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Abstract: 

Engineering the interface between the perovskite absorber and the charge transporting layers has become 

an important method for improving the charge extraction and open-circuit voltage (𝑉OC) of hybrid 

perovskite solar cells. Conjugated polymers are particularly suited to form the hole-transporting layer, 

but their hydrophobicity renders it difficult to solution-process the perovskite absorber on top. Herein, 

oxygen plasma treatment is introduced as a simple means to change the surface energy and work 

function of “hydrophobic” polymer interlayers for the use as p-contacts in perovskite solar cells. We 

find that upon oxygen plasma treatment, the “hydrophobic” surfaces of different prototypical p-type 

polymers became sufficiently hydrophilic to enable subsequent perovskite junction processing. In 

addition, the oxygen plasma treatment also increased the ionisation potential of the polymer such that it 

became closer to the valance band energy of the perovskite. It was also found that the oxygen plasma 

treatment could increase the electrical conductivity of the p-type polymers, facilitating more efficient 

charge extraction. Based on this concept, inverted MAPbI3 perovskite devices with different oxygen 

plasma treated polymers such as P3HT, P3OT, PolyTPD or PTAA were fabricated with power 

conversion efficiencies of up to 19%. 



1. Introduction: 

It has been 7 years since the first organic−inorganic hybrid lead-based perovskite solar cells (PSCs) 

were reported with a power conversion efficiency (PCE) of 3.8%.1 Rapid development of the technology 

has now led to PSCs with certified efficiencies of 22.7%,2 which already surpasses traditional thin film 

solar technologies on small-scale devices (< 1cm2). Arguably, the key factor driving this development 

is the solution processability of the perovskite absorber, which allows relatively simple and potentially 

scalable solar cell fabrication. The current generation of state-of-the-art PSCs require selective charge 

transport layers (CTLs) adjacent to the perovskite absorber to efficiently extract photogenerated 

electrons and holes via their respective electrodes. However, the current CTLs limit the efficiency of 

PSCs below the thermodynamic potential due to their imperfect charge selectivity and their 

comparatively low mobilities, both of which cause additional interfacial non-radiative recombination 

and hence FF and voltage losses.3–7    

The most common electron extraction layers employed to-date are titanium dioxide (TiO2)
8,9 and tin(IV) 

oxide (SnO2),
3 due to their near-ideal charge selectivity and comparatively high carrier mobilities.10 

These CTLs are used in the so-called conventional perovskite cell nip configuration where the perovskite 

layer is sandwiched between an electron/hole transport layer (ETL/HTL) at the bottom/top, respectively. 

However, concerns remain regarding the long-term stability of TiO2 due to its photocatalytic properties 

when exposed to UV light.11,12 The alternative inverted pin-cell structure possesses the advantage of a 

particularly simple architecture requiring only a few nm of hole and electron extraction (or inter-) layers 

that can be spin coated from solution without the need for high temperature treatments. Using such 

ultrathin CTLs also lifts the necessity for chemical doping,4 which has been linked to accelerated device 

degradation, e.g., due to de-doping over time as well as inferior device reproducibility.13,14  

With respect to the hole transporting layer there is a wide selection of suitable organic semiconductors 

available,13 with common ones including non-polymeric molecular donors such as Spiro-OMeTAD 

[2,2 ′ ,7,7 ′ -tetrakis(N,N-di-p-methoxyphenyl-amine)9,9 ′ -spirobifluorene] and TAPC (4,4 ′ -

Cyclohexylidenebis [N,N-bis(4-methylphenyl) benzenamine]), and polymeric hole-transporters such as 

PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)], polyTPD [poly(N,N'-bis-4-

butylphenyl-N,N'-bisphenyl) benzidine] or PTAA [poly(bis{4-phenyl}{2,4,6-trimethylphenyl}amine)]. 

