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Computing Education:
An Overview of Research in the Field

Tom Crick

April 2017

Background

In May 2016 the Royal Society announced it was commissioning a study1, funded by
Google and Microsoft, to understand the challenges faced by educators delivering com-
puting and computer science and share best practice which can be adopted more widely.
The research will establish the progress that has been made since the introduction of the
new English computing curriculum (Department for Education, 2013) in September 2014
– as well as recognising related curriculum and qualifications reforms across the rest of the
UK – identify areas that still need to be addressed, and will be used as the basis of a wider
action plan to transform computing in schools. This new project builds upon the Royal
Society’s impactful work in this space, Shut Down or Restart? (Royal Society, 2012), a
review of ICT and computing education in schools in the United Kingdom (UK). The in-
troduction of a new computing curriculum for 5-16 year-olds in England has, for the first
time anywhere, established computer science and computational thinking as foundational
subjects alongside English, mathematics and the sciences. England is in effect pioneering
a brand new school subject from the age of five2, with the rest of the world watching to
see the impact. This is alongside a number of national and international initiatives to
reinforce computer science’s position as a mainstream Science, Technology, Engineering
and Mathematics (STEM) discipline (Guzdial and Morrison, 2016)

At the same time, the government is standing back from guiding everyone about
how to implement this seismic curriculum change in England, and inviting, employers,
universities, professional societies, and educational establishments themselves to play the
leading role on how to deliver this curriculum. Academia, industry, parents and educators
have responded enthusiastically with a range of initiatives such as code clubs and informal
networks for professional development. But there are limits to informal activity; a subject
in its infancy needs high-quality teacher training and development, best practice in the
classroom, and reliable materials for students; it also needs solid, evidence-based research
about what works, proper co-ordination of activity, and effective dissemination of best
practice.

Thus, the key objectives which the Royal Society is seeking to understand by commis-
sioning this research project are:

1https://royalsociety.org/topics-policy/projects/computing-education/
2However, it is important to note that the new national curriculum in England is only mandatory

for state-maintained primary and secondary schools; free schools and academies have more freedom and
flexibility to decide the curriculum they follow; see here for more information on the types of schools in
England: https://www.gov.uk/types-of-school/overview
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• What current literature says about computing education, including effective ped-
agogy and assessment methods;

• Current practice in educational establishments with reference to computing educa-
tion, including pedagogy; learning goals and content and assessment;

• The attitudes of school leaders and teaching staff towards computing education,
including timetabling, teacher confidence, qualifications and motivation as well as
engagement of the senior leadership team.

This is a two-stage programme by the Royal Society designed to improve the quality
and scale of computing education in English educational establishments, with transfer-
ability across the UK and internationally. Stage one will identify and prioritise goals for
stage two, which will achieve those goals through a series of separate projects. Stage two
projects may include areas such as:

• Producing classroom resources, teacher guidance, and continuing professional de-
velopment (CPD) programmes;

• Developing effective assessment tools that educators can use to understand and
guide progress;

• Publishing guidance about how to address gender imbalance in the uptake of com-
puting;

• Identifying opportunities for project work in schools, perhaps with corporate part-
ners.

This literature review covers the first part of Work Package 1 of the project (What
do we know about pedagogy and assessment in computing? ), providing a comprehensive
literature review on effective computing pedagogy.

Methodology

There is an emerging corpus of academic and pedagogic literature in computing education,
including assessment, attainment and baselining of core digital and technology skills,
contextualised by substantial policy reports that transcends education, skills and wider
digital economy agendas.

Much of the recent UK-focused literature has been driven by the curricula reforms (and
emerging professional practice) in England and Scotland, alongside more recent develop-
ments in Wales. There exists active international networks of computer science education
researchers (for example, in Germany, US, Israel and New Zealand), providing quantit-
ative and qualitative educational research insight into effective pedagogies, assessment,
models for cascading best practices for in-service training and professional development,
as well as curriculum changes and wider education policy reform.

The proposed methodology for this literature review was initially based on a systematic
review (Gough et al., 2012) of the existing corpus of research and policy contributions in
this space to identify, appraise, select and synthesise all high-quality research evidence and
arguments relevant to the project aims and objectives. Furthermore, it aimed to evaluate
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the existing “grey literature” and semi-formal evaluations of practice and experience pro-
duced in the UK and internationally, which has required careful categorisation and eval-
uation of the methodologies and cohort sizes presented. However, during the preliminary
phases of the review process, it became apparent that due to the significant quantities of
references to pedagogy in computer science in the academic literature, conducting a rigor-
ous systematic review in the relevant time frame would have been problematic. Therefore,
multiple methods have been employed to search the literature to ensure a thorough cover-
age and to minimise the possibilities of omitting any promising research from the review.
A number of key academic databases have been targeted, including Google Scholar, ACM
Digital Library and IEEE eXplore, followed by searching individual leading international
journals and conferences in computer science/ICT/digital/technology education. This
traditional literature search of recent English-language literature in refereed educational
research journals, using key words and then selecting for relevance to the detailed re-
search questions, produced a selection of some hundreds of papers: these were organised
into themes, and in each of these we have attempted to identify a recent meta-analysis
or review that we could have confidence in. This survey then suggested some important
gaps which we endeavoured to fill through wider searches. Finally, certain areas have
been covered to add context to the wider overview of research in this field, but are not
comprehensively covered; for example, the section on gender and diversity.

Effective Pedagogies in Computing

Introduction

There is significant international focus on recent and ongoing computing curriculum re-
form in the UK. A number of audits and studies of national-level curricula models have
been conducted over the past five years (CAS, 2011; Hazzan et al., 2008; Hubwieser et al.,
2011; Snyder, 2012; Sturman and Sizmur, 2011), with numerous nations and states en-
gaged in efforts to revamp their compulsory-level computer science curricula (Hubwieser
et al., 2015b; Webb et al., 2017). Relevant examples include the USA (both nation-
ally (ACM et al., 2016) and at the state level (Ericson et al., 2016; Guzdial et al., 2014)),
France (Baron et al., 2014), Italy (Bellettini et al., 2014), India (Raman et al., 2015),
Israel (Armonia and Gal-Ezer, 2014; Gal-Ezer and Stephenson, 2014), New Zealand (Bell,
2014; Bell et al., 2012), Russia (Khenner and Semakin, 2014) and Sweden (Rolandsson
and Skogh, 2014), with each country having different issues to address in implementing a
concepts-rich computer science curriculum (along with ensuring they have the expertise in
the teaching profession to deliver it effectively). It is worth noting that recommendations
for academic computer science curricula have a long pedigree (Atchison et al., 1968). Des-
pite the increasing number of success reports from several countries – with establishing
computer science as a worthwhile and high-value subject a frequently-named educational
goal – it is one that represents significant challenge in terms of research, assessment and
teacher training (Vahrenhold, 2012), especially for early years education (Beauchamp,
2016; Bird et al., 2014; Manches and Plowman, 2017) and in the wider context of re-
thinking effective pedagogies for the digital age (Beetham and Sharpe, 2013). Due to the
substantial differences of preconditions, circumstances and influence factors, it is often
difficult to compare or transfer research results in the field of computer science education
in schools from one country to another; a framework has been developed – the “Darm-
stadt model” (Hubwieser, 2013) – to reflect all factors that might be relevant for computer
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science education in schools (Hubwieser et al., 2014, 2015a; Passey, 2017). Furthermore,
throughout all of these reforms, there is a clear imperative to provide high-quality pro-
fessional service to upskill existing and new educators to be able to effectively deliver the
curriculum (Ericson et al., 2014; Hazzan et al., 2015; Sentance et al., 2012, 2013, 2014),
reflecting a variety of challenges (Ni, 2009; Sentance and Csizmadia, 2017).

