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Abstract

The fracture of the connections in large earthquake are caused not only by the 

conditions of stra in  rate, m aterial properties of steel, welding detail of scallop, 

tack welding and end tabs, but also by the forms of column-beam connections. In 

the 1994 Northridge earthquake (USA), brittle facture initiated a t a very low 

level of plastic demand, and in some cases, structure rem ained nearly elastic. In 

the 1995 Kobe earthquake (Japan), however, majority of rectangular hollow 

section (RHS) column-to-beam connections th a t fractured during the earthquake 

accompanied extensive yielding or local buckling at beam-ends. After the 

earthquake, improvement of connection design was proposed and various beam- 

to-column connections were recommended to be configured with sufficient 

strength  so th a t plastic hinges occur within the beam span and away from the 

face of the column (SAC Joint Venture 1995). One way to reach the sufficient 

strength of a connection is to reinforce the beam ends by additional members or 

plates. Another approach is to reduce the cross section of the beam intentionally 

to produce an intended plastic hinge zone located away from the column face. 

The researchers hope to develop a new design concept for avoidance of brittle 

facture. Thus, the research described the current project focused on the 

development of finite element models to find optimized designs for avoiding 

prem ature occurrences of brittle fracture in RHS column-to-I beam connections.

The thesis firstly describes the validation of finite element models against 

experim ental results. The ABAQUS finite element package is used to sim ulate 

the experim ental behaviour observed in tests. The comparison shows an accurate 

correlation between the finite element and experim ental results of the 

connection behaviour. This proves th a t the finite element method is capable of 

accurate predicting RHS column-toT beam connection behaviour. Subsequently, 

two optimized joints, based on weakening the beam section, are proposed and



discussed. Particularly, it provides an alternative way to develop some new 

design concepts.

For partially  restrained column-to-beam connections, the m oment-rotation 

curves are of great importance for designers, however, in the past, these curves 

only obtain from the experiments in combination with an analytical approach. 

Along with the development of finite element method, m oment-rotation 

behaviour can be obtained from numerical method.
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CHAPTER 1

Introduction
1.1 Background

Steel structural hollow sections, circular, square and rectangular, are some of the 

most efficient structural sections under compression loading, and are unique in 

the world of structural steel sections because their geometries are such th a t their 

m asses are distributed away from their longitudinal axes, making them  ideal for 

use as column. The conventional beam-to-column connections, which are most 

commonly applied in the world, are diaphragm s through the columns at the 

positions of the beam flanges which are groove-welded to the through 

diaphragm s, while the beam webs are either welded to the column faces or bolted 

to the columns via shear tabs. Engineers believed th a t the joints between the 

beam flanges and columns using Complete Joint Penetration (CJP) groove 

welded can satisfy the over-strength criteria to allow formation of plastic hinges 

in beams (European Committee for Standardization, CEN 1994, International 

Conference of Building Officials, ICBO 1994). However, the Kobe earthquake in 

Jap an  (1995) revealed th a t the conventional types of rectangular hollow section 

(RHS) column-to-beam connections in building frames were susceptible to brittle 

fracture under the strong ground motion. In the earthquake, most cracks in RHS 

column-to I beam connections started  with ductile tear, and then changed to 

brittle fracture a t the beam-ends after the connections sustained extensive 

yielding or local buckling.
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The potential for brittle fractures in steel building structures has increased in 

recent years as a result of the following changes in structural design, as observed 

by Rolfe and Barsom (1996)'

1) S tructural engineers and architects are designing more complex 

structures than  in the past.

2) There is an increased use of high-strength, thick, welded steel members, 

as compared with lower-strength, thinner, riveted or bolted steel 

members.

3) The choice of construction practices has become increasingly dependent 

on the minimum cost.

4) More precise methods of computer analyses, which decrease the factor of 

safety th a t has been historically incorporated in design, are being used.

After the earthquake, various improvements of connection design were proposed. 

Improved details to prevent brittle fractures were developed not only under the 

consideration of m aterial properties, welding details of scallop, tack welding and 

end tabs, but also the connection forms. One way to achieve the sufficient 

strength  of connections is to reinforce the beam ends by additional members or 

plates. Another alternative approach is to reduce the cross section of the beam 

intentionally (weaken the beam section), to produce an intended plastic hinge 

zone located away from the column face and reduce the stress levels in the 

vicinity of the complete joint penetration (CJP) flange welds. Researchers hope to 

develop a new design concept to avoid prem ature occurrence of brittle fracture.

1.2 The Aim and Objectives of the Present Research
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A series of tests was conducted on RHS column-to-beam connections reinforced at 

the beam ends. The prim ary purpose of the tests are to find possible solutions for 

avoiding prem ature occurrences of brittle fracture so th a t beam-to-column 

connections would show a sufficient deformation capacity to meet inelastic 

demand from earthquakes. After the tests on both conventional and improved 

connections, it was found th a t fractures in connections did not occur in the 

improved connection and a larger energy dissipation capacity was achieved.

However, because of the high costs of experiments, the num ber of tests is usually 

limited. Even if the cost is not a m ain concern, the experim ents are generally 

lim ited to the variation of a few param eters th a t have the most effect upon the 

connection behavior. A partia l solution to this problem is to use finite element 

packages to model additional variations in param eters. In the last decades, the 

finite element method (FEM) has been developed as a cost-effective and reliable 

tool and offers more flexibility and possibility to investigate a wider range of 

param eters than  experiments can cover. Thus, the research on beam-to-column 

connections is further extended using the finite element method.

The aim of this study is to use the finite element method to investigate RHS 

column-toT beam connections for avoidance of brittle fracture a t the beam ends. 

After comparing with the experim ental results to validate the finite element 

method, the finite element method can be use to provide reliable analysis of the 

behavior of connections and develop more new connection types.

For partially restrained column-to-beam connections, the moment-rotation curves



[CHAPTER1: Introduction]

are of great importance for designers, however, in the past, these curves are only 

obtain from the experiments in combination with an analytical approach. Along 

with the development of finite elem ent method, the moment-rotation behaviour 

can be obtained from numerical methods.

The objection of the present research

1. to validate the finite element method with the experim ental result

2. to creation the reliable models

3. to develop more new connection types

1.3 The Layout of the Thesis

The thesis s tarts  with a literature review about the research in Chapter 2. Then, 

a series of experiments which was conducted by the author before this project are 

reported in Chapter 3. The details include the test set-up, welding procedure, 

m aterial properties, and loading procedure etc. The experim ent and results are 

also described.

The basic concept of non-linear continuum  mechanics is introduced in Chapter 4. 

The use of the finite element method in solving m aterial and geometric 

nonlinearity problems is discussed in Chapter 5. These provide the basis of the 

computational strategy employed in the subsequent chapters.

Chapter 6 is concerned with finite elem ent simulations of a num ber of test 

specimens. Four test specimens are sim ulated numerically and the finite element 

results are validated against a series of test data described in Chapter 3.
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Chapter 7 uses the FEM to simulate more new connection types. As stated  in the 

beginning of this Chapter, by weakening the beam section, connection 

assemblages are found to show excellent plastic deformation capacity. This 

approach can be done either by cutting a portion of the beam flange (reduced 

beam section, RBS) or by reducing the beam web (RBW) connections. Among 

these methods, the RBS is known to be better. However, this type of connection is 

relatively costly due to the cutting of flanges at four locations a t each end, 

especially in the presence of floor slabs for rehabilitation purpose. Moreover, in 

these connections, the cutting of flanges reduces the beam stability and increases 

the probability of beam lateral torsional buckling. On the other hand, these 

problems are less severe in the RBW connections where the reductions are made 

in the beam web. Therefore, the numerical investigation in the present project is 

concentrated on RBW connections. Although only two configurations of RBW 

connection are sim ulated in this Chapter, it provides an alternative way to 

develop some new design concepts.

Chapter 8 gives the design equations of connections, and Chapter 9 draws some 

conclusions, and highlights recommendations for future work.

5
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CHAPTER 2 

Review

2.1 B rittle  Fractures of S tee l Moment Connections in the 

Kobe Earthquake

The 1995 Kobe earthquake took structural engineering professionals by surprise 

for the fact th a t many of weld connections in modern steel building frames 

sustained brittle fracture. Engineers had held a believe for a long time th a t the 

joints between the beam flanges and columns using Complete Jo in t Penetration 

(CJP) groove welded satisfy the over-strength criteria to allow formation of 

plastic hinges in beams (CEN 1994, ICBO 1994). The 1995 Kobe earthquake 

revealed th a t the conventional types of RHS column-to I beam connections were 

susceptible to brittle fracture under the strong ground motion. These fractures 

were concentrated on regions around beam bottom flange groove welds a t the 

beam ends in multi-story moment resisting frames.

2.1.1 Connection Details

The typical detail of beam-to-column connections, which is designed to fulfil 

requirem ents for fully restrained moment connections according to the Japanese 

building code, is shown in Figure 2.1. The connection has through diaphragm s at 

the position of beam flanges. The connection panel is actually a stub-column 

groove welded to the through diaphragm s a t the ends. The beam flanges are 

shop-welded to the diaphragm s using single bevel complete penetration groove 

welds with backup bars, while the beam web is fillet welded to the column flange.
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The connection detail for field welding application is sim ilar to Figure 2.1, except 

th a t the beam flange are field welded and the beam webs are field bolted. Gas 

m etal arc welding has used both for shop and field welding. Cope holes are 

prepared in the beam  webs for almost all of the connections.

r  h r o u g h 
i a p h  r a g m

Figure 2.1 Typical shop w elded  connection  

2.1.2 Failure Modes

Three representative fracture paths are illustrated in Figure 2.2. Many of the 

fractures observed following the earthquake appeared to occur within or initiate 

from the beam flange groove welds. The majority of fractures occurred a t the 

beam bottom flanges.
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C o  1 u m n 
F I  a n g e

Di  a p h r a g m

r.

y

B e a m
F l a n g e

' 7 ^  \\ / k i x
[ :

F r a c t u r e  
P a t h s

Figure 2.2 Fracture paths

a. Tensile failures started  from corners of cope holes. Most of these cracks 

initiated by ductile tear but changed to brittle fractures as they grew (AIJ 

Kinki 1995). Figure 2.3 shows one example of these cracks. The crack ran  

across the full flange section in a brittle m anner. The fracture occurred 

after fully yielding of the flange section.

8
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Figure 2.3 Crack initiated at corner of cope hole ran across flange [Inoue 1995]

b. Figure 2.4 shows a crack s tarted  from the toes of welds between the heam 

flange and the diaphragm. A divot of diaphragm m ateria l was pulled away 

from the diaphragm itself. The crack extended in a brittle  m anner  with 

shear lips after yielding of the beam flange. Cracks frequently emerged 

from notch roots formed by steel weld tab and beam flanges, and then, ran  

into the welds and the beam flanges in a brittle m anner.

9
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Figure 2.4 Crack begun at weld toe ran through diaphragm [Inoue 1995]

2 .1 .3  P o ss ib le  C au se s  of B r i t t le  F r a c tu re s

Causes of tensile failures at beam ends have been studied over the  past years, 

which are sum m arized below:

a. The Kobe earthquake recorded ground motions significantly s tronger th an  

the design spectra specified in the Japanese  building code. The inpu t energy 

due to the  Kohe ear thquake  was approximately 3 times the energy postulated 

in the code (Akiyama 1997). Therefore, the plastic deformations susta ined  by 

mem bers and connections should have been much greater th a n  those 

postu la ted  at the design stage.

10
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b. The groove welds a t the beam ends in large-sized moment connections are 

under conditions more critical than  those prepared for by designers and 

fabricators before the Kobe earthquake.

c. An abrupt change in contour a t the root or at the toes of welds no doubt 

invites severe stress concentrations. Backup bars and weld tabs create 

notches a t the root of un-fused regions, which also contribute to elevate 

concentrated stresses.

d. Weld defects are unavoidable in any welded structure.

e. The strain  rate effect on m aterial toughness properties is also one of the 

reasons.

Test results obtained a t the University of Texas a t Austin (Engelhardt and Sabol 

1994) and Lehigh University (Kaufmann and coworkers 1996) dem onstrated th a t 

the beam flange groove welds were incapable of carrying axial loads in the 

flanges until plastic hinges formed a t the beam ends. Low toughness weld m etal 

obtained by using the electrodes and by high deposition rate welding rate welding 

procedures appears to have played an im portant role inducing brittle fractures.

In 1995, Engelhardt and Sabol (Engelhardt and Sabol 1995) proposed th a t 

improved performance of moment connections may not be achieved solely by 

improving weld quality. This is because the lack of flexural capacity in the bolted 

web connections leads to overstress of the beam flange and the flange groove 

welds. They performed a simplified analysis of a beam, with the assum ption th a t 

the web connection does not transfer moment and th a t the beam m ust a tta in  a 

bending moment of 1.2MP to develop large plastic rotations.

li
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2.2 Research of Moment Connection Behaviour with  

Conventional and Improved D eta ils  -  Experim ental Aspect

2.2.1 Post~earthquake Research

A large-scale research project was started  a few m onths after the Kobe 

earthquake (AIJ Kinki 1997). The prim ary purpose of the project was to find 

viable improved detail of connections so th a t beanrto-colum n assemblies would 

show a sufficient deformation capacity to meet severe inelastic demand from 

future earthquakes. The improvements in details, however, were proposed to be 

achievable by ordinary fabricators with only minor changes in their equipment 

and resources. More thorough research in connection design to seek long term  

solutions for preventing brittle fractures in connections was outside the scope of 

the project. Beanrto-column connections selected for the research were RHS 

column and wide flange beams, with the through diaphragm s a t the positions of 

beam flanges, because these connections were most commonly used in Japan.

A series of cyclic loading test was performed on beam-to-column assemblies using 

86 specimens. Variables incorporated in these tests include-

I. M ain variables'

1) Connections designed for shop and field welding applications

2) Dimensions and m aterial properties of beams

3) Conventional and improved profiles of beam copes

4) Thickness of through diaphragm s

5) Steel weld tab and flux weld tab

II. Supplementary variables'

12
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1) Stringer beads and weave beads

2) Static loading and dynamic loading

3) Test tem peratures, room tem perature and cryogenic tem perature

For each of selected combinations of the m ain variables, 4 duplicate specimens 

were fabricated by two different fabricators and tested a t two different 

institutions.

Test results were ra ther surprising because they showed th a t brittle fractures 

could not be prevented, if steel buildings were subjected to strong ground motion 

like the Kobe earthquake. The cumulative plastic deformation factor q (as 

defined in Appendix 2), which are listed in table 2.1, represents the plastic 

deformation capacity under cyclic loading conditions.

