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Abstract 

This study developed a prototype of wire-plate air bubbling plasma reactor that can be 

easily scaled up for wastewater treatment. The electrical characteristics, including the 

discharge current and average power consumed, of the developed reactor were deeply 

investigated at different operating parameters and solution conductivities. The 

performance of the reactor was examined on the basis of energy efficiency and methylene 

blue (MB) decoloration efficiency. Moreover, the removal of the Total Organic Carbon 

(TOC) and the changes of the physicochemical properties of solution, including pH, 

conductivity and temperature were evaluated. The analysis of current discharge and 

average power consumed showed that the discharge mode in the present reactor is a 

filamentary streamer. Interestingly, the solution conductivity had no effect on the 

average power consumed at low applied voltages, due to confinement of the discharge in 

a small area surrounding the discharge electrode in the gas phase. However, at relatively 
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high voltages, the effect of conductivity on the average power consumed was noticeable, 

yet it had no effect on the decoloration efficiency at the same average power. The present 

reactor showed a high energy efficiency value of 42 g/kWh at 50% decoloration of 30 

mg/L MB solution, but it dropped to 14 g/kWh at 97% decoloration. A first-order kinetics 

model described well the decoloration reaction rates and the overall rate constant 

correlated linearly to the average power.  

 

Keywords: Air Bubbling Plasma; Pulsed Discharge; Nonthermal Plasma; Wastewater 

Treatment; Energy Efficiency. 

 

1. Introduction 

Over the last two decades, nonthermal plasma (NTP) has been investigated intensively 

as an advanced oxidation process for water and wastewater treatment [1-4]. This interest 

in NTP is due to the varieties of chemical and physical processes that develop in NTP to 

produce mixtures of chemical reactive species (e.g. •OH, •O, H, HO2, H2O2, O3, NO, NO2), 

strong electric field, shock waves and intense UV radiation [5], which are difficult to 

obtain in ordinary oxidation methods. Owing to their strong oxidation ability, these 

reactive species can directly attack and oxidise  organic pollutants and inactivate 

microorganisms contained in wastewater [6, 7]. Various NTP techniques have been 

developed and examined for water purification [8-13]. These techniques can be 

classified, according to the location and the distribution of the discharge with respect to 

the water, to three main categories [14]; direct discharge in water (liquid phase), 

discharge over the water surface (gas phase), and bubbling discharge (gas-liquid 

interphase). Each of these techniques displayed certain advantages and disadvantages. 

In the direct discharge in water, the plasma generated has sufficient contact with the 
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liquid phase, which is crucial for immediate supply of the short-lived reactive species 

(such as •OH) in the solution. However, high electric field in the order of several MV/cm 

is required to initiate the discharge inside the water [15]. In addition, this method of 

discharge always suffer from discharge electrode corrosion and is affected by the solution 

conductivity [16], as the current may transmit through the water causing energy wastage 

and rapid heating. Techniques of generating plasma above the water surface are used 

effectively in water treatment because they require simple electrode shapes and are 

convenient for use [17]. It was found that the discharge in air consumes approximately a 

factor of 10 less energy than in water [17, 18]. However, this method cannot be applied 

to treat a large volume of water due to the slow penetration (diffusion) of the reactive 

species in the treated water. Therefore, the combination of liquid phase and gas phase 

discharge processes showed more synergistic effect [19] which increased the energy 

efficiency of the treatment process [20]. For this purpose, several techniques for bubbling 

plasma discharge in water using various bubbling gases and voltage regimes have been 

developed and studied recently [21-28], for . These techniques showed a greater 

production of the reactive species and a highly efficient wastewater treatment. In the 

bubbling plasma discharge technique, the reactive species are first generated in the gas 

phase, to avoid the high electric field required for the direct discharge in water, and are 

then immediately transferred to the treated water through the generated bubbles. By 

doing this, the mass transfer of the reactive species into water is enhanced, which leads 

to improved reactor performance. Moreover, generating plasma in bubbles inside the 

water allows producing various kinds of chemical reactive species in the gas phase as 

well as in the liquid medium. However, upscaling and energy efficiency are still some of 

the challenges to address in these reactors. Takahashi et al [29, 30] presented a new 

bubbling plasma-based reactor, which can be extended to treat a large volume of water. 
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However, they only spotlighted on the effect of the operating conditions, including the 

applied voltage and the solution conductivity, on the generation of the reactive species 

and the decoloration efficiency of dyes (indigo carmine, acid Red 1 and acid blue 74) and 

some organic pollutants (1,4-dioxane) without focusing on the effect of these parameters 

on the electrical characteristics and their impact on the treatment process. To optimize 

and be able to scale up the reactor to treat large volumes of wastewater, it is however 

necessary to understand the effect of the operating parameters and the solution 

properties on the electrical characteristics of the reactor. 

Thus, in this study, a prototype bubbling plasma-based reactor is developed and its 

electrical characteristics are investigated deeply as a function of the operating conditions, 

including the applied voltage, the frequency, and the solution conductivity.  The main 

feature of this reactor is that it is easy to build and upscale to treat a large volume of 

wastewater. The performance of the reactor was evaluated through the decoloration of 

methylene blue (MB), as a model of organic contaminants in water. In order to achieve 

high-energy efficiency, a pulsed voltage with short pulse width is used in this study. The 

important consequence of the short pulse width of the applied voltage is the minimisation 

of the power dissipated in the acceleration of ions, due to their low mobility, which do 

not contribute to the dissociation processes of the water and the pollutant molecules [18, 

31, 32]. Finally, to get a better understanding of the performance of this reactor in 

wastewater treatment, the effects of plasma on TOC and the physicochemical 

characteristics of solution were evaluated.  

 

2. Experimental details 

Figure 1 (a) shows the schematics of the experimental setup used in the present study. 

