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Abstract 

In the field of cognitive neuropsychology of phonological short-term memory (pSTM), a key debate 

surrounds the issue of how impairment on tasks deemed to tap this system imply a dissociable 

phonological input and output buffer system, with the implication that impairments can be 

fractionated across disruption to separate functional components (Nickels, Howard, & Best, 1997). 

This study presents CT, a conduction aphasic who showed no impairment on basic auditory 

discrimination tasks, but had very poor nonword repetition. Clear-cut examples of such cases are 

very rare (see Jacquemot, Dupoux & Bachoud-Levi, 2007), and we interpret the case with reference 

to a pSTM model that includes input and output buffers. The dissociation between performance on 

auditory phonological tasks and visual phonological tasks we interpret as consistent with disruption 

to the link from input buffer to output buffer without concurrent damage to connections from 

output to input. Previous research has also shown that patients with impairments of pSTM can make 

visual confusions with orthographically presented items in tasks seeking to tap this mechanism 

(Warrington & Shallice, 1972), which might stem from having an incomplete pSTM loop. In light of 

this we examined whether CT’s ability on tests of ISR was affected by visual orthographic similarity 

among list items, and this is indeed what we observed.  On balance then, CT’s overall profile is 

considered best interpreted with respect to a dual buffer pSTM model (e.g., Vallar & Papagno, 

2002). 
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Patients with a condition known as conduction aphasia often present with a severe 

impairment in speech repetition that shows a lexical advantage; with word repetition better 

than nonword repetition (Shallice & Warrington, 1977). Such cases often have fluent speech 

production and preserved auditory comprehension (Bartha & Benke, 2003; Goodglass, 1992).  

Conduction aphasia is therefore a particularly interesting disorder for theories concerning the 

nature of the cognitive systems that deal with phonological input (speech perception) and 

output (speech production) codes (and the storage/manipulation thereof), which we will call 

the phonological short-term memory system (pSTM). Research on this system with respect to 

both normal and neuropsychological populations has a long and varied history, and 

theoretical models of the functional architecture of this system have debated how things 

might be organised – perhaps one ‘classical’ model of this system is that suggested by 

Monsell (1987 outlined below). This model favours the inclusion of ‘buffer’ systems and 

dissociable functional components for which specific damage results in predictable selective 

patterns of impairment in neuropsychological cases such as those with conduction aphasia. 

To foreshadow our work presented here, we will describe a conduction aphasic patient, CT, 

and frame his performance with respect to this dual buffer model of phonological short-term 

memory (pSTM) proposed by Monsell (1987). We hope to show that not only is a classical 

‘buffer’ model of pSTM still relevant to work such as ours, but it constitutes an important 

tool for understanding the pattern of impairment that CT presents with, and provided us with 

the impetus to undertake specific work relating to assessment of other forms of non-auditory 

based processing (i.e., orthographic processing and memory tasks).   

 

A Dual-buffer model of pSTM – implications for interpreting neuropsychological cases 

 

The motivation for dual buffer models has classically been provided by neuropsychological 

case studies to make sense of two contrasting behavioural presentations. On the one hand, 

there are patients who have presented with impairments in phonological input processing 

without any accompanying deficits in spontaneous output processing (e.g. Allport, 1984; 

Romani, 1992). On the other hand, there are patients who are reported with problems in 

processing phonological output, but not input (e.g. Martin, Shelton & Yaffee, 1994). The 

implication being that these dissociative patterns of impairment, are not easily reconciled 

with models of pSTM that propose only a single buffer; since such a model would assume a 
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more generalised pattern of impairment across both phonological input and output tasks. 

Somewhat motivated by the interpretation of this neuropsychological evidence by many in 

the field (e.g., Howard & Franklin, 1988), that it indicates that it is possible to lose some 

aspects of pSTM ability without being universally impaired, Monsell (1987) proposed a 

model of pSTM containing separate input and output buffers (Figure 1).  In this model (see 

also Vallar & Papagno, 2002; Tree & Kay, 2015), auditory input enters the input buffer 

directly, which allows for short-term storage (e.g., a telephone number you hear before 

writing it down) and subsequent access to semantic memory (for speech comprehension). The 

model proposes a phonological output buffer, which stores phoneme level information and is 

the point of entry to pSTM for visual input (as you convert orthographic input to 

phonological output).  It is worth noting that the previous work has divided conduction 

aphasia into reproduction and repetition subtypes (e.g. Shallice & Warrington, 1977, see also 

Gvion & Friedmann, 2012). Both of these disorders have impaired repetition performance as 

the cardinal feature, but reproduction conduction aphasia is also characterised by the presence 

of paraphasias and neologisms which are absent in the repetition subtype. The explanations 

for the performance of these cases by previous authors have made specific reference to 

differential damage to the input buffer (for repetition conduction aphasia, Bartha & Benke, 

2003; Butterworth, 1992; Howard & Nickels, 2005; Martin & Breedin, 1992; Martin, 

Shelton, & Yaffee, 1994; Shallice, Rumiati & Zadini, 2000) or output buffer (for 

reproduction conduction aphasia, Franklin, Buerk, & Howard, 2002; Kohn, 1992; Kohn & 

Smith, 1994). In addition, Monsell's (1987) model contains a rehearsal mechanism which 

consists of a link from input buffer to output buffer and a separate link from output to input, 

the combination of which acts to prevent trace decay (equivalent to when you might repeat 

that phone number to yourself to keep it in mind). We would argue that in addition to the 

suggestion of multiple buffers, this inclusion of multiple pathways is also a key feature of the 

model because it is theoretically possible for one of these links to become damaged while the 

other is intact. To again foreshadow our subsequent discussion of our neuropsychological 

case (CT), we will also argue that ‘dual buffer’ models such as this, can readily account for a 

key feature of his pattern of impairment, namely very poor nonword repetition despite normal 

speech comprehension and articulation. Because cases such as his are able to understand 

speech (i.e. their phonological input codes are intact) and have relatively few problems in 

spontaneous speech production (i.e. their phonological output codes are intact), we would 

interpret the overall pattern of impairment as perhaps best captured by a disruption of the 
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connection transferring phonological representation between the input and output codes in 

pSTM.   

 

 

Figure 1 - A sketch of Monsell's (1987) model of phonological short term memory. 

 

In a now classic study, Nickels, Howard and Best (1997), with reference to a dual-buffer 

pSTM model, provided a key narrative with which to interpret patterns of impairment in 

patients as reflecting disruption to the link from input to output, or the link from output to 

input. Nickels et al (1997) tested aphasic patients on three key verbal short-term memory 

tasks: (a) auditory rhyme judgement (e.g., CAT-MAT do they rhyme?), (b) visual (written 

word) rhyme judgement, and (c) another written word phonological task, homophone 

judgement (e.g., SON-SUN, do they sound the same?), The authors argued that these three 

tasks differed in two important ways: (1) whether they required the transference of 

orthographic to phonological codes (and thus direct access to the output buffer), which is true 

for (b) and (c) but not (a), and (2) whether they required the segmentation, storage and 

comparison of phonological codes, which is true of (a) and (b) but not (c). Importantly, in a 

dual-buffer pSTM model such as Monsell's (1987), there is a clear prediction that is made 

with respect to these different tasks, namely that impaired performance across tasks can 

dissociate (i.e., patients can be selectively impaired at one with the others relatively spared). 

For example, Monsell's (1987) model allows for the possibility that homophone judgement 

and auditory rhyme judgement are preserved while written rhyme judgement is impaired – 

this would occur when the connection from the output buffer to the input buffer is disrupted. 

