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Abstract

This thesis concerns two different aspects of categorization, the first is an 
investigation with a novel paradigm, which relates to relative vs. absolute 
(supervised) categorization, and the second, an investigation of the simplicity 
model (Pothos & Chater, 2002). The first investigation was motivated from the 
relative judgment model (Stewart et al., 2005). According to this model, 
classification judgments in absolute identification tasks are influenced by the 
relative context in which they are presented. We examine the generality of this 
conclusion in categorization. In the present study, we tested 320 participants in 5 
experiments, in which participants had to classify new items into predefined 
artificial categories. In three experiments, we observed a (predominantly) relative 
mode of classification, and in 2 experiments we observed an absolute mode of 
classification. These results suggest three factors which promote a relative mode 
of classification; when there are fewer items per group, more training groups, and 
the presence of a time delay. Overall, we propose that less information about the 
distributional properties of a category and/or weaker memory traces for the 
category exemplars (induced, e.g., by smaller item numbers per category, or a 
time delay respectively) can encourage relative judgment. For the simplicity 
model, we conducted three experiments, a free sort task, a learning task and a 
memory task. In the free sort task, we asked 169 participants to spontaneously 
categorize nine sets of items. A category structure was assumed to be more 
intuitive if a large number of participants consistently produced the same 
classification. Our results provide a rich empirical framework for examining the 
simplicity model of unsupervised categorization (Pothos & Chater, 2002).

if
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Chapter 1

Introduction

The term ‘cognitive science’, was coined in 1967 by Ulric Neisser, who used this to 

mean all processes by which the sensory input is transformed, reduced, elaborated, 

stored, recovered, and used. Neisser (1967) refers to people as being dynamic 

information-processing systems whereby a description of their mental operations can 

be given in computational terms. The origins of ideas in cognitive psychology, such
♦Vias computational theory of mind, can be traced back to Descartes (17 century) and 

continued with Alan Turing (1940s-1950s). This basic foundation of cognitive 

psychology allowed the development of more thorough attempts to understand how 

we process and organise information in terms of information processing, and has led 

to the development of complex the categorization theories, that we have today.

Today in cognitive psychology we have very complex mathematical 

descriptions about how information is organised in terms of spontaneous (e.g., the 

simplicity model, Pothos & Chater, 2002) and supervised categorization (e.g., the 

generalized context model, Nosofsky; 1984, 1986, 1991). These models provide us 

with a rich range of predictions about how information can be organised when we 

have no past knowledge about it (spontaneous) and also, how information is organised 

when there is an external agent guiding classification (supervised). We also have 

evidence as to how relative properties can affect classification decisions, that is 

properties which do not depend on the physical appearance of a stimulus that the most 

spontaneous and supervised modes depend on. This is through the work carried out 

on shared properties in analogical mapping (Gentner, 1983, 2003; Holyoak & 

Thagard, 1995) and also the relative judgment model (RJM; Stewart et al, 2005).

From this literature, we have produced five experiments that explore a relative vs. 

absolute shift in categorization and three further experiments that demonstrate that 

people organise information in spontaneous and supervised categorization in terms 

explained by simplicity model (Pothos & Chater, 2002).

13



In Chapter 2 ,1 explain the simplicity model (Pothos & Chater, 2002) in 

unsupervised categorization and compare it with other models (such as SUSTAIN; 

Love, Medin, & Gureckis, 2004) in the hope to further clarify its uniqueness in 

categorization. In Chapter 3 ,1 explain supervised categorization (including models 

such as the generalized context model, Nosofsky; 1984, 1986, 1991), how this 

contrasts with spontaneous categorization, and how this relates to the studies I will 

present on relative vs. absolute judgment. In Chapter 4 ,1 explain analogical mapping 

(Gentner, 1983, 2003; Holyoak & Thagard, 1995) and provide a literature review of 

relative judgment in categorization (Stewart et al, 2005). I also explain how it is 

relevant to our relative vs. absolute judgment experiments. In Chapter 5 ,1 explain the 

five relative vs. absolute judgment experiments that I have carried out and reach a 

conclusion of what promotes a relative judgment as compared to an absolute 

judgment. In Chapter 6 ,1 explain the spontaneous categorization experiments and 

give my conclusion as to how this relates to the simplicity principle. In Chapter 7 ,1 

explain the results from the supervised categorization studies that relate to the 

simplicity model. In Chapter 8 ,1 give my general conclusions on the three simplicity 

model (unsupervised, learning and memory) experiments and the five relative vs. 

absolute judgment experiments, and how my findings advance our knowledge of 

categorization in general.
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Chapter 2

The simplicity model in unsupervised categorization

2.1 An Introduction

Unsupervised classification deals with the problem of understanding how 

people organise information into categories without any prior knowledge of the items, 

or how they should be categorized. For example, if someone were presented with 

novel items, such as seeing a novel computer game or material viewed under a 

microscope, then the information presented might be interpreted in terms of different 

groups. Crucially, unsupervised categorization deals with how we group items that 

we have not seen before or have any idea what the items relate to.

The main technique for exploring how people organise information in an 

unconstrained way is through free sort tasks. In these tasks, the participant is given a 

collection of items and is asked, simply, to categorize these in a way that seems most 

intuitive. There is no feedback instructions and therefore in this case categorization is 

completely intuitive. This is different to supervised categorization tasks, where 

constraints on categorization are included. These constraints can include feedback 

relating to a desired structure, general knowledge, and category labels (for a detailed 

specification on such constraints, see exemplar theory, Chapter 3, on supervised 

categorization). The objective in supervised categorization (e.g., Brooks, 1987; 

Hintzman, 1986; Medin & Schafer, 1978), is to identify the ways in which people 

categorize new items into existing groups which have been already specified by the 

experimenter. In such a case, the experimenter attaches a label to the group, such as 

‘this is a group of Chomps and this is a group of Blibs’, and specifies exactly which 

items belong to the groups. So, the main difference between these types of 

categorization is that one uses constraints and the other does not.
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Despite this difference, unsupervised and supervised categorization are not 

completely different. One shared feature of supervised and unsupervised 

classification is that they both make their predictions of classification (mostly) on the 

basis on physical similarity. More specifically, in supervised classification, the 

classification decisions are typically made on the basis that the new item is most 

similar to the items within an existing group (see Nosofsky; 1984, 1986, 1991). For 

example, if one category consists of triangles and another consists of squares, and 

then a new item is introduced which appears more like a triangle than a square, then 

participants are more likely to categorize the new item into the category which consist 

of triangles, than the category that consist of squares. Likewise, in unsupervised 

categorization, where, for example, free sort classification tasks are used, the 

participant has to sort items into groups using the similarity of the individual items, 

such as the length and width of the items. So, the key feature that both of these types 

of categorization share, is that they both make their predictions on the basis of 

physical similarity.

Unsupervised categorization can be conducted under different experimental 

conditions (e.g., Zippel, 1969; Imai & Garner, 1965) where, rather than predicting 

spontaneous categorization, the objective is to understand what factors influence 

categorization performance (e.g., different instructions or stimuli). An example of 

this is given when investigating whether the structure of the stimuli is made up of 

integral or separable dimensions and how the number of dimensions used in a task 

affects classification performance (see for example Handel & Preusser, 1970; Smith 

& Baron, 1981; Wills & McLaren, 1998). One example of how performance is 

affected by different conditions, relates to comparing the simultaneous presentation of 

stimuli vs. a sequential presentation. In simultaneous presentation, the spontaneous 

classifications between participants are similar, but in sequential presentations, the 

spontaneous classifications are dependent on the particular sequence of stimulus 

presentation (Handel & Preusser, 1969). In another example, when the stimuli were 

composed of separable dimensions, classification was based on a single dimension, 

but in contrast to this, when integral dimensions were used, classification was based 

on overall similarity (Handel & Imai, 1972). In a more recent case, Regehr and 

Brooks (1995; see also Medin, Wattenmaker, & Hampton, 1987) suggested that a 

single dimension was most frequently used in classification when the constraint of
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asking participants to classify items into two groups was imposed, rather than having 

no constraints, such as in typical free sort tasks. However, in Pothos and Close 

(2008), it is argued that uni-dimensional sorting is not a general constraint, rather it is 

an artefact of the particular task employed by Ragehr and Brooks (1995). In another 

example, which uses a more unconstrained method, Compton and Logan (1999) used 

an arrangement of dots, and examined if the proximity between elements acted as a 

factor in determining classification results.

The previous research considered above has typically tried to identify 

manipulations that influence spontaneous categorization performance rather than to 

actually predict the classification groupings (the Compton and Logan studies are an 

exception to this). The simplicity model (Pothos & Chater, 2002), Rational model 

(Anderson, 1991) and SUSTAIN (Love, Medin, & Gureckis, 2004) are three 

examples of unsupervised categorization models that make predictions on how the 

classification groupings are made.

As both the research traditions of supervised and unsupervised categorization 

have complementary explanatory objectives, it is useful to identify similarities and 

differences between them.

2.2 Exemplar Approach in Supervised Categorization vs. Unsupervised 

Categorization

Supervised and unsupervised categorization have some similar and some very 

different aspects. See Chapter 3 for an in depth description of models of supervised 

categorization. In exemplar models (Hintzman, 1986; Medin & Schaffer, 1978; 

Nosofsky, 1986), the classification of new items is made based on computing the 

similarity of this with each training exemplar stored in memory. In an example of 

how the exemplar model works, if test items are more similar to items in categories 

‘A’ compared to items in categories ‘B’ or ‘C’ then classification of the test items into 

category ‘A’ will be made.
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Supervised vs. Unsupervised categorization:

There are definitional accounts of categorization (e.g., Bruner, Goodman, & 

Austin, 1956; Katz, 1972; Katz & Fodor, 1963, Pothos & Hahn, 2000) which suggest 

that categories are characterized by necessary and sufficient features. In exemplar 

theories (e.g., Brooks, 1987; Hintzman, 1986; Medin & Schafer, 1978; 1989, 1988a, 

1988b, 1985) a set of known instances represent the concept, where the assignment of 

a new instance to a category is made on the basis of similarity to each member. There 

is also Prototype theory (e.g. Homa & Vosburgh, 1976; Homa, Sterling, & Trepel, 

1981; Posner & Keele, 1968; Reed, 1972) where categorization is made on the same 

basis as exemplar theory except that in this case the central tendency of the group (the 

prototype) is used rather than each individual exemplar. Also according to general 

recognition theory (Ashby & Perrin, 1988), intrinsic noise properties of perception 

and representation explain categorization effects.

The obvious difference between unsupervised and supervised categorization 

models is that in supervised categorization, there is a pre-specified group for how to 

categorize the training items, so that in this case the learner must infer the underlying 

category structure. In the case of an unsupervised task, the learner has no category 

structure to infer and therefore has to make a classification based on what is most 

natural and intuitive.

In experimental terms, participants are presented with artificial labels for the 

training stimuli by the experimenter in supervised categorization. The group labels 

are learned by the participant before a classification of a new item is made. In the real 

world, the application of supervised categorization seems relevant in many cases. For 

instance a case of supervised categorization is when a child is told that a particular 

item is called an apple, while other items are called oranges. In order for the child to 

classify correctly new instances o f apples and oranges the child must infer from the 

category structure enough about the concepts “apples” and “oranges”. This is 

different to unsupervised categorization where in this situation we would 

spontaneously categorize objects without being told the category labels, and which 

items belong to which category.
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It could be claimed that concepts are based upon supervised categorization 

mechanisms exclusively such as involving the use of linguistic labels. The typical 

assumption in unsupervised categorization is that boundaries between groups are 

determined only after seeing enough exemplars of items from each within group. 

However, children and adults generalize from a small number of examples when 

learning new words (e.g., Feldman, 1997; Tenenbaum & Xu, 2000). From this, the 

assumption can be made that there are prior constraints on which categories are 

plausible, and these constraints may be determined by unsupervised categorization 

learning. There are also strong commonalities between schemes of categorization 

between different cultures (e.g., Lopez, Atran, Coley, Medin, & Smith, 1997). 

Therefore, unsupervised categorization may help in the understanding of how 

supervised learning occurs.

A crucial difference in the two approaches is that in unsupervised 

categorization we deal with the problem of what makes a category naturally coherent. 

Category coherence deals with the question of what makes a category of birds or cups 

a coherent category but disallows non-sensible categories such as dolphins bom on 

Tuesday.

2.3 The simplicity principle

In 1986, Pomerantz and Kubovy formulated the simplicity principle to 

describe how the perceptual system sought the simplest rather than the most likely 

(see Helmholtz, 1962 for the likelihood principle) perceptual organisations which 

were consistent with the sensory input given. There was much controversy as to 

whether the perceptual system was governed by the likelihood or simplicity principle 

(e.g., Pomerantz & Kubovy, 1986). However, Chater (1996) provided a mathematical 

account, which linked the simplicity and likelihood principles in perceptual 

organisation using the mathematical theory of Kolmogorov complexity (e.g., 

Kolmogorov, 1965). This account provided evidence that the two theories were not in 

competition with one another, but instead were identical (at least when accounting for 

perceptual organisation).
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With the controversy partly alleviated, the simplicity principle has been 

applied to explain how the cognitive system imposes patterns on the world. As the 

world is highly patterned, the cognitive system has presumably evolved to 

successfully find these patterns. The simplicity principle achieves two criteria: (1) It 

is normatively justified; (2) It appears descriptively correct. Normative justification 

refers to the requirement of the principle to be consistent with theoretical arguments. 

In this case evidence for this is presented in the formulation of ‘Occam’s razor’ 

(William of Ockham, 1285-1349) and also in early positive epistemology (e.g., Mach, 

1883/ 1960) and remains a standard principle in modem philosophy of science (e.g. 

Sober, 1975). In addition, over the past thirty years the theory of simplicity 

‘Kolmogorov complexity’ has been developed and applied in mathematics (Chaitin, 

1966, Kolmogorov, 1965, Solo mono ff, 1964), in statistics (Rissanen, 1987, 1989; 

Wallace & Freeman, 1987), and computer science (Quinlan & Rivest, 1989; Wallace 

& Boulton, 1968). This evidence gives the rigorous normative justification for the 

simplicity principle, which suggests that the simplest account for some data leads to 

the best theory for the data. Regarding (2), evidence for being descriptively correct 

refers to whether the theory explains specific evidence accurately. The simplicity 

principle in this case appears descriptively correct as demonstrated in the examples in: 

Mach (1959/1886), Gestalt psychology (Koffka, 1962/1935) and in information 

processing research in perception (Buffart, Leeuwenberg & Restle, 1981; Gamer, 

1962, 1974; Hochberg and McAllister, 1953; Leeuwenberg, 1969, 1971;

Leeuwenberg & Boselie, 1988) and in the simplicity model, Pothos and Chater 

(2002).

For a more thorough example of how the simplicity principle is descriptively 

correct we can take the example from Gestalt psychology (Koffka, 1962/1935). More 

specifically, we can consider the Gestalt law of good continuation which states how 

the cognitive system completes visual patterns when part of the visual pattern is 

occluded. In figure 1 (a) the vertical bar is perceived as occluding the upper left and 

right horizontal lines, therefore the two upper left and right horizontal lines are 

perceived by people as a single line as in figure 1 (b), although it could have any form 

as in Figure 1 (c). The simplicity principle, predicts a preference for the straight line. 

This is because it is more simple as there would be a shorter codelength to describe a 

continuation of the same pattern, as compared to altering a pattern.
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When referring to the codelength of information, and the simplest codelength 

to describe perceived information patterns, we are referring to the measurement of 

information as introduced by Shannon (1948). One bit of information is the smallest 

piece of quantifiable information, and is a single binary decision. In categorization 

(e.g., Pothos & Chater, 2002), codelength of categories are computed using the 

simplicity principle (this will be explained in more depth in this chapter).

The simplicity principle is consistent with the Gestalt law of good 

continuation. In the case of the lower left and right horizontal lines of Figure 1 (a), 

this is perceived as two separate lines. This is consistent with both the simplicity 

principle and the Gestalt law of good continuation. In the case of the simplicity 

principle, the deviation of the two lower horizontal lines allows the minimal 

description to account for a possible disappearing of the hidden line. Therefore, the 

advantage of the simplicity principle is that it can postulate that the hidden line 

disappears. This means that the hidden line is not perceived, but can continue. When 

a nai've observer is presented with Figure 1 (d) this is perceived as a cross, occluded 

by a circle, and illustrated in Figure 1 (e). The Gestalt law o f good continuation fails 

to account for this and leads to an interpretation of Figure 1 (f). Simplicity principle 

accounts for the illustration of Figure 1 (e) as this form is simpler (it requires less 

codelength to describe, as the deviation requires a greater codelength of description) 

than the more complex (greater codelength description) of the irregular Figure 1 (f).
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Figure 1: Simplicity in filling in occluded objects.

In addition to the evidence given regarding the preference for simpler perceptual 

organisations, a simple mathematical illustration in favour of simplicity can be given 

which supports its justification. The justification of this is given using Bayes’s 

theorem, which states:

P{H \ D)ozP(D\H)P(H) (1)

The theorem states that the probability of a hypothesis given the data is proportional 

to the product of the probability of the data given the hypothesis and the prior 

probability of the hypothesis without the data. The H  that maximizes (1) is the same 

as the //th a t minimizes (2).

22



-  l°g2 P(D  | H) -  log 2 P(H) (2)

Formula (2) uses Shannon’s information theory for the specification of the optimal 

code for describing quantities such as the data, hypotheses, etc., where the optimal 

code minimizes the average codelength. Event x with probability P(x) has the

codelength-log 2 P{x) . Formula (2) therefore gives the codelength for D in terms of 

H  plus the code length for //w ith o u t/) . From formulas (1) and (2) it can be seen that 

the most probable hypothesis is also the formula which is the simplest (i.e., is encoded 

with the shortest codelength). Given that both of these approaches equate to one 

another the general simplicity principle statement that ‘when all things are equal then 

the simplest explanation is likely to be true can be seen as reasonable.

2.4 Measuring Simplicity

The simplicity principle predicts that the simplest possible explanation to fit 

the data is often the best (Chater, 1996). When using such an approach, this could 

lead to the prediction that a distal scene should be uniform, however the organisation 

must be consistent with the sensory input and this is usually non-uniform. It is 

important to note that the simplicity principle predicts that the cognitive system 

should capture the regularities in the available information to maximise descriptive 

power. One question is whether the consistency with the input (capturing the 

regularities of the information) can be traded against the simplicity of the 

interpretation. Again, perceptual organisation must capture the regularities in the 

sensory input, so the compression in the information must be compatible with the 

regularities in the data. If we were to ignore this point, then the simplest of 

explanations would be to state “anything can happen” or “group all items together as a 

single group” which would be completely useless as a cognitive strategy for capturing 

the patterns in the world. Harman (1965) suggested that the simplicity o f a theory 

must be traded against explanatory power. However, these two factors must be stated 

in more specific and formalized terms in order for them to be useful as a model for
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category learning. The way to proceed according to Chater (1996) is to view 

perceptual organisation as a way o f encoding information, so that the perceptual 

organisation which provides the simplest of encoding, is chosen. This prevents overly 

simple organisations that do not account for the regularities of the information to 

become present. This is because these encodings do not help the encoding, or the 

explanation of the information. Maximising explanatory power but also maximizing 

the simplicity in encoding are both crucially desirable in accordance with the 

simplicity principle (the optimal state is maximum explanatory power and minimum 

description). If the perceptual organisation fails to capture the regularities then it 

cannot provide a brief description of the data accurately, and is therefore useless. A 

useful example, which demonstrates this problem, is given in the Richard-Berry 

paradox (see Li & Vitanyi, 1997), which suggests there is a paradoxical problem 

when generating the following statement:

“the smallest natural number that cannot be uniquely specified in less than twenty 

words of English” (1)

The problem here is that out of the infinite number of numbers, the smallest number N 

that cannot be specified in less than twenty words can be specified with the 

description above (1), which contains only 16 words, and hence the paradox is clear. 

Kolmogorov complexity avoids this problem by specifying that the description given 

must construct the object. Therefore, the Kolmogorov complexity of object K(x) is 

the length of the shortest description that generates x rather than an overly general 

description that does not actually generate the object directly.

The measurement of simplicity has been studied extensively in philosophy, for 

example by Sober (1975), who suggested that no quantitative measure of simplicity 

has ever been universally accepted. It has also been discussed in psychology, by 

Attneave (1959), who suggested that the perceptual system prefers short descriptions, 

and been referred to as an important goal by Atick and Redlich, (1990. It is best 

discussed in the context of mathematics and computer science, such as in Kolmogorov
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Complexity theory, which shows that identifying simplicity with brevity provides a 

rigorous theory of simplicity (see Kolmogorov, 1965).

Brevity of encoding can become operational using two approaches. Shannon’s 

(1948) information theory (Attneave, 1959; Gamer, 1962) and coding theory (Simon, 

1972) structural information theory is one elaboration of this (Buffart, Leeuwenberg 

& Restle, 1981). We now consider the quantification of brevity.

Information theory and brevity:

Brevity is quantified in terms of the number of bits required to distinguish the 

stimulus from an information source, which has a mutually exclusive range of 

alternatives.

The formula for this is given as:

In this equation, each alternative in an information source A has the probability 

of occurrence P(At) . I(A,) represents the amount of information associated with the 

choice of a particular alternative, A , and is called the surprisal (surprisal can be 

viewed as a measure of brevity in codelength) of A/ .

H(A)  is the entropy, and is the average surprisal of source A.  It is the surprisal of 

each alternative, weighted by its probability of occurrence.

(1)

(2)
j
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Information theory allows surprisal to be viewed as a measure of brevity. When 

choosing a sequence of alternatives according to the probabilities of the information 

source, these can be encoded in a binary sequence. The encoding gives each At an

individual code word in the form of a sequence of binary digits (e.g. 001101). 

Sequences of alternatives can be concatenated into a single binary code. In 

accordance to the idea of brevity, the binary string that describes the alternatives is 

minimized as much as possible. The product of the sequence length and the average 

length of the code words within the sequence gives the length of the sequence code. 

One important implication here is that the average code of words should be 

minimized. If the binary string of length /, gives the codelength for alternative Ai , 

then the specification for the average code word length for source A is given by:

(3)

There are however some limitations of information theory in some contexts, for 

example when applied to individual perceptual stimuli. An example from 

Leeuwenberg and Boselie (1988) involves a stimulus consisting of three letters 

‘aaabbbbbgg’. If we assume that there is an equal chance ( X ) of choosing one of 

these letters (a, b or g) then the information associated with this specification for 

example ‘a’ is log 2 (1 /X ) = log2 (3) bits of information. To specify the entire 10 

letter sequence is 10 log 2 (3) bits because in this case the probabilities of each item 

being chosen are the same for each letter. In a different situation, where for example 

‘b’ is chosen with probability Vi and a and ‘g’ with probabilities % then ‘b’s can be 

specified with log2 (1 / x/2) = log2 (2) = 1 bit whilst the ‘a’s and ‘g’s can be specified 

with {\l / )  = log 2 (4) = 2 bits which total 15 bits of information for the entire 

sequence. Having more variation in the set, such as including the entire alphabet 

would lead, to more information required to specify it. Information theory measures 

the information in the stimulus relative to the probabilities of the other stimuli. This
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is useful in experimental settings where the range of possibilities is limited (e.g. 

Gamer, 1962). However, in natural perception, the range of possibilities to define the 

stimuli can be greater, and therefore this scheme does not provide a useful measure of 

brevity in encoding stimuli (Gamer 1962). Another problem with information theory 

is that it only states the number of bits required to specify the stimuli and not the best 

(most meaningful) code. It is both the nature and length of the code that is useful in 

understanding perceptual organisation (Gamer, 1974). A meaningful encoding tells 

us something about the actual features of the stimuli whilst a meaningless encoding 

randomly ascribes the code without consideration of the features.

Coding theory and brevity:

Because of the problems with information theory, i.e., the fact that sometimes a 

meaningless code is ascribed to the sequences, a different approach has been sought to 

measure brevity, which allows featural detail to be encoded in the stimuli. The 

encoding of the organisations within the stimuli (i.e., the featural detail) is what 

Simon (1972) calls pattern languages. The shortest description of the expressed 

pattern language is the preferred organisation. It is constrained by the number of 

symbols in the description (e.g., Simon, 1972) and the number of parameters (e.g., 

Leeuwenberg, 1969). An example of bad code would be aaabbbbbgg which requires 

10 parameters, whilst an example of good code would be 3(a)5(b)2(g) which requires 

just 6 parameters and hence economy is achieved. The problems with short 

description length is that (a) a new description language needs to be created for each 

perceptual stimulus, and (b) the prediction of the theory depend on the description 

language chosen, however Simon (1972) noted that description languages are highly 

correlated in their description lengths. Kolmogorov complexity generalizes coding 

theory and addresses these issues.

From the simplicity principle that suggests that simple explanations that fit the 

data are often the best, a formulation of a much more specific simplicity model 

(Pothos & Chater, 2002) was proposed about how people spontaneously categorize 

stimuli in their environment.
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2.5 The Simplicity Model of Unsupervised Categorization

Unsupervised categorization and category coherence

The simplicity model is designed to capture category coherence (see Figure 2 for an 

illustration of category coherence, i.e., greater intuitiveness) in a stimulus set (it is 

useful in free sort tasks of unsupervised categorization), and it assumes that there are 

no constraints on how the stimuli should be classified. Several theories have been 

suggested which explain what constitutes category coherence. One theory is that 

some categories are grouped together through a common function they share (such as 

corkscrews having the function of opening bottles) rather than appearance such as 

size, colour etc. (Barsalou, 1985). In contrast to this, other explanations suggest that 

categories contain items that are judged to be similar to each other (Rosch, 1975; 

Wittgenstein, 1957; see also Goodman, 1972, and Quine, 1977), the simplicity model 

(Pothos & Chater, 2002) is one example of a model that uses similarity in 

classification.

Murphy and Medin (1985; see also Gentner & Brem, 1999; Lakoff, 1987; 

Medin & Wattenmaker, 1997) proposed the dominant theory of category coherence, 

according to which a concept is an element of people’s naive theories about the world. 

This means that category coherence is not based on any specific piece of information, 

but rather on meaning in our general life. For example, regarding the concept of 

water, coherence is not based on its chemical structure, but rather on its meaning in 

our general life. For example, general knowledge could include information that tap 

water comes from reservoirs; it is wet and can soak our clothes etc. Gelman and 

Wellman (1991), provide support for this idea by demonstrating that young children 

generalize on the basis of theoretical knowledge rather than physical similarity. An 

example of this is in the case of categorizing a worm, a person and, a toy monkey; the 

worm and the person were deemed more similar because both share biological 

properties.
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The work carried out by Murphy and Medin (1985; also Medin & 

Wattenmaker, 1997) provides compelling arguments for why a model of conceptual 

coherence cannot be based on similarity alone. The Simplicity model (Pothos & 

Chater, 2002) uses similarity information in its account of unsupervised 

categorization, but in principle could be extended to include background general 

information relating to particular classifications. The formalization of general 

knowledge has been shown to be very difficult (Dreyfus & Dreyfus, 1986; Heit, 1997; 

Heit & Bot, 1999; McDermott, 1987; Oaksford & Chater, 1991, 1998; Pickering & 

Chater, 1995). In the case of the present experimental work, stimuli that are novel 

and abstract are used as this avoids the problem of formalising general knowledge.
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Figure 2: A simple arrangement of points in a Euclidean space. Classifications A 

should be more intuitive (indicating greater category coherence) for naive observers 

than classification B, since it involves more cohesive clusters.

Another aspect of categorization is that of Basic level categories which 

identifies information according to a hierarchy where classification of new items must 

fit the definition of a category at its ‘basic level’.

Basic level categories and unsupervised categorization:
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Basic level categories deal with the explanation of a ‘basic’ level for categorization, 

which is a general (basic) category label in a hierarchy of categories which can be 

more specific higher up the hierarchy (Rosch & Mervis, 1975). One hierarchy could 

include; ‘Scottish highland terrier, a terrier, a dog, an animal, a living thing’ etc. The 

default (or basic) level of categorization, for example, for a dog called ‘Fido’, would 

be that it is a dog rather than an animal or living thing. There is a wide body of 

evidence supporting this argument. One example of this is where basic level 

categories lead to more rapid picture naming, in comparison to the superordinate or 

subordinate categories (Rosch, Mervis, Gray, Johnson, & Boyles-Braem, 1976).

There is also evidence that suggests basic level categorization is used in naming and 

other category related behaviour in children (Mervis & Crisafi, 1982; Horton & 

Markman, 1980).

