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A b stra ct

This thesis deals with two independent aspects of gauge/string duality: The in­
clusion of fundamental m atter in string duals via backreaction and the study of 
quark-gluon plasma physics using the duality. Concerning the flavoring proce­
dure, we focus on the role of source terms for D-branes. Here, we are especially 
interested in various technical issues such as the construction of suitable source 
densities, their relation to generalized calibrated geometry and the M-theory lift 
of such sources in the special case where these appear as smeared KK-monopoles.

In this context we will study several examples of flavored supergravity du­
als, such as the flavored Maldacena-Nunez and Klebanov-Witten solutions, and 
further examples based on D5-D5, D6-D6 and D3-D7 intersections in 2+1 and 
3+1 dimensions, all of which preserve some supersymmetry.

The parts focussing on QGP physics will exhibit an attem pt at construct­
ing a type IIA background based on D6-branes wrapped on three-cycles that is 
dual to a super Yang-Mills theory with four supercharges at finite temperature. 
Studying thermodynamic properties, deconfinement as well as parton energy 
loss, we come to the puzzling conclusion that the standard approach to con­
structing such a solution does not provide the searched for dual. We are able to 
give some explanation for this by comparing the eleven-dimensional background 
with the Schwarzschild and Reissner-Nordstrom black holes in four dimensions.
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Chapter 1

Introduction

Gauge/string duality takes its origin in the celebrated AdS/CFT correspon­

dence [l]-[3] relating M  =  4, SU(NC) super Yang-Mills to type IIB string theory 

on AdSs  x S5. Soon after its discovery, further dualities were postulated re­

lating various gauge theories to their respective string duals [4] - [8]. As the 

duality provides an approach to both strongly coupled gauge theories as well 

as quantum gravity, applications are numerous and range from black holes to 

superconductors. In this thesis, we will focus on two issues: The gauge/string 

duality for gauge theories with fundamental matter, as well as the study of 

quark-gluon plasmas as observed in heavy ion collisions at RHIC or ALICE.

1.1 Flavors and D-brane sources

In order to study gauge theories with fundamental matter, one needs to in­

troduce additional modes to the string theory side that transform under the 

fundamental representations of the gauge group and an additional, global flavor 

symmetry group. These modes are provided by the addition of further D-branes 

to  the string theory background [9]. In a widespread abuse of terminology that 

we will adopt as well, they are referred to as flavors or quarks, and so the 

branes are known as flavor-branes. Of course there is a further gauge theory 

living on the world volume of the flavor-branes and if one had solely added Nf  

additional, space-time filling branes to the background, one would have simply 

changed the gauge group, by adding an SU(Nf )  factor or by enhancing it to 

SU(NC + Nf)  for example, with details depending on the embedding and back­

ground. Thus, the flavor-branes are embedded in the geometry in such a way
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that they extend also along a non-compact cycle transverse to the color-branes. 

The effective Yang-Mills coupling of the new gauge degrees of freedom depends 

on the volume of the wrapped transverse cycle, and since this is infinite, the 

gauge symmetry appears as a global one from the point of view of the original 

gauge theory. Strings stretching between the color- and flavor-branes transform 

both under the original gauge symmetry as well as the new global one and do 

thus constitute the fundamental matter. It is customary to refer to these modes 

as quarks, but one should keep in mind that their link to their namesakes in 

QCD is rather tenuous.

The appearance of fundamental matter via additional D-branes in the string 

theory links also nicely with considerations made using diagrammatic expansions 

at large N c in t h e ’t Hooft double line notation. Here, fundamental matter adds 

boundaries to the diagrams, from which it follows that there has to be an open 

string sector in the dual string theory. This open string sector is provided for 

by the addition of the D-branes.

It is sufficient to study these additional D-branes in their probe limit, as long 

as the number of flavors is small compared to that of colors. Or more precisely, 

as long as the theory is in t h e ’t Hooft limit

A =  <7ym-̂ c =  const #ym ~ > 0 N c —> oo Nf  =  const (1.1)

For an application of flavor-branes in the probe limit, see the study of mesons 

spectroscopy in [9], [10] and [11].

Of course, it is desirable to  go beyond the probe limit. Not least of all 

because Nj  ~  N c in the case of QCD. Further problems of interest are charge 

screening or Seiberg duality. The appropriate scaling limit here is the Veneziano 

limit

N
A =  Pym-^c =  const g \ u  —> 0 Nc —> oo Nf  —» oo — const (1.2)

Here it is not possible to  ignore the backreaction of the flavor branes, and one 

turns to studying the system

S  =  ^M.IIA/B +  ‘S'flavor (1-3)

where 'S'm.iia/b is the action of d =  11 or type IIA /B  supergravity and the source 

term Sflavor is essentially the standard brane action -  we will comment on the



precise form of 5flav0r extensively in chapters 2 and 3. This line of research 

originated in [12] and [13] and has been under continuous development since 

then ([14] - [29]). For a recent review, see [30].

When constructing flavored supergravity duals, the standard approach is to  

start with an existing gauge/gravity dual relating an unflavored gauge theory 

with a certain supergravity background. While this is strictly speaking not 

necessary, it makes the search for a solutions as well as their interpretation 

in terms of a gauge dual considerably easier. Naturally, the additional flavor- 

branes will deform the background, and so the first step towards a flavored dual 

lies then in studying deformations of the unflavored dual. Following this, one 

searches for probe embeddings that are stable1 for all deformations considered. 

The final step is to  pick a physically suitable distribution of flavor branes and 

then solve the equations of motion derived from (1.3).

W hile the process is conceptually straightforward, there are numerous tech­

nical difficulties. If the flavor-branes are taken to be coincident, they contribute 

5-function terms to the equations of motion, making them in all but the simplest 

cases intractable. Furthermore, one might argue that the action describing Nf  

conincident D-branes should have gs corrections, which are not known, making 

it impossible to find a suitable source term S'flaVor- These issues are addressed 

simultaneously by the smearing process. As the flavor-branes are space-time 

filling and extend along a further non-compact cycle, the directions transverse 

to them are usually compact. One then distributes the branes over this trans­

verse cycle and takes the large Nf  limit. Since the transverse cycle is compact, 

the separation between individual flavor branes shrinks until it is smaller than 

the string scale %/a/ and it is possible to approximate the brane distribution by 

a continuous function; the branes have been smeared over the compact cycle. 

Note that smearing is by far not unique to gauge/string duality with flavor. 

As a matter of fact, smeared branes appear in T-duality in the supergravity 

limit. Performing a T-duality along an internal direction of a Dp-brane leads 

to a Dp  — 1-brane smeared along the T-dual coordinate. Hence it is not neces­

sary to be in the large Nf  limit for smearing to be a sensible process. In any

lrThe most convenient way to ensure stability is to restrict the search to supersymmetric 
backgrounds and embeddings. One then uses /t-symmetry or a calibration condition as the 
creterium for stability. See section 2.3.
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case, after smearing, the 5-function sources are replaced by continuous source 

terms, so that the equations of motion are considerably easier to solve. In many 

cases it is also possible to smear the branes in such a way that PDEs become 

ODEs. Furthermore, as the flavor branes are still separated, the strings stretch­

ing between them are massive and we can ignore gs corrections. However, all 

these simplifications come at a price. Upon smearing, the flavor group is broken 

SU(Nf)  —> U ( l )N f, and one has to keep in mind that one is studying a different 

theory.

In this thesis, we will be not so much concerned with the physics of gauge- 

and string-theories that can be gleaned from the duality, but with a series of 

issues related to the construction of duals. Even with the procedure and simpli­

fications outlined above, the task is in general quite complicated and one does 

often rely heavily on supersymmetry.

Supersymmetry features in the construction of unflavored backgrounds using 

lower dimensional gauged supergravities [8], [31], in the study of brane embed­

dings via /c-symmetry [32] or calibrations [33] - [3G] and especially in the inte- 

grability theorems [37] - [40] used to find explicit solutions. According to these 

it is sufficient to study the supersymmetry conditions as well as the equations 

of motion and Bianchi identities for the p-form fields; the second order Einstein 

and dilaton equations will then be implied. This of course further simplifies the  

search for solutions, as one studies the first order BPS-equations opposed to the 

second order Einstein or dilaton ones.

The role of the Ramond-Ramond equations of motion and Bianchi identities 

in these theorems is of special interest to us. After all, one might wonder why 

supersymmetry alone is not a sufficient condition for the equations of motion to  

be satisfied. The answer lies in the close relation between the Bianchi identities 

of the magnetic field strengths and the presence of sources. As we will discuss 

in great detail later, a violation of the magnetic Bianchi identity goes hand in 

hand2 with the presence of D-brane sources. Hence these identities -  as well as 

their dual equations of motion -  need to be part of the integrability theorems, 

as the supersymmetry relations by themselves are not sensitive of the presence

2Recall that Chern-Simons terms in the supergravity actions do also modify the Bianchi 
identities. However, in all the cases studied in this thesis these terms can be dropped, leading 
to a one-to-one correspondence between source terms and Bianchi identities.
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of additional source term s.3

The source-term violating the Bianchi identity should be thought of as a 

distribution density for the new sources and its explicit construction had been 

a problem in the early days of the flavoring program. Due to its importance in 

smearing, we will often refer to the source distribution as the smearing form. As 

the sources are smeared, one is not only dealing with a single brane embedding -  

and its associated source term -  but with a family of mutually supersymmetric 

embeddings, parametrized by the transverse coordinates. In some cases it is also 

not possible to find global coordinates allowing for an explicit split of transverse 

and world-volume coordinates, complicating the situation even further.

Today, the construction of the smearing form is approached via two com­

plementary macroscopic and microscopic approaches. We we will discuss the 

macroscopic perspective in detail in chapter 3. Here we will see how, for super- 

symmetric embeddings, the most generic form of the source term can be inferred 

from the specific form of the Ansatz for the background, the crucial link being 

the concept of the calibration form. The application of generalized calibrated 

geometry to the problem of brane physics has its origin in [36] yet had up to [28] 

not been applied to the flavoring procedure. Calibration forms are a property of 

the background space-time and do not depend on the individual brane embed­

ding considered -  hence the moniker “macroscopic”. Earlier work had focussed 

on a specific family of embeddings, and in the context of this microscopic ap­

proach the construction of the source term was not necessarily straightforward 

-  see however [20] for quite sophisticated technology used in this microscopic 

ansatz. Two two approaches have been linked in [41] and [42].

Let us now give a further outline of the chapters of this thesis dealing with 

backreacting flavors. As we have seen, the problem focusses on finding solutions 

to supergravity with sources, so section 2 reviews the standard 1 /2-BPS flat p- 

brane solutions of supergravity with their source terms. While the material 

is purely a review, it is often ignored and so we present it in some detail.

3 One should be aware of the following distinction however: While the above holds in 
the context of integrability, it changes once one makes a specific ansatz for the background. 
As the sources modify all the fields in the background -  especially the p-forms -  they do 
appear in the supersymmetry variations once one substitutes a given ansatz into the variations. 
E.g. the backgrounds studied in [14] - [16] exhibit Seiberg duality, that is, invariance under 
N c — ► N f  —  N c , at the level of the supergravity variations once one has substituted the ansatz 
into them.
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The remainder of chapter 2 gives then a further introduction to the various 

techniques and concepts encountered in flavoring that we have mentioned so 

far. In chapter 3 we will then turn to the actual problem of flavoring using 

the macroscopic perspective outlined before. Following this introduction of the 

flavoring procedure, we will give some further comments on the role of the source 

terms in chapter 4. Here we will especially focus on the distinction between 

color- and flavor-branes and the fact that usually only the latter appear in the 

action (1.3).

Chapter 5 deals with an issue inspired by some observations made when 

adding flavor-branes to a D6-system in type IIA that has a simple M-theory 

lift as pure gravity on a GVholonomy manifold ([43], [44] and [45]). The prob­

lem concerns the duality between type IIA string theory and eleven-dimensional 

supergravity -  or other Kaluza-Klein setups in general. It can be easily sum­

marized in by asking the following questions: W hat is the eleven-dimensional 

origin of the D6-brane’s source term? And: W hat is the Kaluza-Klein lift of a 

monopole condensate? To illustrate the relation between these questions, one 

should recall that D6-branes couple magnetically to the Ramond-Ramond two- 

form F(2)- W hile standard KK-formulas relate the associated one-form potential 

A(i) to the higher dimensional metric

d s^  =  C ^ d s ? ^  +  +  d z)2 (1.4)

monopole condensation in the lower dimensional theory -  captured by dF^) ^  0 

-  implies that the relation between F(2) and the higher dimensional metric 

cannot be F(2) =  dA(!). As the D 6-branes couple to dF(2), the Bianchi identity 

is violated by D6-sources, which is why we can compare the presence of such- 

soures with monopole condensation. W hile a first, partial solution was given in 

[46], the problem becomes truly apparent once the D6-branes are smeared, as 

the Bianchi identity is now violated on an open set. In [29] it was suggested 

studying the involved supersymmetries and G-structures, that one might resolve 

the issue by adding torsion terms to the higher dimensional theory.

Of course, we will encounter a series of examples of flavored backgrounds. In 

section 3.1.1 we will review some quite well known examples; flavored versions of 

the Maldacena-Nunez [8] and Klebanov-W itten [5] solutions as well as a N  =  1 

example in d =  2 +  1 dimensions based on D5-branes. Following this we will
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then turn to a further D5-D5 system dual to a d =  2 +  1 dimensional gauge 

theory with M  =  2 supersymmetries and fundamental matter (section 3.2). The 

discussion of color- vs. flavor-branes in chapter 4 is supplemented by the very 

simple example of D3-D7 branes with eight supercharges; neither of the branes 

are wrapped, making embeddings, the action and the smearing form very simple. 

A further example in d =  3 +  1 is given by the case of the D6-D 6 system in 

section 5.1.

1.2 Quark-gluon plasma physics

In the final chapter of this thesis -  chapter 6 -  we will take a look at an en­

tirely different aspect of gauge/string duality: Its application to the study of 

quark-gluon plasma physics. This is the domain of non-perturbative QCD at 

finite temperature -  an area where conventional methods such as Lattice-QCD  

encounter their limitations, albeit being still the method of choice for making 

predictions for real world physics. The highly fruitful relation between QGP 

physics and string theory started with studies of the shear-viscosity to entropy 

ratio Previous experiments at the Relativistic Heavy Ion Collider (RHIC) 

had shown that such plasmas behave as liquids of suprprisingly low viscosity, 

rather than the predicted gas-like behavior. This was confirmed by string the­

ory calculations which introduced the bound 2 >  T_, showing considerably 

better agreement with results from RHIC than estimates based on conventional 

methods. See [47] - [49].

The field enjoys to this day a very high level of activity. We will not follow 

most recent developments, but focus on an attempt to model QGP physics using 

a finite temperature variant of the background presented in chapter 5, that was 

studied extensively in [31], [45], [50] and [51]; that is, D6-branes in type IIA 

or equivalently eleven-dimensional supergravity on a manifold with G2 holon- 

omy4. Studying thermodynamic properties as well as jet-quenching and various 

Wilson lines, we will see that the finite temperature geometry exhibits physical 

properties very much unlike those of QGP physics in d =  3 + 1. This realization 

is slightly puzzling, as the possibilities of generalizing the G2 holonomy solution 

to  non-extremality are highly constrained as long as one wants to avoid the

4For a review of special holonomy manifolds in string- and M-theory see [52].

13



technical difficulties of adding further G(4) flux or deforming the internal geom­

etry. Ultim ately we will be able to partially explain our findings by linking the 

thermodynamic properties of the solution to those exhibited by Schwarzschild 

and Reissner-Nordstrom black holes and arguing that our eleven-dimensional 

new solution is essentially of Schwarzschild type.
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Chapter 2

D-brane sources in 
super gravity

We now review some of the concepts essential to the appearance of D-branes in 

gauge/string duality, with a view towards the flavoring process. Starting with 

some basics regarding supergravity, we turn to a review of the flat 1/2-BPS  

p-brane solutions of supergravity and their source terms (section 2.2).

2.1 The supergravities

In the bulk of this thesis, we will be working with ten dimensional IIA /B  or 

eleven dimensional supergravity. The bosonic parts of their relevant actions in 

Einstein frame are

'S'm =  J [dU x V —9R ~  A *^(4) g ^ (3) A ^ (4) A ^{4)]

S,ia =  J [ d 1Bx V = g { R  -  -  \ e ~ * H {3) A *Hm

-  i ( e ^ F (2) A *F(2) +  e^ F (4) A *F(4))

+  - B ( 2) A dC(3) A dC(3)] (2.1)

Sim =  / [dw X y f ^ ( R  -  -  \ r * H m  A » ff(3)

-  - ( e 24>F(!) A *F(x) +  e*F(3) A *F(3) +  F(5) A *F(5))

+  C(4) A F(3) A # ( 3)]
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with
F(5) =  dC(4) +  (7(2) A i?(3)

F(4) =  dC(3) +  C(1) A i7(3) (2.2)

F(3) =  dC(2) -  C(o) A / f ( 3)

In the context of smeared branes in chapters 3, 4 and 5 however, we will fre­

quently encounter backgrounds with — 0 and violated Bianchi identities 

dF(p+2) =  P(p+3). Here one either has to work in terms of the magnetic dual 

F(d- P- 2) or modify (2.2).

In the case of type IIB, the equations of motion have to be supplemented by 

the self-duality condition

F( 5) =  *F( 5) (2.3)

Also note that Newton’s constants in eleven and ten dimensions are related 

to the relevant gravitational constants, the Planck length and the string scale 

l3 =  yfot' as

16jrG„ =  2k?, =
2lr 8 (2.4)

167tGio =  2nj0 =

Let us for a moment ignore the issue of solving the equations of motion of 

(2 .1) and simply focus on the supersymmetry of the backgrounds. As we axe 

always interested in purely bosonic solutions, we assume the fermionic fields 

to vanish. Hence the SUSY variations of the bosonic fields vanish and we can 

restrict to those of the fermionic ones. For d — 11, there is only the gravitino. 

Its variation is given by

s . ~  (2-5>

where we made use of the covariant derivative for spinors D Me with spin con­

nection UJpab

Dp€ =  dp€ +

1 (0 6^
^abc =  ^(S^cab ^bac  ^ abc)

t tabc =  - ( d e a )bc =  - r } a d ( d » e i  -  d v e * ) E £ E %

For type IIA and type IIB supergravity, we have -  in addition to the gravitino
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-  a dilatino. For IIA

*«A =  - V 2 L > M$ r ' T 11e +  - — e - ^ F ^ T ^ e

a - - L _ L e- f / f  pMiM2M3e ___ \ —e%F TMl
24 v/2 e 192 ^ 2 MlM2M3M4

=  * V  +  ^ * F „ lw ( r / ‘«  -  u ^ T « ) r u f

4 _ J _ p - f  H  ( V  M1 M2 M3 _  g j / x i p M 2 M 3 ^ p l l e

20
M1M2M3M4 _  (5 M i r M 2M 3M4) r 1 1 c

M 1 M 2 M 3

M l M 2 M 3 M 4

M  =  i V 2U „ $ r '‘r ” f +  A i 5 e f » i r

pMiM2M3M4g

(2.7)

While for IIB1

M  =  |(d„<I> +  te % C (0))r<V  -  ^ ( e - t +  re*FtM l M 2 M 3 M 1 M 2 M3
p̂MiM2M3e

M 1 M 2 M 3
M 1 M 2 M 3M 1 M 2 M 3

(2.8)

The search for supersymmetric backgrounds is now considerably simplified by 

the integrability theorems of [38] and [39].2 According to these, the dilaton and 

Einstein equations are implied by the combination of SUSY equations, Bianchi 

identities and p-form equations of motion.

A  few  c o m m e n ts  o n  G -stru ctu res The first order equations one obtains 

by setting the supergravity variations (2.5), (2.7) or (2.8) to zero can be recast 

in the language of G-structures. The uses of G-structures are manifold, as they 

provide a very economic way of dealing with the supersymmetry conditions, 

even in the presence of fluxes -  this is especially the case if they are used in 

conjunction with pure spinors, see [40] for an example of this and [53] for a 

review. Thus they provide an excellent means for studying problems such as 

the classification of supergravity backgrounds or the derivation of new solutions 

[54]. We will give a very informal yet hopefully intuitive introduction to this 

vast subject in the next paragraph and refer the reader to [55], [56], [57] and

references therein for a more formal discussion.
1 We write the two IIB spinors €l , cr as one complex spinor e — cl +  icr. To change to 

the notation using e =  ( c r )  use

2 Note that all these integrability theorems require certain, mild assumptions. Most notable 
among these is the existence of a space/time split. They will all be satisfied in the following, 
so we refer the reader to the original papers for details [38, 39, 40].

e* «-»(J3€ te* <7ie  ie
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In the context of this thesis, it is sufficient to think of the language of G- 

structures as generalizations of the special holonomy arguments used for string 

compactifications. In the absence of fluxes, the gravitino variation demands 

that the SUSY spinor has to be covariantly constant and the existence of such a 

spinor implies special holonomy. One should think of M-theory on G^-holonomy 

manifolds or heterotic string theory on Calabi-Yau spaces. Crucially, one can 

decompose all fields in representations of the special holonomy group, a standard 

method in string phenomenology.

Now, when turning on the fluxes, the supergravity variations can still be 

interpreted as connections. As these are not metric-compatible, the existence of 

a covariantly constant spinor under these does not imply special holonomy. It 

does however imply the existence of a principle sub-bundle of the frame-bundle 

with structure group G. In other words, it is still possible to decompose fields 

under a group G. In the absence of fluxes, G is naturally the holonomy group 

of the preceding paragraph.

The existence of this principle sub-bundle and that of G-invariant forms 

are equivalent definitions of G-structures. In practice as well as in the examples 

encountered in the following chapters the more useful one is the latter definition. 

As we will see, these invariant tensors that can be constructed as bilinears of 

the SUSY spinor e along the lines of3

(eTMl...Mpe)d x^  A - . - A d x ^  (2.9)

The supergravity equations are then equivalent to  first order differential equa­

tions satisfied by these forms. One can make this connection obvious as follows: 

Acting on (2.9) with the exterior differential d is equivalent to the action of VA, 

where V  is the Levi-Civita connection. This again can be rewritten in terms

3As a further note on conventions, note that

r Mi-MP = “j ^  (~ 1)<rrMtr(i)- --r #Mp) 
o€Sp

denotes the fully antisymmetrized product of T-matrices. We will use an identical notation 
for differential forms. Sv is the group of permutations of p  elements, (—1)<T is the sign of a 
given permutation.

We use an identical notation for wedge products of one-forms, i.e. for a set of differential 
forms u}%, i = 1, . . . ,  k we define

u)l ' k =  lu1 A • • ■ A u)k
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of the spin connection acting on e (the are invariant under V). Using the 

supergravity variations one obtains first order equations involving the fluxes.

2.2 1/2-BPS branes in flat space

Let us now begin discussing p-brane sources, starting with the simplest solutions 

possible, flat 1/2-BPS p-branes. These are based on consistent truncations of 

equations (2.1). They are very well known, yet the discussion of their source 

terms is often neglected, so we will go over this in some detail. This section is 

based on [58] and [59]. One might also want to refer to the original papers [60] 

- [63] or reviews [64]. The connection to gauge/string duality is discussed in [4].

In all cases of interest to us one is able to drop the Chern-Simons terms, 

neglect (2.2) (as H  =  0) and truncate and generalize the system to the form

where -F(p+2) can either stand for the Neveux-Schwarz three form, for one of the 

Ramond-Ramond p-form field strengths or for the four form in eleven dimen­

sions. For type II Dp-branes we have a =  and a =  —1 for the NS5-brane. 

In d =  11 there is no dilaton and so a =  0. The equations of motion are4

The simplest ansatz solving (2.11) leads to the electrically charged, extremal, 

black p-brane solutions [60]:

S s u g r a  = 16ttGd

1
J [ d Dx ^ g ( R  -  -  5 e “* F (p+2) A » F (j>+2)]

(2.10)

0 =  d(e“* » F (p+2))
(2.11)

ds2 =  H  2±*Ldx\  p 4- H 2Ei 1 (dp2 +  dz2)

A • • • A dxp (2 .12)

4 Recall that the Hodge dual satisfies



with 3>oo constant and

A = ( p + l ) ( d - 2) +  i a 2( £ > - 2)

D =  ( p + l )  +  q +  r

d =  q +  r (2.13)

H
%  I

h lo g y
h

yq~

H ( y ) is a harmonic function on R9. Note that we could absorb the slightly

The branes extend along the p  +  1 dimensional space spanned by the  

W hile they are localized at y — 0 for r =  0, the brane charge cannot be localized 

in the z a directions for r >  0. One either thinks of a single brane having 

been smeared over the z a , or a superposition of a large (infinite) number of 

parallel branes distributed evenly over z ° , which becomes indistinguishable from 

a continuous distribution in the limit where the separation between the branes 

is smaller than the string scale y/a!.

As a matter of fact, the solution (2 .12) does not solve the equations of motion 

(2 .11) everywhere. After all, the functions H  are the fundamental solutions to 

the Laplace equations5 on R9. I.e. for

ujq =  Y{q/2 ) v° lume ° f  a unit g-sphere. Our earlier solutions H  agree with

the functions q up to normalization and the overall additive constant and it

the Laplacian □ (r<?) generate 5-function singularities, indicating the presence 

of sources. One needs to match these singularities with the contribution of 

additional source terms that we will add to the action shortly.

awkward factor in the constant 3>oo-

(2.14)

we have

□ < » ) * ,  =  SM (y) (2.15)

where □(r<?) =  Sabdadb is the Laplacian on the space parametrized by the ya and
nq' 2 • , ,  , r ^   , _________

follows that all terms in the supergravity equations of motion (2 .11) including

5 A discussion of this and a proof of (2.14) can be found in most textbooks on partial
differential equations. E.g. [65].
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It is quite interesting to study the origin and cancellation of these source 

terms in some detail. We will do so in the case of localized (d =  q ,r  =  0) 

p-branes, with d >  3. In the case of the Einstein equations, it is only the Ricci 

tensor (and hence also the Ricci scalar) that contains second order derivatives. 

As a matter of fact, for the ansatz chosen, all first order terms cancel alge­

braically and the equation of motion reduces to those terms in the Einstein 

tensor that contain the Laplacian. I.e.

(Rmu -  \ g mnR)o(UH) =  (2.16)

with a. — —2 — 2 and m, n € {0 , . . .  ,p } and

DstdH =  - d ( d  -  2)u>dh8{d) (y) (2.17)

Note that (2.16) vanishes for m, n E {p +  1 , . . . ,  D}.  In the case of the Dilaton 

equation,

( v 2$ ) o (d„) =  h  (2-18)

A suitable source term complements the action (2.10) as in (1.3) to

s  =  'S'sUGRA +  'S'src (2.19)

The contribution of Ssrc will cancel the terms on the right hand side of (2.16).

In the case at hand, the source term will be given by a suitable brane action. 

Later on, we will be focussing on Dp-branes with action

Ssrc — — Tp f  dp+1£eEr L* , / - d e t ( X * [ g  +  B}+27ra'F)
f  (2 .20) 

+  ( - 1 ) P+V P /  (£x*[Cn] A er[Bl+2TO'f )p+1
J P+1 n

For differential forms, X*  denotes the pull-back, while X*g  refers to the induced 

metric diX^djX^g^ .  To find the source for (2.10) and (2.12), we modify and 

truncate (2 .12) slightly, dropping the world-volume gauge field F  as well as the 

coupling to the Neveux-Schwarz two-form B  and introducing an auxiliary metric 

'fij•

S = ~ Y  J dp+1£ N/ ^ e 6V i 9 i * ^ * ^  +  ( P - l ) ]  +  ^ / * * < V n )

(2.21)

As in the case of the Polyakov action for strings, the role of the world-volume 

metric is that it allows us to rewrite an action that is non-linear in d i X pd j X ugpV
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as a linear one. The worldvolume fields 7 ij^X^ need to satisfy the equations of 

motion6

0 =  eb*8 iX>‘9JX''g„„ -  i X ^ g ^ + p -  1)

0 =  d j i - T r ^ e ^ d i X V g ^  +
P (2 .22)

+  ( y  vr=i e b*lt’9 » $ h i jdiX'‘dj X x -  p  +  1) +  i iidiX l'dj X % g « x ]

~

The first of these is solved by

7 y  =  ei *diX » d j X''glu, (2.23)

which, upon substitution into (2.21), yields an action of the standard form 

(2.20). We will turn to the second equation in (2.22) later. Let us investigate

instead the relation between the source term and the space-time action. (2 .21)

modifies the equations of motion of the background space-time to

0 =  Rfxu — -  ^g»vdx<f>dx$)

1 :ea*[(p +  2)F„Xl...Xp+1Fux' --x^  -  ± g ^ F 2}2(p +  2)! 7 /iA1- ' Ap+1 " 2 '

0 =  d ^ y / ^ g g ^ d ^ )  -  2(p a+ 2) \yf ~ 9 ea* F2

-  8nGDTpb J  dp+1Cv^ 7 eb*['Yi*diX' tdj X t'glu, -  (p -  1)]<5(d)(x -  X(£))

0 =  dll{y/ = g e a* F liV°'-v*)

+  167TGDp p J  & + l Zti*-'i*dioX v° . . .  dipX Vp8̂ D\ x  -  X ( 0 )

(2.24)

Matching the solution (2.12) with the source terms arising from (2.14) will 

fix some relations between the various constants, G.o,Tp,/ /p,e <I>00 that we have 

introduced up to this point. It is easiest to do so in the case of the Dilaton  

where we need to match (2.18) with the source in (2.24).

D -  2 ad(d -  2)udh ^  l67rGDTpeb*°°b 5(d )^
A  H  H

167TG o T pe 2
h =

a  (2.25)

d(d -  2)ud 2(D -  2)

6The relative complexity of the second term in the equation of motion for the stems
from the fact that 4> and depend on the explicitly, while 7 ij does only after we
solve some of the equations of motion. Hence 5x^ l i j  =  0.
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Here we fixed b — —\a.

The Maxwell equation reduces to

0 =  y j 2 ^ ^ e - ^ n mqH +  16tt GDfipdw (x) (2-26)

which imposes
_  lQTvGDiipe23*°° /  A , .

d(d -  2)ujd y  2 (D  -  2) 1 j

Similarly, one matches (2.16) with the contribution of (2.21) to the Einstein

equation

(Rrnn -  \ g m n R ) o i a H )  =  - 87r G D r pe M' ~ H “ - i ' 3+ o l'Ĵ 1 r,rani ( ‘,> (y) (2 .2 8 )

Here

8jtG DTpe - i * ~ 6 W ( y )  =  ? ^ d ( d  -  2)udh8W (v)

_ 16nGDTpe 2- * * „  A (2*29)

d(d -  2)ud 2(D -  2)

in agreement with (2.25). Comparing (2.27) and (2/29) fixes the relation between

Tp and ĵ p

S  = (2.30)
V A

As we remarked after (2.13), we can absorb the square root into $ 00.

Let us finish this section with a discussion of the equation of motion of the 

embedding fields X M(£) -  see again (2.22). As no fields in our ansatz depend 

on the world-volume coordinates £l , they reduce to

0 =  ‘̂ ■ ^ j e b* [ b d ^ ( j » d iX'‘dj X x - p  +  l ) + i isdiX*dj X % g Kx]
(2 31)

"  (F T ij !  e‘0"'ip9*“x '‘° • • ■ \ x i ‘p9»c ^

which vanishes identically for /i €  {0, . . .  ,p}.  Let us however generalize this 

part of the discussion to include non-extremal p-branes. That is, we assume the 

metric to take the form

ds2 =  H ( y ) ~ 2±^  { - f ( y ) d t2 +  dx2] +  . . .  (2.32)

where we dropped the transverse directions, which include off-diagonal elements 

in our choice of coordinates, but do not contribute to the following discussion. 

(2.31) reduces to

0 =  +  ( p + 1^ ~ 2) / ] g ~ 29 , .g  -  (2.33)
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Setting /  =  1 — it follows that the above is only solved if Q =  0, i.e. if the 

brane is extremal. Note further that in the non-extremal case, the term H ~ 1dpf  

diverges as y  —► 0, while H ~ 2dpH  —> 0. One can interpret this behavior in the 

light of supersymmetry. By introducing / ,  we only modify the part of the brane 

action coupling to the metric, but not that coupling to the p +  2-form. The 

equation of motion can be thought of as a balancing between these two sectors 

(it imposes a relation between Tp and pp), so it is no surprise that it holds 

no longer once we have perturbed this balance. This might simply indicate an 

instability of the embedding or might indicate that it is not possible to find 

a source term for the non-extremal solution. One should take into account 

[66] however, where the authors constructed a finite temperature background 

including flavor branes. In opposite to our discussion in the previous paragraph 

however, this background’s non-extrmality is due to a horizon associated with 

the color-branes, while only the flavor-branes are represented by a source.

Dropping the 1 in the harmonic function H(y)  in (2.13) yields the near­

horizon limit of the extremal p-brane considered. From (2.14) it follows however 

that the source-terms are still necessary in this limit -  the argument does not 

depend on the asymptotic value of H 7

2.3 Supersym m etric branes

In the previous section we were able to study the p-brane solutions as well as 

their source terms using the equations of motion of the supergravity-plus-brane 

action (2.19) alone. W hile this procedure can be extended to slightly more 

complicated cases such as branes on tori or branes at the tip of singularities, it 

quickly reaches the limits of what is feasible for more complicated solutions. As 

it is so often the case in string theory, supersymmetry is the method of choice 

to deal with this issue.

The integrability theorems of [38] and [39] were generalized to the case of 

backgrounds with sources in [40]. And again we only need to impose supersym­

metry as well as the Bianchi identities and equations of motion for the p-form 

fields for the Einstein and dilaton equations to be satisfied. The main difference

7After all, no matter whether in the near-horizon limit or not, H  is harmonic everywhere 
except at the origin. See e.g. chapter 2.2 of [65].

24



to  the source-free case lies in the fact that the sources appear in the p-form 

equations. We already encountered this in the (2.24), where the Maxwell equa­

tion took the form d * (ea®F) Ŝ d\ y ) .  We will discuss in detail in chapter 3 

how the right hand side can be interpreted as a source-density for the branes -  

it is in general the smearing form.