Policy and practice in the higher education sector is also of importance, particularly
from a curriculum standards and guidelines perspective; for example from the UK’s Qual-
ity Assurance Agency and its Subject Benchmark Statement for Computing (QAA, 2016)
and the US Association of Computing Machinery (ACM) model curricula for undergradu-
ate degree programmes (ACM, 2010, 2013, 2014, 2016), especially from a pedagogic per-
spective (Dziallas and Fincher, 2015). For universities across the UK offering computer
science degrees, the ongoing school curriculum reform has had uncertain (and emerging)
impact on the delivery (and thus pedagogy) of their undergraduate programmes, with the
diversity of the educational background of applicants likely to increase before it narrows:
it is certainly possible now for prospective students to have anywhere from zero to four or
five years experience (and potentially two school qualifications) in computer science with
some knowledge of programming.

Theories of Learning

There are long-established groundings in the literature to key educational research themes
and how they support effective pedagogies and underpin high-quality learning and teach-
ing in ICT and computing (Cox et al., 2004).

Constructivism is a philosophical viewpoint about the nature of knowledge, repres-
enting an epistemological stance. Constructivists interpret learning as the development
of personalised knowledge frameworks that are continually refined, with learners actively
constructing mental models to understand the world around them, rather than have un-
derstanding passively “dumped into their brains” (Esper et al., 2012). According to this
theory, to learn, a student must actively construct knowledge, rather than simply absorb-
ing it from textbooks and lectures (Davis et al., 1990; Meyer et al., 2010). There is an
important distinction to note between social constructivism – which primarily focuses on
the development of an individual’s understanding – and cognitive constructivism – which
focuses on knowledge constructed through interaction with others. The influential idea
of cognitive apprenticeship (Brown et al., 1989), which holds that masters of a skill often
fail to take into account the implicit processes involved in carrying out complex skills
when they are teaching novices. To combat these tendencies, cognitive apprenticeships
are designed, among other things, to bring these tacit processes into the open, where stu-
dents can observe, enact, and practice them with help from the teacher, which honors the
situated nature of knowledge. Further work in social constructivism includes communities
of practice (Lave, 1991), with a primary focus on learning as social participation – that
is, an individual as an active participant in the practices of social communities, and in
the construction of his or her identity through these communities (Wenger, 2000).

The work of Piaget (1950) and Vygotsky (1978) is prominent in this space. Piaget
described constructivism in education as being the process whereby students constructed
their own unique systems of knowing (Piaget, 1950), in consequence of which the teacher
should focus on this individual process of internal construction rather than standing at
the front and dictating their own models. Students develop their own self-constructed
rules, or “alternative frameworks” (Ben-Ari, 2001). This appears to be a common theme
in programming, in which these alternative frameworks “naturally occur as part of the

4



transfer and linking process” (Clancy, 2004); they represent the prior knowledge essential
to the construction of new knowledge. When learning, the student modifies or expands his
or her framework in order to incorporate new knowledge. Piaget’s theory of constructivist
learning has had wide-ranging impact on learning theories and teaching methods in educa-
tion, and has been an underlying theme of many education reform movements across the
world; it has also been proposed as a suitable pedagogy for information and computing
sciences in the past (Boyle, 2000), particularly for computer programming (Lister, 2016).
This constructivist approach informs the US National Research Council’s recommend-
ations for the adoption of active learning pedagogies in the classroom (Eberlein et al.,
2008), particularly focused around the perceived utility of the “classroom lecture” and
exploratory homework, a mechanism to support active learning for teaching programming
languages by seeking to develop a model for students of how to explore and understand
key constructs and concepts (Esper et al., 2012).

Constructivism does not refer to a specific pedagogy, although it is often confused
with constructionism, an educational theory developed by Seymour Papert, inspired by
constructivist and experiential learning ideas of Piaget. There are thus strong pedago-
gical links to the work of Papert (1993) and social constructionism, where learners work
together to construct solutions (Kafai and Resnick, 1996), potentially through distributed
means (Resnick, 1996), as well as how constructionist learning in science and mathemat-
ics can be applied to computing and the digital world (Kafai, 2006; Kafai and Resnick,
1996). Pedagogical approaches that emphasise constructive and collaborative learning in
CS1 classrooms, based on empirical results, have been conducted (Van Gorp and Grissom,
2001), with potential application to schools. This leads into the pedagogic approaches
around designing and making artefacts, particularly on the idea of “computational par-
ticipation” (Kafai et al., 2014), as well as using robotics (Barreto and Benitti, 2012),
although there are tensions with “technocentrism” and taking a constructionist approach
to learning (Brennan, 2015).

While there have been criticism of Bloom’s taxonomy (Bloom, 1965) – particularly
as the classification was not a properly constructed taxonomy, as it lacked a systemic
rationale of construction – work has been done on whether the taxonomy is appropriate
for computer science, especially with the structure of observed learning outcomes (SOLO)
taxonomy (a general educational taxonomy that describes levels of increasing complexity
in student’s understanding of subjects). Bloom’s taxonomy of the cognitive domain and
the SOLO taxonomy are being increasingly widely used in the design and assessment of
courses, but there are some drawbacks to their use in computer science (Anderson et al.,
2013); researchers have advocated its use for specifying learning outcomes in computer
science prior to assessment (Starr et al., 2008), for computational thinking and teach-
ing programming (Selby, 2015), as well as attempting to ‘benchmark’ the content of a
computing degree (Fuller et al., 2007; Johnson and Fuller, 2006).

There is also extensive work in threshold concepts (Land et al., 2008; Meyer et al.,
2010) – as a subset of the core concepts in a discipline – for computing, and specifically
in programming (Khalife, 2006); while not necessarily pedagogy, identifying and under-
standing which concepts are transformative provides valuable insight into key parts of the
curriculum, as these are the building blocks that must be understood. Threshold concepts
must be:

• transformative: they change the way a student looks at things in the discipline;

• integrative: they tie together concepts in ways that were previously unknown to the
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student;

• irreversible: they are difficult for the student to un-learn;

• potentially troublesome for students: they are conceptually difficult, alien, and/or
counter-intuitive;

• often boundary markers: they indicate the limits of a conceptual area or the discip-
line itself.

Students who have mastered these threshold concepts have, at least in part, “crossed
over from being outsiders to belonging to the field they are studying” (Eckerdal et al.,
2006), although there is some dispute on how they apply to computer science (Boustedt
et al., 2007). Furthermore, perceptions (Lonati et al., 2011) and issues with domain
terminology is still a barrier to many – both practitioners and policymakers – although
there is ongoing work in the UK to address this (Simon et al., 2015; UKForCE, 2016).

There are a number of other pedagogical approaches that have been used to identify
key introductory computing topics;Delphi processes – a structured multi-step process
that uses a group of experts to achieve a consensus opinion (Clayton, 1997) – have been
used to identify topics that are important and perceived to be difficult in each of three
introductory computing subjects: discrete math, programming fundamentals, and logic
design. These topic rankings can then be used to guide both the coverage of standardised
tests of student learning (i.e. concept inventories) and can be used by educators to identify
which topics merit emphasis (Goldman et al., 2008).

