

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Logic Programming

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa43401

Book chapter :

Brain, M., Crick, T., De Vos, M. & Fitch, J. (2006). TOAST: Applying Answer Set Programming to Superoptimisation.

Logic Programming, -284). Seattle, USA: Springer.

http://dx.doi.org/10.1007/11799573_21

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43401
http://dx.doi.org/10.1007/11799573_21
http://www.swansea.ac.uk/library/researchsupport/ris-support/

TOAST: Applying Answer Set Programming to
Superoptimisation

Martin Brain, Tom Crick, Marina De Vos and John Fitch

Department of Computer Science
University of Bath
Bath BA2 7AY, UK�

mjb,tc,mdv,jpff � @cs.bath.ac.uk

Abstract. Answer set programming (ASP) is a form of declarative programming
particularly suited to difficult combinatorial search problems. However, it has
yet to be used for more than a handful of large-scale applications, which are
needed to demonstrate the strengths of ASP and to motivate the development of
tools and methodology. This paper describes such a large-scale application, the
TOAST (Total Optimisation using Answer Set Technology) system, which seeks
to generate optimal machine code for simple, acyclic functions using a technique
known as superoptimisation. ASP is used as a scalable computational engine to
handle searching over complex, non-regular search spaces, with the experimental
results suggesting that this is a viable approach to the optimisation problem and
demonstrates the scalability of a variety of solvers.

1 Introduction

Answer set programming (ASP) is a relative new technology, with the first computation
tools only appearing in the late 1990s [1, 2]. Initial studies have demonstrated [3] that it
has potential in many areas, including automatic diagnostics [4, 5], agent behaviour and
communication [6], security engineering [7] and information integration [8]. However,
larger production-scale applications are comparatively scarce. One of the few examples
of such a system is the USA-Advisor decision support system [5] for the NASA Space
Shuttle. It modelled a complex domain in a concise way; although of great significance
to the field it is, in computational terms, relatively small. The only large and difficult
programs most answer set solvers have been tested on are synthetic benchmarks; thus
it is not yet known how well these algorithms and implementations scale.

This paper investigates the possibility of using ASP technology to generate optimal
machine code for simple functions. Modern compilers only provide code improvements
via a range of approximations rather than generating truly optimal code; none of these
existing techniques, or approaches to creating new techniques, are likely to change the
current state of play.

An approach to generating optimal code sequences is called superoptimisation [9].
One of the main bottlenecks in this process is the size of the space of possible instruction
sequences, with most superoptimising implementations relying on brute force searches
to locate candidate sequences and then approximate equivalence verification.

From an ASP perspective, the TOAST project provides a large-scale, real-world ap-
plication, with certain programs containing more than a million ground rules. From a
compiler perspective, it might be a step towards tools that can generate truly optimal
code, which could have an impact on many areas, especially resource-critical environ-
ments such as embedded systems and high performance computing.

This paper presents the results of the first phase of the TOAST project, with the
infrastructure complete and three machine architectures implemented. At present, off-
the-shelf solvers are used without any domain-specific optimisations, so the results we
present provide not only useful benchmarks for TOAST, but also for the answer set
solvers themselves.

2 The Problem Domain

Before describing the TOAST system and how it uses answer set technology, it is im-
portant to consider the problem that it seeks to solves and how this fits into the larger
field of compiler design.

2.1 Compilers and Optimisation

Optimisation, as commonly used in the field of compiler research and implementation,
is something of a misnomer. A typical compiler targeting assembly language or ma-
chine code will include an array of code improvement techniques, from the relatively
cheap and simple (such as identification of common sub-expressions and constant fold-
ing) [10] to the costly and esoteric (such as auto-vectorisation and inter-function regis-
ter allocation) [11]. However, none of these generate optimal code; the code that they
output is only improved (though often to a significant degree). All of these techniques
identify and remove specific inefficiencies, but it is impossible to guarantee that the
code could not be further improved.

Further confusion between code improvement and the generation of optimal code is
created by complications in defining optimality. In the linear case, a shorter instruction
sequence is quite clearly better1. However, if the code branches, but is acyclic, a number
of definitions are possible: shortest average path, shortest over all sequences, etc. For
code containing cycles, it is not possible to define optimality in the general case. To do
so would require calculating how many times the body of the loop would be executed
– a problem equivalent to the halting problem. To avoid this and other problem areas,
such as equivalence of floating point operations, this paper only considers optimality in
terms of the number of instructions used in acyclic, integer-based code.

