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Abstract 

The temperature and time dependent structure of molten NiP alloy of eutectic composition has 

been studied by neutron diffraction. Ni particles were found to exist in the melt at temperatures 

at least up to about 150 degrees above liquidus. The amount varies reversibly as temperature 

increases but decays slowly with time. Remarkably, particles still exist even after that the melt 

has been kept more than 30 hours at different temperatures in the molten state. The static 

structure factor and the pair distribution function obtained at 1050oC are presented. 
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Introduction 

It has been debated for a long time whether metals and alloys are homogeneous after 

melting or not at the atomic scale and this has been the subject of many theoretical and 

experimental studies. A variety of different experimental techniques have been used in order to 

find an answer to this question and results have been interpreted along different lines, one being 

that the structure of a molten alloy is inheriting much of the structure of the original ingot [1-5] 

while others are stressing the existence of strong short range order and atomic cluster formations 

(see for example [6]). An example of the theoretical approaches used to look at this problem are 

models for the structure of liquid alloys such as those developed in [7,8]. The possible existence 

of a liquid-liquid phase transition has been an issue for several investigations [9-15]. However, 

systematic experimental investigations in terms of composition, temperature and time 

dependencies of the physical properties of molten alloys have not been performed. Thus, in spite 

of all performed studies, a full understanding of the structure of a melt on a length scale going 

from some tens of a nanometer to several microns and its physical properties in terms of 

composition, temperature and time is still lacking. 

In many investigations anomalies in measured property/temperature quantities (density, 

viscosity, surface tension, electrical resistivity, internal friction, etc.) of molten binary alloys are 

found during stepwise heating/cooling temperature cycles well above the liquidus temperature, 

while in other studies the quantities were found to vary in a regular way [16 and references 

therein]. Samples used for these studies are very often synthesized by mixing the elements by arc 

melting and an ingot for further studies is produced by casting. The ingot is afterwards re-melted 

several times in order to ensure that the sample to be studied is homogeneous with regard to its 

elemental composition and the measurements are performed in a heating/cooling sequence. 

However, the time and the temperature which are two very important parameters for the effect of 

the performed heat treatment of the ingot are very rarely mentioned. In other studies the melts to 

be studied have been produced in an induction furnace and the physical properties have been 

measured during cooling. These two fundamentally different ways to measure a specific physical 

property of a melt do not necessarily give the same result [16]. 
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As mentioned above several explanations for the existence and non-existence of 

anomalies in measured physical properties have been given. In some cases the anomalies have 

been interpreted as indications of the existence of liquid-liquid phase transitions, while in others 

they have been found to be related not only to the thermal history of the melt but also of the ingot 

[1-5]. A possible presence and disruption of oxides during heating of the melt has also been 

suggested to influence the experimental results [17]. In other studies it has been suggested that 

the existence of atomic clusters in molten alloys is of thermodynamic origin and that the status of 

the melt corresponds to specific metastable temperature-dependent states [7, 18, 19]. 

Furthermore, it was shown that microheterogeneous states may exist as separate non-ergodic 

phases in molten binary alloys [20,21]. In all these cases a melt may be considered as a 

microstructural multi-phase system, a view that has been supported by results from 

investigations utilizing neutron and X-ray scattering techniques [20-25].  However, the influence 

of two very important parameters, temperature and time, on the existence of anomalies in the 

measured quantities has not been considered.  

The influence of the melt status on the structure, the microstructure and the physical 

properties of vitrified Ni81P19 metallic glass ribbons but also several other glasses has been 

studied extensively [3, 4, 18, 22,23,26, 27, 29-32]. It was generally concluded from these studies 

that the nucleation and growth processes proceed along different routes depending on the thermal 

history of the melt and as a result, influences the microstructure of the solidified alloy. Studies of 

physical properties of the NiP system in solid phase as obtained from both experimental [33,34] 

and theoretical [36,36] investigations have also been performed. The relation between the 

structure of the melt and the structure of solidified alloy has also been discussed [23,27]. 

In this paper the time dependence of temperature changes on the structure of the eutectic 

NiP melt in a temperature region close to the liquidus is reported. The static structure factor and 

the pair distribution function are also presented. 

 

Theoretical background 

The measured intensity in a diffraction experiment on a disordered material is 

proportional to the total static structure factor S(Q) that for a binary system in the Faber-Ziman 

formalism is given by [37] 
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Ia
coh(Q) is the intensity per atom of coherently scattered neutrons and ci and bi are the 

concentration and scattering amplitude of atoms α and β, respectively. <b> is equal to cαbα+cβbβ 

and <b2> to cαbα
2+cβbβ

2. Sαβ(Q) is the partial structure factor, which describes the spatial 

correlations between α and β ions in the system. Q is the wavevector transfer the neutron 

experiences in the scattering process and it is given by Q=2k sin(Ɵ) where k is the neutron 

wavevector and 2Ɵ is the scattering angle. From the definition it follows that S(Q) is equal to 

one at large Q. The scattering amplitudes for Ni and P are 10.3 and 5.13 fm and thus the relative 

weight factors in eq. (1) for the homogeneous eutectic NiP alloy are 0.80, 0.19 and 0.01, for 

SNiNi(Q), SNiP(Q) and SPP(Q), respectively. 