The reactor consists of a water tank made from an acrylic rectangular cuboid (with 
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internal dimensions 40 mm depth, 80 mm width, and 80 mm length) containing a plasma 

source. The plasma source consists of a perforated acrylic tube with an inner diameter of 

4 mm, a thickness of 1 mm, and length (the actual length inside the reactor) of 80 mm 

inserted inside the water tank at its bottom, as shown in figure 1 (b and c). A 0.5-mm 

diameter tungsten electrode placed along and at the center of the perforated acrylic tube 

was used as a discharge electrode, from which the plasma was emitted. The structure of 

this reactor provides an easy way to replace the perforated tube and the discharge 

electrode with a larger one when a treatment of large volume is required. A stainless steel 

plate submerged in the solution at 9 mm beside the acrylic tube was used as a ground 

electrode. In order to generate plasma along the water tank, the carrier gas (dry air) was 

fed to the acrylic tube at a constant flow rate of 2 L/min (controlled by a gas flow 

controller (FC)), and it was introduced into the solution as bubbles through 10 holes 

uniformly distributed horizontally on the acrylic tube. The diameter of each hole was 0.8 

mm. All experiments reported in this study were performed at a constant volume of 

solution (170 mL). 

The applied voltage to the reactor has pulse waveform generated by a HV pulser 

(Suematsu Elect. Co., Ltd, Japan), 500 Hz (variable), 30 kV (variable), 50 ns fixed rise time, 

and 100 ns fixed pulse width. The high voltage pulser has a unique feature of producing 

nanosecond pulse voltage with short and fixed pulse width. The applied voltage was 

measured using a high-voltage probe (Tektronix P6015A, 40 kV, 75 MHz, 1000X), which 

was connected to a digital oscilloscope (Tektronix MDO 3024, 200 MHz, 2.5 GS/s). The 

current through the reactor was measured using a Pearson current monitor (model 

4997) and displayed using the digital oscilloscope. 
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Fig. 1 Schematics of (a) the experimental setup, (b) side of the reactor (for simplification, only 3 

holes in the acrylic tube are used in the drawing) and (c) cross section of the reactor 

 

Analytical grade methylene blue (MB) in powder form (Fisher scientific, UK) was used to 

prepare 100 mg/L stock solutions in deionized water. From the stock solution, the 

required concentrations of MB were prepared by dilution in deionized water. Analytical 

grade sodium chloride (NaCl) was used to adjust the conductivity of the solution from 1 

S/cm to 1000 S/cm. 
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A UV/Vis spectrophotometer (Agilent, 8453) was used to determine the concentration of 

MB solutions using a calibration curve determined at maximum absorbance wavelength 

of 664 nm. The decoloration efficiency percentage was determined by the following 

equation: 

 

𝜂𝑑  (%) =
𝐶0−𝐶

𝐶0
× 100              (1) 

 

where C0 is the initial concentration of MB (mg/L) and C is the concentration after 

different discharge times.   

The energy efficiency of the degradation process is determined by the following equation: 

𝑌 (
𝑔

𝑘𝑊ℎ
) =

𝐶0×𝜈×𝜂𝑑×10−6

𝑃av×𝑡×100
          (2) 

 

where v (L) is the volume of the aqueous solution, t (h) is the treatment time, and Pav (kW) 

is the average power consumed, which was calculated using the following equation:  

𝑃av = 𝑓. Eav                              (3) 

where f and Eav are the driven frequency and the consumed energy in the reactor, 

respectively. The consumed energy Eav in the reactor was calculated based on the time 

integration of the product of the voltage and current waveforms over the pulse duration 

(one cycle) using the following equation: 

𝐸av = ∫ 𝑉(𝑡) ∙ 𝐼(𝑡)𝑑𝑡
𝜏

0
                   (4) 

 

where V(t), I(t), and dt are the instantaneous values of the applied voltage, current, and 

the sample interval, respectively, which were recorded by the oscilloscope.  is the period 

of the applied voltage. 
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The Total Organic Carbon (TOC) of the solution was measured by a TOC Analyzer (TOC-

L, Shimadzu) using the combustion catalytic oxidation coupled with infrared detection 

method. The TOC content was determined from the difference of total carbon and total 

inorganic carbon measurements and its reduction efficiency in percentage was calculated 

using the following equation: 

 

𝜂𝑇𝑂𝐶  (%) =
(𝑇𝑂𝐶)0−(𝑇𝑂𝐶)

(𝑇𝑂𝐶)0
× 100        (5) 

 

where (TOC)0 and (TOC) are the concentrations of TOC (mg/L) before and after the 

plasma treatment, respectively. The conductivity () and the pH of the solution were 

measured by a conductivity meter (Oakton Waterproof CD650 Multiparameter Meter 

Kit) and a Five Easy pH meter (Mettler Toledo, UK), respectively.  

 

3. Results and discussion 

3.1. Characteristics of the air-bubbling plasma reactor 

3.1.1. Plasma characteristics  

Figure 2 shows photos of the plasma generated in the reactor at different applied voltages 

when the frequency was 300 Hz, and solution conductivity was 1 S/cm. As it can be seen 

in the figure, after the onset voltage (discharge inception) value, the plasma is ignited and 

takes place around the discharge electrode inside the acrylic tube. With increasing the 

applied voltage, the plasma volume is increased over the upper side of the discharge 

electrode. However, the discharge along the discharge electrode was distributed non-

uniformly, where the plasma channels were denser and longer at some locations in the 

discharge electrode corresponding to the holes of the acrylic tube. This is due to the 
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differences in conductivity and the permittivity between water and the acrylic tube, 

which leads to concentrated and enhanced electric field on these holes. Figure 2 also 

shows that the higher the applied voltage, the longer the plasma channels at the holes of 

the acrylic tube. With increasing the applied voltage, the plasma channels became long 

enough to exit the holes to the solution through the bubbles. Further increase in the 

applied voltage made the plasma channels denser, which explains the increased 

brightness of the plasma as the voltage increased from 8 kV to 14 kV (figure 2). Figure 2 

also shows that the brightness of the plasma channels inside the acrylic tube and in 

between the holes increases with increasing the applied voltage.  