It is also important to consider the scale of savings that are likely to be achieved. The
effect of improvements in code generation for an average program have been estimated
as a 4% speed increase per year2 [12]. In this context, a saving of just one or two

1 Although the TOAST approach could be easily generalised to handle them, this paper ignores
complications such as pipelining, caching, pre-fetching, variable-instruction latency and super-
scalar execution.

2 This may seem very low in comparison with the increase in processing power created by ad-
vances in processor manufacture. However, it is wise to consider the huge disparity in research

instructions is significant, particularly if the technique is widely applicable or can be
used to target ‘hot spots’, CPU-intensive sections of code.

2.2 Superoptimisation

Superoptimisation is a radically different approach to code generation, first described
by Massalin [9]. Rather than starting with crudely generated code and improving it, a
superoptimiser starts with the specification of a function and performs an exhaustive
search for a sequence of instructions that meets this specification. Clearly, as the length
of the sequence increases, the search space potentially increases at an exponential rate.
This makes the technique unsuitable for use in normal compiler toolchains, though for
improving the code generators of compilers and for targeting key sections of perfor-
mance critical functions, the results can be impressive.

A good example of superoptimisation is demonstrated by the sign function [9],
which returns the sign of a binary integer, or zero if the input is zero:

int signum(int x)
{

if (x > 0) return 1;
else if (x < 0) return -1;
else return 0;

}

A simple compilation of this function would generate ten or so instructions, including
at least two conditional branch instructions. A skilled assembler programmer might
manage to implement it in four instructions with only one conditional branch. Current
state of the art compilers can normally achieve the same. However, superoptimisation
of this function (here for the SPARC-V7 architecture) gives the following sequence of
three instructions:

! input in %i0
addcc %i0 %i0 %l1
subxcc %i0 %l1 %l2
addx %l2 %i0 %o1
! output in %o1

Not only is this sequence shorter, it does not require any conditional branches, a signif-
icant saving on modern pipelined processors. This example shows another interesting
property of code produced by superoptimisation: it is not obvious that this computes the
sign of a number or how it does so. The pattern of addition and subtraction ‘cancels out’,
with the actual computation being done by how the carry flag is set and used by each
instruction (instructions whose names include cc set the carry flag, likewise x denotes
instructions that use the carry flag). Such inventive uses of the processor’s features are
common in superoptimised sequences; when the GNU Superoptimizer (GSO) [13] was
used to superoptimise sequences for the GCC port to the POWER architecture, it pro-
duced a number of sequences that were shorter than the processor’s designers thought
possible!

spending in the two areas, as well as the link between them: most modern processors would
not achieve such drastic improvements without advanced compilers to generate efficient code
for them.

Despite significant potential, superoptimisation has received relatively little atten-
tion within the field of compiler research. Following Massalin’s work, the next super-
optimising implementation was GSO, a portable superoptimiser developed to improve
the GCC toolchain. It advanced on Massalin’s search strategy by attempting to ap-
ply constraints while generating elements of the search space, rather than generating
all possible sequences and then skipping those that were marked as clearly redundant.
The most recent work on superoptimisation have been from the Denali project [14, 15].
Their approach was much closer to that of the TOAST project, using automatic theorem
proving technology as an ‘intelligent’ approach to handling the large search spaces.

2.3 Analysis of Problem Domain

Superoptimisation naturally decomposes into two sub-problems: searching for sequences
that meet some limited criteria and then verifying which of these candidates are fully
equivalent to the input function.

The search space of possible sequences of a given length is very large, at least
the number of instructions available to the power of the length of the sequences (thus
growing at least exponentially as the length rises). However, a number of constraints
exist that reduce the amount of the space that has to be searched. For example, if a
sub-sequence is known to be non-optimal, then anything that includes it will also be
non-optimal and thus can be discarded. Handling the size and complexity of this space
is the current limit on superoptimiser performance.

Verifying that two code sequences are equivalent also involves a large space of pos-
sibilities (for a sequence with a single input it is ��� , where � is the word length (the
number of bits per register) of the machine architecture). However, it is a space that
shows a number of unusual properties. Firstly, the process is a reasonably simple task
for human experts, suggesting there may be a set of strong heuristics. Secondly, se-
quences of instructions that are equivalent on a reasonably small subset of the space of
possible inputs tend to be equivalent on all of it. Both Massalin’s superoptimiser and
GSO handled verification by testing the new sequence for correctness on a represen-
tative set of inputs and declaring it equivalent if it passed. Although non-rigorous, this
approach seemed to work in practise [9, 13].

Due to the problems in producing accurate, formal models of the search space of
instruction sequences the complexity of superoptimisation is currently unknown.

