated for the 

same period. A daily SWAT model fed with three rainfall time series is then 

calibrated over 1995-2000 and validated of 2001-2003. The SWAT model is 

calibrated and validated using the Sequential Uncertainty Fitting algorithm - SUFI2 

(Abbaspour et al., 2004, 2007).  

 

A cross-calibration and validation approach is used to isolating the impact of model 

parameterisation concerning different precipitation pre-processing schema. This 

means that there are three (3) calibrated models for each catchment, i.e., models that 

are calibrated using the three pre-processed rainfall time series based on CPEM, 

GAM and GPM methods. These three models are then validated using three different 
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rainfall time series as well. Therefore, in the end, there are nine (9) simulations 

assessed during the validation stage. 

 

4.4. Results and discussion 

4.4.1. Comparison of point/grid precipitation and spatial distributions 

As previously mentioned, the CEH-GEAR dataset is derived from rain gauge 

observations with extra quality control measure before being interpolated onto the 

regular grids. It is therefore expected to see a good agreement between the gauge 

observed precipitation values and the values from the grid of GEAR dataset that is at 

(nearly) the same location of the gauge. The determination coefficient and root mean 

square error are used to evaluate CEH-GEAR rainfall product. Root mean square 

error can be computed as follow: 

 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑚 − 𝑃𝑜)2
𝑛
𝑖=1

𝑛
 (4-2) 

 

where 𝑃𝑚 modelled rainfall and 𝑃𝑜 is the observed one. 

 

The data screening has been conducted on the precipitation from rain gauges for the 

inspecting for errors and correcting them before doing data analysis. The screening 

involves checking raw data, recognising outliers and dealing with missing data. The 

precipitation data also is being subjected to rigorous quality control by the British 

Atmospheric Data Centre (BADC) and the Met Office. 

 

Daily rainfall from the grids closest to the 13 gauges locations in Dee catchment is 

extracted from the GEAR dataset and then compared with the time series of the 13 

gauges values. As expected, the time series are well-perfect matched at the 13 

locations as seen in Table 4-1 and Fig 4-3. The small deviation is likely due to the 
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vigorous qualify control measures applied to the GEAR datasets as well as the block 

averaging of the interpolated values. 

 

Table 4-1: Statistical comparison of precipitation of observed and CEH-GEAR dataset 

at rain gauges for a period of 1995-2003 for Dee River  

Station No. Station Name 
R2 

RMSE 

(mm) 
NSE 

1 Hawarden Bridge 0.98 0.51 0.98 

2 Colomendy Centre 1.00 0.38 1.00 

3 Bala Lake 1.00 0.59 0.99 

4 Llangerwyn: Tan-Y-Llwyn 0.99 0.52 0.99 

5 Llanuwchllyn 1.00 0.23 1.00 

6 Tryweryn Dam No 2 1.00 0.42 1.00 

7 Vivod 1.00 0.16 1.00 

8 Cefn Mawr 0.99 0.63 0.98 

9 Chester W WKS 0.99 0.47 0.99 

10 Eddisbury Fruit farm 0.99 0.45 0.99 

11 Mouldsworth P STA 0.99 0.30 0.99 

12 Tiresford 0.79 0.51 0.98 

13 Alwen Reservoir 0.99 0.49 0.99 

 

It is more useful to examine how different the areal rainfall generated area using both 

the gauge data and the GEAR data using the three pre-processing methods above. 

When it comes to the settings of SWAT, the Dee river catchments are delineated into 

57 sub-basins. The 6-month moving averages of the areal rainfall over the selected 

sub-basins in the Dee catchments are shown in Fig. 4-4. The time series of GAM and 

GPM are very close (nearly identical) to each other for all six selected sub-basins. 

 

The CPEM time series, however, is entirely different from the other two for most sub-

basins. Since the CPEM and the GPM method both use the value at the centroid of the 

sub-basins to represent the areal rainfall, such comparison in Fig. 4-3 indicates that 

the CPEM (which borrows the nearby gauge value) method may cause large deviation 

to the representation. It also shows that the spatial variation is not a big issue at such 



 

74 | P a g e  

 

Chapter 4: Model Input Uncertainty 

smaller sub-basins scale as the GAM and the GPM methods produce very close 

results. 

 

Fig. 4-3 Comparison of the daily precipitation observed by the gauges in Dee River 

catchments with the CEH-GEAR data at the same locations for the period of 1995-

2003 
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Fig. 4-4 Six-month moving average of monthly areal rainfall over the selected sub-

basins of the Dee river basin for the period of 1995-2003 

 

 

The cross-sub-basin distributions give contrasting pictures as seen in Fig. 4-5. The 

CPEM methods produce a less varying distribution as some of the sub-basins share 

the same gauge. The GAM and GPM methods are able to reveal more details. As to 

the range of the annual averages shown in Fig. 4-5, the one from CPEM shows a 

range of 676-1,324 mm/year for CPEM and GAM 665-1,749 mm/year 663-1,692 

mm/year for GPM respectively. 
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Fig. 4-5 Spatial distribution of annual rainfall for the three simulations at Dee river 

basin 

 

The relative change maps of sub-basins rainfall of GAM and GPM with respect to 

default SWAT setup CPEM are illustrated in Fig. 4-6 with range of (-22.9 to 32) % 

for GAM and (-23.2 to 27.7) % for GPM.  

 

 

Fig. 4-6 Per cent of rainfall relative change of sub-basins rainfall for a. GAM against 

CPEM and b. GPM against CPEM [positive values refer to an overestimation rainfall 

of GAM/GPM over traditional SWAT setup, CPEM] 
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It can be noticeably distinguished that in the south-eastern region of the Dee River 

basin the average annual rainfall of CPEM simulation is overestimated the values 

from GAM and GPM simulations. This is attributable to the fact there is a low density 

of rain gauges around this area (Fig. 3-1, page 34) and the nearest rain gauges to the 

centroid estimation fail to consider a satisfactorily spatial distribution of the 

precipitation. On the other hand, the region with complex terrain such as the south 

region of the mid-stream of the catchment has underestimation rainfall values of 

CPEM compared to GAM and GPM simulations. The likely reason is similar to the 

area overestimated rainfall, in addition to orographic effects. 

 

4.4.2. Impacts of rainfall pre-processing on model simulations 

To measure the effects of precipitation pre-processing on model calibrations, three 

SWAT models are calibrated for the Dee catchment using the three pre-processing 

methods CPEM, GAM and GPM respectively. Six river gauge stations are chosen to 

test the performance of the three calibrations by comparing the observed flow and the 

model simulated one. Further, one of the six stations, Brynkinalt Weir, is singled out 

to test the bias of the simulation. The performance of the three calibrated SWAT 

models for the Dee catchment is shown in Table 4-2.  

 

Table 4-2: Calibration results of three simulations of the daily SWAT model for Dee 

river basin for the period of 1995-2000 

Station  

CPEM   GAM  GPM  

NSE 
R2 NSE R2 NSE R2 

Manley Hall 0.93 0.94 0.94 0.98 0.94 0.98 

Iron bridge 0.82 0.82 0.82 0.82 0.82 0.83 

Suspension bridge 0.78 0.80 0.78 0.80 0.79 0.80 

Pont-y-Capel 0.74 0.75 0.80 0.82 0.78 0.82 

Bowling Bank 0.62 0.63 0.70 0.71 0.68 0.71 

Brynkinalt Weir 0.54 0.65 0.66 0.70 0.65 0.69 

 

Both the calibrations are driven by the GAM and GPM datasets outperform the one 

using the CPEM dataset (the original setting of SWAT). The improvements are not 



 

78 | P a g e  

 

Chapter 4: Model Input Uncertainty 

significant in the sub-basins where the CPEM driving model already does well, but 

they are more remarkable in sub-basins where it does not, e.g., the Bowling bank and 

the Brynkinalt Weir stations. Regarding the bias, a significant improvement can be 

seen for the Brynkinalt Weir sub-basins (Table 4-3). 

 

Table 4-3: The per cent of bias (PBIAS) indices of the SWAT model calibrations at 

the Brynkinalt Weir station 

Station 

Calibration with 

CPEM 

Calibration with 

GAM  

Calibration with 

GPM  

Brynkinalt Weir 29.00 10.90 8.60 

 

 

Fig. 4-7 Scatter plots of the simulated and observed flow from the three methods 

CEPM (a), GAM (b) and GPM (c) respectively at Brynkinalt Weir station for the 

calibration period 
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For the overall fit, Fig. 4-7 picks up the calibration period as an example showing the 

performances of the three models calibrated at Brynkinalt Weir station. It is also 

evident that both the GPM- and GAM-driven calibrations are relatively better over the 

CPEM one with better simulations.  

 

The PBIAS index is further examined in Table 4-4 which includes all nine 

combinations of cross-validation results. Interestingly, the validations using the GPM 

rainfall series give better results regardless of however the models were calibrated. 

For the other two indices NSE and R2, out of the nine combinations of calibration-

validation with respect to the three different rainfall pre-processing methods (CPEM, 

GAM and GPM), GAM-GAM, GAM-GPM, GPM-GAM can achieve a better result 

as shown in Fig. 4-8 and 4-9. It is, however, surprised to see that the highest NSE at 

Pont-y-Capel station is from CPEM-CPEM. This possible reason is that the sub-basin 

connected to this station is small.  

 

Table 4-4: Percent of bias of three simulations of the daily SWAT model for 

Brynkinalt Weir station of Dee river basin for the period of 2001-2003 

Calibrated Models 

Validation using 

CPEM 

Validation using 

GAM 

Validation using 

GPM 

CPEM-Calibrated 23.50 7.90 3.91 

GAM-Calibrated 24.20 8.70 4.83 

GPM-Calibrated 24.10 8.70 4.80 

 

From the perspective of practical use, it is more interesting to look at how models 

consistently calibrated and validated by the same dataset behave. In this respect, it can 

be seen that the CPEM-CPEM setting (the original SWAT settings) remains as the 

worst; the GPM-GPM combination is the best in the PBIAS measurements for the 

selected sub-catchment, and overall the GAM-GAM combination does well across all 

sub-catchments in the Dee river experiment. 



 

80 | P a g e  

 

Chapter 4: Model Input Uncertainty 

 

 

Fig. 4-8 Nash Sutcliffe coefficient of cross-validated results of three simulations of 

the daily SWAT model of Dee river basin for the period of 2001-2003 

 

 

Fig. 4-9 Determination coefficient of cross-validated results of three simulations of 

the daily SWAT model of Dee river basin for the period of 2001-2003 

 

The bias in model simulations can be related to the ill-parametrised model settings, 

but significant bias such as the one shown in Table 4-4 for the sub-catchment of 

Brynkinalt Weir is likely due to misrepresentation in rainfall inputs. Figure 4-10 

shows the comparison of the simulated monthly river flows from the three SWAT 

models against the observed one at Brynkinalt Weir station for the entire period of 

1995-2003. In general, all three simulations underestimate the river flow with the 

most considerable bias observed form the CPEM simulation; however, both the GAM 
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and GPM driving simulations can recover and get much closer after the spinning-up 

period around the 36th month.  

 

 

Fig. 4-10 The 6-month moving average of monthly river flow simulations at 

Brynkinalt Weir for the period of 1995-2003 

 

A closer examination of the nine calibration-validation combinations over the 

validation period only (2001-2003) is revealed in Fig. 4-11. In this case, the 

cumulative simulated flows are compared against the observations. Several 

remarkable features are noticeably presented including:  

1) Those models calibrated using GAM and GPM data produce nearly identical 

results in the cross-validation when using the same precipitation data; 

2) Those driven by the GPM data in the validation perform best, irrespective of 

however they are calibrated; and those driven by GAM are in the 2nd group 

next to the GPM driving one; 

3) The CEPM data have worst yet very close performances regardless of how the 

models are calibrated; and 

4) It is surprising to see that the model calibrated using the CPEM time series but 

validated utilising the GPM one achieves the best result, even though the 

difference from the other two (GAM-GPM and GPM-GPM) is tiny. 

 

 



 

82 | P a g e  

 

Chapter 4: Model Input Uncertainty 

 

Fig. 4-11 Cumulative monthly flow simulations of Brynkinalt Weir station for the 

Period of 2001-2003 

 

Fig. 4-11 effectively reconfirm what has been revealed in Fig. 4-7 and 4-10 which 

compares the overall performance of the nine simulations. In the case of the Dee 

catchment, it is shown that as far as the validation is concerned, the difference caused 

by various choices of models is small and hence 'stable' calibrations. However, the 

choice of feeding models with differently pre-processed rainfall inputs (datasets) does 

make significant improvements. In this particular case, the CEH-GEAR based GAM 

and GPM are a better choice than the rain gauge based CEPM method. 

 

4.5. Summary 

In this chapter, it is investigated how various areal rainfall pre-processing methods 

could impact on hydrological model performance. Thanks to the latest high-resolution 

and high-quality, gridded rainfall dataset, it is possible to measure such impact on 

calibration and validation of a semi-distributed model SWAT. The accompanying so-

called 'compensation' due to model parameterisation was also studied by comparing 

the three distinctive models calibrated with different rainfall pre-processing methods: 

the centroid point estimate method (CPEM), the grid area method (GAM) and the grid 
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point method (GPM). The models were further cross-validated over a different period 

to isolate the changes in performances due to model calibration (parameterisation) and 

the input rainfall data from different pre-processing methods. 

 

Several important points can be concluded: 

1) The quality of the CEH-GEAR dataset and the GAM/GPM processing 

method. It has been shown the GEH-GEAR data is consistent with the gauge 

measurements and can work as a reliable source for model calibration and 

validation. Based on this dataset, both GAM and the GPM methods are not 

only theoretically better than the default CPEM used by SWAT, but they also 

help to improve model calibration and validation significantly; 

2) Impact on model calibration: Both GAM and GPM can improve model 

calibration by a considerable amount of margin against the default setting. The 

improvements are not as significant in the smaller catchment where rainfall 

distribution representation is less dominating. A remarkable finding is that the 

difference among the models calibrated using the three distinctive methods is 

not as vast as previously expected. In fact, these models behave very closely 

when fed with the same rainfall time series during validation. The variation in 

calibrated model parameters is also small;  

3) Impact on cross-validation and practical implication. Although model 

calibration differs when using differently pre-processed rainfall data, it is the 

rainfall input data that dominates the cross-validation performance instead of 

how a model is calibrated. A less well-calibrated model due to the use of an 

inferior pre-processing method such as CPEM can do equally well when fed 

with better-pre-processed data such as GAM or GPM during validation. An 

accompanying implication is that in practice, a model previously calibrated 

with low-quality rainfall data can still use high-quality rainfall inputs when 

they become available at later times without having to re-calibrating which is 

often limited by the length of data; and 

4) Impact of catchment size. The improvements due to the new input data/new 

pre-processing method become less significant when the catchment size gets 

smaller. A further detailed investigation with more catchments studied is 
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needed. However, this can be well explained by the less spatial variation of 

rainfall over smaller basins than larger ones.  

 

It should note that this study is based on a semi-distributed model which still treats the 

rainfall inputs in a very much lumped way, at least at the sub-catchment scale. The 

interactions among the rainfall inputs, sub-catchment parameterisation and the whole 

catchment response indeed require further studies that hopefully can identify the 

'sensitive' areas where more sophisticated rainfall measurements and pre-processing 

can help significantly. Nevertheless, this research shows the value of high-quality 

datasets such as the CEH-GEAR in hydrological modelling, and a practical approach 

to improving the SWAT simulation by adopting the pre-processing methods like 

GAM and GPM even with conventional rain gauge measurements as they are not 

dependent on the CEH-GEAR data. 
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Chapter 5: Trend Analysis of Regional Water Resources 

Another important aspect needs to be considered in relation to the IWRM concept is 

the historical trend of the hydrological variables for climate change impact studies. 

Conducting trend analysis of climatic variables is one of the necessary steps in many 

climate change impact studies in which the trend is often checked against aggregated 

variables. However, there is also a strong need to consider the trend of data in 

different regimes, for example, high flow versus low flow, or heavy precipitation 

versus prolonged dry period etc. For this matter, the quantile regression (QR) based 

method is preferred as it can reveal the temporal dependencies of the variable in 

question, not only for the mean value but also for its quantiles. As such, tendencies 

illustrated by the QR will be immensely helpful in practice where different mitigation 

methods need to be considered for a different level of severities. 

 

In this chapter, several quantile regression-based methods are employed to analyse the 

long-term trend of rainfall records in two climatically different regions: The Dee 

River catchment with daily rainfall data over 1970-2004 (refer to chapter 3) and the 

Beijing metropolitan area in China with monthly rainfall data from 1950 to 2012. Two 

quantiles are used to represent extreme heavy rainfall condition (0.98 quantile) and 

severe dry condition (0.02 quantile). The trends of these two quantiles are then 

estimated using the linear quantile regression before being spatially interpolated to 

demonstrate their spatial distribution (for Dee River only). The results show that the 

quantile regression can reveal the patterns of both extremely wet and dry conditions 

of the areas. The apparent difference between the trends at chosen quantiles manifests 

the utility of using QR in this context. This chapter also demonstrates the use of 

quantile regression (QR) based method that to reveal long-term trends of river flow 

and catchment water yields in Dee watershed. 

 

5.1. Overview 

In recent decades, owing to global warming, the change of climate has had an 

increasing impact on water resources, agricultural activities and environment (Shi and 
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Xu, 2008). The increased variation in the magnitude and frequency of precipitation 

and temperature are among the critical impacts of climate change (Dinpashoh et al., 

2014). It is projected that by the 2050s annual average runoff will increase by 10-40 

% at the high latitude and some wet tropical regions, on the other hand, a decrease of 

10-30 % in some dry areas at mid-latitudes and in the dry tropics (IPCC, 2007). Trend 

analysis of climatic variables such as precipitation, temperature and streamflow are 

more favourite choices for water resources planning and management; and as such it 

has been widely reported in many recent studies.  

 

Trend analysis has also been a favourite utility and has been used to reveal patterns of 

changes in hydrological variables. Such exploration usually is carried out over either 

historical record like precipitation and temperature, to assess whether there are indeed 

significant trends and to identify the possible causes of those changes; or in 

conjunction with the use of projection-driven hydrological simulations to manifest 

future trend (Arnell, 2004; Schneider et al., 2013; Piao et al., 2007). The methods 

adopted by those studies range from simple linear regression based manifestation to 

non-parametric methods such as the Mann-Kendal Test (Mann, 1945; Kendall, 1975).  

 

Many researchers prefer those sophisticated methods for studying historical trends to 

using simple indicators such as the percentage of decrease or increase of aggregated 

values, e.g., catchment rainfall. This is due to practical need as simulations of detailed 

year-by-year variation may not be as useful given the amount of uncertainties, and in 

fact, climate projections of various scenarios are mostly a result of what-if 

simulations. Nonetheless, such projection-driven hydrological simulation approach 

has found many applications in climate change impact studies, especially for large-

scale studies where human interactions (regarding river flow regulation and water 

resource management) are either be neglected or modelled qualitatively. 

 

When it comes to water resources management at the catchment level, the approaches 

above become increasingly insufficient and challenging to meet the demand for more 

fine-granulated information to assess climate change impacts. The reason lies in two-

folds: on the one hand, most of those catchments already have management practice 

and regulation in place, such as physical flow controls, irrigation, surface and 
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groundwater abstractions, etc. Modelling catchment hydrology under such scenarios 

apparently is a challenging process, let alone representing the impact of climate 

change that is often intertwined with human activities. On the other hand, general 

trend analysis of aggregated values, for instance, annual mean flow is not as useful for 

catchment level water resources management that usually needs more specific 

information about extreme scenarios, such as floods and droughts. 

 

There are various studies on the trend of extreme precipitation events in different 

region of the world such as (Donat et al., 2013; You et al., 2011; Fu et al., 2008; Zhai 

et al., 2005; Powell and Keim, 2015; Tomassini and Jacob, 2009; Griffiths et al., 

2003; Santos, 2014), where trends of numerous rainfall indices are testified over the 

last few decades, such as annual total precipitation, average wet-day precipitation, 

maximum 1- and 5-day precipitation, and number of heavy precipitation days, etc.  

 

Equally, extreme events due to the lack of precipitation, e.g., droughts, can also have 

a considerable impact on economic and the environment. Unlike extreme precipitation 

events whose effects are often readily perceived as severe flooding, the onset of 

droughts is dependent on the number of factors apart from the precipitation. It also 

takes a more extended period for the impact of droughts to be fully appreciated than 

that of heavy precipitation events. Even the definition of droughts is a complicated 

business (Wilhite and Glantz, 1985) such as meteorological droughts (concerning 

precipitation variation), hydrological droughts (concerning water supply) and 

agricultural droughts (regarding crops growth). 

  

It is of no surprise that many indices have been developed to indicate the onset of 

droughts as well as to measure the severity of them. To name just a few, e.g., 

standardised precipitation index SPI (McKee et al., 1993; Ganguli and Reddy, 2014); 

Palmer drought severity index (Palmer, 1965; Li et al., 2015); Vegetation drought 

response index (Brown et al., 2008); multivariate standardized drought index (Hao 

and Aghakouchak, 2013); the surface water supply index (Shafer and Dezman, 1982); 

the drought severity index (Mu et al., 2013).  
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Essential use of those drought indices is in studying the distribution and the trend of 

the occurrence of droughts both spatially and temporarily (Liu et al., 2008; Zhang et 

al., 2015; Piccarreta et al., 2004; Bayissa et al., 2015). Similar techniques that are 

employed for detecting precipitation trends are also used in this respect. As one of the 

many examples, the popular Mann-Kendall test was used by Zhang et al. (2015) to 

look into the trend of droughts as represented by the SPI time series.  

 

It is worth noting that although multi-factor based drought indices may be able to 

describe drought events more accurately, those using precipitation data only (hence 

for indicating meteorological droughts) remain very useful, especially when studying 

future climate where other factors, such as vegetation are often unavailable or need to 

be further derived. As to the methods used for trend studies, the ordinary linear 

regression is among the first choice.  

 

This method is often accompanied with non-parametric methods, such as Mann-

Kendall test (Mann, 1945; Kendall, 1975) for further confirming the statistical 

significance of the trends detected, e.g., Martinez et al. (2012); Paulo et al. (2012) and 

Song et al. (2014). In many cases, the trend indicated by the fitted regression line may 

not be statistically significant, its gradient is used nonetheless as a rough indicator for 

it can be quickly conducted.  

 

One of the main drawbacks of this commonly used method is that the trend it 

manifests is often expressed as the mean of climatic variables conditionally on time. 

