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Outline

A Total Lagrangian formulation for prestressed structural membranes is de­
scribed. The kinematics of prestressed membranes is displayed as a series of three 
successive configurations, namely, a nominally stressed initial equilibrium state 3fto, 
a prestressed state 3ftpret and a final in-service state 3ft, for the time instants £°, tprei 
and t, respectively. Kinematic entities are fully derived, i.e., deformations gradient 
tensor, displacement gradient tensor, right Cauchy-Green tensor or Green-Lagrange 
strain tensor.

Among the wide group of available hyperelastic materials to describe moderate 
strain behavior, the Saint Venant-Kirchhoff model is chosen as the most adequate. 
By following its definition, the Helmholtz’s free energy functional or strain energy 
functional Wint is used as a potential in order to obtain the second Piola-Kirchhoff 
stress tensor. Alternative stress tensors such as the Cauchy stress tensor or the first 
Piola-Kirchhoff stress tensor are derived as well.

Another physical feature that is taken into account is the likelihood of developing 
wrinkles. The proposed technique in order to capture wrinkles attempts to develop 
a set of conditions in terms of the Euler-Lagrange strain tensor along its principal 
directions. Subsequently, a modified Helmholtz’s free energy functional will be in­
troduced with the purpose of describing in an alternative manner the constitutive 
behaviour of the continuum medium after the moment of wrinkling.

The Force Density Method is reviewed in order to determinate initial shapes 
for tension structures. These equilibrium shapes are employed as initial guesses for 
the subsequent highly nonlinear problem that entails the structural analysis of the 
membrane under the actual presence of prestressing loading and external loading. 
It is shown that the Force Density Method can be regarded as an instrument for 
the transformation of a topological structure into a real spatial structure. A series 
of algorithms to obtain connectivity patterns are then presented.

A Total Lagrangian format set up along with a displacement-based isoparamet­
ric finite element formulation and a Newton-Raphson numerical scheme is adopted 
for the solution of the overall structural problem. Two-noded and three-noded lin­
ear finite elements will be employed to describe appropriately cable and membrane 
elements, respectively. The implementation of the discrete nonlinear system of equi­
librium equations will be carried out by means of a very elegant procedure termed 
Direct Core Congruential Formulation (DCCF).

Apart from the well known second order Newton-Raphson method, other first 
order procedures such as the steepest descent method, the Polak-Ribiere method or 
the Fletcher-Reeves method are employed, along with parametric line searches, as 
valid alternatives when convergence is not accomplished in the former case. This 
results in a very flexible numerical solver.
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Chapter 1. Introduction



1.1. Characterization o f tension structures. 3

1.1 Characterization of tension structures.

Tension structures are those in which the main load-carrying members transmit 
loads to the foundation or support system by tensile stresses with no compression 
or flexure allowed. Their cross-sectional dimensions and method of fabrication are 
such tha t their out-of-plane shear and flexural rigidities, as well as their buckling 
resistance, are negligible. They are load-adaptive in that members change geometry 
to accommodate changes in load rather than increase stress levels.

Tension structures can be comprised of membranes, cables or both. They include 
air-supported structures, pneumatic shells, prestressed membranes, cable networks, 
suspension cables, guyed towers and temporary shelters, among others.

There are two wide classes of tension structures: cable structures, comprising 
uniaxially stressed members, and membrane structures, comprising biaxially stressed 
members. According to Leonard (1988), these two general categories can be split
into many more. Nevertheless, in this research we will focus on:

• C ab le  netw orks, in which prestressed segments are connected in a curved 
surface and loaded predominantly normal to that surface, i.e., suspended nets.

• P re s tre s se d  m em b ran es  in which fabric or rubber-like sheets are stretched 
over rigid members and/or perimeter cables, i.e., tents.

Because of the inherent nonlinear nature of tension structures, conventional lin­
ear analysis, which assumes small elastic deformations and displacements, is not 
applicable. Over the last few decades, considerable mathematical and computa­
tional development of suitable analysis techniques has been undertaken.

Among the enormous amount of advantages -see Leonard (1988), Berger (1996), 
Shaeffer (1996), Ishii (1995), and Wakefield (1999)- that the use of this kind of
structures entail, it is important to point out the following ones:

1. They are lightweight and easy to erect, transport and dismantle.

2. They can be fabricated in a factory, which provides low installation costs.

3. The environmental loads are efficiently undergone by tensile stresses without 
the appearance of neither bending nor twisting.

4. They are load-adaptive, in such a way that they will modify its geometry to 
adapt properly to the applicable loads.

5. They contribute environmentally to a better and sustainable development.

These tension structures are achieving an increasing acceptance level in our so­
ciety, for example, because of their aesthetic qualities and speed of erection. A large 
number of tensioned membranes are reinforced by means of interior and perimeter
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Figure 1.1: Cable reinforced prestressed membrane 1.

cables. At the same time, compressive rigid members such as masts, are assembled 
with the global structure in order to provide the adequate stability.

The design of cable reinforced prestressed membranes follows a three-stage pro­
cedure, involving:

Perspective view Plan view

10 5 0 - 5  - 10
OX axis (m)

Lateral view

- 5  0 5
OY axis (m)

- 10  - 5  0 5 10
OX axis (m)

Lateral view

• form-finding

• patterning

• static analysis

In this thesis, we will deal with the first and third of the above issues, specially 
focusing on the latter. The static analysis is a continuation of the form finding 
process, in which stresses and strains are calculated under imposed external loads. 
The problem is geometrically non-linear. The procedure begins with the form-found 
shape of the structure, which is initially in equilibrium. Static loads are subsequen- 
tially applied, and a new state of equilibrium is encountered. The procedure has 
to follow an incremental-iterative scheme, in which displacements and stresses are 
calculated from the acting loads.

OY axis (m) OX axis (m)
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Among the wide variety of loads tha t can be applied on a cable reinforced pre­
stressed membrane, two main categories can be underlined:

• Prestressed loading, which is applied with the purpose of serving the role of
m aintaining an equilibrium geometry for further calculations.

• In-service loading, where a diverse group of loads can be framed, namely, snow
loading, wind loading, live loading, dead loading and so on.

Perspective view Plan view

- 2 - 1  0 1 
OY axis (m)

1 0.5  0 - 0.5  -1
OX axis (m)

Lateral view

OY axis (m) OX axis (m)

1.5

1

1  0.5

X 0 
0 3

>-0.5
-1

- 1.5

-2
- 0.5 0 0.5

OX axis (m)

Lateral view

1.2 S t a t e  o f  t h e  a r t .

Tension structures -cable networks and prestressed membranes, form part of a newly 
and increasing structural technology, which is enabling architects and civil engineers 
to develop new structura l models. These designs are often characterized by their 
elegance and austerity. These structures, whose main tra it is its small thickness, can 
adopt varied spatial geometries. Indeed, beautiful designs can be observed in Otto 
(1 9 6 2 ) ,  O tto  ( 1 9 6 7 ) ,  Ishii ( 1 9 9 5 ) ,  Berger ( 1 9 9 6 ) ,  Majowiecki ( 1 9 9 8 ) ,  Berger (1 9 9 9 ) ,  

Engel (2 0 0 1 )  and Ivanyi ( 2 0 0 2 ) .  In H ildebrandt and Trom ba ( 1 9 9 0 ) ,  an interesting 
dissertation about living organisms with membrane morphology can be found.
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Fabrics for tension membranes are usually constructed from natural fibers such 
as cotton (canvas fabric), ceramics (glass fibre) and synthetic organic fibers such 
as polyester. In order to improve waterproofing and durability, a range of plastic 
coatings has been developed:

• PVC (polyvinyl chloride) coated polyester.

• PTFE (polytetrafluorethylene) coated glass fibre.

• Silicone-coated glass.

A survey of tension membrane materials can be encountered in References such as 
Murcia (1990), Monjo (1991), Shaeffer (1996) and Lewis (1998). The small thickness 
of these structures combined with the use of low specific weight materials for their 
construction, entail a considerable decrease of the acting dead loads. This results 
in structures with a great performance to cover large unobstructed areas. Some 
authors, interested in their optimization, have reported some upshots, such as Sindel 
et al. (2001). To manifest neatly this issue, the literature -see Magara and Okamura 
(1986), Schlaich et al. (1990), Ando et al. (1999), Hangai and Wu (1999), Saitoh 
and Okada (1999), Ando et al. (2000), Saitoh and Okada (2001) and Schlaich
(2002)- is replete of numerous structural applications showing tension membranes 
either isolated or combined with some other structural models, such as rigid frames 
or cable networks, among others. On the other hand, pneumatic structures are 
described in Herzog (1977).

The term membrane is quite generic and used to describe compositions of ex­
tremely thin sheets to form into flat or curved surfaces. They transmit loads to 
the supporting medium by means of planar direct and shear stresses. Their bending 
and transverse shear rigidities are negligible. Even though reinforced and prestressed 
concrete membranes, subjected to compression stresses, can be included into this 
category, their study exceeds the scope of this thesis.

Nevertheless, as an initial approach to the phenomenon and to gain progressive 
insight on the knowledge of these structures, it is worthwhile to point out References 
Tonda (1973), Courbon (1981), Jimenez Montoya et al. (1994) and Quintas Ripoll 
(1996). All these authors employ the small displacements linear elasticity theory, 
namely, a linear relationship between the Cauchy stress tensor cr and the linearized 
strain tensor e1. Some other bibliographic sources are Torroja (1991), Candela 
(1994), M.O.P.T.M.A. (1994) or Sanz (1999), devoted to the study of anticlastic 
surfaces -those with negative Gaussian curvature-, specially hyperbolic paraboloids. 
In all of these cases, the analyzed membranes must behave rigidly, in such a way that 
displacements can be regarded as negligible. In so doing, initial and final membrane 
shapes can be identified as identical.

1This relationship is commonly formulated in index notation as Oij =  Cijkitki, where eki =  
\ { u k,i +  The fourth order tensor Cijki gathers the constitutive elastic moduli.
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As a second approximation, the m oderate displacements-small strain linear elas­
ticity theory was used by authors such as Timoshenko and Woinowsky-Krieger 
(1959), Ramaswamy (1982) and Farshad (1992). The equilibrium equations are 
established on the final, yet unknown, displaced configuration which does not co­
incide with the initial unstressed configuration. This ends up in the inclusion of a 
geometrical nonlinearity within the problem.

Finally, and as a th ird  approach, the theory of hyperelastic membranes, as for ex­
ample, propounded by O tto  (1967), Green and Zerna (1968) or Leonard (1988) treats 
the problem from an exact analytical viewpoint2, arriving after complex algebraic 
manipulations to final formulae of difficult application. Some simplicity, although 
not much, may be accomplished if the Von K arm an com patibility equations3 are used 
-see Timoshenko and Woinowsky-Krieger (1959) and Crisfield (1991a). Regardless 
of the im portant implications of this approach into the theoretical understanding

2 Covariant and contravariant coordinates are em ployed to  describe the k inetics and kinem atics 
of the process over curved surfaces.

3For com parison purposes, under a cartesian framework, the com ponent 11 of the finite strain  
tensor m ight be form ulated as £ 1 1  =  4- +  (;y y )2 +  ( f ^ ) 2); whereas, according to
Von Karm an, th is expression can reduced to sim ply: E \ \  =  +  5 ( § y ) 2, seen > transverse
disp lacem ents w  p lay a predom inant role on the strain.
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of these structures, a main disadvantage is that it results in a nonlinear partial 
differential equations of impossible analytical solution.

Because of this lack of numerical results, variational approaches ought to be taken 
into consideration as the best route to provide feasible solutions from a practical 
standpoint. The Galerkin approach, semidiscretized by means of the Finite Element 
Method (FEM), seemingly provides the best results4. Since its practical introduction 
in the papers by Turner et al. (1956) and Turner et al. (1960), a large amount 
of research has been devoted to this technique -see Felippa (2000) for a historical 
revision of the method-. Important non-linear applications of the method were 
initially those carried out by Oden (1967), Mallett and Marcal (1968), Oden and 
Key (1973) or Rajasekaran and Murray (1973).

The structural analysis of tension membranes is usually divided into two different 
stages, according to the loads acting on the membrane, namely, prestressed loading 
or live loading. The first of the former stages, commonly known as form finding 
problem, addresses the question of the surface geometry of a fabric tensioned between 
given boundaries -see Ramm (1992). According to Levy and Spillers (1995), different 
computational methods can be regarded in this category:

1. ’’Force density method”, where Linkwitz (1999) reviews the method proposed 
by himself in 1971.

2. ’’Grid method”, which is a slight modification of the above method, initiated 
by Siev and Eidelman in 1964 and formally presented by Levy and Spillers
(1998).

3. ’’Smoothing method”, initiated by Haber and Abel (1982a) and Haber and 
Abel (1982b); it has been studied by different authors: Barnes (1988), Motro 
et al. (1994), Lewis and Lewis (1996) and Canner and Hsu (1999).

The first two of the above methods result in a spatial discretized system of 
algebraic linear equations, whereas the latter corresponds to a final nonlinear system 
of equations. All of the mentioned techniques were developed for cable networks. 
Nonlinear extrapolations in case of dealing with prestressed membranes were tackled 
in Kwun et al. (1994), Maurin and Motro (1998) and Nouri-Baranger (2002). A 
novel approach is the one due to Bletzinger (1997), termed the Updated Reference 
Strategy (URS), improved in Bletzinger and Ramm (2001) and Bonet and Mahaney 
(2001).

This shape finding problem has been usually related to the search for optimum 
or minimal surfaces, whose basics are detailed in Hildebrandt and Tromba (1990), 
Castellano (1995), Do Carmo (1995) or Quesada (1996). Numerical applications are 
reported in Maurin and Motro (1997), Maurin and Motro (1997) and Zhang and 
Tabarrok (1999).

4This is due to the elliptic pattern of the involved structural problem -see Bathe (1996).
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Once an initial equilibrium shape is obtained, the analysis of the membrane un­
der external loads must be carried out. Numerous results have been published so 
far in the scientific literature, embodying different topics of the matter. Tradition­
ally, cables were adopted as the initial structural, starting from which the overall 
prestressed membrane could be deployed. The analytical study of cables themselves 
is reviewed in Irvine (1981), Buchholdt (1985), Broughton and Ndumbaro (1994), 
Kadlcak (1994) and Gil (2001). Combination of cables to result in complex cable 
networks designs were studied by Argyris and Scharpf (1972), Peyrot and Goulois 
(1979), Monforton and El Hakim (1980), Jayaraman and Knudson (1981), Griindig 
and Bahndorf (1988), Swaddiwudhipong et al. (1989), Stefanou et al. (1994), Re- 
cuero (1994), Kwan (1998), Kebiche et al. (1999), Talvik (2001) and Arcaro (2001a). 
The Finite Element Method or a simple matrix analysis were the numerical schemes 
followed to achieve numerical outcomes. In all of theses approaches, a geometrically 
non-linear analysis, yet not complete, was undertaken. Indeed, the nonlinearity 
source is reproduced by means of a pseudo-geometric stiffness matrix which treats 
to incorporate some of the nonlinear effects of the analysis.

Some References -see Coyette and Guisset (1988) and Ashmawy et al. (1997)-, 
although presenting the problem in a finite element discretization basis, prefer to use 
first order iterative methods -conjugate gradient method- to find displacements and 
stresses in cable networks designs. An energetic approach is carried out by Gosling
(1998) and a very technical exposition of nonlinear effects is gathered in Leu and 
Yang (1990). Nevertheless, the dynamic relaxation approach can be considered as 
the one mostly used by the scientist community: Brew and Brotton (1971), Lewis 
and Jones (1984), Barnes (1988) and Ramesh and Krishnamoorthy (1995).

A more sophisticated approach has treated the problem of finite hyperelasticity 
set on rubberlike membrane materials by means of the Finite Element Method. 
By following this path, interesting papers are those due to Oden and Sato (1967), 
Grutmann and Taylor (1992), Souza et al. (1995), Wu et al. (1996) and Taylor 
(2001), where initially unstressed membranes are analyzed when undergoing large 
strains take place. For these cases, the Updated Lagrangian Formulation (ULF) is 
considered to be the most suitable for the derivation of the tangent stiffness matrix. 
The three-noded isoparametric finite element is the most commonly employed to run 
the analyses. However, an alternative quadratic rectangular isoparametric element 
is developed in Gosling and Lewis (1996a) and Gosling and Lewis (1996b).

A local cartesian coordinate system was used as the basis to describe the kine­
matic of the deformation process. Nevertheless, some other concepts, such as natural 
coordinates -see Arcaro (2001b)- or convective coordinates -see Bonet and Mahaney 
(2001)- have been reported.

All these analyses were built up on the basis of membranes undergoing large 
strains, due to which hyperelastic models such as Mooney-Rivlin or Neo-Hookean 
were regarded. In Crisfield (1991b), Bonet and Wood (1997) and Holzapfel (2000) 
a survey of these materials is discussed. Despite of being of great concern in Biome­
chanics -see Humphrey (1998), this sort of membranes lack of application in Ar­
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chitecture or Civil Engineering. In these situations, moderate strains are expected 
at most. Some authors have reported some results, namely, Sastre (1986), Tabar- 
rok and Qin (1992), Levy and Spillers (1995), Jufen and Wanji (1997), Wakefield
(1999) and Levy and Gal (2001). Nonetheless, all these References present two com­
mon features: the analysis is started from an initial unstressed configuration and a 
possible combination of cables and textile fabric is not conceived in advance.

Another topic of major concern in the actual design of this sort of structures is 
the correct treatm ent of the wrinkling phenomenon. Numerous authors have worked 
intensively in this field, some examples are: Miller et al. (1985), Roddeman et al. 
(1987a), Roddeman et al. (1987b), Steigmann and Pipkin (1989), Tabarrok and Qin 
(1992), Kang and Im (1997), Kang and Im (1999), Lu et al. (2001) and Stanuszek
(2003). However, by following previous work by Mahaney (2002), a simple and 
efficient technique can be introduced.

1.3 Scope of the thesis.

The main aim of this thesis is the development of a complete analytical, numerical 
and computational methodology to deal with cable reinforced prestressed mem­
branes. The simplicity acquired as a consequence of the reduced thickness as well 
as the spectacular spatial designs, enrich the beauty of the overall structure and, 
moreover, the calculation’s difficulty.

A large number of tensioned membranes are reinforced by means of interior and 
perimeter cables. At the same time, compressive rigid members such as masts, 
are assembled with the global structure in order to provide the adequate stability. 
Conventional analysis and design is usually separated into two stages; initially by 
fixing the supports and determining the equilibrium shape of the cable-membrane 
and then, by checking the compressive members’ resistance with respect to the 
reactions.

A proper approach adopted in this research is to consider membrane fabric, ca­
bles and compressive members in a single unified interactive manner. Consequently, 
the prestressed configuration is determined computationally exactly as in reality by 
stretching the cables or moving the supports. In the same way, realistic bound­
ary conditions such as elastic foundations, or admissible loading conditions such as 
thermal effects or nonconservative forces, must be added to the analysis. The analy­
sis will focus on those structural membranes undergoing large deformations though 
moderate strains, which is suitable for Civil Engineering applications. In addition, 
the formulation considers wrinkling. Finally, it remains necessary to compute a 
nominally stressed initial configuration, conventionally determined by form finding 
relying on classical methods such as the Force Density Method -see Linkwitz (1999)- 
or the Updated Reference Strategy -see Bletzinger and Ramm (2001).

Essentially, the motion of a prestressed membrane is governed by two physical 
laws, namely, the continuum equilibrium equations and the material constitutive
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equation. Since static analysis will be just of main concern in this research, inertia 
effects can be ignored. The resulting equilibrium equations describe the balance at 
each point of the membrane between the internal stresses and the applied exter­
nal forces. The constitutive equations, on the other hand, provides a relationship 
between the stresses and the strains of the membrane. Unfortunately, due to the 
complex and non-linear nature of the process, finding the motion of the membrane 
that satisfies both governing laws is practically impossible from an analytical stand­
point.

In order to overcome theses drawbacks, the Finite Element Method can be used 
to approximate the motion of the membrane. In this case, a variational formulation 
will enable the equilibrium equations to be discretized at each node, according to 
a Lagrangian mesh, as the balance between equivalent external and internal nodal 
forces. To describe appropriately the non-linear nature of the phenomenon, kinetic 
and kinematic tensorial entities will be introduced for the sake of a better physical 
description of the problem.

Although membrane analysis for rubber-like materials based on Updated La­
grangian formulations have been fully studied in diverse References such as Bonet 
et al. (2000), a more suitable Total Lagrangian Formulation (TLF) for prestressed 
structural membranes has not been reported so far. The kinematics of prestressed 
membranes can be described by means of three successive configurations, namely, a 
nominally stressed initial equilibrium state a prestressed state $tPret and a final 
in-service state for the time instants £°, tprei and t, respectively.

Among the wide group of available hyperelastic materials, the most adequate con­
stitutive model to describe moderate strain behavior, is the Saint Venant-Kirchhoff 
model. By following its definition, the Helmholtz’s free energy functional or strain 
energy functional Wint is a potential for the second Piola-Kirchhoff stress tensor S. 
Therefore, a Taylor expansion of the former in terms of the Green-Lagrange strain 
tensor E, combined with the assumption that the strain range can be assumed as 
moderate, enables the constitutive law for a prestressed hyperelastic Saint Venant- 
Kirchhoff material to be written in a simple manner5.

Another physical feature that has to be taken into account when analyzing ten­
sion membrane structures, is the likelihood of developing wrinkles. These are man­
ifestations of localized buckling regions which can appear across the membrane’s 
spatial domain on account of an unexpected combination of the prestressing load 
with a certain in-service load situation. When any of the eigenvalues of the Cauchy 
stress tensor becomes null, the membrane -or cable- does not offer any resistance to 
be deformed any further along the corresponding principal direction. As a conse­
quence, it can be argued that the energy functional acts as an adequate potential for 
the stress tensor in case of a pure tension material, otherwise it cannot be accepted 
as valid. The reason for this is based upon the fact of its lack of capacity to represent 
efficiently wrinkling conditions whatsoever.

5Appendix D reviews the fundamentals of continuum mechanics.
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By following previous work by Mahaney (2002) and Gil (2003b), wrinkling con­
ditions in terms of the Euler-Lagrange finite deformation tensor along principal 
directions will be obtained -see Gil and Bonet (2004). This will provide a frame­
work to describe properly the initial instant when wrinkles start to be encountered. 
Subsequently, a modified Helmholtz’s free energy functional will be introduced with 
the purpose of describing in an alternative manner the constitutive behaviour of the 
continuum medium after the moment of wrinkling.