3 Answer Set Programming

Answer set programming is a form of declarative programming oriented towards solv-
ing difficult combinatorial search problems, which has emerged from research on the
semantics of logic programming languages and non-monotonic reasoning [16, 17]. The
answer set semantics have developed into an intuitive system for ‘real-world reason-
ing’. For reasons of compactness, this paper only includes a brief summary of answer
set semantics, though a more in-depth description can be found in [18].

Answer set semantics are defined with respect to programs, sets of Horn clause-style
rules composed of literals. Two forms of negation are described: negation as failure and

explicit (or classical) negation. The first (denoted as ��� �) is interpreted as not knowing
that the literal is true, while the second (denoted as �) is knowing that the literal is not
true. For example: ���	��

��� �
���
�
���

��� �
� �

is interpreted as “a is known to be true if b is known to be true and c is not known to
be true. b is known to be not true if a is not known to be true” (the precise declarative
meaning is an area of ongoing work, see [19] for a further discussion). Constraints are
also supported, which allow conjunctions of literals to be deemed inconsistent. Answer
sets are sets of literals that are consistent (i.e. do not contain both

�
or �

�
), not con-

strained (do not contain the bodies of any constraints) and supported (every literal has
at least one acyclic way of concluding its truth). A given program may have zero or
more answer sets.

Answer set programming is describing a problem as a program under the answer set
semantics in such a way that the answer sets of the program correspond to the solutions
of the problem. In many cases, this is simply a case of encoding the description of the
problem domain and the description of what constitutes a solution. Thus, solving the
problem is reduced to computing the answer sets of the program.

Computing an answer set of a program is an NP-complete task, but there are a num-
ber of sophisticated tools (known as answer set solvers) that can perform this computa-
tion. The first generation of efficient solvers (such as SMODELS [1] and DLV [20]) use
a DPLL-style [21] algorithm. Before computation, the answer set program is grounded
(an instantiation process that creates copies of the rules for each usable value of each
variable) by using tools such as LPARSE [22], to remove variables. The answer sets are
then computed using a backtracking algorithm; at each stage the sets of literals that
are known to be true and not known to be true are expanded according to simple rules
(similar to unit propagation in DPLL), then a branching literal is chosen according to
heuristics and both possible branches (asserting the literal to be known to be true or
not) are explored. An alternative approach is to use a SAT solver to generate candi-
date answer sets and then check whether these meet all criteria. This is the approach
used by CMODELS [23] and ASSAT [24]. More recent work has investigated using
‘Beowulf’-style parallel systems to explore possible models in parallel [25].

4 Total Optimisation using Answer Set Technology

The TOAST system consists of a number of components that generate answer set pro-
grams and parse answer sets, with a ‘front end’ which uses these components to produce
a superoptimised version of an input function. Data is passed between components ei-
ther as fragments of answer set programs or in an architecture-independent, assembly
language-like format. An answer set solver is then used as a ‘black box’ tool (currently
any solver that supports LPARSE syntax).

ASP was chosen because the structure of the rules simplifies the modelling of the
bitwise operation of instructions, while also allowing the modelling of complex con-
straints.

4.1 System Components

Four key components provide most of the functionality of the TOAST system:

pickVectors
input: variable specification
output: ASP vectors
Given the specification of the inputs to an instruction sequence, a representative set
of inputs (known as input vectors) are generated in ASP.

execute
input: ASP vectors, program
output: ASP constraints
Takes the input vectors (as generated by pickVectors or verify) and emulates run-
ning an instruction sequence with that input, giving constraints on the instruction
sequence’s outputs.

search
input: search space, ASP vectors, ASP constraints
output: program fragments
Takes ASP fragments giving ‘start’ and ‘end’ values (from pickVectors/verify and
execute respectively) and searches for all instruction sequences of a given length
(the search space) that produce the correct output with the described input.

verify
input: program, program
output: boolean
Takes two instruction sequences with the same input specification and tests if they
are equivalent. If they are not, an input vector on which they differ can be output,
in a suitable form for execute and search.

The TOAST system is fully architecture independent. Architecture-specific information
is stored in a description file which provides meta-information about the architecture,
as well as which operations from the library of instructions are available. At the time
of writing, TOAST supports the following architectures: MIPS [26], SPARC-V7 and
SPARC-V8 [27]. Porting to a new architecture is simple and takes between a few hours
and a week, depending on how many of the instructions used have already been mod-
elled.

