ﬁ.
&
Swansea University ‘Cronfa

Prifysgol Abertawe Setting Research Free

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
Proceedings of 4th International Conference on Learning and Teaching in Computing and Engineering (LaTICE 2016)

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa43378

Conference contribution :

Davenport, J., Hayes, A., Hourizi, R. & Crick, T. (2016). Innovative Pedagogical Practices in the Craft of Computing.
Proceedings of 4th International Conference on Learning and Teaching in Computing and Engineering (LaTICE
2016), (pp. 115-119). Mumbai, India: IEEE.

http://dx.doi.org/10.1109/LaTiCE.2016.38

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/


http://cronfa.swan.ac.uk/Record/cronfa43378
http://dx.doi.org/10.1109/LaTiCE.2016.38
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

2016 International Conference on Learning and Teaching in Computing and Engineering

Innovative Pedagogical Practices in the Craft of Computing

James H. Davenport, Alan Hayes, Rachid Hourizi

Department of Computer Science
University of Bath
Bath BA2 7AY, UK

Email: {J.H.Davenport,A.Hayes,R.Hourizi} @bath.ac.uk

Abstract—Teaching programming is much more like teaching
a craft skill than it is a purely theoretical subject. Hence an
“apprenticeship” model, where apprentices learn by watching
the master do, and then do themselves, and are criticised in
their doing, is, we claim, more appropriate than the “lec-
turer/lecturee” model that universities implicitly adopt. Fur-
thermore, there are generally many more apprentices than the
master can personally supervise. Universities will therefore use
various tutors, who should be regarded as the analogue of the
guild-master’s journeymen. However, how does one encourage
this mindset in students who, for their other courses, are indeed
lecturees? What are the implications for the journeymen?

1. Introduction: Problems and Contexts

Computer programming, the art of actually instructing a
computer to do what one wants, is fundamentally a practical
skill. How does one teach this practical skill in a university
setting, to students who may not be initially motivated to
acquire it, and who may have a variety of past experience, or
none at all? How does one ensure that they progress to the
rest of their studies with a firm background in programming,
so that programming difficulties do not impede their other
learning? Here experienced teachers from two different UK
institutions describe how they have addressed these chal-
lenges. Above all, the key is to recognise that programming
is a practical subject, and needs to be taught and assessed
as such. A model we use is that of ‘apprenticeship’ [14],
where the students learn how to do by seeing it done, and
by being guided in their doing. Bath is a “top of the pile”
institution, recruiting able students to both Mathematics and
Computing degrees, but in neither case will they, in the cur-
rent state of the UK curricula, have necessarily encountered
any programming before entering university [4]. Cardiff
Met offers degrees in computing, software engineering and
business information systems to a broad range of students
from diverse educational backgrounds. This paper focuses
on Bath, but the same general techniques have been applied
in Cardiff Met, to good effect there also. Hence the authors
believe that their practice is worth disseminating.

At Bath, JHD teaches programming to 330 Mathematics
students (Bath-M) in an innovative course [7], while RH

978-1-5090-2504-6/16 $31.00 © 2016 IEEE
DOI 10.1109/LaTiCE.2016.38

115

Tom Crick

Department of Computing & Information Systems
Cardiff Metropolitan University
Cardiff CF5 2YB, UK
Email: tcrick@ cardiffmet.ac.uk

teaches programming far more intensively to 120 Computer
Science students (Bath-C). JHD has used this approach,
refining it over the years, since the course started in 2009,
while RH has been adopting parts of it as his course has
grown from 70 to 120.

2. Programming Apprentices

Programming is a hard craft to master and its teaching is
challenging. An apprentice model, where students learn their
craft from a master is an approach that can lead to improved
student engagement [1], [14]. Although traditionally applied
to physical and vocational skills, the apprenticeship model
can also be applied to the acquisition of cognitive skills
such as those required for programming. In this context,
the master is required to focus on the programming process
and demonstrates it through writing, debugging and running
‘live’ programs. This takes place whilst being observed
by the student cohort. Scaffolding is provided through the
provision of regular practical exercises with good quality
formative feedback.