The final set up problem may be understood as a classical unconstrained opti­
mization problem for an objective functional which results to be the Total Potential 
Energy (TPE). As a consequence, any appropriate technique may be used to carry 
out this mathematical optimization, i.e., see Luenberger (1989). Apart from the 
well known second order Newton-Raphson method, other first order procedures such 
as the steepest descent method, the Polak-Ribiere method or the Fletcher-Reeves 
method can be employed, along with parametric line searches, as valid alternatives 
when convergence is not accomplished in the former case. This results in a very 
flexible numerical solver.

1.4 Layout of the thesis.

To achieve the scientific objectives detailed in the previous section, this thesis will 
be divided into different chapters which are outlined as follows:

•  C h a p ter  I I  reviews firstly the strong formulation of a structural problem 
starting from an initial unstressed configuration. Then, the same formulae will 
be presented when considering a prestressed configuration as the initial state. 
Concepts such as Green-Lagrange strain tensor, Piola-Kirchhoff or Cauchy 
stress tensors are introduced as basic tensorial tools to carry out the forthcom­
ing numerical approach. Analogously, the Helmholtz’s free energy functional 
or strain energy functional is defined for later calculations. The considera­
tion of the Saint Venant-Kirchhoff hyperelastic material as the adopted model 
will be of great effect to end up with a linear constitutive relationship of easy 
implementation. The constitutive equations for hyperelastic materials can be 
found in Bonet and Wood (1997) or Holzapfel (2000).

• In C h a p ter  I I I , the weak formulation of the problem is developed by means of 
a Galerkin approach or, equivalently, by the Principle of Virtual Work. Some 
interesting References are Crisfield (1991a), Zienkiewicz and Taylor (1995), 
Bathe (1996) and Belytschko et al. (2000).

• The C h a p ter  I V  entails a comprehensive explanation of the Finite Element 
semidiscretization of the previously obtained weak form. After this weak 
form is derived in a straightforward manner, the displacement field is interpo­
lated by means of shape functions based on a Lagrangian mesh geometry -see
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Zienkiewicz (1982), Cook et al. (1989), Onate (1995) and Smith and Griffiths
(1998)-. A non-linear formulation is presented in Wood and Schrefler (1978) 
and Schrefler et al. (1983). The resulting formulation will be the so called 
Total Lagrangian Formulation (TLF). Afterwards, the exact linearization of 
the Total Lagrangian weak form of the momentum balance is carried out in 
detail. For the sake of further computing implementation reasons, the Direct 
Core Congruential Formulation (DCCF) is reviewed as the most appropriate 
one -see Felippa (2001).

The C h a p te r  V  summarizes the DCCF for cable elements and membrane el­
ements -isoparametric two-noded and three-noded finite elements. Numerical 
entities such as equivalent internal or external nodal forces vector, equivalent 
residual nodal forces vector, material stiffness matrix, geometric stiffness ma­
trix, total tangent stiffness matrix or strain energy functional will be derived.

C h a p te r  V I  discusses the concept of non-conservative forces or follower loads, 
specially useful when incorporating wind loads into the analysis in a pseudo­
static manner. References such as Simo et al. (1991) and Belytschko et al.
(2000) review this concept.

C h a p te r  V I I  will present an efficient numerical technique for the compu­
tational simulation of wrinkles in a prestressed membrane. Wrinkling con­
ditions in terms of the Euler-Lagrange finite deformation tensor along prin­
cipal directions will be obtained. This will provide a framework to describe 
properly the initial instant when wrinkles start to be encountered in a pre­
stressed Saint Venant-Kirchhoff hyperelastic membrane. Subsequently, a mod­
ified Helmholtz’s free energy functional will be introduced with the purpose 
of describing the modified constitutive behaviour of the continuum after the 
onset of wrinkling. Consistent derivations of the stress tensor as well as the 
constitutive tensor will de depicted. We should point out References such as 
Pipkin (1986), Liu et al. (2001) or Contri and Schrefler (1988).

C h a p te r  V I I I  studies the fundamentals and main algorithms pertaining to 
nonlinear optimization, implemented to solve the geometrically nonlinear prob­
lems which appear in this research. Authors such as Bergan (1980), Luenberger 
(1989), Haftka and Giirdal (1992), Samartm (1993), Kelley (1995), Dennis Jr. 
and Schnabel (1996) and Castillo and et al. (2002) have presented some results 
about them. W ith the objective of giving a complete and robust formulation 
to analyze the whole structural problem, a variational approach in terms of 
the Total Potential Energy functional (TPE) is introduced. Thus, the chapter 
introduces the different numerical algorithms that based upon incremental- 
iterative schemes are used in the present research. Some mathematical tech­
niques are taken from Dahlquist et al. (1969), Burden and Douglas (1998), 
Krasnov et al. (1994) and Rade and Westergren (1999).
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C hapter V I I I  examines the developed computational implementation, ac­
cording to a modular Architecture, by following the advice in Gaylord and 
Gaylord (1990). The computational languages which have been used to per­
form the computer code are: Fortran 90-95 and Matlab. See Smith (1995), 
Math Works (1996), Nyhoff and Leestma (1997), Chapman (1998) and Perez
(1999) for further details.

C hapter I X  validates the methods presented in the previous chapters by 
comparing the numerical predictions with the ones shown in the existing liter­
ature. Different examples of cable networks as well as prestressed membranes 
will be analyzed.

C hapter I X  reveals the flexibility and robustness of the procedure, by means 
of a complete assemblage of fabric textile, reinforcing cables and rigid members 
which will be analyzed from its initial design stage to its final loaded config­
urations. Pseudo-static analysis will be run for snow and wind conditions 
according to Spanish standards.

C hapter X  concludes the thesis by summarizing the main points and indi­
cating areas of further research.

Finally, some appendices  will be added with the purpose of reviewing some 
interesting concepts such as: tensor analysis, nonlinear continuum mechanics, 
graphs theory, nonlinear programming fundamentals and some key derivatives 
when dealing with wrinkling analysis. Some References of interest are Lich- 
nerowicz (1962), Timoshenko and Goodier (1968), Malvern (1969), Santalo 
(1969), Gonzalez de Posada (1983), Sokolnikoff (1987), Dfaz del Valle (1989), 
Truesdell and Noll (1992), Paris (1996), Bonet and Wood (1997) or Chadwick
(1999).
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2.1 Introduction.
The numerical resolution of any structural problem by means of a computational 
technique is comprised of four successive stages:

1. Posing the boundary value problem (BVP), which consists of the system of 
partial differential equations along with the boundary conditions. This stage 
is named S tro n g  F orm ula tion .

2. Posing the Principle of Virtual Work or Principle of Virtual Power to obtain 
the W eak  F o rm u la tio n  of the problem.

3. Posing the space-time numerical scheme in order to transform the continuum 
problem into a discrete problem.

4. Computational implementation, whereby the mathematical formulation of the 
discretized problem is converted into a computer code by means of an algo­
rithmic language.

This chapter is organized as follows. Sections 2 and 3 will summarize the conser­
vation equations or balance laws of a continuum in terms of Eulerian and Lagrangian 
formulations, respectively. No attention will be devoted at this moment, towards the 
required continuity and boundary conditions, either Dirichlet, Neumann or mixed 
conditions. The following section will present in detail the strong formulation of the 
structural problem: prestressed membranes with immediate applications in Civil 
Engineering. The membranes will be considered to undergo large displacements 
but moderate strains. Therefore, nonlinear continuum mechanics principles dealing 
with large deformations on prestressed bodies will be accounted for. The consti­
tutive model adopted for the material will be a prestressed Saint Venant-Kirchhoff 
hyperelastic one.

For a better understanding of this chapter, the inclusion of the appendix D has 
been considered very convenient, where the basics of nonlinear continuum mechanics 
are displayed in a brief manner.

2.2 Eulerian formulation o f the balance laws.

The conservation equations of a continuum can be formulated in an Eulerian manner 
and in a local level as follows1:

1. Mass conservation.

j£  + pdiv(v) = 0 p - f p § ^  =  0 (2.1)

xTo pose the forthcoming equations, the chain rule, Reynolds’s transport theorem as well as 
Gauss-Ostrogowdski theorem have to be employed in a system atic manner -see Timoshenko and 
Goodier (1968), Green and Zerna (1968), Malvern (1969), Diaz del Valle (1989), Truesdell and 
Noll (1992), Chadwick (1999) and Holzapfel (2000).
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2. Linear momentum conservation.

P l5 t =  lU j +  A  ^ diT =  div(<r) +  pb (2.2)

3. Angular momentum conservation.

(Jij = CTji a  = (TT (2.3)

4. Energy conservation (First law of Thermodynamics).

pp^tit = = D : cr (2.4)

where:

p represents the continuum’s density at time t.

is the total or material derivative operator, 

v symbolizes the velocity field.

b stands for the body force field acting per unit of mass, 

cr represents the real or Cauchy stress tensor.

D represents the strain rate tensor or the symmetric part of the velocity gradient 
tensor.

Uint is the functional which represents the internal strain energy accumulated in the 
continuum per unit of mass.

Note that in the above equations and in what follows the Einstein’s convention 
for the summation of repeated indices has been adopted. From the above equations, 
some considerations must be pointed out:

• The real or Cauchy stress tensor cr is a symmetric tensor, which is deduced 
for the angular momentum conservation law.

• The Cauchy stress tensor <r and the strain rate tensor D constitute a conjugate 
pair for the internal power, that is, their contracted product gives the rate of 
change of internal energy.

• The energy conservation law has been obtained neglecting possible thermal 
effects, that is, only mechanical processes were considered.



2.3. Lagrangian formulation o f the balance laws. 21

2.3 Lagrangian form ulation of the balance laws.

For the prospective structural analysis carried out in this research, the formulation 
of the balance laws in a Lagrangian description results to be even more fundamental. 
These equations can be depicted as follows:

1. Mass conservation.

p(X, t) J  = p0(X) pJ  = p0 (2.5)

2. Linear momentum conservation.

p0dvdx,t) = ^ j  + p0bi p0v =  Vo • P  +  p0b  (2.6)

3. Angular momentum conservation.

FikPkj =  FjkPki, =  F ■ P  =  P T ■ Ft , S = St  (2.7)

4. Energy conservation (First law of Thermodynamics).

P o n t  =  S-t£ PH =  PoUint = F T : P  =  E : S (2.8)

where, apart from the entities already defined in the previous section, new mag­
nitudes arise which are known as follows:

Po represents the continuum’s density at the initial configuration.

F  represents the deformation gradient tensor.

J  is the jacobian of the transformation or determinant of the deformation gradient 
tensor F.

Vo- represents the divergence operator respect to the material coordinates X.

P  represents the nominal stress tensor, which is also known as the transpose of the 
First-Piola Kirchhoff stress tensor.

S stands for the second Piola-Kirchhoff stress tensor.

As in the former section, some keypoints must be remarked:

• The symmetrical feature of the second piola-Kirchhoff stress tensor S. This is 
not the case of the nominal stress tensor P .

• W ith respect to the internal power, two different conjugate pairs can be set 
up, namely, the nominal stress tensor P  with the transpose of the ratio of the 
deformation gradient tensor F T, and the second Piola-Kirchhoff stress tensor 
S with the ratio of the Euler-Lagrange strain tensor E.

• Once again, thermal effects were neglected when deriving the energy conser­
vation equation.
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2.4 C onstitutive model.

Apart from the equilibrium and compatibility equations, in order to establish cor­
rectly the strong formulation of the problem, constitutive equations must be taken 
into consideration. This set of equations relates stresses and strains in a specific 
way according to the selected material’s constitutive model. W ith the purpose of 
defining mathematically these equations, a multiaxial elastic model will be chosen.

The final constitutive relationship must satisfy independency with respect to 
rigid body motions, namely, translation and rotation. Equivalently, the mentioned 
relationship must be identical for two inertial observers. This principle is the so 
called principle of material objectivity or frame indifference. For a detailed and 
precise explanation of this principle, References Malvern (1969), Chadwick (1999), 
Belytschko et al. (2000) and Holzapfel (2000) are strongly recommended.

In particular, this research will be focused on those materials known as h y p e r­
e las tic2, a subset of the Cauchy elastic materials, or simply, elastic materials. This 
latter group is comprised of those materials in which the current stress state does 
not depend on the strain history, but only on the current strain state. On the other 
hand, the former group consists of those materials in which the Helmholtz’s free 
energy functional3, or simply, the strain energy functional, is independent on the 
strain or load history. On account of this fact, the Helmholtz’s free energy functional 
can be expressed as a potential for the stress tensor as follows:

s  =  , Sij =  (2.9)

where:

dE  ’ 13 dEij

1. S stands for the second Piola-Kirchhoff stress tensor.

2. E represents the Green-Lagrange strain tensor.

3- u)int symbolizes the functional which stores the internal strain energy per unit 
initial volume, where W i n t  = p o U i n t , according to equation (2.4).

This hyperelastic material is, roughly speaking, nothing more than a general­
ization for R 3 of one-dimensional elasticity’s principles. Therefore, the stress state 
depends exclusively on the current strain state. In addition to that, loading and 
unloading curves are identical, that is, no hysteretical processes are developed. Fur­
thermore, the strains are reversible. The above mentioned characteristics have direct 
implications into the Helmholtz’s free energy functional’s features, namely, the latter 
is independent on the strain history, reversible and non-dissipative.

Moreover, according to the polar decomposition theorem, the deformation path 
of a material body, can be well known split into two successive deformation states,

2These materials are also known as Green-elastic materials.
3 A complete definition and derivation of this energy functional can be found in Holzapfel (2000).
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namely, a rigid body movement followed by a strain process or viceversa. This 
theorem is summarized in a formula which is given as:

F  =  R  • U  or F  =  V  • R  (2.10)

where:

1. F  is the deformation gradient tensor.

2. R  stands for any rigid body rotation.

3. U, V  are tensors which represent the arisen internal strain, namely, stretches
along principal directions.

Numerous engineering applications and, in particular, the one which is of con­
cern throughout this research, namely, prestressed membranes, undergo moderate 
strains in spite of being subjected to large deformations. This means that the major 
contribution to the deformation gradient tensor comes from its rotating compo­
nent. The behaviour of these specific materials is completely gathered by means 
of a mere extension of the small deformations linear-elastic law4. As a result of 
this, the constitutive equations of this sort of hyperelastic materials, known as Saint 
Venant-Kirchhoff materials, or simply, Kirchhoff materials, turn out to be:

Sij =  CijkiEki S =  C : E  (2-11)

As can be noted from comparing equation (2.11) with the classical small defor­
mations linear-elastic constitutive equation, the second Piola-Kirchhoff stress tensor 
S and the Green-Lagrange strain tensor E have been substituted for the Cauchy 
stress tensor cr and the small strain tensor e, respectively.

Furthermore, the Helmholtz’s free energy functional for this particular constitu­
tive model yields:

Mint = T^SijEij = i CijkiEkiEij wint =  : E  =  : C : E  (2.12)

Within the Saint Venant-Kirchhoff hyperelastic materials, this investigation will 
deal with those associated with an isotropic response. Hence, equation (2.11) can 
be rewritten in terms of the Lame constants A and fi in the following manner:

= XEkk6ij +  2 fiEij S =  Atr(E)I +  2/iE (2-13)

Analogously, the above formula can be expressed as a function of the classical 
engineering constants, namely, Young modulus E  and Poisson ratio i s , which can be 
related to the aforementioned parameters A and // as follows:

4In the case of the small deformations theory, the Cauchy stress tensor cr is obtained through 
a linear transformation of the small strain tensor e as follows: <Tjj =  Cijki£ki — +  § ^ ) -
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vE  E
(1 +  u)(l -  2v) ^  =  2(1 +  u) (214)

Among the wide variety of membrane structures, other interesting applications 
can be found specially within the field of Biomechanics. In this case, the membranes 
undergo large strains allocated in the tensors U and V. To describe properly this 
sort of behaviours, within the group of hyperelastic materials, alternative consti­
tutive models arise as more suitable, either Ogden, Money-Rivlin or Neo-Hookean 
materials. In References Crisfield (1991b), Bonet and Wood (1997) and Holzapfel
(2000), their basics are explained in a comprehensible fashion. In addition to that, 
several numerical applications can be encountered in Oden and Sato (1967), Grut- 
mann and Taylor (1992), Souza et al. (1995), Wu et al. (1996), Bonet et al. (2000) 
and Mahaney (2002).

2.5 Finite H yperelasticity  theory in initially pre­
stressed bodies.

The subject of this section is the geometrically nonlinear analysis of prestressed 
membrane structures with arbitrary geometry undergoing moderate strains. An 
increasing application of these structural models is reaching extremely different 
knowledge fields, which move from the well known Architectural field to the recently 
discovered Biomechanical field. In all these cases, it is feasible to find membranes 
undergoing large deformations and subjected to a previous state of prestressing. 
In particular, we will focus on those membranes where strains can be modeled as 
moderate, despite having large deformations. Two different and successive loading 
cases may be distinguished according to their effects on the stabilization of the pre­
stressed membrane. The first one or prestressed loading is developed to provide the 
necessary in-surface rigidity to the membrane to overcome successfully the second 
loading step. This one, also named as in-service loading conditions is comprised of 
a wide group of loads: snow, wind or live loads among others.

The aim is to pose separately each one of these two loading stages, not just to 
simplify the whole formulation but to enable observing the effect of the prestressing 
into the overall structural response of the membrane. With the purpose of developing 
the strong formulation of the problem in a neat and explicit manner, the same 
notation as Iesan (1989) will be followed throughout the remainder of the chapter.

2.5.1 F irst load step  and prelim inary results

Let’s consider a material body B  in an initial undeformed configuration B 0 with 
domain f20 frontier <9f20, defined within the 3D-Euclidean space. The material 
coordinates of a body’s particle at a time t = 0 will be described according to 
X =  (X i ,X 2, A 3 ). As a result of the application of a displacement field, the current
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or spatial position of the body’s particle at a time t may be obtained as a function 
of its m aterial coordinates as5 X{ =  Xi(XA,t). Therefore, the body will move to a 
new configuration with domain Flt and frontier dFlt . See figure 2.1.

dQ

F ig u r e  2.1: M o tio n  o f  a b o d y .

For convenience here and in what follows the standard sum m ation for repeated 
indices is adopted, as well as the classical indices’ convention to express spatial 
derivatives: (-)y = The balance of linear momentum at a local level, in the 
absence of inertial effects, may be expressed in Eulerian description as follows:

<7j i j  +  pb{ =  0 in Fit, f i  = t td r  = OjiUjdT on dFlt (2-15)

The conservation of linear momentum is set up in the current configuration B, of 
domain Flt , and the traction vector t may be deduced from the Cauchy stress tensor 
cr and the unit normal n  on the frontier d i l t• Analogously, the equation (2.15) may 
be obtained in Lagrangian description:

Pm ,a +  a A  =  0, in  f20, =  t°dr0 = PAin AdV0 on <9ft0 (2.16)

In this case, the conservation of linear momentum is formulated at a local level
in the initial undeformed configuration B 0 of domain H0, and the traction vector is
implied from the nominal stress tensor P  and the unit normal n  on the frontier <9f20. 
The upper and lower case indices stand for the initial and current configurations, 
respectively. This makes this stress tensor to be considered as a two-point tensor 
-see Belytschko et al. (2000), as a difference of the Eulerian consideration of the 
Cauchy stress tensor. It should be recalled th a t the nominal stress tensor is the 
transpose of the so called first Piola-Kirchhoff stress tensor -see Malvern (1969).

A nother stress entity m ust be introduced for the sake of convenience: the second 
Piola-Kirchhoff stress tensor S Ab , which can be framed as a Lagrangian stress ten­
sor. The m athem atical relationships among the different enum erated stress tensors,

^C apital (A ,B---) as opposed to  (i ,j ...) indices have been used in order to clearly distinguish  
the in itia l configuration  B0 from any other.
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that is, Cauchy, nominal and second Piola-Kirchhoff stress tensors, are shown right 
below by means of the well known deformation gradient tensor FiA = %i,A and its 
determinant or jacobian J:

J @ ij  ^ i ,A ^ A j  •^'i,A‘̂ j ,B ^ A B  (2-17)

where:

Xi-A = W a (2'18)
Once the balance of linear momentum equations have been established in the two 

descriptions par excellence, this is, Eulerian and Lagrangian -formulae (2.15) and 
(2.16), respectively, another required equation is the one which gives the concept 
for the Green-Lagrange strain tensor E ab and the right Cauchy-Green strain tensor 
Ca b '-

E ab =  2 ^ ab ~ ^A B ^ AB = Xi>AXi’B (2.19)

In the mathematical description of the material behaviour, the response of the 
material is characterized by a constitutive equation which gives the stress as a func­
tion of the deformation history of the body. For the structures presented in this 
research, the Saint Venant-Kirchhoff constitutive model can be concluded as the 
most appropriate for our purpose. Eventually, the formal mathematical formulae 
for this model may be summarized by using the Helmholtz’s free energy functional 
or internal strain energy functional wint as follows:

d w i n t  d lU in t or^

S ab = 3 e 7b = 2d c7 B (2-20)

S ab =  CabcdE cd (2-21)

The equations gathered at (2.20) and (2.21) relate the second Piola-Kirchhoff 
stress tensor with the Green-Lagrange strain tensor by means of a fourth order 
tensor, known as the material elasticity tensor, which contains all the elastic moduli 
of the material. Therefore, the classical explicit expression for the strain energy 
functional per unit of volume would be:

Mint — 2 ^abcd^ a b^ cd (2.22)

2.5.2 Second load step: strong form ulation

Let’s consider now three possible configurations of the material body: in one hand, 
an initial undeformed state B 0 and, in the other hand, a primary state and a 
secondary state B t., for the time instants t and t*, respectively. Among these two
stages, a displacement field u  =  (iti, U2 ,u$) may be defined in R 3. From now on,
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quantities which proceed from the movement from the prim ary to the secondary 
sta te  will be considered as incremental -see figure 2.2. It is thus feasible to obtain 
the spatial coordinates for the time t* of a particle as a function of its material 
coordinates in the initial unstressed configuration B 0 according to y{ = y i (X A,t*).

B,

F ig u r e  2 .2 : M o tio n  o f  a  p re stre ssed  b o d y .

As a consequence, the complete deformation path is built up from the compo­
sition of two successive steps: the first one, from the initial configuration to the 
prim ary sta te  and a second one, which can be traced from the prim ary state to a 
secondary state. By recalling the chain rule, relations among deformation gradient 
tensors can be displayed as follows:

dy{ diji dxj
d X A dxj d X A 

Formula (2.23) can be rew ritten in index notation as follows:

(2.23)

Vi ,A  Vi , j -Ej ,A

Analogously, the relation between jacobians is given as:

(2.24)

r  = j 'j (2 .2 5 )

where J  represents the jacobian at the prim ary state, J * stands for the jacobian 
at the end of the secondary state and j '  symbolizes the jacobian as a consequence 
of the increm ental deformation. The scope of the next sections will be to set up the 
equations presented in the former section for the secondary sta te  by adopting the 
prim ary one as the reference configuration -subjected to a previous stress held-.

