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Abstract: Based on the KGD scheme, this paper investigates, with both analytical and numerical 

approaches, the propagation of a hydraulic fracture with a fluid lag in permeable rock. On the analytical 

aspect, the general form of normalized governing equations is firstly formulated to take into account both 

fluid lag and leak-off during the process of hydraulic fracturing. Then a new self-similar solution 

corresponding to the limiting case of zero dimensionless confining stress ( 0T ) and infinite dimensionless 

leak-off coefficient (  L ) is obtained. A dimensionless parameter R  is proposed to indicate the 

propagation regimes of hydraulic fracture in more general cases, where R  is defined as the ratio of the two 

time scales related to the dimensionless confining stress T  and the dimensionless leak-off coefficient L . In 

addition, a robust finite element based KGD model has been developed to simulate the transient process from 
0L  to  L  under 0T , and the numerical solutions converge and agree well with the self-similar 

solution at 0T  and  L . More general processes from 0T  and 0L  to  T  and  L  for 

three different values of R  are also simulated, which proves the effectiveness of the proposed dimensionless 

parameter R  for indicating fracture regimes.   

Keywords: Hydraulic fracture, self-similar solution, fluid lag, leak-off, parametric space 

1. Introduction 

Owing to the increasing adoption in the oil & gas industries, hydraulic fracturing has been extensively 

researched for nearly half a century, using analytical, experimental, and numerical approaches. An influential 

set of work is the systematic semi-analytical studies based on the KGD model [1-3], among others. These 

studies have led to the classification of different kinds of propagation regimes, as well as providing 

benchmarks for more advanced numerical studies. The KGD model was firstly developed by Khristianovic 

and Zheltov [4] and Geertsma and De Klerk [5], and then was improved by Detournay and his co-workers 

since 1999 [6]. The problem of hydraulic fracturing is significantly simplified with the following 

assumptions: 1) plane strain assumption and 2) fracture propagation along a straight line. With respect to 

governing equations, the elastic equation is used to model the rock deformation while Poiseuille’s law and 

the continuity equation are adopted to simulate the fluid flow. The fluid can be Newtonian or non-

Newtonian. Fracture propagation is controlled by the linear elastic fracture mechanics theory. Leak-off can 
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be simulated using Carter’s leak-off model or just ignored. As for boundary conditions, a constant injection 

flow rate is normally assumed. Despite the strict assumptions, the important characteristics including 

nonlocal character of elastic response and coupling between fluid flow and rock deformation are captured by 

the KGD model.  

Spence and Sharp [7] conducted a pioneering work in this direction, and they derived the late-time solution 

without leak-off for lens-shaped and plane strain hydraulic fracturing under power law time-dependent or 

exponential time-dependent injection flow rate. They proposed the idea of scaling to derive the self-similar 

solutions for hydraulic fracture propagating in limiting propagation regimes. By using scaling, the key 

unknowns including fluid pressure, fracture width and length are all transferred to corresponding time-

independent normalized parameters. In the meantime, the governing equations are also transformed into 

normalized governing equations. Then the analytical solution consisting of a particular solution and a general 

solution (a series of Chebyshev polynomials) can be solved using the method of continuation. This novel 

analytical solution strategy became popular and has been adopted in many subsequent studies. Other 

polynomial basis functions such as orthogonal Jacobi polynomials and ultraspherical polynomial (or 

Gegenbauer polynomial) have also been adopted [6, 8, 9]. Another way to solve the normalized fracture 

width and fluid pressure is to assume a piecewise linear profile for fluid pressure and then solve the related 

coefficients through numerical iteration [10, 11].  

Based on the solution strategy described in [7], the propagation of deep-buried or shallow plane strain and 

penny-shaped hydraulic fracture as well as specific tip behaviors have been extensively studied [12, 13]. The 

scope of this paper is restricted in the deep-buried plane strain hydraulic fracture.  According to the  

analytical analysis, the propagation regimes of a hydraulic fracture are mainly determined by three 

dimensionless parameters, namely the dimensionless toughness K, the dimensionless confining stress T  and 

the dimensionless leak-off coefficient L [1, 2, 10]. These three dimensionless parameters ranging from 0 to 

∞ are functions of rock and fluid properties, in-situ stress conditions and treatment parameters. A wedge-

shaped parametric space, shown in Figure 1(a), has been constructed considering the merging of early time 