Table 2.1 Investigation results o f  post-Kobe earthquake

Welding n n

shop welding 50.8 70

field welding 48.3 16

Note* q denotes the cumulative plastic deformation factor, and n denotes the 

num ber of specimens.

Thus, it will be limited in term s of improving the plastic deformation 

requirem ent of the connection if only some dimensional changes are made. 

Therefore, other new design concepts were further considered, including in 

reinforcing the beam ends by additional members or plate or reducing the cross
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section of the beam intentionally to produce an intended plastic hinge zone 

located away from the column face,

2.2.2 New Connections

In 1998, Kurobane et al. (Kumamoto University, Japan) developed a new type of 

connections w ith the beams being connected to the through diaphragm  plates by 

bolts (see Figure 2.5). These new connections belong to one of the alternative 

approaches to the conventional connections th a t have welded joints at critical 

sections a t the beam ends. The through diaphragms are extended sufficiently 

long to accommodate bolted beam splices used as field connections. The thickness 

of the through diaphragm s can be chosen to be greater than  the thickness of the 

beam flanges so th a t the w eakest sections move from the beam sections adjacent 

to the column faces to the beam splices. The performance of new connections is 

largely governed by the performance of beam splices in cyclic loading.

14
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Figure 2.5 New bolted connection
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A series of tests  was conducted, and Figure 2.6 shows examples of the moment vs. 

rotation hysteretic curves, in which a new connection is compared with a 

conventional connection. Both the new and conventional connections use the 

same beam and column section.

120

Xev co n n e c t io n

-6 0

Conven io n a l  conneo ton

-120
- 0 . 12 -0 . 08 0 . 0 4-0 .  04 0 0. 08 0 . 12

0

Figure 2.6 M om ent vs. rotation hysteretic curves

The conventional connection sustained cracks along the toes of welds a t the outer 

edges of the beam flange (one crack initiated on the  side of the beam flange and 

the other crack initiated on the side of the through diaphragm). The two cracks 

extended in a ductile m anner and led to a separation of the beam flange from the

16
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connection. The cumulative plastic deformation factor p reached 56 (see Figure

2.7)

Figure 2.7 Failure mode of conventional connection [Kurobane 1998]

The new connections sustained the combined tensile yielding and local buckling 

of the beam flanges and web adjacent to the beam splice, of the splice plates and 

of the flanges and the web of the stub beam connected to the column (see Figure

2.8). One of the beam flange sustained necking and was about to tear  off at the 

final stage. Four major slips at the bolted beam splice occurred during the first 2 

cycles. The cumulative plastic deformation factor p reached 158.

17
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Figure 2.8 Failure mode of new bolted connection [Kurobane 1998]

Advantages of these new connections over conventional connections are not only 

in a greater energy absorbing capacity (see Figure 2.9) but also in the fact th a t  

brittle fracture can be avoided by using sufficiently tough m ateria l for the beam. 

The beam flanges at bolted connections sustained plastic deformation largely in 

plain stress state, suggesting the flanges would fail by plastic instability ra th e r  

than  by brittle fracture.

18
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120

100

New co ■inection

2
5

Convent! onal 
connection

-08 - 0.6 -04 - 0.2 0 02 04 08

J. 0  (rad]

Figure 2.9 Cumulative plastic deformation factor based on dissipated energies

In 1999, Kurobane (Kumamoto University, Japan) proposed ways to s treng then  a 

beanrto-colum n joint with horizontal haunches based on the extensive series of 

tests. Kurobane et al. used welded built-up beam sections in which each of the 

beam flanges with horizontal haunches were cut from a single piece of plate. The 

joints can be fabricated by welding trapezoidal rib plates to flanges of rolled wide 

flange section beam. Test results  using these joints were found successful in 

dem onstrating sufficient rotation capacity.

Based on the previous works, the Author (Wu 1999) conducted a series of tes ts  on 

RHS column-toT beam specimens under cyclic loading. The specimens included 

both welded and bolted connections, similar to the  connections tested  by
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Kurobane et al. (kurobane 1998) The connection detail is to use the through- 

diaphragm  in which a cut is prepared along the edge of the through- diaphragm 

so th a t the beam flange fits into the cut, creating a welded joint of rabbet 

( [ or ] -shape) to reinforce the beam end strength  (See Figures 2.10 and 2.11). 

After performing a series of tests on both conventional and improved connections, 

it was found th a t fractures in connections did not occur in the improved 

connection and larger energy dissipation capacity was performed than  the 

conventional types. More details about this work are described in the next 

Chapter.

R20

M L

□  -400X400X12
S e c A - A

□  -400X400X12

B H-5Q0X 2  QOX10X16

T -  1

A 'A

RH-50QX200X10X16

T - 2 ,  3

Figure 2.10 New connection of improved type (1)
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K.-19

520

A - A
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/ 107 f i  380 4C
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Figure 2 .11  N ew connection of improved type (2)

2.3 Numerical S im ulations on Bolted Connections - 

Numerical Modelling Aspect

As the current project concerns modelling the behaviours of RHS column-to-I 

beam connections, the creation of a reliable finite element model is a prim ary aim. 

Steel beam-to-column connections normally use welded and bolted. Because a 

bolted connection consists of complex interaction between various entities, it  is 

more complicated than  welded connection in finite element modelling. Some 

existing numerical simulation work on bolted connections is reviewed first.
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Bolted end-plate connections have been widely applied in steel structures, 

because of the simplicity and economy of their fabrication and assembly. Figure 

2.12 shows an example of a bolted end-plate connection. Because of lim itation in 

computational capabilities, both in term  of software and hardware, the first 

attem pts of sim ulating bolted connection only involved two-dimensional (2D) 

models.

K rishnam urthy (Krishnam urthy, N and Graddy, D.E 1976) can be considered as 

one of pioneers in the field of finite element simulations in bolted connections. He 

reported several publications in 1970’s. Because 3D FE models were 

computationally expensive, K rishnam urthy and Graddy (Krishnam urthy, N and 

Graddy, D.E 1976) analysed a benchm ark connection by 2D and 3D models. The 

correlation between these results was the use for the prediction of other 3D 

models based on the results of corresponding 2D models.

Sherbourne and B ahaari (Sherbourne, A.N and Bahaari, M.R 1994) presented an 

analytical method based on finite element modelling to study the moment- 

rotation relationship for a steel bolted connection. The shell elem ent approach 

has been used to model beams, columns and endplates. The finite element code 

ANSYS was used for the equivalent 3D analysis. The contributions of various 

connections, like bolts, endplate and column flanges on the flexibility of the 

connection was identified.
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Figure 2.12 An example of a bolted end-plate connection [Wheeler et al 1997]

As computers became more powerful during the last two decades, a steady 

increase in the size of the finite element models became possible. This made the 

analyses of less simplified and more realistic. In 1996, Choi and Chung (Choi, 

C.K and Chung, G.T 1996) performed a finite element analysis for models, 

including the bolts and completely based on solid elements. Because bolted 

connections consist of various components with complex interaction between the 

various entities, it is understood th a t  a more accurate description of the geometry 

of the components requires a more complex solution procedure. The authors  

highlighted the iterative character of the solution strategy to describe these 

highly non-linear processes, both in term  of m aterial behaviour and geometric 

response.

Not only enhanced the capacity of the hardware, but also the capabilities of the 

software improved, New solution techniques were derived, making numerical 

analyses much more efficient in te rm s of computational time, The introduction of
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sophisticated contact algorithms further widened the application of num erical 

methods. “Contact” in its simplest form can be described by the use of so-called 

“gap elem ents” which impose displacement compatibility between user-defined 

pairs of nodes. However, such elements can only be used when friction can be 

ignored. In addition, modelling of such elements is a tedious and time-consuming 

task. To overcome these problems, commercial finite elem ent packages developed 

more user-snug options, such as contact between surface and interface element 

instead of the node-to-node contact definition required by gap elements. The 

improved contact algorithms also enabled the modelling of shear and friction 

between the contacting surfaces.

In 1997, Bursi and Jasp a rt (Bursi, O.S and Jaspart, J .P  1997) presented their 

numerical results on isolated bolted tee-stub connections. Unlike most of the 

previous studies, the bolt head and the flange plate were now modelled as 

individual components and no longer connected through common nodes, enabling 

the relative movement between these components. The work used the finite 

element method and the ABAQUS finite element code to analyse four-bolt un ­

stiffened extended moment endplate connections under static loading. The 

purpose of the study was to examine the stiffness and strength  behaviour of these 

connections. The results obtained from the finite element analyses were 

evaluated by comparing with those obtained from an experim ental study. 

Endplate rotation and bolt forces were both considered. It was intended to show 

the feasibility of using the finite element method via commercial codes to 

determine moment-rotation characteristics of semi-rigid connections. The finite 

element model considered by the authors was quite complex. The bolt and bolt
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head were modelled using beam elements. Both preloaded and non-preloaded 

bolts were considered. The endplate and beam element were eight-node brick 

element. Contact elements were used to describe the interaction between the 

endplate and the rigid column flange. Around the bolt holes, nodes were 

constrained in the direction perpendicular to the face of the endplate.

The same approach was followed by Wheeler et al. (Wheeler, A.T, Clarke, M.J 

and Hancock, G.J 2000) who carried out numerical simulations on bolted end­

plate connections subjected to pure bending. Figure 2.13 shows one of the 

configurations analysed. Prior to the finite element simulations of the assembled 

model, Wheeler et al (Wheeler, A.T, Clarke, M .J and Hancock, G.J 2000) first 

conducted a series of numerical analyses to determine the most efficient type of 

element and corresponding mesh density for each of the components (i.e. end­

plate, bolts, weld beam section). They recommended the use of eight nodded, 

hybrid elements with four elements modelled through the thickness of the end 

plate. The same element type was employed to model the bolts. To avoid the 

problems associated with rigid body movements, loading of the connection was 

carried out in five steps, such as pre-tensioning of the bolts, applying moment to 

the tip of the beam section, etc.

Another example of an experim ental programme followed up by a numerical 

study is the work reported by Willibald et al (Willibald, S, Packer, J.A and Puthli, 

R.S 2001) who investigated bolted flange-plate connections for square and 

rectangular hollow sections under pure tension. Except for the elem ent type 

employed for the bolts, the concept of the finite element models analysed by
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Willibald closely followed the approach adopted by Wheeler et al. Unlike Wheeler, 

Willibald used twenty-nodded, quadratic  brick elements to model the bolts.

Figure 2.13 An example of FE analysed by Wheeler et al [Wheeler et al 2000]

In end-plate connections, load transfer  prim arily takes place through axial

loading of the bolts. However, when bolted connections are subjected to shear

load, the finite element simulations become more complicate, because of the

specification of additional contact surfaces. An example of the use of shear bolts,

including the difficulties encountered in the finite element analyses, is described

by Swanson et al. After having conducted a series of experiments, Swanson et al

(Swanson, J.A, Kokan, D.S and Leon, R.T 2000) carried on with finite elem ent

simulations on bolted T-stub connections. The configuration, illustrated  in Figure

2.14, consists of a T-stub section which was attached to a column flange through

tension bolts. Shear bolts were used to connect the beam flange to the T-sub. The

finite element mesh, almost exclusively modelled by quadratic, solid elements,
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contained approximately 7300 elements, resulting in 53000 degrees of freedom. 

The convergence problems caused by rigid body motions, had to be overcome by 

assum ing artificial boundary conditions on the T-stub section.

Figure 2.14 T-stub connections study by Swanson et al [Swanson et al 2000]
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CHAPTER 3

Experiments and Results

In order to find possible solutions for avoiding prem ature occurrences of brittle 

fracture in RHS column-to-I beam connections, a series of tests was conducted by 

the author in 1999 (Wu 1999). The specimens tested included both welded and 

bolted connections. Test results show th a t the improved connection does not fail 

by fracture as observed in the convention types and has a larger energy 

dissipation capacity than  the conventional types. By comparing w ith the 

experim ental results to validate the finite elem ent method, we can create reliable 

finite elem ent models to study and develop more new connection types. For the 

convenience of the FE validation and reference, the experiments and the relevant 

results are presented in this Chapter.

3.1 Building Code

The existing seismic codes, such as the Japan  building code (Building Centre of 

Japan  BCJ 1997), Eurocode 3 (CEN 1994) and ICBO 1994, require th a t beam-to* 

column connections in special moment resisting frames be strong enough to 

ensure formations of plastic hinges preferably a t the beam ends. The following 

over-strength criterion is recommended for connection design in BCJ 1997, CEN 

1994:

2  a M p (3 . 1)

28



[CHAPTER3: Experiment and Results]

in which M f.Rd and Mp denote the flexural resistance of the connection at the 

column face and full-plastic moment of the beam, respectively! a is the over­

strength  factor. The value of a specified in the Architectural institu te of Japan

between 1.25 and 1.4 (average 1.3). Eurocode 3 recommends the over-strength 

factor of

T-2, 3 and 4 (see Figures 3.2, 3.3, 3.4 and 3.5). T -l is a conventional connection 

type, w ith e n d M u>  1.3Mp, where e n d M u is the ultim ate flexural capacity of the 

specimen and Mp is the full plastic moment of the beam! T-2, 3 and 4 are the 

improved types, with e n d M u =a (fMu+wMp), where fMuis the ultim ate moment of 

the beam flange and WMP is the plastic moment of the beam web, and

Where the lengths Lh, Lp and Lt are shown in Fig.3.1. Note th a t the Lp in T-3 is 

65mm longer than  T-l and T-4, 40mm longer than  in T-2 in order to compare 

deformation capacity.

(AIJ) Recommendation (1997) varies with the m aterial to be used and is typically

cc =  1 .2y Mw /  y Mo=  1.36 or greater (3.2)

3.2 Specimen Design

In order to compare the test results, specimens were made in two types- T-l and

(3-3)
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T 2.3 .4

L M   L

Figure 3.1 Specimen design

3.3  S p ec im en  D e ta ils

Full size beanrto-colum n connections were tested to failure under cyclic loads. 