G reen -L ag ran g e  s tra in  te n so r

A m aterial particle’s position in the primary and secondary states may be expressed 
in term s of the incremental displacement held as follows:
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y{ = Xi + Ui => yi>A = x ijA +  uitA = x i)A +  uitjx j)A (2.26)

The Green-Lagrange strain tensor for the secondary state is:

e ab — -jiyiAVhB ~ Sa b ) (2.27)

Prom (2.26) and (2.27), the Green-Lagrange strain tensor can be rewritten as:

E*ab Q̂{_Xi:AXitB SAb ) T ~(2,XitAXj^B^ij T (2.28)

where:

eij = P uj>i) (2.29)

The difference between the Green-Lagrange strain tensor for the primary and 
secondary states can be obtained as:

hiAB h/AB XijAXj^^ij F ~̂Uji,AV‘i,B X i^Xj^E^j (2.30)

where:

h{ j  —  &ij T  2 Uk,iUkJ

where the incremental Green-Lagrange strain tensor E L has been introduced for 
the sake of convenience and it represents a relative measure of the strain at the 
secondary state by taking the primary one as an adequate reference. It should be 
remarked that this later one is not an unstressed state.

Nom inal and second Piola-K irchhoff stress tensors

As it was introduced formerly, the Eulerian Cauchy stress tensor may be transformed 
to a Lagrangian and a two-point stress tensor by considering an initial and a current 
stressed configurations. This two new tensorial entities were referred to as the 
second Piola-Kirchhoff and nominal stress tensors respectively. By considering as 
initial configurations the initial undeformed configuration and the primary state 
configuration, the following formulae can be obtained respectively:

— Vi,APXj =  yi,Ayj,BpAB (2.32)

J ,(Tij = yi,kPkj — yi,k.yj,iSkl (2 .3 3 )

By considering relation (2.25), equations (2.32) and (2.33) can be modified to
obtain:

P i j  —  ^  X i , A X k , B y j , k S A £} (2.34)
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&ij — J  ^^i,A^j,B^AB (2.35)

The expressions gathered at (2.34) and (2.35) summarize the existing relationship 
between the nominal stress tensor and the second Piola-Kirchhoff stress tensor

l J

Slj expressed in the prestressed configuration B t , with respect to the second Piola- 
Kirchhoff stress tensor S \ B represented at the initial undeformed state Bq .

L in ear m o m e n tu m  b a lan ce  law

The conservation of linear momentum of the material body in the secondary state 
may be depicted with respect to three possible descriptions: Bo, B* and B**, accord­
ing to a Lagrangian formulation for the first two ones or an Eulerian formulation 
for the later one. Thus:

° k i  + P*bi =  0 in  f t  =  t*d r * =  on d n ;  (2.36)

PAi,A + Pah =  0 in  f i0, S ’ =  t f d T n = P^tn AdV0 on 39.,s (2.37)

P ’it. + pbi = 0 in  /*  =  t’idV = P'^UjdT on dQ t (2.38)

where:

" .'u  -  S  (2 >9)

ftp*n,A = (2.40)

dP'-
(2-41)

The formula (2.38) along with the boundary and continuity conditions, synthe­
sizes the strong formulation of the structural problem according to a Lagrangian 
description with respect to a reference stressed configuration. This equation will be 
used throughout the remainder of this paper.

C o n s ti tu tiv e  law

By accounting for the Saint Venant-Kirchhoff constitutive model adopted for the 
material behaviour, the expression (2.20) can be reformulated by means of a Taylor 
series expansion truncated after the first order as follows:
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The accuracy of this Taylor series depends directly on the smallness of the step 
E qD ~ E cd - For tension membrane structures in Civil Engineering applications, as 
it was aforementioned, this is a valid assumption. Thus, from (2.30) and (2.42), the 
following expression can be written down:

S ab = S ab +  CABCD%i,cXj,DEij (2.43)

By recalling (2.35) and (2.43):

S'ij — J  1Xi,AX3,b S aB +  J  1Xi,AXj,BCABCDXk,C%l,DEkl (2.44)

The fourth order tensor of elastic moduli can be referred to the prestressed 
configuration as follows:

Cijkl = J  lXi,A%j,BCABCD%k,Cx l,D (2.45)

Eventually, equation (2.44) may be reformulated to give the final expression:

Sij = <Jij +  CijkiEkl (2.46)

This final formula is set up to show the constitutive law for a prestressed Saint 
Venant-Kirchhoff hyperelastic material. The second Piola-Kirchhoff stress tensor is 
expressed in terms of an easy linear relationship which depends on three tensorial 
entities: Cauchy stress tensor in the primary state, fourth order tensor of elastic 
moduli and the incremental Green-Lagrange strain tensor of the secondary state 
referred to the primary one.

Internal strain energy balance

Another important feature which needs to be obtained is the incremental strain 
energy accumulated into the structure along the deformation path from the primary 
to the secondary states. By performing again a Taylor series expansion truncated 
after the second order, the internal strain energy functional per unit of undeformed 
volume may be developed as:

where:

wint = Wint +  Cl +  T (2.47)

n  =  1 > ¥ ^ {e 'ab ~ Eab) (2’48) 

T  =  i dEABdEcD^ 11 ~ EAB){E'CD ~  E0d) (2'49)
The terms Q and T can be expanded as:

Cl — S A B X i^ s E i j  — JoijE {j (2.50)
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T =  ^CABCDXi,AXjtBE lijx k<cXi)DE ,kl = -JCijkiE'ijEu (2.51)

By substituting (2.50) and (2.51) back into (2.47), the incremental internal en­
ergy per unit volume is obtained as:

Wint ~  Wint = =  Jw int (2.52)

where w'int represents the incremental energy per unit volume measured in the
prestressed configuration. By integrating over the initial undeformed volume f t Q and
by applying the mass conservation principle from this volume Fl0 to the prestressed 
one Flt , the to tal incremental energy is given as:

A W in t= f  {w*nt -  wint)dnQ = j  Jw'intdQ0 = [  w'intdV (2.53)
J  f Iq J  Oo " fit

Therefore, the internal strain energy functional per unit of volume of the primary 
state takes the final form:

Wint =  a i j ^ i j  T 2^ i j k l E i j E ki (2-54)

2.5.3 C onclusions.

In this last section and for the sake of convenience, the fundamental equations 
comprising the strong form of the structural problem are summarized as follows:

1. Balance of linear momentum in an Eulerian description.

ah  +  P*bi = 0 in  f t  = W r *  =  aJnJdT* on dtt*t (2.55)

2. Balance of linear momentum in a Lagrangian description with respect to the 
prestressed configuration.

P'ji;j +  phi = 0 in  f2f, f* = t^dT = P '^ d F  on d f l t (2.56)

3. Relationship among the stress tensors.

J 'v ' i j  =  V i ,k P ’kj =  I u m A  (2-57)

4. Relationship among the strain tensors.

d^AB E a b  %i,A3'j,Bpiji E { j  2 ^ * 0  2^k,i^k,j (2.58)

5. Constitutive equation for a prestressed Saint Venant-Kirchhoff hyperelastic 
material.

S'ij = +  CiikiEh (2.59)

6. Helmholtz’s free energy functional per unit of volume in the prestressed con­
figuration.

wint =  VijE'ij +  -CijkiEljE'u (2.60)
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3.1 Introduction.

To set up the weak formulation of the structural problem, a Lagrangian mesh will be 
employed throughout the whole analysis1. By selecting this sort of mesh, elements 
and nodes move accompanying the continuum’s deformation. Another attribute 
of Lagrangian meshes is that boundaries and interfaces coincide with the finite 
elements’ edges or facets developed for the analysis of the structural problem.

The use of a Lagrangian mesh as well as a referential or Lagrangian formulation2, 
are the common denominators of a weak Lagrangian formulation, which will be the 
one selected in this research. However, among this generic description, two spe­
cific formulations may be pointed out: Total Lagrangian Formulation and Updated 
Lagrangian Formulation.

• In the Total Lagrangian Form ulation (TLF), all variables are referred 
back to the referential description and the existing integrals and derivatives are 
performed with respect to the referential domain and coordinates, respectively.

•  In the U pdated  Lagrangian Form ulation (ULF), all variables are re­
ferred back to the referential description whereas the existing integrals and 
derivatives are performed with respect to the current or spatial domain and 
coordinates, respectively.

In the next sections, special interest will be focused on the first of the above 
because of its usefulness to describe the behaviour of the structures analyzed in this 
research. Nonetheless, both formulations will be presented up to a certain extension 
to gain insight on both of them.

3.2 Total Lagrangian Formulation (TLF).

The above mentioned primary and secondary states can be understood as an initial 
prestressed state R̂pret and a final in service loading state 9£ due to the considera­
tion of live and dead load. Henceforth, the coordinates of any body’s particle, in 
both prestressed and final loaded states, are related by means of the incremental 
displacement field u as follows:

X =  X'”'6* +  u, X i  =  X f et +  U i  (3.1)

According to this nomenclature, the strong formulation of the problem in a 
Lagrangian description with respect to the prestressed configuration is summarized 
in figure 3.1. The configurations 9?pre* represents a material body of domain V pret 
with frontier rpret. As can be observed, the super index (;) has been suppressed for 
the sake of simplicity.

^ h i s  sort of mesh is the most suitable for structural mechanics problems whereas Eulerian 
meshes are more useful in com putational fluid dynamics problems.

2See appendix at the end to review some fundamentals about nonlinear structural mechanics.
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Ŝ-pret

Figure 3.1: Motion of a prestressed body.

1. Balance of linear momentum.

dP-
31 + f f re%  =  0 in V pret (3.2)QXjret

2. Transformation of stress tensors.

t _  &x i n dxi dxj c T ^ dxi  ̂ fo
3̂ d X pTê  0 X PTe* det( Qj^pretl

3 .  Green-Lagrange strain tensor.

1 dxk dxk
b 2 Qx?ret d X pret *

1 3

4. Constitutive law.
S ii  =  o r *  +  Cm E kl (3.5)

5. Internal strain energy functional per unit volume of prestressed configuration.

Wint =  &ijetE ij  +  ^CijkiEijEki  ( 3 . 6 )

6. Boundary conditions.

t { =  P j i n f et =  ti  on  T ^ et Ui =  Ui on  T p̂ .et ( 3 . 7 )

To obtain the Total Lagrangian Formulation of the problem, the balance of linear 
momentum equation is multiplied by a test function <5u and then integrated over 
the volume of the prestressed configuration:

J  + fT '% )  dV = 0
ypret ^

(3.8)
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This integral equation represents a weighted residual method. As can be noted, 
a good approximation to the exact solution would imply that the conservation of 
linear momentum is nearly satisfied at all points of the domain V pret. Amid the 
different weighted residual methods, the Galerkin approach will be the selected one, 
whose complete development may be encountered in: Cook et al. (1989), Crisfield 
(1991a), Onate (1995), Zienkiewicz and Taylor (1995), Bathe (1996) and Belytschko 
et al. (2000). By applying, thus, the Gauss or divergence theorem3 along with 
the well known chain rule, the weak form may be developed in a Total Lagrangian 
Format (TLF). Neglecting inertia forces, this gives:

SWint[5Ui, lii) — 'U'i) (^'^)

5Win t= J  SFijPji dV = J  6FT : P d V  (3.10)
j/p ret y p r e t

SWnt =
ypre t  p p r e t

J  6uif f retbi dV  +  J  6uiti dT =
pret  p p r e t

=  J  duT ■ f f r ^ b  dV + J  5ut ■ t dr (3.11)
ypret  p  pret

Equation (3.10) may be rewritten as a function of the second Piola-Kirchhoff 
stress tensor as well as the Euler-Lagrange strain tensor, as it can be noted from 
the following derivation:

5Ft  : P =  S F i j P j i  = S F i j F i k S j k = - { S F i j F ik +  5 F i k F i j ) S j k =

=  6 E j k S j k  = S E : S  (3.12)

where in order to obtain the above formula, we have made use of the fact that 
the inner product of a symmetric and a skew-symmetric tensor is null. As can 
be detected, the work conjugacy property of the tensors S and P with E and FT, 
respectively, has been deduced.

From a structural standpoint, equation (3.9) is known as Principle o f V irtual 
Work and physically it represents a set of equilibrium equations in a global level 
-for the whole domain V pret, unlike the strong form (3.2) where the equilibrium is 
guaranteed in a local level.

From equations (3.9) to (3.12), we can observe that the Total Lagrangian For­
mulation requires to know the referential or material coordinates of the continuum 
configuration pret and to refer all the scalar, vector and tensor magnitudes with 
respect to it. Finally, the numerical integration will be carried out over the volume 
V pret and its contour Tpret.

3 As it was pinpointed at the beginning of this chapter, the derivatives required in this derivation 
will be evaluated with respect to the material coordinates.
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3.3 U pdated Lagrangian Formulation (ULF).

This formulation is obtained through the Eulerian description of the equations of 
motion. Once established the balance of linear momentum equation, tha t is:

o

+ pbi = 0 in V  (3.13)
U X j

the integral equation to describe the weak formulation of the problem is, in this 
case, set up by means of a test function 6vi. As a consequence of this selection, 
the Galerkin method is known, from a structural point of view, as P rin c ip le  of 
V irtu a l Pow er. Therefore:

5Wint(5vi, =  5Wext(6vi, (3.14)

SWint = J  SDijOji dV = j  £D : crdV (3.15)
v v

SWext = J  dvipbi dV  +  J  SviU dT = J  8v1 ■ pb dV  +  J  5vT • t  dT (3.16)
v v v v

In the above equation (3.15), D is the so called strain rate tensor or rate of 
deformation tensor4. As can be noted, in the U LF the different magnitudes though 
expressed with respect to the Lagrangian coordinates, are integrated with respect 
to the current domain V  and its boundary T.

3.4 Final considerations.

As it has been observed in the former sections, the main difference between the U LF 
and the T L F  lie in the configurations which are used to carry out the derivatives 
and the integrals tha t arise in the equations. For the former, spatial coordinates x 
and spatial domain V  are used, whereas for the latter, material coordinates X.pret 
and referential domain V pret are employed. Therefore, while the integral domain for 
the T L F remains fixed throughout the complete structural analysis, in the U LF 
the material domain must be updated continuously

This updated procedure in the geometric and mechanical properties entails a 
considerable increase in the computational time for each iteration or time step. 
However, in those problems where large strains are foreseen, the U L F is preferable 
to the detriment of the T L F  -which is not our particular case.

In accordance with Crisfield (1991a) and Belytschko et al. (2000), the T L F  is 
the most suitable when dealing with structural problems undergoing large rotations

4See appendix D for further details.
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but small or moderate strains. This behaviour is characteristic of Saint Venant- 
Kirchhoff hyperelastic materials. In this situation, the computational time can be 
safely reduced for the sake of keeping the integration domain fixed throughout the 
nonlinear algorithm. As a consequence, this formulation will be the selected one for 
the successive chapters of this research.

Another im portant issue that is convenient to point out, is the fact that the 
transition from the TLF to the ULF and viceversa, may be easily obtained by 
simply applying classical push forward and pull back operations, as depicted in 
Bonet and Wood (1997) and Holzapfel (2000).
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4.1 Introduction.

The numerical procedure which will be employed for the computational resolution of 
the structural problem is the well known F in ite  E lem en t M e th o d  (F E M ). This 
technique, widely and extensively described in References such as Zienkiewicz (1982), 
Onate (1995), Bathe (1996) or Smith and Griffiths (1998), enables the discretization 
of the problem’s weak formulation. This discretization allows to transform the 
continuous problem into a n-dimensional algebraic system of non-linear equations.

The numerical strategy will be built upon the D irec t S tiffness M e th o d  (D SM ), 
that is, the formulation will be established based on the displacements field and the 
resolution will be accomplished through the so called stiffness matrix. Hence, the 
displacements field as well as the domain’s geometry will be both discretized in terms 
of the Lagrangian nodes’ displacements and the spatial Lagrangian nodes’ geometry, 
respectively. Furthermore, the interpolation technique will require the definition of 
the so called shape functions. The reading of appealing References such as Turner 
et al. (1956), Turner et al. (1960) and Felippa (2000) is encouraged for the sake 
of historical reasons in the development of this numerical technique over the last 
decades.

In this chapter, equivalent internal and external nodal forces vectors are derived, 
starting from the virtual work balance 8Wint(Sui, Ui) = 6Wext(8ui,Ui) presented in 
the previous chapter. At first, a standard formulation based on tensor and matrix 
notations will be depicted. Finally, and in the wake of setting up some basic notation 
criteria, namely, the kinetic and kinematic Voigt rules along with the rule for vector- 
ization of a matrix, a more sophisticated formulation will be detailed, named D ire t 
C ore C o n g ru en tia l F o rm u la tio n  (D C C F ). The FEM spatial discretization will 
be undertaken according to a TLF.

Thus, our main objective is to present the formulation for an isoparametric fi­
nite element and describe an effective implementation. The principal idea of the 
isoparametric finite element formulation is to achieve the relationship between the 
element displacements at any point and the element nodal point displacements di­
rectly through the use of interpolation functions.

Finally, with the objective of giving a complete and robust formulation to an­
alyze the whole structural problem, another variational approach in terms of the 
minimization of the T o ta l P o te n tia l E n erg y  (T P E ) functional is introduced. 
As a consequence, any numerical strategy to solve an unconstrained optimization 
problem could be employed to accomplish the solution.

4.2 FEM  standard formulation.

4.2.1 D isp lacem ents and deform ations fields.

In an isoparametric finite element, the displacements field as well as the spatial coor­
dinates of any material point, are discretized by means of the same shape functions,
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according to the following formula: 

xs = x / N 1 U i ui IN I 2 =  1,2,3 I  = 1 . . .  Nnodes (4-1)

where Nnodes  represents the total number of Lagrangian nodes in the mesh and 
N 1 stands for the shape function1 corresponding to node /.

The second above equality can be expanded in a matrix form as follows:

" U i  ' " u\ u\ . Nnodes— 1 U

u = U 2 = u\ u\ . Nnodes—1u2 U

. . . A u\ Nnodes—1 
• u 3 U

Nnodes1
Nnodes
2
Nnodes
3

N 1
N 2

N  nodes — 1 

j y  Nnodes

= u dis ■ {N} 

(4.2)
where we have defined the matrix which gathers the displacements of each one 

of the nodes of the mesh and the vector which allocates the nodal shape functions, 
namely, u ^ s and {N}, respectively.

The deformation gradient tensor and its variational perturbation may be dis­
cretized straightforwardly as:

p . . _  ®Xi — x  1 ^  = x  IB I => 8F - = d x 1 B  1 =  b u 1 B  1 (4
_ dX?ret ~  dX^ret

where we have made use of the fact that bx = bXpret -j- bu = £u. Therefore, by 
introducing the discretization matrices x ^ s and budis, it is feasible to formulate:

F  =  x dis B t  =» JF =  dpdis B J (4.4)

where:

B=[V]  =

I" d N 1 d N 2 g  N  nodes
d x P r e t .

d x i ret  '
d X pr e i

d N 1 d N 2 g j y  N no d e s

d X % ret d X % ret  ' d x l r e t

d N 1 d N 2 g  p j  N n o d e s

L d X % ret d X % ret  ' d X l r e t

(4.5)

4.2.2 Equivalent internal nodal forces.

By recalling the weak formulation of the problem, the internal virtual work 5Wint 
written in a Total Lagrangian Format can be developed as follows:

bWin, =
J

SFijPji dV  = <5Fr  : P  dV (4.6)
y p r e t y p r e t

1Recall that AT/ (x ,/) =  5I J , V I ,  J  of the Lagrangian mesh.
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By substituting equation (4.4) into (4.6), applying the relationship between the 
nominal stress tensor P and the second Piola Kirchhoff stress tensor S and, by 
extracting the test function out of the integral for the sake of its constancy, it turns 
out to be:

W n t =  J  S u ^ B / P j i d V  =  J  S u / B / S ^ F i k d V  =
ypret  ypret

=  J  dV = 5ui I j  B / S jkx i JB kJ dV =
ypret  ypret

= Sui Tf i L  = 6udis : {int (4-7)

The former expression enables to come out with the internal virtual work starting 
from the scalar product (:) of two matrices, namely, the matrix which gathers 
the nodal virtual displacements and the matrix fint of the equivalent internal nodal 
forces. The latter can be expanded to yield:

f .  _  Hnt  —

f  1 t  2 f  Nnodes —1 r Nnodes  “
J l i n t  J l i n t  ' “ l i n t  l i
r 1 r 2 f  Nnodes—1 r
J 2 int ^ 2 jnt ' ' ' J 2 int J ‘‘
r 1 r 2 f  Nnodes- 1 r Nnodes

-  J 3int J Sint J Sint ^ Sint

int
Nnodes—1 f  Nnodes

%int (4.8)

the above expression (4.7) can be rewritten in a more compact manner as:

fin* = J  P T ■ B dV = J  F ■ S • B dV = J  Xd<s • B r • S • B dV  =
ypret  ypre t  ypret

I  (X E ? +  u * .) • B T ■ S ■ B dV  (4.9)
y p r e t

4.2.3 Equivalent external nodal forces.

On the other hand, an analogous discretization technique can be used for the coun­
terpart external virtual work 5Wext, that is:

SWext -  J  6uifr * %  d V +  J  SuiU dT -

J  <5ur  ■ f f"etb  dV + J  <5uT • t  d r  (4.10)

y p r e t  p  pret

ypret  p p r e t

By substituting (4.4) into (4.10):
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SWext= j  Sui , N ' ^ b i d V +  J  5ufIN Iti dT =
ypret  p  pret

= S u / j  N Ippretbi dV + I N 't id T
ypret  p  pret

As before, the external virtual work has been obtained as the scalar product 
of the nodal virtual displacements matrix 5\idis and the equivalent external nodal 
forces matrix fext. The latter can be expanded easily as:

rlT
= Sui ] fieit =  S u dis ■ fext (4.11)

f  _
Lext  —

■ f  1
d 1 ext f  2" 1 ext a
/,*J *ext / , 2 .J *ext • ■ f 2
/o 1 J Oext h 2 ■° Oext • • f 3

exU in its turn, may 1

Nnodes—1
ext
Nnodes — 1
ext
Nnodes—1

Nnodes ~
fi
f  NnodesJ‘.
A

ext

2  ext
Nnodes

3  ext

(4.12)

fpr.t. — J  ppre,b -{ N } T d K +  J  t - { N } T dr (4.13)
ypre t  p  pret

where ppretb and t  represent the body force field acting per unit of prestressed 
volume and the surface tension field acting on the boundary of the domain, respec­
tively:

bT =  [ b\ 6 2  ^ 3  ] =  [ t\ ^ 2  ^ 3  ] (4-14)

Another contribution to the equivalent external nodal forces vector is coming 
from initial non-mechanical deformations of the structure2. As a matter of fact, 
equation (4.9) may be rewritten to account for these initial non-mechanical defor­
mations, that is:

Sij =  < e( +  cm  (Eu -  E°kl) S =  v * *  +  C • (E -  E°) 

By substituting (4.15) back into (4.9), it yields:

(4.15)

fint = J  x n ,  - B r S B dV = J  x dis • B r • (cr”” ' + C • (E -  E0)) ■ B dV =
ypret  ypret

=  J  -x.dill ■ B t  ■ (er +  C - E) - B dV — J  x dis ■ B r • C ■ E° • B dV  (4.16)
ypret  ypret

The last term in the right hand side of (4.16), can be regarded as an equivalent 
external nodal forces source. Henceforth, this term will be treated as so. Finally, 
the whole equivalent external nodal forces vector may be written down as follows:

2These initial deformations can stem from thermal effects acting on the structure, i.e., sudden 
change in temperature conditions.
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f«*,= J  p'”'e,b -{ N } r dV +  J  t - { N } r d r +  J  x dis- B T - C - E ° - B d V  (4.17)
y pre t  p p r e t  'ypret

By only knowing the initial Green-Lagrange strain tensor E°, equation (4.17) 
may be calculated by means of the fourth order tangent moduli tensor C. As a 
consequence, thermal effects can be computationally assimilated to mechanical pro­
cesses.