This model is related to, but different from, the ‘lab-
first” approach discussed in [9]. Their own analysis (section
8.3) is worth considering: “The lab-first approach has both
advantages and disadvantages. On the one hand, in the
spirit of constructivism, its main advantage is expressed by
the active experience learners get in the computer lab, which
in turn, establishes foundations based on which learners
construct their mental image of the said topic;, on the
other hand, the lab-first teaching approach involves some
insecurity feelings expressed both by the computer science
teacher and the learners.” In our case, insecurity among
the learners is a real concern, and manifests itself very
clearly among students who can arrive without any previous
experience of programming and then find themselves in labs
with relatively advanced programmers or miss the first two
weeks of term and then start the course and its labs at a
disadvantage. These late starters find their relative lack of
experience daunting, despite the support provided by videos
of past sessions. Constructivists interpret student learning
as the development of personalised knowledge frameworks
that are continually refined. According to this theory, to

IEEE
computer
®© psouety



learn, a student must actively construct knowledge, rather
than simply absorbing it from textbooks and lectures [12].
Students develop their own self-constructed rules, or “al-
ternative frameworks” [2]. For example, in programming,
these alternative frameworks “naturally occur as part of the
transfer and linking process” [6]; they represent the prior
knowledge essential to the construction of new knowledge.
When learning, the student modifies or expands his or her
framework in order to incorporate new knowledge. We have
also had an interest in threshold concepts [11], [12] — as a
subset of the core concepts in a discipline — for computing,
and more specifically, programming [10]. These are the
building blocks that must be understood; in addition, they
must be:
e Transformative: they change the way a student looks
at things in the discipline;
o Integrative: they tie together concepts in ways that were
previously unknown to the student;
e Irreversible: they are difficult for the student to un-
learn;
o Potentially troublesome for students: they are concep-
tually difficult, alien, and/or counter-intuitive;
o Often boundary markers: they indicate the limits of a
conceptual area or the discipline itself.

Students who have mastered these threshold concepts,
however, have, at least in part, “crossed over from being
outsiders to belonging to the field they are studying” [8],
although there is some dispute on how they apply to com-
puter science [3]. Our interest in these transformations, inte-
grations, potentially troublesome challenges and boundaries
informs the structure of the programming courses at both
Bath and Cardiff Met, the work we expect from our students
and the help that we require from our course tutors (the
journeymen in our apprenticeship model). We introduce our
approach to these areas in this short practice paper and will
expand upon each one in future work.

3. Course Structure and Assessment

At both Bath and Cardiff Met, we encourage our pro-
gramming apprentices to develop an interdisciplinary mind-
set and transferability of skills: we view programming as
sharing with mathematical thinking in the ways in which
we might approach solving a problem; with engineering
thinking in ways of designing and evaluating a large, com-
plex systems and with scientific thinking in ways of un-
derstanding computability, intelligence, the mind and hu-
man behaviour. All of these are fundamental aims of our
undergraduate degree programmes. Thus, more specifically,
we explicitly try and develop higher-level computational
thinking and problem solving skills before a significant
focus on syntactic and semantic programming structures.
Whilst this abstraction can be conceptually difficult for many
students transitioning from secondary education through to
university, our courses provide an opportunity to embed this
at the start of their degree, intersecting across a number
of the key anchor modules. The wide range of experi-
ence amongst our students at the point of entry into our

116

programming course means that each of them experiences
these transitions differently. Though each individual can
be considered a programming apprentice, they encounter
the irreversible transformations and moments of conceptual
integration at different moments and struggle to different
extents with the integration of scientific, engineering and
mathematical thinking. These disparities of experience and
pace of transformation have direct impact on the ways that
we structure our courses.

At Bath, we teach programming as a practical appren-
ticeship, combining hands-on application with a strong the-
oretical underpinning. In the light of this twin focus, Bath—
M’s programming is taught as a concurrent half of an all-
year module, resourced as an extremely hands-on unit i.e.
with every student getting one hour of supervised laboratory
time per week. This actually meant that there was twice as
much practical time in all as in the previous regime of all
of a one-semester module. Having taught programming at
both the “normal” (at least for Bath) rate of two hours of
lectures and one of laboratory and at this “parity” rate of one
hour of programming lecture and one hour of laboratory per
week, JHD is convinced that the parity rate is more effective.
By way of comparison, Bath-C, where Programming is a
double (24 CAT/12 ECTS credits) module, provides three
hours of lectures and two of laboratories/week: essentially
a halfway house.