Whilst this can still be very useful in general, it fails to gain further necessary insights 

as to how events associated with more extreme values vary with time. For example, 

water managers would be more concerned with the trends of severe storms or extreme 

dry spells than those of the 'mean' conditions. To a certain degree, such a problem can 

be mitigated by stratifying the data into different categories. However, one has to 

realise that doing so will effectively reduce the sample size and hence sacrifices the 

information of data variability. 
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The quantile regression (QR) method (Koenker and Bassett, 1978; Koenker, 2005), on 

the other hand, extends the ordinary linear regression to explain how the quantiles of 

response variables are conditioned on the input variables, which offers a new window 

through which different regimes of the response variables can be examined in details. 

The QR method has found its many applications in econometrics but more recently 

saw an increasing number of environmental studies including for example, 

hydrological uncertainty (Weerts et al., 2010), analysis of streamflow distributions 

(Luce and Holden, 2009) and hydro-meteorological analysis (Villarini et al., 2011), to 

name just a few.  

 

There is a need for identifying trends of climatic variables in different quantity 

regimes as mitigation measures would be more effective with such refined 

information. Since quantiles are often a convenient measure of the data departing 

from its mean and hence loosely being associated with the rarity of those values, it 

becomes more appropriate as well using QR to reveal the trend of ‘extreme’ events as 

indicated by different quantiles. A more vigorous approach to linking QR with 

extreme value distribution can be referred to Cai and Reeve (2013). 

 

In this chapter, an application of QR is revealed in identifying the rainfall trends in 

two drastically different climate regions: The Dee river catchment in the UK and the 

Beijing Metropolitan area in China. The focus is set on the trend of both extreme wet 

and dry conditions as they are of great value as far as flood risk management and 

water resources management are concerned. A higher quantile 0.98 to represent the 

extreme wet condition – where severe flooding may occur, and a lower quantile 0.02 

for the extreme dry condition where prolonged droughts may be induced and used. 

Furthermore, the representing of the spatial distribution of such trends can also help 

produce a coherent, refined spatial structure for the use of flood risk and water 

management purposes.  

 

A new method is also demonstrated that integrates hydrological modelling of highly-

managed river basin with the quantile regression (QR) technique for analysing 
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distributed trends of flow and water yields over the study area for both dry (potential 

droughts) and wet (flooding) conditions. The medium-sized, the Dee river (refer to 

chapter 3) is studied using river flow data over more than 30 years (1970-2003). The 

basin is firstly modelled using the Soil and Water Assessment Tool (SWAT) focusing 

on separation and representation of the flow regulation and water abstraction in the 

sense of restoring the basin to its 'natural' state.  

 

The model is previously calibrated and validated against the observed data as in 

chapter three before the two scenarios (with and without regulations) are designed to 

simulate long-term simulations (1970-2003) of river flow and sub-catchment water 

yields under the conditions specified by both scenarios. Finally, two preferred 

quantiles 0.5 and 0.98 are chosen to represent dry (potential droughts) and wet 

(potential flooding) conditions in addition to the median (0.5 quantile) to represent 

average trend before a quantile regression analysis is conducted to find the time 

dependency of the three quantiles over the 32-year time window.  

 

The study benefits from the facts that: 

1) The resultant trends (as represented by the gradient of the regression lines) are 

spatially distributed at sub-catchment level;  

2) The impact (hence contribution) of river flow regulating is explicitly 

represented; and 

3) The method can be readily extended to study future climate change impact 

(though not included in this study) and it is also able to incorporate future 

changes to the regulating rules.  

 

5.2. Study regions 

As the primary target of this chapter is the investigation of the trend of hydrological 

variables close to the extremes (drought and flooding), two drastically different 

climate regions are selected:  

1) The Dee catchment in the UK, which is subjected to more flooding events 

(Natural Resources Wales and Environmental Agency, 2014); and  
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2) The metropolitan area of Beijing in northern China which is expected more 

drought events (Song et al. 2014). 

 

The annual rainfall over the Dee catchment ranges from 650 mm in the downstream 

region to the east, e.g. Chester city, to 1,200 mm in the upstream in the west (British 

Atmospheric Data Centre BADC, 2015). Daily rainfall records from the 13 rain 

gauges over a period of 35 years (1970-2004) are used in this study (as in Fig. 3-1, 

page 34). An explicit dependency of rainfall on local topography is seen in Fig. 5-1, 

where precipitation in the western mountainous area (gauges 3, 5, 6 and 13) are top of 

the rank and the rainfall to the east tends to be more uniform with much lower 

amounts as well as variation. Dee River is subjected to Flooding events from time to 

time. 

 

According to Environment Agency Wales (2010), Flooding events have happened at 

several locations throughout the River Dee basin, mostly from the main River Dee 

and its major tributaries, nonetheless also from smaller watercourses. Significant 

floods were observed in 1890, 1946, and 1964 and recently in 2001. 

 

 

Fig. 5-1 Annual rainfall in and near Dee River catchment over the period of 1970-

2004 
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In contrast, the metropolitan area of Beijing is far more extensive (16,410 km2) yet 

with a similar layout of topography with its west and north (68% in area) having 

elevation 1,000-1,500 m, while the central and south-east parts are just 20-60 m above 

sea level. The climate of this area is rather opposite to that of the Dee catchment, as it 

has a monsoon-driven humid continental climate which has cold and dry winters and 

hot humid summers.  

 

 

Fig. 5-2 Topographic map of Beijing with the location of rain gauges 

 

Over the last two decades, the area has suffered both very dry winter/spring and yet 

wet summers which caused both severe shortages in the water supply as well as local 

flooding in the urban areas. Owing to limitations in data availability, only annual 

rainfall for 45 rain gauges over the entire region was obtained from 1960 to 2012. The 

areal rainfall is aggregated from the observation of a relatively dense rain gauge 

network as seen in Fig. 5-2. The variation of monthly rainfall over the region are 

shown in Fig. 5-3. 
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Fig. 5-3 Areal average rainfall in the metropolitan area of Beijing for each month over 

the period of 1960-2012 

 

5.3. Methodology 

5.3.1. Quantile regression 

Quantile regression (Koenker and Bassett, 1978; Koenker, 2005) is a statistical 

technique that was initially introduced for conducting regression analysis in 

econometrics as an alternative and possibly better tool to the ordinary least square 

method (OLS). It has then been gradually applied in many other disciplines. The 

technique has received considerable attention in many statistical literatures but has 

less so in the areas related to water resources analysis (Tareghian and Rasmussen, 

2013). In environmental studies, there have been several applications reported as 

illustrated in Table 5-1. 

 

The QR method is a powerful extension to the ordinary linear regression in a sense 

that the quantiles of given response variables are conditioned on independent 

variables. As summarised by Koenker (2005), the QR method offers the following 

benefits:  

1) The error terms are not necessary to be normally distributed; 
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2) Does not assume homoscedastic variables (variables could be 

heteroscedastic); 

3) It is not sensitive to outliers; 

4) It can be used to predicts a desired quantile of the conditional distribution 

rather than mean; and 

5) This approach is preferred when the interest is the analysis of distribution 

rather than average and when the core attention is the tail of distributions. 

 

Table 5-1: Quantile regression example applications in environmental and climate 

change impact studies. 

Application Authors 

Analysis of streamflow distributions Luce and Holden (2009) 

Changes of annual rainfall in Zimbabwe over time Mazvimavi (2010) 

Estimation of predictive hydrological uncertainty Weerts et al. (2010) 

Hydro-meteorological analysis of a flood event Villarini et al. (2011) 

Statistical downscaling of precipitation Tareghian and Rasmussen (2013);  

Cannon (2011); and  

Friederichs and Hense (2007) 

Analysis of Arctic and Antarctic sea ice extent Tareghian and Rasmussen (2012) 

Quantile trends in Baltic sea level Barbosa (2008) 

Tropical cyclones trend changes Elsner et al. (2008) 

Trends in extreme precipitation indices Fan and Chen (2016) 

 

There are plenty of resources over the derivation of QR in the literature, e.g., Koenker 

and Bassett, (1978), Koenker (2005). A quick recap is presented here for illustration 

purposes. First, let considered Y is a random response variable with cumulative 

distribution function 𝐶𝐷𝐹 𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦). The 𝜏th quantile of Y can be expressed 

as:  

 𝑄𝜏(𝑌) = 𝑖𝑛𝑓{𝑦: 𝐹𝑌(𝑦)  ≥ 𝜏} (5-1) 
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where 0 < 𝜏 < 1 is the quantile level and 𝑄𝜏(𝑌) is decreasing function of 𝜏 

(i.e. Qτ1(Y) < Qτ2(Y) for 𝜏1 < 𝜏2 ). The linear conditional quantile function used in 

this study can be expressed as follow: 

 

 𝑄𝜏 (𝑌 ∣ 𝑥) = 𝑋^𝜏 𝛽(𝜏) (5-2) 

 

where x is the vector of dependent variable; 𝛽(𝜏) is the vector of parameters 

associated with the 𝜏th quantile. Statistically speaking, each quantile of the 

conditional distribution in linear quantile regression is characterised by an individual 

hyper-plane and for individual set of observation (i.e. X and Y) the parameters of can 

be estimated by: 

 𝛽̂(𝜏) = argmin𝛽∑𝜌𝜏{𝑦𝑖 − 𝑥𝑖
𝑇 𝛽}

𝑛

𝑖=1

 (5-3) 

 

Quantile regression is associated closely with models for the conditional median. The 

minimising the mean absolute error leads to an estimation of the conditional median 

of the predict and data. By applying asymmetric weights to positive/negative errors, 

for instance by using a tilted form of the absolute value function, one can instead 

compute conditional quantiles of the predictive distribution (Koenker and Bassett, 

1978; Canon, 2011). Where 𝜌𝜏 is loss quantile function (also known as the check, 

tick, absolute value function or pinball loss function) (Cannon, 2011), it can be 

presented as follow: 

 

 𝜌𝜏(𝑢) = {
𝑢(𝜏 − 1) 𝑖𝑓 𝑢 < 0
 𝑢𝜏 𝑖𝑓 𝑢 ≥ 0 

 (5-4) 

 

where 0 < 𝜏 < 1. Given Predictors xi (t) (i= 1…, I), slope mi and intercept b 

coefficients in a linear regression equation for the conditional 𝜏- quantile 𝑦̂𝜏 
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 𝑦̂ 𝜏(𝑡) =∑𝑚𝑖 𝑥𝑖(𝑡) + 𝑏

𝐼

𝑖=1

 (5-5) 

can be calculated by minimising the quantile error function: 

 𝐸𝜏 =
1

𝑁
∑𝜌𝜏(𝑦(𝑡) − 𝑦̂ 𝜏(𝑡))

𝑁

𝑡=1

 (5-6) 

 

where y(t) is the observed value of predictand at time t (t=1,2, 3…, N). The 

appropriate optimisation algorithms are outlined in Koenker (2005) and the outcome 

is the linear quantile regression model. Although the linear form of QR is most 

common, parametric models that are non-linear in parameters (i.e. models in which 

the model should explicitly specify the form of the non-linear regression equation) 

can also be estimated (Canon, 2011). 

 

 

Fig. 5-4 Visual yearly linear trend for station No. 1 in Dee River basin for different 

quantiles 
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The linear form of such a relationship can then be used to describe the magnitude 

(regarding its gradient or slope). Figure 5-4 shows an illustrative example of two 

regression lines representing the linear form of quantile-time relationship for the 

rainfall records taken at a rain gauge in the Dee catchment. It should be noted that by 

proposing the linear tendency of response variable quantiles on the input variable 

(time) it renders the process above parametric. The QR method is not limited to its 

linear form only; it can be easily extended to non-linear case.  

In this study, a quadratic form to fit the rainfall trend associated with the flood 

(tau=0.98) and the drought (tau=0.02) is also adopted as in the following equation: 

 

 𝑌 = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 (5-7) 

 

 

Fig. 5-5 Visual yearly quadratic trend for station NO. 1 in Dee River basin for 

different quantiles 
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Figure 5-5 reveals an illustrative example of two regression lines representing the 

Non-linear form of quantile vs time relationship for the rainfall records taken at a rain 

gauge in the Dee catchment. Clearly, the nonlinear form of QR can obtain more 

detailed information as to the variation of the quantiles. While in this case, it would be 

impractical to specify a general trend as that can be derived from the linear 

counterpart, it can, however, identify how the pattern varies over time or sometimes 

even flips to other direction.  

 

The choice of the linear form and the quadratic form implicates a parametric route. It 

should note that the QR method can also be nonparametric. However, to serve our 

purpose of identifying the general trend in the time series, it is convenient and 

beneficial to use linear quantile regression to have the first estimate of such a trend. 

Admittedly, non-parametric quantile regression would give a better fit in many cases 

and indeed needs to be explored in further studies. 

 

5.3.2. Significance test of trends 

A warranted question related to any trend analysis is whether the trend is statistically 

significant. For quantile regression, bootstrap methods are developed to test the 

significance of the fit. Discussion of this topic goes beyond the scope of this chapter. 

The analysis in this study is conducted using the R-package ‘quantreg’ (Koenker et 

al., 2016) which has integrated both the fitting methods as well as the significance test 

method. 

 

5.3.3. Choice of quantiles 

Another advantage of using QR in trend analysis is due to the natural link between the 

quantiles and the random events they represent. Indeed, this relationship is dependent 

on the underlying probability distribution. To overcome the unnecessary difficulties 

of fitting yet another distribution model, the widely used plotting method can be used 
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to estimate such a link. One of the plotting position formulae is given by Gringorten 

(1963): 

 

 𝑝 =
𝑟 − 0.44

𝑛 + 0.12
 (5-8) 

 

where r is the rank of the data and n is the sample size. By using this formula, it can 

be seen that the 0.98 (0.02) quantile of the Dee rainfall records roughly repents an 

event of wet condition (dry condition) with a frequency of 1 in 64 years. Of course, 

such an estimate is not always accurate. Nonetheless, it indicates a 'mildly' extreme 

event. 

 

5.3.4. Standardised Precipitation Index (SPI) 

The QR method can be readily applied to the time series of precipitation directly. It 

would also be interesting to see how other measurements or indices derived from the 

rainfall vary with time. One of such indices is the Standardised Precipitation Index 

(SPI) developed by McKee et al. (1993) that has been widely utilised by the research 

community to indicate a range of conditions from extremely dry to extremely wet 

(Table 5-2) from rainfall observation. The SPI index measures how large the 

deviation is of a sample value from the mean of the population. The standardisation is 

achieved by dividing the difference by the standard deviation for a specific duration 

(McKee et al., 1993). For instance, a monthly rainfall value 𝑥𝑖, the corresponding SPI 

can be calculated as: 

 𝑆𝑃𝐼 =
𝑥𝑖 − 𝑥̅𝑖
𝜎

 (5-9) 

 

where 𝜎 is the standard deviation of the population. The magnitude, length and 

duration of drought can be calculated with the SPI. Researchers have revealed that 

precipitation is follow the law of gamma distribution (Ganguli and Reddy, 2014; 

Zhang et al., 2015). The SPI can be computed for given periods (3, 6, 9, 12, 24 or 48 

months). In our study, the monthly rainfall amount x is fitted with a Gamma 

probability density function g(x) as follows: 
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 𝑔(𝑥) =
1

𝛽𝛼Γ(𝛼)
 𝑥𝛼−1𝑒

𝑥
𝛽𝑓𝑜𝑟 𝑥 > 0 (5-10) 

 

Table 5-2: Classification of SPI values (McKee et al., 1993) 

SPI Value Drought Category 

≥ 2 Extremely wet 

1.50- 1.99 Very wet 

1.0- 1.49 Moderately wet 

(-0.99)- 0.99 Normal condition 

(-1.49)- (-1) Moderately dry 

(-1.99)- (-1.5) Very dry 

≤ -2 Extremely dry 

 

where x is the amount of rainfall and Γ (𝛼) is the Gamma function. 𝛼 and 𝛽 are the 

shape and scale parameters respectively: 

 𝛼 =
1

4𝐴
(1 + √1 +

4𝐴

3
 ) (5-11) 

 

 𝛽 =
𝑥̅

𝛼
 (5-12) 

 

 𝐴 = ln (𝑥̅) −
∑ ln(𝑥)

𝑛
 (5-13) 

In these equations, n is the number of precipitation observations. The cumulative 

probability distribution function is defined as follows: 

 

 𝐺(𝑥) = ∫ 𝑔(𝑥)𝑑𝑥 =
𝑥

0

1

𝛽𝛼Γ(𝛼)
 ∫ 𝑥𝛼−1𝑒

𝑥
𝛽𝑑𝑥

𝑥

0

 (5-14) 

 

The Gamma function becomes undefined when x=0 and this situation does occur. In 

this case, the cumulative probability distribution is defined as follows: 

 

 𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐺(𝑥) (5-15) 
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where q epitomises the probability of zero value. If m is used to denote the zero 

values in a precipitation series with n observations, then q=m/n. In this study, an R 

package ‘precintcon’ (Povoa et al., 2016) is used to produce the annual SPI values at 

each rain gauges; then the QR method was applied to this series to investigate its 

variation over time. 

 

5.3.5. Extreme precipitation indices 

Higher quantiles, e.g., 0.98 of annual precipitation may be used to indicate a higher 

chance of flooding. There are, however, other indices associated with shorter duration 

may be more appropriate to describe possible flooding conditions. Following Donat et 

al. (2013) the following four indices were produced using daily precipitation data of 

the Dee catchment over every year: 

1) Total precipitation on the very wet day (daily precipitation > 95th percentile) 

R95PTOT;  

2) Total precipitation on the extreme wet day (daily precipitation > 99th 

percentile) R99PTOT; 

3) Days with heavy precipitation (daily precipitation > 10 mm) R10MM; and 

4) Days with very heavy precipitation (daily precipitation > 20 mm) R20MM. 

 

5.4. Results and discussion 

5.4.1. Rainfall trend 

For the Dee catchment, daily rainfall records from the 13 rain gauges were aggregated 

into monthly and yearly datasets upon which the linear trend of 0.98 and 0.02 

quantiles are produced at each rain gauges, before being interpolated over the 

catchment using Inverse Distance Weighted (IDW) method. As shown in Fig. 5-6, 

there is a basin-wide positive trend of 0.98 quantiles. There is also a clear spatial 

pattern associated with this overall positive trend with strong gradients (> 20mm/year) 

in the western coastal area gradually decreasing to the flat east area (~ 3mm/year, Fig. 

5-6a). Additionally, the trends at 10 out of 13 rain gauges are statistically significant.  
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However, the 0.02 quantile trend is not so uniform, with an increasing trend to the 

west and southwest and a rather negative trend covering the rest part. It is also worth 

noting that for the low quantile, the trends shown at most gauges are not significant 

(Fig. 5-6b). However, those stronger negative trends are significant. In other words, 

the catchment is shown to be even wetter for the extreme conditions (especially in the 

west), but only the northeast part becomes dryer significantly for the extremely dry 

conditions. 

 

 

Fig. 5-6 Spatial distribution of the linear trend of annual precipitation over Dee River 

catchment (circular dots represent significant trend points) 

 

Figures 5-7 and 5-8 demonstrate the results of QR trend analysis (linear Fig. 5-7 and 

non-linear in Fig. 5-8) of the annual precipitation at every gauge station. The linear 

QR analysis shows that most stations had an increasing trend for the upper quantile 

(0.98) and mixed (increase/decrease) trend at lower quantiles (Fig. 5-7). For the 

nonlinear form, it strives to capture more details of the variation.  
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Fig. 5-7 Yearly linear trends using Quantile Regression for Flooding (tau=0.98) 

and Drought (tau=0.02) Conditions over Dee River Basin 
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Fig. 5-8 Yearly quadratic trends using quantile regression for flooding (tau=0.98) 

and drought (tau=0.02) Conditions over Dee River Basin 
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The difference between the two is well depicted in station 2 and station 8, where the 

nonlinear fitting considers both the peak in the middle for the higher quantile and the 

increasing of the lower quantile at the end of the period. To some extent, the nonlinear 

QR can reveal the local peak and trough during the period hence a more 

comprehensive picture of the trends. Seemingly, more details can be revealed with a 

different nonlinear formation of QR instead of the quadratic one chosen there. It can 

even go further to adopt a nonparametric one as well. However, to avoid the potential 

trade-off of overfitting, it is believed that the linear form and the quadratic form used 

here are sufficient to describe the annual precipitation trend in this case.  

 

 

Fig. 5-9 Spatial distribution of monthly rainfall of winter months in the Dee 

catchment (a November, b December, c January and d November – January) for 0.98 

quantile [circular dots represent significant trend] 
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On the monthly time scale, the trend of winter months (November, December and 

January), together with the combination of these three months (winter trend) are 

shown in Fig. 5-9. The trends of November, January and winter (aggregation of 

November, December and January) appear to have a similar pattern with increasing 

trend in the mid and the downstream part of the River basin and decreasing trends in 

the upstream as shown in Fig. 5-9a, 5-9c and 5-9d. Interestingly, the December map 

depicts an opposite pattern as illustrated in Fig. 5-9b. It is remarkable that in general 

winter months do not have statistically significant trends at most gauges. 

 

The spatial patterns of the trends related to the extreme precipitation indices are 

revealed in Fig 5-10 and Fig 5-11. For both R95PTOT and R99PTOT, a strong 

dependency on local topography can be seen (Fig 5-10) which indicates an increasing 

trend of both indices in the western mountainous area while the eastern part of the 

catchment shows a decreasing trend.  

 

 

Fig. 5-10 Spatial distribution of the linear trend of annual precipitation of 0.98 

quantile over Dee River catchment for R95PTOT and R99PTOT indices (circular dots 

represent significant trend points) 
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In other words, areas receiving more precipitation are having more extreme events in 

comparison with those receiving less rainfall. For the other two indices R10MM and 

R20MM, Fig. 5-11 reveals a more random pattern with a large area of the catchment 

showing a minimal increasing trend for the number of days in a year having heavy 

rainfall. 

 

 

Fig. 5-11 Spatial distribution of the linear trend of annual precipitation of 0.98 

quantile over Dee River catchment for R10MM and R20MM indices (circular dots 

represent significant trend points) 

 

The SPI index can be used to indicate both wet and dry conditions. The upper quantile 

(0.98) associated with the wet condition and the lower (0.02) quantile always 

associates with the dry condition. Fig 5-12 shows an overall increasing trend of the 

0.98 quantile of SPI and mostly decreasing trend of the lower quantile SPI except in 

the middle of the catchment. This can be interpreted as overall the wet years have 

become even wetter for most of the area and the dry years are getting drier except the 

middle part of the catchment. Again, such patterns are consistent with the overall 

trends of the precipitation itself, i.e., a widening gap between wet and dry years. 
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Fig. 5-12 Spatial distribution of the linear trend of annual SPI value for 0.98 and 0.02 

quantile over Dee river catchment (circular dots represent significant trend points) 

 

 

Fig. 5-13 Spatial distribution of the significant linear trend of annual precipitation 

over Beijing metropolitan area 
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In a similar approach, the annual rainfall records for the metropolitan area of Beijing 

from the 45 rain gauges were utilised upon which the linear trend of 0.98 and 0.02 

quantiles are produced at each rain gauges, before being interpolated over the area of 

study using Inverse Distance Weighted (IDW) method as revealed in Fig. 5-13. 