In this section, we shall give a short introduction to /c-symmetry [32] and 

generalized calibrations, the methods of choice when discussing the supersym­

metry of branes. There are several definitions of a generalized calibration in the 

literature, yet for our purposes it is sufficient to think of them in their original 

form in [36]. Generalizations can be found in [67] or [68]. The discussion given 

ignores the case of world-volume fluxes and follows that of the review [69].

Prom an intuitive point of view, a given brane configuration is supersym- 

metric if it is a minimum energy configuration. In the absence of fluxes, brane 

actions for static branes are essentially volume integrals, and the minimum en­

ergy condition translates to a minimum volume one. I.e. in the absence of 

fluxes, branes wrap minimum volume cycles in a given homology class. Turning 

on fluxes deforms these cycles. The embeddings are still supersymmetric, but 

no longer of minimum volume.

/c -sym m etry  an d  ca lib ra tio n  form s A p-brane embedding consists of a 

map
X  : Rp+1 -> R d 

(2.34)

as well as the gauge-invariant combination of NS and world-volume gauge field 

F  =  X*[B] +  2‘na'F.  It is considered /c- and hence supersymmetric iff the 

associated /c-symmetry matrix =  r K [X , T] satisfies

TKe =  e (2.35)

where e are the SUSY spinors of the background. The generic form of I \  is 

quite involved, so we restrict to the case F  =  0:

r  1 1 * -« ■  f  ( r 1,1) 1*1'* ,...., (nA )
(P +  1)! V -  detX *(s] |  (DB)

7 i =  diX^Tfj, are the induced T-matrices on the brane world-volume, T11 =  

r 0—10 is the chirality matrix in type IIA.
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r«  is hermitian and squares to one. It follows that8

2
>  0 (2.37)l-r*

— - — e
ti -  r„ 11 -  r« i -  r„ ’ " 2e1 — -— e =  eT—  ---------— e =

2 2 2

Which implies that e*e >  e^TKe w ith equality if and only if the embedding is 

supersymmetric. Normalizing the spinor such that e ê =  1 and using (2.36), we 

may rephrase this as

n ,—  >  (IIA)
V  (p+1) -  ( p + 1 ) !  \  ( H B )

Equality holds if and only if the embedding is supersymmetric. Now the right 

hand side of (2.38) may be written as the pull-back of a differential form defined 

in space-time.

(IIA) (2.39)
( p+ l ) l  \  et<73 2 2(72 ® r ao...ape (IIB)

/C is known as the calibration form. A criterion for supersymmetry of an em­

bedding that is alternative to (2.35) is then given by the following

X ' K  =  v/ - 9 (p+l)d*,+1£ (2.40)

that is, the pull-back of the calibration form onto the world-volume is equal to 

the induced volume form.

One may obtain 1C directly from its definition (2.39) and the knowledge of 

the projections imposed onto the SUSY spinors. We shall give an example of 

this in appendix 3.A.

T h e  B P S -b o u n d  Formally one defines a calibration on a Riemannian mani­

fold as a (p -I- l)-form  /C satisfying

d/C =  0 /C|fP+i <  27(p+i)|£p+i (2-41)

Here £p is a set of vectors specifying a tangent (p +  l)-p lane to a (p +  1)-

cycle Ep+i while 27(p+i) =  y / —9 (p+ i)dp+1£ is the volum e form induced onto

that cycle. The cycle £ p+i is calibrated if the above bound is saturated, i.e. if 

/C^p+i =  »7(p+ i )|€p+i .

8In general equations (2.37), (2.38) and (2.39) should be formulated in terms of a suitable 
conjugate spinor e, in all cases that we will study though it is possible to identify e =  eC
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As we have seen above (2.40), /^-symmetric brane embeddings satisfy the 

volume bound, which can be thought of as a BPS-bound. In this and in the next 

paragraph we shall turn to the issue of the closure of (2.39). For a background 

without fluxes, the issue is rather easily resolved. From the gravitino variation

Sê pM — D m € — 0 (2.42)

it follows that the SUSY spinor e is covariantly constant. As the covariant 

derivative of both the vielbein and the tangent-space T-matrices does also vanish 

it follows that

d/C =  V A K  =  0 (2.43)

V  A/C is to be taken as a formal expression. The wedge product antisymmetrizes

over the relevant indices and, as the Levi-Civita connection is symmetric in two

of its indices, it follows that the first equality holds. As all the ingredients of

(2.39) are covariantly constant, it follows that the exterior derivative is closed.

There is a nice interpretation of the closure of the calibration form. Let us 

assume that we deform the calibrated cycle Ep+i to £ p+i- The two cycles differ 

by a boundary £ p+i -  Ep+1 =  <55p±2 > More formally we would not consider 

£p +1 as a deformation, yet as a cycle within the homology class defined by 

Ep+ i. We use Stokes theorem to establish

Vol(Ep+i) =  f  K =  f  dIC+ f  K =  f  /C <  Vol(E;+1) (2.44)
J ' Ep + 1 “ P + 2  ' ' ^ p + l  S P + 1

The final inequality uses (2.38). It follows that the calibrated cycle £ p+ i is a 

minimal volume cycle. This matches our experience from string theory. In the 

absence of fluxes branes wrap minimal volume cycles.

G en era lized  ca lib ra tio n s The /c-symmetry matrix (2.36) does not change 

in the presence of Ramond-Ramond background fields and thus neither does 

the definition of the calibration form or the supersymmetry condition (2.40). 

Background fluxes however deform branes such that they do not longer wrap 

minimal volume cycles. For a background with fluxes we do therefore not expect 

the calibration form (2.39) to be closed. Rather, it’s exterior differential should 

be related to the flux. Indeed, in all the examples studied in chapters 3 to 5, 

the calibration will satisfy

=  F(p+2) (2.45)
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and one speaks of a generalized calibration. The original proof [36] verifying

charge of a supersymmetry algebra and must therefore be topological and thus 

exact. It is also possible to verify (2.45) in terms of the dilatino and gravitino 

supersymmetry transformations.

There is a generalization of (2.44) for the presence of background fluxes. 

Let us assume that both the brane and the background fields are static. It 

follows that the energy of the system is proportional to its action -  with the 

proportionality constant being infinity. Moreover, minimum energy configura­

tions will therefore minimize the brane action. Let £ p+i be the supersymmetric 

cycle wrapped by the brane and £ p+i =  £ p+i 4- <5£(p+2) a deformation. Then 

(setting Tp =  1)

The inequality in the second line used again (2.38). It follows that supersym­

metric, static embeddings are minimum energy configurations.

(2.45) showed that the expression ( e ^ ^ /C  — C(p+i)) appears as the central

AE  oc Sv p+1 -  S E p + 1

(2.46)
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Chapter 3

Geom etric aspects

The focus of this chapter is the construction of a suitable source density1 Q,

when flavoring supergravity backgrounds. The strategy is to use generalized 

calibrated geometry. Recall from section 2.3 that a brane is supersymmetric iff 

the pull-back of the calibration form onto the world-volume, X*IC, is equal to 

the induced volume form (2.40). It follows immediately that one can write the 

DBI action of any supersymmetric brane in terms of this pull-back.

Let us briefly state the central argument. Starting point of the flavoring 

procedure is the action (1.3). In the case of type IIA /B  backgrounds with 

Ramond-Ramond flux i r(p+2)> we can write the source term in Einstein frame 

as (see [70])

which is a truncation of (2.20). As we will see, it is always possible to relate the 

smearing form to the calibration form using supersymmetry and the equations 

of motion:

This imposes a constraint on the distribution density. In the following we shall 

study how equations (3.1) and (3.2) can be applied to address the problem of 

smeared flavors.

Proceeding rather pedagogically, section 3.1.1 exhibits these methods for 

three different, well-known examples. We will contrast the macroscopic per­

spective gained by the use of calibrations against that of the original papers.

1We will use the expressions source density, distribution density, brane density or smearing
form interchangeably when referring to Cl.

I avor

d[*e1SLJ?LJL*d(eILi1 *)C)] =  ±2 k21 0TpQ (3.2)
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In this way we will see that our methods are not only capable of reproducing 

the known results, yet also provide some new, interesting ones. The examples 

studied are the M  =  1 sQCD-like dual of [14, 15, 16], the d =  2 +  1 dimensional 

M  — 1 theory of [71] and the Klebanov-W itten theory [5] with massless [17] 

and massive [20] flavors. Following this we turn to the generic case (section 

3.1.2), showing how the action (3.1) can be constructed from purely geometric 

considerations and proving its equivalence with other actions used in the field 

of smeared flavors.

In section 3.2 we shall apply our methods to the problem of flavoring a 

background dual to an J\f — 2 super Yang-Mills-like theory first studied in 

[72, 73]. We will see that we are able to do so without an explicit knowledge of 

the brane embeddings used. We find new analytic and asymptotic solutions to 

the flavored and unflavored equations of motion and discuss various properties 

of these backgrounds.

Following [56] we will also show for the examples considered, how all con­

straints imposed by supersymmetry upon space-time can be understood and 

recovered from geometric grounds using methods such as G-structures.

In section 2.3 we gave a short review of the required background in general­

ized calibrations. Appendix 3. A contains a detailed example of how to calculate 

a calibration form.

3.1 The geom etry of smeared branes

In the following we shall investigate what generalized calibrated geometry can 

teach us about string theory duals with backreacting, smeared flavor branes. 

First we will take a detailed look at three examples [14, 17, 71], For each of these 

we will briefly summarize the conventional approach to flavoring and will then 

show explicitly that it can be nicely understood in terms of a suitable calibration 

form. In section 3.1.2 we will turn to the case of a generic supergravity dual.

3.1.1 Three exam ples

T h e  s tr in g  d u a l to  an  H  =  1 sQ C D -lik e  th e o r y
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R e v ie w  o f  th e  M  =  1 sQ C D -lik e  str in g  d u a l As a first example we 

shall turn to the string dual to an M  — 1 sQCD-like theory [14, 15, 16]. It is 

based on the background o f [8] which is given by the following solution of the 

type IIB equations of m otion (Einstein frame):

, 1 <hci,3 +  dr2 +  e2 h(d92  +  sin2 9d<p2) +  j(d)» -  A 1) 2 
a  g s i \ c 4

d s2 =  a'gaN ceT

f <3> =  -  ^ “) + 1 E  Fa A -  ^ °)

(3.3)

with

A 1 =  — a(r)dl0 ui  =  cos ipd9 +  sin ip sin 9d(p 

A 2 =  a(r) sin  9d(p cl>2 =  — sin ipd9 +  cos ip sin 9d<j> (3.4)

A 3 =  — cos 9<d(p =  dip +  cos 9d(p

The metric describes a space with topology R 1,3 x R x S 2 x S3, where the three- 

sphere is parametrized by Ithe Maurer-Cartan forms £>* and the one-forms A% 

describe the fibration betwieen the two spheres. It is interpreted as the near­

horizon geometry of a stack of Nc D5-branes wrapping an S 2, thus describing 

the dynamics of d =  3 +  1 dlimensional M  =  1, SU(NC) super Yang-Mills theory 

coupled to some extra m atter. To keep the discussion as simple as possible, 

we shall focus on the so-called singular solution which is obtained from the 

assumption a(r) =  0.

The possibility of adding probe flavor branes to the above background (3.3) 

was studied in [74]. Using /c-symmetry the authors found several classes of flavor 

D5-branes; the simplest of these is given by branes extending along (xM, r) and 

wrapping ip. They are pointlike on the four-dimensional submanifold given 

by (9, (p, 9, <p) and extend t<o r =  0, thus describing massless flavors. In what 

follows, the most importamt feature of this embedding is that we are able to 

identify world-volume coordinates £a with space-time ones, (xM, r, ip). So even 

at the level of the space-timie coordinates X M there is a very well defined notion 

of coordinates tangential amd transverse to the brane.

From the perspective of; type IIB string theory, it is clear that the addition 

of a large number of such branes to the system (3.3) will deform the geometry 

of the background. Given Ithe form of the brane embeddings it follows that a
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suitable ansatz for the deformed background should be of the form 

ds2 =  e2- ^  [dx2 3 +  dr2 4- e2/l^ ( d 6 2 +  sin2 6 d4>2)
g2g(r) g2/c(r)

+  — (<*>1 +  u \ )  +  — —  (u>3 +  COS dd<j>) ] (3 .5 )

F( 3) =  - 2 N ce~3f~29~ke123 +  ^ £ c-3/-2/i-fcefl03

as the flavor branes are points on the four-dimensional transverse manifold while 

singling out the U( 1) C S 3 parametrized by 0 . When writing (3.5) we intro­

duced a vielbein

* f ■ ef+ 9  o e f + 9  o e*+k
ex — e*dxl e — — ■ u>i e = -------u>2 e =  —- — (0)3 +  cos0d0 )

er =  e^dr ee — e^+hd9 e  ̂ =  e^+h sinOdcp
(3.6)

One can also interpret the ansatz (3.5) from the gauge theory point of view. 

The U{ 1) describes the R-symmetry of the flavored theory, which one demands 

not to be broken classically by the addition of massless flavors.

Studying the dilatino and gravitino variations of the deformed background 

one obtains the projections satisfied by the SUSY spinor e,

IVi23e =  e r V ^ e  =  e e =  036 (3-7)

as well as the BPS equations 

4 /  =  *

ft' =  j N ce ~ 2h~k +  ] e ~ 2h+k =  \ e 3fFH3 +  \ e ~ 2h+k 
4 4 2 4

g' =  - N ce - 2s~ k +  e~2^ k =  U 3 fF 123 +  e ~ 2s+k

k' =  - N ce~ 2h~k -  N ce - 2‘>~k -  l e ~2h+ k _  e ~2s+ k +  2 e ' fc 
4 4

=  ^e3f( F w  +  F m ) -  \ e ~ 2h+k ~  e~2s+k +  2e~k

=  - l- N ce~ 2h- k +  N ce - 2*>-k =  - l e 3' ^  +  * 123)

It is a priori not obvious that the flavor branes mentioned earlier are still 

supersymmetric brane embeddings for the deformed background for arbitrary 

functions g , h, k. One therefore has to check again that probes with world-

volume directions as before, £“ =  (xM,r, 0 ) , still preserve all of the backgrounds

supersymmetries.

Having deformed the original background one turns to the system given by 

the combined action (1.3) with Sflavor given by by th e  source term (2.20). One
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can anticipate that the brane action will contribute to the energy-momentum  

tensor in the Einstein equation, add a source term for the 3-form field strength 

and modify the dilaton equation by a contribution related to the DBI action.

For the case of Nf  flavor branes localized at (#o5 00, 0o), the brane action

is (X * denoting the pull-back onto the world-volume)

Sflavor = ts y ( - [  t f C e t J l h v + f  x ‘c m )
TJ. \  v J m 6 /

(3.9)
(0o,4>o,eo,M

(3.11)

N ,  '  " "■«

As these branes are localized in the four transverse directions, the equations 

of motion will contain 5-fuinction sources, making the search for solutions a

difficult endeavour. The idea is therefore to smoothly distribute the branes over

the transverse directions. I f  one assumes a transverse brane distribution with 

density
N t ~ ~

!-r sin 6  sin Odd A d0 A d9 A d(f) (3.10)
(47r)2

the action (3.9) may be generalized to 

Sflavor =  r 5 ( “ TT^o f  d 1 0 xe% sin 9 sin 0  J - g $ )  +  f  C(6) A Q
V (47r)2 J m v o V J M x 0

=  T5 f — f  d 10x :e 2 y / —g\10) 1̂ 1 +  [  ^ (6) A
\  JM 10 J Mio /

where we have defined the modulus of a p-form Q as

PI =  (3.12)

and have checked the equalitty of the first and second lines by explicit calculation.

Let us take a look at how  the brane action modifies the second order equa­

tions of motion, starting w ith  the Ramond-Ramond field strength. Here the 

relevant part of the total action is

e -*

>Mio * Kl 0 

If we vary the potential C(6J) ,

=  /  - ^ r e- r - ( F m  A *Fm ) +  n c (6) a  n  (3.13)
J M i n  ^ « 1 0  Z

$ c S  =  [ - - - - - ~ 7 T ~ 2 ----^~(d^C'(6) A *F(7) +  F(7) A *d5C'(6)) +  T5 f  5C(6) A Q
J M 10 ZK10 Z J

=  f  A ( - i - d » e~* Fm  +  n n )
J M 10  \ ^ 1 0  /

dF( 3) =  2 k\qTsQ.
(3.14)
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The change in the dilaton and Einstein equations does not take such a nice 

geometric form. Choosing T5 =  -̂ ) 5  > ^Kio =  (27r)7, the complete equations of 

motion are

0 =  dF(3) -  (2 n)2fl

0 = - J - — d/x(gMV - 3(io)dt^) -  - k e* F(% -  T e  ̂ singsin0
y ~ 9 {  10) 12 w  8 y / ~ 9 (  10)

0 =  R^v -  i

-  ~ e ^  ( 3 F„kXF ^  -  1 ^ 4 , )  -  T $ '

r " “r =  -  ̂  sin # sin  ̂ V ^ (ti>
4 * V ~  fl'(io)

(3.15)

The search for solutions of (3.15) is simplified considerably by a powerful 

result due to Koerber and Tsimpis [40] who showed that any solution to the 

BPS equations satisfying the modified Bianchi identity of (3.14) solves also the 

Einstein and dilaton equations and is therefore a solution of (3.15).

So we turn again to the issue of the BPS equations. As the brane embeddings 

are supersymmetric, the projections (3.7) imposed on the spinor e remain the 

same. However, the three-form field strength F^) is modified by the appearance 

of the source term in (3.15). To incorporate this one makes a new ansatz for 

the field strength of (3.5)

Fm  =  _ ^ e - 3/ - 2» - fce 123 -  - f  r J ^ e -3/-2i>-hee*3 (3 16)

It follows that the BPS equations (3.8) change to  

4 /  =  $

h ’ =  |(J V C -  N f ) e ~ 2h~k +  i e - 2'*+‘  =  \ e 3 t Fu 3  +  \ e ~ 2h+k

g 1 =  - N ce- '1<‘ - k +  e~ 29+k =  l e 3-̂  1*123 +  e ~ 29+k

k' = 1(JVC -  N f  )e ~ 2h~k -  N ce~ 29~ k -  -e~2k+k -  e~ 2s+k + 2e~k

=  +  f i r a )  -  j e - 2'i+ t -  e ~ 29+k +  2 e ~ k

* ' = - 1  ( N c -  N f )e ~ 2h~ k + N ce - 29~k = - i e3' (Fm  + F123)

It is curious to note that when written in terms of Fq$ 3  and F 123 the BPS 

equations of the deformed and flavored systems are the same -  see (3.8) and
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(3.17). The change in the BPS equations stems solely from the modification of 

the field strength. This should not come as a surprise, as the brane embeddings 

are supersymmetric.2

By construction F (3) satisfies the modified Bianchi identity. Thus any so­

lution of (3.17) solves the flavoring problem for the Maldacena-Nunez back­

ground. For a discussion of these solutions and their physical interpretation see 

[14, 15, 16],

In the above background, the generalization of the action (3.9) to (3.11) 

is fairly intuitive and simple, because there is only one stack of flavor branes 

with world-volume coordinates that can be globally identified with space-time 

coordinates. However we can already anticipate the shortcomings of this def­

inition. On a technical level, the first line of (3.11) is inherently dependent 

on the coordinate split while the second is non-linear in the smearing form fh 

From a more formal point of view it is also unsatisfying that the formalism of 

those equations treats the DBI and Wess-Zumino contributions to the brane 

action on an unequal footing. One should recall that, roughly speaking, the 

DBI action defines the tree level couplings of the brane to the NS gector of the 

background while the couplings to Ramond-Ramond fields are contained in the 

Wess-Zumino term. A standard string theory calculation shows the cancellation 

of the effects of closed strings from the two sectors on supersymmetric branes. 

So it would be desirable to see an explicit symmetry between the two terms 

even after smearing. Adopting once again a more physics centered perspective 

we might also wonder if there are any constraints on the choice of the smearing 

form. E.g. one should note that the smearing form does not agree with the vol­

ume form induced on the four-cycle (9, 0 , 9, (j) . At first glance it might appear 

that there are none. After all, the cancellations between parallel BPS branes 

allow us to place them at arbitrary separations. As we will soon see, however, 

there are constraints on f2 which can be traced back to the geometric structure 

of the background.

T h e  p e r sp e c t iv e  o f  g en era lized  ca lib ra ted  g eo m etry  The properties 

of generalized calibrations and their relation to supersymmetry were discussed 

in detail in section 2.3. As the backgrounds considered are not fully generic,

2We commented on this issue in footnote 3 on page 11.
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yet only include dilaton and Ramond-Ramond fields in type IIB supergravity, 

we will not make use of the most general concept of a generalized calibration. 

Again we refer to [67] and [68]. For our purposes it is sufficient to  recall that

a p-brane with embedding X M(£) is supersymmetric if and only if it satisfies

(2.40). Using this, we write the DBI action in (3.9) as

Sdbi =  ~TP [  e ^ X ' J C  (3.18)
Jm p+i

Furthermore, if the p-brane couples electrically to the flux given by F(p+2)5 

supersymmetry in the Einstein frame requires [36]

d (e^*K.) = F(p+2) (3.19)

In the case at hand, the calibration six-form is given by

ic = ® r a0...a5e)eO0"‘°5 (3.20)

As explained in appendix 3.A, evaluation of the calibration form requires only 

the chirality of the type IIB spinors, e =  r n e and knowledge of the projections 

imposed on the SUSY spinors (3.7). From the last of these it follows that one 

of the Majorana-Weyl spinors of type IIB is fixed to zero, e =  (§ )• Thus there 

is only one calibration six-form and we may use e instead of e. In section 3.2 

we will encounter an example with two calibration forms. Combining the SUSY  

projections (3.7) with the definition (3.20) yields

^'x°x1x2x30i/> — €̂ '̂xax1x3x30<f>€ — — 1 (3.21)

The second equality makes use of chirality, the third of the SUSY projections 

and the normalization e*e =  1. When calculating calibration forms it is actually 

more difficult to show that certain components vanish. However, the process 

is rather straightforward and discussed in considerable detail in appendix 3.A. 

When the dust settles, we are left with

^  =  gx'Vx2! 3 A (er3 _  eH  _  c i2) (3 .22)

As e3 is the only part of the vielbein containing dV>, it is obvious that equation

(2.40) is satisfied and we recover the result of [74] that the embedding in question 

is supersymmetric. Noting that



it is easy to see that we may write the smeared brane action (3.11) as

‘S'flavor =  f  (—e 2/C +  C(g)) A (3.24)
J  M i a

In opposite to (3.11) this is independent of coordinates, linear in the smearing 

form, and treats the DBI and Wess-Zumino contributions to the brane action 

on an equal footing.

Concerning the supersymmetry condition (3.19), we find

d(e*/C) =  e~f + %e*0*1*2*3 A [e~2g{2 ek -  6 e2 9 f '  -  2e2gg' -  e2g& )e r 1 2

+e~ 2 h(^ek -  6e2hf  -  4e2ht i  -  e2 h& )e re+}
(3.25)

Using the BPS equations (3.8) or (3.17), one may verify for the three-form field 

strength with (3.16) and without sources (3.5) that d(e^/C) =  F(7) is satisfied. 

We can exploit the calibration form even further. From e~4> * F(7) =  and 

dF(3) =  (27r)2fl it follows that

e-*»d(e*A C ) =  Fm
(3.26)

d [ e - ® * d ( e * K ) ]  =  (2 tt)20

Again note that these equations hold with or without the backreaction of the 

source terms -  in the latter case with Q =  0. One should think of them rather 

as a characteristic of the super symmetries preserved by the background than a 

property of the branes.

When we first introduced the smearing form in (3.10) it appeared that its 

choice was rather arbitrary. After all supersymmetry allows us to place branes at 

arbitrary separations. However, (3.26) is not a result of supersymmetry alone 

yet rather an interplay of supersymmetry and the Einstein equations, as the 

following illustrates.

d (e * K )S = Y .F(r), *e-*Fm  =  Fm , dF(3) E£ M (27r)2«  (3.27)

B P S  eq u a tio n s  an d  G -stru ctu res We showed before that the require­

ment of supersymmetry is related to geometry, notably with the calibration 

form. As supersymmetry gives us the BPS equations of the system, it is logical 

to  think that one can retrieve those equations through geometric considerations, 

namely G-structures. When looking at the supersymmetric gravitino equation,
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we can identify F(3) with a torsion (straightforward in string frame), defining a 

new covariant derivative V M such that

V Me =  e (3.28)

This means that we have a covariantly constant spinor satisfying the projections

(3.7). From these it follows that in the six-dimensional internal manifold, there

is a covariantly constant complex chiral spinor 77 verifying

7rl23»7 =  V Jr04>3r} =  V  ( 3 -2 9 )

where 7* are the gamma matrices of the six-dimensional internal manifold. We 

can choose the chirality of 77 to be

i l rnzeW  =  -V  (3.30)

Then we recognize that the six-dimensional manifold is a generalized Calabi- 

Yau. It has a Kahler two-form J  and a holomorphic three-form ft defined as

Jmn =  'ymnV (3.31)

9 mnp =  V 'YmnpV (3.32)

Supersymmetry imposes the following conditions on the forms (see [56]):

d(e* *6 J) =  0 (3.33)

d (e**fi) =  0 (3.34)

From those equations, plus the generalized calibration condition (3.26), we can

retrieve the BPS equations of the system, imposing 4 /  =  4>. Indeed, this last

condition, describing how the internal manifold is embedded in space-time, 

cannot be captured by those geometric properties that concern only the six­

dimensional manifold. It can however easily be found using the supersymmetric 

variations of the dilatino and the gravitino.

A n  J \f  =  1, d =  2 + 1  e x a m p le  We turn now to the string dual of a d =  2 -I- 1 

dimensional M  =  1 theory that was discussed in [71]. We will keep the discussion 

rather brief, only exhibiting the equivalence of the actions (3.11) and (3.24) for

this example. In comparison to the M  =  1 sQCD-like dual of the previous
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section the situation is complicated by the fact that there are three stacks of 

branes. While it is possible to find coordinates such that the worldvolume 

of one of these stacks may be identified with space-time coordinates, it is not 

possible to do so for all three stacks simultaneously. The system has the topology 

R 1,2 x R x 5 3 x S 3. As in section 3.1.1, we shall work with a simplification, the 

truncated system, for which the background is given by

» ,  f ef+h • ef+g 1
ex =  e^dx1 er =  e*dr e1 =  - a % e% =  -  (a/ — - a 1)

2 2 2 (3 .35)

F(3) =  - 2 N ce~3g~3f e i 2 3  +  - N ce~9~2h~3f (e132 -  e123 -  e23i)

(T1 and a)1 are sets of Maurer-Cartan forms parametrizing the two three-spheres. 

The projections satisfied by the SUSY spinor rj are

r ii22»7 =  “ »7 r i i  S37? =  - V  r 2233»7 =  - V  =  rj rf =  a3rj (3.36)

And the BPS equations take the form

=  N ce~3g -  ? Nce~9~2h

h' =  - e 9~2h +  i  NcB~9- 2h
2 2 (3 .37 )

g< =  e-9 _  I e9—2/1 + ^ l e - 9- 2h _  Nce-*9
4 4

® = 4 /

Once more, it follows from rj =  a 3 i) =  ( q ) that there is only one calibration

six-form which is given by (assuming T11tj =  —rj)

K  =  e012 A (erli  +  er 2 2  +  er33 -  e123 +  e3i2 -  e2i3 +  e123) (3.38)

From the calibration condition for supersymmetric branes, X*JC =  d^6^ —9 (6 ), 

one can see immediately that there are supersymmetric 5-brane embeddings 

with tangent vectors3 (dxo, dxi , dx 2 , Er, Ei , E-X i e  {1 ,2 ,3 } . We also learn from

3 When labeling brane embeddings in terms of their tangent vectors one should think of
the brane being along the submanifold spanned by the integral curves of the tangent vector
fields. That is, if one were to find coordinates y M such that

d xo =  d y0 d x i =  d y i d x2 =  dy 2 E r =  d y3 E i  =  dy4 =  dy5

the corresponding 11 brane embedding would be given by

y Q(f) =  f “ Y ° =  const a  E { 0 , . . . ,  5} a € { 6, . . . , 9 }

One should note however, that it is necessary to verify, that the distribution given by the
tangent vectors is integrable, i.e. to  verify that the coordinates y M exist. One can do so using
Frobenius theorem, which states that a distribution given by vectors Ta is integrable iff it is
in involution, that is iff [T0,Tj,] =  fabcTc-
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(3.38) that these embeddings are absolutely equivalent. They were originally 

derived in [71] using /c-symmetry. There the authors introduced a standard 

set of Maurer-Cartan forms a/, a  to parametrize the two S 3 s, and then found a 

coordinate representation of the (dM, <9r, £ 3 , .E )̂ branes given by (xM,r, 1,^ 2)- 

Subsequently they argued from the symmetries of the space that there are also 

11 and 22 embeddings, whose coordinate representation would become apparent 

upon using different Maurer-Cartan forms. As we mentioned earlier, it does not 

seem to be possible to find global coordinates for this system in which all three 

flavor brane embeddings have good coordinate representations -  thus this is an 

ideal setting for using the calibration form (3.38).

Our analysis here shall start with the 33 embeddings. In [71] their smeared 

action was given by

The above may be easily generalized to the case of three stacks of D5-branes as 

the expression is linear in O.

|JJ(D| =  ^ e-4 /-2 ft-2 9
7T̂

(3.39)

V - G 10 =  JL.e 1 0f +39+3h sin 6  sin 0

=  l ce f+9+h

Now

/C A f 2 (1) =  - ^ c - 4 / - 2h- 2fl/ ^ d 10i  =  d 10: r V ^ G ^ | f t (1 ) | ( 3 .4 0 )
7T

Thus again, we may write the action of one stack of (33) branes as

( 3 .4 1 )

n =n (1> + n(2) + «(3>
(3.42)

7T
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Where f i s  the smearing form for branes extending along 22 and smears 

the 11 embedding. The linearity of the above expression gives a good motivation 

for the use of instead of |f2| in the original action of [71]

S D 5  =  t J - j d 1 0x e i V ^ G ^ J 2 \ ^ m \ + J M Cv ) A ( l j  (3.43)

Independently of whether one uses the action (3.42) or (3.43) the Bianchi 

identity is modified to dF(3) =  - 2 n\QT ^  -  the minus sign being due to the 

convention e$ F(3) =  — * Ffy) used in [71]. Accordingly one changes the ansatz 

for the field-strength by adding a term / ( 3) which is not closed,

■F(3) i“h► F(3) +  /(3)

/ (3) =  2N f e - 9~2h- 3f (e12* +  e23i -  e132)

The BPS equations (3.37) change to

(3.44)

=  N ce~ 3 9  -  5(jVc -  Nf )e~g- 2h

h, =  e ^  Nc_ - A N f n
2 2 (3.45)

g' =  e~ 9  -  \ e 9~2h -  Nce~ 39  +

$  = 4 f

Let us now turn to the SUSY condition (3.19). A straightforward calculation 

yields

d(e*/C) =  e f - / e012 A {{2e~ 9  -  6/ '  -  2 g' ~ t i  -  &){e r 1 2 3  -  er 2 i 3  +  er3i2)
p -2h

+  - ^ - ( - 3 e s +  I2 e2hf  +  6 e2ht i  +  e2h&)er123}
(3.46)

Using the BPS equations (3.37) or (3.45) respectively one can verify that — e~®* 

d(e^ 1C) — F(3) is satisfied in both the deformed and flavored case. Furthermore 

we know that dF(3) =  (27r)2fi, thus we are again able to obtain a constraint on 

the smearing form as

(2tt)2Q =  d [ -e ~ *  * d(e*/C)] (3.47)

We immediately see why there have to be three stacks of flavor D5-branes in 

the backreacted solution -  the calibration form respects the symmetries of the 

two three-spheres and from (3.47) it follows that the same holds true for the
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smearing form. It would therefore not be possible to obtain a smeared system  

with only one or two of the three stacks.

We can again use G-structures to derive the BPS equations for the system. In 

this case the internal manifold is seven-dimensional, with a covariantly constant 

spinor which satisfies

7 i i22*7 =  - V  T iia ^  =  - V  7ri23*7 =  *7 (3-48)

We recognize here a generalized 67 2 holonomy manifold with the associative 

three-form JC defined as

7 (3.49)

The condition imposed by supersymmetry is

d(e* *7 K)  =  0 (3.50)

Together with the generalized calibration condition, and assuming <J> =  4 / ,

this condition provides us with a method to rederive the BPS equations (3.37),

(3.45).

T h e  K le b a n o v -W itte n  m o d e l Finally we take a look at the Klebanov- 

W itten model for the cases of massless [17] and massive flavors [20]. The 

Klebanov-W itten model [5] is based on D3-branes at the tip of the conifold 

and is dual to a certain M  =  1 super Yang-Mills theory. So apart from the dila­

ton and the metric there is self-dual F (5) flux due to the D3s. In contrast to the 

previous two examples, one uses D7s to introduce flavor degrees of freedom into 

the system. These source F(i), so the suitable ansatz for the relevant deformed, 

flavored background is

ds2 =  h 2 dx2 3

+  h i

F(5) =  27trNce - 49~f  h - 5 / 4 (ex°xlx2x3p -  e9l<t>̂ M )

Fti) =  ip -I- co s0 id 0 i -f cos02d</>2)
47T

e2 f dp2 +  % - +  sin2 +  “cT W  +  I l I
t= l,2 i= l ,2

(3.51)
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with ip G [O,47r],0* G [0,7r\,<pi G |[0,27r],p G K. There is an obvious choice of 

vielbein

ex* =  h ^ ^ d x 1 ep =  /i1/ 4e/ dp

e0i — -^=/ily/4es d^i
VS

=  -̂hx/ 4ef (dip +  cos#id</>i +  cos^ d fo )  
o

The flavor branes behave differently in the massless or massive case. In 

the former, the authors of [17] usied two stacks of branes whose world-volume 

coordinates may once more be identified with space-time ones,

£ f  =  (xp , p , 6 2 ,(p2 , ip) 0i =  const, (pi =  const.
(3.53)

£2 =  i>) 02 =  const. <p2 =  const.

