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Abstract 

The classical conditioning paradigm of fear learning has spawned a number of experimental 

variations for the explanation of posttraumatic stress disorder (PTSD) etiology. These 

paradigms include extinction learning and recall, fear inhibition, fear generalization, and 

conditioned avoidance. As such, each of these paradigms have significant applications for 

understanding the development, maintenance, treatment, and relapse of the fear-related 

features of PTSD. In the present review, we describe each of these conditioning-based 

paradigms with reference to the clinical applications, and supported by case examples of a 

patient with severe PTSD symptoms. We also review the neurobiological models of 

conditioning and extinction in animals, psychiatrically healthy humans, and PTSD patients, 

and discuss the current balance of evidence suggesting a number of biological, behavioral, 

and cognitive mechanisms/moderators of the conditioning and extinction process in 

experimental and clinical contexts. 

 

Keywords: Posttraumatic stress disorder; Conditioning; Extinction; Avoidance; 

Generalization; Exposure therapy 
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1. Introduction 

As many as 70% of the population may experience a traumatic event at some point in their 

lifetime (Resnick et al., 1993), and a small subset of these individuals will go on to develop 

symptoms of posttraumatic stress disorder (PTSD). Studies in military samples show lifetime 

prevalence rates of 19% due to war-related trauma, and lifetime PTSD rates in civilians can 

vary dramatically by country and trauma type (Karam et al., 2014; Kessler et al., 1995), and 

can be as high as 15% (Kessler et al., 1995; Ramchand et al., 2010). PTSD can be a chronic 

and debilitating condition resulting in significantly reduced quality of life, and comorbidity 

with depression and substance abuse. Hallmark symptoms of the disorder typically include 

distressing intrusive memories, avoidance of trauma reminders, hyperarousal, and negative 

alterations in cognition and mood (DSM-5; American Psychiatric Association, 2013). A 

primary treatment technique for PTSD (as well as other anxiety disorders with specific 

triggers or cues) is prolonged exposure therapy. During exposure therapy, the client is 

repeatedly exposed to the feared stimulus or situation via a series of in vivo exposures or 

narrative/mental imagery-based tasks. This treatment technique largely draws on, and is 

influenced by, the mechanisms of fear conditioning and extinction (Rothbaum and Davis, 

2003; Yehuda et al., 2015b), based on Pavlov’s (1927) classical conditioning theory. As the 

natural response to trauma exposure is recovery (Bryant, 2003), a current argument is that 

impairments in fear conditioning and extinction processes contribute to the ongoing 

persistence or relapse of fear-related symptoms of PTSD (Briscione et al., 2014; Mineka and 

Oehlberg, 2008; Pitman et al., 2012; Zuj et al., 2016b). Indeed, a number of different 

conditioning paradigms have been developed over the past few decades that provide unique 

explanations for different clinical situations of posttraumatic stress.  

Variations in fear conditioning paradigms (such as tests of extinction recall, 

generalization, and avoidance) all present unique translational explanations for the 
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development, persistence, treatment, and relapse of the fear-related features of PTSD 

(Norrholm and Jovanovic, 2018). The current review describes the specific translational 

relevance of each of the various fear learning paradigms for clinical situations. Although 

these paradigms carry important implications for a number of psychiatric conditions, this 

review focuses on evidence from research in PTSD populations. To further highlight the 

clinical relevance of this field of experimental psychopathology, we illustrate the 

translational nature of many of these paradigms with anonymized real-world examples from 

clinical patients with PTSD.1 The importance of conditioning paradigms for various clinical 

scenarios is highlighted by recent evidence of a correlation between fear extinction 

performance and the success of laboratory- and clinic-based treatment approaches (Ball et al., 

2017; Forcadell et al., 2017; Waters and Pine, 2016), supporting the idea that extinction is a 

key process in exposure-based treatments for anxiety disorders (Pitman et al., 2012). 

 PTSD is a broad and dynamic condition, often characterized by considerable 

individual differences in symptom presentation. In addition to hallmark symptoms of 

intrusive memories, avoidance behaviors, and hyperarousal, PTSD can also be characterized 

by symptoms of anger (McHugh et al., 2012), emotional numbing (Felmingham et al., 2014), 

dissociation (Armour et al., 2014), and sleep disturbances (Germain, 2013). Although this 

review acknowledges the wide-range of symptoms that can present in PTSD, we will be 

focusing on the fear-related features of PTSD, and the critical relevance of experimental fear 

conditioning paradigms (Jovanovic and Norrholm, 2016). In doing so, we will begin with a 

brief review of the translational cortical models of fear processing from animal research to 

humans with and without anxiety disorders, followed by a discussion of conditioning 

paradigms and their relevance for PTSD development, treatment, and relapse. Finally, we 

                                                        
1 Anonymous patient statements are provided by the authors through clinical encounters with previously 

traumatized individuals presenting with signs and symptoms of PTSD. 
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conclude with a brief discussion of additional factors known to mediate/moderate the 

extinction process. Throughout this review, we provide anonymous reports from clients to 

illustrate the significance of each of these experimental paradigms for explaining PTSD 

symptomatology. This review is not aimed at identifying a ‘common practice’ for fear 

conditioning methodologies (for a thorough review of design considerations in human fear 

conditioning, see Lonsdorf et al., 2017), but is intended to highlight the relevance of fear 

conditioning paradigms for various clinical situations.  

 

1.1. Fundamental Concepts in Fear Conditioning and Extinction 

 Fear conditioning and extinction is based on Pavlov’s (1927) classical conditioning 

theory of behavioral learning. This theory argues that a previously neutral stimulus becomes 

a conditioned stimulus (CS) through repeated pairings with an aversive event (e.g., a mild 

electric shock (Zeidan et al., 2012), or a sudden blast of air to the larynx (Norrholm et al., 

2006)). Through association, the CS elicits a conditioned response (CR) in the absence of the 

unconditioned stimulus (US). Extinction occurs when this threat response subsides through 

repeated presentations of the CS in the absence of the US. Irrespective of the timing of 

extinction relative to conditioning, extinction does not appear to erase or override the 

conditioning memory (Archbold et al., 2010), but instead results in the formation of a new 

inhibitory memory to prevent the expression of the CS-US fear association (Bouton, 2002; 

Delamater, 2004; Myers and Davis, 2002). The conditioned response may, however, return 

due to certain environmental or contextual factors (e.g., unsignaled US presentations termed 

reinstatement; the passage of time termed spontaneous recovery). Consistent evidence shows 

fear extinction learning and/or memory to be impaired in individuals with PTSD (e.g., 

Blechert et al., 2007; Norrholm et al., 2015; Norrholm et al., 2011).  
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 Conditioned fear responses are typically quantified by a variety of physiological and 

behavioral measures, among the most common of which are skin conductance response 