In particular, polymers are currently attracting significant attention: for example PTAA is presently 

employed in the highest certified PSC devices in both nip8 and pin configurations,15 even outperforming 



the omnipresent Spiro-OMeTAD. The use of conjugated polymers for PSCs benefits from the related 

scientific fields of organic electronics and organic photovoltaics. However, the hydrophobic nature of 

these conjugated polymers complicates the perovskite deposition from solution due to surface energy 

mismatch. In fact, in previous works the perovskite absorber had to be evaporated in order to fabricate 

a planar  pin-type perovskite cells with a polymeric HTL as bottom layer.16,17 Examples of such an 

approach include polyTPD,18 DPP-DTT [poly(2,5-(2-di(thien-2-yl)-thieno[3,2-b]thiophene))], 

PCDTBT [poly(N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di(thien-2-yl)-2’,1’,3’-

benzothiadiazole))], and P3HT [poly(3-n-hexylthiophene)].19 In an attempt to overcome the 

hydrophobicity issue, a thermal annealing-induced interdiffusion method was introduced by Bi et al. in 

2015 for the deposition of the perovskite layer.20 This enabled, for the first time, the direct deposition of 

a solution processed perovskite on top of several hydrophobic HTLs and it was shown that this approach 

resulted in high-aspect-ratio crystalline grain growth. However, the perovskite deposition method 

required 2-steps (the PbI2 and MAI were deposited sequentially), which is generally more challenging 

to precisely control the perovskite stoichiometry. Very recently, in another attempt to overcome the 

hydrophilicity issue, an additional interface modifier, PFN [poly({9,9-bis[3′-(N,N-

dimethylamino)propyl]-2,7-fluorene}-alt-2,7-{9,9-dioctylfluorene})] was introduced by Lee et al.,21 

with the amphiphilic properties of the PFN providing a link between the hydrophobic HTL and the 

hydrophilic ionic perovskite. While the proposed method allowed fabrication of uniform perovskite 

films, even for large area cells (> 1 cm2), PFN represents an additional layer that further increases the 

complexity of the cell structure.  

Motivated by these facts, here we describe a general approach for increasing the hydrophilicity of 

organic semiconductor HTLs while also increasing their ionization potential towards the perovskite 

valence band. In particular, we report a short (5s) oxygen plasma treatment to modify the surface energy 

and hydrophobicity of suitable polymeric hole transport layers. We demonstrate that this method allows 

direct spin-coating of the traditional perovskite methyl ammonium lead iodide MAPI onto organic 

semiconductors such as PTAA, PolyTPD, P3HT and P3OT which, notably, would not be easily achieved 

without the treatment. We present a detailed investigation of the chemical, morphological and energetic 

properties of the interlayers using Kelvin probe measurements and photoelectron spectroscopy. We 

demonstrate that the approach allows fabrication of high quality pin-hole free perovskite absorber layers, 

which facilitates high power conversion efficiencies of up to 19% with respectable reproducibility.   

 



2. Results and Discussion 

2.1. Effect of oxygen plasma treatment on perovskite film morphology 

It is well known that the surface energy and the morphology of thin film hole transport layers are critical 

factors affecting the perovskite deposition and crystal formation. Both depend on several parameters 

such as chemical heterogeneities, surface roughness, and molecular rearrangement.22 Therefore, in the 

first part of the study the effect of the oxygen plasma treatment on the surface energy of the HTLs was 

investigated using water contact angle measurements. Figure 1 shows the contact angle of polymer 

films on glass that were exposed to an oxygen plasma for 5 seconds (right column) compared to as-

deposited films without the treatment (left column). The left column [Figure 1(a), 1(c), 1(e) and 1(f)] 

demonstrates the hydrophobic nature of the as-deposited PolyTPD, PTAA, P3HT and P3OT films, 

respectively, which all have a contact angle greater than 90o. After the oxygen plasma treatment it can 

be clearly seen in Figure 1(b), 1(d), 1(f) and 1(h) that the surface energy has decreased resulting in 

contact angles of < 60°. As a side remark, we noted a decrease in the UV-Vis absorption indicating a 

reduction in the film thickness (~ 25%) or film density after the treatment. In addition, the plasma treated 