It should be mentioned that the discharge at the holes is pulsed corona discharge (PCD) 

due to the air gap between the discharge electrode and the water, while the discharge is 

dielectric barrier discharge (DBD) over the inside length of the acrylic tube excluding  the 

holes. This means that the discharge in the present reactor consists of PCD at the holes 

and DBD in the remaining part of the acrylic tube body.  

 

Fig. 2 Photos of the discharge as influenced by the applied voltage, f= 300Hz and i=1 S/cm 
(a) Vp≈ 8kV, (b) Vp≈12 kV, and (c) Vp≈14 kV 

 

The typical waveforms of the pulsed voltage applied to the reactor and the associated 

discharge current are shown in figure 3 at a frequency of 300 Hz, a peak applied voltage 

of Vp=13 kV, and solution conductivities of  =50 and 1000 S/cm, respectively. The 
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discharge current appears in the form of series of narrow pulses. The amplitude of the 

highest current pulse was about 21 A, and the average power corresponding to this 

condition was 1.3 W. These current pulses indicate that the discharge was ignited in the 

reactor in the form of filamentary streamers, which resulted from the PCD at the holes 

and the microdischarges that were distributed over the internal surface of the acrylic 

tube. This observation of the discharge current is different than that observed using pin-

holes needle electrodes submerged in aqueous solution [33] and over the surface of a 

treated solution [34, 35], where the discharge current consisted only of one peak instead.  

At this experimental condition, the applied voltage waveform shows small peaks of the 

applied voltage associated with the main peak voltage. Although the amplitudes of these 

peaks are less than the onset voltage value, current pluses were observed. This indicates 

that the microdischarges of the filamentary streamers from the main discharge (ignited 

at the main peak voltage) are accumulated over the inner surface of the acrylic tube [26] 

and leads to enhance the applied voltage of the associated peaks to simulate the discharge 

re-ignition.  

Figure 3 also shows that the solution conductivity (50 and 1000 S/cm) has no significant 

influence on the shape of the applied voltage. This is due to the characteristics of the 

power supply used in this study, where the delivered voltage is independent of the load. 

Although the filamentary mode of the discharge remained at high conductivity (1000 

S/cm), the amplitude and the density of current pulses are higher. This is could be 

explained by the fact that the higher solution conductivity conducts electricity more than 

the solution with a low conductivity, due to the high concentration of the positive and 

negative ions in the solution that can migrate easily under the effect of an electric field, 

leading to increased current [5, 33, 36, 37].  
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Fig. 3 Current–voltage waveforms of the plasma at peak applied voltage of 13 kV, frequency of 300 
Hz, and different conductivities (i=50 and i=1000 S/cm) 

 

3.1.2. Effect of pulse frequency  

The average power consumed in the reactor as a function of the frequency at different 

applied voltages is shown in figure 4. As can be observed, the average power consumed 

increased linearly with increasing the frequency, a similar behavior for the average 

power consumed was found in [38] using DBD immersed in water. This observation 

indicates that the energy dissipated per cycle is independent of the driven frequency and 

it is constant, at our experimental range of frequencies, as long as the applied voltage is 

constant, as shown in the inserted figure in figure 4. 

On the other hand, the average power consumed in the reactor increased nonlinearly 

with the applied voltage at the various frequencies, as shown in figure 5.  

The data of the average power consumed versus the applied voltage is fitted by an 

empirical equation that correlates the average power consumed to the frequency and the 

peak voltage, as shown in the following formula; 

                                                          𝑃av = 𝐴(𝑉 − 𝐵)2              (5)     
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where A and B are constants. Interestingly, the constant A was found to be a function of 

the frequency (A=3×10-5 f). This behavior of the average power consumed in the current 

reactor is similar to that obtained in surface DBD [39, 40]. This similarity might be 

referred to the DBD behavior of the present reactor.  

 

 

 

 

 

 

 

Fig. 4 Average power consumed in the reactor as a function of the frequency at different peak 

applied voltages (7 kV and 13 kV) and i=50 S/cm. The insert shows the relationship between 

the energy consumed and the frequency. 

 

Fig. 5 Average power consumed in the reactor as a function of the peak applied voltage at 

different frequencies and i=50 S/cm 

3.1.3. Effect of solution conductivity  
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Figure 6 depicts the dependence of the average power consumed in the reactor on the 

conductivity of the solution at different applied voltages and a constant frequency of 300 

Hz. What is striking in this figure is that the average power consumed in the reactor was 

independent of the solution conductivity at relatively low applied voltage, while it was 

remarkably dependent on the solution conductivity after a certain applied voltage Ve (Ve 

~11 kV in this experimental condition). The general trend of the effect of the conductivity 

on the average power consumed after Ve is very similar to that found in [41], using an 

alternative current-capillary discharge in water. This phenomenon can be explained by 

increased solution conductivity which lead to enhanced and concentrated electric field 

on the holes resulting in intensifying the discharge inside the bubbles. The enhancement 

of the electric field on the holes with increasing the water conductivity is due to reducing its 

resistivity [30], which leads to increased voltage drop between the water surface and the 

discharge electrode for the same applied voltage between the discharge electrode and the 

grounded stainless steel plate. However, at a relatively low applied voltage, there is no effect 

of the solution conductivity on the discharge due to the confinement of the discharge 

around the discharge electrode in the gas phase inside the acrylic tube, as described 

above. The effect of the solution conductivity started to be noticeable when the discharge 

channels are long and strong enough to reach and penetrate the liquid phase under 

voltages equal to and higher than Ve. This is supported by figure 3, where the current 

increased at high conductivity and applied voltage. This explanation is supported also by 

measuring the onset voltage of the discharge at the different solution conductivities, 

where the onset voltage was approximately independent of conductivity in the range of 

σ= 1– 1000 S/cm, a similar behavior was also obtained by Šunka et al [37] using needle-

plate electrodes immersed in water.  
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It is noteworthy to mention that the variation of the distance between the discharge 

electrode and the ground electrode (3 – 12 mm beside the acrylic tube) had no effect on 

the discharge characteristics, including the average power consumed, under the 

investigated conditions (high conductivity and applied voltage).  