The relation between unsupervised categorization and basic level 

categorization can be seen if one assumes that the basic level of categorization is the 

category level that is most coherent, and explaining category coherence is the ultimate 

goal of unsupervised categorization tasks. Basic level categories have been modelled 

computationally (e.g., Corter & Gluck, 1992; Gluck & Corter, 1985; Gosselin & 

Schyns, 1997). However, basic level and unsupervised categorization do have 

different predictive scopes. In basic level categorization the predictive objective is to 

identify the basic level category from a hierarchy of three or four category levels. 

There is no attempt to predict the exact way in which items are partitioned within the 

basic level. In unsupervised categorization the aim is to identify the preferred 

classification (the classification which has the minimal descriptive length, if one 

adopts the simplicity model, see later) amongst all possible classifications for a 

particular data set. Another important difference is that basic level categorization is 

based on featural representations (e.g., a dog has several known features such as a tail, 

a snout, paws, etc) of objects but in unsupervised classification the items are novel 

and therefore cannot be typically expressed in terms of features. In unsupervised 

categorization, features such as short vs. long or differences in shades of colour can be 

used but this does not include the complex background information that is found in 

basic level o f categorization. Because of this, it is difficult or impossible to identify 

features. The advantage of the simplicity model is that it can be used to compute
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preferred classifications on the basis of features or independent of them whereas 

models for the basic level categorization are restricted to feature based categorization.

From perception to unsupervised categorization:

When confronted with an unfamiliar scene, the information can often be organised 

into different kinds of groups. This can be viewed as a process of perceptual 

organisation, whereby sometimes we identify groups in the sensory input. It is also a 

process of unsupervised categorization. In order to form a mathematical model of 

unsupervised categorization theoretical insights from perceptual organisation can be 

considered, as we have done above. The two processes, ‘perceptual organisation’ and 

‘unsupervised categorization’, can be considered related in the sense that the 

perceived structure of a set of objects can lead to the (unsupervised) categorization o f 

these items into groups.

The application of the simplicity principle to unsupervised categorization is 

made on the assumption that perception is based upon physical similarities 

(Pomerantz, 1981). Therefore, groupings made in unsupervised categorization should 

maximize within group similarity and minimize between group similarities. Using 

this assumption, we can view categorization as imposing default constraints on the 

similarity relations between a set of to-be-categorised stimuli.

The simplicity model o f unsupervised classification:

The first step in considering how the simplicity principle can be applied to grouping 

items into categories is to specify the data and hypotheses (a hypothesis corresponds 

to a possible grouping of the items). An assumption is made that the information 

about the similarity structure of the items corresponds to the data. The codelength 

required to specify the similarity structure (from standard information theory) from 

the objects in terms of a particular grouping is the sum of the:
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codelength to specify similarity in terms of the grouping + the codelength to specify 

the groupings. (1)

There is a unique codelength for each possible grouping. According to the 

simplicity principle (e.g., see Rissanen, 1978) there is a preference for the grouping 

with the shortest (most compressed) codelength. The specification of the simplicity 

model is made in such a way that the similarity structure with the most reduction in 

codelength is chosen.

The form o f the data:

In categorization research, there have been many kinds of representation assumptions. 

It is assumed that items can be embedded in a multi-dimensional space in spatial 

models of representation (e.g., Nosofsky, 1985; Shepard, 1980, 1987), and that 

similarities are negatively monotonically related to distances in such a space. An 

adherence to metric axioms is implied by such spatial models of representation but in 

some situations similarity information violates the metric axioms (e.g., Bowdle & 

Gentner, 1997; Tversky, 1977, see Nosofsky, 1991). A representation of objects in 

terms of features is an alternative to this. In this case, similarity is a function of the 

degree to which features are shared between items, as the items correspond to bundles 

of features (Tversky, 1977). The problem with features is that in unsupervised 

classification the use of novel objects with no prior knowledge is common and is 

often the case that we may not be able to express such objects in terms of features.

It is the perception of the similarity of objects that is important in the 

simplicity model. Similarity information can be best described in terms of internal 

spaces, abstract similarity relations or features depending on circumstances. The 

formulation of the simplicity model is designed in a way to be compatible with 

different types of representation assumptions. In this way, the difficult and largely 

irrelevant problem of psychological representation (see Goldstone, 1993; Goodman,
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1972; Hampton, 1999; Quine, 1977) is avoided. Such computational principles, 

which are independent of a representational assumption, have been usefully employed 

in other areas of cognitive science (e.g., Anderson, 1990; Marr, 1982; van der Helm & 

Leeuwenberg, 1996, 1999).

The form of information the simplicity model assumes is illustrated in the 

following: Consider four objects A, B, C and D. A specification of similarity 

information would be needed to be specified, such that, for example, the similarity of 

‘A, B’ is greater or less than similarity ‘C, D \ The formulation of the model is made 

in a way that similarities are never equal, and obey minimality, such that ‘A, A’ = 0, 

and symmetry, so that ‘A, B’ = similarity ‘B, A’, but they can violate transitivity.

Any combination of the metric axioms can be assumed in the simplicity model and if 

metric axioms can be assumed for similarity relations then these can be specified with 

less information. Similarity is used in the implementation of the model whether 

symmetry and minimality is assumed or violated but there is no reason to suggest that 

minimality should be violated (Tversky, 1977, discusses some of the considerations 

that underlie some of the metric axioms). The version of the simplicity model 

employed in this work was implemented without the assumption of transitivity. The 

assumption of transitivity does not affect the computation of the codelength in the 

simplicity model. Transitivity is always obeyed unless the similarity information is 

collected with a task in which trials have the form: ‘is similarity between A, B less or 

greater than similarity C, D?’ Assuming transitivity (and all of the other metric 

axioms as well) is equivalent to assuming extra constraints, such as ‘A, B’ > ‘C, D’ 

when given ‘A, B’ > ‘B, C’ and ‘B, C’ > ‘C, D \ The number of groups and elements 

in each group determine the number of extra constraints due to transitivity. The extra 

constraints due to transitivity will be the same where the classifications compared 

have similar groups, and numbers of elements in each group, so that the assumption of 

transitivity does not influence the optimal classification.

From information theory it can be assumed that when deciding between two 

pairs A, B, and C, D, it is a binary choice to compute whether similarity (A, B) is 

smaller or greater than (C, D), and this is associated with one bit of information to 

compute. Where we have r items we require s(s -1 ) / 2 bits to specify the data
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directly where there are s = r(r - 1) / 2  similarities between pairs of r items and 

s = r(r - 1) / 2  comparisons between the similarities for pairs of items.

Fig. 1 shows items represented in a Euclidean space, where distance 

corresponds to dissimilarity. Here, there are (5 x 4)/2 = 10 distances between these 

points, which can be expressed as 45 inequalities ((10><9)/2 = 45) such as:

d(a,c) < d(b,c);d(a,c) < d(a,b);d(a,c) < d(d,e);d(a,c) < d(b,d); 

d(a,c) < d(b,e);d(a,c) < d(c,d);d(a,c) < d(a,d);d(a,c) < d(c,e); 

d(a,c) < d(a,e)...

The regularity in the specifications of the inequalities (the redundancy), means that 

there may be a shorter description which captures the structure of the data. The 

simplicity model is one attempt to model the regularities in this structure, creating the 

largest saving in codelength.

Clustering by simplicity step 1: Coding group:

When computing the codelength required for specifying how r items are 

allocated into a set of n categories the allocation of all items into all possible 

classifications needs to be considered. This is given by

TT-n(~l)v((n ~ v)r /(« —v)!v!) (this is Stirling’s number, e.g., Graham, Knuth, &

Patashnik, 1994; Feller, 1970). Using standard information theory we can assume 

that log 2 (D) gives us the codelength required to identify one out of D possibilities 

(with the assumption that each one is equally probable). Therefore, log 2

^ =0 ( - l ) v( (« -v ) r / ( « - v)!v!) gives a codelength, which specifies the allocation of r
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items into groups. This, however, represents only a minor contribution to the overall 

computation.

In general, certain category structures are more likely to be chosen than others. 

For example, a category structure that consist of clusters equal to the number of items 

divided by two, is more likely than for example a classification where each item is in 

its own cluster or if all the items are clustered into a single group. The computations 

made in the simplicity model are based on the probability o f different category 

structures which are consistent with the simplicity approach. Pothos and Chater 

(2 0 0 2 ) suggest that in future work the model could identify constraints regarding the 

likelihood of different category structures, and this could be in the form of a non- 

uniform, prior probability distribution over category structures. They also suggest 

that general knowledge effects could be introduced here, as some groupings using 

general knowledge would be more plausible and therefore more likely. Such a case 

could include groupings based on biological vs. non-bio logical kinds, and thus could 

reduce the code length. Where there is no general knowledge, i.e., in a case of novel 

items, the codelength for the classifications can be computed as above (see also 

Pomerantz, 1981).

Clustering by similarity step 2: specifying the data in terms o f groups:

When encoding similarity data, the definition of a cluster (or category) is that 

it is a collection of objects where the within cluster similarities are greater (which 

should be as great as possible) than the between cluster similarities (which should be 

as low as possible; Rosch & Mervis, 1975). Default constraints on the similarities 

between items are therefore introduced by a particular grouping. If the constraints are 

strong (i.e., many comparisons between distances are explained by them), and 

generally correct (i.e., there are no corrections to the constraints) then the first term in 

(1) is reduced.

The description of similarity inequalities that are not specified by the 

grouping is needed, such as between two within cluster similarities or between two 

between cluster similarities. If there are /o f  these, then the code length will be t bits.
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If there are u constraints, where e are incorrect, the encoding of e must be between 0 

and u , so the encoding of u requires a binary code of length log2 (u + 1) bits. 

Identifying the constraints e out of u constraints is done with standard combinatorics:

„ Ce = (u\!e\{u -  e)\) ways to choose e items from set u . The total code for correcting

erroneous constraints, E, is log 2 (w + 1) + log2 (u Ce).

In order to specify the errors when there are few or very many errors, a short 

codelength is needed. In the case of the errors, having half the number of constraints 

requires the greatest codelength. Pothos and Chater (2002) suggest that the number of 

errors should be less than half the number of constraints, and where this is not the case 

then no clustering should be defined, as in this case the clustering would be of 

dissimilar items. This additional assumption is mild, as any reasonable algorithm for 

finding clusters should use similarity.

The simplicity model, a summary:

Pairwise similarity inequalities between pairs of objects are the representation 

of the similarity structure in the simplicity model. The number of inequalities needed 

to be specified is reduced with use of categories. The disadvantage of using 

categories is that they require a codelength to describe the particular set of categories 

used and correct for any errors in the constraints. Using categories usually shortens 

the description of the similarity structure of the items, and the greater the 

simplification the more intuitive the category structure is predicted to appear. The 

simplicity model is evaluated in the experiments assessing naive observers’ 

unsupervised categorization performance.

2. 6 Other Unsupervised Models vs. the Simplicity Model
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Some of the early research into unsupervised learning helps illustrate the 

distinctiveness of the simplicity model. One of these early studies of unsupervised 

learning comes from Fried and Holyoak (1984), where categories are described in 

terms of density functions. They suggest that participants can infer the actual density 

function from a sample of exemplars presented to them. An assumption is needed that 

category distributions have a particular form (an illustration of Fried and Holyoak’s 

theory is made with normally distributed category distributions). They also suggested 

that an external specification must be made of the number of categories sought. The 

difference between this and the simplicity model is that here we have a situation 

where learners know a priori that the category exemplars have properties whose range 

conforms to a certain distribution; another difference is that this model requires 

advanced knowledge of the number of categories. This corresponds to a situation 

where, for example, a bird expert has to identify bird categories in a new domain. The 

simplicity model, by contrast, does not make any assumption about the parametric 

properties of the categories or the number of categories sought.

Auto Class

Cheeseman and Stutz (1995) provided a model for unsupervised categorization 

called AutoClass, which comes from the machine learning literature. The model 

consists of two components, the first of which is a probability distribution which 

specifies how items belong to different categories with different probabilities, as 

opposed to being assigned to any particular category. There is also a probability 

density function. This is for the distribution of the attributes of the objects that belong 

to the category, which constitutes the second component. Attributes can be 

distributed in several ways in AutoClass, as it can model many types of attribute 

distribution within categories and category distributions, and is not restricted to one 

type of probability distribution, which is unlike Fried and Holyoak’s model.

However, the range of probability density functions AutoClass can employ determines 

the modelling scope in the AutoClass version used. This is different from the 

simplicity model, as here a particular distribution for categories or category attributes 

is not assumed, therefore it is more similar to Fried and Holyoak’s (1984) model.
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There are several related Bayesian approaches to unsupervised learning. Some 

of these do not use a specification on the number of categories sought. Ghahramani 

and Beal (2000) used a factor analysis procedure within the Bayesian framework to 

determine the number of factors required to model the data automatically (when 

considering the number of instances associated with each factor as belonging to the 

same cluster then factor analysis is similar to the process of clustering). Components 

are rejected from the model under particular circumstances in order for this to be 

achieved. In contrast to the non-parametric method used in the simplicity model, 

Ghahramani and Beal’s (2000) computations use a Gaussian function to model the 

distribution of information.

CODE

The CODE model by van Oeffelen and Vos (1982, 1983) later modified by 

Compton and Logan (1993, 1999), is another model in which the classification of 

objects is guided by parametric features. It deals with the perceptual grouping of dot 

patterns but presumably could be used for the classification of more complex 

elements. In this model, a value of strength is associated with each element in a 

pattern that originates from the element. Group allocation is made on the basis of 

when the pattern of strengths from the different elements at a location, when added, 

are above a certain threshold. As with AutoClass, the determined classifications are 

predicted on the basis of the strength spread. It has a parameter which is a fixed 

threshold, so a single classification was predicted for a set of objects in the original 

formulation of CODE. The model was later adapted so that it could produce from a 

set of objects nested classifications (Compton & Logan, 1993, 1999).

Ahn and Medin (1992) produced a two-state model of category construction 

for free sort classification. The model’s primary use was to evaluate the relative 

compellingness of a hypothesis where overall family resemblance drove the 

spontaneous groupings rather than sorting via a single dimension (this issue has been 

considered extensively in the free sort classification literature). The prediction made
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by this model, was that there would be as many groups as there are featural values 

along a dimension (but there was no attempt to predict the most salient dimension).

Kohonen neural network

Schyns (1991) proposed an unsupervised model of classification. This model 

used a two module neural network to investigate the spontaneous discovery of 

categories, and the association of these categories with labels. The Kohonen neural 

network was used to reduce the high dimensionality input vectors to lower 

dimensionality (two dimensions) output vectors. This was used to find how 

categories were spontaneously discovered. The segregation of the output space into 

distinct regions that can be identified with categories can be made by the Kohonen 

neural network. The similarity structure of the input distances determines the 

segregation into distinct regions and therefore is a spontaneous classification, rather 

than being determined by an external constraint. One limitation of such a model as 

compared to the simplicity model is that a specification of the number of categories is 

needed, in advance, in order to classify the information.

The rational model

The rational model is the only unsupervised categorization model which is not 

explicitly based on similarity (although in practice its predictions appear to converge 

with those of similarity-based models; Pothos, 2007). The rational model is an 

incremental, Bayesian model of categorization (cf. Tenenbaum & Griffiths, 2001), 

which classifies a novel instance in the category which is most likely given the feature 

structure of the instance (Anderson, 1991). For example, I would classify a novel 

instance in the category o f ‘cats’, because its particular features (‘meows’ , ‘has fur’, 

‘has four legs’, ‘can purr’) are particularly likely given membership to this category. 

This approach is analogous to the various category utility proposals in categorization, 

according to which categories are useful to the extent that they can be used to predict
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the features of their members (and vice versa; e.g., Corter & Gluck, 1992; Gosselin & 

Schyns, 2001; Jones, 1983; Medin, 1983; Murphy, 1982).

We briefly describe the version of the continuous version of the model 

described by Anderson (1991). The probability of classification of a novel instance 

into category k depends on the product P(/c)P(F |fc), whereby P(k) = 1̂ ™*+cn •

this equation, is the number of stimuli assigned to category k so far, n is the total 

number of classified stimuli, and c is the coupling parameter. The probability that a
1 Cnew object comes from a new category is given by P(0) =  ^ _ ĉ +cn» Therefore, lower

values of the coupling parameter will lead to the creation of more new categories and, 

so, the coupling parameters determines the number of categories which will be 

produced in classifying a set of stimuli. Also, P (F |k ) =  Y\ifi(x\k), where i indexes 

the different dimensions of variation of the stimuli and x indicates the different values 

dimension i can take. Note that in this (the original) version of the rational model, 

feature values are assumed to be independent. Each ft(x \k )  term corresponds to the 

probability of displaying value x  on dimension i in category k, and is given by

ai 11  + t)»  which is the t distribution with at degrees of freedom; fa =  A°f0+n- 
1 '\J *i *o+n

a 0a o + ( .n - l ) s2+ j 3̂ ^ 0- y )2 
and a f = ------------------2----------- . In these equations, =  A0 + n, fa = a0 +  n, n is

C10+71

the number of observations in category k, y  is their mean along dimension i, and s2 is 

their variance. Finally, a0 = 1 =  A0, p 0 can be set as the halfway point of the range of 

all instances, and cr0 as the square of a quarter of the range.

The primary function of the rational model is to predict the optimal 

classification for a set of stimuli. This optimal classification will depend on the order 

of presentation of the stimuli.

COBWEB

There are also differences between the simplicity model and Fisher’s 

COBWEB system (Fisher, 1987, 1996; Fisher & Langley, 1990; Gennari, Langley, & 

Fisher, 1989; Gennari, 1991). Corter & Gluck’s (1992) category utility is used as a 

measure to examine what is special about basic level categories. With the use of
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category utility, COBWEB can predict how items should be divided amongst clusters 

and how many clusters there should be. It is difficult to compare COBWEB with the 

simplicity model as COBWEB is used for understanding basic level categorization 

and the relation between this and the aspect of spontaneous categorization that the 

simplicity model addresses is not clear; this requires further work.

Statistics and data mining approaches have also been extensively used in the 

study of unsupervised categorization (e.g. Arabie, Hubert, & de Soete, 1996; Fisher, 

Pazzani, & Langley, 1991; Everitt, 1993; Hartigan, 1975; Krzanowski & Marriott, 

1995). Hierarchical agglomerative cluster analysis is one important line of research 

here (e.g., Jardine & Sibson, 1971), where all items are assumed to be individual 

clusters in the first step of analysis. In the next step an all-inclusive category is 

created by combining items into a single cluster two at a time. Regardless of the 

algorithm used this procedure results in n - 1 groups for n items. In another approach 

of clustering, K-means clustering, items are grouped into K categories, which involve 

optimizing an explicit criterion (where K is determined by the investigator; Banfield 

& Basil, 1977; Duda & Hart, 1973; MacQueen, 1967). The criterion (the objective 

function) can be viewed as a measure of category cohesiveness. When given a set of 

items, the criterion selected determines the discrete (non-hierarchical) set of groups.

A statistical clustering model called CLUSTER/2 (Michalski and Stepp, 1983) 

uses simplicity of verbal description of the categories created as one of the 

determinants of classification goodness (see also Ahn & Medin, 1992; Medin, 

Wattenmakker, & Michalski, 1987b). When dealing with several different kinds of 

datasets then statistical clustering may have an advantage with this flexibility, but this 

is less so in cognitive modelling where the number of free parameters relative to the 

degrees of freedom in the data needs to be watched.

SUSTAIN

SUSTAIN is an adaptive model of category acquisition, aiming to capture 

both supervised and unsupervised categorization in the same framework (see also 

Gureckis & Love, 2003). The internal representations in the model take the form of 

clusters, which capture psychologically meaningful sub-groupings of items. For
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example, when learning about categories of birds, a single cluster in the model might 

represent highly similar species such as robins and blue-jays separate from highly 

dissimilar examples such as ostriches. SUSTAIN is initially directed towards 

classifications involving as few clusters as possible, and only adds complexity as 

needed to explain the structure of a category. Two key aspects of SUSTAIN’s 

account are the role of similarity and surprise in directing category discovery. First, 

SUSTAIN favors clusters organized around perceptually or psychologically similar 

items. Second, new clusters are created in memory when the existing ones do a poor 

job of accommodating a new instance. Thus, SUSTAIN adjusts its category 

representations in a trial-by-trial fashion to accommodate the similarity structure of 

the items it has experienced.

When a to-be-categorized item is first presented to the model, it activates each 

existing cluster in memory, in a way based on the similarity of the item to each 

cluster. In addition, learned attention weights in the model can bias this activation in 

favor of dimensions which are more predictive for categorization. Clusters that are 

more activated are more likely to be selected as the “winner” for the item. If there are 

many highly activated clusters for a particular item, then confidence in the winning 

cluster is reduced— i.e., there is cluster competition (regulated by a parameter). In the 

unsupervised learning situations considered here, if the current input item fails to 

activate any existing cluster above some threshold level, then a new cluster is created 

for the item. This is the key mechanism o f ‘surprise’ in SUSTAIN: new clusters are 

created in response to surprisingly novel stimuli that do not fit with existing 

knowledge structures. The threshold parameter (t) controls what level of activation is 

considered ‘surprising’ enough, so that this parameter determines the number of 

clusters the model creates (analogous to the coupling parameter in the rational model; 

Anderson, 1991).

Given that SUSTAIN is a trial-by-trial learning model, in modeling free 

sorting task where multiple items are simultaneously presented, SUSTAIN’s fits are 

derived by running the model thousands of times on different stimulus orderings in 

order to create a distribution of plausible classifications: more psychologically 

intuitive classifications are considered to be the ones more frequently generated.

The unsupervised GCM
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The unsupervised GCM (Pothos & Bailey, 2009) is a straightforward 

modification in the application of the standard GCM (Nosofsky, 1991). The objective 

of the standard GCM is to predict the classification probabilities of new stimuli, 

relative to two or more pre-trained categories. For example, suppose that participants 

have been taught in a training phase to associate some stimuli in category A and some 

other stimuli in category B. Then, the GCM-predicted probability of a category A
n

response given a new stimulus X is: P(A\X) = - — ---- ? whereby riXA =
p a V x a + p b V x b

ZjeA exp j - c  [(E°=i wk\yXk -  y jk lr ) 1/rf  }•The P terms are category biases, r]XA is

the sum of similarities between X and all the A exemplars, c is a sensitivity parameter, 

r is a Minkowski distance metric parameter, q determines the shape of the similarity 

function, Wk are dimensional attention weights, and y ’s are item coordinates (it is 

assumed that stimuli are represented in a putative psychological space). The input to 

the GCM consists of the coordinates of a set of training stimuli, information about the 

assignment of the stimuli to categories, and the coordinates of a set of test stimuli. 

Behavioral data are typically fit by adjusting GCM parameters until the classification 

probability GCM predicts for a test stimuli X is as close as possible to the empirically 

observed one. An error term for the GCM can be computed as £(0* — Pi)2, whereby 

Oj are the observed probabilities and P, are the probabilities predicted from the model.

In an unsupervised context, instead of classifying test stimuli relative to a set 

of training items, we consider the relative coherence of alternative partitions of a set 

of stimuli, where coherence means that the classification of each stimulus is 

predictable given the classification of the other items. Suppose we are interested in 

evaluating a classification for a set of stimuli, (1 23} (4 5 6 7 8  9} (the numbers 41 ’,

42’ etc. are stimulus ids). We can consider each item in turn as a test item whose 

classification is to be predicted, and all the other items as training items whose 

classification is given. GCM parameters are adjusted until the predicted classification 

probabilities for individual 4tesf items are as close as possible to 1 0 0 % for the 

classification of interest. For example, the Ot for classifying stimulus 41 ’ into category 

{2 3} would be 100%, the Oj for classifying stimulus 42’ into category {13} would be 

100%, etc. In other words, stimuli are assigned to categories in accordance with the 

category structure being evaluated and GCM fits are computed on this basis. Pothos 

and Bailey (2009) suggested that the lower the sum of all the corresponding error
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terms, the more coherent and intuitive a classification is predicted to be, according to 

the GCM.

In examining a classification, the parameters of the unsupervised GCM are 

automatically set in a way that the groups in the classification are as separated as 

possible. For example, for two-dimensional stimuli, if clusters are specified along 

dimension 1 , but there is no classification structure along dimension 2 , optimizing the 

unsupervised GCM will typically produce a high attentional weight for dimension 1 

and a low weight for dimension 2. In other words, parameter search in the 

unsupervised GCM is guided by the particular classification structure examined, not 

by the need to produce specific empirical results.

The unsupervised GCM assumes that all stimuli are presented concurrently. 

Moreover, at present it can only produce predictions of relative intuitiveness for 

particular partitions of a set of stimuli; it cannot (yet) be employed to identify the best 

possible classification for a set of stimuli from scratch.

DIVA

The divergent autoencoder, DIVA (Kurtz, 2007) is an account of human 

category learning based on the autoencoder connectionist architecture (Rogers & 

McClelland, 2004). The DIVA model consists of a three-layer, feedforward neural 

network with a bottleneck hidden layer that is trained auto-associatively using 

backpropagation. The model operates by recoding the input at the hidden layer and 

then decoding (reconstructing the original input) in terms of a channel for each 

category (separate sets of weights connect the hidden layer to sets of output nodes that 

represent the feature reconstruction for each category). In supervised learning tasks, 

DIVA produces a construal of the input in terms of each possible category and the 

relative degree of reconstructive success determines the classification response. The 

model learns by applying the auto- associative error to adjust the weights only along 

the channel corresponding to the pre-determined correct category. Psychologically, 

the model assumes that an example belongs to a category to the extent that it can be 

reconstructed by the category. A category is basically a flexible representation of the 

statistical properties of the exemplars. For example, one category can correspond to 

all items that have value 1 on feature FI, or all items for which FI and F2 are
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perfectly correlated, or all items such that feature FI has value 1 unless features F2 

and F3 each have value 0.

In unsupervised learning tasks, the model has no information about which 

stimuli belong to which category or about the number of categories, so DIVA begins 

as a standard autoencoder with a single channel. DIVA performs unsupervised 

learning by evaluating stimuli one at a time. To simulate a spontaneous classification 

task with all stimuli concurrently available, DIVA is trained on blocks of all stimuli 

presented one at a time in a random order. DIVA evaluates each stimulus by 

determining the reconstructive success of all existing category channels (on the initial 

trial, there is only one category channel and no evaluation process). A spawning 

threshold is used to determine whether any of the existing categories provide a 

satisfactory account of the stimulus (i.e., sufficiently low sum-squared error). This 

threshold is analogous to the coupling parameter in the rational model or the 

rparameter of SUSTAIN and it effectively determines the number of categories or 

clusters. If none of the existing categories meet the threshold, then the network 

architecture is altered: a new category channel is created and seeded by conducting 

one training trial with the current stimulus. After the evaluation of a stimulus, one 

self-supervised (input = target) training trial is conducted in which the error signal is 

applied only to the category channel with the best reconstruction of the current 

stimulus. Based on this learning procedure, a clustering solution arises in the form of 

category channels that specialize in reconstructing sets of stimuli with similar 

properties. See Table 1 for a summary of the key differences and similarities of some 

of these models.
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Table. 1. An examination of how the unsupervised models differ from each other. 

_______________W ithin cat, s im .1 B etw een  cat, s im .1 Trial-by-trial Formal

principle

G eo m e tr ic  Yes Yes No N/A

DIVA N/A N/A Yes N/A

Rational N/A N/A Yes

Bayes

Simplicity Yes Yes No

Simplicity

SUSTAIN Yes No Yes

Simplicity

Un. GCM Yes No No N/A

Notes: Within cat. sim. and Between cat. sim. refer to whether the models favor 
classification which maximize within category similarity and/or between category 
similarity.

2.7 Summary

This chapter has outlined the simplicity model (Pothos & Chater, 2002) and its 

theoretical foundation, which is of the simplicity principle (Pomerantz & Kubovy, 

1986; such as demonstrated in the simplicity model). It has outlined the similarities 

and differences of unsupervised and supervised categorization, and compared the 

simplicity model to other unsupervised models. In the next chapter, I explain another 

type of categorization, supervised categorization, and how this relates to absolute 

representation (or judgment).
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Chapter 3

Supervised Categorization and Absolute Judgment

3.1 An Introduction

In categorization, there are several theories which attempt to explain how 

people make classifications, such as unsupervised (see Chapter 2) and supervised 

categorization (which this chapter explains). These theories hold their own unique 

perspective of how categories are formed. For example, some focus on rule 

formation (Nosofsky, Palmeri, & McKinley, 1994); decision boundaries (Maddox & 

Ashby, 1993); prototype abstraction (Posner & Keele, 1968; Reed, 1972; Smith & 

Minda, 1988); and exemplar storage (Medin & Schaffer). The focus of the present 

investigation is to explore relative vs. ‘absolute judgment’ (or absolute-like 

representation). Absolute classification is a classification based on the actual physical 

properties of the items used. So, a judgment based upon absolute properties would be 

influenced by how physically similar an item is to another item. This is similar to the 

way that exemplar and prototype theories suggest that classification is made. This 

chapter explores the exemplar and prototype models for an illustration of what is 

meant by absolute representation (the terms representation and judgment are used 

interchangeably).