P3OT and P3HT films revealed a decrease in the intensity of the long wavelength shoulder of their main 

absorption band, indicating some reduction of the polymer aggregation in the layer. (Supplementary 

Figure S1). However, given that amorphous polymers are the most successful HTLs for PSCs we 

believe this is of minor importance. Moreover, a smaller thickness of the HTL can be beneficial for 

achieving high fill factors.4 We also employed Atomic force microscopy (AFM) to study the surface 

roughness of different interlayers with and without the oxygen plasma treatment. From Supplementary 

Figure S2 it can be seen that the surface roughness of the plasma treated films is essentially unchanged 

to the as-deposited films (the change in the root mean surface roughness is < 0.1 nm).  

 

 

 



 

 

Figure 1. Water contact angle of the p-type polymer films of interest: as-deposited (a) PolyTPD, (c) 

PTAA, (e) P3HT and (g) P3OT, and after 5 seconds oxygen plasma treatment (b) PolyTPD, (d) PTAA, 

(f) P3HT and (h) P3OT. 

 

The large decrease in the contact angle suggests an increased polarity of the polymer surface. In order 

to gain further insights into the surface chemistry of the oxygen plasma treated p-type interlayers X-ray 

photoeelectron spectroscopy (XPS) was performed. Figure 2 shows the XPS spectra for P3HT and 



PTAA respectively, while the results for P3OT and PolyTPD are shown in Supplementary Figure S3. 

In all cases, the signals corresponding to O 1s appear more strongly after oxygen plasma treatment of 

the film [Figures 2(b) and (d)]. Supplementary Figure S4 (a) and (b) show that the O 1s peak of the 

P3HT film can be fitted with binding energies of 533.8 eV, 532.5 eV, 531.5 eV, and hence could 

correspond to O-C=O, O=C, O-C, and /or O-S respectively.23,24 Similarly, the major fitted O 1s peak of 

the PTAA film at 532.5 nm corresponds to O=C bonds. Thus, we conclude that the surfaces of all films 

are oxidized through the oxygen plasma treatment, which we see as the main cause of the increased 

hydrophilicity (the contact angle decreases from 102.9° and 92.8° to 58.9° and 37.8° for the P3HT and 

PTAA films, respectively).  

 

 

Figure 2. X-ray photoelectron spectroscopy (XPS) measurements for neat (a, c) and oxygen plasma 

treated (b, d) P3HT and PTAA films, respectively. The oxygen (1s) signal of the neat films is around 

3.4×103 and 6.0×103 counts, which increased to around 4×103 and 1.8×104 for the O2 treated P3HT 

and PTAA films, respectively.  

 

2.2. Effect of oxygen plasma treatment on polymer layer energetics  

It would be expected that the formation of an O-rich surface would alter the surface energetics of the 

layers. Thus, we performed Scanning Kelvin Probe Microscopy (SKPM) measurements on the polymer 

layers before and after the oxygen plasma treatment. An example of a SKPM measurement is shown in 

Supplementary Figure S5. The SKPM scans revealed a significant change of the work function upon 

plasma treatment, which is also highly across the surface. To obtain absolute values of the work function, 

(a) 

(b) (d) 

(c) 



a standard highly oriented pyrolytic graphite (HOPG) sample (4.8 eV) was used as a reference, yielding 

a work function 5.3 eV for the tip. The contact potential difference = WFtip - WFsample was then measured 

for the PolyTPD, PTAA, P3HT, and P3OT films before and after plasma treatment, with the calculated 

relative work functions (WF) shown in Table 1. It can be seen that the WF increased considerably after 

the oxygen plasma treatment by 400 to 800 meV regardless of the polymer type. In order to correlate 

these results to changes in the energy levels itself, we also employed Photoelectron Spectroscopy in Air 