4.2 .4  Sem idiscretization  equations.

The semidiscretized3 weak formulation is highlighted in figure (4.1). Equivalent ex­
ternal and internal nodal forces matrices are detailed along with its particularization 
for each one of the nodes of the Lagrangian mesh, namely, f-nt and fexf.

* Sem idiscretized equilibrium  equations

f in t  =  fe x t tL 3x1 =  4(3*1 1 =  1 . . .  Nnodes

* Equivalent internal nodal forces

f i„ t=  f  P T - B d V =  J  x dis • B r • S • B rfV
ypre t  ypret

4,3*! =  /  P L  • K i dV =  /  XU * .  ■ b £ ,  • s 3X3 • B 3'xl dV
ypret  ypret

* Equivalent external nodal forces

f e x t =  J  pb-{N}T dV+ /  t - { N } r dr
^ / p r e t  p  pret

4 , 3 * ! =  /  Pi*.b3* , < 1 d v +  /  4 . ^ / r
| / p r e t  p p r e t

Figure 4.1: Semidiscretized equilibrium equations in a Total Lagrangian Formula­
tion.

As it has been already established, in the finite element analysis we approximate 
the body as an assemblage of discrete finite elements interconnected at nodal points 
on the element boundaries. The displacements of every single node, measured in a 
local coordinate system -to be chosen conveniently- within each finite element must 
be transformed to a global coordinate system through the corresponding rotation 
matrix. This transformation, which will affect the resulting equivalent external and 
internal nodal forces, may be mathematically formulated as follows:

3The s e m i d i s c r e t i z a t i o n  term is used to refer just to spatial discretization whereas the term 
d i s c r e t i z a t i o n  is employed when both spatial and time discretization are developed as a whole -see 
Belytschko et al. (2000)-.
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e = 1 . . .  Nelem (4.18)

where:

fLt > fint stand for the local equivalent external and internal nodal forces matrices 
for a single finite element e.

G G
fext j înt stand for the global equivalent external and internal nodal forces matrices

for a single finite element e.

T e is the rotation matrix at the finite element e.

Nelem  is the total number of discrete finite elements.

4.2.5 Linearization o f the equivalent internal nodal forces.

The semidiscretized system of equilibrium equations -see figure 4.1- may be identified 
mathematically with an algebraic system of non-linear integral equations. Analytical 
solutions for this system are impossible to achieve, so alternative numerical methods 
must be taken into consideration.

One of the most classical and accurate of these methods is based on a pertur­
bation or linearization technique. In this case, the equivalent internal nodal forces 
matrix is expanded around a known value by means of a Taylor series truncated 
after the first order. Indeed, the total differential4 of this matrix with respect to the 
displacement field, can be calculated as:

In the above derivation, the differential operator has been introduced within 
the integrand. At the same time, due to the consideration of a Total Lagrangian 
Formulation, the partial derivatives of the shape functions do not depend on the 
displacements. As a result of this fact, the differential operator is conveyed only 
to the second part of the integrand. The relationship between the nominal stress 
tensor P and the second Piola-Kirchhoff stress tensor S has been also accounted for.

Right hand side of equation (4.19) is comprised of two terms. The second one 
can be expanded as follows:

ypret

ypret ypret ypret

SjkdFik dV

(4.19)

4This operator represents the so called t o t a l  d i r e c t i o n a l  d e r i v a t i v e  according to Bonet and Wood 
(1997), namely: = D $ ( x ) [ u ]  — lim £[£(£±£“1. jn this case, the scalar function which depends
on the variable x  is derivated with respect to an incremental direction u .
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f  d N 1 f  ON1 T d N J
J  w ™ t SikdFik d V =  J  d ^ SjkdUi dV  =

ypret  ypret  ^

f  d N ! „ d N J , f  d N 1 „  d N J „ r<r , ,
— J  QXPre‘ i k QXWet ' ~  J  fJXPTet d X PTet 1  ̂ ^

y pre t  3 ^ ypret   ̂ ^

where the Kronecker delta second order tensor Su has been introduced for the 
sake of completeness. As regards the first term of the right hand side of equation
(4.19), a similar derivation yields:

f  d N 1 f  d N 1
J  ^ TtdSjkFi k dV = J  dV  (4.21)

ypre t   ̂ ypret  ^

The total differential for the Green-Lagrange strain tensor is achieved as follows:

1 I f  d N M r d N L \
dEim = — (FpidFpm +  dFpiFpm) =  -  yFpidup Q-^pret ^uv Q x pret^ pmJ  (4-22)

By taking into account the symmetry of the tensor C, substitution of equation 
(4.22) back into (4.21), gives:

f  d N 1 f  d N 1 d N MJ  'oX pret^ 'jk lm dE^Fik d V  =  J  F{k Q xpret ^jklmFpl Q x pret du?  ( ^ - 2 3 )

ypret  3 ypret  ^

Finally, expression (4.19) may be rewritten per every single node of the La- 
grangian mesh a follows:

d i‘nt =  d i™ f + df?:f = (Kmof,J +  K ^ u )dnJ (4.24)

where after renaming some indices:

d N 1 „ „  d N JTv-mat‘ “ _
i j  ~

r d N 1 d N J=  J  dV  (4.25)
ypret  ^

u  f  d N 1 d N JK ? r  = * »  J  ^ s ‘k ^ d v  (4-26)
ypret

Formulas (4.25) and (4.26) represent two different components of the equivalent 
internal nodal forces vector differential di(nt, which may be described as:

1. Equation (4.25) stands for the variation of the second Piol-Kirchhoff stress
tensor with respect to the displacements field of the mesh, resulting in the
well known symmetric m a te ria l stiffness m a trix .
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2. Equation (4.26) accounts for the fact that the equilibrium was set up on the 
deformed configuration and not on the initial one5, resulting in the geom etric  
stiffness m a tr ix  or in itia l s tre ss  m atrix , which is a diagonal matrix.

Those matrices are added up to yield the referred to as to ta l  ta n g e n t stiffness 
m atrix , that is:

j £ t a n IJ __ j £ m a t IJ _|_ j ^geoIJ ^  27)

4.2.6 Som e considerations about the U pd ated  Lagrangian
Form ulation.

Semidiscretized non-linear equilibrium equations in a T L F  can be straightforwardly 
conveyed into a U LF -if required- by taken into account the following mathematical 
relationships:

pJ = (?ret (4.28)

dx ■
J&ij = FikPkj — Qj^pret (4.29)

d N 1 d N 1 dxj
d x wet ~  g x . d X pret ( • )

By substituting formulae (4.28) to (4.30) back into (4.7) and (4.13), it yields:

f ^ = j ^ % d V  (431)

k l  = / pW  dv  +  J  iiNl dr (4-32)
v r

Once again, we see that the domain as well as the coordinates of the Lagrangian 
nodes must be updated after each increment. Then, the rest of geometrical and 
mechanical properties must be updated analogously.

4.3 D irect Core Congruential Formulation (D C C F).

From the computational viewpoint, a very elegant procedure termed D irec t C ore 
C o n g ruen tia l F o rm u la tio n  (D C C F ) may be applied to perform the implemen­
tation stage of the formulation developed above. This methodology, hardly used 
in the existing literature, presents as pioneer studies the ones due to Mallett and

5This is a main difference with respect to the classical linear elasticity.
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Marcal (1968) and Rajasekaran and Murray (1973). The main ideas behind this for­
mulation can be discovered in the notable paper due to Crivelli and Felippa (1993). 
A more recent paper about the topic is Felippa et al. (1994).

The scope of the DCCF is establishing the set of global equilibrium equations 
(internal forces and stiffness matrix) in a core space in terms of the components of 
the displacement gradient tensor G at each material point, which is given as:

Gij — Q-^pret (4.33)

Therefore, this new set of equations is completely independent of the geometry of 
the structure and of the adopted discretization properties6. Afterwards, every single 
component of the displacement gradient tensor may be easily expressed in terms 
of the nodal displacements of the Lagrangian mesh. Naturally, it is at this stage 
when properties concerning geometry and discretization are brought to light7. The 
consideration of only traslational degrees of freedom for the nodes of the Lagrangian 
mesh makes the DCCF specially simple and easy to implement. The figure 4.2 shows 
a summary of this formulation:

Core equations 
(core space) -

Congruential
transform ation

Equations in DO Fs 
(physical space)

Figure 4.2: DCCF scheme.

For the development of this formulation, kinetic and kinematic Voigt rules, as 
well as the criterion to vectorize matrices will be used extensively -see Belytschko 
et al. (2000).

The key goal' and the reason to choose such an implementation technique, is to 
attem pt to make the core equations as independent as possible with respect to finite 
element mesh criteria, such as the element geometry, the selected shape functions 
and the selection of nodal degrees of freedom. Complete independence may be 
accomplished if the displacement gradient tensor is linear, tha t is, only translational 
degrees of freedom are regarded, which is our case. At the same time, this approach 
enables to clearly distinguish the different sources of nonlinearity that arise in the 
analysis of geometrically nonlinear structures.

4.3.1 D isp lacem ents and strains field.

As it was already explained, the displacements field can be discretized by means of 
the shape functions according to the following expression:

6The term c o r e  emphasizes the independence of these equations with respect to the discretiza­
tion decisions, i.e. geometry, shape functions and choice of nodal degrees of freedom.

7By following this technique, a general set of equilibrium equations (internal nodal forces and 
stiffness matrix) will be derived in a core space. Afterwards, these equations will be particularized 
for every different finite element, i.e. cable or membrane element.
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ui = ui IN I i = 1,2,3 1 = 1. . .  Nnodes  (4.34)

where Nnodes represents the total number of Lagrangian nodes and N 1 is the 
shape function pertaining to node I. By employing the vectorization of the nodal 
displacements matrix, we obtain:

o01 p jN n o d e s 0 0
u = 0 N 1 0 . 0 j y N n o d e s 0

0 0 N 1 . 0 0 j y N n o d e s

u i

u
u

Nnodes1
Nnodes

U Nnodes

(4.35)
The displacement gradient tensor G can be turned into the vector g as:

— [ 9i 92 93 P4 95 96 97 98 99 ] —
d u \  d u 2 d u 3  d u \  d u 2  d i t 3  d u i  d u 2 d u j

d x f ret  d x f et d x f ei d x f et d X % rei  d x f et d X % ret  d X l ret  d x f ei (4.36)

This vector g can be also obtained starting from the discretization (4.35), by 
means of the definition of a new matrix B as follows:

(4.37)

where:

B =

d N 1 

d X ? rei

0

0
97V1

dxiret
0

0
97V1

dXlret
0

0

0
97V1

d x p r e t  1

d X \ ret

0 97V1
d X { re t

0 0

d N 1 0
d X * r e t

0
97V1

d x l Tet

0 0

97V1 n

97V1
d X f ei

N n o d e s

d x { rei

0

0
Q p j N n o d . e s

d X% ret

0

0
Q p j N n o d . e s

d x p r e t
3

0
Q p j  N  n o d e s

d X { Tei

0

0
Q p j  N n o d e s

dXlret
0

0
q  p j  N n o d e s

d X % ret

0

0

0
Q p j N n o d e s

dXlret
0

0
Q p j  N n o d e s

d X % ret

0

0
Q p j N n o d e s  

T p r e i  
L3d x l

(4.38)

The Green-Lagrange strain tensor E can be transformed into a vector e by means 
of the kinematic Voigt rule:
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e T  —  \  e\ e2 e3 e4 e $  e6 ] — [ E 11 E 22 E 33 2 ^ 2 3  2E 13 2 E \ 2  ] (4.39)

According to appendix D, the Green-Lagrange strain tensor E can be expressed 
in terms of the displacement gradient tensor G, namely: E  =  |( G  +  G T) +  |G T • G. 
This expression can be rewritten by means of the new vectors e and g as follows:

e{ = h iT • g +  i g T • Hi • g =  hiT • B • u dis +  ^ u dis B T Hi B udis (4.40)

where hi and Hi are a vector of order ng and a symmetric matrix of order ng x n g, 
where ng represents the dimension of the vector g. Both of them are constituted of 
numerical values comprising (1,0). Examples of hi and Hj will be given in the next 
chapter for particular finite elements.

4.3.2 Equivalent internal nodal forces vector.

As it was already described, the internal virtual work can be obtained by means of 
the inner product of the virtual Green-Lagrange strain tensor &E and the second 
Piola-Kirchhoff stress tensor S. The latter is detailed as follows:

s T  —  [  S i  s 2 S 3  s4 S 5  sq  ]  —  [  S 1 1  S 2 2  S 3 3  S 2 3  S i z  S 1 2  ]  (4-41)

Thus:

6Wint =  J  5 E : S d V =  J  5eT ■ s dV  =  J  S e ^ t  dV  (4.42)
j /p r e f  ^ /p r e t  ypret

Therefore, the virtual variation of formula (4.40), turns out to be:

5et =  hi7- ■ <5g +  (̂<5gr • Hj7- • g +  gr ■ Hi7 • <5g) =

=  h 7 • B  • Sudis +  (̂<5uJjs • B 7 • Hi7 ■ B • udjs +  u dia ■ B 7 • H 7 • B ■ 6udi,) =

=  Sudis ■ B 7 ■ [h, +  i(H , +  H,7 ) • B • u,,is] =  5u7 , • B 7 • [hi +  i(H , +  Hj7) ■ g]

(4.43)

By substituting (4.43) back into (4.42) and by attending to the symmetry of the 
matrix Hp

dWint =  J  5uJia ■ B 7 ■ [h, +  Hi • g]sj dV  =

=  S u Td i a - J  B7 • [h, +  H, • g]sj dV  =  S u d i s  ■ fint (4.44)

ypre i

ypret
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where the equivalent internal nodal force vector is written as:

J  B t ■ [h, +  Hi ■ g]sj dV  =  J  B T -4>intdV  (4.45)f in t  —

y p r e t  y p r e t

where:

fiint ~  s*[hi +  ^  • g] — Si [hi +  H i • g] +  . . .  + s6[he +  H6 • g] (4.46)

Equation (4.45) constitutes the so called congruential transformation from the
core space to the real space of variables.

4.3.3 Equivalent external nodal forces vector.

Analogously, the equivalent external nodal forces vector can be deduced to give:

dWext — J  6uT ■ pb dV  +  J  £uT - t  dT =
'Ypret p  pret

Ypret  p  p r e t

=  6udis • [ J  N T • pb dV  +  J  N T • t  dr] =  Su^ia • fext (4.47)
ypret  ppret

Thus:

f«f =  J  N T • pb dV  +  J  N T ■ t  dT (4.48)
y p r e t  p p r e t

Thermal effects or initial deformations can be handled and considered as external 
applied forces. Their contribution is mathematically represented as:

f _
Lext

ypret

I  B t  ■ 4>°int dT (4.49)
V

where:

0 L  =  (<Vb°) [hi +  Hi -g]  (4.50)

4.3.4 L inearization o f the equivalent internal nodal forces 
vector.

Because of the nonlinearity of the equilibrium equations -see figure 4.3-, and by 
proceeding identically as above, the linearization of the equivalent internal nodal 
forces vector can be accomplished as:
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* Equilibrium  equations
fint  fext

* Equivalent internal nodal forces

g =  B • u dis

ei = hiT • g +  | g T • Hi • g 

0 int =  Sdhi +  H i • g]

fin t= f  B T -cf>in tdV
ypret

* Equivalent external nodal forces

fex(= f  N T - p b d V +  J  N T - t d r
ypret  p  pret

Figure 4.3: DCCF non-linear equilibrium equations.

dfi„t = d J  B T -<pintd V =  J  B T -d<fiintdV  (4.51)
ypret  ypret

d<t>int = d[st(hi +  Hi • g)] =  dsi(hi +  Hj • g) +  s^Hi • dg (4.52)

If the constitutive equations are reformulated in Voigt notation as follows:

si = o fret + Cijej (4.53)

Then:

dsi = Cijdej = CijdgT • [hj +  Hj • g] =  C^[hjT +  gT • Hj] • g (4.54)

By substituting (4.54) back into (4.52):

d(t>int = Ih i +  H i • g ]^ [ h jT +  ST • Hj] • dg +  SiFLi ■ dg (4.55)

By including (4.55) in (4.51), it yields:

diin t= J  Br  ■ M ‘“n ■ B dV ■ dudis = K tan ■ dudi3 (4.56)
ypret

where:

M tan =  [h, +  H, • g]Cjj[hjT +  gT ■ Hj] +  SjH, =  M mo< +  M 9“  (4.57)
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Equation (4.56) defines the total tangent stiffness matrix K*an in terms of an 
integral equation as a function of a matrix M*an, which is named core total tangent 
stiffness matrix. This integral equation constitutes the so called congruential trans­
formation from the core space to the real space of variables. Furthermore, equation 
(4.57) represents the core total tangent stiffness matrix as the summation of two 
components, tha t is, the core material one M mat and the core geometric one M 5eo.

M™“‘ =  [hi +  Hi ■ g]Cy[hjr +  gT • Hj] =  Mo +  M i +  +  M 2 =
=  hiCyhj7, +  hiCygT • Hj +  Hi ■ g C y h / +  Hi ■ gCtJgT ■ Hj (4.58)

where:

M geo represents the core geometric stiffness matrix, as a result of non-linear effects. 

M mat represents the core material stiffness matrix.

M 0 accounts for the linear effects.

M i +  M j1 -|- M 2 account for the non-linear effects.

Finally, the total tangent stiffness matrix in global coordinates can be represented
as:

I j G  j j  P

j £ fa n e _  rpe # j £ t a n e _ r j e T _  rj,e /  g / T , ]yj*ane # g J  ^ y  . rpeT (4.59)

y p ret

where:

T e represents the rotation matrix at the finite element e. 

eu G
K ton represents the global total stiffness matrix corresponding to the nodes I

and J  belonging to the finite element e.
e I J

K tan symbolizes the local total stiffness matrix corresponding to the nodes I  and 
J  belonging to the finite element e.

4.4 Energy principles.
The mathematical formulation of the structural problem has been collected in figures 
4.1 or 4.3, which summarize the global equilibrium of the membrane by means of a 
system of nonlinear equations imposed on the nodes of the Lagrangian mesh. The 
solution of this system of equations by means of a perturbation-like or Newton- 
Raphson-like scheme may result in an algorithm with bad convergence properties. 
For the sake of this reason and given the implicit characteristics of the structural
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membrane to be analyzed, an alternative approach based upon energy principles may 
be taken into consideration -see Oden and Ripperger (1981) for a further explanation 
of this technique.

Let us consider once again the material body in an initial prestressed config­
uration 3ftpret -primary state, which after the application of a displacement field, 
it maps into a configuration 3ft -secondary state. The consideration of the loading 
process undertaken over the material body, enables the definition of three classical 
mathematical functionals known as:

• External potential energy functional.

Sft

n“l = ~  I  J  / r * bidUi
VPret 3Kpret

• Internal potential energy functional.

° - J f  SijdEij dV  (4.61)
VPret 3fJpret

• Total potential energy functional.

n = U +  Uext (4.62)

The former functionals gather the external, internal and total potential energy 
accumulated in the structural membrane along the loading path. The process is 
considered to be adiabatic and kinematically slow, so the generation of thermal and 
kinematic energies can be neglected.

The system of global equilibrium nonlinear equations represented in the equation 
(4.4) was obtained through the semidiscretization procedure starting from the weak
form of the structural problem or, equivalently, by means of the well known Principle
of Virtual Work (PVW). From a mathematical perspective, this means tha t both 
internal and external nodal forces are derived from potential functionals, known as U 
and — I I ext respectively. This mathematical property makes the mechanical system 
to be named as conservative. This principle is nothing more than the variational 
formulation of the total potential energy, also known as the Minimum Potential 
Energy Principle.

<m =  SU +  6Uext = 6Wint -  5Wext = 0*=> 6Wint = 5Wext (4.63)

Equation 4.63 represents the minimization of the total potential energy func­
tional with respect to the displacement field. This formula may be understood as a 
classical unconstrained optimization problem for an objective function which results 
to be the total potential energy IX As a consequence, any appropriate technique 
may be used to carry out this mathematical optimization.

- I J
dV  — I I Udui dT (4.60)

TPret SRpret
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This alternative approach of understanding the structural problem by means 
of minimization techniques can be found in many References, for instance, Oden 
(1967), Bergan (1980), Monforton and El Hakim (1980), Hildebrandt and Tromba 
(1990), Leu and Yang (1990) and Gosling (1998). Figure 4.4 summarizes the dif­
ferent steps to reach the equilibrium solution: the total potential energy functional 
(zero order methods), its gradient or unbalanced force vector (first order methods), 
or even its hessian or total tangent stiffness matrix (second order methods). A 
comprehensive8 explanation of these procedures is developed in Haftka and Giirdal 
(1992) and Samartfn (1993).

K t • Au =  A ffres =  0

Zero order 
m ethods

Potential
Energy

First order 
m ethods

Residual forces 
vector

Second order 
m ethods

Total tangent 
stiffness m atrix

Figure 4.4: Variational formulation of the structural problem.