All the specimens were one-sided connections, each having a wide flange beam 

with the nominal dimensions (in mm) of 500x200x10x16 welded to a colcFformed 

square  hollow section column with the nominal dimensions of 400x400x12. All 

the  specimens had through diaphragm s at the positions of the beam flanges to 

tran sm it  axial forces in the flanges to the columns. The diaphragm s were cut 

from a single piece of plate in which a cut was prepared along the edge of through 

diaphragm  so th a t  the beam flange fit into the cut, creating a welded joint of 

rabbet ( [-shape) to reinforce the beam end strength. In specimen T-2 and T-3, 

both beam flanges were welded to the through diaphragm  plates while the beam 

web was bolted to the fin plate by a single row of five bolts. In specimen T-l, the 

beam web was welded to the column flange, and both beam flanges were welded 

to the through diaphragm  plates. T ‘4 had through diaphragm s a t  the beam top 

flanges and in te rna l d iaphragm s at the beam bottom flanges while the  beam web

3 0
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was bolted to the shear tab by a double row of four bolts. At the position of 

in ternal diaphragm, a flange plate with bolt holes was butt-welded, which was 

connected to the beam bottom flange by the single-shear high-strength bolted 

joint. All the specimens a t the beam end used complete joint penetration groove 

welds. Configurations of specimens are shown in Figures 3.2, 3.3, 3.4 and 3.5.

31



[CHAPTER3: Experiment and Results]

2650
200 200 9 7 ? 50 . 803 50 . 5 2 5  _ 250

| - 2 0

Eb40M 00X l2

H-500X200X10X16

R35

20— A

R20

\R 2 0

.15 5
HO | | 100 100 [ HU

25 _ 200 _ 25
55 440 55

550

C O
C O

C O
C O

C O
C O

C O
■ C O
C V J

C O
o c

: K 3

Figure 3.2 Detail o f  connection  T-l
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Figure 3.3 Detail of connection T-2
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3.4 M aterial Properties

All the tensile coupon tests  were taken from one section of the beam and column. 

The details are shown in Appendix 1. Mechanical properties of m aterials are 

summarized in Table 3.1. All the m aterials were of weld-able low-carbon steel 

specified as Japan  industrial standard (JIS) SS400 and STKR400, roughly 

equivalent to US ASTM A36 and A501 steels.

Table 3.1 Mechanical properties of materials

Location ay

N/mm2

a u

N/mm2

E.L

%

E

kN/mm2

Y.R t

mm

Beam flange 306 448 23 212 0.68 15.45

Beam web 331 447 25 208 0.74 9.72

Column 338 439 22 202 0.77 11.48

Fin plate16mm 311 467 25 207 0.67 15.96

Diaphragm plate19mm 278 406 29 212 0.69 18.62

Note: o y= stress at the yield strength; o u= stress at ultimate tensile strength ; E.L.= 

elongation; E= elastic modulus ; Y.R.= yield ratio (oy/a u); t=Thickness

3.5 Test Set-up and Load Sequences

All the specimens were configured to form a T-shaped assembly with a single 

wide flange beam connections. The both ends of the column were fixed to a strong 

floor, while the cyclic shear load was applied a t the end of the beam by a double 

hydraulic jack. The loading arrangem ents are shown in Figure 3.6. Lateral 

bracing systems were provided a t two positions of the beam.

Displacement m easurem ents taken  were not only the horizontal displacement ui 

a t the loading point but also the vertical displacement vi and V2 a t the
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diaphragm s and the horizontal displacement 112 a t the column end. The rotation 

of the beam 0 was calculated by the following equation-

Q _  Ml ~ U 2 V2 - V ,

J d (3.4)

Where L and Ja denote the distance from the loading point to the column face and 

the distance between the centroids of the top and bottom beam flanges, 

respectively.

All the specimens were subjected to slowly applied cyclic loading in the following 

way^ a t least 2 cycles of reversed loading in an elastic region and, subsequently, 

displacement controlled cyclic loading with the amplitude increased as ±20p, ±40p, 

±60p, ... up to failure, where 0P represents the elastic beam rotation when the 

beam moment a t the column face reached the full plastic moment Mp which can 

be calculated by the following equation:

L 1 M n
0 =  M  +  p-  (3.5)

p 3 E l p GA ,̂ L

Two cycles of loading were applied a t each displacement increment.
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C V J

I________________ 3000_________________ J

Figure 3.6 Test set-up 

Note- ui, U2 : horizontal displacement 

vi, V2 : vertical displacement 

P- load

3.6 Summary of Test Results

Figures 3.7, 3.8, 3.9 and 3.10 show the bending moment vs. beam rotation 

hysteric curves a t the column faces. The moment is the maximum moment a t the 

column face Mm and is non-dimensionalized by the full-plastic moment Mp of the 

beam. The moment takes positive values when the bottom flange is in tension. 0 

is determ ined by equation 3.4.
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Figure 3.7 the bending m om ent vs. beam rotation hysteric curves (T-l)
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Figure 3.8 the bending m om ent vs. beam rotation hysteric curves (T-2)
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Figure 3.9 the bending moment vs. beam rotation hysteric curves (T-3)

5

0. 5

0

0. 5

o

2
0. 08 0. 04 0 0. 04 0. 08

0 m

Figure 3.10 the bending m om ent vs. beam rotation hysteric curves (T-4)

Specimen T-l showed the following failure sequences-

4 0



[CHAPTER3: Experiment and Results]

1. A hair crack was found a t the bottom flange.

2. A hair crack was found a t the top flange.

3. The crack extended to 2mm a t the bottom flange.

4. Bolt slip.

5. The crack extended to 3mm a t the top flange

6. The crack extended to 6mm at the bottom flange while a crack was found at the 

bottom cope.

7. The crack expanded to 6mm at the top flange.

Specimen T*2 showed the following failure sequences.

1. A hair crack was found at the bottom flange.

2. A hair crack was found a t the top flange.

3. The crack extended to 2mm a t the bottom flange while a crack was found a t the 

bottom of beam cope.

4. The crack extended to 4mm a t the top flange while a crack was found a t the top 

of beam cope.

5. The bottom cope crack extended to 1mm. A crack was found a t the web.

6. The crack extended to 40 mm a t the top flange.
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7. The crack extended to 30mm at the bottom flange, which led to bottom cope tear 

off through.

Specimen T-3 showed the following failure sequences.

1. A crack was found a t the bottom flange.

2. A crack was found at the top flange.

3. The crack extended to 2mm at the bottom flange.

4. The top and bottom flanges were buckling.

5. The crack extended to 2mm at the top flange.

6. The crack extended to 4mm at the bottom flange.

7. The web was buckling

Specimen T_4 showed the following failure sequences.

1. Bottom bolts slip (beam flange).

2. A crack was found a t the top flange.

3. Bolts slip (beam web).

4. The bottom flange was buckling.

5. The top flange was bucking.

6. The crack extended to 2 mm at the bottom flange.

7. The web was buckling
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One of the  im portan t failure modes observed in the test was tensile failure of the 

beam flanges. First, cracks were found e ither a t the tip of the weld toes of 

horizontal haunches or a t the toe of beam copes. Then, these cracks grew 

gradually with load cycling and were linked together, and finally led to tensile 

failure of the beam flange in T _1 and T-2 (see Figure 3.11). T*3 and T*4, which 

was designed to have sufficient tensile capacity a t the flange ends, reached the 

maximum loads only leading to local buckling of the top and bottom flanges and 

web of the beams (see Figures 3.12 and 3.13). Although the cracks described 

above were found in th is  specimen as well, the crack growth was stable.

Figure 3.11 Tensile fa ilure T - l and 2
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Figure 3.12 Local buckling observed in T-3

Figure 3.13 Local buckling observed in T-4
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3.7 M o m e n t- ro ta tio n  R e la tio n s h ip s

Moment-rotation relationships for specimens T-l, T-2, T-3 and T-4 are obtained 

from so-called skeleton curves (see Figures 3.14, 3.15, 3.16 and 3.17). The 

skeleton curve is constructed from a hysteretic curved by linking a portion of the 

curve th a t  exceeds the maximum load in the preceding loading cycle sequentially 

(see Figure c in Appendix 3)
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Figure 3.14 T - l M om ent-ro ta tion  relationship
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Figure 3.15 T-2 M o m e n t - r o t a t i o n  relat ionsh ip
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Figure 3.16 T-3 M om ent-ro ta tion  relationship
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Figure 3.17 T-4 M oment-rotation relationship

The experim ental tests  have completed in this Chapter, this can now be used test 

da ta  to validate the finite element method and develop more new connections in 

the  following Chapters.

4 6



[CHAPTER 4: Non-linear continuum mechanics]

Chapter 4

Non-linear continuum mechanics

This chapter introduces some basic concepts of continuum mechanics. The 

definitions and notations introduced will be employed throughout the subsequent 

finite element simulations. The theory described is taken mainly from Billington 

and Tate, 19811 Bonet and Wood, 19971 Ciarlet, 19881 Gurtin, 19815 Lemaitre and 

Chaboche, 19901 Ogden, 19845 Spencer, 19805 Truesdell and Noll, 1965.

There are four types of notation which are used in this Chapter and the following 

Chapter- indicial notation, tensor notation, m atrix notation and voigt notation. 

To illustrate the various notations, the quadratic form associated with A and the 

strain  energy in the four notations are given as follows:

- £ :C :£ = - f„C9i(̂ = - { £}7[C]{£}

voigttensor

tensor

indicial

matrix indicial

4.1 Kinem atics of Deformation

4.1.1 Motion

Figure4.1 shows a general continuum body, B, which is arranged in an in itial 

configuration a t a time t=0 occupying the domain £2o, has changed its position
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and shape to the current configuration and occupies the region £2, after 

undergoing some motion and deformation.

Figure 4.1 General motion of a deformable body

The motion can be m athem atically described by a mapping between the initial 

and current particle positions as follows-

x = <p(X, t) (4.1)

where X represents a m aterial field and x is a spatial field. The m aterial position 

of a given particle is its location in the initial configuration. Its  spatial position is 

its location in the current configuration.

4.1.2 M aterial and Spatial Descriptions
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Any field variable associated with the continuum body may be referred either to 

the initial/m aterial configuration or to the current/spatial configuration. A field 

variable th a t is defined as a function of the initial position, X, represents a 

m aterial field. A m aterial field takes £2o XT as its domain, where T is the time 

interval over which the motion is defined. Such a field m ust be distinguished 

from a spatial field which is defined on the current position x and has QxT as its 

domain. The expression can be given as follows*

F = F(X, t) (4.2)

Which is a m aterial field, or

/ - / ( * ,  0  (4.3)

which is a spatial field.

In equations (4.2) and (4.3), F and /  are generic fields which may be scalar, 

vector or tensor valued.

A m aterial description can be easily obtained from a spatial description by using 

motion equation as follow-

/ ( x ,0 - / ( p ( X ,t ) , t )  (4.4)

4.1.3 D erivatives  

Temporal derivative

Given a field variable F th a t is defined as a function of the initial position, X, 

represents a m aterial field. The time derivative of F (X,t) is denoted by the 

operator D (*)/Dt, and the expression can be given as-
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= = (4 .5 )
Dt dt

This expression m easures the change in F associated with a specific particle 

initially located a t X, and is known as the m aterial or total time derivative of F. 

The other type of derivative is known as the spatial or local time derivative. This 

is the partia l derivative with respect to time with the spatial position held fixed. 

The expression can be given as*

^  0 _ M V ) _ . 2 M  (4.6)
Dt dt

An im portant example of this derivative is the velocity field. This is the m aterial 

time derivative of the spatial position-

V ( X ,t ) - f lX ,t ) - D* X’tj (4.7)

Equation (4.7) is often expressed in the Eulerian form as-

v(x,t) = V (^X ,t),t) (4.8)

Spatial and m aterial gradients

The m aterial and spatial gradients of a field variable F are denoted as VoF(X,t) 

and V /(x ,t) respectively. For a m aterial field, the Lagrangian description is used

V 0F(X , t )  = GradF(X,t) = (X,<) (4.9)
dX

while for a spatial field, the Eulerian description is used-

V/(x,/) = gradf(x, t ) = (4 .10)
dx
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Note the capitalisation of the m aterial gradient, ‘Grad’, to be distinct from the 

spatial gradient ‘grad’.

4.1.4 The Deformation Gradient

A very im portant variable in finite deformation analyses is the deformation 

gradient F. Consider one m aterial particles Ai in the neighbourhood of a m aterial 

particle Q (see Figure 4.2). The position of Ai relative to Q is given by element 

vectors dXi as follows-

After deformation, the m aterial particles P and Ai have moved to the current 

spatial positions'

d X . - X . - X p (4.11)

Figure 4 .2  Deformation o f  infinitesimal position vector

x„ =?>(XQ, I ) (4.12)

51



[CHAPTER 4: Non-linear continuum mechanics]

and

=?>(XA,>0

The corresponding element vectors become

dX! = Xa, ” Xq = ^ X (?+dXp t)-^(X (?,0

Thus, the deformation gradient tensor F is given as-

F(X)t ) _ ^ M _ v o9<X,t)
d X

The elem ent vectors dxi can be obtained in term s of dXi as-

dx, = Fd X,

4.1.5 Velocity Gradient and Rates of Deformation

The m aterial velocity gradient is defined as L

L(X,0 = V0V(X,0 

where V is the m aterial expression of velocity.

This can be related to a time derivative of the deformation gradient-

v0v(x,o = dV(X,<) = J L (  M M ').  ftx.o
dX dX dt

The spatial velocity gradient, which is defined as the spatial gradient 

velocity field, is expressed as M-

M(x,?) = Vv(x,<) = M M  
dx
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Applying the chain rule, we can obtain an im portant relation-

M = Vv = #F_I (4.20)

Two further tensor fields are derived from the spatial velocity field. These are the 

rate of deformation tensor-

symmetric and anti-symmetric parts  respectively.

4.1.6 Change in Volume

Consider the infinitesim al cube dV with edges parallel to the Cartesian axes in 

Figure4.3. Three edges of the cube are dXi, dX2 , and dX3 . Its volume is given by 

the vector triple product of the edge vectors thus-

d = —(M + M7') 
2

(4.21)

and the spin tensor-

(4.22)

Clearly, by construction,

d = d7 and w = -vv7 (4.23)

and also

M = d + w (4.24)

Equation (4.22) expresses th a t d and w represent the decomposition of M into

d V  = d X ] • (dX2 x dX3) (4.25)

As dXi, (IX2 , (IX3 are m utually orthogonal, this simplifies to-

dV = dX,dX2dX 3 
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where dXi= | dXi I

At some given time after deformation, the cube will change shape by the vectors 

FdX i, FdX 2 , and FdX 3 . The volume of the cube is given as-

dv = FdXj • (FdX 2 x FdX3) (4.27)

Noting th a t the above triple product is the determ inant of F which gives the 

volume change in term s of Jacobian J  as

dv = JdV and J = detF (4.28)

This is known as Nanson’s Formula and provides a simple and highly useful 

expression of the local change in volume between the reference and current 

configurations.

