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A bstract

In this Ph.D. thesis, we study various backgrounds in Type IIB supergravity 
which admit interpretations in terms a dual field theory, and compute properties 
such as effective potentials and spectra, using both holographic and field theoretic 
methods. This thesis is based on the papers [1-3].

First, we study the phase structure of /3-deformed M  — 4 SYM on S 3 at weak 
and strong ’t Hooft coupling. We compute the one-loop effective potential, and 
find that at near critical chemical potential and small finite temperature, there 
is a metastable state at the origin of moduli space. We derive the gravitational 
background describing the theory at strong coupling, and by performing a probe- 
brane calculation, we find qualitative agreement between the weak and strong 
coupling results.

Next, we study gravitational backgrounds obtained by wrapping Nc D5 color 
branes on an S 2 inside a CY3-fold, and N f  D5 backreacting flavor branes on a 
non-compact two-cycle inside the same CY3-fold. These backgrounds are believed 
to be dual to certain SQCD-like theories. We compute how the spectrum depends 
on the number of flavors, and find th a t the mass of the lightest scalar glueball 
increases with the number of flavors until the point N f  = 2Nc is reached after 
which the opposite behaviour is observed.

Finally, we consider a class of backgrounds tha t exhibit walking behaviour, 
i.e. a suitably defined four-dimensional gauge coupling stays nearly constant in 
an intermediate energy regime. The breaking of approximate scale invariance 
has been conjectured to lead to the existence of a light scalar in the spectrum. 
This so-called dilaton would be the pseudo-Goldstone boson of dilatations. Using 
holographic techniques, we compute the spectrum and find a light state whose 
mass is suppressed by the length of the walking region, suggesting that this might 
be the dilaton.
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Chapter 1 

Introduction

Gauge-gravity duality has provided us with invaluable insights into the dynamics 
of quantum field theories at strong coupling. The A dS/CFT conjecture was 
originally proposed in [4] and subsequently refined in [5,6]. In its original form, it 
relates Type IIB string theory on AdS$ x S 5 to M  — 4 SYM in four dimensions. 
However, it has since been extended to apply to more generalized settings with less 
supersymmetry and also to backgrounds where conformal symmetry is broken. 
In this Ph.D. thesis, we study various different backgrounds for which there exists 
a dual interpretation in terms of a quantum field theory. Using field theoretic, as 
well as holographic methods, we compute properties such as spectra and effective 
potentials. This thesis is based on the papers [1-3].

In Chapter 2, we study the phase structure of ̂ -deformed J\f — 4 SYM at weak 
’t Hooft coupling. The deformation is an exactly marginal deformation that 
breaks the amount of supersymmetry from M  — 4 to Af — 1 [7]. Furthermore, 
the global SO (6) R-symmetry of N  = 4 SYM gets broken to U( l ) 3. We add 
chemical potentials for these f/(l)s , and study the field theory at finite tempera
ture. The addition of chemical potentials produces an instability in the theory in 
the sense tha t it generates negative mass squared terms for the scalars charged 
under the associated symmetries. For this reason, we define the theory on S 3. 
This generates positive mass squared terms for the scalars since they couple to 
the curvature through the conformal coupling. For critical values of the chemical 
potentials (in particular, those for which the aforementioned negative and pos
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itive contributions to the mass squared terms of the scalars cancel), the theory 
has a non-trivial moduli space: there is a Coulomb branch, and also, for special 
values of the deformation parameter /3, additional Higgs branches open up [8-10]. 
Wc compute the one-loop effective potential and find among other things tha t 
at finite temperature and near critical chemical potential, there is a metastable 
state at the origin of moduli space, which decays through thermal activation and 
quantum tunnelling. On the Higgs branch, this has the interpretation in terms of 
deconstruction as an extra-dimensional torus whose volume decays from infinite 
to zero size.

In Chapter 3, we perform the analogous study as in Chapter 2, but at strong 
’t Hooft coupling. In order to obtain the gravity dual of /3-deformed J\f = 4 
SYM with chemical potentials at finite temperature, we start with a solution 
in Type IIB supergravity that is known to describe the corresponding M  =  4 
case, then apply a solution generating technique called a TsT-transformation to 
obtain the /3-deformed background. The resulting solution describes a black hole 
rotating in an internal (deformed) S 5. Compactifying to  five dimensions, one 
obtains a solution in M  =  2 U( l)3 gauged supergravity tha t describes a Reissner- 
Nordstrom black hole carrying charges with respect to the three f/(l)s . The 
boundary values of the gauge fields of the U( l)s correspond to the values of the 
chemical potentials in the dual field theory. In order to compute the effective 
potential at strong coupling, we use D3 probes branes on the Coulomb branch 
and D5 probe branes on the Higgs branch. We find qualitatively the same results 
as at weak coupling, i.e. there is a metastable state at the origin of moduli space.

In Chapter 4, we review and develop holographic techniques for the compu
tation of spectra of strongly coupled quantum field theories. We will then apply 
these techniques to specific examples in Chapter 5 and Chapter 6. In order to 
compute spectra holographically, one studies fluctuations around the particular 
background one is interested in. The fluctuations satisfy linearized equations of 
motion, and, in general, solutions with the correct IR and UV behaviour only ex
ist for specific values of K 2, where K  is the four-momentum. From these values 
of —K 2 = M 2, the spectrum is obtained. In [11], a gauge-invariant formalism was 
developed for this purpose. Given a five-dimensional non-linear sigma model con
sisting of a number of scalars coupled to gravity, and with a potential th a t can be
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derived from a superpotential W , general formulas were given for the linearized 
equations of motion that the fluctuations satisfy. Furthermore, this formalism 
leads to a simplification in the sense that even though the metric is allowed to 
fluctuate, the gravitational modes effectively decouple, so tha t in the end one 
obtains expressions tha t involve only the scalar fluctuations. We generalize these 
methods to the case where the potential for the scalars cannot be derived from a 
superpotential. This will be needed for the model that we study in Chapter 6.

In Chapter 5, we study the spectrum of glueballs in SQCD-like theories whose 
Type IIB supergravity description is in terms of Nc D5 color branes wrapped on 
an S 2 inside a CY3-fold, and Nf  backreacting D5 flavor branes wrapped on a 
non-compact two-cycle inside the same CY3-fold [12]. The D5 flavor branes are 
smeared along the transverse angular coordinates, breaking the SU(Nf )  global 
symmetry to U(l)Nf. The dual field theory is believed to be similar in the IR to 
Af  =  1 SQCD with a quartic superpotential for the quark superfields. However, 
the full theory cannot be dual to SQCD for a number of reasons. It does not 
have an SU(Nf)  x SU(Nf)  x U(1 ) r  global symmetry as SQCD does, but instead 
only one SU(Nf)  (broken further to U(l)Nf by the smearing). The backgrounds 
correponding to this setup have been to found fall into two categories known as 
Type A and Type N [13,14]. Type A backgrounds are special cases of Type 
N backgrounds for which the VEV of the gaugino condensate as well as the 
mesons are zero. In this chapter, we study the spectrum of a few backgrounds 
of Type A for which the dilaton grows linearly in the UV. In the IR, there are 
different possible behaviours for the background (known as Type I, II and III [14]) 
corresponding to different vacua in the dual field theory. These backgrounds have 
a singularity in the IR which is “good” according to the criterion given in [15], 
and are believed to capture the non-perturbative physics of the dual field theory.

Technically, it is difficult to compute the spectrum while working in ten di
mensions. However, we show tha t there exists a consistent truncation to  a five
dimensional non-linear sigma model consisting of four scalars coupled to gravity, 
so tha t the methods of Chapter 4 can be applied. We find tha t the mass of 
the lightest scalar glueball increases as the number of flavors is increased, until 
the point Nf  — 2NC is reached after which the opposite behaviour is observed. 
For a particular class of backgrounds tha t are Seiberg dual to themselves, we



demonstrate explicitly that the spectrum obeys Seiberg duality. In the gravity 
picture, Seiberg duality is realized for these theories as a diffeomorphism, i.e. 
just a change of variables [12,13]. Therefore, the background itself does not 
change under Seiberg duality, but since we have changed variables, the dictio
nary interpretation of the dual field theory is changed. We show tha t for the 
five-dimensional model, Seiberg duality corresponds to a set of transformations 
of the scalar fields and N c —>• N f  — N c. The five-dimensional Lagrangian is invari
ant under these transformations, and therefore anything that can be computed 
within this framework obeys Seiberg duality.

In Chapter 6, we study models for which a suitably defined gauge coupling 
exhibits walking behaviour, i.e. it stays nearly constant in an intermediate energy- 
regime. These models are obtained by wrapping N c number of D5-branes on an 
S 2, and are of Type N, according to the classification mentioned above. They 
contain no flavors, and can be thought of as deformations of the background 
known as non-singular Maldacena- Nunez [16]. Although explicit examples have 
proved difficult to find, strongly coupled systems with walking behaviour have for 
a long time been considered as viable candidates for physics beyond the Standard 
Model. This idea is known as Walking Technicolor [17]. While the models we 
study share certain qualitative features of Walking Technicolor, i.e. the walking 
behaviour, we do not couple them to the Standard Model, and therefore they are 
not in their present form to be thought of as phenomenological models. Never
theless, we are in the position to ask questions regarding the effect of the walking 
behaviour on physical quantities.

Simply plotting the gauge coupling as a function of energy scale does not con
clusively establish that we are dealing with a walking theory, since such a plot 
could potentially look very different in another regularization scheme. From the 
gravity point of view, this corresponds to the fact tha t we can always choose a dif
ferent radial coordinate. We need to compute something that is actually physical, 
such as the spectrum. It has been argued that in theories with walking behaviour 
there should exist a light state, corresponding to the spontaneous breaking of 
approximate scale invariance. This pseudo-Goldstone boson of dilatations is re
ferred to as the dilaton, and its presence in phenomenological models would be 
dramatic. Using the five-dimensional methods described in Chapter 4, we show
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that, in addition to two towers of states, the spectrum indeed contains such a 
light state for the theories tha t we study. Furthermore, its mass is suppressed 
by the length of the walking region, suggesting that it might be interpreted as a 
dilaton.
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Chapter 2 

Phase Structure of /3-deformed 
A f  =  4 SYM  at Weak Coupling

One of the many exciting results to have come out of the AdS/CFT correspon
dence [4-6] is that Af  =  4 supersymmetric Yang-Mills at finite temperature is 
related to black holes in- AdS$. For example, the Hawking-Page phase transi
tion [18], in which a black hole forms above a critical value of the temperature, 
turns out to be dual, by the correspondence, to a confinement-deconfinement 
phase transition in the quantum field theory on the boundary [19]. The link be
tween the thermodynamics of black holes and that of Af  =  4 SYM makes it an 
interesting project to map out the phase structure, and compare the results at 
strong and weak ’t Hooft coupling. Much effort has been devoted towards this 
goal [20-41].

In this chapter, we will derive weak coupling results about the phase structure 
of /3-deformed Af = 4 SYM. The /3-deformation is a marginal deformation of 
Af  = 4 SYM, which changes the superpotential of Af = 4 SYM to

W  = z2\/2Tr , (2.0.1)

where /3 is the deformation parameter. While the /3-deformation breaks the 
amount of supersymmetry to Af  — 1, it is interesting in that it preserves the 
conformal invariance of the original theory [7]. The global SO (6) R-symmetry 
of Af  — 4 SYM is broken to U( l ) 3, and we can add chemical potentials /i* for
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these three U{l)s. The addition of chemical potentials breaks the conformal in
variance, as well as all the supersymmetry of the theory. Furthermore, a negative 
mass squared term gets generated for the scalars charged under the associ
ated symmetry, and therefore the theory becomes unstable, unless it is defined 
at finite volume where the scalars also couple to the curvature through the con
formal coupling, thus generating positive mass squared terms. We will define the 
/3-deformed theory on S 1 x S'3, where S 1 is the compactified time direction. In 
particular, we will be interested in chemical potentials which are close to critical, 
meaning tha t the negative mass squared terms that they generate almost cancel 
the ones from the conformal coupling. Classically, it is only for critical chemical 
potentials tha t there are flat directions and a non-trivial moduli space. The mod
uli space of the /3-deformed theory has a Coulomb branch, and also, for special 
values of the deformation parameter /3, additional Higgs branches open up [8-10]. 
On these branches the theory is equivalent at low energies to Af =  4 SYM. At in
termediate energies, it can be viewed as the deconstruction of Af — (1,1) SYM in 
six dimensions, with the two extra dimensions forming a latticized torus [42,43]. 
In essence, the torus forms because we can reinterpret the two gauge group indices 
of the adjoint scalars as discretized extra dimensions.

It was found in [36] that, at zero temperature, Af = 4 SYM on S'1 x S 3 with 
critical chemical potentials has a one-loop effective action tha t is independent of 
the scalar VEVs. In this article, we repeat the calculation for the /3-deformed 
theory and find the same result for SU (N)  gauge group, but a different one 
for U(N).  Since, for gauge group U(N),  the overall U{ 1) decouples for Af  — 4 
SYM, this could not have happened in that case. However, in the /3-deformed 
theory, it is no longer true that the overall U( 1) decouples. At finite temperature, 
and near critical chemical potential, Af  — 4 SYM has a metastable state at the 
origin of moduli space, which decays through thermal activation or quantum 
tunnelling due to the runaway behaviour of the potential for large values of the 
scalar VEVs [36]. This is also true for the Coulomb branch of the /3-deformed 
theory. We perform calculations which show tha t the same is true for the Higgs 
branch, where an interpretation can be made in which the extra-dimensional 
torus has a metastable state when its volume is infinite, that then decays to zero 
volume.
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The structure of this chapter is as follows. In section 2.1, we review how to 
add chemical potentials to the theory, and the moduli space of /Tdeformed Af = 4 
SYM. In section 2.2, we compute the one-loop effective action for the theory on 
the Coulomb branch, whereas in section 2.3 we do the same for the Higgs branch. 
Section 2.4 covers the metastable phases tha t occur at finite temperature and near 
critical chemical potentials. Finally, in section 2.5 we summarize our results.

2.1 The /3-deformation of M  = 4 SYM

2.1 .1  Lagrangian

The ^-deformation of Af  =  4 SYM is obtained by deforming the Af = 4 superpo
tential to

W, =  i2 \/2 T r$ 1[$2)4>3]<!, (2.1.1)

where
[A, B]p =  einPA B  -  e~™pBA,  (2.1.2)

and Af — 4 SYM corresponds to f3 — 0. Here, we have used the following 
conventions. The generators of the SU(N)  (U (N )) Lie algebra are normalized as 
follows:

T i T aT b = I f o .  (2.1.3)

This implies (for U(N) the second term on the right hand side is not present)

W i i  =  -  i v SiiSkl’ (2-L4)

which in turn implies tha t (again, the second term is not present for U ( N ))

(Tr X T a) (Tr T aY)  = \ ^ X Y  (T rK ) ■ (2-L5)

In the following, we will take /3 to be real, and focus on the U(N ) case (we will
explain how the results differ in the SU(N) case as we go along). Using (2.1.5),
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the potential for the scalars coming from the superpotential is

Vw  =  ^ T r  (\[</>i,hb\2 +  \[<h, f o b \2 + \lfa,<t>ib\2) • (2-1-6)

The potential due to the D-term is

VD =  ^ T r  ([^ .U i]  +  [4,<h] + [4,<h])2 (2-1-7)

A non-zero /? breaks the original iS'f/(4) R-symmetry to U( l ) 3, where each of 
the $>i is charged under a different U( l ) .1 For the complex scalars fa, we write 
this as

Ql(01,02,03)  =  (1,0,0),

<>2(01,02,03) =  (0,1,0), (2.1.8)

^3(01,02,03) ”  (0,0,1),

and similarly for the fermions:

Ql (^, Xl, X2, Xs) 2(^’

Q2(\Xl,X2 ,X3)  = 1 (1 ,-1 ,1 ,-1 ) ,  (2.1.9)

Q s ( \ x  u X 2 ,Xs) =  1 (1 ,-1 ,-1 ,1 ) .

The grand canonical partition function is

Z(T,fa)  = (2.1.10)

where H  is the Hamiltonian and fa are the chemical potentials. Viewed as a 
Euclidean path integral with time compactified on S 1, adding chemical potentials 
to the theory is equivalent to letting [24]

D p  —» — 5^0 f a Q i -  (2 .1 .1 1 )
i

1We note that we can also use a basis with one U(1) r  and two global U(  1), where the global 
U ( l ) s  are linear combinations of the original three U(1) r s . It is therefore not unreasonable to
expect that th e results will be qualitatively different when one turns on two of the chemical
potentials Hi from when one only turns on one.
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Hence, the kinetic terms for the complex scalars have the form

2Tr {{Dp +  {Dp -  Hi^p)#i  =

=  2Tr ([Dpfa)*Dp# +  2ni#lD0<f>i -  ^ # \ # ^
(2 .1 .12)

whereas for the fermions the kinetic terms are

2Tr X i fa n D 11 -  iJk)Xi> (2.1.13)

where

/*o — \ { ^ i  +  M2 +  M 3)7 

fti =  \{Hi ~ V2 ~ H3), 

£ 2  =  |(~M i +  M2 -  Afc), 

/23 =  | ( - ^ 1  -/X2 +  A*3),

(2.1.14)

and we have made the definition Xo =
We will give VEVs to the scalars as

(Pi
+  0n (2.1.15)

where tpi is the background value of the field. In order to fix the gauge, we add 
a term

Cgf = +  DoA° -  { [ v U i l  + [<A,<rf])l (2.1.16)

to the Lagrangian, corresponding to R %-gauge with Feynman parameter £ =  1.
This cancels cross terms of the form

~  idp4>\lAp,<fi]) • (2.1.17)

The kinetic terms for the fields with a critical chemical potential have the follow
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ing form:

2Tr ( ( 0 „ ( ^  +  ^  + <k) +  2M .( ^  +  +  * ) )  (2.1.18)

Taking care to cancel the cross terms from the gauge fixing, the first term  con
tributes

2Tr U } ( - D 2)4>f + !/!„(¥>,V iM e )  (2.1.19)

at second order, whereas the second term contributes

(f)\D0(j)i +  -^=(fi\(piA0 4- 

where we have used the following notation for the commutator action:

2TV 2 fi (2 .1.20)

¥> =  [w ]  (2.1.21a)

n  = (2.1.21b)

4  -  [4 -1 -0 . (2.1.21c)

Let us note that some useful relations are

Tr[X, A}B =  - T r  A[X,B],  (2.1.22a)

\A ,B \f  = - [ B , A U ,  (2.1.22b)

[A,B\ \  = - \ A \ B % ,  (2.1.22c)

Tt \ X , A \ \ B  = - T r A ' [ X \ B \ _ 0. (2.1.22d)

2 .1 .2  C lassica l M od u li Sp ace

Since the theory is defined on S 3, there is a conformal coupling of the scalars to 
the curvature which takes the form

2Tr (2.1.23)
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where R  is the radius of the S 3. Furthermore, from (2.1.12) we get a similar term 
but with opposite sign:

(2.1.24)

Only when at least one of the //j has the critical value /z* =  i?_1 is there any 
possibility of flat directions and a non-trivial moduli space. However, the F- and 
D-flatness conditions also need to be satisfied:

These are solved by giving each fa a diagonal VEV, while imposing the restriction 
tha t for each row (equivalently column), no more than one of fa is allowed to have 
a non-zero entry. We also have to mod out by the Weyl group. This defines the 
Coulomb branch, where, for generic VEVs, the original U (N ) (S U ( N )) gauge 
symmetry is broken down to U(1)N (U(l ) ^ -1).