To understand this, note that spoken stimuli enters pSTM at the input buffer, which allows 



6 
 

for the segmentation/comparator processes (see 2 above) that enable auditory rhyme 

judgements to remain unhindered. Meanwhile, orthographic-to-phonological information 

enters pSTM at the output buffer. Nickels et al. (1997) argued that for tasks such as 

homophone judgement (that do not require segmentation) storage in the output buffer is 

sufficient, and thus this ability is preserved. However, successful written word rhyme 

judgement requires access to the input buffer (to enable the additional processing also 

required for auditory rhyme judgement) and thus if the output-input link is damaged, 

impaired performance will emerge. In this example, not only do we see a means by which 

selective impairment of a particular phonological task can occur, but the same model can also 

explain other specific patterns of impairment.  

Monsell's (1987) model also suggests that damage to the input-output link will have a 

detrimental effect on pSTM span tasks, (since rehearsal is not possible) but will be of no 

consequence to homophone or rhyme judgement (both auditory or visual) performance. 

Importantly, none of the cases described in Nickels et al. (1997) showed the general 

impairment predicted by single buffer models, but the performance of every patient could be 

accommodated within Monsell's (1987) framework. For the present work, we use Monsell’s 

(1987) theoretical framework to probe the nature of the impairment in our case CT. We used 

a number of different tasks (such as visual and auditory rhyme judgement, and homophone 

judgement as described above) for which a specific pattern of task impairment could be 

interpreted as being attributed to a key functional component. In so doing, we hope to 

demonstrate not only the validity of such a dual-buffer pSTM model, but also the utility of 

such a model in helping understand the nature of the functional impairment that can account 

for cases such as CT (both of which we would argue are classic objectives of a great many 

studies published in the journal Cortex).  

In Figure 2, below, we map each of our key neuropsychological tasks to components 

within a dual-buffer pSTM model – this is in line with the work of Nickels et al., (1997) and 

aims to show how we might interpret specific task impairment in each and every case. We 

argue that the purpose of administering such a variety of tests with reference to a well-

specified functional model such as this allows for the interpretation of any emerging 

dissociative patterns of impairment a priori. For example, let us consider a cardinal feature of 

conduction aphasia - that word repetition performance is usually better than non-word 

repetition performance (Shallice & Warrington, 1977). This has been explained by suggesting 

that word (unlike nonword) repetition benefits from the access to stored phonological 
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information about familiar phonological forms (i.e., representations stored in the input and 

output lexicons presented in Figure 2). Thus on reflection of the model in Figure 2, a word 

can be "repeated" by either, a) mapping from auditory input phonology directly to spoken 

output phonology in short term memory (the input-output buffer link) or b) recognising the 

word that has been presented and retrieving its phonology indirectly from long term memory 

(the so called ‘lexical’ repetition route – see McCarthy & Warrington, 1984, Hickok & 

Poeppel, 2004). On the other hand, non-word repetition is only achievable via the direct 

input-output buffer pathway. If we assume a patient has an impairment of the direct pathway 

(arrow a in Figure 2), this case should present with a severe disruption of nonword repetition, 

with relatively preserved word repetition (so often reported in conduction aphasic cases such 

as CT discussed here). However, under the same model, if either the input or output lexicon 

is also damaged, then the lexicality advantage would likely be absent.   

 

 

Figure 2 - The integration of auditory verbal short term memory with broader language processes. Letters 

represent the processes particularly assessed by the tests administered to CT. a = input-output link assessed by 

non-word repetition, b = output-input link assessed by written rhyme judgement, c =  phonological output buffer 

assessed by homophone judgement, d = lexical memory assessed by auditory lexical decision, e = semantic 

processing assessed by Pyramids and Palm Trees (Howard & Patterson, 1992), f = generation of phonological 

output from non-verbal input assessed by Graded Naming Test (McKenna & Warrington, 1983). 

 

A particularly relevant case in the literature is that of FA (Jacquemot, Dupoux & Bachoud-

Levi, 2007).  FA was a conduction aphasic who showed no deficits in speech perception at 

either the phonological or the semantic level (as determined by a minimal pairs 
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discrimination task and spoken word to picture matching, respectively).  She was impaired in 

speech production measured by picture naming, word and nonword repetition and reading 

aloud.  The authors argued that the errors in word repetition and reading FA made were due 

to a slight global word production deficit; that the patient’s nonword repetition performance 

was considerably worse and consisted of qualitatively different types of errors was 

interpreted as evidence of a deficient direct repetition route.  Following logic similar to 

Nickels et al (1997), Jacquemot et al (2007) went on to describe FA’s performance on written 

rhyme judgement and a second task in which the patient was presented with a picture and 

spoken item (either word or non-word) and asked whether the name of the picture and the 

sound they had heard were a rhyming pair.  They determined that FA was impaired relative to 

controls on both of these phonological tasks.  The authors argued that this could be 

accommodated in a model which proposed a) separate phonological input and output codes 

and b) separate conversion links from phonological input to output, and in the opposite 

direction.  They suggested that FA had an impairment to the input-output conversion, but no 

impairment for the output-input conversion.   

 

Dual buffer models of pSTM – implications for patterns of immediate serial recall 

impairment 

 

Under the assumption that the performance of our case matched the predictions based on 

Monsell's (1987) model and the findings of Nickels et al. (1997), we pre-emptively 

considered the impact of disruption to just this half of the rehearsal loop (‘a’ in Figure 2) on 

immediate serial recall (ISR) performance in auditory and visual modalities. In ISR tasks, 

participants are exposed to lists of stimuli and are instructed to remember the items in the 

order they were presented. Responses are scored as correct only if they were recalled in the 

appropriate position within the list. As a general rule, auditory immediate serial recall (AISR) 

tends to be generally better than visual immediate serial recall (VISR) in healthy participants. 

In particular, the auditory modality shows the biggest advantage at the recency (i.e., final 

items) part of the serial position curve (Conrad & Hull, 1968). However, in patients with 

pSTM deficits, this is very rarely the case. In fact, visual recall tends to be rather better than 

auditory recall (Best & Howard, 2005; Howard, 1995; patient HB, Howard & Nickels, 2005; 

Shallice & Vallar, 1990; Warrington & Shallice, 1969; 1972).  Warrington and Shallice 
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(1972), for example, reported several experiments that demonstrated that the short-term 

memory performance of their patient, KF, was worse in the auditory modality than in written 

presentation, and that forgetting of auditory information was also more rapid.  This general 

pattern of better performance in visual over auditory presentation is curious. If you assume 

that success at ISR requires phonological information to be stored in a ‘buffer’ and rehearsed 

via a ‘loop’, and that the same ‘code’ tends to underpin both types of tasks, you might also 

assume equivalence in performance impairment regardless of modality of presentation. 

Further, it is possible to assume that given the additional computational demands of a 

‘translation’ process (orthographic-to-phonological recording), written material should 

always be worse than auditory material. If we take the perspective of Monsell's (1987) dual 

buffer model, then this pattern could be easily explained. In typically functioning 

participants, input to short-term memory is rehearsed via intact input-output and output-input 

links. Auditory information is recalled more efficiently than visual information because of the 

additional processing cost that is incurred to convert the orthography to phonological codes.  

In patients with an impairment of the link between input-output buffers, such disruption will 

disproportionately affect auditory versus written stimuli (as seen in cases such as Best & 

Howard, 2005). 