This naturally leads into the use of concept inventories, specialised assessment in-
struments that enable educational researchers to investigate student (mis)understandings
of concepts in a particular domain i.e. how a student’s conceptual framework matches
the accepted conceptual framework of a discipline. While students experience a concept
inventory as a set of multiple-choice items taken as a test, this belies its purpose, its
careful development, and its validation (Almstrum et al., 2006). A concept inventory is
not intended to be a comprehensive instrument, but rather a tool that probes a student’s
comprehension of a carefully-selected subset of concepts that give rise to the most com-
mon and pervasive mis-modellings; concept inventories have been developed and used in a
number of STEM fields, with application to computing, for example digital logic (Herman
et al., 2010), algorithms and data structures (Danielsiek et al., 2012).

Peer instruction (PI) is an effective active learning method that supports student-
centric classrooms, where students construct their own understanding through a struc-
tured approach featuring questions with peer discussions. PI has been shown to increase
learning in STEM disciplines such as physics and biology (Crouch and Mazur, 2001), as
well as being an indicator of student success. The potential implications of widespread
adoption of PI in computing has also been discussed (Porter et al., 2011, 2013a), with the
general focus of PI research been on the in-class portion of PI: multiple choice questions
and group discussion (Zingaro et al., 2013). It is generally assumed that early success in
CS1 is crucial for success on the examination and course as a whole. Particularities of
students, densely-connected CS1 content, and recurring core topics each suggest that it
is difficult to rebound from early misunderstandings. PI data, in addition to examination
data, has been used to explore relationships between in-class assessments and perform-
ance on the end of term assessment; early course performance very quickly and strongly
predicts performance on the final examination and that subsequent weeks provide no ma-
jor increase in that predictive power (Porter and Zingaro, 2014). Peer instruction has also
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been used to increase engagement in lectures, for example with students answering a mul-
tiple choice question typically using hand-held remote devices, discuss the question with
their peers, and then answer the question again; studies have reflected on this approach,
understanding the value for the teacher, and reporting the attitudes and opinions of the
students (Simon et al., 2010). Furthermore work on the benefits of lab-centric instruc-
tion, a collection of pedagogical techniques enabled by converting class time in lecture
to time in a supervised closed lab, with the intermediate goal of supporting students’ in
developing skills of self-assessment (Lewis et al., 2011).

Finally, there is a body of pedagogic approaches on the use games-based learning to
support the acquisition of knowledge in computing education (Egenfeldt-Nielsen, 2007; Gi-
annakos, 2013; Schmitz et al., 2011; Theodoropoulos et al., 2017), with a variety of factors
affecting learner perception, engagement and performance Bourgonjon et al. (2010); Far-
rell and Moffat (2014); Jiau et al. (2009); Lee and Hammer (2011). For example, enhancing
self-motivation to learn programming using game-based simulation and metrics, primarily
to avoid tedious trial-and-error refinement processes by providing helpful clues on how
the student might reprogram the strategy to improve the result (Jiau et al., 2009).

Computer Science Fundamentals

There are a range of pedagogic approaches to developing knowledge and understand-
ing of key fundamental topics in computer science, for example understanding auto-
mata (Isayama et al., 2017), finite state machines and Turing machines (Korte et al.,
2007), as well as key issues such as concurrency (Kolikant, 2004). A wide range of work
has been conducted in algorithm design strategies (Levitin, 1999, 2016) and in particular,
the use of analogies (Cao et al., 2016; Chee, 1993; Repenning and Perrone, 2000) and
metaphors (Forĭsek and Steinová, 2012; Hidalgo-Céspedes et al., 2014). This is linked
to students’ misconceptions relating to algorithms and data structures, building in work
on concept inventories (Coffey, 2013; Danielsiek et al., 2012). Tracing – to understand
the notional machine provides insight into the process a computer goes through when
executing a section of code is manually stepped through by the learner in order to un-
derstand how it will work and what the expected output should be (Sorva, 2013). Just
showing a visualisation of a piece of code or an algorithm does not appear to improve
learners’ depth of understanding; annotation on, and next to, the code provides a visual
guide of what actually happens when it executes. This makes the abstract concepts and
hidden mechanisms visible and therefore easier to think and reason about (Sorva, 2013).
However, just viewing program or algorithm visualisations does not necessarily lead to
improved understanding: how students use the technology has a greater impact on effect-
iveness than what the technology shows them (Hundhausen et al., 2002). Instead, active
engagement with the visualisation is the key factor either by predicting the next step,
choosing suitable input data to achieve a particular output of learners constructing the
visualisation themselves (Grissom et al., 2003; Petre and Blackwell, 1999).

Various studies have been conducted to determine factors that promote success in
introductory college computer science courses, identifying possible predictive factors in-
cluding: math background, attribution for success/failure (luck, effort, difficulty of task,
and ability), domain specific self-efficacy, encouragement, comfort level in the course, work
style preference, previous programming experience, previous non-programming computer
experience, and gender (Cantwell Wilson and Shrock, 2001). Studies have revealed three
predictive factors: comfort level, math, and attribution to luck for success/failure; comfort
level and math background were found to have a positive influence on success, whereas at-
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tribution to luck had a negative influence. Furthermore, by considering the different types
of previous computer experiences (including formal programming class, self-initiated pro-
gramming, internet use, game playing, and productivity software use) that both a formal
class in programming and game playing were predictive of success, as well as outreach
programs (Franklin et al., 2013). Formal training had a positive influence and games a
negative influence on class grade (Cantwell Wilson and Shrock, 2001). Much work has
focused on planning and assessment of CS1 level topics – especially programming – and
how this impacted on attainment of students (Matthasdóttir and Arnalds, 2015). Many
university computing academics report bimodal grade distributions in their CS1 classes,
believing that such a distribution is due to there being an innate talent for programming,
a so-called “geek gene” (Ahadi and Lister, 2013). Robins (2010) introduced the concept
of learning edge momentum, which offers an alternative explanation for the purported
bimodal grade distribution, with studies analysing empirical data from introductory pro-
gramming class, looking for evidence of geek genes, learning edge momentum and other
possible factors (Ahadi and Lister, 2013). Further work in this area in discussed later on
in this chapter, particularly with how developing conceptual understanding of theoretical
concepts apply to programming and computational thinking.

Programming and Coding

Since the launch of the curriculum in England, there has been significant media and public
attention on this new “coding curriculum”3, with programming dominating the focus on
what is a much broader discipline; even the terminology used can be divisive: “coding” or
“programming”? However, as part of the initial search of the wider computing education
literature, it is clear there is a substantial corpus of work on developing and understanding
effective pedagogies on how to teach programming.

For many years – and increasingly at all levels of compulsory and post-compulsory
education – the choice of programming language to introduce the “art” (Knuth, 2011),
“science” (Gries, 1981) and “discipline” (Dijkstra, 1976) of computer programming via
key principles, constructs, syntax and semantics has been regularly revisited. So what
is a good first programming language? The issues surrounding choosing a first lan-
guage (Gupta, 2004; Kaplan, 2010) – and a Google Scholar search identified a number
of papers of the form “X as a first programming language”, going as far back as the
1970s (Gries, 1974) – appear to be legion, especially with discussions of what precisely
we aim to achieve from teaching programming (Fincher, 1999; Schulte and Bennedsen,
2006), to psychological approaches (Winslow, 1996), gender gaps (Angel Rubio et al.,
2015), adults learning programming (Guo, 2017), attitudes (Fesakis and Serafeim, 2009)
and a new focus on developing transferable computational thinking and problem solv-
ing skills (Tedre and Denning, 2016; Wing, 2008). While in the past, research on the
teaching of introductory programming had limited effect on classroom practice (Pears
et al., 2007), increasingly relevant research exists across several disciplines including edu-
cation and cognitive science, disciplinary differences have made this material inaccessible
to many computing educators. Furthermore, computer science educators have not had
access to comprehensive surveys of research in this area (McCracken et al., 2001; Pears
et al., 2007).