For rational values of /3, there are additional Higgs branches. For example, 
we can take j3 — 1 /N  and give VEVs to the scalars as

[01, 02^ — [<t>2,fa\p ~  [03, 0l]/3 ~  0, (2.1.25)

3

(2.1.26)

'1/ =  A u {N)i (2.1.27a)

(2.1.27b)

(2.1.27c)

(02> =  A(2) ViN),

( 0 3 ) - A W v f t X

where Â 1), Â 2̂ , and Â 3) are complex numbers, and

U{N) = diag (u/,a;2, . . . , / ) (2.1.28a)

0 otherwise
(2.1.28b)

with uj — e2ni/3. This breaks U(N)  to U( 1), while in the S(J(N)  case the gauge 
group is completely broken. To obtain the right moduli space, we also have to



mod out by the discrete gauge transformations

(2.1.29)

where Ti =  U(n ) and T2 =  V(N)- These rotate A^ by discrete phases u  [42]. After 
taking this to account, the moduli space is C3/(Z N x XN).

More generally, we have the solution

<«M =  A(1> ® C/(„), 

< ^ ) = A (2)®V(„), 

(fc) =  A

(2.1.30a)

(2.1.30b)

(2.1.30c)

with
A<i> =  diag(A<i),A<i), . . . , A « ) (2.1.31)

and N  — n m , (3= 1  /n.  For generic A ^ , this breaks U ( N ) to U( l )m, and S U ( N ) 
to t / ( l ) m_1. The low energy theory turns out to be Af  = 4 on the Coulomb 
branch [42,43].

2.2 One-Loop Effective Potential for the Coulomb 
Branch

2.2 .1  G en eral C on sid eration s

We will now compute the Wilsonian one-loop effective potential by integrating 
out all but the lightest fields of the theory. The fields can be expanded on S 3 x S l 
in terms of spherical harmonics and M atsubara modes. The analysis is similar to 
tha t in [36]. We will turn on one critical chemical potential fi^ — R~ l and give 
a background VEV to the mode constant on S 3 x S l of the associated complex
scalar

( 2 .2 . 1)
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In addition, there will be a background value for the spatial zero mode of the 
holonomy of the time component of the gauge field around the thermal circle:

A q —̂ ck “I- A 0. (2.2.2)

The effective action is parametrized by </?, and a , which in this section we shall 
take to both be diagonal.

The Lagrangian for the bosons and the ghosts (c, c) at second order is

£<2) =  I 2T rQ yl0( - ^  -  A<»> +  vV )A o+  

+ l- A {( - b l  -  A<“> +  <p'<p)Ai+

+ c( -£ )q -  A**' +  <i?V)c+

+ < / > { ( - -  A<s> +  ip'p)# 1+  (2.2.3)

+A4! 2,<j)\f)Q<pi +  +  iy/iAotp'th] +

+02 (— +  V5)Wp +  R  2)02+ 

+03 ( ^0 — +  V^-pV-P +  ^  2)03^ >

where and A ^  are the scalar and vector Laplacians on S 3 respectively. For 
the fermions, we have

/  3
C f  =  2TW ~  X o(V)Xi ~  Xi(-*V)Xo~

'  i=0

-X3(i<Pp)X2 -  X2(-*V>J)X3

(2.2.4)

The one-loop correction to the effective potential is given by

T  i N 00 /  x
*  =  ^ £ £ E  logdet Dq +  €i (tf)^ , (2.2.5)

species ij i=i

where t  is the angular momentum quantum number of the mode with £0 its lowest
F$( F1}value, de is the degeneracy including differing signs for bosons and fermions,
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and finally eg is the energy of the mode. After a Poisson resummation over 
the M atsubara frequencies, (2.2.5) can be recast as a sum over species [36] with 
bosons contributing

1 1 /V 0 0 /  oc 1 \
^ u c s y o  £  E t f  m *)\ -  T  — e rl£dv)l cos(kaij/T)  j , (2.2.6)

 ̂ ’ ij=i£=g0 \  fc=i /

and fermions contributing

( W t f l  -  r E  ^ - ♦ ' - W ' o o e ^ / r ) )  , (2.2.7)
V ’ i j = l l = t o  \  *=1 /

where =  a* — a j (a* refers to the zth diagonal component of a).

2 .2 .2  E n ergy  L evels

We will now compute what the energy levels are. Consider first the scalar fields. 
We expand in spherical harmonics and use that

A {s)Yt = R~2£(£ +  2)Ye (£ = 0,1 , . . . ) .  (2.2.8)

The only non-trivial case concerns the fields (A0, (f>i, (f>\), whose fluctuation matrix 
is equal to

f - D l  -  V<*> +  y>V i V 2 R ~ 1̂  - i V 2 R - V
i y /2R~1ip —£)Q — 'V^+ ip^(p  + 2R~1bo  0

 ̂ - i y / 2 R ~ l (pl 0 - D l -  + ^ < p - 2 R - 1D 0
(2.2.9)

Putting its determinant

{ - b l + t ( i + 2 ) R - 2+iplt> p ) ( - b l + e i r 2+ ^ i f i ) ( - b l + ( t + 2 )2R r 2+if‘[v>) (2 .2 .1 0 )

equal to zero and solving for D q gives three energy levels associated with (do, (t)\ 
These are

s / R - H { t  + 2) +  ¥>V (2.2.11)
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and
^ / R - 2(l + \ ± R ^ ) 2 + i p ^ ,  (2.2.12)

with degeneracies de = (£ +  l ) 2.
Calculating the energy levels for the fermions is more involved. We will evalu

ate the determinant of the fluctuation matrix by brute force. In the path integral, 
we will expand e~s  to the power tha t saturates the measure

DXi (P) E>Xi (~P) Dxi{p)Dxi{~p)- (2.2.13)

This happens for S  to the 16th power. However, matters simplify, because of the 

block diagonal form of the fluctuation matrix, and also because of how the Xi{p)s 
and Xi(~P)s have to combine. Each fermionic variable can only appear once. We 
can represent the way the terms in the Lagrangian combine as four graphs that 
look like:

Xo(-P) -> Xi(p)
t  t

-  ifl0) (iapD^ip) - i p i) (2.2.14)

4 4-
Xo(p) <- (iff) Xi(-P)

The idea is to trace out closed paths in this graph. Consider the example of a 
closed path travelling through all corners of this graph. Starting in the upper 
left corner and going to the upper right corner, we are instructed to write down 
a factor Xo( — p)(~ip)Xi(p)-  Then, continuing down to the lower right corner, we
pick up a factor Xi{p){^CfnDtl{p) — i p \ ) x i ( —p). When we have travelled around
the four corners and back to the original one, all the fermionic variables Xo,i 
and their complex conjugates have occured exactly once. There is another graph 
which is the same as the one above, but with p -> — p, and similarly for X2 and 
X3 (but with ip —> pp).2 Since the four graphs do not connect, we can consider

2W hen all three VEV s are turned on, there is a single graph which is a four-dimensional 
hypercube. W hen two VEV s are turned on, this gets cut into two cubes, which then get cut 
into the four squares for one VEV.
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them separately. Finally, we sum up all the different ways to form closed paths.
Following closed paths around the graphs, there are three ways to saturate 

the measure; the two closed paths

Xo{~P) Xi (p )
U  (2-2.15)

Xo(p ) Xi(-P)

pick up a term

(icrvD v(p) -  ip1) ^ ( i a l/D u(p) -  i p i ) ^  =  (2.2.16)

=  (Dl  +  V (/> +  2p0D0 +  +  VW -  2 / i^ o  +  p\),

while the two closed paths

Xo{~p) ^  Xi{p) 

Xo(p) — Xi(-P)

pick up

picks up

(2.2.17)

(¥>V)2, (2.2.18)

and, finally, the one closed path that travels around the whole graph

Xo{~P) -» Xi (p )
t  4 (2.2.19)

Xo{p) <- X i(-P)

-  ip,Q)dia{i(jvD ,/{p) -  i p i ) ^ ( i ^ e ^ ) ( - i i p e a0) =  ^

= 2 ^ p ( - D q -  V (/) +  (fli -  p 0)D0 +  fiofii).
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Together, we have

(D2 +  VW +  2p0D0 + f%)(D* + V<« -  2/iiDo +  p 2) -  ^

+2ip'ip{-Dl -  V (/) +  (p, -  Mo)&o + fiofii) + (v>V)a-

Putting this equal to zero and solving for Do yields the following energies (V-f * =  
~(l + l /2 )2R~2):

^  ±  ^ R ~ 2 ( l  +  I  ±  M  +  M ) 2 +  (2.2.22)

The graph with p —>■ — p just exchanges the roles of pQ and pi, so that together 
these two graphs yield

f i _2 ^  + 1 ±  R P o + m  y + ±  , (2 .2 .23)

which becomes

\ j R - 2 ( l  + + ( P V ± ^ Y ^ -  (2.2.24)

The two remaining graphs exchange tp —» pp (for diagonal VEVs p \pp  =  ppp\) ,  
p0 -> p 3, pi -A fa,  thus yielding:

+ ^ , ± * v i - (2-2-25)

We summarize these results in Table 2.1. All possible sign combinations are 
allowed. Note that the expressions are only valid at vanishing or critical chemical 
potentials.3

3More precisely, the expressions for the fermions are valid for any values of the chemical po
tentials, but the chemical potentials need to be vanishing or critical in order for the expressions 
for the complex scalars and A q to take the simple form of Table 2.1.
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Field dg \ee\ 4
Bi 2 i ( i  +  2) y / R - 2( t +  1)2 + ^<P 1
Ci { i + l f \ J  R~2£(£ +  2) + 1

(c, c) y / R - H ( t  + 2) +  v V 0
(Ah 01> 0 i)l ( e + i ) 2 R 20  f. t 2} t -p’t ' 0

(A0l 01, 0})2,3 (.e + i )2 i / R - 2{e + i ± R li 1)2 + v>'<p 0

4>2 (^ +  i)2 R~2(t  +  l)2 +  ip^tpp ±  /i2 0

<i> 3 ( e + i ) 2 0

(A,xi) -£(e  + i) 1J r ~2 { £ + \ ±  ^*-)2 +  i fW  ±  ^ 1

(X2>X3) - e ( e  + i) y j R - 2 (e+  \ ± S f ) 2 + ^ ± 1 ^ 1

Table 2.1: The energies eg for the Coulomb branch and gauge group U(N), together with  
their degeneracies dg for the various fields. Iq is the minimum value of the angular mom entum  
quantum number L  The expressions are valid for vanishing or critical (ni =  R ~ l ) chemical 
potentials. All possible sign com binations are allowed.

2 .2 .3  Zero T em p eratu re

At zero temperature, only the Casimir energy parts of (2.2.6) and (2.2.7) con
tribute:

Vl(T  =  0) =  V o i i S ^  £  t S r W r t l -  (2-2.26)
spec ies i , j = l  £= £ q

We regularize this expression by introducing a cut-off that does not depend on 
the chemical potentials, as follows [36]:

1 N  oo

2 E  E ^ M ^ I / C I ' ^ U - oI/A), (2.2.27)
i,j- 1 l=l0

where A is the cut-off, and f ( x )  is a function that is equal to 1 for x  < 1 and 
zero for x  > 1.

Since (ip<f>)ij — (ipi — (pj)4>ij, it makes sense to define

(Pij = (pi (pj) (2.2.28)
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where pi is the zth diagonal component of p, and similarly for the beta-commutator

ipN  =  e<TV i  -  (2-2.29)

£e{p) should then be thought of as a function of pij and pp^.  We then have tha t

{PpPp<f>)i j  =  Ie l7r0P i  -  e_l7r/V j | 20ij, (2.2.30)

( p l p P - p 4 > ) i j  =  Ie t n 0 P j  -  e ~ in^ P i \ 2f i i j , (2.2.31)

so that, as we sum over i and j ,  there is no need to distinguish between the two 
in the calculation.

Furthermore, we note that C*, (c,c), (Ao, 0i, 0^)i, and the contribution given 
by (A0,0 i, 0 ^)2,3 with a minus sign and £ = 0 cancel against each other. Convert
ing the sum over £ into an integral for the remaining fields by using the Abel-Plana 
formula [54]

00 „c

J2 F(n) = /
71=0

dxF (x )  + - F {  0 ) - 2 I
00 , lmF(ix)  

dx- o2wx _  ̂ ’ (2.2.32)

and summing over the species, we find the zero temperature effective potential 

Vol(6'3) V,{T = 0) =  ^  +  | T r  -  v V )  =
N

3N  +  T  (le<,r/V  -  e in0(Pi\2 -  \Vi -  Vj\2) =16 R  8 i,j=1
(2.2.33)

3 N 2  r  • 2 /  m— =: 4-----sm (ttB)
16R 2 v

N

It, Vi
i= l

Although we have used the expressions of the energies for gauge group U ( N ), 
in the large N  limit this expression is valid for S U ( N ) also. The reason is tha t 
the only energies which are affected in going from U(N)  to SU(N)  are those 
for the diagonal fluctuations. For gauge group SU(N),  (2.2.33) reduces to the 
same expression els in the M  = 4 case. For U ( N ), the result is sensitive to the 
overall U( 1) which, unlike in the FT = 4 theory, does not decouple from the
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dynamics for generic f3. We note that (2.2.33) also is valid when /i2 or /z3 are 
critical, since they appear outside the square roots with plus or minus signs in the 
expressions for the energies and therefore cancel against each other when we sum 
all modes. Therefore, at zero temperature there is no difference between turning 
on a chemical potential for a U(1)r or a global U{ 1). (We note that even though 
there is a positive mass squared for the traceful part of (J>, there is no metastable 
phase for near (and above) critical chemical potential due to the fact that the 
traceless modes still have negative masses squared.)

We also note briefly tha t using another Abel-Plana formula [54]

g  F(n  + 1/2) =  j T  dx F(x)  +  2 d x , (2.2.34)

we can derive an expression for the off-shell effective action without chemical 
potentials:

voi (s3)v  = |  (M2 - 1̂ |2) +

(lv>/>|2 -  M 2) log (2HA) +

|2  l „  I D\ | \  - ^ 1  |2+  log (R \v \ ) ~ l o g (R\<Pf)\) + (2 2 35)

+ r - 1 r  d i (4' 2 + 2 +2e_2' ,) ^  ~
J r \

• i+ R ~ l /  dl

r \v \ s inh(27r/)

(412 +  \  -  \e~2*1) y/P -  R? | ^ | 2
fR \Vp\ s inh(27r/)

In the above expression, the sum over i and j  is implicit. Since

( M 2 -  M 2) =  4sin2 (2.2.36)

there is no ultraviolet divergence in the SU (N)  theory. Note also, that the 
ultraviolet divergence for the U(N)  theory is a finite volume effect. For /? =  0
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and AT = 4 SYM, (2.2.35) reduces to

Jr \<p\ s inh(27r/)

first computed in [26].

2 .2 .4  F in ite  T em p eratu re

Consider
oo

^ T d ? {F)e - ^ El{tp)l (2.2.38)
l=lo

appearing in the temperature dependent part of the expression (2.2.6) and (2.2.7) 
for the bosonic and fermionic contributions to the one-loop effective potential. 
Summing over all bosonic modes, we obtain

+  i  cosh + cosh  ( * S Y

(2.2.39)

Similarly for the fermionic modes, we have

- f > 2 ( c o Sh ( fc(^ 2+ ^ ) )  M*+

+  cosh ( t i t L Z i ^ l )  e - ^ ^ - ’P + lw l'Y

(2.2.40)
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Hence, the full expression for the one-loop effective potential at finite temperature 
is

„  „  1 f 3N 2 R  . 2 . m
Vo+Vi = v o m \ i M + 2 sm {*p)

N

t=l
N  oo

■2 T E E
i,j=l fc=l

cos{kotij/T)

1= 1
k

1 — (—l) fc cosh k(fi2 +  ^ 3)
2 T

, t V r  2l2+\vij\7 -j- _ cosh +  cosh ^

k{n2 ~  I*3)—2(—1) cosh
2 T

(2.2.41)

Since there is an attractive potential for the a*, we can put — 0, which 
means tha t the theory is in the deconfined phase. We see that unlike in the 
zero temperature case, because pp appears in the exponential, there is now a 
non-trivial dependence on j3 not just for the overall U( 1), but also for SU(N).