Under this assumption, some of the classic effects observed in short term memory 

tasks become intriguing in the context of neuropsychological impairment. One such 

phenomenon is the phonological similarity effect (e.g. Conrad & Hull, 1964; Copeland & 

Radvansky, 2001). This refers to the finding that memory is less accurate when all of the 

items in a stimulus list sound similar than when items are phonologically distinct. For 

example, participants make a greater number of errors when recalling from a list that includes 

words like bat, mat and cat, than they do when recalling from a list that includes dirt, cup and 

book. This finding has traditionally been attributed to a failure to discriminate between the 

articulatory codes that are used to store the words in the phonological input buffer (e.g. Vallar 

& Baddeley, 1984). Interestingly, the phonological similarity effect has been observed 

irrespective of whether the lists are presented aurally or in written form when testing healthy 

participants (e.g. Besner & Davelaar, 1982). Of course, within the framework of the models 

of pSTM we have already described, this is not surprising because the orthographic code is 

translated into phonological code in order to be rehearsed. Once the written form has been 

converted into phonemes, the phonological similarity effect can occur in the same way as for 

auditory presentation. Again, in neuropsychological cases of short-term memory impairment, 
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however, the picture regarding the phonological similarity effect can be somewhat different.  

Vallar, Di Betta and Silveri (1997) suggest that, when an individual has a deficit in 

phonological memory span, they are unlikely to use sub-vocal rehearsal because they do not 

have the necessary resources available to them. If this is the case, then distinct patterns of 

performance should be observed in auditory versus visual serial recall tasks. Vallar et al. 

(1997) argued that the phonological similarity effect could be apparent in cases with pSTM 

deficits in spoken, but not written, presentation. As we described earlier, in the models of 

pSTM offered by both Baddeley (1986) and Monsell (1987), spoken input enters the 

phonological input buffer whereas visual input reaches the phonological output buffer first. 

The phonological similarity of spoken stimuli is therefore immediately detrimental to 

memory performance in the input buffer. In the written modality, though, there needs to be a 

recoding stage and the resulting phonemic information must be passed around the rehearsal 

loop before any confusion can be caused by the phonological similarity among the items. If 

either the recoding process or the passage of the phonological code to the input buffer is 

impeded then the phonological similarity effect should be abolished for written material. 

Indeed, one of the cases described in Vallar et al.'s (1997) paper, TO, showed precisely this 

pattern of performance - a phonological similarity effect in auditory serial recall but not in 

visual serial recall. To foreshadow our work again, given neuropsychological patients with 

damage to pSTM have been shown to perform differently in visual versus auditory 

presentation of the same task, we explored this issue in our assessment of our case CT.  

 

Impairments of pSTM – implications for stored visual (orthographic) representations 

The final part of our exploration of CT's pSTM performance stems from another intriguing 

case, reported by Best and Howard (2005) which speaks to the issue of modality-specific 

performance in pSTM tasks. Best and Howard (2005) re-examined the performance of their 

phonological dyslexic case MJK, who consistently showed superior performance on visual 

versus auditory digit span tasks. They examined the phonological similarity effect across 

modalities and found the effect was present in the aural but not visual domain. They reasoned 

that MJK was likely using a phonological coding system similar to non-impaired participants 

in recalling spoken input. The same system was not being used when the presentation was 

visual (much as was suggested by Vallar et al., 1997). That is, MJK was argued not to be 

recoding written items to phonological codes for recall. However, given that MJK's recall for 



11 
 

visual presentation was better overall than for auditory stimuli, Best and Howard (2005) 

argued that she must be using visual coding for these tasks instead. Indeed, Best and Howard 

reported that visual confusion errors occurred in MJK’s recall performance providing 

tentative evidence for a visually based encoding strategy for VISR which boosts performance 

over AISR and makes performance vulnerable to visual confusability (in effect a corollary of 

the phonological similarity effect). Again, the work of Warrington and Shallice (1972) is of 

interest here.  KF made a number of “visual” errors in immediate serial recall; a pattern that 

was not seen for auditory presented items. Warrington and Shallice (1972) argued that this 

was evidence for the use of a visual code in short-term memory.  

It appears, therefore, that phonological and visual processing may interact in short 

term memory tasks (see also Tree, Longmore, Majerus & Evans, 2011). Tree, Longmore and 

Besner (2011) demonstrated that visual orthographic processing may be emphasised when 

pSTM is disrupted using articulatory suppression in undergraduate participants - this refers 

to the requirement that participants repeat a single word or phoneme (e.g. the) over and over 

again while they are learning the list of stimuli - argued to disrupt the phonological rehearsal 

process (see Levy, 1971). In other words, when healthy participants do a pSTM task under 

articulatory suppression there is an emphasis on the “visual information” suggested by 

Baddeley (1986), because of disruption to the rehearsal of the typically utilised phonological 

code. The important point is that there may be a convergence of performance in this case, that 

is in the context of disruption to the phonological rehearsal system (whether as a result of 

brain injury or articulatory suppression) an emerging shift in emphasis occurs for visually 

presented information; a shift toward using visually based information for retrieval. As a 

consequence, under articulatory suppression, visually presented items are precluded from 

entering the loop and hence the phonological similarity effect disappears - there is no longer a 

significant detriment for words that sound the same versus those that are phonologically 

distinct. Articulatory suppression does not, however, eliminate the phonological similarity 

effect for aurally presented lists (see Levy, 1971).   

Thus in the context of the present work, we suggest that it is possible that visual 

coding strategies may also be emphasised in conduction aphasia cases, like CT, for precisely 

the same reason. The incomplete (or ineffective) rehearsal loop necessitates that different 

input modalities require separate coding strategies within verbal short term memory, a visual 

code for written stimuli; a phonological code for spoken. Hence it is plausible that visual 

similarity between to-be-recalled items in a serial recall task will be of greater detriment to 
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CT than it is to participants with a functional pSTM – and this issue was also explored in the 

current study. 

 

Method 

 

Case Description 

CT is a 60 year old right handed male. He was educated to university level and had been a 

lawyer up until he suffered a stroke 5 years before the start of our testing. A CT scan 

administered a year before our testing determined a lesion to his left parietal lobe (see Figure 

3). 

 

  

 

Figure 3 – Radiological CT Scan for case CT. 

 

Testing by a NHS audiology clinic had determined that his hearing was entirely normal 

(hence any deficits in phonological processing were not a consequence of hearing 

impairment), and his vision was corrected to normal (again indicating that deficits observed 

were not because of a sensory problem). His speech was well-formed, and at the normal rate 

without evidence of spontaneous speech errors. Initial interview determined there was no 

evidence of comprehension problems and day-to-day memory was reported as being largely 
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normal.  A speech and language therapist report written in the period between CT's stroke 

and our first meeting indicated that his single word repetition was poor, and the report 

concluded his profile was consistent with a conduction aphasia presentation, although details 

were not that elaborated.  By the time of our first session with CT it was clear that his word 

repetition performance had recovered substantially (though it was still not fully intact - see 

below), and despite normal word and non-word reading, he showed a marked impairment in 

non-word repetition. This striking latter impairment prompted the further investigations 

reported in this paper. 

 

Materials 

We administered a variety of standardised tests that were specifically selected to assess CT's 

general cognitive function, comprehension or semantic processing, reading, repetition ability, 

and phonological processing. A large number of the tests we administered were drawn from 

the Psycholinguistic Assessment of Language Processing in Aphasia (PALPA; Kay, Lesser & 

Coltheart, 1992) battery. Specifically, we selected subtests that examined word and non-word 

repetition, rhyme judgement, homophone judgement, visual and auditory lexical decision, 

picture naming and reading aloud. In addition we used Pyramids and Palm Trees (Howard & 

Patterson, 1992) as a measure of semantic performance. This test presents the participant with 

3 images (or words) simultaneously. The stimulus at the top of the triangle is the reference 

image. One of the two items below represents a semantically-related concept and the 

participant has to determine which it is. As well as the non-word reading task from the 

PALPA battery, we also presented CT with the 100 non-words selected by Weekes (1997). 