The topics addressed in the literature span a wide range of problems and solutions as-

3e.g. https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-
children-programming
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sociated with the teaching of programming such as introductory programming courses, ex-
position of the programming process, apprentice-based learning, functional programming
first, problem-based learning, the use of on-line tutorials, object-oriented programming
and Java, environments to introduce programming, model-driven programming as op-
posed to the prevailing language-driven approach, teaching software engineering, testing,
extreme programming, frameworks, feedback and assessment, active learning, technology-
based individual feedback, and mini project programming examinations (Bennedsen et al.,
2008).

Mastery of basic syntactic and logical constructs is an essential part of learning to
program. Unfortunately, practice exercises for programming basics can often be tedi-
ous (or perceived to be tedious), making it difficult to motivate students (Dasgupta and
Resnick, 2014; Dasgupta et al., 2015). The idea of using “problets” – problem solving
software assistants for learning, reinforcement and assessment of programming concepts –
was introduced by Kumar (2005). They are designed to help students learn programming
concepts through small-scale problem-solving e.g. code-tracing problems (Kumar, 2015),
and as a supplement to large-scale programming traditionally used in introductory pro-
gramming courses. Other simple “programming puzzles” was introduced by Parsons and
Haden (2006): automated, interactive tools that provides practice with basic program-
ming principles in an entertaining puzzle-like format. Careful design of the items in the
puzzles allows the tutor to highlight particular topics and common programming errors.
Since each puzzle solution is a complete sample of well-written code, use of the tool thus
exposes students to good programming practices, particularly when coupled with using
sub-goals (Morrison et al., 2016).

This links with work focusing on issues with students who are unable to “trace”
code, implying they are unable to explain its syntax and function. Students who tend to
perform reasonably well at code writing tasks have also usually acquired the ability to
both trace code and explain code (Lister et al., 2009) – the performance of students on
code tracing tasks correlates with their performance on code writing tasks. A correlation
was also found between performance on “explain in plain English” tasks and code writing.
Further work in this space suggests the possibility of a hierarchy of programming-related
tasks: knowledge of programming constructs forms the bottom of the hierarchy, with
“explain in English”, Parson’s puzzles, and the tracing of iterative code forming one or
more intermediate levels in the hierarchy (Lopez et al., 2008). The structure of observed
learning outcomes (SOLO) taxonomy – a general educational taxonomy that describes
levels of increasing complexity in student’s understanding of subjects – has also been
used to describe differences in the way students (particularly novice programmers) and
educators solve small code reading exercises (Lister et al., 2006).

Programming is a hard craft to master and its teaching is challenging. An apprentice
model, where students learn their craft from a master is an approach that can lead to
improved student engagement (Astrachan and Reed, 1994; Vihavainen et al., 2011). Al-
though traditionally applied to physical and vocational skills, the apprenticeship model
can also be applied to the acquisition of cognitive skills such as those required for pro-
gramming, as discussed in the Theories of Learning section. In this context, the master
is required to focus on the programming process and demonstrates it through writing,
debugging and running ‘live’ programs. This takes place whilst being observed by the
student cohort; scaffolding is provided through the provision of regular practical exercises
with good quality formative feedback (Crick et al., 2015).

There is a belief that programming – as opposed to, say analysis of algorithms, a
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closely related theoretical skill – is fundamentally a craft that needs immersion and prac-
tice (Fincher, 1999; Milne and Rowe, 2016). This is related to both general and discipline-
specific pedagogy, with some positions implying that minimal guidance during instruction
is less effective and efficient than guidance specifically designed to support the cognitive
processing necessary for learning (Kirschner et al., 2006). Connected to this general point
is a curious paradox in the teaching of programming: students are generally taught to
write programs, and not particularly to read them (essentially overlooking the importance
of code literacy), whereas in natural languages, be it the mother tongue or foreign lan-
guage instruction, students are taught to read before they are taught how to write (Crick
et al., 2015). Approaches such as discussion classes (Hagan and Sheard, 1998) and live-
coding – defined as “the process of designing and implementing a [coding] project in front
of class during lecture period” – can be effective in teaching introductory programming,
with experimental data indicating that teaching via live-coding is as good as if not better
than using static code examples (Rubin, 2013).

Pair programming (Williams and Kessler, 2000) is another common theme; prior re-
search on pair programming has found that compared to students who work alone, stu-
dents who pair have shown increased confidence in their work, greater success in CS1, and
greater retention in computer-related majors (Hanks et al., 2004). A systematic review
by Salleh et al. (2011) showed that students’ skill level was the factor that affected pair
programming’s effectiveness the most. The most common measure used to gauge pair
programming’s effectiveness was time spent on programming; in addition, students’ satis-
faction when using pair programming was overall higher than when working solo and was
effective in improving students’ grades on assignments. Furthermore, pairing students
were more likely to turn in working programs, and these programs correctly implemented
more required features. An unexpected but significant finding was that pairing students
were more likely to submit solutions to their programming assignments (Hanks et al.,
2004). From a qualitative, student-focused approach, how do students define, experience,
and value the pair programming experience; especially how do they experience and value
it compared to solo programming? Students get stuck less and explore more ideas while
pairing, and believe that pair programming helped them in CS1; however, students repor-
ted that when solo programming they were more confident and better understood their
programs. Many students also said that they started work on their assignments earlier
when soloing. Students also continue to use other students as resources even when working
solo (Simon and Hanks, 2008). Finally, pair programming produces more proficient, con-
fident programmers – and may help increase female representation in the field (McDowell
et al., 2006).

As expected, there is a broad corpus on work on innovative and effective assessment
mechanisms for programming, asking fundamental questions about what are we aiming to
do when we teach programming (Fincher, 1999), through to misconceptions, attitudes and
perceptions (Clancy, 2004). There have been multi-national, multi-institutional studies
of assessment of programming skills of first-year computer science students in higher edu-
cation institution (Lister et al., 2004; McCartney et al., 2013; McCracken et al., 2001),
looking at effective pedagogies (Pears et al., 2007; Schulte and Bennedsen, 2006), the
potential impact of programming expertise on learning motivation and academic achieve-
ment (Kori et al., 2016) – particularly failure rates (Bennedsen and Caspersen, 2007) –
as well as the choice of introductory programming language and the potential impact on
students’ grades and attainment (Bergin and Reilly, 2006; Ivanović et al., 2015; Porter
et al., 2013b; Simon et al., 2006). Research into effective study habits has provided in-
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sight into preparation for assessment, as well as resilience (Nam Liao, 2016; Willman et al.,
2015); in many instances, high-quality exemplification is a key feature of successful initiat-
ives (Scott, 2013). Recent international surveys of coding practices in K-8 have provided
insight into demographics, experience, teaching practices and teacher confidence4.