(SCR), acoustic startle, and self-reported US-expectancy ratings (Briscione et al., 2014). Skin 

conductance refers to the electrodermal activity of the sweat glands – a direct measure of 

sympathetic arousal (Boucsein, 1992). Studies have reliably found increased SCRs to the US-

reinforced CS+ during fear acquisition, compared to a second CS that is never reinforced, 

termed the CS- (e.g., Orr et al., 2000; Phelps et al., 2004; Zuj et al., 2016a). Alternatively, 

fear-potentiated startle (FPS), or the relative increase in the frequency or magnitude of the 

acoustic startle response in the presence of a cue (CS+) that has been paired with an aversive 

outcome (US), reflects an automatic behavioral startle response to aversive stimuli that is a 

widely used translational tool to model fear and anxiety (Davis, 1992; Jovanovic and 

Norrholm, 2016). Similar to SCR, considerable research has found FPS to reliably increase in 

relation to the CS+ as compared to a participant’s own baseline acoustic startle response and 

relative to the CS- (e.g., Glover et al., 2011; Guthrie and Bryant, 2006; Norrholm et al., 

2015). Indeed, Guthrie and Bryant (2006) found increased pre-trauma startle responses 

during fear extinction to be a significant predictor of posttraumatic stress reactions in trainee 

firefighters. Fear-potentiated startle, rather than SCR, has also been argued to be a more 

useful translational tool for neuroscience due to clear cortical relationships with the amygdala 

(Davis and Whalen, 2001; Glover et al., 2011; Kindt and Soeter, 2013). It is important to note 

that psychophysiologically based fear acquisition/extinction methods, including those 

discussed in the present review, have been identified by the United States National Institute 

of Mental Health (NIMH; 2016) Research Domain Criteria (RDoC) workgroup as a 

recommended negative valence system task paradigm for assessing acute fear.  

 In addition to SCR and FPS, self-report US-expectancy ratings are considered a valid 

measure of human fear extinction and threat expectancy (Boddez et al., 2013), and are widely 



7 

used in conjunction with psychophysiological measures (Kindt and Soeter, 2013; Norrholm 

et al., 2011; Vervliet et al., 2007; Zuj et al., 2017b). Further, increased US-expectancy ratings 

during fear extinction in Dutch soldiers prior to deployment was found to be a significant 

predictor of PTSD symptoms post-deployment (Lommen et al., 2013). Studies have also 

shown different patterns of conditioning and extinction for different response measures. For 

example, Blechert et al. (2008) have found extinction learning to be very rapid in SCR 

amplitude data, and slower in US-expectancy ratings, suggesting a disparity between 

psychophysiological arousal and cognitive threat expectancy. 

 

1.2. From Rodents to Humans: Understanding the Cortical Networks of Fear 

 Biological fear networks are remarkably translational, with initial animal research in 

rodents informing our understanding of the cortical fear networks in humans (for reviews, see 

Myers and Davis, 2007; Pitman et al., 2012). The amygdala is the premier subcortical 

structure in activating sympathetic threat systems (LeDoux, 2000), based on excitatory or 

inhibitory projections from prefrontal and hippocampal networks. In short, sensory 

recognition of environmental (or internal) threat activates two systems simultaneously. Threat 

is recognized by cognitive pathways and subjectively labeled (and experienced) as fear, while 

efferent cortical projections from the amygdala increase arousal in biological and 

physiological systems required for a response to the threat (LeDoux and Brown, 2017). An 

important discussion relevant to this review has been raised by LeDoux (2014) with respect 

to the meaning of the term ‘fear’ as it applies to the processes of threat detection in lower 

mammals and the emotional state of fear in humans. For the sake of this review and to 

maintain consistency with the expansive corpus of literature in this area, we will use the 

overarching term ‘fear’ across the translational bridge of our discussions. While the amygdala 

is important in activating these biological and physiological systems, this is contingent on the 
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information relayed from certain cortical and subcortical systems. Different neural structures 

play markedly different roles in the excitation or inhibition of the amygdala in various 

situations, and these relationships are summarized in Figure 1. 

 

[INSERT FIGURE 1 ABOUT HERE] 

 

Rodent research shows that the amygdala receives inhibitory projections from the 

infralimbic cortex based on understanding of CS-US contingencies, with increased 

infralimbic cortical activation associated with extinction learning (Barrett and Gonzalez-

Lima, 2018) and extinction recall (Milad and Quirk, 2002). While extinction learning is 

associated with greater activation of inhibitory networks between the infralimbic cortex and 

basolateral amygdala, selective inhibition of this network impairs extinction learning 

(Bloodgood et al., 2018; Laurent and Westbrook, 2009; Milad and Quirk, 2002; Milad et al., 

2004; Quirk et al., 2000). Alternatively, the prelimbic cortex acts in opposition to the 

infralimbic cortex, whereby greater activation is associated with greater conditioned 

responding and poorer extinction (Burgos-Robles et al., 2009; Fenton et al., 2014; Sierra-

Mercado et al., 2011) which is specific for learned, but not innate threat responding 

(Corcoran and Quirk, 2007). In addition, the hippocampus plays a crucial role in contextual 

processing, with lesion studies showing greater freezing in safe as well as dangerous contexts 

(reviewed in Maren et al., 2013). 

 Similarly in humans, the amygdala appears to play a key role in the excitation (or 

inhibition) of biological and physiological systems for threat responding (Cheng et al., 2006; 

Cheng et al., 2003; Cheng et al., 2007; Duvarci and Pare, 2014; Knight et al., 2004; LaBar et 

al., 1998; Morris and Dolan, 2004; Pare and Duvarci, 2012), with Sehlmeyer et al. (2011) 

showing amygdala activity increasing towards the end of fear acquisition and then 
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subsequently decreasing throughout extinction learning. These findings demonstrate the 

excitatory and inhibitory processes of the amygdala during threat responding and the 

extinction of threat responses. Further, the infralimbic and prelimbic cortices in rodents 

appear to be functionally analogous to the ventromedial prefrontal cortex (vmPFC) and 

dorsal anterior cingulate cortex (dACC) in humans, respectively. Specifically, vmPFC 

activation inhibits amygdala projections and subsequent threat responding (Milad et al., 2006; 

Milad et al., 2007b; Motzkin et al., 2014), while activation in the dACC results in greater 

amygdala activation, encouraging conditioned responding (Cheng et al., 2003; Knight et al., 

2004; Linnman et al., 2011; Milad et al., 2007a). Further, the hippocampus only appears to 

show greater activation in conditioning paradigms with multiple contexts and various 

contingencies for extinction (Lang et al., 2009; Milad et al., 2007b), with non-contextual 

conditioning studies showing no modulation of the hippocampus (Phelps et al., 2004).  

Further support for the above neurocircuitry of emotional fear processing has been 

found in populations with PTSD. For instance, greater dACC activity in PTSD has been 

associated with poorer extinction learning (Rougemont-Bücking et al., 2011) and extinction 

recall (Milad et al., 2009). Shvil et al. (2014), however, found this effect only in men with 

PTSD. Furthermore, Sripada et al. (2013) found a relationship between avoidance symptoms 

in PTSD and greater activity in the amygdala, vmPFC and hippocampus, among other 

emotion-related regions (i.e., insula and dorsomedial PFC). 