4.5 Concluding remarks
The complete structure is idealized as an assemblage of individual structural ele­
ments. The element stiffness matrices corresponding to global degrees of freedom 
of the structural idealization are calculated, and then the total stiffness matrix is 
formed by addition of the element stiffness matrices. The solution of the equilibrium 
equations of the assemblage of elements yields the element displacements, which are 
then used to calculate the element stresses.

Trial functions are used to approximate the actual displacements of the struc­
ture. The result of this is tha t the partial differential equilibrium equations are not 
satisfied in general, but this error is reduced as the finite element idealization of the 
structure or the continuum is refined.

The general formulation of the displacement-based finite element method is based 
on the use of virtual displacements, which is equivalent to the use of the Galerkin 
method, and also analogous to the use of the Ritz method to minimize the Total 
Potential Energy of the system -see Bathe (1996).

8According to Samartfn (1993), first order methods are named i m p l i c i t  m e t h o d s  and second 
order methods are also known as e x p l i c i t  m e t h o d s .
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5.1 Introduction.

Among the wide variety of tension structures in Architecture and Civil Engineering, 
both prestressed membranes and cable networks constitute a very remarkable group. 
These structures are achieving an increasing acceptance level in our society, for 
example, because of their aesthetic qualities and speed of erection. A large number 
of tensioned membranes are reinforced by means of interior and perimeter cables. 
Thus, the analysis of cable elements can be considered as a previous step for a further 
and comprehensive study of prestressed membranes. Extensive bibliography can be 
found related to the matter, although the most appealing References in accordance 
with the author’s criterion are pointed out below. These References can be split 
into two distinct groups:

1. Those were analytical solutions are pursued by the author, namely, Otto 
(1962), Leonard (1988) and Kadlcak (1994).

2. Those were numerical solutions are attained by the author, that is, Peyrot and 
Goulois (1979), Jayaraman and Knudson (1981), Buchholdt (1985), Coyette 
and Guisset (1988), Swaddiwudhipong et al. (1989), Broughton and Ndum- 
baro (1994), Stefanou et al. (1994), Kwan (1998) and Arcaro (2001a).

Analogously, throughout the last decades, the state of the art of prestressed 
membranes shows a broad variety of publications, which might be allocated in three 
different categories:

1. Basic examples which are analyzed by means of analytical approaches; the 
strong formulation is solved in domains of simple geometry: see Timoshenko 
and Woinowsky-Krieger (1959), Otto (1967), Herzog (1977), Cortell (1984) 
and Leonard (1988).

2. Membranes which are assimilated to cable networks, whereby orthotropic hy­
perelastic membranes can be analyzed in a fairly accurate manner. Any of the 
References mentioned in previous paragraphs are valid examples.

3. The exact continuum approach for large strain non-prestressed membranes is 
studied in multiple References: Oden and Sato (1967), Grutmann and Taylor 
(1992), Souza et al. (1995), Wu et al. (1996) and Taylor (2001), Gosling and 
Lewis (1996a) and Gosling and Lewis (1996b). Recent developments are due 
to Bonet et al. (2000) and Bonet and Mahaney (2001). In all of them an ULF 
was employed.

The aim of this chapter is to summarize the Total Lagrangian Formulation (TLF) 
according to a Direct Core Congruential Format (DCCF) of both cable and mem­
brane elements.
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5.2 Cable elem ents.
Let us establish, according to figure 5.1, a fixed local coordinate system OXPretx%retX%ret. 
The direction O X lret is adopted to move along the longitudinal axis of the cable. 
According to this criterion, the linear one-dimensional shape functions result to be:

y p r e t  y P r e t

N l ( * r •) =  1 - 2 ^  " W )  = (5.1)

where LPret stands for the initial prestressed length of the cable element. The 
displacement field and the final spatial coordinates may thus be interpolated in a 
standard manner as follows:

Ui = N lu\ +  N 2u2 Xi = N lx\  +  N 2x 2 i = 1, 2,3 (5.2)

O

pret

Lpr«

pret pret

Figure 5.1: Cable element description.

The deformation gradient tensor Fij may be composed as the sum of the dis­
placement gradient tensor Gij and the second order identity tensor Sij as:

Fij — Gij T &ij V  d x pret h j  =  1,2,3 (5.3)

By employing the Direct Core Congruential Formulation (DCCF), the vectorized 
displacement gradient tensor is given in its transpose form as:

J_jpret J jp r e t  £ p r e t 0 0 0 0 0 0 u21 = u2 -  u) (5.4)

By realizing that only the first three components of the former vector g are not 
null, let’s define henceforth a particularized displacement gradient vector gc for a 
cable finite element as: g j  =  ( gi p2 # 3  )• This vector may be related with the 
nodal displacement vector as follows:



5.2. Cable elements. 63

=  B r • u =

dN1 
d X { re t

d N 1
d X { re t

0

0

0

d N 1 
axfret

d N 2
d X l r e t

0

0

0

d N 2 
d X  f re t

0

0 "  u \ "u\
0

u\u\
„ , 2

d N 2 u2
d x f ret  . . U l  .

(5.5)

where the new matrix B c has been introduced for the sake of convenience. Be­
cause of dealing with a cable element and by neglecting the transversal effects of the 
deformation, just the component E n  of the Green-Lagrange strain tensor is of main 
concern. This term  may be described in terms of the components of the vector gc 
as:

E n  — 9i + 2 ( ^ 1  + 92 + £3 ) — ru +  - iT  • • H i • B c • u (5.6)

where H i stands for the second order identity tensor and h i represents the first 
column of the latter. By adopting Si to symbolize the component Sn  of the second 
Piola-Kirchhoff stress tensor, the vector of local equivalent internal forces may be 
represented as well by means of the DCCF as follows:

iin l= J  B j  ■ 4>intdV  =  A ^ i r ^ l  ■ 4>int =
y p r e t

- I 3

la i n t (5.7)

where 74prei stands for the cross sectional area of the cable in the prestressed 
configuration, I3 is the 3x3 identity matrix and <pint is presented right below as :

<t>int = s i(h i +  H i • B c • u) =
5 i ( l  +  9 i) 

sig2 
S 193

Jjpret

U1 u f
L u 3

21
(5.8)

By combining equations (5.7), (5.8) and by premultiplying by the correspondent 
rotation matrix, it is feasible to accomplish the global vector of internal forces with 
respect to a global cartesian reference system O X p X fX p :

f GT =in t
Sn Apret

Jjpre t —  X
21c t 21g _ r 21Gx3 X

21c
X

21c
X

21( (5.9)

where:

x 21( )G  1 G
' -  u 1 (5.10)

The constitutive equation according to the prestressed Saint Venant-Kirchhoff 
hyperelastic material may be represented as:
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Sn = oft* +  E(En -  E°n ) ( 5 . 11)

where the initial Green-Lagrange strain component may be considered as a 
possible thermal effect which depends upon the dilatational coefficient, the initial 
and final temperatures as:

=  a A T  =  a ( T end -  T ini) (5.12)

The linearization of the equivalent internal forces vector is fundamental to solve 
the geometrically nonlinear equilibrium problem. After carrying it out, the so called 
total tangent stiffness matrix appears to be the key feature of this technique. By 
means of the DCCF, an interesting relationship may be obtained whereby the lat­
ter matrix can be related to the one expressed in terms of the components of the 
displacement gradient tensor as follows:

K ‘“ " =  J  B ? - M t a n - B cdV ( 5 . 13 )

ypret

where the matrix in terms of the displacement gradient variables can be devel­
oped easily as:

M ‘“ n  =  [h, +  H , • go]C„[h[ +  g f  ■ H,] +  s,H ! = M mat + M » “  ( 5 . 14)

By substituting equation (5.14) back into equation (5.13) and after perform­
ing the necessary algebraic operations, the geometrical and material submatrices 
corresponding to nodes I  and J  can be deduced as:

K 9 ‘ ° , J  =  J  B f  • M j e °  • B JcdV =  ( - l ) f + J ^ re i(C T * p ~  EEn)h  ( 5 . 15)

ypret

K m a t1 B /T • M ma* B JcdV  =  (-1 ) r+s E A pret
Jjpret

ypret

x 21 1

X
21

X
21
3 J

,21
X

21
X

21

(5.16)
where E  stands for the Young modulus for a particular considered cable element 

and x?1 represents the difference between the ith spatial current coordinate of the 
extreme nodes of the element. To obtain the final total tangent stiffness matrix, it is 
only required to add equations (5.15) and (5.16) and to perform the corresponding 
rotating transformation from the local to the global reference frame.

The total incremental internal strain energy of the structure can be formulated
as:
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N elem

Win t= J  wintd V =  f ]  A*r‘ti r et[Eu < f f t + lEE?11] (5.17)
ypre t   ̂ ^

Relationship between the second Piola-Kirchhoff stress tensor and the Cauchy 
stress tensor is accomplished by means of a push forward operation <r =  J _1F -S -F T. 
Once obtained the deformation gradient tensor and its jacobian:

1 +  —  I T n

21
£pret

V21
Jjpret

0 0

1 0 J  = det(F) =  1 +
u21

Jjpret (5.18)

W2̂
LPret 0 1

Thus:

u 21
au  ~  (1 +  X p ^ )511 (5-19)

Or analogously:

<7n — ‘5'ii [1 + Y  21°  y'21Cr Y  Aj A 2 A 321c (5.20)
u21c

5.3 M em brane elem ents

The textile membrane is approximated by a discrete model consisting of a finite 
number elem  of flat three-node isoparametric elements with linear shape functions. 
The geometry of each element in the initial prestressed state is thus, according to 
figure 5.2, defined by a plane of uniform thickness t bounded by straight lines which 
intersects at three points called nodes.

Once again, apart from the global reference frame, a fixed local coordinate system 
q ^ pretxPretx%ret is established for each element. For the sake of simplicity, it is 
assumed that each element lies in the O X 1̂ ^ X ^ et plane of its local coordinate 
system. Thus, the displacement field and the current coordinates can be interpolated 
in terms of the shape functions as:

m = N lu] +  N 2u2 +  N 3u? Xi =  N 'x l  +  N 2x 2 +  N zu\ i =  1,2,3 (5.21)
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N ! ( X Y e\  X r ‘) =  ^ ( a 7 +  t f X ? *  + c’X ^ )

q I  _ jj£ p re tJ j^ p r e tK ___ ^ p r e t K ^ p r e t J

b I  =  y r p r e t * _  x p r e t«  ( 5  2 2 )

  j£pretK__ j£pretJ

p prei =  l ( c K b J _  c J b K j  I , J , K =  1, 2, 3

where r pret is the area of the initial prestressed triangle. Note tha t the quantities 
a7, b1 and c1 -named Zienkiewicz’s coefficients, see for instance Levy and Spillers 
(1995)- are independent of the deformation of the membrane and are computed 
directly from the geometry of the initially prestressed shape. According to the 
DCCF, the vectorized displacement gradient tensor is given in its transpose form 
as:

rT  _

gT =  [ 9 i  92 9s 9a 9h 96 97 9s 99 ]

i2_

(5.23)

2ppret 2T Pr e t  2 r  Pr e t  2 T P r e t  2 T P r e t  2Ppret 0 0 0

4 k

p r e t

p r e t p r e t

J

o

Figure 5.2: Membrane element description.

As it was recognized for the cable net approach, only the first six components 
of the vector g are distinct of zero. Therefore, it results convenient to consider a 
particular displacement gradient vector for the membrane case which will be named 
gm as:
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S  m  —

91
92
93
94
95
96

=  B,
1

u = 2ppret
M s  6 2I 3 b 3h  

M 3 c 2I 3 c 3I 3

“ i
u \
u\
u\
U r

U \

u'i
U r

Ur

(5.24)

By neglecting the transversal deformations effects along the thickness of the 
membrane -an appropriate consideration for prestressed membranes developed into 
the architectural field, the Green-Lagrange strain tensor may be obtained according 
to the DCCF. In Voigt notation -see Belytschko et al. (2000) for further details, the 
first 2x2 minor may be depicted as:

e T — [ &\ e2 e3 ] — [ E n  E 22 2^12  ] (5.25)

ei =  hjT • gm +  i g £  • Hi • gm =  hiT • B m • u +  ^uT • ■ H, • Bm ■ u (5.26)

Hi = I3  O3
h 2 -

1
C

O
0 

1

C
O

01

h 3 = 0 3  I3

O C
O 0 C
O 03 I3 I3  0 3  _

h [  =  [ 1 0 0 0 0 0 ]

h j =  [ 0 0 0 0 1 0 ]

h3 =  [ 0 1 0 1 0 0 ]

(5.27)

(5.28)

where again I3 stands for the 3 x 3  identity matrix and 0 3 represents the 3 x 3  
null matrix. The vector of local equivalent internal forces is particularized for the 
triangular flat element by using the DCCF as:

f .  _  
Hnt • <Pint d V  =  t  =  -

y p r e t

b113 

52I3
[3

c%
_ c2!  

b3h  c31
3

3  j

4*int (5.29)

where t stands for the membrane thickness, c7, b1 have already been introduced 
above and (pint is presented right below as:
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4*int — Ŝ h-i “I- SiHjg — (5.30)

sl( l + 9 l) +  s3p4 
Sl#2 +  s3(l +  g5)

Sl93 +  S3̂ 6 
S2#4 + s3(l + <7l) 
s2(l +  95) +  3̂̂ 2 

-5206 +  53p3
By particularizing the constitutive equations for the prestressed isotropic Saint 

Venant-Kirchhoff textile in a taut state, they can be shown in Voigt form as:

s =  {crpret} +  C • e

"  S i  ■
r pret -i

a n E vE 0 ’  ei "

S 2 = pret
°22 +  l-is? vE E 0 e2

.  S 3 _
pret

L °12 J 0 0 J5

1

.  e 3 _

(5.31)

Thermal effects may be included into the constitutive equations by means of the 
following modification to the above formula:

s =  { a pret} +  C • (e — e°) (5.32)

where the initial Lagrangian deformation tensor in Voigt notation may be ex­
pressed in terms of an isotropic thermal process, see (Onate 1995):

(5.33)

The total tangent stiffness matrix may be computed by means of the congruential 
transformation and thus the submatrix due to the contribution of the nodes /  and 
J  is depicted as:

" 1 " ' 1 ’
e° =  a A T 1 _ Q,^pen̂  _ rpini^ 1

. 0 . 0

K IJ =
t

(6 V M n + c1 cJM 22+b‘ cj M 12+ c '6 j M 2i)J-J I
4 P pret M y =  M?eo+M™“‘ 

(5.34)
After some tedious but straightforward algebra, the geometrical and material 

components of the stiffness matrix S can be developed as follows:

I V f f l e o  l v l l l  12 M m a t =  1 1  1 2  1 5  3 5 1

[ Mg° J L M 2 l “  M 22a t  J

M f f  =  SlI3 =  C n i f i  + C33 f2f2r  +  CI3fif2r  +  C31f2f?  (5.36)

M f f  =  S3 I3 M™2“‘ =  C n f i g  + C32f2f2T + Ca h g  +  C33f2f r  (5.37)
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M?r = s3I3 = C3ififir + C 23l 2 i ?  + C33fif2T + C2if2faT (5.38)

M%° =  s2I3 M S04 =  C33f3 f f  +  C22f2f2r +  C32 f3f j  +  C23f2fr  (5.39)

where Si is the ith-component of the second Piola-Kirchfoff stress tensor in Voigt 
notation, I3 is the 3 x 3  identity matrix, Cij is a component of the fourth order tensor 
of elastic moduli in Voigt notation and the vectors fi and f2 constitute the first and 
second column of the deformation gradient tensor which can be expressed in their 
transpose forms as:

=  [ 1 +  gl g2 g3 ] f2T =  [ 0 4  1 +  g5 9q ] (5.40)

The incremental internal strain energy is obtained as:

Nelem  *

W int  d V = Y , t  r P r e t [e T  ■ { <T” r e ‘ }  +  2 e T  ■C  ■ e l  ( 5 -4 1 )
ypret * ^

Eventually, relationship between both Lagrangian and Eulerian stress tensors is 
accomplished through the use of a classical push forward operation, that is:

' 1  +  01 94 0
F  = 92 1 + 9 5 0

. 03 06 1

Therefore:

=> J  =  det(F) =  (1 +  0 i)( l +  0 5 ) ~  9294 (5.42)

1 (l +  0i)2 04 2(1 +  <7i)(/4
A  (l +  0s)2 2(l +  p5)02 *s (5.43)

- { 1  +  9i)92 {l + g5)94 {1 + 9i ) { l  + 9 5 ) + 9294 .
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6.1 Introduction.

A mechanical system is said to be conservative  when both external and internal
forces come from a potential functional. In other words, both types of forces can be
derived as the gradient of the total potential energy. Mathematically:

n = u + next (6.i)

fint — VZ7 ==> ftnt are conservative (6.2)

text — — VIIext = >  fext are conservative (6.3)

When considering hyperelastic the constitutive behaviour of the material, it en­
tails that the internal forces can be attained according to formula (6.2). This means 
that these forces constitute the gradient of the internal or strain energy functional. 
Therefore, the term conservative depends directly on the status of the external 
forces, tha t is, whether or not these forces come from a potential.

Non-conservative forces cannot be expressed by means of the formula (6.3). This 
fact prevents one to define a general Total Potential Energy (T P E ) functional from 
which to derive both internal and external forces. Moreover, optimization numerical 
techniques cannot be applied at the energy level, unless the energy consumed by the 
non-conservative forces is stored incrementally1.

Amongst the types of loading likely to act on prestressed membranes, there is 
one specific load which can be categorized as non-conservative. This is the so called 
wind loading. Usually, the wind is supposed to be applied pseudo-statically as an 
external distributed force normal to the exposed surface. Therefore, wind loading’s 
direction changes continuously along with the membrane’s deformation. This is the 
reason why theses forces are also known in the specific literature as follower loads.

The purpose of this chapter is to obtain in accordance with a T L F, the equivalent 
external nodal forces vector as well as its variation with respect to the displacements 
field of the prestressed membrane. Therefore, when using second order iterative 
schemes, a external load stiffness matrix will arise in order to be added to the 
already derived stiffness matrix.

6.2 Equivalent external nodal forces vector.

The external wind loading t  acting on the current surface of the membrane T, can 
be transformed into an equivalent external nodal forces vector by means of an U LF 
as follows:

xAs was pointed out in a previous chapter, optimization methods working at the force level are 
named f i r s t  o r d e r  m e t h o d s , whereas methods working at the stiffness level are known as s e c o n d  

o r d e r  m e t h o d s .
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l ‘xt =  / N ‘tdT (6.4)

By regarding the wind load t as continuously normal to the exposed surface, it 
can be rewritten in a more convenient manner by means of the unit normal vector 
n as:

t = —p n (6.5)

where p is the so called pressure parameter. By substituting equation (6.5) 
back into (6.4), and by taken into consideration Nanson’s rule, see appendix D, the 
external force vector can be expressed in a TLF as:

n dr = JF~t • np™tdrpret (6.6)

4, =  J  ~P N rJF~T ■ npTetdVpret =
p  pret

j  -pA f/ Adj(F)-nprc<dr,”'ei (6.7)
p  p r e t

where Adj(F) is the adjunct2 matrix of F. By particularizing for a three-noded 
isoparametric finite element, matrices F and Adj(F) can be rewritten in a DCCF as 
follows:

F =
1 +  Pi 9i 0

92 1 +  95 0
93 9e 1

(6 .8)

Adj(F) =
1 +  95 ~ 9 2

~ 9 a 1 +  Pi
0 0

(6.9)
P2P6 — (1 +  P5)p3 
P3p4 “  (1 +  Pl)P6 

(1 +  Pl)(l +  ps) — p2p4 .

As the unit normal vector in a local coordinate system can be expressed as
npret =  (o o 1j t > then.

Adj(F) • npret =
P2P6 — (1 +  P5)p3
P3p4 — (1 +  pl)p6 (6.10)

. (1 +  p i)(l +  ps) — P2P4 .

As for triangular finite elements the components of the displacement gradient 
tensor are constant within an element, thus, from equation (6.7):

/ ■ p p r e t
N I d T pret =  _ p _ _ Adj(F) . npre, (6 .11)

p p r e t

2Recall Cramer’s Rule to  calculate the inverse of a matrix F  as: F  1 =  det̂ F) A d j(F )J
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Eventually, in a global coordinate system, the above vector can be formulated 
by means of the rotation matrix T  as follows:

f ig =ext
_pYPret

T
# 2<76 ~  (1  +  95)93 
9394 ~  (1 +  9i)gG 

. (1 +  <?l)(l +  9 5 ) — 9294

(6 .12)

6.3 Linearization of the equivalent external nodal 
forces vector.

Applying a linearization or perturbation technique on the equivalent external nodal 
forces vector, a new stiffness matrix component is deduced, whose effect must be 
added up to the already calculated one. As it can be observed:

U nt -  f ext = 0 = >  (K int ~  K ext) • A u =  0 (6.13)

Given the Lagrangian nodes I  and J  belonging to the same finite element, the 
component is obtained as:

tsIJ _
ext d u J

(6.14)

By employing the DCCF:

91

92
93
94
95
96

Srn  —
1

2 P  pret
b113 b%  b %  
c %  c213 c3^

u:
Û
U \

U r

u%
Ui
Ur
U'i

(6.15)

Thus, the components of the vector Adj(F) • npret can be reformulated as:

^ 1  —  < 7 2 0 6  —  ( 1  +  9 5 ) 9 3  —

1
bJcKulu% — (1 +4 p  pret2 2 ppret 2 P  pret

=  g m  -  ( 1  +  Si)S6 =  ^ i - 2 bJcKu ju *  -  (1 +  (6.17)

Q 3  —  ( 1  +  <7 i ) ( l  +  # 5 )  — #2<?4 —

=  (1 +  — &V) ( 1  +  ) -------- ]—t b JcKu iu ?  (6.18)2 r  pret 2rpret 4 r  PTet
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Thus:

u  - p T ^Ty~ i J _*^ext

dQ i 
du f

d p i d p i '

dO.2 dO.2 dO.2
du( 2 dui

dOz 
d u f

dO.3
97 J _

(6.19)

By carrying out some calculations, the above matrix can be simplified as follows:

K IJ =  —ext g

o gQbJ -  g3cJ g2cJ -  (1 +  g5)bJ

-gebJ +  g3cJ 0 g4bJ -  (1 +  gi)cJ

(1 +  g5)bJ -  g2cJ (1 + gi)cJ -  g4bJ 0

(6 .20 )

This matrix is easily implemented into a computer code if defining the following 
parameters:

( J = g6bJ -  g3cJ

riJ = g2CJ ~ (I + g5)bJ

= g^bJ -  (l + gi)cJ 

The element stiffness may be assembled to come out with:

r r l J  _  x s i  _  ~~P
ext ext g

(6 .21)

(6 .22)

(6.23)

1 O C7 T]1

1
. 0 M7

1— l ►-i 0
(6.24)

As can be straightforwardly seen, the matrix’s elements do not depend on their 
rows but on their columns. Therefore, for nodes 1,2,3 of a triangular finite element 
e, this matrix can be finally presented as:

(6.25)

Because of the lack of symmetry of this matrix, the final total tangent stiffness 
matrix will not be symmetric any more when dealing with non-conservative body 
forces. However, it can be shown that for a closed structure in a constant pressure 
field, the assembled external load stiffness is symmetric, see Bonet and Wood (1997) 
and Belytschko et al. (2000) for further details.