 

Experimental details 

The neutron diffraction experiments were performed on the D4 diffractometer at the 

Institute Laue-Langevin, Grenoble, France [38]. The wavelength of the incident neutrons was 

chosen to 0.703 Å. The corresponding Q range was accordingly 0.4< Q< 16.5 Å-1 and considered 

to be large enough to derive a reliable g(r) from the measured S(Q). The D4 instrument is 

equipped with 9 separate position sensitive detectors fixed relative to each other in a bank. Each 

detector is spanning a scattering angle range of 8 degrees. Thus, in order to scan the full angular 

range (i.e. from 1.5 to 140 degrees) the whole detector bank is rotated in a stepwise fashion. This 

means that the scattered intensity at a particular scattering angle (Q value) is measured by several 

detectors but at different times according to the position of the detector bank. However, even if 

the intensity is not recorded simultaneously at every Q it is possible to study the time dependence 

of particular features of the measured scattering curves. 

The N81P19 sample ingot was made by melting pieces of metallic glass ribbons produced 

by melt spinning from very high chemical purity materials and reported in previous publications 

[23, 26, 27, 39]. The resulting ingot was introduced in a silica tube with an inner diameter of 15 

mm and height about 70 mm. The silica tube was sealed under argon atmosphere and was 
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introduced in a standard ILL vanadium furnace, which allows temperatures up to about 1100oC 

to be reached. The lower edge of the neutron beam being set to a height of 18 mm was impinging 

on the silica tube 6 mm from its bottom. It is known that the NiP alloy is disintegrating because 

of the significant P vapor pressure developing at high temperatures for a P content larger than 

40at.% [33]. Even with the tendency to disintegrate for smaller P contents, this experimental 

setup ensures that the measurements really are performed at the required melt composition. The 

temperature was measured by a pyrometer with a ±2oC accuracy. The time necessary in order to 

record diffraction patterns of relevant statistical accuracy for one position of the detector bank 

was about 20 minutes. In order to cover the entire Q range patterns were recorded at 6 different 

detector bank positions.  

The melting temperature for N81P19 published in the literature varies between 870°C to 

891°C. In order to get more precise information and at the same time control the status of the 

amorphous ribbons, measurements with differential scanning calorimetry (DSC) were 

performed.  The heating rate was chosen to 30K/min. Measured curves are shown in fig. 1 over 

two temperature regions, the first corresponding to the amorphous-to-crystalline transition and 

the second to the melting process. The curve in the first region has an identical shape to the one 

published in [27] on the same samples. The melting process, however, takes place at a somewhat 

lower temperature than the ones earlier published on alloys produced in different ways [33 and 

references therein].  
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Fig. 1 Measured DSC curves in the temperature regions corresponding to the amorphous-to- 

crystalline transition (left) and the melting process (right). Relevant temperatures for the two 

processes are indicated. 

The aim of the measurements was to determine the temperature dependence of the static 

structure factor S(Q) but also to study the effect of a sudden temperature variation on its shape. 

For this purpose the time/temperature scheme shown in fig. 2 was adopted. The time for a 

temperature change was a few minutes. 

 

Fig. 2 The time-temperature variation scheme adopted for the neutron diffraction 

measurements. The horizontal line corresponds to the temperature of the melting peak 

shown in fig. 1. The arrow indicates the time the data recording started. 

Experimental results 

The NiP sample was kept at a temperature well above the melting point for more than 

three hours before the data recording started (see the arrow in fig. 2). The time-averaged static 

structure factor S(Q) obtained during the 8.6 hours of measurement at a temperature of 904oC is 

shown in fig. 3. The S(Q) curve has a shape characteristic of a molten system but some small 

superimposed peaks can also be seen. It can be concluded that in spite of the long holding time 

before the start of the measurement, well-defined crystalline inclusions are present in the melt. 

According to the phase diagram [33] the solidification of NiP of eutectic composition will result 

in the formation of Ni and Ni3P crystalline phases. As mentioned above the sample was made by 

melting metallic glass ribbons. The ribbons were highly likely to have an outer layer of oxides 
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but no sign of a presence of oxides within the neutron irradiated volume can be seen in the 

diffraction pattern shown in fig. 3. For comparison the positions of the diffraction peaks for fcc 

Ni and the most intense ones for tetragonal Ni3P taken from the Joint Committee on Powder 

Diffraction Standards (JCPDS) data sheet are shown at the bottom of fig. 3. It is obvious that the 

positions of the peaks observed in the measured curve correspond to the first five diffraction 

peaks in crystalline Ni and that no sign of crystalline Ni3P can be observed. The position of the 

Ni (111) diffraction peak coincides closely with the position of the main peak of S(Q) and it can 

only be seen as a small asymmetry on its large Q side. On the other hand, the (200), (220), (311) 

and (222) peaks are clearly visible. In order to quantify the intensity of the peaks that were most 

easily separated, namely the (220) and (311) peaks, they were fitted with a sum of a Gaussian 

function and an interpolated background of parabolic shape. The widths of all peaks increased 

with increasing temperature but they were considered to be too close to the experimental 

resolution to allow for quantitative particle size estimation. However, it was nevertheless 

possible to conclude that the Ni particle size decreased with increasing temperature. 