( 1=T ) and late time ( 1T ) solutions for large dimensionless toughness [14]. Different combination of 

the values or evolutions of the three dimensionless parameters correspond to different propagation regimes. 
For example,  K , 0T and 0L corresponds to toughness-storage-dominated propagation of 

hydraulic fracture (vertex K). To summarize, the following cases have been investigated semi-analytically: 1) 
MK edge ( 0   K ,  T  and 0L ) [7];  2) Vertex M ( 0K ,  T and 0L ) [6, 8]; 3) Vertex 

M ( 1=K ,  T and 0L ) [9]; 4) KK෩ edge (  K  and 0   L ) [15, 16]; 5) Vertex O and K, edge 
OK ( 0   K , 0T and 0L ) [10]; 6) Vertex K ( 1=K , 0T and 0L ) [3, 17]; 7) Plane OMK 

( 0   K , 0   T  and 0L ) [1]; 8) Vertex M, M෩  and edge MM෩  ( 0K ,  T  and 0   L ) [2]; 

and 9) Plane MKM෩K෩ ( 0   K ,  T  and 0   L ) [11]. A comprehensive review of these solutions 

are presented in [13]. These existing semi-analytical solutions have served as benchmarks for extensive 

numerical algorithms [18-22]. More recently, Dontsov [23] derived the approximate solutions for all the 

vertices and edges on MKM෩K෩ plane and verified them with numerical solutions. Self-similar solutions with 
respect to porous media have also attracted increasing attention recently [24, 25]. 

Apart from the analytical investigations, the hydraulic fractures propagating in specific propagation regimes 

have also been simulated numerically. Desroches and Thiercelin [26] developed a hydraulic fracturing model 

named Loramec in KGD scheme. By using an integro-variational approach for the elasticity equation, both 

the fracture width and fluid pressure were expressed and solved on a 1D mesh. Fluid lag and leak-off have 

been simulated separately and the corresponding results have been used to verify the semi-analytical 



solutions in literatures [6, 27]. Without considering leak-off, Hunsweck, Shen [28] developed an finite 
element based hydraulic fracturing model following the KGD scheme. The numerical results match well 
with the self-similar early-time and late-time solutions. 

(a) (b) 

(c) (d)

Figure 1. Parametric space of plane strain hydraulic fracturing and limiting propagation regimes 

However, the previous analytical and numerical solutions all stay on OMK and MKM෩K෩ plane (shown in 
Figure 1(b) and Figure 1(c)). In this study, the self-similar solutions on O෩K෩ edge ( 0   K , 0T  and 

 L ) are obtained with a semi-analytical approach, while the transient solution from OK edge to O෩K෩ edge 
(OKO෩K෩ Plane: 0   K , 0T  and 0   T ), shown in Figure 1(d), and the transient solution from 

OK edge to M෩K෩ edge are solved numerically.  The current study differs from the previous studies in the sense 
that the fluid lag and leak-off need to be modelled simultaneously, which requires complete governing 

equations with both fluid lag and leak-off considered in the theoretical analysis and a robust numerical model 

to deal with related simulation issues due to significant decrease of fluid front velocity caused by leak-off. A 

new dimensionless parameter is proposed to indicate the propagation regimes of hydraulic fracture in more 

general cases. The rest of the paper is organized as follows. In Section 2, the problem formulation and 

governing equations are presented. In Section 3, the general form of the normalized equations suitable for the 

analysis of both fluid lag and leak-off is derived firstly. Then the relation between the dimensionless 

parameters and the possible propagation regimes of hydraulic fracturing are discussed. The asymptotic 

solutions for hydraulic fracturing under zero dimensionless confining stress and infinite dimensionless leak-

off coefficient are solved. A finite element based KGD model is developed in Section 4. The semi-analytical 

and numerical results for the asymptotic and transient solutions are discussed and compared in Section 5.   

2. Mathematical models 

We base our study on a KGD model as shown in Figure 2, where a plane strain assumption is applied along 

the plane orthogonal to the vertical wellbore. The rock formation is assumed to be linear elastic, plane-strain 

and permeable. To simulate the fracturing fluid, the incompressible Newtonian fluid model is adopted with 

the laminar-flow assumption. The stress boundary conditions are set according to the confining stresses, 

while the influence from gravity is ignored as it is orthogonal to the simulation plane. A constant injection 

flow rate is imposed on the injection point at the center of the model. A strict assumption in the KGD model 

is that the hydraulic fracture propagates along a straight line. For the sake of completeness, the governing 

O 

O෩ 

K

K෩

M

M෩  

K 

M

O

K
 =

0 

L =0

L =∞

M K

M෩  K෩

L =0

L =∞

O K 

O෩ K෩ 



equations for rock deformation, fluid flow and fracture propagation are briefly summarized below. 