3.2 Exemplar Models

Exemplar models (e.g., Medin & Schaffer, 1978; Nosofsky, 1986) assume that 

in categorization, a new item is categorized based on its similarity with existing
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exemplars (items) in memory. An alternative to this is the distributional approach 

(Ashby & Townsend, 1986) which suggests that classification of a new exemplar is 

based on the relative likelihood of belonging to each distribution. These two accounts 

make qualitatively different predictions. Consider the case of two categories, one of 

which has high variability and another which has low variability. Exemplar theory 

will predict that a critical exemplar which is exactly half way between the two 

categories will be categorized as belonging to the category with low variability. The 

distributional model predicts that the critical exemplar should be classified into the 

high-variability category.

Despite the difference in qualitative prediction for categorization, the 

exemplar model has been successful in accounting for results which have been used in 

support of other models such as prototype abstraction or rule induction. An example 

of this, is where prototypes are classified better than exemplars (Homa, 1984). 

However the exemplar theorists have shown that prototype enhancement effects are 

predicted well by pure exemplar models (e.g., Busemeyer, Dewey, & Medin, 1984; 

Hintzman, 1986; Medin & Schaffer, 1978; Nosofsky, 1988, 1991; Shin & Nosofky, 

1992).

3.3 Prototype vs. Exemplar Theories of Categorisation

A major controversial issue in the categorization literature, has been whether 

categorization for new stimuli into existing categories occurs on the basis of 

comparing the similarity of the individual exemplars, within a group, with the new 

item (exemplar theory; e.g., Medin & Schaffer, 1978; Nosofsky, 1989; Shin & 

Nosofsky, 1992), or by comparing the similarity of the average summary 

representation, of the category with the new item (prototype theory; e.g., Reed, 1972; 

for general discussions see Nosofsky, 1990; Komatsu, 1992; Ashby & Alfonso-Reese, 

1995). According to exemplar theory (e.g., Brooks, 1978; Hintzman, 1986; Medin, 

1986; Medin & Schaffer, 1978; Nosofsky, 1989, 1988a, 1988b, 1990,1991) a person 

will classify a new item as a member of a category if the new item is more similar to 

the items in this category as opposed to another. So, in this case, the previous
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exemplars within the pre-specified groups shapes the way the classification of the new 

items is made, because, the category structure is given by the experimenter. This is 

different to spontaneous categorization, which is explored in Chapter 2. Spontaneous 

categorization is completely unconstrained, and has no existing categories which 

suggest how the items should be classified (see Chapter 2 on unsupervised 

categorization).

In contrast to this, prototype theory suggests that when learning a category, the 

person abstracts a central tendency across all encountered instances of the category 

(e.g., Rosch & Mervis, 1975; Posner & Keele, 1968, 1970; Homa et al., 1981; Homa 

& Vosburgh, 1976; Reed, 1972). In some cases, certain restricted types of prototype 

and exemplar models are equivalent (independent cue models; Nosofsky, 1990;

Ashby & Alfonso-Reese, 1995). The controversy relates to which theory best 

describes conceptual structure (for reviews see Murphy & Medin, 1985; Komatsu, 

1992; Hahn & Chater, 1997).

In the investigation for ‘relative vs. absolute categorization’ (see Chapter 5), I 

will ask the question: under what circumstances should we expect a relative as 

opposed to an absolute representation in categorization? Before this can be answered, 

however, clear definition of the terms absolute-like and relative-like representations 

must be given. This is the goal of the present chapter, which relates to Chapter 4 on 

relative judgment. In order to explain absolute representation, some of the models on 

supervised categorization are described in more detail. The goal here is to give a 

deeper understanding into exemplar theory, and absolute judgment (representation).

3.4 The Generalized Context Model o f Supervised Categorization

The Generalised Context Model (GCM; Nosofsky, 1984, 1986, 1991) has been 

used successfully to model exemplar (absolute) representation in categorization. This 

model generalizes the original version of the context model proposed by Medin and 

Shafer (1978), and integrates this with classic theories and ideas in the area of choice 

and similarity (Gamer, 1974; Shepard, 1958). The model uses multidimensional
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scaling (MDS) in modelling similarity. Exemplars are represented in 

multidimensional space, and similarity is a decreasing function of their distance in 

space.

The GCM assumes that the categorization of a new exemplar is determined by 

the similarity between that new exemplar and those stored in memory. The GCM 

sums the similarity of a new item with the items in each category and predicts that the 

new item will be classified in the category for which this summed similarity is 

greatest. For example, a new instance will be classified as belonging to category A 

rather than category B, if it is more similar to the A exemplars than the B exemplars. 

More specifically, exemplars are represented in a multidimensional space; each 

exemplar is stored together with its category label. In a simple, one-dimensional case, 

the distance between two stimuli S, and Sj is given as:

r f 9 = l  X' ~ Xj\  ( 1 )

Where x, is the absolute magnitude of St , and x . is the absolute magnitude o f S j .

For an m-dimensional space, the weighted Minkowski power formula is used, so that 

the distance between stimuli S , and Sj is given as:

- - Mr

d , =
m

X im ~~ X j m | (2)

In Equation (2), xim denotes the value of exemplar i on psychological dimension m .

The r value defines the distance metric of the psychological space. For example, the 

city block metric is defined with r= 1, and the Euclidean distance metric is defined 

with r = 2 (Gamer, 1974; Shepard, 1964). Shown in Equation (2) are also the 

attention weight parameters wm (Carroll & Wish, 1974), which model the degree to 

which a participant attends to a particular dimension. The similarity between stimuli 

Sj and Sj is a function of their distance. Similarity is typically a monotonically

decreasing function, of distance as in the equation below:

—cdfj
1,  =e , (3)
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In Equation (3) 77,.. is the similarity between Sf and S j ; where q = 1 leads to an

exponential function and q = 2 leads to a Gaussian function. The sensitivity 

parameter, c, determines how quickly the similarity between stimuli St and Sj  is

reduced with distance.

The probability of classifying stimulus S, in category A, is proportional to the 

similarity between St and all the A exemplars, as in Equation (4); in that equation, the 

f3 a parameters are category biases, which indicate whether there might be a prior bias 

to identify new items as being members of a particular category.

Finally, the actual probability of making a category A response given stimulus 

Sf, when there are two alternative categories (A and B), is given by Equation (5).

3.5 Other supervised categorization models

COVIS (Ashby et al, 1998).

Ashby et al. (1998) asked participants to learn to classify stimuli into two 

bivariate normally distributed categories. Ashby et al.’s COVIS (competition 

between a verbal and implicit system) model suggests that there are two mental 

systems that compete with each other in the categorization response. It suggests, that 

first, there is an implicit (nonverbal) system that learns the optimal decision boundary 

for separating a psychological space into regions corresponding to categories. In 

categorization, items above the decision boundary would fall into category A, and the 

items below this criterion would fall into category B. There is also an explicit system 

that learns verbal rules. The criteria set by the verbal rule are then used in

=A< 2X > (4)

(5)
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categorization, so that a new item above the criterion (e.g., 1 0  cm) would be 

categorized into category A, and an item below this criterion would be categorized 

into category B. Ashby et al. (1998) suggested that the fact that categorization results 

fitted the decision boundaries (criteria) as predicted by their model was evidence in 

support for their model.

ALCOVE (Kruschke, 1992; Nosofsky, Kruschke, & McKinley, 1992).

A model that is closely related to the GCM is ALCOVE (Kruschke, 1992; 

Nosofsky, Kruschke, & McKinley, 1992), which incorporates the principles o f the 

GCM within a connectionist framework. The advantage of ALCOVE is that it has an 

explicit mechanism that can learn the attention weights on a trial by trial basis. The 

mechanism is error driven, and therefore can learn the weights that optimizes 

performance, rather than the experimenter having to set the weights manually for each 

stimuli set presented, in the GCM.

RULEX (Nosofsky, Palmeri & McKinley, 1994).

Results from another study which suggest a limitation of exemplar models, 

was made by Nosofsky, Palmeri and McKinley (1994). They advocated the 

alternative rule-plus-exception (RULEX) model of classification. From this model, 

they suggested that categorization is made by forming simple logical rules along 

single dimensions and then storing occasional exceptions to these rules. For example, 

if category A consists of features 1112, 1212, 1211, 1121, 2111 (1 could mean, ‘it has 

a feature x’, and 2 could mean, ‘it does not have feature x’) and category B consists of 

1 1 2 2 , 2 1 1 2 , 2 2 2 1 , 2 2 2 2  then the logical value 1 can be predicted as a determining 

factor for what should belong in category A and logical value 2 can be predicted for 

category B. So, according to the model, the individual might store value 1 on 

dimension 1, as a test of what belongs to category A, and value 2 on dimension 1, as a 

test of what belongs to category B. The exceptions stored would be 2111 for category
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A and 1122 for category B. The learning process in RULEX is stochastic, and a key 

property is that different observers can from different rules from the same 

information. The vast array of different rules are the result of a probabilistic learning 

process described by few free parameters.

One of the advantages of the RULEX model over the GCM is that it 

successfully predicted a distribution-of-generalization data which the GCM failed to 

predict (Nosofsky, Palmeri & McKinley, 1994). However, Nosofsky and Johansen 

(2000) demonstrated that a modified version of the GCM was successful at 

accounting for this data by allowing for an individual-subject parameter variability. 

Also, to gain further support for the exemplar based account of the distribution-of- 

generalization data, the ALCOVE (Kruschke, 1992) model was applied. In the GCM 

version, altering particular patterns of attention weights across the five subgroups was 

required, but in ALCOVE, this requirement was fulfilled by the model’s attention- 

weight learning mechanism.

ATRIUM(Erickson & Kruschke, 1998)

ATRIUM (Erickson & Kruschke, 1998) is a multiple-system categorization 

model that incorporates both rule and exemplar representations. Specifically, there is 

a rule module that learns to establish single-dimension decision boundaries, an 

exemplar module, that learns the association between exemplars and categories, and a 

module that links the two together, called the competitive gating mechanism. In 

general, the model uses the rule module in categorization, unless there is an exception 

to the rule in which case it prefers the exemplar module.

Erickson and Kruschke (1998) demonstrated that when using stimuli that vary 

along two dimensions, the ATRIUM model accounted for the categorization 

performance more accurately than the GCM. Nosofsky and Johansen (2000) suggest 

that this was because the stimuli involved numerical data which allowed for the 

precise perception of the magnitude of the items. When replicated without the 

numerical data there was little difference in the GCM and ATRIUM model 

predictions.
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3.6 Exemplar theory; the GCM and how this relates to absolute judgment

In the present investigation a ‘relative (or relational; see chapter 4 on relative 

judgment for a full account) mode of categorization (or representation)’, is a 

categorization process in which items are represented in terms of some relational 

property (e.g., ‘small vs. large’). A relational classification is therefore based on a 

relational property which is independent of the particular physical properties of 

individual exemplars, but rather depends on the relations between sets of exemplars 

(in different categories). The implied converse mode of categorization, ‘absolute 

categorization’, involves item representations which veridically correspond to the 

actual physical properties of the items (e.g., ‘approximately 6  cm vs. approximately 

20 cm’). It is this latter kind of categorization which the GCM has been designed to 

capture.

To demonstrate the specific difference in the absolute and relative 

representations, an account is given using the GCM which models the classifications 

o f absolute and relative properties (is is not designed of relative representation but we 

include it here for illustrative purposes) in this example. So, in this example, the 

GCM is applied on the basis of two representational schemes for the training and test 

items: one in which the items are represented in an absolute way (in terms of their 

actual physical magnitudes; e.g., 1 2 mm, 15mm etc.) and another in which the items 

are represented in a relative way (e.g., in terms of a simple coding whereby ‘smaller’ 

items are represented with the value 1 and ‘larger’ items are represented with the 

value ‘5’). For this example, all the other details of GCM fits were standard.

So, consider the following example. In the absolute version of the GCM fit, 

there are four items in a category called Chomps which have the heights: 32, 35, 36, 

40 mm, and four items in a category called Blibs with heights: 62, 64, 6 6 , 70 mm, and 

four test items, with heights: 81, 85, 121, 124 mm. It can be seen that two of the test 

items have ‘relatively’ smaller magnitudes and the other two relatively larger 

magnitudes. It therefore can be asked, ‘How do participants classify the test items in
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this experiment?’ If  they represented the training and test items in an absolute way, 

then it would be expected that most of the test items would be classified in the 

category of Blibs, since the Blibs training items were most similar to the test items. 

Using the GCM to predict the classifications made, a sum of squares value of 2.372 is 

produced when assigning all o f the test items into the category of Blibs (note that 

smaller sums of squares indicates better classifications by the GCM).

Alternatively, in the relative version of the GCM fit, the relative value 1 could 

be used to represent all the (small) Chomps in training and the value 5 all the (large) 

Blib items in training. Likewise, the values 1 and 5 are used to represent the pair of 

smaller and larger test items respectively. Crucially, with this representational 

scheme, the items are only represented in terms of small and large, there is no more 

specific information about their physical (absolute) properties. As before, attempting 

to predict the empirical classification probabilities using the GCM and a relative 

representation for the training and test items, a sum of squares value of 0.181 was 

found for the relative classification. In other words, the GCM could predict 

classification probabilities better when the training and test items were represented in 

a relative way, as compared to when they were represented in an absolute way.

In the case of using a prototype model to represent absolute judgment, the 

same predictions would be made. For example, in the case of an absolute 

representation, the physical size of the prototypes for the ‘Chomp’ category and ‘Blib’ 

category would be used in the classification process. So, in the case of a pre-specified 

category labelled ‘Chomps’ which consist of heights 32, 35, 36, 40 mm, and a 

category labelled ‘Blibs’ consisting of heights 62, 64, 6 6 , 70 mm, the prototype for 

the Chomp group would be 36 mm and the prototype for the Blib group would be 6 6  

mm. In the same way as described in the GCM exemplar situation, this physical size 

would be used in the categorization process. So, in the case of new test items being 

presented corresponding to heights 81, 85, 121, 124 mm, then according to prototype 

theory, just as was the case for the GCM exemplar theory, the new items would be 

classified with the category to which they are physically most similar. Crucially, the 

only difference between prototype theory and the GCM exemplar, is that in the GCM 

each of the individual items within a group are compared for similarity with the test 

items, whereas in the prototype model, it is only the abstracted prototype that is 

compared with the test items.



This simple example demonstrates a possible use of the GCM to account for 

relative properties, however, the model has been designed and adapted for the use of 

predicting categories in absolute modes of supervised categorisation, where physical 

sizes of magnitudes are used.

3.7 Summary

The focus of this chapter was twofold. Firstly, a detailed description of 

absolute representation was given, which was illustrated with several supervised 

models such as the GCM. A simple example of absolute and relative representation 

and an example was given which used the GCM account. This evidence will be used 

to motivate the experimental investigations into relative vs. absolute representation in 

Chapter 5 and unsupervised vs. supervised categorization in Chapter 7.

57



Chapter 4

Relative Judgment in Categorization

4.1 An Introduction

In Chapter 3, a description was given of absolute representation (or 

judgments) and an example was given using the generalized context model (GCM; 

Nosofsky; 1984, 1986, 1991). This chapter expands the literature review o f absolute 

vs. relative representation by examining some of the literature in categorization on the 

subject of relative representation. Crucially, a description of the relative judgment 

model (RJM; Stewart et al., 2005) in categorization and analogical mapping (Gentner, 

1983, 2003; Holyoak & Thagard, 1995) is given, which motivates the definition of 

relative representation that we will use.

4.2 Absolute identification tasks

Miller (1956) reported that the cognitive system had difficulty in processing 

information once the short-term capacity limit in memory was reached. He found that 

this limitation occurred when using many different types of information, such as 

loudness of tones to the magnitude of lengths and areas. Absolute identification tasks 

are commonly used in classification experiments when testing memory limitations. 

These tasks consist of presenting several items of varying size, but can be used many 

other situations, such as when using sound, or brightness. In all of these situations, 

the participant must identify from memory, the smallest item to the largest. For 

example, a participant is given several stimuli of varying sizes and is asked to identify
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them from memory first the smallest, then the second smallest etc., until all the stimuli 

are accounted for. One of the problems that can result from this task is that errors in 

judgment can occur once the limit in short term memory is reached. To be more 

specific, if there are too many items (i.e., if the sequence of information exceeds the 

capacity limits of short-term memory), the memory trace of the exemplars can be lost, 

which reduces identification accuracy in this task. To compensate for this loss, 

representation of the items in memory can shift from absolute (based on the actual 

physical size) to a relative representation (where the representation of the items is 

relative to one another. Such relative representations (e.g., see Stewart et al., 2005), 

utilized the relative properties of ‘bigger than’ or ‘smaller than’ the neighbouring 

items, which is a process similar to analogical mapping. Briefly, there are three main 

observations from in these tasks: a limit in information transmission; bow effects in 

the accuracy of identifying the stimuli; and sequential effects. Each of these will be 

explained in turn.

Limitations in Information Transmission

The amount of information that can be transmitted through short-term memory 

can be measured with absolute identification tasks (McGill, 1954). Information 

transmission has an input, the presented stimuli, and an output, the classification 

response made. Input information travels through the short-term memory channel and 

arrives as the classification response output. Perfect transmission of the input to the 

response, would equal perfect classifications where there would be no errors.

However, Miller (1956) demonstrated that the memory channel is limited to just a few 

bits (2.5 bits) of information and therefore, perfect transmission, once this limit is 

reached is not possible. However, as Miller (1956) points out, the memory channel is 

limited to just a few bits, and thus the information cannot travel perfectly from input 

to output if this channel capacity is exceeded. The 2.5 bit limit corresponds to about 

six equally likely alternatives. The limit leads to a loss of information and thus leads 

to a reduction in classification accuracy. Stewart et al. (2005) have demonstrated that 

such a limitation of memory leads to an alternative form of representation which is 

based on relative properties of the items. These relative properties are based on
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comparisons between the present item with preceding items, in terms of how different 

they are to each other. For example, the present item could be represented as ‘much 

bigger’ than the previous item. Information transmission can increase with the 

increase in range (e.g., the difference in size between items from smallest to largest). 

However, this also reaches a limit once the items are easy to discriminate (Alluisi & 

Sidorsky, 1958; Braida & Durlach, 1972; Eriksen & Hake, 1955a; Pollack, 1952).

Bow or Edge Effects

One of the phenomena observed in absolute identification tasks is the bow 

effect. This is where the classification accuracy is greater at the extremes of the item 

set and poorer at the midrange, and hence a bow effect is observed when plotting 

accuracy on a graph (e.g., Kent & Lamberts, 2005; Lacourture & Marley, 2004; 

Murdock, 1960; Siegel, 1972). When the range of the item set increases, the 

classification accuracy only slightly improves (e.g., Braida & Durlach, 1972;

Gravetter & Lockhead, 1973; Hartman, 1954; Pollack, 1952). This effect is not only 

observed with visual stimuli such as items, it is also found with other stimuli such as 

when tones of sound are used (Brown et al., 2002). The bow effect increases when 

the number of stimuli presented increases (Alluisi & Sidorsky, 1958; Durlach & 

Braida, 1969; Lacouture & Marley, 1995; Pollack, 1953; Siegel, 1972). Siegal (1972) 

found that this effect was not due to any response bias, such as the end items being 

more frequently used as compared to the midrange items.

Sequential Effects

Another observed phenomenon in absolute identification tasks is sequential 

effects. This is where the previous item has some influence over the perception and 

thus classification of the present item. For example, if the preceding item was much 

smaller than the current item, then the perception of the current item could be that it is 

smaller than it actually is. There are several theories that try to explain the sequential
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effect. One of these theories is the assimilation theory. In this theory, the current 

item is perceptually assimilated in memory by the previous item so that it is more 

similar to it than it actually is (Gamer, 1953; Holland & Lockhead, 1968; Hu, 1997; 

Rouder et al., 2004). Ward and Lockhead (1970) demonstrated that a response bias 

led to the current item being biased away from the previous item. Evidence for the 

assimilation of the items has not been confined to absolute identification tasks, as this 

has also been shown with magnitude estimation tasks (e.g., Jesteadt, Luce, & Green, 

1977), in matching tasks (Stevens 1975) and in relative intensity judgment tasks 

(Lockhead & King, 1983). Assimilation effects have been modelled by several 

researchers such as by Stewart et al. (2005) in the relative judgment model (RJM).

4.3 Models that account for the effects observed in absolute identification 

tasks

Assimilation Models

Assimilation and contrast effects (i.e., where the current item is contrasted 

away from a neighbouring item) can be accounted for by assimilation models 

(Holland & Lockhead, 1968). For this, it is assumed that the cognitive system 

generates a classification response by converging the judged distance between the 

current and previous stimulus. Assimilation occurs when, for example, a smaller 

item precedes a larger item and this results in the larger item being assimilated so that 

it is perceived as more similar to the previous item. Thus, the present item has been 

assimilated so that it is perceptually smaller than it actually is, which leads to the 

errors in classification judgments.

Lockhead and King (1983) and Lockhead (1984), provided an assimilation 

model, which made two assumptions: (1) that it is the successive stimuli, which are 

assimilated in memory, and (2) relative comparisons are made between each new item 

and those stored in memory from the sequence presented. The model has accounted 

for contrast and assimilation, because it assumes that such relative comparisons are
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made. However, it did not account for the information transmission limit and bow 

effects. Such a limitation motivated the development of other models (e.g., Stewart et 

al., 2005).

Modified Thurstonian Models

Thurstonian models give an account for the bow effect. The simple 

Thurstonian decision model has been modified many times (e.g., by Durlach &

Braida, 1969). This model assumes that the items in memory are represented in a 

noisy way, so that the exact magnitudes are not stored in memory, but instead some 

unspecific representation. It is these noisy values that are used in the classification 

process and this leads to the errors found in the bow effect.

The model accounts for the limit in information transmission as it assumes that 

the noisy values are stored instead of the exact values because of the information 

transmission loss from input to output. So, instead of storing the exact values of the 

items, the cognitive system only stores the noisy values. This accounts for why the 

errors in classification increase when more stimuli are presented. For example, when 

more items are included but the range is held constant, then the items are closer 

together in terms of size. As the memory representation of these are noisy, then there 

is a greater likelihood that these will be confused with each other which would lead to 

greater errors in classification. The bow effect is accounted for by the fact that as 

there are less neighbouring items at the extremes of the presented sets, then there is 

less chance of confusing these items with the neighbouring items. Less confusion 

would lead to greater identification accuracy.

Restricted Capacity Models

Lacouture and Marley, (e.g., 2004; Marley & Cook, 1984, 1986) accounted for 

the limit in information transmission and bow effects in absolute identification tasks. 

They suggested that the cognitive system had a limited capacity to process 

information and it is this that led to the errors in the classification such as the bow
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effect. The exemplars in this model are represented on a noisy Thurstonian scale.

This model did well to account for the information transmission and bow effect but 

could not account for the sequence effects.

In more recent work, Lacouture and Marley (1995, 2005) developed a neural 

network mapping model, which includes a network of one single input unit, one single 

hidden unit and an output unit for each response. The storage of the exemplars in 

memory, were assumed to be noisy values. Response classifications in this model 

were made through the mapping onto the hidden unit activation, and it is assumed that 

for each output unit, activation is accumulated through the course of the trial. Once 

the accumulation reaches a threshold, the response is activated. However, the model 

still does not account for the sequence effects. Lacouture and Marley (2004) 

suggested that the model could be modified so that it would account for sequence 

effects, such as by suggesting that the normalizing of hidden activation units could be 

made so that previous items could be used instead of anchor values.

Laming’s (1984,1997) Relative Judgment Model

The relative judgment model (Laming, 1984), accounts for the limit in 

information transmission. This model gives a starting point for our definition of 

‘relative representation’. More specifically, the model assumes that the classifications 

made are done in such a way that, item differences are represented relative to each 

other. For example, the current item is represented relative to its difference with the 

preceding item.

It is clear, that this model uses relative representations rather than those based 

solely upon absolute physical properties. For example, rather than classifying the 

items based upon their physical (absolute) properties, such as ‘item one comes after 

item three because item one is 6mm and item three is 4mm’, the classification is made 

on the bases of item one is (relatively) ‘bigger than’ item three. So, the representation 

is based on relative properties. Specifically, it is the relative difference information 

that is used here rather than just the relative property. This is different to the relative 

representation of Stewart et al. (2005) RJM, where it is the relative property ‘bigger or
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smaller than’ that is used and not the relative difference information which is based 

upon the absolute properties. This model was good to account for the limit in 

information transmission but failed to account for the bow and sequence effects. 

Laming did suggest that the model could be adapted to account for prior expectations 

of the distribution and thus account for these additional phenomena.

Absolute Judgment, Exemplar Models

A thorough explanation of exemplar models is given in Chapter 3. Briefly, 

there are models based on similarity of absolute physical sizes. An example of how a 

classification would result here for three items; item one, 10mm; item two, 12mm and 

item three, 14mm, would be, that item one would be classified with item two, rather 

than item three, because it is physically more similar to this, as compared to item 

three. There are several models which use absolute physical similarity in 

classification. According to the exemplar theory (e.g., Medin & Schafer, 1978; 

Nosofsky, 1986), each item is stored in memory with its associated label. So, for 

example, when presented with a chair and also the category label, chair (i.e., the 

participant is told that this item belongs to a category called chairs), then the item with 

its label ‘chair’, is stored in memory. When classifying a novel item, the probability 

of a classification is increased when the stored items and the novel items are 

physically more similar. So, if a chair is presented and there are two available groups, 

‘chairs’ and ‘stools’, then there is a greater likelihood that the new item will be 

classified into the category ‘chairs’. This is because its physical properties such as 

length, and width are more similar to the exemplars in the chair category, as compared 

to those in the stool group.

In terms of the absolute identification task, Brown et al. (2002) applied the 

data for absolute identification tasks to the exemplar model (Generalized Context 

Model, Nosofsky, 1986). The exemplar model accounted for bow effects, as the end 

items have fewer items to get confused with, but it does not explain the gradual 

bowing. This however, can be accounted for if the weights in the model are changed 

and bias in favour of responses for stimuli that have more extreme magnitudes.
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The major problem with the exemplar models is that they fail to account for 

sequential effects. They try to account for such effects by placing more weight to 

neighbouring items (e.g., Nosofsky & Palmer, 1997, Elliot & Anderson, 1995), so that 

these become more available to memory. However, this fails to predict the sequence 

effect in classification of the items (Stewart, Brown, & Charter, 2002).

4.4 Stewarts Relative Judgement Model (RJM, 2005)

Stewart et al. (2005) were motivated to develop the RJM by the assumption that that 

the classification process in absolute identification tasks is based upon relative and not 

absolute judgment.

Relative vs. absolute judgment

The RJM assumes that when making classifications there is no mechanism 

which stores even noisy perceptual absolute magnitude. Instead, the model is based 

on the idea that classification in absolute identification tasks are made on the basis of 

simple relative comparisons of the current item with its preceding neighbours.

Stewart et al.’s (2005) RJM, uses a similar mapping model as used by Lacouture and 

Marley (1995, 2004), and assumes that there is noise in the process of mapping 

several stimuli to the correct output response. This noise, they suggest, is the 

limitation which leads to errors in absolute identification tasks. This is different to 

other accounts such as the simple Thurstonian account, in that it does not require 

noisy representations of the perceptual exemplars. By assuming that the limit in 

capacity is due to mapping rather than perceptual noise, Stewart et al. (2005) 

suggested that there was no requirement for any further explanation to account for the 

lack of improvement in performance when stimulus range is increased, which makes 

the RJM approach more parsimonious than competing theories. One of the problems 

that face most models, according to Stewart et al. (2005), is that they base their 

assumptions on the physical magnitudes held in long-term memory, which makes it
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difficult to account for sequence effects. For example, in Thurstonian models, the 

position of criteria in long-term memory is used. In the connectionist model, 

Lacouture and Marley (1991, 1995, 2004), suggest that information about the most 

extreme stimuli is used from long-term memory. Also, in the exemplar models, the 

physical magnitudes of each stimulus is kept in long-term memory, and classifications 

are based upon similarity of these exemplars. Although these models can be modified 

to account for the sequence effects, the RJM explains all three observed effects in 

absolute identifications tasks without any need for modification.

