ﬁ.
&
Swansea University ‘Cronfa

Prifysgol Abertawe Setting Research Free

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
Proceedings of the 49th ACM Technical Symposium on Computer Science Education (SIGCSE'18)

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa43521

Conference contribution :

, S., Mason, R., Crick, T., Davenport, J. & Murphy, E. (2018). Language Choice in Introductory Programming Courses
at Australasian and UK Universities. Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (SIGCSE'18), (pp. 852-857). Baltimore, Maryland, USA: ACM.

http://dx.doi.org/10.1145/3159450.3159547

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43521
http://dx.doi.org/10.1145/3159450.3159547
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Language Choice in Introductory Programming Courses at
Australasian and UK Universities

Simon Raina Mason Tom Crick
University of Newcastle Southern Cross University Cardiff Metropolitan University
Australia Australia United Kingdom

simon@newecastle.edu.au

James H. Davenport
University of Bath
United Kingdom
j.h.davenport@bath.ac.uk

ABSTRACT

Parallel surveys of introductory programming courses were con-
ducted in Australasia and the UK, with a view to examining the
programming languages being used, the preferred integrated devel-
opment environments (if any), and the reasons for these choices,
alongside a number of other key aspects of these courses. This
paper summarises some of the similarities and differences between
the findings of the two surveys.

In the UK, Java is clearly the dominant programming language in
introductory programming courses, with Eclipse as the dominant
environment. Java was also the dominant language in Australasia
six years ago, but now shares the lead with Python; we speculate
on the reasons for this. Other differences between the two surveys
are equally interesting. Overall, however, there appears to be a
reasonable similarity in the way these undergraduate courses are
conducted in the UK and in Australasia. While the degree struc-
tures differ markedly between and within these regions — a possible
explanation for some of the differences — some of the similarities
are noteworthy and have the potential to provide insight into ap-
proaches in other regions and countries.

CCS CONCEPTS

- Social and professional topics — Computing education;

KEYWORDS

Introductory programming, Programming pedagogy, Programming
environments, CS1, Computing curricula, Computing education

ACM Reference format:

Simon, Raina Mason, Tom Crick, James H. Davenport, and Ellen Mur-
phy. 2018. Language Choice in Introductory Programming Courses at Aus-
tralasian and UK Universities. In Proceedings of The 49th ACM Technical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 18, Feb. 21-24, 2018, Baltimore, MD, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5103-4/18/02...$15.00
https://doi.org/10.1145/3159450.3159547

raina.mason@scu.edu.au

terick@cardiffmet.ac.uk

Ellen Murphy

University of Bath
United Kingdom
e.murphy@bath.ac.uk

Symposium on Computer Science Education, Baltimore, MD, USA, Feb. 21-24,
2018 (SIGCSE ’18), 6 pages.
https://doi.org/10.1145/3159450.3159547

1 INTRODUCTION

The choice of programming language for introductory program-
ming courses, at various levels of school and higher education, has
been the subject of discussion for decades and is unlikely to ever
be fully resolved. How can we best introduce the ‘art’ or ‘disci-
pline’ of computer programming via key programming principles,
constructs, syntax, and semantics? This question is often discussed
informally, in staff rooms, at conferences, and in online forums such
as the mailing list of the ACM Special Interest Group on Computer
Science Education, but it is also in evidence in peer-reviewed aca-
demic literature [2, 8, 10, 11]. A search of the ACM Digital Library
identifies a number of papers of the form “X as a first programming
language” going as far back as the 1970s. The issues surrounding the
choice of a first language are numerous, related as they are to the
question of what educators aim to achieve from teaching program-
ming [9, 20], especially as part of the first year of an undergraduate
computing degree program.

Nevertheless, it appears that the wealth of research on the teach-
ing of programming does not easily transfer into improving class-
room practice [18]. There is related research in other disciplines,
such as education and cognitive science, but disciplinary differ-
ences often make it difficult to transfer the findings to computing
education. To date, computing instructors have generally not had
access to comprehensive surveys of research and practice in this
area [16, 18].

To address some of these issues, a long-term study has been
conducted in Australasia (Australia and New Zealand) over the
past 15 years. In 2001 and 2003, de Raadt and colleagues conducted
censuses of Australian and New Zealand universities to examine
trends in the programming languages and environments used in
introductory programming courses [5-7]. In 2010 and 2013, Mason
and Cooper conducted similar surveys online, providing further
data on the programming languages being used, along with insight
into pedagogies [12-14]. A related national-scale survey conducted
in the USA in 2011 provided insight into the state of computing
education in that country [4].