 

Fig. 6 Average power consumed in the reactor as a function of the peak applied voltage at 

different conductivities and f=300 Hz 

 

3.2. Decoloration of MB solutions  

3.2.1 Decoloration and energy efficiencies  

Figure 7 demonstrates the effect of the averaged power consumed on the decoloration 

efficiency of the MB solution, where the initial concentration of the MB was 10 mg/L, the 

conductivity of the solution was 1 S/cm, and the initial pH of the solution was 5.6. As 

can be seen in figure 7, the decoloration efficiency increases with increasing the 

treatment time at our investigated range of the powers. The increase of the decoloration 

efficiency was very rapid at the beginning of the treatment and followed by a slow 

increase at a longer treatment time. In addition, the decoloration efficiency increases with 

increasing the average power consumed.  
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Since the discharge is ignited in air, the energetic electrons generated collide with the 

background gaseous molecules (such as O2 and N2) to produce primary gas-phase 

reactive species, such as •OH, •O, H, O3, •N, NO, NO2 and ions [42, 43]. These reactive 

species, in turn, are transferred into the aqueous solution via the bubbles to react with 

the MB molecules and generate secondary aqueous-phase reactive species [44-46], such 

as H2O2, •OH, O3, NOx, HNO2, and HNO3. Therefore, the decoloration of the MB in the 

reactor results from the simultaneous contribution of numerous different reactions 

driven by the primary and secondary reactive species. As the power increases, the 

electrons gain much energy and induce more reactive species [47, 48], which benefits the 

decoloration efficiency. That is why the higher the average power consumed, the higher 

the decoloration efficiency and the shorter the treatment time (figure 7). The 

decoloration efficiency of 95.7% was achieved after 10 min of the treatment at Pav=1.13 

W, while only 93.6% of decoloration efficiency is attained after 20 min of the treatment 

at Pav= 0.42 W. On the other hand, the energy efficiency of the decoloration process 

decreased with increasing the average power consumed, as shown in figure 8. Although 

increasing the power consumed is associated with more and longer plasma channels, 

figure 8 indicates that much power is dissipated in the reactor at the relatively high input 

power. The loss of the energy efficiency at the high input power could be due to: (1) 

increased plasma temperature, due to increased plasma channels, causing destruction of 

certain useful reactive species for MB decomposition, such as ozone [49, 50]; (2) 

increased compensated space charges on the channels head by ions present in the solution [37] 

when the plasma channels are penetrated into the solution, (3) increased Ohmic loss with 

increasing the penetration of the plasma channels into the solution [30]. 
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The highest energy efficiency obtained was 27 g/kWh when the decoloration efficiency 

was 55%, and it decreased to 11.4% when the decoloration efficiency was 93.6% at the 

same power consumed and initial MB concentration. It is worth mentioning that this 

value of the energy efficiency is much higher than that reported for the decoloration of 

MB solutions of characteristics close to our study but using different plasma techniques 

such as plasma jet (0.4 g/kWh at ~ 88% decoloration) [51] pulsed corona discharge (4.6 

g/kWh at 91% decoloration)  [52] over solution surface, pulsed corona discharge in gas 

bubbles (5 g/kWh at 90% decoloration) [46], microwave plasma (0.12 g/kWh at 96.56% 

decoloration) [53] and DC corona discharge (1.2 g/kWh at 95.7% decoloration) [54] in 

solution, and Ar bubbling discharge (~0.8 g/kWh at ~100% decoloration) [55]. 

The fast increase in the decoloration efficiency at the beginning of the treatment indicates 

that the reactive species are utilized efficiently in the decoloration process due to the high 

concentration of MB available in the solution. This explains the increase in the energy 

efficiency at the beginning of the treatment, figure 8. The rather slow increase in the 

decoloration of the MB at longer treatment time is related to the low concentration of the 

MB molecules in the solution, which increase the possibility of consuming the generated 

reactive species to (1) form further reactive species (e.g. nitrogen oxides that reduce the 

•OH and O3 concentration [44]) undesirable for the decoloration of the MB or (2) react 

with the intermediate byproducts rather than react with the MB molecules. 
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Fig. 7 Decoloration efficiency of the MB as a function of the treatment time at different powers, 

f=300 Hz, pHi≈5.6 and i≈1 S/cm. The insert shows the color change of the MB solution before 

and after plasma treatment at Pav=0.66 W, C0=10 mg/L, i≈1 S/cm and different treatment 

times (a) 0 min, (b) 5 min, (c) 10 min, and (d) 15 min 

 

 

Fig. 8 Energy efficiency of the decoloration process of the MB at different powers, f=300 Hz, 

C0=10 mg/L, pHi≈5.6 and i≈1 S/cm 

 

3.2.2. Reaction kinetics  

The overall decoloration process proceeds via simultaneous complex reactions involving 

several reactive species (e.g. O3 and •OH) to produce intermediate products and 

ultimately H2O and CO2 if the reaction is extended for a long time. The decoloration 
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reaction rate may be described by a second-order reaction model (i.e. ri = kiCAiC) [56], 

where Ai refers to reactive species i, ki is the second order reaction rate constant relative 

to Ai, CAi is the concentration of reactive species i and C is the concentration of MB. Given 

that these reactive species are continuously produced by the plasma and supplied to the 

solution, their concentrations in solution may be assumed constant. Consequently, the 

overall reaction rate of MB decoloration, rMB, may be described by a first-order reaction 

kinetics (i.e. rMB = koverallC) where koverall = kiCAi is the first-order overall reaction rate 

constant. The classical linearized form of a first-order reaction rate (i.e. -ln(C/C0) = 

koverall.t; where t is time and C0 is the initial MB concentration) was applied to fit the 

experimental data, obtained at different average powers, and the results are shown by 

dash lines in figure 9.  The figure shows good agreement between the experimental data 

and the model indicating that the first-order kinetics is suitable to describe the 

decoloration of MB in the wire-plate air bubbling reactor developed in this study. The 

values of the overall first-order reaction rate constant were obtained from the slopes of 

the straight lines shown in figure 9 and were plotted as a function of the average power 

as displayed in the inset figure of figure 9. According to the inset figure, as the average 

power, Pav, increased, koverall has also increased linearly which suggests that koverall could 

be correlated to Pav by a linear relationship of the form koverall = αPav; where α is a constant. 