(PESA). The right column of Table 1 shows that the IP increased for all four materials by approximately 

200 – 500 meV upon the plasma treatment, moving the IP of the polymer layer closer to the valence 

band of the perovskite absorber of (5.5 eV), which is in principal beneficial for the open-circuit voltage.5 

Importantly, the increase of the ionization energy had a reasonable correlation with that of the untreated 

films. Thus, the combination of the XPS results and increased hydrophilicity leads to a surface layer 

with an increase in polarity and likely containing negatively charged oxygen-containing groups.  

 

 

Figure 3. Ionization energies (IEs) of the studied hole transporting materials (HTLs) measured using 

Photoelectron Spectroscopy in Air (PESA) before (dashed) and after the oxygen plasma treatment (solid 

lines) in addition to the energetics of the perovskite, the electrodes, and electron transport layers (ETLs). 

The energetics for the electrodes and ETLs were taken from literature, while the electron affinities of 

the HTLs and perovskite were determined from the IEs and the onset of the film absorption. 



 

Table 1. Change in work function and ionization potential (IP) of different polymer layers as measured 

by Kelvin Probe Microscopy and Photoelectron Spectroscopy in Air (PESA) before and after oxygen 

plasma treatment. 

 

The XPS measurements demonstrated the significant effect of the oxygen plasma treatment on the 

surface chemistry of the films. However, in addition the treatment could also lead to oxygen doping of 

the organic semiconductors. In particular, the effect of atmospheric oxygen on the conductivity and 

intrinsic carriers in P3HT films has been previously reported.25,26 In order to check whether the 

conductivity increased upon the treatment we fabricated two terminal devices with electrodes of 

different channel widths evaporated onto the different polymer films, where the polymer thickness was 

around 10 nm to mimic that used in the complete devices. While, the conductivities of the amorphous 

polymers (PolyTPD, PTAA) were found to be below the detection limit of this approach (< 10-8 S/cm) 

before and after treatment, for the poly(thiophenes) we observed a considerable increase in conductivity 

(from 10-7 S/cm and 8x10-5 S/cm to 10-6 S/cm and 3x10-4 S/cm for P3OT and P3HT, respectively) as 

shown in Supplementary Figure S6. This is consistent with oxygen doping of the thin polymer film 

surface upon the treatment. 

 

Overall the above results demonstrate that oxygen plasma treatment renders the surface of various hole-

transporting polymer layers hydrophilic, increases the work function and ionization energy of the layer, 

moving them closer to the perovskite valence band, and in the case of the poly(thiophenes) increased 

the electrical conductivity. 

 

 SKPM  (Work function)  PESA (Ionization Potential) 

  

P3HT 

 

P3OT 

 

Poly 

TPD 

 

PTAA 

 

P3HT 

 

P3OT 

 

Poly 

TPD 

 

PTAA 

 

MAPbI3 

Neat film 4.7eV 4.6eV 4.7eV 4.6eV 4.7eV 4.7eV 5.2eV 5.1eV 5.5eV 

Treated 

film 

5.1eV 5.2eV 5.4eV 5.3eV 5.2eV 5.0eV 5.4eV 5.4eV  



2.2 Inverted perovskite solar cells performance. 

Motivated by these results, in the final part of the study we fabricated inverted perovskite solar cells of 

the architecture Glass/ITO/HTL*/Perovskite/C60/BCP/Cu using the plasma treatment HTL* with a 

thickness of approximately 10 nm. By employing the oxygen plasma treatment, smooth and uniform 

perovskite films could be formed by spin-coating from solution by a simple one-step deposition method 