4.2 System Architecture

The key observation underlying the design of the TOAST system is that any super-
optimised sequence will necessarily be returned by using search on the appropriate
instruction length. However, not everything that search returns is necessarily a correct
answer. Thus, to generate superoptimised sequences the front end uses pickVector and
execute on the input instruction sequence to create criteria for search. Instruction se-
quence lengths from one, up to one less than the length of the input sequence, are then
searched sequentially. If any answers are given, another criteria set is created and the
same length searched again. The two sets are then intersected, as any correct answer

haveJumped(C,T) :- jump(C,T,J), jumpSize(C,J),
time(C,T), colour(C).

pc(C,PCV+J,T+1) :- pc(C,PCV,T), jump(C,T,J), jumpSize(C,J),
time(C,T), colour(C), position(C,PCV).

pc(C,PCV+1,T+1) :- pc(C,PCV,T), not haveJumped(C,T),
time(C,T), colour(C), position(C,PCV).

pc(C,1,1).

Fig. 1. Flow Control Rules in ASP

must appear in both. This process is repeated until either the intersection is empty, in
which case the search moves on to the next length, or until the intersection stops getting
any smaller. verify can then be used to check members of this set for equivalence to the
original input program.

4.3 The Answer Set Programs

All of the answer sets programs created in the system consist of a number of basic
components.

Flow control rules define which instruction will be ‘executed’ at a given time step
by controlling the pc (program counter) literal. An example set of flow control rules are
given in Figure 1. The rules are fairly self-explanatory, for example, an instruction that
asserts jump(C,T,J), moves the program’s execution on J instructions, otherwise it
will just move forward by one. As ASP programs may need to simultaneously model
multiple independent code streams (for example, when trying to verify their equiva-
lence), all literals are ‘tagged’ with an abstract property called colour. The inclusion
of the colour(C) literal in each rule then allows copies to be created for each code
stream during instantiation. In most cases, when only one code stream is used, only one
value of colour is defined and only one copy of each set of rules is produced; the
overhead involved is negligible.

Flag control rules model the setting and maintenance of processor flags such as
carry, overflow, zero and negative. Although generally only used for controlling condi-
tional branches and multi-word arithmetic, these flags are a source of many superopti-
mised sequences and are thus of prime importance when modelling a processor.

The instruction sequence itself is represented as a series of facts, or in the case of
search, a set of choice rules (choice rules are a syntactic extension to ASP, see [1]).
These literals are then used by the instruction definitions to control the value literals
that give the value of various registers within the processor. If the literal is in the answer
set, the given bit is taken to be a 1, if the classically-negated version of the literal is in the
answer set then it is a 0. An example instruction definition, for a logical XOR (exclusive
or) between registers, is given in Figure 2. Note the use of negation as failure to reduce
the number of rules needed and the declaration that lxor is symmetric, which is used
to reduce the search space.

Input vectors and output constraints are the program fragments created by pickVec-
tors and execute respectively. None of the ASP programs generated require disjunction,
aggregates or any other non-syntactic extensions to answer set semantics.

value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
value(C,R1,B), -value(C,R2,B),
register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
-value(C,R1,B), value(C,R2,B),
register(R1), register(R2), colour(C),
position(C,P), time(C,T), bit(B).

-value(C,T,B) :- istream(C,P,lxor,R1,R2,none), pc(C,P,T),
not value(C,T,B), register(R1), register(R2),
colour(C), position(C,P), time(C,T), bit(B).

symmetricInstruction(lxor).

Fig. 2. Modelling of a Logical XOR Instruction in ASP

5 Testing

In this section we present preliminary results on using ASP as a tool for superoptimisa-
tion, also showing some interesting properties of the different answer set solvers used
in the tests.

5.1 System and Solvers

Tests were run on a Beowulf-style cluster of sixteen 800MHz Intel Celeron, 512MB
RAM machines connected by 100Mb Ethernet, running SuSE Linux 9.2. Results are
given for SMODELS-2.28 (denoted �), SURYA [28] (denoted �), NOMORE++ 1.4 [29]
(denoted �) and the MPI version of PLATYPUS running on � nodes (denoted �����).
CMODELS, ASSAT and LPSM were also tested, though concerns over their stability
and correctness means the results are not presented. DLV has yet to be tested, as the
difference in syntax would require extensive alterations to the input programs. It is
hoped that we will soon be able to publish results for these solvers. LPARSE-1.0.17
was used to ground the programs. Times for the sequential solvers were recorded using
the system time command, while the MPI wall time was used for PLATYPUS (both
given in seconds).