KL( ts-2
ext K3ext

T se  _
ext

T S l
ext

ts-2
ext K3ext

\ f l  
. ext K L t̂ 3

ext
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7 . 1  Introduction.

In the last decades, membranes have been widely used in many different Civil En­
gineering fields, see Wakefield (1999), Hangai and Wu (1999), Saitoh and Okada 
(1999) and Ando et al. (2000). Under certain loading conditions, a high likelihood 
exits for the development of wrinkled and slack regions within an otherwise taut 
membrane surface. The existence and severity of such wrinkled regions may have 
an important adverse effect on the overall stability of the structure. Therefore, a 
precise analysis of the wrinkling phenomenon is required. This undesiderable effect 
may be the result of an inadequate initial shape or of an inappropriate prestressed 
distribution or, may eventually be due to excessive loading in service conditions.

The proposed technique will move away from those other approaches where the 
modification of the kinematics of the problem is carried out in advance, see Rod- 
deman et al. (1987a), Roddeman et al. (1987b), Steigmann and Pipkin (1989), 
Kang and Im (1997), Kang and Im (1999) and Lu et al. (2001), which tend to 
increase the difficulty of the involved formulation. Other authors such as Tabarrok 
and Qin (1992) and Stanuszek (2003), directly modify the expression for the second 
Piola-Kirchhof stress tensor, resulting in a modified Newton-Raphson algorithm. By 
following previous work by Gil (2003a), Gil (2003b) and Mahaney (2002), this chap­
ter will present an efficient numerical technique for the computational simulation of 
wrinkles in a prestressed membrane, based upon the modification of the Helmholtz’s 
free energy functional.

Once the fundamental equations for the analysis of prestressed membranes have 
been presented in previous chapters, an adequate methodology to study the oc­
currence of wrinkles can be developed. First of all, the basics of the hyperelastic 
finite deformation theory along principal directions is briefly introduced. The ex­
posed framework is based upon the work of Bonet and Wood (1997), where an 
exhaustive treatm ent of the subject can be found. The next section is focused on 
the wrinkling phenomenon itself. A characterization in terms of the eigenvalues of 
the Cauchy stress tensor is presented to localize adequately each one of the pos­
sible membrane’s states: slack, wrinkled or taut. A detailed derivation of these 
eigenvalues by taking as initial assumption the Helmholtz’s free energy functional 
for prestressed hyperelastic Saint Venant-Kirchhoff membranes is performed. As 
a consequence, alternative and easy handling formulae will be encountered for the 
computational analysis of wrinkling. Specifically, a modified Helmholtz’s free energy 
functional will be shown for wrinkled regions across the membrane’s surface.

Next section focuses on the mathematical development of the stress and constitu­
tive tensors after the appearance of wrinkling. A consistent derivation, see Malvern 
(1969), Chadwick (1999) and Holzapfel (2000), will be provided with the purpose of 
guaranteeing quadratic convergence under the use of a Newton-Raphson numerical 
scheme. The Voigt notation will be employed for the sake of notation purposes, see 
Belytschko et al. (2000).
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7.2 H yperelastic finite deformation theory along 
principal directions.

Let be the unit orthogonal triad which defines the principal directions
corresponding to the Green-Lagrange strain tensor E. Likewise, this spatial triad 
aligns with the principal directions of the right Cauchy-Green deformation tensor C.
By considering to be any of the eigenvalues of the tensor E (principal strains), it
is feasible to develop the following expressions for the second order identity tensor 
I, the tensor E and its inverse E -1 , namely:

3

i = y > 0 ® N „ (7.i)
a = l

3

E  =  J > N a ® N a (7.2)
a=l

3 l
E - 1 =  ^ - N a ® N a (7.3)

i S ota = l

Analogously, the right Cauchy-Green tensor can be expressed in terms of their 
eigenvalues, i.e. the stretches {Aa }a=1,2,3, as follows:

3

C  =  ^ A ^ N a ® N a (7.4)
a = l

Hence, equations (7.2) and (7.4) can be combined in a straightforward manner 
to derive a relationship between the principal strains £a and the stretches Aa as:

( a  =  \ { > i  -  1) (7-5)

By accounting for the polar decomposition theorem, i.e. F =  R  • U, the right
Cauchy-Green tensor C can be rewritten in terms of the symmetric stretch tensor
U as:

C =  F r  F =  U U (7.6)

Thus, relating equations (7.4) and (7.6), the material stretch tensor can be easily 
obtained as:

%
3

U  =  ^  AaN a ® N a (7.7)
a = 1

The mapping of the unit triad N aa=1,2,3 given by the tensor F, after substituting 
the polar de composition theorem, enables to obtain a simple relationship with the 
unit triad n aa=1,2,3, as follows:
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F • N q =  R  • U • N a =  AaR  • N a =  Aan a (7.8)

By following the definition of a Saint Venant-Kirchhoff constitutive behaviour, 
the Helmholtz’s free energy functional or strain energy functional wint is a potential 
for the second Piola-Kirchhoff stress tensor, namely:

s « = d i ;  = 2! d r  (™>

For an isotropic behaviour, the aforementioned relation is independent on the 
adopted spatial coordinate system. Therefore, the Helmholzt’s free energy functional 
can be expressed undoubtedly in terms of the three invariants of the Green-Lagrange 
strain tensor as follows:

Wint =  wint ( / e , / / e , 11 I e ) (7-10)

By combining equations (7.9) and (7.10) and by carrying out the chain rule, the
following formula can be displayed:

_  dwint d IE d w intd I I E dw ^t  d I I I E . .
ij ~  d I E dEij d I I E dEij d I I I E d E {j 1 ' '

The formal definition of the cited invariants of E  allows to derive in tensorial
notation:

= *  S s = 5 y  ( 7 - i 2 )

dllw
I I E =  EijEv  = *  — |  =  2 E i} (7.13)

d l l U
I I I e =  det(E) =► = d e t(E )E -/  (7.14)

Formulae (7.12) to (7.14) can be substituted back into (7.11) to reflect:

d W i n t  x  d w i n t  ^ W i n t  1 7 - 1  ( i  1

Sii = - d h Sii + + det(-E ) m i i Ev  ( 7 - 1 5 )

Finally, expressions (7.1) to (7.3) can be combined with (7.15), namely:

c ( ^^int . ndwint t  dwint d e t(E ) \
s  = E  ( ^  + 2 a l ^ ‘ +  M i E N“ ® N“ {7-16)

An important remark to be pointed out from formula (7.16) is that the expression 
between parenthesis is a scalar. This implies that the principal directions pertaining 
to the tensors C, E  and S are coincident. The invariants of the tensor E and their 
derivatives can be displayed as follows:

— £l +  £2 +  £3 (7.17)
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I I e = & + & + H  (7-18)

/ / / E = f l 6 f 3  (7.19)

d h  = 1 (7.20)

d I IE
d£a

d I I I E det(E) 
d£a ”

=  2^a (7.21)

(7.22)

These formulae along with the foregoing expression (7.16) for the second Piola- 
Kirchhoff stress tensor, allows to rewrite the latter in terms of the eigenvalues of the 
Green-Lagrange strain tensor E, namely:

3 f) 3
S = E  ® N« = E  5«N« ® N“ (7-23)

With the purpose of obtaining an analogous expression for the Cauchy stress 
tensor cr, the classical formula relating stress tensors S and cr is presented as follows:

<t =  J - 1 F  • S • F r  (7.24)

Substituting equation (7.23) into (7.24) results, after accounting for equations 
(7.5) and (7.8), in:

=  J “lF ' f e  i r N <. ® ■Fr  =  ^ J - 1^ ( F . N a) lg , ( F .N a)
\ a = l  /  q = 1

3 dwi,
= Y i J - 1(l + 2£a)-7r f ± n a ® n a (7.25)

a = l

Eventually, formula (7.25) provides the relationship between the principal com­
ponents of both stress tensor entities, cr and S, which is given as:

_  (1 +  2£q) dwint __ (1 +  2£q)
j  d (a ~ j

(7.26)
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7.3 Basic equations o f wrinkling analysis.
Since membranes cannot undergo any compressive loading state, wrinkling phe­
nomenon in a certain part of the membrane may be explained by a local buckling 
process. Among the wide variety of criteria to set whether wrinkling is being de­
veloped or not, the well known condition based upon the Cauchy stress tensor will 
be selected as the most preferable. Whenever any of the eigenvalues of this ten­
sor cr becomes null, the membrane does not offer any resistance to be deformed 
any further. Roughly speaking, the Cauchy stress tensor does not admit negative 
eigenvalues or compression along the principal axes. Under this consideration, a set 
of equations will be obtained to be added to the classical kinetic, kinematic and 
constitutive equations presented in previous chapters.

Denoting the principal stresses by oi and cr2, with o\ > cr2, the three states of a 
wrinkled membrane can be summarized as follows:

1. Taut state
(Ji >  0, 0 2  >  0 (7.27)

2. Wrinkled state
o \  > 0, cr2 =  0 (7.28)

3. Slack state
o i =  0, cr2 — 0 (7.29)

Let us recall the formula for the Helmholtz’s free energy functional in the case
of a prestressed Saint Venant-Kirchhoff hyperelastic membrane. For the sake of
minimizing the number of indices displayed in forthcoming formulas, Voigt notation 
will be employed throughout the remaining of this section:

W i n t  =  c V e t e i +  \ e i C i j C j  i , j  =  1,2, 3 (7.30)

where:

wint stands for the Helmholtz’s free energy functional. 

ofret represents the prestressed Cauchy stress tensor. 

e i  stands for the Euler-Lagrange finite strain tensor.

C i j  represents the fourth order tangent moduli tensor.

Strain and stress tensors E  and (rpret can be rewritten in principal directions, 
which allows to reformulate the above equation (7.30) as:

■Wint = < e%  + \ t aCaf a  a , (3 =  1,2 (7.31)

where:
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apret represents the prestressed Cauchy stress tensor in principal directions.

£a stands for the Euler-Lagrange finite strain tensor in principal directions.

Cap represents the fourth order tangent moduli tensor.

The above tangent moduli tensor is defined for a Saint Venant-Kirchhoff material 
in Voigt notation as follows:

“  1 _  (,2

E vE . 0

vE E 0

0 0
E{ l - v )  

9

(7.32)

Equations (7.31) and (7.32), after being combined and expanded, can be rear­
ranged in terms of the eigenvalues of the Green-Lagrange tensor E, namely, £i and 
f2, as:

^ » n i ( 6 , 6 )  =  W in ?  ( 6 , 6 )  +  W i n t ( f l , & )

w ?„t(6 ,6 ) =
E v

(£i +  &)2 +
E

•({?+« I)

(7.33)

(7.34)

(7.35)
2 (1 - I / 2) "  2(1 +  1/)

The principal strains £i and £2 can be straightforwardly related to the principal 
invariants of the Green-Lagrange tensor, namely, /e  and / / e ,  as:

/e  =  £ 1 + 6 , H E = &  + &  (7-36)

Substitution of equation (7.36) back into formulae (7.33)-(7.35), would enable, 
if required, to re-define the energy functional wint in terms of the invariants 7e and 
/ / e -  Once the definition for the energy functional has been established, the onset of 
wrinkling can be characterized when the smallest of the aa values reaches the null 
value. Ordering the former ones in such a way that cr\ > cr2, it can be concluded:

cr2 =  0 (7.37)

By taking into account equation (7.26), the above condition can be re-expressed 
as follows:

_  dwint _
02 — n f  ' —  U

2

(7.38)

The above equation can be particularized for the energy functional (7.33)-(7.35), 
namely:

En  pret ,
+ ( T 3 ^ ) K i  + 6 )  =  o (7.39)
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Therefore, the following relationship between principal strains £1 and £2 is de­
duced:

fc =  / K l ) : = _ £ 5 * ± £ p ! (7.40)

Equations (7.33)-(7.35) and (7.40) can be combined to result in a modified 
Helmholtz’s free energy functional which is given only in terms of the largest nonzero 
principal strain, namely:

W int =  ( 7 -4 1 )

t fE -  =  0f * 6 + 0f - / ( & )  (7.42)

TP / /

<%* = + m ) ) 2 +  +  /K l ) }  (7-43)

Analogously, the condition that must be fulfilled for wrinkling to occur in both 
principal directions, is tha t the principal Cauchy stresses <Ti and cr2 must be zero 
simultaneously. This can be obtained as follows:

cr 1 — 0 (7.44)

Therefore, from formula (7.26) one obtains:

„ dfiint „ ,  -  I /o f*
1 = ~ f t = ^  t '  = 9 : = ~   E ~ ^  (7-45)

By substituting back this new condition into equations (7.41) to (7.43), a new 
expression for the modified Helmholtz’s free energy functional is given as:

W int =  ~  « r" 2 -  ) (7-46)

Therefore, as a consequence of the foregoing derivation, a set of conditions can 
be established to define uniquely the distinct wrinkling situations:

1. Taut state

2. Wrinkled state

3. Slack state

£1 > 9 ,  £2 >  /(£ i)  (7.47)

£1 >  S, £2 <  /(£ i)  (7.48)

£1 < 9  (7-49)
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where:

+  (7.50)

pret pret
- p  (7.51)

The Helmholtz’s free energy functional for each one of the aforementioned situ­
ations is given as:

1. Taut state

2. Wrinkled state

3. Slack state

w int = w Z f  +  «u,°„i (7.52)

=  +  (7.53)

w,nt =  - 2 ^ « e ‘ 2 -  2 ^ r ‘< e‘ +  <rr‘2) (7.54)

Once the modified Helmholtz’s free energy functional has been properly de­
fined for the different membrane states, consistent derivations for the second Piola- 
Kirchhoff and Cauchy stress tensors, as well as for the fourth order tangent moduli 
tensor can be formulated. For the taut state, derivations were presented in previous 
sections. For the wrinkled state, the corresponding formulae will be described sub­
sequently. For the last case, the fact that the energy functional is no longer function 
of the strain leads to null values for each and every one of the above cited tensor 
entities.

7.3.1 Second P iola-K irchhoff stress tensor.

As was previously pointed out, the energy functional can be redefined in terms of 
the invariants of the Green-Lagrange strain tensor E, namely, / e and / / e - Thus, 
the second Piola-Kirchhoff stress tensor could be formulated as:

dWint dwint dWint ^  ^  ^
Sii = m ;  = - d i ^ 6ii + 2 m ^ Ei> (7-55)

The former expression can be expanded in terms of the results for the first order 
partial derivatives of the Helmholtz’s free energy functional, see appendix E for 
further details. Thus:

dwint _  6  dwint
9Ie £2 — £1 <9£i

dwint 1 dWifii
~ d l h = 2(f2 - f i )  %

(7.56)

(7.57)
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When the membrane achieves a wrinkled state, a new energy functional Wint 
arises defined according to formulae (7.41) to (7.43). Hence, a new second Piola- 
Kirchhoff stress tensor can be defined in accordance with equation (7.55) as:

-  _  dwint 
ij ~  dEu

dwint x t ^dw intjp 
ij ~d h OIL

(7.58)
E

By accounting for formula (7.40), the first derivatives of the functional wint can 
be rewritten as:

where:

dw int

<9/e

dtUint

/(£  i) dwint
/ ( 6 ) - 6  dfi 

1 dwint
«9//e 2 ( / ( 6 ) - 6 )  dfi

(7.59)

(7.60)

dwin t dwlpret d w 9in t _|_ u  w in t

dfi d i  i ' dfi (7’61^
The first term on the right hand side of equation (7.61) is obtained by means of 

equations (7.40) and (7.42) as:

d w pretin t   pret

dfi
pret (7.62)

Analogously, the second term on the right hand side of equation (7.61) can be 
formulated from equations (7.40) and (7.43) after some algebra as:

P , (7.63)

By substituting expressions (7.59) to (7.63) back into formula (7.58) and by em­
ploying the Voigt notation to describe both second Piola-Kirchhoff stress tensor S (s) 
and Green-Lagrange strain tensor E (e), the following expression can be obtained:

pret
V O :

S =
r  ‘+

/(6 ) - 6

m ) - e i

m ) - * 2

- 6 3 / 2

(7.64)

7.3.2 C on stitu tive  tensor.

By following the pattern of formula (7.58), the fourth order constitutive tensor is 
obtained in terms of the second order partial derivatives of Wint, see appendix E for 
further details, as follows, :
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^  dSn d2wini c _ ^ d2wint . „ n d2wint _ _
i ik l  =  ------------  —  — ------- —------ T  2 ----------------------------------------5ijEi~i  “t-  2 — ---------- —------
ljkl dE kl d IEdIE 13 kl dIEd I I E 13 kl d I I EdIE 13 kl

d Wint j-1 Jp r r /„ n r  \

d I IEd I IE i3 kl 3 /7e  ' ij ki ( '

Each one of the above terms can be expanded in Voigt notation, namely:

C  =
d2wint

d l l

1 1 0 
1 1 0 
0 0 0

+ 2 d2wint

dIEd I IE

ei e2 
ei e2 
0 0

ea.
2
ea.
2

0
+

+ 2 <92tain t

d l  IEdIE

'  ei ei 0 ■
. d2wint '  el eie2 ei ^

e2 e2 0 A ... ulL
d i l l e2ei e2 e2^ +

£3.L 2
ci 
2 0 . f ei f e 2 *5

? to i

+ 2 dw in t

d I IE

1 0 0 
0 1 0 
0 0 §

(7.66)

R E M A R K : In case of considering a cable element instead of a membrane element, 
the wrinkling condition is simply accomplished when the Cauchy stress component 
on becomes zero. This requirement implies immediately the following value for the 
Green-Lagrange strain component

Ei i — —
c r

pret

E
(7.67)

Strains below that magnitude will not be allowed, entailing wrinkling behaviour. 
As a consequence, stress and constitutive tensors are zero. The energy functional 
can be showed as:

—crpret2

^  int 2 E
(7.68)

R E M A R K : If temperature effects are wanted to be considered, these can be 
taken into account by means of a modified Green-Lagrange strain tensor. That is, 
ei and & should be changed by (e* — e°) and(£* — f°), respectively, where e° and f? 
should include the temperature effect.
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8.1 Introduction.

The design of prestressed membranes is a complex process which involves several 
stages. The design stage can be highlighted as remarkable. Not in vane, it combines 
aesthetic interests -see Otto (1967), Hildebrandt and Tromba (1990), Ishii (1995) and 
Berger (1999)- with structural calculation challenges -see Lewis and Lewis (1996), 
Levy and Spillers (1998) and Canner and Hsu (1999).

The generation of an initial shape is a task that depends not only on the de­
signer’s criterion, tha t is, some other factors are also involved. The consideration of 
an arbitrary free form as initial configuration could derive in the appearance across 
the membrane of areas subjected to compressive or flexure strengths. This fact 
would promote instability phenomena. The initial shape must be adapted to the 
stress flux developed across the membrane. This procedure to generate the shape 
results in initial forms that verify the equilibrium equations.

Therefore, the form finding of a tensioned membrane consists of the determina­
tion of the equilibrium configuration corresponding to a prescribed stress distribu­
tion. Hence, the initial form adapts to the prestressing distribution by following a 
load-adaptive process, what reveals the non-linear nature of the problem -see Ramm 
(1992), Maurin and Motro (1997), Wakefield (1999) and Maurin and Motro (2001).

Numerous papers have been published on the shape finding problem of mem­
branes and on the different techniques available to succeed it: Barnes (1988) and 
Ramm (1992). The description of the most important procedures may be found 
in Haber and Abel (1982a), Haber and Abel (1982b) and Wood (2002). The non­
linear methods based on incremental schemes by employing the Newton-Raphson 
algorithm have reached remarkable importance: Tabarrok and Qin (1992), Zhang 
and Tabarrok (1999) or Nouri-Baranger (2002). Recently, Bletzinger (1997) has in­
troduced a new method whereby the initial configuration is updated progressively: 
Updated Reference Strategy (URS). This approach is also gathered in Bletzinger 
and Ramm (2001) and in Bonet and Mahaney (2001) is even improved.

All these nonlinear methods are nothing more than particular cases of the general 
problem consisting of the analysis of structural membranes subjected to external 
loads. Interesting references related to it are: Oden and Sato (1967), Grutmann 
and Taylor (1992), Souza et al. (1995), Gosling and Lewis (1996a), Gosling and 
Lewis (1996b), Wu et al. (1996), Bonet et al. (2000) and Taylor (2001).

8.1.1 G eneralities about the Force D en sity  M ethod  (FD M ).

The Force Density Method, firstly introduced by Linkwitz in 1971, was extensively 
revised in Linkwitz (1999). In this Reference interesting advantages of the technique 
may be found in detail. In Bletzinger (1997), this method is pointed out as a 
particular case of the formerly referred to as Updated Reference Strategy. Two- 
noded finite elements with linear shape functions are used as connectivity entities 
of the mesh’s nodes. An assemblage of cable elements is then generated which will
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enable to define the spatial geometry of the membrane by means of a simile cable 
network.

A brief introduction of this method is presented hereafter. The notation which 
will be used throughout this section is presented next:

I, J  stand for nodes belonging to the structure’s mesh.

nj symbolizes the total number of nodes connected to node /.

k is an index to identify the A;-th spatial direction. Thus k = 1, 2,3.

T IJ is the axial force along the element whose endpoints are I  and J .

cos 9TkJ stands for the k-th. cartesian component of the unit vector which can be 
defined along the element that joins nodes I  and J.

P i  represents the external nodal load acting on node /  according to £;-th cartesian 
direction.

LIJ stands for the final stressed length of the element whose extreme nodes are I  
and J.

x\. is the k-th coordinate of the node I.

Every single point belonging to the analyzed domain must verify the local equi­
librium equations, that is:

V/=S> Y .  T IJ coSe[J = P l k = 1,2,3 (8.1)

where:

• The equality’s left hand side gathers the internal elemental forces acting on 
node I  according to their projections along the k-th direction.

• The right hand side symbolizes exterior acting forces projected along A;-th 
direction.