 

Fig. 3 Average static structure factor S(Q) measured at 904oC during 8.6 hours starting at 3.1 

hours after the start of the temperature loop shown in fig. 2. The vertical bars at the 

bottom of the figure indicate the positions of Ni and the most intense Ni3P diffraction 

peaks taken from the JCPDS crystallographic data sheets. 
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The specific features of the D4 diffractometer do not allow a continuous recording of a 

diffraction pattern but it is nevertheless possible to determine the time evolution of the melt 

structure. This is demonstrated in fig. 4 where the height of the main peak of S(Q) measured 

during the entire 40 hour long measurements is shown. During this time the temperatures were 

changed according to the temperature variation scheme shown in fig. 2. It should be mentioned 

that the time to change from one sample temperature to the next was of the order of few minutes, 

thus considerably shorter than the time during which one separate pattern was recorded (about 20 

minutes). 

It can be seen in fig. 4 that the system responds very rapidly on every temperature change 

and that the intensity after this rapid change slowly decays during several hours. Every point 

corresponds to an average value of the peak height during the 20 minutes of recording. As was 

mentioned above the intensity of the main peak of S(Q) is made up by two components, the most 

intense arising from the melt and a small contribution from the (111) peak of Ni. A first very 

intriguing feature in the intensity variation is that during the 8-hour measurement at 904oC the 

peak height is decreasing from about 2.8 to about 2.6. This is even more remarkable, as before 

the recording started the melt was kept for about three hours at this temperature. The rate of 

intensity decrease seems to slowly flatten out with time. It can be anticipated that this is due to 

the decreasing contribution from the Ni (111) diffraction peak. The subsequent increase in 

temperature from 904 oC to 952oC results in a rapid first decrease in intensity after which the 

intensity slowly decreases during the following 8-hour measurement. The following temperature 

decrease to 904°C results in an instantaneous intensity increase which is followed by a slow 

decrease. Successive abrupt temperature changes result in similar intensity variations. It can be 

noted that the results obtained at 1050oC gives the impression that the melt is homogeneous at 

this temperature. 



9 
 

 

Fig. 4 The variation of the height of the main peak of the structure factor during the time-

temperature variation scheme shown in fig. 2. The numbers at the top indicate the 

constant temperatures in oC for the different time intervals. The curve is a result of a fit of 

eq. (1) to the data at the temperatures 904 and 909oC as described in the text. 

Another remarkable feature of the measured heights of the main peak of S(Q) presented 

in fig. 4 deserves to be stressed. Diffraction patterns were, as can be seen in fig. 2, measured 

close to 904oC in three different time domains, 3 to 12, 21 to 26, and 34 to 39 hours after that the 

alloy was melted. It can be seen that the heights after the rapid variation following a temperature 

change seem to decay with temperature in a way as if the intermediate temperature changes have 

never occurred. In order to substantiate this notion the expression  

𝐼 = 𝐴 𝑒−𝑡/𝜏 + 𝐵         (1) 

was fitted to the data. In the fit the intensities measured immediately after the temperature 

changes were omitted. The result of the fit is shown as the full curve in fig. 4. The relaxation 

time τ is found to be 4±1 hours and B amounts to about 2.60±0.01. In view of the rather large 

errors in the determination of these parameters we do not consider an application of this decay 

rate to be accurate enough in order to permit a reliable separation of the (111) Ni diffraction peak 

from the main diffraction peak and thus to determine a proper S(Q) at this temperature. 

In order to study and to quantify the time/temperature dependent structure of the melt in 

more detail, the areas of the Ni (220) and (311) diffraction peaks are shown in fig. 5. The two 
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peaks exhibit very similar intensity variations both with regard to time and to temperature and, as 

could be observed in fig.5, the intensities of both decrease very slowly with time. It is 

furthermore obvious that the decay rate at 904oC and at 909oC seems to be independent from the 

fact that the melt, for a considerable length of time, has been kept a higher temperature. It can be 

concluded that Ni particles are present, although in varying amounts, in the melt even after that is 

has stayed 35 hours in the molten state. The creation of Ni particles due to the sudden 

temperature decrease is also clearly seen in fig. 5.  

 

Fig. 5 The variation of the areas of (left) the (220) and (right) (311) diffraction peaks during the 

time-temperature scheme shown in fig. 2 The numbers at the top indicate the constant 

temperatures in oC for the different time intervals. 