Another strategic decision in strong alignment with the
apprenticeship model is the assessment method for the
course. Bath—C has a fairly traditional view: 1/6 on weekly
exercise sheets, 1/3 on major coursework and 1/2 on the
written exam. The high-level view of the assessment in
Bath-M is also “50% examination, 50% coursework”. The
detailed breakdown is slightly more subtle: the mathematics
component is 38% examination and 12% class test (with
computers), while the programming component is 38%
coursework and 12% examination. As of writing (November
2015) the course team is considering changes to the detailed
breakdown, but the 50:50 split will remain. It is worthwhile
considering the Learning Outcomes of the module (from
the Catalogue, our numbering): After taking this unit, the
student should be able to:

1) Apply the basic principles of programming in studying
problems in discrete mathematics.

2) Make proper use of data structures in the applications
context.

3) Demonstrate understanding of a range of mathematical
topics which relate to computation, such as modular
arithmetic, elementary graph theory and elementary
computational number theory and their applications.

4) Analyse the complexity of simple algorithms.

5) Explain the use of some famous algorithms such as the
Fast Fourier Transform.

6) Use the MATLAB programming environment.

Items 1, 2 and 6 are directly practical skills whilst items
3, 4 and 5 reflect the (complementary) theoretical aims of
the course. Our interest in the former (the practical appli-
cation of programming skills) leads to the 50% coursework



assessment mentioned above, and relates to JHD’s opening
statement to the course: “My aim is to show you how to
program, my and the laboratory tutors’ aim is to help you
with your programming, and your aim ought to be to learn
programming by doing it’. JHD has used this statement
since 2009, but, since encountering [14] he has realised that
this is really an apprenticeship model, with the students as
apprentices, the tutors as journeymen, and the lecturer as the
master craftsman. There is a strong emphasis on “learning
by doing”. For example, in the first lecture JHD writes in
front of them (and definitely does not produce a pre-written
one out of the hat) a recursive factorial program, and the first
exercise is to adapt this into a Fibonacci number program.
In fact, this “writing” process is iterative.

The laboratory sessions take place in five one-hour ses-
sions at the end of the week (after the lectures and formal
problem classes). They are held in 75-seater laboratories
(arranged as five rows of 15 machines each), and the stu-
dents are allocated to a specific row of 15 within that.
Similarly, there are five tutors, each assigned to a specific
row. Ideally, the same tutor stays with the same group of 15
all year. This firm allocation of students to tutors, and the
briefing to tutors that they are responsible for the learning
of their allocated students, means that tutors do occasionally
raise concerns about specific students with me in a way
that tutors in a floating pool would not. The allocation of
students to specific tutors allows the latter to develop a
deeper understanding of the experience that former bring
to the course. It also allows tutors to anticipate the degree
to which early lab exercises present a substantial challenge
to individual students and adapt the assistance they provide
accordingly.

It has been the authors’ gut feeling for many years that
weekly practice, and frequent assessment, are important in
getting students into the habit of programming. This has
recently been borne out by [15], who state “Students with
high absolute submission counts during tutorials tend to
significantly more often get a good grade from the course
than those who have low absolute submission counts.”

4. Student Engagement

Beyond our interest in the provision of sufficient oppor-
tunity for hands on coding, however, we have also worked
to foster student engagement with our practical/theoretical
apprenticeship model. It is all very well having weekly labo-
ratory sessions, and exercises: how, in a university context,
does one make students use them? Bath-C assigns marks
for them (1/6 of the total). In Bath-M, where there are no
actual marks, the answer is that, in the weeks where there
is no formal coursework being done, and especially in the
first few weeks, we still set formative weekly exercises.
These are graded pass/fail, and are known as ‘Tickables’,
since the laboratory tutor ticks them in the course of each
laboratory session. The tutors are instructed that a certain
amount of ‘coaching’ is permissible here (where it would
not be in assessed coursework) and that one of the aims,
again particularly in the first weeks, is to instil confidence

117

in the students. These exercises are sequential, building
both on the lectures and on previous ones. The first Tick-
able builds on the factorial program written in lectures (as
shown above), and asks the students, based on the lecturer’s
program (which is supplied in the Learning Environment
after the lecture), to write a Fibonacci number program, i.e.
F(n) = F(n—1)+ F(n—2) with suitable base conditions.
The students are also asked to reason about the running time
of this program, which builds on the discrete mathematics
component of the course. The second Tickable extends this
to the matrix formulation, and so on. Each subsequent week,
the students can build on their solution from the previous
week, or on the lecturer’s solution. Simple pass/fail marking
by the tutor seems easy from the lecturer’s point of view,
but the experienced academic will ask about:

« appeals from the tutor’s decision not to tick;

o the incentives for the students to do the work;

« illnesses and other absences, and requests for exten-
sions, which get in the way of providing the solution
in a timely manner for next week’s Tickable.