2.3 One-Loop Effective Potential for the Higgs 
Branch

Let us first work out the case n = N, /3 = I/TV. To simplify matters, we will only 
give VEVs to two of the complex scalars

(2.3.1a) 

(2.3.1b)

In order to be able to do this, we need to (at least) turn on the two chemical 
potentials /i\ — ji2 — R~l ■ Although technically more involved, conceptually the 
calculation of the one-loop effective potential for the Higgs branch proceeds in

Â C/(w) ,
 ̂ — ~\J2-----

, A(2)vw
(f>2 —>  ----- 1- 4>2-
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the same way as tha t for the Coulomb branch. We expand the fluctuations as

1 N
0 = yfrijy (2.3.2)

Ja,b =  2 (2.3.3)

where

 ̂ " “  J' W U(N)

is a basis for N  x N  matrices [42], and a and b are integers defined modulo N  
In general, (f>ij is complex. For hermitian 0, we have

<t>\d =  (2.3.4)

Furthermore,

U(n ) — «/o,-i (2.3.5a)

V(N) = Ji,o- (2.3.5b)

The Jaja satisfy the commutation relations

JcA = 2sin ( ^ — \ Ja+cjb+d, (2.3.6a)

[Ja,b, Jc,i]±K =  2Sin ( (fec~ â ±1)7r)  Ja+cMd, (2.3.6b)

and

Ja,b ~  J-a,-b 

rFr ~  TlSac&bd-

2.3 .1  E n ergy  L evels for Scalars

(2.3.7)

At second order, the contribution from the D-term comes from (to simplify ex
pressions we have rescaled ipi —> \/2 </?* in this section)

vd ] = +  lA i fc ]  -  [^2,02]) > (2.3.8)
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while the gauge fixing contributes

V9f ] = ~ ^ 2 Tr +  [ ^ l l  +  [vhfa]  +  [<̂ 2, </>!>]) •

Together, this becomes

y f  + vgf = ^2TrUi(2Vl^)^i + 4(2 V2v\)<t>2+ 

+ii>\(2ipl ip!2)ri>t +  4^'P2'p\)<t>ij 

At second order, the superpotential contributes 

Vw = ^ •2 T r^(2 ((^2)l^(v72)-/3)0i + 02(2(v?i)^((/?i)/9)02+ 

+(f}l(2(pi)p((p2)-p)</>i + (t>\(2(ip2)-p(pi)p)<i>2+ 

+03(2 (^ l) t-/3(^l)-/3)03 +  ^ M p f e ) / * ) ^  •

We will now use the following relations:

N

,J  6] =  J _  V  2 sin f  <t>i,iJa+i,M] y/2N  V 71 '

1 V '  2 sin (  (f>i,jJa+i,b+3[Jo,6> ]̂±/3 -  ^T/V "  \  n  J

\Ja,bi V (f)U \ =
N

1 ^ 2s .n + ^ j a+4+M+,_,
2 JV “  V n /1,7 = 1v ^ V  z -

[ja,b, y fĉ ] ±^
N

7 5 5 1 >

(2.3.9)

(2.3.10)

(2.3.11)

(2.3.12a)

(2.3.12b)

(2.3.12c)

(2.3.12d)
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After a change of basis

0'1 = 0 1[ / t ) (2.3.13a)

0 '2 = V ](f) 2 (2.3.13b)

<t>'z =  V faU , (2.3.13c)

m atters simplify, and we will see tha t the cross terms between 0 \ and 02  cancel. 
We have that

i , j=1

N
'(2) T

j  —1

(2.3.14)

(2.3.15)

(¥ 'iW 2 =  A<1)[Jo,- i ,K 0 '1]« =

=  2 A<1>sin

4 0 i = A (1V o.i,0 'it/] =

1 • / ^ \  ,-d) , (2'316)

^ 0 2  =  A® [J_1,o,K0'1) =

=  ^ £ 2A<1,sin© ^ )J-
(2.3.17)

(¥>l)_^03 =  A(I> [Jo,- 1 ,^ 0 2 ^ ] ^  =

1 ■ f ™ \ , ' 0 ) r (2-3 1 8 )

t,J  =  l v 7

(¥>2) 0̂3 =  A<2) [Ji,o,Vrt0 2C/,U =

- 7 S J  X>->-» ( 5 )
v i,j =1 N '

(2.3.19)
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After rescaling A^) —> A ^/V ^ , Â 2) —» /y/2  and writing <$>' —¥ <f>, we finally
get

3 N  ,

n(2) = E E (4
a = l  i , j = 1 '

The rest of the analysis is analogous to the case with one VEV. (Indeed, it is 
completely the same as for J\f — 4 SYM.)

2 .3 .2  E n ergy  L evels for F erm ions

The fermions get masses from coupling to gauginos

~j2Tr [ ~ iy / 2 X[ip\,xi] ~  iy/2 X[<pt, x 2]) +  c.c., 

and from the superpotential

^2Tr (-iy/2xi[<P2,X3]p ~  ^ X ^ P h  X*\ti) + c c 

We make the following change of basis:

x'i =  XiU'

X2 =  V ^X2 

Xs = VXt U.

Then, we have that

[<plxi] =  \ {1)[Jo,-uXiU] =  - / =  X !  2sin ( ^ )  (2.3.24)
v  tj= i '  '

[v>2,X2] =  A(2)[J,,0,^X2] =  ~  E  2sin ( ^ )  * 8 %  (2-3.25)
1,7 =1

[<P2, Xa]/3 =  A(2)[Ji)0, =  Y 1  2sin ( (2.3.26)
1*7 = 1
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(2.3.22)

(2.3.23a)

(2.3.23b)

(2.3.23c)

|A(1)|2 sin2 + |A ^ |2 sin2 (2.3.20)



Field d( M 0̂
Bi 2 ((e + 2 ) y / R - 2 (e+  + 1
Q (e + i f s/ R - H ( e  + 2) + X ij( \ W ) 1

(c,c) —2 ( 1  +  l ) 2 S/ R - H ( g  + 2) +  Xy(A(U)) 0
(A0 ,(j) i , ) i ( X + l ) 2 S/ R - H ( e  + 2) + X ij( \ M ) 0

(A0, </>l, ^1)2,3 ( X + l ) 2 y/R~2(e + 1 ±  Rfii ) 2 + X i j ( X M ) 0
4>2 ( X + l )2 s/ R - 2 ( l + l ) 2 + X ij( \ W ) ± ii-t 0
tj>3 ( X + l )2 S/ R ~ 2(t + i f  + x iS( x M ) ± n 3 0

(A.Xi) - e ( e + i ) \ J r - 2 (e+  i  ±  S f . f  +  ^ ( a * 1'2)) ± 1

(X21X3 ) , J r - 2 (e+  ‘ ±  s o . ) 2 + x ^ x m )  ± 1

Table 2.2: The energies eg for the Higgs branch and gauge group U (N ) ,  together w ith their de
generacies dg for the various fields. is the minimum value of the angular momentum quantum  
number i .  The expressions are valid for vanishing or critical (/x* =  i?_1) chemical potentials. 
All possible sign com binations are allowed. X i j ( Â 1,2 )̂ =  4 |2 sin2 ( ^ )  +  4|A^2 |̂2 sin2 ( ^ ) -

=  -  /q/v ^  2Sin ( n " )  (2-3.27)
^  i,j= 1  ̂ '

Similar calculations give the expected masses for the gauge bosons. The results 
for the energy levels are summarized in Table 2.2. As can be seen, everything
is the same as A f  = 4 SYM, in the sense that Xij  appears presicely where ip̂ ip
appears for N  — 4 SYM.

2 .3 .3  O ne-L oop E ffective  P o ten tia l

Inspecting Table 2.2, we see that the form of the spectrum has the interpretation 
as the appearance of two extra compact dimensions forming a discretized torus 
[42] with radii given by

Rl  =  27t|A(1) | ’ (2.3.28a)

R 2 =  2tt|A(2)| ’ (2.3.28b)
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and lattice spacings given by

€l =  

^2 =

2 wRi
N

2 'kR2

N

1

W \ '
1

W \ m

(2.3.29a)

(2.3.29b)

Since

=  4|AW|2sin2 ( + 4 |A P f  sin2 ^ (2.3.30)

appears precisely where |<£>|2.would appear for /? =  0 and Af — 4 SYM, we see 
immediately from (2.2.33) tha t at zero temperature the effective potential on the 
Higgs branch must be independent of A ^ and Â 2̂  and equal to

Y0 +  Vi =
37V2

Volfs'3) 16R
(2.3.31)

At finite temperature, we have

t7  , t7  _  1 /  37V2 _  A  cos(katjj / T )
1 Vol(53) 116fl h h  fc

Z=1 (2.3.32)

cosh ( — ^ )  +  cosh ( ”

cosh | )  +  cosh (
2 T  )  \  2 T )}■

Again, because of the attractive potential, we can put a^- =  0 in the above 
expression, which shows that the large TV theory is in the deconfined phase.

Now, let us move on to the more general case when n  does not necessarily 
equal TV. Again, we will only give VEVs to two of the complex scalar fields:

(0i) =  A(1) (g) C/(n), (02) = A ( 2)<g>V(n), (2.3.33)
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with
A<1,2) =  diag (A*1'2’, A<‘’2), . . . ,  A ^2>,) . (2.3.34)

We can expand the fluctuations as

^ 771 71

4> =  - 7 =  £  £  O a A  ® J i j , (2.3.35)
V 171 a,6=1 t,j=l

where
(Ma>b)de =  SaA e  (2.3.36)

i s a n m x m  matrix. Then, when the VEVs act on the fluctuations in commutators
such as [0 i, (j)], instead of getting expressions involving s in 0 with 9 =  ^  or 6  = 
we will now get expressions of the form

X ^ e w -  (2.3.37)

It is the absolute value squared which will appear in the expressions for the energy 
levels. We have

X ^ e ie -  X^e~ i9\ =

= (lAii)l- |^ <)|)2 + 4Ki)l sin2 O'

with

=  \ {arg A“} “ afg Â}} +

(2.3.38)

(2.3.39)

In other words, nothing is different from the case n — N  considered before (and 
summarized in Table 2.2) other than that X  now takes the form

J W A (1’2>) =  (lAi1’! -  |A' 1’ | ) 2 +  (|A® | -  |a<2)| ) !

,(1) sin

+

+ (2.3.40)- { a r g A ^ - a r g A ^ j - f - ^

+4|Ai2)| xb2) sin2 Q {arSAi2) -  arS^2)} +

At zero temperature, the one-loop effective action remains the same as for n = N

J7T
n
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(i. e. flat), while at finite temperature all that changes in the expression for the 
one-loop effective potential, equation (2.3.32), is the form of X  and tha t we now 
also have to sum over a and b:

V + V  = 1 f 3 N 2  - 2T V  V V  cosjka
0 1 Vo\{S3) \  16/? k ̂ a,6=1 i,j=l fc=l

COS (kdij /T)

Y '  j2g-  £ y/R-2l2+Xabij (Ad-2))

1 = 1

1 + cosh kfi 2
+  cosh ( ^ p )  

k(fi2 ~  Ms)
2 T )}-

(2.3.41)

The same remarks regarding the differences between gauge group U(N)  and 
S U ( N ) remain true for the Higgs branch, with the only difference being that 
in order to use the same expressions for the one-loop effective potential in the 
two cases, we now need to take the large m  limit.

2.4 M etastable Phases

In this section, we will take one or more of the chemical potentials to be near 
critical, which we define as

= / T 1+C>(A), (2.4.1)

where A =  g2N  is th e ’t Hooft coupling. In particular, this means that corrections 
to the preceding results appear at higher orders in perturbation theory. We will 
see tha t even though at a classical level this choice of chemical potential causes 
an instability, when we take into account the quantum corrections, there are 
metastable phases at small finite temperature R T  *C 1 .

First, consider the Coulomb branch at small finite temperature and close to 
the origin of the moduli space, so that

f t V u f .  I2 «  R T  «  1 (2-4.2)
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For \i2 =  /U3 =  0, we can put / =  k — 1 in (2.2.41) after which we get that the 
one-loop quantum correction to the effective potential is given by

V i  = - - - - - - - - - -
Vol(S3)

1
/ no\

(2.4.3)

g — ~Wr v / 1 +  H 2 |V i>|2 - |-  g  AT + )}
Expanding in <p and ipp, we obtain

(2.4.4)

+ 8 R N e  RT l̂ | 2 — 8 /te HT cos2(7t^) pi

which again is the same result as for the M  — 4 case in the case of gauge group 
S U ( N ), but different for gauge group U(N)  [36]. The tree level term is equal to

This holds true for gauge group U (N ) also, since the only potentially negative 
contribution to the mass of the new field is suppressed exponentially for R T  <C 1. 
In the large N  limit, the decay rate, through tunnelling and thermal activation, 
becomes zero [36].

Moving on to the Higgs branch and the case n = N,  let us put /z3 =  0, =  0.
Again, we consider small temperature and VEVs:

(2.4.5)

so we see that we have a metastable state at the origin if

(2.4.6)

(2.4.7)
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The sum over k in (2.3.32) contains a piece equal to

( v/ z 2 + 4 f t 2 |A(1) | 2 s i n 2 ( f  ) + 4 f t 2 |A ( 2 ) |2 s i n 2 ( 2 £ )  —i )

which for I = 1 clearly leads to a logarithmic divergence for small VEVs. When 
more than one critical chemical potential is turned on, extra zero modes appear. 
The sum (2.4.8) corresponds precisely to integrating out these zero modes, which 
really should have been kept in the effective action, and this is what causes the 
logarithmic divergence near the origin of the moduli space. This is analogous to 
what happens for Af  — 4 with two or three critical chemical potentials [36]. The 
next to leading contribution to the one-loop effective action (2.3.32) comes from 
a term which is similar to (2.4.8), with k = I = 1 and a \  instead of a 1 outside 
the square root in the exponent. Expanding in |Ab)|, we obtain

The only gauge invariant operator consistent with the symmetries of the the
ory, which would reproduce the same mass squared as above, is proportional to

have a positive mass squared at the origin of moduli space. This shows tha t for 
near (and above) critical chemical potentials there is a metastable state at the 
origin. In terms of the radii (2.3.28) of the extra-dimensional torus, the torus is 
metastable at infinite volume, and decays to zero size.

For general N  = n m , similar considerations lead to a one-loop effective action 
near the origin of the form

— ATN2e 2R71 —j-

(2.4.9)
+ 8 N R ( E sin2( v ) ) e' ^ ( |A<I>|2+|A(2)|2)}

Tr((f)\(f)i +  ̂ 2^ 2)- Therefore, the extra zero modes in the effective action must also

-  4T7V2e 2*T +

(2.4.10)
+2 N R

m  n
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which also has a minimum with positive curvature for zero VEVs, showing that 
for near (and above) critical chemical potentials there is a metastable state at 
the origin of moduli space.

2.5 Summary

We have studied the /^-deformation of J\f = 4 SYM on S 3 with chemical potentials. 
On the Coulomb branch, the one-loop effective potential at zero tem perature and 
critical chemical potentials is flat for gauge group S U ( N ), but for U(N),  there is 
a dependence on the overall U{ 1) traceful part of the VEV. On the Higgs branch, 
the zero temperature one-loop effective action is flat both for S U ( N ) and U(N).  
This is expected since on the Higgs branch, the low energy theory is M  =  4, and 
can be viewed as a six-dimensional theory with 16 supercharges compactified on 
a torus. At near critical chemical potential and small finite temperature, there 
is a metastable state at the origin of moduli space for both the Coulomb branch 
and Higgs branch. On the Higgs branch, this has the interpretation as an extra- 
dimensional torus which becomes metastable for infinite size and decays to zero 
size through quantum tunnelling and thermal activation.
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Chapter 3

Phase Structure of /3-deformed 
A f  =  4 SYM  at Strong Coupling

At finite temperature, the gravitational dual of Af = 4 SYM with chemical po
tentials and gauge group S U ( N ) is a solution of Af  =  2 five-dimensional U( l ) 3 

gauged supergravity, which describes a Reissner-Nordstrom black hole carrying 
charges with respect to the three U( l)s [44,45]. There are three background gauge 
fields A^J whose values at the boundary correspond to the value of the chemical 
potentials of the boundary quantum field theory. The five-dimensional charged 
black hole solution can be embedded in ten dimensional Type IIB supergravity 
compactified on S 5 [46]. The resulting Type IIB supergravity solution describes 
an (uncharged) AdS 5 black hole rotating in S'5. In [47], it was described how to, in 
general, generate the ten-dimensional solution describing the /^-deformed theory 
by performing a TsT-transformation, a T-duality followed by a shift of variables 
and then another T-duality, on the solution describing Af  =  4 SYM. Applying 
this method to the ten-dimensional rotating black hole solution, we obtain the 
Type IIB supergravity solution which is the gravity dual of finite temperature 
/^-deformed Af — 4 SYM with chemical potentials.

In order to see if the picture remains qualitatively the same at s tro n g ’t Hooft 
coupling as the weak coupling results derived in the previous chapter, we perform 
a probe-brane calculation in the dual gravitational background. This was done 
for finite temperature Af  — 4 SYM in [35], where it was found that for near

40



critical chemical potentials, there is a metastable phase at strong coupling. On 
the Coulomb branch, the probe-branes we will use are D3-brane giant gravitons, 
which extend along the three non-radial spatial coordinates of AdS 5 , whereas 
on the Higgs branch, the probe-branes are D5-brane giant gravitons, which, in 
addition to extending along the same coordinates in AdS$ as the D3-branes, also 
wrap around the torus formed by the two directions in S 5 which involve the 
TsT-transformation. Giant gravitons were studied in, for example, [48-51], and 
in [52,53] they were studied in the Lunin-Maldacena background. We show that 
for near critical chemical potentials, the metastable phases of /^-deformed Af  — 4 
SYM at finite temperature and weak coupling persist at strong coupling as well.

The structure of this chapter is as follows. In section 3.1, we find the gravity 
dual describing the /3-deformed theory, and in section 3.2, we carry out the probe- 
brane calculation which establishes the existence of a metastable phase at strong 
’t Hooft coupling. Finally, we summarize our results in section 3.3.