 
Figure 2. Sketch of the KGD model 

   Rock deformation is computed according to an elastic singular integral equation relating the net pressure 

0fp p    to fracture width and fluid pressure inside fluid lag is assumed to be zero. 
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where 2(1- )/E E v   is the plane strain modulus, E and v  are the Young’s modulus and Poisson’s ratio of 

the rock respectively, l is half length of the fracture, lf  is half length of fluid channel and the integral kernel 

G is expressed as 
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  As the width of a hydraulic fracture is much smaller than the other two dimensions, a lubrication theory, 

known as the Poiseuille’s law (or the cubic law) is commonly adopted to describe the momentum 

conservation of fracturing fluid:  

3
fpw

q
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
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 
                                                                        (3) 

where q  is the flow rate, w  the fracture width, =12  ,   the viscosity of the fracturing fluid, fp  the 

fluid pressure, and s  is the local coordinate aligned with the tangential direction to the fracture path. 

Considering the leak-off, the mass conservation for fluid flow is expressed as: 

0
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                                                                (4) 

where t  denotes time derivative. Leak-off flow rate g is determined according to Carter’s leak-off model:  
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where L2C C  , LC  is the leak-off coefficient, 0t  is the time at which the fluid front arrived to a given 

point of coordinate s . 

Substituting Eqn. (3) into Eqn. (4) yields 

 31
0

12
fpw

w +g
t s s

  
     

                                                         (6) 

The corresponding boundary condition for this equation is a constant injection flow rate Q0 at s=0. The 

integral form of the local continuity equation is expressed as 

3
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The global continuity equation can be obtained by integrating equation (6) along the fracture length and 

time: 
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It is assumed that the hydraulic fracture propagates in mobile equilibrium which means the mode I stress 

intensity factor is always equal to the rock toughness KIc. The stress intensity factor KI is computed by 
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3. Asymptotic solutions 

3.1 Normalized governing equations 

Since the pioneering work [7], scaling has been adopted as an indispensable step in deducing analytical 

solutions for hydraulic fracturing to transfer the governing equations into dimensionless forms without time 

emerges. A common form of scaling can be expressed as [3]: 
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where L is a length scale, ε is a small factor, ξ, γ, Π and Ω are normalized coordinate along fracture, 

normalized fracture length, normalized net-pressure and normalized fracture width.  

Introducing the scaling equations (10) into the governing equations (5-9) results in a set of normalized 



governing equations. 

o Normalized elastic equation 
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o Normalized Poiseuille’s law 
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1 1 ( )   , 0( )= /t t  is the normalized arrival time of fluid front remaining to be determined. 

The corresponding boundary condition in the lag is  

 [ ,1]f    T,                                                                (13) 

o Global continuity equation 

0 0

1
2 1 ( )

2

f f

v cd d
 

   

    G G                                                  (14) 

o Fracture propagation criterion 
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/f fl l  is the fluid fraction, the small factor   and the length scale L  are still to be determined 

according to the specific propagation regimes to be solved and Ic4 2 /K K   

3.2 Propagation regimes 

Represented by solutions  , , , f    for equation (11)-(15), the behavior of hydraulic fracturing differs 

under different conditions described by the five dimensionless parameters. The dimensionless parameters can 

be divided into three groups: 1) mG  and kG ; 2) T  and 3) vG  and cG . The factors vG  and cG  reflect 

whether the fluid storage or leak-off dominates the hydraulic fracturing process while the factors mG  and kG  



reflect the energy dissipated on driving viscous fluid and fracturing rock. In order to analyze how the input 

parameters influence hydraulic fracturing behaviors through dimensionless parameters, explicit expressions 

of dimensionless parameters need to be determined. Without loss of generality, we restrict =1mG  and =1vG . 

After solving the scaling parameters L and ε, the other three dimensionless parameters can be expressed as  
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The three dimensionless parameters ranging from 0 to ∞ constitute a wedge-shaped parametric space, shown 
in Figure 1(a). The dimensionless toughness K  is independent of time while both the dimensionless 

confining stress T  and dimensionless leak-off coefficient L  are dynamic parameters evolving with time. In 
addition, it is assumed that K  varies from 0 at OMO෩M෩  to ∞ at KK෩, T  increases from 0 at OKO෩K෩ to ∞ at 

MKM෩K෩, and L  increases from 0 at OMK to ∞ at O෩M෩K෩ . In this case, each hydraulic fracturing process 

corresponds to a path on a plane parallel to OMO෩M෩ , as shown in Figure 1 (a). All the paths evolve from a 

specific point at OK ( =0T  and =0L ) to M෩K෩ ( =T  and =L ) but also vary with each other depending on 
the relative magnitude of the two time scale related to T  and L  respectively: 
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In the case 1?R , hydraulic fracturing evolves from OK edge to MK edge firstly and then to M෩K෩ edge. 