From a higher education perspective, there is a substantial body of work around effect-
ive pedagogies to support high-quality learning, teaching and assessment of computing.
In the UK, much work has been supported by the Higher Education Academy – an inde-
pendent non-profit organisation committed to world-class teaching in higher education;
they work in partnership with institutions and individuals in higher education supporting
student success through collaboration and share teaching strategies and practice. This has
been primarily done through the HEA’s STEM disciplinary theme (HEA, 2017). As the
national body for promoting high-quality learning and teaching in higher education insti-
tutions in the UK, they run a programme of discipline-specific events, including STEM
teaching and learning conferences, funding pedagogic research on innovative pedagogies,
learning & teaching resources and case studies to inform and improve practice (for ex-
ample, looking at retention and attainment in computer science (Gordon, 2016), a key
sector issue). In the context of what are perceived to be the most difficult introductory
topics in computer science degrees, numerous key themes frequently appear (Dale, 2006),
with innovative approaches to addressing them (Hazzan et al., 2011).

Furthermore, the teaching of introductory programming in many higher education in-
stitutions has started to move away from focusing primarily on syntax to developing a
deeper understanding of principles of programming, transferable language semantics, un-
derlying constructs and structures, as well as developing useful and usable software arte-
facts: in summary, building upon the craft of programming via software carpentry (Wilson
et al., 2014), codemanship (Crick et al., 2015) and teamwork (Martinez et al., 2014). Al-
though controversial (Guzdial, 2009), this practice has a dual focus: firstly, it develops a
high-level appreciation for why programming is being taught – essentially to solve real-
world problems, using the most appropriate languages, tools and environments; secondly,
it allows embedding the use of tools, methodologies and techniques so as to start to de-
velop best practice for real-world software development. While the aim of this approach is
not to create industry-level programmers at the end of the degree programme, by fostering
and supporting the development of a particular culture around creating useful and usable
software artefacts, underpinned by rigorous knowledge and theory, ensures that students
understand how software is designed, developed and maintained in industry, and have the
internal framework for developing knowledge and understanding in new languages, tools
and environments and methodologies when required to do so (Davenport et al., 2016).
However, it is important to note that university educators have the freedom and flexibility
to select whichever programming languages, tools and environments they wish; educators
in schools and colleges may be constrained in their choice of programming languages by
informal requirements of the UK awarding bodies (especially in regards to their specific
GCSE Computer Science qualification).

In this evolving national and international environment of emerging policy and cur-
ricula, as well as the demands of developing innovative pedagogies and high-quality learn-
ing and teaching for computer science degree programmes, national surveys of introduct-
ory programming languages provide valuable insight into pedagogy and practice. Longit-
udinal studies has been conducted in Australia and New Zealand over the past 15 years; in

4http://peterjrich.com/blog/2016/10/19/coding-in-k-8-international-survey-initial-
results/
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2001 and 2003, and censuses were conducted on Australian and New Zealand universities
to examine trends in the programming languages and environments used in introductory
programming courses (Raadt et al., 2004). In 2010 and 2013 (Mason and Cooper, 2014;
Mason et al., 2012) similar surveys were conducted online, providing further data on the
types of programming languages used (the prevalence of Python), along with some in-
sight into pedagogies and environments. A related national-scale survey conducted in the
USA in 2011 also provided some insight into the state of computing education in that
country (Davies et al., 2011), along with more recent surveying (Guo, 2014) (again, an
increasingly preference for Python). An inaugural survey of UK universities was conduc-
ted in 2016 (Murphy et al., 2017), mirroring the Australasian questions and structure;
across the UK there is a diversity of practice, with Java appearing to have most traction
– perhaps from perceived industry usefulness – but with Python also on the rise, most
likely due to school curriculum reforms. Further to this large corpus of work on computer
science – and in particular, programming – pedagogies, there is an opportunity to identify
best practice that can be adapted for use in schools and colleges (Tangney et al., 2010).

Computational Thinking

Computational thinking (Wing, 2008) is a key theme of the new computing curriculum
in England – appearing in the first sentence of the purpose of study (Department for
Education, 2013):

“A high-quality computing education equips pupils to use computational
thinking and creativity to understand and change the world.”.

It refers to a collection of computational ideas and habits of mind that people in com-
puting disciplines acquire through their work in designing programs, software, simulations,
and computations performed by machinery. Known in the 1950s and 1960s as “algorithmic
thinking”, it meant a mental orientation to formulating problems as conversions of some
input to an output and looking for algorithms to perform the conversion (Denning, 2009).
An early definition of computational thinking as presented in Wing (2010):

“Computational thinking is the thought processes involved in formulating
problems and their solutions so that the solutions are represented in a form
that can be effectively carried out by an information-processing agent.”

While increasingly being discussed in the context of being a “21st century skill” (Boc-
coni et al., 2016b,c), computational thinking is perhaps perceived to be one of the more
challenging concepts to teach and assess, partly due to lack of clarity about its precise
definition and core components. Over the past decade, computational thinking and related
concepts have received increasing attention across the educational field, which has given
rise to an increasing amount of academic and grey literature5 (Lockwood and Mooney,
2017), but also numerous collaborative initiatives (Meerbaum-Salant et al., 2015). Despite
this widespread interest and policy focus, successful computational thinking integration
in compulsory education faces unresolved issues and challenges (Bocconi et al., 2016a). A
2014 working group report on computational thinking in K-9 education (Mannila et al.,
2014) aiming to revealing to what extent different aspects of computational thinking are

5See: https://idleclicks.wordpress.com/computational-thinking/
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already part of teachers’ classroom practice. Well-established initiatives such as CSUn-
plugged6, Barefoot Computing7, as well as aspects of CAS Tenderfoot8 in the UK, attempt
to build teacher confidence in teaching computer science through algorithmic and com-
putational thinking principles (Csizmadia et al., 2015).

Considerable evidence indicates that domain specific knowledge in the form of schemas
is the primary factor distinguishing experts from novices in problem-solving skill. Evid-
ence that conventional problem-solving activity is not effective in schema acquisition is
also accumulating. It is suggested that a major reason for the ineffectiveness of prob-
lem solving as a learning device, is that the cognitive processes required by the two
activities overlap insufficiently, and that conventional problem solving in the form of
means-ends analysis requires a relatively large amount of cognitive processing capacity
which is consequently unavailable for schema acquisition (Sweller, 1988). This links with
the “use-modify-create” framework (Lee et al., 2011), representing three phases of stu-
dents’ cognitive and practical activity in computational thinking, as well as the use of
sub-goals (Morrison et al., 2015).

Linking back to the previous section on effective pedagogies for programming, a study
by an ITiCSE working group (McCracken et al., 2001) established that many students do
not know how to program at the conclusion of their introductory courses; although this
study from 2001 may be dated by recent reforms, it is clear more research needs to be
done in this space. A popular explanation for this incapacity is that the students lack
the ability to problem-solve; that is, they lack the ability to take a problem description,
decompose it into sub-problems and implement them, then assemble the pieces into a
complete solution (Lister et al., 2004). While this could also be attributed to the fact that
many students have a fragile grasp of both basic programming principles and the ability
to systematically carry out routine programming tasks (such as tracing through code),
there appears to be a strong perceived link between programming and computational
thinking (Davies, 2008; Hu, 2011).

As the term became more accepted and the ‘for everyone’ manifesto generated interest,
the focus shifted to curricula (ACM et al., 2016; Barr and Stephenson, 2011; Bell et al.,
2010; Brinda et al., 2009; CAS, 2012; Gal-Ezer et al., 1995; Hubwieser et al., 2015b;
Iyer et al., 2010), classroom experiences (Ater-Kranov et al., 2010; Cooper et al., 2010;
Demšar and Demšar, 2016; Lee et al., 2011; Rodriguez et al., 2017; Yadav et al., 2014)
and cross-curricular activities (Basawapatna et al., 2011; Curzon et al., 2009; Eisenberg,
2010; Goldberg et al., 2013; Kubica, 2012; Kules, 2016; Perković et al., 2010); at this time,
other fields were also exploring their connections to computational thinking (Eisenberg,
2010; Gal-Ezer and Zur, 2002; L’Heureux et al., 2012; Lu and Fletcher, 2009).