 

2. Paradigms and Phases of Associative Fear Learning 

In this section, we discuss the clinical relevance of the different experimental models 

based on a fear conditioning framework. As such, this review discusses (1) 

acquisition/conditioning as an analogue for the development of post-traumatic stress 

symptoms; (2) extinction learning as an influential explanation for the natural recovery of 
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symptoms, but also for the maladaptive persistence of symptoms; (3) extinction 

memory/recall paradigms as a model for treatment resistance and symptom remission; (4) 

return of fear manipulations for the relapse of symptoms post-treatment and delayed-onset of 

PTSD symptoms; (5) fear inhibition as a model for the inability to transfer learned safety 

contingencies; (6) reversal learning for the new learning of attributing positive valences to 

previously negative stimuli, and vice versa; (7) instrumental avoidance paradigms and 

maladaptive attempts to avoid stressful fear symptoms; and (8) the generalization of fear 

responses to benign stimuli that were not present during the traumatic event. In the final 

section, we acknowledge a number of genetic, biological, behavioral, and cognitive factors 

that have been shown to moderate/mediate some of these processes. 

 

2.1. Fear Acquisition/Conditioning 

 Fear acquisition refers to the initial associative learning process of the CS-US 

relationship. During fear acquisition in experimental settings, a neutral stimulus (e.g., colored 

geometric shapes, lights) is paired with the US (e.g., mild electric shock, aversive airblast). 

Through repeated pairings, the CS+ comes to predict the US and elicits a distinct fear 

response when compared to a safety signal (a similar stimulus never paired with the US, 

termed the CS-). Studies are somewhat mixed regarding levels of differential conditioning 

between PTSD and traumatized or non-traumatized control groups. PTSD-specific effects in 

fear acquisition are mixed, with some studies finding elevated psychophysiological 

responding to the safety cue (Acheson et al., 2015; Handy et al., 2018; Jovanovic et al., 2010; 

Peri et al., 2000), greater CS+/- discrimination (Blechert et al., 2007; Orr et al., 2000), or no 

differences at all (Glover et al., 2012). 

Despite these mixed findings for PTSD-specific patterns of responding during fear 

acquisition, a recent meta-analysis by Duits et al. (2015) found a small effect that patients 



11 

with anxiety disorders display increased fear expression to the CS- during fear acquisition. 

As discussed by Duits et al. (2015), this finding can be interpreted in one of two ways: (1) 

individuals with PTSD may have a greater propensity to generalize fear to similar neutral 

stimuli, and (2) this effect may be reflective of impaired inhibition processes. Both are 

equally likely explanations, and greater fear expression to the CS- during acquisition is likely 

to be due to a combination of generalization and inhibitory processes. Indeed, fear 

generalization has been described as “balancing excitation versus inhibition” (Dymond et al., 

2015, p.565), and will be discussed in greater detail below. 

Translationally, the fear acquisition phase is considered a laboratory model for trauma 

exposure. A traumatic event acts as a naturally occurring US that evokes unconditioned 

responses of intense arousal and fear. Indeed, there is consistent evidence of heightened 

physiological arousal (as indexed by acoustic startle and heart rate responses) in the acute 

aftermath of trauma as a significant predictor of increased posttraumatic stress at follow-up in 

motor vehicle accident survivors (Bryant et al., 2000), firefighters (Guthrie and Bryant, 

2005), and assault victims (Griffin, 2008). Further, patients with PTSD present with elevated 

physiological arousal at rest (Peri et al., 2000), and greater fear-potentiated startle to the CS+ 

during late acquisition is associated with high levels of re-experiencing and hyperarousal 

symptoms (Norrholm et al., 2011). These studies suggest that individuals with PTSD show 

heightened physiological arousal in the acute phase post-trauma, which is argued to reflect 

the propensity for stronger unconditioned responses (Bryant et al., 2000; Shalev et al., 1998). 

In turn, this heightened peri- and post-traumatic arousal may manifest into greater fear-

related symptoms, namely re-experiencing and hyperarousal (Norrholm et al., 2011). 
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Although fear conditioning can provide a theoretical explanation for the development 

of the fear-related clinical features of PTSD, it cannot however, fully explain the persistence 

of these symptoms, or explain why some individuals do not develop PTSD. Indeed, a study 

by Bryant et al. (2013) found that during 3-, 12-, and 24-month follow-ups, many individuals 

moved between symptom-free, sub-syndromal, and clinical PTSD classifications. 

Specifically, the rates of PTSD at each time-point remained relatively stable, however 

participant membership fluctuated between the different diagnostic categories at each time-

point. In support, many individuals with severe PTSD symptoms in the weeks following a 

trauma recover in the following months (for a review, see Bryant, 2003). Due to the 

normative response to trauma being recovery, and the dynamic trajectory of PTSD onset, 

Box 1. Clinical vignette: Fear Acquisition 
 
John is a 33-year old, male U.S. Air Force veteran who was deployed to 
the Middle East three times as a flight support officer. Following his 
deployments, John remained on Active Duty serving at a stateside joint 
military installation for three years. As is common with many service 
members, John interacted with his colleagues both during their tours of 
duty and while off duty at various social events. A year after his military 
service ended, John came to the PTSD clinic with symptoms of PTSD 
and sought treatment for these symptoms as well as co-morbid 
depression and alcohol abuse. During his initial assessment, John 
reported a significant traumatic event that occurred during the previous 
Christmas holiday season in which a friend and colleague had committed 
suicide by self-inflicted gunshot wound in John’s presence at his friend’s 
home. John reported significant distress and anxiety, both emotional and 
physical in nature, in the presence of sirens and flashing lights; 
posttraumatic sequelae that developed at the time of the traumatic event 
as John remained on the scene as first responders arrived and tended to 
his recently deceased friend and colleague. Exposure to sirens and 
flashing lights on police, fire, and rescue vehicles repeatedly evoked 
classical symptoms of panic and anxiety in John including racing heart, 
excessive perspiration, shallow, rapid breathing, as well as nausea and 
vomiting. In addition to these somatic features, John also found himself 
becoming emotionally upset with bouts of sadness and crying both during 
and in the immediate aftermath of exposure to sirens and flashing lights. 
Per John’s report, these physical and emotional responses to cues 
related to emergency services subsided after he was removed from the 
situations for an extended period of time, often in the safety of his home.    
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persistent fear-related PTSD symptoms are likely due to mechanisms of impaired extinction, 

avoidance, and/or inhibition, rather than conditioning. 

 It is important to note here that we do not suggest that PTSD is a “fear-conditioning 

disorder” as its heterogeneous presentation spans several neurobiological, cognitive, 

emotional, and social domains including frequently observed guilt, shame, anger, and 

irritability. These symptoms are likely mediated by cortical and subcortical (e.g., striatal) 

brain regions that lie outside of the limbic circuitry implicated in fear learning (McHugh et 

al., 2012; Briscione et al., 2014; Norrholm and Jovanovic, 2018).   

 

2.2. Fear Extinction Learning 

 Fear extinction occurs following fear acquisition (either immediately, or following a 

delay), whereby the CS+ is repeatedly presented without the US. Over time, this results in a 

reduction in conditioned fear responses to the CS+, until there is minimal discriminability 

between the CS+ and CS-. It is important to note here that in experimental situations, most 

participants extinguish conditioned responses (for a discussion of non-extinguishers, see 

Norrholm et al., 2008), however, it is the rate/pattern of extinction that is of most interest. 