Conversely, it evolves from OK edge to O෩K෩ edge and then to M෩K෩ edge in case of 1=R . In more general 

cases R  is slightly over 1 (or below 1), hydraulic fracturing gets closer to MK edge (or O෩K෩ edge) firstly and 

then evolves to M෩K෩ edge.  Therefore, each pair of  K  and  R  corresponds to a unique path of hydraulic 

fracturing, and the state of the hydraulic fracturing (i.e. a point on the path) can be further determined once 

either T  or L  is known. 

3.3 Scaling schemes 

As shown in Figure 1(a), there are four limiting propagation regimes: OK edge, O෩K෩ edge, MK edge and M෩K෩ 

edge. The asymptotic solutions at OK edge, MK edge and M෩K෩ edge have been reported in literatures [7, 10, 

11], while the remaining asymptotic solution at O෩K෩  edge is obtained in this study. At O෩K෩  edge, the 

propagation of hydraulic fracture is dominated by leak-off, hence =1cG . For the sake of convenience, the 

viscosity scaling is chosen here, i.e. =1mG . Thus the scaling parameters can be expressed as 
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For O෩K෩ edge,
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3.4 Semi-analytical solutions 

Substituting = =1c mG G  and equations (19) and (21) into the normalized equations (11)-(15) and re-scaling 

the normalized   and   using 3/ 4 1/ 4       ， to eliminate the normalized fracture length   in 

equation (12) and (14) lead to: 

o Normalized elastic equation 
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o Normalized Poiseuille’s law 

3 ,   (0, )
f

fd



  




   
                                                  (23) 

where 21 1 ( )    , considering 
1/2l t: and 1/2

f 0/ tx  : , 
2 2

0( ) / (( / ) / ) ( / )f ft t x l        

Corresponding boundary condition in the lag is 
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o Global continuity equation 
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The self-similar solutions  , , , f    is the function of dimensionless toughness K  and crack coordinate

 . In order to avoid solving the governing equations in a priori unknown domain, the first three equations 

are solved firstly with a given value of f . More specifically, the normalized fracture length can be solved 

explicitly according to equation (25) and the normalized fracture width and fluid pressure are solved using a  



numerical process detailed in [10]. Once the normalized fracture length, fracture width and fluid pressure are 

determined, the dimensionless toughness corresponding to these solutions can be computed. These results are 

discussed in Section 5. 

4. Numerical model 

4.1 Finite element scheme 

The finite element method is adopted to solve the rock deformation. The weak form of the equilibrium 

equation is: 

0
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where   is the domain of surrounding medium, Γe is the external boundary, p and Γ are the fluid pressure 

and the 1D fracture path respectively. δεij is the strain corresponding to virtual displacement δui. 

The fluid equation (6) can be solved with any fluid solver, such as the finite difference, finite element or 

finite volume schemes. In our implementation, to accurately track the fluid front in relation to the fracture tip 

and to simplify mesh operations, we take a finite element approach for the fluid solution as well. 

Specifically, the weak form of Eqn. (6) is 
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where  0p  and  0q  are the fluid pressure and the flow rate at the injection point (i.e. fracture center), and 

( )fp s  and ( )fq s  are the fluid pressure and the flow rate at the fluid front. A constant injection flow rate 
(0)q  is assumed at the center of the initial fracture. The pressure at the fluid lag is set to zero, i.e. ( ) 0fp s  . 

4.2 Spatial and temporal discretization 

Following the symmetry of the KGD model, only a quarter of the whole domain is considered, as shown in 

Figure 3. At the beginning of the simulation, the finite element simulation domain is set as 50L0 by 50L0 (i.e. 

a=50L0) to approximate the infinite rock formation (L0 is the initial half-length of fracture). A uniform and 

fine mesh is applied on the boundary from (0, 0) to (2.5L0, 0), as shown in Figure 4. Once the fracture length 

doubles, the computation domain is also doubled to keep the fracture stay in the range [a/50, a/25], which 

makes the approximation of infinite medium always satisfied. The solution information on the old mesh 

needs to be transferred to the new mesh once the mesh changes. 