The most recent iteration of the Australasian survey was con-
ducted in 2016 [15], along with an almost identical study in the

UK [17]. This paper presents a comparative analysis of these two
studies, identifying similarities and differences between the two
cohorts. The work is further contextualised in the UK by substantial
reform of computing curricula and qualifications in compulsory
school education [1], as well as increasing scrutiny of teaching
quality and graduate employability in UK universities [3, 19, 21].

1.1 Research questions

While the two surveys were conducted independently, they share a
number of research questions:
e What are the aims of the first programming course?
e What programming languages are used in introductory pro-
gramming courses, and what reasons are given for the choice?
e What programming environments are used with the selected
programming languages and what reasons are given for the
choice?
e What resources or practices are employed in the courses to
enhance the students’ learning experience?

1.2 Degree structures in the participating
nations

The different nations covered by the two surveys have between
them at least three distinct degree structures. In the UK, the de-
grees in Scotland and Northern Ireland are somewhat like those
in northern America: two years of broad education followed by
two years in a focused major. Introductory programming in such
a degree might well be taught to students who are not yet sure
whether they will major in computing. Still in the UK, in England
and Wales the three-year single-honours degree is focused from
the outset, with introductory programming taught to students who
expect to be studying little other than computing for three years.
Degrees in Australia and New Zealand also run for three years, but
are somewhat less focused: the computing content will typically
be half or two thirds of the degree, with the remainder being more
or less related subjects such as business, science, communication,
or indeed whatever the student chooses. It is quite possible that
these differing structures exert different influences on the choice of
introductory programming language.

2 METHODS AND DEMOGRAPHICS
2.1 Participants

Both surveys were hosted online, with appropriate institutional
ethics approval, during the first part of 2016. Several strategies were
used to invite the people in charge of introductory programming
courses to participate in the surveys.

In Australia and New Zealand, email invitations were sent to past
participants, a relevant mailing list, and academics identified from
their University’s website. In the UK, contact was made through
the members of the Council of Professors and Heads of Computing
(CPHC), the representative body for computing departments in UK
universities.

These strategies resulted in valid responses for 48 introductory
programming courses in Australasia and 80 courses in the UK.
Responses came from 35 institutions (57%) in Australasia and 70
institutions (47%) in the UK. Both regions include universities that

40%

35%

W Australasia

30%
UK

25%

20%

15%

10% -

5% - —

D% = T T T T T
<2 2-5 6-10 11-20 21-30 =30

Figure 1: Years of experience of respondents

do not offer computing, so the effective response rates are a little
higher than presented here.

A number of responses in each survey were excluded from the
analysis because they were duplicate responses for their course or
because they were substantially short of being complete.

2.2 Survey questions

A core set of questions was asked on all prior Australasian surveys,
with additional questions changing in each iteration. The core
questions, which were included in both surveys reported here,
include those about the programming language/s used in the course,
the programming environment/s used in the course, and why those
languages and environments were chosen. Participants were also
asked about the aims of their course, instructor experience, and the
learning resources that they provide for their students.

2.3 Demographics

How long have the respondents been teaching? There are at least
two distinct strategies for the teaching of introductory program-
ming;: to entrust the course to senior academics who are known to be
excellent teachers, in the hope of giving the students the smoothest
possible introduction to the topic; or to consider the course as a bur-
den and assign it to junior academics. Figure 1 shows the teaching
experience of the Australasian and UK respondents.

The spans are not of equal lengths, so the shape of the curve is
not in itself meaningful; however, it is interesting to compare the
numbers in the five-year span 6-10 years with those in the shorter
spans <2 years and 3-5 years. At least in Australasia, the low number
in that span might reflect a period of low hiring between 2005-2010,
when student numbers were low.

The UK proportions are lower than the Australasian ones in the
first two spans and higher in the last three. This might suggest
that UK departments are more inclined to assign the introductory
programming course to senior academics, and Australasian depart-
ments to those with less experience.