So prior to smearing the system has a global U(N f) x U(Nf)  flavor symmetry 

-  one for each set of D7s. This is obviously a four-parameter family of em­

beddings, which can be smeared over the transverse (Qi,(pi) directions. In the 

massive case the embeddings are more complicated. In the field theory, the mass 

term breaks the global symmetry- to the diagonal U{Nf)  x U(Nf)  U(Nf) ,  

which corresponds the two stacks joining into one on the string theory side. 

There is again a four-parameter family of brane embeddings, yet as the generic 

embedding is much more complicated than those of (3.53), we shall only look 

at one representative, trusting that the calibration form will ensure that we 

make use of the whole family of branes. Choosing world-volume coordinates 

£ =  (xp‘, 0 i,<pi,0 2 ,(p2 ), this is given by

^ M(£) =  “  ^ loS s in y  ~  ^ log sin y ,  01, 01, 02, 02, 01 +<p2 +  2 p j

Pq,p =  const
(3.54)

The constant pq denotes the minimal radius reached by the brane and may 

therefore be identified as the mass.

The branes have an (7 +  l)-dim ensional world-volume and we therefore need 

to construct the calibration 8-form. In the case at hand this requires the knowl­

edge of the supersymmetric spinors on the conifold. These were discussed in 

[75]. Our conventions however are those of [17]. The SUSY spinor e is related

-j=h}' 4 e9  sin 0 id(pi (3 52)
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to a constant spinor r) as e =  h Both satisfy the projections

1 0 2  ® Bx°a;1i 2x3 ?̂ =  7̂ PrtZ> — 2̂ 7
(3.55)

^ 0 1 0 !  =  -K 72T )  T e 2(j>2 =  -U72T]

From equation (2.39) it follows that the calibration form for D7-branes is given 

by

K =  i ( I)tW 2® r O0...O7l7)e'M- ‘" (3-56)

which we may evaluate using (3.55) to be

fc _  gX0! 1! 2! 3 ^ êp6 l<j>ilJ> _|_ epe2M  _  e01</>102<7>2̂  (3.57)

At this point we may calculate the pull-backs A*/C for both embeddings (3.53)

and (3.54). Finding X*1C =  a /—p(8)d8£ we do thus verify that the brane em­

beddings are indeed supersymmetric.

In Einstein frame, the integrand of the DBI action is ^  \J — <7(8)d8£ =  e®X*K.  

As before, supersymmetry requires this to  satisfy d(e^/C) =  F^y  Making use 

of the definition F(i) =  — e~2* * F(9) and the equation of motion dF(i) =  —Cl, 

we arrive at the following

Q, =  —dF(!) =  (sin QlC\q1 /\ 4. sin02d^2 A dfo)  (3.58)

N'Ap)
-\--------   dp A (di/j +  cos 0id 0 i -I- cos 02d</>2)

47T

Nf(p)  — ^ - e -2 5 _ $ (4e29p/ +  e2g&  — 4e2*)
O

The name for the function Nf  (p) has been chosen in anticipation of what is to 

come -  it will denote the effective number of flavors at a given energy scale. It 

should not be confused with Nf,  the number of flavor branes.

One should notice that the only assumptions made in deriving (3.58) are the 

form of F( 5) and the vielbein describing the deformed background (3.52). That 

is, the above relations hold for all types o f D7-branes one might want to smear, 

massless or massive. They allow us to write down the BPS equations of the 

system which can be derived from the SUSY variations [20] or using geometric
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methods.
g > =  e V - 2 9 / '  = 3 -  2 e 2 f ~ 2 9  -

e® h' =  -27tvNce ' 49
(3.59)

Note that there are four first-order equations for the five functions 4>, / ,  g , h, Nf.  

Furthermore, the smearing procedure always uses the same action,

The authors of [17, 20] used an action of the type encountered in (3.11) and 

(3.43), yet once more the equivalence with (3.60) may be shown explicitly -  we 

will also present a general proof of the validity of (3.60) in section 3.1.2.

Given that the discussion up to this point is completely independent of the 

type of brane one wants to smear, one might ask how to distinguish between 

the different classes of potential flavor branes. The answer to that question lies 

in the choice of the function Nf(p) .

However, even before looking at specific choices of Nf ( p ) the generic form 

of Q in (3.58) tells us quite a bit about possible smeared-brane configurations. 

Firstly, it is not possible to break the SU{2) X SU(2) x U( 1) x Z2 symmetry 

of the background, as this is the inherent symmetry of f I (The Z2 describes the 

exchange of the two spheres). So for massless branes we will only be able to  

smear both stacks simultaneously.

The massless branes may be identified with the coordinates given by (3.53). 

Thus they are smeared by the term s proportional to dQi A d0*. As the smearing 

form is symmetric under the exchange (ffr, <f>i) «-> (92, (j>2) it is clear that we will 

have to smear both stacks of branes. I.e. one cannot assume to vanish

without vanishing as well. The term involving dp on the other hand is

not transverse to the world-volume defined by (3.53). In order to smear only 

massless branes, one needs this term  to vanish. I.e. massless branes require

Using this constraint the system (3.59) is fully determined and can be solved. 

In that case, we can see from (3.60) that the last term in (3.57) -  which does not 

contain ep -  does not contribute. Interpreting the smearing form as a brane- 

density, we may identify the overall factor with the number of flavors,

lavor (3.60)

N'f ( p ) =  0 (3.61)

N f =  AnNf(p) (3.62)
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That is, our decision to smear N j  massless branes with a constant number of 

flavors imposes two constraints into the system, namely (3.61) and (3.62).

Our choice for Nf ( p ) may also be interpreted using the local geometry of 

the brane embeddings instead of their global coordinates. The vectors

{dx»,dp,dii,) (3.63)

are tangent to either stack of branes. As the smearing form should -  locally -  

define a volume orthogonal to  these vectors, we demand4

idx^Cl =  idpCl =  ld ^  =  0 (3.64)

It follows that 4irNf(p) =  const =  Nf.

Turning to the massive case, the authors of [20] used

N'f (p) =  3Nf e 3pq~3 p(3p -  3pq) (3.65)

In principle one would expect that one can combine the knowledge of the em­

bedding (3.54) together with the general form for Cl in order to derive this form 

for Nf(p) ,  as we did for massless branes, yet in [28] we were unable to do so. 

Our analysis contributes to the construction of N/(p)  in so far, however, as the 

derivation in [20] requires the assumption that the 517(2) x 517(2) x 17(1) x Z2

symmetry cannot be broken, while we have shown that this is not an assumption,

but an innate property of the background. As we mentioned in the introduc­

tion, these limitations of the approach are resolved when merging it with the 

microscopic perspective as in [41] and [42].

Once more one invokes [40] and needs only to study the BPS equations (3.59) 

together with the modified Bianchi identity to find solutions of the second order 

equations. We refer to the original papers for a discussion of the solutions.

Anticipating the possibility of using the formalism presented up to this point 

in order to smear branes whose coordinate representation is unknown, we shall 

now discuss the problem of correctly interpreting the smearing form Cl. Using 

the vielbein it takes the form

n  =  +  +  (3.66)
y h  yfh

4 Interior multiplication of forms with vectors is defined as

( z x w ) j V i . . . J V p _ 1 =  X M U)MNi . . .Np_ i
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In the case for the massless embeddings (3.53) the second term disappeared 

and it is straightforward to interpret the first as a distribution on the space 

transverse to the two stacks of D7s. If we did not know about the massive 

embeddings (3.54) it would be tempting to interpret the term including Nf  

as the distribution of a third stack of branes extending along x^, wrapping 

(#i> 02) and positioned at fixed (p, -0). That is we would think of this

term as a contribution of compact, smeared D7 branes. The presence of such 

branes is potentially disastrous as the gauge theory in their world-volume could 

remain dynamic from a four-dimensional point of view. In the case at hand, the 

eight-dimensional gauge coupling behaves as <7ym ~  ^ a '2, which vanishes for 

a'  —» 0, the decoupling limit of the D3s. When using D5 branes on the other 

hand this does not have to happen. For the massive Klebanov-Witten model we 

know that our interpretation in terms of compact D7 branes is wrong as we are 

smearing a single stack of massive ones. Keeping this in mind we conclude that 

it is not straightforward to know which branes have been smeared by simply 

investigating Q.

3.1.2 The generic case

The three examples of the previous section provide us with all the intuition 

needed to understand the relation between generalized calibrated geometry and 

supergravity duals with backreacted, smeared flavors. For a type IIA /B back­

ground with Ramond-Ramond flux F(p+2) and arbitrary dilaton we expect that 

we should always be able to  write the action in terms of the calibration and 

smearing form as

Combining this with the modified p-form equation of motion d ir(10_p_ 2) =  

2k\qTpQ., as derived in (3.14), we may link the calibration and the smearing 

form

Now as we discussed in section 2.3, supersymmetry imposes

lavor (3.67)

d(eÊ 4'C) =  F (p+2) (3.68)

d[*e $ d(eE4“ ^/C)] =  ± 2  k \ qTpQ. (3.69)
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The overall sign depends on the conventions used when relating the field strength 

F(p+2) to its dual. In what follows, we shall give a more formal argument why 

the action (3.67) is appropriate to describe smeared branes, show that it is 

equivalent to the actions previously used in the literature and finally examine 

some of the consequences of the above relations.

T h e  sm ea red  b ran e a c tio n  The problem of smearing a generic DBI+W ess- 

Zumino system takes a rather simple form from a mathematical point of view. 

Here we are dealing with two spaces, the world-volume A4p+i and space-time 

Ad 10, which are related by the embedding map

X  : Mp+i  —> Ad io
(3.70)

f  «  x M ( 0

As integrals of scalars are ill-defined on manifolds, it is mandatory for this 

discussion to think of the brane action as an integral of differential forms. For 

the Wess-Zumino term, the integrand is the pull-back of the relevant electrically 

coupled gauge-potential onto the world-volume, fM X*C(p+iy  Whereas we 

integrate over the induced volume form and the dilaton in the case of the DBI 

action,5 f M dp+1£ eE*1,i>.^/—p(p+i). The crucial point is that there is no way 

to a priori identify the DBI integrand with a (p +  l)-form  in space-time, as the 

induced volume form is usually not thought of as the pull-back of a differential 

form. Indeed, we were rather careless in section 3.1.1 as we did not discriminate 

between the set of form-fields in the world-volume of the brane, f2(Adp+ i), and 

that defined on all of space-time, Q(Adio).

One might argue that we should be able to somehow push the induced volume 

form forward onto space-time. This is certainly the case if we are able to identify 

world-volume with space-time coordinates. In the case of the string dual of the 

Af =  1 sQCD-like theory this was strikingly obvious. As a matter of fact, the 

action written in the first line of (3.11) is exactly of the form (3.67). In a 

generic situation however, we cannot expect to be able to find such a set of 

global coordinates. Moreover the natural operations induced by maps between 

manifolds are push-forwards of vectors and pull-backs of forms. And as they  

connect spaces of different dimensions, they cannot be assumed to be invertible.

5The discussion in this section considers branes without world-volume gauge fields or the 
NS potential B. See however [76, 68, 67],
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This is where calibrated geometry comes in. As we have seen before, su- 

persymmetric branes satisfy X*K, =  y j —<7(p+i)dp+1£. Making use of this fact 

allows us to treat the DBI and Wess-Zumino terms on a democratic footing, as 

both integrands can now be written as pull-backs of (p  +  l)-forms defined on 

space-time.

We shall now show that the action (3.67) can always be written in the form 

used in [17, 71]. Essentially the whole discussion boils down to the fact that we 

may locally choose nice coordinates. Let us assume that we have a single stack 

of supersymmetric p-branes. Locally, we may choose coordinates xM =  (zM, ym) 

such that the branes extend along the 2M; that is for world-sheet coordinates 

and embeddings X M (£) we have

The vectors dM are tangent to the brane. They span a subset of TA^io which 

may be thought of as the embedding of the tangent space TA4p+i of the brane 

into that of space-time. Orthonormalizing the dp we obtain a new basis of 

TMp+i  given by some E a . I.e. span{Ea) = T M P+1 C TMiq.  It follows from 

the construction that the E a are closed under the Lie bracket, i.e. [Ea, Ep] e 

span(Ey). Therefore E™ =  0 and the matrix Eg is invertible. We may complete 

the set E a to a basis of the whole tangent space, Ea =  (Ea,Ea). Naturally, 

there is a dual basis of covectors, eA =  (ea , ea) which we may use as a vielbein.

Having constructed a vielbein suitable for our purposes we shall now express 

the DBI action in terms of that vielbein. As the two bases are dual we have

This is quite important. It means that the components ea of the vielbein are 

not pulled back onto the brane world-volume whereas all the eQ are. After all, 

the pull-back acts as X*{ujm&%m ) =  d£M. It follows that the volume form 

induced onto the brane world-volume is given by the pull-back of the forms ea

(3.71)

Contracting with {Eg) e“ , we obtain

(3.73)

(3.72)

^ - 9 0 * 1 )  d”+1S = (3.74)
a
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The DBI action in this frame is therefore given by

S d b i  =  ~TP f  / \ ( X ' e a ) (3.75)
Jm p+i a

In the final part of our discussion, we will impose some constraints on the 

calibration and smearing form, and show that an action of the form (3.1) can 

always be rewritten in the form (3.11). For the calibration form to satisfy 

X*K, =  y j —5(p+i)d£° A • • • A d£p, it has to include f \ a ea . So we may assume 

it to be of the form /C =  A a ea +  K ,  where K  is a (p +  l)-form  which does 

not depend on all the indices a  simultaneously and therefore includes some of 

the e°. It follows that X * K  =  0. The smearing form is defined on the space 

transverse to the branes. This space has a one-form basis given by dym. As we 

saw above e® =  0 and it follows that we may write the smearing form in this 

basis as

^  =  (IQ _  n _  1> j|^ m i...m 1o - p - i d y 1 A • • • A dy10 p
1 V '' (3.76)

=  ______ I_______O a i .. .a io -P- i  _  r v  , o e (p+2) ”9
( 1 0 - p - l ) !  p_ “ (P+2)...9C

That is, locally the smearing form is defined by a single scalar function f2(p+2)...9 

and includes the wedge product over all the transverse components of the viel­

bein, f \a ea. We see immediatly that K  A Q, =  0. Moreover

K  AQ =  e0- 9f i (p+2)...9 (3.77)

The trick is now to associate the indices of the function fi(p+2)...9 with something 

other than those of the relevant components of the vielbein, as we need those 

for the overall volume form e0 "9 =  ^ /—P(io)d10x. As the form reduces to a 

function and we are working in flat indices, we may resolve this as follows:

K A a =  e""'9fi(p+2)...9 = e° -9V/« (p+2)...9fi(»+9- 9)

=  \ / _ 0(io)dlOz|ft|

with the modulus of the smearing form defined as in (3.12). As the wedge 

product is linear, one may immediately generalize our argument here for multiple 

stacks of branes, thus proving our initial assertion.

As an immediate application of the results of this section we shall take 

a brief look at central extensions of SUSY algebras. From the equations of
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motion (3.15) it follows that the smearing form is exact, dF(10_ p_2) =  2k2 0 TpQ.

may write the smeared brane action (3.67) as a surface integral at infinity,

This takes the form of a charge. From the original discussion of generalized 

calibrated geometry in [36] we recall the fact that probe-brane actions relate 

to central charges in supersymmetry algebras -  as one would expect for BPS 

objects. We conjecture that the charge defined by (3.79) has the same interpre­

tation.

3.2 J\f = 2 gauge-string duality in d =  2 + 1

Let us now apply the methods described in the previous section to the flavoring 

of an Af =  2 super Yang-Mills-like dual in d =  2 4- 1. A string dual can be 

found in the unflavored case by constructing a domain-wall solution in d =  7 

gauged supergravity and then lift it to ten dimensions It then describes a stack 

of NS5-branes wrapping a three-sphere. Details and physical interpretation of 

this solution can be found in [72] and [73]. We are first going to describe the 

unflavored solution using notations from [73] before studying the addition of 

flavors.

3.2.1 The unflavored solution

In the unflavored case, we consider only NS5-branes wrapping a three-sphere. 

So the non-zero fields in type IIB supergravity are the metric gpu, the dilaton $  

and the NS-NS 3-form field strength H.  The solution found in [73] is, in string 

frame

Supersymmetry requires that ( e ^ ^ /C  — C(p+1)) is closed. It follows that we

lavor —

*1
ds2 =  d£2 2 +  ^ d f t 2 +  dz 2 +  dtp2) +  sin2 V>(-Eq +  E | )  (3.80)

H = ^ r ,
2 zSl1/ 2

[cos ip(e1 24 — e236 -  e135) -  e2x s in ^ e127]

ge 2xsmip
O3/ 2

— e6x sin2 xfj +  e2x (4 cos2 t/> +  1) — 3e 2x cos2 'ip — C° S ^  e567
z
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ge ix cos 0
e4x sin2 0  — 3 +  e 4X cos'5 0  —

—4x __ 2 e21 sin2 t/» ,456

A and x are functions of z defined as

e _ 2s  ^  ^3 /4  jz) -  c K 3 / 4 { z ) 

I - l / A  ( z ) + c K 1 / 4 ( z ) 

e A + 3 x / 2  = z  ( / _ 1 /4 ( 2 ) +  c K 1 / 4 ( z ) )

(3.82)

(3.83)

(3.84)

where Ia and K a are the modified Bessel functions and c is an integration 

constant. In the previous equations, we used the vielbein

1
ea =  —  S a a =  1,2,3 e7  = (cos 0d z  — e sin 0 d 0 )

e4 =  * . (e2x s in 0 d z  +  co s0 d 0 ) e8 =  d£*
g i t l

e5 =

e6 =

g®}! 2 
1

sin ipEi 

sin 1PE2

e9 =  d£2 

e° =  d£°

(3.85)

with
a 1 =  cos 0d9  +  sin 0  sin 0d0  

a 2 =  sin 0 dO — cos 0  sin 0d0  

a 3 =  d0  4- cos 0d0 

S =  cos 0 ——  s in 0 —

5 2 =  sin 0 ——  cos 0 ( sin 0 —  +  cos 0 —

(3.86)
S 3 =  — cos 0 ^ —  sin 0 ( sin 0 ^ -  +  cos 0 ^ -  J

cr1 . cr2 
=  d0 4- cos 0 ——  sin 0 —

/  cr3 \  (  c 1 a 2
E 2  =  sin 0 I d0 H—— 1 — cos 0 ( sin 0 —  +  cos 0 —

=  e2x sin2 0  +  e-2x cos2 0  

0 ,0 ,0  € [0,7r] 0 ,0  €  [0,27r[ 0  €]0,47r]

and dn§ =  a %a %. We know that type IIB supergravity contains thirty-two 

supercharges that can be described by an 5 0 (2 )  doublet of chiral spinors e =  

(e- , e+ ). Their chirality is expressed as

T l i e  =  r  1234567890 ̂  =  ~ e (3.87)
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This background preserves four supercharges, corresponding to J\f =  2 in d =  

2 +  1 dimensions. This means that e has to verify the projections

T1256e =  e

r 1346e = e (3.88)

r 4567e = a3e 

where <73 is the third Pauli matrix.

3.2.2 D eform ation o f the solution

We are now working again in Einstein frame. We first notice that, in the solution 

of the previous section, e4 and e7 are mixing the 2 and ^  coordinates. In order 

to simplify this, we make a common change of coordinates, first proposed in

[77]:
e A -x /2

p =  sin -0
2̂z9^ 1/4 (3.89)

COSV; A + 3 x / 2

<7' y/9 (2 z)V*

We then get that e4 =  h i( p ,a ) d p  and e7 =  h2(p,cr)da. Let us now deform the 

metric by modifying the vielbein in (3.85)

ea =  e ~ f / 2yfj (p,cr)Sa a =  1 ,2 ,3  e7 — e ~ ^ 2 \ ] h 2{p ,o)do

e4 =  e ~ ^ 2y/hi (p ,  cr)dp e8 =
<______________ (3.90)

e5 =  e~M2 y /  hi (p, cr)k(p, cr)Ei e9 =  e ~ ^ 2d^2

e6 =  e~M2-\/hi(p, a)k(p,cr)E2 e° = e'-^^d^0

It gives us the following ansatz for the metric:

ds2 =  e_/(p,<7) (d^2 2 + j(p,cr)dQ,l + hi(p ,a) [dp2 + k ( p , a ) ( E 2 + E|)]
(3.91)

+  h2(p,cr)da2)

It is straightforward to see that this ansatz leaves the topology of the previous 

solution invariant.

3.2.3 Calibration, sm earing and G -structures

We are now interested in adding flavor D5-branes to the background. Following 

the usual method, we first deform the unflavored solution for D5-branes. Then 

we find calibrated cycles where we can put supersymmetric D5-branes. We 

finally smear them and find a solution that includes their backreaction.
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The solution in the previous section describes NS5-branes. As we are inter­

ested in the IR behaviour of the gauge dual, we want to consider D5-branes. So 

we first perform an S-duality on the solution. It gives a new solution of type 

IIB supergravity describing D5-branes, for which non-zero fields are the metric, 

the dilaton and the Ramond-Ramond 3-form such that

previous solution, we are imposing the same projections on the SUSY spinors 

as (3.88). We then define a new 5 0 (2 )  doublet

From the third projection, we see that r)~ and 77+ are both non-zero, but behave 

differently under the action of gamma matrices. So for each spinor we can 

construct a six-dimensional generalized calibration form

where K + and K  are three-forms. Using supersymmetric variations of the 

gravitino and the dilatino and identifying F (3) with a torsion term, it is possible

(3.92)

(3.93)

(3.94)

(3.95)

$NS5 _$D 5

t t N S 5   j pD5
(3) (3)

As we want to keep the same number of supercharges, and just deform the

(3.96)

such that (3.88) becomes
r 1256T7 =  77 

r 1M6rj =  rj 

r 4567v  =  <73*7

(3.97)

Notice that 77 is still a doublet of chiral spinors that satisfies

T n  77 =  -7 7 (3.98)

K -  = rj~Tr  o89oftc -̂  e089abc 

K+ =  ))+Tro89a6c»)+ e089'*i>c

089a6c

(3.99)

Those forms can be written as

K r  =  e089 A K ~

/C+ =  e089 A K +
(3.100)
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to define two covariant derivatives V + and V such that

V +r/+ =  0
(3.101)

V ~ T ) ~  =  0

So the existence of r7± imposes that the internal manifold has special holonomy, 

and thus admits a corresponding G-structure. With each spinor satisfying the

projections (3.97), it is possible to define two different G2 structures in the seven­

dimensional space with tangent directions {1,2,3,4,5,6,7}. The corresponding 

associative three-forms are K + and K~.  We want the flavor branes we add 

to preserve the same supercharges as in the unflavored solution. From [5G], 

we know that there is in fact an SU(3) structure in that space, for which the 

three-dimensional calibration form is

K  =  ^ { K - - K + ) (3.102)

So the calibration form for D5-branes in this geometry is

/C =  e089 A K  (3.103)

We have (details of the calculation can be found in Appendix 3.A)

K ~  =  e123 +  e145 -  e 167 4- e246 +  e257 +  e347 -  e356
(3.104)

K + =  _ e123 _  g!45 _  e167 _  e246 +  e257 +  e347 +  e356

So,

JC =  e089 A (e123 +  e145 +  e246 -  e356) (3.105)

In order to find solutions for the deformed background, we first need to 

provide an ansatz for the Ramond-Ramond form F (3):

F =  e~3®/4(F\2 4 (p, cr)e124 +  F i35(p,o-)e135 +  F236(p, <r)e236 +  Fi27{p,a)e127 

+  F456(p,<T)e456 +  F567 (p,a)e567)
(3.106)

and we assume the dilaton depends only on p and a.  As mentioned previously, 

we know from [40] that conservation of supersymmetry gives us first order dif­

ferential equations that, in addition to imposing the Bianchi identity for F( 3), 

will solve the equations of motion. One way to find those equations is to study 

the type IIB supersymmetry transformations of the dilatino and the gravitino

SX =  V ^ a 3r, =  0 (3.107)

=  V„!J +  ^ e * / 2l V ( I ' / ' " '  -  9^r^)<T 3lj =  0 (3.108)
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Another way is to use the geometric properties of the space, using G-structures 

and generalized calibration conditions. As stated previously, we need to as­

sume that 4> =  2/ .  Otherwise, we can look at the dilatino variation to get an

additional condition. From it we get 

c(2/-*)/4 fj~
dp$  = --------- -  F567) (3.109)

c(2/-*)/4 r f r
d ' *  = --------- +  ^236 +  ^456 -  F ,« )  (3.110)

Then we remember that /C-  is a generalized calibration and K ~  defines a G2 

structure. So we get two conditions on those forms

d(e*/2lC-) =  - e * * 1o F  (3.111)

d(e* *7 K ~ )  =  d(e* *10 K~) =  0 (3.112)

Using the conditions on the dilaton, those two equations give us

/ = §  (3.H3)

g  =  J y / h l F n r  +  h iVk
2 j

=  V ^ ( f 456 -  3F i24) (3.115)

dpj  =  2hi\ /k  (3.116)

d<rj =  2j y/h^F124 (3.117)

d p k ^ k . h ^ ! l  +  k ^ r ^  (3 .H 8)
3 hi

dak =  0 (3.119)

=  j y / K F m  +  hty/k  (3120)

3
dahi =  h i ^ h 2{Fi2A — F456) (3.121)

F m  =  (3.122)
3

F135 =  — F 124 (3.123)

-F236 =  —F 124 (3.124)

Moreover, we must have
dpda$  =  dadp<& 

dpdaj  =  d0dpj
(3.125)
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So we get

a ^ jV^T-f’l24-f567 +  hi y/k(3Fi24 +  2F456) ( ^
O p t  124 = -----------------------------------2j -------------------------------  (3 .120J

dpF45Q _  d a F s67  _  V h i k ( 4 F j 2 4  +  52*456) +  J-Fl24^567 ,g -̂ 27)
y/hi yfh2 2 j

Let us now eliminate components of F  in (3.114) to (3.121) and try to solve 

those equations. We get

P- 2*
hi =  ea(p) (3.128)

J
h2 =  e ~ 2V (<7) (3.129)

e2* =  2y / k ^  
jdpj  

(a-b)/2fcl /4Q j

(3131)
e('a~b̂ 2k1/ 4(dffj d pj  — 2jdadpj)

F456 ------------------V 2 U 8 J P * - (3-132)

\ fk{dpj)2 -  j {{2 4- y/ka')dpj -  2y/kd^j) ^
Fm7 = -------------------(3'133)

=  2Vfc — ka' (3.134)

We notice that b(cr) is arbitrary, which corresponds to the fact that it is always

possible to redefine the a  coordinate. To simplify the problem, we are taking

b =  0 in the following sections.

3.2.4 A ddition and smearing of flavor branes

In order to add and smear flavor branes, one needs to find the smearing form fi. 

Following the prescription presented in the first part of this article, we know that 

this form is related to the calibration form of our background JC (see (3.105)) 

through

Q = d  F =  - d ( e “ * * d(e*/ 2/C)) (3.135)

Using this, the ansatz for the metric and for F  and the equations found in the 

previous section ((3.113) to (3.127)), we can deduce that the most general form 

of Q, is

n  =  e* (Nfi (p ,  cr)[e2367 +  e 1357 -  e1247] +  Nf2(p, <r)e4567)  (3.136)
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with

9**124 =  y r 2j{Fl24F456 ~  5F™  +  2Ar/ ‘e2*) ~  2 ~  2V ^ F567 (3 137)
2 j

daF^e _  dpF567 3F26 7  F5$7 (4:j — hik) ^ ^ ( F ^ q  — F1 2 4) 2$ ^
\/h J  “  V /h 2 +  2j V t n k  2 6 / 2

(3.138)

Consistency between those equations and (3.128) to (3.134) imposes that

JV>J = Nfi  +  - r - f f d . N t i  (3.139)
h, i v  fe

0 =  2 j 2 d 2pj  +  2eaj d 2aj  +  j ( d pj ) 2 -  ea{daj ) 2 -  j 2 {a'dpj  +  4eaN f l ) (3.140)

We now see that the only unknown we have is iV /i. Any function of p and cr is 

possible and will give first order differential equations that will solve the modified 

equations of motion for type IIB supergravity plus flavor embeddings. Finding 

a solution then consists only on solving the second-order differential equation 

(3.140). However, while the choice of the function N j \  determines which branes 

are smeared, we are unable to derive the embedding of the supersymmetric 

branes that have been smeared. One might want to recall the discussion at the 

end of section 3.1.1.

D ifferen t p o ss ib ilit ie s  for th e  sm ea r in g  form  As it was stated before, the 

starting point of adding smeared flavors is to choose a smearing form, which, in 

the case we are currently studying, corresponds to choosing a function Nfi(p,  cr).

A first possibility would be to take N f  1 independent of p. It follows from 

(3.139) that

N f l = N f2 =  N f (cr) (3.141)

Then we can try to solve (3.140) by making the following ansatz for j :

j (p ,a )  =  G ( p f / 3H(<r)2 (3.142)

We obtain

G' =  Clea / 2  (3.143)

~ = N ,  (3.144)

where c\ is a constant. In the case where a =  0 and N f  is a constant, we can 

solve this and find

k =  (p +  Po)2 (3.145)
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and

j  =  (cip +  C2)2/ 3 cos( y / —Nf(7 +  C 3 ) 2  if Nf <  0 (3.146)

j  =  (cip +  C 2 ) 2 / 3  cosh(y/Nfcr +  C 3 ) 2  if TV/ >  0 (3.147)

with ci,C2 and C3 are integration constants. These provide analytic solutions to 

the equations of motion of type IIB supergravity with modified Bianchi identity. 

When looking at the dilaton behavior, we find

e2* =  —7-------------------------------------------- „ if iV, <  0 (3.148)
C\ (c-2 +  Cip)1/ 3 cos(c3 +  yJ-Nfcr)4

e2* =  — --------------3(p +  po)  if JV> >  0 (3.149)
c i(c2 +  c ip ) 1/ 3 cosh(c3 +  y/Nftr)4

When JV> <  0, in (3.148), it is remarkable that there are singularities for C3 +  

y / —Nf<r =  j  mod (27r). Those singularities may be a sign of the presence of 

the smeared flavor branes.

Another possibility would be to try to have a smearing form independent of 

one of the radial coordinates, instead of just the function Nf  1 as in the previous 

paragraph. For 17 to be independant of cr, we have to take

JV/l =  ^  (3.150)

Then (3.140) becomes

0 =  2j 2d2j  +  2eaj d 2j  +  j { d pj ) 2 -  ea{daj ) 2 -  j 2a'dpj  -  4eaN (p)j3/2 (3.151)

Taking here N(p)  to  be constant, we get N f 2 =  0 which suppresses one of the 

terms in the smearing form. Nevertheless, it is not obvious how to find a solution 

to  the equation for j .

For 17 to be independent of p, one needs to impose k to be a constant. Then

a(p) =  2aip (3.152)
e - a  ip

Nf  1 =  —^ - N ( a )  (3.153)

where a i is a strictly positive constant. We now have to solve:

0 =  2j 2d2j  +  2e2aiPj d l j  +  j ( d pj ) 2 -  e2aip(daj ) 2 -  2 j2aidpj  -  4eaipN(cr)j3/2

(3.154)
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In the case where N(a)  =  Nf  is a constant, the smearing form is independent of 

any radial dependence. In that case we can find asymptotic solutions, consider­

ing p as the energy scale. One interesting fact is that it seems it is not possible 

to ignore the term involving Nf  in the IR, that is when p goes to  zero. In the 

IR (p —» 0), we find that

In the UV, we have two possibilities: we can decide that the term in Nf  is 

suppressed or plays a role. The two cases give

C o m m e n ts  o n  th e  so lu tio n  Firstly one can notice that none of the solutions 

presented in the previous section goes to the solution found in [73] in the limit 

N f i , N f 2 goes to zero, as expected from the dual gauge theory point of view.

We are trying to find a solution that describes a stack of N c color branes 

plus one or several stacks of smeared flavor branes. The number of color branes 

is related to the Ramond-Ramond field F (3) through

in the four-dimensional space transverse to their world-volume. We were not 

able to find a constant when calculating the previous integral for the solutions 

of the previous section. It means that either we did not find the right transverse

stacks of branes.

This relates to the most prominent problem of the method presented in this 

section. As we mentioned in footnote 3, it is necessary to verify the existence of 

a cycle wrapped by the branes. As we explicitly avoided the issue of considering 

the embedding smeared, one cannot be certain that the above solutions do 

describe smeared branes. In simple cases when the smearing form does not have

j  =  e2aip/3 (3Nf p +  c2e - p) 213 if a i =  1 (3.156)

if we neglect the term in Nf  (3.157)

3 =  e (3.158)
4

where S 3 is a three-sphere around the point where the color branes are placed

f  F(3) =  2k20T5N c

four-dimensional space, or these results cannot have the usual interpretation of
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a term along the radial direction of the space, each component in the vielbein 

basis can usually be interpreted as the volume form of the space orthogonal to 

the brane smeared. In the case studied above, Cl has to have a term in dp. 

So in comparison to Klebanov-Witten, it seems that we are smearing massive 

flavor branes. But we were not able to determine their embedding. However, 

the form of Cl tells us it is not possible to smear massless flavor branes in this 

background. Moreover, knowing the explicit embedding of the flavor branes is 

not necessary to look at some properties of the gauge theory dual.

3.3 Discussion

In this chapter we have taken a first, detailed look at the flavoring procedure 

and its relation to  calibrated geometry and G-structures. In section 3.1, we 

showed that the process is equivalent to those used previously in the literature, 

but makes the symmetry with the Wess-Zumino term apparent and the linear­

ity in the smearing form Cl manifest. The crucial point is that this macroscopic 

perspective allows us to impose strong constraints on Cl by relating it to the cal­

ibration form. While the explicit form of Cl depends on the embedding smeared, 

the methodology allowed us to explain various features of the examples in sec­

tion 3.1.1; in particular why the smearing has to preserve certain symmetries, 

which again implies that it is often only possible to smear several stacks of 

branes at once.

We exhibited the potential of the methods not only by studying known 

examples, yet by also flavoring a background dual t o a d  =  2 +  l , j V  =  2 

super Yang-Mills-like theory (See section 3.2). Here we found several solutions 

and some interesting features, notably the fact that it is not possible to smear 

massless flavors -  a property which would be nice to understand from the point 

of view of the dual gauge theory.