The fluid front and the fracture tip are both restricted to the element node during simulation. In each time 
step, the fluid front is updated firstly and then the crack tip is updated step by step along the bottom 
boundary until the fracture criterion is not satisfied. In this case, remeshing is avoided by updating the 
boundary condition according to the position of fluid front and crack tip. As for the time step t , it is 
normally determined according to the fluid front velocity explicitly, i.e. (n)

ft d v   where d is the 
advancement limit specified by the user and (n)

fv  is the fluid front velocity at last time step. However, it is 
found from our numerical test that the explicit time step leads to unstable fluid front velocity in the case of 



very small fluid front advance velocity due to significant leak-off. Here the time step is determined implicitly 
using (n) (n+1)2 ( + )f ft d v v   where (n+1)

fv is the fluid front velocity at next time step, d could be one or 
several times of the minimum mesh size (3 by default in our simulations). Instead of using an explicit time 
step, we update the time step when solving the elastic equations and fluid flow equation once the pre-set 
convergence criteria is met, and the algorithm flow is described in Section 4.4.  

 

Figure 3. Computational model for quarter of the KGD-scheme. The injection point locates in the origin. (l, 

0) and (lf, 0) are the location of crack tip and fluid front respectively. a is 50 times of the initial fracture 

length at the beginning of the simulation and  doubles when a <25l.  

       

Figure 4. Finite element mesh used for numerical simulation. Left: the entire simulation domain. Right: the 

mesh between (0, 0) and (2.5L0, 0).  

4.3 Strongly-coupled finite element solution 

As shown in equation (27) and (28), the displacement field u is coupled with the fluid pressure p. In the 
following part, a strongly-coupled solution process for nodal displacement +1mu  and the nodal pressure +1mp  
at time +1mt  based on the nodal displacement mu  and the nodal pressure mp  at time mt  is explained.  

At time +1mt , Eqn. (27) can be discretized as:  

1 1( ) +Ku F p Fm m external                                                         (29) 

(0,0) (l,0) (a,0)

(a,a)(0,a)

Λ

(lf ,0)



where K  is the stiffness matrix, externalF  is nodal force at the domain boundary due to the confining stress of 

rock formations, and 1( )mF p  is the nodal force on the fracture due to the fluid pressure, expressed as  

1 1( )m m F p Tp                                                                (30) 

where T is a coefficient matrix computed from the 1D fluid mesh. For a linear uniform mesh, T has the 
following form  

 ( )T e
ij

e

T , 
( ) 2 1

T
1 26

e
e

ij

l  
  

 
                                                     (31) 

where 
el  is the element length of the fluid mesh.  

Discretizing Eqn. (28) with 1D linear finite elements yields:  

1 1 1 1 1 0 1( ) / ( ) ( , )+ ( , )m m m m m m m mt t t         L w w h w p g t q                              (32) 

where 1mw  and mw  are the nodal fracture widths at time 1mt   and mt  respectively, L is a coefficient matrix, 

1 1( , )m m h w p  is a nonlinear vector function with respect to the nodal fracture width 1mw  and the nodal 

fluid pressure pm+1, 1 0( , )mt g t  is a vector function with respect to the time 1mt   and the nodal exposed time 

0t , and 1mq  is the nodal flow rate at time 1mt  . The fracture path is discretized into N  linear elements of 

lengths  1 2 Nl ,l , lL  indexed from the crack center to the crack tip, and the first fN   elements are occupied 

by the fracturing fluid. The matrix quantities in Eqn. (32) are defined as follows:  

1 2 +1f

T

i Nw w w w   w L L, , , , ,                                                       (33a) 

1 2 1f

T
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   p L L, , , , ,                                                        (33b) 

(1 : 1, :)fN L T                                                              (33c) 
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where the pressure at the fluid front is set to zero, i.e. 1 0
fNp   . 1 2

ˆ ,
f

T

i Nh h h h   h  , , , ,  and 
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  Therefore, following a finite element approach, the solid equation (27) and the fluid equation (28) are 

discretized into finite element equations (29) and (32) respectively, where the nodal fracture width w  can be 

directly represented by the nodal displacement u . The FE equations (29) and (32) are nonlinear and strongly 

coupled, and the Newton-Raphson scheme is adopted for their solution:   
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where n denotes the iteration step, JacobiM  is the Jacobi matrix, and R is the residual vector. The Jacobi 

matrix and the residual vector are given below:   
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where  : 1: f, NJ T .  