Unlike the Dee catchment, the pattern of the Beijing area shows remarkably 

decreasing trends for both lower and upper quantile (except the small part in the 

northeast). It indicates even for wet years; the precipitation is decreasing. What is 

even more remarkable is that such decreasing trends are more evident in the urban 

area (south and southeast). Urbanisation might be another important factor when it 

comes to the impact on annual precipitations as reported by Song et al. (2014). 

 

Table 5-3: Slope and p-value of trend results of the areal average rainfall over the 

metropolitan area of Beijing 

Time Quantile Gradient p-value 

Yearly 0.98 -2.065 0.02041 

0.02 0.023 0.97588 

0.50 -1.402 0.40441 

July 0.98 1.935 0.28137 

0.02 0.986 0.49443 

0.50 -1.658 0.01651 

January 0.98 -0.137 0.33590 

 0.02 0.000 1.00000 

 0.50 -0.019 0.28897 

Summer 

(JJA) 

0.98 1.280 0.54863 

0.02 -3.034 0.00699 

0.50 -2.818 0.09819 

Winter 

(DJF) 

0.98 0.047 0.81942 

0.02 0.003 0.91190 

0.50 -0.091 0.35954 

 

For Beijing, the monthly areal rainfall over the period of 1960-2012 is analysed with 

regard to its annual rainfall (after aggregation), typical winter and summer months 

(January and July) and two seasons (DJF and JJA). The linear quantile regression fits 
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with different quantiles are included in Table 5-3 followed by Fig. 5-14 showing the 

slopes of these fits as well as the test results of significance. Above all, an apparent 

decrease trend of 0.98 quantile of both annual and summer rainfall is identified.  

 

 

Fig. 5-14 Linear quantile regression trends for the areal average precipitation for 

flooding (tau=0.98), drought (tau=0.02) and mean (tau=0.50) conditions over 

Beijing area  

 

For the month of July while in general decreasing trends are found for a range of 

different quantiles (lower than 0.98), the trend of 0.98 quantile does show an 

ascending pattern, although this trend is not statistically significant, due to the fact 

that there are only a few years in the late 1990s in which July witnessed a higher 
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amount of monthly rainfall. This revelation is essential as it implicates a more volatile 

climate. For the lower end of the quantiles, none of the trends of 0.02 quantiles 

appears to be significant, which is also coincident with rather flat gradients.  

 

(a) 

 

(b) 

Fig. 5-15 Confidence band of the gradient (mm/year) of the fitted lines using summer 

(a) and winter (b) seasons in Beijing (The horizontal axes are quantiles and the 

vertical axes refer to the gradient of the trend lines; the red lines represent the 

confidence bands of the fits using ordinary linear regression) 
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The variation of trends conditional on the selected quantiles is shown in Fig. 5-15. 

The uncertain bands of the slopes reveal that, for summer, there is an increasing trend 

for quantiles below 0.5 and decreasing for those above 0.5, but the trends seem to go 

up for quantiles larger than 0.8. The implication is that overall the summer rainfall 

tends to be more stable around its median, the heavy rainfall events may become more 

extreme. For winter, the gradient tended to be flatter and centred around 0. In view of 

the significance test, it is not yet decisive to conclude any significant trends for 

winters.  

 

5.4.2. River flow trend 

There are plenty of studies of trend analysis over observed time series such as river 

flows, for example, Luce and Holden (2009). The same procedure can indeed be 

applied to this catchment; however, it is the use of the semi-distributed hydrological 

model that makes it possible to study the distribution of water resources over space. In 

this case, instead of investigating the trends of the observed flow, quantile regression 

is used to analyse the trends of model-simulated quantities including:  

1) River discharges at the outlets of sub-basins; and 

2) Water yields of the sub-catchments. Water yield is defined as the water 

quantity that departs the sub-basin and contributes the river flow during the 

time step (Arnold et al., 2013). It can be calculated as follow: 

 

 
𝑊𝑌𝐿𝐷 = 𝑆𝑈𝑅𝑄 + 𝐿𝐴𝑇𝑄 + 𝐺𝑊𝑄 − 𝑇𝐿𝑂𝑆𝑆 

− 𝑃𝑜𝑛𝑑 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

 

(5-16) 

 

where: 

𝑊𝑌𝐿𝐷: Water yield (mm H2O/day); 

𝑆𝑈𝑅𝑄: Surface runoff generated in the watershed (mm H2O/day); 

𝐿𝐴𝑇𝑄: Lateral flow contribution to streamflow in the watershed (mm H2O/day); 

𝐺𝑊𝑄: Groundwater contribution to stream in the watershed (mm H2O/day); and 
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𝑇𝐿𝑂𝑆𝑆: Transmission losses (mm H2O/day). The amount of water that losses from the 

main channel to enter the deep aquifer. 

 

One has to ensure the trends produced for the simulated data close enough to those of 

the corresponding observed data, just as it is done for model performance checking 

(such as NSE, R2, etc.) before the simulated data are used. The comparisons between 

the two types of trends (of observed and simulated river flows) are conducted at Pont-

y-Capel gauge station (see Fig. 3-8, page 50) which has long enough records as in Fig. 

5-16.  

 

 

Fig. 5-16 Prediction bands of the gradient of observed and simulated river flow trends 

at Pont-y-Capel station  

 

As seen in Fig .5-17, both trends are shown to be close with their mostly overlapping 

uncertainty bands. Three quantiles, 0.02, 0.5 and 0.98 are used to fit the trends of 

water yield from each sub-basin. The same quantiles are also adapted to analyse the 

river flow at the outlets of sub-basin for both scenarios. This process is followed by a 

comparison of the trend on the central reach of the river flow to quantify the effect of 

reservoir regulations on the river flow of Dee River.  
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Fig. 5-17 Spatial distribution of the Water Yields trends at 0.98 quantile 

 

 

Fig. 5-18 Spatial distribution of the Water Yields trends at 0.02 quantile 
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As to water yields, all sub-basins are analysed. The simulated time series of daily 

flows and water yields are firstly aggregated into yearly value before being fitted with 

a linear quantile regression model with three quantiles 0.02, 0.5 and 0.98 respectively. 

The 0.98 quantile shows a basin-wide positive trend with a range of 1.71-11.68 

mm/year as illustrated in Fig. 5-17. Most trends are statistically significant at a 

confidence level of 95 %. 

 

In comparison, the 0.02 quantile shows a mixed picture where negative trends are 

mainly observed in the downstream part of the river basin with a range of (-4.44)- (-

0.29) mm/year; whereas the upper stream part comes with a range of 0.76-5.06 

mm/year positive trends as shown in Fig. 5-18. Unlike the trends of 0.98 quantile, in 

most sub-basins, the trends of 0.02 quantile are not statistically significant. The 0.5 

quantile trend reveals a basin-wide increase trend except for a small region in the 

downstream area of the basin as shown in Fig. 5-19 with a significant trend at only 

one sub-basin in the south of the catchment. 

 

 

Fig. 5-19 Spatial distribution of the Water Yields trends at 0.5 quantile  
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For the simulated discharge (river flow) at the outlets along the minor branches and 

mainstream, trends of 0.02, 0.98 and 0.5 quantiles are studied under both the managed 

and the natural scenarios. For both scenarios, the trends of 0.98 quantiles are all 

positive with a range of 0.03-15.45 Mm3/year for the highly-managed scenario as 

illustrated in Fig. 5-20 and 0.03-17.4 Mm3/year for the natural scenario.  

 

Again, at 0.02 quantile the results are more variable with negative values being 

mostly found in the downstream and positive trend values mainly appearing in the 

upstream region of the river basin. The ranges of trend values are -2.11 to 0.74 

Mm3/year for the ‘real-life’ scenario (Fig. 5-21) and -2.84 to 1.89 Mm3/year for 

natural flow scenario. Similarly, the 0.5 quantile shows a generally positive trend 

except for a small region in the downstream part that reveals in both highly managed 

scenario as in Fig. 5-22 and natural flow scenario. For both of these two scenarios, 

there is no significant trend. 

 

 

Fig. 5-20 Spatial distribution of the river flow trends at 0.98 quantile for highly 

managed watershed scenario 
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Fig. 5-21 Spatial distribution of the river flow trends at 0.02 quantile for highly 

managed watershed scenario 

 

 

Fig. 5-22 Spatial distribution of the river flow trends at 0.5 quantile for highly 

managed watershed scenario 
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The impact of flow control (river basin management) can be readily appreciated from 

Figures. 5-23, 5-24 and 5-25 for quantiles of 0.98, 0.02 and 0.5 respectively. The 

management practices affect significantly on the trends of both the high (0.98 

quantile) and the low flow (0.02) as well as the medium flow condition (0.5 quantile). 

For 0.98 and 0.5 quantiles, the positive trends are less in the managed scenario. For 

0.02 quantile (low flow condition), the management practices, clearly mitigate the 

strong negative trends in the downstream areas as compared with the natural scenario. 

Since the same water withdraw amounts are applied in both scenarios, the mitigation 

is shown to have effectively reduced the pressure on water supply. Such an impact is 

also reflected in the upper stream where the management practices have reduced the 

positive trend as well (Fig 5-24).  

 

 

 

Fig. 5-23 Comparison of river flow trends of the sub-basins along the mainstream 

under Scenario I (highly-regulated) and Scenario II (natural-state) at 0.98 quantile 
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Fig. 5-24 Comparison of river flow trends of the sub-basins along the mainstream 

under Scenario I (highly-regulated) and Scenario II (natural-state) at 0.02 quantile 

 

 

Fig. 5-25 Comparison of river flow trends of the sub-basins along the mainstream 

under Scenario I (highly-regulated) and Scenario II (natural state) at 0.5 quantile 
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5.5. Summary 

In this Chapter, a quantile regression-based method is demonstrated for analysing the 

trend in climatic variables. Long-term rainfall data from two drastically different 

climate regions is investigated focusing on the patterns of the data close to 'extreme' 

regimes, to link them to the events of interests. Two quantiles 0.98 and 0.02 are used 

to represent the extreme wet (hence flooding) and dry (droughts) conditions. The 

results are also spatially interpolated to study the trend variation in space. 

 

In comparison with the commonly used linear regression method, it can be concluded 

that: 

1) The QR based trend analysis can provide far more detailed information 

concerning the quantity in question. This is particularly useful for water 

managers who are more concerned with extreme values rather than the 

average one; 

2) This method can help build a comprehensive picture of climatic variables 

regarding their variation over time at different magnitude/frequency; 

3) The involvement of quantile brings an extra benefit to bridge the trend 

analysis with frequency, which implies great potential of its use in studying 

climate change impact on engineering design without being constrained by 

assumptions of data stationarity; and 

4) It helps better to understand the climate change impact. As already shown, a 

decreasing trend in summer rainfall may still be accompanied with increasing 

severe storms in the same season. 

 

Undoubtedly, more studies are needed to improve the method with respect to the 

problems found in this study, which include but are not limited to: 

1) A better link between quantiles and event frequency (return period) in the 

context of trend analysis; 
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2) The quantiles used in this study are not really 'extreme'. Reliable quantile 

regression for the higher quantile (e.g., 99%) needs to be explored; and 

3) The method needs to be refined further to be more reliable on lower quantiles. 

It has been found that most trends of quantile 0.02 are insignificant, but this 

may not be true as the lower end of the data suffer from larger errors and zero 

values may as well interfere with the process.  

 

Furthermore, a quantile regression-based method is presented to study long-term 

trends of river flow and catchment water yields under the influence of water resources 

management practice. Three daily SWAT models are set up to simulate the 

hydrological processes in the Dee River catchment in the UK with flow control and 

water withdrawal process explicitly represented. Two scenarios (with and without 

flow control) are constructed to explore the impact of management practice. Further, 

two quantiles 0.02 and 0.98 are used to indicate high flow (wet) and low flow (dry) 

conditions that water managers are most concerned with. The 32-year simulated river 

flow and sub-basin water yields are analysed. The quantile of 0.5 is also considered as 

the medium flow and/or water yield. 

 

The results show that such combination of quantile regression and semi-distributed 

hydrological modelling approach excels in presenting distributed, spatially focused 

trend information for extremely dry and wet scenarios, which can thoroughly address 

the needs of practitioners and decision makers in dealing with long-term planning and 

climate change. The representation of the management practice such as flow control 

and water withdraw in the modelling process can help reveal the impact from the 

latter, and as such lays a foundation for further study on how various management 

practice can mitigate the effect from other sources such as climate change on 

catchment water resources management. 

 

For the study area, the Dee River basin, it has been shown that the 0.98 quantile has 

an increasing trend for both ‘real-life’ and natural flow scenario with a significant 

trend at most of the river basin. Additionally, the result reveals that the management 

practices tend to reduce the floods in the catchment. For the 0.02 quantile, both 
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positive (mainly upstream) and negative (downstream) trends exist for the two 

scenarios, albeit most of them are statistically insignificant. The comparison of the 

two scenarios indicates that the management practices are indeed able to mitigate 

strong decrease trends in the downstream.  

 

The main finding is that trends of low quantile 0.02 are mostly insignificant 

necessitates further study. As the trend analysis is conducted over the simulated data, 

the performance of the model, especially its representativeness of high and low flow 

conditions may directly affect the results hence the conclusion. More vigorous quality 

control of the modelling process may need to be in place and further studies are also 

recommended. 
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Chapter 6: Coupled Surface-Groundwater Modelling  

Groundwater is one of the main components of the hydrological cycle but has not 

been well modelled by surface hydrological models such as SWAT. Accurate 

simulation of both land surface and groundwater hydrological processes in river 

catchments is a fundamental step for integrated water resources management, 

particularly for watersheds where both surface water and groundwater resources are 

used conjunctively. In this chapter, a coupled land surface model (SWAT) and 

groundwater flow model (MODFLOW) are used to model a complex river catchment 

– the Dee River catchment to improve the performances of both models otherwise 

used separately, hence serving the IWRM goals of optimising the conjunctive use of 

surface and groundwater. The model can also be used to evaluate the sensitivity of 

stream flows to changing climate, groundwater extraction, and land use alternations. 

The results show that the coupled model can improve river flow simulation especially 

baseflow simulation while significantly improving the overall water balance and the 

low flow simulations. 

 

6.1. Introduction 

In recent decades, there has been growing stress of surface and groundwater resources 

around the world (e.g. Aeschbach-Hertig and Gleeson, 2012; Taylor et al., 2013). 

Owing to climate change and population growth, water resources managers, are aware 

of the balance of increasing demand to provide reliable water supplies to among 

different stakeholder. Typically, as the surface water supplies are exhausted, users 

increasingly turn to groundwater to enhance the supplies and mitigate the likely 

drought impacts (Schoups et al., 2006). It is estimated that 40% of the world’s food 

production is irrigated using both surface and sub-surface water resources (McCray, 

2001). 

 

Integrated Water Resources Management (IWRM) at catchment level relies heavily 

on the use of computer model simulations that capture the underlying hydrological 

processes and surface water/groundwater allocations. Some examples of models are: 

The Soil and Water Assessment Tool (SWAT; Arnold et al., 1998) and the Modular 



 

124 | P a g e  

 

Chapter 6: Coupled Surface-Groundwater Modelling 

Three-Dimensional Finite-Difference Groundwater Flow (MODFLOW; Niswonger et 

al., 2011) which are well-tested and widely-used surface and groundwater models 

(e.g. Golmohammadi et al., 2017; Milzow and Kinzelbach, 2010), respectively. 

However, these models represent the physical world (i.e., model spatial discretisation 

and process simulation) differently and each is limited to its simulation domain, each 

having advantages and disadvantages when simulating biophysical processes and 

using computational resources (Guzman et al., 2015). 

 

The SWAT model only simulates the shallow groundwater dynamics above a 

restricted layer (SWAT model lower boundary domain). Percolation below the 

impervious layer, which is set at a maximum value of 6 m below the ground surface is 

assumed lost out of the system (Luo et al., 2012). SWAT simulates both the surface 

and the shallow aquifer processes based on hydrological response units (HRUs), 

which are conceptual units of homogeneous land use, management, slope, and soil 

characteristics that extend below the surface to a soil profile depth (Arnold et al., 

1998). Even though SWAT has its own module for groundwater components, it is 

lumped and as a result parameters such as hydraulic conductivity cannot be spatially 

represented (Arnold et al., 1993). Furthermore, the SWAT model creates difficulties 

when expressing the spatial distribution of groundwater levels and recharge rates. 

 

 

On the other hand, MODFLOW simulates flow processes occurring at the continuum 

volume in the saturated zone defined by three-dimensional cells (groundwater 

domain) and the hydrogeological properties. MODFLOW simultaneously solves the 

groundwater flow differential equation using the finite difference approach, and 

integrates groundwater systems with other hydrological sub-system components (e.g. 

vadose zone, surface drainage, transport phenomena,…etc.) through the incorporation 

of ‘packages’ using a gridded spatial discretisation. However, it does not directly 

account for hydrologic processes that occur on the surface or in the root zone. 

 

One of the essential characteristics of an efficient groundwater model is the accuracy 

of recharge rates within the input data. The standard groundwater flow model 

conducted via MODFLOW often ignores the accuracy of the recharge rates, the 
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primary input in MODFLOW, that are required to be estimated into the model. 

Consequently, there is considerable uncertainty in the simulated groundwater flow 

results (Guzman et al., 2015). 

 

Therefore, a common practice is to assume lumped percolation fluxes as a percentage 

of precipitation and then optimise the value during the calibration process. Whereas 

the groundwater model calibrated for recharge can provide reasonably good 

groundwater level predictions, it is possible that the user may get the right answer for 

the wrong reasons (Kirchner, 2006) because this approach fails to account for spatial 

variability in recharge rates as a result of varying land use, irrigation and agronomic 

practices implemented on the surface domain. Moreover, this approach may 

misrepresent transport of nutrients moving to the groundwater domain for the same 

reasons. 

 

For that reason, an integrated SWAT and MODFLOW is important to better spatially 

represent feedback fluxes within the surface and groundwater domains. It will 

improve simulation of the impacts of long-term stressors, such as: 

1) Climate change impact studies (e.g. Wheeler and Von Braun, 2013);  

2) Management of water irrigation (e.g. Playan and Mateos, 2006); and  

3) Land use change scenarios (e.g. Chu et al., 2013). 

 

Many researchers have reported in the literature that SWAT models were integrated 

with other models such as:  

1) Improve simulations of riparian buffer zones (SWAT-REMM; Ryu et al., 

2011); 

2) The simulation of sediment and hydrodynamic flow (SWAT-SOBEK; Betrie 

et al., 2011); 

3) The management of stormwater (SWAT-SWMM; Kim et al., 2011) within the 

framework of OpenMI integration (Gregersen et al., 2007); and 

4) Surface and sub-surface water processes (SWAT-MODFLOW; Guzman et al., 

2015; Bailey et al., 2016, 2017; Kim et al., 2008). 
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The key objective of model integration is to bridge the gap of multi-disciplinary 

knowledge to support the quantitative capacity for the rigorous assessment of 

hypotheses and system response under dynamic scenarios (Arnold, 2013). However, 

when it comes to more complex IWRM scenarios where both surface and 

groundwater abstractions are substantially utilised, the coupling of traditionally 

surface water orientated hydrological models such as SWAT, with a dedicated 

groundwater model such as MODFLOW has become a focal research area. More 

recently, progress has been made (e.g. Bailey et al., 2017) to develop a series of tools 

that can conveniently couple SWAT with MODFLOW on a daily time step. 

 

Many applications have also been reported with linked SWAT and MODFLOW 

codes such as (Guzman et al., 2015; Kim et al., 2008; Bailey et al., 2016). Typical 

model integration includes using SWAT-calculated soil deep percolation as a recharge 

for MODFLOW and using MODFLOW-simulated groundwater-surface water 

interaction (i.e. groundwater discharge to stream; stream seepage to aquifer) as input 

for SWAT (Bailey et al., 2016). 

 

Among hydrological processes, the understanding the characteristics of baseflow 

could be a step forward for the better estimation of groundwater recharge that has 

highest priorities for sustainable water resources management. Eckhardt (2008) points 

out that Baseflow is a division of river flow that gradually responds to rainfall which 

is typically connected with groundwater storage discharge. Under low-flow 

conditions, the detailed information of baseflow is useful for the evaluation of 

streamflow forecasting, allocating water resources and design of hydropower plants 

(Tallaksen, 1995). When, where, and how much streamflow can be attributed to 

groundwater discharge is therefore practically significant (Luo et al., 2012). As a 

result, baseflow is an essential component of the hydrological simulation. 

 

SWAT uses a conceptual one-reservoir (shallow aquifer storage) method to simulate 

baseflow (Luo et al., 2012). It divides the groundwater component into two aquifer 

systems (Arnold et al., 1993):  

1) The shallow aquifer that contributes baseflow to streams within the watershed; 

and 
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2) The deep aquifer that contributes baseflow to streams outside the basin and 

can be considered lost from the system. 

Many researchers reported and agreed that SWAT model has a weaker baseflow 

simulation such as Srivastava et al. (2006); Chu and Shirmohammadi (2004); Wu and 

Johnston, (2007) and Luo et al. (2012).  

 

In this Chapter, the focus is set on the overall water balance and low flow simulation 

(Baseflow) in a complex river catchment, Dee watershed, based on a well-performing 

SWAT model that simulates high and peak flow satisfactorily throughout the basin. 

This chapter demonstrates the methods of linking SWAT and MODFLOW for the 

Dee River catchment and preliminary results and analysis. Finally, a conclusion is 

drawn with recommendations for further studies. 

 

6.2. Materials and methods 

6.2.1. Groundwater data 

The data used to create the SWAT model are presented and described in (section 3.3, 

page 37 in chapter 3). The data used to create the groundwater flow model, 

MODFLOW, are demonstrated in this section.  

 

There are also three categories of data collected to model catchment, namely:  

1) The static dataset, such as DEM (used as the elevation of ground surface), 

depth of groundwater from the ground surface (used to estimate initial 

groundwater head), aquifer designation data and soil type map (for horizontal 

permeability values) that are assumed to be static over the study period; 

2) The historical observations of daily groundwater level; and 

3) The operational data of licensed groundwater abstraction data that represent 

management practice. 