However, modern computational thinking initiatives should be well aware of the broad
and deep history of computational thinking, or risk repeating already refuted claims, past
mistakes, and already solved problems, or losing some of the richest and most ambitious
ideas in computational thinking (Denning, 2007). Since Wing (2006), there have been
attempts to provide a formal and comprehensive definition of computational thinking by
authoritative individuals and groups (Aho, 2012; Barr and Stephenson, 2011; Denning,
2007; Google, 2013; Grover and Pea, 2013; Guzdial, 2008, 2012; National Research Coun-
cil, 2010, 2011; Wing, 2008). Recent work by Tedre and Denning (2016) has examined
a number of threats to computational thinking initiatives: lack of ambition, dogmatism,

6http://csunplugged.org
7http://www.barefootcas.org.uk
8http://www.computingatschool.org.uk/tenderfoot
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knowing versus doing, exaggerated claims, narrow views of computing, overemphasis on
formulation, and lost sight of computational models. Two interesting questions that have
been raised in the literature: i) computational thinking a unique and distinctive charac-
terisation of computer science? and ii) is computational thinking an adequate character-
isation of computer science? (Denning, 2009).

Policy Context

Overview

With significant international focus on recent computing education policy reform (and
emerging practice) in the UK, it is useful to briefly frame the wider policy context, par-
ticularly disaggregating the educational, societal and economic drivers. Since the devel-
opment of ICT as a new curriculum subject in the late 1990s (McKinsey & Co., 1997;
Stevenson, 1997), there has been scrutiny of its breadth, depth and impact on students’
learning and attainment (Ofsted, 2001, 2002, 2004). The publication of the Nesta Next
Gen. report in 2011 (Livingstone and Hope, 2011) and the Royal Society’s Shut Down
or Restart? report (Royal Society, 2012), coupled with the disapplication of the ICT
programme of study in England and scrutiny of the quality of a range of vocational
qualifications (Royal Academy of Engineering, 2012; Wolf, 2011), left many educational
establishments uncertain about the direction of this subject area, as well as poor wider
perceptions of the discipline (Quinlan, 2015). However, a new computing curriculum (and
associated qualifications) was starting to emerge (Brown et al., 2013, 2014), being pub-
lished in 2013 for first delivery in September 2014 (Department for Education, 2013) from
aged five (Manches and Plowman, 2017) to qualifications at 16 and 18. Alongside reforms
in Scotland as part of their Curriculum for Excellence (Scottish Government, 2008), with
a clear strand of computing science, as well as emerging education and skills reform in
Wales (Arthur et al., 2013; Crick and Moller, 2015; Donaldson, 2015) and Northern Ire-
land (Perry, 2015). This has been supported by a strong European theme (Informatics
Europe and ACM Europe Working Group, 2013), particularly as part of the wider Digital
Agenda for Europe9 initiative to promote digital literacy, skills and inclusion. Through-
out all of these reforms, there is a clear imperative on providing high-quality professional
service to upskill existing and new educators to be able to effectively deliver the cur-
riculum (Cutts et al., 2017; Sentance and Csizmadia, 2017; Sentance et al., 2012, 2013,
2014).

From a societal and economic policy context, the “digital skills gap” has been high-
lighted by a number of high-profile policy reports, including by the UK Digital Skills
Taskforce in 2014 (UK Digital Skills Taskforce, 2014), the House of Lords Select Commit-
tee on Digital Skills in 2015 (House of Lords Select Committee on Digital Skills, 2015), as
well as the House of Commons Select Committee on Science & Technology in 2016 (House
of Commons Select Committee on Science & Technology, 2016). From a wider societal
context, a 2017 report from the Children’s Commissioner for England’s Growing Up Di-
gital Taskforce stated that: “The current Computing curriculum sets out in detail the
technical skills and some of the legal knowledge a child should have at different ages. The
Childrens Commissioner however believes this is too narrow, and often too late; your data
protection rights, for instance, are not taught until GCSE level, and GCSE Computing is

9https://ec.europa.eu/digital-single-market/digital-agenda-europe
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not compulsory.” (Children’s Commissioner for England, 2017).
Policy and practice in the higher education sector is also of relevance to this project,

particular from a curriculum standards and guidelines perspective, for example from the
QAA in the UK (QAA, 2016) and the ACM in the USA (ACM, 2010, 2013, 2014, 2016).
For universities across the UK offering computer science degrees, the school curriculum
reform has had uncertain (and emerging) impact on the delivery of their undergradu-
ate programmes, with the diversity of the educational background of applicants likely to
increase before it narrows: it is certainly possible now for prospective students to have
anywhere from zero to four or five years experience (and potentially two school qualific-
ations) in computer science with some knowledge of procedural, object-oriented and/or
functional programming. Furthermore, over the past three years, there has been increas-
ing scrutiny of the quality of teaching in UK universities, partly linked to the current
levels – and potential future increases – of tuition fees (generally paid by the student
through government-supported loans), as well as relative levels of graduate employability
and the perceived value of professional body accreditation by industry. In February 2015,
the Department of Business, Innovation & Skills initiated independent reviews of STEM
degree accreditation and graduate employability10, with a specific focus – the Shadbolt
review – on computer science degree accreditation and graduate employability, reporting
back in May 2016 (Shadbolt, 2016). A number of recommendations were made to address
the relatively high unemployment rates of computer sciences graduates, particular on the
quality of data, course types, gender and demographics.

Qualifications

The uptake of computing/computer science qualifications at GCSE and A-level in the
UK can obviously be made by looking at the educational establishments that offer the
qualification and the students sitting it. Not all schools and colleges offer computing
qualifications at GCSE or A-level and not all students sit qualifications in computing.
This is further complicated by the increasing divergence of the four education systems in
the UK, two of whom are still undergoing curriculum reform. However, all of the major
examination boards – AQA, OCR, Edexcel, CCEA and WJEC/Qualifications Wales) –
offer GCSEs and/or A-Levels in computing/computer science. Even where a qualification
is taught by a school, subject requirements might limit the type of student who is able
to take the course. Whilst at A-level, computing is a well-established subject, it is only
offered by a minority of centres, with some areas having no provision. Until recently,
the number of students taking A-level computing has been in decline, but Joint Council
for Qualifications figures show that since 2014 numbers have been increasing year-on-
year (Joint Council for Qualifications, 2014, 2015a, 2016a). A new computing GCSE
was introduced by OCR in 201111 with the first cohort of students sitting examinations in
2013. Understandably, not all schools and colleges adopted this qualification immediately,
and whilst the number of centres and students have been increasing, the numbers have
not yet matched those of ICT (Joint Council for Qualifications, 2016b). A similar picture
has been observed at A-level with numbers of computing students rising 50% in five years
but still well below ICT (Joint Council for Qualifications, 2011, 2015b). Additionally,
with recent school funding changes at A-level, from a per subject to per student system

10https://www.gov.uk/government/collections/graduate-employment-and-accreditation-in-
stem-independent-reviews

11http://www.ocr.org.uk/qualifications/gcse-computing-j275-from-2012/
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in England, the computing cohort size of A-level providers now becomes a greater concern
for the ongoing financial viability of the subject, with smaller subject cohorts potentially
making the course too expensive for smaller providers (Kemp et al., 2016).