4.4 Algorithm flow 

For clarity, the overall algorithm flow of the proposed simulation strategy is summarized below:  

Initial condition 
Repeat 

     Fluid front update 

     Repeat 

          Crack tip update 

          Solving the coupled problem iteratively 

                 a) Elastic equation and fluid flow equations (poiseuille’s law and continuity equation) 

                 b) Update the time step according to the new fluid front velocity 

          Compute the stress intensity factor 

     Until fracture criterion is not satisfied 

     t ← t+Δt 

Until end of simulation 



Initial condition of the numerical simulation is set according to the self-similar solution at OK edge. After the 

advancement of fluid front in each time step, the fracture tip is updated until the computed stress intensity 

factor is lower than the rock toughness. The stress intensity factor is computed using interaction energy 

integral method [28, 29]. 

5. Results and discussion 

The semi-analytical and the numerical solution strategies have been described in Section 3 and Section 4 

respectively, and the corresponding solutions are presented in this section. In Section 5.1, a series of 

solutions for different values of dimensionless toughness K  (i.e. a series of points on O෩K෩ edge) are obtained. 
The self-similar solution at = 0.498K  is verified with the numerical results in Section 5.2, in which the 

transient process from OK edge to O෩K෩  edge is simulated numerically. In Section 5.3, the more general 
processes from OK edge to M෩K෩ edge for three different values of dimensionless parameter R  are simulated, 

which proves the effectiveness of the proposed dimensionless parameter. 

5.1 Asymptotic solution at ۽෩۹෩ edge 

The self-similar solutions  f, , ,    corresponding to different dimensionless toughness at O෩K෩ edge have 

been solved from (22-26) with the methodology explained in Section 3.4 and are listed in Table 1. The 

normalized fracture length is solved explicitly through equation (25): 

f1/ ( )                                                                         (37) 

Profile of the normalized fracture width and fluid pressure under various value of fluid fraction are shown in 

Figure 5 and Figure 6. 

Table 1 Dimensionless toughnessK , fracture length  , fluid pressure at the inlet (0)  and fracture width at 

the inlet (0)  under various fluid fraction f  

ξf K    (0)  (0)  

0.001 0.0068 318.31 0.2440 4.6803 
0.01 0.0275 31.831 0.3019 0.8019 
0.03 0.0554 10.610 0.3425 0.7420 
0.1 0.1250 3.1831 0.4060 0.7161 
0.2 0.2077 1.5915 0.4582 0.7051 
0.3 0.2862 1.0610 0.4977 0.7006 
0.4 0.3660 0.7958 0.5318 0.6995 
0.5 0.4507 0.6366 0.5631 0.7011 
0.6 0.5444 0.5305 0.5931 0.7056 
0.7 0.6536 0.4547 0.6232 0.7137 
0.8 0.7908 0.3979 0.6547 0.7279 
0.9 0.9928 0.3537 0.6914 0.7552 
0.97 1.2741 0.3282 0.7296 0.8031 
0.99 1.4759 0.3215 0.7524 0.8424 
0.999 1.7881 0.3186 0.7875 0.9091 



 

Figure 5. Self-similar solutions of normalized fracture width on O෩K෩ edge for various values of f from 0.001 

to 0.999 (corresponding values are shown in Table 1) 

 

Figure 6. Self-similar solutions of normalized fluid pressure on O෩K෩  edge for various values of f  

(corresponding values are shown in Table 1). Left: 0.001 to 0.03 and Right: 0.1 to 0.999. 

5.2 Approximation of numerical solutions to self-similar solution at  ۽෩۹෩ edge 

In this case lt t  , hydraulic fracturing evolves from OK edge to O෩K෩ edge firstly and then to M෩K෩ edge. The 

first stage of the process (shown in Figure 1 (d)) is simulated numerically using the finite element model 

detailed in Section 4. Different values of dimensionless toughness correspond to the different trajectories 

starting from OK edge and ending at O෩K෩ edge. Without loss of generality, we consider the case = 0.498K . 

The initial state of the numerical simulation is set to be the asymptotic solution at OK edge. In order to keep 

the process in the Plane OKO෩K෩, the confining stress 0 is set to be zero. The related parameters used in the 
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simulation are listed in Table 2. 