3.1 Gravity Dual

3.1 .1  AdSs B lack  H ole Sp inn in g  in S5

Let us first review the Type IIB supergravity solution dual to finite temperature 
Af  =  4 SYM with chemical potentials. The solution describes an AdS 5 black hole 
spinning in S'5. The ten-dimensional background metric is given by [46]

ds\0 = A 1/2dsl +  R 2 A -1/2 ^  x i f 1 { d r i +  r i ( # *  +  }  > (3.1.1)
z= 1  ̂ '

where

dsl = - H ( r ) ~ 2/ 3f ( r )d t 2 + H (r ) 1/ 3 [f{r)~ldr2 +  r2 dQ23 J  (3.1.2)

is the metric of the AdS 5 black hole, and d i \  i is the volume element of the S3.
We have

Hi(r) = 1 +  %,  (3.1.3a)
rz
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H(r)  =  f f ^ r J / Z a W f f s W ,

/w  = i -  ( ^ ) 2 + (^ )2//(r)-

ro =  rH ^ 1  +  ( ^ | )  U(rH) j  ,

Xi  =  H (r) l/3/Hi(r),
 ̂   6* £

r 2 +  qi

ei =  \Jqi{rl + qi), 

X  = ^ Z x iri^
i=i

In addition to the metric, we have the self-dual five-form =  dc4 = 
with [35]

c4 = ( * ) * - £
ro +  ( - r ^  +  ^ ).

R 2
d t A e(3) +

+ Z  { % )  r i ( Rd ^ A
:(3)

where A =  H 2^ A, and is the volume form with respect to R 2dQ,'c
After going to the co-rotating frame

< & - > & -  R ~ l A iQ( r H ) t ,

in which the horizon of the black hole is static, the only change in 
(3.1.1) is

An
e,-

r2H + qi r2 + qt

(3.1.3b)

(3.1.3c)

(3.1.3d)

(3.1.3e)

(3.1.3f)

(3.1.3g)

(3.1.3h)

(3.1.3i)

dc4 *dc<i 

(3.1.4)

(3.1.5) 

the metric

(3.1.6)
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Also, the new expression for dc4 is

c4
e? 

r2H + qi
~  O o  -  r 2n  +  qi) \  r\}

+ S  ( J * )  A

(3.1.7)
:(3)

We can identify the chemical potentials of the field theory on the boundary as

e,-
> - 1fii = A i0 (oc) /  R  = R~ 9

th + qi
(3.1.8)

3 .1 .2  T sT -T ran sform ation

The idea of Lunin and Maldacena [47] was to obtain the Type IIB background 
describing the /3-deformed theory by performing a TsT-trans-formation on the 
solution describing M  =  4 SYM at finite temperature. The TsT-transformation 
is a solution generating technique which involves a T-duality, followed by a shift, 
and then another T-duality. The general rules for T-duality transformations are 
given in [55]. We also found [56] a useful reference for how to derive the action of 
a TsT-transformation on the metric g and the NS 2-form b. T acts on g, b, and 
the dilaton </> as follows (z,j >  1):

1

9n

9ij  ̂ 9ij

b\i 
9n

911

91

bij  ̂ bij

L 9u  bu —> —  
Sii

9n

9n9ij b\jb\j 
9n

bubij bugij
9n

A shift s, given by

<f2 “ >• <^2+7^1,

(3.1.9a)

(3.1.9b)

(3.1.9c)

(3.1.9d)

(3.1.9e)

(3.1.9f)

(3.1.10)
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acts on g as

and on b as

0n 0ii +  72022 +  275-12

01i 9li +  702i >

bu bn 4- 7̂ 2* •

(3.1.11a)

(3.1.11b)

(3.1.12)

Starting with b =  0, a TsT-transformation gives for i , j  > 2 (G^-, are the 
TsT-transformed fields):

Gij — Ggij +  G Y

where
G

0 ij 022011 +  01i02j'012 +  01j 02i012 

01i01j 022 _  0 tj'012012 ~  02t02j 011

1

(3.1.13)

1 +  7 2 (022011 - 012) ’

For z < 2 or j  <  2, we have
Gij — Gg^j.

For fr, a TsT-transformation gives

— G'y(gug2j — 0 ij02i)-

(3.1.14)

(3.1.15)

(3.1.16)

(Note that if <71* =  g2i = gij =  0 2j =  0, then G„ =  g^ and B y =  6y.) The dilaton 
transforms as

e2̂  -4 Ge2<̂, (3.1.17)

and, finally, the n-forms transform as [57]

^  Cg A e B — cq A e b + £ c, A (3.1.18)

k 1] ^ 2
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where for a general p-form up we have defined

cUp — ujp -f- ^p[y] A dy , (3.1.19)

where u>p does not contain any legs in dy.

3 .1 .3  T h e  /^-deformed S o lu tion

Let us first take a look at the how the TsT-transformation was used in [47] to 
obtain a Type IIB supergravity background that describes the /3-deformed theory 
at finite temperature. Starting with the solution in AdS^ x S 5

ds2 = ds2AdS5 +  R 2 ] T ( d r 2 +  r 2d<f>2),
i= 1

C4 — UJ4 +  AR^D\ A d<f>i A 0 2 A 03?
e2<£ _  g2</>0

(3.1.20a)

(3.1.20b)

(3.1.20c)

then going to coordinates

4>1 = <P3 — <P2 i

02  ~  +  ^ 2  +  <P3>

03 — fZ ~  <Pl,

(3.1.21a)

(3.1.21b)

(3.1.21c)

and performing a T-duality along </?i, followed by a small shift <p2 —> </?2 +
( 7  =  /3) and then another T-duality along <p1; one obtains the TsT-transformed 
Lunin-Maldacena solution

ds2 = ds2AdS5 +  R 2 ^ T ( d r 2 + Gr2 d4>2) +  l 2G r\r\r \ ( d0;
1 = 1 \  Z=1 >

B ns  = R 2j G ( r 2rld(pi A <202 +  ^ ir 3^02 A d03 +  r1r\d<j)z A d0i), 

C2 =  —4JR2/y(Ji A (d0i +  d<j>2 +  d03),

C4 =  CJ4 +  4G/?^U7i A d0i A 02 A 0 3 ,

g2̂  =  Ge20O)

(3.1.22a)

(3.1.22b)

(3.1.22c)

(3.1.22d)

(3.1.22e)
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where

(3.1.23a)

(3.1.23b)

and

ri =  cos a ,

72 =  sin a  cos 0 ,

73 =  sin a: sin 0 ,

dui = cos a  sin3 a  sin 9 cos 9da A d9, 

dlU4 — U)AdSb •

(3.1.24a) 

(3.1.24b) 

(3.1.24c) 

(3.1.24d) 

(3.1.24e)

In order to obtain the correct background for the /^-deformed theory at finite
temperature and with chemical potentials, we should perform a TsT-transformation 
on the solution given in the previous section. First, we note tha t a coordinate 
change 0* —»• 0* +  vt  followed by TsT is the same as vice versa. This follows 
directly from the form of the transformation rules: as long as a coordinate trans
formation does not mix the two coordinates along which we T-dualize with each 
other, the TsT-transformed expressions behave as tensors. It is convenient to 
make the coordinate change

after which, apart from a few scaling factors, the metric is the same as in (3.1.20a).

affected by the TsT-transformation. This means tha t we can take the LM solution

— & T ^  1Aiot (3.1.25)

Only the components of the metric and B NS involving the coordinates 0* are

(3.1.22) for the metric and B NS and simply make the following substitutions

R —> A -1/4/?, 

j4(1) -»  

ri ->  X ~ l,2ru

(3.1.26a)

(3.1.26b)

(3.1.26c)
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to obtain the correct form of the Type IIB supergravity solution describing /3- 
deformed Af  = 4 SYM at finite temperature with chemical potentials:

ds\0 =  A l/2dsl +  R 2 A ' 1/2 1 { dri +  Gr2id^ 2} +
i = 1

+  7  2G
rtrzri

x , x 2x 3

B ns  = i G R 2 A ~ 1/2- 1/2  (
\  1= 1  

\ x , x ,
d(f)̂  A d(j>2-\-

‘i ‘2
r2r3 J2.J2r%r{

+  - H r d $ 2  A # 3  +  A MY 2Y 3 

e 20 =  ^ 2^
*3*1

(3.1.27a)

(3.1.27b)

(3.1.27c)

where

G~l =  1 +  f
2 J 2r t r1 ' 2 +

r 2r 2 
' 2 ' 3

2 „ 2

+ 3' 1
YxY2 Y 2X 3 X zX x

7 =  R 2A - 1/2j .

Using (3.1.18), we have that

a  =  o,

C2 — I  [c4] [«p1][v>2]

C4 — C2 A B  = C4 ,

Cq — C4 A B  =  0,

<^8 =  0 ,

(3.1.28a)

(3.1.28b)

(3.1.29a) 

(3.1.29b) 

(3.1.29c) 

(3.1.29d) 

(3.1.29e)

where we have used that 6 =  0 and B  A B  =  0.
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3.2 Probe-Brane Calculation

3 .2 .1  C ou lom b B ranch

We will now perform a probe-brane calculation in the TsT-transformed back
ground. The Coulomb branch of the theory is probed by a D3-brane, static in 
the co-rotating frame (in which the horizon of the black hole also is static), and 
extending in all the directions of AdS$ except the radial direction [58]. In the 
field theory, separating a D3-brane from the stack of N  branes at the origin, 
corresponds to turning on VEVs

(f>i = diag(uj,
N -  1 ’ ’ N -  1

The action for a general Dp-brane has the form

)■ (3.2.1)

S Dp — Tj f  <F+la e * J -  det (<?„(, +  Fab -  B„(,) -

- tp [  y c . A / - "
J Mp+1 „

(3.2.2)

where rp =  (2n)pg ’ an(  ̂ ^ats denote pullbacks onto the world-volume A4P of the 
brane. For the D3-brane, F  — B  = 0, and the induced metric is given by

A 1/2 (- H { r ) ~ 2/3 f ( r )d t 2 +  (r)1/3r 2d n !tl)

+A ->/2 ( x : x r 1Gr^ 0 +  f G ^  
I *= 1

~,2„2^2 ' i ' 2' 3
iO >dt2,

(3.2.3)

so that

-<t>yj- det (G afe)  =  e ^ A  j c T 1/ / 1/3/ -

- A  ~l H
r 2 r 2 r 2 -2 '1 '2 '3

2 - i

i = 1
X i X 2X 3

1/2 (3.2.4)

. 1= 1
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For the Wess-Zumino term, we have

/  (C 4 -  C 2 A B)  =  f  c 4 =

/ r x 4 ^ i f  e .  1 1 (3 -2 5 )
(fl) A + E  ^  { ^ T  -  "  4, + *)} rf J dt A e<3>,

which is the same as for the J\f = 4 case analyzed in [35].
F irs t we no te  th a t, a t th e  horizon, th e  te rm s th a t  are in tro d u ced  by the  

deform ation  have no dependence on any of th e  coord inates param eteriz ing  th e  

S'5; th is  is because f ( r n )  (t h ) — 0 . If we tu rn  on ju s t one chem ical p o ten tia l 

fJ>2 — /^3 — 0, th en  th e  probe-brane action  is m inim ized for 77 — 1, 77 =  77 — 0, 

in w hich case G  — 1 , and  all 7-dependence disappears. Therefore, th e  analysis 

is exactly  th e  sam e as for th e  undeform ed case; for close to  b u t above critica l 

chem ical po ten tia l, th e re  will be a  m etastab le  s ta te  a t  r  =  777, w hich decays 

tow ards th e  run-aw ay d irection  r — 00 [35]. For two equal chem ical po ten tia ls  

(/i 1 — fi2, 1*3 — 0), th e  undeform ed probe-brane action  is m inim ized for — 0, 

b u t has no dependence on 77 or r2. Since no such dependence is in troduced  a t 

th e  horizon by th e  /3-deform ation, there  is still a  m eta-stab le  s ta te  a t  r  =  t h - For 

th ree  equal critical chem ical po ten tia ls, th e  probe-brane action  has no dependence 

on e ither of th e  coord inates 77 in th e  undeform ed case. Again, a t  th e  horizon, no 

such dependence is in troduced  by th e  /3-deform ation. We no te  th a t  a  p robe-brane 

a t  th e  black hole horizon r  — 77/ should  correspond to  zero V E V s in th e  field 

theory.

3 .2 .2  H iggs B ranch

The Higgs branch is probed by a D5-brane extending in the same directions as the 
D3-brane of the Coulomb branch, but in addition wrapping the torus formed by 
the two coordinates of the S 5 that are involved in the TsT-transformation [42,43]. 
In the field theory, this corresponds to VEVs given by

(01} = A (1)® [/(„), (3.2.6a)

(&> =  A<2> ® V(„), (3.2.6b)
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V

4.0 5.02.0 2.5 3.0 3.5 4.5

Figure 3.1: The D3 probe-brane action V  in the undeformed  background for chemical poten
tials /Ui =  (q , q, q) as a function of the radius r.  U p to a factor of n, this is the sam e as the 
action of a D5 probe-brane in the deformed  background. Everything is in units of R.  The solid 
line corresponds to  critical chemical potential q =  1, the dashed line corresponds to q =  0.7, 
and the dot-dashed line corresponds to q =  1.2. In all cases, we have put r n  =  1.5.

<*) =  A(3) 0  V ^u }nr (3.2.6c)

with

A ^ =  diag(f/*\ — ■
,(<) ,(<)

, ,  , (3-2.7)m — 1 m  — 1

Also, we will need to turn on a world-volume flux along the directions of the 
torus:

F<fnP2 — —• (3.2.8)
7

One way of seeing this is that the D3-brane RR-charge of one D5-brane should be
the same as that of n = I / 7  D3-branes. Using (3.1.29) and F / \ F  — B A B  — 0,
the Wess-Zumino term is

/  (
JM e  \

C6 + c 4 A (F -  B)  + AC2 A ( F -  B f ) = f  c 4 A F ,  
z J J m 6

(3.2.9)

which indeed is equal to n  times the corresponding expression (3.2.5) for a D3- 
brane, which in turn is the same as that for a D3-brane in the undeformed back
ground corresponding to Af  — 4 studied in [35].
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For the world-volume part of the action, a more involved calculation gives

(3.2.10)

which also is precisely equal to n  times the corresponding result for a D3-brane 
in the undeformed background. Therefore all the results of [35] apply in the TsT- 
transformed case. In particular, for nearly critical chemical potentials, there is a 
metastable state with a D5-brane situated at r — r^,  which will eventually be 
“ejected” towards infinite radius.

3.3 Summary

We have found the Type IIB supergravity background which describes /^-deformed 
AT =  4 SYM with chemical potentials at strong ’t Hooft coupling. At finite tem
perature, this solution describes a black hole rotating in the internal (deformed) 
S 5. The Coulomb branch is probed by a D3-brane, whereas the Higgs branch 
is probed by a D5-brane wrapping a torus. On both the Coulomb branch and 
the Higgs branch, for near (and above) critical chemical potentials there are 
metastable states in which the probe-branes reside at the black hole horizon and 
tunnel out towards infinite radius. This matches the weak coupling picture of the 
previous chapter.

e ^  +  Fab — BabJ =

=  e_^°7_1r3A  ( H 1/ 3f  -  A ~ 1H ^ X 7 l r 2i A

1/2

i=l
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Chapter 4

Holographic M ethods for 
C om puting Spectra

The holographic prescription for computing the glueball spectrum is to study 
fluctuations around a particular background and look for solutions that satisfy 
correct boundary conditions in the IR and UV. Such solutions exist only for 
specific values of K 2 = — M 2, where K  is the four-momentum of the fluctuations. 
These K 2 correspond to poles of the correlator (OO) (where O is the operator in 
the dual field theory corresponding to the fluctuation in question), and give us the 
glueball spectrum of the dual field theory. In [11], an explicitly gauge-invariant 
formalism was developed for studying fluctuations in five-dimensional non-linear 
sigma models consisting of a number of scalars coupled to gravity. The gauge- 
invariant formalism has the advantage that it allows one to study fluctuations of 
both the scalars and the metric degrees of freedom, while effectively decoupling 
them from each other. As we will see, the linearized equations of motion for the 
fluctuations can be solved algebraically for the gravitational degrees of freedom, 
and one ends up with a system of coupled differential equations tha t involve only 
the scalar fluctuations. Formulas for these linearized equations of motion for the 
fluctuations were given in [11] in terms of a superpotential W,  from which the 
potential for the scalars could be derived.

This chapter closely follows [11]. However, we will derive the generalized 
versions of the formulas given therein, which hold for an arbitrary potential V  not

52



necessarily obtainable from a superpotential. These methods have applications to 
both bottom-up approaches where the models are formulated in five dimensions, 
as well as top-down approaches where the five dimensional system originates 
from a consistent truncation of a higher-dimensional model in string theory or 
M-theory. In the following two chapters, we will apply them to compute the 
spectra of a few ten dimensional systems in Type I IB supergravity, for which 
there exist consistent truncations to five dimensional non-linear sigma models.

4.1 The Model

We start with a non-linear sigma model whose action is

S  =  J  dr J  ddx y / ^ g T  -  l G abgMNdM^ adN^  -  V(O)4 Z

where Gab(<I>) is the non-linear sigma model metric and V^($) is a potential for 
the scalars. The cases we will be interested in have d = 4, and the backgrounds 
will be of the form

ds2 =  dr2 +  e2Adx \ 3, (4-1.2)

where A{r) is a warp factor.
The equations of motion for the scalars following from the action (4.1.1) read

[ii]

v 2<r + gigMN(dM̂ )(dN̂ c) - v a = o, (4.1.3)

whereas Einstein’s field equations read

— Rmn + 2Gab{dM®a){dN®b) +  — t 9 m n V  = 0. (4-1-4)d — 1

Here, we have defined Va = d V / d $ a, and indices are lowered and raised using 
the non-linear sigma model metric Gab and its inverse. Furthermore, Qabc is the
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Christoffel symbol with respect to the non-linear sigma model metric

S atc =  \ G ad(dcGdb + & G * -  ddGbc). (4.1.5)

For special cases, V  can be written in terms of a superpotential W  as follows:

When this is the case, and provided the background is assumed to depend only 
on the radial coordinate r, we obtain the first order equations of motion from the 
superpotential as

4.2 Equations of Motion in the ADM formalism

We will now generalize the results of [11] to cases where the potential V  can not 
necessarily be written in terms of a superpotential. The idea is to slice space
time along the radial coordinate and rewrite everything in terms of d-dimensional 
quantities in the ADM formalism.