Compared to trauma-exposed and non-exposed controls, individuals with PTSD tend to show 

slower rates of extinction learning (Acheson et al., 2015; Blechert et al., 2007; Zuj et al., 

2017b; Zuj et al., 2017c), or greater physiological arousal during extinction (Fani et al., 2012; 

Norrholm et al., 2011; Orr et al., 2000; Peri et al., 2000).  

 One way in which impaired fear extinction learning can present in PTSD is fear load. 

Fear load refers to a pattern of fear expression whereby individuals with PTSD display 

greater fear expression in the early phases of extinction learning, compared to control groups 

(Norrholm et al., 2015; Norrholm et al., 2011), and is argued to be an intermediate phenotype 

of PTSD symptom development. That is, PTSD participants display greater levels of fear at 



14 

the beginning of extinction learning, compared to controls. Indeed, fear load draws a number 

of parallels with risk factors of PTSD, such as genetics (Norrholm et al., 2013) and sex 

hormones (Glover et al., 2012). Fear load is also associated with an increased attentional bias 

to threat (Fani et al., 2012), which has been found to be specific to PTSD in Australian 

soldiers, compared to soldiers with a mild traumatic brain injury without PTSD (Zuj et al., 

2017a). Further, Galatzer-Levy et al. (2017) identified increased fear load to be a specific 

trajectory of acquisition and extinction, characterized by high levels of fear-potentiated startle 

during acquisition and extinction, and little reduction in startle during extinction. This 

trajectory appeared to be distinct from other trajectories characterized by complete extinction 

of fear-potentiated startle (Galatzer-Levy et al., 2017). It is likely that this non-extinction 

trajectory may be associated with treatment-resistant PTSD symptoms. 

Trauma-focused cognitive behavioral therapies, such as prolonged exposure therapy, 

are considered to work via fear extinction mechanisms to reduce the distress associated with 

trauma-related thoughts and behaviors (McLean and Foa, 2011; Rauch et al., 2012; Yehuda 

et al., 2015b). During prolonged exposure therapy, the patient is gradually exposed to 

reminders of the traumatic event, resulting in increased physiological arousal and anxiety. 

Over the course of treatment sessions, recounting the traumatic event produces lower levels 

of fear and anxiety, much the same way this process occurs in experimental extinction 

sessions. Although prolonged exposure therapy is considered the gold standard of treatment 

for PTSD, reports indicate that there are large dropout rates due to the huge levels of distress 

caused by initial stages of treatment (Schnurr et al., 2007; Simmons et al., 2013; Yehuda et 

al., 2015a). This elevated level of distress in the beginning of exposure therapy can be 

conceptualized as fear load, whereby reminders of the traumatic event are initially met with 

intense physiological hyperarousal. 
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2.3. Fear Extinction Recall 

 In clinical settings, the extinction of a distressing conditioned response to emotional 

trauma reminders occurs in two ways: within-session (as discussed above), and between-

session. Regarding the latter, symptom reduction during a session of exposure-based therapy 

needs to carry over into subsequent sessions for long-term symptom management. In 

laboratory settings, this involves assessing the recall of fear extinction in the days following 

extinction learning (e.g., Milad et al., 2008). Multi-day conditioning, extinction, and 

extinction recall paradigms have found deficient between-session recall of extinction in 

Box 2. Clinical vignette: Fear Extinction Learning 
 
The patient introduced in Box 1, John, was assigned to prolonged 
exposure treatment that consisted of weekly sessions with a therapist 
as well as between-session in vivo exposure exercises according to the 
clinical protocol published by Foa and colleagues (2007). The session-
by-session procedures included as part of this type of treatment will not 
be reviewed in detail here but the reader is referred to the latter work of 
Foa and others. During his treatment sessions, John repeatedly 
recounted his traumatic experience, in the safety of the clinical space, 
having witnessed the suicide of a friend and fellow service member. 
This included detailed descriptions of the sensory and emotional 
experiences that encompassed this distressing event. As is typical with 
this type of treatment, John reported his Subjective Units of Distress 
(SUDS) level at regular intervals during the sessions as well at the 
beginning and end of his recollections. John and his therapist created a 
hierarchy of cues, places, and situations in which to be exposed during 
his in vivo exposures. This was done in a graded fashion with the 
patient “building up” to the contexts and situations that are reported to 
be most distressing. For John, this hierarchy involved moving from 
limited exposure to emergency-related sounds played through audio 
devices and handheld flashing lights, as are often seen on emergency 
vehicles before progressing to exposures in and around first responder 
facilities such as fire and police facilities. John did well with this 
treatment regimen as evidenced by clinician- and self-reported 
symptom inventories, self-reported reductions in his SUDS level over 
the course of his 8-week course of therapy, and increased exposure to 
situations in close proximity to rescue vehicles. By the end of treatment, 
John reported an increased quality of life, reduced alcohol 
consumption, and re-engagement with many of the activities that he 
had long avoided.  
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participants with PTSD, with no impairments in acquisition or within-session extinction 

(Milad et al., 2008; Milad et al., 2009; Shvil et al., 2014). Similarly, these findings have also 

been found in patients with obsessive-compulsive disorder, compared to controls (Milad et 

al., 2013). Furthermore, recent evidence shows that adolescents, who are at greater risk for 

the development of anxiety disorders, show impaired extinction recall compared to adults 

(Ganella et al., 2017b) and this appears to be linked to reduced activity in regions of the 

prefrontal cortex (Ganella et al., 2017a; Ganella et al., 2017b). Recent evidence also suggests 

that transcranial magnetic stimulation of the PFC enhances extinction recall (Raij et al., 

2017), further supporting the inhibitory function of the vmPFC on amygdala circuits. 

Extinction recall paradigms are an important experimental model for the maintenance of 

symptom reduction following sessions of exposure therapy. 

 

2.4. Return of Fear Following Extinction Learning 
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 As described previously in this review, conditioned fear memories (e.g., CS-US 

associations) are not erased following extinction learning and can be elicited through the 

processes of spontaneous recovery (after the passage of time; Pavlov, 1927), reinstatement 

(following the unsignaled presentation of the US without the CS; Rescorla and Heth, 1975), 

or renewal (following a change in context from the extinction learning environment; Bouton 

and Bolles, 1979). The clinical analogues of the laboratory phenomena of spontaneous 

recovery, reinstatement, and renewal are time elapsed since the conclusion of extinction-

based exposure therapy, exposure to a stressful life event, and experiences within contexts 

different from that within which therapy occurred, respectively (Norrholm, 2012). 