Most data used are subjected to an academic license. The summary of data is 

exemplified in Table 6-1.  
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Table 6-1: Collected data for the MODFLOW model 

Data  Resolution Source 

Groundwater depth 50 m British Geological Survey, BSG 

Soil Map 50 m British Geological Survey, BSG 

Aquifer designation  50 m  British Geological Survey, BSG 

Groundwater level Daily (1975-2014), 

One monitoring well 

British Geological Survey, BSG 

Groundwater withdraws 37 licensed wells Natural Resources Wales, NRW 

 

6.2.2. SWAT model 

The calibrated daily SWAT model in chapter 3 was used to be integrated with the 

MODFLOW. The simulation period of 1992-2003 with a 3-years warm-up period to 

make hydrological cycle fully operational (1995-2000 calibration period) and the rest 

for the validation. Six streamflow gauge station will be employed to test the 

performance of the simulated river flow of both SWAT model and coupled SWAT-

MODFLOW as revealed in Fig. 3-8. 

 

In SWAT model, water routed through channel system to the gauges consists of four 

components: direct surface runoff, lateral flow from unsaturated soil profiles, drainage 

from tiles and baseflow from underground storage (Ly et al., 2011). The modelling of 

the direct surface runoff, the lateral soil flow and the tile drainage are described in 

detail in theoretical documents of SWAT model (Neitsch et al., 2011). The baseflow 

simulation will be focused on henceforth. 

 

SWAT model distinguishes the underground storage into two parts, the shallow 

aquifer and the deep aquifer. The shallow aquifer receives recharge from the 

unsaturated soil profile percolation. An exponential decay weighting function is 

utilised to account for the time delay in aquifer recharge once the water exits the soil 

profile (Neitsch et al., 2011). The delay function accommodates situations where the 

recharge from the soil zone to the aquifer is not instantaneous, i.e. one day or less. 

The recharge to aquifer on a given day is calculated as below:  
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𝑊𝑟𝑐ℎ𝑟𝑔,𝑖 = [1 − exp (−
1

𝛿𝑔𝑤,𝑠ℎ
)]𝑊𝑠𝑒𝑒𝑝

+ exp(−
1

𝛿𝑔𝑤,𝑠ℎ
)𝑊𝑟𝑐ℎ𝑟𝑔,𝑖−1 

 

 

(6-1) 

 

where:  

𝑊𝑟𝑐ℎ𝑟𝑔is the amount of recharge entering the aquifers (mm H2O/ day); 

𝛿𝑔𝑤,𝑠ℎ is the delay time of the overlying geologic formations (days); and 

𝑊𝑠𝑒𝑒𝑝is the total amount of water exiting the bottom of the soil profile (mm H2O/ 

day);  

 

The subscriptions “seep” indicates seepage water exiting bottom of the unsaturated 

soil profile; “rchrg” means recharge, i is the sequential number of days, and “sh” 

indicates the shallow aquifer storage. A fraction of the total daily recharge can be 

routed to the deep aquifer. The amount of water diverted from the shallow aquifer due 

to percolation to the deep aquifer on a given day is given by: 

 

 𝑊𝑠𝑒𝑒𝑝,𝑑𝑝,𝑖 = 𝛽𝑑𝑝 𝑊𝑟𝑐ℎ𝑟𝑔,𝑖 (6-2) 

 

where: 

𝛽𝑑𝑝 is a coefficient of shallow aquifer percolation to deep aquifer, and the 

subscription “dp”: indicates deep aquifer. The amount of recharge entering the 

shallow aquifer is: 

 

 𝑊𝑟𝑐ℎ𝑟𝑔,𝑠ℎ,𝑖 = 𝑊𝑟𝑐ℎ𝑟𝑔,𝑖 −𝑊𝑠𝑒𝑒𝑝,𝑑𝑝,𝑖 (6-3) 

 

Baseflow generated from the shallow aquifer on a given day i under the influence of 

recharge is specified as below (Neitsch et al., 2011): 

 



 

130 | P a g e  

 

Chapter 6: Coupled Surface-Groundwater Modelling 

 

𝑄𝑏,𝑠ℎ,𝑖 = 𝑄𝑏,𝑠ℎ,𝑖−1. exp(−𝛼𝑔𝑤,𝑠ℎ. ∆𝑡)

+ 𝑊𝑟𝑐ℎ𝑟𝑔,𝑠ℎ,𝑖. [1 − exp (𝛼𝑔𝑤,𝑠ℎ. ∆𝑡)] 

 

(6-4) 

 

where 𝑄𝑏,𝑠ℎ,𝑖 is the baseflow from the shallow aquifer on day i (mm H2O/ day), and 

“b” indicates baseflow, and ∆𝑡 is the step time length. Daily time-step is used in this 

study. When only one reservoir is used, the baseflow is equal to that from the shallow 

aquifer: 

 

 𝑄𝑏,𝑖 = 𝑄𝑏,𝑠ℎ,𝑖 (6-5) 

 

SWAT assumes that water entering the deep aquifer is not considered in the future 

water budget calculations and can be considered lost from the system (Neitsch et al., 

2011).  

 

6.2.3. MODFLOW model 

MODFLOW (McDonald and Harbaugh, 1988; Niswonger et al., 2011) is a three-

dimensional, physical-based, distributed finite differences groundwater flow model 

for the variably saturated sub-surface system. A recent addition to MODFLOW is the 

Newton-based solver algorithm that better satisfies the complex non-linear drying and 

re-wetting of grid cells in unconfined groundwater system (Niswonger et al., 2011), a 

problem with previous versions. Available processes to be simulated in MODFLOW 

include groundwater recharge, vadose zone percolation, evapotranspiration, pumping, 

discharge to sub-surface drains, river-aquifer interactions (Bailey et al., 2016).  

 

However, most applications are limited to investigating management and climate 

effects on groundwater and surface-groundwater interaction as MODFLOW does not 

simulate surface processes such as land-atmospheric interactions, infiltration and 

surface runoff, nutrient cycling and transport, plant growth and the impact of 

management practice on agricultural systems (Bailey et al., 2016). Darcy’s law 

governs the flow rate. It can simulate steady and non-steady flows in a saturated 

system, in which aquifer layers can be confined, unconfined, or a combination of 
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confined and unconfined. The following partial differential equation describes three-

dimensional groundwater flow: 

 

 
𝜕

𝜕𝑥
[𝑘𝑥𝑥

𝜕ℎ

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝑘𝑦𝑦

𝜕ℎ

𝜕𝑦
] +

𝜕

𝜕𝑧
[𝑘𝑧𝑧

𝜕ℎ

𝜕𝑧
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 (6-6) 

 

where:  

𝑘𝑥𝑥, 𝑘𝑦𝑦and 𝑘𝑧𝑧: are the hydraulic conductivities along the x, y, and z coordinate axes 

parallel to the major axes of hydraulic conductivities;  

h: is the potentiometric head; 

𝑤:is a volumetric flux per unit volume representing sources (W is negative) and/or 

sinks (W is positive) of water;  

𝑆𝑠: is the specific storage of the porous medium; and  

t: is time.  

 

𝑘𝑥𝑥, 𝑘𝑦𝑦, 𝑘𝑧𝑧and 𝑆𝑠 are functions of space (x, y, z) and W is a function of space and 

time (x, y, z, t) (Todd and Mays, 2005). In MODFLOW, an aquifer system is replaced 

by a discretised domain consisting of an array of nodes and associated finite 

difference blocks (cells) (Chiang and Kinzelbach, 1998). In this chapter, groundwater 

flow is simulated using the MODFLOW-NWT model including the following 

package: 

1) Basic package (. bas); 

2) Discretisation package (. dis); 

3) River package (. riv); 

4) Well package (. wel); 

5) Upstream weighted package (. upw); 

6) Recharge package (. rch); and 

7) Newton Solver package (. nwt). 

 

In this study, the Geographical user interface GUI such as Visual MODFLOW Flex, 

Groundwater Vistas and GMS are not used because most of them are commercial and 

very expensive. Instead, a model is created using ArcMap and Excel with some 

Visual Basic coding. For the simplifying the interaction between SWAT’s HRUs and 
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MODFLOW grid cells, the aquifer system in this study was set up as a one-layer 

(taking the average value of two layers for the permeability values), unconfined 

aquifer and unsteady groundwater flow model (the necessary condition to link the 

model to SWAT hereafter). Moreover, the model divides the cells into 200 m × 200 m 

(coefficient of DEM cell size) and accordingly, the aquifer was discretised into a grid 

of 241 rows and 317 columns. The topographical surface assigned as the top layer of 

the model was interpolated from the Digital Elevation Model (DEM). 

 

 

Fig. 6-1 Location of the license withdraw wells used in MODFLOW model 

 

A total number of 37 licensed wells are represented in this study with maximum water 

withdraw of 14-6800 m3/ day as shown in Fig. 6-1. One unconfined layer of soil is 

used in the model with a single stress period (considering maximum well withdraw 

during the whole period of the simulation) to make SWAT-MODFLOW run faster. 

 

6.2.4. SWAT-MODFLOW coupling 

SWAT model is principally limited in terms of dealing with groundwater flow 

because of its lumped nature. On the other hand, MODFLOW has difficulty in 
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calculating the distributed groundwater recharge that is the primary input for the 

groundwater model. Consequently, it is promising for the hydrological variables to be 

realistically computed if an HRU-based groundwater recharge is used for input data in 

MODFLOW and the groundwater flow between the aquifer and the stream is 

calculated and exchanged to SWAT, then the spatiotemporal features in the catchment 

will be adequately represented (Kim et al., 2008).  

 

The coupled SWAT-MODFLOW framework (Bailey et al., 2017) combines an 

updated version of the SWAT model (SWAT 2012, revision 627) with MODFLOW-

NWT. In this framework, SWAT simulates land surfaces processes, crop growth, in-

stream processes and soil zone processes. Meanwhile, MODFLOW-NWT simulates 

three-dimensional groundwater flow and all associated sources and sinks (e.g. 

recharge, pumping, discharge to tile drains and interaction with stream networks). 

Both modelling codes are combined into single FORTRAN code that is compiled and 

run as a single executable file. 

 

The basic process of linking SWAT and MODFLOW models is to pass HRU-

calculated deep percolation (i.e. water that exits the bottom of the soil profile) as 

recharge to the grid cells of MODFLOW, and then pass MODFLOW-calculated 

groundwater-surface water fluxes to the stream channels of SWAT (Bailey et al., 

2016). With this method, SWAT computes the volume of overland flow and soil 

lateral flow to streams, MODFLOW calculates the volume of groundwater discharge 

to streams, and then SWAT routes the water through channel networks of the 

watershed. Surface-groundwater interaction is simulated using river package of 

MODFLOW, with Darcy’s law applied to calculate the volumetric flow of water 

through the cross-sectional flow area between the aquifer and stream channel (Bailey 

et al., 2016): 

 𝑄𝑙𝑒𝑎𝑘 = 𝑘𝑏𝑒𝑑(𝐿𝑠𝑡𝑟𝑃𝑠𝑡𝑟) (
ℎ𝑠𝑡𝑟 − ℎ𝑔𝑤

𝑧𝑏𝑒𝑑
) (6-7) 
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where:  

𝑘𝑏𝑒𝑑 is river bed hydraulic conductivity (L/T); 

𝐿𝑠𝑡𝑟 is the length of the stream (L); 

𝑃𝑠𝑡𝑟 is the wetted perimeter of the stream (L); 

ℎ𝑠𝑡𝑟 is river stage (L); 

ℎ𝑔𝑤 is the hydraulic head of groundwater (L);  

𝑧𝑏𝑒𝑑is the thickness of the river bed (L); and  

𝑄𝑙𝑒𝑎𝑘is negative if groundwater flows to the river (i.e. groundwater hydraulic head 

ℎ𝑔𝑤is above the river stage ℎ𝑠𝑡𝑟), and positive if river water seeps into the aquifer. 

 

 

Fig. 6-2 Schematic representation of conceptual water balance of coupling SWAT-

MODFLOW  

 

Data are passed between the models using ’mapping’ subroutines that relates HRUs to 

MODFLOW grid cells and MODFLOW river cells to SWAT stream channels (Bailey 

et al., 2016). The main elements of this mapping scheme are: HRUs; Disaggregated 

HRUs (DHRUs), which divide each original HRU into individual, contiguous areas 

within a sub-basin allow HRU calculations to be geo-located; MODFLOW grid cells; 

MODFLOW River cells; and SWAT stream channels. The calculated deep 

percolation (i.e. recharge) for HRUs are first mapped to each individual DHRU, and 
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then mapped to each MODFLOW grid cell according to the per cent of an area of the 

DHRU contained within the grid cell for use by the recharge package. SWAT-

calculated channel depth from each sub-basin is mapped to the group of River cells 

within the sub-basin for use by the River package (Bailey et al., 2016). Figure 6-2 

reveals the schematic representation water balance of SWAT-MODFLOW model. 

 

MODFLLOW then computes groundwater hydraulic head and groundwater-surface 

water interactions, which are passed to SWAT. Groundwater discharge volumes, 

calculated on a cell by cell basis within MODFLOW, are summed and added to in-

stream flow for each SWAT sub-basin. 

 

 

Fig. 6-3 MODFLOW grid with the location of groundwater monitoring well in the 

Dee River basin 

 

SWAT then completes the stream routing calculations for the day, with the daily loop 

continuing until the end of the simulation. For the possible scenario of River cell 
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intersecting more than one stream, the length of each stream within the cell is used to 

calculate the composite weighted value of channel depth for use by MODFLOW and 

to distribute the cell groundwater discharge volume to associated sub-basin main 

channels. Within this scheme, MODFLOW is called as a subroutine within the SWAT 

framework, providing a single compiled FORTRAN code (Bailey et al., 2016). Figure 

6-3 shows the location of the groundwater monitoring well (at the east of the 

watershed). 

 

Fig. 6-4 Flowchart illustrating the coupled SWAT-MODFLOW model for Dee River 

watershed 
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Figure 6-4 presents the process of coupling SWAT-MODFLOW models. The 

SWATMODFLOW model simulation and linking processes are illustrated in Fig. 6-5. 

The simulation runs through the repeated daily process of SWAT HRU calculations, 

passing data to MODFLOW, running MODFLOW, passing data to SWAT and 

routing water through the watershed’s stream network upon reading input data for 

both the SWAT and MODFLOW models. 

 

 

Fig. 6-5 Flowchart presenting the model code sequence of the coupled SWAT-

MODFLOW model (After Bailey et al., 2016) 

 

6.2.5. Baseflow separation 

This baseflow separation procedure is based on a recursive digital filter commonly 

used in signal analysis and processing (Lyne and Hollick, 1979). It was used by 

Nathan and McMahon (1990) among others. In fact, this technique is arbitrary and 

physically unrealistic. Nevertheless, it does provide a subjective and repeatable 

estimate of baseflow that is easily automated (Nathan and McMahon, 1990). The filter 

given by Lyne and Hollick (1979) is expressed as: 
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 𝑄𝑠𝑓,𝑖 = λ 𝑄𝑠𝑓,𝑖−1 +
1 + λ

2
(𝑄𝑠𝑢𝑟𝑓,𝑖 − 𝑄𝑠𝑢𝑟𝑓,𝑖−1) (6-8) 

 

where 𝑄𝑠𝑓,𝑖 is the direct runoff on ith day, 𝑄𝑠𝑢𝑟𝑓 is the surface runoff, and λ is the filter 

parameter. Baseflow is calculated as below: 

 

 𝑄𝑏,𝑖 = 𝑄𝑠𝑢𝑟𝑓,𝑖 − 𝑄𝑠𝑓,𝑖 (6-9) 

 

where 𝑄𝑏is the baseflow. Baseflow separation is conducted using R statistical 

package ‘EcoHydRology’ (Fuka et al., 2015) to separate baseflow from the daily 

streamflow records. 

 

6.3. Results and discussion 

As mentioned before(section 6.2.2.), the calibrated daily SWAT model for Dee River 

watershed from chapter three is utilised here from 1992 to 2003 with three years’ 

warm-up period, 1995-2000 calibration period and 2001-2003 as validation period. 

The boundary of the catchment of will be used as active cells region within the 

MODFLOW model. MODFLOW model using MODFLOW-NWT version is created 

for the study area using cell sizes of (200 x 200) m with a single layer, single stress 

period. 

 

The standalone MODFLOW is manually calibrated by adjusting: 

1) The horizontal permeability coefficient from the upstream-weighted package 

(to control the recharge rate); and 

2) The river conductance from the river package (to control the surface-

groundwater interaction between the river channel and shallow aquifer).  

Then, the model is coupled with the SWAT model to evaluate the simulated 

streamflow six river gauge station (Fig. 3-8, page 50) and the simulated groundwater 

head at the monitoring well (Fig. 6-3, page 135). 
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Table 6-2 shows the simulated streamflow of the models for the calibration period, 

e.g., a standalone calibrated SWAT model and the coupled SWAT-MODFLOW 

model. Several indices are used including Nash-Sutcliffe Coefficient (NSE), R2 and 

percentage of bias (PBAIS) to measure the deviation of simulations from the 

observations at the chosen gauge stations. A slight decrease of NSE and R2 can be 

seen across all gauge stations except two stations where groundwater is dominant. 

Regarding PBIAS, the coupled model performs better or similar except that of the 

gauge Brynkinalt Weir. 

 

Table 6-2: The calibrated river flow of the standalone SWAT model and the coupled 

SWAT-MODFLOW model for the calibration period of 1995-2000 

Station SWAT SWAT-MODFLOW 

NSE R2 PBIAS NSE R2 PBIAS 

Manley Hall 0.94 0.98 -5.80 0.90 0.98 14.50 

Chester Ironbridge 0.82 0.82 -6.20 0.76 0.79 11.40 

Suspension Bridge 0.78 0.80 -10.20 0.83 0.91 16.10 

Pont-y-Capel 0.80 0.82 -14.70 0.77 0.78 8.80 

Bowling Bank 0.66 0.71 -25.10 0.67 0.67 -3.00 

Brynkinalt Weir 0.66 0.70 10.90 0.57 0.64 27.00 

 

Meanwhile, for the validation period (Table 6-3), the overall water balances (PBIAS) 

are improved for the coupled SWAT-MODFLOW are improved at three sites. The 

overall trends (R2) are also enhanced as it is demonstrated in Table 6-3.  

 

Table 6-3: The calibrated river flow of the standalone SWAT model and the coupled 

SWAT-MODFLOW model for the validation period of 2001-2003 

Station SWAT SWAT-MODFLOW 

NSE R2 PBIAS NSE R2 PBIAS 

Manley Hall 0.92 0.94 -3.20 0.88 0.98 16.30 

Chester Ironbridge 0.80 0.80 -6.30 0.76 0.81 9.10 

Suspension Bridge 0.72 0.75 -18.90 0.84 0.87 5.80 

Pont-y-Capel 0.67 0.76 -21.00 0.68 0.68 -1.80 

Bowling Bank 0.48 0.52 -19.20 0.47 0.47 -0.50 

Brynkinalt Weir 0.68 0.72 8.70 0.57 0.66 24.30 
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The simulations from the standalone SWAT model and the coupled model are 

compared with the observed flow data at the river gauges. Figure 6-5 shows such 

comparison for the two selected stations (Chester Ironbridge) over the water year 

1999. A remarkable feature revealed by Fig. 6-6 is that the coupled model 

outperforms the standalone SWAT model for the low flow conditions, particularly for 

the recessing curves parts of each peak. While both models simulate peak flow well, 

the standalone SWAT model does better for the 2nd peak. It is plausible that the 

MODFLOW component has well compensated the deficiency of SWAT in low flow 

representation (such as baseflow) in terms of taking more water as the recharge. 

 

 

Fig. 6-6 The comparison of simulated river flow from the standalone SWAT model 

and the coupled SWAT-MODFLOW at Ironbridge for the water year of 1999 

 

This is, in fact, an influential aspect of the coupled model, as it is more stressful in the 

flow period for water supply and the coupled model might be preferred in this 

occasions for better simulations. 
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Table 6-4: The simulated baseflow results of the standalone SWAT model and the 

coupled SWAT-MODFLOW model for the calibration period of 1995-2000 

Station SWAT SWAT-MODFLOW 

NSE R2 

PBIAS 

NSE R2 

PBIAS 

Manley Hall 0.76 0.90 0.88 0.96 

Chester Ironbridge 0.70 0.86 0.83 0.98 

Suspension Bridge 0.56 0.79 0.98 0.91 

Pont-y-Capel 0.57 0.87 0.67 0.85 

Bowling Bank -0.42 0.86 0.77 0.85 

Brynkinalt Weir 0.82 0.89 0.27 0.87 

 

A baseflow simulation of SWAT and coupled SWAT-MODFLOW are studied and 

presented. The NSE and R2 are employed to evaluate the baseflow simulation against 

observed one. Tables 6-4 and 6-5 show that SWAT-MODFLOW simulation has a 

better baseflow simulation than the standalone SWAT model.  

 

Table 6-5: The simulated baseflow results of the standalone SWAT model and the 

coupled SWAT-MODFLOW model for the validation period of 2001-2003 

Station SWAT SWAT-MODFLOW 

NSE R2 

PBIAS 

NSE R2 

PBIAS 

Manley Hall 0.55 0.79 0.79 0.94 

Chester Ironbridge 0.31 0.69 0.76 0.91 

Suspension Bridge -0.10 0.63 0.90 0.98 

Pont-y-Capel 0.27 0.89 0.58 0.74 

Bowling Bank -0.26 0.91 0.76 0.80 

Brynkinalt Weir 0.80 0.88 0.04 0.75 

 

 

Figure 6-7 reveals the baseflow from SWAT, SWAT-MODFLOW and the observed 

one at Pont-y-Capel station for the period of 1995-2000. Noticeably, SWAT-

MODFLOW improves the origin of SWAT simulation regarding baseflow.  
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Fig. 6-7 The comparison of simulated baseflow from the standalone SWAT model 

and the coupled SWAT-MODFLOW at Pont-y-Capel for the period of 1995-2000 

 

Figure 6-8 shows the comparison of daily simulated groundwater level against 

observed one at the monitoring well in the east of Dee watershed which shows that 

coupled SWAT-MODFLOW performs well with R2 of 0.87 for the calibration period 

of 1995-2000 and 0.88 for the validation period of 2001-2003. 