5.2 Test Programs

Three suites of programs were used in the tests. In the first, search was used to generate
programs that searched the space of SPARC-V7 instructions for candidate optimisations
for the following instruction sequence:

! input in %i0, %i1
and %i0 %i1 %l1
add %i0 %l1 %l2
add %i0 %l2 %l3
sub 0 %l3 %o1
! output in %o1

This sequence was selected as a ‘worst case’, an example of a sequence that cannot
be superoptimised, giving an approximate ceiling on the performance of the system.
Programs s1 to s4 are searches over the spaces of 1 to 4 instructions respectively.

The remaining two test suites give different approaches to testing verify. In the first
case, an older encoding of the search space using choice rules (and thus limiting it to
SMODELS and PLATYPUS) was used. The test was to verify the equivalence of:

! input in %i0
add %i0 %i0 %o1
! output in %o1

! input in %i0
umult %i0 2 %o1
! output in %o1

using the SPARC-V83 architecture, but varying the processor word length (the number
of bits per register). This pair of programs were chosen because, although they are
clearly equivalent, the modelling and reasoning required to show this is non-trivial.
Programs v8 to v24 are variants with word lengths of 8 to 24 bits respectively.

The final test suite for verify uses two instruction sequences that differed only on
one input, thus creating a program with a single answer set. The size of the search space
was altered by simply fixing the value of some of the bits (programs w8 to w24 test for
equivalence over 8 to 24 bits). The instruction sequences were:

! input in %i0
sra %i1 31 %l1
orcc %l1 %l1 %o1
bne 2
add %l1 1 %o1
! output in %o1

! input in %i0
addcc %i0 %i0 %l1
subxcc %i0 %l1 %l2
addx %l2 %i0 %o1
! output in %o1

The programs used in these tests are available online4 and will be contributed to the
Asparagus benchmark collection [30].

5.3 Results

Figure 3 gives the number of atoms, answer sets and rules, along with the sizes of the
search spaces, for the programs used in the tests. Timing results for the search tests are
given in Figure 4, while the results for the two verify tests are given in Figures 5 and
7 and graphed in Figures 6 and 8 respectively. Not all tests could be completed due to
time constraints, with entries marked � � aborted after � seconds and those marked �
not attempted due to estimated compute times. Results for PLATYPUS on a single node
are not presented, due to limitations in the current MPI implementation.

5.4 Analysis

The results presented suggest a number of interesting conclusions. Firstly, answer set
solvers are capable of handling non-trivial, real-world problems and attempting to solve
the problem of generating optimal code with them is viable. Although the compute time
for the space of four instructions is prohibitively high, it is worth noting that this is
without even obvious constraints (such as the output of each instruction apart from the

3 SPARC-V8 is an later, minimal extension of SPARC-V7 with the addition of the umult in-
struction.

4 http://www.bath.ac.uk/˜mjb/toast/

Program Atoms Rules Raw search space Program Atoms Rules Raw search space
v8 975 1755 � � w8 2296 12892 � �
v9 1099 2063 � � w9 2296 12894 � �
v10 1235 2402 � ��� w10 2296 12896 � ���
v11 1383 2772 � ��� w11 2296 12898 � ���
v12 1543 3173 � ��	 w12 2296 12900 � �
	
v13 1715 3605 � ��� w13 2296 12902 � ���
v14 1899 4068 � ��� w14 2296 12904 � ���
v15 2095 4562 � ��
 w15 2296 12906 � �

v16 2303 5087 � ��� w16 2296 12908 � ���
v17 2527 5645 � ��� w17 2296 12910 � �
�
v18 2763 6234 � ��� w18 2296 12912 � ���
v19 3011 6854 � ��� w19 2296 12914 � ���
v20 3271 7505 � 	
� w20 2296 12916 � 	��
v21 3543 8187 � 	�� w21 2296 12918 � 	��
v22 3827 8900 � 	�	 w22 2296 12920 � 	�	
v23 4123 9644 � 	
� w23 2296 12922 � 	��
v24 4431 10419 � 	
� w24 2296 12924 � 	��
s1 6873 1197185 129
s2 6873 1197184 35862
s3 6873 1197183 15241350
s4 6873 1197182 9190534050

Fig. 3. Program Sizes

Program � � � ��� � ����� ����� �������
s1 42.93 1736.11 60.95 140.327 141.824 139.167 141.167
s2 214.31 66357.55 235.08 256.68 397.393 410.122 461.69
s3 74777.67 304401.98 407556.46 51580 19523.7 9758.36 7503.68
s4 237337.35 - - - - - -

Fig. 4. Search Test Times (secs)

last must be used, no instruction or argument pair should be repeated, etc), let alone
some of the more sophisticated constraints (such as removing all non-optimal pairs and
triples). Thus implementing search using ASP seems eminently possible. The results
for verify are less encouraging and suggest that attempting to verify sequences using
greater than 32 bits of input is likely to require significant resources given current solver
technology.