Box 3. Clinical vignette: Return of Fear 
 
Patient John successfully completed prolonged exposure therapy for his 
PTSD symptoms and returned to many of his daily activities including steady 
employment as an air traffic support technician at the local airport. He was 
not seen in the PTSD clinic for 18 months after which time he returned to the 
clinic with relapse of his PTSD symptoms. He again reported physical and 
emotional reactivity in the presence of emergency response-related cues. 
During his return assessment visit, John disclosed that he had recently 
undergone short-term, invasive treatment for a localized, benign tumor in his 
abdomen. He stated that his PTSD symptoms returned shortly after his 
discharge from the hospital. Per his report, his exposure to the various 
medical clinics and procedures reminded him of his traumatic experience 
with his colleague’s suicide and that these intrusive memories were coupled 
with his own thoughts of death, dying, and mortality. During the few days in 
which he waited for the results of his biopsy and in the days leading up to his 
surgery, he felt as if his life was endangered by the new medical diagnosis. 
These thoughts and feelings evoked visceral, panic-like symptoms. Clinically 
speaking, a significant medical crisis can precipitate a relapse of PTSD 
symptoms. In experimental fear learning terms, this is analogous to 
reinstatement of fear when a successfully extinguished participant is 
presented with the fear-eliciting unconditioned stimulus in the absence of the 
cues previously paired to the US. It is also important to note here, that 
John’s relapse may also be partially explained by a generalization of fear, 
that he previously acquired to emergency response-related cues, to the cues 
to which he was exposed during his hospital stay. John underwent a brief, 4-
week course of exposure and talk therapy after which time he reported a 
reduction in his relapsed PTSD intrusive and hyperarousal symptoms.   
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2.5. Fear Inhibition 

 Fear inhibition is related to fear extinction with a notable exception being that 

inhibition paradigms typically compare subject responses to a reinforced “danger” cue (e.g., 

CS+) with responses to a non-reinforced “safety” cue (e.g., CS-). Fear extinction, by 

definition, refers to a decrease in fearful responding to a previously reinforced CS+ following 

a change in the experimental contingency (i.e., presentation of the same CS is no longer 

followed by an aversive outcome). Fear inhibition has been reliably investigated by 

Jovanovic and colleagues (2010) using psychophysiological indices previously described 

using a learning paradigm termed AX+/BX-. As part of this approach, a neutral stimulus 

(termed the X cue) is paired with a cue (termed the A cue) that is paired with an aversive 

airblast US. This compound is referred to as the AX+ compound and its presentation is 

repeatedly followed by the US. In addition, a second cue (termed the B cue) that is not paired 

with the US is presented with the same neutral X cue, and this compound is referred to as 

BX-. Subsequently, the previously reinforced A cue and non-reinforced B cue are paired 

together (termed the AB compound) and presented to determine the degree to which the 

inhibitory properties of the B cue are transferred to the excitatory A cue. Healthy controls 

routinely show this transfer of inhibition (Jovanovic et al., 2005). In PTSD patients, however, 

a failure of transfer of inhibition has been reported by this group as evidenced by similar 

levels of fear responding to both the excitatory AX compound and the inhibition test 

compound AB (Jovanovic et al., 2009). These results suggested that PTSD may be related to 

an impairment in transferring learned safety (a goal of treatment for trauma-, stressor-, and 

anxiety-related disorders). 
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2.6. Reversal Learning 

 Fear learning, as assessed by acquisition and extinction paradigms, is context-

dependent and conditioned fear responses emerge in the presence of both discrete cues and 

Box 4. Clinical vignette: Fear Inhibition and Reversal Learning 
 
Sam was a 35 year old U.S. Army Veteran who was deployed to 
Afghanistan from 2005 – 2007. As a transportation and logistics specialist, 
Sam often travelled within the combat theatre as part of armoured vehicle 
convoys. During one mission in late 2006, the vehicle within which Sam 
was riding was hit by an improvised explosive device (IED) and several of 
Sam’s fellow members were significantly injured by shrapnel and 
concussive forces. Sam recalls feeling frightened and distressed at the 
time of this event but was able to serve the remainder of his deployment 
without any clinically significant consequences. Upon his return to the 
States in 2007, Sam reported to the PTSD clinic with PTSD symptoms 
most notably increased physiological and emotional arousal when driving 
or riding in a motor vehicle. Sam was treated with a few cognitive 
behavioural therapy regimens including cognitive processing therapy (CPT) 
and prolonged exposure (PE) therapy with varying degrees of success 
reported by Sam. Sam recalled that an aspect of cognitive therapy that was 
helpful was learning new ways to think about traumatic events and their 
aftermath. Over the course of therapy, Sam recognized that the sights, 
sounds, and smells (i.e., cues) present during his travels on American 
roads were qualitatively different from those that were present in 
Afghanistan. In addition, there was a clear familiarity of the roads he 
traveled at home. These factors provided a sense of safety for Sam, and 
as he progressed through treatment, the safety inherent with traveling by 
vehicle in the States transferred to his experiences of being in a car 
(initially reported by Sam to be a reminder of a Humvee cabin) and sitting 
in U.S. road traffic (initially reported by Sam to remind him of a military 
convoy). From a learning theory perspective, the reduction in Sam’s 
reactivity to motor vehicle cues over time represents a form of fear 
inhibition in which the inhibitory properties of a safety signal are transferred 
to a danger signal that previously evoked fear. 
 As discussed in section 2.6, Sam’s ability to reduce his fearful 
responses to riding in a motor vehicle at home following his vehicle-based 
traumatic event while deployed can also be explained, to some degree, by 
reversal learning. Reversal learning occurs when an individual successfully 
determines that a cue that previously predicted a negative outcome later 
predicts a neutral or positive outcome. In Sam’s case, the cue (i.e., motor 
vehicle) remained largely constant but the context (i.e., United States 
versus Afghanistan) qualitatively changed. The study of reversal learning in 
PTSD populations is in its infancy but represents a potential area of 
increased focus for clinical interventions. 
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the contexts in which these cues are presented (Norrholm and Jovanovic, 2018; VanElzakker 

et al., 2013). In addition to the extinction phenomena discussed previously, an emerging area 

of interest with regard to PTSD and clinically-relevant learning mechanisms is reversal 

learning. In a typical reversal learning procedure, participants learn that the valence (i.e., 

positive or negative outcome) of a paired association between cue and context initially 

predicts a neutral or aversive consequence (e.g., cue A is followed by a US). Subsequently, 

this reinforced cue is then presented with a different, often positive, outcome on later trials. 

To successfully learn the new associations presented in a reversal learning paradigm, 

participants need to reverse their association expectation of either the original cue or original 

context while keeping the valence of the other dimension constant to isolate reversal learning 

on a single dimension (cue or context). 

 The potential validity of increased focus on reversal learning was illustrated in a 

recent study by Levy-Gigi et al. (2014) who assessed this type of learning in trauma-exposed 

firefighters, crime scene investigators, and non-traumatized control participants. As described 

above, the authors presented reversal associations of cue and context independently and 

tested the ability of each group to learn the contingency reversals. Previously traumatized 

firefighters exhibited a decreased capacity to learn that a context that initially predicted a 

negative outcome, when presented with a different cue, was subsequently followed by a 

positive outcome. Conversely, previously traumatized crime scene investigators showed an 

impaired ability to learn that a cue that initially predicted a negative outcome when the 

context remained constant. The authors discuss these results in terms of the specific 

occupation-related tasks required by each of these professions; firefighters may be more 

attuned to contextual features of the environments to which they are exposed whereas crime 

scene investigators may recruit more discrete cue-specific features of the contexts within 

which they work. The results of this work suggest that clinical focus, as it relates to the fear-
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related symptoms of trauma-, stressor-, and anxiety-related disorders should not be limited to 

fear-related cues, or triggers, but also the multiple contexts within which they appear. 