The intensity variations of the Ni (220) and (311) diffraction peaks taking place during 

the first measurements at 904oC and the second at 952oC have been analyzed in more detail. The 

measured intensities were fitted by eq. (1) and the results are shown in fig. 6, while the obtained 

parameter values are given in table 1. The structural relaxation times τ are in all cases found to 

be about 4 hours for the (220) peak and somewhat shorter for the (311) peak. The values are very 

similar to the τ value found in the analysis of the main peak of S(Q), the result of which is shown 

in fig. 4. The fitted curves satisfactorily describe the experimental data but it has to be 

emphasized that the data may certainly be described also by other similar analytical expressions 

than the one in eq. (1) and that these might result in other values of derived relaxation times. For 

example, if a simple exponential decay of the data results is assumed, this results in τ values 

about twice as large as the ones shown in table 1. However, this does not obscure the fact, that as 
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can be seen in fig. 5 Ni particles that are large enough to be observed in a diffraction experiment 

exist in the melt during tens of hours. 

Temperature (oC) 
(220) diffraction peak (311) diffraction peak 

τ (hours) B τ (hours) B 

904 3.8±0.8 6±2 2.6±0.8 9±3 

952 4.1±0.9 0.2±0.2 3.0±0.7 1.0±0.5 

 

Table1. Parameters obtained from a least squares fit of eq. (1) to the data in fig. 6. 

 

Fig. 6 Time variation of the Ni (220) and (311) diffraction peaks. a) the (220) peak during the 

first measurements at 904oC and c) during the measurement at 952oC. b) the (311) peak 

during the first measurements at 904oC and d) during the measurement at 952oC. The 

curves are obtained from a fit of eq. (1) to the experimental data. 
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The static structure factor S(Q) and the corresponding pair distribution function g(r) at 

1050oC have been derived via an inverse Monte Carlo method assuming that the possible 

existence of Ni particles in the melt at this temperature can be neglected. The result is shown in 

fig. 7. Tries to derive S(Q) at lower temperatures by applying the temperature correction for the 

intensity of the Ni diffraction peaks have not given fully satisfactory results. The main peak of 

S(Q) at 1050oC shown in fig. 7 is found at Q = 3.11Å−1, which is slightly smaller than the value 

given in [26, 39, 40], i.e. 3.127 Å−1, for the metallic glass of the same composition. A small 

shoulder, however much less pronounced than in the metallic glass, can be seen on the large Q 

side of the second peak indicating a non-uniform structure of the melt. This is also conjectured 

from small asymmetry at small r of the main peak of g(r) in fig. 7b, which likely corresponds to 

Ni-P correlations as observed in the metallic glass [40]. The position of the main peak (2.47 Å) is 

slightly smaller than was observed for the metallic glass. As can be seen in fig. 7b the derived 

g(r) curve exhibits some small oscillations but, even if the statistical accuracy of the measured 

S(Q) (~0.1%) was excellent, it is not possible to conclude that these irregularities correspond to 

real structural effects, for example to the existence of small crystallization nuclei or to 

intermodulation of the partial pair distribution functions.  

 

 

Fig. 7 (a) The structure factor S(Q) and (b) the pair distribution function g(r) for the Ni81P19 

melt at 1050oC.  
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Discussion 

The presence of anomalies in measurements of physical properties of molten alloys have 

been interpreted as indications that after melting the molten alloy is not homogeneous but 

consists of particles or clusters of atoms more or less tightly bound together and that are 

immersed in a eutectic molten matrix. The microheterogeneities are supposed to be inherited 

from the precursor solid alloy and they start to dissolve at a temperature Td considerably above 

liquidus. The melt does not reach a completely homogeneous state until heated to a temperature 

Tb above well above Td. [1-3]. It has furthermore been suggested that the existence of atomic 

clusters in molten alloys is of thermodynamic origin and that the status of the melt corresponds 

to specific metastable temperature-dependent states [18,19]. In both cases a melt may be 

considered as a microstructural two-phase system, a view that has been supported by results from 

investigations utilizing neutron and X-ray scattering techniques [18, 22-25]. Some of these 

results have been obtained indirectly, i.e. on metallic glass ribbons rapidly quenched from 

different states of the melt. The anomalies have also in some cases been interpreted as 

indications of the existence of a liquid-liquid phase transitions [10, 12].  

Some few measurements of physical properties of molten alloys have been performed 

separating the two important parameters, temperature and time. However, recent studies have 

demonstrated the importance of such a separation. For example, measurements of the electrical 

resistivity in molten Pb-Sn alloys of two different compositions [43] have revealed that after an 

ultrasonic pulse the melt needs a time longer than two hours in order to recover. Furthermore, it 

was also shown that the viscosity in Al-rich melts of Al-Y during isothermal holding for several 

hours at temperatures more than 100 degrees above liquidus increases significantly before a 

subsequent exponential decay [44]. This increase in viscosity was explained by the temporal 

competition of two simultaneous effects, an Ostwald ripening effect in which large 

heterogeneities present in the melt after melting grow and a general slow dissolution of the 

heterogeneities resulting in a homogenization of the melt [45].  