The Bath—M solution to these, potentially very important,
questions are as follows:

1) JHD attends all the laboratories for the first Tickable,
and resolves any queries on the spot (also helping
the new tutors and giving them confidence), possibly
announcing any adjudications if this seems appropri-
ate. Thereafter, over a period of six years with 250
students/year doing ten more Tickables each, there
has not been a single appeal against the justice of
ticking. (There are appeals against the misrecording of
ticks, and the tutors can be fallible here, and forget to
copy a hand-written record into the Virtual Learning
Environment.)

The incentive is that, if the student does not get 80%
of the ticks (of which there are generally 15) for the
course, then the assessed coursework mark is reduced
pro rata. In practice this is a rare event, as nearly all
students do get over 80%, and those that undershoot
do so drastically, fail the coursework anyway, and are
generally those students who do not engage at all with
the course. What does occasionally happen is that a
student misses the first two laboratories (which the
Ticking process will record), is reported to the Personal
Tutor (the Department Office provides a list of Personal
Tutors arranged by student computer username, which
helps!) and then starts attending seriously, at which
point the missing ticks are condoned.

Minor illnesses and absences are explicitly (this is
explained as part of the course briefing, and repeated
when requests are made) allowed for by the 80% rule,
in that a student can miss three without penalty. More
would indicate a more serious condition, which should
be addressed programme-wide rather than just in this
unit. One case that this does not cover is that of sport
players who may miss several laboratories, but this is
known in advance, and the rule is “submit in advance
to your tutor by e-mail”. In particular, no extensions are

2)

3)



given for Tickables (unlike assessed coursework), and
so the weekly rhythm of “lecturer demonstrates; student
work a similar example; lecturer shows his solution,
uses it to lead into next demonstration” is not disrupted.

5. Impact on Tutoring: Journeymen

Just as in a traditional craft, the journeymen have also
to learn, and to be managed. JHD saw the importance of
this whilst at the University of Waterloo, Canada, where
the programming lecturer was supported by an entire cast
of ISAs (Instructional Support Assistants), IAs (Instructional
Apprentices), ISC (Instructional Support Coordinator: essen-
tially a full-time role recruiting and rostering the ISAs and
IAs). The tutors at Bath are generally PhD students from the
two departments of Mathematical Sciences and Computer
Science. One tutor in each department is formally designated
as the Senior Tutor, with two sets of responsibilities:

o to the lecturer: to inform them when things are going
wrong, and to ensure that the lecturer is aware of
generic difficulties;

e to the other tutors, to act as a less formal source of
advice and support than going to the lecturer.

These two Senior Tutors, and other experienced tutors, are
consulted by the lecturer about changes, and often used to
test new assignments or exercises. It should be noted that
three of the seven authors of [7] are/were Senior Tutors. JHD
is often asked by tutors to write references for their teaching
abilities as they move on to other jobs, and gladly provide
them. One tutor returned to a lecturing post in her native
Thailand and occasionally asks JHD questions of teaching
practice, as well as using some of the ideas (such as the
80% rule) in her own university. It is important to remember
a simple piece of arithmetic: in a given week the lecturer
delivers about 1.5 hours of teaching (lecture plus half a prob-
lem class), while the laboratory tutors deliver 25 between
them. Hence time spent writing briefing material for the
tutors is often at least as valuable as time spent preparing
lectures. Every exercise is issued with some support material
for the tutors: sometimes “what to explain” and sometimes
“what not to explain — they have to figure that one out”.
This is necessary to ensure a uniform experience across the
25 tutorial groups. On a more immediate level, we ensure
that at least one, and generally two, of the five tutors in
the lab for any hour are those who have done this tutoring
in previous years. This is particularly important at the start
of the year, when new tutors may not be that familiar with
MATLAB, and have yet to learn to spot the baffling blunders
that beginners and near-beginners can make.