 

2.7. Avoidance and Avoidance Extinction 

While deficits in the learning and memory for fear extinction is one mechanism by 

which fear might persist, another is avoidance. Avoidance refers to any active or passive 

behavior that increases the distance between an individual and an aversive event or situation 

(for an excellent review, see Pittig et al., 2018). In relation to PTSD, this typically involves 

reminders of a traumatic event. For example, an individual involved in a nasty cycling 

accident on an ordinary stretch of road may actively avoid that area to prevent anxious 

thoughts and feelings about the potential for another accident, or to avoid memories of the 

previous accident. Avoidance behaviors are a common technique of managing symptoms in 

anxiety disorders due to the direct negative reinforcement of reducing anxious thoughts and 

feelings (LeDoux et al., 2017; Mineka, 1979). This, however, leads to a distorted ability to 

recognize safe vs. dangerous situations, and becomes a maladaptive strategy of managing 

symptoms (LeDoux et al., 2017). Maladaptive avoidance behaviors can lead to a flow-on 

effect of additional comorbidities with PTSD, as Possemato et al. (2015) found that greater 

use of maladaptive avoidance-based coping strategies was associated with an increased risk 

of alcohol use in veterans with PTSD. For an account of various theoretical explanations of 

avoidance behaviors in associative and instrumental learning paradigms, see Lovibond 

(2006). 

Avoidance paradigms typically begin with a Pavlovian conditioning phase, followed 

by an avoidance phase. During instrumental avoidance tasks, participants are presented with 

an additional cue indicating the CS+ can be avoided (e.g., via a spacebar press, or multiple 

rapid presses). Research in healthy controls shows that when an extinction phase follows 
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avoidance training, the presentation of an avoidance cue during extinction prevents 

participants from extinguishing, known as ‘protection from extinction’ (Lovibond et al., 

2009). The act of initiating the avoidance cue arbitrarily removes any expectancy of the US, 

and extinction therefore cannot occur (Lovibond et al., 2009). Recent evidence in healthy 

controls also shows that greater reinforcement of avoidance (i.e., higher chance that 

avoidance behaviors will cancel the US) results in persistent fear responses throughout an 

extinction learning phase (Xia et al., 2017).  

In clinically ecological paradigms, there is evidence that individuals with greater 

levels of anxiety show increased instrumental avoidance behaviors to reduce the likelihood of 

experiencing the aversive US. Dymond et al. (2014) found that individuals with high spider 

fear require fewer acquisition trials to develop an avoidance response to an image of a spider, 

compared to individuals with lower levels of spider fear. Further, anxious children in a 

choice-based fear learning task are more likely to choose a safety signal instead of a threat 

signal, indicating avoidance of threat (Lau and Viding, 2007). Avoidance symptoms in 

veterans with PTSD also show associations with neural networks of emotion during fear 

conditioning and extinction (Sripada et al., 2013).  

During exposure therapy for PTSD and other anxiety disorders, initial reports 

suggested that within- and between-session habituation of physiological arousal/anxiety is 

necessary for long-term symptom reduction (Foa and Kozak, 1986). That is, disrupting the 

habituation process during the session when anxiety levels become too high was viewed as a 

form of negative reinforcement, promoting avoidance and ongoing symptoms. Recent 

reports, however, suggest that within-session habituation does not predict behavioral 

avoidance at follow-up (Craske et al., 2008; Kircanski et al., 2012). These findings indicate 

some uncertainty regarding how avoidance might be targeted during the treatment process, 
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however it is likely that the natural recovery from negative posttraumatic stress reactions may 

be ‘protected’ by the use of avoidance behaviors (Lovibond et al., 2009). 

 

2.8. Fear Generalization 

 An important experimental and clinical understanding is that conditioned fear and 

arousal can be caused by stimuli that were not present during a traumatic event (Dymond et 

al., 2015). The concept of generalization refers to the extension of conditioned responses to 

stimuli that may be perceptually, symbolically, or contextually related to the original CS (for 

a review of different generalization techniques, see Dymond et al., 2015). Recent 

investigations show reduced vmPFC-amygdala connectivity to generalized stimuli 

resembling the safety signal in patients with PTSD, compared to controls (Morey et al., 

2015). Indeed, Lissek et al. (2013) found that healthy participants show greater hippocampal-

vmPFC connectivity in a gradient-response relationship with generalization stimuli as the 

stimuli show a closer perceptual relationship with the safety signal (the neural mechanisms of 

fear generalization in relation to PTSD are reviewed in Lopresto et al., 2016). While little 

research has investigated classically conditioned fear generalization in PTSD, this model has 

important clinical relevance for the development and persistence of anxious symptoms 

(Lissek, 2012), as patients with PTSD frequently generalize anxiety and fearful responses to 

safe stimuli that were not present during the trauma.  

 

2.9. Summary 

 While empirical research of some of these experimental paradigms is limited in 

clinical samples, these models nonetheless provide important explanations for a variety of 

fear-related features of PTSD and other anxiety disorders. As summarized in Table 1, the 

biological and experimental models outlined above provide unique descriptions for the 
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development and persistence of fear-related symptoms (via conditioning, impaired extinction, 

and over-generalization mechanisms), treatment and the maintenance of treatment responses 

(extinction learning and recall mechanisms), the post-treatment relapse of symptoms (return 

of fear paradigms), avoidance behaviors of trauma-related stimuli (via instrumental 

avoidance paradigms), and fearful responding to safe stimuli (via inhibition and 

generalization paradigms). As highlighted at the beginning of this review, PTSD is a complex 

psychiatric conditioning with significant variability in symptom presentation. As such, the 

above sections are directed at explaining the clinical relevance of these paradigms for the 

fear-related features of PTSD (see Figure 2). 

 

Table 1 

The applications and relevance of conditioning paradigms for behavioral and clinical 

situations. 

Conditioning paradigms Behavioral/clinical analogues 

Fear acquisition The development of conditioned anxiety- and fear-provoking 

triggers. 

Fear extinction learning When unimpaired = natural recovery. 

When impaired = symptom persistence. 

Important mechanism of exposure-based treatment. 

Fear extinction recall When unimpaired = symptom improvement. 

When impaired = poor between-session treatment response. 

Important mechanism of exposure-based treatment 

Return of fear Post-treatment relapse of symptoms. 

Fear inhibition Impaired ability to transfer learned safety contingencies. 

Important mechanism of exposure-based treatment. 

Reversal learning New learning that a previously threatening stimulus/context 

signals safety. 

Avoidance Active maintenance of symptoms. Protection from recovery. 