The formalism unifies the treatment of different possible embeddings for any 

single background, allowing for a general study of the smearing procedure in a 

given background, instead of the case by case methods previously used. Even if 

it remains necessary to verify the existence of the cycles wrapped by the branes, 

their knowledge is not necessary for the actual calculation. However, as we have 

seen in the case of the d =  2 - f l ,A / ’ =  2 duality and will see again in chapter 5,
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backgrounds constructed without knowledge of the embeddings might be very 

difficult to interpret.

A similar study for a type IIA background is in chapter 5, the extension to 

a background with world-volume gauge fields or the Kalb-Ramond field should 

be straightforward using the results of [67]. W hile we did impose strong mathe­

matical constraints onto the smearing form Q, we did not link it to the physical 

interpretation of a brane density. In other words, we are not providing a gen­

eral way of knowing from the smearing form and the ansatz for Nf(p)  what the 

embeddings of the smeared flavor branes are. Even if such knowledge is not 

required to study some aspects of the gauge theory dual, it would give a better 

understanding of the way the duality is working. This has been addressed in 

[20] [41] [42] though. One might also wonder how much one can learn about the 

various dual gauge theories from the generic form of Q prior to selecting one of 

them by making an ansatz for Nf(p).

3.A Finding the calibration form — an explicit
exam ple

As an example we will calculate the calibration form for the theory of section  

3.2. Apart from the definition (2.39) we will need the projections imposed on 

the background SUSY spinors. To simplify things we perform a change of basis 

on the spinors taking c\  ■—> <73. As a result of this transformations, the two 

Majorana-Weyl spinors in £ =  (  £+ )  decouple

r 1256^T =  pl346£T _  p4567^ _  (3.160)

We will also need the fact that IIB supergravity is chiral, with the chirality 

chosen so that

r n C T =  i w .moC* =  - c T (3.161)

Note that our change of basis does also affect the definition of the calibration 

form (2.39) -  we obtain two calibration forms, /CT . Note also that we will work 

in flat indices.

Before looking at the most generic case, we shall look at a few examples of
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how to calculate components of /C^

^ 0 8 9 1 2 3  =  CT T r 089123C:F =  =  ± 1

^ 0 8 9 1 4 5  — CT T r 2367C=F =  =  =*=1 (3.162)

^•089167 =  CT T r2 3 4 5 C T =  1

These examples show nicely that the two forms disagree on those cycles making 

use of the r 4567 projection. As the two forms need to disagree by an overall sign 

for a cycle to be supersymmetric, it follows that cycles involving the 7 direction 

cannot be supersymmetric. One can arrive at the same result directly from the 

/c-symmetry condition.

The more difficult step is to show why components such as

K&9667 = (3-163)

vanish. Starting from the projections

i p l3 4 6  I r<1256 i p4567
<T =  0 j — CT =  o i £ l _ ( *  =  0 <3-164)

we define orthogonal projectors

1 + r 1346 1 + p l2 5 6  1 ± p 4567 (3 l« K )

2 2 2

which may be used to project an arbitrary spinor ip onto the subspace of spinors 

satisfying (3.164) because

I _  p !3 4 6  \  /  1 _|_ p i 346 \

2 )  \  2 J ^  =  0 <3-166)

independently of the choice of ip. This is simply the defining property of or­

thogonal projections. Note that (  may be assumed to be invariant under the 

orthogonal projections, as it satisfies (3.164). Applying this to the question of

^■'0895671

^ 0 8 9 5 6 7  — CT T r 26CT

= i  [(i + r1346)c]T r26(i + r1346)c
   p l2 3 4  p l2 3 4   p 2 6 ) ^

(3.167)

=  0

N ote however that it does not appear to be obvious which of the projections 

(3.165) one has to choose to show that a particular component of K. vanishes.
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To give an example of this, let’s look at

0̂89124 =

= ±̂ CTT(i + r1346)r34(i + r1346)^
_  (p34 _  pl6 _  pl6 _|_ p34^^

\  (3.168)
^ oT89124 = ±4CTT(1 ±  r 4567)r 34(i ±  r 4567) ^

_ (-)_p34 _  p3567^j _ j_  p4567^T

_  (-|-p34 _  p3567 p3567 p34^T — Q

Let’s try to look at a generic case. There is no summation in the following. In­

stead the indices (a, 6, c, d, e, / ,  g )  € {1, . . . ,  7} are all independent and mutually 

non-equal, a  ^  6, a ^ c , . . . ,  /  ^  g .

±4A:?89„tc =  CTT(i ±  r"te/) r ‘e'» (i ±  r*/)<=F

= £*T(rdef9 =f rCfl)(i ± rcde/)cT (3.169)
= (rdê 9 =p rca ± rC9 — rdê 9)ĉ  = o

In the first line we used the chirality matrix Tn to change ros9abc into T de^9 . 

In the process we might have picked up an overall minus sign, which we moved 

together with the factor 4 to the left hand side. In the projection matrices we 

have T-matrices assumed to be of the form r cdê . Here there is again a sign 

ambiguity, as we have moved c to the left and as the projection might involving 

T7. Note that we have the same sign in both parentheses, so in the following lines 

we will always have either the upper signs or the lower signs, never a mixture

of the two -  which is why ±=f = — in the second to last equality. Similarly we

shall now take a look at

±4/co89abc = CTT(i ± ra6cd)rde/5(i ± rabcd)cT
(3.170)

_  p̂d e f g  - p a b c e f g  -p pabc e f g  _  pd e f g ^ T  —  Q

Equation (3.169) is a very potent result. It follows immediately that

K 124 =  0 £ l2 5 =  0 £ 1 2 6 =  0 /C127 =  0 £ 1 3 4 =  0 £ 1 3 5 =  0

^136 =  0 £ l3 7 =  0 /C147 =  0 £ 1 5 7 =  0 £ 2 3 4 =  0 £ 2 3 5 =  0

^236 =  0 £ 2 3 7 =  0 ^ 245 =  0 /C247 =  0 ^256 =  0 ^ 267 =  0

^345 =  0 ^346 =  0 £ 3 5 7 =  0 ^ 367 =  0 £ 4 5 7 =  0 ^ 467 =  0
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Similarly we gather from (3.170)

^146 — 0 ^156 =  0 /C456 =  0 (3.172)

All these things considered we are able to reproduce the two calibration 

forms exhibited in [73],

K~ =  e089 A  (e123 +  e 145 -  e167 +  e246 +  e257 +  e347 -  e356)
(3.173)

JC+ =  e089 A ( - e 123 -  e145 -  e167 -  e246 +  e257 +  e347 +  e356)

There is a second result following immediately from equations (3.169) and

(3.170). For the SUSY projections not to be mutually exclusive they have to 

have pairwise two indices in common. Note that this may be easily generalized 

to  arbitrary dimensions. In general one finds that if the SUSY projections take 

the form of antisymmetrized Gamma matrices with four indices, r abcd£ =  £, 

different projections have to have an even number of indices in common (zero 

or two; four means that the projections are equal) in order to be compatible. 

Compatible means that this requirement is necessary for a spinor £ satisfying 

all projections to exist. This result simply requires the properties of the Dirac 

algebra.
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Chapter 4

Color- vs. flavor-branes

Having discussed the flavoring procedure in some detail in the previous chapter, 

we will now take a further look at the role played by the source terms. More pre­

cisely, we will question the form of the action (1.3) and the way it distinguishes 

between color- and flavor-branes.

In the context of the flavoring problem one often argues, that the physics 

of the pure Yang-Mills sector (e.g. glueballs) are captured by the supergravity 

action, those of the open strings describing the fundamental matter (mesons) 

by the brane action and interactions between the two by the fact that the 

background fields as well as world-volume fields couple in the brane action. In 

this chapter, we will critically investigate the above statements. Working in 

the supergravity limit, our observations will be based on a series of examples 

signifying the relevance of source-terms such as S'flav0r in (1.3) for various brane- 

solutions.

The discussion is based on chapters 2 and 3, as well as the study of 1/4- 

BPS D3-D7 systems in section 4.2. In contrast to the backgrounds studied so 

far, these take a very simple form and are thus ideally suited for the discussion 

of more conceptual issues. The material presented in this section is based on

[78]. Earlier work on localized D3-D7 solutions can be found in [79], [80], [81], 

[82] and [83]. The novelty of the solutions presented in 4.2 lies in the fact that 

we smear the D7 branes over part of their transverse R2 maintaining a 17(1) 

isometry.
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4.1 General remarks

Let us begin our discussion by recalling some results from section 2.2. Here we 

saw that the flat p-brane solutions, which are dual to pure super Yang-Mills 

theories [4], do not solve the equations of motion of the relevant supergravities 

at the locus of the branes. Instead, one has to add a source term. However, we 

saw also that one is able to derive the correct solutions using the supergravities 

alone. I.e. from a technical point of view, the source terms were only required 

to fix various constants as in (2.27) and (2.29). As we pointed out at the end 

of our discussion of flat p-branes, the issue of the source term is independent of 

whether one is in the near-horizon limit or not. Hence one can argue that to 

fully solve the equations of motion, one should add the source term for both the 

p-brane solutions as well as their near-horizon limit. It follows that at least for 

the pure super Yang-Mills theories as considered in [4], it woule be appropriate 

to add a source term for the color-branes to the supergravity action. W hile this 

is technically not necessary, one needs to see this in the light of our remarks 

concerning the role of open- and closed-string modes that are dual to mesons 

and glueballs made in the introduction to this chapter.

While it is possible to ignore the source terms even if the branes are smeared 

along some of their transverse directions, one is not able to do so as soon as 

the branes are smeared over an open subset of space-time; as was the case for 

the more involved backgrounds of chapter 3. This can be easily seen when 

considering the Maxwell (Bianchi) equations when smearing sources.

To allow for smearing, we include a distribution density Q, )̂ in the source 

term, which is formally a d-form on the space transverse to the additional branes. 

Using the calibration form /C(p+i), we write the source term for supersymmetric 

sources as in chapter 3:

Ssrc =  - T p /'(e64X (p+1) -  <?(„+!)) A f!w  (4.1)

Calculating the resulting equations of motion, the Maxwell equation takes the 

form

d(*e“4,F (p+2)) =  l6nGDTpQ(d) (4.2)

-  a straightforward generalization of the corresponding equation in (2.24). In 

contrast to the localized case of section 2.2, we would not have been able to
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derive suitable equations of motion without the source term, after all, the exact 

form of the distribution density can in general not be inferred from the 

behavior of the branes away from the sources. So in the context of smearing 

(over an open subset), the source term is essential. These observations imply 

that in the generic case (1.3) implicitly contains a source-term for the color- 

branes and should be replaced with

W ith all this in mind, let us take a look at D3-D7 solutions with 8 supercharges. 

This has previously been studied in [79] - [83] in the case where the D7-branes 

are localized. Note that the authors of [79] - [81] did not include any source 

terms in their actions working with S =  5hb, while [82] and [83] do include 

source terms for color- and flavor-branes. From our remarks in sections 2.2 and 

4.1 we suspect that this is not necessary (as their sources are localized), but we 

will see so explicitly. First, let us briefly summarize the background of [81] (in 

string frame):

The complex structure (or axio-dilaton) r  is fixed by the presence of localized D7 

branes. Crucial for us is that the warp factor H(zi,  Zi) must satisfy a deformation 

of the Laplace equation on the transverse space,

Strictly speaking, we are not interested in solutions to  a modified Laplace equa­

tion, but a modified Poisson equation, as D3-branes will appear as a singularity, 

just as in the p-brane case

lavor (4.3)

4.2 D3-D7 solutions

ds2 =  i f " 1/2 dx2 +  H I/2(d2idz! +  dz2dz2 +  e * (M'23)dz3dz3) 

t  =  C(0) +  ie~*
(4.4)

(8 1 8 I +  6 2 8 2  +  e * 8 3 8 3 ) 1 1  =  0 (4.5)

(9 i9 i + 8 2 8 2  +  e - * d 3 d3 )H  =  4(6)(z) (4.6)
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In the following we will encounter different examples of H  with different kinds of 

5-functions appearing on the right hand side of equations like (4.6). To simplify 

the notation, we shall always drop the 5-function, write the equations as (4.5) 

but keep in mind that H  is usually singular at some point.

Looking for new solutions and working in the spirit of the flavoring program, 

we study S — 5hb +  f̂lavor with the source term being a superposition of D7 

actions. Then we make the Ansatz (Einstein frame)

d s2 =  e - ^ [ e 2^dx2 3 -I- e2gdv\  +  e2h(dw2 + w2d<f>2)\

F(5) =  (1 +  * io )(d /5 A dx0123)
(4.7)

^(i) = fi(w)wd<l>

$  =  $(v ,w)

Where / ,  g , /i, fe,  $  depend on w, v =  V vivi while f\  depends on w alone. The 

most striking difference between (4.7) and (4.4) is that our choice for is in 

general not exact and can thus not be understood in terms of a 0-form potential 

C(o) and the relation =  dC(o). In contrast, the appearance of C(o) in (4.4) 

implies dF^) =  0, except at isolated singularities.1 This is why the former 

ansatz will not allow for smeared D7 branes, Of course we study the action 

'S'iib +  Ssrc, so there will be fi(2) such that dF(i) =  H(2). In other words, we will 

not need to impose a Bianchi identity for F (i)> but are on the contrary rather 

interested in its explicit violation. Note also that our choice for F ^  implies 

that all D7 sources will be smeared along 0.

Demanding the existence of a SUSY spinor e satisfying zT0123e =  —e and 

r 4567e =  e we study the BPS-system given by

0 1 6 < \  =

1 ,  ,  1 (4 8 )
0 =  =  V  +

as well as the Bianchi identity for F(S)- As we mentioned earlier, integrability 

ensures that the remaining equations of motion will be satisfied. One then sees 

quickly that any solution of the original ansatz can be rewritten in terms of only

1 The non-exactness of explains also why in opposite to the earlier papers we do not 
rely on holomorphy of the axio-dilaton in the (w, <p) plane. If is exact, the supergravity 
variations can be phrased in terms of C(0) and the dilatino variation quickly takes the form 
of Cauchy-Riemann equations for e -4> +  iC(0).
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two functions, H(v,  w), A gf(w) ,  and a set of integration constants

ds2 =  e ^ { H  1//2dx2 3 +  i / 1//2[dv 2 4- e c^)(dw 2 +  w 2 d 4>2)]}

F(5) =  (1 4- * )d \(e~2c* H ~ l +  Cf5)dx° A d x1 A dx2 A dx3]

F( i) =  w(dwe~2A*f)d(f>

4? =  2A g f  +  C«J)

(4.9)

subject to the modified Laplace/Poisson equation2

0 =  f ( ^  +  - 9 „ )  +  eA»'<”')- c'‘( ^  +  - 9 u.)l H(v ,w)  (4.10)V w

which can be more succinctly summarized as

0 =  (□„ +  e4 " (“ )_ChD w)H(v,w) (4.11)

Apart from the w  and z , z  dependence, this is the same equation as (4.5). 

However, while (4.4) was derived without use of an additional source term, 

the derivation of (4.10) was based on Sub +  Sd7- As we found previously, as 

long as the sources are localized, one is free not to include the source term. Note 

that working in the spirit of gauge/string duality with flavor, we did not include 

a source term for the D3 color branes -  yet of course, we could have.

4.2.1 A n aside: T -dualities

It is instructive to take a look at various T-dualities. There are two cases 

of interest -  performing four T-dualities along the or performing two in 

the (w , 0) plane. In the latter case it is appropriate to  change coordinates to  

Cartesian ones -  (w 1 ,w 2) -  to  perform the dualities. The first case gives

2 Crucially, (4.10) arises from the Bianchi identity on dF(5) =  0. As we have seen before, 
these identities relate directly to the presence of sources and should be rewritten as d_F(5) =
fi(6) as we are looking for backgrounds with D3 sources. So strictly speaking, there should be 
a source density on the left hand side of (4.10), at least a 5-function. As we are looking for 
smeared D7 branes in backgrounds with localized D3s, we ignore this distinction and just keep
in mind that when solving (4.10), we are looking for solutions that show singular behavior at

d s2 =  e {eAfl/d x2 3 -t- e [dv2 +  e2 chH(dw 2  +  w 2 d(j)2)])

$  =  c$ — log H
(4.12)

F(5) =  (1 +  *)d(e2Agf dx° A d x1 A dx2 A dx3) 

F(1) =  - e ~ 2c* dw(e~2c* H  +  Cf5)wd<t>

(v, w) =  (0,0).
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Comparing (4.9) and (4.12) shows the result of the dualitites to be a swap 

—2A gf  <-> log H.  Now note that while the Buscher rules for T-dualities in 

supergravity only apply for v % to be an isometry of the background, i.e. for 

dvi H  =  0, the substitution —2A gf  <-> log H  is valid at the level of the BPS 

equations and equations of motion too. The simple reason is that the BPS 

equations axe all trivially satisfied when written in terms of A gf  and H,  the 

equation of motion for is always satisfied as well as depends only on 

d</>, so the only points of interest are the Bianchi identities for F ^  and F(i). 

These however do not need to be satisfied if we allow for smeared brane sources. 

Again we point out that we only included an explicit source term for the D7- 

branes, that have now been turned into D3s.

T-dualities along w 1 , w 2 lead to

ds2 =  e~~%L~ ^ ’+Ch[H~1/ 4 (dx2)3 -1- e~2Chdw%) +  H 3!4 du|]

$  =  3Agf +  c * - 2 ch - ^ \ o g H  

F(7) =  d [{e~2c* H ~ l -I- Cf5 )wdx° A • • • A dx3 A dtu A d0]

F (1) =  -d ( e " 2A^ (w>)

For A gf  =  0, (4.12) and (4.13) reduce to the standard flat D7 and D5 solu­

tions. This is of course expected, as (4.7) describes a stack of D3-branes in flat 

space. Turning on A gf  adds five- and one-form flux to the T-dual backgrounds 

respectively; for (4.13) the one-form flux is exact, however, so there are only 

additional D7 sources if A gf(w)  is not differentiable at isolated points. We are 

dealing with a D7-D3 and a D5(-D7) system, respectively.

In the context of gauge/string duality, the T-dualities along the v% should 

be of interest. After all, it exchanges the Nc color D3-branes with the Nf  flavor 

D7-branes -  at first glance, we have a duality (N c, N f ) ( N f ,N c). Of course 

the precise form of the duality depends on the brane distributions.

4.2.2 Sim ple, known solutions

For A gf =  0, Ch =  0, there is of course the standard D3-brane solution,



the laplacian of which has a 5-function singularity at {v,w) — (0,0) due to the 

presence of the D3-branes. The near horizon limit is given by

H * - *  i  2 1  2^2 ( 4 '1 5 )(vz +  w zy

There are further solutions that depend on only one variable and have thus 

additional isometries in the background

=  (4.16)
H(v, w) =  1 4- 7*7 log w

They are the harmonic functions in four and two dimensions respectively.3 They  

are singular at v =  0 or w — 0. The standard interpretation here is to think of 

the D3-branes as having been smeared over or the vl . I.e. the smeared

branes are now codimensions four or codimension two objects. Performing two

(four) T-dualities along the additional isometries leads to the standard D5 (D7) 

solutions. Remeber that (4.10) is linear, so any superposition of (4.14) and 

(4.16) is a solution as well.

4.2.3 A nalytic solutions

Looking for new solutions of (4.10), we will make use of the fact that there are 

not cross derivative terms of the form dvdw. Hence the PDE is separable and 

we may look for solutions of the form

H(v,w) = HZ( v ) x HZ( w)
(4.17)

H(v,w) =  H+(v) +  H+(w)  

after which (4.10) takes the form

0 =  HZl- (HZ) '  +  (Hi)"} +  eA’>-‘-H i  { - ( H i ) '  +  (Hi)"]
v w (4.18)

0 =  [ - ( f l+ ) '  +  (ff+)"] +  eA»'-®-[- ( H i ) '  +  (HZ)"}

The crucial point is that, independently of A gf(w)  and Ch, any solution of the 

ODEs
H'i(v) =  - l K ( v )

\  (4.19)
H'i(w) =  - - K H

3If one wonders why (4.10) is not symmetric under v *-* w for A gf  =  c^, the explanation 
can be found here, v and w  are the radial coordinate in spaces of different dimension.
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gives a solution of type IIB supergravity. Of course, finding an analytic solution 

to (4.19) is quite straightforward. As a matter of fact, these are the harmonic 

functions of (4.16)

T T  _ .
t l y  —  o '  C y 2

v (4.20)
H y j    Cyj2 lOg W  “I- Cw3

with C y i ,  C y 2 , cw2 , cw3 6  R .  And so we have two new families of analytic solutions

cv 1H X (v,w) =  (cw2 log W + Cw3)(-^r + c v2)
v  (4.21)

H + (V, w) =  Cw2 log W +  - y  +  Cv2  +  cw3

Of course these are just (4.16) and one might ask what is new. The point is that 

(4.21) hold together with (4.9) for arbitrary A gf(w),  and hence for arbitrary 

D7-brane distributions. The interpretation of these solutions is similar to that 

given at the end of section 4.2.2. The D3-branes are smeared over some of their 

transverse directions, but now also accomodate for any D7 distribution imposed 

by choice of A gf(w).

We can generalize the H + solution slightly by demanding that the two terms 

in (4.18) do not vanish independently, but are each equal to a constant. I.e.

c +  =  +  ( # + ) " ]  =  _ [ 2 ( f f + ) '  +  ( # + ) » ]  ( 4 . 2 2 )
W

These are solved by

T T +    , c+v
—  — T"  +  c v 2  —C v 2V“ 0

, f w fnw c+e~Agf(w}+Chwdw
HZ  =  cw 2 +  Cw 2 log w +  / —   d w

Jo w

(4.23)

This reduces to (4.21) in the case c+ =  0. However, even if c+ ^  0, (4.23) 

reproduces (4.21) in the IR. Note that some care has to be taken when taking 

c+ ^  0, as our Ansatz demands for H  to be positive definite.

It is interesting to note that (4.16) reappear as (4.21) independently of 

whether we add D7-sources or not. Of course, it would be much more in­

teresting to find the equivalent of (4.14) in the presence of A gf  ^  0. We shall 

do so in section 4.2.5 numerically.
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4.2.4 Brane distributions

At this point we will take a look at a few brane distributions. Note that

f i (2) =  [(dl  +  ^ d w)e~2A*']wdw A d 0  

=  (Dwe~2Agf^ ) w d w  A  d<f>

From out ansatz it follows that D7-branes are always smeared along 0, so 

the simplest distribution is a 5-function one in the w direction,

Sl(2) =  QS(w — wo)wdw A dcf) (4.25)

where Q is some normalization constant. We can integrate the resulting flux,

F(i) =  2tcQwqO(w — wo) (4.26)L'S1

and it follows that

Q = (4-27)2nwo

Then

5 2AgI =  — f—[ci log w -I- W q 6( w  — wO) log +  C g r c ] (4.28)

Naturally this should be positive for all values of w G M+, hence it seems ap­

propriate to set Ci =  0. Also, as both e Agf and eAgf appear in the metric, 

e ~ 2Aaf >  0 is a good assumption that is guaranteed by fixing Care >  0. Fur­

thermore, our numerical studies in section 4.2.5 will show that varying C g r c  does 

influence the form of the solutions rather strongly. To avoid this, we will fix it 

to Cgrc =  Q -1 so that the constant term in e~2Agf does not vary with Nf.

A similarly interesting case is given by

Sl(2) =  Q9(w — wo)wdw A d(f>

e~2Agf =  Q[Ci log w +  \ d ( w  -  Wo){w2 - W 2 -  2Wq log —  ) +  C g r c ]   ̂ ^
4 wo

For the same reasons as above we fix ci =  0 and Csrc =  Q ~1. Concerning the 

normalization, we have

^(i) =  ® (w 2 -  Wq)0(w -  w0)d0  (4.30)

leading to a radially dependent charge

Nf( w)  =  Qtt(w2 — Wq) (4-31)
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The fact that Nf(w)  behaves like a two-dimensional area is no accident. After 

all, we assume a homogeneous brane distribution in the (w , 0 ) plane for all 

w > Wo.

4.2.5 Num eric solutions

Let us now take a look at numeric solutions of (4.10). We are dealing with a 

deformation of the Laplace (Poisson) equation, that is, a homogeneous, elliptic, 

separable PDE of second order, and use the Fortran package Mudpack4 to do so. 

Our aim is to perform a qualitative study of deformations of the original AdS$ x 

S 5 solution (4.14) that includes additional D7-branes. We fix the parameter

7*3 =  1 and solve the equation in a rectangular domain in the (v, w) plane

specified by

0.2 <  v, w <  2.6 (4.32)

on a 129 x 129 grid. Some experimentation shows that one obtains a good 

agreement with the analytic solutions in the absence of D7 branes when imposing 

the Neumann boundary conditions at w =  0.2 and w =  2.6 and Dirichlet ones 

at v  =  0.2 and v =  2.6. I.e.

H  =  - - 1 at w =  0.2 V w =  2.6iV+t} (4-33)
dvH  =  - 7—5 at v  =  0.2 V v — 2.6

(tr  -I- w 1)6

However, the physical significance of the boundary conditions is not entirely 

clear and it might be appropriate to modify the boundary conditions when 

changing the source density A gf.

Figure 4.1 shows the analytic solution H 3 =  Our numeric solution

for e~Aaf =  1 (not shown) agrees up to A H  =  ±0.0001. We then proceed 

to include D7 branes via changing e~2Agf. In all these cases we approximate 

Heaviside 6  functions by

0 (w) =  7- +  ^ tanh (kw)
K J 2 2 v ' (4.34)

k =  2.5

Larger values of k make for a sharper transition, in the case k =  2.5 we have 

1 — 0(0.5) ~  0.0758. Figure 4.2 shows the case e~2Aaf — 0(w — l)log (w ) +  1

4Mudpack can be found at http://www.cisl.ucar.edu/css/software/mudpack/.
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Figure 4.1: Plot of the analytic solution H3 = (v2 + w2) 2. There is a singularity 
in H 3 at the origin characteristic  to the presence of D3 branes

while figure 4.3 uses e_2Af// =  10[#(u; — l)log(io)] + 1. So in each case, there 

is a stack of D7 branes localized at w — 1, yet smeared along cj). The changes 

in the solutions are not drastic, but differ from H 3 by one or two orders of 

magnitude, so instead of plotting H  for each case, we show the difference to the 

pure D3-brane solution of figure 4.1, H  — i / 3.

Things change considerably when we scale the source density by another 

•factor of 50, i.e. we set e_2A«-f =  5OO[0(u; — 1) log(u;)+]l (fig. 4.4). One can 

see quite clearly that the background is dominated by the D7 branes extending 

along the v l while the boundary conditions, especially at (0 .2, 0 .2) are still those 

of the D3 background.

Figure 4.5 shows a brane distribution along the lines of (4.29). T hat is, the 

number of flavors runs with w2. Of course, here the UV should be dominated 

by increasing number of D7 branes and it might be appropriate to adjust the 

boundary conditions at v =  2.6 and w =  2.6. Based on the T-dual of the 

analytic D7 solution, we set them to

H  = log tv at w = 2.6 

dvH  = — at v — 2.6
(4.35)

w
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Figure 4.2: A H  for e 2Ay/ = — l)log(u;) 4- 1.

Figure 4.3: A H  for e =  10[#(to — 1) log(io)] +  1.

77



■0

. i i . i i I . . .  i_ _ i i_ _ j  i . i i i . i i_
0.5 1.0 1.5 2.0 2.5

v

Figure 4.4: H for e _2Aa/ =  500[0(w — 1) log(u>)] +  1.
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Figure 4.5: AH  for e 2Afl/ =  \6(w  — l)[u>2 — 1 — 2w2 log(u>)] +  1.
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while those at v =  0.2 and w = 0.2 remain as in (1.33). The result is shown in 

4.6. Note th a t having changed the boundary conditions, the solution is quite 

different to 4.1 and we plot H  instead of AH.

2.5 

2.0

1.5

1.0

0.5

Figure 4.6: H  for e“ 2As/ as in fig 1.5, however, at v = 2.6 and w = 2.6 we 
imposed the boundary conditions characteristic for D3 branes smeared along vl 
-  a system T-dual to D7 branes.

4.3 Discussion

We have now analyzed (1.3) from several perspectives. From the perspective 

of the p-brane action in chapters 2 and 3, we realized that color- and flavor- 

branes are actually on a very similar footing. In principle one should include 

source terms for both as was done in [83], so this observation is not new, as we 

mentioned before. When searcing for a new background, the use of source-terms 

is only necessary if the associated sources are to be smeared over an open subset 

of space-time, which is why the source-term is essential for the fiavor-branes that 

are usually assumed to be smeared.

The impression that color and fiavor-branes can -  from the supergravity 

perspective -  be taken to be on an equal footing was again confirmed by our 

observations in section 4.2.1, where we were able to exchange color and flavor-
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branes by performing four T-dualities in the directions transverse to the D3s. 

Curiously, we had included explicit source terms for the (smeared) flavor D7- 

branes while not doing so for their localized5 cousins. One should also keep 

in mind that [81] obtained highly similar results working with the supergravity 

action alone -  while including suitable ^-function sources, of course.

Considering our brief discussion of the equations of motion of the world- 

volume fields X M(£) in section 2.2, it is also appropriate to question whether 

it is generally possible to find a source-term for a given solution -  especially in 

cases where supersymmetry is broken. As discussed in [58], the problem lies 

in the fact that for sources in theories of gravity, the energy of the source is 

not localized at the source but also stored in the self-energy of the surrounding 

gravitational field. Only in the presence of supersymmetry, where gravitational 

effects are canceled by those of a different field -  the Maxwell-type p-form fields 

in this case -  can one find a suitable source term. Again we point out [66] 

however, where the authors have constructed a finite-temperature background 

including additional flavor terms.

Naturally our comments and observations made here are only valid for the 

examples studied, and it would be interesting to study the issue of source terms 

for color-branes for more complex supergravity backgrounds dual to confining 

gauge theories, such as [8], [6] and [84]. Prom the point of gauge/string duality, 

the crucial point is there whether there are open string states in the spectrum, 

that should only appear in non-confining theories. In other words, one expects 

that for confining backgrounds it should not be possible to find source terms for 

the color branes, and it would be nice to verify this explicitly.

Finally, we found a series of new D3-D7 backgrounds with smeared D7- 

branes. Here, the various solutions shown have the interesting property that for 

any distribution of D7-branes encoded in A 5/ ,  the D3s distribute themselves 

accordingly -  a result one can attribute to the high amount of supersymmetry 

preserved by the backgrounds.

5 As a matter of fact, the D3s were smeared over some of their transverse directions in 
the analytic solutions presented in 4.2.3, yet they were not smeared over an open subset of 
space-time.
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Chapter 5

Kaluza-Klein monopole 
condensation

In the context of M-theory, the relations between type IIA string theory and 

eleven-dimensional supergravity are standard textbook material (see for exam­

ple [58, 85, 86, 87]). The M2-brane gives rise to the D2 and the fundamental 

string, the M5 to the D4 and NS5 branes. The DO and D6-branes on the other 

hand have a slightly different origin. Not being related to any brane-like object 

in eleven dimensions, they are results of the Kaluza-Klein (KK) reduction re­

lating the two theories; the former being a particle-like, localized gravitational 

excitation on the KK-circle, the latter a peculiar fibration of said circle over 

the ten-dimensional base, known as a Kaluza-Klein monopole (a good review 

is given by [52]). In this chapter, we are concerned with a small gap in this 

formalism that becomes apparent when one tries to consider the M-theory lift 

of smeared D6-branes.

The problem can be quickly explained. The bosonic sector of eleven-dimen­

sional supergravity contains only the graviton §mn  and a four-form field F (4)- 

Upon KK reduction, F(4) gives rise to the Kalb-Ramond three-form field H^) 

as well as the Ramond-Ramond four-form F^y  From (}m n  one obtains the 

ten-dimensional metric g ^ ,  the dilaton $ , and a one-form gauge potential A^), 

with an associated field strength F( 2) =  dA(!). If we assume the KK-circle to
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be parameterized by z, the standard KK-ansatz relating the two geometries is1 

d s^  =  e 5$ dsjIA +  e 3$ (A(x) +  dz)2
(5.1)

-F(4) =  F(4) +  # ( 3) A dz

Given any solution to the equations of motion of type IIA supergravity, one can 

use (5.1) to  lift to eleven dimensions and vice versa. However, as plays the 

role of a gauge potential, it is actually F( 2) =  dA(!) that contains the physically 

relevant degrees of freedom. Thus given a set $ ,  F (2) , H(3), F(4)} one first 

has to find a gauge potential prior to lifting. Now assume that for some reason 

dF(2) ^ O o n  some subset of space-time that we will call £ . As F(2) is no longer 

closed on H it cannot be expressed in terms of A(i) alone and we cannot use 

(5.1) to  perform the lift. This is the apparent gap in the standard formalism we 

alluded to earlier.

The problem is not a purely formal one. D 6-branes couple magnetically to 

A(!). As we have seen in the preceding chapters, the inclusion of D6 sources 

violates the Bianchi identity dF(2) =  0 at the position of the sources. W hile this 

is not a problem for localized sources -  as a matter of fact it is the reason why 

the KK-monopole is a gravitational instanton -  one encounters the problem at 

hand once one distributes the branes continuously and thus violates the Bianchi 

identity on an open subset of space-time.

As an aside it is worthwhile to  point out that the relation between D6-branes 

and the RR two-form is much the same as that between magnetic monopoles 

and the .Fe&m in standard electro-magnetism. The inclusion of magnetic sources 

restores the symmetry of the Maxwell equations. Schematically

d  * -Fe &M =  *?E  dFE & M  =  *?M  ( 5 .2 )

Thus, the Bianchi identity is violated by the magnetic current j’m- In the context 

of quantum field theories one speaks of monopole condensation. (See e.g. [88])

In this chapter, we will not resolve the issue in full generality, but will focus

on the inclusion of D6 sources in type IIA backgrounds of the form

M i o  =  M1’3 x M q (5.3)

1 Where the distinction is necessary, hats and tildes denote eleven-dimensional quantities.
Capital letters describe eleven-dimensional indices. The M-theory circle will be parameterized
by either z, or tp.
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without three of four-form flux, that preserve four supercharges. More precisely, 

we will be interested in the construction of string duals to 3 +  1-dimensional 

S U (N c) gauge theories with M  =  1 supersymmetry and Nf  flavors using D6- 

branes.