7 7  FdX*

" FdX#

Figure 4.3  Deformation o f  an infinitesimal cube  

4.1.7 Polar Decomposition of the Deformation Gradient
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The deformation gradient can be expressed as the product of a rotation tensor R 

tim es a symmetric positive definite tensor U or V-

F = RU = VR (4.29)

in which U and V are two positive definite symmetric tensors, term ed the right 

and left stretch tensors respectively. The right and left stretch tensors are related 

by the rotation

V = r u r t

The stretch tensors U and V can be calculated as follows'

u=Vc and v=Vb

where B and C denote the right and left Cauchy-Green strain  tensor-

c = U2 = Ft F and B = V2 = FFT 

Figure 4.4 describes the polar decomposition.

F = RU

(4.30)

(4.31)

(4.32)

d X

u
>

Figure 4 .4  Polar decom posit ion  o f  F (Note: n, are th e  eigenvalues)  

4.1.8 Strain
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Consider the change in the variable product of the elem ental vector dXi shown in 

Figure 4.2 to dxi. This change will involve both in length and angle. The 

Lagrange or Green stra in  tensor E is defined as follow-

|  (dx,dx, - dX,dX,) = dX, • EdX, (4.33)

in which, the m aterial tensor E is given as follow-

E = t (C -M ) = t (F rF-M ) (4.34)

The Eulerian or Almansi strain  tensor e is defined as follow-

(dxjdx, -dXjdX,) = dxj • edx, (4.35)

In equation (4.33), the spatial tensor e is given as-

e = (M -  B 1) = i  (M -  F 'rF_1) (4.36)

4.2 Forces and Stresses

The previous section has introduced the m athem atical concepts describing the 

kinematics of deformation, such as the deformation gradient, rotations, etc. In 

this section, we introduce the concept of distributed forces. These are forces 

acting on a continuum body which, like the m atter in the continuum, are 

smoothly distributed in space.

4.2.1 The Cauchy Traction

For a general continuum body, B, in the current position, we consider an 

infinitesim al patch of surface, of area As, within the body’s domain £2. In order to
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study the action of the forces, we cut the body into two parts , H and G, to 

conceptually expose the surface patch. The patch of area As with normal n in the 

neighbourhood of spatial point x is shown in Figure 4.5.

-  nAS

- 1

Figure 4.5 Traction on an infin itesim al surface elem ent

If the re su ltan t  force on th is  area is Af. the traction vector t corresponding to the 

normal n at x is defined as-

A  f

t  ( n )  = l im—  (4.37)
Aŝ O \S

where the relationship between and n m ust satisfies Newton’s th ird  law of action 

and reaction:

t(-n) = -t(n) (4.38)

The Cauchy traction is the force per unit area m easured in the current

configuration. It is also possible to define a similar vector, T. based on the area  of

5 7
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the surface element in the reference configuration corresponding to As. This is 

known as the first Piola-kirchhoff traction vector and is expressed by-

A 4*

T (X ,t,N )-lim —  (4.39)
As_>0 As

in which, Af represents the force acting on th a t surface elem ent in the current 

configuration onto which the m aterial surface element about m aterial position X, 

and with area As and normal N, is mapped by the motion a t time t.

Body forces

Consider an elem ental volume Av around the point x in the current configuration 

within the body, B. Let Af be the net resu ltan t sum of all the forces acting on the 

particles within Av. The body force a t point x is defined as-

A 4*

b (x,t) = lim —  (4.40)A,-0 A§

Internal and external forces

It is im portant to make a further distinction between the actions influencing a 

continuum-

1) In ternal forces are the forces exerted on particles within the body from 

other particles elsewhere in the body.

2) External forces are forces acting on particles w ithin the body th a t arise 

from influences outside the body.

4.2.2 The Cauchy Stress Tensor
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By studying the translational equilibrium of the elem ental tetrahedron (see 

Figure 4.6), we can obtain the Cauchy stress tensor Ojj. Let f be the force per unit 

volume acting on the body a t point x. The equilibrium of the tetrahedron is given 

by:

t(-e ) d a,+fdv = 0 (4.41)

where dai=(nei)da is the projection of the area da onto the plane orthogonal to 

the Caresian direction i (see Figure 4.6) and dv is the volume of the tetrahedron. 

Dividing equation (4.41) by da, recalling Newton’s th ird  law and noting th a t 

dv/da—►() gives,

3 Ar* (-|v 3 3
* ( n )  = ( ' e ' ) ^ T ' f  &  = * ( e ' ) ( n ' e >} = 2 , a " { e ‘ " ) e ' <4' 4 2 )

The (ej-n)ei can be rew ritten in term s of the tensor product as (ej&ei)n gives,

t(n)=  Vor^ej-n)^ = V o jj(e1® ej)n =  V c r /e ,® ^ )
/ . / = i i . j - i  i.j=i

(4.43)

The components o,j define the Cauchy or true stress tensor. The relation between 

the normal vector n and the traction vector t  is given as follow:

(4.44)

e  3

1 ( n )
e  ?

t  ( -  e  2

Figure 4.6 El em en ta ry  t e t r a h e d r o n  within body

5 9
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4.2.3 The First Piola-Kirchhoff Stress Tensor

In 4.2.1, we introduce the first Piola-Kirchhoff traction vector, T(X,t,N), which 

m easures the force across an Eulerian surface element per unit area of the 

corresponding Lagrangian surface elem ent a t m aterial position X.

Thus, the resu ltan t force on an infinitesim al spatial surface As to normal n can 

be expressed either in term s of the Cauchy traction or in term s of the first Piola- 

Kirchhoff traction-

As t (n) = AST (N) (4.45)

in which, AS represents the area of the corresponding elem ental Lagrangian 

surface and N denotes its normal in the reference configuration.

By introducing the tensorial expression of the Cauchy traction into equation

(4.45), the new equation can be given as follow-

AST (N) = Asa n (4.46)

Taking the Nansons formula (Equation 4.28 ) gives the following relationship-

ds = JF 'TdS (4.47)

which relates the area vectors in the Lagrangian and Eulerian configurations.

The relation between the areas and normals in the current configuration and 

their m aterial counterparts can be given as follows-

Asn = ASJF‘TN (4.48)

Substituting into the right hand side of Equation (4.46) leads to-

AS T (N) = AS J a  F‘T N (4.49)
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Then,

T(N) = [JcjF't ]N (4.50)

Thus the first Piola-Kirchhoff traction has a linear dependence on N.

Then, we define the first Piola-Kirchhoff stress tensor, p, from-

P = J <t F‘t (4.51)

Thus

T (N) = P N (4.52)

4.2.4 Other Stress Tensors

O ther stresses are used in the nonlinear theory of continuum mechanics. Two of 

commonly used stresses are defined in this section.

1) The second Piola-Kirchhoff stress tensor

S = J F '1 o F't (4.53)

This definite may be inverted to give the Cauchy stress in term s of S :

o = J '1 F S Ft (4.54)

2) The Kirchhoff stress tensor

t  = J o (4.55)

Definition equation (4.55) may easily be inverted to give the Cauchy stress in 

term s of S :

c = J '1 t (4.56)

4.3 Conservation Principles
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In  th is section we seek to express some of fundam ental equation of continuum  

mechanics which arise from the conservation principles. These equations m ust 

always be satisfied by physical systems.

4.3.1 Mass Conservation

The Lagrangian mass density a t point X in the m aterial configuration is denoted 

p o and defined by-

.. AM / .  _p n = lim  (4.57)
0 AV AV

where AM represents the mass of a m aterial element of volume AV a t X.

The corresponding Eulerian mass density at point x=(p(X, t) in the spatia l 

configuration is denoted p and defined by-

p  = lim ^ ^  (4.58)
Av AV

in which Am represents the mass of a spatial element of volume Av a t x.

The mass m of a m aterial domain £2 is given by-

m(Q ) = J p d Q  (4.59)
Q

As mass conservation requires th a t the mass of any m aterial domain be constant, 

for Lagrangian description, Equation (4.59) can be integrated in time to obtain an  

equation-

J  pdQ  = contstant = fp„dQ0 (4.60)
Q Qn
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Transforming the left-hand integral in the above to the reference domain by 

equation (4.28) gives,

J ( p J - p 0)dQ0 =0  (4.61)
Q0

Thus

p i  =p0 (4.62)

This is known as the mass conservation.

4.3.2 Conservation of Linear Momentum

We consider an arbitrary  reference domain £2owith boundary To subjected to body 

forces pob and to surface tractions t o, where b is a force per unit mass and to is a 

force per unit area. In a Lagrangian description, the linear momentum of a body 

is given in term s of an integral over the reference configuration by

p - f p o
Qn

V d Qn (4.63)

The total force on the body is given by integrating the body forces over the 

reference domain and the traction over the reference boundaries-

f  = J > 0bdQ 0 + p 0 d r o <4-64)
Oo To

Newton’s second law then gives

^  = f  (4.65)
dt

Substituting equation (4.63) and equation (4.64) into equation (4.65)
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^ - |> 0VdQ0 = J > 0bdQ0 +J70 dr0 (4.66)
Q,

On the LHS, the m aterial derivative can be taken  inside the integral because the 

reference domain is constant in time, so

£ f p 0VdQ0 = f p 0^ d Q 0 (4.67)
dt Oo

Using Cauchy’ law and G auss’s theorem in sequence gives

ft0 d r0 = f« ■ PdT0 = Jdiv„ ■ PdQ0 (4.68)
P(J t) 0̂

Substituting equation (4.67) and equation (4.68) into equation (4.66) gives

f ( p 0 -  p 0b -  div0P)dQ0 = 0 (4.69)
5o dt

which, because of the arb itrariness of £2o, gives

Pq—— = div0 • P + p0b (4.70)
dt

It can be shown th a t the spatial formulation of the momentum balance is

p —  = d i v a  + pb (4.71)
dt

This is known as the Cauchy’s first equation of motion.

4.4 Principle of V irtual Work

Equation (4.69) expresses the strong form of the linear momentum balance, 

however, the weak form of momentum conservation provides the basis of most 

finite elem ent method solutions to problem in solid mechanics.
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Virtual work in the sp atia l description

We consider an arb itrary  spatial vector field, £(x), with the dimensions of 

distance. These v irtual displacements are independent of time. Taking the dot 

product of equation (4.71) w ith £ and integrating over the volume of the body’s 

domain £2 w ith boundary d£2 gives-

J  {diva + p b -  p  —-) • £dv = 0 for arb itrary  £ (4.72)

Equation (4.72) can be expressed as follow-

Dvf  [div a  • £ + ( pfo -p — ) • g]dv = 0 for arb itrary  £ (4.73)
4 Dt

Considering the first term  of the integrand, we have:

do- ■ $ d£-
divcr • if = = —  (cr ) -  a, —  = div{o%) -  cr: V£

d x . d Xj  d Xj
(4.74)

Substituting into equation (4.73)

Dv
J[  div{o^) -  o : + {pb -  p  — )£]dv = 0 for arb itrary  £ (4.75)

Application of the divergence theorem to the first term  of the integrand yields:

DvJ  (og) • n ds - J  [ o : -  {pb -  p  — ) • £ ]dv = 0 for arb itrary  £ (4.76)
3Q Q Dt

The first integrand may be rew ritten  as:

(4.77)
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so th a t equation (4.76) becomes-

for arbitrary  £ (4.78)

On the boundary o*n=t, where t is the applied boundary traction. Thus we 

obtain the virtual work equation in the spatial description-

4.5 Lagrangian M eshes

In the Lagrangian meshes, the nodes and elements move with the m aterial. 

Boundaries and interfaces rem ain coincident with element edges, so th a t their 

treatm ent is simplified. Q uadrature points also move with the m aterial, so 

constitutive equations are always evaluated a t the same m aterial point, which is 

advantageous for history-dependent m aterials. For these reasons, Lagrangian 

meshes are widely used for solid mechanics.

Finite element discretisation with Lagrangian meshes are commonly classified as 

updated Lagrangian formulations and to tal Lagrangian formulations. Both 

formulations use Lagrangian descriptions. In the updated Lagrangian

for arbitrary  £ (4.79)

Virtual work in the m aterial description

The principle of virtual work may also be expressed in term s of m aterial

quantities as follow-

for arb itrary  £ (4.80)
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formulation, the derivatives are with respect to the spatial (Eulerian) coordinates, 

and the weak form involves integrals over the deformed (current) configuration. 

In the total Lagrangian formulation, the weak form involves integrals over the 

initial (reference) configuration and derivatives are taken  with respect to the 

m aterial coordinates. We will take the updated Lagrangian finite element 

form ulation as examples to explain discretisation.

4.5.1 Principle of V irtual Power for the Updated Lagrangian  

Formulation.

The principle of v irtual power is the weak form of the momentum equation, the 

traction boundary conditions and the interior traction continuity conditions. 

These three are collectively called generalized momentum balance. The 

relationship of the principle of virtual power to the momentum equation will be 

described below.

We first define the spaces for the test functions and tria l functions'

1) The space of test functions is defined by-

6 Vj (X)EjU0 , ju0 = { d v l |^ v ,e C 0 (X), <5Vj =0 on Tv } (4.81)

2) The tria l function is given by-

Vj (X,t)E/u , ju = {\j |VjEC° (X), Vj = v ; o n I \  } (4.82)

Note th a t in the equation discretization introduced in the next Chapter, the 

continuity of the dependent variables m ust be considered. We will describe the 

continuity of a function as follows- a function is Cn if the nth derivative is a
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continuous function. Thus a C1 function is continuously differentiable (its first 

derivative exists and is continuous everywhere). In a C° function, the derivative 

is only piecewise differentiable! discontinuities in the function occur a t points or a 

one dimensional function. For a two dimensional C° function, discontinuities 

occur on lines, for a C° three dimensional function on surfaces. A C 1 function is 

itself discontinuous, but we assume th a t between the points of discontinuity the 

function is continuously differentiable as many tim es as we like.

Recalling equation (4.71), the strong form, or generalized momentum balance, 

consists of the momentum equation, the traction boundary conditions and the 

traction continuity conditions, which are given as follows'

-—-  + /)bj = /OVj in Q (4.83)
aXj

nj O j j  = t j on Tt (4.84)

t n  j a ji ] =  0  o n  r im ( 4 -8 5 >

where Tint is the union of all surfaces.