CT was presented with lists of single-letter stimuli for immediate serial recall. The 

number of items in each list was determined relative to CT's pSTM span for visual and 

auditory information. Phonologically similar lists were comprised of the letters B, C, D, E, P, 

T and V. For the phonologically dissimilar lists, the possible letters were F, J, Q, R, S, W and 

Y. In the auditory presentation, lists were 4 items long and letters were spoken by the 

experimenter at a rate of 1 per second. In the visual modality, the lists were 7 items long and 

the letters were presented on paper at the same rate as for auditory presentation. CT was 

tested for immediate serial recall of these lists over 5 sessions, each session containing 10 

phonologically similar and 10 phonologically dissimilar lists. The final part of the study 

presented CT with lists of 7 letters for immediate serial recall, inspired by the work of Best 
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and Howard (2005). For visually similar lists, the available letters were H, M, N, U, V, W, 

and Y. The visually dissimilar lists contained the letters A, I, J, L, P, X, and Z. There were 10 

visually similar and 10 visually dissimilar lists – with presentation of visually similar or 

dissimilar items presented in blocks. These lists were presented twice in separate sessions, 

and only in written form. 

 

Control participants 

A total of 18 age-matched controls (10 males, 8 females – aged 59-70) were recruited for the 

immediate serial recall task that manipulated phonological similarity (11 for the written version, 

7 for the auditory presentation). From this group, a sub-group of 12 age-matched control 

participants (5 males, 7 females – aged 59-70) were recruited for the immediate serial recall 

task that manipulated visual similarity. The control participants were all native speakers of 

English without history of stroke, dementia or other brain injury. CT's performance on the 

standardised test battery was compared to the normative data published with the tests, unless 

otherwise stated in the results section. 

 

 

Results 

 

Neuropsychological data 

We administered a large number of standardised tests to CT to provide an initial assessment of 

his cognitive function.  Table 1 presents accuracy data for CT in each of the tests administered 

to him, alongside control data (drawn from the test manuals unless otherwise noted).  Some of 

the tasks we presented to CT are particularly relevant to a) our conclusion that he has 

conduction aphasia and b) our subsequent investigation of his pSTM performance, hence we 

have described these tests and results in greater detail below. 
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Speech perception 

We assessed CT’s ability to perceive speech at both the phonological and the semantic level. 

For the phonological level, we used word and non-word minimal pairs discrimination tasks – 

subtests 1 and 2 from the PALPA battery.  In each of these tasks the patient was presented with 

72 pairs of stimuli, with each item spoken by the experimenter approximately 1 second apart. 

In half of trials the two members of the pair are identical; in half the two members differ by 

one phonological feature (voice, manner or place of articulation). Differences between pairs 

may occur at the initial or final positions, or the pairs may be metathetically related (i.e. the 

order of the sounds are reversed). All stimuli are monosyllabic with a CVC structure. Poor 

performance on these tasks is likely to indicate that the ability to parse and decode auditory 

phonological input is compromised. The administration and comparison of the word and non-

word versions allows for an assessment of whether lexical information can be used to reduce 

any deficit.  CT performed as well as controls in both versions (p > .05) as determined by 

Crawford’s t-tests (Crawford & Howell, 1998).  His accuracy on the non-word discrimination 

task (94%) was slightly lower than for the word task (97%), but neither fell outside of the 

normal range. Therefore, CT appears to have intact phonological decoding ability. 

 

Table 1 - Basic neuropsychological test data.  Control data taken is from the original published 

measures unless otherwise indicated, SD in parentheses where available. 

  CT Controls 

General Cognitive 

skill 

Mini-Mental State 28/30 29/30 

Ravens Progressive Matrices 9/12 10/12 

Rey Figure Copy 36/36 35/36 

Auditory Digit Span 5 

forwards: 

3 

backwards 

 

Visual Digit Span  6 

forwards: 

5 

backwards 
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Visual Processing 

BORB Minimal Feature 25/25 23/25 

BORB Foreshortened 25/25 22/25 

   

BORB Object Decision 124/128 115/128 

VOSP – Shape Detection 19/20 20/20 

VOSP – Position 

Discrimination 

19/20 20/20 

Semantics 

PPT pictures 50/52 50/52 

PPT written 52/52 50/52 

PALPA 50 Auditory 

Synonyms 

 

58/60 None available 

PALPA 49 Visual Synonyms       

 

60/60 None available 

ADA Word – Picture matching 65/66 Cut-off 63/66 

Repetition 

PALPA 9 High Imageability, 

High Frequency words 

19/20 19.81/20 (0.60) 

PALPA 9 High Imageability, 

Low Frequency words 

18/20 19.52/20 (0.93) 

PALPA 9 Low Imageability, 

High frequency words 

15/20 19.81/20 (0.60) 

PALPA 9 Low Imageability, 

Low Frequency words 

13/20 19.67/20 (0.58) 

PALPA 9 Non-words 2/80 75.94/80 (6.72) 

Phonological 

processing 

PALPA 28 Homophone 

judgement 

60/60 54.81/60 (2.77)a 

PALPA 15 Written rhyme 

judgement SPR 

15/15 54.20/60 (2.63)b 

PALPA 15 Written rhyme 

judgement SPC 

14/15 

PALPA 15 Written rhyme 

judgement PR 

15/15 
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PALPA 15 Written rhyme 

judgement PC 

14/15 

PALPA 15 Auditory rhyme 

judgement SPR 

14/15 55.65/60 (2.48)b 

PALPA 15 Auditory rhyme 

judgement SPC 

14/15 

PALPA 15 Auditory rhyme 

judgement PR 

14/15 

PALPA 15 Auditory rhyme 

judgement PC 

15/15 

PALPA 2 Minimal Pairs 

(words) 

70/72  

PALPA 1 Minimal Pairs (non-

words) 

68/72  

Lexical decision 

PALPA 25 (Visual) High 

Imageability, High Frequency 

words 

15/15 14.79/15 (0.51) 

 

PALPA 25 (Visual) High 

Imageability, Low Frequency 

words 

15/15 14.58/15 (0.58) 

 

PALPA 25 (Visual) Low 

Imageability, High frequency 

words 

15/15 14.92/15 (0.41) 

 

PALPA 25 (Visual) Low 

Imageability, Low Frequency 

words 

15/15 14.71/15 (0.75) 

 
PALPA 25 (Visual) Non-

words 

60/60 59.88/60 (0.45) 

 
PALPA 5 Auditory lexical 

decision 

 
 

Reading 

PALPA 31 Words 79/80 79.4/80 (0.80) 

PALPA 36 Non-words 3 

letters 

6/6 5.77/6 (0.71) 
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PALPA 36 Non-words 4 

letters 

6/6 5.89/6 (0.43) 

PALPA 36 Non-words 5 

letters 

6/6 5.57/6 (0.90) 

PALPA 36 Non-words 6 

letters 

6/6 5.65/6 (0.85) 

Weekes (1997) Low frequency 100/100 99/100 

Weekes (1997) High 

frequency 

100/100 99/100 

Weekes (1997) Non-words 96/100 97/100 

Picture naming 
PALPA 53 

Graded Naming Test               

40/40 

20/30 

39.80/40 (0.35) 

20.4/30 (4.1)c 

Note: BORB = Birmingham Object Recognition Battery (Riddoch & Humphreys, 1993), VOSP = Visual Object 

and Space Perception Battery (Warrington & James, 1991), PPT = Pyramids and Palm Trees (Howard & 

Patterson, 1992), PALPA = Psycholinguistic Assessment of Language Performance in Aphasia (Kay et al., 

1992). SPR = spelling pattern rhyme, SPC = spelling pattern control, PR = phonological rhyme, PC = 

phonological control.  a Control data from 21 young adult participants, taken from Nickels and Cole-Virtue 

(2004). b Control data from 20 typically ageing adults, taken from Harley, Oliver, Jessiman and MacAndrew 

(2013). The original paper does not split data into conditions. c Control data taken from Warrington (1997).  