The most remarkable results presented above are that the life time of well-defined 

clusters in the eutectic NiP melt is of the order of 10 hours and that by temperature changes the 

microstructure of the melt can be controlled. However, structural reorganization times in 
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different kinds of liquids of the order hours and longer have earlier been reported [10 and refs 

therein]. For example, it was observed that 120 hours overheating at 700 degrees above the 

melting point was necessary to obtain a homogenous Bi30In70 alloy [17]. Furthermore, 

investigations by ultrasound techniques revealed that during a heating/cooling cycle up to 

temperature more than 900oC above liquidus [41, 42] and lasting for more than 20 hours the 

attenuation coefficient in molten eutectic PdSi decreases considerably, not only during heating 

but also during the subsequent cooling. Another measurement has shown that a PbSn melt after 

an ultrasonic pulse needs several hours in order to return to its initial state [43]. A time of the 

same order of magnitude needed to reach a steady state in other molten alloys was found, for 

example, in the Al95Y5 alloy [44, 45]. Furthermore, similar behavior was observed in 

measurements of the kinematic viscosity, for example, in Al-rich Al-Fe melts [46], in FeB [47] 

as well as in BiZn melts [48]. The same phenomenon was also seen earlier in many ternary 

alloys [2, 49]. 

It is interesting to correlate the results presented above with the structure of Ni- and Fe-

based metallic glass ribbons quenched after two different thermal treatments as presented in [26- 

29]. In one treatment the alloy was directly heated to 1110°C before quench and in a second one 

the alloy was heated to 1320°C, cooled to 1110°C and quenched. The holding time at every 

temperature was about 5 minutes. Neutron diffraction [26] and small angle neutron scattering 

measurements [23, 27] showed that none of the two ribbons was completely amorphous but 

contained crystalline inclusions, the ribbon quenched from a melt heated to 1320C though to a 

considerably smaller amount. Results, which can be interpreted according to the same lines, have 

been obtained for other molten alloys, for example for PdSi [41] and FeB [42]. Results for these 

alloys generally agree with the current ones indicating that crystallization nuclei are present in 

the melt at considerably higher temperatures than about 200 degrees above the melting 

temperature, although not detected in diffraction measurements because of their small size.   

Together with results from earlier investigations using a variety of different experimental 

techniques the present work demonstrates that at least in some compositional ranges a molten 

alloy can be considered as a two-phase system and that, within a wide temperature range well 

after melting, it also contains clusters of atoms that might be inherited from the initial ingot [1-5 

and references therein] but also correspond to metastable states of thermodynamic origin [16, 18, 
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19]. No obvious connection between the composition of these clusters and the crystalline stable 

phases found in the phase diagram seems to exist [16]. In this context, it should be mentioned 

that the presence of small amounts of oxides in many cases may have had a strong influence on a 

measured physical property and thus affected the results [17]. Accordingly, the preparation of the 

initial ingot is of outmost importance in this kind of measurements both in the liquid and in the 

solid state. Only at very high temperatures the microinhomogeneities as well as the 

macroheterogeneities existing in a certain temperature range above liquidus are dissolved and the 

alloy can be considered to be in a thermodynamically steady state.  

 

Conclusions 

The structure of the molten NiP alloy of eutectic composition has been studied by neutron 

diffraction. Well-defined particles of Ni were found to exist in the melt at temperatures up to 

about 150 degrees above liquidus. The number of Ni particles decreases slowly with time but 

exist even after that the melt has been kept more than 30 hours in the molten state. A temperature 

change results in a reversible variation of the number of particles and suggests the existence of 

metastable melt/particle coexistence states.  

The results clearly show the inadequacy of repeated melting/solidification schemes 

within a limited temperature range above liquidus in order to obtain a homogeneous melt for 

structural studies and measurements of physical properties.  

 

 

 

Acknowledgement 

The authors are thankful to Institute Laue-Langevin, Grenoble, France for awarding beam time 

on the D4 diffractometer. 

 

References 



16 
 

[1] P.S. Popel, O.A. Chikova, V.M. Matveev, Metastable Colloidal States of Liquid Metallic 

Solutions, High Temp. Mater. Proc. 4 (1995) 219 - 233. 

https://doi.org/10.1515/HTMP.1995.14.4.219. 

 

[2] V. Manov, P.S. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, 

V. Sidorov, L. Son, Yu. Tarakanov, Influence of the treatment of melt on the properties of 

amorphous materials: ribbons, bulks and glass coated microwires, Mater. Sci. Eng. A 304-306 

(2001) 54-60. https://doi.org/10.1016/S0921-5093(00)01433-7. 