50%

A% ——
" B Australasia
30%
UK
20%
10% -
0% -
R S G T > eI
\JD _Q.‘{\O L&, % &L}(&'S}_‘a ¥ é\q ‘?'b {s‘{; d"\&
q & e &
ER N 52

Figure 2: Language use by course

3 COURSE AIMS

In a free-text question, respondents were asked to indicate their
three principal aims for their introductory programming courses.
The answers were classified by the surveyors into themes, resulting
altogether in a list of more than 20 themes. A number of themes
were clearly dominant across both surveys:

e Fundamentals of programming, programming concepts

e Problem solving

o Algorithmic/computational thinking

e Programming language syntax and basic code

e Student enjoyment/motivation

It is worth noting that the specifics of particular programming
languages were seldom rated as highly as more generic concepts
such as problem solving, algorithmic thinking, and programming
concepts.

4 PROGRAMMING LANGUAGES

The initial and continuing impetus for this project is to determine
which programming languages are being used in introductory pro-
gramming courses.

4.1 Choice of language

Figure 2 shows the percentages of courses in which each language
is used in the UK and in Australasia. We have also produced plots
of the percentage of students to whom each language was taught,
but these plots are broadly similar between the two surveys, so in
this and subsequent analysis we shall base all of our plots on the
proportion of courses. The ‘Other’ category comprises 11 languages,
none of which was used in more than 2% of the courses. These are
Bash, Delphi/Pascal, machine code, PHP, R, Snap, Swift, VBA, Alice,
Objective C, and Perl.

In the UK, Java is the clear leader, whereas in Australasia Java and
Python are level. However, the proportion of Australasian students
taught in Python is substantially higher than the proportion of
students taught in Java, indicating that Python is used more than
Java in larger courses. A 2011 study in the US [4] found that Python

0% 20% 40% 60% B80% 100%

Pedagogical benefits
Relevant to industry
Availability/Cost
Structure of degree
Platform independence
Ease of installation
Online comm/help avail
Easy to find texts
Marketable to students

00 Language

Ext/Libraries available
Dept politics W Australasia
Interpreted language UK

05/Machine limits of dept

Figure 3: Prevalence of reasons for choice of language

slightly outranks Java in CSO0 courses, courses offered to students to
help them decide whether to major in CS; whereas Java holds sway
in CS1 and beyond. This suggests that Python might be perceived
as easier for novices to grasp. Java was dominant in the earlier
papers of de Raadt and colleagues [5-7], but that long-term study
has seen Python gradually draw level with Java. This might be
indicative of efforts to introduce programming to students who are
less experienced and/or less capable.

The results suggest that the status of Java in the UK in 2016 is
about where it was in Australasia in 2010. It will be interesting
to see whether the UK is on a similar trend, but some five years
behind; or whether the current differences are attributable to the
differences in degree structures or student cohorts. The high in-
cidence of C in the Australasian survey can be attributed in part
to introductory programming courses for engineering students,
as such courses are often offered in either C or Matlab. Of course
engineering students in the UK are also taught programming, but
perhaps not by the schools covered by the Council of Professors
and Heads of Computing, so those courses might not have been
captured by the survey.

4.2 Reasons for language choice

Knowing what languages are used in introductory courses is only
part of the story; an exploration of the choice of languages would
not be complete without asking why a particular language has
been chosen. Indeed, a recent US paper observed that “Evidence
that...these [language] choices make sense, as a whole or in terms of
particular features, cannot be established from the literature” [22].
To explore this question in the Australasian survey, respondents
were given a list of reasons and asked to rate the importance of each
on a five-point scale. The UK survey, in contrast, asked respondents
to select all of the reasons that applied to their choice of language.

B Australasia

Figure 4: Median perceived difficulty of the language for
novices: 1 (lowest) to 7 (highest)

Figure 3 combines these disparate approaches as follows: from the
Australasian survey, it shows the proportion of respondents who
rated each reason as extremely, very, or moderately important, the
top three choices on the scale; from the UK survey it shows the
proportion of respondents who selected the reason at all.

Pedagogical benefits ranks highest on both measures. Industry
relevance is also seen as important, but surprisingly less so in
the UK than in Australasia, especially given the significant policy
focus in the UK on teaching excellence and thus, indirectly, on
graduate employability. Availability/cost of the language is also
clearly important to respondents of both surveys.

4.3 Perceived difficulty and usefulness of
languages

Respondents were asked how difficult they felt the chosen language
was for novice programmers, on a scale from 1 (least difficult) to 7.
Figure 4 shows the median response for each of the major language
choices in each survey.