RJM and absolute identification tasks

In Stewart et al.’s (2005) relative judgment model (RJM) for absolute 

identification tasks, the model accounts for all three effects (bow effect, sequential 

effects, and limited capacity), which all the other models fail to do. The main 

assumption the RJM makes, which is directly relevant to the present investigation, is 

that the classification judgments are made on the basis of relative comparisons and not 

absolute magnitudes to one another. This leads to the focus of the present 

investigation. The question asked is whether there might be analogous situations in 

categorization experiments.

4.5 Relative Judgment in Analogical Mapping

Analogical mapping

Analogical mapping is a process of comparison to identify shared relations 

between two knowledge systems, such as two objects. The generated comparisons are 

thought to play a role in relational reasoning (Gentner, 1983, 1989; Gick & Holyoak, 

1980, 1983; Holyoak & Thagard, 1995); when learning and using rules (Anderson & 

Lebiere, 1998; Lovett & Anderson, 2005); in the appreciation of perceptual



similarities (Medin, GoldStone, & Gentner, 1993); and in the production of language, 

science, mathematics and art. In analogical mapping when making a comparison 

between several objects such as elephant, truck, mouse and ball, then shared 

properties are identified such as elephant and truck are both ‘big’ and mouse and ball 

are both ‘small’. The shared property receives a double activation and is therefore 

more active in the classification procedure as compared with single activated unshared 

properties. The shared properties can drive classification decisions: for example, 

because elephant and truck are both big they should be classified together, and the 

same happens for mouse and ball.

The development of relational thought

There is evidence to suggest that the ability to reason using relational thought 

occurs through development (e.g., Gentner & Ratterman, 1991; Halford, 2005). 

Initially, children make inferences based on whole object similarity and then later 

acquire the ability to develop relational thought (e.g., Gentner, 2003; Gentner & 

Rattermann, 1991). For example, consider the following situation: when given two 

pictures, one of which is a dog chasing a cat and another is a boy chasing a girl with 

the cat in the background. Three year old children use featural similarity to match the 

cat in both pictures while five year old children use relational similarity, e.g., in both 

cases chasing is taking place (Richland et al., 2006). This developmental trend is 

known as the relational shift (Genter & Rattermann, 1991).

Connectionist models based on distribution representations (e.g., Colunga & 

Smith, 2005) provide a good account of whole object similarity in younger children’s 

reasoning, but do not account for more complex later relational thought (see Holyoak 

& Hummel, 2000; St. John, 1992). There are accounts of older children’s and adults’ 

reasoning ability (e.g., Anderson & Libiere, 1998; Falkenhainer et al., 1989), but these 

do not provide accounts of where the structured representations on which they rely 

originate from. There are accounts for both the featural (displayed in young children) 

and the relational (displayed in older children) representations, but there is no account 

for how the relational thought develops. This lack of an account for learning
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structured representations from unstructured examples is often cited as the most 

significant limitation of structured accounts of cognition (e.g., Munakata & O’Reilly, 

2003; O’Reilly & Busby, 2002; O’Reilly, Busby, & Soto, 2003). Doumas et al. 

(2008) offer an account for how structured relational thought is produced from 

relationally unstructured information (i.e., no direct instructions that allow for 

relational thought).

Analogical mapping modelling: DORA

Doumas et al. (2008) formed an analogical model for discovering relations 

(the Discovery Of Relations by Analogy; DORA). They suggested that there are three 

crucial factors in the development of complex learned relations. These were: firstly to 

identify invariants in the features presented; secondly, to isolate such property 

relations; and thirdly, to bind such property relations to new examples. Identifying 

featural invariants has been found in children as young as 6 months, who can identify 

features such as ‘more’ and ‘less’ in properties such as size, Clerafield and Mix 

(1999) and Feigenson, Carey, and Spelke (2002). Doumas et al. (2008) suggested that 

in the next stage, the property needs to be isolated (such as ‘taller’), from the rest of 

the environment, so it has its own independent meaning. In the final stage, is the 

ability to bind these property relations (e.g., ‘taller’), to new items and concepts in 

novel situations (see Doumas & Hummel, 2005). This takes the process from simple 

detection of relational properties, such as ‘taller’, into one which can structure new 

arguments, from the same relational properties, but with novel items or concepts 

(Doumas & Hummel, 2005; Halford et al., 1998; Hummel & Holyoak, 1997).

The main goal in the development of DORA was to demonstrate how an 

unstructured relational example can lead to structured relational representations. It 

forms four basic operations: (1) the retrieval o f propositions from long-term memory 

(LTM); (2) analogical mapping of the propositions, from working-memory (WM), to 

the novel situation; (3) predication and refinement; and (4) self-supervised learning 

(SSL). Analogical mapping, inference, and schema induction, all use these four basic 

operations (see Hummel & Holyoak, 2003). For the purposes of the present
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investigation, the main interest in this literature is the binding of the relational 

concepts such as ‘smaller than’, which is relevant for the present experiments.

4.6 Relative Judgment in our experimentation

From the Stewart et al. (2005) study, relative judgment accounts of absolute 

identification tasks, and of relations between ‘current’ and ‘preceding’ items, we can 

lay out our basic argument for the current investigation. The argument presented, is 

that there are situations in which relative judgments dominate over absolute 

judgments and representations, as identified in absolute identification tasks. Both 

relative and absolute representations are supported in the literature (e.g., the 

Generalized Context Model; GCM; Nosofsky; 1984, 1986, 1991, for absolute 

identification, and, Stewart et a l, 2005, Gentner, 1983, 2003; Holyoak & Thagard, 

1995, for relative judgment). The present investigation investigates, specifically, the 

circumstances which will promote a relative vs. an absolute representation. An 

argument for this is given in the chapter describing the experiments (Chapter 5) for 

relative judgment, but here, a simple description of the term relative representation (or 

judgment), is given.

A general description from analogical mapping is used, and Stewart et al.’s 

RJM offers a useful starting point for such a definition, on the basis of properties such 

as ‘smaller’, ‘bigger’ than etc. For the studies in this investigation, a ‘relative (or 

relational) mode of categorization’, is a categorization process in which items are 

represented in terms of some relational property (e.g., ‘small vs. large’). A relational 

classification is therefore based on a relational property, which is independent of the 

particular physical properties of individual exemplars, but rather depends on the 

relations between sets of exemplars (in different categories). The implied converse 

mode of categorization, ‘absolute categorization’, involves item representations which 

veridically correspond to the actual physical properties of the items (e.g., 

‘approximately 6 cm vs. approximately 20 cm’).

So, to conclude, a relative representation is a classification based upon the 

relative differences of the items (e.g., bigger than, and smaller then), whilst absolute
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representation is based upon a classification when using the actual physical properties 

(e.g., item 1 is 10cm tall). In Chapter 5 these definitions are used in the current 

investigation of absolute and relative representational shifts of classification.
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Chapter 5

Experimental results; relative vs. absolute representation 

in categorization

5.1 Introduction

In this chapter, we wish to demonstrate a set of experiments which explore 

relative vs. absolute shifting in supervised categorization. This work is motivated by 

Stewart et al’s (2005) relative judgment model (RJM), which explores relational 

representation in absolute identification tasks. For this investigation we produced 5 

Experiments which explore the shifting between relative and absolute judgment in 

supervised categorization.

5.2 Relative vs. absolute representation in supervised categorization

The problem of how naive observers represent information is clearly a 

fundamental one in psychology. On one extreme, there is a strong intuition that 

psychological representations have to be veridical descriptions of the physical/ 

perceptual properties of the stimuli in our environment. The bulk of the modelling 

work in categorization involves such representations. For example, both exemplar 

theory (Ashby & Maddox, 1993; Nosofsky, 1984, 1986, 1991) and prototype theory 

(Homa & Vosburgh, 1976; Posner & Keel, 1968; Reed, 1972) typically formulate 

predictions in terms of items represented in a way, which directly corresponds to their 

actual physical properties (cf. Shepard, 1987). However, clearly, the representational 

capacity of human cognition is a lot more flexible than that.

71



There has been an abundance of evidence for the generation of abstract 

features/ the representation of information in terms of relative or relational features.

An influential tradition of relevant evidence comes from research on analogical 

reasoning. Analogical mapping is a process of comparison to identify shared relations 

between two knowledge systems, such as two objects. The generated comparisons are 

thought to play a role in relational reasoning (Gentner, 1983, 1989; Gick & Holyoak, 

1980, 1983; Holyoak & Thagard, 1995); when learning and using rules (Anderson & 

Lebiere, 1998; Lovett & Anderson, 2005); in the appreciation of perceptual 

similarities (Medin, GoldStone, & Gentner, 1993); and in the production of language, 

science, mathematics and art. In analogical mapping when making a comparison 

between several objects such as elephant, truck, mouse and ball, then shared 

properties are identified such as elephant and truck are both ‘big’ and mouse and ball 

are both ‘small’. The shared property receives a double activation and is therefore 

more active in the classification procedure as compared with single activated unshared 

properties. The shared properties can drive classification decisions: for example, 

because elephant and truck are both big they should be classified together, and the 

same happens for mouse and ball.

As suggested in Chapter 4 ,1 will use the term ‘relative-like (or relational) 

mode of categorization’, a categorization process in which items are represented in 

terms of some relational, abstract property (e.g., ‘small vs. large’). A relational 

classification is therefore based on a relational property, which is independent of the 

particular physical properties of individual exemplars, but rather depends on the 

relations between sets of exemplars (in different categories). The implied converse 

mode of categorization, ‘absolute-like categorization’, involves item representations 

which veridically correspond to the actual physical properties o f the items (e.g., 

‘approximately 6 cm vs. approximately 20 cm’).

A categorization researcher can ask whether there might be circumstances, 

which spontaneously lead to a preference for a more absolute-like, or relative-like 

mode of categorization. In this respect, prior research is slightly uninformative. Most 

studies either assume one form of representation or demonstrate that a particular form 

of representation is plausible (e.g., in analogical reasoning, the objective is commonly 

to demonstrate situations in which analogies can be employed to solve reasoning
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problems). It is rarely the case, however, that alternative possible representations for 

the same stimuli have been directly contrasted within the same paradigm.

The above discussion immediately leads to an important methodological 

problem: how can a researcher determine whether a particular categorization reflects 

absolute-like or relative-like representations? In a typical manipulation in this work, 

participants see items varying along a single dimension in a training phase. The 

training items are organized into two categories, a category o f ‘small’ items and a 

category of Targe’ items. In test, suppose that there are only two test items, one of 

which is smaller than the other, but also such that they are both larger than the items 

in the Targe’ training category (see Figure 3). It seems straightforward to assume that 

a relative-like categorization would mean that the Category A exemplars are 

represented as ‘smaller’ than the Category B ones, so that the shorter of the two test 

stimuli will be classified as a Category A instance while the larger as a Category B 

one. By contrast, with an absolute-like categorization, both test instances should be 

classified as Category B instances, since their physical properties are more similar to 

those of the Category B members.

Two important qualifications underwrite the robustness of this paradigm. First, 

an assumed relative-like representation is not the same as a fuzzy absolute-like 

representation. If the representation of the test instances is absolute-like, but inexact in 

some sense, then they should still be classified in Category B, as long as the 

difference between Category A and Category B exemplars is large enough (see Figure 

3). This can be arranged in a straightforward way, for example in an experiment 

where we have exemplars in training Category A approximately 30 mm, exemplars in 

training Category B as 60mm, whilst test exemplar sizes are 80mm and 120mm. In 

this case, an absolute-like representation would yield a classification, where both test 

items would be classified into Category B. Second, one can assume that the default 

response bias of participants would be to select some test instances as members of one 

training category and other instances as members of the other. Such a response bias 

clearly favours a relative-like mode of categorization in our experiments. Crucially, 

the conclusions we are seeking to derive in this work are not whether a particular 

manipulation leads to absolute-like or relative-like categorizations, but rather whether 

it leads to more absolute-like or relative-like categorization, in relation to a baseline 

manipulation.
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lest items

Training items

C ategory  A C ategory  B

Figure 3. A schematic diagram of a typical manipulation in the present work. Each 

line corresponds to a stimulus. Stimuli vary along a single dimension, which is overall 

length.

5.3 Defining relative and absolute representation

The issue of absolute-like vs. relative-like categorizations has recently 

received some attention in the study of absolute identification tasks. In such tasks, a 

participant is presented with several stimuli of varying magnitudes along a particular 

dimension of physical variation, such as height. They are then asked to remember 

these stimuli and to place them in order from smallest to largest from memory. Using 

this task, Miller (1956) observed that people found it difficult to identify a particular 

item from a set of items that vary along a single dimensional continuum (such as 

length, brightness of colour or pitch of tone). Stewart et al. (2005; see also Lamings, 

1984, 1997) could account for various phenomena in such tasks by assuming that the 

judgment for each stimulus was made relative to the previous stimuli. Also, in the 

work of Stewart et al. (2002; Stewart & Brown, 2004), who have demonstrated that
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difference information between items in sequence is used to generate the classification 

response, which is similar to the relative comparison that we refer to.

In our terminology, such representations would be examples of relative-like 

representations, in the simple sense that the representation of the stimulus does not 

depend on its absolute physical properties. Stewart et al. suggested that, for example, 

limits in memory capacity might have prevented the absolute representation of all 

relevant exemplars.

The work on absolute identification tasks suggests that all representations are 

relative. In categorization, it seems implausible that there are not circumstances in 

which the representations we employ are not absolute (e.g., see Goldstone, 1994).

So, the question becomes, under what circumstances might we expect that an 

absolute classification mode will be preferred? It is reasonable to suggest (e.g., in 

terms of a minimalist Bayesian intuition) that the absolute properties of a category 

(e.g., information about particular exemplars, as would be required by exemplar 

theory, or information about a prototype, as this would be required by prototype 

theory) would be inferred with more confidence if more category exemplars were 

studied in the training phase. In other words, suppose that the correct hypothesis 

about the absolute value of the prototypes of the two presented categories is such that 

the first prototype is PI and the second prototype is P2.

Let’s label the training exemplars of the categories as D l, D2, D3 etc. We 

suggest that P(P1, P2|D1, D2, D3) would be lower compared to P(P1, P2|D1, D2, D3, 

D4, D5, D6...). In other words, it would be possible to evaluate with more confidence 

a hypothesis about the absolute properties of the category prototypes, if more training 

exemplars are processed. Likewise, if there were four categories there would be four 

values to infer regarding the physical values of the prototypes, PI, P2, P3, P4. A 

straightforward extension of this reasoning suggests that P (PI, P2|D1, D2, D3) would 

in general be lower than P (PI, P2, P3, P4|D1, D2, D3). In other words, we would 

need more information to support or reject a more complex hypothesis (about the 

physical properties of category prototypes). This argument does not assume that 

participants represent categories with exemplars or prototypes. Rather, our claim is 

that a representation of a category based on (absolute) physical values of the training
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exemplars is more likely to be possible (and hence, we predict, preferred by the 

cognitive system) if there are more training exemplars per category.

The above approach leads to straightforward predictions: More training 

exemplars per category would lead to more absolute-like classification. More 

categories would lead to more confusion between the particular physical properties of 

each category, therefore to less absolute-like classification. Finally, other 

manipulations which undermine participants’ confidence in the absolute physical 

properties of the training items, would also lead to less absolute-like classification (we 

employed one such manipulation, a time delay).

These predictions depend on a particular, incidental mode of category 

learning (cf. Milton & Wills, 2004). In our tasks, the training items were shown to 

participants in bundles corresponding to their intended categorizations. Thus, 

participants could readily perceive the training items in terms of their intended 

categories. In addition, participants were exposed to the training exemplars of each 

category relatively briefly; they did not have an incentive (and were not encouraged) 

to memorize the exemplars or study them thoroughly. Indeed, as they had the training 

exemplars available in test there would be no reason for them to do so.

Such a mode of category learning strongly contrasts with the more common 

supervised categorization methods. In such cases, participants are exposed over a 

large number of trials to the same training exemplars repeatedly, until they can 

perfectly reproduce their classifications. Moreover, the category structures typically 

learned in this way are complex: extensive training is required before learning can be 

achieved (by contrast, in our experiments participants were shown very simple 

category structures). What would be the relevant expectations under such 

circumstances? Clearly, the fewer the exemplars, the easier participants would find 

learning the required classifications, and (therefore) the more salient would 

participants find the taught exemplar-classification label associations. Overall, the 

fewer the exemplars in a supervised categorization paradigm, the more pronounced 

we would expect exemplar-effects to be. Indeed, this is exactly what has been found 

in previous work (Rouder & Ratcliff, 2004; cf. Blair & Homa, 2003).

So, with the incidental category learning paradigm approach we propose 

there is a prediction that fewer exemplars (typically) lead to less absolute-like
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classification, however, with a standard supervised categorization paradigm fewer 

exemplars lead to more absolute-like classification (more pronounced exemplar 

effects). To reiterate, the key difference between the two approaches is that in the 

latter case, participants have no choice but to represent the training exemplars in an 

absolute way. They receive typically dozens of training trials (e.g., in Rouder’s study 

experiment 2, there were 96 trials in a block and 10 blocks in a session with each 

participant going through two sessions of training) in which they have to learn to 

associate particular exemplars with particular labels. In our case, by contrast, the 

training exemplars never really have to be learned (they are present throughout the 

experiment and the category structure is very simple). Additionally, the test 

exemplars could be classified by interpreting the training exemplars in two radically 

different ways.

In closing, our general hypothesis is that, when it is difficult to derive accurate 

training category representations (prototypes or exemplars) based on the physical 

properties of the studied objects, the cognitive system is more likely to employ 

relative-like (relational) representations. From this general hypothesis, as stated three 

more specific ones can follow: 1) We expect more relative-like categorization when 

there are fewer items per group; 2) We expect more relative-like categorization when 

there are more groups; 3) We expect more relative-like categorization when we use a 

time delay between the initial presentation of training stimuli and test items. For 

hypothesis 3 we are suggesting that the time delay will deteriorate the memory o f the 

specific exemplar representation and therefore reduce the available information 

regarding the distributional properties, leading to a greater likelihood of relative-like 

representation.

5.4 Experiment 1

Experiment 1 provides a baseline examination of the basic experimental design.

There were two training categories, a category of Chomps and the category of Blibs. 

There were four test items, (heights are indicated in Table 2 shows a comparison of all 

heights in all experiments). If participants adopted an absolute-like mode of
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categorization, then all four test items should be classified in the category of Blibs 

(that is, all the ‘large’ items would be classified in the same category). By contrast, if 

participants adopted a relative-like mode of classification, the two smaller test items 

should be classified with the training category of smaller items (Chomps) and the two 

larger test items should be classified with the category of larger training items (Blibs). 

Note that, as said, with a single experiment, it is impossible to gain insight into the 

circumstances under which absolute-like or relative-like representations are more 

likely to occur. For example, results in this experiment will be partly driven by a 

propensity to represent the stimuli in a relative-like or absolute-like way, but also by 

possible task demands, such as a bias to assign some of the test stimuli to all the 

available training categories. Experiment 1 is the baseline manipulation: We are 

interested in whether our additional manipulations lead to a shift in favour of relative- 

like or absolute-like representations. By comparing the results of subsequent 

experiments with those of Experiment 1, we effectively factor out such possible task 

demands.

Method

Participants

A total of 63 Swansea University students took part in the experiment for a small 

payment. Participants were tested individually and were all experimentally naive.

Materials

12 items were created using Corel Draw (Figure 4). Each item was presented on a 

card and consisted of a picture of a flower grounded on a solid base. The picture of 

the flower was comprised of a yellow bud with eight petals, and a blue stem. Eight 

items, grouped into two categories, comprised the training stimuli. The group of 

Chomps consisted of four flowers, which were of the following heights: 32, 35, 36, 

40mm. The group of Blibs consisted of four flowers with greater heights: 62, 64, 66, 

70mm. There were four test items of flowers with heights; 81, 85, 121, 124 mm (see 

Table 2). The items in the category of Chomps and the items in the category of Blibs
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were such that height differences between any successive items were computed 

assuming a Weber fraction of 8%. The three authors independently verified that each 

stimulus could readily be discriminated from all others. Note, also that the width of 

the flowers would increase in size as with the overall height. We only report height 

values, since these provide the easiest way to label the stimuli.

Figure 4. Two examples of the stimuli which were presented to participants. The top 

image is an example of an item belonging to the Chomps category (in Experiment 1) 

and the bottom image is an example of the Blibs category.

Procedure:

Participants were first presented with (written) instructions to the effect that they were 

about to see some items, which belonged to two imaginary categories (called Chomps 

and Blibs), and that the experimenter would tell participants which items went to 

which categories. At that point, participants were shown the two groups of stimuli 

presented on cards Chomps and Blibs (each o f the items were presented on a single 

card). Both training groups, Blibs and Chomps, were presented together in all of our 

experiments (two single piles of items, Blibs and Chomps; presentation of categories 

was counterbalanced across participants). Participants were asked to look though 

every item in the two groups in their own time (this was typically less than three
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minutes). Subsequently, and while the training items were still available to 

participants, participants were presented with new (written) instructions, indicating 

that new items will be shown, and that each participant had to decide for each new 

item whether it was a Chomp or a Blib. The instructions stated, “There are no right or 

wrong answers! You have to classify each item as a Chomp or a Blib.” After the 

presentation of the instructions, participants were presented with the four test items; 

test items were also presented simultaneously. Note that in all the experiments the 

training items were present when participants were asked to categorize the test items. 

The presentation order of items was randomized for each participant.

Results and discussion:

We define absolute-like categorization to correspond to a response pattern whereby all 

test items were considered Blibs and relative-like categorization whereby the two 

smaller test items were considered Chomps and the two larger test items Blibs. 

Directly analogous definitions for absolute-like and relative-like categorization were 

employed in the other experiments as well. Absolute- (or relative-) like 

categorizations will partly be influenced by whether the training stimuli are 

represented in an absolute or relative way. Equally, the relative proportion of 

absolute-like or relative-like categorization will depend on other factors, such as, for 

example, whether there is a respond bias to classify some test stimuli into all the 

available training categories. Therefore, we cannot say from the results of a single 

experiment whether (e.g.) absolute-like categorization constitutes evidence for 

absolute-like categorization and representation. This becomes possible by comparing 

the results of two (or more) experiments, so that we can examine whether a particular 

manipulation increases the tendency for (e.g.) absolute-like categorization is 

increased. Notwithstanding the above issues, the characterization of participant 

responses as absolute-like and relative-like seems like a good starting point in 

considering our data.

The responses of some participants were such that they did not conform to this 

characterization. Such participants were eliminated from the analyses here and 

elsewhere, since their results do not bear on the hypotheses we are interested in. Of 

course, if our experimental design works as intended, we would expect that relatively 

few participants would produce such in-between responses. In this experiment, only
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one participant was eliminated because he/she categorised the stimuli in a way, which 

did not clearly fit our definitions of absolute-like and relative-like representation.

Forty eight participants adopted a relative-like categorization mode and 14 an 

absolute-like one.

Here and elsewhere we adopted %2 two-tailed tests to examine any preference 

for relative vs. absolute-like classification of the test items, against either what would 

be expected by chance, or in relation to results from other experiments. A test 

against chance simply examines whether the proportion of absolute-like 

categorizations is equal to that of relative-like categorizations or not. We assume that 

a straightforward 50-50 observed-chance split is most appropriate for the chi-square 

analysis, as we were interested in testing against the null hypothesis that an absolute­

like classification is equally likely to a relative-like classification. However, it is not 

the observed vs. chance analysis which is particularly interesting, as the frequency of 

relative vs. absolute classifications in any one experiment could be determined by 

demand characteristics. Rather, it is the comparison of classification performance 

across experiments, which supports our conclusions regarding the manipulations 

which promote relative vs. absolute classification.

In Experiment 1 there was a highly significant tendency for participants to 

prefer relative classification, against chance: (1) = 10.08,/? < .0005. Overall,

Experiment 1 demonstrates the baseline condition and the analytical approach. It is 

clear that several participants (14 out of 62) did not feel obliged to assign some test 

instances to all the training categories. However, it is probably exactly this bias which 

led to the preference for relative-like classifications in Experiment 1. Accordingly, in 

itself, the conclusion from Experiment 1 is not interesting. In subsequent experiments, 

by altering the key characteristics of Experiment 1 and observing participants’ 

performance, we will present a series of results, which support our hypothesis of when 

relative-like vs. absolute-like categorization is more likely to occur.

5.5 Experiment 2
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In Experiment 1 we showed that relative-like categorization can be observed when 

each of the training categories had four test items per training group (Chomps and 

Blibs). In Experiment 2 we doubled the number of items per training group. We 

suggest that this may encourage absolute-like classification. It is possible that when 

more evidence is available regarding the distributional properties of the training items, 

concrete (absolute) information about the category exemplars (or prototypes) would 

be more available and so it would be such information which drives the classification 

of new exemplars. Conversely, relative-like classification may be encouraged by 

indistinct memory traces of the training exemplars. Again, having more exemplars 

per category is likely to strengthen the corresponding memory traces and hence 

promote absolute-like classification. As said, note that in all our manipulations the 

training items were present when the test items were categorized. However, we can 

minimally assume that in classifying a test item a participant has to rely on some 

psychological representation of the training categories.

Method and Procedure:

Fifty nine Swansea University students took part in the experiment for a small 

payment. Participants were tested individually and were all experimentally naive 

(here and elsewhere, no participant took part in more than one of the present 

experiments). Materials consisted of the same two groups o f flower images (Blibs 

and Chomps), but with eight instead of four items in each group. The heights of the 

members of the Chomps category were 35, 36, 40,42, 44, 46, 47, 49 mm and the 

heights of the members for the Blibs category were 62, 64, 66, 70, 74, 75, 76, 77 mm 

(see Table 2 for a comparison of all heights in all experiments). The test items and 

procedure remained the same as in Experiment 1.

Results and discussion:

In this experiment, we observed 25 participants providing relative-like classification 

of the test items and 32 absolute-like classifications (two participants were eliminated 

because their responses could not be characterized as absolute-like or relative-like). 

Examining participants’ pattern of responding against chance, as before, did not 

identify a preference for relative-like or absolute-like classification ( / 2 (1) = .33, p  = 

.573). Crucially, when comparing the results of Experiment 2 with the results of
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Experiment 1, there was a highly significant interaction: x 2 (1) = 14.1, p  < .0005. This 

result indicates that in Experiment 2 participants were a lot more likely to adopt an 

absolute-like mode of categorization, compared to Experiment 1. Such a conclusion 

supports the hypothesis outlined in motivating Experiment 2.

In sum, increasing the number of exemplars per category increased the 

preference for representing the stimuli in an absolute-like way. As predicted by 

assuming that more concrete information about the training items enhances absolute- 

like categorization.

It is important to mention a possible range effect, which is the differences in 

size between the items, effecting the possible classifications (see e.g. Alluisi & 

Sidorsky, 1958; Braida & Durlach, 1972; Eriksen & Hake, 1955; Pollack, 1952). The 

range of training stimuli does change between experiments and I should have clarified 

in the chapter when this occurs. For example, in Experiment 1, the difference in 

height between the largest stimulus (the biggest Chomp) and the smallest one (the 

smallest Blib) is 22mm; there were four exemplars per group in Experiment 1. By 

contrast, in Experiment 2, in which there were eight exemplars per group, the 

corresponding difference is only 13 mm. Therefore, there is a decrease in range 

between Experiment 1 and Experiment 2. Now, the key question is whether such 

differences in range can (partly?) account for our results. This is extremely unlikely 

for the following reason: First, please note that previous research shows that it is 

increases in the range which make the stimuli more discriminable and would 

therefore, presumably, encourage absolute representation. However, our results are 

inconsistent with such an expectation. In Experiment 2 we observed more absolute 

representation compared to Experiment 1, however, the range of stimuli in 

Experiment 2 was smaller than in Experiment 1. A similar situation occurs in 

comparing Experiments 3 and 4. Again, when comparing Experiment 3 with 

Experiment 4, the range size difference for Chomp and Blib is 2 mm, Blib and Zlog,

6, and Zlog and Glab, 8; compared with, for Experiment 4, where the differences are 

5, 6 and 6 respectively. As can be seen, an increase in range, can only encourage an 

absolute representation, therefore we can discount range effects as a possible reason 

for our experimental effect, when there is no such increase in range.
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It is also important to mention, that in Experiment 1 the largest Blib was 

70mm and the smallest test item 81mm, which is an 11 mm distance between the 

items. In Experiment 2 the largest Blib was 77mm and the smallest test item 81mm, 

which is only a 4 mm distance between the two items. In order to justify that the 

items being more similar, did not lead to the absolute judgment in experiment 2 we 

need to note two things. First, in all cases all three authors verified independent that 

all stimuli were discriminable from each other. Also note that participants saw the 

stimuli concurrently so that even relatively small differences between stimuli could be 

readily detected. Second, in Experiment 1 the largest Blib was 70mm and the smallest 

test item 81mm, but in Experiment 2 (as the Reviewer notes) the largest Blib was 

77mm and the smallest test item 81mm. However, more importantly, in Experiment 

4 we include two test items which are identical to two items in the training groups, 

one in the Zlog group and the other in the Glab (48 and 62 mm). In this Experiment 

there were significantly more relative vs. absolute classifications as compared with 

chance levels. This indicates that even when the some of the training items are not 

disciminable with the test items, we still can find relative judgments.