The direction cosine can be computed as:

c o s ^  =  ^  (8.2)

By substituting equation (8.2) back into (8.1), it turns out to be::

ni I _  J
V/=> = fc =  1,2,3 (8.3)

The elements’ lengths are easily obtained from their endpoints’ coordinates as:
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L IJ = y j ( x { -  x{)2 +  (x*2 -  x {)2 +  {x{ -  x i ) 2 (8.4)

If it is considered that exterior forces do not act on this first structural stage, 
that is, only pretressed loading is present, then equation (8.3) could be reformulated 
according to the following way:

7 1 /  T
Of* —  Of* ° ■ JUl, JU i

V /=* T !J k k =  0 A: =  1 , 2 , 3  (8.5)

The shape finding problem involves the solution of the 3n equilibrium equations 
of the system (8.5). In addition, essential or kinematic boundary conditions must be 
accounted for. These boundary conditions correspond to known anchorage points. 
To achieve the solution of the system (8.5), the ratio between the tension force and 
the final length for every cable element is set up. This parameter is the so called 
force density coefficient, whose name is due to the fact tha t it distributes the axial 
force along the element’s length1. Indeed:

r pI J

l " = L i J  (8-6)

The mentioned force density coefficients (8.6) can be placed in the system of 
equations (8.5), to result in:

7 1 /

V/=*. J 2  9, j ( 4 - 4 )  =  0 * =  1 , 2 , 3  (8.7)

In the wake of setting up the force density coefficients gIJ for all the cable ele­
ments I J  comprising the simile cable network, a solvable linear system of equations
emerges as a result of formula (8.7). Solution of this system of equations enables 
to compute the nodal coordinates x{ of the structure. Then elements’ length may 
be deduced through the use of equation (8.4). Eventually, the axial force in every 
cable element is obtained after rearranging equation (8.6) as: T IJ = gIJL IJ.

An im portant property associated to the system of equations (8.7) pertains to its 
uncoupling for all three spatial directions in R 3. This fact implies that the system 
can be decomposed in three systems of n equations. By solving each system sep­
arately, computational time is considerably reduced. Provided this, computational 
implementation into a code has been performed for obtaining the results which are 
shown later in the chapter. The stiffness matrix of the above equilibrium system 
(8.7) presents the following attributes:

i) It is a positive definite matrix.

ii) It is a diagonally dominant matrix.

1 According to Linkwitz (1999), the ratio of the force density coefficient between perimeter cables 
(that represent the reinforcing cables) and interior cables (that represent the textile fabric) should 
be in the range of [5,10].
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iii) The matrix is, out of the diagonal, made up of a regular and uniform distri­
bution of numerical values 0 and — gIJ.

iv) Along the diagonal, positive values are found. These are obtained by the 
addition of various force density coefficients corresponding to adjacent cable 
elements.

Due to the aforementioned characteristics of the system of equilibrium equations, 
and in the wake of following the indications pointed out by the Kahan and Ostrowski- 
Reich theorems, see attached appendix A for further details, an iterative method 
called successive over-relaxation, with parameter u  = 1.5, has been selected to find 
out its solution.

8.2 Topological m eshing algorithms.

8.2.1 From th e graph to  the spatial mesh.

The generation of grids for complex geometries is an issue which requires too much 
space to be dealt with in great detail here. We shall present only some basic ideas 
and the properties that a grid should have.

By looking at the set of equations (8.7), the FDM may be regarded as a transfor­
mation procedure from a topological structure -where only nodal connectivities are 
relevant- to a real physical structure with spatial coordinates completely defined. 
Indeed, this method depends entirely on three factors, namely, the connectivity of 
the mesh, the force density distribution and the location of the anchorage points. 
Hence, the system of equations (8.7) can be numerically solved to lead to the spatial 
location of the membrane’s nodes. Therefore, an initial topological distribution of 
nodes is demanded by the technique. This topological structure is perfectly identi­
fied by means of a graph, see Gorini (2000) and Ivanyi and Topping (2002).

A graph is a pair (V, E), where V  is a finite set whose elements are the vertices 
of the graph and E  is a collection of pairs of vertices called the edges of the graph. 
This is a mathematical entity whose main properties are gathered in the attached 
appendix C.

It is feasible, therefore, to set up a parent domain topologically isomorphic to 
that the membrane will finally embrace. Then, discretize such a parent domain in 
order to define a connectivity pattern or graph. This graph along with an arbitrary 
definition of the force density coefficients (between pairs of nodes) and the essential 
boundary conditions are needed in order to solve the system of equations (8.7).

As a consequence, two wide group of properties related to cable nets or membrane 
structures may be anticipated. Those which depend only on the type of connectivity 
in the net and not on the spatial location of its nodes. These properties are called 
combinatorial. On the other hand, the remainder which depends absolutely on the 
spatial configuration: These are the so called geometric properties. The first of
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the former ones, therefore, are shared by all structures with the same topological 
disposition, see Graver (2001).

Knowing the most important properties of a graph, makes it possible to un­
derstand the incidence that those could have on the resulting spatial structure’s 
properties. W ithin the wide group of properties that graphs can exhibit, the inter­
est will be focused on those of direct application in the scope of membranes and 
cable nets.

Let us point out that the equilibrium configuration, obtained as a result of the 
FDM, is nominally stressed along the cable elements due to the values adopted for 
the force density coefficients gIJ , see equation (8.6). The absolute value of such 
a prestressed effect can be as small as desired by adjusting suitably the absolute 
magnitude of the coefficients2 gIJ. The smaller the latter are, the more negligible 
the prestressed loading can be regarded.

Once the initial equilibrium configuration has been deduced (after applying the 
FDM), it can then be used as a reference surface to proceed with the subsequent 
static analysis under the external acting loads. Among those loads, real prestressed 
effects could be included. Indeed, the real prestressed configuration is then deter­
mined computationally exactly as in practical applications, by stretching the cables 
or moving the supports. Therefore, the prestressed Cauchy stress tensor as a result 
of this realistic prestressed loading is the one used as a basis for subsequent analyses 
under in-service loads.

8.2.2 R em arks about the topological d iscretization  crite­
rion.

It does not seem convenient to choose a random criterion to set up the domain’s 
connectivity, also named as graph. This could result in the appearance of spatial 
structures considerably irregular and distorted, as well as isolated zones within the 
final mesh. The latter could emerge if the employed graph is not connected3.

Besides, the selected graphs should be planar in order to guarantee the feasible 
representation of the membrane by means of a polyhedral surface. A planar graph is 
mathematically represented as a triplet (V ,E ,F ), where apart from the sets V  and 
E , previously defined, F  represents the set of faces of the graph. Finally, they should 
dispose of a high number of vertices to provide accuracy in the final representation 
of the mesh. The latter should be carefully analyzed in order to avoid unnecessary 
computational time.

Furthermore, a homogeneous and isotropic graph representation should be pur­
sued. The first is accomplished when a similar valence4 is reached at every node of

2Although reducing the absolute magnitude of the force density coefficients, the ratio of such a 
factor between perimeter and interior cables should be maintained in the range of [5,10] according 
to Linkwitz (1999).

3The formal definition of a connected graph can be found in appendix C.
4The definition of valence can be found in appendix C.
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the mesh. The latter is fulfilled when the distribution of elements does not have any 
preference along a certain spatial direction. These two conditions can be justified 
just by looking at the system of equations (8.7). As a m atter of fact, the stiffness 
matrix of this system depends exclusively on the connectivity and on the force den­
sity coefficients per element. Therefore, an inadequate distribution of nodes would 
imply a very distorted final prestressed membrane.

Eventually, in the case of tensile structures, the final prestressed membrane ac­
quires the shape of an anticlastic surface, that is, it possesses a negative Gaussian 
curvature across the whole domain. This means the non-existence of coplanar nodes 
-those with null Gaussian curvature- across the structure. To ensure this, according 
to Graver (2001), it is advisable the valence of every vertex to be less than or equal 
to six.

In case that a real cable network is analyzed, the set of faces F  can be neglected, 
that is, only nodes and edges are demanded for the subsequent static analysis under 
a realistic prestressing loading or live loading. On the other hand, if the structural 
model considered for analysis is a membrane, then such a set of faces establishes 
the connectivity of the finite elements comprising the textile fabric, namely, triangle, 
quadrilateral and so on. In the examples shown in forthcoming chapters, only graphs 
which generate triangular faces are accounted for.

8.2.3 Shape finding flowchart.

The architectural design stage of any tensile structure, demands primary from the 
designer the definition of a finite set of fixed points or anchorage points. Let n be 
the cardinal of this set which conforms the group of upper and lower anchorage 
points of the membrane. As it is well known for tensile structures, it is required 
the anchorage points not to be coplanar in order to maintain negative the Gaussian 
curvature across the domain.

The plan view of these anchorage points defines a mathematically closed and 
bounded domain. This domain can be graphically defined by a series of straight lines 
between pairs of adjacent boundary nodes to result in a polygonal closed boundary. 
In this way, an irregular planar n-side polygon is obtained, which can be regarded 
topologically isomorphic to any other simple closed and bounded planar domain. 
This domain can be selected as a parent configuration. Then, the main tasks that 
have to be undertaken in order to obtain the final equilibrium shape are summarized 
in figure 8.1. A more detailed flowchart of the preprocessor stage is depicted in figure 
8 . 2 .

It is also convenient to point out the distinction that must be made between 
perimeter and internal edges within the final mesh. In fact, the prestressed force 
is transmitted from the anchorage points to the internal fabric textile by means of 
the perimeter cables. Because of this reason, the rigidity of these cables is regarded 
as considerably superior to those which tend to represent the internal textile fabric. 
Therefore, as previously suggested, a ratio within the range of [5,10] between perime-
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Figure 8.1: Shape finding flowchart.
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Figure 8.2: Shape finding preprocessor flowchart.

ter and interior cables, is frequently employed to account for this matter. Moreover, 
if it is desired to model the behaviour of rigid beams as boundary elements, it can 
be achieved by rising drastically their force density coefficient gIJ .
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Henceforth, several numerical examples0 dem onstrating the calculation of the 
equilibrium shape in tensile structures by means of the aforementioned technique 
are presented. Different algorithmic techniques for the generation of plane graphs 
are briefly detailed.

A lgorithm  for rad ia l p la n a r g raphs.

Consider the plan view of the domain shown in figure 8.3, delimiting a given mem­
brane. It clearly presents an image rather axisymmetric with respect to an interior 
point of its compact domain. It is then feasible to consider the circle as the most 
adequate topologically isomorphic domain to establish an internal graph.

Indeed, a planar graph can be set up within such a parent domain by a series of 
radii (nr stands for the number of radii tha t are considered) and concentric circles 
(nc symbolizes the number of concentric circles th a t are considered). Thus, a series 
of nodes { 1 ,. . .  n r(nc +  1)} and edges {1, . . .  2Ucnr } are obtained as the result of a 
simple recurrence formula. Figure 8.4 displays the general numbering of nodes and 
edges.

E
>■
C

OX axis (m)

3 .

1 2
°0.

Figure 8.3: Roof with radial meshing.

Figure 8.3 shows the isometric view of the membrane, once the shape finding 
m ethod has been employed according to  the mesh criterion described. As it can 
deduced, the topological structure obtained from figure 8.4 has been transformed 
into a real spatial structure. For the generation of the topological mesh, numerical 
values such as n r = 48 and nc — 6 have been introduced into the calculations.

To achieve the final equilibrium shape, the spatial location of the nodes tha t 
define the boundary of the membrane as well as the node located a t the center, have 
been set up as kinematic boundary conditions.

°A selected ratio between perim eter and internal cables of value 10 was adopted to run all the 
analyses.
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(2 + l)n r+ l

3 n r - l
(2 )nr

(2 “+ l ) n r - l \
T ir(tlC + l)

Figure 8.4: Meshing for a radial plane graph.

A lgorithm  for n -po lygonal p lan a r g raphs.

When the plan view of the structure is completely irregular, a planar n-side polygon 
is advisable to be taken as the most adequate topologically isomorphic domain. As 
an example, figure 8.5 on the left shows the plan view of a real membrane domain 
starting from the anchorage points.
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1 4 
.2re 2
O0
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S2
S 0.10

(m)
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Figure 8.5: Roof with n-polygonal meshing.

The parent domain can be subdivided in n  adjacent triangles by means of a 
series of straight lines drawn from an internal arb itrary  node to the set of vertices 
comprising the perim eter of the polygon. Then, each one of those triangles can be 
meshed according to an arb itrary  selected criterion. Thus, in case of using such 
a connectivity pattern , which is schematically sketched in figure 8.6, the resulting 
graph is defined by introducing two parameters: the number of polygon’s sides n 
and the number of interior rings n r. Development of simple recurrence formulae 
enable to enumerate the series of nodes, edges and faces.

Figure 8.5 on the right shows an isometric view of the final tensile membrane for
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a(nr« I )-a(nr) *(nr)ndiag

Figure 8.6: Meshing for an n-polygonal plane graph.

selected param eters n — 8 and n r — 5. The nodes tha t determ ine the boundary of 
the membrane have been adopted as kinematic boundary conditions.

A lgorithm s for re c tan g u la r  p lan a r g raphs.

W hen the plan view of the real membrane domain looks like a rectangle, i.e., four of 
its sides have a prevailing length over the remainder and opposite sides have similar 
lengths, the rectangle must be chosen as the most adequate topologically isomorphic 
domain to depict an internal graph. If the perim eter of the membrane has more than 
four sides, but it is feasible to split the boundary into four sides of similar length 
reached through the addition of adjacent sides, the described algorithm is valid 
as well. Figures 8.7 and 8.8 represent two possible internal graphs for a chosen 
rectangular reference domain, where vertices and edges appear enumerated.

n h n h - r l

n h

2nh

1 2 3 nh-l nh

nh-t-1 nh+2 nh-t-3 2nh 2nh+l

t - 2  n h K 3 n h t- 4 2 n l + l  2 n i + 2

2nh+2 2nh-3 2nh-*-4 3nh 3nh+l

3nh+2 3nh+3 3nh+4 4 n h + 1 4nh+2

+ 3  2 n t + 4  2 n l + 5 3 n l + 2  3 n l + 3

1 Xnh-H) 2+(n -IX nh+ l) 3^(n -1 Xnh+1) nv^(nv-1 (n h -l)  (nv« |)+ [nv-l)(nhf I)
W n v -IX 2 n h -l) 2-*<nv-lX2nh+l) 3 *(nv-l ) (2nh -1)

i-W nv-1  X2nh*l
ih-(nv-IX 2nh*l)

nh-^-^nv
/-IX 2nhH )

IX 2nh-l)  ^
-lX 2 n h ^ l) 2nh+(nv

2nh* 1 +(n 
1X2nh+1)

-IX 2 n h -l)

1 -n v (2 n h - l) 2+nv(2nh+l) 3-m v(2nh+l) (nh-I ^ -nv(2nh-l nh-nv (2nhH )

l+ n v (n h + i) 2 ^n v (n h + l) 3+ nv(nh+ l) nh+nv(nh+l) (n v + l)(n h + l)

Figure 8.7: Meshing for a rectangular planar graph.
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Figure 8.8: Meshing for a rectangular-diagonal planar graph.

In the second of the mentioned diagrams, diagonal edges are added with respect 
to the first diagram. Once again, new recurrence formulae were developed in order 
to enum erate the series of nodes, edges and faces. In both cases, the graph definition 
depends directly on the number of horizontal and vertical divisions, i.e., rih and nv, 
respectively. In both graphs, the number of nodes is {nv +  1 )(n^ +  1). However, 
the inclusion of diagonal edges into the second graph increases its number of edges. 
In case of using the second of the above graphs, an even number of divisions in 
both orthogonal directions is recommended to be chosen in order to avoid spatial 
distortions.

To increase the number of edges on the final graph, it is possible either to select 
a large number of divisions and n v or to include the diagonals as new edges. 
Furthermore, let us point out th a t whereas the valence p of a face is 3 according to 
figure 8.8, p =  4 by looking a t figure 8.7. Consequently, membrane finite elements 
of three or four nodes, respectively, should afterwards be employed for the static 
analysis .

The membrane with anchorage points according to the figure 8.9 on the left, has 
been calculated by means of a connectivity according to figure 8.7, with rih = 8 
and n v =  14. The image 8.9 on the right gathers the isometric view of the final 
tensile structure. For the construction of this structural membrane, points tha t 
define the perim eter of the membrane and those th a t give form to the curved ridge 
beam crossing longitudinally, have been considered as fixed.

Analogously, for the membrane with anchorage points detailed according to figure 
8.10 on the left, and by using a planar graph with the topological structure shown 
at figure 8.8, the calculation of the equilibrium shape of the membrane has been 
performed. To obtain the final results, param eters nh = 20 and n v — 14 have been 
selected, see figure 8.10 on the right. In this case, only the points th a t delimit the 
boundary of the membrane structure have been set up as fixed.
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Figure 8.9: Roof with rectangular meshing.
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Figure 8.10: Roof with rectangular-diagonal meshing.

A lg o rith m  for tr ia n g u la r  p la n a r g raphs.

For the design of membrane structures when they are reinforced by means of perime­
ter cables, it is convenient sometimes to increase the number of membrane finite 
elements in proximity to the cables. Therefore, algorithmic techniques capable of 
refining the mesh as it approxim ates from the inner to the outer, become necessary. 
This section and the following one present two valid algorithms.

When the plan view of the real membrane domain presents similarities with 
respect to a triangle, because three of its sides or addition of adjacent sides have a 
similar and prevailing length over the rest, the triangle must be adopted as the most 
adequate topologicallly isomorphic domain to establish an internal plane graph.

Figure 8.11 on the left shows the plan view of the anchorage points belonging 
to the perim eter of a possible membrane. Figure 8.12 shows the graph for the 
generation of the internal connectivity. The numbering of faces, edges and vertices 
can be obtained by a developed recurrence formula. The degree of density of this 
graph is a function of the number of internal rings nr considered within the triangle.
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Figure 8.11: Roof with triangular meshing.

Figure 8.12: Meshing for a triangular planar graph.

Figure 8.11 shows isometric and plan views of the final tensile structure obtained 
from the chosen planar graph with a param eter nr — 5. The points th a t define the 
boundary of the membrane as well as the central point of the plane graph have been 
considered fixed for the set of kinematic boundary conditions.

A lg o rith m  for q u a d ra n g u la r  p lan a r g raphs.

The graph tha t has been detailed in the former section can be extended to mesh 
a square: when the plan view of the structure presents four of its sides or addi­
tion of adjacent sides with length rather similar and prevailing over the rest of the 
perim eter’s sides.

Figure 8.13 on the left shows the plan view of the membranes anchorage points 
and figure 8.14 displays the planar graph tha t has been employed for the creation of 
the internal connectivity. Again, the degree of density of the graph depends directly 
on the number of internal rings n r.

Figure 8.13 on the right gathers the isometric view of the final tensile membrane. 
This is the result of the force density method applied on the topological structure 
described at figure 8.14 with nr =  5. As kinematic boundary conditions, the spatial 
location of the nodes conforming the boundary of the membrane as well as an interior 
point of the planar graph have been considered fixed.
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Figure 8.13: Roof with quadrangular meshing.

Figure 8.14: Meshing for a quadrangular planar graph.

8.3 C o n c lu d in g  r e m a rk s .

The FDM has been shown as an appropriate tool for the determ ination of an initial 
shape for tension structures (cable nets and fabric membranes). This equilibrium 
shape can be employed as an initial guess for the subsequent highly nonlinear prob­
lem th a t entails the structural analysis of the membrane under the actual presence 
of prestressing loading or external loading. The spatial distribution of the nodes as 
well as the existing connectivity among them  (faces and /o r edges), resulted from 
the m ethod, are used as input da ta  for the following structural calculation.

The FDM can be regarded as an instrum ent for the transform ation of a topologi­
cal structure (planar graph) into a real spatial structure. As a consequence, it results 
in a linear system of equations whose unknowns are the 3-D spatial coordinates of 
the nodes. The system is uncoupled for all the spatial directions. The algorithms 
to be employed for the generation of graphs should provide planar, isotropic and 
connected graphs. According to  the 3-D spatial configuration of the membrane 
(axisymmetric, rectangular,...), a type of graph is selected (radial, rectangular,...).
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9.1 Introduction.

In this chapter, we consider optimization problems of the form:

m inim ize  / (x )  subject to x  G (9.1)

where /  is a real-valued function and f2, the feasible set, is a subset of R n. If 
=  R n, the optimization problem is said to be unconstrained. Before presenting 

different nonlinear algorithms to solve these kinds of problems, a revision of some 
important definitions and theorems is shown.

D efinition 1 (Local m inim um  point) A point x* E Q is said to be a local min­
imum point of a function f  over f2 if:

3 e >  0 /  /(x )  > /(x*) V x 6 f i ,  ||x — x*|| < e

Furthermore, a point x* E ft is said to be a strict local minimum of a function 
f  over if:

3 e > 0 /  /(x )  > f  (x*) V x e f i ,  11 x x*|| < e

D efinition 2 A point x* E LI is said to be a global minimum point of a function f  
over LI if:

/(x )  > /(x*) V x g 9  

Furthermore, it is said to be a strict global minimum if:

/(x )  > f (x*) V x e f i

The solution of the problem (9.1) entails, by definition, the search of a global 
minimum point on LI. As a first approximation, necessary conditions are set up 
to guarantee the existence of local minimum points. By doing this, the search for 
a global minimum point will be replaced by the search for local minimum points. 
Among them, the former should be encountered. The existence of a global mini­
mum point will be ensured by the imposition of some convexity conditions over the 
function / .

W ith the purpose of deriving necessary conditions for a point x* to be a local 
minimum, we will start by introducing a concept related to the possible movement 
away from the point in some given direction. Along this feasible direction of move­
ment, the function / ,  named objective function from now on, is transformed into a 
real-valued function of a single variable -the parameter defining movement in this 
direction-. This concept can be mathematically formulated as:

D efinition 3 (Feasible direction) Let x  E Ll be a point, a vector d is said to be 
a feasible direction at x if:

3 a  >  0 /  x  +  cud Gft V q , 0 < a: < a:
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Once set up the previous concept and, by means of a Taylor series expansion of 
the single parameter function g(a) = /(x* + a d ) , is possible to deduce the necessary 
conditions that must be satisfied for a minimum local point x* of the function /  
to occur. These conditions can be allocated in two different categories: first order 
and second order conditions, according to the degree of derivative of the function / ,  
namely, /  G C 1 or /  G C 2, respectively.

9.2 Local m inim um  point characterization.

T h eo rem  1 (F irs t o rd e r n ecessary  cond ition  for local m in im a) Let1 Cl be a 
subset of R n and let f  be a C 1 function in Ll. //x*  is a local minimum point of f  in 
Ll, then for all admissible directions d at x* is verified that V /(x * )T • d > 0. This 
means that the directional derivative at the local minimum point is positive.