The first step in the development of the weak form consists of taking the product 

of a test function 8vi w ith the momentum equation and integrating over the 

current configuration-
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The first term  in equation (4.86) is next expanded by the product rule, which

gives

da
r  — - d Q  = r

j  dx J
d sx.  ̂ a(av/)

dx dx,
dQ (4.87)

The first term  in equation (4.87) is then expanded by Gauss’s theorem, which 

gives,

f = f  <*>,-[«,- V j i W  + f  f y n jO ^ d T
q j  rirt r

(4.88)

From traction continuity equation (4.85), the first integral on the RHS vanishes. 

For the second integral on the RHS we use the traction boundary conditions 

equation (4.84). Since the test function vanishes on the complement of the 

traction boundaries, Equation (4.88) becomes

'J  "V O

f —  (A’yOr//)<*2 = V  f*V , 
i dx j

dr (4.89)

When equation (4.89) is substituted into equation (4.87) we obtain

da d(dv,)
,dQ

-a dxj o dxj
(4.90)

If  equation (4.90) is then substituted into equation (4.86), we obtain

.3(A>,)f  . ’’ o )tdQ I f *  ,t,dT -J&^pb'dQ + J'dv<pi'ldQ = 0 (4.91)
Q dXJ 1=1 r,.
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The above is the weak form for the momentum equation, the traction boundary 

conditions and the interior continuity conditions. I t  is known as the principle of 

v irtual power (Malvern, 1969)
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Chapter 5

Introduction to finite element methods

Finite element methods are a computer-based numerical technique, and can be 

used to calculate deflection, stress, vibration, buckling and many other 

phenomena of many structural engineering problems. The methods can also be 

used to analyse either small or large-scale deflection under loading or applied 

displacement; and can reduce costs in physical tests. Thus, finite element 

methods have been extensively used in steel structure analyses.

In the finite element method, a structure is divided into many small simple 

blocks or elements (finite element discretization). The behaviour of an individual 

element can be described with a relatively simple set of equations. The equations, 

describing individual element behaviour, are joined into a large set of equations 

th a t describe the behaviour of the whole structure. The computer can solve this 

large set of simultaneous equations. From the solution, the computer extracts the 

behaviour of individual elements, and obtains the stress and deflection of every 

p art of the structure. The stresses will be compared to the allowed value of stress 

for m aterials to be used, to check if the structure is sufficiently strong.

However, the most difficult p art of finite elem ent analyses from the practice point 

of view is to develop an accurate model which can correctly represent the whole 

structural system. Thus, the creation of a reliable finite element model is a 

prim ary aim for any structure analysis.
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5.1 F in i te  E le m e n t D is c re t is a t io n  a n d  F o rm u la t io n s

An appropriate element should be selected so th a t  it can best predict the 

deformation mode of bolted connection elem ents and can develop the excessive 

deformation behaviour in steel connections. Consequently, the best appropriate 

solid elem ent which can describe bolt connections is the three-dimensional brick 

elem ent th a t  has eight nodes with three degrees of freedom along the x, y, and z 

axis. This type of element is easily adapted to model interfaces between the 

connecting surfaces.

A typical 3D brick element is showed in Figure 5.1, with 3 transla tional degrees 

of freedom (DOF) per node along the x, y and z axes. A consistent scheme m ust be 

followed in node numbering for connectivity definition.

■t=
W6

U S - VB

w

VU
Figure 5.1 8 n o d e s  brick e l e m e n t
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The nodal displacement vectors are given by:

d =  [ m1, v1, w 1, . . . , w8, v8, w8]r (5.1)

The stra in  and stress can be w ritten as:

T
G =\cr ,(J ,<J ,T ,T  ,T  1 (5.2)I x ’ y ’ z ’ y z ’ x z ’ xy

T

« - [ e,>£y>s,>y„>r^yv \ (5.3)

For linear elastic materials, the stress-strain  relationship can be expressed as:

g  =  Ee (5.4)

where E is a (6X6) symmetric m atrix. For isotropic m aterial E is given as 

following,

E =
(1+v)

1 - V V V 0 0 0

V 1 - v V 0 0 0

V V 1 — V 0 0 0

0 0 0 0.5 - v 0 0

0 0 0 0 0.5 - v 0

0 0 0 0 0 0 .5 -

(5.5)

The strain  e can be related to the displacement by the strain-displacem ent 

relationship (for small deformation):
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or

£ = du\
dx

( d v \ dw\  ( d v  dw
dz dz dy

I du dw\  
dz dx

{ du d v
dy dx

( 5 .7 )

In order to define the displacement inside the element, the shape function is 

introduced to express the displacement a t any point with its nodal values.

(5.8)

(5.9)

uu = TV,«, +  N 2u2 + .. .  +  TV8w8

w  = TV,v, +  N 2v2 + .. .  +  TV8v8

ww = TV, w, +  TV2w2 + .. .  +  TV8w3

The displacement can be given the following equation:

u = Nd

where N is the m atrix of the shape functions:

(5.10)

(5.11)

N =
TV, 0  0

0 TV, 0

0  0  TV,

TV, 0

TV,

0 TV,

TVg 0  0

0  TVg 0

0  0  TV,

(5.12)

in  w h ich  Nj can be compactly described for an eight-node brick elem ent as follows:

1 (5.13)

where q, £ and £ are the local coordinate system of the element (see Figure 5.2). 

For node 1 for instance, the corresponding natu ra l coordinates £i ,ip and £i on are 

(■!,■ 1,-1). Therefore the shape function for node 1 will be as following:

or

1

(5.14)

(5.15)

Therefore, by using the iso-parametric concept, the coordinates of a point within
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the e lem ent can also be expressed as

x = Nxx} + N 2x2 +... + jV8j 8 

y  = + +... +

where xb yi, and z, are the nodal coordinates.

u u

Figure 5.2 The b rick  e lem e n t  in ^, r| and  Z, sp ace

The Jacobian m atrix  (3x3) for the brick elem ent is defined as-

dx dy dz

d% d £

dx dy_ dz

dij drj dtj

dx dy dz

dg dg dg

By introducing a new tensor,

(5 .16)

(5 .17)

(5 .18)

(5 . 19)
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¥  = 3 '  (5.20)

the stra in  displacement tensor m atrix can be given by the following equation'

B = TO (5.21)

The assembled stra in  energy can be expressed as the following equation-

U, = ld 'rkd* (5.22)
2

The dimension of the strain  displacement tensor depends on the num ber of node. 

For the 8-noded element, it is (24x6). Then the element stiffness m atrix for the 

brick element can be derived to be

i i i
k = / / f  BTEB |detJ^77</£ (5.23)

-i -i -i
which det J represents the ratio of the volume dx, dy and dz to d i  ,d p and d C . 

The potential term  of the body force can be given as the following-

i i i
J  u7fdv = q 7 J 7 N’ fde tJ  dgdtjdS  (5.24)

-1 -1 -1

The potential term  of the external traction force can be given as the following:

f u T d s  = qTp * TJds (5.25)

Recalling Equation (4.91), finite element equations for the updated Lagrangian 

formulation are developed by means of the principle of v irtual power. Thus, after 

some manipulation, the weak form of the momentum equation is given as follows:

In ternal and external nodal forces
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From equation (5.26), it can be seen th a t the internal nodal forces are given as-

f.f = dQ  (5.27)
J dxj

The external nodal forces are expressed as follows-

C  =/ N i>° bdQ + JN , t d r  (5.28)
q r,.

In ertia l forces and m ass m atrix

The inertial forces are expressed as follows-

f1kin = Muv; (5.29)

The mass m atrix is given as follows-

Miju =s ,j f/°Ni n j<® <5-30)
Q

D iscrete equations

The discrete momentum equations are expressed as follows-

Ma + f im = f ext (5.31)

where, a is the array of element nodal displacement adjustm ents and element

stiffness matrix,' and M is the m ass m atrix for the unconstrained degrees of

freedom.

Thus, by finite element discretization, the complicated structure can be described 

with a relatively simple set of equations. Combining these set of equations, the 

behaviour of the whole structure can be solved by numerical techniques.
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5.2 M odelling the P lastic ity  Behaviour of S teel

Plasticity theory has three p arts ' a yield criterion, a flow rule, and a hardening 

rule. The general theory and its various special forms are contrived to fit 

experim ental data. A brief introduction of plasticity behaviour of steel is given 

below, which is mainly based on Mechanics of solid m aterials (J. Lem aitre and J. 

-L . Chaboche 1990).

B asis of p la stic ity

When m aterials reach yield state, an irreversible deformation occurs. The total 

strain  can be decomposed into two parts- the elastic and plastic components’

£ = £ / ' + £ / '  (5.32)

Yield criterion

The yield criterion is used to define the m aterial yielding, and can be expressed 

as the following equation-

/ ( ct̂ s O (5.33)

Therefore, the yield function can be given as the following equation:

f { au'a y) = ° '  5̂'34^

In perfect plasticity, o* expresses the equivalent stress and oy expresses the yield 

stress, respectively. If the equivalent stress o* is equal to the m aterial yield stress 

value oy, then  the m aterial plastic strain  will be developed. However, if the
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equivalent stress o* is less than  the m aterial yield stress value, then  the strain

where Q denotes the plastic potential, which has units of stress and is a function 

of the stress, Q=Q (o ); dA represents the plastic multiplicator, which equals to 

zero a t elastic loading and is greater than  zero a t plastic loading. The flow rule is 

called associated if Q=f and non-associated otherwise. Associated flow rules are 

commonly used for ductile metals, bu t non-associated rules are better suited to 

soil and rock.

H ardening rule

In  the case of perfect plasticity, the yield surface is unchanged during plastic 

deformation. However, this is not the case for most m aterials. The yield loci can 

be moved (kinematic hardening) or grow (isotropic hardening). Figure 5.3 shows 

the hardening rule in isotropic hardening behaviour.

will be developed in the elastic behaviour of the stress-strain  relationships.

Flow Rule

The ra te  of plastic flow is expressed as'

(5.35)
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I n i t i a l  y i e l d  s u r f a c e

Figure 5.3 The hardening rule in isotropic hardening behaviour

For kinematic hardening, the effective stress is a function of overstress o which is 

given as the following equation-

V  = o - b  (5.36)

in which b represents the back stress, and can be used to m easure how much the 

yield locus moves.

The yield stress is also the function of history variables r, and can be defined as-

o y = cry(r) (5.37)

Thus, the yield function equation (5.34) can be rew ritten as-

’a y) = °  (® "  b) + °y  W  5̂ '38^

which shows th a t the shape of yield locus can also be changed.

Figure 5.4 shows the stress-strain  relationship (0 *̂8 )̂, where the dotted line 

represents perfect plasticity, and solid line represents linear hardening with 

hardening param eter H.
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P e r f e c t  p l a s t i c i t y

Figure 5.4 Perfect plasticity and linear hardening 

The following equation can show this relationship-

= a l  + Ke" (5.39)

in which, n and K represent m aterial param eters, and ô o denotes the initial yield 

stress. Thus, by the aforementioned theory, the yield equation can be given as 

follow-

(5.40)

in which, a and WP denote the stress state variables- W p denotes the plastic 

work per unit volume, and cl represents the shift of the yield surface, and both 

can be expressed as-

w „ = / M r K '}  

{a} =fc{dep}

(5.41)

(5.42)

where C is the m aterial constant.
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Differentiation of equations (5.41) and (5.42) yield the following equations-

r fW ,-{o f {'&'’} (5.43)

{dk} = c{<k”) (5.44)

while differentiation of equation (5.40) yields the following consistency condition

expression-

0 W - 0 < 5 - 4 5 >

Substitu ting equation (5.43) and (5.44) into equation (5.45), the following 

expression can be obtained-

{£[ (5-46)

The increm ent of stress can be calculated by using the stress-strain  relation-

{rfw} “ [e ] ^ }  (5.47)

where

{<**} = {<*>}-{<*:'’} (5.48)

M aking these substitutions into equation (5.46), using equation (5.35) to 

elim inate (d e p}, and solving for the plastic m ultiplier d A., we obtain

r fA -{c J r {«fe} (5.49)
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where,

- } 7 [E]
{ c j r -  , l dgf  TTTTTTT^ (5-50)

£ }  [e ] | — 1 - - ^ —jo}’ I—j-c J— aoj L J[aoJ aw 1 J [aoj |a«
\ ¥ _ \  f d £

da

Finally, substituting equation (5.35) into equation (5.47), we obtain

{ ^ }  = [E]|{rf£} - |^ J r f A '  or {cte} = [E ^ ] {rfs} (5.51)

where

[E« , H EH E ] f g } { c J r (5.52)

M atrix [Eep] is symmetric if f=Q. I t is valid even if the m aterial is elastic- 

perfectly plastic. It can be used to generate a tangent-stiffness m atrix [kt], which 

expresses the relation between increments of nodal displacement and the 

resulting increments of nodal load,

[k,] = J[B ]7 [E „][b ]</K (5.53)
ve

[Eep] is given by equation (5.52) if f=0 and df=0, but is replaced by elastic 

coefficients [E] if f<0 or if df<0.

The von M ises Criterion

For steel m aterials, the von Mises yield criterion is most commonly used, and is 

associated flow rule.

83



[CHAPTER 5: Introduction to finite elem ent methods]

To begin with, we m ust introduce the so called deviatoric stresses {s}, which are 

associated with distortion of the shape but no volume change. By definition,

(5.54)

where o m is the mean or average normal stress'

(Jm = - ( c r  +cr + a )rn 3 (5.55)

Thus sx = o x — o m sZx= T zx. For convenience, we split {s} into two p a r ts '{ s ,}

{s} = (5.56)

where

K H
V V
^ y and {sr} =.
s .

(5.57)

Similarly, {a } of equation (5.42) is split into parts {a „} and {a T). With o y the 

yield strength  in a uni*axial tensile test, the yield function is

/ = K } ) ’ (R 1  -  {«»})+3({jr} -  {«, })r (K }  -  K } ) ]2 -  o y (5.58)

As before, o y is taken as the initial yield strength  (unchanged by the subsequent 

plastic strains). For uniaxial stress o x, w ith {a } initially zero, Equation (5.58) 

reduces to f= | o x | - o y> so th a t | o x | = o y defines the onset of yielding.

To obtain an “associated” theory, we take Q=f. Thus, after some m anipulations
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0 a  s -  oly  I T  7

dX (5.59)

which is known as the Prandti-Reuss relation.

If the post-yield portion of the stress-strain  relation is not to be idealized as a 

straight line, one m ust store the following data for an isotropic material- E, v , o y, 

and a functional representation of H. e pef is an effective plastic strain  defined by

£ P =  V
V2

«  - < ) 2 + «  - < ) 2 + «  - o 2 +  +(rP2 +(rD2)

5.3 Solution Equations 

Increm ental method

Consider the tapered bar depicted in Figure 5.5.