 

[3] I.G. Brodova, P.S. Popel, G.I. Eskin, Liquid Metal Processing. Application to Aluminium 

Alloy Production, New York, Taylor and Francis, 2002.  

 

[4] P.S. Popel, U. Dahlborg, M. Calvo-Dahlborg, Metastable microheterogeneity of melts in 

eutectic and monotectic systems and its influence on the properties of the solidified alloy, J. 

Non-Cryst. Solids 353 (2007) 3243-3253. https://doi.org/10.1016/j.jnoncrysol.2007.05.179. 

 

[5] P.S. Popel, U. Dahlborg, M. Calvo-Dahlborg, On the existence of metastable microhetero-

geneities in metallic melts, IOP Conf. Series: Mat. Sci. Eng. 192 (2017) 012012. 

https://doi.org/10.1088/1757-899X/192/1/012012. 

 

[6] O.S. Roik, O.S. Muratov, O.M. Yakovenko, V.P. Kazimirov, N.V. Golovataya, V.E. 

Sokolskii, X-ray diffraction studies and Reverse Monte Carlo simulations of the liquid binary Fe-

Si and Fe-Al alloys, J. Mol. Liq. 197 (2014) 215-222. 

https://doi.org/10.1016/j.molliq.2014.05.009. 

 

[7] F. Sommer, Association model for the description of thermodynamic functions of liquid 

alloys, Pt. 1. Basic concepts, Z. Metallk. 73 (1982) 72-76.  

 

[8] A.Z. Patashinskii, B.I. Shumilo, Theory of condensed matter based on the hypothesis of a 

local crystalline order, Zh. Eksp. Teor. Fiz. 89 (1985) 315-329. http://www.jetp.ac.ru/cgi-

bin/dn/e_062_01_0177.pdf 

 

[9] Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata, K.-I. Funakoshi, A 

first- order liquid-liquid phase transition in phosphorus, Nature 403 (2000) 170-173.  

doi:10.1038/35003143. 

 

[10] H. Tanaka, Bond orientational order in liquids: Towards a unified description of water-like 

anomalies, liquid-liquid transition, glass transition, and crystallization, Eur. Phys. J. E. 35 (2012) 

113. https://doi.org/10.1140/epje/i2012-12113-y 

 

[11] W. Xu, M.T. Sandor, Y. Yu, H.B. Ke, H.P. Zhang, M.Z. Li, W.H. Wang, L. Liu, Y. Wu, 

Evidence of liquid-liquid phase transition in glass-forming La50Al35Ni15 melt above liquidus 

temperature, Nature Comm. 6:7696 (2015). doi:10.1038/ncomms8696 

 

[12] F.Q. Zu, Temperature-induced liquid-liquid transition in metallic melts: A brief review on 

the new physical phenomenon, Metals 5 (2015) 395-417. http://dx.doi.org/10.3390/met5010395. 



17 
 

 

[13] S. Lan, M. Blodgett, K.F. Kelton, J.L. Ma, J. Fan, X.-L. Wang, Structural crossover in a 

supercooled metallic liquid and the link to a liquid-to-liquid phase transition, Appl. Phys. Lett. 

108 (2016) 211907. https://doi.org/10.1063/1.4952724 

 

[14] R.Z. Li, G. Sun, L.M. Xu, Anomalous properties and the liquid-liquid phase transition in 

gallium, J. Chem. Phys. 145 (2016) 054506. https://doi.org/10.1063/1.4959891 

 

[15] Y.F. Lo, X.C. Wang, Z.D. Wu, W.Z. Zhou, H.W. Kui, Direct imaging of a first-order liquid-

liquid phase transition in undercooled molten Pd-Ni-P alloys and its thermodynamic 

implications, J. Non-Cryst. Solids 472 (2017) 75-85. 

https://doi.org/10.1016/j.jnoncrysol.2017.07.020 

 

[16] U. Dahlborg, M. Calvo-Dahlborg, D.G. Eskin, P.S. Popel, Chapter 8 in Thermal melt 

processing of metallic alloys, Springer, 2018, to be published 

 

[17] K. Khalouk, M. Mayoufi, J.G. Gasser, Are there phase transitions in liquid metallic alloys?, 

Phil. Mag. 90 (2010) 2695-2709. http://dx.doi.org/10.1080/14786431003745310 

[18] U. Dahlborg, M.J. Kramer, M. Besser, J.R. Morris, M. Calvo-Dahlborg, Structure of molten 

Al and eutectic Al-Si alloy studied by neutron diffraction, J. Non-Cryst. Solids 361 (2013) 63-69. 

https://doi.org/10.1016/j.jnoncrysol.2012.10.027. 

 

[19] J.R. Morris, U. Dahlborg, M. Calvo-Dahlborg, Recent developments and outstanding 

challenges in theory and modeling of liquid metals, J. Non-Cryst. Solids 353 (2007) 3444-3453. 

https://doi.org/10.1016/j.jnoncrysol.2007.05.159. 