6. Suggestions for Others

As we have seen, there are significant benefits to the
apprenticeship model and approach. This has been high-
lighted in both the Bath and Cardiff Met cases, across two
different departments and discipline areas, but focusing on
the teaching of introductory programming. The potential of

118

early development of computational thinking and transfer-
able problem solving skills is clear, as well as fostering a
culture of software carpentry and codemanship: developing
useful and usable software artefacts. While this is an under-
explored area from a pedagogic research perspective, we
have seen the benefits from multiple cohorts at the two
institutions. Many large-scale programming classes will rely
heavily on tutors. They form an important part of the
students’ learning experience. The following points have
been found useful at Bath, where we have large laboratories
(efficient for timetabling, but harder to manage):

o Assign students to tutors (Bath-M) or match them
(Bath—C: stronger undergraduates with technically
stronger tutors, weaker students with better teachers),
rather than having a ‘floating pool’. We are certainly
been helped here at Bath by having one large laboratory
for 75=5%*15, rather than smaller laboratories, as there
can then be a mix of tutor experience in the room.
Brief the tutors on what they are expected to do,
especially the role in helping (or not) students with
weekly exercises versus the assessed coursework.
Active and engaged tutors are key: ideally they should
not sit in labs waiting to be asked for help!

Debrief the tutors: they know far better than the lecturer
what is actually going on in the laboratory classes (and
with the students, see the first point).

Staft development of tutors is important, and pays off.
Encourage students to help each other, such as peer
support in labs (often but not always more advanced
students helping those with less experience) and on-
line, for example on Moodle or other virtual learning
environment.

We also have the following general suggestions.

o Find a way (the Bath-M way is only one option,
and Bath—C uses a more traditional way) of ensuring
weekly exercises are taken seriously by the students;
engagement is key, especially for the apprenticeship
model to work. This means that the exercises require
rapid turnround, ideally automated marking. We note
that increased automation was welcomed by the Bath—
C students (Staff-Student Committee 29 October 2015).
Since the aim is to teach the craft of programming, the
lecturer should demonstrate programming, rather than
just talk about pre-written programs; furthermore, they
should emphasise that their solution is one of perhaps
a number of ‘correct’ solutions, but may not be the
optimal solution.

The choice of programming language should suit the
audience and the pedagogic goals, not some pre-defined
idea of a ‘good’ language; be wary of jumping to new
(and potentially faddish) languages, tools and environ-
ments.

Develop (and emphasise) computational thinking skills
from the start, linking theoretical skills and understand-
ing to real-world problem solving. A wide range of
resources [https://goo.gl/dZ6vyj] already exists that can
be easily adapted and adopted.

L]

L]



o The value of developing a culture around (and appreci-
ation of) software carpentry and codemanship: essen-
tially, creating useful and usable software artefacts.

This paper has focused on the teaching of introductory
programming as a craft skill, to be taught via an appren-
tice model, with further long term aims of fostering a
culture of software carpentry and codemanship: developing
useful and usable software artefacts. Teaching it this way
has substantial advantages in terms of student engagement,
participation and increased retention. There are other craft
skills in computing (for example, database design, software
engineering etc.), and probably beyond, which could easily
benefit from the same approach.

7. Conclusion

We have seen — and will to continue to see — significant
changes to computer science education in the UK, from
primary school through to FE and HE [5]. From reform
of the computing curriculum in England, scaling and CPD
challenges in Scotland, as well as expected future reform
in Wales and Northern Ireland, the curriculum and quali-
fications landscape will most likely increase the diversity
of qualifications and experiences of entrants to HE in the
short and medium term. A renewed focus on pedagogy
for teaching computer science and programming should be
embraced; for example, the formation of the UK Forum
for Computing Education [http://ukforce.org.uk], led by the
Royal Academy of Engineering and supported by BCS, The
Chartered Institute for IT, is a positive step to bring together
key stakeholders in the UK.

Furthermore, as a discipline, we are currently in the
midst of significant scrutiny, from both an educational,
economic and policy perspective; this presents both opportu-
nities and warnings: the opportunity to raise the profile and
wider public perception of the discipline as an educational
and economically valuable pursuit versus being driven to
support the immediate and somewhat transient demands on
the technology sectors. Recent and ongoing reviews that will
have an impact on our discipline include: the Shadbolt and
Wakeham reviews of computer science and STEM graduate
employability (as well as degree accreditation); the new UK
QAA Subject Benchmark Statement for Computing to be
published in early 2016; the 2014 UK Digital Skills Task-
force report [http://www.ukdigitalskills.com] (“Digital Skills
for Tomorrow’s World”), the 2015 UK House of Lords Select
Committee on Digital Skills’ report [http://www.parliament.
uk/digital-skills-committee] (“Make or Break: The UK’s
Digital Future”), as well as emergent effects from the recent
or upcoming changes to the computing curricula across the
four nations of the UK.