(see Supplementary Figure S7). Figure 4(a) shows typical current density–voltage (𝐽𝑉) curves (under 

simulated one sun AM1.5G irradiation) of the optimized devices based on different p-type materials, 

and the averaged performance parameters for seven perovskite devices are summarized in Table 2. Both 

sets of cells with PTAA and P3HT had fill factors (FF) of up to 80% with average FFs above 78% and 

77%, respectively. These high values indicate a low resistance between the ITO, the HTL, and the 

perovskite. Notably, the highest performance was obtained using a plasma treated PTAA layer as shown 

in Figure 4(b). This device achieved a PCE of 19% with a Voc of 1.05 V, Jsc of 22.7 mA cm−2, and FF 

of 80%, with negligible hysteresis. We also note that our devices containing the P3HT interlayer 

achieved the highest efficiency reported for an inverted P3HT containing perovskite device (with a PCE 

of 16% Voc of 1.0 V, a Jsc of 20.1 mA cm−2, and an FF of 80%). Cells containing PolyTPD achieved 

PCEs comparable to previous literature for nip cells,27,28 while efficient cells containing P3OT as the 

HTL are not reported to our knowledge. Corresponding Incident Photon-to-Current Efficiency (IPCE) 

spectra are presented in Supplementary Figure S8 (a) and (b) for devices with P3OT and PTAA, 

respectively. Lastly, we emphasize that it is not possible to fabricate these pin-cells without the oxygen 

plasma treatment of the HTL which explains the lack of reference solar cell performance data in Table 

2. 



 

Figure 4. (a) Dark and light J–V curves of the best performing plasma treated P3HT, P3OT, PolyTPD, 

PTAA interlayer CH3NH3PbI3 perovskite solar cell (b) Light forward and reverse J–V curves (hysteresis 

measurement) of the “Hero” PTAA device. 

 

HTL Jsc (mA/cm2) Voc (V) 

 

FF (%) 

 

PCE (%) 

(Hero) 

P3HT 20±0.3 

(20.1) 

1.00±0.01 

(1.00) 

0.79±0.01 

(0.80) 

16.0±0.1 

(16.1) 

P3OT 21±0.5 

(21.7) 

1.06±0.01 

(1.06) 

0.74±0.02 

(0.75) 

17.0±0.3 

(17.4) 

PolyTPD 20±0.3 

(20.2) 

1.05±0.01 

(1.06) 

0.75±0.01 

(0.76) 

16.0±0.1 

(16.1) 

PTAA 22±0.7 

(22.7) 

1.02±0.02 

(1.05) 

0.78±0.01 

(0.80) 

17.8±0.8 

(19.0) 

 

Table 2. Photovoltaic performance parameters including the standard deviations and record 

parameters in brackets of inverted perovskite devices employing different interlayers under AM1.5G 

illumination (~100 mW cm−2). 

 



3. Conclusions 

In summary, we have shown that oxygen plasma treatment is a generic process to enable homogenous 

solution coating of an organohalide perovskite absorber onto conjugated p-type polymers. Oxygen 

plasma treatment results in a large increase of the surface energy, dramatically improving the wettability 

of the polymer layer with the polar perovskite solution. XPS measurements revealed the formation of 

an oxygen rich surface upon the plasma treatment leading to a substantial increase of both the work 

function and ionization potential, aligning the polymer energetics with the perovskite valence band. 

Conductivity measurements showed a conductivity increase of almost one order of magnitude for the 

oxygen plasma treated poly(thiophene) films, which minimized charge extraction losses. Finally, 

efficient perovskite solar cells were fabricated based on this method using different polymers as the hole 

transfer layers, with efficiencies reaching 19% for devices comprising an oxygen plasma treated PTAA 

HTL. We note that in the course of our work, UV-ozone treatment was recently proposed by Xu et al.28 

as an approach to modify the surface energy of common p-type polymers such as PolyTPD, and MEH-

PPV. Our work complements these studies opening new possibilities to employ previously inapplicable 

hydrophobic polymeric hole transport layers for efficient planar inverted perovskite solar cells.  
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1. Experimental details: 