In Experiment 3 we provide a manipulation, which is intended to weaken the 

concreteness of information for the training items and so (if our reasoning is correct) 

promote relative-like categorization.

5.6 Experiment 3

In Experiment 3 we doubled the number of training groups, from two to four (the four 

training categories were called Chomps, Blibs, Zlogs, and Glabs). The Chomps had 

heights 30, 29, 36, 30 mm, the Blibs 38, 39, 40, 41mm, the Zlogs; 47, 48, 49, 50mm 

and the Glabs 58, 61, 62, 63mm (see Table 2). It can therefore be seen that the heights 

of the members of the four categories conformed to the simple ordering, smallest, 

small, large, and largest. The heights of the four test items were 48, 62, 113,183mm. 

Accordingly, one test item was the same size as one Zlog and another test item was 

the same size as one Glab; the other two test items were larger than all the training 

items. The fact that two test items were identical to two training items might plausibly
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enhance absolute-like classification. However, if our suggestion that the concreteness 

of information for the training exemplars enhances absolute-like classification is 

correct, then the converse prediction is made: with more categories, one would expect 

that participants would be more confused about the exact physical attributes of the 

members of each category, so that relative-like classification would be favoured. Note 

that Lacouture et al (1998) demonstrated that increasing the number of possible 

responses reduces the frequency of correct responses. The manipulation in this 

experiment relies on a similar assumption, namely that with more categories, 

increased confusability between stimulus-category label associations would lead to 

more relative-like categorization. However, in Lacouture et al.’s work there was a 

single normative response. That is, all responses were either correct or wrong and 

participants had to represent the stimuli in an absolute way for correct responses to be 

possible. By contrast, in our experiments participants were not constrained to 

represent the stimuli in a specific way. They could present them in a presumably more 

absolute or a relative way. Our manipulation in Experiment 3 exactly follows the 

logic of Lacouture et al. By providing more response categories, we assumed that 

participants would find it more difficult to adopt absolute representations. For 

example, this difficulty might relate to higher confusability between stimulus- 

category label associations. Note that we were not interested in the difficulty with 

which multiple categories can be learned and, so, during the test phase, participants 

could observe all the training stimuli correctly arranged into their respective 

categories. All these points are not made in the ms.

Method:

A total of 79 Swansea University students took part in the experiment for a small 

payment. Materials consisted of the same flower images but with four instead of two 

groups (labelled Chomps, Blibs, Zlogs and Glabs) and with four items for each group. 

The heights of all the stimuli are given above. The procedure for this experiment was 

the same as for Experiment 1, except that participants were required to categorise 

each of the four test items into any of the four groups (whereas in Experiment 1 there 

were only two groups). The instructions stated that any possible classification of each 

test items was possible.
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Procedure:

The procedure was the same as in other experiments, but for the fact that participants 

were presented with four training groups. Additionally, in this experiment participants 

were told more clearly that any possible classification was possible. Specifically, 

instructions prior to the test phase were augmented with the following text: “Any 

possible classification is allowed. The test items could be classified between all four 

possible categories, between three of the possible categories, between two of the 

possible categories or just one of the categories.”

Results and discussion:

In this case, relative-like categorization corresponded to grouping the smallest test 

item with the training group with the smallest members (Chomps), the second 

smallest test item with the training group with the second smallest members (Blibs) 

etc. An absolute-like classification corresponded to assigning test item 48 in the 

category of Zlogs (since there was a Zlog of the same size) assigning test item 62 to 

the category of Glabs (since, likewise, there was a Glab of the same size) and, finally, 

assigning the two remaining test items (113 and 183) to the category with the largest 

members (the category of Glabs). Fifty nine participants adopted a relative-like 

categorization mode and 9 an absolute-like categorization mode. Responses from 11 

participants were removed from the data as these did not fit the definitions of relative­

like or absolute-like categorization, and so do not bear on the hypothesis tested.

We used a j 2 test to investigate whether relative-like or absolute-like 

categorization was preferred (against chance) in classifying the test items into the 

categories of Chomps, Blibs, Zlogs and Glabs. There was a very strong tendency to 

form relative-like categorizations in this experiment: x 2 (1) = 21.26,/? < .0005. We 

next examined whether in Experiment 3 there were more relative-like categorizations 

compared to Experiment 1. There was an interaction in this direction, but it did not 

prove to be significant; x 2 (1) = 1.95,/? = .163.
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5.7 Experiment 4

In Experiment 3 we doubled the number of training groups and so observed a 

preference for relative-like classification. This preference should be reduced, by 

doubling the number of members o f each group, if our hypothesis regarding relative - 

like vs. absolute-like classification is correct.

Method and procedure:

A total of 60 Swansea University students took part in the experiment. Materials 

consisted of the same flower images with four groups (labelled Chomps, Blibs, Zlogs 

and Glabs) but with eight instead of four items for each group. These were the same 

training groups as in Experiment 3 (Chomps, Blibs, Zlogs, and Glabs), but each 

category in this case had eight members instead of four. The eight Chomps were 

flowers with heights 27, 28, 28, 31, 30, 29, 24, 21 mm, the eight Blibs had heights 38, 

39, 40, 41, 39, 40, 41, 36 mm, the Zlogs had heights 47, 48, 49, 50, 49, 50, 51, 52mm, 

and the Glabs had heights 58, 61, 62, 63, 61, 60, 62, 63mm. The four test items were 

the same as in Experiment 3 and had heights 48, 62, 113, 183mm (see Table 2). The 

procedure for this experiment was the same as for Experiment 3. There was some 

repetition of the exemplar sizes, to prevent as much as possible a reduction in the 

range between groups. There is no reason to assume that such a repetition would not 

affect the classifications made. Some exemplars were repeated, to prevent, as much 

as possible differences in stimulus range regarding the members of different groups. 

However, our results strongly indicate that range effects (and repetitions) do not affect 

the conclusions we wish to draw regarding shifts towards absolute or relative 

representation between experiments.

Results and discussion:

In this experiment, we observed 36 participants as categorizing according to relative­

like categorization and 14 according to absolute-like categorization. The responses of 

1 0  participants were removed, as these did not fit the definitions of absolute-like or
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relative-like categorization. With 2 x 2  training groups and two test items, there are 

22x22x22x22 = 256 possible classifications (since each item can be assigned to either 

group), but with 4 x 4 x 4 x 4 training groups, and four test items there are four billion 

possible classifications. Such a massive increase would undoubtedly lead to a greater 

number of classifications which we cannot characterize as absolute-like or relative­

like and, hence, which do not bear on our research questions. Also, these rejected 

classifications did not appear to confirm to a consistent pattern of responding. We 

first examined whether there was any evidence for a preference of absolute-like vs. 

relative-like categorization against chance. A x 2 test showed that participants 

preferred a relative-like mode of classification: (1) = 5.086, p = .024. The crucial

comparison regarding our hypothesis corresponds to whether there were a greater 

proportion of absolute-like categorizations in Experiment 4, compared to Experiment 

3. This was indeed the case: there were significantly more absolute-like 

categorizations in Experiment 4 compared to Experiment 3, as predicted: x 1 (1) = 4.0, 

p  = .045. This result is consistent with the findings in Experiment 2, in which we also 

observed a shift towards absolute-like categorization when increasing the number of 

items per group. We also compared Experiment 4 with Experiment 2 to examine 

whether increasing the number of groups would have led to an increase in the number 

of relational categorizations (note that the number of items in each group was the 

same in Experiment 4 and Experiment 2). For this comparison, we found x 2 (1) = 

8.61,p = .003 which further shows that having more groups does increase the number 

of relational categorizations.

Experiments 1 to 4 examined our hypothesis in terms of manipulating the 

number of training categories and the size of each category. In all cases, our results 

were consistent with a general hypothesis regarding preference for absolute-like vs. 

relative-like classification, according to which when it is possible to derive more 

concrete information about a category, then absolute-like classification should be 

favoured. In Experiment 5 we attempt an alternative test of this hypothesis.

5.8 Experiment 5
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Experiment 5 is based on Experiment 2 (two training categories, with eight items per 

group). The difference between the two experiments is that instead of asking 

participants to classify the test items immediately after presentation of the training 

items, we asked them to return one week later and then make their classifications 

decisions. According to our hypothesis, the time delay should deteriorate the memory 

traces for the training items, and thus increase the proportion of relative-like 

categorizations. In other words, if participants are unable to remember the exact 

physical characteristics of the stimuli, they might be more likely to attempt to classify 

the test stimuli on the basis of relational features, such as ‘small vs. large’.

Method and Procedure:

A total of 59 Swansea University students took part in the experiment for a small 

payment. The materials were identical to those in Experiment 2. Briefly, Chomps had 

heights 35, 36, 40, 42, 44, 46, 47, 49 mm, Blibs had heights 62, 64, 6 6 , 70, 74, 75, 76, 

77 mm, and the test items had heights 81, 85, 121, and 124 (see Table 2). The 

procedure was likewise identical to that of Experiment 2, but for the fact that 

participants were asked to make their classifications a week after they had studied the 

training items. Moreover, in Experiment 5, classification of the test items took place 

without having the training items available.

Results and discussion:

In this experiment, we observed 47 participants classifying the test items in a relative - 

like one, and five classifying the test items in an absolute-like way. Results from 

seven participants were removed, as their classifications could not be characterized as 

absolute-like or relative-like. In Experiment 5 there was a strong tendency (against 

chance) to form relative-like categorizations x 1 = (1) 20.3, p  < .0005. We next 

compared the results of Experiment 5 with the results of Experiment 2 to find that in 

the former the proportion of relative-like categorizations was much higher, as 

predicted: = (1) 26.3, p  < .0005. This is consistent with a hypothesis such that a

time delay causes decay in memory and therefore weakens the memory for the
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absolute-like (physical) properties of the training exemplars, which encourages a 

relative-like classification.



Table 2: Sizes in for the length of each item in each group.

nt 1 Experiment 2 Experiment 3 Experiment 4

Blib

group

Test

items
Chomp
group

Blib
group

Test
group

Chomp

group

Blib

group

Zlog

group

Glab

group

Test
group

Chomp
group

Blib
group

Zlog

group

Glab

group

62 81 35 62 81 30 38 47 58 48 27 38 47 58

64 85 36 64 85 29 39 48 61 62 28 39 48 61

CD
 

_ 
CO 121 40 66 121 36 40 49 62 113 28 40 49 62

70 124 42 70 124 30 41 50 63 183 31 41 50 63

44 74 30 39 49 61

46 75 29 40 50 60

47 76 24 41 51 62

49 77 21 36 52 63



Table 3: Summary of the results or relative vs. absolute experiments.

Experiment Classification

frequency

Predominant

classification

Items
per

group

Number

of
training
groups

Time

delay
Significance (all / 2 tes ts  

w ith 1 df).

Exp1 vs. 

chance

48 R 14 A Relative 4 2 none <.0005

Exp 2 vs. 

chance
25 R 32 A Non significant 8 2 none .573

Exp 2 vs. 1 48 R 14 A vs. 

25 R 32 A

Absolute 4 vs. 

8

2 vs. 2 none <.0005

Exp 3 vs. 

chance

59 R 9 A Relative 4 4 none <.0005

Exp 3 vs. 1 59 R 9 A vs. 
48 R 14 A

Non significant 4 vs. 
4

4 vs. 2 none .163

Exp 4 vs. 
chance

36 R 14 A Relative 8 4 none .024

Exp 4 vs. 2 36 R 14 A vs. 
25 R 32 A

Relative 8 vs. 
8

4 vs. 2 none .003

Exp 4 vs. 3 59 R 9 A vs. 
36 R 14 A

Absolute 4 vs. 
8

4 vs. 4 none .045

Exp 5 vs. 
chance

47 R 5 A Relative 8 2 1 week .000

Exp 5 vs. 2 47 R 5 A vs. 

25 R 32 A
Relative 8 vs. 

8

2 vs. 2 1 week 

vs. none
.000
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5.9 General Discussion

In five experiments, we explored the conditions, which might promote a relative-like 

vs. absolute-like mode of classifying novel instances relative-like to incidental taught 

categories. Experiment 1 was the baseline manipulation, in which more relative-like-like 

categorizations were observed compared to absolute-like ones. The predominance of relative­

like categorizations could be due to a greater bias for relative-like categorization as such, but 

it might be also due to participants wanting to assign some test instances to all the available 

categories (that is, a task demand). Conclusions regarding absolute-like or relative-like 

categorization are possible by comparing the results of at least two experiments. In 

Experiment 2, we found a shift towards absolute-like categorization (compared to Experiment 

1) when the number of items per group was doubled (relative to Experiment 1) from four to 

eight. In Experiment 3 we added two new groups with four items per group and found that 

participants categorized new stimuli using relative-like categorization. In Experiment 4, we 

used the same four categories as in Experiment 3, but doubled the number of items per 

category from four to eight. As was the case with Experiment 2, when comparing the results 

of Experiments 4 and 3 there was a shift for absolute-like classification. In Experiment 5, we 

used the same stimuli as in Experiment 2, but instead asked participants to classify the test 

items one week after the training items were presented. This manipulation led to a shift 

towards relative-like categorization, when comparing with Experiment 2. The results of the 

five experiments are summarized in Table 3.

The results can be summarized in the following way. First, smaller categories 

promote a relative-like mode of categorization (Experiments 1 and 3). Plausibly, when there 

are few exemplars per category, the cognitive system cannot confidently infer a category

I representation in terms of concrete information, so that a relative-like representation is
t

| adopted (by ‘concrete information’ we mean information which directly corresponds to 

physical attributes of the stimuli). Second, when the number of items per category was
!

increased, we observed a shift towards absolute-like categorization. Presumably, and 

consistently with the previous assertion, more exemplars per category imply that there is

| more information on the basis of which the cognitive system can represent a category in a

! concrete (absolute) way. Third, increasing the number of category groups enhances a relative-
j

| like mode of categorization. In this case, we suggest that the cognitive system finds it moref
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difficult to concurrently keep track of the distributional properties of several categories (and 

so represents them in a relative-like way). Accordingly, when there is a requirement to learn 

more categories, it adopts a simpler, relative-like way of representing category information. 

Finally, when we introduced a time delay relative-like classification was encouraged. It 

appears that a delay would lead to a less detailed mode of representing the information from 

the training phase, so that the cognitive system would abandon an absolute-like mode of 

representation, and instead prefer a representation in terms of (less specific) relative features, 

such as ‘small vs. large’.

There is a consistent theme underlying all our findings. In the case of simple 

schematic stimuli for which there are no prior, general knowledge expectations, we assume 

that the default preference is for the cognitive system to derive a representation for the stimuli 

| on the basis of their physical properties. When it comes to categories composed of such 

stimuli, the cognitive system appears to operate like a standard statistical engine as suggested 

in our Bayesian example: the more the information regarding the distributional properties for 

the exemplars of each category, the more likely it is that the category will be represented in 

way which directly relates to the physical properties of the stimuli (cf. Ashby & Maddox, 

1993; Chater, 1999; Tenenbaum & Griffiths, 2001; Tenenbaum, Griffiths, & Kemp, 2006,

Lee & Vanpaemel 2008). Distributional category information could be undermined in a 

variety of ways: by having fewer items per category, more categories (which would lead to 

more confusion of which item belongs to which group), and a time delay. Our experiments 

provide support for the importance of all these factors in relative-like vs. absolute-like 

categorization.

The real-life situation we are trying to model with our experiments, concerns all cases 

when some stimuli would be represented in a (more) relative, as opposed to absolute, way. 

One such situation concerns absolute identification tasks, in which it appears that judgment is 

relative, rather than absolute. In categorization, there are cases of objects whose 

representation appears to involve at least some abstract features. For example, the sun is 

Targe’, a cheetah is ‘fast’, and a Christmas dinner is ‘plentiful’. In such and similar cases, it 

is uncommon to provide a more specific (absolute) impression of the corresponding 

characteristics. These are exactly the kind of situations we are trying to model with our 

experiments, that is, situations when absolute characterizations appear inappropriate or 

inconvenient in some sense and so people resort to more relative representations.
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This research provides evidence that the cognitive system can spontaneously represent 

the same items in an absolute-like or relative-like way, depending on the characteristics of the 

categorization problem. At face value, such a conclusion is consistent with the assumptions in 

Stewart et al.’s (2005) RJM for the absolute-like identification task. In that model, responses 

on a current stimulus are assumed to be a function of the previous stimulus, rather than an 

| exclusive function of the physical properties of the current stimulus. In other words,

| responding is relative-like rather than absolute-like. Moreover, the underlying motivation for
i

assuming relative-like responding is similar to ours: difficulty in accurately representing the 

physical information for all the stimuli. However, it is not clear whether there is a role for 

absolute representations in Stewart et a l ’s RJM.

This work allows an examination of the implications of the RJM for categorization. 

Are there circumstances when a relative-like representation mode might be preferred to an 

absolute one (the latter is assumed to be the default)? The extensive research tradition on 

analogical reasoning has, of course, made extensive use of relational features to understand 

analogical reasoning. However, this work does not provide any prescription of whether 

absolute-like or relative-like representations are more likely to be adopted in a categorization 

task. With five experiments, we aimed to provide some boundary conditions on this issue. 

Our results show that the cognitive system appears to adopt a fairly principled and adaptive 

way of preferring relative-like vs. absolute-like representations.

Our findings impact most directly on categorization theory. In brief, there are two 

classes of models, models of supervised categorization (such as prototype or exemplar 

theory; Nosofsky, 1984, Homa & Vosburgh, 1976) and models of unsupervised 

categorization (e.g., the rational model of Anderson, 2001, or the simplicity model of Pothos 

& Chater, 2002). Supervised categorization models typically operate on a default 

| representation of the stimuli, but have the ability to transform this representation typically

I through attentional parameters (attentional parameters effectively select out a subspace of the
i

I default representational space). Unsupervised categorization models can sometimes predict

; the dimension(s) participants should spontaneously prefer when categorizing a set of stimuli

(Pothos & Close, 2008; Pothos & Bailey, in press).

Could our results be explained within such modelling frameworks? The principles, 

which guide dimensional selection in supervised categorization models, have to do with 

identifying the representation, which makes the required categorization easiest to learn (e.g.,



Shepard et al., 1961; Smith & Minda, 2000). One could conceivably propose that the 

representation of the stimuli in our experiments is made of both absolute and relative 

properties. Then, the categorization task in test makes one set of properties more useful than 

the other. There are two problems with this approach. First, in our experiments it appears that 

the emphasis on relative properties (e.g., in Experiment 1 vs. 2), has to do with the processing 

| of both the training items and the test items. By contrast, supervised categorization models set 

their parameters only during the processing of the training stimuli. Second, there is an infinite 

number of possible relative properties. How could, as modellers, we decide a priori which are 

the appropriate relative properties to use in an experimental situation? Similar considerations 

apply in the case of models of unsupervised categorization (noting, in any case, that 

dimensional selection for such models is less well developed when compared with supervised 

categorization models).

In sum, our results show situations in which classification of test stimuli appears to 

have a profound influence on the representation of categories acquired in previous (training) 

phases. Such flexibility in category representation is difficult to reconcile with current 

categorization models and represents an exciting avenue for their further development.

5.10 Summary

This study explored the shifting between relative-like and absolute-like representations in 

categorization. While there is considerable evidence that categorization processes can involve 

information about both the particular physical properties of studied instances and abstract 

properties, there has been little work on the factors which lead to one kind of representation 

! as opposed to the other. We tested 320 participants in 5 experiments, in which participants 

I had to classify new items into predefined artificial categories. In three experiments, we 

observed a (predominantly) relative-like mode of classification, and in 2  experiments we 

observed a shift towards an absolute-like mode of classification. These results suggest three 

factors, which promote a relative-like mode of classification; when there are fewer items per 

group, more training groups, and the presence of a time delay. Overall, we propose that less 

information about the distributional properties of a category and/or weaker memory traces for
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the category exemplars (induced, e.g., by smaller item numbers per category, or a time delay 

respectively) can encourage relative-like categorization.
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Chapter 6

Experimental results: unsupervised categorization; testing the

simplicity model

6.1 Introduction

This chapter describes the experimental results of our unsupervised categorization 

investigation (this excludes the work carried out in relative vs. absolute shifting, which is 

given in Chapter 5, and the work carried out in unsupervised vs. supervised categorization, 

which is given in Chapter 7). Briefly, our goals here were twofold. Firstly, we examined the 

validity of the simplicity model by Pothos and Chater (2002), but with a much larger 

participant sample than they used. This investigation was carried out because one of the 

major problems with the results in Pothos and Chater (2002) was that they found high 

classification variability in their data sets. This led to some difficulty in identifying 

meaningful results with the particular sample sizes that they employed (between 10 and 29 

participants). Secondly, we investigated whether introducing some general knowledge about 

the items would affect perception (i.e., whether they were a coherent group or not), and thus 

the categories made.

6. 2 Experimental investigation: validating the simplicity model and exploring 

background (general) information

Empirical explorations of unsupervised categorization are much more complicated 

than of supervised categorization. First, in supervised categorization the relevant principal 

dependent variable is obvious: it corresponds to classification probabilities for test instances. 

In other words, an experimenter will collect data about how particular novel instances are 

classified and he/she will then attempt to fit participant selections with models of supervised 

categorization. This is not the case in unsupervised categorization. As noted, some
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researchers have explored particular empirical issues (such as the tendency for 

unidimensional sorting). However, there has been uncertainty in the literature regarding a 

suitable dependent variable for fitting models of unsupervised categorization. Pothos and 

Chater (2002) suggested that one could present stimuli to participants, ask them to divide 

them into any number of groups in an unconstrained way, and then count either the number 

of distinct classifications produced or the frequency of the most popular classification (this is 

the procedure employed in the current study, as well; note that Medin and colleagues have 

employed a similar procedure in the study of cultural biases; e.g., see Atran & Medin, 2008, 

for a recent overview). The rationale here is that if a particular classification is 

psychologically more intuitive, then more participants should select it and, equally, there 

should be lower variability in participants’ classifications (i.e., fewer distinct solutions).

While conceptually such an approach seems intuitive, it quickly runs into the problem that 

the space of possible solutions is vast: for ten stimuli there are about 1 0 0 , 0 0 0  classifications 

(Medin & Ross, 1997). For 16 stimuli (the number of stimuli employed in the present study) 

there are 10.4 billion possible classifications. So, reasonably, one has to ask just how intuitive 

a particular classification has to be in order to be preferred by participants amongst so many 

alternatives. Indeed, Pothos and Chater (2002) had some difficulty identifying meaningful 

results with the particular sample sizes they employed (between 10 and 29).

In later work, Pothos and Chater (2005; see also Pothos & Close, 2008) employed the 

Rand index of classification similarity to get around the problem o f response variability in 

unsupervised categorization. The Rand index is a measure of similarity between two 

classifications (Rand, 1971; see Fowlkes & Mallows, 1983, for an extension). The idea would 

be to specify, e.g., two target classifications, A and B (which might correspond to the 

predictions of two different models), and then compute the similarity of the classifications 

produced by participants to A and B. Higher similarity would indicate a preference for one of 

the target classifications, even if the actual classification had never actually been produced. 

This approach certainly has some merits, however, a problem is that one can never be 

logically certain that the target classifications appropriately characterize human performance. 

In other words, suppose that, as an experimenter, I choose classifications A and B for use 

with a Rand index analysis. It is possible that there is a third classification, C, which I have 

overlooked, and which is more similar to participants’ classifications than either A or B. In 

such a case, the Rand index analysis may lead to slightly misleading conclusions. To 

conclude, while the Rand index analysis has many strengths (and may well be the most 

appropriate method under particular circumstances), it also has important limitations.
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Another way in which researchers have attempted to study unsupervised 

categorization is by restricting the number of categories into which participants can divide a 

set of stimuli. In other words, after being shown a set of stimuli, participants might be asked 

| to divide them into two categories, as opposed to an unlimited number of categories. Such an

! approach clearly leads to considerably fewer distinct classifications and, indeed, it has
I

produced very valuable results in relation to classification strategies (e.g., Ahn & Medin,

| 1992; Milton & Wills, 2004). However, it has also been argued that this experimental
I

procedure does not exactly correspond to the cognitive process of spontaneous grouping and, 

rather, may correspond more to problem solving (Murphy, 2004; Pothos & Close, 2008). In 

other words, participants are given some information (the stimuli) and a problem (fmd, e.g., a 

suitable division of the stimuli in two clusters). So, conceivably, they simply search for the 

simplest way to achieve a solution to the problem, without necessarily being guided by which 

classification is more intuitive or natural. For this reason unsupervised categorization with a 

fixed number of categories may be a suboptimal procedure when it comes to fitting models of 

unsupervised categorization.

It therefore appears that the most suitable procedure for studying the “intuitiveness” 

or “naturalness” of particular categories is an entirely unconstrained classification paradigm. 

In the present work, we overcome the problem of response variability by employing a 

population sample which could be considered large (169 participants) by comparison with the 

relevant previous studies (Compton & Logan, 1999; Pothos & Chater, 2002). As an aside, it 

is interesting to consider the corresponding requirements for studies of supervised 

categorization: In such studies as few as 10 participants can be employed per condition in 

order for a researcher to expect to derive meaningful results. This is because a supervised 

categorization task forces conformity into participants’ responses. As participants have to 

learn the same division of stimuli into categories, their responses to the test items likewise 

tend to be fairly uniform. By contrast, in unsupervised categorization there are no aspects of 

the procedure to prevent idiosyncratic strategies, so that the relevant dependent variables 

| (e.g., preference for a particular classification) would be more noisy.
I

; The study of unsupervised categorization is not uniformly more complicated than that

; of supervised categorization. In the latter case, one typically has to consider whether the

supervised learning procedure might alter the perceived similarity of the studied stimuli. For 

! example, Goldstone (1995) has shown that classifying stimuli in the same category can

| increase their similarity to each other and decrease their reported similarity for stimuli in
I

other categories. Schyns, Goldstone, and Thibaut (1997; Goldstone, 2000) even suggested
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that new features may be created as a result of categorizing stimuli in particular ways. If the 

similarity structure of the stimuli changes, then this may complicate the fits of supervised 

categorization models, noting though that there is some debate as to whether such effects 

correspond to changes in how the stimuli are perceived or to response biases when invoking 

the stimuli (Goldstone, Lippa, & Shiffrin, 2001; Roberson & Davidoff, 2000). By contrast, it 

is unlikely that unsupervised categorization leads to changes in the similarity of the 

categorized stimuli (cf. Gureckis & Goldstone, 2008; Pothos & Chater, 2005).

The purpose of the above discussion was to motivate the need for more datasets in 

unsupervised categorization and explore possible methodologies, the most suitable of which 

appears a completely unsupervised categorization procedure (with a large population 

sample). As with previous investigators (e.g., Shepard et al., 1961), a useful dataset is one 

which involves several individual stimulus sets, such that each one of them reflects a 

different intuition about the underlying psychological process. Shepard et al. (1961) were 

guided in their selections by considering a range of different learning problems. Likewise, we 

aimed to select stimulus sets such that each one would correspond a different intuition about 

spontaneous categorization. With such an approach, it is clearly the case that the more the 

stimulus sets the greater the range of categorization intuitions which can be examined. 

However, there is a contrasting consideration, which is that, given that the experimental 

design had to be within participants, the more the stimulus sets the greater the possibility for 

possible experimental confounds (e.g., responses for one stimulus sets affecting those for 

another, fatigue, etc.). Given the amount of time it takes to carry out a spontaneous 

categorization task, we thought that nine stimulus sets reflected a good balance between these 

two considerations.