We start by writing the metric on the form

V  = i j V°Wa -  - T - W \
I  a — 1

(4.1.6)

(4.1.7)
$ '° =  W a

where prime denotes the derivative with respect to r.

(4.2.1)

where tilde is used to refer to d-dimensional quantities and the indices jj, and u 
run over the d-dimensional space-time. The inverse metric is given by



The tangent vectors X f f  are given by X £ =  0 and X " — 5". We have a normal 
vector N m  — (0,n), N M =  n - 1(— 1). The second fundamental form is

fcjxv (j,v 2 n ^

and one can derive the following relations

(4.2.3)

77rxr  per _ y~
1 fiu ~ L nv r^nv,

1 nu
r L- = ~d^n  H---- /CM„,^ n n

n a {  n'/ n c
r £r = V Mn ' -  - 3 „ „  -  v K m  (< T  +

r ;r =  i ( d rn +  n^d^n +  n/ira‘%#w,),

Tarr =drna +  -  n V an -  2 nJC°n>1 -  naFrrr,

(4.2.4)

where Tav is the d-dimensional Christoffcl symbol corresponding to the metric 

9fiv
Let us now write down the expressions for the equations of motion using the 

quantities defined above. The equation of motion for the scalars becomes

j<92 — 2 ^ 8 ^  +  n 2V 2 +  n*ln uS 7 — (n/C^ +  dr Inn  — In n)dr+

[nVMn — drnM +  12u'Vuntl +  nll{nK\uv 4 - dT In n — In 7i)] ^ i | $ a+

Qatbe (dr^ b)(dr^ )  -  2nl‘(dll$ b)(dr<S>c)+
(4.2.5)

{n2g ^  + n V ) ( d ^ b) ( d ^ c) -  n 2Gab ^  =  0
a o 6

Einstein’s equations separate into normal, mixed, and tangential components, 
obtained by projecting with P MN = N MN n — g ^ X f f X ^ ,  P f f N — N MX j ^ , and 
P™N — X j^ X j f ,  respectively. The normal component reads

( n ^ X n C p  -  {nK» ) 2 + n?R -  4n2V  +  2Gab (3r$ “)(ar$ b) -

=  0 .

(4.2.6)
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The mixed component is given by

d„(nfC:) -  V^n/C") -  nJC^dp In n +  nKJ^dv In n -  

2Gal,(dr$ a -  nvd ^ a)d ,M  =  0.

and the tangential component is

—dT{nlC^) +  n aV a(n)C%) +  nK,^(nK,° +  dr lnn  — n°d^lnn)-^

nSI^dyn +  nKJ^S/vr f  — n/C£VCT7iM — n2R%+ ^  2  8 )
Ar)2V

2n2G0j(V ,‘$ “)(9„$ ) +  — - ^  =  0.
d — 1

4.3 Linearized Equations of Motion

We will now expand the equations of motion in fluctuations of the metric and the 
scalar fields to linear order. To this end, we expand the scalars as

+  (4.3.1)

and the metric as

with

9in/  ̂  ̂ (Tinv T hiiv)i
->• is ,̂ (4.3.2)

n —> 1 +  u,

K  = h ™  + 9 %  + +  - j— rbih, (4.3.3)
LI a — 1

where hTT^ is traceless and transverse, and is transverse. Altogether, we have 
the fluctuation variables {(p, is, i s fo, /f, eM}. To first order, these transform 
under diffeomorphisms as

6cpa =  , ji/ =  +  e 2Ad r e ,  6 h ™  =  o,
(4.3.4)

8 e »  =  U ^ ,  8 H  =  2 d ^ ,  6 h  =  2 { d  -  lJ A 'f ,
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where

(4.3.5)

is the transverse projector.
In [11], the following gauge invariant variables were defined

<J>'°

(4.3.6)

Xi'V

Next, the fluctuations were separated into two groups X  — {h, H, eM} and Y  — 
{</?, z/, hrrl^}. The variables Y  were rewritten in terms of the gauge invariant 
variables and X .  Then Einstein’s equations were expanded order by order, and 
it was shown tha t by performing a diffeomorphism, these could be written on 
a form such that at each order all the terms involving X cancelled, using the 
equations of motion at the previous order in the expansion. In this way, gauge 
invariant expressions for the linearized equations of motion were found. Indeed, 
these were the same as what is obtained by putting the variables X  to zero by 
hand everywhere, only keeping Y  in the expansion, then switching to the gauge 
invariant variables at the end of the calculation. This can be viewed as the gauge 
choice X  — 0, but as pointed out in [11] really leads to gauge invariant expressions. 
Thus, we will expand around a background (assumed to be dependent only on r)
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to linear order using the following prescription:

0“ +  a«j 

7i —y 1 -f- b ,

nh
3^

-> e (O'1 +  ^ -c),□
9 [iv  ^ ^  ( 'Hfiv "h

It will be useful that

1 /  8^3
rUC* -* ~ d r A  +  -  I 8 ^ u +  d ^  +  2—j=pc -  dr e£ ) ,

TiJCp —)• —d d r A  +  c,

and

(4.3.7)

(4.3.8)

(4.3.9)

K  = ~ 2 e~2ADC (4.3.10)

Expanding the linearized equations of motion for the scalars (4.2.5) to first 
order, we obtain

drV  +  e~2AOaa +  dA'draa 4 - 2 £ “ $ 'bdrac+
d V a

d d g abc& W ca d -  —  ac -  $ ,a(c +  d r b )  -  2V a b =  0. 

Defining a “background covariant” derivative as

(4.3.11)

D r<pa =  d r  + (4.3.12)

and using (4.1.3), we can write (4.3.11) as

Dl + dA’Dr + e~2AU
(4.3.13)

a a - ( V ^  -  TZabcd^ ,d) a c -  

$ ,a(c +  d r b )  -  2 V a b =  0,

where 1Zabcd is the Riemann tensor with respect to the non-linear sigma model
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metric
'Tya   a  r>a c\ s-*a « n a  r>e r*a r>ebed &czf y  be ' ^  cê f bd ^  deŜ  bcm (4.3.14)

Let us now expand Einstein’s equations. At first order, the normal component 
of (4.2.6) gives

2 (d -  l)A'c  +  W a{Draa) -  4Vaaa -  SVb = 0, (4.3.15)

where we use the notation <E>'a =  Gâ ,h. The mixed components (4.2.7) give

+  (d -  l )A % b  -  2 =  0 . (4.3.16)

Here, we have used tha t and 0  ̂ are transverse, and that R  =  0 at first order. 
The tangential component of (4.3.16) implies that

b =
2$ 'a°

( d - l ) A r
(4.3.17)

Plugging into (4.3.15) gives

8U $laa
c  = +

2Vaaa 2 &aDraa
( d - l ) M ' 2 ( d - l ) A '  { d - l ) A r

(4.3.18)

Thus, we have obtained b and c algebraically in terms of aa. Using (4.1.7), one 
can show that

drb —
2 2Va
d - 1 ( d - l ) A '  (d — 1)2A/2 ( d - l ) A ’)

Plugging everything into (4.3.13) finally gives us

a  . (4.3.19)

Dl  +  dA'Dr -  e~2AK 2 a —

a 4 (0 'aUc +  Ua^ )  16U$,a$'c
Vj“ -  f t  $ +  , . +( d - l ) A '  ( d - l ) M '

ac =  0.
(4.3.20)

This is the linearized equation of motion for the scalar fluctuations aa that we 
need to solve. As explained, it will in general only admit solutions with the

59



correct IR and UV behaviour for special values of — K 2 =  M 2, which in turn give
us the spectrum. Let us point out that it is in general non-trivial to determine 
which boundary conditions are correct to impose.

In the special case where V  can be written in terms of a superpotential W,
(4.3.20) agrees with the formula given in [11]:

We will now describe how to set up the computation of the spectrum numerically. 
Suppose that we have a system of n  scalar fields satisfying a second order linear 
differential equation, and tha t the boundary conditions in the IR single out p 
linearly independent solutions, whereas the boundary conditions in the UV single 
out q solutions. A solution is completely characterized by evaluating it and and its 
derivative at a chosen point. Therefore, let us form vectors dpaiR^)) where
different i denote different solutions in the IR, and we have suppressed the field 
index. These are p column vectors of size 2n. By evolving them numerically from 
the IR, we can evaluate them at any point we like, and therefore they are functions 
of p. Similarly, we form q column vectors from the UV solutions, {ciuv(i),dp&uv(i))- 
The question tha t we need to answer is whether, for a particular value of K 2, we 
can find a solution that interpolates between the correct IR and UV behaviours. 
In other words, we want to know whether we can find a linear combination of the p 
solutions in the IR and write it in terms of a linear combination of the q solutions 
in the UV. For p — q — n, this is true if and only if the deterimant of the matrix 
formed by putting the IR and UV column vectors next to each other is equal to 
zero. It is convenient to evaluate this matrix at a point chosen between the IR and 
UV. In other words, the linearly independent solutions satisfying the boundary 
conditions in the IR and in the UV, respectively, are evolved numerically to a 
midpoint, where the determinant is evaluated. If it is zero for a particular value

(4.3.21)

5ace~2AK 2 ac — 0.

4.4 Numerical Methods
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of K 2, there is a pole in the correlator. This is the midpoint determinant method 
described in [59].

We would now like to generalize this method to include cases where p  and q 
are not necessarily equal to n. In such cases, the matrix obtained by putting the 
IR and UV column vectors next to each other is not generally a square matrix, 
and therefore we can not answer the question of whether the vectors are linearly 
independent by evaluating a determinant. The method we will use instead is the 
following. First we normalize the vectors (aiR(i),dpa jR ^)  and (auv(i),dp&uv(i))- 
Let us denote by X \  (i =  1, . . .  ,p +  g, a — 1 , . . . ,  2n) the m atrix formed by 
putting these normalized column vectors next to each other. Then we construct 
an orthonormal basis e \  (i — 1 , . . .  ,p+<7, a — 1 , . . . ,  2 n) for the subspace spanned 
by these vectors. Finally, we project the normalized vectors onto the basis and 
form a matrix Y 1̂ — elaX aj.  This is now the (p +  q) x (p +  q) m atrix whose 
determinant we compute at a midpoint between the IR and UV. Again, if it is 
equal to zero, there is a pole in the correlator.

4.5 Summary

We have studied a generic five-dimensional non-linear sigma consisting of a num
ber of scalars coupled to gravity. Expanding around a background and linearizing 
the equations of motion in fluctuations of the scalar fields and the metric, we found 
tha t the equations of motion for the fluctuation of the metric degrees of freedom 
could be solved algebraically in terms of the scalar fluctuations. In the end, the 
linearized equations of motion become a set of coupled differential equations for 
the scalar fluctuations, equation (4.3.20). The holographic prescription for ob
taining the spectrum is to solve this differential equation for different values of 
—K 2 =  M 2 and impose that the fluctuations obey the correct behaviour in the 
IR and in the UV. It is only for special values of M 2 tha t well-behaved solutions 
exist, and these M 2 make up the spectrum. Finally, we have described numerical 
methods to be used for the practical implementations of these studies.
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Chapter 5 

Glueball Spectra of SQCD-like 
Theories

In this chapter, we will study the spectrum of scalar glueballs in SQCD-like 
theories, whose gravity description is in terms of Nc D5 branes wrapping an S2 
inside a CY3-fold, and N f  backreacting D5 flavor branes wrapping a non-compact 
two-cycle inside the same CY3-fold [12]. The dual field theory is believed to be 
similar in the IR to Af — 1 SQCD with a quartic superpotential for the quark 
superfields. However, the full theory cannot be dual to SQCD for a number 
of reasons. It does not have an SU(Nf) x SU(Nf) x U ( 1 ) r  global symmetry as 
SQCD does, but instead only one SU(Nf) (broken further to U (l)Nf by smearing 
the flavor branes as will be discussed later). Also, for Nf < NCJ the Afflcck-Dine- 
Seiberg superpotential [60] tells us that SQCD does not have a vacuum, whereas 
for the systems we will study backgrounds exist with Nf < Nc.

Using the holographic techniques described in the previous chaper, we will 
find how the mass of the lightest scalar glueball in the spectrum depends on the 
number of flavors for a few different backgrounds. First we will show tha t a 
consistent truncation to a five-dimensional non-linear sigma model exists. This 
five-dimensional model contains four scalar fields coupled to gravity. In the grav
ity picture, Seiberg duality is realized for these theories as a diffeomorphism, 
i.e. just a change of variables [12,13]. Therefore, the background itself does not 
change under Seiberg duality, but since we have changed variables, the dictionary
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interpretation of the dual field theory is changed. We show that the Lagrangian 
of the five-dimensional non-linear sigma model is invariant under a set of trans
formations of the scalar fields and Nc —» Nf — Nc. It follows that anything that 
can be computed within this framework will obey Seiberg duality.

The backgrounds correponding to the setup described above have been found 
to fall into two categories known as Type A and Type N [13,14]. Type A back
grounds are special cases of Type N backgrounds for which the VEV of the 
gaugino condensate as well as the mesons are zero. We will study the spectrum 
of a few backgrounds of Type A for which the dilaton grows linearly in the UV. 
In the IR, there are different possible behaviours for the background (known as 
Type I, II and III [14]) corresponding to different vacua in the dual field theory. 
These backgrounds have a singularity in the IR which is “good” according to the 
criterion given in [15], and are believed to capture the non-perturbative physics 
of the dual field theory. This criterion states tha t the poo component of the met
ric should not increase as we approach the singularity (the idea is tha t proper 
energy excitations should correspond to lower and lower energy excitations from 
the point of view of the field theory as one approaches the singularity in the IR).

The D5 flavor branes are smeared along the transverse angular coordinates, 
breaking the SU(Nf) global symmetry to U (l)Nf (this procedure was first intro
duced in the context of flavor branes in [61]). The consistent truncation to five 
dimensions does not contain fluctuations of the gauge fields on the branes. How
ever, it still contains fluctuations of the Ramond-Ramond 3-form F (3)' Therefore, 
when Nf ~ Nc, the fluctuations tha t we consider mix glueballs and mesons. Since 
the fluctuations do not involve the gauge fields on the brane, the meson-glueballs 
whose spectrum we compute are £7(1)^-singlets.

Imposing the boundary condition on the fluctuations in the IR tha t their 
kinetic terms are regular, and in the UV tha t the fluctuations correspond to 
normalizable modes, we find tha t the mass of the lightest scalar glueball increases 
as the number of flavors is increased, until the point N f  =  2NC is reached after 
which the opposite behaviour is observed. For a particular class of backgrounds 
that are Seiberg dual to themselves, we demonstrate explicitly tha t the spectrum 
obeys Seiberg duality.

There is by now a large literature on systems with back-reacting flavors. In

63



the future, it would be interesting to apply the same techniques to study the 
glueball spectra of the various systems studied in [13,14,62-89].

This chapter is organized as follows. In section 5.1, we describe the general 
setup and the backgrounds that we will study. In section 5.2, we derive the 
consistent truncation to the five-dimensional non-linear sigma model and discuss 
the Seiberg duality it obeys. Section 5.3 contains the computation of the spectra. 
Finally, we summarize our results in section 5.4.

5.1 Gravity Duals of SQCD-like Theories

The backgrounds we will be interested in are obtained from wrapping N c D5 color 
branes on an S 2 inside a CY3-fold, then adding N f  back-reacting flavor branes 
tha t wrap a non-compact two-cycle inside the same CY3-fold. This is described 
in detail in [12 ], where evidence is given for that the backgrounds obtained are 
dual to a field theory with similar behaviour in the IR as Af — 1 SQCD with a 
quartic superpotcntial for the quark superfields.

5 .1 .1  A ctio n  and E q u ation s o f  M otion

We will now write the Type IIB supergravity action and the equations of motion 
tha t follow from it. The action (in Einstein frame) is given by

S  = S I}B + S ulavors\  (5.1.1)

where S u b  describes Type IIB supergravity in the truncation to the metric, the 
dilaton, and the RR 3-form (pMI/, 0, F(3)), and 5 '(/*auors) [s the action of the flavor 
branes. We have that

I I B  ~  2 k 2 
Z K ( 1 0 )

J  d mXyf—g  R  -  i F,f3) (5.1.2)

where /c10 is the lOd gravitational coupling constant. We will choose coordinates 
as (a;M, p, 6, 9, y5,t/>), where p is the radial coordinate, the angles 0  <  0 < 7r
and 0 < </9 < 2 -7T parametrize an S 2, and the angles 0 < 6 < n, 0 < ft < 2ir,
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and 0 <  ip < 47r parametrize an S 3. The flavor branes extend along the external 
coordinates the radial coordinate p, and the angular coordinate ip. Their 
action is given by

Nf
s (f,avor»)=T£)5£  P[C6] , (5.1.3)

I </ M6 yv

where Tbs is the D5-brane tension, p(6) is the determinant of the pullback of the 
metric to M.q, the world volume of the flavor brane, and similarly P[Cq] is the 
pullback of Ramond-Ramond 6 -form C&. In order to simplify the analysis and 
avoid delta function sources in the equations of motion, we distribute the flavor 
branes evenly over the transverse angular coordinates (0, <p,0,<p). This so-called 
smearing of the flavor branes breaks the global SU(Nf) symmetry to U( l )Nf . We 
obtain

Q j(f lavors ) d10x  sin 6 sin Qe^2 y/~9(6) +  I Cq A , (5.1.4)

where

Q4 =  sin 0 sin Qd6 A d6 A dip A dip. (5.1.5)

The equation of motion for the dilaton is

sin0sin0  =  O, (5.1.6)

while Einstein’s equations read

Rfiv 2  9y.vR
(5.1.7)
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where

I T w )  =  - ^ s i n e s i n ^ S ^ ^ ^

Finally, Maxwell’s equation for the F@) is given by

(5.1.8)

dM {V = g e* F ^x) =  0. (5.1.9)

5 .1 .2  T yp e  A  B ackgroun ds

In this chapter, we will be interested in so-called Type A backgrounds. For these 
backgrounds the VEV of the gaugino condensate is zero, as are the VEVs of the 
meson matrix. Type A backgrounds can be obtained starting from the ansatz [1 2]

ds2 = /i2e2̂ p 2dx\ z +  e2kdp2 +  e2h{dO2 +  sin2 Odp2)+

,2 k
^—(dQ2 +  sin2 6 dp2) -I- ^— {dijj -I- cos Odp +  cos Odpy

r  N ~ ~ Nf  — N
=  — p 2 sin Odd A dip -I — - sin Odd A dp

(d'ift +  cos Odp 4 - cos 6 dp),

A

(5.1.10)

with p 2 = a'gs. Here, / ,  k, h , and g are taken to be functions of the radial 
coordinate p. For the backgrounds that we will be interested in the IR is at p — 0 
and the UV at p — oc.