The work presented here was originally born out of the interest to study the 

addition of flavor branes to type IIA backgrounds dual to M  =  1, SU(NC) super 

Yang-Mills. Before flavoring, the geometry is that of Nc D6-branes wrapping a 

three-cycle in the deformed conifold.2 In the limit N cgyM 1, the backreaction 

of the color branes causes the system to undergo a geometric transition. The 

system is now best described in terms of the resolved conifold with the branes 

having been replaced by N c units of two-form flux over a two-cycle. This was 

originally studied in [45, 31] and the geometric transition is based on the work 

of [43, 44]; an attempt at generalizing the duality to include finite-temperature 

duals was made in [89]. The resulting ten-dimensional background consists 

of metric, dilaton and RR two-form {g^v, - (̂2))- Refering back to (5.1) one

sees that it lifts to pure geometry in M-theory, as both H (3) and F(4) are set 

to zero. It is for this reason that it is particularly simple and interesting to 

study these geometries and dualities from the perspective of eleven-dimensional 

supergravity. Here, the equations of motion and supergravity variations simplify 

to

Rm n  — 0 =  9mc +  -u>MABt ABe (5.4)

The eleven-dimensional geometry is of the form

A 4n =  R 1,3 x M 7  (5.5)

As the seven-dimensional manifold M 7 preserves 1/ 8-SUSY and is Ricci flat, 

it is a manifold of G^-holonomy. The concept of M-theory compactifications 

on such manifolds ([90]) is pretty much the same as that of the old heterotic 

string models on Calabi-Yau three-folds used in classic string phenomenology. 

Mathematically this is reflected by the presence of a three-form 0 g 2 that is

2To be precise, we will be dealing with conifolds deformed by the presence of branes or 
F(2) flux. They do carry 5C/(3)-structure but are not of SU (3)-holonomy. Therefore, they 
are not Calabi-Yau and strictly speaking we should not refer to them as (deformed/resolved) 
conifolds. For the lack of a better term however, we shall refer to the internal six-dimensional 
manifolds in this paper by that name though, as their topology is the same as that of their 
Calabi-Yau cousins.
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closed and co-closed

d 0 G a = O  d ( * 70 G 2 ) = O  ( 5 .6 )

where *7 denotes the seven-dimensional Hodge dual on the internal space.

As we have discussed in considerable detail, the flavoring procedure is very 

straightforward from the point of view of type IIA string theory. For once we 

will refer to the smearing form as E, as 0, will appear in the context of an 

SU( 3)-structure later on. The brane action takes the form

^Branes =  ~Tq f  {e~*K, -  A(7)) A S (3) ( 5 .7 )
J Mio

and the presence of ^Branes in the modified action (1.3) gives source term con­

tributions to the equations of motion. Most prominent among these is the 

appearance of a magnetic source term for the RR two-form,

d F ( 2) =  — ( 2 k i q T q) ^  (3) (5 -8 )

that violates the standard Bianchi identity. In type IIA one accomodates for 

this simply by adding a flavor contribution to the RR form,

F ( 2) =  d A (x )  -I- ( 2 k i 0T q)B (2 )  ( 5 .9 )

with 2) —> 0 as Nf  —> 0. (Note that Bp)  is not to be confused with the Kalb- 

Ramond two-form potential Hp)  =  dBp)  that will not appear in this chapter.) 

The smearing form H(3) then satisfies

d *io d(e-*K) = - ( 2 4 , r 6)2(3) (5.10)

It is a priori not obvious how to accomodate the violation of the Bianchi 

identity (5.8) in M-theory. However, as the sources will not only modify the 

Bianchi identity, yet also the dilaton and Einstein equations, it is reasonable to 

expect that the eleven-dimensional geometry will not be Ricci flat. Instead, the 

Einstein equations should be supplemented by the presence of a source term,

R m n  — g  9 m n R  =  T m n  ( 5 -1 1 )

From the loss of Ricci flatness it follows that the manifold can no longer be of 

C?2-holonomy; as it preserves the same amount of supersymmetry however it is
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fair to expect it to carry a (^-structure. Therefore, there is still a three-form 

(j)c2 that now fails to be (co)closed. One can anticipate that the failure of the 

manifold to be of G^-holonomy is parameterized by Nf  and thus ultimately by 

the the difference between F(2) and dA^). As we will see, the precise relations 

are
d 4>g 2 =  -  J  A (F (2) -  d A (i))

(5.12)
d  * 7  4>g2 =  e ~ ^ / 3 ( * 6 ^ )  A ( F ( 2) -  d A (x ))

Now for a manifold carrying a G-structure, its failure to be of G-holonomy is 

measured by its intrinsic torsion.3 Therefore, we expect the flavors in eleven 

dimensions to appear in the form of intrinsic torsion. A detailed study of the 

relation between the eleven and ten-dimensional supersymmetry variations will 

prompt us to consider eleven-dimensional backgrounds with torsion t ,  where 

the torsion is related to F  — dA = B.

Finally we will see that an uplift of our ten-dimensional equations of motion 

is given by the relation

+  2 ^ k l rn {* ^^ ) m KLR =  0 (5.13)

which is the solution to our initial problem. R ^  is the eleven-dimensional 

Riemann (Ricci) tensor with torsion -  we have discarded the use of hats to 

avoid an overly cluttered notation. As one can always rewrite the Riemann 

tensor as a combination of a torsion free Riemann tensor with additional terms 

depending on the torsion, it is possible to recast the above equation in the form 

of (5.11) with the energy-momentum tensor depending only on the torsion.

At first glance, equation (5.13) appears like a modification of M-theory and 

violates all intuition as eleven-dimensional supergravity is unique. However, 

one must not forget that we never assumed to solve the problem in its full 

generality. As a matter of fact, (5.13) has to be taken with several pinches of 

salt -  which might not be a surprise, as the inclusion of source terms in theories 

of gravity is always a rather difficult business. First of all, (5.13) assumes the 

background to be of topology M.\\  =  M1,3 x M 7 , with the internal manifold 

carrying a ^ -stru ctu re . Furthermore this means that we are not dealing with 

maximal eleven-dimensional supergravity, but with a situation with reduced 

supersymmetry -  1 /8  BPS -  in which case the theory is no longer unique. Still,

3For intrinsic torsion in the context of string theory see [56].
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as we will see, equation (5.13) manages what the standard KK-ansatz (5.1) does 

not. It gives the correct source-modified equations of motion in type IIA.

In section 5.1 we will begin with a review of the unflavored geometries in 

ten and eleven dimensions and then continue by studying the flavoring problem 

from the perspective of type IIA. Following this, we will turn to the issue of the 

M-theory lift in section 5.2. The chapter is ammended by appendices on brane 

embeddings, spinor conventions and KK reduction. For illustrative and moti­

vational purposes we will be using a specific case of an M-theory GVholonomy 

manifold and its type IIA reduction in section 5.1. However, the results of 

section 5.2 on the M-theory lift of smeared D6-branes do not depend on this 

example or the type IIA reduction chosen. They only depend on the presence of 

a ^ -stru ctu re , four-dimensional Minkowski space and the absence of M-theory 

fluxes.

As in previous chapters, we will also present a new supergravity background 

dual to a flavored AT =  1, SU(NC) super Yang-Mills theory. For the specific 

ansatz of section 5.1, we derive a set of first-order equations -  (5.45) and (5.49) 

-  that have to be satisfied by smeared D 6 sources in this geometry. For this we 

exhibit a one-parameter family of solutions in section 5.1.3. While the fluxes 

in this solution satisfy the flux quantization necessary for a string dual, the 

geometry is that of a cone over S 2 x S 3 with a singularity at the origin. So 

we expect the interpretation of this solution as a suitable dual to  be difficult;. 

The presentation of the flavoring problem is supplemented by a discussion of 

D6-brane embeddings for the geometries at hand in appendix 5.A.

5.1 Flavored Af  — 1 string duals from D6-branes

In this section, we will review the source-free string duals in their ten and 

eleven-dimensional formulations. Subsequently we will be turning to the issue 

of adding sources to the type IIA background. Let us once more emphasize 

that the particular choices of eleven-dimensional geometry (and its dimensional 

reduction) are of no direct consequence for our results concerning the M-theory 

lift of smeared D6-branes. The concrete geometry presented here is chosen due 

to its relevance to the flavoring problem in type IIA.
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5.1.1 The eleven-dim ensional dual w ithout sources

Building on the work of Brandhuber [50] (see also [51, 91]) we consider the 

purely gravitational M-theory background given by the elfbein 

ep =  dx^ ep =  E(p)dp

e1’2 =  A(p)a i)2 e3,4 = C(p)[S i,2 -  (5.14)

e5 =  B(p)ct 3 e6 =  D(p)[E3 -  g(p)a3]

are left-invariant Maurer-Cartan forms which we chose to be 

ai  =  cos ipd9 +  sin ip sin 9d<p £ i  =  cos ipd.9 +  sin ip sin 9d<p

(72 =  -  sin ipdd 4- cos ip sin Qd<p E2 =  — sin ipdO +  cos ip sin dd(p (5.15)

(73 =  dip +  cos 9d(p E3 =  dip +  cos 9

The solutions we are interested in are 1/ 8-BPS; therefore one can impose the 

following constraints onto the SUSY spinor e:

f  1234e =  e f  1356e =  - e  f pl26e =  - e  (5.16)

As a direct consequence we can calculate the following spinor bilinear, which 

turns out to be the G2-structure

(j>G2 =  ( t f  A0 A1A2 e)eA o A lA 2
(5.17)

=  gP13 +  gp24 +  ~p56 +  gl46 +  g345 _  g!25 _  -236

In the absence of four-form flux the preservation of four supercharges is equiva­

lent to the manifold being of G^-holonomy. A necessary and sufficient condition 

is the closure and co-closure of the G2-structure. By imposing d p c 2 =  0 and 

d(*74>g2) =  0 we obtain the BPS equations

, ,  _  E [ B D ( g - f 2) +  A C f ( l - g ) }  _  E C f ( l - g )
2 AB  A

JE [^ (2 C 2 - £ > 2) +  C 2J 2( / 2 - g)] E[ABD -  C 3 f (  1 -  9))
2 A 2 C 2  2 A B C

(5.18)

The same BPS system follows from demanding that Ŝ ipM =  0.

The best known solution to (5.18) is the Bryant-Salamon metric [92]. With



the metric takes the form

dS2 =  d x l 3 +  (1 -  ^ - ‘dp2 +  ^ a 2 +  £ ( 1  -  4 j ) ( £  -  i« 7 )2 (5 .20 )

The seven-dimensional G 2 cone actually turns out to be the cotangent bundle 

T*S3. The geometry is that of a cone over S'3 x S'3, with each sphere being 

parameterized by a set of Maurer-Cartan forms. At p =  po, the minimum of the 

radial parameter, one of the spheres (E) collapses, while the other (cr) remains 

of finite size. M-theory dynamics on this type of manifold were discussed in [90]. 

Fluctuations in po and the gauge potential A 3 can be combined into a complex 

parameter. However, as these fluctuations turn out to be non-normalizable, 

they do not parameterize a moduli space of vacua, yet rather a moduli space of 

theories.

There are three 17(1) isometries in (5.14) given by d#, and and

there axe therefore three different dimensional reductions to type IIA. In each 

case one obtains a conifold geometry with flux, with the conifold singularity 

being resolved by a deformation or resolution. I.e. there is a cone over S 2 x S 3 

and one of the spheres vanishes at at the minimal radius while the other remains 

of finite size. Furthermore, if we choose to reduce along an isometry embedded 

in the vanishing sphere, we need to recall that the vanishing of the M-theory 

circle indicates the presence of D 6-branes. Thus the reduction along yields 

a deformed conifold with a D 6-brane at p =  po extending along the Minkowski 

directions and wrapping the non-vanishing S 3. If one mods out the 17(1) by 

Znc before reducing, the corresponding geometry is that of N c branes. The 

other two reductions include non-singular f7 ( l) ’s, so we end up with resolved 

conifolds. As the M-theory circle is non-singular, there is no D6-brane. There is 

F2 flux though on the finite-size two-sphere. The different geometries are related 

by a flop transition between the resolved conifolds and the conifold transition 

between the deformed and the resolved ones.

In the context of gauge/string duality, the deformed conifold corresponds to  

the w ea k ’t Hooft coupling regime, while the resolved one is to be considered for 

la rg e ’t Hooft coupling. Thus the latter provides the appropriate supergravity 

dual. M-theory realizes the conifold dualities via the aforementioned moduli 

space of solutions. See [45, 31, 90].
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S ch erk -S ch w arz g a u g e  In what follows we will study the reduction along 

d^ +  d^. In the context of the flavoring problem of section 5.1.2 one expects 

the system to be best described by one of the resolved conifold geometries with 

additional flavor branes. Therefore, out of the three isometries discussed d<p and 

d^ +  d^ are the obvious choices. We selected the latter as it leads to simpler 

equations in type IIA. The choice made here does affect the flavoring problem, 

yet not our results on the M-theory lift. As we are interested in the reduction 

of tangent-space quantities, we need to transform the elfbein to Scherk-Schwarz 

gauge

0 e§*
E a = (5.21)

MA '  / AM

To obtain the gauge (5.21) from (5.14), we perform the following gauge trans­

formation:

A =A  W a ^ A W  

with the individual transformations A ^ \ being

' Iox9
A<« =  (

A<2> =

cos a  — sin 
sin a  cos

-  sin
4cos -

4>+
(5.22)

A<3> =
cos a  0 sin a  0 1 0 

— sin a  0 cos a
12x1

and all other entries zero. Here we defined

D( l - g)cos a(p) =

sinu(p) —
B

(5.23)

y/B* +  ( l - g ) 2 D*

In principle one needs only A^1) and A ^  to obtain Scherk-Schwarz gauge; yet 

without A 3̂) the new projections satisfied by the SUSY spinor would be linear 

combinations of the old ones (5.16) with coefficients cos a, sin a.  As it is, the 

form of the SUSY projections remains invariant under A. I.e.

i!234 i  =  i  f 1356- =  fv>126£ = (5.24)
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Thus the (^-structure (5.17) remains formally the same, w ith the vielbeins eA 

now replaced by eA. A disadvantage of the reducible gauge is that the new 

vielbein is rather complicated.

D im e n sio n a l red u c tio n  and  ty p e  IIA  s tr in g  th e o r y  The resulting type 

IIA vielbein is given by

= es*dxM

ep _

e 1 =  e3^A(cos -^j-dd 4- sin 0 sin - ^ d 0 )
2 2

e2 =  e 3 * A  cos a(cos —1 sin 0d0 — sin —^d#) 
z z

4- e '5 C s in a cos (sin §d(j> — f  sin 6 d(j)) -I- sin (d# 4- / d 0)

e3 =  e**C cos (d0 — / d 0) — sin ( /  sin 0d0  4- sin dd(f>) 
z z

e4 =  —e ^ A  sin a(cos % -  sin 6 d(j) — sin ^—d 6 ) 
z z

cos (sin 0d</> — /  sin 0d0 ) -I- sin -y -  (d0 -I- / d 0)-I- e ^ C coso! 

e5 =  e^ D s in a ^ co sfld ^  — cos0d</> +  dV>-)

(5.25a)

(5.25b)

(5.25c)

(5.25d)

(5.25e)

(5.25f)

(5.25g)

While the dilaton and gauge potential are

e§* = _JL_ = d & - 9)
2 sin a  2 cos a

jB2 — £)2fl — o2)
A m  =  co s0d</> 4- cos0d0 4- — 7— —̂ . „ * (cos dd<f> — cos dd(p +  dip-)

B z 4- (1 — g)

=  cos 6 d(p 4- cos Od(p 4- (sin2 a  —2 -  — —-  cos2 o ) (cos Od(p — cos Qd(p 4- dip- )
1 ~ 9

(5.26)

Using T10 =  T11, the reduction of the SUSY projections takes a more pleasing 

form:

r 1234e =  e r135rne = —e rpl2rne =  - e  (5.27)

This allows us to calculate the generalized calibration form for D6-branes in this

background.

1C =  (erao...a6e)ea° - a6 =  e*°*w  A (e125 -  e345 -  ep 2 4  -  epl3) (5.28)

Note, that the internal three-form part of this is, up to some overall dilaton

factor, identical to that part of the (^-structure (5.17) that is independent of



G -stru ctu res In terms of G-structures the situation in type IIA is the follow­

ing. Because we preserve four supercharges, we expect space-time to carry an 

5C/(3)-structure. As it was shown in [93], it can be directly derived from the

(^-structure of the KK-lift. Centerpiece of that reduction are the relations

J  =  (4>G2)ab6eab
(5.29)

*  =  (4>o,Uceabc

For the six-dimensional internal manifold, J  defines an almost complex struc­

ture, with respect to which we can define from 'I' a (3 ,0)-form f t  as

- i * (5.30)

These satisfy the equations

J A f t  =0

r r ,  3i „  A  (5 3 1 )J  A J  A J =  — f t  A f t  
4

In the case at hand we have

, 2 3J  =  epb +  e14 -  e-
(5.32)

\f! =  epl3 -I- ep24 +  e345 -  e125 

which gives

f t  =^r -  i  *6 \Ir =  (ep +  i e 5) A (e1 -1- i e 4) A (e3 -I- i e 2) (5.33)

Thinking about lifting from ten to eleven dimensions, we can invert equa­

tions (5.29) to express the eleven-dimensional G^-structure in terms of the ten­

dimensional quantities:

4>g 2 — +  e ~ % * J  A e6
1 , (5-34)

*70g2 =  ~ 2 e 4* j A j  +  e $ M ) A e 6

As previously stated, Ricci flatness, preservation of four supercharges and ab­

sence of four-form flux in eleven dimensions guarantee the C?2-holonomy of the 

internal manifold. This translates to the closure and co-closure of </>g2. As 

the fibration of the M-theory circle over the ten-dimensional base is non-trivial, 

one obtains non-vanishing two-form flux upon reduction to type IIA. Hence the
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internal six-dimensional manifold does not have S U (3)-holonomy due to its in­

trinsic torsion. This means that the forms J  and ft are not both closed. The 

relation they will obey can be derived from the closure and co-closure of 0 g 2 

thanks to (5.34)

d 0 g 2 =  d(e- ^ ^ ) +  d J  A (A (1) +  difj+ ) +  J  A dA(i) =  0 

d *7 4>a, =  —i d (e~4 i ' 3J  A J) +  dfe-*/3 *„ *) A (Am  +  dtf+) (5.35) 

-  e“*/3(*6'*r) A dX(i) = 0 

We know that none of the type IIA quantities depends on ip+. Hence, the 

contribution to the previous equations coming from dtp+ must cancel by itself. 

It gives
0 =  d J

0 =  d (e_ $ / 3 *6
(5 -36)0 =  d(e \Ir) -I- J  A dA (1)

0 =  - i d ( e - 4$/3 J  A J)  -  e - * /3 (*6tf ) A dA (i)

These equations can be rephrased (following [93] for example) as

d J  =  0

d $  =  ie * d A (1)_i(*6tf) (5.37)

J  jdA(!) =  0

where

G W J/ f (p+s) =  i j G " - A  ... A dxftp+q (5.38)

We described in this section the construction of a type IIA background from 

the reduction of eleven-dimensional supergravity. We also derived the equations 

imposed on the structure by supersymmetry. Now we turn to the problem of 

adding backreacting flavors in this ten-dimensional context.

5.1.2 Sm eared sources in type IIA supergravity

The source-modified first-order system  We are now addressing the prob­

lem of flavoring the type IIA background obtained in the previous section using 

the methods of chapter 3. Hence we are looking for a solution of the equations 

of motion derived from

5  =  S „ A - T 6 J  ( e ~ * K .-  A m ) A 2 ,3) (5.39)
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The sources in (5.39) modify the standard type IIA equations of motion and 

Bianchi identities to

dF(2) =  -(2 k J 0T6)S (3)

0 =  d *10 F [2)

0 =  \ — dK(y/^ggKXe~2*d\$>) -  \ f 2 -  7 e_ 4>S j(* i0/C)
8 4 v ' (5.40)

R^u — 2 4- (FIj,kF1, k g^uF/2))
_  1 
~ 2 ~ \ r H K * ' v  —

Due to the standard integrability arguments ([38, 40]), it is sufficient to satisfy 

the Bianchi identities along with the first-order BPS equations. However, in 

section 5.2 we will show how to derive the second-order system directly from 

M-theory.

The metric ansatz is given by the vielbein (5.25) and the dilaton is assumed 

to  depend only on the radial coordinate The calibration associated with k- 

symmetric D6-branes is given by (5.28) which is

K  =  e *0* 1*2* 3 a  V (5.41)

Supersymmetry requires the two-form flux to obey the generalized calibration 

condition

*10 d (e -* fc ) =  F(2) (5.42)

This tells us that the most general ansatz for F(2) is

Fm  =  e - 4 ^ 3 (Fp5 ( p ) e ^ + F 1 2 (p)e1 2 + F u (p)ei4 + F 2 3 (p)e2 3 +F 3i (p)e34) (5.43)

The conditions given by supersymmetry on this 517(3) geometry with intrinsic 

torsion are still given by (see end of section 5.1.1)

d J  =  0

d $  =  |e * F (2)J(*e®) (5.44)

J -lF(2) -  0

where we have now replaced cL4(i) by F(2), thus allowing for dF(2) /  0 , as 

necessary for D6 sources. Together with the generalized calibration condition
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(5.42), these equations give the first-order equations the system must satisfy:

^ C  tan a
, E  f  2 D D  cos a  sin a

a  2 \ .D ta n a  C 2 ta n a  A2 23

A ' (  A + 2. -  AD -  _  Ap
2 V D tan2 Q! A C 2 tan2 a  ta n a  34

$ / =  3 E ( _ D c ° S* a  +  D  +  _ f 23_ + „
2 \  2A2 2C 2 tan2 a  ta n a

D  cos a  sin a  D
p5  A 2 C 2 tan a

_  D  cos2 a  -D 2F23 „

12 A2 C 2 tan2 a  ta n a  34
D D  cos a  sin a

^14 =  T^T------------------ To-------  +  -̂ 23C 2 tan a  A2

As mentioned before, the modified equations of motion relate the smearing form 

to the two-form flux.

dF(2) = -2 /4 T 6E (5.46)

This equation, combined with (5.43) and (5.45), tells us that the most general 

ansatz for E is

E =  e - ^ / ^ E j t p K 34 +  E2(p)(ep23 +  e»u ) +  S 3(p)e'>12 +  S 4(p)(e135 +  e245))

(5.47)

with
2S 2

■=•3 =  “ “ I

2«;20T6.Dsin a  

and the additional conditions

, , F34 DF 23  cos2 a  +  DF 34  cos a  sin a  D 2 cos a  sin a  , 2F 23
.Too = E  —  --------------------------------- tt;-------------------------------- ttttt;--------h

23 \  .D ta n a  A2 A 2 C 2 ta n a
DF23  cos(2a) -I- D F 34 sin a  cos a  D 2 co sa  2

H------------------------- 2 • 2-------------------------- •" n 4 ^  +  34^23 -  2 « 10i 6 - 2C 2 sin a  O 4 sin a

P / _ p f  ^ 34  -0 ^ 3 4  T)F34c o s (2 a )  F 34F 23 2 2 T  =  \
F34 “  W  +  2C 3 sin2 a  +  +  2f34 “  2k''>T6- 1)

(5.49)
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One can verify explicitly that any solution to equations (5.45) and (5.49) auto­

matically verifies the source-modified equations of motion (5.40).

As we want to interpret the two-form flux F(2) as created by brane sources, 

we need the flux to be quantized, obeying f s 2  F^) — 2ttNc. S 2 is a suitable two- 

cycle surrounding the branes in the transverse, three-dimensional space. This 

adds constraints on E and F{2 )-

Hi =  H2 tan a

—A 2D  -I- C4F34 sin2 a  -f C 2 (2Nce%* sin a  tan a  +  D sin 2 a  +  A 2 F$4)
^23 =

(A 2 C 2 +  C A sin2 a ) tan a
(5.50)

that are compatible with the equation (5.49).

5.1.3 Finding a solution

In this section, we present an analytic solution to the previous system of first- 

order equations. We will notice that this solution corresponds to the addition of 

sources in the singular conifold. First, we can directly solve one of the equations 

in (5.45):
n  2$ iVcC 2 sin a  tan a  , .
D  =  e> *----------------------  (5.51)

Let us now specialize to  the case E2 =  0. We see that this reduces the freedom 

of the smearing form to

e  5 4 >/ 3 F 3  4  1 3 5  2 4 5 \  ((■ e o \
(3) =  Q 2 „  n  . 2 ( e  + e  ) ( 5 -5 2 )2k{qTqD  sin a

The branes smeared with this particular form would correspond to branes ex­

tended in the radial direction p in a trivial way. For a discussion of ^-symmetric

brane embeddings in this geometry, see appendix 5.A. This simplification en­

ables us to solve the equation for the last unknown component of the two-form  

flux F(2):

F3i =  e l * ^  (5.53)

where N f  is a constant of integration related to the number of flavors in the 

dual field theory. We now suppose that the two-form flux is independent of the 

radial coordinate p, a property verified in other examples of string duals. This 

imposes that

A 2 =  C 2 sin2 oc (5.54)
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Finally, we assume /  to be constant. A look at the original metric (5.25) tells 

us that /  parameterizes the fibration between the two spheres -  this becomes 

rather more obvious in (5.14). Thus if /  is independent of p, the fibration does

not change if we flow along the radial direction. Then we can solve the full BPS

system analytically, and we find:

r 2 r4*4iVc2( l - / 2)
C  “ e W  (5 .5 5 )

=  I M f l l  r / y | ( e i» ) f

cos a  =  f
W - d

/  3 /

where 0 <  /  <  1. The two-form flux is

F( 2) = — N c (  sin OdO A d <p +  sin OdO A d0^

+  Nf  sin ip- (d 6  A dO +  sin 0 sin Od<p A d</>̂  (5.56)

-I- Nf  cos %p-  ̂sin OdO A d0 +  sin OdO A d <pj

At this point we notice that we can write the metric explicitly as a cone 

upon redefinition of the radial coordinate. We take

r  =  l ^ ( W V / 3  (5 .5 7 )

then dr2 =  E 2 dp2 and the metric is

d s H A  =  e ™ / 3  ( da:i,3  +  dT-2 +  r 2 d f iL )  ( 5 -5 8 )

where

d f iL  = ^ ( d02 +  sin 2  e d ^ 2 )  +  i 2( i  — p )  ”  f d 9 ^2  +  ~  / sin0d < ^ )2]

+  1 6 ( l - / 2) (a;3~ COŜ )2
(5.59)

We can first notice that taking the limit Nf  —> 0 for this solution gives the
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singular conifold. It indeed corresponds to taking /  —► 5 , giving

2
d s ^ o  = ^ -  (d x ft3 +  dr2 +  y^(d02 +  sin2 0d<£2)

+  “  \ d^)2 +  (W2 -  ^ sin 0d</>)2] +  ^2 ^ 3  -  cos0d0 )2)
(5.60)

Secondly, we have quantization of the two-form color flux, which is necessary 

for the gauge/string duality.

The interpretion of the additional flavor terms to the flux is not clear. A look 

at the solution and appendix 5.A prompts us to suspect that the interpretation 

of the sources as being due to flavor branes is more straightforward if one reduces 

along 6 $. It should be interesting to consider the solution at hand in the context 

of conifold transitions though. Of course, this is just one solution of the BPS 

equations of this particular dimensional reduction. Other solutions might also 

present interesting properties. In either case, we now turn our attention back 

to the problem of the M-theory lift.

5.2 Back to M -theory

Having studied the flavoring problem of D6-branes in the background (5.25) in 

the previous section, we have sufficient intuition to turn back towards the more 

general case of smeared D6 sources in M-theory. The discussion here is fairly 

generic and requires only the presence of the various G-structures as well as the 

overall topology R 1,3 x M .

5.2.1 Lifting th e SU SY  variations
The (^-structure

Our considerations in the introduction about the loss of Ricci flatness prompted 

us to consider the appearance of intrinsic torsion. So we will begin our attempt 

at finding a candidate M-theory lift with magnetic sources by studying 

the ten and eleven-dimensional G-structures. Originally we were dealing with a 

G2-holonomy manifold in eleven dimensions. Then we reduced it to an S U (3)- 

structure in ten dimensions, following the equations (5.29). After this we fla­

vored the theory, which changed the structure equations in ten dimensions (5.36) 

by replacing dA(i) by F(2). However, after adding sources in type IIA super­
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gravity, we have F(2) /  d^4(1). So, if we try to lift back to eleven dimensions, 

we start from

0 =  d J

0 =  d(e~*/3 *6 )

(5 -61)0 =  d(e \I/) +  J  A F(2)

0 =  - I d ( e "4$/ 3 J  A J) -  e - * /3(*6tf) A F(2)

W hen we then look at the G2-structure we find, combining (5.35) with the 

above,

d 4>g 2 =  -  J  A  ( F ( 2) -  d A ( i ) )
(5.62)

d . 7 = e -* /3( .6* ) A (F(a) -  <U(1))

So sources in type IIA supergravity translate in eleven dimensions to the loss of 

G2-holonomy and the appearance of torsion proportional to  F(2) — dA(i) =  # ( 2)-

The SU SY variations

The previous section gave a first confirmation of our suspicion that geometric 

torsion should allow us to accomodate for the sources in M-theory. This sug­

gests that all geometric quantities such as covariant derivatives and curvature 

tensors should be replaced by their torsion-modified relatives. Simplest among 

these is the covariant derivative, which makes an explicit appearance in the 

eleven-dimensional supergravity variation S ^ m  =  D m £, which yields the IIA 

supergravity variations upon KK-reduction. In appendix 5.B we therefore study  

how this equation and its Kaluza-Klein reduction change upon inclusion of a 

torsion tensor4 f

$ii>M =  9m £ +  -̂ wmabF ABc +  -^TMABFABe =  e (5.63)

The result is given in (5.134) and we proceed by investigating what constraints 

we have to impose on t m a b  in order for the lower-dimensional variations to  

include magnetic sources.

A (t) ~Of course, once we include the torsion and proceed from Dm£ to D M e, it is not certain 
whether this defines a SUSY variation of a supergravity theory. What we do know for certain 
however -  and will show in the following -  is that the naive dimensional reduction of the usual 
eleven-dimensional SUSY variation does not yield the correct type IIA one and that (5.63) 
gives a first order differential on the spinor that does reduce to the correct equations. With 
this in mind, we write e.
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Now from the form of the dilatino variation (Einstein frame),

<5eA =
(5.64)

o 4*it follows that we have to demand f zaz =  0 and f zbc =  Bbc as (5.64)

then takes the form

(5.65)

with the two-form now no longer closed, F =  dA -I- Tqk\ qB.

Substituting f zaz and rzbc into the gravitino varition of (5.134) we see that 

if  we impose

Equations (5.65) and (5.67) are important results. If one performs a KK-

one obtains supergravity variations including dA(i), yet not B(2) =  F(2) — d^4(i). 

By adding the torsion term to the eleven-dimensional supergravity variation, we 

are able to  directly derive the ten-dimensional variations with F(2) instead of 

dA(i). Looking back at (5.63) it is fair to say that the spin connection u j m a b  

contains dA ^), while the torsion carries the £?(2) term necessary to complete 

F(2 )- The right-hand side of (5.63) is constituted of two parts. The first two 

terms are the ones coming from the lift of the IIA part, and are exactly the 

terms present in eleven-dimensional supergravity. The last term, which is the 

only one involving the torsion, corresponds to the lift of the contribution of 

the sources to the ten-dimensional supergravity variations. Thus, it seems that, 

mimicking what happens in ten dimensions, we are in presence of the usual 

eleven-dimensional supergravity plus some sources.

Using the torsion-modified covariant derivative for spinors (5.63) we can also 

define such an operator for tensors. The relevant connection coefficients T

the gravitino variation turns also to the desired form

= V  + (Vahr bcd -  UScar d) rn£ (5.67)

reduction of the original supergravity variation without torsion, S ^ m  =  D m €,

are

(5.68)
K a m b  =  t m a b
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where { ^ M } is the Levi-Civita connection. With the help of we can

rewrite equations (5.62) as

=  0
(5.69)

^7M)(*70G2) =  0
One should remember that the original BPS equations could be written geo­

metrically as V  m <Pg 2 =  0 and V a/ *7 0 g 2 =  0 Yet that these ceased to be 

valid once we include the sources in ten dimensions -  as we discussed in sec­

tion 5.2.1. Equations (5.69) show however that these geometric BPS equations 

remain formally invariant once we include torsion.

5.2.2 The equations o f m otion

We shall finally turn to the search for equations of motion in M-theory that 

reduce to the source-modified second-order equations in type IIA as given in 

equation (5.40). To find these equations, we actually reverse the integrabil- 

ity argument that allowed us to consider the first instead of the second-order 

equations in sections 5.1.2 and 5.1.3.

To get an idea of what we are about to do, let us briefly digress to the 

simple case without any flavors or sources. The Bianchi identities are the usual 

ones, the equation of motion is simple Ricci flatness, R m n  =  0 , and the G 2-  

structure is closed and co-closed. Thus the latter satisfies V m 0 g 2 =  0. Taking 

the commutator

0 =  [ ^ K ^ l )<I>G2MNP
~s ~s (5,70)

=  —R  M K L (f>G 2S N P  ~  R  N K L (i>G 2M S P  ~  R  P K L (t) G 2M N S

Upon contraction of (5.70) with 0 g 2, we find5

0  =  2 R k l  +  R m n p l ( * 7 ^ g 2 ) k M N P  (5 -7 1 )

In the absence of torsion, Rmnpl{*74>g2 ) k MNP =  due to the well-known 

symmetries satisfied by the Riemann tensor,

R k \l m n \ =  0
(5.72)

R k l m n  =  R m n k l  =  —R m n l k

5 As one can verify by direct calculation using (5.17), the G2-structure satisfies

4>G2 lmn4>G2hmn = &6l
*t>G 2 P ^ G 2 m n p  =  ( * 7  4>G2 ) m n k l  +  —  ^ n ^ r n

k, I, m, n,p  denote indices of the seven-dimensional internal manifold.