T

(5.60)

Figure 5.5 A finite element model of a tapered bar
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It is desired to trace the static load versus displacement curve and determine 

element stresses by means of a finite element model and load increm ents A P. 

Increm ents are small bu t not infinitesimal, so th a t d £ becomes A  £ , and the 

numerical solution is not exact.

M aterial properties of this bar are depicted in Figure 5.6.

dd>
o

ay

c

Figure 5.6 Stress-strain plot in uniaxial stress

For elastic conditions, the element stiffness m atrix is given as follows-

M -
AE
L

1 -1
-1 1

(5.61)

In which, E=d o /d £ when | o | < o y, A is the cross-section area.

Upon yielding, the stress-strain  relation becomes Et=d a /d £ . Accordingly, letting 

Eep represent the “elastic-plastic” stiffness, we write the elem ent tangen t­

stiffness m atrix as
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r i  - l
- i  i

(5.62)

In which, Eep=E if the yield criterion is not exceeded or if unloading is taking 

place, and Eep=Et, if plastic flow is involved, where Et is the tangent modulus.

In order to obtain o ,E, Et for any £ , a numerical representation of the stress- 

stra in  algorithm m ust be stored. The algorithm outline below requires th a t we 

also store, and update after each computational cycle, the nodal displacements 

{D}, element strains £ , and elem ent stresses o .

1. For the first computational cycle (i=l), assume Eep=E for all elements. Apply 

the first load increment, {AR)i.

2. Using the current strains, determine the current Eep in each element. Use 

equation (5.62) to obtain [KtL-i=X[kt]n. Solve [Kt]ii(AD}={AR}i for {AD)i. 

From {AD)i, obtain current s train  increments A £ i for each element.

3. Update^ {D)i={D}i-i+{AD}i, and for each element, £ f  e i-i+A £ j and o j=o j.,+ 

A o i? where A  o j=(Eep)iA £ j.For the first cycle (i=l), initial values [subscript 

(i'l)] of displacement, s tra in  and stress are typically all zero if one s tarts  from 

the unloaded configuration, but are nonzero if one s ta rts  from a state in which 

phastic action impends.

4. Apply the next load increm ent and reture to step 2.

5. Stop when £{AR}i reaches the total applied load.

Three cycles of the foregoing algorithm are depicted in Figure 5.7
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P

P , = A p  ,

AD 3

D i = a d  ,

Figure 5.7 An exam ple o f  progress of  a Newton-Raphson m ethod  (step 3) 

A n alysis procedures

We assume th a t a tensile test of the m aterial has been performed, and a 

numerical representation of its stress-strain  curve is stored. We also assume th a t 

specific choices of yield criterion, flow rule, and hardening rule have been made. 

For steel column-beam connection structures, we choose the von Mises yield 

criterion, the Prandtl-Reuss flow relationship, iso-tropic hardening, and a 

bilinear stress-strain  relation, then we need to store only E, v , o y, and H for an 

isotropic m aterial. Alternatively, to represent a more general stress-strain  

relation, H may be defined as a function of £ pef [see Equation (5.60)]. Then, in 

computation, we m ust record and update the value of £ pef a t each sampling point, 

and use it to obtain the current value H.

Suppose th a t a load |R) on the structure is applied in increm ents {aR)i, (aR )2 , .... 

so th a t {R}=£{R)i. The first load increm ent might be contrived to place the most 

highly stressed sampling point on the verge of yield. The computational steps are 

as follows-
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1. At the outset, {e}={o}={a}={0}, Wp=0, and [Eep]=[E] for all sam pling point.

These values prevail in the first computational cycle (i=l). Apply the first load

increment,

2. Use the current condition {o}i-i, (a)i-i, and Wpa-i) to evaluate [Eep]i-i for each 

sampling point. Note th a t [E e P] i - l — [E] for sampling points th a t have yet to 

yield (f<0 for the current {o)i-i, (ali-i, and Wp(m)) or are unloading (df<0 for the 

most recent changes in {o}, (a) and Wp). Evaluate [kt] for each element. The 

structure tangent-stiffpess m atrix is formed by the usual assembly, [KtL- 

l=Z[kt]n. Solve for structure displacement increments (AD)i and strain  

increments {Ae}i a t element sampling points from the equations

[K ,{V D }. = {VR}. ! and {%} ,-[B]{Vd}( (5.63)

For sampling point in the plastic range, compute increm ents as follows,

V4  - j W  {<*} '” {CX ,  M  (5-64)

p i  ■ - / { S M S } , , ” '

{V®}, = [e ]({V£}( -{V£/,}() (5-66)

{Va}. = fc{dzp) -  C jvs'’}. (5.67)

V>P„ = /{«} ' { * '}  -  M "  {VP}( (5.68)

3. W ithout changing the load or recalculating (AD)i, one can evaluate equations 

(5.64) to (5.68) more accurately by dividing the increm ent (Aeli into
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subincrements. After each such subincrem ental cycle, one updates {o)i, {a}i, 

and so on. Note th a t {Cxli-iis zero in elastic sub-increments if the sampling 

point makes the elastic-to-plastic transition  within the current load step.

4. Update the solution-

{d }, = {d },_, + {VD}i (5.69)

M , = M ,- ,+ M ,  (5-70)

M ,= { a L +{Va}, (5-71)

K U K L + K l  (5-72)

5. Apply the next load increm ent and re tu rn  to step 2

6. Stop when £ { R )i reaches the total applied load.
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CHAPTER 6

FEM modelling and validation

In  the past century, hundreds of thousands of tests have been conducted on steel 

structures th a t include beams, columns, and connections. This has led to many 

improvements in the behaviours and designs of steel beam-to-column connections. 

Over the last several decades, finite elem ent modelling techniques have been 

applied to sim ulate the behaviour of various steel connections. For the current 

problem concerned, after the validation against available test data, the finite 

element method will provide the opportunity for wider param etric investigation 

and eliminates some of lim itations associated with experim ental investigations. 

Consequently, the finite element method provides the main source of information 

and will be of great benefit when examining the influence of the connection 

param eters on the overall behaviours by allowing a wide ranging param etric 

study to be conducted which will be difficult to achieve in experim ental 

environment.

6.1 F in ite  E lem ent M odels

A three-dimensional finite elem ent model of the RHS column-to I beam 

connection is carried out using the HYPERMESH (Altair) pre-processor. The 

connections are analyzed using the finite element software package, ABAQUS.

The finite element mesh used in the analysis is shown in Figure 6.1. The mesh
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contains 36481 nodes, and 25569 elements. In the process of the mesh generation, 

the connection is divided into six individual components. These components are 

showed in Figures 6.2 and 6.3, and are referred to as the column, beam, fin plate, 

diaphragm, bolt, and weld.

Figure 6.1 Finite elem ent mesh o f RHS colum n-to I beam connection
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Diaphragm

Bolt connections
Weld

Figure 6.2 Mode com ponent (T-2, 3)

S h e a r  t a bD iap h rag m

Flange p late Bolted connections

Figure 6.3 Mode com ponent (T-4)

1) Column, beam, diaphragm  and fin plate
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The column, beam, diaphragm  and fin plate are modeled using 3-D 8-node brick 

elements. Linear hybrid elements are selected to prevent the possible problem of 

volume strain  locking. Following a convergence study, four elements through the 

thickness of the diaphragm  and beam flange are used. Furtherm ore, to reduce 

the num ber of elements and nodes in the FE model, only one element is used for 

the column, beam web and fin plate through their thickness.

2) Weld

There are two types of welding. One type is the filled weld, including fin plate-to- 

column. The other is groove weld, including diaphragm-to-column and beanrto- 

diaphragm. In the finite elem ent model, the weld is assumed to be an extension 

of the diaphragm sections, column sections and fin plate section, therefore have 

the same m aterial properties. Consequently, the weld is modeled as an individual 

component in the connection model using 8-node brick elements.

3) Bolt

The model of bolt constructed using 8-node brick elements and 6-node triangular 

prism  elements is shown in Figure6.4.

The bolt connections include three m ain parts, beam, fin plate and bolts. To 

capture the accurate stress behavior, an intensive mapped mesh is made around 

the boltholes. The hexagon bolt heads are modeled as cylinders.

The small sliding interaction behavior between surfaces is considered for all the 

contact surfaces in order to fully transfer the load from the beam web to the fin 

plate, and finally, to the column.

The following contact interactions for bolt connection are considered- l) Contact 

between the bolt shank and the bolt hole. 2) Contact between the bolt head and 

the beam web. 3) Contact between the nu t and the fin plate. 4) Contact the fin
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plate and the beam web. Pre-tension is not applied to the bolts during the 

analysis in T-2 and 3, bu t in T-4, the bolts are pre-loaded by a tensile stress of 

520 N/mm2 according to J a p a n  industria l s tandard  (AIJ) and a friction coefficient 

u =0.45 is used for all the  contact surfaces.

Although two cycles of loading are applied a t each displacement increment in the 

experiments, in the num erical analyses, only one cycle for each displacement 

increment is exerted to the beam to save computational time.

Figure 6.4 Finite elem ent mode o f bolt

For the ABAQUS simulation, the nominal engineering s tress-stra in  relation 

obtained from steel tensile coupon te s t  (see Table 3.1) is converted to the true 

s tress-stra in  relationship, according to: (J = Cj (\ + e ) and e, =ln(l + f  ), in
“  ’  ~  t r u  n o m v  nom ' t r u  v  n o m  ' 7

which <7 tru and f u.u rep resen t the true s tress and strain; and <7nom and f nom are the 

nominal stress and s tra in  respectively.
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Both ends of the column are fully constrained.

6.2 V a lid a tio n

The numerical analyses of specimens are finished when the connections fail with 

the maximal rotation 60p. Figures 6.5-6.8 show both the simulated and 

experim ental results, and they reveal th a t  when the beam tip rotation is between 

40p and -49V, the experimental and numerical loops match well. However, when 

the rotation is over 4#p and -4(9P, the numerical loops overestimate the stiffness of 

the specimens. The difference between the experimental and numerical loops is 

likely caused by the difference between the nominal and measured m aterial 

properties and inaccurate m easurem ent of the specimen dimensions in this study.

T 5 0 -

E x p e r i  raenlv
\  1 r \

X  1UU
— - ' ' —  ' — ---------  " r P

A c  ' /

X  / /  i
/ 1  / .  j \ '

f  f /  f t  /
J 7 a  y  / / \f /  /y J /  1 . ' /  1

0 4  /  ° -
0.

{  / / ------ ^

-  - — -
1 u u

\  FE

0

Figure 6.5 Hysteresi s  curve (T-l)
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Experimental

' 0 2

0

Figure 6.6 Hysteresis curve (T-2)

150

M

0

f O f r

1-50

0

Figure 6.7 Hysteres is  curve (T-3)
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Figure 6.8 Hysteresis curve (T-4)

The m om en t-ro ta tion  re la tio n sh ip s  for specim ens T l .  T*2 , T-3 and  T-4 analyzed  

by FEM  are  show n in F igure  6.9, in which the  curves, test l ' l  (FE), test2*l (FE), 

te s t3 - l  (FE), te s t4 - l  (FE) a re  ob ta ined  from FE analyses, and  t e s t l ,  test2 , test3 , 

te s t4  are  obta ined  from the  so-called skele ton  curves. The skele ton  curve is 

constructed  from a hystere tic  curve by l ink ing  a portion of the  curve th a t  exceeds 

the  m ax im um  load in the  preced ing  loading  cycle sequen tia lly  (see Appendix  3). 

Com parison  of the  finite e lem en t re su lts  w ith  the  ex p e r im en ta l  m om ent-ro ta tion  

curve (see F igures  6 .10-6 .13) shows good ag reem en t in te rm s  of general 

behav iour an d  the  m ax im um  values  w ith  a difference a ro u n d  10%. An 

observation  of finite e lem en t failure  mode shows a s im ila rity  to the  te s t  re su lts  

(see F igures 3.11 and  6.14, F igures  3.13 an d  6.15).

This proves th a t  the  finite e lem en t m ethod  is capable of accura te ly  pred ic ting  

RHS colum n-toT beam  connection behaviour.
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100
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Figure 6.9 M om ent-ro ta tion  relationships
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Figure 6 .10 M o m e n t - r o t a t i o n  re la t ionsh ips  (T-l)
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Figure 6 .14  T- l  plastic strain d i s t r ibut ion
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Figure 6.15 FE analyses result of the beam top flange buckling (T-4)
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Chapter 7

Parametric studies and Optimization
As stated  in Introduction, by weakening the beam section, connection 

assemblages are found to show excellent plastic deformation capacity. This 

approach can be done either by cutting a portion of the beam flange (reduced 

beam section, RBS) or reduce beam web (RBW) connections. Among these 

methods, the RBS is known to be better. However, this type of connection is 

relatively costly due to the cutting of flanges a t four locations a t each end, 

especially in the presence of floor slabs for rehabilitation purpose. Moreover, in 

these connections, the cutting of flanges reduces the beam stability and increases 

the probability of beam lateral torsional buckling. On the other hand, the RBW 

connections, in which the reductions are made in the beam web, are much less 

prone to such a problem. Based on these reasons, therefore, the numerical study 

described in herein is concentrated on RBW connections.

7.1. Introduction

In  RBW connections proposed by Aschheim (2000), the beam web was penetrated 

by a single or m ulti circular spaces (see Figures 7.1 and 7.2). Although the study 

showed th a t the connection can reach the desired ductility (4 percent total 

rotation) when a relative big space is created a t the beam web, this will cause a 

rem arkable reduction in the connection strength. Thus, the purpose of this 

project is to propose new beam end configurations to increase the RHS column-to- 

I beam connection strength and ductility. This new beam end configurations are



[CHAPTER 7:Parametric studies and Optimization]

based on the weakening of the beam section method. In this method, instead of 

creating a big space a t the beam web, numbers of small drilled spaces were 

created a t the beam web.

/

C o  1 u m n

/

B e a m

fl O  f~T $1 O  U  I

Figure 7.1 RBW connection  with single circular space

C o  I u m n

Figure 7.2 RBW connection  with multi circular spaces
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7.2. RBW Configuration and Variable Parameters

Figure 7.3 shows one of the configurations of RBW connection (Type l) and 

Figure 7.4 shows another configuration of RBW connection (Type 2). Taking the 

type 1 as an example, the reason for proposing this beam end configuration can 

be explained as follows*

L:

+
+

+
+

O
o o  

o o o  
o o o o  

o o o o o  
- e e o e o e -

OOOCHQ o o o o \  
o o o  X  

D . i c o  - f D,

L,

Figure 7.3 RBW connection  (type 1)
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Figure 7.4 RBW connection  (type 2)

Figure 7.5 shows the normal strain  distribution of a typical RBW connection with 

a big circular space. This figure clearly shows th a t for the first p a rt of the beam 

which is located between the beam tip and the circular space center, there is only 

one neutral axis. However, for the second p art of the beam which is located 

between the circular space center and the column face, the neu tral axis diffuse. 