The constant α was determined from the slope of the line in the inset figure and its value 

was found equal to 0.30 min-1.W-1. In previous studies on aqueous dye decoloration using 

plasma discharge, the kinetics of the reaction was also described by a first-order reaction 

rate model [45]. The values of the first-order rate constants obtained in the present study 

are in the order of 2 to 3 times higher than those reported in [45] at similar power levels. 

This indicates that the reactor developed in this study was more efficient to generate 

higher concentrations of reactive species.  
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Fig. 9 Kinetics of the decoloration of MB at different powers, f=300 Hz, C0=10 mg/L, pHi≈5.6 and 

i≈1 S/cm. The insert shows the relation between the average power consumed and the first-

order reaction rate constant. 

 

3.2.3. Effect of solution conductivity 

The dependence of the decoloration efficiency and the energy efficiency on the 

conductivity of the solution at a constant average power consumed is shown in figures 

10 and 11, respectively. Given that the energy efficiency increases at  low input power 

(figure 8), this experiment was conducted at a relatively reduced power (~0.88 W). It is 

apparent that the conductivities in the range of 1–1000 S/cm have no influence on the 

decoloration process, the decoloration efficiency and the energy efficiency, of the MB at 

the same average power consumed. These results are in qualitative agreement with those 

obtained in [13, 30, 44, 57] using bubbling discharge based reactors, where the solution 

conductivity had no significant effect on both the degradation efficiency of the model 

pollutants used and the reactive species generated. This is because the plasma, at this 

selected value of the average power consumed, was mainly formed in the gas phase inside 

the dielectric tube and entered within bubbles into the aqueous solution. This indicates 

that the majority of the input power, at the relatively low value of the power consumed,  

0

1

2

3

4

0 5 10 15 20 25 30 35

-L
n

(C
/C

0
)

Time (min)

Pav=0.42 W Pav=0.66 W Pav=1.13 W

0.0

0.1

0.2

0.3

0.4

0 0.3 0.6 0.9 1.2

k o
ve
ra
ll
(m

in
-1
)

Pav(W)



20 
 

was used effectively in the production of the plasma, rather than dissipated in the 

solution as a load, due to the change of the solution conductivity. However, at high values 

of the power consumed, the size of the plasma channels might be high enough to 

penetrate the solution and affect and been affected by the solution conductivity. That is 

why the solution conductivity showed a significant effect in the cases of direct plasma 

discharge in water using DBD [48, 58], points-to-plane [59], and bubbling discharge 

(where the bubbles are introduced between two electrodes immersed in water) [31] 

based reactors, due to compensation of the space charge on the head of plasma streamers 

by the ions presented in the solution, which led to a decrease in the streamer length [37], 

and subsequently decreasing the reactive species in the bulk solution [60]. This suggests 

that bubbling plasma discharge based reactor would exhibit a good prospect for 

wastewater treatment. 

 

Fig. 10 Decoloration efficiency of the MB as a function of the treatment time at different 
solution conductivities, Pav=0.88 W, pHi≈5.6, C0=10 mg/L, and f=300 Hz 
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Fig. 11 Energy efficiency of the decoloration process of the MB at different solution 
conductivities, Pav=0.88 W, pHi≈5.6, C0=10 mg/L, and f=300 Hz 

 

3.2.4. Effect of MB initial concentration  

The performance of the reactor was also evaluated to decolorate different concentrations 

of MB at the same average power consumed of Pav=0.66 W and the same initial solution 

characteristics (pH= 5.6 and conductivity=1 mS/cm), as shown in figure 12. It can be seen 

that the effect of the initial concentration of MB on the decoloration efficiency is 

noticeable only at relatively high concentration and the effect was more pronouncing at 

the beginning of the treatment time, where the decoloration efficiency decreased at 5 min 

from 72% to 68% as the initial concentrations of MB were increased from 5 mg/L to 10 

mg/L, and it decreased abruptly to 47.7% when the initial concentration increased to 30 

mg/L.  At relatively long treatment time, the difference in the decoloration efficiency was 

less pronounced, where the decoloration efficiency decreased at 15 min of the treatment 

time from 96% to 89.7% as the initial concentrations of MB was increased from 10 mg/L 

to 30 mg/L. This is could be due to two reasons: (1) increasing the number of the reactant 

molecules in the reaction [51], (2) the primary reactive species in the gas phase react 

with the water molecules as well as with the MB molecules and the degradation 

byproducts, as it was described above. These primary reactive species produced in the 
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reactor were maintained at a specific concentration at a fixed applied voltage and input 

power [3, 61]. However, more secondary reactive species would form at a lower 

concentration of MB due to the higher chance of the reaction between the primary 

reactive species and the water molecules resulting in increasing the secondary reactive-

species and subsequently increasing the degradation efficiency at the low initial 

concentration of MB. Further investigations including measurements of the secondary 

reactive species during the decoloration process are needed to confirm this suggestion. 

On the other hand, the energy efficiency of the decoloration process depends obviously 

on the initial concentration of MB, as shown in figure 13. For all the concentrations, the 

energy efficiency decreased with increasing the decoloration efficiency, while it 

increased with increasing the initial concentration of MB. Similar behavior was also 

reported for the degradation of MB [45] and for 17-Estradiol in aqueous solutions using 

DBD based reactors [62]. This indicates that the present reactor has the ability to 

decolorise large amounts of MB with high energy-efficiency. This also indicates that the 

deposited energy to the reactor would be used more efficiently when the initial 

concentration of the MB is high, due to the higher opportunities of reacting the reactive 

species with the MB molecules at high MB concentrations.  