There is a clear feeling from both surveys that Python is one of
the easier languages for novice programmers. This finding ties in
well with the earlier suggestion that the use of Python in introduc-
tory programming courses might be partly because it is perceived
as easier to learn.

Haskell and Processing are the languages with greatest disparity
between the two surveys. However, as shown in Figure 2, these
are languages with very low usage, so the median can be strongly
influenced by extreme judgements.

In a related question, respondents were asked how useful they
felt the language was for teaching programming concepts. At least
on the basis of the median, this question elicited some sharply
different responses in the two surveys (Figure 5). The essential
impression is that few UK respondents see any of their chosen
languages as useful for learning programming concepts, whereas in
Australasia three languages have medians on or above the midpoint
of the scale.

B Australasia

UK

' b o L b5
[s & &g P
i I B & Q &

Figure 5: Median perceived usefulness of the language for
teaching programming concepts: 1 (lowest) to 7 (highest)

5 PROGRAMMING LANGUAGE
ENVIRONMENTS

Integrated development environments (IDEs), which incorporate
colour-coded context-sensitive editors, compiling and linking tools,
debugging facilities, and perhaps wizards for GUI creation, can
be seen as both assistive and distractive for novices learning to
program. It is clearly a distraction to have to learn how to use
an IDE software package while simultaneously learning how to
program. On the other hand, an IDE can help to enthuse learners
by making it easy for them to start with classes and objects (as with
Blue]) or with GUI-based applications rather than command-line
interfaces (as with Eclipse or Visual Studio). While a programming
language is all but essential in an introductory programming course,
some instructors prefer not to use an IDE because of its potential
for distraction or obfuscation of processes.

Survey respondents were asked whether they encourage their
students to use a particular IDE. Figure 6 shows the major IDEs
that were nominated, with the proportion of courses using each
IDE from each survey. While some of these IDEs can be used with
multiple programming languages, others are strongly linked to
particular languages, such as Blue] with Java and Visual Studio
with C#.

As with programming languages, respondents were asked why
they chose the IDEs that they did. Also as with programming lan-
guages (Figure 3), each survey collected the responses in a different
way, so the values plotted in Figure 7 are not entirely comparable.
Reasons in the UK survey appear to be dominated by availability
and cost to students, ability to work across platforms, and industry
relevance, while those in the Australasian survey focus more on
simplicity and ease of use, pedagogical benefits, ease of installation
and use, and availability and cost to students. As with programming
languages, it is possible that the Australasian survey respondents
are more concerned to facilitate the learning process for struggling
students.

It is possible that the use of installed IDEs will soon diminish;
a number of responses indicate the use of cloud-based IDEs such

35%

B Australasia

UK

30%

25%
20%

15%

10%
5%

0%

Figure 6: Proportions of courses that encourage the use of
particular IDEs

as Brackets, Clara’s World, and Grok Learning, which require no
infrastructural overhead as they run in a browser window.

6 RESOURCES TO ASSIST STUDENTS

Different courses are known to offer different support and resources
to help students in their learning. In living memory, lecturers wrote
lecture material on blackboards and students copied it to their
own notes. The blackboard was replaced by the overhead projector,
which was replaced in turn by computer-based slides. Students were
reluctant to copy from the slides to their notes, so it soon became
mandatory in some institutions to provide students with copies
of the slides. Many other resources have since become available,
and survey respondents were asked to indicate what resources they

0% 20% 40% 60% 80%

Associated support material
Availability/Cost to students

Cross-platform

Ease of installation
Graphical User Interface |
Open Source
Packaged with the language
Pedagogical benefits

M Australasia

| UK
Plugins available

Relevant to industry |

Student motivation

Supports 00 paradigm
Uncomplicated/ease of use
Visual cues/debugger
Other ‘ ‘

Figure 7: Prevalence of reasons for choice of IDE

Assignment hints
Cheat sheets in exams
Discussion boards
Lecture recordings
Lecture slides ({lecturer)

Lecture slides (publisher)

Mailing list

ustralasia

Online exams y
Online tutorials

Open-book exams

Self-assessment questions
Specified textbook

Topic summaries

Worked examples

Other

0% 20% 40% 60% B0% 100%

Figure 8: Proportions of courses providing resources/ prac-
tices that might assist students

provided to assist students with their learning. The responses are
shown in Figure 8.