1.1 Materials 

Lead iodide (PbI2, beads, 99 % trace metals basis), methylammonium iodide（MAI, 98%）were 

purchased from Alfa Aesar and Sigma-Aldrich. Poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-

2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT Mw = 122 kDa, polydispersity index (PDI) = 5.4) was 

purchased from SJPC, Canada. Fullerene-C60 (99.5%) was purchased from MTR Ltd. Poly(3-n-

hexylthiophene) (P3HT, Mw = 52 kDa) was purchased from Merck. Poly(3-n-hexylthiophene) (P3HT, 

Mw = 145 kDa) was purchased from Merck. PTAA and BCP (Bathocuproine) were purchased from 

Sigma-Aldrich and Poly TPD from Ossila. All commercial products were used as received. The desired 

solutions of CH3NH3PbI3 was prepared by dissolution of the MAI powder with PbI2 in a γ-

butyrolactone:DMSO mixed solvent (1.3 M, 7:3 by volume) at 60 °C for 10 min.[S1] 

 

1.2 Oxygen plasma treatment 

A Harrick oxygen plasma cleaner was used to treat the polymer films. The radio frequency (RF) level 

was turned to medium and pressure was kept at 53.33 pascals. All treatments were performed for 5 

seconds.   

 

1.3 Solar cells device fabrication 

The solar cells were fabricated in a class 1000 clean room on commercial indium tin oxide (ITO) 

patterned glass electrodes (15 W/sq, Kintec). All the electrodes were cleaned in an Alconox (detergent) 

solution bath at 70 °C, followed by sonication in sequence with Alconox, Milli-Q water, acetone and 2-

propanol for 10 min each. The cleaned substrates were dried with a stream of nitrogen and were 

transferred into a nitrogen glove box (O2 <1 ppm, H2O <1 ppm) for coating with 10±5 nm PTAA (2.5 

mg/mL in toluene), PolyTPD (1.8mg/ml in chlorobenzene), P3OT and P3HT (3 mg/mL in o-

dichlorobenzene) by spin-coating at 4000, 3000 rpm for 35 s, respectively. The substrates were 

transferred out of the glovebox for the 5 s oxygen plasma, and then transferred back into the glovebox 

for device fabrication. CH3NH3PbI3 perovskite layers were then deposited via one step toluene assisted 

solution process.  80 L of the perovskite solution was added on the top of oxygen plasma treated 

interlayer and spin-coated at 1000 rpm for 5 s and then 3000 rpm for 80 s. 100 L of toluene was added 



dropwise at 40 s to form a transparent perovskite film. After 5 minutes of annealing at 100 °C on a hot 

plate, the desired films with thickness of 350nm were obtained.[S2] After depositing the perovskite layer, 

30 nm C60 and 8 nm BCP   were evaporated on the top of perovskite, and finally 80 nm Cu was deposited 

by thermal evaporation under 10-6 mbar vacuum with an appropriate mask (6 mm2 for each device), 

which defined the cell area, to complete the device. 

  

1.4 Characterization 

The absorption spectra of the films were measured using a Cary 5000 UV-Vis-NIR Spectrophotometer. 

The thickness and surface morphology were measured using a Veeco Dektak 150 and Cypher Atomic 

Force Microscopy (AFM), respectively. The work functions of films were measured using a Scanning 

Kelvin Probe Force Microscope (SKPM). The contact angle of polymer thin films were measured using 

a PSS OCA20 optical contact-measuring system.  XPS measurements were undertaken on a Kratos Axis 

Ultra photoelectron spectrometer with mono Al Kα (1486.6eV) x-rays. Ionization potentials (HOMOs) 

of polymer interlayer films were measured at the Fraunhofer-Institut für Angewandte Polymerforschung 

IAP by Photoelectron Spectroscopy in Air (PESA). 