The maximum energy efficiency obtained in this study was 42 g/kWh at 50% of the 

decoloration efficiency of 30 mg/L, and the energy efficiency corresponding to 97% of 

the decoloration efficiency for MB initial concentration of 30 mg/L was about 14 g/kWh. 
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Fig. 12 Decoloration efficiency of the MB as a function of the treatment time at different MB 
initial concentrations, Pav=0.66 W, f=300 Hz, pHi≈5.6 and i≈1 S/cm 

 

 
 

Fig. 13 Energy efficiency of the decoloration process of the MB at different initial MB 
concentrations, Pav=0.66 W, f=300 Hz and i≈1 S/cm 

 
 

 

3.3 TOC measurements 

Measurements of the Total Organic Carbon (TOC) during the treatment process are 

important. This is not only because TOC is an index of pollutant content in the solution, 

but its variation depicts the extent of mineralization during the treatment process. In an 

oxidation process, the decomposition of organic compounds may lead to organic acids 

such as carboxylic acids and formic acids [50] as intermediates which accumulate in 

solution due to their low oxidation reaction rate constants. The complete mineralization 

to CO2 of these intermediates becomes difficult and, as a result, longer treatment times or 
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harsher oxidation conditions will be required to achieve higher TOC reductions. In this 

study, TOC reduction efficiency was determined at different treatment times using an 

initial MB concentration of 10 mg/L and an average power 1.13 W. The results showed 

little TOC reduction efficiency of about 15% during 30 min treatment time. The low 

reduction in TOC may be explained by the accumulation of oxidation intermediates (e.g. 

organic acids) that are harder to further oxidise. Data presented in [63] also shows the 

similar level of TOC reduction (~20%) after 30 minutes degradation of Alizarin Red dye 

in dielectric barrier discharge plasmas.  Despite achieving a relatively high energy 

efficiency in this study, the solution TOC remained high. Longer treatment times, 

therefore, may be required to enhance the extent of mineralization of the solution.     

 

3.4. Effect of plasma on solution characteristics (pH, conductivity, and temperature) 

The discharge produced in air bubbles under water not only can produce radicals and 

neutral reactive species (such as H2O2, •OH, and O3) but also it generates ions (such as 

NO2- and NO3-), which have effects on the physicochemical characteristics of the treated 

solution [64]. This is confirmed by increasing the conductivity of the solution during the 

treatment process, as shown in figure 14. However, the increase of the conductivity of the 

treated solution was fast at the relatively low power, while it became slow at the 

relatively high power. This is could be referred to the penetration of the plasma into the 

treated solution at the high input power, which results in lowering the production rate of 

the reactive species and increasing the dissipating power in the reactor. Thus, this figure 

confirms that the penetration of the plasma channels into the solution is not favored for 

the production of the reactive species and subsequently the energy efficiency of the 

decomposition process.   
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Fig. 14 Conductivity of the treated solution as a function of the treatment time at different 
powers, f=300 Hz, pHi≈5.6 and C0=10 mg/L 

 

 

Figure 15 shows the change in the pH of the treated solution at different powers and at 

MB concentration of 10 mg/L. The figure shows that the pH decreases with increasing 

the treatment time and the decrease in the pH was rapid within the first 5 min of the 

treatment process then followed by a slow decrease. The decrease in the pH of the treated 

solution by the air bubbling plasma can be due to the following reasons: 

(1) In air discharge, the excited nitrogen molecules undergo dissociation to form NO and 

NO2 via the following reactions [49]: 

 

𝑁2 (𝐴3Σ𝑢
+) + 𝑂 → 𝑁𝑂 + 𝑁 (2𝐷)        (R1)      

𝑁 (2𝐷) + 𝑂2 → 𝑁𝑂 + 𝑂(3𝑃)                (R2)             

𝑁 (2𝑃) + 𝑂2 → 𝑁𝑂 + 𝑂                        (R3)                    

𝑂 + 𝑁𝑂 → 𝑁𝑂2                                      (R4)                

𝑂 + 𝑁𝑂2 → 𝑁𝑂 + 𝑂2                                 (R5) 
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These NO and NO2 are in the gas phase and they can react with •OH to produce nitrous 

acid (HNO2) and nitric acid (HNO3), via reactions (R6) and (R7), which dissolve in the 

solution leading to a decrease in the pH [18, 44]. Moreover, the NO2 generated in the gas 

phase can be dissolved in the aqueous solution to produce dissolved NO2 in aqueous 

phase that reacts with the water molecules to produce HNO3 and HNO2 (via reaction R8), 

and finally transform to nitrite (NO2-) and nitrate (NO3-) (reactions R9 and R10) leading 

to a decrease in the pH of the treated solution [65]: 

 

𝑁𝑂 + 𝑂𝐻 + 𝑀 → 𝐻𝑁𝑂2 + 𝑀                 (R6) 

𝑁𝑂2 + 𝑂𝐻 + 𝑀 → 𝐻𝑁𝑂3 + 𝑀               (R7)     

2𝑁𝑂2 + 𝐻2𝑂 → 𝐻𝑁𝑂2 + 𝐻𝑁𝑂3               (R8) 

𝐻𝑁𝑂2 → 𝐻+ + 𝑁𝑂2
−                                    (R9) 

𝐻𝑁𝑂3 → 𝐻+ + 𝑁𝑂3
−                                     (R10) 

(2) The decrease in the pH can be caused by the generation of acidic organics during the 

decoloration process of MB.  To determine the dominant effect in the decrease of the pH 

obtained in this study, an experiment was conducted for monitoring the change in the pH 

of pure water treated by the air bubbling plasma at the same operating parameters that 

were used in the treatment of the MB solution, the results are shown in figure 16. 