Therefore, our space-time is Ricci flat and the equations of motion are satisfied.

After this brief digressiom, we return to the original problem. Our aim is 

to find a suitable equation o)f motion in M-theory, that reduces to (5.40) upon 

dimensional reduction. For consistency this equation of motion needs to reduce 

to  simple Ricci flatness in thee limit where the type IIA source density H -  equiv­

alently the torsion t  in M-tlheory -  vanishes. In opposite to our considerations 

in the previous paragraph, tlhe (^-structure does no longer satisfy V M<t>G2 — 

but instead satisfies = 0 .  So we can once more consider the commu­

tator of covariant derivatives. The identities of footnote 5 used to derive (5.71) 

still hold, yet (5.72) do not,, and we arrive at the main result of this chapter, 

the M-theory lift of the source-modified equations of motion

0 =  2B<M + R % )n p l ( * ^ g , ) k MNF (5-73)

where R ^  is the Riemann ((Ricci) tensor in the presence of torsion.

As we have pointed out before, the BPS equations in their geometric form -  

=  0 -  are equivalent! to those obtained from the SUSY spinor e, D ^ e  =  

0 . Therefore we could have (derived (5.73) also using (5.63). A commutator of 

covariant derivatives acting ton the SUSY spinor yields

° = (5.74)

We then contract with e f  Km  and make use of the identity

p-ApBpCpD _  p-ABCD _|_ A B - p C D   ^CBpDyl _|_ ^ C D j ^ A B  _|_ ^ D A - p B C

_  V A C T B C  _  v B D r A C  +  v A B n C D  _  ^ A C ^ B D  +  ^ A D ^ B C

it follows that

0 = 2 +  (£tKMNPi)RMNPL + o  ( i tABe) (5.76)

The assumptions made abouit the SUSY spinor e imply that there is a G 2 struc­

ture that can be expressed ais

(5.75)

*r <j>G, = (iTABCDi)eABCD (5.77)

They also imply that all terims of the form eVABe vanish. Hence (5.73) follows 

from (5.76).
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The equations of motion (5.73) can be rewritten in a more typical and en- 

lightning fashion using the Einstein tensor

R k l  — - Ŝk l R  =  Tk l  (5.78)

where Tk l  is the energy-momentum tensor of the sources. It can be written in 

terms of the torsion as

Tk l  =  V l K mm k  -  V m K m l k  +  K m l p K pu k  -  K mm p K pl k

+  L^MPN — VpKmLN  +  K m L q K ^ p k  — pqK®LN) (+7<i>G-i) N F

+  \ 9 k l ( V m K mq q  -  V q K mmq  +  K mm p K pq ‘q  -  K mq p K p mq )

+  p K\1QN + K m Pr K Rqn )(*74>g2)QMMP
(5.79)

where K m n p  is the contorsion tensor (see (5.68)). FYom (5.78), we can see that 

the Einstein equation we are proposing contains two tterms: on the left-hand side, 

one has the Einstein tensor one would get from varying the eleven-dimensional 

supergravity action with no four-form flux; on the jright-hand side, one has an 

energy-momentum tensor that vanishes when the torsion is set to zero. When 

the torsion vanishes, so does T  and one recovers the M -theory Einstein equation. 

Writing the equation in this form makes very clear tthe fact that the lift of type  

IIA supergravity with sources is eleven-dimensional supergravity supplemented 

by some sources. Unfortunately, we were not able to  find an action that would 

be responsible for this energy-momentum tensor. T o summarize, we claim that 

having sources in ten dimensions corresponds to halving an energy-momentum  

tensor in eleven dimensions, of the form presented above.

To verify our claim, we will now perform the explicit dimensional reduction 

of (5.73), and show that we recover all the equations of motion of type IIA with  

sources. The calculations are -  as so often in sup<ergravity -  straightforward 

yet tedious. We found [94] quite helpful, yet not essential. The reader not 

interested in mathematical details might want to skip ahead to the end of this 

section, where we summarize our findings. Notice tlhat in the following, despite 

the fact that we dropped the superscript (r) for sim plicity of notation, all hatted  

Riemann and Ricci tensor are considered in the presence of torsion.
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Let us start with the 22-component of (5.71). We find

Rzz = -H e«-l=aM(V=9e-2*^*) + L 4» F 2
3 V = 9  M 4  (5 .8 0 )

(*7 4>g 2) zS P K  R s p k z  =  e3^ ( * e ^ ) j d B  

from which it follows that

0 =  2 Rzz +  (*7<Pg2 )zSPKR s p k z  

=  +  1  e4* F 2 +  e3*(»6<I<)-KiB (g g l)

=  - ^ = 9 lz( ^ g e - 2 i du^) -  g F 2 -  | e - * ( * i 0K)-iS

Here we used that *6^  =  — *10 fC and d 5  =  dF =  — E. And we notice that we

find the source-modified ten-dimensional equation of motion for the dilaton as

in (5.40).

Now we investigate the //2-component of (5.71). We find

B*« = - le 2*V-F„„ 4- A„RZZ
? (5.82)

(*i 4> g , ) / p k R s p k ,  =  - g e o(,(»70 Gj)al’“' ( d B W  +  ^ ( e 34'(*64')JdB)

Now we have

| e a^(*70 Oj)«te ‘(d B)icd =  l ( * 6^ )Mf>cd(dB)(,cd

=  ^ ^ * 6 ( d i" A d A dB ) <5'83)

=  ^ | * 6 [ d ^ A d (d A B )]

=  0

because supersymmetry tells us that d J =  0 and d (J  A B) =  d(d</>g2) — 0. Thus

0 =  2 R^z +  (*7<f>G2)(j,SPK Rspkz

=  - e 2* V ,/F„„ +  2 .4 „ B «  -  \ e a„ ( t 1 h , ) ° bed( i B ) ici +
b

=  - e 2* V ‘,F„M +  X „ [2 fl„  +  e3* (* e* ) jdB]
(5.84)

The term in square brackets is equal to  the 22-component of (5.71) and the 

remaining part corresponds to the Maxwell equation for F (2)-
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The zi'-component6 of (5.71) gives

R,„ = + A„B« + j e 2 t(d.4 -

(*i 4 g , ) / P K R s p k » =  e3* B ^ [F J(»64')P + A„(e3*(«6«')jdB) (5.85)

= t ^ * B ued ^ 9  +  J4„(e34,(*64')jdB)

with d<E> =  | e $ F j(* 6^ ) due to sypersymmetry. Putting things together

0 =  2 R zv +  (*7 <j>G2)zSPK R-SPKv
(5.86) 

=  - e 2 * V pFpy +  A v [2RZZ +  e3*(*6 *)-**£]

This agrees with the /zz-component. Let us finally look at the /^-com ponent of 

(5.71). We have

e2$ 1 1
R-nv — Rfiv +  2 -----— (Fpp(dA)up — - g pyF 2) — - A I/V PFPP +  ApR zlf

e~ 2* p  2 9̂ V̂ -ZZ
(5.87)

and

( * 7 i G 2)nS P K RsPKiA =  ^ [ ( * 7 0 G 2)z5PA'-^5P K I/] +  ( * 6 ^ )  pCdR v d d c^

-  ^ A t,e2* e a/j(*7<fiG2 )abcd(dB)bcd -  e*(*8«)(.“‘V,,B1,c

+  l e 2*enM(*70 G2)“6“iB„dFci, -  i e * ( * « * ) (t“,V „ B cl,

(5.88)

Let us first notice that

(* 6 « V d(V,,B„c + iv „ B cd) = | ( * 6* ) fI“i(d B)„„, (5.89)

Then from previous computation we know that

ead(*7^Ga)“6cd(dB),K!(j = 0 (5.90)

In the following we will also use the identities

(* 6 ^ r)^ 0 i>(* 6 ^ r) C£i^ =  'HacVbd ~  WadVbc "h JacJdb  ”t" JadJbc
1 (5.91) 
— («/ A  J)abcd  — Jab Jed  "h JacJdb A  JadJbc

6One might suspect this to be identical to the /xz-component. Due to the presence of torsion 
however, the Ricci tensor is no longer symmetric and one has to check this independently. 
Interestingly, the Kaluza-Klein reductions of /xz and z v  are already different in the torsion- 
free case. Here the two differ by F — dA  however, which vanishes in source and torsion-free 
geometries.
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and once again

So
=  - \ ( J  A J)abcdFj,

=  Fcb(JabJ cd +  J acJ db +  J adJ bc) (5-93)

=  2 J abFbcJ cd 

because supersymmetry dictates that F aJ  =  0 . And

( * « * ) ^ « c *  =  - |e « - F ^ ( * 6®)Mdc(*6'®)/ffc 

=  ~ e * ( F /  +  j / F fgJ°d)
(5.94)

4

Putting everything together, we get

{*7^>G2 ) f i S P K  R-s p k v  =  A p [ ( * 7 4>G2 ) z S P K  R s p k v \ +  e 2*  e a p B ud J ab F b c J cd

-  ^ * ( * 6 ® ) / ^ B U i  -  e™ B „ d( F /  +  J j F l g P d)

— Ap[(*7<j>Gz ) z S P K  R s p k *] ~  2 e * ( * 6 * ) / / d ( d 5 ) i . c d

- e 2* F / B „ d
(5.95)

In total

0 =  2R p y  +  (* 74>G2)pS P K R-SPKu 

=  2 R„„ +  4 V „ a „ ®  -  e ” (F w ( d A ) /  -  j ^ . F 2) -  -  e ^ F / B ^

-  e - 2* g ^ R z; +  A lt[(*7j>G2) zSPK RsPKv]  -  | e * ( « , * ) M° ‘ (d B )1/aJ +  A „ 2 B 2„

=  2 fi„ „  +  4 V W9 „ $  -  e2* ( F wp( d 4  +  B ) /  -  j f l ^ F 2) -  A y V F p ^

+  A „ [ 2 R „  +  ( . 74’g , ) zs p k R s p k .] ~  e - 2 i gil„ [Rzz +  i e 3't (* e ® )jd B ]

-  ie*(*ioK V 'S1„w + i e - 2*9^e34(.6®)JdB
(5.96)

which gives

1
0 =  2fl„„ +  4 V ,A ®  -  e * ( F w F /  -  - g dUF 2)

-  i e * ( ( » 10AC)^3„p«. -  9„„(*ioK:)-£)

— A v W F p p  +  A p [2R zll - f  (*7 4>gz ) ZSP K  R s p k v ]
(5.97)

e - 2$

-gpy [2Rzz +  e3^ (*i0/C)jH] 
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where we recognize the first two lines of this equation as being the Einstein  

equation of type IIA supergravity with sources and the rest vanishes thanks to  

other components of (5.71). This completes the reduction of eleven-dimensional 

Einstein equations to the type IIA supergravity equations of motion.

To summarize, in this section we showed that the equation of motion of 

eleven-dimensional supergravity with torsion (5.73), which is given to us by in- 

tegrability, reduces to the source-modified type IIA supergravity equations of 

motion (5.40). It thus shows that adding torsion to eleven-dimensional super­

gravity reduces to adding smeared D 6 sources in type IIA supergravity.

5.3 Discussion

We have studied two related issues: the addition of D6-branes as smeared sources 

to a type IIA background, and the lifting of such a system to eleven-dimensional 

supergravity. We considered these in the context of 1 /8  BPS solutions of the  

form R 1,3 x M ,  a fact represented by the presence of a G 2 or 5[/(3)-structure.

Concerning the problem of the M-theory lift, we saw that ordinary eleven 

dimensional-supergravity cannot accommodate for the presence of the additional 

sources and argued that a possible solution might lie in the inclusion of geometric 

torsion. While our argument was founded on the observed loss of Ricci flatness in 

the higher-dimensional theory, we were able to show by explicit calculation that 

the supersymmetry variations take the required form upon addition of torsion. 

Moreover, the torsion must take the form (5.66), related to the distribution  

5 (3) of the sources in the reduced theory. Subsequently we derived a set of 

second order equations that could be the equations of motion of some eleven­

dimensional supergravity with torsion, and proved that they reduce to the type  

IIA equations of motion with smeared D6-branes. As we pointed out, this work 

is not in contradiction with the uniqueness of supergravity in eleven dimensions, 

because we are only considering a theory that preserves four supercharges. We 

did not of course show that there is a well defined theory in eleven dimensions 

that is supersymmetric and has the field content of both eleven dimensional 

supergravity as well as of the additional torsion. One should not forget however, 

that we are not studying the uplift of S iia , which is well known, but of

& — ^IIA T ^DG-sources (5.98)
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The problem was first addressed in [46] whose authors found a seven-dimensional 

gauged sigma model action that reduces to the DBI-term of the D6 brane. They 

were unable to find a suitable uplift of the Wess-Zumino term however. While 

this chapter does not solve the problem in the sense of [46], it does succeed 

in lifting the ten-dimensional equations of motion to pure eleven-dimensional 

geometry. The question whether the results are just an accidental rewriting 

of type IIA dynamics in higher-dimensional notation or do actually point to a 

higher dimensional supersymmetric theory that includes torsion remains open.

While there is a long history of the uses of torsion in the context of string 

theory, the torsion used in papers such as [95] and [56] is related to the presence 

of fluxes, not of sources. Therefore the addition of further torsion is a rather 

unorthodox concept. So it is necessary to wonder if we would not have been 

able to solve the problem at hand with simpler methods. As mentioned before, 

our argument was based on the loss of Ricci flatness in eleven dimensions. One 

might guess that it is possible to use the four-form in M-theory, F(4), to obtain 

a suitable energy-momentum tensor to supplement the Einstein equations. This 

however leads to four and three-form flux in type IIA, in contradiction with our 

results of section 5 .1 .  Another possibility would be to use the KK-monopole 

action of [46]. There the authors constructed a gauged sigma model action

( 5 .9 9 )  that is the dimensional uplift of the DBI term of a D6-brane. Using this, 

one could try to lift the action ( 1 .3 )  to M-theory. Yet considered in connection 

with the standard Kaluza-Klein mechanism, ( 1 .3 )  is an action in terms of dA ^), 

not jF(2). S o even if one were able to lift the brane contribution to ( 1 3 ) ,  the 

supergravity part would still be lacking the source contribution. Still, it might 

be interesting to try to match the sigma model action [46] with the inclusion of 

torsion.

Note that the considerations made in section 5.2 make hardly any use of 

string or M-theory. The setup is merely that of a U (l)  Kaluza-Klein theory in 

d and d - 1-1 dimensions with monopole condensation in the lower dimensional 

theory. Hence the results of this chapter may be re-expressed as follows: a 

monople condensate in a d-dimensional Kaluza-Klein theory might be described 

as torsion in d +  1 dimensions.

The other problem studied here was the construction of a gravity dual to
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M  =  1, SU(NC) super Yang-Mills with flavors. We addressed this in section 5.1. 

Here we found a system of first-order BPS equations that describes the addition 

of D6 sources to the type IIA background (5.25). At the end of section 5.1, we 

presented a family of exact solutions.

5.A D6-brane embeddings

We will now discuss D6-brane embeddings in the three type IIA reductions of the 

Bryant-Salamon metric (5.20). In principle one would have to study each of the 

three reductions independently, but as we will show now it is actually possible 

to search for these embeddings directly in M-theory. Strictly speaking we will 

do nothing but rewriting the calibration condition of type IIA string theory in 

eleven-dimensional notation. However this turns out to be quite useful, as the 

M-theory expressions are more compact and less convoluted than their lower­

dimensional counterparts.

The starting point is the gauged sigma model action of [46]. Here, the 

authors constructed an action that is the eleven-dimensional uplift of the DBI 

action of a D6-brane. In other words, it can be thought of as the world-volume 

action of a Kaluza-Klein monopole. Let the M-theory circle be described by the 

Killing vector K  =  dz . Then

the DBI action of a D6-brane.

We want to use Hm n  to describe calibrated cycles of D 6-branes in type 

IIA using M-theory notation. Recall that a D6-brane embedding X ^ (^ )  is 

supersymmetric if it satisfies the calibration condition

Here (pind.)ij =  d iX ^ d j X 1'g^u is the induced metric and /C the calibration form 

(5.28). Defining (eIIA) ^  =  n ^ j v ^  we have, using (5.21), (eIIA)a =  e~ ^ e° . 

We can now define the M-theory lift of the type IIA calibration form as

Skk t  =  -2 k k 7  j  d £ K  y -  

U m n  =  9 m n  — K ~ 1K m K n

The action is that of a gauged sigma model. N projects eleven to ten­

dimensional vectors. One verifies by explicit calculation that (5.99) reduces to

(5.100)

0KK7 =  (e  )' A  [(eIIA)125 -  ( e I I A ) 3 4 5  -  (eIIA)p24 -  (eIIA)p13] (5.101);IIA\345
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In an abuse of notation, we have labeled this the calibration form of a KK- 

monopole. Also y/ —II =  gind ? and we arrive at a lifted form of the

calibration condition (5.100),

a > kk7 =  v ^ n  (5.102)

We will now use (5.102) to study D6-brane embeddings. Recall that there

are three U (  1) isometries, with three different dimensional reductions

C <7 x S  Resolved conifold

<Z a  Resolved conifold (5.103)

Deformed conifold

C olor  e m b e d d in g s  Color embeddings are those which wrap only a compact 

cycle. In the case at hand they do not extend along the radial direction at all. 

If we specify to the deformed conifold, that is, we choose the isometry K  =  

we find an embedding parameterized by7

x M p  9 <p ip 9 (p ip
— Po o  o  o . K

The embedding exists only at p =  pQ as

(5.104)

X*<f>KK7 =  - — ^ / S in f l  y z n =  4 p 3 ^ s i n  9
7 2 y / 3  7 2 y f l  (5.105)

x*<pKK7 P=P0 \/^n
So we recover the color brane embedding of the string dual we started with. 

Note that this cycle is calibrated in M-theory though. I.e. it is a minimum  

volume cycle of the eleven-dimensional geometry.

For the resolved conifold associated with K  — d# one might try an embed­

ding as
xfi p  9 (p ip 9  4> $  (5.106)
-  po . K  . o o o 

However, the cycle in question vanishes at p =  po,  as one would expect.

M a ss le ss  flavor e m b e d d in g s  Massless flavor branes extend fully along the 

radial direction p. Therefore they only need to wrap a two-cycle in the internal

7 The notation for these embedding diagrams is as follows: a — signals a non-compact 
direction along which the brane extends, a o a wrapped compact one. K  denotes the M- 
theory circle associated with the Killing vector K , . finally stands for localized directions.
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geometry and one can make the following guess

x ^ p e ^ ^ e c t ) ^  (5.107)

Note that this embedding works for both the 8 $ and the 8  ̂ isometries.

For the deformed conifold, i.e. reduction along 8 ,̂ we obtain the relation

X*<j)KK7 =  sin2 9
6Y  (5.108)

y/—H =  -^-= sin 9 
6 \/3

demanding 9 =  ^ . The resolved conifold associated with 8 $ gives

X*<f>KK7 =  sin2 9
6y  (5.109)

y/ —II =  -^7= sin 0 
6y/3

demanding 9 =  ^ ; whereas for the 8^ + 8 ^  reduction both X*(f)  and y / —II vanish. 

Interestingly, in M-theory the cycle (xM,p, ip ^ )  is calibrated in the traditional 

sense; that is, it is a minimal volume cycle.

M a ssiv e  flavor em b ed d in g s  Naturally one would like to relax the con­

straints on 9 and 9 respectively from the above paragraph. A good guess to

do so lies in assuming a relation between p and 9 (or 9).

In the case of the 8  ̂ reduction, we assume

p 9 (j) 9 (j)
~ P(0)

Then
(P3 - P o ) c o s 0  +  3p2p 'sin 0  2

X  0KK7  --------------- IW 5 ---------------- sm *

v=n= V (Z E Z !+ W )!sin9-
18\/3

Demanding the two expressions to agree, it follows that

(5.110)

(5.111)

,3 _3

p'{0 ) =  P 3^ / °  tan 6* 

p(9) =  +  e3Cl sec
1 /3

(5.112)

with Ci being a constant of integration, associated w ith the mass of the flavors, 

as we will show now. sec 9 £ [1, oo), so the brane reaches down to (po +  e3^1) 1/ 3.
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Thus the massless limit is given by C\ —> — oo. In order to compare this em­

bedding with the massless one of the previous paragraph, we have to solve the 

embedding equation for 9 before taking this limit -  as we expect the brane to 

be localized in 9, so the mapping 6  ■—* p is ill defined. The result is

e3Cl
9 =  arccos —5 o (5.113)

P3 - P o

So in the limit C\ —> —00, the brane sits once more at 9 =  j ,  which is also the 

position of the brane for P »  A)-

For the 0$ reduction, one needs to swap 9 for 9. Then,

P 9 (j) ip 9 j> ip 114x
— p{9) o . o . . o

The calibration condition is given by

^  (8p6 ~ 7p3pl -  pg) cos 9 +  6p2( V  -  pl)p' sin 9 

KK?-  36 W V - A )  (5.n 5)

^  V 4P6 ~  6 P3Po +  Po +  36p V )2 „in e
36\/3

leading to a differential equation for p that is considerably harder to solve than

the previous one. One can study it numerically, obtaining results similar to

those of the previous embedding. As to analytic results, setting po —> 0, leads 

to simplifications allowing for

p(9 ) =  C i(sec0) 1/3 (5.116)

which is identical to (5.113) in the same limit.

5.B Kaluza-Klein reduction of supergravity vari­
ations w ith  torsion

We review the dimensional reduction of the SUSY variations -  w ith an additional 

torsion term -  from eleven to ten-dimensional supergravity. Conceptually we 

follow [58], our conventions are slightly different though. We assume a space­

tim e with topology A^io x S 1 and label the eleventh coordinate as z. Naturally 

all fields will be independent of z. Further assuming the eleven-dimensional 

background to be purely gravitational, we only need to consider the variation 

of the gravitino,

Sei’M =  +  -WMABFABe +  (5.117)
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which we have modified by the presence of the torsion term f . As in section 

5.1.1 we take the vielbein to be in Scherk-Schwarz gauge (5.21).

We shall perform the reduction of (5.117) step by step and our first aim shall 

be the reduction of the spin connection

&ABC =  ^  (& C A B  ~  &BAC ~  & A B c )  (5 .118)

with the objects of anholomorphicity defined as

&ABC =  ( d M e% -  d N e & ) f,K A E % E g  (5 .119)

Then
4 <J> I<J>6 3 6 3 2<T)

Wzbc =  + - T - (d A ) bc UJabc =  (r)abdc $  -  r)acd b$ )  +  ^  uabc

U  0  (5-120)
e 3  /J - 2  ^

^ a b z  —  2  ( d - 4 ) a 6  ^ z a z  —  3 ^ 3 a

Note that we use d i n s t e a d  of as we are anticipating the inclusion of 

sources such that F  is no longer exact.

Turning to the gravitino, one could make an ansatz

=  (5.121)

and

e =  (5 .122)

with l ,m ,n  € C. Yet, as we will see, we will need to consider linear combinations

such as %  =  em*Vv +  e^T^X  +

We begin with the covariant derivative of the SUSY spinor, looking first at 

the vector components:

jWabc +  -  rjacdb$) r bcee - l*D^i =  { I d ^ e  +  dMe) +  e j

-  le*eJdA,triTu £ + Q e ^ d d t c r *0 + ie*A(A ® r6r 11)  € 

+  \ r ^ t  +  l r „ i,zr iT 1Ie
(5.123)

The scalar component satisfies

p2 & - I - !
e - l* D ze =  —  +  - f zbzTi Tn t

8 3 4 2
(5.124)
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Equations (5.123) and (5.124) hold in string frame. To convert to Einstein 

frame we need to recall that the gamma matrices are defined in tangent space, 

from which it follows that only the curved space gamma matrices are affected 

by Weyl transformations. For a generic Weyl transformation, we have

A*

Eft

^ abc 1—► +  e-**6(riai>dc* -- Vacdb® )

e ~ 5 i E » ^ abc 1—»e - 5*Wabc ~ 5 e - m (V abdc$  - ~ Vacdb® )

e~ s* d a dAai...ap 1—»e - pS*d A01...0p (5.

pa
Vab 1—>Vab

da

Tfj.bc 1 * 7/i.&c 

So that with (e5 )“ =  e 4$ (eE)“ , 5 =

^Vabc +  J^{V abdc® -  Vacdb$ ) r 6ce=  ( I d ^ e  +  0 „e) +  e j  

-  i e t * e 2 d A o6r ‘r u e +  ( i ^ A ^ d A t ^  +  i e i * A , A * r * r 11)  e 

+  ^ W ‘c< +  5 V « r ‘ r 11e

e~ l* D z e =  S l l d A ^ e  +  £ i ^ 3 l, $ r lT 11e +  +  i f * tor * r n e

(5.126)

One needs to compare (5.123) and (5.124) or (5.126) repectively to the SUSY  

variations of the ansatz (5.121)

Dfji =  Si p̂v =  em4> (m5e$Vv +  =  em*
(5.127)

D ze =  5zi>z =  en* (nde-$A +  £gA) =  en* 6 i A

The last equalities follow from the fact that we assume the spinor fields to vanish. 

However the resulting variations will explicitly depend on the gauge-potential 

A. We therefore replace the original ansatz (5.121) with

Vv = Vv “  x 2e^ rlabr br 11'ipz  -  x z A l l \j)z  

A =  Xi\j)z (5.128)

e =  e e

which amounts to a field redefinition in ten dimensions. If one was to work 

properly, one had to peform the dimensional reduction of the action as well in 

order to make sure that the fermion terms have the proper normalizations. The
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SUSY variations of (5.128) are

Se^n =  St\/v -  x 2e“r]abr br 115e'ii>z -  x^A^S^z

=  e - ' ^ t  -  x 2 e“rlabr br n e - l* D ze -  x3 A>le - l* D zi  (5.129) 

Se A =  x\e~l®Dze

Note that the variations of the bosonic fields all vanish, as we have set the 

fermions explicitly to zero. Our aim is to compare (5.129) with the IIA Einstein 

frame SUSY variations as taken from [96]

a  =  l - L e J * < u WMr « « e

& %  =  D „ £ +  ( r y * «  -  1 4 S ?  r « )  r u t

Before evaluating (5.129), we calculate8

x 2e lr ia b T br 11e - l* D z i

= ^ l e ^ e l VabdAcd(rbcd + 2rlbcrd)rue

-  x2ie^ *cjao$c -  x 2^ e * * e l( r iabdc$  -  r]acdb^ ) T bce

~ \ x2e%r\abTZazt ~ ^x2elT]abt zczr bce + jX 2e(JAfZcd(Vab^bcd + 2<5®rd)rne
(5.131)

8 The following is used here:

r a p b  __ p o b  _|_ >qab 

p a p b p c  _  pafec _|_ ^ a fc p c  _  ^ c a p b  _|_ ^ ^ c p a

(5.130a)

(5.130b)
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Putting things together, we use equations (5.126) and (5.129)

=  (ldn $ e +  <V ) +  e j

-  - e ^ eJdAabr 6r n €

^ a b c  +  ^ ( V a b d c $  ~  V a c d b ® ) Ybce

~  x 2^ 9 e ^ ahd A cd{Ybcd +  2rjbcY d) Y lLe
0
1 3* _  ,  . 1

+  x 2 - e * 9 e°da$e  +  x 2 - e * 9  ed {r)abdc$  -  77acd6$ ) r &ce 

+  Q e ^ ^ d A t c r 6'  +  i e ^ ^ O T ' T 11)  e

i t  \
e ' A a d A ^  +  ±— e lA adb'Srbr n  e

1 <f>e?
-  x 3

+  \ f „ bcTbce +  ^ f tlbzr bTl l e

+  *̂2eJ)joj,T za z( + ^ X 2 e ° r ) abTz c z r bct  -  j X 2 e ‘ Tzcd (riabr bcd + 2<5“rli)r11e
-  a*4 .( + lf>ter*rn)e

^ 1 1
s a  =  x ^ d A h c r ^ e  + ;n^-&#r*r11€ + + - u zr br l l )e

o o 4 2
(5.132)

Investigating this and comparing with (5.130) one sets I =  ttt and

3 \/2  _ 3 $
xi =  —̂j—e *

x 2 =  <5-133)
8

X3 =  1

to obtain the standard type IIA SUSY variations garnished with some additional 

torsion terms:

s . 1 >» =  V  +  <$ +  — ei^eldA^i -  1 4 £ r « )  r u e

+  i w ’*ce + f w 6r 1 ,€

a-  T^e i v edr)abTzaze -  ~ e  **edr)abf zczYDce■>6cv
16 16

+ ^ e - ^ e l f zcd(Vabr bcd + 25»r‘i)r1I€

-  A „ (^ fzbcr bc +  i f i ter i r 11)e

6, A =  ^ - ^ e S * ( d A 6c +  2 e - i * t zbc)T b‘ e +  ^ j - ( d bi  +  l e - ^ T ^ r t ^ e

(5.134)
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Chapter 6

The duality at finite 
tem perature

In the final chapter of this thesis, we shall now turn to the study of the quark- 

gluon plasma (QGP) as produced in relativistic heavy ion collisions [97, 98, 99, 

100]. The QGP is also relevant to early universe cosmology. Among the items 

that have been studied using a gravity dual are the plasma’s shear viscosity [47], 

photoproduction [101], jet-quenching [102], and drag force [103].1

A large portion of the research conducted in this area centers on N  =  4 super 

Yang-Mills and A dS/C FT  in its best understood form, D3-branes in type IIB 

theory. Apart from the fact that this is the most tractable of gravity duals, one 

reason for choosing M  =  4 is that albeit having properties very different from 

those of QCD at T  =  0, the two theories start to appear more and more similiar 

as soon as there is finite temperature. Despite these successes however a com­

plete study of QGP physics based on string theory demands for an investigation 

of the T  ^  0 behavior of other gravity duals showing a stronger resemblance 

to QCD even at zero temperature. Conversely (qualitative) comparison with 

experimental data is also an excelent test for new proposed dualities. Some 

work in this direction was undertaken in [107, 108, 109, 110, 111]

In this chapter, which is based on [89], we will investigate the possibility  

of constructing a supergravity background dual to an M  =  1 QGP based on 

D6-branes wrapping an S 3 in the deformed conifold. In other words, we will be 

trying to generalize the the backgrounds studied in chapter 5 to describe gauge

1A review on the uses of gauge/string duality and QGP physics is [104]. The general
properties of the plasma in general and RHIC physics are summarized in [105] and [106].

116



theories at finite temperature, but in the absence of fundamental matter.

If one wants to use this gravity dual to study the QGP, one needs to add a 

black hole to the supergravity background. As the theory is purely gravitational 

when lifting to eleven dimensions, the equations of motion take the simplest form 

possible here,

R^v =  0, (6.1)

making this the best place to perform the search for a black hole solution. As 

we find in section 6.3, if one wants to keep the ansatz for the new metric as 

simple as possible by making the substitutions

dt 2 -> f(p )d t 2 dp2 -> (6.2)

there is a non-trivial solution if and only if one makes the geometry of the 

(?2 manifold singular. The unique solution is then /  =  1 — p \ / p b, where the 

singularity at p — 0 is hidden by the horizon ph >  0. When studying the 

thermodynamics of this new solution, we will see that the black hole behaves 

in many ways as the ordinary Schwarzschild solutions in four and eleven di­

mensions. I.e. the temperature is proportional to the inverse of the horizon, 

T  =  Â ph, and the specific heat is negative. As the horizon of the black hole 

covers the six-dimensional base of the internal C?2 cone, the entropy behaves 

as S  oc p®, leading to the surprising relation S  oc T ~ 6. While our subsequent 

calculation of the quark-antiquark potential and the shear-viscosity show the 

expected results, that is confinement and a shear-viscosity to entropy ratio of 

77/ s  =  1/47T, the discussion of parton energy loss leads to a puzzling pathological 

property of the solution. The energy loss as calculated from the jet-quenching 

parameter and the damping coefficient of the drag force are both vanishing.

Sections 6.1 and 6.2 are dedicated to an extensive review of the string theory 

and its gauge dual at zero temperature. Here our discussion starts with eleven­

dimensional supergravity and then proceeds via type IIA to the four-dimensional 

super Yang-Mills theory. As we will make extensive use of the machinery of W il­

son lines, we shall give a brief introduction to this subject before calculating the 

quark-antiquark potential, paying special attention to the boundary conditions 

imposed on worldsheets used to calculate Wilson lines. After these preliminaries 

we finally turn to the subject of finite temperature. The discussion mimicks that
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of the T =  0 case in that we will start from the eleven-dimensional gravity dual 

(section 6.3) and then progress via type IIA to the gauge-theory (section 6.4). 

Here we study the quark-antiquark potential, the shear-viscosity, and parton en­

ergy loss as it is parametrized by the jet-quenching factor q and the drag-force. 

There is an appendix with basics on the bundle structure of S 3 6. A.

6.1 The supergravity dual at zero tem perature

Starting point is again the Bryant-Salamon metric (5.20) that we encountered 

already in chapter 5. In this chapter we will of course be working towards the 

possibility of a dual to pure super Yang-Mills at finite temperature without 

fundamental matter rather than the flavoring problem. Recall that depending 

on the energy scale one needs to work either in eleven-dimensional M- or ten­

dimensional type IIA string theory.

6.1.1 M -theory on the G2 holonom y m anifold

We change conventions and notations slightly compared to chapter 5 and write 

the metric as

ds" = ^ + + ?  0  ~ 7 ) (”■ ■ H  ■ (6-3)
with Maurer-Cartan forms

w 1 =  cos (f>d9 +  sin 9 sin fidip

w 2 =  sin (j)d9 — sin 9 cos (f)dip (6.4)

w 3 =  d<fi +  cos9di(j,

and

9 e  [0,7r] (f> e  [0 ,27r] €  [0,47t] . (6.5)

We have also relabeled the resolution parameter po =  a.

Let us recall a few further facts from our discussion in section 5.1.1. The 

gauge-theory we are interested in is living on the world volume of N  D6-branes 

wrapping a calibrated three-cycle in the deformed conifold. The UV completion 

of this theory is given by M-theory on (6.3). Here there are two S'3, parametrized 

by w, w. In opposite to S'3, S 3 has a finite radius a as we take p —► a, resolving 

the singularity at p =  a. One could also have picked the other sphere, S 3, to
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do this, and the flop transition of [45] provides the duality between these two 

cases.