 

1.5 Solar cell device performance measurement 

J-V curves were obtained in a 2-wire source-sense configuration with a Keithley 2400. A filtered Oriel 

class AAA Xenon lamp was used for illumination providing approximately 100 mW cm-2 of AM1.5G 

irradiation and the intensity was monitored simultaneously with a Si photodiode. The exact illumination 

intensity was used for efficiency calculations, and the simulator was calibrated with a KG5 filtered 

silicon solar cell (certified by the Fraunhofer ISE). A spectral mismatch calculation was performed based 

on the spectral irradiance of the solar simulator, the EQE of the reference silicon solar cell and 3 typical 

EQEs of our cells. This resulted in 3 mismatch factors of 𝑀 = 0.9949, 0.9996 and 0.9976. Given the 

very small deviation from unity the measured 𝐽SC was not corrected by the factor 1/𝑀. The EQE 

spectrum was recorded with a (Philips Projection Lamp Type7724 12 V 100 W) in front of a 

monochromotor (Oriel Cornerstone 74100) and the light was mechanically chopped at 40 Hz. The 

photogenerated current was measured with a lock-in-amplifier (EG&G Princeton Applied Research 

Model 5302, integration times 300 ms-10 s) and evaluated after calibrating the lamp spectrum with an 

UV-enhanced Si photodetector (Newport). 
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2. Supporting figures: 

 

Supplementary Figure S1. Original and peak normalized UV-vis spectra of different polymers used as 

interlayers before and after the oxygen plasma treatment of 5 seconds.   

 

 

 



Supplementary Figure S2. Atomic Force Microcopy (AFM)  images (3 × 3 μm) of PolyTPD, P3OT and 

PTAA films before and after plasma treatment. Topography of a PolyTPD neat film before (a) and after 

plasma treatment (b); P3OT neat film before (c) and after plasma treatment (d); PTAA neat film before 

(e) and after plasma treatment (f).The bars next to the individual panels represent the height profile of 

(e) 

(d) 

(a) 

(c) 

(f) 

(b) 

(e) 

(a) 



the scanned area. The similar root mean square surface roughness demonstrates that the oxygen plasma 

treatment did not alter the roughness within the measurement error.  

 

Supplementary Figure S3. X-ray Photoelectron Spectroscopy (XPS)  spectra of P3OT films (a) before 

and (b) after 5 seconds oxygen plasma treatment; PolyTPD films (c) before and (d) after 5 seconds 

oxygen plasma treatment 

 

Supplementary Figure S4. (a, b) XPS spectra of the O1s region for a neat and O2 plasma treated P3HT 

film, respectively; similarly, (c, d) show the XPS spectra of the O1s region for a neat and O2 plasma 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d) 



treated PTAA film, respectively. Also shown are Gaussian fits at different bindings energies which 

indicate O-C=O, O=C, O-C, and /or O-S bonds for the P3HT film, and O=C for the PTAA film. 

 

Supplementary Figure S5. AFM and Scanning Kelvin Probe Microscopy (SKPM) images (2 × 2 μm) 

of P3HT films. Topography of a P3HT neat film before (a) and after P3HT plasma treatment (b). SKPM 

image of a P3HT neat film before (c) and after plasma treatment (d). The insets in (c) and (d) are the 

line sections over the corresponding films.  
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Supplementary Figure S6. The electrical conductivity of poly(thiophene) HTLs as a function of channel 

width showing an increase upon the oxygen plasma treatment by 1 order of magnitude.  

 

 

 

 

Supplementary Figure S7. Perovskite films deposited on PTAA with and without plasma treatment.  

 

 

 



 

Supplementary Figure S8. Incident Photon to Electron Conversion Efficiency (IPCE) spectra of the 

plasma treated P3OT (a) and PTAA (b) interlayer CH3NH3PbI3 perovskite devices.  

 

 

 

 

 