Comparing to the plasma treatment of the pure water, the change of the pH of the organic 

solution treated by the plasma were more apparent, where the pH of the treated solution 

is much lower than that of the treated water at the same value of the average power 

consumed, despite the similar behavior of both cases. Therefore, it is suggested that the 

degradation of the MB to organic acids has a major role in pH decrease of the treated 

solution than that of the formation of nitrous and nitric acids. In addition, the results 

showed that the change in the pH is fairly depended on the initial concentration of the 
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MB in the treated solution. The higher the initial MB concentration, the lower the pH of 

the treated solution, where the pH was 4.28 for 5 mg/L of initial MB concentration and 

4.18 for 30 mg/L at 5 min of the treatment, and it was 3.94 for 5 mg/L and 3.72 for 30 

mg/L at 10 min at the same average power consumed (~ 1.13 W). This indicates that 

higher organic acids generated at the higher MB concentration.  

Figure 15 shows also that the change in the pH of the treated solution depends on the 

average power consumed, where the pH decreased from 4.8 at average power consumed 

of 0.42 W to 4.52 at 0.66 W and to 4.4 at 1.13 W at the same treatment time of 5 min. 

Moreover, it was found that the pH of the treated solution is independent on the 

conductivity of the solution, where the average of the pH after 12 min of the plasma 

treatment at 1.13 W of average power consumed and at conductivities of 1, 60, 600 and 

1000 S/cm was 4.15, 4.16, 4.13 and 4.15, respectively. 

 

 

Fig. 15 The pH of the treated solution as a function of the treatment time at different powers 
and i≈1 S/cm, f=300 Hz, and C0=10 mg/L 

 
 



28 
 

 
 

Fig. 16 The pH of the treated deionized water and MB solution as a function of the treatment 
time and i≈1 S/cm, f=300 Hz, Pav=1.13 W and C0=10 mg/L 

 
 

Although the pH and the conductivity of the treated solution have changed remarkably 

during the treatment time, the solution temperature was almost constant (~ 20 oC) for 

60 min of experimental operation. This behavior is matched with that obtained by the 

plasma treated water surface [65]. Therefore, this experimental result strongly indicates 

that the input power of discharge is used efficiently to generate reactive species instead 

of being dissipated as a heat in the system. 

4. Conclusions 

A simple wire-plate air bubbling plasma discharge based reactor was developed and its 

ability to decolorate methylene blue as a representative organic pollutant in wastewater 

was evaluated. The characteristics of the plasma generated in the reactor, the 

decoloration process of MB, and the main physicochemical properties of the treated 

solution were investigated. The main results of this study can be summarized as follows: 

(1) The plasma generated in the reactor was in the form of filamentary discharge, and 

it resulted from the PCD and the DBD characteristics of the present reactor.. 

(2) The effect of the solution conductivity on the power consumed in the reactor was 

apparent only after a certain applied voltage, when the plasma channels spread in 
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the bubbles inside the solution. However, the solution conductivity had no role in 

the decoloration efficiency and the pH of the treated solution at the same input 

power. 

(3) The energy efficiency of the decoloration process increased with increasing the 

initial concentration of the MB and with decreasing the input power.  

(4) First-order kinetics was found suitable to describe the reaction rate of MB 

decoloration in the air bubbling plasma reactor and the overall first-order 

reaction rate constant correlated linearly with the average power consumed.  

(5) Although the reactor was efficient in the decoloration of the MB, the reduction 

efficiency of the TOC was still low.  

(6) The change in the pH of the treated solution was mainly due to the degradation of 

MB to acidic byproducts. 

(7) There was no increase in the temperature of the solution detected in the reactor 

during the decoloration process, which indicates that the input power was used 

effectively to produce reactive species in the reactor instead of dissipating as heat 

in the system. 
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[37] P. Šunka, "Pulse electrical discharges in water and their applications," Physics of 
Plasmas, vol. 8, p. 2587, 2001. 

[38] Z. Wang, S. Jiang, and K. Liu, "Treatment of Wastewater with High Conductivity 
by Pulsed Discharge Plasma," Plasma Science and Technology, vol. 16, pp. 688-
694, 2014. 

[39] B. Dong, J. M. Bauchire, J. M. Pouvesle, P. Magnier, and D. Hong, "Experimental 
study of a DBD surface discharge for the active control of subsonic airflow," 
Journal of Physics D: Applied Physics, vol. 41, p. 155201, 2008. 

[40] A. Abdelaziz, T. Seto, M. Abdel-Salam, and Y. Otani, "Performance of a surface 
dielectric barrier discharge based reactor for destruction of naphthalene in an 
air stream," J. Phys. D: Appl. Phys., vol. 45, p. 115201, 2012. 

[41] F. D. Baerdemaeker, M. Šimek, J. Schmidt, and C. Leys, "Characteristics of ac 
capillary discharge produced in electrically conductive water solution," Plasma 
Sources Science and Technology, vol. 16, pp. 341-354, 2007. 

[42] M. Magureanu, N. B. Mandache, P. Eloy, E. M. Gaigneaux, and V. I. Parvulescu, 
"Plasma-assisted catalysis for volatile organic compounds abatement," Appl. 
Catal. B: Environ. Sci. Technol., vol. 61, pp. 12-20, 2005. 

[43] S. A. Smirnov, D. A. Shutov, E. S. Bobkova, and V. V. Rybkin, "Chemical 
Composition, Physical Properties and Populating Mechanism of Some O(I) States 
for a DC Discharge in Oxygen with Water Cathode," Plasma Chemistry and Plasma 
Processing, vol. 36, pp. 415-436, 2015. 

[44] R. Xiong, A. Nikiforov, P. Vanraes, and C. Leys, "Hydrogen Peroxide Generation by 
DC and Pulsed Underwater Discharge in Air Bubbles," J. Adv. Oxid. Technol., vol. 
15, pp. 197-204, 2012. 

[45] P. Manoj Kumar Reddy, B. Rama Raju, J. Karuppiah, E. Linga Reddy, and C. 
Subrahmanyam, "Degradation and mineralization of methylene blue by dielectric 
barrier discharge non-thermal plasma reactor," Chemical Engineering Journal, 
vol. 217, pp. 41-47, 2013. 