This indicates th a t creating a circular space a t the beam web may divide the 

beam into two beams.
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N eutra l diffusion
N eutra l

N eutra l diffusion

Figure 7.5 Neutral axis of the RBW connection w ith a big circular space

It might be one of the reasons for why early beam flange fracture appears  at the 

beam flanges at the space area and why th is  type of connections has low 

connection rotational stiffness. Therefore, in order to have proper transform ation 

of shear forces from the top beam flange to the bottom flange at the space area, a 

drilled beam web connection was proposed. Figure 7.6 shows the shear s tra in  

distribution along the beam web height of a proposed RBS connection. The figure 

shows signification shear s tra in  concentration at the beam web between the 

drilled spaces.

1 0 7
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Figure 7.6 Shear strain distribution in proposed RBW connection

Therefore, the diameter, num ber and clear distance between the drilled spaces 

can play an im portant role on connection s treng th  and ductility.

1) Type 1

Figure 7.3 shows the pa ram ete rs  of type 1. A clear distance between drilled 

spaces was kept as a constant (Di = 10mm). Drilled space d iam eter was selected as 

a variable. Totally two param ete rs  were defined, a and 6. The distance between 

the first and last drilled spaces in horizontal, L2, was selected to be proportional 

to the distance between the first and last drilled spaces in the vertical direction, 

Li (L i=q*L2 ) . See Figure 7.3 for the illustration. P a ram eter  6 is the ratio of 

the drilled space diameter, D2, to the clear distance between drilled spaces, Di 

(B=D2/Di). Table.7.1 sum m arizes all param eters  used in th is  study.

Table.7.1 Summary o f parameters (type 1)

Specimens a B
Di

(mm)
D2 (mm)

Li

(mm)
L2 (mm)

T-2-1 0.79 3 10 30 55 70

T-2-2 0.9 3 10 30 135 150

1 0 8
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T-2-3 0.92 3 10 30 175 190

2) Type 2

Figure 7.4 shows the variable param eters of type 2. A clear distance between 

drilled spaces was kept as a constant (Di=10mm). Drilled space diam eter was 

selected as a variable. Totally two param eters were defined, a and 6. The 

distance between the first and last drilled spaces in horizontal, L2 , was selected 

to be proportional to the distance between the first and last drilled spaces in the 

vertical direction, Li (L i= crL 2 ) . See Figure 7.4 for detail. Param eter 6 is the 

ratio of the drilled space diameter, D2 , to the clear distance between drilled 

spaces, Di (B=D2/Di). Table 7.2 summarizes all param eters used in this study.

Table 7.2 Summary of param eters (type 2)

Specimens a B Di

(mm)

D2 (mm) Li

(mm)

L2 (mm)

T-2-4 0.16 3 10 30 190 30

T-2-5 0.58 3 10 30 190 110

T-2-6 1 3 10 30 190 190

T-2-7 0.11 2 10 20 190 20

T-2-8 0.42 2 10 20 190 80

T-2-9 0.9 2 10 20 190 170

7.3. F inite  Elem ent Results and Discussion

7.3.1. Failure Modes

One of the im portant failure modes analyzed in FEM is the beam flange fracture. 

The location of beam flange fracture depends on the param eters a and 6. By 

increasing param eters a and 6, a larger energy dissipation capacity can be
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achieved, resulting in the s tra in  concentration decrease a t  the weld access hole 

(beam cope). As a result, it m akes the beam flange fracture away from the 

column face which is a desirable failure mode. The drilled spaces in the beam 

web (RBW connection) cause the plastic s tra in  to move into the beam span and 

the plastic hinges form away from the column face (see Figures 7.7, 7.8 and 7.9).

Figure 7.7 Failure mode in weld access hole area (w ithout RBW connection)

Figure 7.8 The beam flange fracture at beam span area (RBW connection, ty p e l)
no
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Figure7.9 The beam flange fracture at beam span area (RBW connection, type2) 

7 .3 .2 . E ffec t of D r ille d  S pace an d  P a ra m e te r s

The ductility of connection can be represented by the sum of rotation caused by 

moment at the column face (see Figures 7.10 to 7.12). Based on the most of 

seismic codes, the minimum required value for this pa ram ete r  is 0.04. For the 

configuration typel, Figure 7.10 shows th a t  the ductility of connection increases 

as the pa ram ete r  a increases. The rotations for specimens are presented in 

Table.7.1, where param eters  (a) are 0.79, 0.9 and 0.92, are 0.059, 0.063 and 0.069 

respectively.

in
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0 0 . 01 0 . 02 0. 03 0. 04 0. 05 0. 06 0. 07

R o ta tio n  (Rad)

Figure7.10 M om ent-ro ta t ion  curves (type 1)

For the configuration type2, Figures 7.11 and 7.12 show th a t  the ductility of 

connection becomes increase as the pa ram ete r  a  increases. The rotations for 

specimens are presented in Table 7.2, where param eters  h =3 and a are 0.16, 

0.58 and 1, are 0.068, 0.07 and 0.073 respectively! and b =2 and a are 0.11. 0.42 

and 0.9, are 0.068, 0.069 and 0.071 respectively. Comparing between 6 =2 and b 

=3 is shown in Figure 7.13.

1. 4

1. 2

0. 8

0 . 6

0. 4

0 . 2

0
0 0.01 0 . 02 0. 03 0. 04 0. 05 0. 06 0. 07 0. 08

R otat ion(Rad)

Figure 7.11 M om ent-ro ta tion  curves (type 2), $ =3
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Figure 7.12 M om ent-ro ta t ion  curves (type 2), £ =2

1. 4

1. 2

0 . 8
2-9

0 . 6

0. 4

0 . 2

0
0. 080. 05 0. 06 0. 070 0 . 01 0 . 02 0. 03 0. 04
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Figure 7.13 Comparing m oment-ro tation curves [3 =2 and (3 =3

Connection s trength  can be evaluated by the ratio of the connection moment at 

failure time to the beam plastic moment capacity (M/Mp). The ratio value 

specified in AIJ (Architectural ins titu te  of Japan) Recommendation (1997) is 

grea ter th an  1.25 and Eurocode 3 (CEN 1994) recommends grea ter th an  1.3. 

However, in all cases, the ratio of M/Mp for all specimens is g rea ter th an  1.25,
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roughly 1.3, and increase as the param eters a and 0 increase.

As mentioned above, the proposed RBW connections have higher ductility with 

bigger values of the param eters a and 0 . From economical point of view, the 

biggest space size drilled by most of fabricators is around 30 mm which is 

corresponded to 6 equal to 3. The value of param eter a is decided by the height of 

beam. For example, the param eter a equal to 1 means the horizontal distance L2 

equal to the vertical distance Li. The horizontal distance L2 can increase along 

the length of beam web, but the vertical distance Li is limited by the height of 

beam web. To avoid the web buckling, when Li takes the maximum, L2 should be 

equal to Li. This means a =1.

Although the two types of configuration can obtain the same results in 

weakening the beam section, in my opinion, the configuration type 1 is better 

than  2. Because the drilled spaces of beam web gradually increases toward the 

beam tip as shown in Figure 7.3 so th a t the plastic hinge forms gradually w ithin 

the beam span.

7.4 Conclusion

This study was based on weaken beam section method described in C hapter 2. 

For this propose, a num ber of drilled space were created a t the beam web a t the 

vicinity of column face. Finite element results showed th a t the drilled space 

increased the connection ductility and cause plastic hinge away from the column 

face, moving into the beam span. Although only two configurations of RBW 

connections are studied in this Chapter, it provides a way to develop some new 

design concepts.
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Chapter 8 

Results and Discussions

The finite elem ent method studies of improved welded joints have been 

completed in the last Chapter. In this Chapter, we will discuss how to derive 

design equations to evaluate ultim ate strength of connections. It is found th a t the 

ultim ate moment capacity of such welded joint can be predicted by simple 

formulas based on elem entary plastic analysis. The optimum length of such 

welded joint for avoidance tensile failure can be decided.

8.1 D issipated  Energies of Specimens

Table 8.1 shows the cumulative plastic deformation factors for each specimen. 

See Appendix 2 for the definition of cumulative plastic deformation factor q.

Table 8.1  Cumulative plastic deform ation factors

Specimen T-l T-2 T-3 T-4

il 63 63 73 120

These factors are significantly larger than  the average value of the factors 

obtained in the past large-scale tests (AIJ Kinki 1997). Especially for specimens 

T-3 and T-4 th a t failed by local buckling, the cumulative plastic deformation 

factors are comparable to all the specimens. The cumulative plastic deformation 

factors are plotted against the beam rotation 0m, non-dismensionalized by 0P (0P • 

the elastic beam rotation a t Mp) for the specimens in Figure 8.1.
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Figure 8.1 Cumulative plastic deformation factor

Specimen T-3 has welded joints a t both the top and bottom flanges, while 

specimen T-4 has welded joint a t  the top flange and bolted joint at the  bottom 

flange. Since the p a tte rn  of hysteretic loops is different between each specimen 

(See C hapter 3), comparison is made of the deformation capacities between the 

specimens in term s of dissipated energy. The definition of dissipated energy is 

shown in Appendix 2. The area  below the hysteresis curve represents the 

dissipated energy. However, since the area below an elastic unloading envelope 

represents  the energy stored in the structure, this area is regarded as the 

negative dissipated energy. The dissipated energies, nondimensionalized by MP0P 

(Mp- full plastic moment of beam, 0jf the elastic beam rotation a t  Mp) are plotted 

against the accumulated beam rotation £0m for the four specimens in Figure 8.2, 

where denotes the sum of rotations caused by e ither the positive or negative 

moments.

1 1 6
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I t  is in teresting to see th a t  dissipated energies at the same value of S0m are 

almost identical for both conventional and improved types. However, the final 

dissipated energies are much greater for the improved type (T-3 and T-4) than  for 

the conventional type (T-l and T-2).

70

T - 4 ,
60

50

T-1

20

10

0
-0.4 0 0.4-0.3 - 0.2 - 0.1 0.1 0.2 0.3

6 m(Rad)

Figure 8.2 Cumulative plastic deformation factor based on dissipated energies

8.2 E v a lu a t io n  of U l t im a t e  S tr e n g th  of C onn ec t ions

Two failure modes were identified in the connection test described in the Chapter 

3, which included the tensile failure of beam flange at the beam end and the local 

buckling of plate element a t the beam end. Several experimental evidences and 

formulas are available for the evaluation of the ultim ate s treng th  of the ultim ate 

s trength  of these connections corresponding to each of these failure modes.

The axial loads in the top and bottom flanges at the beam end are not equal in 

magnitude. The unbalanced axial load is carried by the beam web to the column 

flange joint. However, the ultim ate moment carried by the flanges fMu is

1 1 7
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evaluated as the axial capacity of one of the beam flange-to-column flange joints 

m ultiplied by the distance between the centroids of the top and bottom flange to 

column joints. This simplified assum ption gives lower bound solutions of simple 

plastic analysis. The beam web joints are in general flexible and do not carry a 

large axial load.

8.2.1 Tensile Strength of Welded Joints

Failure modes of specimens classified into 2 groups, which included the local 

buckling of plate element a t the beam end and the tensile failure of beam flange 

a t the beam end. First, cracks were found either a t the tip of the weld toes or at 

the toe of beam copes. Then, these cracks propagated gradually with load 

increase and finally led to tensile failure of the beam flange. The fracture paths 

are shown in Figure 8.3

L d
o S

<-Q

Figure 8.3  Fracture Paths at beam  end

To predict the ultim ate tensile strength  of the welded joints, two fracture paths

are proposed as follows (see Figure 8.4). Lp signifies the length of the welded joint,
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Ld signifies the space between the toe of beam cope and the beam end, Ls signifies 

the space between the beam end and column face, b denotes the width of the 

beam flange and be denotes the width of the welded joint.

F r a c t u r e  p a t h ?

Figure 8.4  Proposed fracture paths at the  beam  end

The following formula is given to calculate the tensile strength  of each fracture 

path  when failure occurs by ductile tea r along the fracture path  (Fracture p a th l)

Pu = L f xtf  x (sin 0  + C-jL " ) x o f  u (8. l)

where Lf denotes the length of fracture path  and Of,u is the beam flange ultim ate 

tensile strength, tf is the thickness of beam flange, and 0 is the fracture angle 

(see Figure 8.3).

Therefore, the flexural capacity of the beam a t the column face fMu is given as'

M f.„ =[*x?/ x o /.»+_l :(i f _ ^ ) x ' / x<T/.«]>< ̂ r ~ T  (8-2)V3 H  + L,
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where is the distance between the top flange-to'column joint and the bottom 

flange-to-column joint, which is given by-

j \ = H b - t f  (8.3)

for specimens T-l, T-2 and T-3, where Hb is the height of the beam, and by

+ (8.4)

for specimen T-4, where tP] is the thickness of flange plate.

In general, the fracture path  2 is much stronger than  the fracture path  1 and 

thus such a fracture needs not to be considered. However, to ensure a sufficient 

over-strength to prevent tensile failure, the optimum length of such welded joint 

can be calculated as

L„ = L ^ { b t - b )  (8.5)

The flexural capacity of bolted web connection in specimens T-2, T-3 and T-4 can 

be neglected because of large flexibility of the connection due to the bolt slip and 

local yielding of the column flange. However, specimen T*1 has a welded web 

joint, and the bending moment carried by this joint is added to the moment given 

by equation (8.2) to evaluate the ultim ate flexural capacity of connection. 

Tanaka, J  (AIJ 1996) proposed the following formula for the flexural capacity,

M ^ - ( x - S , W b ~ t f  - * - S v) f w (8.6)

where x is obtained by a yield line analysis and is given by

x =
fJ w

(8.7)

in which tc is the thickness of the column, Sv is the vertical space of the beam
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cope (see Figure8.5), and fw is the stress and is given as the sm aller of the 

following two values,

f  = t o  , f  = ~^= t o  (8.8)J  w w' w , y 9 J  w [ Z  c c , y

where tw denotes the thickness of the beam web, ow,y is the yield strength  of the 

beam web, and oc,y is the yield strength  of the column.