Fear generalization Symptom persistence and the transfer of conditioned 

fear/anxiety to different (but perceptually or conceptually 

similar) stimuli. 
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[INSERT FIGURE 2 ABOUT HERE] 

 

3. Mediators and Moderators of Conditioning and Extinction Processes 

 The aforementioned sections have detailed different paradigms of Pavlovian fear 

learning, and their direct clinical relevance in the development, treatment, and relapse of 

PTSD symptoms. In addition, there has been increased attention toward identifying various 

boundary conditions of fear learning, with important implications for theory development and 

the treatment of fear-related symptoms. For example, a large body of research shows 

significant effects of sleep quality on fear extinction potential (reviewed in Pace-Schott et al., 

2015a, b), and therapies targeting nightmares also improve PTSD symptoms (Krakow et al., 

2001). Sleep quality, therefore, appears to act as a moderator (or mediator) of fear extinction 

learning, and treatment response might be enhanced by also focusing on a patients’ quality of 

sleep. In the following section, we briefly review the evidence of known moderators and 

mediators of Pavlovian fear learning. As this section covers a number of rich research areas, 

this section is brief, with appropriate acknowledgement to the relevant reviews of many of 

these fields. Similarly, the central role that fear extinction learning and memory appears to 

play in linking many of these fields of research to PTSD has been reviewed previously (Zuj 

et al., 2016b).  

 

3.1. Genetic Mechanisms 

 Due to increases in our scientific capacity to measure the influences of genetics for 

biological and hormonal processes, the study of genetics is argued to be a key method 

moving forward for understanding PTSD risk (Zoladz and Diamond, 2013) and processes of 

fear conditioning memories (Johnson et al., 2012). In brief, PTSD and fear extinction have 

each been identified to show relationships with brain-derived neurotrophic factor (BDNF), 
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catechol-O-methyltransferase (COMT), serotonin transporter genes, FK binding protein 5 

(FKBP5), among others. Importantly, many of the aforementioned genotypes show a similar 

relationship with PTSD and fear conditioning/extinction processes both independently and, 

more recently, simultaneously (reviewed in Zuj et al., 2016b).  

BDNF is involved in the synaptic plasticity of the emotional circuitry of the brain 

(namely the amygdala, PFC, and hippocampus), and higher serum BDNF levels have been 

associated with greater PTSD symptom severity (Hauck et al., 2009; Hauck et al., 2010; 

Matsuoka et al., 2013; Rakofsky et al., 2012). Additionally, carriers of the Met allele of the 

BDNF Val66Met polymorphism show poor response to exposure therapy (Felmingham et al., 

2013) and poorer extinction learning (Soliman et al., 2010). Recently, Felmingham et al. 

(2018) found the BDNF Val66Met polymorphism to be a significant moderator between 

PTSD symptoms and extinction learning, with greater PTSD symptoms and poorer fear 

extinction only in Met allele carriers, but not Val carriers.  

 COMT is an enzyme involved in the synaptic degradation of dopamine, epinephrine, 

and norepinephrine within the PFC and hippocampus (Bomyea et al., 2012). Homozygosity 

of the Val158Met polymorphism (Val/Val or Met/Met carriers) is associated with greater and 

lower levels of dopamine degradation, respectively (Tunbridge et al., 2006). In comparison, 

Val/Met carriers appear to show balanced dopamine degradation at the synapse. There is 

consistent evidence that homozygous Val/Val or Met/Met carriers show greater PTSD 

symptoms than heterozygous Val/Met carriers (Boscarino et al., 2011; Clark et al., 2013; 

Deslauriers et al., 2018; Kolassa et al., 2010; Valente et al., 2011). COMT Val158Met 

homozygosity is also associated with impaired fear extinction (Lonsdorf et al., 2009) and fear 

inhibition to safety signals (Deslauriers et al., 2018; Norrholm et al., 2013; Wendt et al., 

2014). 
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 Studies indicate that carriers of the ‘short’ allele of the serotonin transporter gene, 5-

HTTLPR, show stronger conditioned fear responses during acquisition (Hermann et al., 

2012; Lonsdorf et al., 2009). In clinical situations, the 5-HTTLPR-s allele also shows 

significant gene × environment interactions to increase risk for PTSD. Specifically, 5-

HTTLPR-s shows significant associations with high trauma exposure and interpersonal 

experiences (e.g., low social support) to increase risk for PTSD (Gressier et al., 2013; 

Kilpatrick et al., 2007; Koenen et al., 2009). Although, Wald et al. (2013) found that in the 

military, the 5-HTTLP-s allele interacted with increased combat exposure and attentional 

threat biases as protective factors for PTSD. 

 FK506 binding protein 5 (FKBP5) is important in modulating glucocorticoid receptor 

sensitivity, influencing the activity of cortisol and the negative feedback loop of the 

hypothalamic-pituitary-adrenal axis (Bomyea et al., 2012; Zannas and Binder, 2014). 

Research suggests that, similar to the 5-HTTLPR-s allele, FKBP5 is not associated with 

PTSD risk in isolation (Binder et al., 2008; Xie et al., 2010), but interacts with childhood 

trauma to increase risk for PTSD (Xie et al., 2010). Specifically, the RS9470080 SNP of 

FKBP5 has been associated with childhood trauma as a G×E risk for PTSD (Xie et al., 2010), 

but has also been associated with hyperarousal symptoms and impaired extinction learning in 

a sample with PTSD (Galatzer-Levy et al., 2017). Rodent models of PTSD have also shown 

that reduced fear acquisition and enhanced fear extinction learning and memory are 

associated with reduced FKBP5 expression in the amygdala (Sawamura et al., 2016) and the 

infralimbic cortex (Criado-Marrero et al., 2017). The biological processes relating FKBP5 to 

fear memory and PTSD have been reviewed by Maddox et al. (2013) 

 

3.2. Biological Mechanisms 
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 The hormonal stress response can be simply described in terms of two systems: (1) 

the sympathetic nervous system, releasing fast-acting catecholamines such as adrenaline and 

noradrenaline; and (2) the hypothalamic-pituitary-adrenal (HPA) axis, which is a slow-

response system regulating the stress response of the sympathetic nervous system, and acting 

to return physiological systems to pre-threat levels (for a review, see Szeszko et al., 2018). 

Individuals with PTSD have been shown to display elevated noradrenaline levels, relative to 

controls (Geracioti et al., 2001; Pietrzak et al., 2013; Wingenfeld et al., 2015; Yehuda et al., 

1998; Yehuda et al., 1992; although see Zuj et al., 2018). Noradrenaline is considered an 

important modulator of emotional memory consolidation (Mueller and Cahill, 2010), and 

rodent studies show yohimbine administration (resulting in increased noradrenaline secretion) 

immediately prior to extinction learning results in enhanced extinction (Cain et al., 2004; 

Morris and Bouton, 2007). Similarly, yohimbine administration immediately prior to 

conditioning in human subjects results in a conditioned fear that is resistant to extinction 

(Soeter and Kindt, 2012). Using behavioral tests, such as a cold presser test, immediately 

before acquisition or extinction learning results in stronger conditioned fear or enhanced 

extinction learning, respectively (Antov et al., 2015; Antov et al., 2013). Zuj et al. (2018), 

however, recently found that the relationship between extinction learning and PTSD 

symptom severity does not change as a factor of endogenous salivary α-amylase (as a proxy 

for noradrenaline levels), suggesting that the relationship between conditioning/extinction, 

PTSD, and noradrenaline is unclear. 