The results also suggest a number of interesting points related to solver design
and implementation. Firstly, clearly implementation does matter. SURYA implements
a slight refinement of the algorithm used in SMODELS, but performs significantly worse
in almost all cases. How serious these implementation differences are is not known,
but clearly for any solver that is intended to be competitive, implementation details do
matter. Another, more subtle issue suggested by these results is the cost of lookahead.
In the first verify test, the times increase significantly faster that doubling, despite the
search space itself only doubling. In the second test, the rate of increase is much closer
to doubling. In the first case, the increasing number of atoms, and thus the rising cost
of lookahead is thought to cause this disparity. This fits with other experiments that
have been run using the TOAST programs and explains why NOMORE++ is gener-

Program � ��� � ����� ����� �������
v8 0.153 0.497732 0.560709 0.633932 0.721136
v9 0.306 0.866704 0.70772 0.808055 0.935053
v10 0.675 1.61512 1.2337 1.16333 1.39326
v11 1.537 3.42153 1.97181 1.93191 2.2948
v12 3.597 7.46042 4.28284 3.53243 3.38788
v13 8.505 15.8174 8.86814 6.25371 6.22179
v14 17.795 34.4004 19.5743 12.38 9.52772
v15 39.651 77.0911 41.1235 27.2365 15.3818
v16 93.141 167.222 71.3785 46.6144 35.3159
v17 217.162 372.57 146.603 99.3623 72.3708
v18 463.025 815.373 384.237 189.690 122.038
v19 1002.696 1738.02 681.673 421.681 262.611
v20 2146.941 3790.84 1514.80 896.705 566.040
v21 4826.837 8206.4 3438.71 1874.36 1244.95
v22 11168.818 17974.8 6683.06 3850.71 2296.87
v23 23547.807 38870.5 15047 7947.95 4833.66
v24 52681.498 83405.1 32561.2 16165.4 10580.4

Fig. 5. First Verify Test (secs)

ally slower than SMODELS. Interestingly, the second verify test also has NOMORE++’s
times increasing by less than a factor of two as the search space doubles, suggesting
that, although more costly, its branching heuristic is indeed ‘smarter’. Again this fits
with other tests, which have found degenerate verify programs where NOMORE++’s
branching heuristic has performed significantly better than any other solver.

Finally, the results suggest some interesting possibilities in the field of distributed
solver development. The performance of PLATYPUS on s3 and v16 to v24 demon-
strates the power of the technique and that, especially for larger programs, near-linear
speed up is possible. However, the performance on s1, s2 and v8 to v15 also shows
that, unsurprisingly, on smaller programs the overhead of distribution outweighs the
benefits. Why PLATYPUS takes longer than SMODELS on w8 to w24 is not known.
Potentially, the smaller number of atoms meant the program’s balance between expand,
lookahead and branching were not of the right form to demonstrate the value of distribu-
tion or problems with the delegation policy. Parallel solvers are clearly a very powerful
advance in solver technology, but one that must be used carefully.

6 Future Development

One of the key targets in the next stage of TOAST development is to reduce the amount
of time required in searching. Doing so will also increase the length of instruction se-
quence that can be found. This requires improving both the programs that are generated
and the tools used to solve them.

A key improvement to the generated programs will be to remove all short sequences
that are known to be non-optimal. A slight modification to search allows it to generate
all possible instruction sequences of a given length. By superoptimising each one of
these for the smaller lengths, it is then possible to build a set of equivalence classes of
instructions. Only the shortest member of each class needs to be in the search space

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 8 10 12 14 16 18 20 22 24

"smodels"
"4-processors"
"8-processors"
"16-processor"

Fig. 6. First Verify Test Timings (log scale)

and thus a set of constraints can be added to the programs that search generates. This
process only ever needs to be done once for each processor architecture the TOAST
system is ported to and will give significant improvements in terms of search times.
The equivalence classes generated may also be useful to augment verify.

The other developments needed to reduce the search time are in the tools used.
Addressing the amount of memory consumed by LPARSE and attempting to improve
the scaling of the SMODELS algorithm are both high priorities.