Gender and Diversity

While a comprehensive analysis of the history and challenges of gender and diversity in
computer science is out of scope for this review, it is worth highlighting some of the
key issues. A number of different strategies have been proposed for involving females in
computing – particularly in higher education – but there is a clear and recognised issue
with engaging and retaining females in computing from the 1990s onwards. Despite the
current growing popularity of the computer science major in the USA, women remain
sorely underrepresented in the field, continuing to earn only 18% of bachelors degrees;
understanding womens low rates of participation in computer science is important given
that the demand for individuals with computer science expertise has grown sharply in
recent years (Lehman et al., 2017). Numerous studies (Adam et al., 2004; Bunderson and
Christensen, 1995; Clarke, 1992; Wilson, 2003) have explored some of the reasons that
may underlie the gender segregation and declining levels of female participation within
the field of computing, including gender differences and differences in computer science
majors vs. non-majors in ability in quantitative areas, educational goals and interests,
experience with computers, stereotypes, as well as domain knowledge, confidence, per-
sonality, support and encouragement, stress and financial issues, gender discrimination,
and attitudes toward the academic environment in computer science. Three themes often
appear: communicative processes, social networks and legitimising claims to knowledge,
overlaid by gendered-power relations (Robertson et al., 2001). One of the challenges is
to conceptualise women’s computer skills as real computing and to instead ask what is
wrong with computing rather than what is wrong with women (Clegg and Trayhurn,
2000). Finally, it is worth noting that there is growing evidence that instructors in com-
puter science tend to believe in the importance of innate ability (Lewis, 2007) and thus
the resulting negative effects this has on diversity (Murphy and Thomas, 2008) and thus
performance (Patitsas et al., 2016). Addressing these gender stereotypes about intellec-
tual ability from an early age (Bian et al., 2017), as well as improving these fixed mindsets
in computing courses can have a positive effect on learning outcomes (Cutts et al., 2010).

Men had more confidence in using computers than did women even when statistically-
controlling quantitative ability; in fact, female CS majors had less computer confidence
than did male non-majors (Beyer et al., 2003). Studies have been conducted to determine
factors that promote success in introductory college computer science courses – partic-
ularly programming (Angel Rubio et al., 2015) – and what differences appear between
genders on those factors (Clarke and Chambers, 1989), including gender-equitable pedago-
gical practices (Vekiri, 2013); three predictive factors have appeared: comfort level (with
a positive influence), mathematics background (with a positive influence), and attribution
to luck (with a negative influence) (Cantwell Wilson, 2002).

While a number of bodies have been active in promoting diversity in computing, es-
pecially addressing the poor gender balance. e.g. BCSWomen12, CAS #include13 and
ACM-W14, more recent work has been conducted in England to better understand the

12http://bcswomen.bcs.org
13http://casinclude.org.uk
14https://women.acm.org/
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landscape – particularly, the A-level and GCSE computing cohorts – beyond the widely
publicised disparity in gender (Joint Council for Qualifications, 2015b), looking at pro-
vider type, provider location, subject mix, the ethnicity and socio-economic status of
students (Kemp et al., 2016).

Conclusions & Recommendations

There are a number of recognised issues with the existing corpus of work associated with
effective pedagogies and assessment mechanisms for computing. In the first instance,
much of the existing research has been conducted in post-compulsory or higher education,
addressing some of the specific issues associated with degree-level study. While there is
certainly transferability from higher education to compulsory education, we have to make
sure that the approaches and pedagogies are relevant and appropriate to the age group and
topics being covered. Furthermore, we have to consider the quality and transferability of
some of the studies presented, especially with regards to cohort size, sampling, statistical
significant and claimed impacts, particularly when studies are based on single-institution,
non-sampled interventions.

Building upon the previous section, in which we discussed some of the limitations of
the existing research base, in this section we will summarise some of the key points from
the literature with an aim of capturing future research priorities and requirements to best
support the ongoing implementation of the computing curriculum in England.

• Identifying a UK Research “Grand Challenge” Theme: there is a signific-
ant opportunity to identify and develop a long-term strategic research programme
(and associated funding models) for the UK to “develop effective pedagogies for
computing education in schools”. However, it is important to recognise that this
is a significant task that may take a number of years; it will not be possible to do
everything. This could consist of a number of sub-strands around some of the key
themes identified in this literature review, particularly focused on concepts, skills
and pedagogies. For example, it could be framed around “big ideas in computing”,
in a similar way to work done on the Big Ideas in Science (Association for Science
Education, 2017). It should aim to establish cross-cutting understanding of a set of
“big ideas” in computing which include key strategic themes and concepts, as well
as and appreciation of computing’s role and impact on society.

• Identifying research with immediate applicability to schools: a clear short-
term priority exists in identifying “low-hanging fruit” that could be quickly trans-
ferred and translated for rapid adoption in schools and colleges by educators, espe-
cially from the higher education sector. For example, there are key areas of pedagogy
that have a strong empirical evidence base and could be applied to schools, as well
as calling for more school-specific research; for example, tracing, peer instruction
and pair programming, as well as work on effective pedagogies of programming and
the apprenticeship model from higher education.

• Improving the strength of the UK research base: it is a known issue that
there is a lack of UK capacity for computer science education research, with small
clusters at a few institutions across the UK. It is clear that the researchers and
groups at these few institutions – namely, King’s College London, University of
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Kent, Queen Mary University of London, University of Glasgow, as well as indi-
viduals at a number of other institutions across the UK – do not currently provide
the critical mass necessary to drive forward computer science education research,
from both a pedagogical and practice perspective. This is contrasted by interna-
tional strengths in STEM education, but is also an artefact of clear (if any) funding
mechanisms to support computer science education research in the UK. Therefore, a
priority recommendation is to identify funding models and schemes to support exist-
ing researchers, as well as develop researchers and groups at other institutions across
the UK. Funding models could support doctoral and/or post-doctoral research, as
well as identifying strategic partners (e.g. Nuffield, UK Research Councils, Lever-
hulme, etc) for co-funded schemes. It is imperative that the level of research and
number of researchers increases in the UK to support the curriculum and engage
with and contribute to the international research domain. Precisely what these
models of funding look like are somewhat dependent on the partner organisations
– particularly if this includes UK Research Councils, charities and/or industry sup-
port. This literature review has provided the start of a gap-analysis to enable a
prospective research programme to be developed.

• Adopting interdisciplinary approaches: addressing some of the cognitive issues
with learning some of the key topics, how can we best expand our research collabor-
ations to ensure that we have the educational/cognitive/psychological expertise to
achieve what we need to achieve? For example, research themes in programming,
computational thinking, creativity, diversity, perceptions, etc.

• Addressing the long-standing terminological diversions: it is clear that do-
main terminology is still a barrier to many, both practitioners and policymakers;
while there is existing work to address this (UKForCE, 2016), as a community we
will need to agree on consistent terminology and nomenclature going forward so as
to be able define and deliver a coherent research programme.

• Relationship with digital literacy/competency: further to the recommend-
ations in Royal Society (2012) – and the resulting curriculum reform in England
– digital literacy has been largely sidelined during the expansion of computer sci-
ence. While there are active national and international research communities in this
space, there is a need to better understand how digital literacy/competency fits in
the wider “computing” landscape (especially across the four nations of the UK).