Finally, we can now revisit the question of which aspect of human cognition 

unconstrained unsupervised categorization in the laboratory can help us understand. The 

spontaneous formation of categories must be guided by a sense in which certain groupings 

are more intuitive than others or, in other words, the relative coherence of different 

groupings. Performance in such tasks must, therefore, be partly guided by the same 

psychological process which allows us to consider certain concepts are more intuitive (or 

coherent) than others. Ultimately, we wish to understand the aspects of environmental 

statistics which drive the development of human concepts. A related issue is that most 

unsupervised categorization tasks in the laboratory manipulate only similarity (in the sense 

that some of the presented stimuli are more similar to others). It seems clear that the sense we 

have that certain items must be more similar than others must be an important driving force in
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spontaneous grouping behavior (noting that psychological similarity may take many forms 

and/ or be context dependent; e.g., Goldstone, 1994). It also seems very plausible that the 

general knowledge we have about a set of stimuli might affect our perception of whether they 

form a coherent group or not (Murphy & Medin, 1984). What is the role of general 

knowledge in unsupervised categorization? One possibility is that it modifies the perception 

of similarity for some stimuli, for example, by enhancing the salience of certain dimensions 

and suppressing that of others (e.g., Murphy & Allopenna, 1994). However, it is possible that 

general knowledge may have a more complex influence on spontaneous categorization, 

which cannot be reduced to a manipulation of similarity (cf. Yang & Lewandowsky, 2004; 

Wisniewski & Medin. 1994). Current formal models of unsupervised (and supervised) 

categorization all depend on similarity, but proponents of such models sometimes discuss the 

type of extensions which could (in principle) allow incorporating general knowledge effects. 

Note, though, that it is still unclear whether it may even be logically possible to provide 

formal description of general knowledge effects (cf. Fodor, 1983; Pickering & Chater, 1995; 

but see Harris, Murphy, & Rehder, 2008, or Heit, 1997, for promising attempts). In sum, the 

most valid conclusion is probably that unconstrained unsupervised categorization tasks which 

manipulate just similarity provide an approximation to the cognitive process of evaluating 

category coherence. The previous conclusion is arguably the main difference between 

modeling human unsupervised categorization and statistical clustering, since, typically, the 

objective of the latter is to determine whether there are clusters or not, as opposed to 

comparing the intuitiveness of different classifications on the same or different stimulus sets 

(e.g., cf. Hubert & Arabie, 1985; Fraboni & Cooper, 1989; Milligan & Cooper, 1986). 

However, a successful model of unsupervised categorization ought to discriminate between 

the relative intuitiveness of different classifications.

Before we layout our experimental procedure, to summarize; we are to investigate the 

validity of the simplicity model with a much larger sample size, to allow for more thorough 

identification of the classification patterns than found in Pothos and Chater (2002). The main 

dependent variable in the study is the frequency of the preferred classification for each 

stimulus. For each stimulus, the simplicity model can provide a value for how intuitive the 

preferred (or optimal in some other sense) classification ought to be. Therefore, the main test 

for the simplicity model is the correlation between the frequency of preferred classifications 

and the intuitiveness predictions. Secondly, we are to investigate the possible effect that 

introducing some general knowledge about the presented stimuli, will have on the 

intuitiveness of the classifications. So, a similar analysis can be conducted for the number of
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times the preferred classification was produced for different stimulus sets, as a function of 

instructions. Below, we give a brief account of the simplicity model (see Chapter 2 for a 

much more in-depth account).

The simplicity model

In Chapter 2 we give a thorough description of the simplicity model, here we give a brief 

summary of the key mechanisms. The simplicity model o f unsupervised categorized arose as 

a generalization of Rosch and Mervis’s (1975) model for basic level categorization. Rosch 

and Mervis suggested that in a hierarchy of concepts there is a preferred level, so that, for 

example, when participants are presented with a novel object they would identify it with its 

basic level categorization, rather than a subordinate or superordinate one. Rosch and Mervis 

suggested that the basic level of categorization should be the one for which within category 

similarity is maximized and between category similarity minimized. The simplicity model’s 

starting point is this intuition of Rosch and Mervis and the assumption that whatever 

determines preference in basic level categorization also determined preference in spontaneous 

categorization (cf. Gosselin & Schyns, 2001). In a sense, the simplicity model can be seen as 

a way to measure within/ between category similarity, and balance each term against its other 

in the formation of categories. More formally, the model prefers classifications that provide 

the greatest algorithmic simplification of the similarity structure of a set of items. It has been 

specified by using the principles of the minimum description length framework for 

formalizing the simplicity principle (Rissanen, 1987). Its original formulation is parameter- 

free, it is non-metric (its input is relative similarities; cf. Stewart, Brown, & Chater, 2005), 

and it does not require information about the number of categories sought either directly or 

indirectly. This last feature particularly distinguishes the simplicity model from other models 

of unsupervised categorization and clustering.

In the simplicity model, similarity information without categories for four stimuli 

A,B,C,D is specified as similarity(A,B)<similarity(C,D) etc. Each of these inequalities 

requires one bit of information to be determined (since there are only two possibilities, the 

similarity on the left hand side is greater or less than the similarity on the right hand side).

Assuming symmetry and minimality, for n objects there are p = pairs so that there are

p(^2 ^  pairs of pairs. For example, the similarity structure of 10 stimuli corresponds to 990 

bits of information; this is the codelength for the similarity information for a set of objects,
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without categories. Note that the model can easily be applied without the assumptions of 

symmetry and minimality. However, for the simple, schematic stimuli typically employed in 

unsupervised categorization tasks symmetry and minimality in similarity judgments ought to 

! be assumed (Hines, Pothos, & Chater, 2007; Tversky, 1977).

I Categories can reduce similarity codelength by using the definition that all similarities

for objects within categories are greater (or equal) than all similarities for objects between 

categories. When there are numerous, correct such constraints, then there is more codelength
i

reduction. However, in some cases categories may specify erroneous constraints. To correct 

such errors, we have to select the e erroneous constraints out of the total number of

constraints u which can be achieved with a code of length log2(u  +  1) +  log2

There is also a code for specifying the particular classification employed. The length of this 

code is given by log2{P art(r,n )), where r is the number of elements, n is the number of

clusters, and P a rt(r ,n ) =  H = o(—l ) v 7 ^7 ^ 7 7  Therefore, a classification can lead to a
\7T  V J . V ,

reduction (simplification) of the codelength for the similarity for a set of objects because of 

the constraints, but this advantage is moderated by the costs associated with correcting the 

erroneous constraints and specifying the classification. The final codelength for a set of 

objects with categories would be [codelength without categories] -  [constraints -  cost for 

errors - cost for specifying classification]. This final code length corresponds to the prediction 

of the simplicity model: the lower its value, the more the simplification due to a 

classification, and the more intuitive the classification is predicted to be. Note that predictions 

from the simplicity model are typically expressed in terms of the ratio [codelength with 

categories] / [codelength without categories].

The simplicity model can produce a prediction for the optimal classification for a set 

of stimuli from scratch and a prediction for how intuitive particular classifications should be 

relative to each other. It assumes that all the available stimuli are presented at once.
i

i

6.3 Experiment 1; validating the simplicity model, and exploring background 

‘ information

i

\ Participants and design
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Participants were 169 students at Swansea University, who took part for a small 

payment. Each participant classified nine stimulus sets, one after the other. A between- 

participants condition related to whether the stimuli were described in a neutral way or as 

real-world objects (87 participants received the realistic instructions and 82 the neutral ones).

| Stimuli

| We created nine stimulus sets of 16 stimuli each. The stimulus sets were created so as to 

capture a range of intuitions about unsupervised categorization. Accordingly, we had three 

stimulus sets in which there were two well-separated clusters. The first such stimulus set 

involved two equally-sized clusters (‘two clusters’), the second stimulus set involved two 

clusters which were not equally sized (‘unequal clusters’), and the third stimulus set two 

spread out clusters, that is, clusters which were not very cohesive (‘spread out clusters’). We 

then had three stimulus sets for which the most intuitive classification was deemed to be 

more complicated (but not necessarily less intuitive; such a notion of ‘being complicated’ 

here has entirely heuristic value and just corresponds to our prior intuitions). The first such 

stimulus set had three well-separated clusters (‘three clusters’), the second stimulus set two 

clusters but with some intermediate ambiguous points (‘ambiguous points), and the third 

stimulus set two clusters which were close to each other and which also greatly varies in size 

(‘poor two clusters’). The final three stimulus sets were designed to that the best possible 

classification would be expected to be even more complicated. Accordingly, the first such 

stimulus set had five well-separated clusters (‘five clusters’), the second reflected random 

variation (‘random’), and the third was meant to correspond to cluster embedded in a cloud of 

noise (‘embedded’). As noted, a greater number of stimulus sets would allow more 

informative model comparisons, but would complicate the data collection procedure (since 

the design was within participants, the higher the number of stimulus sets each participant
I
I was asked to classify, the greater the chance for response interference, problems due to[
| fatigue etc.) All nine stimulus sets are shown in a schematic representation in Figure 5.

! The stimuli were made from two continuous dimensions. We preferred this approach,
i

as opposed to employing stimuli composed of discrete features, because, in the latter case, it 

is often difficult to specify complex category structures (because each feature can have a 

limited number of discrete levels), unless one employs several features. But, when several 

features are employed, then there is the issue of whether participants can create holistic 

representations of the stimuli (cf. Milton & Wills, 2004). The two stimulus dimensions

| (Figure 5) were mapped to the length of a ‘body’ (horizontal dimension) and the length of the



‘legs’ after the joint (vertical dimension) of schematic spider-like stimuli (Figure 6 ). By 

choosing such stimuli, both dimensions of physical variation were lengths, and so a Weber 

fraction in mapping the Figure 5 values to physical values could be safely assumed (8 %;

! Morgan, 2005). For both dimensions, the actual lengths were between 40mm and 80mm.
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Figure 5. A schematic representation of the nine stimulus sets employed in this research.

Each point in each stimulus set is indexed by a number from 0 to 15. In parentheses we show 

the number of times the most frequent classification was produced for different stimulus sets. 

A higher number indicates that the most frequency classification was more intuitive.
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Figure 6 . Some examples of the stimuli used.

A number of considerations motivated this choice of stimuli. First, as noted, we 

wanted stimuli for which we could assume Weber fractions for the relevant dimensions of 

physical variation. Most of the models of unsupervised categorization function by assuming a 

psychological representation of the stimuli, so that it is clearly important for the validity of 

model predictions to ensure that the assumed coordinate representation is as close to the 

underlying psychological representation as possible. (Note that even for models which can 

operate directly on similarity ratings, such as the simplicity model, it is typically better to 

employ a coordinate representation, since similarity ratings tend to be very noisy.) Second, 

the two dimensions of the stimuli ought to both broadly cohere together (so that it does not 

become an analytic process to perceive the stimuli holistically; Milton & Wills, 2004), and be 

perceived separately. The latter constraint arises because some models of unsupervised 

categorization allow spontaneous attentional selectivity. Accordingly, we wanted participants 

to be able, in principle at least, to allocate differential attentional salience to the two 

dimensions. This was verified independently by two other people that the stimuli could be 

perceived without effort in terms of both their dimensions concurrently and, also, that each 

dimension could also be attended to independently, if so desired. Finally, the stimuli had a 

neutral interpretation as schematic drawings (their semblance to real-life spiders was



intentionally low) and also an interpretation as biological objects (with a little imagination, as 

spiders). This allowed an instructional manipulation (described in the Procedure).

We provided a test of whether the similarity structure of the spider-like stimuli 

I conformed to a coordinate representation based on the length of the central bodies and the 

length of the legs (given the Weber fraction assumed above). We created a stimulus set of 12 

! stimuli which spanned all regions of the available (assumed) psychological space, as shown 

i in Figure 7a. We then asked 30 participants (all Swansea University students, who did not 

take part in the categorization experiment) to provide similarity ratings for these stimuli. 

Specifically, each participant was shown all possible stimulus pairs in this set of 12 stimuli, 

excluding identities: there were 12x12 -  12 (identities) =132 trials. Stimulus presentation 

and response recording were computer based. The structure of each trial was to present a 

fixation point for 250ms, followed by the two stimuli in a pair one after the other for 1000ms 

each, followed by a 1-9 Likert ratings space. Similarity results from all participants were then 

averaged and subjected to a multidimensional scaling (MDS; two dimensions) procedure, 

leading to Figure 7b; the stress associated with the MDS solution was 0.115, indicating that 

the spatial arrangement derived from the MDS algorithm is a good representation of the 

similarity information.

It can be seen that the coordinate representation (Figure 7a) and the one based on 

similarity ratings (Figure 7b) are very similar. We next employed the Orthosim procedure 

(Barrett et al., 1998) which allows the computation of various similarity indices between two 

sets of coordinates for the same set of items. We selected a similarity index which adopts a 

‘procrustes’ approach (Barrett et al., 1998), according to which the coordinate configurations 

to be compared are first normalized and rotated/ reflected to remove any of the arbitrariness 

in MDS solutions. The Orthosim documentation recommends the ‘double-scaled Euclidean 

distance’ coefficient, for which 0 corresponds to complete dissimilarity, 1 to identity. This 

coefficient was 0.911, indicating close correspondence between the assumed coordinates and 

I the similarity-rating s based representation. Overall, the results of this analysis support our 

! representation assumptions.
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Figures 7a, 7b. In the (a) panel we show the assumed coordinate representation of a sample of 

all stimuli. In the (b) panel we show the derived MDS representation for the same stimuli, 

from similarity ratings provided by participants. Numbers indicate stimulus ids.

Procedure

Participants received the items in each stimulus set in a pile. The two dimensions of the 

stimuli were described to participants and it was emphasized that they were equally 

important. In one instructional manipulation, the stimuli were described as ‘objects’ and the 

two dimensions as ‘rectangle length in the center and thin parallel lines length on the sides’.

In another instructional manipulation, a scenario was presented to participants saying how 

new spiders are discovered all the time around the world. Participants were then told about a 

recent expedition to the Amazon, during which several new spiders were identified. All these



new spiders had broadly similar structure, but differed in terms of the length of their bodies 

and legs.

In both instructional conditions, participants were told to consider the stimuli in each 

set independently, that is, as if the current stimulus set was the only one they had received 

(this was done to avoid participants thinking that, e.g., if they used X  groups in one stimulus 

set, they should also use X  groups in another). They were asked to spread the items in front of 

them and classify the items in a way that seemed natural and intuitive, using as many groups 

as they wanted, but not more than necessary. It was stated that more similar objects should 

end up in the same group. Participants were told to indicate their groupings by arranging the 

objects in each group in separate piles.

Results

Because of the way classifications were recorded there were inevitably some transcription 

errors. For a stimulus set for which there were no transcription errors there were 169 

classifications from participants to analyze; for the rest of the stimulus sets there were one to 

two classifications missing, except for the ‘embedded’ stimulus set for which there were 15 

classifications missing. We decided not to carry out some scaling of the dependent variables 

(which are presented below) because the missing classifications are more likely to be ones 

which were more random and so not contribute to the frequency of the preferred 

classifications. Indeed, the ‘embedded’ stimulus set was the one for which we observed the 

greatest number of alternative preferred classifications (the highest frequency with which any 

classification was produced for this stimulus set was only two).

With 16 stimuli there are approximately 10.4 billion possible classifications. The 

vastness of this search space informs the complexity of the classification problem, a problem 

which cognitively appears trivial. Indeed, across the nine stimulus sets there were over 1100 

unique classifications (many of which appear to reflect random individual variation in 

classification strategy; cf. Pothos & Chater, 2002).

We are interested in deriving from this data an empirical measure of classification 

intuitiveness. That is, under what circumstances can we say that a particular classification is 

psychologically more intuitive than another? The most obvious choice for a dependent 

variable is to measure the frequency of the preferred classification in each stimulus set. If in 

stimulus set A, the preferred classification is produced by 10/169 participants and in stimulus 

set B the preferred classification by 50/169 participants, then we can trivially conclude that
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the preferred classification in B is more obvious/ intuitive to naive observers. A related 

dependent variable is agreement between participants for how a particular stimulus set should 

be classified. In other words, if in stimulus set A participants produce 40 distinct 

classifications and in stimulus set B participants produce 10 distinct classifications, then 

clearly in the latter case participants agree more on how the A stimuli should be classified, 

and so the corresponding classification structure must be more intuitive. A question is 

| whether the two dependent variables o f ‘frequency of preferred’ and ‘distinct classifications’ 

are independent or not. In principle they might be, for example, if there are more than one 

obvious ways to classify a set of stimuli. However, this was not the case in our stimuli: the 

correlation between ‘frequency of preferred’ and ‘distinct classifications’ was .97, p<.0005. 

Henceforth, we shall only consider the frequency of the preferred classification as the 

dependent variable.

Another question is how informative the variable of frequency of the preferred 

classification for different stimulus sets is. For example, suppose that the frequency of the 

preferred classification in stimulus set A is 40/169. This would be very informative if there 

were no other high frequency classifications for stimulus set A and, clearly, less informative 

if there were other classifications which were produced with a frequency of, e.g., 39, 38, 37 

etc. In the latter case, one would be forced to conclude that there is nothing particularly 

special about the highest frequency classification, in light of the fact that there would also be 

several other very high frequency contenders. An interesting empirical finding of this 

research is that this latter scenario was not true. In other words, for the stimulus sets for 

which participants showed a preference for any classification, this classification was 

overwhelmingly preferred—there were no alternative classifications which competed with 

the most frequent one. That a particular classification can dominate so much in the we 11- 

structured stimulus sets (that is, stimulus sets for which there was an obvious classification) 

was a surprising finding, given the otherwise very high performance variability. Table 4 

shows the most frequent classification for each of the nine stimulus sets.

Finally, we briefly consider the issue of the instructional manipulation. The simplest 

| examination of the effect of this manipulation would be to consider the distinct classificationsi
produced by participants receiving the neutral and the realistic instructions. We can then ask 

[ whether there is any difference in the pattern of responding for the two sets of instructions. 

Table 5 shows this was not the case. Correlating the number of distinct classifications for the 

nine stimulus sets with realistic and neutral instructions we obtained r=.91,/?=.001. In other 

words, there was the same degree of classification variability for a particular stimulus set,
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regardless of instructions. A similar analysis can be conducted for the number of times the 

preferred classification was produced for different stimulus sets, as a function of instructions 

(Table 6 ; r=.94, p<.0005). Perhaps this is not a surprising finding. Both sets of instructions 

emphasized groupings according to similarity, described the two dimensions of physical 

variation, and provided similar instructions to participants regarding the ideal number of 

groups. The instructional manipulation will not be considered further.

Stim ulus s e t M o st  f r e q u e n t  classification

Two c lu s te rs  

U nequal c lu s te rs  

S p read  o u t  c lusters

{0 1 2 3 4 5 6  7} { 8  9 10 1112 13 14 15} 

{0 1 2 3 4 5 6  7 8  9} {10 1112 13 14 15} 

{0 1 2 3 4 5 6  7} { 8  9 10 1112 13 14 15}

T hree  c lu s te rs  

A m biguous  po in ts

Poor tw o  c lus te rs

{0 1 2 3 4} {5 6  7 8  9} {10 1112 13 14 15}

{0 1 2 4 7} {3 5 6 } { 8  9 10 12} {1113 14 15}

{0 1 4 7} {2 3 5 6 } { 8  9 10 12} {1113 14 15}

{0 1 2 3 4 5 6  7 8  9 10 11} {12 13 14 15}

Five c lu s te rs

R andom

E m b ed d ed

{0 1 2} {3 4 5} { 6  7 8 } {9 10 11} {12 13 14 15}

{0 4} {2 3} {1 5 6  7 8  9} {10 1114} {12 13 15}

{0 1} {2} {3 4} {5} { 6  7} {8 } {9} {10 1112 13 14 15}

{0 1} {2} {3} {4} {5} { 6  7} {8 } {9} {10 1112 13 14 15}

{0 1} {2} {3} {4} {5} {6 } {7} {9} {8 } {12 1110 14 15 13}

{0 1 2 3 10 1112 15} {4 5 6  7 8  9 13 14}

{0} {1} {2} {3} {4} {5} {6 } {7} {8 } {9} {10 1112} {13} {14 15}

Table 4. The most frequent classifications for each of the nine stimulus sets. The category 

membership of each stimulus is indicated by a number id; these ids are the same as the ones 

in Figure 5. In cases in which more than one classification appears, this means that there were 

more than one classifications with the highest frequency of occurrence observed for that 

stimulus set.
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Stimulus se t Realistic instructions Neutral instructions

Two c lus te rs  60 63

U nequal c lu s te rs  59 54

S pread  o u t  c lu s te rs  77 74

T hree  c lu s te rs  50 54

Am biguous po in ts  84  76

Poor tw o  c lus ters  74  66

Five c lus ters  49  34

R andom  80 78

E m b ed d ed  77 72

Table 5. The table shows the number of distinct classifications produced for different 

stimulus sets, as a function of the two sets of instructions participants could receive.



Stimulus se t Realistic instructions Neutral instructions

Two c lusters  19 12

U nequal c lu s te rs  17 16

S pread  o u t  c lu s te rs  5 3

T hree  c lus te rs  32 23

Am biguous p o in ts  1 2

Poor tw o  c lu s te rs  11 6

Five clusters  27 31

Random  2 1

E m bedded  1 1

Table 6 . The frequency of the preferred classification for different stimulus sets, as a function 

of the two types of instructions participants could receive.
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Table 7. Summary of the empirical results of the study in unsupervised categorization.

Stim ulus s e t  F requency  o f  m o s t  p r e fe r r e d 1 F requency  o f  next m o s t

p r e fe r r e d 1 Distinct classifications p ro d u c ed

Tw o clusters 31 5

123

U nequal c lusters 33 7

113

S p read  o u t  c lus ters 8 3

151

T h ree  clusters 55 4

104

A m biguous po in ts 3 3

160

P oor tw o  clusters 17 3

140

Five c lusters 58 8

83

R andom 3 2

158

E m b ed d ed 2 2

149

N otes :  'P re fe r red ' co r re sp o n d s  to  th e  classification p re fe r red  by p ar tic ipan ts  fo r  t h e  

co r re sp o n d in g  s t im u lus  se t .

Modeling

We will say that there is (a lot of) category structure in a stimulus set if there is a 

classification for the stimuli which is particularly intuitive. In other words, category structure 

is an impression of whether is some good classification for the stimuli. Considering the
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results in Table 7 and the intuitive impression of the stimuli in Figure 5 readily leads to some 

puzzling questions. For example, the stimulus sets ‘two clusters’ and ‘unequal clusters’ both 

conform to a simple two-group classification and, indeed, participants were reasonably good 

at identifying this classification. However, the seemingly not dissimilar two-group 

| classification for the stimulus set ‘spread out clusters’ turned out to be much less intuitive. 

Moreover, the more complex three-group and five-group classifications for the ‘three 

clusters’ and ‘five clusters’ stimulus sets respectively were the star performers. They were 

preferred by participants with a frequency which exceeded that for the preferred 

classifications in all the other stimulus sets. Equally, for the ‘ambiguous points’ stimulus set 

we expected that participants would identify some category structure; after all, this is a 

stimulus set with a reasonably obvious two-group category structure, but with some 

ambiguous points in between. However, in this case participants were hardly able to 

consistently able to identify any classification as salient. These findings illustrate that the 

challenge to formal models of unsupervised categorization will be profound.

The structure of model application to this data can take two forms. First, the 

simplicity model receives as input the coordinates of the nine stimulus sets. The model then 

produces a number which would reflect the intuitiveness of the preferred classification for the 

stimulus set. The objective of the model would be to produce category intuitiveness 

predictions which match as closely as possibly the empirically determined variable of 

category intuitiveness (i.e., the frequency of the preferred classification for each stimulus set). 

In other words, there are effectively nine data points with which we try to test each model.

Second, the model receives as input the coordinates and the preferred classification(s) 

for each stimulus set. It then computes a value of intuitiveness for a stimulus set and a 

particular classification. This second approach is relevant for models which can produce an 

intuitiveness value for particular classifications, but they are unable to predict what should be 

the preferred classification for a stimulus set from scratch. Note that the modeling challenge 

! we are presently interested in is to correctly predict differences in the intuitiveness of the

; preferred classification across the nine stimulus set. (The related problem of predicting the

preferred classification for a stimulus set from scratch is, arguably, less interesting anyway; 

cf. Pothos & Bailey, 2009). A related issue is that for some stimulus sets there were more 

than one classifications which were produced with the highest frequency. All such cases 

I corresponded to stimulus sets with very poor category structure. Accordingly, reasonably,

! there is no sense in which we can assign a special status to any of these preferred
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classification and so we computed intuitiveness values for all of them and considered the 

model prediction (for the stimulus set) to correspond to the highest such value.

Simplicity model

The simplicity model was first developed to account for the spontaneous categorization 

results of Pothos and Chater (2002). These stimulus sets were composed of only 10 stimuli 

each and also the range of category structures employed was limited. Accordingly, in order to 

apply the simplicity model to the present stimulus certain extensions were required. It is still 

assumed that the primary determinant of classification goodness is codelength, so that the 

lower the codelength the more intuitive the particular classification will be to participants. 

However, it also had to be recognized that slight perturbations in the coordinates of the 

stimuli can lead to different predicted classifications. The effect of such perturbations, or 

noise, will depend on the similarity structure of the stimuli: for some stimulus sets noise does 

not affect the predicted classification, while for others even modest perturbations can lead to 

several different classifications. Accordingly, it appears that different classifications are more 

stable against noise.

Why would stability against noise be a significant consideration when modeling 

empirical results? Because different participants will basically perceive the available stimuli 

in slightly different ways. Even though the MDS analyses show that the assumed coordinate 

representations of the stimulus sets broadly match the psychological representations, 

inevitably there will be individual differences variation in stimulus perception. Therefore, 

regardless of how low the codelength of a particular classification is, we expect more 

variability in participants’ responses in situations where perturbing the stimulus coordinates 

alters the predicted preferred classification.

The above considerations were implemented in the following way. We constructed a 

regression model to predict the frequency of the preferred classification for each stimulus set, 

on the basis of two predictors. The first predictor is the codelength of the best possible 

classification for a stimulus set, not the preferred classification. The reason why we applied 

the model in this way is that the simplicity model has to predict that the preferred 

classification ought to be the optimal one. This first predictor effectively corresponds to how 

the simplicity model has been originally applied (e.g., Pothos & Chater, 2002). The second 

predictor is a measure of the stability against noise of the category structure in a stimulus set.
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To compute the second predictor, for a stimulus set, we perturbed the two coordinates of each 

stimulus independently, by adding a noise term of up to 1 0 % of the range of the 

corresponding dimension (the value 1 0 % was chosen because of its consistency with the

! Weber fraction employed in designing the stimuli). Noise could be positive or negative (i.e.,
I
; the coordinate would change by at most +1 0 % x range or - 1 0 % x range) and the new

coordinates were scaled back so that the range of the new coordinates along each dimension

| would be the same as before (i.e., no overall stretching or shrinking o f psychological space). 

This procedure was repeated 1000 times for each stimulus set and we simply counted the 

number of distinct classifications as a measure of stability against noise. For example, if the 

number of distinct classifications was just one, then the predicted optimal classification 

would be the same whether the original coordinates were employed or any of the 1 0 0 0  

alternative perturbed coordinates. Accordingly, in such a case we would say that the optimal 

classification should be extremely stable against noise.

The two predictors were combined in a linear regression model. The predictions from 

the simplicity model for a stimulus sets were taken to correspond to the predicted 

classification frequency values from the regression model—clearly, higher values correspond 

to more intuitive classifications. Note that the regression model was significant 

(F(2,6)=l 0.46, p=.011). Finally, we can ask whether the classification predicted as optimal 

from the simplicity model is the same as the classification preferred by participants. This was 

the case for all stimulus sets for which there was high classification structure (i.e., ‘two 

clusters’, ‘unequal clusters’, ‘spread out clusters’, ‘three clusters’, ‘poor two clusters’, and 

‘five clusters’). In the case of the stimulus sets ‘random’ and ‘embedded’ there were small 

differences between the optimal classification predicted by the simplicity model and the 

empirically preferred one (the codelength associated with the former was only very slightly 

lower than the codelength associated with the latter). However, for the stimulus set 

‘ambiguous points’ there was a large difference between the simplicity prediction and
|
! empirical result. In that case, the preferred classification was produced with a frequency of

I three, so that one would have less confidence that this is indeed the classification most

I obvious to participants, as opposed to one which emerged as most popular simply by chance.