The performance of verify also raises some interesting questions. In its current form,
it is usable for some of the smaller, embedded processors, though it is unlikely to scale
to high end, 64 bit processors. A number of alternative approaches are being considered,
such as attempting to prove equivalence results about the ASP program generated, re-
ducing the instructions to a minimal/pseudo-normal form (an approach first used by
Massalin), using some form of algebraic theorem proving (as the Denali project used)
or attempting to use the observation that sequences equivalent on a small set of points
tend to be equivalent on all of them.

Using the TOAST system to improve the code generated by toolchains such as GCC
is also a key target for the project. By implementing tools that translate between the
TOAST internal format and processor-specific assembly language, it will be possible to
check the output of GCC for sequences that can be superoptimised. Patterns that occur
regularly could be added to the instruction generation phase of GCC. The code gener-
ators used by JIT (Just In Time) compilers and performance critical system libraries,
such as GMP (GNU Multiple Precision Arithmetic Library) could also be application
areas.

It is hoped that it will not only prove useful as a tool for optimising sections of
performance-critical code, but that the ASP programs could be used as benchmarks

Program � � � ��� � ����� ����� �������
w8 0.63 10.939 3.05 3.90092 5.31244 5.24863 5.6869
w9 0.75 20.077 4.78 5.18021 5.65978 7.06414 6.04698
w10 1.02 35.487 8.03 6.67866 6.64935 7.29748 7.87806
w11 1.67 72.561 13.83 10.2767 10.0379 10.7023 9.45804
w12 2.79 129.669 25.67 17.4263 15.9894 15.3256 14.996
w13 5.03 248.974 45.83 32.1642 27.4496 27.4135 22.0735
w14 8.99 541.228 88.23 60.5059 54.06 47.4698 40.7822
w15 18.46 1019.908 161.95 118.506 102.141 77.1823 68.1758
w16 32.55 1854.699 303.69 232.18 189.572 174.96 136.873
w17 69.06 3918.655 554.62 460.882 386.886 357.874 252.538
w18 128.03 7245.888 1034.30 910.266 774.498 653.251 467.091
w19 254.43 14235.360 1898.05 1815.91 1602.51 1311.38 885.655
w20 526.03 27028.049 3576.83 3647.52 3012.45 2558.88 1527.01
w21 1035.09 60064.824 6418.55 7306.26 6061.85 4715.55 3378.42
w22 2552.65 109205.951 11910.02 14813.1 11279.8 9499.05 6788.65
w23 4091.70 238583.922 22766.03 - 23948.4 18912.2 11793.5
w24 8730.61 - 43161.32 - 47673.3 37630.4 23156.8

Fig. 7. Second Verify Test (secs)

for solver performance and the basis of other applications which reason about machine
code.

7 Conclusion

This paper suggests that ASP can be used to solve large-scale, real-world problems.
Future work will hopefully demonstrate this is also a powerful approach to superopti-
misation and thus, perhaps even a ‘killer application’ for ASP.

However, it is not without challenges. Although savings to both the size of the ASP
programs used and their search spaces are possible, this will remain a ‘high end’ ap-
plication for answer set solvers. Some of the features it requires, such as the handling
of large, sparse search spaces and efficiency in producing all possible answer sets (or
traversing the search space of programs without answer sets) are not key targets of
current solver development.

The TOAST project demonstrates that answer set technology is ready to be used in
large-scale applications, although more work needs to be done to make it competitive.

References

1. I. Niemelä and P. Simons: Smodels: An Implementation of the Stable Model and Well-
Founded Semantics for Normal Logic Programs. In: Proceedings of the 4th International
Conference on Logic Programing and Nonmonotonic Reasoning (LPNMR’97). Volume
1265 of LNAI., Springer (1997) 420–429

2. Thomas Eiter and Nicola Leone and Cristinel Mateis and Gerald Pfeifer and Francesco Scar-
cello: The KR System DLV: Progress Report, Comparisons and Benchmarks. In: Proceed-
ings of the 6th International Conference on the Principles of Knowledge Representation and
Reasoning (KR’98), Morgan Kaufmann (1998) 406–417

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 8 10 12 14 16 18 20 22 24

"smodels"
"surya"

"noMoRe++"
"4-processors"
"8-processors"

"16-processors"

Fig. 8. Second Verify Test Timings (log scale)

3. WASP: WP5 Report: Model Applications and Proofs-of-Concept. http://www.kr.
tuwien.ac.at/projects/WASP/wasp-wp5-web.html (2004)

4. Thomas Eiter and Wolfgang Faber and Nicola Leone and Gerald Pfeifer and Axel Polleres:
Using the DLV System for Planning and Diagnostic Reasoning. In: Proceedings of the 14th
Workshop on Logic Programming (WLP’99). (2000) 125–134