[46] M. Magureanu, D. Piroi, F. Gherendi, N. B. Mandache, and V. Parvulescu, 
"Decomposition of Methylene Blue in Water by Corona Discharges," Plasma 
Chemistry and Plasma Processing, vol. 28, pp. 677-688, 2008. 

[47] R. Zhang, C. Zhang, X. Cheng, L. Wang, Y. Wu, and Z. Guan, "Kinetics of 
decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase 
discharge plasma reactor," J Hazard Mater, vol. 142, pp. 105-10, Apr 2 2007. 

[48] H. Wu, Z. Fang, T. Zhou, C. Lu, and Y. Xu, "Discoloration of Congo Red by Rod-
Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure," Plasma 
Science and Technology, vol. 18, pp. 500-505, 2016. 



33 
 

[49] A. Abdelaziz, T. Ishijima, T. Seto, N. Osawa, H. Wedaa, and Y. Otani, 
"Characterization of surface dielectric barrier discharge influenced by 
intermediate frequency for ozone production," Plasma Sources Sci. Technol., vol. 
25, p. 035012, 2016. 

[50] F. Huang, L. Chen, H. Wang, and Z. Yan, "Analysis of the degradation mechanism 
of methylene blue by atmospheric pressure dielectric barrier discharge plasma," 
Chemical Engineering Journal, vol. 162, pp. 250-256, 2010. 

[51] L. Chandana, P. Manoj Kumar Reddy, and C. Subrahmanyam, "Atmospheric 
pressure non-thermal plasma jet for the degradation of methylene blue in 
aqueous medium," Chemical Engineering Journal, vol. 282, pp. 116-122, 2015. 

[52] L. R. Grabowski, E. M. v. Veldhuizen, A. J. M. Pemen, and W. R. Rutgers, 
"Breakdown of methylene blue and methyl orange by pulsed corona discharge," 
Plasma Sources Science and Technology, vol. 16, pp. 226-232, 2007. 

[53] B. Wang, B. Sun, X. Zhu, Z. Yan, Y. Liu, and H. Liu, "Degradation of Methylene Blue 
by Microwave Discharge Plasma in Liquid," Contributions to Plasma Physics, vol. 
53, pp. 697-702, 2013. 

[54] X. Liu, H. Zhang, D. Qin, Y. Yang, Y. Kang, F. Zou, et al., "Radical-Initiated 
Decoloration of Methylene Blue in a Gas–Liquid Multiphase System Via DC 
Corona Plasma," Plasma Chemistry and Plasma Processing, vol. 35, pp. 321-337, 
2015. 

[55] S. D. Anghel, D. Zaharie-Butucel, and I. E. Vlad, "Single electrode Ar bubbled 
plasma source for methylene blue degradation and concurrent synthesis of 
carbon based nanoparticles," Journal of Electrostatics, vol. 75, pp. 63-71, 2015. 

[56] C. Tizaoui and N. Grima, "Kinetics of the ozone oxidation of Reactive Orange 16 
azo-dye in aqueous solution," Chemical Engineering Journal, vol. 173, pp. 463-
473, 2011. 

[57] Y. Wu, J. Li, G. F. Li, N. Li, G. Z. Qu, C. H. Sun, et al., "Decomposition of Phenol in 
Water by Gas Phase Pulse Discharge Plasma," in Industry Applications Society 
Annual Meeting, 2009. IAS 2009. IEEE, 2009, pp. 1-4. 

[58] H. Wu, Z. Fang, and Y. Xu, "Degradation of Aniline Wastewater Using Dielectric 
Barrier Discharges at Atmospheric Pressure," Plasma Science and Technology, 
vol. 17, pp. 228-234, 2015. 

[59] Y. Zhang, X. Xiong, Y. Han, H. Yuan, S. Deng, H. Xiao, et al., "Application of titanium 
dioxide-loaded activated carbon fiber in a pulsed discharge reactor for 
degradation of methyl orange," Chemical Engineering Journal, vol. 162, pp. 1045-
1049, 2010. 

[60] D. R. Grymonpre, A. K. Sharma, W. C. Finney, and B. R. Locke, "The role of 
Fenton’s reaction in aqueous phase pulsed streamer corona reactors," Chemical 
Engineering Journal, vol. 82, pp. 189-207, 2001. 

[61] Q. Tang, W. Jiang, Y. Zhang, W. Wei, and T. M. Lim, "Degradation of Azo Dye Acid 
Red 88 by Gas Phase Dielectric Barrier Discharges," Plasma Chemistry and 
Plasma Processing, vol. 29, pp. 291-305, 2009. 

[62] L. Gao, L. Sun, S. Wan, Z. Yu, and M. Li, "Degradation kinetics and mechanism of 
emerging contaminants in water by dielectric barrier discharge non-thermal 
plasma: The case of 17β-Estradiol," Chemical Engineering Journal, vol. 228, pp. 
790-798, 2013. 

[63] J. Xue, L. Chen, and H. Wang, "Degradation mechanism of Alizarin Red in hybrid 
gas–liquid phase dielectric barrier discharge plasmas: Experimental and 



34 
 

theoretical examination," Chemical Engineering Journal, vol. 138, pp. 120-127, 
2008. 

[64] Y. Huang, Y. Kou, C. Zheng, Y. Xu, Z. Liu, and K. Yan, "Escherichia Coli Inactivation 
in Water Using Pulsed Discharge," IEEE Transactions on Plasma Science, vol. 44, 
pp. 938-943, 2016. 

[65] K. Shang, J. Li, X. Wang, D. Yao, N. Lu, N. Jiang, et al., "Evaluating the generation 
efficiency of hydrogen peroxide in water by pulsed discharge over water surface 
and underwater bubbling pulsed discharge," Japanese Journal of Applied Physics, 
vol. 55, p. 01AB02, 2016. 

 