 

 

Fig. 6-8 The comparison of simulated groundwater level from the coupled SWAT-

MODFLOW at the monitoring well for the period of 1995-2000 

 

R2=0.87 

Time (day) 
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6.4. Summary 

In this chapter, the SWAT model that previously created in chapter 3 is coupled with 

groundwater flow model MODFLOW to simulate streamflow and baseflow for the 

Dee River basin. Baseflow, one of the key source of the streamflow and could be the 

primary source in the dry season, and that concern the decision makers of water 

resources management. It can be characterised by its hydrograph which is derived 

from the total streamflow hydrograph by different baseflow separation methods. 

While the performance of baseflow simulation of the SWAT model has been tested in 

many river basins, the primary objective of this chapter is to improve the simulated 

baseflow of the SWAT standalone by coupled surface-groundwater models (SWAT-

MODFLOW). 

 

The recursive digital filter technique is used for baseflow separation of observed and 

simulated river flow of the SWAT and coupled the SWAT-MODFLOW. The results 

show that the coupled model can produce comparably better simulations of baseflow 

in the stream network, and thereby improved the water balance in the catchment. 

Further work with the model will include additional calibration to improve stream 

flow and also groundwater level fluctuations. Overall, the study shows a promising 

direction for using coupled surface-groundwater model in IWRM. However, this 

might increase the parameters uncertainty of the complex model systems (coupled 

models) and computationally more expensive than the standalone model. 
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Chapter 7: Uncertainty Analysis of the Coupled Surface-

Groundwater Models  

Hydrological models are often carried out for the reliable estimation of streamflow 

from upland areas into the downstream reach of river, reservoirs and lakes within a 

watershed and evaluation of the efficiency of various management practices. To serve 

such purposes, the application and selection of a suitable model become obligatory. 

The use of most hydrological models frequently requires a large number of spatially 

distributed variable input data and parameters. Attributable to the lack of higher 

quality of input data and the simplification of environmental processes, these models 

prerequisite to being calibrated by certain degrees to the observed hydrological 

variables such as river flow observation.  

 

The practical quantification of prediction uncertainty of hydrological processes is 

valuable for the water resources planning and management and relevant decision-

making processes (Liu and Gupta, 2007). The model predictions are uncertain values 

and have to be represented with a confidence range owing to uncertainties associated 

with the model input, model structure, parameter and model output (Van Griensven 

and Meixner, 2007). The model calibration technique is a rigorous and challenging 

process and influenced by the model complexity, the number of input parameters and 

iterations (Vanrolleghem et al., 2003). Model calibration and validation have been 

assessed through conducting uncertainty analysis (UA) and sensitivity analysis (SA) 

(Blasone et al., 2008).  

 

In this chapter, a MATLAB toolbox, the Sensitivity Analysis for Everybody SAFE, 

will be used to run uncertainty and sensitivity analysis for the standalone SWAT 

model and coupled SWAT-MODFLOW for the Alyn River Basin (a branch in Dee 

River Watershed). The primary objective of this chapter is the analysis of parameters 

uncertainty of semi-distributed model (SWAT) and the coupled SWAT-MODFLOW 

which have not studied yet.  
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7.1. Overview 

Water resources management problems comprise complex processes from the 

subsurface and surface level to their interface regimes (Srivastava et al., 2013b). 

Moreover, water resources management problems are very challenging processes 

because hydrogeological characteristics within the catchment system are, in nature, 

heterogeneous with respect to both space and time (Strayer et al., 2003). The 

semi/fully distributed hydrological models are handy tools in water resources 

management (Patel and Srivastava, 2014), especially in assessing the impacts of 

climate change of land use on water resources within the catchment (Srivastava et al., 

2013a). However, these kinds of models have a considerable amount of uncertainties 

among parameters estimation. 

 

The evaluation of parameter uncertainty has gained attractiveness in sciences, 

including hydrological sciences (Yatheendradas et al., 2008). The calibration of 

watershed models is a challenging process because of (Tung, 2005):  

1) Natural randomness: uncertainty in nature (the real world) is caused by 

inherent randomness in natural processes. Additionally, it is difficult to 

eliminate because it needs a complete understanding of natural systems under 

study; 

2) Model uncertainties: this is as a result of the conceptual simplification of 

natural processes of the model and owing to some processes that might not be 

considered by the model; 

3) Parameter uncertainties: it is the inability of a model to precisely evaluate 

input variables and model parameters which is attributable to the lack of 

sufficient data and the inherent inconsistency of model inputs in time and 

space; 

4) Data uncertainties: this uncertainty arises as a result of errors in data handling, 

measurement and limitation of data in time and space, which results in an 

insufficient representation of the study area; and 

5) Operational uncertainties: these uncertainties are associated with maintenance 

and human errors, construction deterioration and manufacture. 
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SWAT model has been broadly used in many countries worldwide for streamflow 

prediction and for soil and water conservation (Patel and Srivastava, 2013). 

Sensitivity Analysis (SA) and Uncertainty Analysis (UA) are necessary processes to 

decrease uncertainties of models obliged as a result of the variation of model structure 

and parameters (Gupta et al., 2006). Presently, many techniques have been developed 

for the calibration and uncertainty analysis techniques for hydrological models such 

as: 

1) Sequential Uncertainty Fitting, SUFI 2 (Abbaspour et al., 2007); 

2) Generalized Likelihood Uncertainty Estimation, GLUE (Beven and Binley, 

1992); 

3) Parameter Solution, ParaSol (Yang et al., 2008);  

4) Markov Chain Monte Carlo, MCMC (Vrugt et al., 2008); and 

5) Particle Swarm Optimization, PSO (Eberhart and Kennedy, 1995). 

These methods have been linked to the SWAT model through SWAT-CUP software 

(Abbaspour et al., 2007) and facilitate UA and SA of model structure and parameters 

(Rostamian et al., 2008). 

 

Currently, the SWAT model is widely used in hydrological modelling by the 

scientific community. Most of the studies on SWAT dedicated on the calibration and 

validation of SWAT for surface runoff such as (Chu and Shirmohammadi, 2004; Ahl 

et al., 2008; Baker and Miller, 2013). Some researchers such as Heuvelmans et al. 

(2006), Shen et al. (2012) and Mishra (2009) have quantified the uncertainty 

associated with hydrological modelling and sensitivity analysis using various 

optimization algorithm, a couple of other researchers such (Yang et al., 2008; Xue et 

al., 2014) performed modelling studies focusing on the uncertainty analysis using 

SWAT model.  

 

In this chapter, a MATLAB toolbox, the Sensitivity Analysis for Everybody (SAFE), 

will be used for analysing the uncertainty in the modelling results for SWAT model 

and Coupled SWAT-MODFLOW for the Alyn River Basin (branch in Dee River 

Catchment). The analysis is performed based on daily streamflow flow for eight years 

(1993-2000) including two years warm-up period. The objectives of this chapter are: 
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1) Perform parameters uncertainty analysis for streamflow simulation using 

techniques embedded in the SAFE toolbox for both the SWAT model and the 

coupled SWAT-MODFLOW; and 

2) Demonstrate the applicability and feasibility of these techniques for analysing 

uncertainties in streamflow simulation. 

 

7.2. Study area 

The Alyn River is one of the tributaries of the Dee River Catchment located in the 

north region of the catchment with total area 222 km2 as revealed in Fig. 7-1. It rises 

from the southern end of the Clwydian Hills and the Alyn Valley passing through 

Mold city before reaching its convergence with the Dee River to the northeast of 

Wrexham city.  

 

 

Fig. 7-1 Location of Alyn River Catchment 

 

7.3. Sensitivity Analysis 

Global Sensitivity Analysis GSA is a term defining a set of mathematical methods to 

examine how the deviation in the output of a numerical model can be endorsed to 
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variations of model inputs (Pianosi et al., 2015). Several GSA techniques have been 

suggested and used in the literature and their application in the environmental 

modelling domain has increased gradually in recent years (Yang, 2011; Tang et al., 

2007; Pianosi et al., 2015). 

 

GSA has been acknowledged as a vital tool for the assessment and development of 

environmental models (Saltelli et al., 2008). In this chapter, the MATLAB toolbox for 

the application of GSA, called SAFE (Sensitivity Analysis for Everybody) (Pianosi et 

al., 2015), will be used to perform uncertainty and sensitivity analysis for SWAT and 

coupled SWAT-MODFLOW models. 

 

The SAFE Toolbox has mainly been considered to make GSA accessible to non-

specialist users (i.e. people with a basic knowledge of MATLAB and/or GSA). It is 

also created to allow more skilled users to feasibly further develop the code (Pianosi 

et al., 2015). The SAFE Toolbox contains several GSA methods comprises: 

1) Variance-Based Sensitivity Analysis, VBSA(Saltelli et al., 2008); 

2) Regional Sensitivity Analysis, RSA (Wagener and Kollat, 2007); 

3) The Fourier Amplitude Sensitivity Test, FAST (Cukier et al., 1973); 

4) The Elementary Effects Test, EET (Morris, 1991);  

5) Dynamic Identifiability Analysis, DYNIA (Wagener et al., 2003); and  

6) A Novel Density-based Sensitivity technique, PAWN (Pianosi and Wagener, 

2015); and 

7) Generalized Likelihood Uncertainty Estimation, GLUE (Beven and Binley, 

1992).  

 

This Toolbox also provides some visualisation tools comprising (Pianosi et al., 2015): 

1) Scatter (dotty) plots; and 

2) The parallel coordinate plot and the visual test for validation of screening 

suggested by Andres (1997).  

 

SA is an analytical tool that can lead the model calibration and validation and support 

the prioritisation of efforts for uncertainty reduction (Norton, 2015; Song et al., 2015). 
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Generally, such purposes are applied as four different purposes of GSA (Saltelli et al., 

2008; Sarrazin et al., 2016): 

1) Screening (or Factor Fixing): which refers to the identification of those input 

factors, if any, which have no influence on the model output and hence can be 

fixed to any value within their feasible range with negligible implications on 

the output. For example, in Vanuytrecht et al. (2014), screening of model 

parameters is carried out as an initial stage to inform a successive calibration, 

which is tailored to the subset of influential parameters; 

2) Ranking (or Factor Prioritization): which defines the ordering of the input 

factors according to their relative effect on the model output. It is classically 

utilised to increase the understanding of the model and to recognise main 

controls of the model's behaviour (e.g. Van Werkhoven et al., 2008), and to 

prioritize efforts for the reduction of uncertainty (Sin et al., 2011), or to 

support development of models (Hartmann et al., 2013);  

3) Variance Cutting: that is employed for the reduction of the variance of the 

output to a value below a user-chosen tolerance. It targets at finding specific 

sensitivities for the various input factors and is, for instance, conducted in risk 

assessment and reliability (e.g. Saltelli and Tarantola, 2002); and  

4) Factor Mapping: aims to recognise those conditions (e.g. sub-ranges of input 

factors such as forcing inputs or parameters) that produce critical values of the 

output. It can be utilised to support robust decision-making or to enhance 

understanding of a model (Singh et al., 2014). 

 

7.4. Global Sensitivity Analysis (GSA) techniques 

In this section, it is intended to introduce two GSA methods that will be used in this 

study, Elementary Effect Test (Morris Method) and Generalised Likelihood 

Uncertainty Estimation GLUE method.  

 

7.4.1. Elementary Effect Test (EET) 

The Elementary Effect Test EET (Morris, 1991) is a more suitable method when 

dealing with time-consuming models (Saltelli et al., 2008). EET technique is a global 
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extension of One-factor-At-the-Time (OAT) Local SA methods. It is based on the 

computation of several Elementary Effects (EEs). Explicitly, the EE of the ith input 

factor xi at given baseline point Xj and for a predefined perturbation Δ is given by: 

 

 

𝐸𝐸𝑖
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=
𝑦(𝑥1

𝑗
, 𝑥2
𝑗
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𝑗
)

Δ
 

 

 

(7-1) 

 

For each input factor, EEs are calculated at n randomly selected baseline points across 

the input factor space. The estimated mean (µi) of the EEs is chosen as a measurement 

of the total effects of the ith input factor. The standard deviation (σi) of the EEs can be 

deduced as the intensity of the interactions of the ith input factor with other input 

factors. To avoid compensations between EEs of opposite sign, the mean of the 

absolute values of the EEs (µi
*) will be used in this study, as first suggested by 

Campolongo et al. (2007): 

 

 µ𝑖
∗ =

1

𝑛
∑|𝐸𝐸𝑖

𝑗
|

𝑛

𝑗=1

 (7-2) 

 

The sensitivity index of Eq.7-2 offers a semi-quantitative measurement of sensitivity, 

principally suitable to rank the factors on an interval scale (Saltelli et al., 2008). To 

define baseline points and the perturbation Δ, the radial design strategy proposed by 

Campolongo et al. (2011) is implemented as it was revealed that radial based design is 

computationally capable. In this method, n baseline points are sampled across the 

input factor space, and associated with other n auxiliary points, are also selected 

randomly. 

 

Then, the perturbation Δ is calculated as the difference between the ith coordinate of 

the auxiliary and baseline point. The baseline and auxiliary points were produced by 

Latin hypercube sampling to maximise the coverage of the input factor space. The 
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total number of model evaluations required to compute the mean EEs for all input 

factors is equal to: 

 

 𝑁 = 𝑛. (𝑀 + 1) (7-3) 

 

It is noted that the value of µ𝑖
∗ has no specific meaning per se, since it depends on the 

scale and units of measurements of the model output y. Consequently, to allow for 

comparison between different case studies, it defines a normalised mean of the EEs as 

our sensitivity index, i.e. the ratio between µ𝑖
∗ and the maximum value of the mean 

EEs across all the input factors: 

 

 𝑆𝑖
𝐸𝐸𝑇 =

µ𝑖
∗

max
𝑘

µ𝑘
∗
 (7-4) 

 

The sensitivity index of Eq.7-4 now takes values between 0 and 1 regardless of the 

units of measurement of y, and it expresses input factor sensitivity as a fraction of the 

sensitivity for the most significant input factor. The index still offers a semi-

quantitative measure of sensitivity. 

 

7.4.2. Generalised Likelihood Uncertainty Estimation (GLUE) 

The Generalised Likelihood Uncertainty Estimation (GLUE) method, which was 

introduced by Beven and Binley (1992), is an innovative uncertainty technique that is 

frequently used with environmental models simulation. GLUE is a favourite 

technique for the uncertainty quantification owing to its simplicity and applicability to 

nonlinear problems including those for which a unique calibration is not ostensible. 

Moreover, it is widely used because it has utilised in real-world applications and that 

it seems to provide the desired representation of uncertainty (Montanari, 2005). 

Blasone et al. (2008) reported that attribute to GLUE’s conceptual simplicity, its 

flexibility with different sources of information and ease of implementation, it can be 

combined with various criteria to define a likelihood measurement. 
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The basic concept of the GLUE is to integrate a prior knowledge of the model 

parameters captured by the prior PDF with new information reflected in the observed 

data as characterised by the likelihood measure to obtain a posterior PDF of the model 

parameters. Beven and Binley (1992) introduced their identifiable requirements on 

their likelihood measures arguing that “the choice of a likelihood measure will be 

inherently subjective.” 

 

In the GLUE method, parameters uncertainty account for all sources of uncertainty 

such as input uncertainty, structural uncertainty, parameter uncertainty and response 

uncertainty. As a result, this method has been broadly utilised in several areas as an 

effective and general strategy for model calibration, validation and uncertainty 

quantification associated with complex models.  

 

The calculation of the likelihood of a particular set of parameters is the main feature 

of GLUE and is different from the traditional technique of calibration, validation and 

uncertainty quantification. Parameter sets that result in their likelihood values below a 

certain threshold are called ‘non-behavioural’ and are excluded. The remaining 

‘behavioural’ parameter sets are assigned rescaled likelihood weights that sum to 1 

and hence look like probabilities. According to Beven and Binley (1992), two 

conditions should be satisfied by the ‘likelihood measurement’: 

1) “It should be zero for all simulations that are considered to exhibit behaviour 

dissimilar to the system under study.” 

2) “It should increase monotonically as the similarity in behaviour increases.” 

 

Beven and Binley (1992) argued that the likelihood function could be selected from 

“many of the goodness-of-fit indices used in the past.” They also reported that the 

choice of likelihood function would be greatly affected the resulting uncertainty 

intervals and so argue that this selection must be made obvious so they can be the 

“subject of discussion and justification” (Beven and Freer, 2001). Various likelihood 

measurements have been presented and used with GLUE previous applications. The 

method of inverse error variance, a popular likelihood measurement, which was 

familiarised and introduced by Beven and Binley (1992): 
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 𝐿𝐼𝑉 = [𝑠𝜀
2]−𝑁 (7-5) 

 

where s𝜀 is the standard deviation of the model errors, N is the shaping factor by 

Beven and Freer (2001). Beven and Binley (1992) used N=1 but suggested that the 

shaping factor can be also selected by the modeller. The different values of N > 0 lead 

to different descriptions of uncertainty (Ratto et al., 2001). The increasing N provides 

a greater weight to model parameters which yield a better goodness of fit. As N 

reaches infinity the best parameter set that is generated will be given a weight of 1, 

whereas all other parameter sets will be discarded. As N approaches zero, all 

parameter sets receive equal weight. 

 

The likelihood measurement adopted frequently employs Nash Sutcliffe efficiency 

index as follow: 

 

 𝐿𝑁𝑆𝐸 = [1 −
𝑠𝜀
2

𝑠𝑄
2]

𝑁

 (7-6) 

 

where s𝜀 is the standard deviation of the errors, sQ is the standard deviation of the 

observations and again, N is a shaping parameter. Examples applications of GLUE 

with this efficiency index can be found in Uhlenbrook and Sieber (2005). This index 

only makes sense if in the calculation of 𝑠𝜀
2 assumes that the errors have zero mean. 

Otherwise, the systematic bias would be neglected.  

 

The likelihood function will be used to evaluate simulated streamflow by SWAT and 

SWAT-MODFLOW against observed values. In this chapter, the Nash-Sutcliffe 

efficiency index (NSE) is selected because it is the most often used likelihood 

measurement for GLUE based on the literature (Beven and Freer, 2001). The NSE 

value ranges from −∞ to 1, with 1 representing a perfect fit. Uniform distribution is 

selected owing to its simplicity and the lack of a prior distribution of a parameter. The 
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drawback of a typical GLUE method is its expensive computational burden imposed 

by its random sampling strategy. Hence in this study, an improved sampling method 

was introduced by combing Latin hypercube sampling with GLUE. Therefore, a large 

number of sampling sets (10,000 times) for SWAT model and (1,000 times) for 

SWAT-MODFLOW were conducted. 

 

In this chapter, the standalone SWAT and the coupled SWAT-MODFLOW models 

are evaluated with different parameter sample sets for the prediction of daily river 

flow. Sensitivity indexes, as well as the convergence of them, are then analysed. The 

uncertainty bands based on the GLUE analysis are then produced and compared for 

both the standalone model as well as the coupled model.  

 

7.5. Results and discussion 

7.5.1. Uncertainty of parameters 

The SWAT model for the Alyn River basin is previously created, calibrated and 

validated based on daily observed river flow (refers to chapter 3, section 3-5) at Pont-

y-Capel river gauge station (see Table 3-5 in chapter 3). The SWAT model is 

thoroughly calibrated and validated using the SUFI2 algorithm. Meanwhile, a 

groundwater flow model is constructed using MODFLOW.NWT version (refers to 

chapter 6, section 6.2.3). A total number of 15 parameters are used in the calibration 

of SWAT (Table 3-6 in chapter 3) and 2 parameters in MODFLOW. Then, calibrated 

models are coupled. 

 

In this chapter, parameters uncertainty is investigated for the most sensitive 

parameters of the SWAT standalone and the coupled SWAT-MODFLOW over the 

period of 1995-2000 using the SAFE toolbox as illustrated in Table 7-1. The runs are 

designed to make for every parameter (or group HRU for the same parameters) 

separately and to create dotty plots for the SWAT and the coupled SWAT-

MODFLOW. Then parameters are grouped into a single run for both SWAT 

standalone and coupling SWAT-MODFLOW and combined the run with Elementary 
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Effect Test (EET) and Generalized Likelihood Uncertainty Estimation (GLUE) 

methods for further investigation of parameters uncertainty. The combination of 

parameters as well as the rate of change is demonstrated in Table 7-2. 

 

Table 7-1: SWAT and SWAT-MODFLOW model parameters 

Model Parameters Mode of change Range of change 

S
W

A
T

 CN2.mgt Relative -25 % to +25 % 

ESCO.hru Relative -25 % to +25 % 

S
W

A
T

-

M
O

D
F

L
O

W
 CN2.mgt Relative -25 % to +25 % 

k.upw Relative -25 % to +25 % 

Conductance.riv Relative -25 % to +25 % 

 

Parameters uncertainty are examined over the 82 HRUs of SWAT model and the 

distributed groundwater parameters of MODFLOW such as the horizontal hydraulic 

conductivity and the river conductance. Figure 7-2 and 7-4 demonstrate the variation 

of the goodness of fit (i.e. NSE and PBIAS) for the Alyn River watershed as a 

function of variation of parameters considered in this study (2 parameters for the 

SWAT standalone and 3 for the coupled SWAT-MODFLOW respectively). 

 

Table 7-2: Combined parameters for SWAT and coupling SWAT-MODFLOW 

Model Parameters Mode of change Range of change 

S
W

A
T

 

CN2.mgt 

(HRU74) 

Relative -30 % to +50 % 

ESCO.hru 

(HRU74) 

Relative -75 % to +40 % 

S
W

A
T

-M
O

D
F

L
O

W
 CN2.mgt 

(HRU74) 

Relative -30 % to +50 % 

k.upw Relative -50 % to +50 % 

ESCO.hru 

(HRU74) 

Relative -75 % to +40 % 

Conductance.riv Relative -50 % to +50 % 
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By discerning scatter plots for SWAT model (Fig. 7-2), it is noticeable that the 

primary sources of streamflow uncertainty are due to 2 parameters curve number 

(CN2) and soil evaporation compensation factor (ESCO). Seemingly, CN2 and ESCO 

for HRU 74 (black regions in Fig. 7-3) are the most identifiable parameters for the 

study River basin as can be seen in Figs. 7-2b and 7-2d. This could be explained by 

the fact HRU 74 has a larger area within the study basin.  

 

 

Fig. 7-2 The scatter plot map for streamflow simulation of SWAT model 

 

For the other HRUs, the existence of multiple peaks in the Nash-Sutcliffe coefficient 

for CN2 and Percent of bias of ESCO indicated that estimation of these parameters 

might not be feasible as revealed in Figs. 7-2a and 7-2c. The coupled SWAT-
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MODFLOW shares the same features with respect to the CN2 parameters as from the 

standalone SWAT simulations, as demonstrated in Figs. 7-4a (other HRUs) and 7-4b 

(HRU 74). 