6.1.2 W rapped D6-branes in type IIA string theory

There are three U{ 1) isometries along which we can reduce to type IIA when 

flowing towards the IR. This leads to an effective description in terms of type 

IIA string theory on a space with topology

R 1’3 x R + x S 3 x S2. (6.6)

If we choose an S 1 in the singular three-sphere, S 1 C S'3, the resulting geome­

try is a singular S 2 and a non-singular S3 known as the deformed conifold. See 

fig. 6.1(a). The converse case, the resolved conifold, is depicted in fig. 6.1(c). See 

[112] for a discussion of the conifold. As depicted in fig. 6.1(b), there is a singu­

larity at which both spheres have a vanishing radius. From a mathematician’s 

point of view one deals with this singularity by giving one of the spheres a finite 

radius, leading to the deformed and the resolved conifold. Physics allows for the 

following interpretation of this2 [45, 113, 85]: If one considers the singularity as 

the a —► 0 limit of the deformed conifold, there is a logarithmic singularity in 

the metric. This may be interpreted as the result of having integrated out a field 

whose mass is dependent on a, m = m(a). When approaching the singularity,

m(a) —► 0 as a - > 0 .  (6-7)

Therefore the physical interpretation of the singularity lies in the fact that one 

has attempted to integrate out a massless field. As we will see in section 6.3.1 

however, the finite temperature theory makes use of another method of dealing 

with the singularity. The theory will be defined on the singular conifold with 

the singularity hidden behind a black hole’s event horizon.

The string theory equivalent of the flop transition is the conifold transition [44]. 

It relates the two geometries via a large N  duality. For sm a ll’t Hooft coupling

A = AT̂ ym = N g s <C 1, (6*8)

2The interpretation of the singularity in terms of having integrated out a massless field
appears in [113] for the generic case of string theory on a deformed conifold. We did not 
explicitly verify that it holds in our case. See also [85].
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Figure 6.1: The deformed 6.1(a), singular 6.1(b), and resolved 6.1(c) conifold. In 
the type IIA theory discussed in section 6.1.2, there are N  D6-branes wrapping 
the non-vanishing S 3 in 6.1(a), while in in the dual geometry 6.1(c) the branes 
have disappeared and been replaced by a two-form flux F2 .

one considers a stack of N  D6-branes wrapping the non-singular S 3 in the 

deformed conifold. Taking the ’t Hooft coupling large on the other hand one 

cannot neglect the branes’ backreaction and does therefore pass to the resolved 

conifold. Here the branes have disappeared and been replaced by N  units of 

two-form flux through the now blown up S 2.

Being interested in a strongly coupled quark-gluon plasma, we choose to  

reduce along the non-singular S 1 C S 3. Before doing so, we have to identify the 

S'1 fibre along which we want to reduce. A generic three-sphere may be written

depending on the coordinate patch. One sees immediately that the fibre coor-

as

The coordinates zq,i are related to those of (6.4) by

(6.155) tells us, that the projection S 3  ^  S 2 acts on this as

(6 .10)

(6.9)

9
—ic o t -e * 2  ̂ 9 ^ 0

9
2t a n - e - *2^

(6 .11)

dinate is if), as it does not survive the projection. 

Before actually reducing we mod out by



This means a change in the periodicity of ip,

e  [ 0 ,27r] —► e  [ 0 ,2 7 r /iV ],

. dtf (6-13)
d ^ - .

As we will see soon, TV gives the F2 flux through S 2 and therefore the number 

of D6-branes present in the dual type IIA geometry.

In order to perform the reduction, we could simply expand the metric. How­

ever, there is a smarter way to go about this. Defining

n° =  w a =  ̂ sin 6  sin 0, — sin 9 cos 0, cos 0  ̂ , (6-14)

we may rewrite the metric (6.3) in terms of a new set of differential forms w a

independent of dtp,

wa =  wa +  n° ̂ . (6.15)

W ith (3 =  1 — a3  /  p3 we obtain

J  2 J 2 d p 2 p 2 (3 +  /3) *2 P2 a  2 P2 a 
d^M =  d x1)3 +  - j f  + ----- 3  ̂ w +  ~ ~Q^W'W

+ eS 0 -  + ( 1 m p * + I s k ^  -  9PWal3n-w)  ^
'------------  ' V---------------------------------------------------------v-----------------------------------------------------1/

(6.16)

We included several factors of a to make sure that everything has the correct

dimensions. Dimensional reduction along an S'1 yields apart from the new metric

a one-form potential and the dilaton.

4* =  g j ( 3_ + l )  (6 17)
36TV2a2 v>' <)

A ( 1) =  N a (w .n  -  (6.18)

, 2 |<£> ( ,  2 dp2 p2 ( 3 +  (3)^2 P2 ad&IIA — e ^dx13 -I- - J -  -|-------—-----W +
(6.19)

We will also need the ten-dimensional Ricci scalar. In the string frame it reads 

R  =  -9aTV83- 2^ . - 240^ 6 +  63^ 3 - 7a9. (6.20)
2V 4 " ^ 6 ( V - a 3)2 
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R  is not singular at p =  a. As a matter of fact,

=  - 1 0 8 V 3 ^  (6.21)

which gives us an explicit expression for the conifold singularity in the limit

CL —► 0.

We claimed that in the above geometry there are N  units of Ramond- 

Ramond flux through the two-sphere. To check this we simply calculate the 

F(2 ) flux through the S 2 parametrized by 9 and </>.

/  *F(8) =  /  * * F (2) =  — /  dA(i) =  4nNa  (6.22)
Js2 Js2 Js2

Now the conifold transition relates the above to a stack of N  D6-branes

on the deformed conifold. One may obtain this dual geometry from eleven­

dimensional supergravity by reducing along the singular three-sphere. Indica­

tions towards the presence of the branes are the resulting one-form potential, 

which couples magnetically to the branes, and the behavior of the Ricci scalar 

near the singularity. See [31, 51].

6.2 The gauge theory at zero tem perature

We shall now turn to the discussion of the dual gauge theory at T  =  0. W ith  

the exception of the Yang-Mills coupling in section 6.2.1 and the gg-potential in 

section 6.2.5 this section contains mostly review material. The relation between 

the supergravity backgrounds, the gauge theory, and gauged supergravity was 

exhibited in [31]. For a review on this issue see [114].

6.2.1 The coupling constant o f the gauge theory

In the following we elaborate on the developments in [115, 77]. To find the 

super Yang-Mills theory’s coupling constant <7ym? we plftce a D6-probe brane at 

constant p, extending along and wrapping the resolved conifold’s S'3. Recall 

that we may think of our original stack of D6-branes as wrapping S 3  in the 

deformed conifold. We also fix the brane’s position in the S 2  to be 9 =  4> — 0. 

The general idea is to identify the gauge field living on the probe brane with that 

of the dual super Yang-Mills theory. Thus we may extract information about 

the dual theory from the probe’s DBI action. Using world-volume coordinates
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£a and labeling the brane-tension Tq, we expand the DBI action in powers of a ' 

S d b i  =  -T q  f  d7Z e ~ * y /-  det X*[g] +  2tta'F  +  Tq f  Y , C (n)Ae2nF
(6.23)

=  -T q  J  d7£ e - * ^ - d e t X * \ g ]  ( l  +  {a'-nf F 2)  +  O {oc'f +  . . .

X*  denotes the pullback onto the brane. For the embedding we have chosen, 

the induced metric X*[g\ is

dS§ =  e**  (d x? ,3 +  £/3=»2 -  e * * j W  ( ( » 3) 2)  (6.24)

Now notice that after Kaluza-Klein decomposition the massless modes of FM„ 

are functions of the x M alone, while all the other terms in (6.23) do not depend 

on the flat part of the world-volume. Therefore that part of (6.23) containing 

F 2 may be written as

— ^Tq^cx! ) 2 J  d9d(pdipe~*y/— det J  d^xF2. (6.25)

Comparing the Yang-Mills action

9y u = ~ 4 z J A i a + ^ J A F p ' ( 6 -2 6 )

and using the explicit expression for the D-brane tension

T p  =  „  J  , « ± i  {6 .27 )
(27t) a  2^

we obtain

“  ((4p3 — o3)(p3 — a3)3) 1/4"

Note that the coupling is dimensionless, as it should be the case for a four­

dimensional Yang-Mills theory. We have plotted gYu in figure 6.2. The A dS/C FT  

dictionary tells us that we may relate the radial coordinate p to  the energy scale. 

To obtain a precise relation one may consider chiral symmetry breaking and the 

vev of the gluino condensate (AA) [115]. Yet for our purposes it is sufficient to 

think of p —» oo as the UV regime of the gauge theory and p —> a as the IR.3 

Then (6.28) clearly shows asymptotic freedom.

3As we mentioned earlier, the UV completion is given by NUtheory, while in the infrared 
the relevant degrees of freedom are best described by the gauge theory. See section 6.2.3 and
[4]-
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6.2.2 Field C ontent

We shall take a look at the massless excitations. Prior to wrapping, the theory 

living on the world volume of N  D6-branes is a super Yang-Mills theory with 16 

supercharges, as the branes are half-BPS. Upon wrapping, the global symmetries 

break as

50(1 ,6 ) x SOR(3) -» 50(1 ,3) x 50(3) x 50*(3). (6.29)

From dimensional analysis it follows that the Kaluza-Klein modes become rele­

vant at energy scales of order

/3/2 /3/2
Akk ~  — ------   =  —— (6.30)

KK Vol 5 3 2tr2a3 V '

Ignoring all massive modes, the bosonic sector includes now the gauge potential 

and three massless scalars transforming as a 3 under the R-symmetry. The 

representation for the fermions changes under (6.29) from (8,2) to  (4 ,2,2) .

This is not the complete picture however. Consider the behavior of the 

gravitino under SUSY transformations,

=  V /*€ =  e’ (6 -31)

with u  being the spin connection. For the theory to be supersymmetric we 

need a covariantly constant spinor satisfying V Me =  0. As the spin structure 

on 5 3 does not allow for such a spinor to exist, supersymmetry is completely 

broken upon wrapping. Raising the status of the R-symmetry to that of a gauge 

symmetry, we may modify (6.31) to

v„€ =  (d„  +  €. (6.32)

Fixing =  2 a r e s o lv e s  the issue. This topological tw ist was first introduced

by W itten in [116]. W hile it changes the behavior of the 6-1-1 dimensional theory 

significantly, the consequence for the 3-1-1 dimensional one we are interested 

in consists in keeping only those fields that transform as a singlet under the 

diagonal

50(3) x S O R(3) 5 0 d (3). (6.33)

The gauge potential is not affected by the whole construction, whereas all of 

the scalars disappear from the spectrum. The representation of the fermions
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decomposes as

(4 ,2 ,2 )  —► (4 ,1 ) ® (4 ,3 ) , (6.34)

because 2 x 2  =  1 © 3. So recalling that the branes are half-BPS we are left with 

 ̂ x |  x 32 =  4 supercharges, confirming the previous calculation based on the 

holonomy of the eleven-dimensional background. Thus the massless spectrum  

is given by pure N  — 1 super Yang-Mills.

6.2.3 The gauge/gravity  correspondence

Knowing the energy scale of the KK-modes (6.30) and the behavior of the Ricci 

scalar (6.20), the Yang-Mills coupling constant (6.28), and the dilaton (6.17) 

enables us to address the issue at which energy scales the system is best described 

by super Yang-Mills, type IIA, or M-theory. As in the previous section we do 

not know the precise relation between the radial coordinate p and the energy 

scale p  in question, and are therefore only able to make qualitative statements 

identifying the large-p regime as the UV and vice versa. Figure 6.2 shows the 

behavior of all three relevant quantities.

We see that in the IR the relevant degrees of freedom are best described in 

type IIA theory. While it might seem that the UV completion is given by both 

M-theory and super Yang-Mills one should not forget that figure 6.2 shows the 

four-dimensional gauge coupling. At sufficiently high energies the M  =  1 theory 

will begin to fully explore the compact dimensions; the gauge theory becomes 

6 +  1 dimensional. Purely gravitational M-theory gives the only UV-completion.

If we want to use this overall setup to study zero-temperature, non-per- 

turbative gauge dynamics, it follows from (6.30) that we want the resolution 

parameter a to satisfy a <  Va'.  However we also need

a'R  < 1  A =  g$u N  >  1 e* <  1. (6.35)

For p —> a, these quantities behave as

,  W3a3/ V 3/ 2
A ~ —

(p3 -  a3)3/2
^  N a'  

- a ' R  < V3  108 —n— 
a

(6.36)

y /2 N 3/2 V2 33/ 4 8a
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Figure 6.2: Ricci scalar, ’t Hooft coupling, and dilaton in terms of p. One 
sees clearly that the IR phsics is captured by type IIA string theory while the 
UV completion is given by M-theory on the G 2 holonomy manifold. Note that 
despite appearances R  is not singular at p =  a. T h e ’t Hooft coupling however 
is.

Comparing this with figure 6.2 we conclude that there is a limit for TV, a, a' in 

which the supergravity approximation captures non-perturbative gauge dynam­

ics. However the massive Kaluza-Klein modes do not fully decouple and thus 

spoil the behavior of pure M  =  1 super Yang-Mills. If one were able to perform 

computations beyond the supergravity limit one could easily avoid this issue.

6.2.4 W ilson loops and m inim al surfaces

The AdS/CFT-correspondence is a powerful tool for the study of W ilson lines 

[117], [118], and [119]. In the next section (6.2.5) we shall use it to  study the 

gg-potential at T  =  0. Further applications will be the finite-temperature qq- 

potential and the jet-quenching factor in sections 6.4.2 and 6.4.4 respectively, 

while the the method used to compute the drag-force in section 6.4.4 takes a 

similiar approach.

For a generic gauge theory a Wilson loop is defined as4

W{C) = V e l fcdA. (6.38)

V  denotes path ordering and C the contour of integration.

4The expression presented here is not entirely generic. E.g. for d, =  4,W =  4 super Yang 
Mills whose gravity dual is defined on AdSs x S'5, one needs also to consider scalar fields <J>/ . 
The index I  may be considered as a representation index of 5 0 (6 ) . The Wilson line is given 
by

W A (C) =  7?e* /c da(I '*A»*+li ln /* / ). (6.37)

However, as (6.38) is entirely sufficient in the context presented here, we shall not elaborate 
on the issue.
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To see how to calculate the expectation value (W(C)) for a generic contour 

C using the AdS/CFT-correspondence, consider the following. If we do not 

close the loop C, but instead consider a line, (6.38) is a non-local operator 

transforming at it’s endpoints under the fundamental- and anti-fundamental 

representation respectively. The gauge theory and its gravity dual as discussed 

above are free of any fundamental degrees of freedom. In order to introduce 

these we start with a stack of iV +  1 D6-branes and place one of them at a large 

yet finite radius p \ .  The gauge symmetry is broken as

SU {N  +  1) -*  SU{N) x [7(1). (6.39)

We have Higgsed the theory. From the point of view of the gauge theory we 

therefore expect the appearance of massive W-bosons, which we will treat as 

highly massive probe quarks. In the string theory these bosons are realized by 

strings stretching between the stack of branes and the separated one transform­

ing in the (anti-)fundamental representation of the two new gauge groups. The 

new U( 1) gauge field may be ignored as it’s living on the brane which is at a 

large separation from the stack of D6s.5 When taking the decoupling limit the 

N  branes at p =  0 axe replaced by the background geometry while the single 

brane at p \  may be treated as a probe. As the branes are replaced by their 

geometry, the correct way for the W-bosons to interact with the gauge theory is 

not by ending on the branes but by interacting with the background. Therefore 

one evaluates (W(C)) by embedding the contour C into the probe brane and 

using it as a boundary condition for the worldsheets of open-strings exploring 

the bulk. See figure 6.3(a). The AdS/CFT-dictionary tells us then to calcu­

late the expectation value of the Wilson loop for the adjoint representation by 

minimizing the Nambu-Goto action for the corresponding world-sheets,

{W A{C)) =  lime~SNC. (6.40)

S n g  is the Nambu-Goto action

Sng =  J  drdcry / — det daX^dpX^

=  — f  d T d a \ / - X 2 X '2 +  (X .X ' ) 2 
27ra' J v

5An alternative approach would be to take the flavor brane to wrap the S 2 and to extend 
along p from p \  to oo. In this case one argues that the gauge-theory living on the probe is 
non-dynamical as seen from the four-dimensional theory as the probe wraps a non-compact 
dimension.
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Figure 6.3: A Wilson 6.3(a) loop in the gauge theory is evaluated by using the 
loop as the boundary condition of a worldsheet ending on a probe brane. The 
worldsheet reaches a minimum at p — pc >  0. The action is renormalised by 
that of strings stretching straight from the loop to the bottom  of the space, 
sometimes given by the horizon of a black hole 6.3(b). As was argued in [120], 
one also needs to consider strings stretching from the probe away from the 
horizon.

W hile one usually takes the limit p \  —► oo, one may also keep p \  finite and 

consider it as the energy the gauge theory is defined at. Note that the pre­

scription given in (6.40) requires some sort of renormalization, usually given by 

the mass of the W  bosons. This again is calculated from the action of a string 

stretching directly from the contour on the D7-brane to the bottom  of the space 

as depicted in fig. 6.3(b). Note that this configuration is not physical, as it is 

not possible to define suitable boundary conditions at p — a. This will change 

in section 6.4.2, where we shall be considering the finite-temperature theory. Fi­

nite temperature is achieved by the presence of a black hole who’s horizon gives 

suitable boundary conditions for the worldsheet in fig. 6.3(b) to  be considered 

physical.

B o u n d a ry  c o n d itio n s  There is a crucial aspect of (6.40) that appears to  

be frequently overlooked.6 If we force the string to end on the contour C, the 

resulting boundary conditions in at least some of the directions tangential to 

the brane are not von Neumann, but Dirichlet. One needs to ask for the object 

that restricts the string to lie on the contour.

As it is the easiest to understand this in terms of specific examples we shall 

delay explicit calculations to sections 6.2.5, 6.4.2, and 6.4.4. The technical 

aspects for all of these will be the same however, which is why we shall discuss 

them now.

Consider the Nambu-Goto action (6.41). It has a symmetry under transla­

6 See however [120],
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tions

X *  -> X *  +  y^1 =  const., (6.42)

which we know from ordinary classical mechanics to be related to energy- 

momentum conservation in space-time. Specialising to infinitesimal transfor­

mations, we can calculate the conserved current with the Noether prescription. 

As an intermediate result we obtain

{- X v X a + X ' uX . X '  a  =  T
y / - x * x * + ( x :x ' )*  (Q 4 3 ')

x 2 x ,u+ x ,'x.x' a  _  a  (0.4,5;
y / - X 2X ' 2 + ( X . X ' ) 2

gives the energy (/2 =  0) or p, =  ra-momentum density on the string, j?

on the other hand denotes the flux of energy or momentum along the string.

Thus we can calculate the total energy and momentum to be
E

Pm

~  j  f o j l  (6-44)

=  J  (6-45)

The fluxes are related to an open string’s boundary conditions. A string satis­

fying von Neumann boundary conditions does not allow for momentum to flow 

off the string, requiring

jfi I boundary =  ^  (6.46)

The solution of the issue of defining Dirichlet boundary conditions in direc­

tions tangent to a brane will be turning on C/(l) gauge fields on the brane whose 

interaction with the string endpoints will exactly cancel the energy-momentum  

flow defined by these equations. The authors of [120] pointed out that as long 

as one keeps the position of the probe brane p \  finite, it is more sensible to 

think of a constant force of the 17(1) field on the string’s endpoints rather than 

of a constant separation L separating them.

6.2.5 The quark-antiquark potential & confinement

Our first application of the concepts introduced in section 6.2.4 shall be the qq- 

potential in the zero-temperature gauge theory. We follow [121]. Conceptually 

one studies this by placing two infinitively heavy and therefore static probe- 

quarks at a fixed separation L into the gauge theory. For such a configuration,
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t
Figure 6.4: The rectangular Wilson loop used in section 6.2.5 as seen in the 
(£, x)-plane.

the action is independent of the time-like extension of the loop and therefore 

behaves as S  =  ET, with E  the energy of the system.

Now if the gauge theory is confining, the energy is proportional to L  from 

which it follows that

E {L)<xL  => S tx L T .  (6.47)

LT  is the area surrounded by such a Wilson loop, so that for a confining theory 

we expect the action for the quark loop to satisfy an area law.7 In the follow­

ing we shall study the qp-potential of our gauge dual and whether it exhibits 

confinement.

T h e  p rofile  In this section we will use the static Wilson loop shown in 

fig. 6.4. Fixing x =  a;2, we may parametrize the loop and the corresponding 

worldsheet as

x° =  t  x =  a p =  p(cr) (6.48)

where r €  [0,T] and a  €  [— ̂ , ^ ]. Also we will need to impose the boundary 

conditions

p {a =  ± L / 2) =  pA. (6.49)

Note that the parametrization (6.48) does not define a complete W ilson loop 

but two W ilson lines separated by a distance L. Assuming T  L however we 

may neglect the contribution from the pieces needed to close of the loop. Upon  

plugging (6.48) into the Nambu-Goto action (6.41) one notices immediately that

tech n ica lly  (6.47) shows only that confinement leads to an area law. We axe reversing 
the argument simply claiming that the converse is also true, i.e. that confinement occurs iff 
the action satisfies an area law. The relation between confinement and an area law for the 
Wilson loop was first discussed in [122],
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the integration over r  is trivial giving an overall factor of T,

Sng =  2—7 [  dcr yj9tt (9xx  +  P ,29 p p ) • (6.50)
T  ' --------------------------v --------------------------'

L

The idea is to  treat this formally as a system from classical mechanics with 

Lagrangian C{a). W ith a  playing the role one would usually associate with 

time t and identifying p(cr) as the system ’s time coordinate, one calculates the 

canonical momentum n and performs a Legendre transformation

dC 
n ~  dp'

„ (6.51)
n j  I r  9xx9 ttrt =  p 7r — L =  ■■ t - -  -■ - -

V 9tt {9xx p' 9pp)

Prom ^  =  0 it follows with Hamilton’s equations that ^7 = 0 . Hence there is 

a conserved quantity

H =  k € R. (6.52)

It might seem surprising that we emphasize that k is real. However we will

encounter examples where this is not the case. As

-  9 tt9 xx =  e  [(127V2) - 1 , 0 0 )  [0,0 0 ) , (6.53)

there exists pc >  a s.t. k2 — —9 tt9 xx\p=Pc- One sees immediately that p'\ — 0 ,

which means that pc denotes the lowest point reached by the string. « =  0 holds 

if and only if the string reaches the bottom of the space.

Solving (6.54) for p' yields a first order equation for the profile

,2 = gi * f  -9n9x, ^ \  (6 54)
9 pd \  K /

Note that gtt <  0. We assume the system to be symmetric about a — 0, which 

leads to the constraint p'(0) =  0. A look at the profile tells us that this is 

satisfied for

p =  pc >  a. (6.55)

See fig. 6.3(a). Note that p' is real as long as p >  pc.

B o u n d a r y  co n d itio n s  We briefly turn to the issue of the string’s bound­

ary conditions at the probe brane. Following the discussion in section 6.2.4 we
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are interested in the momentum flux at the endpoints of the string. Therefore 

we evaluate as in (6.43) for the metric and profile in question and find

The crucial observation is j% oc k . That is as long as the string does not reach 

the bottom of the space (i.e. pc =  a), there is momentum in the ar-direction 

flowing through the string, violating von Neumann boundary conditions (6.46). 

We may easily fix this by turning on a U(l)  gauge-field in the world-volume 

of the brane. Note that k E R tells us that one may choose the direction of 

momentum flow. This makes sense, as, the problem is symmetric and there is 

no reason a priori why the momentum should flow in a specified direction. We 

may interpret this as our freedom to choose which of the two heavy W -bosons 

represents the quark and which represents the anti-quark. In other words while 

we set of with a mathematical model which was symmetric under a q <-> q 

exchange, the appearance of the U( 1) gauge field breaks this discrete symmetry.

jp  is also non-vanishing. Yet as p denotes a direction transverse to the probe, 

this is in accordance with the Dirichlet boundary conditions in that direction.

S ep a ra tio n  o f  th e  quarks pc is not a parameter but depends on the 

separation of the quarks. Regard

integrand’s singularity for p —> pc, the integral is finite for fixed values of pc and 

Pa - For large p however the integrand behaves roughly as

is in contrast to asymptotically AdSs backgrounds, and might be related to the 

lack of a conformal boundary.

R e n o r m a liz a tio n  As outlined in section 6.2.4 one renormalizes the action 

by evaluating the Nambu-Goto action for the worldsheet

(6.56)

(6.57)

One obtains a relation L(pc) which may be inverted to eliminate pc. Albeit the

(6.58)

such that one does not obtain a finite value for L when taking pa oo. This

T  =  X.0 a =  p
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Figure 6.5: Separation (L) and potential energy (E ) of the qq system for a =  1, 
p \  — 10, and N  =  5. pc denotes the lowest point in the bulk reached by the 
string. The E (L ) plot shows that for most values of L there are 2 energy levels 
corresponding to a large and a small value of pc. Minimizing its energy the 
system will choose the lower branch corresonding to larger values of pc.

As with (6.48) this does not define a complete loop, but two separate lines. 

Again we may ignore this issue as long as we assume that T  L. Physically 

the overall procedure corresonds to subtracting the energy of two independent, 

static quarks. Proceeding as before, the counterterm is given by

j 1 tpa

Sn = Ja
(6.60)

One should emphasize again that, while being an admissible solution of the 

equations of motion, the solution used for renormalization here is not physical 

as there are no suitable boundary conditions to be defined at p =  a. One should 

simply think of this as a method to calculate the mass of the W-bosons.

E v a lu a tio n  Using T E  =  ^ng — Sr and (6.41), (6.57), and (6.60) one 

obtains for the energy

E { p a  P a ) =  y / ~ 9 t t ( P c ) 9 x x ( P c ) E ( p a  p a )

/pa n: , _____________________________  _________ .

y j -  y y / ~ 9 t t 9 x x  4" 9t t { Pc )9 xx{P c)  ~  V ~ 9 t t 9 x x j  d p  g ^

rPc
2 /  y /  g tt9xxdp-  

Ja
Numerical results are shown in figure 6.5 and show clearly that

E(L)  oc L, (6.62)

for L ^  13. In order to properly exhibit confinement we would need to discuss 

the potential for L >  13 in order to show that the proportionality holds for all 

values of L.
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As a matter of fact the behavior of L around L ~  13 stems from the fact that 

we did not take the pa —> oo limit. That is, the separation between the branes 

is still finite and so is the mass of the probe quarks. Indeed, when running the 

same numerics for larger values of pa, one ends up with similiar plots yet valid 

for larger values of L, which we take as a indication that the proportionality 

E  oc L holds for any L. In order to properly establish confinement however, 

we shall use a different method. According to a theorem8 by Kinar, Schreiber, 

and Sonnenschein [121], a sufficient condition for confinement is given by the 

following: Consider the function

f 2(p) =  -googXx\p - ( 6 . 6 3 )

Then the dual gauge theory is confining if /  has a minimum at some pmjn and 

/ ( P m i n )  7̂  0 .  The metric ( 6 . 1 9 )  satisfies this and we conclude the discussion of 

the zero temperature theory by noting that the field theory is a confining.

6.3 The supergravity theory at finite tem pera­
ture

Having completed our review of the zero-temperature theory, we shall discuss 

the finite-temperature case. Proceding in the same way as before, we begin with  

eleven-dimensional supergravity.

6.3.1 The eleven-dim ensional black hole

Studying the quark gluon plasma means studying finite temperature physics. 

As for the gauge theory, finite-temperature field theory is -  in the Matsubara 

formalism -  defined on Euclidean space-time compactified to S 1 x R 3. The previ­

ously time-like direction x°E is now periodic with period (3 =  T ~ l . In the super­

gravity dual, we do also need to add an event-horizon to the background, turning 

the previously extremal p-brane solutions into non-extremal black branes [124]. 

One should picture this departure from extremality as adding energy to the 

background while keeping all charges constant. As the extremal solutions sat­

isfy a BPS bound, adding temperature corresponds to using non-BPS branes.

8For a proof of the relevant theorem see [123].
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In order to do so, we modify the eleven-dimensional metric (6.3) to

dsM =  - f ( p ) dt 2 +  d x2 + ------- ^ ^  +  • • • • (6-64)
/(P )  ( l  -

Note that we are using Minkowski-signature here, albeit the previous comments 

about the Matsubara formalism. The reason is that the procedure we use for 

finding the black brane solution does not depend on the signature and that we 

will be mostly using the Minkowski-space solution later on, because Euclidean

time does not allow the study of dynamical quantities. However, in order to

study genuinely themodynamical issues such as temperature, entropy, or specific 

heat, as we will do in section 6.3.2, we need to compactifiy to periodic, Euclidean 

time.

Enforcing the equation of motion R =  0 on the above gives a system of 

differential equations for f ( p ) .  While there will certainly be the trivial solution 

f ( p )  =  1, we are looking for a nontrivial one exhibiting a horizon structure

f ( p h )  =  o.

Calculating the Ricci tensor for the above ansatz one sees quickly that there 

is a non-trivial solution if and only if one takes a - » 0 .  While one might object 

that we are not allowed to take this limit as the zero temperature requires a >  0 

to resolve the conifold singularity, one should not forget that the singularity will 

be hidden by the black hole’s horizon. The unique solution is

f ( p )  =  1- 4 . (6.65)
r

with

p e \ p h , oo).  (6.66)

The new metric is given by

dsM =  ~ f ( p ) d t 2  +  d x2 +  TTT +  7T (^ “2 +  ™a2 “  w awa) . (6.67)
JiP)  9

Most of our discussion will only require knowledge of the precise form of the 

t , x , p  directions. When using Euclidean signature, we shall denote the metric 

by <7m„.

6.3.2 Therm odynam ics

We will now turn to a discussion of some of the thermodynamical properties of 

the solution (6.67).
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T em p era tu re  Consider the (t E, p) plane in the finite-temperature formalism. 

It has topology S 1 x R>0 with p e  [p/^oo) and t E €  [0,/?]. One proceeds by 

demanding that there be no conical singularity at the origin. Mathematically 

this may be expressed by considering the ratio of circumference and radius of a 

small circle around the origin and solving for

„ ! circumference M
2tt =  lim ---------------------. (6.68)

p- P̂h radius

Using the standard expression for arclength, we obtain

rfi _______
circ. =  /  dt Eyffat ~  PpdPy / 9 tt{p) (6-69)

Jo

rad. =  /  dp'y/^p  «  p^/J^>. (6.70)
Jo

Plugging these into (6.68) yields

(Jdpy/gtt=  ft lim
p->Ph

=> T =  lim

ipp 
dp9tt

(6.71)

p~*Ph 47Ty / g t t 9pp 4?rPh

One should pay attention to the slightly unusual dependence of the temperature 

on the position on the horizon. For the AdS5 x S 5  black hole for example, the 

relation is T  oc ph• We will return to this issue in section 6.3.3.

E v a lu a tio n  o f  th e  p a r titio n  fu n ction  To study further thermodynamic

properties of the solution (6.67), we need to evaluate the partition function

Z  — e~SB. As the eleven dimensional theory is purely gravitational, this boils 

down to calculating the action

5  =  - ^ - /  d ? x y / j j R + l -  f  dd~1x K y /h  (6.72)
167T J o7T JQ_\/[

for Euclidean space-time. Where At is a volume of spacetime defined by p <  

Pa - As in the absence of any further fields the equations of motion simplify 

to Rpv =  0, the Einstein-Hilbert term vanishes leaving us w ith the Gibbons- 

Hawking term.

The metric induced on dM. is denoted by h. K  is the extrinsic curvature 

defined by

K ab = daX^dhX^V^.  (6.73)
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The coordinates are that of the eleven-dimensional background, while the xa

parametrize the boundary of the region of integration dA4. Due to our choice 

of volume M. we may pick the xa such that

i i pP <6-74>
n is a unit normal to dM.. We choose n =  y fgppdp. Now (6.73) simplifies 

considerably.

Kab =  danb -  Txabnx - - V pabV g ^  =  ^ V g ^ d pgab (6.75)

Similarly hab =  dax^dbXugpu and thus

fZ P6  V 7  sin 0 sin 0
V h  = ---------- 6 4 8 -----------  ( 6 '7 6 )

Also

K  =  habK ab =  ( / “V' + j )  • (6.77)

Applying this to the action (6.72) one realizes that the integration is trivial as

the radial variable is not integrated over. Then

A

S  =  1  d f l d ^ s i n f l s i n e )  ^  d * ° /p ‘ ( / - ' / '  +  ^ )

f A p ( l 2 p \ - l p l )  T >  0 
\  A(3l2p\ T  =  0

(6.78)

Note that A  =  •

R en o rm a lisa tio n  If we take the cutoff to infinity, p \  —> oo, the result of 

(6.78) is divergent and does need to be renormalized. The easiest way to do so 

is by subtracting the action of some reference space-time. As we are only consid­

ering the Gibbons-Hawking term, the natural candidate is the zero-temperature 

solution as defined on the singular conifold, whose action may be obtained di­

rectly from (6.78) by setting /  —> 1. We call this reference action St =o- We 

could have also calculated this reference action by starting from the non-singular 

zero-temperature metric (6.3), evaluating the on-shell action and taking the  

limit a —> 0 before p \  —> oo.