Figure 8.5 M om ent carried by w elded  w eb  joint

The ultim ate flexural capacities EndMu=M f.u or EndMu=M f.u+M w,u of beam-to- 

column connections determ ined by tensile capacities of the welded joints a t the 

beam ends are summ arized in Table 8.2 and compared with the test results. This 

table shows th a t the predictions agree well w ith the test results except for 

specimens T-3 and T-4, because these two specimens failed by local buckling.

Table 8.2 Ultimate m o m e n t  governed by tensile  capacities o f  w elded  joints at flange en d s

Specimen Test Prediction
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Mm (kN.m) Ld Mw,u (KN-m) End Mu(kN.m) Mm /  End M u

T-l 830 34 55 836 0.97

T-2 830 43 854 0.99

T-3 880 43 1034 0.85

T-4 864 7 939 0.92

Note: 1) Mm is the  maximum m o m en t  attained w hen  th e  w elded  joints are under a tensile  

load. Specim ens T-3 and T-4 failed in failure m o d es  different form tensile  failure o f  w elded  

joints. 2) n d e n o te s  th e  cumulative plastic deformation factor.

8.2.2 Local Buckling of Plate Elements

Based on a series of stub-column tests of wide flange sections, Kato et al. (1994) 

proposed the following formula th a t gives the maximum moment M max at the 

beam end, non-dimensionalized by the full-plastic moment M p , when the beam 

end moment is governed by local buckling of place elements.

1 0.4896 0.0460
—  =  + -----------

a af av
+ 0.7606 (8.9)

with

« / = x (———)2 (8.10)
° f , y  b / 2

and

aw=— x [------ ^ ------- ] 2 (8 .1 1 )
a , , ,  (Ht - 2 t f )
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where a represents M max/Mp! af denotes local buckling param eter of beam flange! 

aw denotes local buckling param eter of beam web, E is elastic modulus! Of.y 

denotes the m easured yield strength of beam flange, and o w,y denotes the 

m easured yield strength of beam web.

The values of a are compared with the maximum moments a t the section where 

the haunch starts  in Table 8.3. The predictions based on experim ent indicate th a t 

local buckling was found earlier than  the ultim ate lim it state. The above results 

support the experim ental observations th a t the welded joints of specimens T*3 

and T-4 had sufficient over-strength and th a t these connections failed by local 

buckling of the flanges.

Table 8.3 M om en t capacities determ ined by local buckling

Specimen
designation

Test Prediction

Mmax
(kN.m)

M p
(kN.m)

Mmax/Mp Of flw a

T-3 827 645 1.29 16.54 13.15 1.26

T-4 833 645 1.29 17.43 13.49 1.26

Note: 1) Mmax w as determ ined by local buckling only for sp ec im en s T-3 and T-4. 2) Mp w as  

calculated using the  m easured dim ensions and material properties.

8.3 J Integral Method for Evaluation Through Crack in 

RHS Column“to“ I Beam Connection

During the earthquake, many of steel structures are damaged due to the crack 

initiation and propagation. For avoiding prem ature occurrences of brittle fracture, 

a series of tests were conducted on an improved RHS column-toT beam
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connection. The aim of the tests was to find possible solutions for avoiding 

prem ature occurrences of brittle fracture in RHS column-toT beam connections 

(see Chapter 3). One of the im portant failure modes observed in this test is 

tensile failure of the beam flanges. First, cracks are found either a t the tip of the 

weld toes or a t the toe of beam copes. Then, these cracks propagate gradually 

with load increase and finally lead to tensile failure of the beam flange. The 

fracture paths are shown in Figure 8.6

Figure 8.6 Fracture Paths

In the modified Central Electricity Generating Board (CEGB) approach 

(Harrison et al. 1976), the ultim ate collapse load and the crack driving force of 

cracked structures are used as two assessm ent param eters. Usually, the J- 

integral represents the crack driving force for the crack growth. With the 

emergence of readily available simple J  solutions for various types of structures 

through J  estim ation techniques, J-integral-based elastic-plastic fracture 

mechanics has become a common tool for analyzing ductile m aterials. In this J  

estim ation method (Kumar et al. 1981), elastic-plastic J-integral solutions are 

estim ated as the sum of a linear solution for an effective crack length and a fully 

plastic solution based on the nonlinear Ramberg-Osgood power hardening law.
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The linear elastic solution for a crack in RHS column-toT beam connection is 

obtained by taking the solution for the plane plate and the hi function in the fully 

plastic solution in calculated by the finite element analyses. For a through crack 

in the RHS Column-to I beam joint, the combined elastic-plastic J  solution can be 

w ritten as'

J  =  J e i a e ') + J p ( a , r i )  (8.12)

where J e signifies the elastic solution for an effective crack length ae, J p is the 

fully plastic solution.

Equation 8.12. is derived from the deformation plasticity theory, in which a 

Ramberg-Osgood power hardening law is used as the m aterial model, which is 

described as-

—  -  —  + c x x ( — y  (8.13)
e 0 cr0 cr0 E

where o is the Mises stress, e is the strain, ais the m aterial constant, n is the 

power hardening exponent, E is Young’s modulus, and co is the reference strain, 

oo is the initial yield stress

J e(ae) is the elastic p art of the solution, and can be obtained from the following 

equation

J e ( a e) = ^ r  (8.14)
E

where Ki is the stress intensity factor (SIF), and is described as-

K j  =  c r x  - J j m  x  s in 2 6  (8.15)

where a and 0 are geometric sizes, o is the applied stress, as shown in Figure 8.7
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o / ----------- j r  X v i o

Figure 8.7  A plane plate under the  uniform stress

The effective crack length was modified by Irwin, and is given by'

ac = a + (p x r  v

where

1 n -  1 K fr  = --------------------------—
y /3jt n +  1 cTq

1
<P =

i  +  ( ^ _ > 2
Po

6=2 (plane stress), or 6 (plane strain)

Pi signifies an applied load and Po is the lim it load for a non*cracked RHS

Column to I beam connection. In this case, Po signifies the lim it load of beam

flange, given by (Kumer et al 1981)

P 0 = 1 . 0 7 1 x / 7 x c x r x c r 0 (8.16)

where

n = \(— y + 2 x ( - )  +  2 ] 2 - ( — +  i )
c

in which c is the geometric size (see Figure 8.8), t is the thickness of the beam 

flange.
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ca

Figure 8.8  N ew  RHS Column - t o  I beam  Joint

The plastic p art of the solution, J p, can be obtained from the following equation

J p (a , ri) = ocx. cr0 x  £ 0 x  h x (—, n )  x  ( ^ - ) ' 7+1 (8.17)
t  P Q

where hi is the function of m aterial and geometry and will be determined from 

the elastic-plastic J-integral in FE analyses.

Combining Equations 8.14 and 8.17, elastic-plastic J  can be obtained.
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Chapter 9

Conclusions and Future Work
9.1 C onclusions

• A FE analysis of the behaviour of the new RHS column-to-I beam connections 

has described in this thesis. Four test specimens are simulated. The model 

includes the individual beams, columns, diaphragms, bolts, fin plate and the 

complex contact surfaces. M aterial nonlinearity is considered for all components. 

These are complex models. Contacts are critical to model the bolted connection 

behaviour of the joint. Contact elem ents have been used a t the bolt-hole and also 

a t the surface between the web of the beam and fin plate, taking into 

consideration friction between the surfaces. Three-dimensional brick elements 

are used as this type of elem ent is easily adapted to model interfaces between the 

connecting surfaces. The compassion shows a good correlation between the FE 

and experim ental results of the connection behaviour. This proves th a t the FEM 

is capable of accurately predicting RHS column-to-I beam connection behaviour. 

For partially restrained  column-to-beam connections, the moment-rotation curves 

are of great im portance for designers, however, in the past, these curves only 

obtain from the experim ents in combination with an analytical approach. Along 

with the development of finite elem ent method, moment-rotation behaviour can 

be obtained from num erical methods.
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• Finite elem ent results show th a t RBS connections force the plastic hinge away 

from the column face, meanwhile, increase the connection ductility without 

significant reducing the connection strength. Thus, using this type of connections 

may be avoided prem ature occurrence of brittle fractures. This provides a way to 

develop some new design concepts. In practical application, this type of 

connections can be easily applied to existing building rehabilitation with no need 

to break of the concrete slab.

• The ultim ate moment of beam to column joints with improved welded joint can 

be estim ated by equation (8.2), so far as ductile behavior is achieved. This 

ultim ate moment should be large enough such th a t the moment at the s ta rt of 

welded joint reaches aMp. The value of a should be greater than  the value given 

by equation (8.9). The value of a most frequently is 1.2-1.4. When bolted flange 

plate connections are used in combination with such welded joints, it is 

recommended th a t the flange plate connection have the ultim ate strength equal 

to or slightly greater than  th a t of the welded joints. Further, it is desirable th a t 

the flange plates be designed to be wider and thicker than  the beam flanges a t 

the welded joints to the column. The cross-sectional area of the flange plate in 

specimen T-4 was greater than  this of the beam flange by about 36 percent. This 

is to provide for the lower reliability of welded joints between the in ternal 

diaphragm  and the column.

• All the specimens in this study were fabricated using beam copes with 

conventional profiles, but the specimens did not occur the prem ature failure. In 

specimens T_1 and T-2, these cracks extended in a ductile m anner and led to 

tensile failure a t the beam ends. In specimens T-3 and T-4, in which the welded
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joint are sufficiently long, these cracks extended only by 2mm, when failure 

occurred by local buckling of the beam flanges. The cumulative plastic 

deformation factors were significantly greater than  the values to be achieved by 

conventional connections (see table 8.1). Since the improved connections (T-3 and 

T-4) have such a detail th a t fracture of beam flange is difficult to take place. This 

may be the reason why brittle fracture was prevented a t least in the specimens 

tested.

9.2 Future Work

The study described herein concerns for avoidance prem ature occurrences of 

brittle fracture in RHS column-to-I beam connections under the influence of 

strong ground motions. One of the feasible ways to overcome these problems of 

the insufficient plastic deformation capacity of connections may be found in the 

improvements of present connection design and fabrication practices by adopting 

better connection details, welding procedures and m aterial. Although this 

approach appears to be successful in laboratory testing, one inevitable question 

lies in the quality control of fabricated structures. It is therefore im portant to 

establish reasonable fitness-for-purpose criteria for welded structures so th a t 

these criteria are applied to new constructions. Along with the development of 

the finite element method, applicability of semi-empirical fracture mechanics 

approaches, such as the failure assessm ent diagrams, these criteria are now 

under study. Thus, the future works are concentrated on these aspects.
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Appendix 1

T ensile uniaxial test

All the tensile uniaxial tests were taken  from one section of the beam and column.

1. Specimen

According to Japanese industrial standards (JIS), the specimens were made in 

the following Figure

M LO  lO
R=2 5

180 220 180

580

Figure 1 the  detail o f  specim en (mm)

2. Location of specimen

Figures 2 ~ 3  show the locations of the specimen taken from the beam/column. B 

represents the beam, B 1~B 3 are the top flange of beam, B 4~B 6 are the beam 

web, and B7—B9 are the bottom flange of beam. C represents the column.
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2 0 0

II B 2 B 3

_ f  3 CTJ

5 0 0

3 OH

7 I I B 8 I I B(

Figure 2 location of  specim en (mm]

4 0 0

4 0 0

Figure 3 location of  spec im en  (mm)

3. Test result

Table 1 shows the test results taken from the tensile unixial tests. The stress-
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strain  relationships for specimens are shown in F igure4~10. P16 represents the 

shear tab and P19 represents the flange plate.

Table 1 Mechanical properties of m aterials

Specimens Width
(mm)

Thickness
(mm)

Cross
sectional

Area
(mm2)

Modulus 
of E
(kn/mm2)

Yield
stress
(n/mm2)

Ultimate
stress
(n/mm2)

Elongation
(%)

Cl 25 11.39 284.69 214 340 440 24

C2 25 11.44 286.04 208 339 464 20.2

C3 25 11.42 285.46 206 335 441 20

Average 25 11.42 285.40 210 338 448 21.4

B1 25 15.56 389.04 214 315 469 24.7

B3 25 15.5 387.39 212 312 457 23.3

B7 25 15.15 378.63 214 316 461 27.1

B9 25 15.58 389.56 211 309 463 23.7

Average 25 15.45 386.16 213 313 462 24.7

B2 25 15.67 391.71 212 297 457 24

B8 25 15.92 398.03 213 300 460 25

Average 25 15.79 394.87 213 298 459 24.7

B4 25 9.78 244.41 208 322 463 26.3

B5 25 9.66 241.4 211 355 482 22.4

B6 25 9.74 243.55 211 314 467 29.7

Average 25 9.72 243.12 210 331 471 26.1

P16 25 15.96 398.97 207 311 467 24.7

P19 25 18.62 465.59 212 278 406 29.3

In the following stress 's tra in  curves, o denotes engineering stress?' P is 
engineering stra in  (10‘6).
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Appendix 2

Definition of cum ulative plastic deformation factor

The bending moment Mm denotes the maximum beam moment a t the column face. 

The rotation 0m denotes the rotation of the beam segment between the loading

by using the m easured yield stresses of m aterials and the measured dimensions 

of beam sections. The elastic beam rotation 0P a t the full plastic moment is 

defined as the elastic component of beam rotation a t Mra= Mp(see Figure b). The 

plastic components of beam rotation a t the I-th half cycle, non-dimensionalized 

by dividing it by 0P , are denoted by ip+ and rp' in which the + and -  symbols 

distinguish positive and negative moments (see Figure b). The cumulative plastic 

deformation factor is defined as the sum of rp+ and ip' by the specimen until 

failure occurs and w ritten as-

The alternative definition of the cumulative plastic deformation factor is the sum 

of plastic energies dissipated during all the cycles, non-dimensionalized by 

dividing the energy by M p6p. According to the la tter definition rp+ and ip' are 

w ritten as-

point and the column face (see Figure a). The full plastic moment Mp is calculated



I'TiQp

[ A p p e n d ix  2 : D e f in i t i o n  o f  c u m u l a t i v e  p la s t ic  d ^ o r m a t i o n  fa cto r]

W here w, denotes the energy absorbed a t the I-th  cycle (see Figure b)

M=QL

Figure a
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Appendix 3

Definition of skeleton curve

The skeleton curve is constructed from a hysteretic curve by linking a portion of 

the curve th a t exceeds the maximum load in the preceding loading cycle 

sequentially (see Figure c)

Figure c
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