It seems fairly clear from Figure 8 that the Australasian respon-
dents are taking more effort to offer resources that might assist
the students. We might speculate that this shows the Australasian
respondents to be more altruistic. However, their reasons are more
likely to be pragmatic: perhaps their intakes include more students
who are less capable in computing, and they therefore have to try
harder in order to maintain a reasonable retention rate.

7 ISSUES AND THREATS TO VALIDITY

Both the Australasian and UK surveys were voluntary, and suffer
from the usual issues of self-selection. The UK survey was con-
ducted via email to the Council of Professors and Heads of Com-
puting, which often has multiple representatives per institution. In
seven cases we had duplicate responses for the same course, which
sometimes differed slightly in numbers and more substantially in
the qualitative questions (Figures 3-5). The UK team discussed this
with the respondents, and accepted the responses of the person the
respondents deemed to be most closely involved in the decisions.

The Australasian surveys are also attempting historical tracking.
However, only 14 of the 48 respondent courses were definitively
identified as taking part in both the 2013 and 2016 surveys. It is
quite likely that a number of others were also repeating, but had,
for example, changed their course codes — or even the name of their
university — in that time. However, we know that there are some
new respondents representing some new courses, and we are fairly
confident that some courses represented in the 2013 survey were
not represented in 2016. Hence changes over time (few of which are
presented in this paper) might represent changes in sample means
rather than variations in practice.

Ultimately we must consider whether we are comparing like
with like, and clearly in some respects we are not. Even within the
UK, most of the courses reported from England are those taught
in single-honours (or possibly joint honours) computer science de-
grees, whereas those from Scotland are typically taught to students
who have not yet decided whether to specialise in computer science.
In this respect, Wales is more similar to England, and Northern
Ireland to Scotland. In another paper [17] we have broken down
the figures by nation, and by university groupings in England, and
have found some differences correlated with this difference in mis-
sion. For example, C is never reported as an introductory language
in Scotland or Northern Ireland. While the degree structures in
Australasia lie between those in England and Scotland, the situa-
tion there is compounded by the fact that some of the respondents
taught courses targeted to completely different cohorts, such as
engineering students, and others taught mixed cohorts of comput-
ing, information systems, engineering, and even business students.
The variations within nations are probably at least as great as those
between nations.

8 CONCLUSIONS

The initial conclusions are contradictory: Java is clearly more com-
mon in the UK than in Australasia (Figure 2), despite industrial
relevance appearing to be a more common reason for choice in
Australasia than in the UK (Figure 3), and despite both surveys
reporting that Python was significantly less difficult for novices. If
one assumes that Java is more industrially relevant than Python, it
is hard to reconcile these findings. One possible explanation is that
the pressure in the UK to be industrially relevant, with departments
being measured according to percentage of students in a graduate-
level job, is so great that UK respondents have internalised it and
no longer consciously consider it. Another possible explanation is
inertia; the UK survey is the first of its kind, but the Australasian
surveys over time show a slow shift from Java to Python. It is con-
ceivable that the UK is on a similar journey to Australasia, and that
a future UK survey will show a growth in the use of Python.

Programming is increasingly being taught in schools. In the near
future, universities can expect that more of their intake, but by
no means all of it, will already have learnt some programming. It
will be interesting to see what impact that will have on the future
development of introductory programming courses at universities.

The most important message from this work is not the snapshot
findings for 2016 that we have presented here, but the questions
addressed by the surveys. The language wars [22] are unlikely ever
to reach a definitive resolution, so computing departments will
periodically consider which programming language they should
use in their introductory courses. They would do well, in their
discussions, to address the questions raised in this paper. Which
criterion should drive the choice of language for introductory pro-
gramming? Industrial relevance, ease of learning, or something
else? What criteria should drive the choice of IDE, if indeed an IDE
should be used? What resources should be provided to accompany
the teaching materials? Which people should be assigned the task
of teaching the introductory course? These, and all of the other
questions that have been addressed in these pages, should play a
clear part whenever these choices are made.

9 ACKNOWLEDGEMENTS

We thank the respondents who engaged with the surveys, and the
various groups that helped to promulgate them. The survey in the
UK was funded by the GW4 Alliance (Universities of Bath, Bristol,
Cardiff and Exeter).