6.4 Summary
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For this investigation, we were interested in examining the validity of the simplicity 

model, and whether introducing general knowledge would affect the spontaneous 

classifications made. An unsupervised categorization task was employed to examine 

observer agreement concerning the categorization of nine different stimulus sets. The 

stimulus sets were designed to capture different intuitions about classification structure. The 

main empirical index of category structure was the number of times the most frequent 

classifications was produced, for different stimulus sets. With 169 participants, and a within 

participants design, with some stimulus sets the most frequent classification was produced 

over 50 times and with others not more than two or three times. For some stimulus sets, there 

was good correspondence between model predictions and participant performance, but our 

results also revealed weaknesses in the simplicity model. Also, introducing general 

knowledge did not affect the way in which the classifications were made.
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Chapter 7

Experimental results: unsupervised categorization vs. 

supervised categorization

7.1 Introduction
i

This Chapter provides the experimental results of our supervised vs. unsupervised 

investigation (this excludes the work carried out in relative vs. absolute shifting, which is 

given in Chapter 5 and the unsupervised categorization results of Chapter 6 ). Briefly, our 

goals here were to investigate whether there was a relationship between supervised and 

unsupervised categorization. So, after exploring the validity o f the model with the larger set 

| in Chapter 6 , 1 then used the same stimuli, but adopted a supervised categorization procedure

(a learning task). This was to test whether the intuitiveness of the categories would affect how 

j easy it is to learn and remember the supervised categories.

7.2 Supervised and unsupervised categorization

!i
| Chapter 2 gives a thorough account of the simplicity model in unsupervised
j
! categorization, and explains some of the concepts below such as category coherence in more 

! depth. Chapter 3 gives an account of supervised categorization. The literature in 

categorisation has, to a large extent, been organised around the distinction between 

supervised and unsupervised categorisation. For example, most categorisation models are 

specifically proposed as either models of supervised categorisation (e.g., Ashby et al., 1998; 

Minda & Smith, 2000; Nosofsky, 1988), or of unsupervised categorisation (e.g., Anderson,

! 1991; Pothos & Chater, 2002). As a consequence, supervised and unsupervised categorisation

I
1
t
I
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processes, previously, have been studied in separate research traditions, and only few studies 

have attempted to explore possible convergence between the two forms of categorisation.

In unsupervised categorization, one of the most fascinating aspects of human 

cognition is how we develop the concepts and categories with which we understand the 

world. Research into unsupervised categorization concerns the processes which enable us to 

spontaneously recognize/ create groupings in a set of stimuli and offers the promise to help us 

appreciate the causal principles underlying the richness and diversity of human conceptual 

knowledge. In the laboratory, in unsupervised categorization experiments there are no pre­

determined categories. Participants are presented with a set of stimuli and are asked to divide 

them into categories which appear natural and/ or intuitive (the number of categories can be 

fixed or unconstrained). In real life, unsupervised categorization would relate to the process 

which allows us to spontaneously consider a set of patterns as belonging together (cf. 

perceptual grouping) or to category coherence, that is the ‘glue’ which binds together the 

members of a category. The notion of category coherence has intrigued psychologists, since 

its initial proposal by Murphy and Medin (1985). Why do we consider a category like ‘chairs’ 

as intuitive (coherent) but a category composed o f ‘babies, the moon, and rules’ nonsensical? 

A simple answer might be similarity. Even though exclusive reliance on similarity has been 

criticized (Barsalou, 1985; Murphy & Medin, 1985), there is no doubt that this is an 

incredibly powerful principle in understanding human categorization.

Research in unsupervised categorization concerns a range of topics. The focus of the 

present work is the spontaneous preference for certain classifications, as opposed to others, 

and whether such a preference can be applied to supervised categorization. Ultimately, it is 

hoped that understanding what drives this preference will help understand the issue of 

category coherence. Other research issues studied in unsupervised categorization relate to the 

spontaneous attentional dimensional selection (e.g., Milton & Wills, 2004; Pothos & Close, 

2008) and the role of general knowledge in category coherence (e.g., Yang & Lewandowsky, 

2004; Wisniewski & Medin, 1994). Note, finally, that most categorization research has so far 

concerned supervised categorization, which involves the teaching of predetermined 

categories. For example, in the laboratory, an experimenter might decide that certain stimuli 

are in category ‘A’ and other stimuli in category ‘B’. In the real world, a toddler might be 

told by her mum that this round, yellow object, with the funny smell is a ‘lemon’. In 

supervised categorization the key research question concerns how novel instances are 

classified in relation to existing categories. The default assumption would be that supervised 

and unsupervised categorization correspond to separate cognitive processes.
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Modeling work in supervised categorization has progressed at an impressive rate. For 

example, the computational properties of supervised categorization models have been 

I thoroughly scrutinized. For example, in relation to the debate between exemplar and

; prototype theory, there have been several studies examining the computational behavior of

j the models and sometimes even the role of specific individual parameters (e.g., Ashby &

| Alfonso-Reese, 1995; Lee & Vanpaemel, 2008; Olsson, Wennerholm, & Lyxzen, 2004;

| Minda & Smith, 2000; Navarro, 2007; Nosofsky, 1990, 2000; Smith, 2007; Vanpaemel &

Storms, 2008). With no doubt, this work has been extremely useful. Individual researchers
I

may have their preferences regarding, e.g., exemplar vs. prototype theory, but the crucial 

point is that there is a wealth of computational analyses to make an informed decision. We 

suggest that one reason for the sophistication of formal work in supervised categorization has 

been the existence o f ‘standard’ datasets, capable of discriminating between model 

predictions. For example, Medin and Schaffer’s (1978) famous 5-4 category structure and 

Shepard, Hovland, and Jenkins’s (1961) finding that certain classifications are easier to learn 

than others, have been examined in dozens o f studies (e.g., Johansen & Kruschke, 2005; 

Nosofsky, 2000; Smith & Minda, 2000; but see Homa, Proulx, & Blair, 2008). One might 

argue that so much emphasis on a particular dataset may be distracting and ultimately reduce 

the ecological validity of the resulting models/ model revisions. However, at the same time, 

there is unquestionable value in the existence of modeling ‘standards’ against which new 

proposals can be evaluated.

There is an abundance of empirical data if one is interested either in unsupervised 

learning (e.g., Billman & Knutson, 1996; Knowlton & Squire, 1994; Reber, 1967) or 

spontaneous categorization with some constraints (such as the number of categories to be 

produced; e.g., Ashby, Queller, & Berretty, 1999). For example, several researchers have 

reported the spontaneous selection of a single dimension for categorization, when participants 

| are asked to divide objects in two groups (e.g., Medin, Wattenmaker, & Hampson, 1987;

! Milton & Wills, 2004; Regehr & Brooks, 1995; but see, Murphy, 2004, Pothos & Close,

2008). However, there are very few datasets with an entirely unconstrained unsupervised 

categorization procedure, which could serve as modeling standards in the development of 

unsupervised models of categorization (in the way, for example, that the Shepard et al., 1961, 

or the Medin and Schaffer, 1978, results have guided supervised categorization models).

| Compton and Logan (1999), Pothos and Chater (2002) did employ an entirely unsupervised

j categorization procedure, however, in both these cases there were problems: Compton and

Logan employed a procedure which could only loosely be considered a spontaneous grouping



of stimuli into categories (they presented participants with dot diagrams and asked them to 

draw curves around the dots which should be grouped together) and Pothos and Chater 

employed a very limited number of participants; as we shall see, a key empirical problem 

| with unsupervised categorization experiments is that there is considerable variability in 

| participants’ responses.

So, as given above, there is much evidence on both unsupervised and supervised
i

categorization, but little effort has been made to explore the relationship between these two 

different forms of categorization.

7.3 Experimental results supervised vs. unsupervised categorization

The extensive computational work in supervised categorization has led to a clear 

understanding of the differences and similarities of different models. In fact, the majority of 

studies in supervised categorization have been driven by a desire to test specific differences 

between supervised categorization models. This has not been the case in unsupervised 

categorization.

Note that some limited computational comparisons have been carried out for the 

rational model, the simplicity model, and an unsupervised version of the GCM (Pothos & 

Bailey, 2009; Pothos, 2007). These analyses did not show a particular model as superior. For 

example, Pothos (2007) presented a systematic examination of the models against a series of 

artificial stimulus sets. The stimulus sets were specified to conform to obvious intuitions

| about category coherence (e.g., if there are two clusters, the shorter the distance between the
i

I clusters, the less coherent the resulting classification). Under such circumstances, the
j

predictions about category intuitiveness from the simplicity model and the rational model 

were nearly identical. Pothos and Bailey (2009) used data from previous studies. But, in their 

comparison, the only truly unsupervised data came from Compton and Logan (1999), who 

employed a rather artificial categorization task (stimuli were dots in a diagram and 

participants were asked to indicate their classifications by circling around the dots) and 

Pothos and Chater (2002), who employed probably too few participants for robust 

unsupervised categorization results.
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Regardless of these limitations, there is an important conclusion we can make from 

these two studies: models of unsupervised categorization tend to agree on what is the best 

way to classify a single set of stimuli (not least because, as noted, the category structures 

employed in studies of unsupervised categorization tend to be fairly intuitive). Where they 

differ is regarding their predictions for the relative intuitiveness, or naturalness, of different 

classifications. For example, two classifications for the same set of stimuli set can vary in 

category intuitiveness but, equally, two classifications for different stimulus sets can vary in 

i  intuitiveness. In Chapter 2 we demonstrated two examples of category intuitiveness, given in

I Figure 2 (this is given again below to illustrate this point again, and more specifically to the

experimental work). In Figure 2, classification A is more intuitive than alternative 

classification B for the same stimulus set. It is with respect to such predictions that Pothos 

and Bailey (2009) identified differences between models of unsupervised categorization. 

Therefore, the important conclusion is that models of unsupervised categorization are best 

evaluated with respect to how intuitive they predict different classifications will appear to 

naive observers, across a number of different classifications for the same stimuli and different 

stimuli. The question that motivates the experimental work in the present chapter, is whether 

such notions o f 4 intuitiveness’ can be applied to supervised categorization.

Research in categorization has been organized on the basis of a distinction between 

supervised and unsupervised categorization. The former concerns learning pre-specified 

categories. In a laboratory setting, an experimenter may have decided that certain stimuli are 

in one category, while other stimuli in a different one. The objective of a participant is to 

learn which stimuli go to which category, usually through a process of corrective feedback 

(that is, a participant sees a stimulus, guesses its category membership, and receives feedback 

as to whether his/her guess was correct or not). In real life, arguably many linguistic 

categories are taught through a process of supervised categorization. For example, a child can 

learn that certain objects are oranges and other objects are lemons, by guessing the category 

membership of a relevant novel exemplar and subsequently receiving corrective feedback 

I from an adult (cf. Demetras, Post, & Snow, 1986; Gleitman, Newport, & Gleitman, 1984). A 

I key aspect of supervised categorization is that there are no (apparent) limits on the

complexity of the classifications which can be taught (e.g., Ashby, Queller, & Berretty, 1999; 

McKinley & Nosofsky, 1995).

Unsupervised categorization concerns the spontaneous impression we often have that 

a group of stimuli belong to the same category. Such an intuition is most obvious in 

perceptual grouping, whereby sometimes we have an immediate impression that there are
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| clusters (e.g., see Figure 8 ; cf. Compton & Logan, 1999). With respect to real concepts,
j
| Murphy and Medin (1985) advocated the idea of category coherence: that is, for most realI
I concepts, there is a ‘glue’ that binds the members of a concept together. As with the 

; perceptual grouping example of Figure 8 , certain real life concepts are more coherent than 

| others. For example, there is very little ambiguity regarding membership into the category of 

‘chairs’. However, many naive observers will disagree as to what should be considered (a 

I member of the concept) ‘literature’. In experimental studies of unsupervised categorization, 

an experimenter is typically constrained to consider naturalistic classifications, that is, 

classifications which will be plausibly spontaneously produced by participants (e.g., Pothos 

& Chater, 2002; Pothos & Close, 2008).

Figure 8 . Assume that the diagrams correspond to some putative psychological space and that 

each dot corresponds to an instance in our experience. There an immediate impression that 

there are two clusters on the left panel, but this is not so for the right panel.

We are interested in the extent to which the distinction between supervised and 

i  unsupervised categorization is meaningful. This is an issue of central importance in the study 

of categorization, since, for example, it affects researchers’ perception of whether there
i

should be separate models for supervised and unsupervised categorization or not. In 

! motivating the present experiments, we will consider relevant neuroscience, computational,

} and experimental work.
[

We can first consider whether what is known about the neuroscience of categorization 

can provide some clues as to whether supervised and unsupervised categorization should be
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considered separate cognitive processes. With respect to supervised categorization, 

researchers have been interested in whether one can use neuroscience methods to understand 

what is different about rules-based category learning and category learning based on 

knowledge of individual exemplars (cf. Pothos, 2005). For example, Koenig et al. (2005; see 

also Smith, Patalano, & Jonides, 1998) found that classifying novel instances on the basis of a 

rule activated the anterior cingulate cortex, parietal areas, and left inferior frontal areas, while 

classification on the basis of similarity to previously encountered exemplars involved anterior 

prefrontal areas, the posterior cingulate cortex, and bilateral temporal-parietal areas.

Participants in the rule condition of Koenig et al. were explicitly told of which rule to 

use (cf. Allen & Brooks, 1991). One could ask of whether there are situations when naive 

observers required to learn a classification might spontaneously do so in terms of a rule.

I Ashby and colleagues have been advocating an influential paradigm, termed CO VIS 

(Competition between Verbal and Implicit Systems; Ashby et al., 1998; Zeithamova & 

Maddox, 2006), according to which category learning can proceed either through the 

development of an explicit, verbal rule (cf. Smith et al., 1998) or an exemplar similarity 

strategy (in the CO VIS framework this is termed ‘information integration’). The rule strategy 

is supported primarily by the prefrontal cortex, the anterior cingulate cortex, and the head of 

the caudate nucleus. For example, the prefrontal cortex has been widely implicated in 

planning, differentiating amongst conflicting goals, and identifying expectations based on 

actions (Banich, in press). By contrast, the information integration strategy involves the 

inferotemporal cortex and the tail of the caudate nucleus. This is a procedural learning 

system, which presumably involves the nigrostriatal dopamine pathway.

The two systems of CO VIS appear to provide a reasonable framework of the range of 

classifications systems which might be involved in supervised category learning. We can ask 

whether there is any evidence that the brain areas involved in unsupervised categorization 

might be distinct or overlap with the areas postulated in CO VIS for supervised categorization. 

A telling study by Op de Beeck et al. (2008) revealed that perceptual organization in the 

lateral occipital cortex was based on similarity (of course, in earlier visual areas, organization 

of information is retinotopic). Can we associate the spontaneous emergence of intuition that a 

set of stimuli should be categorized in a certain way, with this similarity-based organization 

in the later visual areas? It’s unclear that we can do this, but, equally, it’s unclear as to which 

other areas might support the spontaneous emergence of classification intuitions. Overall, the 

neuroscience results may tentatively indicate that separate systems support supervised and
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unsupervised categorization, but this conclusion is greatly undermined by the lack of 

neuroscience research regarding unsupervised categorization.

We can next examine the principles underlying computational models of supervised 

and unsupervised categorization. Influential supervised categorization models, such as
I
; exemplar theory and prototype theory (Minda & Smith, 2000; Nosofsky, 1988; see also, Van
1

| Vanpaemel & Storms, 2008), typically assume that categorization of novel exemplars is 

driven by their similarity to either the members or the prototype of the available categories. 

Similarity is typically computed as a function of distance in a putative psychological space. 

However, such models allow for the possibility that the process of category learning may 

transform the original psychological space, through the attentional weighting of different 

dimensions or overall stretching or compression of the space. Such transformations would 

take place in a way to support the process of category learning (e.g., the attentional salience 

of a dimension would increase if it is highly diagnostic for a required classification).

Models of unsupervised categorization also often employ a principle of similarity. For 

example, Pothos and Chater’s (2002) simplicity model is based on the idea of Rosch and 

Mervis (1975) that more obvious classifications should be ones for which within category 

similarity is maximum and between category similarity is minimum. Other models of 

unsupervised categorization, such as the rational model, predict categories which maximize 

the posterior probability of the particular feature combination of their members, given 

category membership (Anderson, 1991; Sanborn, Griffiths, & Navarro, 2006; cf. Corter & 

Gluck, 1992). However, Pothos (2007) compared the rational model and the simplicity model 

and found that the predictions of these models converged across a wide range of stimulus 

sets. Moreover, Pothos and Close (2008) postulated a mechanism of spontaneous attentional 

weighting of dimensions in unsupervised categorization. According to Pothos and Close, a 

dimension may be spontaneously entirely ignored if it does not contribute to the intuitiveness 

j of a classification for a set of stimuli (cf. Milton & Wills, 2004). Note, however, that the

\ graded attentional weighting that seems to be possible in supervised categorization has not

j been observed in unsupervised categorization.

So, at this broad level of analysis, supervised and unsupervised categorization models 

appear to be based on similar principles. Love, Medin, and Gureckis (2004) were the first to 

try to provide a single computational framework for both supervised and unsupervised 

categorization, with their SUSTAIN model. However, crucially, there are separate 

components of SUSTAIN responsible for each type of categorization. Regarding 

unsupervised categorization, categories emerge for groups of items which are similar to each
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! other. Supervised categorization is supported by a learning mechanism similar to that
!
j  embodied in current versions of the exemplar theory (e.g., Nosofsky, 1988). In principle,

| SUSTAIN can allow the interaction between supervised and unsupervised categorization (a

parameter controls the relative influence of each mechanism). Therefore, according to Love 

et al. (2004) there are separate computational mechanisms for supervised and unsupervised 

categorization.

Pothos and Bailey (2009) provided a contrasting perspective. They examined whether 

an influential version of exemplar theory, the Generalized Context Model (GCM; Nosofsky, 

j 1988), could be modified to describe results in unsupervised categorization. They called their

! model unsupervised GCM and compared its predictions against those of two (proper)
!
| unsupervised categorization models, the simplicity model and the rational model. Overall, the

comparisons of Pothos and Bailey did not reveal a model to be superior relative to the two 

others—the performance of the unsupervised GCM was approximately equivalent to that of 

the simplicity model and the rational model. Pothos and Bailey’s comparisons, therefore, 

show that a model of supervised categorization can, with relatively little modification, be 

applied in the context of unsupervised categorization.

Logically, a model of supervised categorization can always be applied in 

unsupervised categorization, and vice versa. For example, a supervised categorization model 

can be used to produce an ‘intuitiveness’ prediction for a particular classification, by 

considering each instance one-by-one as a novel instance and classifying it to its respective 

category; this operation will result to an error term (which may be zero). Repeating this 

procedure for all stimuli, the sum of error terms can be used as a measure of classification 

intuitiveness, in the sense that when the error term is low we can say that the classification is 

more consistent with the model’s assumptions (this is the procedure by which Pothos & 

Bailey, 2009, applied the GCM to unsupervised categorization data). Conversely, a model of

| unsupervised categorization can, in principle, be applied to predict the classification of new|
' instances by examining how the intuitiveness of a classification is changed by assigning a
j

| novel instance to different categories.

Of course, as noted, there are possible differences between supervised and 

t unsupervised categorization, such as the issue of attentional weighting o f stimulus

dimensions noted above. Moreover, the requirements of learning a particular supervised 

| categorization may lead participants to develop complex category representations, for

example, based on rules or combinations of elementary rules (Ashby et al., 1998; Kurtz, 

2007). In sum, considering the computational principles relevant in supervised and
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unsupervised categorization provides mixed intuitions regarding a possible equivalence 

between supervised and unsupervised categorization.

Love (2002) carefully examined this issue. One of his hypotheses was that in 

supervised learning there should be no difference between linearly separable and non-linearly 

separable category structures (this result is supported by the data of Medin &

| Schwanenflugel, 1981), while in unsupervised learning linearly separable category structures 

| appear more plausible. His results supported this hypothesis, so that Love concluded that 

supervised and unsupervised categorization are better understood as separate cognitive 

processes. However, there are some problems with this conclusion.

First, the conclusions of Medin and Schwanenflugel have been challenged, with later 

research indicating that in supervised categorization as well, linearly separable category 

structures are easier to learn than nonlinearly separable ones (Blair & Homa, 2001). Second, 

Love created an unsupervised categorization task using the Shepard, Hovland, and Jenkins 

(1961) dataset, which is a well known dataset in supervised categorization. However, 

importantly, he augmented the stimuli with an extra dimension of variation, which was meant 

to correspond to the intended classification. This manipulation effectively alters the similarity 

structure of the stimuli quite drastically: in all cases, it creates a very easy (and linearly 

separable) categorization of the stimuli into the required categories. In other words, if 

participants were to focus only on this additional (labels) dimension of variation, there would 

be no need for them to consider any o f the other information about the Shepard et al. stimuli. 

Indeed, the intended structure of the Shepard et al. stimuli (as linearly separable categories, 

nonlinearly separable categories etc.) would be lost. Finally, the tasks Love employed 

corresponded only loosely to the more standard procedures in unsupervised categorization 

research. For example, participants were asked to either memorize or rate the pleasantness of 

the stimuli. Then, in test, pairs of stimuli were presented such that they were identical except 

| that in one stimulus the ‘classification’ dimension had one value and in the other the 

! classification dimension had the other possible value; the task was an old-new recognition 

I task. He found that recognition accuracy was different with the memorization or pleasantness 

learning tasks, compared to a standard supervised categorization task. Interesting as this 

manipulation is, it clearly corresponds more to an incidental learning cognitive process rather 

than an unsupervised categorization one. The properties that emerge as more salient as a 

result of a memorization or irrelevant learning task (based on pleasantness) is an issue quite 

different from that of whether a classification is more intuitive than another.

I
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To sum up, Love’s (2 0 0 2 ) is not a definitive test of the (lack of) equivalence between 

supervised and unsupervised categorization. The research reported in this paper broadly 

follows the design of Love’s study. However, we have tried to incorporate a range of 

extensions which should lead to a better test of the equivalence between supervised and 

unsupervised categorization. Colreavy and Lewandowsky (2008) provided another 

comparison between supervised and unsupervised categorization, in the context of the
r

development of learning strategies with increased exposure to a set of stimuli. In their 

unsupervised condition, participants could decide how to classify each stimulus into either of 

two available categories. In the supervised condition, participants were asked to learn twp- 

cluster classifications for the same stimuli. Colreavy and Lewandowsky found many 

similarities between the supervised and unsupervised categorization conditions, including, for 

example, with respect to learning rates.

The research reported in this paper broadly follows the design of Love’s study. 

However, we have tried to incorporate a range of extensions which should lead to a better test 

of the equivalence between supervised and unsupervised categorization. The first extension is 

that the basis of the current investigation is the dataset of unsupervised categorization results, 

presented in Chapter 6 . To our knowledge, this is currently the most extensive study of 

unsupervised categorization and, therefore, it provides a rich dataset against which to 

examine possible relations with supervised categorization. A particular advantage of this 

dataset is that it includes stimulus sets for which the empirically preferred classification does 

not always have two clusters—for some stimulus sets the preferred classification has as many 

as five clusters. Second, we employed exactly the same stimulus sets for unsupervised and 

supervised categorization. Thus, the comparison of human performance between the two 

types of categorization is better controlled (recall that Love, 2002, had to change the 

representation of the Shepard et al., 1961, stimuli, for his test of unsupervised categorization).

I The unsupervised categorization results are reported in detail in Chapter 6 ; in this work, we

| simply employ the main conclusions from this study, and compare them with the

' corresponding results from two matched supervised categorization tasks (which constitute the 

novel empirical work reported in this paper).

Third, there is the issue of which variables to use to characterize supervised and 

unsupervised categorization. The former is a straightforward issue. In this context, supervised 

categorization performance can be adequately characterized by the difficulty associated with 

learning different classifications. In this work we also employed an additional dependent 

variable to characterize supervised categorization, corresponding to the memory of a
i
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particular classification. The latter is a more complex issue, not least because of the enormous 

variability which is typically associated with unsupervised categorization experiments 

(Pothos & Chater, 2002). In Chapter 6 , 1 suggested two possible dependent variables, the 

frequency of the preferred classification for a stimulus set and the number of distinct 

classifications produced by participants for a stimulus set. The logic behind both variables is
f

the same: if for a stimulus set there is a very intuitive classification, then one would expect 

this classification to be produced very frequently and, equally, that there should be less 

disagreement in how the stimuli are classified. In fact, in Chapter 6 1 reported that these two 

variables correlated extremely highly with each other. In this work we follow these 

investigators and also suggest that human performance in unsupervised categorization can be 

characterized by the frequency of the preferred classification in different stimulus sets.

To sum up, the purpose of this research is to provide the most straightforward 

possible test of the possible equivalence between supervised and unsupervised categorization. 

Our starting point is a large dataset on unsupervised categorization, which is reported 

elsewhere (Chapter 6 ). In this research we describe two experiments with matched supervised 

categorization tasks. Our overall approach follows that of Love (2002), although we have 

tried to improve on his specific procedure in several respects. There are two experiments that 

follow. Experiment 1, compares the relationship between the results of the unsupervised task 

with a standard supervised learning task. Experiment 2, compares the relationship between 

the difficulty o f learning the categories (i.e. the results of Experiment 1) with the memory for 

category labels.

7.4 Experiment 1 unsupervised vs. supervised learning; learning condition
I
i
f

! Participants

{
!

Participants were 180 Swansea University undergraduates, who had not taken part in any 

related experiments. They participated in the study for course credit or a small payment. 

Experimental design was between participants, so that each participant was tested with only 

one stimulus set (exactly 2 0  participants were tested with each stimulus set).

Materials
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The materials employed in this study are identical to those of Chapter 6  but for the fact that in 

this study stimuli were presented individually on a computer screen, while in Chapter 6  

unsupervised categorization study each stimulus was printed individually on a sheet of paper. 

We took care to ensure that the physical size of the stimuli as shown on the computer screen 

and as printed on the sheets of paper were the same.

We briefly summarize the stimulus details (for more information please see Chapter 

6 ). Stimuli were created so as to broadly resemble spiders; the two relevant dimensions of 

variation were the length of the ‘legs’ (after the joints) and the length of the central body. We 

adopted lengths as the relevant dimensions of variations, since this makes it relatively 

straightforward to assume a Weber fraction (in both cases 8 %; Morgan, 2005). For both 

dimensions, the actual lengths were between 40mm and 80mm. An example of the stimuli is 

shown in Figure 6  of Chapter 6 . The stimuli were intentionally created to resemble some real- 

life creature, as a manipulation to increase the coherence of the two dimensions. It was 

important that the two stimulus dimensions could be perceived together without analytic 

effort (cf. Milton & Wills, 2004; Pothos & Close, 2008).

The key design aspect of this research concerns the range of stimulus sets employed. 

In Chapter 6 , 1 employed nine different stimulus sets, each having 16 stimuli, which were 

meant to capture a range of intuitions regarding unsupervised categorization. For example, in 

one stimulus set there was a fairly salient two-cluster classification, in another a two-cluster 

classification whose salience was undermined by some ambiguous points, in a third a five- 

cluster classification etc. The considerations guiding the selection of stimulus sets are 

considered extensively in Chapter 6 . In this work we aim to simply employ the results 

regarding category intuitiveness from this research (summarized in Chapter 6 ) and motivate 

the creation of matched supervised categorization tasks. The nine stimulus sets can be 

referred to as ‘two clusters’, ‘unequal clusters’, ‘spread out clusters’, ‘three clusters’, 

‘ambiguous points’, ‘poor two clusters’, ‘five clusters’, ‘random’, and ‘embedded’. These 

names are meant to correspond to the key aspect (in terms of prior, experimenter intuitions) 

of category structure in each stimulus set. All stimulus sets are shown in Figure 9.

132



Three clusters

Two clusters
14 11 10 /  

15 12/

5 ♦

V12
Five clusters

Unequal clusters

Spread out 
clusters

13 W 15 \
11 10

Ambiguous

10 12 15

Random

Embedded

Poor two 
clusters

Figure 9. A schematic representation of the nine stimulus sets employed in this research. 

Each point in each stimulus set is indexed by a number from 0 to 15. The curves show the 

classifications taught to participants in each case.