Making a change of variables to P , Q , and Y  through

,2/i P  + Q

e2'9 = P  -  Q 

e2k =4 Y,

(5.1.11)
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the BPS equations can be solved as ( /  =  0/4) [13,14]

Q —Qo +  (2 A/c — Nf ) p ,

Y = \ { P '  + N ! ), (5112)

P4pM-<h)  =  e
(.P2 - Q 2) Y ’

where 0o and Qo are integration constants, and P  satisfies a second order differ
ential equation given by

5 .1 .3  IR  and U V  E xp an sion s

We will be interested in backgrounds for which P  grows linearly in the UV .1 For 
N f  < 2Nc, these have the UV expansion (around p =  oo) given by

N tN
Puv = (2NC -  N /)p  +  (Nc + Qo) + i{2 N ' _ cN y ' 1 +  c  (p -2) , (5.1.14)

whereas if N f > 2NC

Puv = - ( 2 N c- N J) p - ( ( l  + Qo)Nc- N , ) - ^ ' ~ ^ p - i + 0  (p~2) . (5.1.15)

In the IR, there are several different possible behaviours for the background. 
Here, we will focus on two different ones, that of Type II and Type III [14], For 
Type II and Q0 > 0 we have that [12]

PfR  ̂ — Qo +  4hiy/p — ^ 2 VC +  +  N f ^ p + O  (p3//2) • (5.1.16)

There are two integration constants: Qo and hi. Solutions exist tha t interpolate 
smoothly between the Type II IR and the linear dilaton behaviour in the UV [12]. 
In order to obtain such solutions, one must dial the integration constants Qo and

lrThe alternative is th at the P  grows exponentially in the UV, in which case the spectrum  
only contains a continuum.
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Figure 5.1: P  as a function  of p for th e  T ype A background w ith  T ype II IR  
behaviour and  Qo — 1.2. T he different lines correspond to  different num ber of 
flavors: d o tted  is Nj  =  Nc. dashed  is Nf  =  1ANC1 and solid is N f  =  1.8Afc.
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Figure 5.2: P  as a  function  of p for th e  T ype A background w ith  T ype  III IR 
behaviour. T he different lines correspond to  different num ber of flavors: d o tted  
is Nf — Nc, dashed  is Nf  —  IANC, and solid is Nf =  l.8Nc.
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Figure 5.3: P  as a function of p for th e  T ype A background w ith T ype II IR 
behav iour and  Qo =  1.2. T he  different lines correspond to  different num ber of 
flavors: d o tted  is Nj — 2.2NC, dashed  is Nf  — 2.6Nc, an d  solid is Nf — 3NC.

p
Nc

o 2 3 4 5

Figure 5.4: P as a  function of p for the  T ype A background w ith  T ype III IR 
behaviour. T he different lines correspond to  different num ber of flavors: d o tted  
is Nf =  2.2NC, dashed is Nf = 2.6NC, and solid is Nf =  3Nc.
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/fci, essentially making h\ a function of Qo- This leaves us with one free param eter 
Qo for the Type II solutions.

In the case of Type III, Qo =  0 and P  has the following behaviour in the IR:

P<'"> =  4V 1/3 -  9~ f p  + S~ y P 4/3 +  O  (p*'3) . (5.1.17)

Now, requiring that the solution has the UV asymptotics of Puv  completely 
fixes the one parameter hi. Both the Type II and Type III backgrounds have a 
singularity in the IR, which satisfies the criterion for being a “good” singularity 
given in [15].

Figure 5.1 shows P  as a function of p for the Type A background with Type
II IR behaviour and Qo =  1.2 for a few different number of flavors N f <  2Nc. 
Figure 5.2 shows the corresponding plots for the Type A background with Type
III IR behaviour. Figures 5.3 and 5.4 are the same as Figures 5.1 and 5.2 but for 
flavors N f > 2 Nc.

5 .1 .4  D u al F ie ld  T h eory

We will now describe in more detail some aspects of the field theory conjectured 
to be dual to the backgrounds described above. First, consider the case of no 
flavors. Then the dual field theory is a four-dimensional M  =  1 supersymmetric 
field theory, obtained from a twisted compaCtification of six-dimensional SYM on 
S 2 where the twisting is such that it preserves four supercharges [90,91]. A t weak 
coupling, this field theory consists of a massless vector multiplet, V, as well as 
a Kaluza-Klcin tower of massive chiral and vector multiplets, and Vfc. The 
infinite number of KK modes reflects the fact that the UV completion is not 
given by a quantum field theory (in fact, it is given by a Little String Theory). 
If it were possible to separate the scale set by the size of the S 2 from the scale 
A at which the theory becomes strongly coupled, we would have a gravity dual 
of J\f =  1 SYM. Unfortunately, this is not the case. The Lagrangian of the field
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theory without flavors has the generic form

c = f  i^ i2) +
k .

(5.1.18)

/ d?9 W aW °  +  Y ,  ( Wk,aW ?  +  / i *  |$ fc|2 +  W ( $ / f c ,  Vk))

where W a and Wk,a are the curvatures of V  and 14, and ra*, and ^  are the masses 
of the massive vector and chiral multiplets comprising the Kaluza-Klein tower. 
The superpotential W(<34, 14), governing the interactions between the KK chiral 
and vector multiplets, is given by

£ / ( * » ) " W * r -  (5.1.19)
i,j,k k

W ith the introduction of flavors, we also have to add the terms [12]

f  d*e (Q 'ev Q + Q'e~v Q) + J  £ 6  Y  (5 .1 .2 0 )
p,i,j,a, b

to the Lagrangian. Here, a,b — 1 , . . . ,  Afc are indices of the fundamental and 
anti-fundamental representations of SU (N C) and i , j  — l , . . . ,7Vy are indices of 
the fundamental and anti-fundamental representations of SU(Nf ) .  Since the 
smearing procedure described above breaks SU(Nj )  to U(l )Nf , the k^  must 
serve the role of breaking this symmetry in the field theory, however its exact 
form is not known. In principle, we could have also considered the more general 
case where there is a superpotential for the flavors too. Again, the form of such 
a superpotential is not known.

As mentioned above, it is not possible to separate the scale set by the size 
of the S 2 from the scale A at which the field theory becomes strongly coupled. 
Nevertheless, we can imagine integrating out at least some of the KK modes, if 
not all the way down to A. This then gives rise to an effective superpotential
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W e/ f  containing quartic terms

(5.1.21)

This means tha t in the IR the field theory is similar to M  =  1 SQCD with 
a quartic superpotential (bearing in mind tha t not all the KK modes can be 
integrated out in this fashion).

consistent truncation of the lOd system discussed in the previous section. We start 
with the ansatz given in (5.1.10), and plug it into the Type IIB supergravity action 
given by (5.1.1). We will assume that the background functions ( / ,  g, /i, fc, 4>) only 
depend on the coordinates (j:m,^), and integrate over the angular coordinates. In 
fact, because of Lorentz invariance it is sufficient to first consider the case where 
the background functions only depend on the radial coordinate p, then generalize 
to the case when they can also depend on the external coordinates x ,L. Performing 
the integration over the angular coordinates yields

5.2 5d Formalism

5 .2 .1  5d E ffective  A c tio n

We will now derive the 5d effective action of the non-linear sigma model which is a

d4xe8f+2'9+2h+2k ( T - V ) , (5.2.1)

where

(5.2.2)
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and

_1_

256
~Y —  —1 — q ~ 2 ( 2 ( f + h ) + k + 2 g )  ^

16e4/l+0iV2 +  e ^ ' 9 (Nc -  N f ) 2 +  8 e^ AU+h+k)+4>+A~9) N f +

e 4 f + 2 k  ( e 4g  ( _ 1 6 e 2h  +  e 2fc^ +  ^ h + l h  _  Q ^ h + 2 g ^

(5.2.3)

Notice tha t the Wess-Zumino term, whose only effect is to change the Bianchi 
identity of F3 , does not appear in this action, from which the Einstein, dilaton 
and Maxwell equations are derived.

Let us change coordinates to

/  =  i4 +  p - | ,  p = - i 4  -  |  +  log2 - p  +  ar, 

h =  —A +  p +  x, k = — A  +  log 2 — 4p,

with inverse

(5.2.4)

A — — (8 / +  2g +  2h +  k) — log 2, g — —g +  h -T log 2,

P =  (4 / +  5  +  /i +  2fc) +  ^log2,  x  =  2 /  +  g + h -  log 2,
o 2

and also change the radial coordinate as dr — eA+kdp. This leads to

4//4iV2(47r)3

with „/2 jl/2,0 ■g''6 /0 a;'"6 <b
T  = 3A -  Y  -  V  ~  Y  _  8

(5.2.5)

5 10d = 4M2̂ (4,f) J  dr J  d?xeiA (T  — V ) ,  (5.2.6)

(5.2.7)
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and

V  — r -2(g+2(p+x))
128

16 (—4e3+6p+2x (1 +  e2ff) +  e45 +  l)  +

gl2p+2x+<f> (e4gN2 +  ^  ^  2j +  ^ 2g+6p+x+f ̂
(5.2.8)

Recognizing that for a metric given by dsg =  dr2 +  e2Ad x \ 3 (where the function 
A is the warp factor) the Ricci scalar is (up to partial integrations) equal to 
R  — —12A'2, we can write this as the action of a 5d non-linear sigma model

S5d = j  dr J  d4X y/^g |  -  l G abgMNdM^ d N^ l> (5.2.9)

where $  =  [g,p, x,0], and the non-linear sigma model metric is diagonal with 
entries Ggg =  | ,  Gpp =  6, Gxx =  1, and G ^  =  One can verify tha t every 
solution to the 5d equations of motion following from this action also solves 
the full lOd Type IIB supergravity equations of motion. This shows tha t the 
five-dimensional non-linear sigma model is a consistent truncation of the lOd 
Type IIB supergravity system. Finally, let us point out that by studying the 
five-dimensional system, we cannot see excitations of KK modes in the S 2 x 
S 3. Therefore, only part of the spectrum is accessible for us to study using the 
methods of Chapter 4.

5 .2 .2  S u p erp o ten tia l from  th e  B P S  E q u ation s

Using the BPS equations, it is possible to find a superpotential W , in terms of 
which the potential V  can be written as

V  =  \ w aw a -  (5.2.10)
Li O

In order to derive the BPS equations, we will consider spinors in Type IIB SUSY 
variations that satisfy [12]

e =  i e \  r ^ e - T ^ e ,  =  e. (5.2.11)
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The gravitino variation 5ipx — 0 gives

2f - 2 g - 2 h + %

/ '  = 16
(e2a N f  -  (e2g -  4e2h) N c) (5.2.12)

where prime denotes differentiation with respect to p. These equations are the 
same as the ones coming from the dilatino variations with (j) — 4 / .  Further, 
S'ipe — 0 gives

h1 = i e“2(-f+'‘) (e*/2Nc +  e2(f+h) -  e* /2N f ) , (5.2.13)

while d'ipg =  0 gives

~g > =  e - 2 i f + g )  ( e 2 ( /+ fc )  _  e m N c ) (5.2.14)

and, finally, Sip^ =  0 gives

1
k' = -e~ 2(f+h+a) -  e^/2 (4e2h -  e2g) N c -  4e2{f+h+k) +

4 L n (5.2.15)
g g 2  ( f + h + g )   ^ 2 ( f + k + g )    ^ + 2g y y ■

The equation of motion for A gives us an expression for the superpotential

W  =
3 d A  
2 dr

(8 /' +  2g +  2h! +  k ' ) , (5.2.16)

where (as above) prime denotes differentiation with respect to p. Using the above 
BPS equations, one arrives at

W  = i - e-9 -2<)>+z> Lep+z+f ( ( _ 1  +  e2«) Nc +  Nf ) -  
16 L

4 (1 +  e29 +  2e9+6p+2x)
(5.2.17)

Using (5.2.10), one can check tha t this superpotential W  reproduces the Type A 
5d potential V  given in (5.2.8). Also, the equations of motion derived from the 
superpotential are precisely the BPS equations given above.
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5 .2 .3  S eib erg  D u a lity

For the models considered in this chapter, Seiberg duality is realized on the 
gravity side as a diffeomorphism. While the background does not change, the 
change of variables means that the dictionary describing quantities in the dual 
quantum field theory changes.

In terms of the variables (P, Q, Y,  0), Seiberg duality transforms [12]

Q - Q ,  

N c - > N f -  Nc,

leaving P, Y , and (j> unchanged. Using the relations

(5.2.18)

e3  ̂ = e ^ 2 -  Q2) W
16

e * = P  + Q

e6p =

P - Q ’
4e-* <5-2-19>

^ P 2 - Q 2 Y '

e*(P2 -  Q2. _  . >2'
,2 x

16

we see that in terms of the 5d variables, a Seiberg duality simply takes the form 
g —> —g (and, as usual, N c —)• TVj  — N c). It is straightforward to see tha t both 
the potential V  and the non-linear sigma model metric Gij are invariant under 
this transformation. It follows tha t the whole 5d theory exhibits Seiberg duality, 
and therefore anything that we can compute within this framework, including the 
spectrum, will manifest Seiberg duality.

Considering that Seiberg duality is normally only a duality in the IR, it may 
seem odd that the whole 5d Lagrangian is invariant under the Seiberg duality 
transformations. However, in [92] it is argued that M  = 1 SQCD with a quartic 
superpotential for the quark superfields can satisfy an exact Seiberg duality, where 
not only the IR of two different field theories are the same, but they in fact 
represent two different descriptions of the same renormalization group flow. The 
fact that in our setup Seiberg duality corresponds to diffeomorphisms supports the
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view tha t Seiberg duality is exact for these backgrounds. However, it is not clear 
how this happens from a field theory perspective. One can make the following 
schematic argument in the IR. Starting with a superpotential W  — hfi~l (QQ)2, 
we first Seiberg dualize, obtaining W  — hf i M2 + qMq, where M  is the meson field 
and q and q are the dual quark and anti-quark fields. For Nj  < 2Nc: h is a relevant 
operator, so we can integrate out M, solving 0 =  d W jd M  =  2h\iM-\-qq. Plugging 
M  back into W  gives us an effective superpotential W  — —h~lp,~1(qq)2/2. As can 
be seen, this superpotential is of the same form as the one that we started with, 
but describing a theory with Nc = Nf  —  Nc colors and Nf  flavors. Furthermore, 
the coupling h has been inverted, consistent with tha t for Nf > 2NC the coupling 
appearing in front of the quartic term of the superpotential is irrelevant. It is, 
however, clear tha t this argument only works in the IR. In order to argue from 
the field theory tha t Seiberg duality is exact, one would have to take into account 
the KK modes tha t become important in the UV. From this point of view, it still 
remains somewhat mysterious why the backgrounds we are considering seem to 
have an exact Seiberg duality and what it means in terms of the dual field theory.

5.3 Scalar Spectra

In this section, we will study some different Type A backgrounds, and compute 
the mass of the lightest scalar glueball as a function of the number of flavors. In 
Chapter 4, a system of coupled differential equations for the fluctuations were 
derived, equation (4.3.20)

D2 +  dA'Dr -  e~2AK 2 a —

j 4 f$ 'aK  4- y a$ / 'l lG V$,a$ ry a  _  y p a   c_J________ J __ ,________________ c_

|c ^  ( d - l ) A '  ( d - l ) 2A'2
ac = 0.

(5.3.1)

Changing the radial coordinate as dr = eA+kdp, (4.3.20) becomes

Sabd2p + S td p + T Z - 5 ahe2kK 2 a — 0, (5.3.2)
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with

S Z = 2g abcdp<f>c +  4 (d pP +  dpA ) 6 l  

TS = d bGacddp$ cdp$ d-

'4(Vadp$ c +  V cdp<4>a)
4e~8p

3 dpA
+

16V dn$ ad n$ c
9 (dpA y

G,A + dbv a
(5.3.3)

This is the second order linear differential equation for the scalar fluctuations 
tha t we need to solve for different values of K 2 imposing the certain boundary 
behaviour in the IR and UV. In the IR, we will require that the kinetic terms 
for the fluctuations are regular. In the UV, we will require that the fluctuations 
are normalizable. This gives us the spectrum. In the following, we will put 
Xf  =  N j / N c, and rescale P  — >  NCP  and similarly for Q and Y.  All masses are 
given in units of y/a'g3Nc.