 

[20] L. Son, Nonergodic correction to a binary mixture phase diagram, Physica A 449 (2016) 

395-400. https://doi.org/10.1016/j.physa.2015.12.112 

[21] L. Son, V. Sidorov, N. Katkov, Statistics and thermodynamics of Fe-Cu alloys at high 

temperatures, EPJ Web of Conferences 151 (2017) 05003. 

https://doi.org/10.1051/epjconf/201715105003. 

[22] U. Dahlborg, M. Calvo-Dahlborg, P.S. Popel, V.E. Sidorov, Structure and properties of 

some glass-forming alloys, Eur. Phys. J. B 14 (2000) 639-648. 

https://doi.org/10.1007/s100510051073. 

 

[23] M. Calvo-Dahlborg, U. Dahlborg, J.M. Ruppert, Influence of superheat before quench on 

the structure and stability of NiP metallic glasses studied by neutron scattering techniques, J. 

Non-Cryst. Solids 357 (2011) 798-808. http://dx.doi.org/10.1016/j.jnoncrysol.2010.12.003. 

 



18 
 

[24] M. Calvo-Dahlborg, P.S. Popel, M.J. Kramer, M. Besser, J.R. Morris, U. Dahlborg, 

Superheat- dependent microstructure of molten Al-Si alloys of different compositions studied by 

small angle neutron scattering, J. Alloys Compd. (2013) 9-22. 

https://doi.org/10.1016/j.jallcom.2012.09.086. 

 

[25] F.G. Li, J. Zhang, Y.B. Dai, F.G. Bian, Y.F. Han, B.D. Sun, Study of the influence of TiB2 

particles on the melt structure of on the hypoeutectic Al-Cu alloy by small angle X-ray 

scattering, Mater. Chem. Phys. 143 (2014) 471-475. 

https://doi.org/10.1016/j.matchemphys.2013.10.027. 

 

[26] U. Dahlborg, M. Calvo-Dahlborg, Influence of the production conditions on the structure 

and the microstructure of metallic glasses studied by neutron scattering, Mat. Sci. Eng. A283 

(2000) 153-163. https://doi.org/10.1016/S0921-5093(00)00727-9. 

 

[27] M. Calvo-Dahlborg, J.M. Ruppert, E.D. Tabachnikova, V.Z. Bengus, U. Dahlborg, F. 

Häussler, V.E. Sidorov, P.S. Popel, Influence of the heat treatment of the melt on the structure 

and mechanical behavior of metallic glass ribbons, J. Phys. IV France 11 (2001) 41-49. 

https://doi.org/10.1051/jp4:2001406 

 

[28] V. Sidorov, P. Popel, M. Calvo-Dahlborg, U. Dahlborg, V. Manov, Heat treatments of iron-

based melts before quenching, Mater. Sci. Eng. A 304-306 (2001) 480-486. 

https://doi.org/10.1016/S0921-5093(00)01499-4 

 

[29] J. Miskuf, K. Csach, V. Ocelik, E.D. Tabachnikova, V.Z. Bengus, P.S. Popel, V.E. Sidorov, 

Influence of thermal treatment of Ni-P melt on structure of amorphous alloys, Czech. J. Phys. 54 

(2004). D133-D136. 10.1007/s10582-004-0047-x. 

 

[30] K.W. Chapman, P.J. Chupas, G.G. Long, L.A. Bendersky, L.E. Levine, F. Mompiou. J.K. 

Stalick, J.W. Cahn, An ordered metallic glass solid solution phase that grows from the melt like  

a crystal, Acta Mater 62 (2014) 58-68. https://doi.org/10.1016/j.actamat.2013.08.063 

[31] A.A. Suslov, V.I. Lad’yanov, Effect of the liquid phase on the formation of orthorhombic 

boride during crystallization of Fe82B18 amorphous ribbons, Russian Metallurgy (Metally) 11 

(2016) 1021-1026. https://doi.org/10.1134/S0036029516110148 

 

[32] C. Liang, Z.-H. Chen, Z.-Y. Huang, F.-Q. Zu, Optimizing microstructures and mechanical 

properties of hypereutectic Al-18%Si alloy via manipulating its parent liquid state, Mater. Sci. 

Eng. A 690 (2017) 387-392. https://doi.org/10.1016/j.msea.2017.03.016 

[33] C. Schmetterer, J. Vizdal, H. Ipser, A new investigation of the system Ni-P, Intermetallics 

17 (2009) 826-834. https://doi.org/10.1016/j.intermet.2009.03.011. 



19 
 

 

[34] W.K. Luo, E. Ma, EXAFS measurements and reverse Monte Carlo modelling of atomic 

structure in amorphous Ni80P20 alloys, J. Non-Cryst. Solids 354 (2008) 945-955. 

https://doi.org/10.1016/j.jnoncrysol.2007.08.028. 