Procedure

We adopted a standard supervised categorization procedure. The experiment was organized 

in units, such that each unit consisted of one presentation of all the stimuli with their correct 

category labels, and two presentations of the stimuli without the labels—in the latter case, the 

participant had to guess the correct label and corrective feedback was provided after each 

response (as is standard in experiments of supervised categorization). When participants were 

not required to make a response each stimulus was presented for 1 0 0 0 ms, when participants 

were required to respond, a stimulus would be shown until a response was made. The 

learning criterion was to go through all the stimuli in a learning unit without making any 

errors (the experimenter was able to determine when this happened, because a sound 

indicated an incorrect response). When a participant managed to do this, the experiment 

stopped. Otherwise, the participant would be presented again with the stimuli in a unit. A 

different randomized order of stimulus presentation was employed each time.
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The classifications taught to participants for each stimulus set are shown in Figure 9. 

Note that the number of categories varies from two to five. These are the classifications 

predicted as most intuitive by the simplicity model (Pothos & Chater, 2002). The simplicity 

model has been shown to predict the classification preferred by participants in all cases in 

which there is a salient category structure. Moreover, for stimulus sets for which there is no 

salient category structure, there tends to be very high variability in participant classifications. 

In such cases, it appears that a certain classification may be preferred not because of any 

intrinsic structural properties but, rather, by chance. This observation provides justification to 

use the classifications predicted by the simplicity model in the supervised categorization task, 

rather than the ones preferred by participants.

It is clearly an empirical issue whether this assumption can be justified in general. 

Regardless, it does seem to be appropriate in the present case: For the stimulus sets shown in 

Figure 9, the simplicity model correctly predicted the preferred classifications in the cases of 

the ‘two clusters’, ‘unequal clusters’, ‘spread out clusters’, ‘three clusters’, ‘poor two 

clusters’, and ‘five clusters’. In the case of the stimulus sets ‘random’ and ‘embedded’ there 

were small differences between the optimal classification predicted by the simplicity model 

and the empirically preferred one. For the stimulus set ‘ambiguous points’ there was a large 

difference between the simplicity prediction and empirical result. Importantly, in the three 

cases in which there was a discrepancy between the prediction of the simplicity model and 

the classification preferred by participants, the frequencies with which the preferred 

classifications were produced were just 3, 2, and 3, respectively for the ‘random’,

‘embedded’, and ‘ambiguous points’ stimulus sets (note that there were 169 participants in 

the study of unsupervised categorization in Chapter 6 ; therefore, a frequency for the preferred 

classification of 2 means that, out of 169 participants, only 2 produced this classification). To 

reiterate, our assumption is that when a classification is produced with a frequency as low as 

2 or 3, then we are not warranted to conclude that there is something special or particularly 

intuitive about this classification (so that we are better off employing the predictions of a 

reasonably well-motivated model of unsupervised categorization, such as the simplicity 

model).

Results

We recorded two dependent variables, the number of learning units required to achieve 

criterion and the total number of errors before criterion had been achieved (note that each 

learning unit consisted of a presentation of all the stimuli with their labels and two
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presentations of the stimuli without the labels—in the second case participants had to guess 

the correct classification of each stimulus). There was a highly significant correlation 

between the two variables (r=.64, p<.0005). Accordingly, we will restrict the analyses to only 

one of the variables, the number of learning units required to reach criterion.

Table 8  shows how the number of units differed for the nine stimulus sets we 

employed. Also, it summarizes the key dependent variable from the unsupervised 

categorization results of Chapter 6  (this is the frequency o f the preferred classification). Note, 

first, that there are differences between the ease of learning of different datasets: 

F(8,171)=35.22,;?<.0005. This result confirms the expectation from Table 8 , that it was much 

easier to learn the required classification for certain stimulus sets, compared to others.
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I Stimulus se t  Frequency o f m ost p refe rred1 M ean num ber of units2 Range3
i
j ____________________________________________________________________________________________________
ii
!

Two c lu s te rs  31 4 .10  2 — 10

U nequal c lu s te rs  33 4 .15  2 — 11

S pread  o u t c lu s te rs  8 7 .40  2 — 17

T hree c lu s te rs  55 9 .30  3 —21

A m biguous tw o  c lu s te rs  3 14.45 3 —27

P oor tw o  c lu s te rs  17 9.65 3 —24

Five c lu ste rs  58  13.45 4 —28

R andom  3 25.40 1 2 - 3 3

E m bedded  2 22 9 —35

Table 8 . A summary of the unsupervised categorization results of results from Chapter 6  and the supervise 

Experiment 1.

Notes: The frequency with which the preferred classification was produced. The mean number of learning 
criterion. The lowest and highest number of learning units required to reach criterion. The standard deviat: 
learning units required to reach criterion.



The critical research question concerns a possible relation between the unsupervised 

and supervised categorization results. From an unsupervised categorization perspective, the 

higher the frequency o f the preferred classification, the more psychologically intuitive this 

classification should be. From a supervised categorization perspective, the lower the numberj
| o f units required to reach the learning criterion, the easier (and hence more intuitive) the 

I taught classification should be (cf. Pothos & Bailey, 2009). The objective in the analyses

| below is to examine whether these two measures of category intuitiveness, from an

unsupervised and supervised categorization task, are related or not.

A simple test of a putative association between the measures of category intuitiveness
|

from the unsupervised categorization results of Chapter 6  and the supervised categorization 

results from the present experiment is a correlation, for each stimulus set, between the 

frequency of the preferred classification and the number of learning units required to reach 

criterion. This correlation was low and not significant, although in the right direction (r=-.47, 

p=.20). However, this test does not take into account the fact that there is a differential role 

for the number of category labels in the supervised and unsupervised categorization 

procedure. Specifically, an increased number of category labels is likely to affect executive 

function and working memory resources, both of which would disrupt a process of supervised 

learning (Maddox et al., 2004). Indeed, there was a correlation between number of units 

required to achieve criterion and number of category labels (r=.72,p=.03). By contrast, there 

is no evidence that a spontaneous classification involving more clusters will be more (or less) 

demanding than one with fewer clusters. We therefore first regressed the number of learning 

units on category labels and recorded the unstandardized residuals—these residuals provide 

us with an estimate of the variance in the number of learning units which cannot be accounted 

for by differences in the number of labels. The regression was significant, as expected, 

showing (as before) that the number of labels participants had to keep track of affected 

! learning difficulty (F(l ,7)=7.37, p=.03). Subsequently, we correlated the residuals with the 

frequency of the preferred classification. The correlation was now highly significant and in 

the right direction: r=-.811, /?=.008.

Discussion

The literature in categorization has, to a large extent, been organized around the distinction 

j  between supervised and unsupervised categorization. For example, most categorization 

! models are specifically proposed as either models of supervised categorization (e.g., Ashby et
i
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al., 1998; Minda & Smith, 2000; Nosofsky, 1988) or models of unsupervised categorization 

(e.g., Anderson, 1991; Pothos & Chater, 2002). There is no doubt that the distinction between 

supervised and unsupervised categorization is a highly intuitive one. However, the present 

empirical results have failed to provide support it.

In brief, Experiment 1 was a standard supervised categorization learning paradigm.

We asked different participants to learn a particular classification for nine different stimulus 

sets. A natural dependent variable in this context is the difficulty with which different 

classifications are learned (cf. Shepard et al., 1961). Certain classifications were easier to 

learn than others. Are these the same classifications which are spontaneously produced more 

frequently by participants? We utilized the unsupervised categorization results of Chapter 6  

for the same stimulus sets. Factoring out the variance due to the number of category labels,

| we found that classifications which were easier to learn were indeed the ones more likely to 

be produced spontaneously. Our results therefore show that the aspects of category structure 

which make a classification easy to learn are the same as the ones which make a classification 

‘stand out’ in a spontaneous categorization setting (cf. Colreavy & Lewandowsky, 2008).

In Experiment 1 we considered one possible hypothesis of how we can decide 

whether a categorization taught to participants is intuitive or not: if a categorization is easier 

to learn, then it should be more intuitive. There is an alternative perspective: we can ask 

whether a particular association between category labels and stimuli is more resistant to 

forgetting. If a classification for a set of stimuli is better remembered several days after it has 

been taught, then we should conclude that this classification is more intuitive. Accordingly, 

we can examine whether category intuitiveness in terms of remembering a taught 

classification is associated with category intuitiveness in terms of preference in a spontaneous 

categorization task. Experiment 2 addresses this issue.

7.5 Experiment 2 unsupervised vs. supervised learning; memory condition

Participants

Participants were 195 Swansea University undergraduates, who had not taken part in 

Experiment 1 or any other related experiments. They participated in the study for course
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credit or a small payment. Experimental design was between participants. Participants were 

divided between the nine stimulus sets as shown in Table 9.

Materials and Procedure

The materials were identical to those employed in Experiment 1. Experiment 2 consisted of 

two parts. First, there was a part in which participants had to learn the given classification. 

This part proceeded in a way analogous to that o f Experiment 1, although some modifications 

were introduced. The learning part was organized in units consisting of a presentation of each 

stimulus with the correct label, followed by five presentations of all the stimuli without the 

labels—in these presentations, as before, participants had to guess the correct answer and 

received corrective feedback. Moreover, in the trials when participants did see the correct 

label, the stimulus and label appeared on the screen until the participant pressed the key with 

the corresponding label. In this way, we hoped to reinforce the stimulus— label associations. 

The learning criterion was, in a way analogous to what we had before, responding to all the 

stimuli once without making any errors. Unlike Experiment 1, a learning unit could be cut 

short when participants achieved the learning criterion. After the learning criterion had been 

achieved, participants saw all the stimuli three more times, in a way that each stimulus with 

its correct label appeared on the screen, and participants had to press the key with the 

corresponding label before proceeding to the next stimulus. This ‘fixed exposure’ 

manipulation was added to ensure that participants would experience the same number of 

label— stimulus associations, after they had learned the correct classification.

Participants were invited to come again to the laboratory seven days later (a deviance 

of one day was tolerated). To encourage participants to do so, they would not receive any 

compensation until they came for the second time. Nearly all participants did attend both 

experimental sessions. The second experimental session was identical to the learning unit 

described above (five presentations of all stimuli), but without the presentation of the correct 

stimulus—category label associations at the beginning. In other words, this was a standard 

recall test for the correct label for each stimulus.

Results

We first consider the dependent variables which are analogous to those in Experiment 1, the 

number of blocks required to achieve the learning criterion and the errors made before
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criterion could be achieved (note that a learning block in Experiment 2 corresponds to one 

presentation of the 16 stimuli, so that it differs from the learning unit defined in Experiment 

1). Table 9 shows these results. As before, there was a highly significant correlation between 

number of blocks and errors (r=.92, /?<.0005). It is also interesting to check that the 

supervised learning results in Experiment 2 were equivalent to those in Experiment 1, which 

turned out to be the case (r=.87,/>= 002). This result is reassuring, since there were only 

superficial differences between the training procedure in Experiment 1 and that of 

Experiment 2.
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Stimulus se t Participants Mean num ber  of blocks1 Range2 Standard deviat

Tw o c lu s te rs  25 1 .36 1— 3

U nequal c lu s te rs  27 2 .04  1 —8

S pread  o u t  c lu s te rs  32 2 .22  1— 11

T h ree  c lu s te rs  13 9 .23  2 — 37

A m biguous tw o  c lu s te rs  21 3 .57  1 — 18

P oor tw o  c lu s te rs  18 6 .39  1 — 17

Five c lu s te rs  19 10 .42  3 — 31

R andom  20 18 .15  3 - 4 7

E m bedded  20 24 .95  6 —60

Table 9. The supervised categorization results obtained in Experiment 2.

0 .6 4

1 .58

1.93

9 .33

3 .98

4 .25

7 .42

10.99

15.05

Notes: The mean number of learning blocks required to reach the learning criterion. The lowest and highe: 
reach criterion. The standard deviation associated. The number of errors in reproducing the category label-



In Experiment 2 there was a unique dependent variable, the number of memory errors 

in recalling the category label—stimulus associations a week after training (Table 9). The 

memory variable correlated highly with the number of blocks required to reach criterion 

(r=.97,p<.0005). This result illustrates that classifications which were easiest to learn were 

indeed the easiest to remember a week later as well. Moreover, the frequency of preferred 

classifications correlated highly with the memory variable, once the variance due to category 

labels had been eliminated as in Experiment 1 (r=-.73,p=.026).
|
i
|

| Discussion
|

The memory for a particular classification is a dependent variable which has not featured 

prominently in categorization research. However, it is an important empirical variable, since 

it informs our insight of what kinds of classifications might be more resistant to forgetting. 

Presumably, as categorization researchers, we would like to conclude that classifications 

which are remembered better are ones which are cognitively ‘special’, in some sense. A 

classification which is easy to learn is not necessarily the same as a classification which is 

resistant to forgetting. For example, categories which are closer to each other may be more 

prone to interference from forgetting, even if they are straightforward to learn in the first 

place. Equally, learning a categorization sometimes appears to involve particular 

transformations of the psychological space for the corresponding stimuli (e.g., Nosofsky, 

1988). There has been no research as to how long-lived such transformations are. For 

example, a particular classification may be easy to learn after a fairly radical transformation 

of psychological space (e.g., involving the projection of all stimuli along a single dimension). 

However, if this transformation is short-lived, then one would expect that memory for the 

i  corresponding classification to likewise decay quickly.

Despite the above considerations, the present results showed that the memory for a
i
| particular taught classification correlated highly with the ease of learning the classification in

| the first place and, moreover, with the likelihood that the classification would be

i  spontaneously produced in an unsupervised setting. This provides compelling demonstration

j  that a convergence in the theoretical accounts for supervised and unsupervised categorization

may be desirable, at least in some cases.

General discussion
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We have examined two measures of supervised categorization, with nine different stimulus 

sets, and related the results to spontaneous preference for the taught classifications in an 

unsupervised categorization task. Each of the different categorization tasks can be seen as 

providing a different measure of category intuitiveness. For example, a standard supervised 

categorization task (Experiment 1) can discriminate between classifications which are easy to 

learn and ones which are more difficult to learn. Clearly, we can suggest that the former are 

more intuitive compared to the latter (cf. Kurtz, 2007; Shepard et al., 1961). The supervised 

categorization task augmented with a recall task (Experiment 2) allowed us to identify the 

classifications which are more resistant to memory decay and forgetting. Classifications 

which are better remembered must be more obvious and intuitive. Finally, the unsupervised 

categorization procedure that I employed in Chapter 6 provides a measure of spontaneous 

preference for a categorization. More intuitive categorizations would be the ones that are 

spontaneously produced more frequently.

All the three measures of category intuitiveness related closely to each other, 

consistently with the findings of Colreavy and Lewandowsky (2008). This conclusion 

suggests that whatever it is that makes a classification more obvious in an unsupervised task, 

also makes the classification is easier to learn in a supervised task. If such a conclusion 

proves to be general, it would have important implications for the development of models of 

categorization. Currently, nearly all categorization models are specifically proposed either as 

models of supervised categorization (e.g., Minda & Smith, 2000; Nosofsky, 1988) or models 

of unsupervised categorization (e.g., Anderson, 1991; Pothos & Chater, 2002). Some 

researchers have sought to modify models of supervised categorization so that they can 

function as models of unsupervised categorization (e.g., Pothos & Bailey, 2002; cf. Kurtz, 

2007). Also, there have been attempts to integrate a supervised model and an unsupervised 

one within the same formalism (e.g., Love et al., 2004). However, few models have been 

proposed from the outset as purporting to account for both supervised and unsupervised 

categorization with exactly the same computational principles.

How general are the conclusions in this paper? A key point is that the taught 

classifications were all ones which were very likely to be produced spontaneously. 

Supervised learning can allow a naive observer to learn classifications which would never be 

produced spontaneously (e.g., McKinley & Nosofsky, 1995; Maddox et al., 2004). For such 

very complex classifications, it seems meaningless to talk about a putative equivalence 

between supervised and unsupervised categorization.
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A related issue is this: models of supervised categorization typically employ 

mechanisms which appear to go beyond those relevant in unsupervised categorization. For 

example, in supervised categorization researchers have advocated a process of fine tuning of 

the attentional salience of each stimulus dimension, non-linear compression/ stretching of the 

entire psychological space, response parameters which affect whether a categorization 

decision is more probabilistic or deterministic, and separate learning systems to distinguish 

between classifications which can be learned with a simple rule vs. ones which require a 

more passive, information integration procedure (Ashby et al., 1998; Minda & Smith, 2001 

Nosofsky, 1988; Vanpaemel & Storms, 2008). It seems extremely unlikely that all these 

mechanisms have analogues in unsupervised categorization. Indeed, supervised and 

unsupervised categorization appear to share only a handful of computational principles. 

Similarity is one such principle, since most models of both supervised and unsupervised 

categorization embody some function of similarity. Attentional weighting of stimulus 

dimensions may be another common principle, noting, however, that only ‘crude’ attentional 

selection has been observed in unsupervised categorization (that is, a stimulus dimension may 

be spontaneously ignored if it does not appear to add to the overall intuitiveness of a 

classification; Pothos & Close, 2008). Conversely, in unsupervised categorization it has been 

suggested that general knowledge plays an important part (e.g., Murphy & Medin, 1985); in 

supervised categorization, general knowledge effects appear to be restricted to enhancing the 

attentional salience of certain stimulus features (e.g., Murphy & Allopenna, 1994). Note, 

however, that the effect of general knowledge in categorization has been incredibly difficult 

to formalize and so, in the absence of formal models, it is difficult to appreciate exactly how 

much of an effect it has on categorization (cf. Pickering & Chater, 1995; but see Harris, 

Murphy, & Rehder, 2008; Heit, 1997).

The upshot of the above discussion is that a putative equivalence between supervised 

and unsupervised categorization must only hold for classifications which ‘naturalistic’ in the 

first place (i.e., classifications which are likely to be produced naturally). A possible 

hypothesis forthcoming from this research is that the features of supervised categorization 

models which do not appear relevant in unsupervised categorization are relevant only when 

learning more complex classifications, that is, ones which are very unlikely to be produced 

naturally. Whether the learning of complex classifications is supported by the same cognitive 

process as that of simple classifications is very much an open issue. It is possible that 

learning of complex classifications should be better understood in the context of learning 

models in general, rather than as a cognitive process of concept formation. An alternative
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possibility is that categorization models should rightly incorporate the ability to learn both 

simple and complex concepts, so that only their features corresponding to the former ability 

can be extended to support unsupervised categorization processes as well. Such possibilities 

suggest exciting new avenues for further research.

In sum, we showed that when it comes to naturalistic classifications, supervised and 

unsupervised categorization processes converge. This finding raises several interesting 

possibilities regarding the way supervised and unsupervised models can be developed, in a 

way that a corresponding convergence of the relevant computational principles can be 

achieved.

7.6 Summary

Supervised and unsupervised categorization have been studied in separate research 

traditions. Only a handful of studies have attempted to explore a possible convergence 

between the two. This Chapter provided a research investigation which built on these studies, 

by comparing the unsupervised categorization results from Chapter 6 with the results from 

two procedures of supervised categorization. In two experiments, we tested 375 participants 

with nine different stimulus sets, and examined the relation between ease of learning of a 

classification, memory for a classification, and spontaneous preference for a classification. 

After taking into account the possible confounding role of the number of category labels in 

supervised learning, we found the three variables to be closely associated with each other. 

Our results provide encouragement for researchers seeking unified theoretical explanations 

for supervised and unsupervised categorization.
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Chapter 8

Conclusions

8.1 Summary of findings

This thesis set out to explore three separate phenomena in categorization. Firstly, it 

tested the validity of the simplicity model (Pothos & Chater, 2002). Secondly, it investigated 

the relationship between unsupervised and supervised categorization. Thirdly, it explored the 

circumstances which would cause a relative and absolute shift in representation. The 

experimental traditions explored in this thesis related broadly to categorizing with learning, 

(supervised), without learning (unsupervised), and when learning is impaired through 

interference (interference in our case was implemented by increasing group size and group 

numbers in the relative experimental work).

8.2 Summary of the relative vs. absolute experimental work.

In Chapter 5 ,1 explored the conditions which cause traditional ‘absolute 

representation’ of supervised categorization to be abandoned. This work was based upon the 

work into absolute judgment experiments and, specifically, the theory implemented by 

Stewart et al. (2005), regarding the use of the RJM, to explain some of the sequential effects. 

In these effects, judgments about the serial position of the ‘current’ item in a sequence is 

thought to be determined by the neighboring items, in terms of relational properties, such as 

‘bigger than and ‘smaller than’. I applied this theory, in a general way, to my current 

investigation into relative and absolute representations, as little related work has been done in 

the area of categorization and in the area concerning relative, absolute representational shifts.

I generally found that reducing exemplar numbers, increasing the categories available 

and by introducing a time delay between presentation and response, was sufficient to induce 

changes in the representation. More specifically, I found that the representation of ‘absolute’ 

decision making shifted towards a more ‘relative’ form, where relational properties such as
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‘bigger than’, ‘smaller than’ became important. I related this finding to work in the area of 

analogical mapping and the relative judgment model.

8.3 Summary o f the work carried out in unsupervised categorization.

In Chapter 6, evidence was sought to test the accuracy of the simplicity model to 

predict unsupervised categorization results. This was an extension to the work carried out by 

Pothos and Chater (2002) in using more complex stimulus sets and using a much larger 

participant sample. The basic form of the model predicts that unsupervised categorization 

can be predicted with the ‘simplicity principle’, and that this principle can be formalized 

more specifically in categorization through the simplicity model (Pothos & Chater, 2002). 

The simplicity principle, suggests that, generally, given some data, the simplest hypothesis 

that leads to the best description (or explanation) of this data, is most likely to be the correct 

one. This has been formalized in the simplicity model of unsupervised categorization, which 

suggest that the categories are chosen on the basis that lead to greatest reduction in 

codelength Broadly, this means that the categories that lead to the shorted codelength are 

those which remove (take advantage of) redundant information.

The results did demonstrate that some aspects of the simplicity model were able to 

predict accurately the unsupervised categorization results, however, for some conditions it 

did not do as well. These results have motivated additional research (not covered in my 

thesis), and modeling work to accommodate these new findings.

8.4 Summary of the work carried out in supervised categorization

In Chapter 7 ,1 examined the relationship between the unsupervised categorization 

results and the potential intuitiveness o f supervised categorization. This is an area in 

categorization that has received little attention. Supervised categorization differs from 

unsupervised categorization, because it is categorization where the group structure and labels 

are indicated by the experimenter. For example, the experimenter gives corrective feedback 

to the participant, which indicates that item 1 belongs to a group called ‘Chomps’ and item 

two belongs to a group called ‘Blibs’. This differs significantly from the work carried out in 

unsupervised categorization, which is based on free sort tasks, where the participants are not 

given any feedback, and can sort the items into categories on any basis they choose. As
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| indicated by the simplicity model, unsupervised categorization decisions are made on the 

| basis of information reduction, which loosely corresponds to the simplicity principle. The 

motivation for associating results in supervised categorization, was to identity whether the
i

I ‘intuitive’ categories (low codelength) were also those which could be learned and 

; remembered more easily. This work thus was intended to find some common theme between 

supervised and unsupervised learning, through the simplicity principle.

The findings from this work were promising, as I found a general relationship

| between intuitiveness of categories predicted by the simplicity model of unsupervised
|

categorization, and the ease with which participants could learn the supervised categories and 

also remember these categories a week later. This work provides promising evidence that the 

simplicity principle can be applied outside of unsupervised categorization, in the area of 

supervised categorization.

8.5 Some broader theoretical thoughts.

On the whole, these quite separate categorization research traditions have been related 

through the common theme of information reduction. Occam’s razor (see Chapter 2), seems 

to be prevalent through this categorization work, and has not been explicitly explored across 

so many domains of categorization work. Occam’s razor is a general theoretical attempt to 

formalize the notion that simple explanations are generally preferred. In unsupervised 

categorization this has formally been implemented in the form of simplicity principle, which 

was the basis for the simplicity model. However, to date, no such attempts have explored 

how this general theory of information reduction can be applied more generally throughout 

categorizations work. The work carried out on the relationship between unsupervised and 

supervised categorization in Chapter 7 formally investigated the application of such a theory 

to supervised categorization, with promising results. It is more difficult to relate the 

| simplicity principle with the work on relative vs. absolute categorization formally (i.e.,
i

| through a specific mathematical framework). However, in principle, this more formal

approach could be applied, where in some situations relational properties could be considered 

‘simpler’ by the cognitive system. A simple example of this is where the category ‘Chomps’ 

is smaller than the category ‘Blibs’, this requires just one bit of information to compute 

whereas in absolute mode of representation, each absolute representation would have to be 

considered according to exemplar theory, and thus would require more computation.
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8.6 Future work and directions; potential applications o f the measured used in 

this thesis work

8.6.1 Theoretical

This work provides a great deal of evidence which can lead to more investigations at 

both the theoretical and applied levels. For example, at the theoretical level, more work 

could be done to bridge the gap between the simplicity principle and relational representation. 

One plausible question is to what extent can we apply the simplicity principle, formally, 

outside of unsupervised categorization. Of course, the work here looked at the relation 

between supervised and unsupervised categorization, and, also, we have some speculative 

results that indicate that representation can change to ‘simpler forms’ (i.e., relative 

representations) when the information content is overly complex, but it is yet unclear if these 

ideas can be formalised more specifically.

Another area of direct theoretical work, could be to first refine the simplicity model, 

to fit the data more accurately, and then examine the ability of the model to account for 

changes in stimulus presentation and number of dimensions. For example, can the simplicity 

model predict the unsupervised categorization, accurately, using stimuli that is comprised of 

three of four dimensions? Also, would attention weights (as used in the GCM) need to be 

introduced to account for such more complex stimuli. At this stage, this is unclear.

There is yet another area that could be explored, which deals with modelling 

background information. For example, the simplicity model could, potentially be extended to 

deal with general knowledge effects through the simplicity principle. However, a formal 

account of such an approach would be clearly very difficult (Dreyfus & Dreyfus, 1986; Heit, 

1997; Heit & Bot, 1999; McDermott, 1987; Oaksford & Chater, 1991, 1998; Pickering & 

Chater, 1995). The closest attempt to date at solving this problem directly is from Heit 

(1999), who used an exemplar account for addressing the knowledge selection problem. 

Heit’s Baywatch model involves a supervised process where the experimenter provides the 

background information to the program, which allows its expert systems to select sub 

descriptions for the categories given. In one example, the category ‘buildings’, could be 

subdivided into ‘unique buildings’ by the expert system, such as identifying ‘churches’ as 

different to ‘schools’. This involves a process where new information is integrated with old
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and observed category members have a greater effect when they are consistent with 

background information (see Heit, 1994). So, the simplicity model, could in principle be 

applied in a similar way.
i

|

j 8.6.2 Applied
i

i
i

In one potential application, the simplicity model could be applied directly to the area 

of autism, where there is much debate over the mechanisms behind over-selectivity. For 

instance, several suggestions attempt to explain why individuals with ASD have problems in 

discrimination learning with complex cues. These include attention deficits (Dube et al.,

1999; Lovaas et al., 1971), encoding problems (Boucher & Warrington, 1976; Reed & 

Gibson, 2005), and post-processing or retrieval problems (e.g., Leader et al, 2009). 

Unsupervised categorization could be employed in this area to determine whether over­

selectivity is caused by deficits in attention as there is already evidence from supervised 

categorization experiments showing learning deficits (Klinger & Dawson 1995; 2001; Bott et 

al., 2006).

Similarly, as the autistic population have shown to have limited ‘absolute 

representation’, demonstrated by their reduced supervised categorization performance, this 

could lead to more ‘relative mode’ representations when using the relative vs. absolute 

experimental paradigm. So, there is a lot more room for extending this work to other 

populations, especially in relation to cognitive deficits, such as an autistic population.

Likewise, this could also be applied to the area of traumatic brain injury, where over-
!
| selectivity has been shown by Way land and Taplin (1985), and potentially many other

| clinical areas. This would therefore have important implications in terms of interventions that

I could be used. This could lead to further research into how to ameliorate dysfunctional over-

; selectivity in category learning. Therefore, there is a clear impact on potential ‘users’ of this

research in a directly practical and applied way. I plan to use the experimental data to 

investigate further what interventions are most appropriate for the specific attention- or 

learning-based deficits, as it might be the case that certain individuals with ASD would need 

specially catered interventions, based on their specific attention or learning deficit needs.
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8.7 Closing comments

The present investigation has explored themes in the categorization area. This includes work 

in unsupervised, supervised categorization, as well as relational shifting (within supervised 

categorization). I have demonstrated that the simplicity principle is useful as a general means 

of describing and predicting categorization. However, it is clear that much additional work 

needs to be carried out, with additional dimensions, and modelling work in the area of 

background knowledge. There is also potentially a lot of applied work that can be considered 

in the areas of autism, and clinical populations.
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