REFERENCES

[1] Neil CC Brown, Sue Sentance, Tom Crick, and Simon Humphreys. 2014. Restart:
the resurgence of computer science in UK schools. ACM TOCE 14, 2 (2014), 1-22.

[2] Nell B Dale. 2006. Most difficult topics in CS1: results of an online survey of
educators. ACM SIGCSE Bulletin 38, 2 (2006), 49-53.

[3] James H Davenport, Alan Hayes, Rachid Hourizi, and Tom Crick. 2016. Innovative
pedagogical practices in the craft of computing. In Fourth International Conference
on Learning & Teaching in Computing and Engineering. 115-119.

[4] Stephen Davies, Jennifer A Polack-Wahl, and Karen Anewalt. 2011. A snapshot
of current practices in teaching the introductory programming sequence. In 42nd
ACM Technical Symposium on Computer Science Education (SIGCSE’11). 625-630.

[5] Michael de Raadt, Richard Watson, and Mark Toleman. 2002. Language trends
in introductory programming courses. In Informing Science + IT Education Con-
ference. http://proceedings.informingscience.org/IS2002Proceedings/papers/
deRaal36Langu.pdf

[6] Michael de Raadt, Richard Watson, and Mark Toleman. 2003. Language tug-
of-war: industry demand and academic choice. In Fifth Australasian Computing
Education Conference (ACE 2003). 137-142.

[7] Michael de Raadt, Richard Watson, and Mark Toleman. 2004. Introductory
programming: what’s happening today and will there be any students to teach
tomorrow?. In Sixth Australasian Computing Education Conference (ACE 2004).
277-282.

[8] Sally FIncher. 1999. What are we doing when we teach programming?. In 29th
Annual Frontiers in Education Conference.

[9] Philip Guo. 2014. Python is now the most popular introductory teach-
ing language at top US universities. (2014). Retrieved 30 Aug 2017
from http://cacm.acm.org/blogs/blog-cacm/176450- python-is-now-the-most-
popular-introductory- teaching-language- at-top-us-universities

[10] Diwaker Gupta. 2004. What is a good first programming language? ACM

Crossroads 10, 4 (2004), 7.

Randy M Kaplan. 2010. Choosing a first programming language. In ACM Confer-

ence on Information Technology Education. 163-164.

[12] Raina Mason and Graham Cooper. 2012. Why the bottom 10% just can’t do it —
mental effort measures and implication for introductory programming courses.
In 14th Australasian Computing Education Conference (ACE2012). 187-196.

[13] Raina Mason and Graham Cooper. 2014. Introductory programming courses in
Australia and New Zealand in 2013 - trends and reasons. In 16th Australasian
Computing Education Conference (ACE2014). 139-147.

[14] Raina Mason, Graham Cooper, and Michael de Raadt. 2012. Trends in introductory
programming courses in Australian universities — languages, environments and
pedagogy. In 14th Australasian Computing Education Conference (ACE2012). 33—
42.

[15] Raina Mason and Simon. 2017. Introductory programming courses in Australasia

in 2016. In 19th Australasian Computing Education Conference. 81-89.

Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,

Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz

Wilusz. 2001. A multi-national, multi-institutional study of assessment of pro-

gramming skills of first-year CS students. ACM SIGCSE Bulletin 33, 4 (2001),

125-180.

Ellen Murphy, Tom Crick, and James H Davenport. 2017. An analysis of introduc-

tory programming courses at UK universities. The Art, Science, and Engineering

of Programming 1, 2 (2017).

Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,

Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A survey of literature

on the teaching of introductory programming. ACM SIGCSE Bulletin 39, 4 (2007),

204-223.

QAA. 2016. Subject Benchmark Statement: Computing. UK Quality Assurance

Agency.

Carsten Schulte and Jens Bennedsen. 2006. What do teachers teach in introduc-

tory programming?. In Second International Workshop on Computing Education

Research. 17-28.

Nigel Shadbolt. 2016. Computer science degree accreditation and graduate em-

ployability: Shadbolt review. Department for Business, Innovation & Skills, UK

Government.

Andreas Stefik and Stefan Hanenberg. 2014. The programming language wars:

questions and responsibilities for the programming language community. In

Onward! 2014; ACM International Symposium on New Ideas, New Paradigms, and

Reflections on Programming & Software. 283-299.

[11

[16

(17

[18

=
2

[20

[21

[22