 

[35] J.H. Shim, H.J. Chung, D. Nyung Lee, Calculation of phase equilibria and evaluation of 

glass-forming ability of Ni–P alloys, J. Alloys Compd. 282 (1999) 175-181. 

https://doi.org/10.1016/S0925-8388(98)00826-3. 

 

[36] D.D. Zhao, L.C. Zhou, Y. Du, A.J. Wang Y.B. Peng, Y. Kong, C.S. Sha, Y.F. Ouyang, 

W.Q. Zhang, Structure, elastic and thermodynamic in the Ni-P system from first-principles 

calculations, CALPHAD 35 (2011) 284-291. https://doi.org/10.1016/j.calphad.2011.03.002. 

 

[37] G.J. Cuello, Structure factor determination of amorphous materials by neutron diffraction, J. 

Phys.: Condens. Matter 20 (2008) 244109. https://doi.org/10.1088/0953-8984/20/24/244109 

 

[38] H.E. Fischer, G.J. Cuello, P. Palleau, D. Feltin, A.C. Barnes, Y.S. Badyal, J.M. Simonson, 

D4c: A very high precision diffractometer for disordered materials, Appl. Phys. A 74 (2002) 

S160-S162 https://doi.org/10.1007/s003390101087 

 

[39] M. Calvo-Dahlborg, F. Machizaud, S. Nhien, B. Vigneron, U. Dahlborg, Structural study of 

a phase transition in a NiP metallic glass, Mat. Sci. Eng. A 226-228 (1997) 197-203. 

https://doi.org/10.1016/S0921-5093(97)80037-8. 

 

[40] P. Lamparter and S. Steeb, in Rapidly Quenched Metals, edited by S. Steeb and H. 

Warlimont (North‐Holland, Amsterdam, 1985), Vol. 1, p. 459. 

[41] G. Sivkov, D. Yagodin, S. Kofanov, O. Gornov, S. Volodin, V. Bykov, P. Popel, V. 

Sidorov, C. Bao, M. Calvo-Dahlborg, U. Dahlborg, D. Sordelet, Physical properties of the liquid 

Pd-18 at.% Si alloy, J. Non-Cryst. Solids 353 (2007) 3274- 3278. 

https://doi.org/10.1016/j.jnoncrysol.2007.06.019. 

 

[42] C.M. Bao, Etude sur la définition du terme « amorphe » par l’analyse comparative de rubans 

de Pd82Si18 en termes de production, structure, microstructure, qualité et propriétés mécaniques. 

Thèse de docteur de l’Institut National Polytechnique de Lorraine, 22/10/2007.  

http://www.theses.fr/2007INPL068N# 



20 
 

[43] [15] X. Liu, J.F. Zhang, H.Y. Li, Q.C. Le, Z.Q. Zhang, W.Y. Hu, L. Bao, Electrical 

resistivity behaviors of liquid Pb-Sn binary alloy in the presence of ultrasonic field, Ultrasonics 

55 (2015) 6-9. https://doi.org/10.1016/j.ultras.2014.07.008. 

 

[44] V.I. Lad’yanov, S.G. Men’shikova, A.L. Bel’tyukov, B.B. Maslov, Influence of temperature 

and time of isothermal holding on the viscosity and crystallization processes of Al-Y melts close 

to a eutectic structure, Bull. Russ. Acad. Sci. Phys. 74 (2010) 1176-1178. 

https://doi.org/10.3103/S1062873810080423 

 

[45] M.G. Vasin, S.G. Menshikova, M.D. Ivshin, Theoretical description of slow non-monotonic 

relaxation processes in Al-Y melts, Physica A 449 (2016) 64-73. 

https://doi.org/10.1016/j.physa.2015.12.085. 

 

[46] A. L. Bel’tyukov, S. G. MenshikovaV. I. Lad’yanov, Viscosity of hypereutectic Aluminum-

based Iron-alloyed melts, High Temperature 53 (2015) 491-496. 

https://doi.org/10.1134/S0018151X15030049  

 

[47] A. L. Bel’tyukov, O.Yu. Goncharov, V. I. Lad’yanov, Russian J. Phys. Chem. 91 (2017) 

1919-1924. https://doi.org/10.1134/S0036024417100065 

 

[48] P. Jia, H.R. Geng, Y.J. Ding, M.Y. Li, M.X. Wang, S. Zhang, Liquid structure feature of 

Zn-Bi alloys with resistivity and viscosity methods, J. Mol. Liq. 214 (2016) 70-76. 

https://doi.org/10.1016/j.molliq.2015.12.004. 

 

[49] V.I. Lad’yanov, A.L. Bel’tyukov, S.G. Men’shikova, V.V. Maslov, V.K. Nosenko, V.A. 

Mashira, Viscosity of glass-forming Al86Ni8(La/Ce)6, Al86Ni6Co2Gd4(Y,Tb)2 melts, Phys. Chem. 

Liq. 46 (2008) 71-77. http://dx.doi.org/10.1080/00319100701488508. 

 

 

 

 

 

 