• Defining and evidencing the value and impact of computational think-
ing: for example, how do you teach computational thinking effectively? The idea
is frequently espoused that it is something you get from learning computing (or
programming. Teaching it specifically, do you teach the separate CT elements sep-
arately, or do you teach them holistically as an overall “CT package”? Also, teaching
skills vs. teaching the concepts – how do you teach them to students and how do
you teach them to educators? Finally, how does “unplugged” work and how best to
teach it in the context of CT?

• Effective programming pedagogies: in particular, tools for teaching program-
ming; software tools, hardware gadgets and pedagogies for teaching effective pro-
gramming. We have been asking similar research questions for nearly 30 years,
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but we do not yet have the rigorous evidence base; some of this work clearly re-
quires more empirical evidence, contextualised to the specific school or university
environment.

• Improving the perceptions of young people towards computer science:
students’ perceptions, wider public perception (potentially linking with the existing
Wellcome science education work), as well as looking at gender/class/ethnicity/inclusion.

• Local, regional and national mapping: what is actually being taught in schools
and colleges e.g. published schemes of work/curricula on school websites, aggregat-
ing at the local, regional and national level to better understand the landscape, as
well as being able to contribute to international initiatives.

In summary, we need to identify and sustainably fund long-term research focused on sup-
porting students’ learning, so that they are able to obtain secure, resilient and transferable
knowledge of the subject of computing in the UK.
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M. Forĭsek and M. Steinová. Metaphors and analogies for teaching algorithms. In Proceed-
ings of the 43rd ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE’12), pages 15–20, 2012.

D. Franklin, P. Conrad, B. Boe, K. Nilsen, C. Hill, M. Len, G. Dreschler, G. Aldana,
P. Almeida-Tanaka, B. Kiefer, C. Laird, F. Lopez, C. Pham, J. Suarez, and R. Waite.
Assessment of Computer Science Learning in a Scratch-Based Outreach Program. In
Proceedings of the 43rd ACM Technical Symposium on Computer Science Education
(SIGCSE’13), pages 371–376, 2013.

U. Fuller, C. G. Johnson, T. Ahoniemi, D. Cukierman, I. Hernán-Losada, J. Jackova,
E. Lahtinen, T. L. Lewis, D. McGee Thompson, C. Riedesel, and E. Thompson. De-
veloping a computer science-specific learning taxonomy. ACM SIGCSE Bulletin, 39(4):
152–170, 2007.

J. Gal-Ezer and C. Stephenson. A Tale of Two Countries: Successes and Challenges in
K-12 Computer Science Education in Israel and the United States. ACM Transactions
on Computer Science Education, 14(2)(8), 2014.

J. Gal-Ezer and E. Zur. The concept of ‘algorithm efficiency’ in the high school curriculum.
In Proceedings of the 32th Annual Frontiers in Education Conference (FIE 2002), 2002.

26



J. Gal-Ezer, C. Beeri, D. Harel, and A. Yehudai. A high school program in computer
science. IEEE Computer, 28(10):73–80, 1995.

M. N. Giannakos. Enjoy and learn with educational games: Examining factors affecting
learning performance. Computers & Education, 68:429–439, 2013.

D. Goldberg, D. Grunwald, C. Lewis, J. Feld, K. Donley, and O. Edbrooke. Address-
ing 21st century skills by embedding computer science in K-12 classes. In Proceed-
ings of the 44th ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE’13), pages 637–638, 2013.

K. Goldman, P. Gross, C. Heeren, G. Herman, L. Kaczmarczyk, M. C. Loui, and C. Zilles.
Identifying important and difficult concepts in introductory computing courses using a
delphi process. ACM SIGCSE Bulletin, 40(1):256–260, 2008.

Google. Exploring Computational Thinking. https://edu.google.com/resources/
programs/exploring-computational-thinking/#!ct-overview, 2013.

N. Gordon. Issues in retention and attainment in Computer Science. Technical report,
Higher Education Academy, March 2016. https://www.heacademy.ac.uk/resource/
issues-retention-and-attainment-computer-science.

D. Gough, S. Oliver, and J. Thomas. An Introduction to Systematic Reviews. Sage, 1st
edition, 2012.

D. Gries. What should we teach in an introductory programming course? ACM SIGCSE
Bulletin, 6(1):81–89, 1974.

D. Gries. The Science of Programming. Texts and Monographs in Computer Science.
Springer-Verlag, 1981.

S. Grissom, M. F. McNally, and T. Naps. Algorithm visualization in CS education:
comparing levels of student engagement. In Proceedings of the ACM Symposium on
Software visualization (SoftVis’03), pages 87–94, 2003.

S. Grover and R. Pea. Computational Thinking in K12: A Review of the State of the
Field. Educational Researcher, 42(1):38–43, 2013.

P. Guo. Python is Now the Most Popular Introductory Teaching Language at Top U.S.
Universities. http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-
most-popular-introductory-teaching-language-at-top-us-universities, July
2014.

P. J. Guo. Older Adults Learning Computer Programming: Motivations, Frustrations,
and Design Opportunities. In Proceedings of the ACM CHI Conference on Human
Factors in Computing Systems (CHI 2017), 2017.

D. Gupta. What is a good first programming language? Crossroads, 10(4), 2004.

M. Guzdial. Education: Paving the way for computational thinking. Communications of
the ACM, 51(8):25–27, 2008.

27



M. Guzdial. How we Teach Introductory Computer Science is Wrong.
http://cacm.acm.org/blogs/blog-cacm/45725-how-we-teach-introductory-
computer-science-is-wrong/fulltext, October 2009.

M. Guzdial. A nice definition of computational thinking, including risks and cyber-
security. https://computinged.wordpress.com/2012/04/06/a-nice-definition-
of-computational-thinking-including-risks-and-cyber-security/, April 2012.

M. Guzdial and B. Morrison. Growing computer science education into a STEM education
discipline. Communications of the ACM, 59(11):31–33, 2016.

M. Guzdial, B. Ericson, T. Mcklin, and S. Engelman. Georgia Computes! An Interven-
tion in a US State, with Formal and Informal Education in a Policy Context. ACM
Transactions on Computer Science Education, 14(2)(13), 2014.

D. Hagan and J. Sheard. The value of discussion classes for teaching introductory pro-
gramming. ACM SIGCSE Bulletin, 30(3):108–111, 1998.

B. Hanks, C. McDowell, D. Draper, and M. Krnjajic. Program quality with pair program-
ming in CS1. In Proceedings of the 9th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’04), pages 176–180, 2004.

O. Hazzan, J. Gal-Ezer, and L. Blum. A model for high school computer science education:
the four key elements that make it! ACM SIGCSE Bulletin, 40(1):281–285, 2008.

O. Hazzan, T. Lapidot, and N. Ragonis. Guide to Teaching Computer Science: An
Activity-Based Approach. Springer, 2011.

O. Hazzan, T. Lapidot, and N. Ragonis. Guide to Teaching Computer Science: An
Activity-Based Approach, chapter Teaching Methods in Computer Science Education,
pages 105–135. 2015.

HEA. Science, Technology, Engineering and Mathematics (STEM). https:

//www.heacademy.ac.uk/disciplines/science-technology-engineering-and-
mathematics-stem, 2017.

G. L. Herman, M. C. Loui, and C. Zilles. Creating the digital logic concept inventory.
In Proceedings of the 41st ACM Technical Symposium on Computer Science Education
(SIGCSE ’10), pages 102–106, 2010.
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