 

 

Fig. 7-3 Location of HRU 74 with Alyn River Basin 

 

It is worthy to mention that non-identifiability of a parameter does not mean that the 

model is not sensitive to these parameters. Lenhart et al. (2002) point out that CN2 is 

deemed as the primary source of uncertainty while dealing with streamflow 

simulation. This study points out that for both the standalone SWAT model and the 

coupled SWAT-MODFLOW that CN2 demonstrated non-identifiability in the stream 

flow simulation. There are two similar studies carried out on the SWAT model only 

such as Kannan et al. (2007) and Shen et al. (2012). The likely reason would be that 

there is an explicit provision in the SWAT model to update the CN2 value for each 

day of simulation based on available soil moisture content (Shen et al., 2012). 

Accordingly, a change of CN2 will not significantly influence water balance 

components. 

 

The estimation of non-identifiable parameters (CN2 for SWAT and coupled SWAT-

MODFLOW) and ESCO for SWAT model for Alyn River basin will be difficult since 

there might be many combinations of these parameters that would produce a similar 
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model performance. For the other parameters of coupled SWAT-MODFLOW, 

horizontal permeability (kMODFLOW) and river conductance are identifiable parameters 

in the study basin as can be seen in Figs. 7-4c, 7-4d, 7-4e and 7-4f. This could be 

explicated by the fact that kMODFLOW and river conductance represented soil 

characteristics of the coupled SWAT-MODFLOW. Consequently, an increase in these 

parameters would cause an increase in the estimate of surface runoff and baseflow. 

 

 

Fig. 7-4 The scatter plot map for streamflow simulation of the coupled SWAT-

MODFLOW 
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7.5.2. Parameters uncertainty using the EET method 

In this section, results of the screening threshold and the convergence study are 

investigated. Figures 7-5 and 7-6 reveal for the average of Elementary Effects versus 

their standard deviation with confidence bounds and the evolution of the sensitivity 

indices increasing numbers of model evaluations.  

 

 

a. SWAT 

 

b. SWAT-MODFLOW 

Fig. 7-5 Average of Elementary Effects against their standard deviation with 

confidence bounds from bootstrapping 
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Figures 7-6 demonstrates the order of the most sensitive parameters using the EET 

method for the SWAT (Fig. 7-6a) and the coupled SWAT-MODFLOW (Fig. 7-6b). 

The ranking by this method identifies the most sensitive parameter for SWAT model 

is CN2 as revealed in Figs. 7-5a and 7-6a and ESCO is the less sensitive one. 

Meanwhile, for the coupled SWAT-MODFLOW, CN2 and MODFLOWk (k.upw) are 

the most sensitive parameters as shown in Figs. 7-5b and 7-6b and the less sensitive 

are ESCO and MODFLOWriv (conductance.riv). 

 

 

a. SWAT 

 

b. SWAT-MODFLOW 

Fig. 7-6 Convergence plots of the sensitivity indices of the model parameters for the 

SWAT and the coupled SWAT-MODFLOW using Elementary Effect Test (EET). 

The solid lines are the bootstrap means of the sensitivity indices and the dashed lines 

are the 95% bootstrap confidence intervals. 
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Noticeably, for SWAT-MODFLOW, the two most sensitive parameters (CN2 and 

MODFLOWk) separate out whereas other parameters have very close values of the 

sensitivity indices. Slight fluctuations in parameters that have a relatively high 

sensitivity index values can lead to substantial differences in ranking. The 

convergence rate for the ranking seems to be governed by the specific study area and 

on the relative importance of the sensitivity indices among the different parameters. 

For instance, the coupled SWAT-MODFLOW (Fig. 7-6b), the sensitivity indices of 

the two most dominant parameters are knowingly higher than others, whereas for the 

SWAT model (Fig. 7-6a) they are more evenly spread. Accordingly, the ranking of 

the most significant parameters stabilises faster for the coupling SWAT-MODFLOW 

than for SWAT standalone. 

 

7.5.3. Parameters uncertainty using GLUE method 

In this section, the SWAT model and the coupled SWAT-MODFLOW simulations 

with likelihood value below the threshold value of the parameters are considered to be 

2 m3/s. whereas, the likelihood value higher than the threshold value are normalised 

and sorted according to the river flow simulation. The selection range of the 

parameters for the SWAT standalone and the coupled SWAT-MODFLOW is 

subjectively defined in Table 7-2.  

 

The scatter plots representing the behavioural responses of all parameters of SWAT 

and SWAT-MODFLOW as shown in Figure 7-7. The parameter distributions and the 

sharp peak can evaluate the sensitivity of parameters. Here, CN2 (SCS curve number) 

has revealed small variability in relation to the highest likelihood with clear peak 

subsequent into highly sensitive parameters for both the SWAT and the coupled 

SWAT-MODFLOW. In Alyn River basin, CN2 is the most sensitive parameter 

obtained followed by ESCO for SWAT and MODFLOWk for SWAT-MODFLOW as 

illustrated in Figs 7-7a (SWAT) and 7-7b (SWAT-MODFLOW). The parameters 

ESCO and MODFLOWriv in SWAT-MODFLOW are less capable of obtaining 

information due to the structural scantiness of the variable.  
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a. SWAT 

 

b. SWAT-MODFLOW 

 

Fig. 7-7 Scatter plots of parameters for the SWAT and the coupled SWAT-

MODFLOW using GLUE method 

 

Simulated and measured streamflow for the water year of 1997 is shown in the plot 

for better understanding as in Fig. 7-8. The trend and peaks of the observed flow are 

agreeably followed by the simulated flow in the given plot.  
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Fig. 7-8 Streamflow prediction limits against observations by GLUE method at Pont-

y-Capel for Alyn River basin for the water year of 1997 

 

7.6. Summary 

In this chapter, parameters uncertainty are studied for the most sensitive parameters 

for the SWAT and the coupled SWAT-MODFLOW for the period of 1995-2000 in 

Alyn River basin using the SAFE toolbox. The runs are created to make for every 

single parameter (or group HRU for the same parameter) separately and construct 

dotty plots for the SWAT standalone and the coupled SWAT-MODFLOW. Then 

parameters are grouped into a single run for both the SWAT and the coupled SWAT-

MODFLOW and combined with Elementary Effect Test (Morris method) and GLUE 

methods for further analysis of parameters uncertainty. A total number of 10,000 

simulations for SWAT model and 1,000 simulations with the coupled SWAT-

MODFLOW. 

 

Several important points can be concluded: 

1) Model sensitivities and uncertainties towards the input parameters are the key 

base of model development and improvement which can solve the problems 

associated with water resources planning and management; 

2) Since parameter uncertainty was only capable of quantifying a small part of whole 

uncertainty in the models, this study suggests further studies prerequisite on model 

structure. 
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3) The term parameters ‘equifinality’ exhibited there is no unique parameter 

estimation for some parameters in this study, and therefore uncertainty in the 

appraised parameters in the study basin is recognisable. This result agreed well 

with some other studies as aforementioned previously.  

4) The likely reason for ‘equifinality’ is because parameters obtained from the 

calibration process were influenced by some other causes such as sensitivity or 

insensitivity in parameters and correlations amongst parameters. 

5) This chapter describes a recent effort to investigate parameters uncertainties for 

the integrated surface-groundwater model (SWAT-MODFLOW) on the 

hydrological modelling output. What distinguishes this study from others is it is 

the first time that modeller is able to run uncertainty analysis of the coupled 

(SWAT-MODFLOW) in a single platform.  

6) This study also explores the feasibility of run parameters uncertainty of a large 

number of parameters (distributed-based of a single parameter). The change of the 

distributed value of parameters concurrently (i.e. all HRUs and/or grid) for the 

coupled SWAT-MODFLOW is a computationally intensive process, especially 

for a large river basin. This rise the need for a parallel computing or High-

performance computing HPC to adjust all parameters simultaneously with less 

computational time at a single platform. 

 

Indeed, more studies are needed concerning the issues found in this study, which 

include but are not limited to: 

1) Because of a long time of the coupled SWAT-MODFLOW, only 1,000 

simulations is considered. Therefore, it is suggested to create more runs with 

10,000 and larger; 

2) In this study, only one ranking/screening method is used (EET method) to 

rank the most sensitive parameters. More technique of ranking and screening 

might utilise for the comparison; and 

3) More parameters need to be combined and analysed with GLUE and with 

different screening methods 
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Chapter 8: The Reliability of Climate Projections in the 

Concept of Driving Models 

Study of climate change impact on hydrological events, such as floods and droughts 

for the water resource management, has become increasingly relying on the use of 

climate projections produced by climate models. One of the immediate concerns is 

their accuracy when compared with historically observed data; hence various bias 

correction methods have been developed. However, the coherence between 

projections and observations, in terms of their statistical properties, has not yet been 

fully explored. The ability of climate models regarding reproducing the observed 

changes and trends of main hydrological variables needs to be carefully scrutinised. 

 

In this chapter, a total number of 18 climate projections datasets from the CMIP5 

project as well as the observed datasets of precipitation in a large study area (Iraq) to 

include more pixel of climate variable are selected. Overall, 65 years (1941-2005) of 

the data collected from 30 rain gauges’ stations have been investigated. The Mann 

Kendall test is used to evaluate the strength and the significance of the trends (if any) 

in both the simulations and the observations. Furthermore, several exploratory 

techniques including relative standard deviation p-p plot and Cullen and Frey graph 

are used to identify the similarity (or disagreement) in data distribution drawn from 

both datasets. 

 

These findings cast doubts over the reliability of using the projected precipitation 

directly as the forcing field for conducting impact studies on hydrological processes 

due to climate change. It is also suggested that more case studies with more datasets 

need to be carried out to consolidate the findings and gain insight into developing new 

methodology in this area. 

 

8.1. Introduction 

Studying precipitation trend is an essential step in assessing climate change impact on 

hydrological processes. A substantial change of precipitation can lead to a more 

severe condition of flooding and drought. It is also important to examine such trends 
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for water resources planners since they may affect water demand and hence strategies 

and operations for water supply. 

 

While the trend of recorded observations of hydrological variables such as 

precipitation has been widely studied using long-term observation dataset (e.g., Zhao 

et al., 2014); scenario-based climate projections are still a preferred source for most 

(if not all) studies on future trend linked to climate change. More recently, the Fifth 

Climate Model Inter-comparison Project CMIP5 (Meinshausen et al., 2011) has 

published a rich set of climate simulations produced by several large metrological 

centres in the world, which offers an updated, improved (both accuracy and 

resolution) collection of climate model outputs to many downstream impact studies, 

e.g., (Ficklin et al., 2013; Chattopadhyay and Jha, 2016; Jin and Sridhar, 2011; 

Chattopadhyay, 2014; Abdo et al., 2009). 

 

The post-industrial period, particularly for the 20th century, has been the main focus of 

many studies on the trend of climatic variables, by and large motivated to establish 

the link between the so-called anthropogenic greenhouse effect with the change of 

climate as indicated by the key variables. Moreover, the so-called baseline periods are 

chosen by many studies as observations records started to become abundant.  

 

The areas studied ranges from global to regional scale. To name just a few: New et al. 

(2001) show that precipitation has significantly changed in various part of the world 

during the 20th century. Xu et al. (2005) and Griggs and Noguer (2002) point out that 

mean annual precipitation during the 20th century considerably increased by (7-12) % 

in the high and middle latitude (30°-85°) in the northern hemisphere. Philandras et al. 

(2011) investigate precipitation for a long-term 1901-2009 in the Mediterranean area, 

where general negative trends were detected. Bocheva et al. (2009) studied extreme 

rainfall over 40 years (1961-2005) in Bulgaria, and found that extreme events became 

more frequent during last 15 years of the period, compared with less frequent 

occurrences of a moderate and weak event. 

 

Over the years, various statistical techniques have been developed to detect the trend 

and the shift of such in climatological variables, as reported in Martinez et al. (2012) 
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and Tabari et al. (2011). There is two leading families of methods: parametric and 

non-parametric test of trends. Usually, non-parametric methods are preferred over the 

parametric one (Sonali and Nagesh, 2013) because they are less affected by outliers 

and do not assume a predefined distribution for the dataset or homogeneity. 

 

The non-parametric Mann–Kendall (MK) statistical test (Mann, 1945; Kendall, 1975) 

has frequently been used to quantify the significance of trends in precipitation time 

series (Martinez et al., 2012; Modarres and Silva, 2007; Modarres and Sarhadi, 2009; 

Tabari et al., 2011). One of the drawbacks of the Mann-Kendall test is that it does not 

reveal the magnitude of slope (of the trend). That led to the development of another 

non-parametric test – the Theil-Sen slope technique (Sayemuzzaman and Jha, 2014) 

which is initially established by Theil (1950) and Sen (1968). This approach gives a 

more robust estimation of the slope than the least square methods as it is insensitive to 

extreme values and outliers (Hirsch et al., 1982; Breidt, 2005). Additionally, there are 

also fewer implicit assumptions about the data structure considering them robust 

against departures from normality (Hirsch and Helsel, 1992). 

 

Compared with those studies, there is hardly any in the literature focusing on the trend 

analysis of those variables in future; most studies, however, used “snapshots” from 

climate projections to indicate the difference (hence change) between the projected 

variable and its current property, without revealing the process (the temporal trend) 

associated with such change. On the other hand, researchers tend to use the projected, 

scenario-defined variable, notably precipitation to drive other (hydrological) models 

for the impact study. The errors or biases in these simulated variables have been 

widely recognised in this kind of applications. Sophisticated bias correction methods 

have also been developed to cope with this situation. But again, rarely any attention is 

put on the trend of those simulated variables either with or without bias correction. 

 

In this chapter, it is argued that: 

1) The ability of climate model in reproducing the observed trend in the baseline 

is at least as necessary as that for accuracy in the simulation. As such, such 

ability needs to be verified (improved where possible) before any other 

application make use of it to study future impact; 
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2) The trend analysis of the projected variable from a well-performed climate 

model in capturing observed trend should be able to offer more insights into 

the changes of the variable in future; and 

3) This combined trend analysis can be used as an objective index to measure 

whether a climate model projection is more statistically reliable along with the 

conventional accuracy measurement.  

 

8.2. Study area 

The climate projections from the CMIP5 project have a spatial resolution of 1 degree 

1 degree (≈ 100 km) and coarser. For this reason, a larger study area, Iraq, is selected 

to include many rain gauges and perform the comparison. Iraq is located in the 

southwest of the Asian continent and shares boundaries with each Syria and Jordan 

from the west, Turkey from the north, Iran from the east, and Saudi Arabia and 

Kuwait from the south (Fig. 8-1). Iraq comprises a total area of 437,065 km2.  

 

The climate in Iraq is mainly of the continental, subtropical semi-arid type, with the 

north and north-eastern mountainous regions having a Mediterranean climate (FAO, 

2003). Rainfall is very seasonal and occurs in the winter from December to February, 

except in the north and northeast of the country, where the rainy season is from 

November to April. Iraq’s elevation reduces from the north and the northeast where 

the mountains are near the Turkish and Iranian borders (3,450 m) to the west and 

south where the desert near Saudi Arabia and Syrian borders (few meters). 

 

The average annual rainfall is estimated to be 216 mm but ranges from 1,200 mm in 

the northeast to less than 100 mm over 60 per cent of the country in the south (FAO, 

2003). Winters are cool to cold, with a day temperature of about 16 °C dropping at 

night to 2 °C with a possibility of frost. Summers are dry and hot to extremely hot, 

with a shade temperature of over 43 °C during July and August, yet dropping at night 

to 26 °C (Ajaaj et al., 2016). 
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Fig. 8-1 Elevation map of Iraq with climatic zones 

 

Iraq can be divided into four agro-ecological zones (FAO, 2003): 

1) Arid and semi-arid zones with a Mediterranean climate (Zone 1 in Fig. 8-1): 

Annual precipitation varies between 700-1000 mm and occurs between 

October and April. The weather has cold and rainy winters, while summers are 

hot and dry even torrid up to quite high altitudes. This zone covers mainly the 

northern region, mountains of Iraqi Kurdistan (Zagros and Taurus). This is the 

only region in Iraq that receives a considerable amount of precipitation; 

2) Steppes with winter rainfall of 200–400 mm annually (Zone 2 in Fig. 8-1): 

Summers are extremely hot and winters cold. The climate is arid, but in the 

cold half of the year, for a few months, some depressions can pass, bringing 

moderate rainfall. This zone is located between the Mediterranean zone and 

the desert zone; 

3) The desert zone/ North-west of Mesopotamia (Zone 3 in Fig. 8-1): with 

extreme summer temperatures and less than 200 mm of rainfall annually. the 

climate is desert, quite cold in winter, with frequent frosts, and hot in summer; 

and 
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4) The irrigated area which extends between the Tigris and Euphrates rivers 

(Zone 4 in Fig. 8-1): The climate is desert or semi-desert, with mild winters, 

which becomes progressively warmer as you head south; summers are 

extremely hot. This area extends from the north of Baghdad to Basra in the 

south.  

 

Table 8-1: Iraqi rain gauges’ stations used in this study 

Station 
Station 

ID 
Lat. Lon. 

Altitude 

(m) 
Station 

Station 

ID 
Lat. Long. 

Altitude 

(m) 

Sinjar R1 36.32° 41.83° 583 Diwaniya R16 31.95° 44.95° 20 

Telaefer R2 36.37° 42.48° 373 Ramadi R17 33.45° 43.32° 48 

Najaf R3 31.95° 44.32° 53 Tuz R18 34.88° 44.65° 220 

Qaim R4 34.38° 41.02° 178 Samaraa R19 34.18° 43.88° 75 

Anah R5 34.37° 41.95° 175 Amara R20 31.83° 47.17° 9 

Nukheb R6 32.03° 42.28° 305 Mosul R21 36.31° 43.15° 223 

Hai R7 32.13° 46.03° 17 Rutba R22 33.03° 40.28° 222 

Semawa R8 31.27° 45.27° 11 Tikrit R23 34.57° 43.70° 107 

Heet R9 33.63° 42.75° 58 Biji R24 34.90° 43.53° 116 

Rabiah R10 36.80° 42.10° 382 Haditha R25 34.13° 42.35° 108 

Hella R11 32.45° 44.45° 27 Fao R26 29.98° 48.50° 1 

Baghdad R12 33.30° 44.40° 32 Khanaqin R27 34.21° 45.23° 202 

Nasiriya R13 31.02° 46.23° 5 Basra R28 30.50° 47.83° 2 

Kut R14 32.49° 45.75° 21 
Ali 

AlGharbi 
R29 32.46° 46.68° 13 

Kirkuk R15 35.47° 44.35° 331 Karbalaa R30 32.61° 44.01° 29 

 

8.3. Data 

Monthly Precipitation data from 30 rain gauges over the period of 1941-2005 are 

collected and obtained from the General Organisation of Meteorology and Seismic 

Monitoring in Iraq are illustrated in Fig. 8-1 and Table 8-1. The missing datasets are 

filled using inverse distance weighted interpolation method (IDW). The Statistical 

summary of annual precipitation is illustrated in Fig. 8-2 for zones 2, 3 and 4. Yearly 

rainfall for zone 2 ranges from 35 to 700 mm with the average of (~300 mm) for the 
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period of 1941-2005.Whereas, for zone 3 and 4 the range is 3-347 mm/year and 

average of (~127 mm/year). 

  

 

Fig. 8-2 Box plot of annual observed precipitation in Iraq 

 

The average precipitation is obtained using the Thiessen polygon method based on 30 

rain gauges as illustrated in Fig.8-3. Additionally, the boxplot of average rainfall in 

Iraq for seven decadal periods is examined as follow: 1941-1950, 1951-1960, 1961-

1970, 1971-1980, 1981-1990, 1991-2000 and 2001-2005. The boxplot in Fig. 8-4 is 

used to investigate the annual and seasonal patterns [winter (combination of 

December, January and February DJF)], Spring [sum of March, April and May 

(MAM)] and Autumn [sum of September, October and November (SON)] of average 

precipitation obtained from 30 stations based on 7 temporal bands defined previously.  
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Fig. 8-3 Thiessen polygon for observed rainfall in Iraq 

 

Fig.8-4 Box plots of average precipitation in Iraq for different temporal bands for 

period 1941-2005  
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It can be seen in Fig. 8-4 that the pattern of rainfall changes at different temporal 

bands and seasons.  

 

Table 8-2: The CMIP5 monthly models used in this study 

Model Institution 

Spatial 

Resolution (Lat. 

˟ Long.) 

MRI-CGCM3 Meteorological Research Institute, Japan (MRI) 1.125° X 1.125° 

MIROC5 
National Institute for Environmental Studies and Japan 

Agency for Marine-Earth Science and Technology 

(MIROC) 

1.4° X 1.4° 

MIROC-ESM 1.7° X 2.8° 

MIROC-ESM-

CHEN 
1.7° X 2.8° 

CCSM4 National Centre for Atmospheric Research, USA (NCAR) 0.94° X 1.25° 

BCC-CSM1.1 Beijing Climate Centre, China Meteorological 

Administration (BCC) 

2.7° X 2.8° 

BCC-CSM1.1-m 2.7° X 2.8° 

CSIRO-Mk3-6-0 
Commonwealth Scientific and Industrial Research 

Organization (CSIRO), Australia (CSIRO-QCCCE) 
1.86° X 1.87° 

IPSL-CM5A-LR 
Institute Pierre-Simon Laplace, France (IPSL) 

1.89° X 3.75° 

IPSL-CM5A-MR 1.26° X 2.5° 

HadGEM2-ES 
Met Office Hadley Centre, UK (MOHC) 

1.25° X 1.875° 

HadGEM2-AO 1.25° X 1.875° 

GISS-E2-H National Aeronautics and Space Administration Goddard 

Institute for Space Studies (NASA-GISS) 

2° X 2.5° 

GISS-E2-R 2° X 2.5° 

NorESM1-M 
Norwegian Climate Centre (NCC) 

1.9° X 2.5° 

NorESM1-ME 1.9° X 2.5° 

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA  

(NOAA-GFDL) 

2.5° X 2° 

GFDL-ESM2M 2.5° X 2° 

 

The Coupled Model Inter-Comparison Phase five CMIP5 experiments consist of a 

number of numerical climate model’s simulations with various constraints such as 

land-use changes, environmental pollution and volcanic emissions. CMIP5 

(Meinshausen et al., 2011) are divided into two major components:  

1) Long-term experiments (century and longer); and 

2) Near-term experiments (decadal prediction).  
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Twenty-eight centres in the world are providing CMIP5 climate model outputs with 

different sets of model outputs near and extended future scenarios and different 

groups of spatial and temporal resolution. In this study, a total number of 18 models 

from CMIP5 based on long-term scenarios are used. There are four main scenarios of 

future climate data: RCPs 2.6, RCPs 4.5, RCPs 6.0 and RCPs 8.5 (Meinshausen et al., 

2011). Detailed information of the CMIP5 models used in this study is described in 

Table 8-2. 