Finally, we acknowledge the impact of the application
of computational techniques across science and engineering
and how this has fundamentally affected practices within
those disciplines. Computing is both a rigorous academic
discipline in its own right and also facilitates and sup-
ports a wide range of other disciplines, from computational
physics to computational social science; in essence it has

119

become a bridge for interdisciplinarity: it now does not
only support how science is done, but what science is
done [13]. Therefore, aspects from this report (and from
across computer science) could also be applied to a number
of STEM disciplines that now need to teach introductory
programming (and how to leverage data and computation to
solve domain problems) in their undergraduate curricula.

Acknowledgments

The authors would like to thank all the tutors who have
contributed to the development of these courses at both Bath
and Cardiff Met: in many ways they are the real teachers.

References
[1] Astrachan, O., and Reed, D., AAA and CS 1: the applied apprentice-
ship approach to CS 1. ACM SIGCSE Bulletin, 27(1995), 1-5.

Ben-Ari, M., ‘Constructivism in Computer Science Education’, J.
Computers in Mathematics and Science Teaching 20(2001), 45-73.

Boustedt, J., Eckerdal, A., McCartney, R., Mostrom, J. E., Ratcliffe,
M., Sanders, K. and Zander, C., ‘“Threshold Concepts in Computer
Science: Do They Exist and Are They Useful?’, Proc. 38th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE’07),
ACM Press, pp. 504-508.

Brown, N.C.C., Kélling, M., Crick, T., Peyton Jones, S., Humphreys,
S., and Sentance, S. “Bringing Computer Science Back Into Schools:
Lessons from the UK,”, Proc. 44th ACM Technical Symposium on
Computer Science Education (SIGCSE’13), ACM Press, pp. 269-274.

Brown, N.C.C,, Sentance, S., Crick, T., and Humphreys, S. “Restart:
The Resurgence of Computer Science in UK Schools,” ACM TOCE
14(2), pp. 1-22, 2014.

Clancy, M., Computer Science Education Research, Routledge, chap-
ter Misconceptions and Attitudes that Interfere with Learning to
Program, pp. 85-100, 2004.

Davenport, J.H., Wilson, D., Graham, I., Sankaran, G., Spence, A.,
Blake, J. and Kynaston, S., Interdisciplinary Teaching of Computing
to Mathematics Students: Programming and Discrete Mathematics.
To appear in MSOR Connections. http://journals.heacademy.ac.uk/doi/
abs/10.11120/msor.2014.00021. http://opus.bath.ac.uk/37841/.
Eckerdal, A., McCartney, R., Mostrom, J. E., Ratcliffe, M., Sanders,
K. and Zander, C., ‘Putting Threshold Concepts into Context in
Computer Science Education’, Proc. 11th Annual SIGCSE Confer-
ence on Innovation and Technology in Computer Science Education
(ITICSE’06), ACM Press, pp. 103-107.

Hazzan, O., Lapidot, T. and Ragonis, N., Guide to Teaching Computer
Science: An Activity-Based Approach, Springer, 2011.

(4]

(5]

(7]

(8]

[9]
[10] Khalife, J., “Threshold for the introduction of programming: providing
learners with a simple computer model’, in Proc. 28th Int. Conf. on
Information Technology Interfaces, pp. 71-76, 2006.

Land, R., Meyer, J. H. and Smith, J., eds, Threshold Concepts and
Transformational Learning, Vol. 16 of Educational Futures: Rethink-
ing Theory and Practice, Sense Publishers, 2008.

Meyer, J. H.,, Land, R. and Baillie, C., eds, Threshold Concepts and
Transformational Learning, Vol. 42 of Educational Futures: Rethink-
ing Theory and Practice, Sense Publishers, 2010.

(11]

[12]

[13] Royal Society, ‘Science as an open enterprise’, https://royalsociety.
org/topics-policy/projects/science-public-enterprise/report.

[14] Vihavainen, A., Paksula, M. and Luukkainen, M., ‘Extreme Appren-
ticeship Method in Teaching Programming for Beginners’, in Proc.
42nd ACM Technical Symposium on Computer Science Education
(SIGCSE’11), ACM Press, pp. 93-98.

Willman, S., Lindéna, R., Kaila, E., Rajala, T., Laakso, M.-J. and
Salakoski, T., ‘On study habits on an introductory course on pro-
gramming’, Computer Science Education 25(3) pp. 276-291, 2015.

[15]