Weekes (1997) did not present SD for his participants (accuracy has been extrapolated from his Figure 1). 

 

For the sematic level of speech perception, we administered the spoken word to picture 

matching task from the ADA Comprehension Battery (Franklin, Turner & Ellis, 1992). In this 

task, the patient is presented with a series of 66 trials in which they must point to the picture 

that represents an auditorily presented word from an array of 4 line drawings. On each trial 

there are two unrelated pictures alongside the target, plus a third distractor that is related to the 

target in phonology, semantics, or both.  The manual for this test indicates that healthy controls 

should make no more than 3 total errors on this task. CT scored 65 correct out of a possible 66, 

hence clearly performs in the normal range. This indicates that CT has no problems with 

comprehension of auditory input and that any pattern of errors in subsequent testing is unlikely 

to be the result of difficulty in word comprehension. This is further supported by CT’s 

performance on semantic tests (see Pyramids & Palm Trees test and synonym judgement in 

table 1). 
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Speech production 

Although CT’s spontaneous speech was generally fluent, we also formally assessed CT’s 

speech production using two picture-naming tasks (PALPA 53 and the Graded Naming Test, 

McKenna & Warrington, 1983). The PALPA task presents 40 pictures of common objects, and 

the patient is required to speak the appropriate noun to describe the object.  In this, CT scored 

40 out of 40. The Graded Naming Test asks participants to provide the appropriate noun for 30 

pictured objects which become increasingly obscure and difficult as the test progresses. In a 

revalidation of the Graded Naming Test, Warrington (1997) reported that healthy control 

performance was, on average, 20.4 out of 30 (SD = 4.1). CT scored 20 out of 30 on this task, 

again performing in the normal range. In sum, the evidence suggests that CT has no particular 

deficit in speech production. Therefore we can assume that any deficits in performance for the 

tasks described later in this paper are not attributable to articulatory speech problems. 

 

Repetition and reading 

The cardinal feature of conduction aphasia is a marked reduction in the ability to repeat an 

auditorily presented item.  To test this, we again turned to the PALPA battery.  PALPA 9 

presents 160 items for immediate repetition, split into equal numbers of real words and non-

words.  The word list varies frequency and imageability orthogonally, with 20 items in each 

cell.  Theoretically, as we alluded to in the introduction, any of the items (irrespective of 

lexicality) could be repeated successfully without recourse to lexical or semantic 

representations. For nonword repetition, of course, there are no lexico-semantic representations 

to access in any case, so a direct repetition route is the only viable option. Words could be 

repeated lexically, with or without semantic information becoming involved – repetition via 

meaning would be likely to result in better performance for high versus low imageability words. 

CT’s repetition performance can be characterised as follows: a clear advantage for words over 

nonwords, an imageability effect, and no frequency effect.  CT correctly repeated only 2 out of 

80 nonwords correctly (control mean = 75.94, SD = 6.72). We note two points concerning non-

word repetition in our case.  Firstly, other authors (e.g. Jacquemot et al., 2007) have reported 

significant effects of syllable or phoneme length in non-word repetition in conduction aphasia 

cases. We did not observe such an effect in CT, but this may be due to his remarkably poor 

overall performance – CT simply could not repeat non-words correctly whatever length they 

were. The second observation is that 30 out of the 78 errors CT made were lexical captures, 
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which hints at an attempt to use a lexical repetition route even when the stimuli were 

inappropriate for such a strategy.  His word repetition was also impaired versus controls [65/80 

for CT, mean = 78.81/80, SD = 0.69 for controls; Crawford’s t (20) = 19.554, p < .001].  This 

lexicality effect in repetition is characteristic of conduction aphasia. Of CT’s 15 errors in the 

word repetition task, 12 came in low imageability trials which constitutes a significant effect 

[χ2 (1) = 5.251, p < .05]. Accuracy was statistically similar across high and low frequency items 

[6 vs 9 errors respectively, χ2 (1) < 1]. This suggests that CT was making use of semantic 

information in repetition and that this was defective in some way, but the types of errors that 

CT made does not necessarily bear this out. He committed 6 formal errors (clue-blue), offered 

5 neologisms (folly-forrow), and gave no response to 4 items but did not make any semantic 

errors at all.  It is also worth noting that there were no obvious syllable length effects in word 

repetition (errors were for 3 one syllable words, 6 two syllable, 5 three syllable and 1 four 

syllable). We acknowledge that PALPA 9 does not explicitly vary or control syllable length, 

but it is nevertheless interesting in that syllable length effects in word repetition may indicate 

a deficit in the phonological output buffer. 

Subtest 31 of the PALPA battery presents the same word items from the repetition task 

described above for reading aloud. By testing reading and repetition with the same items it is 

possible to check whether the repetition deficit is attributable to a production deficit – the 

production deficit would affect repetition and reading similarly. CT, however, successfully 

read 79 of the 80 words. We also presented CT with non-word stimuli for reading aloud using 

PALPA 36. This subtest presents 24 non-words (6 each of 3, 4, 5, and 6 letters long). CT 

performed at ceiling for this task.  Finally, we presented the stimuli from Weekes’ (1997) study, 

that manipulated length and lexicality. In this set there are 100 low frequency words, 100 high 

frequency words and 100 non-words, with equal numbers of 3, 4, 5 and 6 letter items.  CT 

correctly read all of the words correctly and made only 5 errors on the non-words, which is 

comparable to the healthy participants in Weekes’ paper. Again, there was no observable length 

effect (2 errors for 3 letter words, 2 for 4 letter words and 1 for 6 letter words). Taken together, 

the results from the reading aloud tasks indicate that CT’s repetition deficit is unlikely to have 

been caused by a difficulty in producing the necessary phonemes, and instead reflects a specific 

deficit in converting aural input to oral output.   

 

Rhyme and homophone judgement 
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Following the logic of Nickels et al. (1997), we administered rhyme and homophone 

judgement tasks in order to attempt to pinpoint where in pSTM any deficit might be.  We 

used PALPA 16 (rhyme judgement) and PALPA 28 (homophone judgement) as described 

below.  To pre-empt what follows, CT showed no deficits in these tasks. The rhyme 

judgement task from the PALPA battery contains 60 pairs of words, half of which rhyme.  