P=PA
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Again we need to compactify the Euclidean tE direction on an S 1. Yet in 

opposite to the black hole solution (6.67) it is not obvious what the periodicity 

of the circle should be. Therefore consider a particle, whose energy is equal 

to the thermal energy T, in the finite-temperature solution propagating at a 

radius of p \ .  To an observer at spatial infinity, its thermal energy will appear 

redshifted to

EL  =  V - 9 u (Pa )PoPo -  / T.— =  ^ = 7= v  (6-79)\/9tt(PA) v  J\Pa)
In the zero temperature solution on the other hand, gtt =  1, and there is no 

redshift. Comparing energies in the two solutions by means of hypothetical 

observers at p =  oo, the energies correspond as

E j~ °  =  ~ e a — (6.80)
PA VTfoO

which leads us to

Pt =o =  Pt \ 1 -  (6.81)
V Pa

We shall use this result to evaluate and compare (6.78) for the zero- and 

finite-temperature backgrounds with tE periodic and periodicity Pr=o, Pt , yield­

ing

S T=0 =  U A p p l J l  -  4  (6-82)
V Pa

St > o =  - 7 A 0 p l  +  12 0 A p \ .  (6.83)

Taking the cutoff p \  to  infinity, evaluating A  explicitly, and dividing by the 

volume of R3, the final, renormalized result for the action density is

SE =  lim ST>o -  ST=o =  ~  ^ 1 / % ' (6 ’84)pa-»oo 405v3

The fact that this seems to be negative should not disturb us. In the contrary,

as it implies st=o >  s t >o, the finite temperature solution will be the leading

order contribution in a saddle point approximation to the path integral. If this

was not the case, we were not allowed to study finite temperature effects using

the solution (6.67). Naturally, when computing further quantities, we will use

the absolute value of (6.84).

One should wonder about the N  dependence of (6.84). After all our aim

is to study the physics of the QGP, which is in a deconfined phase of QCD.
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So the entropy should reflect the N 2  color-degrees of freedom. On the other

hand, (6.84) cannot contain any factor N ,  as the UV completion does not know 

about the number of colors. One may try to resolve this issue by substituting 

t h e ’t Hooft coupling A for ph. We will compute A in section 6.4.1, yet for our 

discussion here it is sufficient to know that when expressed in terms of N,  A, 

and energy-scale p, ph has a

dependence, leading to a N 6 A-6 / 5 dependence for the entropy. While this is 

not fully satisfactory - after all, one would expect N 2, it shows the correct 

qualitative behavior.

M a ss , E n tro p y , S p ec ific  h ea t Using the renormalized Euclidean action 

(6.84) and some standard relations of thermodynamics one can calculate a va­

riety of properties of the background. Mass, entropy-density and specific heat 

are given by

Equations (6.90) show a rather surprising thermodynamic behavior -  es­

pecially as we axe trying to identify it with that of a four-dimensional gauge 

theory. First of all, the specific heat C  is negative, probably denoting an in­

stability of the solution. More importantly, the entropy behaves as S  «  T - 6 , 

which is rather puzzling. As a first check of the above results, one can compare

(6.90) to  the Bekenstein-Hawking entropy, which in our conventions takes the

(6.85)

Z  =  e~SE (6 .86)

(6.87)

(6 .88)

(6.89)

5  =  {3(E) -  S E

Therefore

(6.90)

(6.91)

(6.92)
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form 5bh =  "j, with A being the area of the black hole horizon. A direct calcu­

lation gives 5bh =  8̂ /3  which agrees with the previous result. One should

also note that the first law of thermodynamics, dM  =  T d5, is satisfied by the 

solution, as can be verified explicitly.

So while the thermodynamical properties of the system appear sensible from 

the point of view of eleven-dimensional supergravity, it is difficult to  interpret 

them as those of a four-dimensional gauge theory. We will try to find a partial 

explanation for this behavior in the next section.

6.3.3 Com parison w ith the Schwarzschild solution

In comparison with the AdS-black hole [124] properties of the finite-temperature 

G 2 holonomy solution (6.67) might seem a bit surprising. However, there is a 

very well understood solution of the four-dimensional Einstein equations with 

similiar characteristics, the Schwarzschild black hole. So let us recall the prop­

erties of its generalization, the four-dimensional Reissner-Nordstrom solution.

M  is the mass, Q the charge, T  the temperature, and r±  are the inner and outer 

horizons. The Schwarzschild solution is obtained in the Q —> 0 limit. As one 

may see from the equations, there is a BPS constraint on the mass M  > Q.

As long as we keep Q >  0 , the temperature vanishes in the extremal limit 

M  —> Q. This changes in the Schwarzschild case Q =  0. Here the temperature 

is singular when taking the mass to zero. Mathematically this is expressed by 

the absence of the term in the Schwarzschild metric. As there is no such 

term in the eleven-dimensional metric (6.67) and as both the Schwarzschild and 

the Reissner-Nordstrom solution have negative specific heat9, one may speculate 

that the singular behavior of the temperature of the gravity dual in question may 

be related to the dual being of Schwarzschild- rather than Reissner-Nordstrom  

type.__________________________
9 For Schwarzschild one sees this by realizing that any increase in M  leads to a decrease in T. 

So whenever we increase the energy, keeping the charge constant, the temperature decreases. 
For Reissner-Nordstrom the situation is slightly more complicated. While T  vanishes with M  
for sufficiently small M  the behavior reduces to that of Schwarzschild in the large M  limit. It 
follows that Reissner-Nordstrom black holes of small masses have positive specific heat, while 
those of large mass have negative specific heat.

140



We may pursue the comparison with the Schwarzschild solution even further. 

Our zero-temperature background has the topology M1,3 x R x M ,  with M  being 

the G2-holonomy manifold. If we were simply to replace M. by an S 6, we were 

dealing with ordinary Minkowski space in eleven dimensions. Now searching for 

a black hole of with the Ansatz

we find the identical solution to the equations of motion, =  0 , given by 

(6.65). Performing the same calculations on this eleven-dimensional Schwarzschild 

black hole that we did before, we see, that the Bekenstein-Hawking entropy be­

have as 5bh oc p®, whereas the temperature will satisfy T  =  showing

related to the fact that the string dual may be traced back to pure gravity in 

eleven dimensions. In analogy with the four-dimensional case one might expect 

the thermodynamics of our solution to improve once the black hole is charged 

under some gauge field. Generalizing the ansatz (6.64) to include the three-

of finding a solution considerably more difficult.

6.3.4 D im ensional R eduction

In the same way that we went from M-theory to type IIA at zero temperature in 

section 6.1.2, one may perform dimensional reduction for the finite-temperature 

background.

ds2 =  —f(p )d t 2 +  dx2 +  -I- p2dQl (6.93)

thermodynamic behavior identical to that of our solution (6.67). Thus it ap­

pears as if the rather undesirable behavior of the entropy S  oc T -6  might be

form potential of eleven-dimensional supergravity however will make the task

9 N 2 p\
(6.94)

The Ricci scalar in the string frame is

(6.97)
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Figure 6.6: As previously done for the zero temperature gauge theory in figure 
6.2 , we discuss the curvature and couplings of the finite temperature solution. 
Again there is clearly a regime in the IR where non-perturbative gauge-dynamics 
are captured by type IIA string theory. As in the zero-temperature case though, 
9 ym is singular at p =  ph-

6.4 The field theory at finite tem perature

6.4.1 Properties of the Dual Field Theory

Turning on a temperature does naturally break the supersymmetry, so that we 

are dealing with the same modes as in the zero-temperature case, except that 

there is no supersymmetry. Now however the mass of the Kaluza-Klein modes 

is given by the size of the wrapped S 3 in the far IR, that is by the location of 

the horizon. We may use (6.71) to relate it to the temperature as

A* K =  2^ = H03q/T3 ( 6 '9 8 )

In all other aspects the discussion of the theory’s field content is identical to  

that performed in section 6.2.2.

The same holds true for the derivation of the Yang-Mills coupling constant 

from the DBI action (6.2.1). The induced metric is

.2 „2 /  i \
dsg =  e 7* - f d t 2 +  d x 2 +  7 j-d02 +  Y2 # 2 +  y  ^1 -  i  cos2 6>J dx[>2

+ 2 —  cos Qd(j)dip

leading to

<7ym
Z13/ 4Nira,3/ 4ph

(6.99)

(6.100)
p 5 /4  ( p 5 _  p 5 ) l / 4

Having already calculated the dilaton (6.94) and the Ricci scalar (6.97), we 

are again able to discuss the decoupling limit. To get a qualitative understanding
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we have plotted the relevant quantities in fig. 6 .6 .

(6 .101)

, 324\/3  N 3 n 2 a 3 / 2 p2h
A —  ■----- , ~

p5 / 2 y/p 5 - p i
(6 .102)

3

(6.103)

Again the supergravity description is valid in the large N ,  small a' limit while 

it is not possible to ignore the KK-modes (ph small) at the same time.

6.4.2 Quark-Antiquark Potential

presented here were derived in exactly the same way as in section 6.2.5 with 

the finite temperature metric (6.96) replacing the zero temperature background

The results are depicted in fig. 6.7. At first sight it appears as if there 

are again two solutions with the minimum energy one showing a direct pro­

portionality E  oc L and thus confinement. If this were the complete story the 

physical system  dual to our finite-temperature background were certainly not a 

deconfined QGP.

Now recall from our discussion of the Wilson loop’s renormalization in sec­

tions 6.2.4 and 6.2.5 that for the zero temperature solution the configuration of 

two strings stretching from the probe brane to the bottom of the space (p =  a) 

was not physical as it is not possible to define suitable boundary conditions for 

the worldsheet. In other words, there is nothing at the bottom  of the space 

for the open strings to end on. This is different for the finite temperature case 

though, where it is possible for a string to end (or fall through) a black hole’s 

horizon, as long as suitable boundary conditions are satisfied; i.e. there may be 

no excitations leaving the black hole. Therefore renormalization in the finite 

temperature theory is not interpreted as merely subtracting the mass of the two 

W-bosons. Instead one actually considers two competing, physical solutions. 

That of two quarks connected by a string and that of two independent quarks. 

The system  chooses the minimum energy configuration and therefore we may 

interpret the point in fig. 6.7(b) at L «  21 where E (L ) =  0 as the transition

We perform a numerical analysis of the quark-antiquark potential. The results

(6.19).

143



E , L  E

20

15 2510
-1 0

-2 0

-30

(b)

20

10

10 15 20

-1 0

- 2 0

Figure 6.7: The quark-antiquark potential at finite temperature. Compare the 
zero temperature case shown in figure 6.5.

between the two solutions. For L  >  21 we have two quarks propagating inde­

pendently,10 while for L  <  21 the two quarks interact via a string. Therefore 

we claim that the finite temperature theory is not confining, as expected for the 

QGP.

As to the issue of the world-sheet’s boundary conditions, the discussion is 

identical to that of the zero temperature case in section 6.2.5. The x-momentum  

flux along the string is proportional to a constant o f  integration k w ith k =  0 if 

and only if the string stretches all the way to the horizon. Again one fixes the 

failure of the boundary conditions to be properly von Neumann by turning on 

a U ( l )  gauge field in the probe brane.

6.4.3 Shear V iscosity

One of the first properties of the V  =  4 QGP calculated from the dual A d S $  x S 5 

geometry was the plasma’s shear viscosity 77.11 The original ansatz of [47] uses 

the Kubo relations which stem from the formalism of finite-temperature field 

theory. These relate the shear viscosity to the energy-momentum tensor as

T } =  lim [ dtdx.ew t {[TXy ( t , x . ) , T Xy(0,Q)]) .  (6.104)
u>—>0 ZCO J

While one may simply use the gauge/gravity correspondence to directly calcu­

late the above correlator, the authors of [48] were able to identify hydrodynamic 

behavior in the gravity dual by studying metric perturbations in the background. 

Thus they obtained an explicit expression for the shear viscosity in terms of the

10The quarks are not fully independent. The two worldsheetts interact via graviton exchange 
in the bulk spacetime.

11 Brief reviews of relativistic hydrodynamics and their rellevance to relativistic heavy ion 
collisions may be found in [105, 106].
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Figure 6.8: Experimental evidence for jet quenching in heavy ion collisions 
(Source: [126]).

entropy density. Defining g = det g^u,

-  = T rJ  Or

, -goo9pp dp  / = •
ph j  ph 9xx v  g

(6.105)
V-googpp

Evaluating the above for the type IIA or 11-dimensional background (6.96), 

(6.67) yields

(6.106)rl  = ±
S 47T

The above result confirms a general theorem [49], [125] according to which the 

ratio g /s  — l /4 n  is of the same value for a fairly large class of gravity duals.

6 .4 .4  E nergy Loss o f a H eavy Quark

Our final object of study shall be the radiative energy loss of a heavy quark 

traversing the plasma. Prior to exhibiting how this may be modeled in terms 

of the A dS/CFT correspondence and the G<i holonomy manifold we shall take 

a brief excursion into experimental data obtained at the relativistic heavy ion 

collider in order to see why radiative energy loss is a problem of interest.

E x p e r im e n ta l B ack grou n d  The relativistic heavy ion collider performs cen­

tral Au+A u collisions at about 200GeV. After the collision the system quickly 

reaches a local thermal equilibrium at a temperature of about 170MeV and is 

assumed to be a quark-gluon plasma.12 Naturally the plasma is not the only 

12For a review  o f rela tiv istic  heavy ion collisions see [105].
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result of the collision. Instead there is also a number of partons whith ener­

gies of up to O  (lG eV ). One might expect that these should be created in 

two- or three-jet events. Specializing to back-to-back scattering, figure 6.8(b) 

shows the yield of such partons in terms of their angular distribution in the 

reaction plane. The concept is to wait for a trigger particle with transverse 

momentum 4 <  p t ,Ttig. <  6G eV /c and then search for further particles with  

2G eV /c <  PT,Trig. • W ith the trigger particle at =  0 one sees clearly a 

suppression of such back-to-back events in the A u+A u heavy ion collisions in 

comparision to ordinary p + p  scattering. The reason for this suppression lies in 

the fact that, as sketched in figure 6.9, one of the partons needs to traverse the 

plasma. In doing so it interacts w ith the plasma leading to an overall energy 

loss. The answer to our initial question should be clear from this: As this phe­

nomenon is specific to heavy ion collisions, it may be directly attributed to the 

presence of the plasma and is therefore an experimental indicator to the QGP 

being created in the course of the experiment.

When applying the AdS/CFT-correspondence to describe parton energy loss, 

there are two fundamentally different approaches. One, referred to in the litera­

ture as the jet quenching calculation [102],[109] models the problem in terms of 

ordinary particle physics and uses the correspondence exclusively for purposes 

of computation. The concept of the drag force on the other hand is intrinsically 

stringy as the quark is depicted as a string hanging from a probe brane into 

the bulk geometry [103, 127]. There is a further difference between the two 

approaches. W hile the former relies on the energy of the quark being highly rel­

ativistic, the latter is not only free of this assumption but is moreover frequently 

used to make statem ents about the non-relativistic limit.

J e t  Q u en ch in g  In the jet quenching picture, the energy loss of the high 

energy quark is captured by the jet quenching parameter q which again is defined 

in terms of the expectation value of a W ilson loop:

{W{C)) = e ~ ^ L ~ L 2  (6.107)

Here C is a light-like W ilson loop in the x2, x~ =  x° ^ f  plane. The extension  

along the light-cone is L~  while that along x 2 is L. One assumes L~ L. 

One should note that albeit the loop being defined in Minkowski space, the
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Figure 6.9: Jet Quenching in Relativistic Heavy Ion Collisions is due to radiative 
energy loss of a parton - here the antiquark q - traversing the plasma.

exponential on the right hand side of (6.107) is a real quantity. This is in 

contrast to (6.40), which is defined in Euclidean space.

The derivation of (6.107) is purely based on particle theory and rather non­

trivial. We shall only briefly describe how q captures the phenomenon of ra­

diative energy loss and why one may use a W ilson loop to calculate it. The 

interested reader is referred to the literature [128], [129] for details on how 

(6.107) arises.

To answer the first of these questions, note that parton energy loss is directly 

proportional to the jet quenching factor,

A E  oc qL~2. (6.108)

As to the question of why this may be calculated using a W ilson loop, consider 

the following: Due to the quarks’ high energy, we may think of it as actually 

moving along the light-cone. Interaction with the gluons of the plasma leads to 

color rotations. One may think of in- and owi-states related by a Wilson line 

along the light-cone

Itfout) =  TrV e%f°~ dx- A~ (6.109)

Expectation values involve the hermitian conjugate of this, leading to a Wilson 

line in the opposite direction. As L~ L, one may join the two lines giving us 

the loop C.

Taking a closer look at (6.107), a crucial observation is that we are dealing 

with the exponenential of a real quantity albeit using Minkowskian signature. 

This is directly related to the occurence of the light-like Wilson loop. Although 

it is technically possible to  obtain a result for the jet-quenching factor using
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such a loop, as was done in [109], we will see that one needs to consider such a 

light-like loop as the limiting case of space- or time-like ones extending either 

down- or upwards from the flavor brane they are attached to. Note that while 

the original paper [128] considered only a space-like string stretching from the 

flavor brane towards the horizon and approaching the light-like limit from below, 

v  <  1, it was argued in [130, 120, 131] that all four cases need to be investigated. 

As the technicalities follow analogous steps in all four cases, we will only exhibit 

a detailed calculation for the space-like down string followed by some remarks 

about the three remaining configurations.

The space-like down-string We consider the quark-antiquark pair as 

moving with constant speed v  =  tanh 77. Eventually we will take the limit 

v  —> 1 . At first we will assume the string to stretch from the flavor brane at 

Pa =  Apo towards the horizon at ph-  We are interested in the limit A —> 0 0 , the 

case of infinitely heavy quarks. Moving to a coordinate frame in which the pair 

lies at rest leads to a new metric given by

Poo = 3^ ^ -  [“ /  cosh2 77 +  sinh2 17] (6.110)

3 N p h
1 — ( — ) cosh2 7] (6 .111)

g'x 3x 3 =  [cosh2 V ~ f  sin h 2  v \  (6.112)

g '0 x 3 = 7-17— [—/  cosh r) sinh 77 +  cosh rj sinh 77] (6.113)
3AIph

with the other components as before in (6.96). As x 3 will not appear in our 

calculations, we shall ignore the primes from now on and define x  =  x 2 . In these 

coordinates the profile is that of a static quark-antiquark pair and therefore the 

same as in (6.48) in section 6.2.5. Note that if the elongation along x °  =  t  in 

this reference frame is T, then it is L ~  = T  cosh 77 in the laboratory frame.

The Nambu-Goto action is

Sng = [  d a  J - g o o  ( g xx + p ,2g PP)- (6.114)
7ra' Jo v
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Ignoring the overall normalisation,

=  \J~~9oq {9xx P/29pp)

\ S N p 0
1 — ( —  ̂ cosh2 77 (9xx  +  P,29 p p )-

(6.115)

While the second term is positive definite, the first term however might change 

sign, depending on the values of 77 and A, with the A dependence arising as 

p  € { p o ,  Apo}. We see that as long as

cosh 77 > A5, (6.116)

the Lagrangian C  is imaginary. This is what guarantees the exponent in (6.107) 

to be real, as required. Therefore the limits 77 —> 00  and A —> 00  do not commute. 

The Hamiltonian is

w = S o o | » S ) t  Ke (6.117)

In the problem in question k  is purely imaginary, as the Lagrangian is imaginary. 

The profile is given by
.2

/2   9xx (  9oo9xx ft

9  9 pp V « 2

/  I P 2
k2 I 9AT2p^

1 — ( — ) cosh2 77
(6.118)

— K

with k  <  0. For this to be real and positive, one needs to impose constraints 

on At.

cosh2 77 -  A5 -  9 N 2A 3 \k \2 >  0 (6.119)

So from now on we shall assume Ik I <C 1.

Evaluating the length and the action We choose new coordinates,

P = PhV L =  phl. (6.120)

Then

9 /*t 9  r Aph
I =  —  I dx =  —  /  dpp/_1  

Ph J o  p h  J Ph

9 N 2
=  2 \KlJ i dv ( z r ^ )  1 > 2 , , 2V5 — 1 /  I cosh2 77 — t/5 — |k| 9N 2y 3

(6 .121)
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We are interested in the small I behavior, which is equivalent to assuming ac to 

be small. Expanding the integrand gives

= 6 N | K |  f Ad y - X =  =  + — | k |  9N2y3 3/2 + o ( l « l 4 )
J l y/u5 -  1 y  \Jcosh T) -  ny5 2 (cosh2 r] -  y5) '  '

y / y 5 — 1 y j  cosh2 T] — y5 
A

6N , , f A j  y4  . „ ( ,  ,3 i= ----:--- AC / du— 7 .......  4-O AC ,  rcosh rj Jl y / y t  -  i  \  cosh 77

B
(6 .122)

In the last equation we assumed that ^ ^ 2  v  is sufficiently small in order to de­

velop the expression in cosh- 1 77. In the A —> 00  limit, the integral B  is certainly 

divergent, which might raise the question wheter I may truly be considered to 

be small. Closer examination however shows that for large y,

£ ~  cosh- 1 77. (6.123)

As cosh2 77 > A5, our assumption about I is justified.

Similarly to the lenght we may treat the action,

AC

+

i T po f A d y  j y 2 (cosh2 77 — y5)_____________ 1___________
37TQ N  J l  V y  1  ̂_  y 5  _  |^ |2  y3gjy2

I T  Po f A I  y 2 (cosh2 77 -  y 5)

3 7 r a ' N  J i   ̂y y 5 — 1

/ * - ,  /  I
27r a '  J i  \Zt/ 5 1 y j  cosh2 77 — y5 ' '

=  5 ( ° )  +  | ac|2 5 (1) + C > ( | ac|4 )

(6.124)

If one again only looks into the leading order behavior for cosh- 1 77, the O  |̂ac|2^

term is
(I) = 3 g j W  f  = TJ?Ir_

2'KOtt cosh 77 J1 y  , / y b — 1 30a'B  K }
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N ote the reappearance of the integrals A, B. Renormalizing the above action as 

described in section 6.2.4 yields a counterterm that exactly cancels S So to 

first order in |k |2 we may work with

The remaining configurations &: jet quenching From equation (6.118) 

it follows that one may also consider a world-sheet ending on the flavor brane 

yet stretching away from the horizon s.t. p >  Aph- Using the same approx­

imations as for the down-string of the previous paragraph, one arrives at an 

expression identical to (6.125) except for the integration bounds. Once more, 

taking 77 —> oo before A —> oo, the relevant integral B  diverges.

For the string with v >  1 one boosts to a faster than light frame. Technically 

this amounts to substituting cosh 771—► and sinh 771—> J ih  ̂ and eventually

taking the limit £ —» 0. Keeping track of all the factors of 1 appearing in the 

calculations, one arrives at (6.125) for the down-string, thus recovering the v <  1 

result exactly. In this case, there is no up-string solution.

No matter which of the three configurations we use, we can write down the 

expression for the Wilson loop and extract the Jet-Quenching parameter

(W{C)} =  e*(5(c)- So) =  =  e~ ^ L2L~ +  O  (6.126)

In each case the integral B  is divergent, and so the jet-quenching factor vanishes.

q =  0 (6.127)

On the non-com m utativity o f the limits taken As we have seen above 

and as was noted first in [128] the limits 77 —► 00 and A —> 00 do not commute. 

In the same paper, Liu, Rajagopal, and Wiedemann gave a very nice discussion 

of this issue, which we shall summarize here.

M athem atics From a purely formal point of view, the first indication for 

noncommutativity is that one needs the Lagrangian to be imaginary in order 

for the expectation value to be real. This leads to

A5
— 5-  <  1. (6.128)
cosh 77
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Now regard (6.122). In going from the second line to the third, we need to  

assume
v  ̂ A5- y  « 1  => « 1. (6.129)

cosh 77 cosh rj

While this is a pretty strong assumption, it is certainly satisfied if one takes the  

7) —> oo limit first. This corresponds with the ansatz taken in [109] where the 

authors work with a light-like worldsheet in the first place.

P h y s ic s  As to physics, one need to consider that different types of Wilson 

loops may be used to study different physical problems. On the one hand, 

we have jet-quenching, related to a Wilson loop which is again related to the 

exponential of a real quantity. This is the regime cosh 77 A. On the other 

there is the behavior of the (possibly moving) qq pair, where the Wilson loop is 

related to the exponential of an imaginary quantity. Here we have cosh r) <C A. 

Between these two regions there is a discontinuity at cosh 77 ~  A.

The authors of [128] go on to point out that if cosh 77 »  1 but cosh 77 <  A, 

the screening length Lmax is given by

(6.130)
7TV cosh 771

Also, there is a size <5 associated with every external quark, given by

L . (6.131)
M  AT  v '

M  =  M (A) is the mass of the quark. So at the singularity, the screening length  

is similiar to the size of the quark

5 ~  Lmax. (6.132)

Now if

1 <C cosh 77 A then S <£ T max (6.133)

which confirms that the string represents a quarkonium meson. If we trust the 

above formulas to be true in the limit cosh 77 :»  A, albeit not having assumed 

this when defining Lmax, we realize that because of

S Lmax (6.134)
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the quark is bigger than its screening length, meaning that there are no qq bound 

states. So there are two different regimes with different physics, depending on

cosh2 ? 7^ A 5. (6.135)

If we want to examine certain physics, we have to  make a choice on how to take 

the limit.

D ra g  F orce W hile the jet-quenching method described above only uses the 

gauge/gravity correspondence to calculate the expectation value of a wilson line, 

the concept of the drag force, which was introduced in [103, 127], is fully based 

on the existence of a holographic dual. The main idea is that if one is able to 

describe a massive quark-antiquark pair as an open string whose both ends are 

attached to a probe brane at large radius, one might be able to think of a single 

quark as a single string stretching from the probe to the horizon. Again one 

uses the Nambu-Goto action in order to study the string’s dynamics.

Generically the movement of the quark trough the plasma is governed by

p = - p p  +  f,  (6.136)

where p  is the quarks momentum, p  a damping coefficient, and /  a possible 

external force. There are two situations of interest here. /  =  0 and p  =  0.

In the first case, it follows that |  =  — p  and therefore

p(t) =  e - ^ p i  0). (6.137)

One may extract p  numerically from a quasi normal mode analysis of a string 

stretching between the probe and the boundary.

We shall however not perform the numerical analysis and instead only focus 

on the second case. A quark moving at a constant speed through the plasma 

satisfies p  =  0. Yet as the plasma is continuously draining the quark’s energy, 

there has to be an external force /  constantly repleneshing the quark’s energy 

and momentum.

Again we place the probe brane at p — Apo- To study a single open string 

hanging down to the horizon, we assume a profile of the form

t  =  t  a  =  p x  =  x (r , a)  (6.138)
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where in opposite to (6.48) we allow x to depend on the time. The Nambu-Goto 

action (6.41) yields the following equations of motion

o -  - g ppgxxdr -^L= +  d„ - g«gL*x ' (6.139)

where we defined

9  — 9 t t9pp  9 t t9 x x X  +  9pp9xx% i
n 2 n2 I

-  r f (p )x '2 +  n . r2 2
(6.140)

9iV2p2 W 2 p l J 9 N 2 p2 f{p)'

We shall now examine the properties of a specific time-dependent solution. 

As we will see one may extract information about the string and the quark it 

describes without fully solving the equations of motion.

Assume dtx =  v, a constant. Then the equations (6.140) and (6.139) simplify

to

9  =  9tt9pp  "h 9tt9xx%  ~b 9pp9xxv

9 f P4  9N2pl 9N*4f(p)

and

0 =  dp- 9^ ^ l -  (6.142)
V - 9

as dTg =  0. This can be integrated once and solved for x' to give

x ' 2 =  _ CV ( g “  +  u2g” ) (6 143)
9ttQxx \9 t t9 x x  “1“ C  )

where C  is a constant of integration.

Plugging this back into (6.44), (6.45) yields

dE a Cv
d T = <  =  - w  (6'144)

TT =  =  — —  (6'145)dt x 2 ‘na'

We want the string to reach the horizon. To see whether this is possible,

we need to check if the solution is well defined in the region po < P <  Ap0- As

usual one needs to require y/—g, x '2 >  0. From

V ~9  =  - 9 tt9 xxx!C~x (6.146)

it follows that yf—g is real if that is the case for x '2 . A look at (6.143) tells us

that we cannot avoid its numerator to change the sign as long as v  ^  0. Hence
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one needs to make sure that both the numerator and the denominator change 

sign at the same radial position p± . This amounts to solving

9 t t  "h 9xxV  |p_p± — 0 =  Qxx9tt  +  C  |p_p± (6.147)

for C. The former equation leads to =  p/l ( l  — -u2)1/ 5, from which it follows

that

C = ---------------- -  m . (6.148)
3iVc (1 — u2) 7

Hence the energy and momentum loss are

dP v
dt 6 irN a '(1 -  v 2 ) 1 / 5  

dE v 2

(6.149)

(6.150)
dt 6 irNa' (1 — i;2)1/5

Going back to (6.136), setting p =  0, taking (6.149) for and making use of

the relativistic relation p =  , leads to

6 J a '  ^

This result has some interesting properties. As long as we consider a' to be 

finite, the strict N  —> oo limit leads to a vanishing pm. So in this case there is no 

radiative energy loss. This agrees nicely with the vanishing of the jet-quenching 

factor q studied in section 6.4.4. Furthermore (6.151) even extends that result 

to quarks of any non-vanishing mass.13 If we only take N  to be large however, 

equation (6.151) seems rather awkward, as the damping decreases the faster the 

probe moves.

Also one should not forget that we need a' to be small in order to use the

supergravity approximation. More precisely, as was studied in section 6.4.1, the
-  /2

’t Hooft coupling behaves as A ~  p5^ a_p5y  Thus

jV3/ 2
pm  ~  . , . (6.152)

V H p10 -  f p l )

So making a definite statement about the fate of the damping coefficient p  

requires a more rigorous study of the relation between the gauge- and the string 

theory’s couplings and energy scales.

13Note however that to take the limit m  —> 0 one needs to bring the probe brane arbitrarily 
close to the horizon. One should assume that something should happen in this case, i.e. the 
brane might fall into the horizon.
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6.5 Discussion

We have constructed a new solution (6.67) to the equations of motion of eleven­

dimensional supergravity. As our discussion of its thermodynamical proper­

ties in section 6.3.2 shows there is reason to doubt that it is dual to a four­

dimensional gauge theory at finite temperature, leaving us with the question 

what the field-theory dual of the background in question is. Our comparison 

with the four- and eleven-dimensional Schwarzschild black holes shows however 

that the surprising thermodynamical features are to be expected from a solution 

that is purely gravitational in eleven dimensions. Therefore one might expect 

to find a better supergravity dual upon generalizing the ansatz (6.64) such that 

the black hole is charged under the three-form gauge field of eleven-dimensional 

supergravity.

Despite these problems we were able to exhibit some of the expected features 

of a gauge-dual at T >  0, such as deconfinement and the universal ratio of shear- 

viscosity and entropy density. Further pathologies of our background are the 

negative specific heat and the vanishing parton energy loss.

As to the issue of the specific heat one should call to mind the work done 

by Gubser and Mitra [132, 133, 134], indicating that in fairly general settings a 

thermodynamic instability is leading to a dynamical one.

One might also consider the following: W hile our derivation of the shear- 

viscosity to entropy ratio uses the concept of the stretched horizon introduced 

by Kovtun, Son, and Starinets [48], one expects to  obtain the same universal 

result from the more standard calculation based on the evaluation of the Kubo- 

relations. Now as the derivation of photon and dilepton production in the dual 

plasma [101] is quite similiar ot that of the shear-viscosity one might conjecture 

these quantities to behave better then the energy loss that was was discussed in 

this chapter.

6.A The bundle structure of S 3

We examine the bundle structure of S 3, following the classic book by Nakahara 

[135]. The 3-sphere can be defined as

S 3 =  { (z0 , z i ) e  <C2 | |2 o |2 +  \ z i \2 =  1 }  ( 6 .1 5 3 )

156



In the language of [135] this is our total space. Being a manifold, we can equip 

it with an open covering

t/o =  { ( z o , z i ) € S 3||z0|2 < i }

C/i = {(^o.^i) € ^ I k il2 < | }  (6.154)

U0  n U i  =  {(z0,z i ) ||z 0| =  -)=  =  |zi 1}

We claim that the base space is S 2 and the fibre S 1 ~  U( 1). To show this,

let us first define the projection.

7r : (S'3 —► S 2 — CP1
(6.155)

(z0, z i)  i-> [(zq, zi)] =  {A(z0, zi)|A e  C \  {0}}

Now on E/o,i, we know that zi,o i=- 0 and can thus choose A =  z^q. That means 

we have the following coordinates on Vqj  =  7r(t/o,i):

Co,i =  —  ICo,il<l- (6.156)
z  1,0

There is an overlap between the two coordinate patches

1̂ 0 n  Vi =  {ICol =  1 =  ICi 1} (6.157)

on which the coordinates are related as £o =  Cf1- ^ ur 6ase space has thus the 

topology of two discs glued together along their boundaries and is therefore a 

two-sphere.

To confirm that the fibre is indeed U( 1), we need to examine 7r_1. Choose 

C 6 S 2. We shall assume w.l.o.g. C G Vo- We can somewhat lift C to CP1 by 

writing

C =  ( C, 1 ) - A« , 1 )  A e C \ { 0 }  (6.158)

We are now looking for points in S 3 which are projected onto this element of 

CP1. This is summarised by the equation

«(2o,2i) =  A(C,1) (6.159)

The C-number k is redundant, leading us to

(zo, zO =  (AC, A) =4> |A|2|d 2 +  |A|2 =  1 (6.160)
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While this uniquely determines the modulus of A, its complex phase remains 

fully arbitrary. We can summarize this as

tt- ^ C )  ^  U(l) .  (6 .1 6 1 )

If we assume the structural group to be U(  1), it is obvious that there is a 

well defined left action on the fibre.

To define the local trivilisations, we shall use the open covering V* of S 2 that 

we defined previously. Thanks to our work in the previous paragraphs, it is no 

work at all to write an explicit expression.

Finally, we check the transition functions. Assume £ 6 Vo D Vi; it follows 

that £ =  et0.

This shows that the transition function is a simple shift in the fibre and thus 

certainly a diffeomorphism. Note that in going to the last line, we had to  

acknowledge that when going from Vo to V\ coordinates, we have to invert the  

element.

<V0 : Vo x  17(1) —► 7r_1(Vo) =  Uq 

(C,<t>) ^  (rel<t)C,re^)
(6.162)

with

(6.163)

One can check that

7r (r e ^ £ ,r e 1̂ ) =  A (re*^£,re^) =  (C,l) =  C (6.164)

A virtually identical definition holds for V\.

$ i  :V i x U { l ) ^ 7 r ~ 1 {V1) =  U1

(C,</>) (re^ ,re*0C)
(6.165)

*oi,c(0) = $ i 1 (re^C, re^)

=  ( C 1 ,4> +  0 ) e V 1 x U ( l )
(6.166)
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