5. Monica Nogueira and Marcello Balduccini and Michael Gelfond and Richard Watson and
Matthew Barry: An A-Prolog Decision Support System for the Space Shuttle. In: Pro-
ceedings of the 3rd International Symposium on Practical Aspects of Declarative Languages
(PADL’01). Volume 1990 of LNCS., Springer (2001) 169–183

6. De Vos, M., Crick, T., Padget, J., Brain, M., Cliffe, O., Needham, J.: A Multi-agent Plat-
form using Ordered Choice Logic Programming. In: Proceedings of the 3rd International
Workshop on Declarative Agent Languages and Technologies (DALT’05). Volume 3904 of
LNAI., Springer (2006) 72–88

7. P. Giorgini, F. Massacci, J. Mylopoulos and N. Zannone: Requirements Engineering Meets
Trust Management: Model, Methodology, and Reasoning. In: Proceedings of the 2nd Inter-
national Conference on Trust Management (iTrust 2004). Volume 2995 of LNCS., Springer
(2004) 176–190

8. S. Costantini and A. Formisano and E. Omodeo: Mapping Between Domain Models in An-
swer Set Programming. In: Proceedings of Answer Set Programming: Advances in Theory
and Implementation (ASP’03). (2003)

9. Massalin, H.: Superoptimizer: A Look at the Smallest Program. In: Proceedings of the 2nd
International Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS’87), IEEE Computer Society Press (1987) 122–126

10. Aho, A.V., Sethi, R., Ullmann, J.D.: Compilers: Principles, Techniques and Tools. Addison-
Wesley (1986)

11. Appel, A.W.: Modern Compiler Implementation in C. Cambridge University Press (2004)

12. Proebsting, T.: Proebsting’s Law: Compiler Advances Double Computing Power Every
18 Years. http://research.microsoft.com/˜toddpro/papers/law.htm
(1998)

13. Granlund, T., Kenner, R.: Eliminating Branches using a Superoptimizer and the GNU C
Compiler. In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’92), ACM Press (1992) 341–352

14. Joshi, R., Nelson, G., Randall, K.: Denali: A Goal-Directed Superoptimizer. In: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’02), ACM Press (2002) 304–314

15. Joshi, R., Nelson, G., Zhou, Y.: The Straight-Line Automatic Programming Problem. Tech-
nical Report HPL-2003-236, HP Labs (2003)

16. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Pro-
ceedings of the 5th International Conference on Logic Programming (ICLP’88), MIT Press
(1988) 1070–1080

17. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9(3-4) (1991) 365–386

18. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

19. Denecker, M.: What’s in a Model? Epistemological Analysis of Logic Programming. In:
Proceedings of the 9th International Conference on the Principles of Knowledge Represen-
tation and Reasoning (KR2004), AAAI Press (2004) 106–113

20. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. to appear in ACM Transactions on
Computational Logic (2006)

21. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem-Proving. Com-
munications of the ACM 5(7) (1962) 394–397

22. Syrjänen, T.: Lparse 1.0 User’s Manual. Helsinki University of Technology. (2000)
23. Giunchiglia, E., Lierler, Y., Maratea, M.: SAT-Based Answer Set Programming. In: Pro-

ceedings of the 19th National Conference on Artificial Intelligence (AAAI-04), AAAI Press
(2004) 61–66

24. Fangzhen Lin and Yuting Zhao: ASSAT: Computing Answer Sets of a Logic Program by
SAT Solvers. Artificial Intelligence 157(1-2) (2004) 115–137

25. Enrico Pontelli and Marcello Balduccini and F. Bermudez: Non-Monotonic Reasoning on
Beowulf Platforms. In: Proceedings of the 5th International Symposium on Practical Aspects
of Declarative Languages (PADL’03). Volume 2562 of LNAI., Springer (2003) 37–57

26. Kane, G.: MIPS RISC Architecture. Prentice Hall (1988)
27. SPARC International, Inc: The SPARC Architecture Manual, Version 8. (1992)
28. Mellarkod, V.S.: Optimizing The Computation Of Stable Models Using Merged Rules. Tech-

nical report, Texas Tech University (2002)
29. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ Approach to

Answer Set Solving. In: Proceedings of Answer Set Programming: Advances in Theory and
Implementation (ASP’05). (2005)

30. Asparagus Project Team: Asparagus Benchmark Project. http://asparagus.cs.
uni-potsdam.de/ (2004)