Pairs belong to four categories of 15 pairs each.  Rhyming pairs can share orthography and 

phonology (spelling pattern rhymes, like match and hatch) or phonology only (phonological 

rhymes, like you and two). Non-rhyming pairs can also share orthography (spelling pattern 

controls, like five and give) or not (phonological controls, like sort and part).  The participant 

simply has to indicate whether the pair rhymes or not.  Harley, Oliver, Jessiman and 

MacAndrew (2013) administered these tests with a group of 20 typically ageing older adults 

and reported that mean accuracy for the written version was 54.20 out of 60 (SD = 2.63), 

while the mean for the auditory version was 55.65 (SD = 2.48).  We used these data as a 

normative estimate for comparison with CT, who also performed written and auditory 

versions of the rhyme judgement task.  CT scored in the normal range as determined by 

Crawford’s t-tests [58/60 for written, t(19) = 1.410, p > .1; 56/60 for auditory, t(19) < 1].  The 

homophone judgement task also contains 60 pairs.  In this task, the participant has to 

determine whether the two members of the pair sound exactly alike.  There are 10 pairs of 

homophonic regular words (e.g. sea and see), 10 homophonic pairs in which one or both 

words are irregular (e.g. quay and key) and 10 pairs of homophonic non-words (e.g. zole and 

zoal).  This allows for grapheme-phoneme assembly to be assessed in the non-word trials and 

for lexical reading to be assessed using the irregular word pairs.  The remaining 30 trials (20 

word pairs, 10 non-word pairs) contain non-homophonic items that are as visually similar as 

the members of the homophonic pairs.  CT was correct on every trial. 

 

In sum, the performance of CT on the rhyme and homophone judgement tasks can be 

accommodated in a dual buffer model of pSTM such as Monsell (1987), by assuming that a) 

the phonological input buffer is intact and can be used to complete auditory rhyme 

judgement, b) the phonological output buffer is intact and can be used to complete 

homophone decision and c) information can be passed from the output to the input buffer to 

allow correct written rhyme judgements to be made. When we consider the other tasks that 

have been described so far it appears that CT has an impairment in converting phonological 

input to phonological output, particularly if lexical or semantic knowledge cannot be used to 



22 
 

help.  Specifically, we argue that his performance can be accommodated parsimoniously by 

positing that he has a dysfunctional link from the input buffer to the output buffer in pSTM – 

or more simply, that CT has only half a phonological short-term memory rehearsal loop.   

 

Immediate Serial Recall - Phonological similarity 

CT was presented with lists of 4 letters for auditory serial recall.  The length of the list was 

constrained by his auditory digit span.  CT's recall of the list items were scored as correct 

only if he reported the presented letter in the list position that it had been presented. This 

meant that CT was required to offer the same number of items in a sequence, but in instances 

when he could not recall the letter he would say “pass” (e.g., for sequence E, C, T, P, B, V, 

D, he might say “E, C, T, pass, B, D, V”).  Overall, CT performed better for auditory (75% 

correct) versus visual (68% correct) presentation [χ2 (1) = 6.14, p < .01].  We note that this is 

not the usual pattern observed in cases of pSTM impairment but in this instance we attribute 

this finding to the disparity in the number of items in the visual versus auditory lists - each 

correctly recalled letter constitutes a greater proportion of the list in the auditory presentation. 

In the auditory version of the task, CT showed a significant phonological similarity effect [χ2 

(1) = 15.11, p < .001]. The same was not true in the visual presentation, where CT's recall 

performance was not affected by phonological similarity [χ2 (1) < 1]. These patterns are 

explored in more detail below. The control participants, however, did show a phonological 

similarity effect in the visual presentation such that recall was significantly poorer for the 

similar (55%) than dissimilar (80%) lists [t(10) = 7.80, p < .001]. As the auditory presentation 

was only 4 items per list, the control participants scored at or near ceiling in phonologically 

similar and phonologically dissimilar lists. As a result, no phonological similarity effect was 

observed. 

Table 2 shows the proportion of letters CT correctly recalled in each position across 

the test sessions for the auditory presentation. The mean performance for our control group is 

also included.   

Table 2 – Mean number of letters recalled correctly in each list position for CT, alongside mean 

performance for the control group (SD in parentheses, where available).  There were no significant similarity 

effects at any list position (Bonferroni corrected t-tests). 
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CT's overall accuracy was significantly lower that control participants for both 

phonologically similar [t(1) = 11.81, p < .001] and phonologically dissimilar [t(1) = 6.29, p 

< .001] lists. Crawford's t-tests also indicated that CT's recall was significantly lower than the 

control group for phonologically similar letters in the second and third positions in the list, 

and for letters in the penultimate and final positions in the phonologically dissimilar 

condition (all p < .001). It should be noted here that Crawford's t-test compares the score of a 

single case to a distribution of normative responses to determine whether the patient is 

performing outside of what could be expected for a non-impaired participant - hence the test 

cannot be applied in instances where the normative population has a standard deviation of 

zero. For this reason it was not possible to formally assess CT's performance in any list 

position for which our control participants scored 100%. That said, one can assume that any 

error under circumstances where a normative sample has performed at ceiling represents a 

significant impairment (i.e. he was impaired at the final list position in the similar lists too). 

We entered the number of letters CT correctly recalled at each list position into separate 

Friedman’s ANOVAs for phonologically similar and phonologically dissimilar lists. For the 

phonologically similar lists, the effect of list position was significant [χ2 (3) = 12.894, p 

< .001], and it was also significant in the phonologically dissimilar lists [χ2 (3) = 11.769, p 

< .01].  In neither list did any of the pairwise comparisons (Wilcoxon signed ranks tests, 

Bonferroni correction applied) reach significance. A 2 (similarity) x 4 (list position) repeated 

measures ANOVA for the control participant revealed no significant main effects or 

interaction term, probably because the participants were at or near ceiling.  A final 

observation relates to CT’s performance in recall of items in the final position of to be 

recalled sequences – as mentioned earlier, in previous work with healthy participants, the 

auditory modality shows the biggest advantage at the recency position (i.e., final items) of the 

 CT  Controls  

 Similar Dissimilar Difference 

(Dissimilar 

–Similar) 

Similar Dissimilar Difference 

(Dissimilar –

Similar) 

Position 1 8 10 2 10  10 0 

Position 2 7.8 10 2.2 9.7 (0.49) 10 0.3 

Position 3 6.2 8.2 2 9.4 (0.79) 9.9 (0.38) 0.5 

Position 4 3 6.8 3.8 10 9.9 (0.38) -0.1 
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serial position curve (Conrad & Hull, 1968). For CT (like many impaired pSTM cases) this 

recency advantage is not present.  

 

We initially presented CT with lists of 4 letters long for visual immediate serial recall as well, 

but he performed at ceiling. We also presented lists of 5, and then of 6 letters in length.  For 

both of these, the overall accuracy was high (91% in 5 letter lists, 86% in 6 letter lists), so we 

ultimately presented lists containing 7 letters for the examination of visual immediate serial 

recall so that any patterns of performance were not likely to be confounded by ceiling effects. 

Figure 4 shows the proportion of letters CT correctly recalled in each position across the test 

sessions for the visual presentation. The mean performance for our control group is also 

included. 

 

 

Figure 4 - Proportion of letters recalled correctly in each list position, in phonologically similar and 

dissimilar lists, for CT and controls.   

 

As a first step in the analysis of the effect of phonological similarity on recall for visually 

presented lists, we entered the number of letters correctly recalled by our controls into a 7 

(list position) x 2 (similar vs dissimilar) repeated measures ANOVA. This revealed a 

significant main effect of phonological similarity [F(1, 10) = 60.853, p < .001, ηp2 = .589] 

with the advantage being for dissimilar lists. There was also a main effect of list position 

[F(6, 60) = 33.421, p < .001, ηp2 = .770].  Post hoc Bonferroni corrected t-tests revealed that 

letters in position 1 were recalled significantly more often than letters at positions 3 onwards, 

that letters in position 2 were recalled significantly more often than letters in position 4 

onwards, and that letters in position 3 were recalled significantly more often than letters in 
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position 5 onwards (all p < .05).  Overall recall was statistically similar at positions 4, 5, 6 

and 7 (ps > .1). The interaction between similarity and list position was also significant [F(6, 

60) = 17.674, p < .001, ηp2 = .643], with greater recall differences between similar and 

dissimilar lists at later list positions (see figure 4 and table 3).   