5 .3 .1  B ou n d ary  C on d ition s in  th e  U V

5.3 .2  N f  <  2 N C

We will now expand the differential equations for the scalars (5.3.2) in the UV. 
For Nf < 2Vc, the background is given by (5.1.14). We obtain that

Sab =25ab +  <9 (p-1) ,

/  - 4  0 4
0T = - 6  - 1  - I
2 - 6  - 3  |

J

+  o  {p-1) •

y - 4  -1 2  2 - 3

A basis that diagonalizes T  to leading order is given by

/  _

B =

1 - 1 3
1
6

1

1 - S  - 3 5

1 \
0

1 - 6  - 1

(5.3.4)

(5.3.5)
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such that B ~ lT B  is diagonal. To leading order, this diagonalizes the differen
tial equations for the fluctuations, and we obtain four independent differential 
equations

d y  +  2dpal -  (8 +  K 2)al =0 

d2pa2 +  2dpa2 -  (8 +  K 2)a2 =0 

d2a3 +  2dpa3 -  K 2o3 =0 

d2pa4 +  2dpa4 -  K 2a4 - 0

(5.3.6)

with solutions a1,2 ~  1̂ ^ + k 2)p anci a3>4 ^  e( +K2)p̂  pq0te tha t if we

Y n anPba'n-> above analysis captures the C a but not the function Aa{p). There
fore, the exponential factors are in general multiplied by powers of p 2 However, 
the exponential behaviour is all we need for setting up the boundary conditions 
in the numerics. We are interested in the subleading behaviour so we pick the 
minus signs. In [59], a normalizability condition for the fluctuations was given:

so tha t the subdominant fluctuations are always normalizable, while the dominant 
ones are not. Let us also point out that for M 2 >  1 or M 2 > 9, we start 
getting oscillatory behaviour for fluctuations in the UV, signalling the start of a

this can be checked explicitly. However, in that case, P  is exponentially close to P  =  2N cp  in 
the UV, so that we can always work w ith analytical expressions. In the present case, only the

high cut-offs in the UV (around p  =  15) before the numerics break down suggests that such a 
basis exists.

imagine expanding the fluctuations as aa = A°(p)e( l±^ ° a m2)p with A°(p)

J  dze2AGatpl)ailjb = J  dpe?A+kCabil)a'ij)bb < oo. (5.3.7)

In our case, we have in the UV that (x / — N j / N c)

e', 3 A + k — e,2p+2(f>o + o ( p - 1' 2) (5.3.8)

2The validity of the expansion in powers of p  1 hinges on that it is possible to  find a basis 
in which the components w ith different exponential behaviour do not mix. In the case of [3],

U V  expansion of P  in powers of p  1 is known. W hile we cannot verify that there exists a basis 
in which the different exponential behaviours do not mix, the fact that we can go to reasonably
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continuum.

5 .3 .3  Nf > 2Nc

Similar considerations as in the last section (but with a different B ) now lead 
to solutions of the form a1,2 ~  e(-1±V^Hxr-^y^)p  anci a3,4 ~  e(-1±'\/1+(x/ - 1)tf2)p 

(times powers of p). Note that the appearance of Xj is Seiberg duality at work 
(restoring units, it takes gsa 'N cK 2 —> gsa 'N c(x f — 1 ) K 2).

5 .3 .4  B ou n d ary  C on d ition s for T y p e  II in  th e  IR

For Type II backgrounds, it is natural to expand the fluctuations in the IR as

OO
a“ =  £ c O > n/2. (5.3.9)

n=0

We will choose boundary conditions such that the kinetic terms of the scalars do 
not blow up, i.e. that the derivative dpaa does not blow up in the IR. This fixes 
o“ — 0 and, after plugging in the ansatz (5.3.9) into the differential equations for 
the fluctuations (5.3.2), leads to four linearly independent solutions

(5.3.10)

(5.3.11)

(5.3.12)

a ( i )

f i \
0
0

w

+

+ %  +
2+ 2Q o ~ X f

2Qo  
2+4Q0- X f

2Qo
2—x  j

Qo

p  +  o (p3/2),

a (2) -

a(3) =

/ o \
1

+
0

W

0
+

1

W

/  1 2 +  12 _  6n  
1 +  Qo Qo

a  3 x /  i 3 
_ b  +  2Q0 +

_ 1 9  I ?Xj_ , _3_ 
LZ  +  2Q0 +  h\ 

3 x

\

Qo
u

(  4 +  _2_ _  Xj_ \  
1 *  ^  Q o  Qo ’

 o xf 1
Z  4 Q 0 2h*

— A +  JLL +  1 
^ ^  4Q0 +  2h%

2Qo
+

P + + P 3/2).

p + 0 (P3/2),
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a (4) =

This fixes our boundary conditions in the IR.

( o \
(  2- x ,  \  

2Qo

0
+

X j

8Qo +
1

4 f i f
J

0
X  j

8Q o
+

W
X  f

\ 4Qo +

P  +  O t f ! 2 ) . (5.3.13)

5 .3 .5  B ou n d ary  C on d ition s for T y p e  III in  th e  IR

For Type III backgrounds it is natural to expand the fluctuations as

./3 (5.3.14)
n=0

We see tha t the requirement that the derivatives of the fluctuations do not blow 
up in the IR now leads to o“ =  a“ =  0, which is a stronger requirement than for 
Type II, and consequently leads to fewer than four allowed linearly independent 
solutions in the IR:

a (i) =

a (2) =

/  o \ 0 N
1
6

1
+

- 1

- 2 p +
h i K 2 

12 
h xK 2 

2

P4/3 +  0 (p 5/3),

w 0 /

0 ' ( o \ o \
1
12

0
+

1
2

1 p + 0
I

p4/3 +  0 ( p 5/3).

1 > w h x K 2 
^ 2 /

(5.3.15)

Now that wc have fixed the boundary conditions, singling out a number of 
allowed linearly independent solutions in the IR and UV, the question becomes 
whether for a particular value of K 2 it is possible to find linear combinations 
of the allowed solutions in the IR which when evolved towards the UV can be 
written as linear combinations of the allowed solutions in the UV. The numerical 
methods used for determining this are outlined in section 4.4.
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Figure 5.5: T he m ass squared  of th e  ligh test scalar glueball as a  function  of th e  
num ber of flavors for a couple of T ype A backgrounds w ith T ype  II IR  behaviour: 
Qo =  20 (squares) and  Qo — 1.2 (dots).

5.3.6 R e s u l ts

Figure 5.5 shows th e  m ass squared  of th e  ligh test scalar glueball as a function of 

x j  =  N f / N c for a couple of T ype A backgrounds w ith  T ype II IR behaviour. As 

can be seen, th e  m ass increases w ith th e  num ber of flavors, un til th e  special po int 

N/  — 2N c (where th e  theory  has ce rta in  peculiar p roperties) w here it reaches the  

s ta r t  of th e  continuum , M 2 — 1, and  a fte r th a t  decreases as a  function of the  

num ber of flavors.

Figure 5.6 shows th e  m ass squared  of th e  lightest scalar glueball as a function  

of Xf — N f / N r for th e  T ype  A background w ith T ype III IR behaviour. Again 

the  sam e p a tte rn  can  be seen.

U nder Seiberg duality , th e  in teg ra tion  co n stan t Q 0 —>■ — Qo- Since for a  T ype 

A background w ith  T ype III IR behav iour Qo =  0, such backgrounds are Seiberg 

dual to  them selves {Q =  (2Nc — Nf ) p  —> (2 NC — Nf)p) .  In  F igure 5.7, the  

dots are th e  sam e as in Figure 5.6, and  th e  squares are w hat is ob ta ined  under 

Seiberg duality, m apping  poin ts as Xf  —> y ^ y .  Also, under Seiberg duality, 

M 2 —> (xj  — 1 )M 2, since we are w orking in un its  a'gsN r —»• a'gs (N f  — N c). As 

can be seen, th e  Seiberg dualized sp ec tru m  falls on th e  sam e tra jecto ry .
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Figure 5.6: T he m ass squared  of th e  lightest scalar glueball as a  function  of the 
num ber of flavors for the  T ype A background w ith T ype 111 IR  behaviour.
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Figure 5.7: T he m ass squared  of th e  lightest scalar glueball as a  function  of the  
num ber of flavors for the  T ype A background w ith T y p e  III IR  behav iour w ith 
th e  Seiberg dualized spec trum  superim posed .



5.4 Summary

We have been able to find a consistent truncation of the ten-dimensional Type 
IIB supergravity system describing Nc D5 color branes and N f backreacting D5 
flavor branes to five dimensions. The five-dimensional system is a non-linear 
sigma model coupled to gravity. In this model, Seiberg duality is realized at the 
level of the Lagrangian, i.e. any quantity that we can compute will automatically 
obey Seiberg duality.

We have computed the mass squared of the lightest scalar glueball for a few 
different Type A backgrounds, and found tha t the mass increases with the number 
of flavors for N f < 2Nc, but shows the opposite behaviour for N f > 2Nc. For a 
class of backgrounds that are Seiberg dual to themselves, we have seen explicitly 
how Seiberg duality is realized for the spectrum.

In the future, it would be interesting to apply the same techniques in order to 
compute the spectra of different systems with back-reacting flavors. For example, 
gravity duals that exhibit walking behaviour were found in [3,93,94], and in 
particular one could imagine adding flavors to the walking backgrounds of [3] (for 
which P  grows linearly in the UV) studied in more detail in the next chapter and 
find out how their spectra are affected. It would be interesting to know what the 
effect of flavors is on the light scalar present for these backgrounds. We leave 
these questions for a future study.
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Chapter 6

W alking D ynam ics from  
G auge-G ravity D uality

In this chapter, we will study backgrounds in Type IIB supergravity, which exhibit 
walking behaviour, i.e. a suitably defined gauge coupling stays nearly constant 
in an intermediate energy regime. The backgrounds are obtained from the same 
kind of setup as those of the previous chapter, i.e. N c number of D5-branes 
wrapping an internal S'2, but we will now allow the solutions to have a more 
general form. In other words, the backgrounds we will study in this chapter will 
be of so-called Type N, which means that the VEV of the gaugino condensate 
is non-zero. Although, the walking backgrounds that are the main topic of this 
chapter do not have flavors, we will initially keep them in the analysis, so tha t we 
may generalize the results about Seiberg duality of the previous chapter to Type 
N systems.

The walking theories of this chapter share qualitative features of a certain 
class of phenomenological models known as Walking Technicolor. Technicolor 
models are gauge theories tha t become strongly coupled at the TeV scale [17]. In 
these theories, electroweak symmetry would be dynamically broken much like chi
ral symmetry is broken by the chiral condensate in QCD. Furthermore, the large 
hierarchy between the electroweak scale and the Planck scale would no longer be 
a problem, for the same reason tha t there is no hierarchy problem associated with 
the smallness of A q c d  relative to the Planck scale, i.e. dimensional transm uta
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tion. Technicolor models with walking dynamics [95,96] are viable candidates for 
physics beyond the Standard Model. However, finding explicit examples of such 
theories has proved difficult due to their strongly coupled nature. Recently, there 
has been a resurgence of interest in the lattice community, with many studies 
investigating whether field theories with walking behavior can be found [97].

While plotting the gauge coupling as a function of energy scale gives an in
dication that one is dealing with a walking theory, it does not prove this is the 
case conclusively. The reason is tha t such a plot depends on what regularization 
scheme one uses. In the holographic picture, this is simply the fact tha t one could 
just as well have chosen a different radial coordinate corresponding to  the energy 
scale. The lattice studies mentioned above are subject to analogous problems. 
Therefore, it is important to find well-defined physical questions to ask about the 
theory.

One such question is whether a light scalar exists in the spectrum. The ex
istence of such a light scalar is conjectured to be due to the breaking of the 
approximate scale invariance of the walking region. It would then be the pseudo- 
Goldstone boson associated with dilatations, the dilaton .1 It is an open question 
whether the dilaton is a generic feature of walking theories. From a phenomeno
logical viewpoint, its existence would have significant consequences. Not only 
would its mass be lower than the dynamical scale set by where the walking the
ory becomes strongly coupled. To first order, it would also couple to the Standard 
Model fields in the same way as the Higgs does. Using the techniques of Chapter 4, 
we find the existence of a light state in the spectrum of the walking theories that 
we study. Its mass is suppressed by the length of the walking region, suggesting 
tha t it might be interpreted as a dilaton.

The structure of this chapter is as follows. In section 6.1, we review Type IIB 
supergravity backgrounds known as Type N. Even though the walking models 
which are the main topic of this chapter have no flavors, we keep them in the 
analysis for now. We find a consistent truncation to a five-dimensional non-linear 
sigma model, and generalize the results regarding Seiberg duality of the previous 
chapter. Next, in section 6.2, we describe the walking backgrounds whose spectra 
we will study. In section 6.3, we present our the results, and finally, we summarize

xN ot to be confused with the dilaton of string theory.
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our findings in section 6.4.

6.1 Type N Backgrounds

We will now describe Type N backgrounds. For now, we keep the flavor degrees 
of freedom, although eventually we will be interested in walking backgrounds, 
for which N f = 0. Since Type N backgrounds are solutions of Type IIB su
pergravity coming from the same setup as in the previous chapter, i.e. Nc D5 
color branes wrapped on an S2 inside a CY3-fold, and Nf backreacting D5 flavor 
branes wrapped on a non-compact two-cycle inside the same CY3-fold, the for
mulas for the action and the equations of motion are the same as in section 5.1.1. 
The difference is tha t the ansatz for Type N is more general than the one for the 
Type A backgrounds of the previous chapter.

6.1 .1  A n sa tz  and B P S  E q u ation s

The Type N ansatz is given by

ds2 =fi2e2f

Ft(3)

p 2dx\ 3 +  e2kdp2 +  e2h(d02 +  sin2 0dp2)+

,2 g ,2fc
—  ((all +  adO) 2 +  (d>2 — asinOdp)2) ~ ^ ~ ( ^ 3  +  cos Odp)2

fi2Nc
— (d)i +  bdO) A (cj2 — b sin Odip) A (a)3 +  cos 6dip) +

dyM A (<dpb^—dQ A (D i+  sin Odip A 0)2)) +  (1 — b2) sin OdO A dip A 0)3 

^  * sin OdO A dip A (dip 4 - cos 0d(p),

(6 .1 .1)
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where ft2 =  a'gs , and

U>1 =  cos ipd6 +  sin x/j sin Qd(p,

UJ2 — —sin x p d 6 c o s  xjj sin 6d<p, (6 .1 .2 )

u>3 +  cos 6d(p.

As can be seen, the Type A ansatz corresponds to the special case a = b — 0.
Let us assume that the background functions a, 6 , / ,  g, h, and k  only depend 

on p. We will derive the BPS equations considering spinors in Type IIB with 
SUSY variations that satisfy

e — fe*, I V  -  Ti2e, Tpi23e — (*4 + (6.1.3)

The gravitino variation Sxpx = 0 gives

16
4e2/l Ac +  e2̂  (A / -  (a2 -  2ba +  l) Ac) +

(6.1.4)

and

Rp-9-h r i
b' = 2A(a  -  b) +  ~y n ~ -  4c2hNc +  e2S (A / -  (a2 -  2ba +  l) Ac) , (6.1.5)

where prime denotes differentiation with respect to p. These equations are the 
same as the ones coming from the dilatino variations with </> =  4 /.  Further, 
8xpe — 0  gives

A e - 2 f - 2 h

h —------ ;------ e i  ((a 2 -  2ba +  1 ) N C-  N , ) -  (a2 -  l)  e2(' +fc) +
J3 e - 2f - g - h

a ( - e 2(/+^  -  e2(/+fc) +  e^/2Ac) -  6e*/2Ac
(6 .1.6 )
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and

a' = A  ( - 2  -  2e~2~g+2k) a +
B e -2f-Z~g-h

2 (a 2  -  l )  e 2 [ f + g + k ) -

4e2h+2Nc +  e2~9+i (Nf  -  (a2 -  2ba +  l)  N c) 

8ipQ = 0  gives

g' = A  ( e - 2»+2t -  e~2f~29+i  N^\
B e - 2f - 9 - h

+

and the constraint

a (e2(/+$) _  e2(/+fc) +  e*/2jVc) -  6e*/2iVc]

0  =  +  B e - f - 29~2h+k Ue2h -  (a2 -  l) e2̂ ) .

Finally, Si/j^ =  0 gives 

f Ae~2f~2g~2h
k

(6.1.7)

(6 .1.8)

(6.1.9)

ge2(/+S+A) +  ^ 2  _  e2(/+«+t)

-  4e2t-l+h+k  ̂ -  i e 2h+i N c +  e2s+f ((a2 -  26a +  l)  lVe -  IV,) ] (6-1.10)

+  Be~v -~9- h [a ( - e 2(/+^  +  e2(/+fc) +  e0/2JVc) -  be*l2Nc 1

and the constraint

0  =4Ae~3f- 9~h- k Ib e ^ N c  -  a ( - e 2{f+g) +  e2(f+k) +  e*/2JVC)

_|_ ^ e-3/-2g-2/i-fc ge2(/+j+/i) _|_ ^  e 2 { f + g + k )

_  4 e2(/+*+*) _  4 e2A+$ jvc + e2« -f (jvca2 -  2Ncab -  N f  + Nc)

(6 .1. 11)

Solving for A  in the first constraint and plugging into the second one leads to

(6 .1.12)
0  = e 2̂  (e2{f+g) -  4e2(/+/l) +  e<t>/2(Nf  -  2NC)) a

4- be*?2 (e2g +  4e2h) iVc -  e2/+4V  +  e2g+2a2bNc.
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Using that 

we obtain

A 2 +  B 2 =  1, (6.1.13)

4e2h -  (a2 — 1) e2̂
*/i —

yje4<? (a2 — l ) 2 +  16e4/l +  8  (a2 +  1 ) e2̂ +h^
(6.1.14)

and

_  4ae^+/l

e4® (a2 — l ) 2 +  16e4ft +  8  (a2 4 - 1) e2̂ +/l)
(6.1.15)

We would like to point out tha t due to the presence of constraints, it is non-trivial 
to find a superpotential W  tha t generates the 5d potential V. If we simply follow 
section 5.2.2 and use the equation of motion for A, i.e. W  — —\d A jd r  (where 
dr =  eA+kdp), we would end up with expressions containing A  and B. In order 
to rewrite these as functions of the scalar fields, we would have to use one of 
the constraints (as we did in writing (6.1.14) and (6.1.15)). However, there is 
an ambiguity due to the fact that we there are two different constraints we can 
use, (6.1.9) and (6.1.11). In either case, we end up with a superpotential tha t is 
only related to the 5d potential through V  =  ^ W aWa — | W 2 if evaluated on the 
classical solution. In other words, in order for this identity to be valid, one needs 
to use the constraint. This is enough when only considering the background, 
but since we will study fluctuations axound the background in order to compute 
spectra, we need the more general formalism of Chapter 4 tha t is valid for any 
5d potential V.