 

8.4. Methods 

8.4.1. The goodness of fit tests (GOF) 

In this chapter, five statistical GOF tests are used to evaluate the selected model 

simulations of CMIP5 against observed precipitation based on monthly time series for 

the period of 1941-2005. The criteria used for the evaluation are:  

 

1) Mean Error (ME) which can be determined as follow: 

 

 𝑀𝐸 =
1

𝑛
∑(𝑝𝑠,𝑡 − 𝑝𝑜,𝑡)

𝑛

𝑖=1

 (8-1) 

 

where 𝑝𝑜,𝑡 is the observed rainfall at time t and 𝑝𝑠,𝑡 is the simulated rainfall at time t. 

2) Mean Absolute Error (MAE) that can be computed as: 

 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑝𝑠,𝑡 − 𝑝𝑜,𝑡|

𝑛

𝑖=1

 (8-2) 

 

3) Root Mean Square Error (RMSE) that can be calculated as: 
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 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑠,𝑡 − 𝑝𝑜,𝑡)2
𝑛

𝑖=1

 (8-3) 

 

4) Correlation Coefficient (r): This can measure the linear relationship between two 

time series variables. This value ranges from -1 which indicates a perfect negative 

correction to 0 which is there is no correlation at all, and to 1 (perfect positive 

relationship). It can be computed as follow: 

 

 𝑟 =
∑ (𝑝𝑜,𝑡 − 𝑝𝑜̅̅ ̅)(𝑝𝑠,𝑡 − 𝑝𝑠̅)
𝑇
𝑡=1

∑ [(𝑝𝑜,𝑡 − 𝑝𝑜̅̅ ̅)2]
0.5𝑇

𝑡=1 ∑ [(𝑝𝑠,𝑡 − 𝑝𝑠̅)2]
0.5𝑇

𝑡=1

 (8-4) 

 

5) Fit Probability Distributions: It is imperative to know the underlining distributions 

of both observations and simulated data. It serves two purposes:  

a) To see if the two data sets are statistically consistent; and  

b) To identify any changes in the probability distribution of simulated 

data for future. 

 

The Skewness-kurtosis graph technique is applied to select the most suitable 

distribution type to fit the data set. The detail of this method can be referred to Cullen 

and Frey (1999). This method makes use of skewness versus kurtosis graph to check 

the similarity between the samples (observed and simulated data) and those from a 

predefined set of distributions, by showing the location calculated from the samples 

on the graph whose background is failed with those curves generated from the 

predefined distributions. 

 

Other commonly used techniques such as probability-probability (P-P) plot, quantile-

quantile (Q-Q) plot, density plot and Cumulative Distribution Functions CDFs are 

also used to measure the goodness of fit of the select distribution. In this study, eight 

predefined probability distributions are considered including beta, uniform, 

exponential, gamma, logistic, log-normal, normal and Weibull distributions. An R 

package ‘fitdistrplus’ (Delignette-Muller and Dutang, 2014) is employed to analyse 

both the observed and selected CMIP5 models. 
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8.4.2. Bias correction: quantile mapping 

The bias correction of the quantile is applied for the best-selected models from 

CMIP5 models based goodness of fit criteria mentioned in section 8.4.1. Many studies 

such as Maraun (2013) and Eden et al. (2012) have found that climate projection 

simulation from Global Climate Models (GCMs) often come with substantial amount 

uncertainties as well as biases and errors. Undoubtedly, the confidence in the direct 

use of GCMs simulations has been adversely affected such that no reliable 

conclusions can be drawn using uncorrected GCMs simulation data. However, 

sophisticated bias and error correction of GCMs data have gone beyond the scope of 

this study. The simple Quantile Mapping (Maraun et al., 2010) technique is used to 

adjust the climate data over the baseline period and then apply the same Quantile 

Mapping model to study the trend using both corrected and uncorrected GCMs. 

 

Quantile mapping is a bias correction technique which the modelled variable is 

changed through equating the cumulative distribution functions CDFs of both 

observation and simulated dataset. For that matter, the following transform function is 

implemented:  

 

 𝑋̂𝑚,𝑝 = 𝐹𝑜,ℎ
−1 {𝐹𝑚,ℎ [𝑋𝑚,𝑝(𝑡)]} (8-5) 

 

where 𝐹𝑜,ℎ and 𝐹𝑚,ℎ are cumulative distribution functions of both the observed and 

the simulated time series, 𝑋𝑚,𝑝 (𝑡) is the modelled variable at time (t). Typically, the 

quantile mapping algorithm is presented through quantile-quantile (Q-Q) plot (e.g. 

scatter plot between empirical quantile of simulated and observed data if the CDF 

(simulated data) and inverse CDF (observed data) will be empirically projected from 

the data.  

 

Similar to all statistical bias correction approaches, the quantile mapping method 

presumes that the climate model’s biases are stationary for both the historical and the 

future scenarios. In other words, the correction of data for the historical period can be 
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utilised for the future period. Further information about this method of bias correction 

can be found in Maraun et al. (2010). Practically, quantile mapping is implemented 

through fitting parametric transformations to the quantile-quantile relation of 

observation and modelled dataset, and then the transformation is employed to adjust 

the distribution of the climate model data to match the distribution of the observed 

data. 

 

8.4.3. Mann Kendall trend test (MK) 

The non-parametric trend test, Mann-Kendall (Mann, 1945; Kendall, 1975) is 

extensively used in hydrology and climatology to investigate significance slope or 

trend since it is simple and its robustness. Let considering X= (x1, x2, x3…, xn) is a 

time series dataset, the Mann-Kendall statistics S can be computed as follow: 

 

 𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗−𝑖+1

𝑛−1

𝑖=1

 (8-6) 

where: 

 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

+1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0

 0 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0 

−1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

 (8-7) 

 

The variance for the Mann- Kendall trend test can be calculated as follow:  

 

 Var𝑠 =
1

18
 [𝑛𝑖(𝑛𝑖 − 1)(2𝑛𝑖 + 5) − ∑ 𝑡𝑖𝑝(𝑡𝑖𝑝 − 1)(2𝑡𝑖𝑝 + 5)

𝑔𝑖

𝑝=1

] 

 

 

(8-8) 

 

where: 

𝑛𝑖: is the number of data points 

  : is the number of tied groups for the   month  

 : is the number of data in the   group for the   month. 
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Correspondingly, the 𝑍 statistic is defined in the equation: 

 

 𝑍 =

{
 
 

 
 
𝑆 − 1

√𝑉𝑎𝑟𝑠
 𝑖𝑓 𝑆 > 0

 0 𝑖𝑓 𝑆 = 0 
𝑆 + 1

√𝑉𝑎𝑟𝑠
 𝑖𝑓 𝑆 < 0

 (8-9) 

 

It can be revealed that following the Null Hypothesis (no trend) H0 that S will be 

following in normal distribution and thus, this can be used to test the hypothesis with 

a certain confidence level of α/2. The overall projected trend slope β which is Theil-

Sen slope (Sen, 1968; Theil, 1950) for measured dataset Y over time X. The individual 

slope estimator is calculated as follow: 

 𝑄𝑖 =
𝑌𝑗 − 𝑌𝑖

𝑋𝑗 − 𝑋𝑖
 (8-10) 

 

The Mann-Kendall trend test will be carried out using ‘rkt’ package (Marchetto, 

2015) in R statistical programme. 

 

8.5. Results and discussion 

8.5.1. Statistical comparison of the observed and the modelled 

precipitations 

The technique of Skewness-kurtosis graph (Cullen and Frey plot) is employed to 

check whether the areal average of observed and modelled precipitation over Iraq are 

from the same family of the probability distribution. The monthly time series of the 

observations and the 18 models of CMIP5 are evaluated against eight theoretical 

distributions.  
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Fig. 8-5 Cullen and Frey graph of areal average monthly precipitation for the 

observations 

 

As it can be seen in Fig. 8-5, the observed rainfall lies within the region of beta 

distribution. Further assessment of the suitability of the observed precipitation to beta 

is conducted using Q-Q plot, p-p plot, empirical, theoretical densities and cumulative 

density function CDFs as in Fig. 8-6. The results show that observation fits well into 

beta distribution. The 18 models of CMIP5 are evaluated based on ME, MAE, RMSE, 

r and fit theoretical distribution for monthly areal average rainfall of Iraq as illustrated 

in table 8-3. The comparison reveals that bcc-csm1-1, bcc-csm1-1-m, CCSM4, 

MIROC5 and MRI-CGCM3 models have a relatively better representation of rainfall 

than other models. 

 

The cumulative rainfall for the areal average was calculated in Iraq from the annual 

rainfall for the observations and simulated results of CMIP5 as shown in Fig. 8-7. The 
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comparison reveals that the models of MRI-CGCM3, CCM4 and MIROC5 have a 

better qualitative estimation than others models as illustrated in Fig. 8-7 and the 

statistical comparison in Table (8-3) also supports this claim. 

 

 

Fig. 8-6 Goodness of fit of the observed monthly areal average precipitation over Iraq 

for the beta distribution 

 

The technique of quantile mapping QM is conducted on the monthly rainfall time 

series of the five selected models bcc-csm-1-1, bcc-csm-1-1-m, CCM4, MIROC5 and 

MRI-CGCM3. For every location of rain gauges (30 stations), the monthly 

precipitation is corrected where QM is carried out where January data of simulated 

rainfall is corrected against observation of January, February against February and so 

on. 
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Table 8-3: GOFs of CMIP5 monthly areal average rainfall models against observed one 
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Fit Theoretical Distribution 

Beta Beta Beta ---- ---- ---- ---- Beta ---- ---- ---- ---- Beta Beta Beta Beta ---- ---- 

MAE 

12.80 9.98 12.19 12.02 10.34 12.97 13.49 14.82 14.46 12.41 10.82 10.76 11.49 14.59 14.25 12.35 12.03 12.03 

R 

0.38 0.48 0.34 0.25 0.41 0.17 0.38 0.28 0.41 0.40 0.39 0.41 0.42 0.30 0.37 0.33 0.30 0.30 

ME 

-2.70 4.86 0.39 5.28 6.01 6.77 -3.75 -4.95 -6.97 -2.71 4.75 6.96 0.35 -4.11 -4.41 0.07 1.87 1.92 

RMSE 

19.36 16.54 18.69 18.89 17.41 20.65 19.75 22.20 25.11 20.74 18.27 17.96 16.96 20.44 20.19 18.80 18.39 18.39 
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Fig. 8-7 Cumulative of the areal average of observed and modelled precipitation over 

Iraq 

 

Fig. 8-8 Density plots of the areal average of observed and modelled precipitation 

over Iraq after bias correction 
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The density plots of the areal average of the corrected modelled precipitation and the 

observation reveal that overlapped on each other as illustrated in Fig. 8-8. Moreover, 

the statistical parameters of the mean, median and standard deviation sd (as in Fig. 8-

8) shows that modelled and observed rainfall are close to each other. 

 

8.5.2. Trend analysis of average rainfall 

The trends of annual rainfall for the average condition are evaluated using the Mann 

Kendall test for the observed and the five selected models bcc-csm-1-1, bcc-csm-1-1-

m, CCM4, MIROC5 and MRI-CGCM3. The comparison of trends is conducted based 

on both point by point (as demonstrated in Figures 8-9, 8-10 and 8-11) and the areal 

average of the study area (Fig. 8-12). The point by point trend comparison at the 27 

locations shows that some models such as (bcc-csm-1-1, bcc-csm-1-1-m and CCM4) 

demonstrate the same trend direction (decrease trend) at 19 sites as revealed in Fig. 8-

9. Meanwhile, the MIROC5 model reveals the same trend direction (mixed of positive 

and negative trends), the MRI-CGCM3 model shows the same trend direction at 8 

locations as shown in Fig. 8-9. 

 

The comparison of the trend also is carried out based on the zones of the study area. 

Figure 8-10 shows the comparison of trend using Mann Kendall test for zone 2 for the 

observed and five selected models of CMIP5; it can be concluded most of the 

modelled rainfall demonstrate the same direction of the trend. Meanwhile, for zones 3 

and 4, four of the selected models of CMIP5 reveal the same trend direction as 

illustrated in Fig. 8-11. 
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Fig. 8-9 Spatial variation of the annual average rainfall trend using Mann Kendall test 

over Iraq for a) Observed, b) bcc-csm-1-1 model, c) bcc-csm-1-1-m model, d) CCM4 

model, e) MIROC5 model and f) MRI-CGCM3 model  
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Fig. 8-10 Linear trends of annual rainfall for the observed and simulated time 

series using the Mann Kendall trend test in zone 2 

 

Fig. 8-11 Linear trends of annual rainfall for the observed and simulated time 

series using the Mann Kendall trend test in zones 3 and 4 

 

Also, the areal average trend of the rainfall for the median condition shows that 

models of [bcc-csm-1-1, bcc-csm-1-1-m, CCM4 and MIROC5] demonstrate 

decrease trends, same as observed one. However, the MRI-CGCM3 model shows 

the opposite trend (positive). 



 

186 | P a g e  

 

Chapter 8: The Reliability of Climate Projections in the Concept of Driving Models 

 

Fig. 8-12 Linear trends of the annual areal average rainfall for the observed and 

simulated time series using the Mann Kendall trend test over Iraq 

 

The climate projection is the only source for the future climate data, and it's typically 

used with hydrological models for the long-term future prediction of water resources. 

Consequently, the trend of the precipitation from climate models for the long-term 

historical period is investigated and compared with observed one. This could be used 
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to see whether climate models it can reproduce the historical climate condition. This 

assessment needs long historical records of observed and modelled precipitation. The 

different lengths of precipitation records affect the evaluation and conclusion of the 

trend quantification. However, for climate change impact studies, long-term records 

are needed to give a rough estimation of increasing and/or decreasing trend. 

 

8.6. Summary 

Accurate and reliable climate projections are the key to trustworthy and dependable 

climate change impact studies on hydrological processes and water resource planning 

and management. This chapter examines whether climate projections can reliably 

reproduce the observed trend of precipitation. Thirty stations data over 65 years have 

been studied over Iraq. A total number of 18 models from CMIP5 project with 

different spatial resolution are used to represent the typical projected climate data in 

this study. A non-parametric trend test Mann Kendall method is employed to test the 

trends in both datasets, followed by another analysis of the underlying probability 

distributions.  

 

It can be concluded from the findings that the projected data of precipitation shows a 

persistently low performance with both substantial bias and very little correlation with 

the observed data. However, a certain agreement is also observed of the trend of 

annual precipitation regarding the direction (positive or negative) but not the value. 

This may occur due to the fact the rain itself is among the most difficult variables to 

simulate and its highly intermittent nature. Further, the preliminary analysis reveals 

that the observed appears to fit well with a beta type of probability distribution 

function PDF. For the modelled perception, 8 out of 18 models fit the same 

distribution. 

 

It is also clear that there is a need to extend this study so that more projections from 

different climate models can be included. Further, the large-scale difference as to the 

use of coarse spatial resolution model data at catchment scale can be a significant 

source of errors, especially, when variables such as precipitation have a much higher 
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spatial variability even within the catchment. In this regard, it may well be worth 

waiting until the resolution of climate models progress even finer to catchment scale, 

or probably more realistically, up-scaling the downstream model to reduce this scale 

gap to make the climate change impact study more reliable. Nevertheless, the findings 

of this study cast doubt over the practice of directly using projected precipitation for 

climate change impact study in hydrological processes. 
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Chapter 9 Climate Change Impact on Water Resources  

The primary objective of sustainable river basin management is to understand water 

resources systems and their types and relationships, e.g. groundwater, surface water, 

quantity and quality, biotic components, upstream and downstream interactions and 

human activities (physical flow control and water withdraw). Water resources 

management cannot be treated in separation; it is essential to consider with the 

performance of ecosystems simultaneously at different levels, and at different spatial 

and temporal scales. This often involves management and planning of water system at 

various local levels such as field, farm, and village and at regional levels such as 

catchments and river basins. 

 

The first classification of IWRM problems is the technique of solving the interaction 

between surface and groundwater systems as solving both systems simultaneously 

(i.e. integrated or coupled models) or individually. Realistically, the major challenges 

of the selection of modelling technique are that whether it is capable and whether it 

can bridge the existing gaps in some models. The other classification is dependent on 

the complexity of solving the governing equations of the model, and they are 

allocation (decision-making software) and simulation models with or without climate 

change impact scenarios. From IWRM perspective, the modelling of highly-regulated 

river basins is very challenging because the flow is frequently interfered by human 

activities, such as water withdrawal among various users. For this reason, it is 

essential to consider the coupling of simulation and allocation models to investigate 

such interaction with climate change impact.  

 

In this chapter, the calibrated SWAT model for the Dee River catchment (refer to 

chapter 3) is employed with climate data from the CMIP5 project (NCAR-CCSM4 

model) with four future scenarios (RCP26, RCP45, RCP60 and RCP85) from 2006 to 

2040. Then, the decision support tool, WEAP model (Water Evaluation and Planning 

software) is set-up, and the water supply data from SWAT model is used as the input 

for the river reach in the downstream of the Dee River. The coupling SWAT-WEAP 

is utilised to create various future scenarios of surface water abstraction of PWS in the 
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downstream (Maximum licensed withdraw, 50 % authorised abstractions and monthly 

time series with 1% annual increase of water use). 

 

9.1. Overview 

Climate change will probably influence on both surface and groundwater resources 

owing to the projected changes in evapotranspiration and rainfall and the spatial and 

temporal distribution of these key water balance components (Garner et al., 2017; 

Kirby et al., 2016). For instance, Trenberth (2011) pointed out that increasing 

intensities of rainfall will result in higher rates of surface runoff, decreased rates of 

groundwater recharge and an increased risk of flooding. 

 

The impact of climate change on water resources needs to be quantified from regional 

to basin scales with the purpose of facilitating water resources planning and 

management to cope with future challenges. Global climate models (GCMs) are 

frequently utilised to grasp the climate dynamics and projecting future climate 

change. These models can offer input for climate change impact studies on coarse 

spatial resolution (typically 100–300 km). Nevertheless, it is still too coarse for any 

basin or regional scale of climate change impact studies. 

 

The river basin (watershed) can be deemed as a suitable unit to perform analysis, 

planning of the challenges that confronting water resources. The looming climate 

change impact further worsens the situation with many studies showing that further 

climate can be more extreme, not only in the sense of more storms and flooding; it 

also means that the current arid areas will be subject to more severe droughts and 

water scarcity problems (Solomon, 2007). It is unsurprising that managing existing 

water resources has become a critical topic in many theoretical as well as practical 

studies (Jain and Singh, 2003). 

 

In a broad sense, computer models are utilised to access reservoir operation, water 

allocation, flood risk assessment, drought conditions, groundwater development, 

water quality, irrigation operation and forecasting and control of high water. There are 
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large numbers of software available to simulate problems water resources 

management, and it can be divided mainly into two groups, allocation (optimisation or 

decision-making system models) and simulation models (Loucks et al., 2005; Loucks, 

2008; Condon and Maxwell, 2013).  

 

 

Fig.9-1 Management strategies within simulation and allocation models (After Loucks 

et al., 2005) 

 

Simulation models address certain limitations of allocation models by solving 

physically based flow equations to offer spatially distributed water resources outputs 

for a number of parameters (runoff, water table elevation,…etc.) (Condon and 

Maxwell, 2013). Allocation (optimisation) models are frequently utilised in the 

applied problem of water resources management. These models optimise water 

allocation from various resources to meet a range of demands and what design and 

operating policy will best meet the identified objectives under a set of priorities and 

constraints (Loucks, 2008). The simulation and allocation models are discussed in 

chapter 2. Figure 9-1 demonstrates how the simulation and optimisation work with 

input, output data and operating policy and system design. 
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The primary objective of this chapter is to evaluate the impacts of the likely future 

water use for public water supply on the water resources in the downstream area of 

the Dee River watershed. The calibrated SWAT model (from chapter 3) is used 

together with climate projections from the CMIP5 project (NCAR-CCSM4 model) for 

four future scenarios of (RCP26, RCP45, RCP60 and RCP85) from 2006 to 2040. The 

simulated streamflow of SWAT model with CMIP5 model data is used as the input to 

WEAP model to create different scenarios of water use rate of surface water 

abstraction for the public water supply PWS in Chester city. 

 

For each future scenario, three scenarios of water use rate are considered: Maximum 

licensed abstraction, 50 % of maximum licensed abstraction and time series with 1% 

annual increase of water use. Chester weir is utilised as a checkpoint of unmet flow 

requirement and coverage. The daily water uses in the UK has been gradually 

increasing by 1% per year since 1930, and the average person now consumes 150 

litres a day (Waterwise, 2012). 

 

9.2. Methodology 

9.2.1. Hydrological simulation 

SWAT model was created to simulate the hydrology of the basin, and the model was 

calibrated and validated based on historical daily streamflow at six sites (Catchment 

C, Fig. 3-6 in chapter 3, page 47), one location for both of Catchment A and B (Fig. 

3-6). The main Dee River (Catchment C) was divided into 57 sub-basins to predict 

catchment hydrology. The CIMP5 climate data of NCAR-CCSM4 model 

(precipitation, maximum air temperature and minimum air temperature) are used with 

the calibrated SWAT model to simulate river flow for four future scenarios (RCP26, 

RCP45, RCP60 and RCP85) from 2006 to 2040 with a 2-years warm-up period to 

make hydrological cycle fully operational. 
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9.2.2. Water demand sites 

As mentioned before, the Dee River basin is an example of the complex river flow 

system and highly-regulated through a management scheme that provides water for 

both industrial and public water supply (PWS) in summers and prevents flooding 

between Bala lake and city of Chester in winters. There are massive PWS in the 

downstream area of the river basin (Chester city) as revealed in Figs. 9-2 and 9-3 

which are considered for the evaluation of the impact of water demand on the 

availability of water resources under scenarios of climate change. These demands 

sites are: 

1) PWS1 that consumes a maximum of (686,446 m3/day); 

2) PWS2 that consumes a maximum of (686,446 m3/day); 

3) PWS3 that consumes a maximum of (36,000 m3/day); and 

4) PWS4 that consumes a maximum of (686,446 m3/day). 