 

Table 3 - Mean number of letters correctly recalled at each list position, in each list, by CT 

and controls (SD in parentheses for controls). Significant differences between phonologically 

similar and dissimilar list performance (t-tests for controls, Wilcoxon signed ranks for CT) at 

each list position have been indicated. 

 

 

Although we could not formally assess whether there was a similarity x list position 

interaction in CT’s performance, we conducted Friedman’s ANOVAs separately for the 

phonologically similar and phonologically dissimilar lists.  In phonologically similar lists, 

there was a significant effect of list position [χ2 (6) = 28.260, p < .001].  A series of Wilcoxon 

tests were conducted to further interrogate this effect, but none of the pairwise comparisons 

survived the Bonferroni correction.  The same was true in the analysis of phonologically 

dissimilar lists – the overall effect of list position was significant [χ2 (6) = 28.143, p < .001] 

but pairwise comparisons did not reach significance once the Bonferroni correction was 

applied. Table 3 shows that there was no significant similarity effect at any list position. 

 

We compared CT's performance to that of the control group for phonologically similar, and 

phonologically dissimilar, lists using Crawford's t-tests (Crawford & Howell, 1998) both in 

  CT Controls 

Position Similar Dissimilar 

Difference 

(Dissimilar 

- Similar) Similar Dissimilar 

Difference 

(Dissimilar 

- Similar) 

1 10 10 0 9.55 (0.69) 9.73 (0.47) 0.18 

2 9.2 10 0.8 8.18 (1.25) 9.27 (1.19) 1.09 

3 9.2 9.2 0 6.82 (1.47) 8.55 (1.13) 1.73* 

4 7.2 6.6 -0.6 5.36 (1.50) 8.18 (1.17) 2.82* 

5 5.8 3.6 -2.2 3.36 (1.63) 6.18 (2.71) 8.82* 

6 3.4 2.6 -0.8 3.00 (1.55) 6.09 (2.70) 3.09* 

7 3.4 4 0.6 2.73 (1.42) 8.18 (1.40) 5.45* 

* p < .05, ** p < .01 (Bonferroni corrected)    
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overall proportion correct, and split by list position. Overall, the proportion of letters 

remembered correctly by CT was significantly greater than the control group in 

phonologically similar lists [t(1) = 4.89, p < .001] and significantly lower in phonologically 

dissimilar lists [t(1) = 4.73, p < .001]. CT also performed within the normal range in all 7 list 

positions (all p > .1) for the phonologically similar lists. In fact, only the proportion of 

phonologically dissimilar letters correctly recalled in the final list position was significantly 

different from the control participants [t(1) = 2.92, p < .05] with CT scoring lower. Thus 

overall, CT has a higher Visual ISR span than Auditory ISR span, but only shows 

phonological similarity effects for auditory but not visual ISR1. Thus in all cases there is a 

dissociative pattern of performance across VISR and AISR tasks for CT. 

In summary for AISR testing, CT, a) shows an overall lower performance versus 

controls, b) shows an overall phonological similarity effect and c) shows no evidence of a 

recency effect. This contrasts markedly for VISR performance, in which case, (a) 

performance is much improved relative to AISR, (b) no evidence of a phonological similarity 

effect and (c) an upturn in recall at the final list position (though not significant). Indeed, with 

respect to (b), in the visual modality, CT's recall of phonologically similar items is 

significantly better than controls. Overall, we argue that this pattern indicates that CT is not 

converting visual stimuli into a phonological code, and likely is using visual information to 

support his performance (in line with the findings of Vallar et al., (1997) and Best & Howard 

(2005)). In order to investigate this issue further we examined whether CT’s performance 

might be impacted by visual similarity effects in VISR. 

 

Immediate Serial Recall - Visual similarity 

CT's recall for lists of visually similar and visually dissimilar lists was scored in the same 

way as for the phonological manipulations in the previous section. These proportions, along 

with the mean performance of our control group, are presented in Figure 5. Chi square 

comparison between CT's overall accuracy in the visually similar (55%) and visually 

dissimilar (69%) lists indicated that his performance was significantly different, in the 

predicted direction [Χ2 (1) = 4.178, p < .05]. A significant difference in performance was also 

                                                           
1 We also think it is worth noting that CT also had an overall accuracy of 68% when we presented him with lists 
of 4 words, which is a more difficult task.  Here, too, CT was considerably impaired relative to controls (who all 
performed at or near ceiling), but he again showed no phonological similarity effect. 
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observed in our control participants as a group [t(11) = 3.60, p < .05] such that accuracy for 

visually similar letters (64%) was lower than for visually distinct letters (72%) - though only 

2 of the controls actually showed a significant visual similarity effect when analysed 

individually. Crawford's t-tests determined that CT did not score outside of the normal range 

for either list overall, nor for his correct recall of letters presented in any list position (all p 

> .1).  

 

 

Figure 5 - Proportion of letters recalled correctly in each list position 

 

We assessed the effects of similarity and list position on our control participants’ recall by 

conducting a 2 x 7 repeated measures ANOVA. This revealed an overall main effect of 

similarity [F(1, 11) = 11.943, p < .01, ηp2 = .521], such that recall was better for visually 

dissimilar letters. There was also an overall main effect of list position [F(6, 66) = 14.018, p 

< .001, ηp2 = .560]. Post hoc tests were performed, but only the significant differences (all p 

< .05, Bonferroni corrected) will be reported for brevity. It was identified that recall was 

significantly better at position 1 than for positions 3, 5, 6, and 7.  Letters at position 2 were 

recalled better than for positions 5 and 6. Recall for letters presented at position 3 and 4 was 

better than for letters presented at position 5.  In summary, then, the control participants 

performed significantly better at earlier list positions. Although there was a numerical 

increase in recall at the penultimate and final list positions, this did not constitute a 

statistically significant recency effect.  The interaction was not significant (p > .05).  Again, 

we performed separate Friedman’s ANOVAs on the number of letters recalled by CT in the 

similar and dissimilar lists.  In both cases, there were significant list position effects [visually 

similar letters χ2 (6) = 11.450, p < .01; visually dissimilar letters χ2 (6) = 10.598, p < .05].  
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None of the pairwise comparisons in either list reached significance (all p > .1). Table 4 

presents the number of letters recalled by CT and controls at each list position of the similar 

and dissimilar lists.  Though none of the comparisons survived Bonferroni correction, there 

are some clear numerical differences between similar and dissimilar list recall. For example, 

CT recalled twice as many letters in the penultimate position of the dissimilar lists than he did 

at the same position in the similar lists. 

 

Table 4 - Mean number of letters correctly recalled at each list position, in each list, by CT 

and controls (SD in parentheses for controls). Significant differences between visually similar 

and dissimilar list performance (t-tests for controls, Wilcoxon signed ranks for CT) at each 

list position have been indicated. 

 

 

In sum, we predicted that CT would be affected by the visual similarity manipulation, and 

that that is indeed what appears to be present overall. As a consequence we would argue that 

as a consequence of his pSTM impairment, CT has shifted his emphasis to visual information 

when available in that modality – a pattern we suggest is similar to other published reports 

(Vallar et al., (1997) and Best & Howard (2005)). 