Table 2 Rock properties, fluid properties and loading conditions used in numerical simulation 

Rock properties Fluid properties Loading conditions 

Elastic modulus E  25GPa Viscosity   1cp 

Confining 

stress 0  
0MPa Poisson ratio   0.3 Flow rate 0Q  0.004m2/s 

Toughness IcK  0.876MPa·m1/2 Leak-off coefficient LC  0.0001m/s1/2 

The evolution of the fracture length is shown in Figure 7 and is compared with the limiting propagation 

regimes at OK edge and O෩K෩ edge. In the case = 0.498K , evolutions of the fracture half-length in the two 

different limiting propagation regimes could be expressed as 
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The dimensionless form of the results are 
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Figure 7. Evolution of the normalized fracture half-length with respect to dimensionless time under zero 

dimensionless confining stress 

It is indicated from Figure 7 that fracture length evolves according to the asymptotic solution at OK edge at 

early-time stage and then approximates to the asymptotic solution at O෩K෩ edge with time elapsed. In order to 

verify the numerical results with the self-similar solutions at O෩K෩ edge, the fracture width and fluid pressure 
solved in numerical simulation are normalized according to equation (10) and (19) and are plotted in Figure 
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8. It is shown from Figure 8 that the normalized fracture width and fluid pressure approximate to the self-

similar solution at O෩K෩ edge with the time elapsed, which verifies the accuracy of the solutions. Evolution of 

the fluid fraction from OK edge to O෩K෩ edge and the stress intensity factor computed at each time step are 

plotted in Figure 9. In both of the limiting state at OK edge and O෩K෩ edge, the fluid fraction is constant 
according to the theoretical analysis. As shown in Figure 9, the fluid fraction increase from 0.5 at OK edge to 

around 0.55 at O෩K෩  edge. A zig-zag curve is observed due to that the mobile equilibrium of fracture 
propagation, i.e. KI=KIc, is not always exactly satisfied. But, as shown in Figure 9 (b), the error is kept below 

2% during the simulation. The accuracy could be improved by using a finer mesh and increasing the step size 

of fluid front advancement at each time step. 

 
Figure 8. Evolution of the normalized fracture width (Left) and normalized fluid pressure (Right) under zero 

dimensionless confining stress and 0.498K . Solid lines represent the numerical solutions at different 

dimensionless time / lt t  and the dashed line represents the self-similar solution at O෩K෩ edge 

 

Figure 9. Evolution of ratio of fluid fraction (Left) and ratio of stress intensity factor to rock toughness 

(Right) 
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5.3 Different propagation regimes from OK edge to ۻ෩۹෩ edge 

In the case where the relative magnitude of the time scale 1=R  or 1R , the state of hydraulic fracturing 

would follow the path from plane OKO෩K෩  to plane O෩M෩K෩  or from plane OMK to plane MKM෩K෩ . In more 
general case where R is slightly over or below 1, it would follow a curved path on a plane parallel to plane 

OMO෩M෩  with specific dimensionless toughness. Depending on the relative magnitude of the two time scale, 

the path may be close to the line connecting OK edge and M෩K෩ edge or bend to O෩K෩ edge or MK edge. In the 
following part, hydraulic fracturing processes with the same dimensionless toughness 0.5K =  and different 

R are simulated with the finite element model detailed in Section 4. The related parameters for the numerical 

cases are listed in Table 3. 

Table 3 Rock properties, fluid properties and loading conditions used in numerical simulation 

Rock properties Fluid properties Loading conditions Leak-off coefficient 

Elastic modulus 45GPa Viscosity 10cp 

0  50MPa 

Case 1: 1×10-3  m/s1/2 

Poisson ratio 0.25 Flow rate 0.001m2/s Case 2: 5×10-4 m/s1/2 

Toughness 1.68MPa·m1/2   Case 3: 2×10-4 m/s1/2 

For the first case, the evolution of the fracture length is shown in Figure 10 and is compared with the limiting 

propagation regimes at OK edge and M෩K෩ edge. In the case = 0.5K , half-length of the fracture at M෩K෩ edge 

evolves with time as: 
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Figure 10. Evolution of the fracture half-length with respect to dimensionless time under non-zero 

dimensionless confining stress 

Figure 11 plots the hydraulic fracture path in the parametric space. The parametric plane for 0.5K =  can be 

defined by f( , )fr , where f  ranges from 0.5 to 1 and fr  ranging from 0 to 1 denotes the ratio of fluid 
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volume stored in fracture to the total volume of fluid injected. The four vertices of the domain correspond to 

the point at which 0.5K =  on edge OK, MK, M෩K෩ and O෩K෩ respectively (from (0.5, 1) to (0.5,0) in clockwise 
direction). The value of R  is computed as 

3

0 0
2

0.0177lt Q

t E C

      
R                                                           (41) 

As expected, the hydraulic fracturing path evolves from the OK edge at early-time stage to the M෩K෩ edge in 

the end but bends to the O෩K෩ edge during the process since lt is smaller than t . With the propagation of 

hydraulic fracture, the fluid fraction approximate to unit. On the aspect of fluid storage, the propagation 

regime changes from the storage-dominated regime on the top boundary to the leak-off-dominated regime on 

the bottom boundary.  