 

There are two key control points in the basin (DEFRA, 2014) as follows: 

1) Chester Weir is a control point for the River Dee Regulation Scheme. The Dee 

Regulation Scheme aims to maintain a minimum of (4.2 m3/sec.) under 

“Normal General Directions” at Chester Weir. The Chester Weir residual flow 

is calculated based on flows measured at the Chester Suspension Bridge 

ultrasonic flow gauge, minus the abstractions are taken by United Utilities 

from the Chester Weir intake. 

2) Manley Hall gauging station is also a control point. It is our understanding that 

the Dee regulation Scheme aims to maintain around (10.2 m3/sec.) at this 

point. 

Chester weir is used to evaluate the unmet streamflow demand. 
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Fig. 9-2 Dee River demand sites (After Dee Valley Water and United Utilities, 2017)

 

Abstraction: River Dee at 

Poulton 

Use: Public Water Supply 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Abstraction: Huntington & 

Heronbridge 

Use: Public Water Supply 

Owner: United Utilities 

Annual limit: ~250,000 ML 
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9.2.3. Future climate scenario 

In general, the UK climate is expected to become hotter and drier in the summer and 

warmer and wetter in the winter (DEFRA, 2008): 

1. Average UK annual temperatures may rise by 2 to 3.5 °C by the 2080s. In 

general, greater warming is expected in the South East than the North West of the 

UK, and there may be more warming in the summer and autumn than winter and 

spring. Under a ‘High Emissions’ scenario, the South East may be up to 50 °C 

warmer in the summer by the 2080s; 

2. Annual average precipitation across the UK may decrease slightly, by between 0 

and 15% by the 2080s. But the seasonal distribution of precipitation will change 

significantly, with winters becoming wetter and summers drier. Under the ‘High 

Emissions’ scenario, precipitation in the 2080s may decrease in summer by 50% 

in the South East and an increase in winter by up to 30%. 

 

9.2.4. WEAP model 

The Water Evaluation and Planning software WEAP is an integrated water resource 

management (IWRM) software that developed by the Stockholm Environment Institute 

SEI in the USA. It is designed to assess user-developed scenarios that accommodate 

changes in the socio-economic and biophysical conditions of catchments over time 

(Yates et al., 2005). WEAP allows planner access to a more comprehensive view of the 

broad range of factors that should be considered in managing water resources for present 

and future use owing to its integrated approach to simulating both the natural (e.g., 

runoff, baseflow, evapotranspirative demands, etc.) and engineered structures (e.g., 

reservoirs) of water resources systems (Sieber, 2018).  
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WEAP operates in many capacities (Sieber, 2018) including: 

1) Water balance database: WEAP provides a system for maintaining water demand 

and supply information; 

2) Scenario generation tool: WEAP simulates water demand, supply, runoff, storage, 

pollution generation, treatment and discharge and instream water quality; and 

3) Policy analysis tool: WEAP evaluates a full range of water development and 

management options, and takes account of multiple and competing uses of water 

systems. 

 

WEAP has the high global popularity for the scenario analysis of water supply and 

demands and has been utilised in water-related issues/projects in different part of the 

world under effects of climate change (e.g. Bhave et al., 2018; Katirtzidou and 

Latinopoulos, 2017; Hao et al., 2015).  

 

 

Fig. 9-3 Study region of coupled SWAT-WEAP model (surface water abstraction in 

m3/day) 
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The model then optimises water use in the basin using a linear optimisation algorithm to 

allocate water to the various demand sites, as per the demand priorities that range from 1 

to 99, with 1 being the highest priority. For more information on the WEAP model, 

readers are directed to (Yates et al., 2005; Sieber and Purkey, 2011). In the present study, 

the simulated streamflow for future scenarios of the SWAT model will be used as the 

input to the head of the river reach in the downstream to decision support tool, WEAP 

model. In the coupled SWAT-WEAP, Chester weir will be utilised as a checkpoint for 

minimum streamflow requirement for the ecological purposes with minimum river flow 

of (4.2 m3/sec.) and the evaluation of the unmet flow requirements and converge. Figure 

9-3 shows the study area of the coupled SWAT-WEAP model. 

 

The simulated discharge from the SWAT model is aggregated into monthly time series 

and utilised as input for the WEAP model. In the coupled SWAT-WEAP, 12 scenarios of 

surface water abstraction to check the unmet demands as follow: 

1) 100 % of the maximum licensed of surface water abstraction (RCP26 scenario, 

2008-2040); 

2)  50 % of the maximum licensed of surface water abstraction (RCP26 scenario, 

2008-2040); 

3) Monthly time series (per cent of maximum licensed of surface water abstraction) 

(RCP26 scenario, 2008-2040) as it can be seen in Fig. 9-4; 

4) 100 % of the maximum licensed of surface water abstraction (RCP45 scenario, 

2008-2040); 

5)  50 % of the maximum licensed of surface water abstraction (RCP45 scenario, 

2008-2040); 

6) Monthly time series (per cent of maximum licensed of surface water abstraction) 

(RCP45 scenario, 2008-2040); 

7) 100 % of the maximum licensed of surface water abstraction (RCP60 scenario, 

2008-2040); 

8)  50 % of the maximum licensed of surface water abstraction (RCP60 scenario, 

2008-2040); 
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9) Monthly time series (per cent of maximum licensed of surface water abstraction) 

(RCP60 scenario, 2008-2040); 

10) 100 % of the maximum licensed of surface water abstraction (RCP85 scenario, 

2008-2040); 

11)  50 % of the maximum licensed of surface water abstraction (RCP85 scenario, 

2008-2040); 

12) Monthly time series (per cent of maximum licensed of surface water abstraction) 

(RCP85 scenario, 2008-2040); 

Figure 9-5 shows the flowchart of the coupled simulation model (SWAT), allocation 

model (WEAP) and the climate projection data (CMIP5 models).  

 

 

 

Fig. 9-4 Public water supply PWS1 abstractions for scenarios no. 3, 6, 9 and 12 [ 100 % 

of maximum licensed abstractions for summer months (June, July and August), 50 % of 

maximum licensed abstractions for winter months (December, January and February), 

and 70 % for the rest with 1 % increase of water use per year] 
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Fig. 9-5 Flowchart of the coupled SWAT-WEAP model framework 

 

9.3. Results and discussion 

The coupled SWAT-WEAP model is built for the future scenario to evaluate the likely 

unmet demands at the public water supply locations. Firstly, the unmet flow requirement 

and per cent of coverage at Chester weir station (4.2 m3/sec.). Clearly, in the four 

emission scenarios, there is unmet flow demand from June until October with the 

maximum monthly average unmet flow of 1.8 m3/s (57 % of flow needed) in August for 

the RCP26 scenario as illustrated in Fig. 9-6 and 9-7 and tables 9-1 and 9-2. 
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Fig. 9-6 The average monthly unmet streamflow requirement (m3/sec.) in Chester weir 

for the four future scenarios for the period of 2008-2040 

 

Table 9-1: The average monthly unmet streamflow requirement (m3/sec.) in Chester weir 

for the four future scenarios for the period of 2008-2040 

 June July August September October 

RCP26 0.047 0.697 1.807 1.401 0.112 

RCP45 0.000 0.385 1.314 1.097 0.088 

RCP60 0.096 0.550 1.407 0.900 0.094 

RCP85 0.000 0.700 1.350 1.280 0.079 
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Fig. 9-7 The average monthly flow requirement coverage (% of flow requirement) in 

Chester weir for the four future scenarios for the period of 2008-2040 

 

Table 9-2: The average monthly flow requirement coverage (% of flow requirement) in 

Chester weir for the four future scenarios for the period of 2008-2040 

 June July August September October 

RCP26 98.9 83.4 57.0 66.7 97.3 

RCP45 100.0 90.8 68.7 73.9 97.9 

RCP60 97.7 86.9 66.5 78.6 97.8 

RCP85 100.0 83.3 67.8 69.5 98.1 

 

The average monthly unmet demand for maximum surface water abstraction is revealed 

in Fig. 9-8. It can be clearly seen that in the summer a significant unmet demand reaches 

more than 4 m3/sec for the PWS1, PWS2 and PWS4 as in Fig. 9-8a for all of the future 

scenarios. On the other hand, PWS3 has also had unmet demand with a maximum 

projected value of 0.04 m3/sec.  
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a. PWS1, PWS2 and PWS4 

 

b. PWS3 

Fig. 9-8 The average monthly unmet demand (m3/sec.) for public water supply PWS for 

the four future scenarios for the period of 2008-2040 for the maximum withdraw scenario 

 

Similarly, the unmet demand for 50 % of maximum water withdraw and time series water 

uses scenarios are presented in Fig. 9-9 and 9-10. Again, summer months have a 

tremendous value of unmet demand. 
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a. PWS1, PWS2 and PWS4 

 

b. PWS3 

Fig. 9-9 The average monthly unmet demand (m3/sec.) for public water supply PWS for 

the four future scenarios for the period of 2008-2040 for the 50 % maximum withdraw 

scenario 
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a. PWS1, PWS2 and PWS4 

 

b. PWS3 

Fig. 9-10 The average monthly unmet demand (m3/sec.) for public water supply PWS for 

the four future scenarios for the period of 2008-2040 for the time series withdraw 

scenario 
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9.4. Summary 

In this chapter, the coupled SWAT-WEAP model is setup and used in the highly-

regulated river basin with climate change data of CMIP5 project to evaluate unmet 

demand of water for public water supply in the downstream region (city of Chester) as 

well as check unmet streamflow requirement in Chester weir. The SWAT model was 

previously calibrated against historical daily streamflow, afterward, the future climate 

data of NCAR-CCSM4 model precipitation, maximum and minimum air temperature), 

part of CMIP5, (for four future scenarios: RCP26, RCP45, RCP60 and RCP85) are used 

as input in calibrated SWAT model to simulate the catchment hydrology for the period of 

2006-2040 with 2 years’ warm-up period. The simulated discharge from the SWAT 

model will be used as input to the modelled reach in WEAP model on a monthly time 

step. 

 

Twelve scenarios of water use rate of 4 selected location of public water supplies in the 

downstream of the Dee River basin with a considerable amount of water abstraction 

utilised to evaluate the likely unmet demands. The results agreed that there is expected 

unmet demand with large quantity, especially in the summer season (June, July and 

August). Actions and measurements for mitigating the effects of unmet water demands 

and uncertainties as to how the climate will change and how it will affect water resources 

are the challenges that designers and planners will have to cope. How water resources 

management will have to adapt to climate changes is the pressing question to be 

answered. The possible mitigations for the unmet water demands are: 

1) Augmenting streamflow from a deep well source; 

2) Using reclaimed water; 

3) Storing and recovering surface or groundwater; 

4) Transferring water into basins; and 

5) Adjust reservoirs regulation rules. 
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Chapter 10: Conclusions and Recommendations  

This chapter concludes this study and presents some recommendations for future work. 

 

10.1. Main conclusion 

A hydrological model for a highly-regulated watershed, the Dee River basin in the United 

Kingdom was developed using SWAT model to examine the human interventions within 

natural hydrological systems within SWAT through creating different scenarios regarding 

reservoirs releases and made a rough estimation of daily water withdraw within the study 

area. This study also investigated the impact of model input uncertainty, i.e. rainfall on 

the model output, i.e. streamflow and examined the climate change impact (i.e. the trend 

of likely drought and likely flooding) using quantile regression method on the observed 

variables, i.e. precipitation and simulated results of streamflow and catchment water 

yield. The model was thoroughly calibrated and validated against measured daily 

streamflow at eight river gauges stations. 

 

Additionally, the SWAT model is coupled with a groundwater flow model, MODFLOW 

to improve the baseflow estimation of standalone SWAT model. The model uncertainty 

of the coupled SWAT-MODFLOW is scrutinised using the SAFE toolbox. As climate 

change data is uncertain, the study examines climate change data from the CMIP5 project 

to check whether the simulated rainfall can produce the trend of observed precipitation. 

Moreover, the SWAT model is coupled with water allocation model, WEAP to study 

considers several possible future climate conditions regarding the water use rate for the 

public water supply in the downstream of the Dee River basin. 
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There were four main parts of this study: the first part is the modelling of highly-

regulated river system, the Dee River watershed, by incorporating the complex 

hydrological processes, regulatory mechanisms and the drivers of changes at a primarily 

daily temporal scale and at spatial scales from the sub-catchment scale to the basin scale. 

The Dee River basin is managed thoroughly via the physical flow control and storage 

structures (i.e. reservoirs in the upstream) and a range of water sharing rules and 

regulations that provide resources for a variety of water needs: public water supply and 

industrial consumptions in the downstream part of the study basin. An approximate 

approach was utilised to calculate the daily water abstraction at alongside the river basin, 

as this amount is not available from the data collected. The calculation was based on the 

information from public water supplies companies who provide a weekly abstraction 

forecast to Natural Resources Wales for the assistance in calculating the required releases 

from the reservoirs. Justifiably, this method, although aids to reveal the interaction 

between streamflow regulation and surface water abstraction. 

 

The second part is related to model input uncertainty through the investigation of the 

impact of several areal precipitation pre-processing methods on the hydrological model 

performance of Dee River basin. The latest high-resolution gridded precipitation dataset 

CEH-GEAR is used to quantify such implications for calibration and validation of a 

quasi-distributed model SWAT. The associated term 'compensation' owing to model 

parameterisation was also investigated by comparing the three distinctive models 

calibrated with different rainfall pre-processing methods: the centroid point estimate 

method (CPEM), the grid area method (GAM) and the grid point method (GPM). The 

models were further cross-validated over the different period to separate the changes in 

performances caused by model calibration and the input precipitation from different pre-

processing methods.  
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The third part is the use of the quantile regression technique (Linear and non-linear) for 

analysing the trend in climatic variables. The long-term precipitation data from two 

drastically different climate regions is examined focusing on the trends of the data close 

to 'extreme' regimes, to link them to the events of interests. The quantile regression 

technique is also combined with several extreme and drought indices to investigate the 

long-term trend. The linear quantile regression technique is also combined with the 

SWAT model to examine long-term trends of simulated river discharge and catchment 

water yields under the impact of water resources management practice. Three daily 

SWAT models are set up to simulate the hydrological processes in the Dee River 

catchment in the UK with flow control and water withdrawal process explicitly 

represented. Two scenarios (with and without flow control) are constructed to explore the 

impact of management practice. Further, two quantiles 0.02 and 0.98 are used to signpost 

high flow (wet) and low flow (dry) conditions that water managers are typically 

concerned with. The quantile of 0.5 is also considered as the medium flow and water 

yield. 

 

The fourth part is the coupling SWAT model with MODFLOW to improve the 

simulation of baseflow as this variable concern the decision makers for water resources 

management. Moreover, parameters uncertainty for the SWAT model and the coupled 

SWAT-MODFLOW are scrutinised using SAFE toolbox within MATLAB environment. 

The dotty plots, Generalized Likelihood Uncertainty Estimation GLUE and Elementary 

Effect Test EET are used to quantify parameters uncertainty.  

 

The primary findings of this thesis are as follows: 

1) For the modelling of highly-regulated river basin: the demonstration of the 

management rules regulations such as flow control and water withdraw in the 

modelling process within the study area is capable of revealing the impact from 
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the latter. It lays a foundation for further study on how various management 

practice can mitigate the effect of other sources such as climate change on 

catchment water resources management. An estimated method was used to 

estimate the daily water withdrawal amount at the water abstraction points. This 

approach, while helps to show the interaction between flow regulation and water 

abstraction. 

2) For Model input uncertainty: 

a) The results show the GEH-GEAR dataset is consistent with the rain gauge 

measurements and can be a trustworthy source for model calibration and 

validation. Additionally, both GPM and GAM methods are theoretically 

better than the default CPEM used by SWAT, and they also support to 

improve the calibration and validation of the model; 

b) While model calibration varies when using different pre-processed 

precipitation data, it is the rainfall input data that controls the cross-

validation performance rather than how a model is calibrated;  

c) A less well-calibrated model due to the use of a low-grade pre-processing 

method such as CPEM can do equally well when fed with better-pre-

processed precipitation data such as GAM or GPM during validation; 

d) A model earlier calibrated with low-quality rainfall data can still use high-

quality rainfall inputs when they become available at later times without 

having to re-calibrating which is often limited by the length of data.  

3) For the use of quantile regression technique: 

a) The QR based trend analysis can offer far more detailed information with 

respect to the quantity in question, and this is principally valuable for 

water managers who are more worried about extreme values instead of the 

average one; 

b) The QR method can help form a comprehensive picture of climatic 

regarding their variation over time at different frequency and magnitude; 

c) The association of quantile gets an extra benefit to bridge the trend 

analysis with a frequency that indicates an excessive potential of its use in 
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studying climate change impact on engineering design without the 

existence of limitation by assumptions of data stationarity; 

d) The QR helps better to grasp the climate change impact. A decreasing 

trend in summer precipitation might still be accompanied with increasing 

severe storms in the same season; 

e) The combination of quantile regression and semi-distributed hydrological 

modelling approach prefers in presenting spatially distributed trend 

information for extremely dry and wet scenarios, which can thoroughly 

address the needs of practitioners and decision makers in dealing with 

long-term planning of water resources under climate change; 

f) The demonstration of the management practice such as physical flow 

control and water withdraw in the modelling process can reveal the impact 

from the latter, and as such lays a foundation for further study on how 

numerous management practices can mitigate the impact from other 

sources such as climate change on catchment water resources 

management; 

g) It has been shown that the 0.98 quantile has an increasing trend for both 

‘real-life’ and natural flow scenario with a significant trend in most of the 

river basin. Furthermore, the result shows that the management practices 

tend to decrease the floods in the catchment.  

h) For the 0.02 quantile, both positive (mainly upstream) and negative 

(downstream) trends exist for the two scenarios, although most of them are 

statistically insignificant. The comparison of the two scenarios indicates 

that the management practices are undoubtedly able to mitigate strong 

decrease trends in the downstream; 

i) The key finding is that trends of low quantile 0.02 are mostly insignificant 

necessitates further study. As the trend analysis is carried out over the 

simulated data, the performance of the model, particularly its 

representativeness of high and low flow conditions may directly affect the 

results hence the conclusion; 
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4) The coupled SWAT-MODFLOW are revealed to simulate the hydrological 

processes in the Dee River basin with focus on the baseflow simulation. The 

results show that the coupled models can produce comparably better simulations 

of low flows in the stream network, and thus improved the water balance in the 

catchment. Generally, the study shows an encouraging direction for using coupled 

surface-groundwater model in the concept of IWRM. 

5) This study has also evaluated the possibility of two hydrological models that have 

a difference in the depiction of processes that are associated with groundwater 

flow modules such as spatial distribution of groundwater level and hydraulic 

conductivity, and are assessed for their performance to simulate streamflow with a 

reduced amount of uncertainty. The SWAT model (semi-distributed which has 

lumped groundwater module) and the coupled SWAT-MODFLOW (fully-

distributed hydrological model) are applied over Alyn catchment from 1995 to 

2000. Parameter uncertainty is examined using the EET and GLUE methods both 

the SWAT model and the coupled SWAT-MODFLOW. It can objectively 

highlight the following: 

a) Model sensitivities and uncertainties towards the input parameters are the 

key base of model development and improvement which can solve the 

problems associated with water resources planning and management; 

b) Since parameter uncertainty was only capable of quantifying a small part 

of whole uncertainty in the models, this study suggests further studies 

prerequisite on model structure. 

c) The term parameters ‘equifinality’ exhibited there is no unique parameter 

estimation for some parameters in this study, and therefore uncertainty in 

the appraised parameters in the study basin is recognisable. This result 

agreed well with some other studies as aforementioned previously. 

d) The likely reason for ‘equifinality’ is because parameters obtained from 

the calibration process were influenced by some other causes such as 

sensitivity or insensitivity in parameters and correlations amongst 

parameters. 
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6) For the climate projections: it can be objectively concluded from that the 

projected data of precipitation shows a persistently low performance with both 

substantial bias and very little correlation with the observed data. However, a 

certain agreement is also observed of the trend of annual precipitation regarding 

the direction (positive or negative) but not the value. This might be owing to the 

fact the precipitation itself is among the most difficult variables to simulate and its 

highly intermittent nature. Nevertheless, it is still the only source of future climate 

data. 

 

10.2. Recommendations 

Indeed, more studies are needed to improve the method with respect to the problems 

found in this study, which include but are not limited to: 

1) The technique used to estimate the daily surface water abstraction with the 

SWAT model presented some uncertainties. It can be developed by further 

modelling the probabilistic nature of water abstraction or by conditioning 

them on other variables such as temperature. 

2) For quantile regression: 

a) A better link between quantiles and event frequency (return period) in 

the context of trend analysis; 

b) The quantiles used in this study are not really 'extreme'. Reliable 

quantile regression for the higher quantile (e.g., 0.99) needs to be 

examined; and 

c) The method needs to be refined further to be more reliable on lower 

quantiles. It has been found that most trends of quantile 0.02 are 

insignificant, but this may not be true as the lower end of the data 

suffers from more significant errors, and zero values may as well 

interfere with the process. 

3) For the uncertainty analysis of the coupled SWAT-MODFLOW: 
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a) Because of a long time of the coupled SWAT-MODFLOW, only 1,000 

simulations is considered. Therefore, it is suggested to create more 

runs with 10,000 and larger; 

b) Only one ranking and screening method are used (EET method) to 

rank the most sensitive parameters. More techniques of ranking and 

screening might utilise for the comparison; and 

c) More parameters need to be combined and considered with GLUE and 

different screening methods for both the SWAT and the coupled 

SWAT-MODFLOW. 

4) For climate projection data: It is also clear that there is a need to extend 

this study to large-scale applications, i.e. global or continental scale. 

Further, the large-scale difference as to the use of coarse spatial resolution 

model data at catchment scale can be a key source of errors, especially, 

when variables such as precipitation have a much higher spatial variability 

even within the catchment. In this regard, it may well be worth waiting 

until the resolution of climate models progress even finer to catchment 

scale, or probably more realistically, up-scaling the downstream model to 

reduce this scale gap to make the climate change impact study more 

reliable. However, the findings cast distrust over the practice of directly 

using projected precipitation for climate change impact study in 

hydrological processes. 

5) Since land use change has a significant influence on the hydrologic 

characteristics of soil and water management in a watershed, the potential 

impacts of the land use need to be investigated on the hydrological 

response (e.g. streamflow). 

6) The groundwater flow model was constructed with a single layer 

unconfined aquifer (taking average of the two layers) and with one stress 

period (i.e. groundwater abstractions are assumed to be constant during the 

period of the simulation) to simplifying modelling processes and reducing 

the running time of the coupled SWAT-MODFLOW. A multiple stress 
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periods/layers scenario might be worthy to try examine how these settings 

influence on the estimations of the streamflow and the baseflow.  
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