 

 

 

 

  CT Controls 

Position Similar Dissimilar 

Difference 

(Dissimilar 

- Similar) Similar Dissimilar 

Difference 

(Dissimilar 

- Similar) 

1 8.5 9.5 1.0 8.67 (1.07) 8.83 (1.40) 0.17 

2 8.5 10 1.5 7.50 (1.83) 7.92 (1.44) 0.42 

3 7.5 9.5 2.0 6.33 (1.78) 6.67 (2.39) 0.33 

4 5.5 6.5 1.0 5.67 (2.99) 6.92 (1.98) 1.25 

5 4.0 3.5 -0.5 4.17 (2.25) 6.17 (2.41) 2.00* 

6 1.5 3.00 1.5 4.75 (2.60) 5.50 (2.65) 0.75 

7 3.5 6.5 3.0 6.00 (2.76) 7.00 (1.81) 1.00 

* p < .05, ** p < .01 (Bonferroni corrected)    
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Discussion 

 

Our main aim in this paper was to explore the functioning of pSTM across a variety of 

phonological tasks in a case of conduction aphasia, and interpret our findings with respect to 

a key dual buffer model suggested by Monsell (1987). We also sought to examine CT’s 

performance across visual and auditory versions of ISR tasks and to determine if there may 

be any evidence of a visual similarity effect for our case. The findings can be summarised as 

follows. First, our conduction aphasic could perform nonword reading, lexical decision, 

semantic association, homophone judgement, written and spoken rhyme judgement tasks with 

the same level of accuracy as non-impaired controls, in spite of his reduced short term 

memory span and severe deficit in non-word repetition. Second, CT showed phonological 

similarity effects in auditory, but not visual, immediate serial recall tasks, despite superior 

performance on the latter relative to the former. Finally, our investigation of VISR letter 

visual similarity effects for both CT and controls showed that both were affected by the level 

of visual similarity between the letters in the lists. We consider each of these key patterns of 

performance in greater detail below, but conclude all can be accounted for under Monsell's 

(1987) framework see Figure 6 below (in line with the account of Nickels et al., 1997). 

CT – an impairment of half the phonological ‘loop’. 

As we have established, CT’s pattern of impairment is largely confined to phonological tasks 

that involve mapping spoken input to output (his nonword repetition in particular is severely 

disrupted). This is despite striking good performance at a great many visual phonological 

tasks (rhyme judgement/homophone judgement) and auditory phonological tasks (rhyme 

judgement/lexical decision). As a consequence, with reference to Figure 6 and the baseline 

data presented previously in Table 1, we interpret CT’s impairment as resulting in severe 

disruption to the link from the phonological input buffer to the phonological output buffer – 

much as Jacquemot et al (2007) explained the performance of FA. In theory, a disconnection 

in the conversion from input to output would severely reduce short term memory span by 

preventing the use of a rehearsal loop. However, if the input and output buffers themselves 

were intact, tasks that could be performed using either of these components would remain 

unimpaired.  This matches the pattern we observed in CT.   



30 
 

In line with the narrative suggested by Nickels et al, (1997), auditory rhyme judgements can 

be made solely in the phonological input buffer; homophone judgements can be made solely 

in the phonological output buffer. CT completed both of these tasks with normal levels of 

accuracy. Visual rhyme judgements require that written input is converted to a phonological 

code and passed from output buffer to input buffer before a decision can be made. In CT, 

visual rhyme judgement was in the normal range, as might be expected if the output-input 

link had not been damaged. We note that FA (Jacquemot et al, 2007) had an impairment in 

written rhyme judgement in spite of the fact that the authors of that paper argued that FA’s 

output-input link was intact.  However, the pattern of errors FA committed in this task 

paralleled her performance in reading aloud, and Jacquemot et al (2007) attributed, therefore, 

the rhyme judgement deficits to reading errors rather than pSTM processes.  Non-word 

repetition, on the other hand, relies on direct connections from the phonological input buffer 

to the phonological output buffer - CT was severely impaired at non-word repetition, 

indicating a problem with the input-output link. We argue that his preserved ability to read 

and recognise written words and perform semantic tasks indicates that his deficit is limited to 

pSTM (in contrast to FA, Jacquemot et al., 2007). Thus, overall, the reported pattern of 

performance matches the predictions of Monsell (1987) and Nickels et al., (1997) and can be 

readily accommodated in a model that proposes separate phonological input and output 

buffers, and distinct conversion processes in each direction. Jacquemot et al (2007) reported a 

conduction aphasic case that is strikingly similar to our patient, CT. In their discussion, 

Jacquemot et al noted that it would be potentially possible for rhyme judgement tasks to be 

completed on the basis of orthography rather than phonology, by comparing the visual 

representations of the items in the pairs (either as presented in the written version, or as 

computed in the auditory version), although they discarded this possibility in FA. We do not 

think that orthography is at the root of CT’s preserved rhyme judgement performance either. 

CT’s performance was near ceiling irrespective of whether the rhyming pairs shared spelling 

patterns.   
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Figure 6 – Dual-Buffer pSTM model and predictions about task impairments to functional damage.  CT’s 

performance is drawn from the baseline neuropsychological testing undertaken and reported in Table 1 

 

CT – the consequences of his disruption on ISR tasks 

As we established earlier, we argue that CT’s impairment reflects damage to the input-output 

pathway (or half of the phonological ‘loop’). At this point our discussion moves to issues 

relating to immediate serial recall in both the auditory and the visual domain. As stated in the 

introduction, it is common for healthy participants to perform better at auditory than visual 

serial recall, whereas the pattern is reversed in patients with pSTM deficits (Best & Howard, 

2005; Howard, 1995; Shallice & Vallar, 1990; Warrington & Shallice, 1969; 1972). CT, too, 

showed better levels of accuracy in visual serial recall than in auditory presentation. Of 

greater interest, though, is the varying susceptibility of CT's serial recall to phonological and 

visual similarity between items. The phonological similarity effect is observed in auditory or 

written presentation in normal participants (e.g. Besner & Davelaar, 1982) except when under 

conditions of articulatory suppression, whereupon the phonological similarity effect is 

abolished for written presentation only (e.g. Vallar & Baddeley, 1984). Given that the 

evidence suggests that CT has a damaged rehearsal mechanism in pSTM, we suggested that it 
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would be as if he was performing any short-term memory task under articulatory suppression. 

This prediction was borne out in the data - CT showed significant phonological similarity 

effects in auditory, but not visual, serial recall (in fact, there was some evidence of a reverse 

effect – better recall of phonologically similar letters - relative to controls in this case).  

 

In sum, CT’s pattern of performance is consistent with other patients with ISR impairments 

such as Vallar et al., (1997) and Best and Howard (2005). Finally, it appears that CT's 

immediate serial recall performance for visually similar letters (presented in written form) is 

worse than for visually dissimilar items (in effect a corollary of the phonological similarity 

effect) – again suggesting that for CT, given his phonological rehearsal impairments, he is to 

some extent using some form of ‘visual information’ as shift of emphasis to achieve better 

performance on VISR (in line with the suggestions of Baddeley, 1986). Intriguingly, there is 

other evidence that under the context of articulatory suppression, some similar resource or 

encoding shift occurs for normal participants (see, Tree, Longmore, Majerus & Evans, 2011; 

Tree, Longmore and Besner, 2011). This finding is also in line with work by Best & Howard, 

(2005) who reported similar visual letter confusability effects for their patient, who even 

spontaneously reported “The W and M are mixing me up”. In all then, there is increasing 

evidence to suggest that in VISR tasks there is likely the potential for shifting of encoding 

and storage emphasis from phonological to visual information depending on the task 

demands (or the nature of patient impairment). Further work is needed to explore this in 

greater detail. 
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