    

Figure 11. Hydraulic fracture path in the case of 0.5K =  and 0.0177R  

In order to check the relation between the dimensionless parameterR  (i.e. the ratio of the two time scale) 

and the corresponding path in the parametric space, another two numerical cases with larger values of R  are 

presented. The corresponding paths are compared in Figure 13. The dimensionless time are not shown due to 

the slight difference between the correspondence between f( , )fr  and ( / , / )lt t t t  for different value of 

R .  

As shown in Figure 12, the path for 1.13R  does not get close to the edge MK and O෩K෩ due to the small 

difference between the two time scales while the path bends to O෩K෩ edge (0.5, 0) for smaller R  and MK edge 
(1, 1) for larger R , which indicates that the dimensionless parameter R  has a critical effect on the behavior 

of hydraulic fracturing. 

r f t/t
l



 
Figure 12. Hydraulic fracturing paths in the case of 0.5K =  and various value of R  

6. Conclusions 

In this paper, the propagation of a hydraulic fracture with a fluid lag in an infinite linear elastic permeable 

medium is investigated with both analytical and numerical approaches. Based on the KGD scheme, a new 

self-similar solution of leak-off dominated hydraulic fracturing is solved in a semi-analytical way firstly. 

Then a finite element based model is developed to verify the self-similar solution and to investigate the 

propagation regimes of hydraulic fracture in more general cases (with both fluid lag and leak-off). The main 

conclusions of this work are summarized below: 

(1) On the analytical aspect, the general form of normalized governing equations with both fluid lag and 

leak-off considered is derived firstly. Then the self-similar solution in the limiting case of zero dimensionless 

confining stress ( 0T ) and infinite dimensionless leak-off coefficient (  L ) (O෩K෩ edge in parametric 

space OMK-O෩M෩K෩) is solved in a semi-analytical way while existing analytical and numerical studies only 

focus on the case with fluid lag or leak-off separately (on OMK or MKM෩K෩ plane). The half-length, fluid net-

pressure and fracture width are expressed as,  1/22 2
0( ) ( )l t Q t C  K , 

 1/42 3
0( , ) ( , )p x t C E Q t     K  and    1/43 2

0( , ) ( , )w x t Q t E C     K , respectively. The self-

similar solutions at O෩K෩ edge have a similar form as the solutions for OK edge but a higher dimensionless 

toughnessK is observed in the case of the same fluid fraction
f

. The new self-similar solutions can be 

regarded as benchmarks for other hydraulic fracture models. 

(2) A new dimensionless parameterR , the ratio of the two time scale emerging in dimensionless confining 

stress T  and dimensionless leak-off coefficient L  is proposed to determine the hydraulic fracturing path in 
parametric space along with the dimensionless toughness K . In the case 1R , hydraulic fracturing 

evolves from OK edge to MK edge firstly and then to M෩K෩ edge. Conversely, it evolves from OK edge to O෩K෩ 
edge and then to M෩K෩ edge in case of 1=R . In more general cases R  is slightly over 1 (or below 1), 

hydraulic fracturing paths would only bend to MK edge (or O෩K෩ edge) but keep always from them.   

R= 

R= 

R= 



(3) On the numerical aspect, a robust finite element based KGD model is developed to simulate the 

propagation of hydraulic fracture with both the fluid lag and leak-off considered. Both the rock deformation 

and fluid flow are discretized with finite elements and are solved together using the Newton-Raphson 

method. It is found that the explicit time step leads to unstable fluid front velocity in the case of low fluid 

front velocity due to significant leak-off. The time step in our model is determined implicitly to avoid the 

fluctuation of fluid front velocity, which makes the program very robust. The transient process from OK edge 

to O෩K෩ edge is simulated and the approximation of the numerical solutions to the self-similar solutions at O෩K෩ 

edge are observed, which verifies the accuracy of the self-similar solution. A more general process from OK 

edge to M෩K෩ edge for various values of R  are simulated. The effectiveness of the proposed dimensionless 

parameter R  is proved. These findings help to understand the various propagation regimes of hydraulic 

fracture. 
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