In order to solve the BPS equations, it is convenient to go to the variables P,
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Q , Y ,  r ,  and a  defined through [13]

e »  = 1  r
4 \  P  cosh r  — Q

e2g —P c o s h r  — Q,

e2fc =4T, (6.1.16)
P  sinh r

P  cosh r  — Q ’

In terms of these variables, the BPS equations can be written els a single second 
order differential equation for P:

where Q and r  are given by

{ 2N  — N r \  2N  — Nt
Q — ( Qo H ----  ) coshr-H------ ------- - ( 2 p co sh r — 1) (6.1.18)

and

sinh r  =    - .  (6.1.19)
sinh(2 (p -  po))

The dilaton and Y  are given by

and

Y  = \ ( P ’ + N t ). (6.1.21)
O

Here Q0, <f>0, and p0 are integration constants. W ithout loss of generality, we put 
po — 0  in the following.
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6 .1 .2  5d E ffective  A c tio n

We will now derive a consistent truncation to five dimensions of the ten-dimensional 
model under consideration. The derivation is analogous to that of section 5.2.1. 
Plugging the ansatz (6.1.1) into the Type IIB action given by (5.1.1) and per
forming the integration over the angular coordinates yields

Swd = 4^ 24X^  [  dp [  d4xe8' +2}+2h+2k (T  — V ) , (6 .1 .2 2 )
2K(i0) J J

where

T  =  e—2k
e 2 g - 2 h  j s j 2 e - A f - 2 h + < j > - 2 g  g  j / 2  fof2

~  ~VXTa'2 ~  ~  128 ^  +  ~4~  +  16'“

f t 2 9'2 s iu  f 'k '  hfk' 1 1—  +  —  +  f  h +   -----1- --------1- f  9 +  - t i g  +  - t i g ’64 16 2 8

(6.1.23)

and

p — 2(2( f+ h)+k+2g)

V = 256 X

S e 2 (2 f+ h + 2 k + g )a 2 _|_ gg4/+2/i+6j^2 _|_ ^gg4(/+/i+fc)_|_

( ^ 2  l ) 2 g4 (/+fc+ff) g4 g2(2(/+/i)+fc+^)  (6.1.24)

16 (a2 +  l)  e2(2f + h + k +2g)  +  i 6 e4/l+^A ĉ2 +  8 (a -  b)2e2h+4>+2̂ N 2+

e4>+*9 (N f  _  ( a 2 _  2ba +  l) N c) 2 +  8 eM 4U+h+k)+*+*§)N f

Changing to variables

/  =  4  +  p - | ,  g = - A - ^  + \ o g 2 - p  + x, 

h = —A + ^  — p + x : k — — A  +  log 2 — 4 p,
(6.1.25)
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with inverse

A  — — (8 /  4- 2g 4 - 2h +  k) — log 2 , # — — <7 4 - h 4- log 2 ,

P =  ~  (4 / +  g +  ft 4- 2fc) +  i  log 2 , x  =  2 /  +  <7 +  ft -  log 2, 
o 2

and also changing the radial coordinate as dr =  eA+kdp , we obtain

4//4ATc2(4tt) 3

(6.1.26)

SW  = 4/J2̂ (4x) J  dr J  <?xeiA ( T - V ) ,  (6.1.27)

with

1 yu2p(/>-2i  „/2
T =  3j4 — - e - 2»a'2 -  ^  fc'2 -  9—

4 64 4
x'2 S'2

3p T  8 ’ (6'L28)

and

P ~ 2 (g + 2 (p + x ))

v  = - - - - - - - - - - - - - - - - - - - - - - - - x
128

;,12p+2x+0 (2e2-9(a -  b)2 +  e4ff +  (a2 -  26a +  l ) 2)  7V2-  

2 (a2 -  26a +  l) e12p+2x+* N fN c +  el2p+2x+(l>N 2f  +  8 e25+6p+x+2 7^4- 

16 (a 4 +  2 ((e ff -  e6p+2* ) 2 -  l )  a2 4- e4p -  4e3+6p+2x ( l +  c2̂ ) 4- l )

(6.1.29)

Recognizing that for a metric given by ds2 =  dr2 4 - e2Adx\ 3 the Ricci scalar is 
(up to partial integrations) equal to R  = — 12A,2: we can write this as the action 
of a 5d non-linear sigma model

Ssd = J  dr J  d4x ^ g f  -  \ G abgMNdM$ adN$ b -  V ($) (6.1.30)

where 4> =  [g,p, x , </>, a, 6], and the non-linear sigma model metric is diagonal with
entries Ggg = \,A Gm =  6 , Gxx =  1 , G U  = A, Goa =  and G »  =  NK T * * . It2 ’ — oo 32

can be shown that any solution to the equations of motion following from this 5d
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action also satisfy the equations of motion of the original lOd system. Therefore, 
the 5d non-linear sigma model derived in this section is a consistent truncation.

6 .1 .3  S eib erg  D u a lity  for T y p e  N

We can generalize the arguments of section 5.2.3 to Type N. For these back
grounds, Seiberg duality corresponds to the transformation [13]

Q —► —Q,

a —> — cr, (6.1.31)

N e -> N f -  N c,

leaving P, Y ,  0, and r  unchanged. Using the relations

,3i4 e2*(P2 - Q 2) \ / Y
16

£>2 _

2 g  _e

e6p =

g2x _

P 2 - Q 2
(cosh r P  — Q ) 2 ’ 

4 e ^
\ J P 2 -  Q2Y '  
e^(P2 -  Q2)

(6.1.32)

16

we see that in terms of the 5d variables, a Seiberg duality takes the form

ey ->•
e2g +  a2 ’ 

a

e25 +  a2’ (6.1.33)

b - N ^ N f b’
N c N f  — N c.

Again, it is straightforward to see that both the non-linear sigma model met
ric Gaf) and the potential V  of the previous section are invariant under these 
transformations. It follows tha t the whole 5d theory obeys Seiberg duality.
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6.2 Walking Backgrounds

In the remainder of this chapter, we will focus on a particular class of Type N 
solutions that have walking behaviour. These have Nf — 0 and Qo =  —Nc, 
and can be thought of as deformations of the background known as non-singular 
Maldacena-Nunez [16]. In the IR, they behave as the walking solutions found 
in [93]. Non-singular Maldacena-Nunez corresponds to P  = 2Ncp. The reason 
tha t we want our solutions to asymptote to Maldacena-Nunez in the UV (p —> oo) 
is th a t we then obtain a non-trivial (discrete) spectrum.

Consider a small perturbation around P , so that

P(p) =  P(p) + ep(p). (6.2.1)

Linearizing the second order differential equation for P  tha t determines the back
ground, equation (6.1.17), we find two possible behaviours in the UV (p —»■ oo): 
p{p) ~  e-4p and p(p) ~  e2p (up to factors that are powers of p and are irrelevant 
for the purpose of setting up the numerics). In order for the perturbative expam 
sion in e to be consistent, we need to pick the first behaviour which is decaying 
exponentially. Solving (6.1.17), we set up the boundary conditions in the UV 
corresponding to the small deformations around P  so that

p  =  p  +  Nce4{p*~p\  (6.2.2)

and evolve numerically towards the IR. p* sets the scale at which, going from the 
UV to the IR, the solutions start to deviate from non-singular Maldacena-Nunez. 
Another scale is set by the VEV of the gaugino condensate which is of order 
p ~  1 . A few examples of walking backgrounds are depicted in Figure 6.1.

In the IR (p —> 0), P  becomes nearly constant for these backgrounds. More 
precisely, they fall into the class of Type N backgrounds that have an IR expansion 
known as Type I:

P  = Po + ^C3+P |p 3 +  +  0 (p %  (6.2.3)

where Pq and c+ are integration constants. Due to the fact tha t we want the back-
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Figure 6.1: A few backgrounds with walking behaviour compared to non-singular 
Maldacena-Nunez (black line).

grounds to asymptote to non-singular Maldacena-Nunez in the UV, c+ and Pq are 
not independent, but need to dialed in such a way that the correct UV behaviour 
is obtained. Thus, we have a one-parameter family of solutions parameterized by 
P0 ~  2A'cp*.

A four-dimensional gauge coupling A can be defined which is essentially the 
inverse of the size of the S 2. It is given by

A = A lcoth . ,
8 ir2 P

In Figure 6.2, we plot this gauge coupling as a function of the radial coordinate p 
for the same backgrounds as those in Figure 6 .1 . As can be seen, there is a scale 
p ~  1 set by the gaugino condensate below which the gauge coupling diverges. 
In an intermediate region, we can obtain walking behaviour. This behaviour 
continues until the scale set by p* after which all the backgrounds behave as 
non-singular Maldacena-Nunez towards the UV.

While Figure 6.2 certainly suggests that we are dealing with a walking theory, 
it does not prove this is the case conclusively. The reason is tha t the plot is 
regularization-scheme dependent. In the holographic picture, this corresponds to 
the fact that we can always rescale the radial coordinate p. In other words, we

96



Figure 6.2: The four-dimensional gauge coupling A as a function of the radial 
coordinate p for the same backgrounds as those in Figure 6.1.

need to compute something that is actually physical, such as the spectrum.

6.3 Scalar S p e c tr a

In this section, we will apply the methods developed in Chapter 4 in order to 
compute the spectra of the walking backgrounds of the previous section. Let us 
remind the reader that the differential equation for the scalar fluctuations a" that 
we need to solve is given by (5.3.2)

+ S id , + a1' = 0, (6.3.1)

with

s ? = 2 ffy > ,* 0 + 4 (dpV + d„A) 6Z, 

T f  =dhg “rjldl>'S>'ap<s>d-

4e-8p
4{Vadp<S>c + V cd ^ a) W V

H ---- I Ccb +  ObV3dpA 9 (dpA Y

(6.3.2)

Before doing so, we need to discuss which boundary conditions to impose on the 
scalar fluctuations in the IR, and UV.
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In the following, we will put fi — 1, and rescale P  —> NCP , and similarly for 
Q and Y. The masses that we will compute will be in units of \/a 'gsN c.

6 .3 .1  B ou n d ary  C on d ition s in th e  U V

In the UV, the background is exponentially close to non-singular Maldacena- 
Nunez. Let us go to a basis in which the matrices S  and T  become diagonal in 
the UV to leading order in 1 / p (ignoring exponentially suppressed terms). Such 
a basis is given by

(6.3.3)_ a  . D a  _ba -> B ba ,

where

B  =

- 1 1 0 1 0 0 \

1
2 1 1 0 0 0

1 —  1 
6 6

1
2 0 0

0 1 - 6 - 1 0 0

0 0 0 0 1 - 1

0  0 0 1 1 )
The matrices S  and T  take the following form in the UV: 

/

S  =

8 p
4p—1 0 0 0 0 0

0 8 p
4p—1 0 0 0 0

0 0 8 p
4p—1 0 0 0

0 0 0 8 p
4p—1 0 0

0 0 0 0 4—8p 
1—4p 0

0 0 0 0 0 4
1

(  8(48p2-24p+5)
“  3(1— 4p)2

T  =

16

(1-4  pY

9(1—4p)2 
32(l2p2-6 p + l)  

3(1—4p)2

0 

0 

0 

V o

0  0

0  0 

0  0 

0
2 (l-2p )2 
p2(4p-l)

0  0

0 0

1—4 p

4p—1 

0

0

0

0

0

0
32p—4 
1—4p

(6.3.4)

(6.3.5)

(6.3.6)
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Expanding the fluctuations as

aa = eCaPJ 2 < P ban, (6-3.7)
n

where the exponents ba,n can take on non-integer values, plugging into the differ
ential equation (6.3.1), and expanding in powers of 1/p, we find2

- l i v e r * * ,

C \ 4,5 =  - 1  ±  s /T T W .

We are interested in the subdominant behaviour, so we pick the minus signs in 
these expressions. In [59], a normalizability condition for the fluctuations was 
given:

J  dre2AGab^aab = J  dpe^A+kGab^a^b < oo. (6.3.9)

In our case, we have in the UV that

g3A+k  _  ^2p+<f>o/2 o1/ 2
^  + o ( p - ^ ) (6.3.10)

so that the subdominant fluctuations are always normalizable, while the dominant 
ones are not. Let us also point out tha t the presence of the square roots in the 
exponentials signal the start of a continuum at M 2 — 1 and at M 2 — 9 above 
which the fluctuations start to exhibit oscillatory behaviour in the UV. Note tha t 
the consistent truncation used in [59], in order to compute the spectrum of non
singular Maldacena-Nunez, corresponds to keeping only the fluctuations tha t fall 
off as e(-1_%/1+K2)p in the UV, i. e. (a3, a4, a5).

In conclusion, we now have six linearly independent solutions in the UV with 
the subdominant behaviour. We will evolve these numerically from the UV to a 
midpoint where we will compare them to solutions evolved from the IR. These 
IR solutions will be found in the next section.

2W hen setting up the boundary conditions in the UV, the exponential behaviour is the m ost
im portant, since up to  an overall factor that affects both  aa and its derivative, the effect of the
60)Tl is suppressed by 1 / p.  Therefore, Ca is all we need for running the numerics.
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6 .3 .2  B ou n d ary  C on d ition s in th e  IR

Using (6.2.3), we can expand the differential equations for the scalar fluctuations 
(6.3.1) in the IR (p —» 0). Writing the fluctuations as

(6.3.11)

(6.3.12)

and plugging into (6.3.1), we obtain

a1 =  aJ +  a\p +  4(a[) -  dj)p2 +  O  (p3) ,

d2 =  a2 +  d2p +  0 (p3),

d3 =  a3 +  d3p +  0 (p3),

a4 =  a.Q +  afp +  O  (p3) ,

&5 — ao +  (—4aJ +  2ao)p2 +  dgp3 +  O  (p4) , 

a6 =  a6_1p - 1 - | a 6_1p +  a«p2 +  C?(p3),

The solutions are determined by the 12 integration constants do, dj, d ,̂ d2, dp, 
d3, dQ, d4, d^1? d®, dp, and dg. Suppose we want to impose boundary conditions 
such that the kinetic terms of the action do not blow up in the IR. The kinetic 
term of the action is

J  d r ^ j G abgrrdr<Padr$ b = J  d p e ^ G ^ d ^ d ^ .  (6.3.13)

We have that
e 3 A - k  =  ± e * ( A + p )  =

pfo/t 

^  +  C V ) '
(6.3.14)

All components of the non-linear sigma model metric are of order 1 , except

(6.3.15)G 55_8^ + O(p0)-

This means that we must set d  ̂ =  d® 2 =  0 in the IR. It is not clear which IR 
boundary conditions to impose on the first four fields. For definiteness, we will 
in the following choose ag — 0, i.e. Dirichlet, for all the scalar fluctuations. Six
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Figure 6.3: T he spectrum  as a  function  of Pq/ N c «  2/9*.

p aram eters  rem ain: a}, af, a f ,  a f ,  a | ,  and a (j. Again, by a lte rn a te ly  se ttin g  all 

b u t one of these param eters  equal to  zero, we o b ta in  six linearly independen t 

so lutions in th e  IR.

6.3 .3  R e s u lts

T he num erical resu lts are p lo tted  in Figure 6.3, where th e  spec trum  as a function 

Po/N r ~  2p* is shown. As can  be seen, th e  spec trum  contains a s ta te  which 

becom es lighter as Pq (or a lternative ly  the  length  of the  walking region p*) is 

increased. W hen p* is of the  sam e order as th e  scale set by th e  gaugino condensate, 

i.e. p ~  1, th is s ta te  d isappears from the  spectrum .

Furtherm ore , th e  spec trum  contains two towers of s ta te s  converging on M 2 =  

1. As the  leng th  of the walking region is increased, these becom e heavier, so 

th a t  th e  d iscre te  spec trum  effectively d isappears into th e  continuum . G oing to  a 

variable a defined through

3

V l  -  M 2  --------- , (6.3.16)
4 a — 1

we can m ore clearly see how th e  two towers behave. T he resu lt is p lo tted  in 

F igure 6.4. As p* —> 0. the  spec trum  agrees w ith th a t  of non-singular M aldacena- 

Nunez com puted  in [59].
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Figure 6.4: The two towers of states in terms of the variable a defined in (6.3.16).

6.4 Summary

In this chapter, we studied ten-dimensional systems which can be thought of as 
N c D5-branes wrapping an internal S'2. At first, we included flavor degrees of 
freedom, obtained from N f  back-reacting flavor branes. We derived a consistent 
truncation to a five dimensional non-linear sigma model consisting of six scalars 
coupled to gravity, and showed how Seiberg duality is realized from the five
dimensional point of view, generalizing the results of the previous chapter to 
apply to Type N systems.

We then turned our attention to a particular class of backgrounds tha t exhibit 
walking behaviour. We would like to emphasize that these are not Walking Tech
nicolor models, since they do not yield a mechanism for electro-weak symmetry 
breaking. However, the set of results collected in this chapter supports the idea 
tha t this system is a very interesting laboratory, in which walking can be studied 
systematically, and in which dynamical questions can be addressed in a calculable 
form, providing a guidance for model building.

The class of solutions we found yields the four-dimensional gauge coupling 
of a walking theory (the Lagrangian of which, for present purposes, we do not 
need to know), in the sense that there is an intermediate region where the gauge 
coupling is approximately constant. While the interpretation in terms of the dual 
field theory is at this point not well understood, the very fact tha t we observe
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a particle in the spectrum with a mass much lower than the dynamical scale of 
the theory suggests tha t its existence is due to the spontaneous breaking of an 
approximate symmetry. If this symmetry is scale invariance, then the light scalar 
would be interpreted as the dilaton, the pseudo-Goldstone boson of dilatations. 
Prom the gravity point of view, it is clear that scale invariance is broken in the 
IR by the gaugino condensate, and in the UV at the scale set by p*.
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