Evidence has been somewhat inconsistent regarding PTSD-related cortisol secretion, 

with research showing persistent PTSD to be associated with increased cortisol (Groer et al., 

2014), reduced cortisol (Bicanic et al., 2013; Wahbeh and Oken, 2013; Yehuda et al., 2009; 

Yehuda et al., 2007a; Yehuda et al., 2007b), or no differences, compared to control groups 

(Shalev et al., 2008; Zuj et al., 2017c). A meta-analysis conducted by Morris et al. (2012), 
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however, found that PTSD appears to be associated with lower cortisol secretion compared to 

control groups (after controlling for extraneous variables). Regarding conditioning research, 

cortisol appears to be more closely related to the inhibition of responses. That is, cortisol may 

affect the ability to accurately inhibit responses to safe stimuli that do not pose a threat. 

Recently, Zuj et al. (2017c) found that cortisol reactivity (from baseline to US-exposure) was 

a significant moderator between PTSD and responding to the CS-. Specifically, higher 

cortisol reactivity – but not lower reactivity – was associated with lower PTSD symptom 

severity as fear inhibition increased. Following release, cortisol binds to glucocorticoid 

receptors and studies have shown that glucocorticoid administration facilitates extinction 

(Barrett and Gonzalez-Lima, 2004; Cai et al., 2006; de Quervain et al., 2009; Yang et al., 

2006). 

Women are almost twice as likely to develop PTSD compared to men (e.g., Glover et 

al., 2015), and research implicates the sex hormones estrogen and progesterone in this 

process, albeit inconsistently. For example, women who were exposed to a traumatic event 

during the luteal phase of the menstrual cycle (associated with elevated estrogen and 

progesterone) developed stronger intrusive memories of the trauma (Bryant et al., 2011). 

Similarly, women with PTSD have also shown impaired fear extinction recall during the mid-

luteal phase compared to women without PTSD (Pineles et al., 2016). Alternatively, research 

in healthy women has found low estrogen levels to be associated with poorer extinction 

learning (Wegerer et al., 2014), extinction recall (Milad et al., 2010; Zeidan et al., 2011), and 

fear inhibition (Glover et al., 2013). Glover et al. (2012) also found that women with PTSD 

and low estrogen levels demonstrated poorer extinction learning compared to trauma-exposed 

controls. As such, while research clearly indicates an important role for the menstrual cycle 

and sex hormones as a mechanism/boundary condition of sex differences in extinction 

learning and memory, the nature of this relationship is currently unclear. 
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3.3. Behavioral Mechanisms 

Sleep is considered a crucial mechanism of emotional memory consolidation 

(Stickgold, 2005), including the process of recovery from PTSD (Germain, 2013). Numerous 

studies indicate that sleep quality has a significant impact on fear extinction learning and 

memory (for reviews on the topic, see Pace-Schott et al., 2015a, b). Specifically, evidence 

shows that fear extinction memories generalize to previously conditioned but unextinguished 

stimuli (Pace-Schott et al., 2009). Extinction learning, memory, and generalization are also 

more effective in the morning compared to the evening (Pace-Schott et al., 2013), and this 

effect is stronger in participants with PTSD compared to trauma-exposed and non-exposed 

controls (Zuj et al., 2016a). In clinical situations, greater pre-trauma sleep disturbances are 

also shown to predict the development of PTSD (Bryant et al., 2010), and greater sleep 

disturbances also slow the rate of recovery via cognitive therapy for PTSD in those with 

comorbid depression (Lommen et al., 2016). Indeed, Lommen et al. (2016) found cognitive 

therapy improved sleep quality and reduced PTSD symptoms simultaneously, highlighting 

the important relationship between the two factors. 

Prevalence rates show elevated levels of smoking in those with anxiety disorders 

(Lasser et al., 2000), with smoking being a significant predictor of post-treatment symptom 

return in PTSD and other anxiety disorders (Taylor et al., 2015). Rodent studies show that 

nicotine administration results in impaired contextual safety discrimination (Kutlu et al., 

2014) and facilitates the spontaneous recovery of previously extinguished stimuli (Kutlu et 

al., 2016). Recent work by Haaker et al. (2017) in mentally healthy controls showed impaired 

within-session fear extinction was correlated with the frequency and chronicity of smoking, 

and smokers displayed impaired extinction recall the following day compared with non-

smokers. A number of studies examining smoking behaviors in PTSD have revealed periods 
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of abstinence are met with stronger cigarette cravings in PTSD (Beckham et al., 2013; Dedert 

et al., 2012), and that trauma reminders may also signal strong cravings (Beckham et al., 

1996). Research also shows that individuals with PTSD attempting to quit experience sooner 

lapses of smoking compared to non-PTSD quitting smokers, and this is attributed to negative 

affect and trauma reminders (Beckham et al., 2013). Aforementioned rodent studies suggest 

that smoking may impair fear extinction learning ability in humans (for a review, see Kutlu 

and Gould, 2015), and this may translate to response to exposure treatment in PTSD.  

 

3.4 Cognitive Mechanisms 

 PTSD has been described as a disorder of memory (McNally, 2006), often involving 

fragmented and intrusive memories of the traumatic event, and conditioning and extinction 

are important forms of emotional memory in PTSD. In a meta-analysis, Brewin et al. (2007) 

determined that the most consistent cognitive domain affected in PTSD is verbal learning and 

memory. Indeed, reductions in PTSD symptom severity is also associated with increases in 

verbal learning and memory (Yehuda et al., 2006). Recently, Gazendam and Kindt (2012) 

instructed participants to engage in a verbal worrying task, showing that the verbal task was 

associated with significantly poorer extinction than a control task. Research has also shown 

that conditioning and extinction are dependent on available cognitive resources, with greater 

demands on working memory systems resulting in reduced conditioning (Carter et al., 2003) 

and impaired extinction (Raes et al., 2009). Finally, recent research has found that conscious 

cognitive awareness of the US-CS+ contingency is essential for conditioning of SCR, but not 

startle (Sevenster et al., 2014), suggesting an important role of cognitive load and the 

availability of cognitive resources in appropriate conditioning and extinction. 

  

4. Conclusion 
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 In the present review, we discuss a number of paradigms of human fear learning, and 

highlight the relevance and applications of these paradigms for the fear-related features of 

PTSD. In doing so, we have discussed the applications of these paradigms for the 

development, maintenance, normal and treatment-assisted recovery of symptoms, as well as 

the post-treatment relapse of PTSD symptoms. To illustrate the applicability of these 

paradigms, we have provided a real-world case example of a patient with severe PTSD 

symptomatology. While PTSD is associated with additional features that cause significant 

reductions in daily functioning and quality of life (e.g., anger and dissociation), the current 

review aimed to provide explanations for various aspects of fear-related symptoms (e.g., 

avoidance behaviors and hyperarousal). While some of these paradigms have been studied 

extensively in PTSD patients (e.g., conditioning, extinction, and inhibition), other paradigms 

have been involved in limited studies with clinical populations (e.g., avoidance and 

generalization). Finally, we have provided a brief review of some of the biological, 

behavioral, and cognitive variables that are known to influence PTSD symptoms and the fear 

conditioning/extinction process, and may be important in therapy for PTSD. 
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