As a consequence of the above theorem, an interesting corollary can be set up 
when the optimization problem is without restrictions, namely, Ll =  R n or, equiva­
lently, when x* is in the interior of Ll:

C oro llary  1 Let Ll be a subset o /R n, let f  be a C 1 function in f2. //x *  is a local 
minimum point of f  in ft and if  x* is in the interior of Ll, then this implies that: 
V /(x*) -  0.

The former corollary yields the classical problem V /(x * ) =  0, that is, a non­
linear n-dimensional system of equations.

T h eo rem  2 (Second o rd e r  necessary  co nd ition  for local m in im a) Let2 Ll be 
a subset of R n and let f  be a C 2 function in Ll. //x*  is a local minimum point f  in 
Ll, then for all feasible directions d G R n is verified:

i) V /(x * )T • d > 0.

ii) i f ' V f ( x* ) T • d =  0 then d T • V 2/(x*) • d > 0.

Analogously, for unconstrained optimization problems, the following corollary 
arises:

C oro llary  2 Let x* be a point which is the interior of Ll, and let x* be a local 
minimum point in ^  of the function f  G C2. Thus:

i) V /(x* ) =  0.

1The demonstrations of this and the next theorems exposed in this chapter, can be found in 
Luenberger (1989) and Dennis Jr. and Schnabel (1996).

2W ith the expressions V /(x * )  and V 2/(x * ) we denote the gradient and the Hessian of the 
function /  evaluated at x* . The former is a vector of order n  whereas the latter is a second order 
tensor of order n  x n.
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ii) V d, dr • V 2/(x*) • d > 0.

The second of the above conditions means that the Hessian of the function f  at x* 
is positive semidefinite.

T heorem  3 (Second order sufficient condition for local m inim a) Let f  £ C 2
be a function defined in a domain in such a way that x* is in the interior of such a 
domain. Let us also suppose:

i) V /(x * ) =  0.

ii) V 2/(x*) is positive definite.

Then x* is a strict local minimum point of f .

9.3 C onvex and concave functions.
In order to develop a theory directed toward characterizing global, rather than local, 
minimum points, it is necessary to introduce some sort of convexity assumptions. 
This provides an interesting geometric interpretation of the second order sufficiency 
result derived above.

D efinition 4 (C onvex and concave functions) A function f  defined in a con­
vex domain3 Ll is said to be convex if V  xi and x 2 £ Ll and V o ,  0 < o < 1, it is 
verified:

/ (o x !  +  (1 -  o )x 2) < o /(x i )  +  (1 -  o ) / ( x 2)
Furthermore, i f V a ,  0 < a < 1 and xi ^  x 2;

/( o x i  +  (1 -  o )x2) < o /(x i )  +  (1 -  o ) / ( x 2)

then the function is named as strictly convex.

In case the function /  is differentiable, then there exits an alternative character­
ization of convexity4.

P roposition  1 Let f  £ C 1. Then f  is convex over a convex set Ll if  and only if:

/ ( y) > /(x )  +  V /(x )  • (y -  x) V  x, y  e  Ll

For twice continuously differentiable functions, there is another characterization 
of convexity:

Proposition  2 Let f  £ C 2. Then f  is convex over a convex set Ll if  and only if  
the Hessian matrix of f  is positive semidefinite throughout Ll.

As a consequence of the above definition, we sometimes refer to a function as 
being locally convex if its Hessian matrix is positive semidefinite in a small region, 
and locally strictly convex if the Hessian is positive definite in the region.

3A domain f l  6 R n is said to be convex if V xi, x2 G Ll and V a, 0 < a  <  1, the point 
axi + (1 — a)x2 G fh This means that given two points belonging to the domain, all the points 
located in the straight line which join them, belong as well as to the domain.

4 Analogously, a function /  is said to be c o n c a v e  if the function — /  verifies to be c o n v e x .
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9.4 M inim ization and m axim ization of convex func­
tions.

When dealing with concave functions over convex sets, interesting properties can be 
implied to characterize the minima (maxima) that the functions can achieve. Some 
theorems are exposed right below:

T heo rem  4 Let f  be a convex function defined on the convex set Ll. Then the set T 
where f  achieves its minimum is convex, and any relative minimum of f  is a global 
minimum.

T h eo rem  5 Let f  G C 1 be a convex function defined on the convex set Ll. I f  
3 x * G f 2 / V y G f 2 ,  V /(x * )r  • (y — x*) > 0, then x* is a global minimum of the 
function f  in the set Ll.

As a summary, the above theorems offer sufficient conditions which enable to 
guarantee the existence of global minima in concave functions over convex sets.

9.5 Num erical m ethods.
We turn now to a description of the basic techniques used for iteratively solving 
unconstrained minimization problems. These techniques are, of course, important 
for their practical applications since they often offer the simplest, most direct alter­
native to achieve the solutions. Recall that an unconstrained optimization problem 
is settled in the following manner:

m inim ize  / (x )  subject to x  G Ll w ith Ll =  R n (9-2)

There are available numerous techniques to tackle the resolution of the problem 
(9.2). While some of them are simple, however, others can be really complex. The 
use of the former or the latter depends basically on the following issues:

• Sort of problem to be solved, that is, sort of objective function to be dealt 
with.

• Degree of convergence which is desired to accomplish throughout the process.

• Computational time, which defines how cheap or expensive the method is.

There is a fundamental underlying structure for almost all the descent algorithms 
we discuss. One starts at an initial point x°; determines, according to a fixed rule, a 
direction of movement (feasible direction) and a absolute distance (step)] and then 
moves in that direction and with that step to a relative minimum  of the objective 
function along that line. At the new point, x 1 =  x° +  ad°, a new direction is 
determined and the process is repeated, namely:
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x k+1 = x k + a d k, k = 0,1, 2, . . . ,  n (9.3)

The primary differences between algorithms rest with rule by which successive 
feasible directions are selected. Once the selection is made, all algorithms call for 
the movement to the minimum point on the corresponding line. This last process 
is called parametric line search. For general nonlinear functions that cannot be 
minimized analytically, this process is actually accomplished by searching, in an 
intelligent manner, along the line for the minimum point.

In Haftka and Giirdal (1992), a detailed summary is presented to classify the 
whole range of numerical algorithms into different categories, namely:

1. Zero order methods, which only use the value of the objective function / .

2. First order methods, which use the value of the objective function /  as well 
as its gradient V /.

3. Second order methods, where the objective function /  itself and its gradient 
V /  and Hessian V 2/  are employed to carry out the minimization procedure.

Next sections will be devoted to a description and analysis of the basic descent 
algorithms for unconstrained problems.

9.6 The m ethod of steepest descent.
This method5 -also known as g rad ien t m e th o d - is the easiest technique to be 
formulated but, at the same time, the most important for the sake of its consequences 
to the rest of the developed numerical schemes. More advance algorithms are often 
motivated by an attem pt to modify this basic technique in such a way that the new 
algorithm will have superior convergence properties. This is, according to the above 
classification, a first order method.

Let /  G C 1 be the objective function over R n. For any point x fe, the gradient of 
the functions /  is defined as:

g(x‘ ) =  V /(x * ) (9.4)

or per every single cartesian component:

* ( * * > - ^  (8-5)

The method of steepest descent is defined by an iterative algorithm:

x*+i =  X *  -  a*g(x l ), k =  0 , 1 , 2 , . . . ,  n (9.6)

5The steepest descent method was first proposed by Cauchy in 1847, according to Quesada 
(1996).
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Roughly speaking, from the point x fe we search along the direction of the negative 
gradient —g(xfe) to a minimum point on this line. Thus, the minimum point is taken 
to be x k+1. As it was already mentioned, the scalar a k is obtained by minimizing 
the single parameter function / ( x fc — a kg(xfc)).

In Einstein’s notation and by applying the chain rule, we can write:

df d f  dxk+1 . . .
=  0 to m inim ize j  (9.7)

dak d xk+1 dak
The above equation (9.7) can be rewritten in vector notation as follows:

g(xt+1)T ■ g(xfc) = 0 (9.8)

which implies that two consecutive gradient vectors are orthogonal, that is, the 
scalar product between them yields null. By means of a Taylor series expansion 
of the function /  and by assuming that this function could admit second order 
derivative, we get:

g(x‘+1) =  g(x*) +  V 2/ ( x fe) • S* =  g(xfc) -  V 2/ ( x i ) ■ a*g(xl ) (9.9)

Combining equations (9.8) and (9.9), it turns out to be:

a * =  g ( * y  ■ g(x*)______________ ( .
g (x * r  ■ V  / ( x fe) ■ g(x‘ ) V '

According to the above formula, the parametric line search is made analytically. 
As a m atter of fact, in equation (9.10), the calculation of the parameter a k requires to 
know in advance analytical expressions for the gradient and Hessian of the function6 
/ .  The sort of problems that we will deal with in this research present tha t feature, 
that is, the analyzed objective functions will be at least C2.

A very important property of this method is that it satisfies the Global Con­
vergence Theorem7 for the algorithmic sequence (9.6). Therefore, no m atter which 
initial guess is used to start the solution process, the method always converges to­
wards the actual solution.

Finally, it is remarkable to point out the rate of convergence that can be accom­
plished with this numerical scheme when minimizing objective functions. In case 
the Hessian matrix of the function /  is positive definite everywhere, that is, all its 
eigenvalues are real positive, thus the convergence is linear8 verifying that:

/(x * +1) -  /(x*) < c[/(x fe) -  /(x*)]

with a constant c such that:

c  =  [ Amal -  Am iny  =  /  r - i y  ^  r 2 <  j^-2 ( 9 1 1 )

m ax  T ^m in  J \ T  T 1 /

6In index notation, V / ( x ) j  =  and V 2/(x ) j j  =
7See appendix B for a discussion about this theorem.
8For a survey of the different degrees of convergence, refer to appendix B.
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where:

Amax is the largest eigenvalue of the Hessian.

Amin is the smallest eigenvalue of the Hessian. 

r is the ratio between the largest and the smallest eigenvalues.

K  is the condition number9 of the Hessian.

Hence, we can conclude that for a objective function whose Hessian is a positive 
definite matrix, the steepest descent method has a linear degree of convergence. 
Moreover, the smaller the ratio r or, equivalently, the nearer the condition number 
K  to the unity10, the faster the speed of convergence will be.

9.7 N ew ton ’s m ethod.

The idea behind Newton’s method is that the function /  being minimized can be
locally approximated by a quadratic function, and this approximate function is
minimized exactly. Thus, let /  be a twice differentiable function; then the Newton’s 
algorithm11 is derived as follows. As any other iterative algorithm, the general 
expression is adopted:

X*+1 =  +  Ak

Then the function mc is defined as:

m c{x k+1) =  mc(x* +  dfe) =  f ( x k) +  V / ( x k)T • d fc (9.12)

The local minimum of this new function must satisfy:

V m c( x M ) =  0 = >  V /(x * ) +  V 2/(x*) • dfc =  0 (9.13)

Thus:

x fc+i =  x fc _  V -2/ ( x fc) • V /( x fc) (9.14)

Equation (9.14) summarizes a general formula for the Newton’s method, which is 
a well known second order method. In contrast to the study of the steepest descent 
method, where global convergence followed almost immediately, this property is not 
guaranteed here. In fact, the following theorem reflects this issue.

9See appendix A.
10These matrices are referred to be w e l l  c o n d i t i o n e d  -see appendix A-.
11This method is known as well as Newton-Raphson’s method.
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Theorem  6 (N ew ton ’s m eth od ’s convergence) Let f  G C 2 over R n, let x* be
a local minimum point of f  and that the Hessian of f  is a positive definite matrix 
when evaluated at x* . Then, if the initial guess x° is near enough the final solution 
x*; the algorithmic sequence of the Newton’s method converges under a quadratic 
degree of convergence.

This theorem, of great importance, about the fundamental features of Newton’s 
method, can be summarized in two main key-points:

i) The method is locally convergent, but not always globally.

ii) The degree of convergence is two.

Therefore, this method possesses an interesting advantageous feature with re­
spect to the previously described steepest descent method: the fact of its quadrati- 
cally convergence with respect to the linear convergence of the latter. Nevertheless, 
a notable drawback emerges, that is, the method is not convergent unless the initial 
guess is good enough. Therefore, despite Newton’s method results very appealing to 
be used, its convergence’s deficiency results in the necessity of introducing some vari­
ations into its original formulation. Among the wide range of possible modifications, 
a two-fold action was undertaken in this research:

1. Numerical perturbation of the Hessian to assure that its eigenvalues are always 
positive.

2. Use of a parametric line search with the purpose of improving the step along 
the feasible direction.

9.8 Param etric line search.

By observing the equation (9.14), which summarizes the Newton’s method, the 
feasible direction of movement can be identified as — V _2/ ( x /c)- V / ( x fc). The method 
adopts as step along that direction the module of such a vector, that is, || V -2/ ( x /c) • 
V /(x*)||.

Nevertheless, an improvement can be introduced to such a formula by multiplying 
that step by a parameter a k, with 0 < a k < 1. This parameter will be chosen 
according to a parametric line search, that is, by minimizing the objective function 
along the feasible direction.

Thus, the new formulation can be displayed as:

x fc+i =  xfc _  a* v - 2/ (x fc) • V / ( x fc) (9.15)

If we proceed, analytically, in an analogous manner as for the steepest descent 
method, see equations (9.7) to (9.10), this numerical factor a k will be obtained to be 
the unity. However, according to Dennis Jr. and Schnabel (1996), until the sixties, it
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was believed tha t the parameter a k should be obtained from the analytical resolution 
of the single parameter minimization problem. However, a more exhaustive study 
led to a completely different conclusion. A numerical solution will make possible to 
obtain better results.

Therefore, next we will present different numerical methods to obtain the men­
tioned parameter a k. Computationally, the search for a minimum in a nonlinear 
single variable function, results in a nonlinear algebraic equation. Iterative tech­
niques to solve such an equation must be used cautiously, for the sake of round-off 
errors.

9.8.1 N um erica l param etric line search.

In this research12, three different numerical algorithms have been implemented, ac­
cording to Crisfield (1991a), Dennis Jr. and Schnabel (1996) and Burden and Dou­
glas (1998). All of the methods which will be introduced in this section, can be 
employed with any unconstrained optimization method, that is, not only with the 
Newton’s method. The parametric line search, specially by a quadratic or mixed 
(quadratic and cubic) interpolation technique, increases considerably the conver­
gence of every method in a decisive manner.

All of the implemented strategies are backtracking strategies, where a k initially 
takes the unity value to be reduced successively within the interval (0,1) until the 
adequate value is achieved. Therefore, if the step provided by the optimization 
technique results to be optimum, a k will turn out to be the unity. Otherwise, its 
value will be decreased in a systematic way, but no further than a certain threshold.

D ennis J r .  a n d  S ch n ab e l’s c rite rio n .

The general framework of the algorithm can be formulated as:
Given A E (0,1) and starting with a k = 1; 
while:

/(x *  +  a kd k) > / ( x fc) +  Aa‘ V / ( x l )r  • d* (9.16)

compute:

a k = £a k w ith (  E (0,1) 

x fc+1 =  x fe +  a kd k

The scalar f  is obtained according to an imposed interpolation polynomial in 
order to come out with the minimum of the, as yet undefined, single parameter 
function / .

Indeed, once defined this function, namely:

12For an exhaustive study of the available parametric line search techniques, we recommend the 
References: Luenberger (1989), Dennis Jr. and Schnabel (1996) and Burden and Douglas (1998).
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f ( a k) = f ( x k + a kdk) (9.17)

the initial condition when a k = 1 can be reformulated in terms of the new 
function’s evaluations:

f (0)  = f ( x k) /(l) =  f ( x k +  d*=) 7(0) = V/(x‘)r • d*
In fact, expression (9.16) can be reformulated for an initial a k = 1 as follows:

/ ( l )  > /(0 ) +  A/'(0) (9.18)

The rewritten formula (9.16) in (9.18) establishes somehow a criterion to stop 
the line search and sets up a superior bound for a k. Indeed, this criterion is included 
in the well known:

• Armijo’s rule.

• Goldstein’s rule.

• Wolfe’s test.

Thus, if equation (9.18) holds, then a quadratic spline for the for the /  function 
is written as:

fhq(ak) = (7(1) -  7(0) -  7(0)) (a*)2 +  f ' (0 )ak +  7(0) (9.19)

The minimum of this function is localized at:

a k = - / ' ( 0)

2 (7(i) -  7(0) -  7(o))
(9.20)

With this new value for a k, equation (9.16) can be again studied. If verified, 
a new either quadratic interpolation or cubic interpolation can be set up to keep 
iterating in search of the minimum. In the case that a cubic interpolation is chosen:

rhcu(ak) = a (a k) 3 +  b (a k) 2 +  f { 0 ) a k +  /(0 ) 

Where constants a and b are obtained from:

(9.21)

a 1
r l l - i

(“«)2 («a  2)2 f(<*a) ~  / ( ° )  ~  7 ( 0 )  * aa

b <*£ -  &a2 ~aa2 aaL W)2 (c*£2)2 J _ f ( a a2) -  / ( 0 )  -  7 ( 0 )  • OLk2 _
(9.22)

where:

a k is the minimum location in the previous step.
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a k2 corresponds to the minimum location two trials ago.

We just need to enforce the derivative of this polynomial to equal zero, in order 
to come out with the location of the next minimum. W ith this new parameter, we 
can study the fulfillment of condition (9.16) once again. Successive interpolations 
are carried out until the optimum coefficient is achieved. For the purpose of avoiding 
an infinite number of iterations, a minimum threshold for a k is set up.

The degree of precision which is required for the parameter a k depends also on the 
coefficient A. The larger the latter is, the more restrictive the search is. For those 
methods which require a considerable computational time per iteration, typically 
second order methods, a demanding condition to obtain the search parameter is set 
up. Specifically, the following criteria has been discovered to be satisfactory:

• Newton’s method: A =  0.90.

• Steepest descent method: A =  0.25.

• Conjugate gradient method: A =  0.50.

Burden and D ou glas’s criterion.

This criterion is less restrictive and accurate than the former one. A quadratic 
interpolation technique was used along with a stop’s criterion as follows:

f  (x +  a kd k) <  / ( x fe) (9.23)

Crisfield’s criterion.

The two above described techniques require the evaluation of the objective function. 
However, in this case, only its directional derivative is demanded. This makes the 
analysis more flexible13. The condition enforced is:

V /( x fe +  a kd k)T • d*
< P (9.24)

V /( x fc)T • d k

A parameter (3 =  0.80 has been probed to be effective. If the above condition is 
not satisfied, then a backtracking strategy within (0,1) is adopted.

9.9 Q uasi-N ew ton’s m ethods.

This family of methods arises from the modification of the Hessian of the objective 
function /  for the sake of the following reasons:

• Increase the degree of convergence, whenever possible.

13When the objective function cannot be obtained properly. This is very common if dealing with  
non-conservative problems.
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• Increase the rate of convergence, whenever possible.

• Avoid the divergence of the algorithmic sequence.

• Save computational time.

Among the wide variety of techniques, a very classical is the one which consists 
of maintaining the Hessian constant throughout the whole iterative process, named 
modified Newton method. This method, even though saves computational time and 
storage, reduces considerably the convergence of the method.

Another possible technique results from the combination of the Newton’s method 
and the steepest descent method. The iterative algorithm is formulated as follows:

x k+1 = x k _  a kM k . v /(x* ) (9.25)

where:

M fc is a matrix of order nxn, which can be:

i) I nxn, identity matrix in the case of the steepest descent method.

ii) [V 2/(x )] \  inverse of the Hessian in the case of the Newton’s method.

iii) An intermediate solution could be [V 2/(x )] 1 + ekl

In the latter of the above, ek e  R  is a scalar which has been chosen in such a way 
that the matrix M fc is positive definite or, equivalently, whose eigenvalues are all 
positive. The Levenberg-Marquardt method can be allocated in this category. In this 
method, a Cholesky decomposition is performed over the matrix [V 2/(x )] +  efcI
to verify the positiveness of every single eigenvalue. Whether this is not satisfied, 
the coefficient ek is risen.

Other alternative techniques may be used to calculate computationally the Hes­
sian of the function / .  We can mention BFG S techniques, due to Broyden, Fletcher, 
Goldfarb and Shanno, and D F P  techniques, due to Davidon, Fletcher and Powell14. 
Nevertheless, these techniques will not be used throughout this research.

9.9.1 Scaling.

With the purpose of obtaining a smooth convergence algorithm, we need to guaran­
tee that the Hessian of the function /  possesses all its eigenvalues around a certain 
magnitude, without much variation. To guarantee that, a scaling procedure can be 
developed.

In general, the unknowns variables Xi can be re-expressed in another dimensional 
space of variables Xj, by means of an adequately chosen matrix Hij. Indeed:

14See Zienkiewicz and Taylor (1995) for further details.
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dx •
x i = Hijx j , Hij = -^zr (9.26)

Thus, the gradient of the objective functional /  can be obtained as:

d f  d f  dx
3* = %T = 3=7 • S  =  w  (9-27)dxi dxn dxi

Analogously, the Hessian of the functional /  can be calculated as:

d2 f d  ~
( 9 ' 2 8 )

In m atrix notation, the Newton-Raphson method could then be summarized as:

A x k = - ctkG k~1 ■ gk = >  A xfc =  — • g* (9.29)

Hence, the matrix H ^  is a diagonal matrix built up to adjust suitably the mag­
nitude of the different unknowns.

9.10 Conjugate direction m ethods.
Conjugate direction methods15 can be regarded as being somewhat intermediate 
between the method of steepest descent and Newton’s method. They are first order 
methods. They are motivated by the desire to:

• Accelerate the typically slow linear convergence associated with the steepest 
descent.

•  Avoid the evaluation, storage and inversion of the Hessian as required by 
Newton’s method.

Before proceeding to present the main features of these methods, some important 
definitions must be settled:

D efin ition  5 Given a symmetric matrix Q, two vectors v 1 and v 2 are said to be 
Q -orthogonal or conjugate with respect to Q, if:

v lT • Q • v 2 =  0

C oro lla ry  3 I f  Q =  0 then any two vectors are conjugate. I f  Q =  I, conjugacy is 
equivalent to the usual concept of orthogonality.

P ro p o s itio n  3 I f  Q is a positive definite matrix and the set of nonzero vectors 
v°, v 1, . . . ,  v fc are Q- orthogonal, then these vectors are linearly independent.

15Initially proposed by Powell in 1964, according to Quesada (1996).
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Before discussing the general conjugate direction algorithm, let us investigate the 
existing relationship between an unconstrained optimization problem and a non­
linear algebraic system of equations. In general, the resolution of problem (9.2) 
entails to solve:

m inim ize  / (x )  in  x  G R n = >  V /(x )  =  0 in  x  G R n (9.30)

In case /  is a quadratic function, the following expression holds:

/ ( x ) =  \ * T • Q • x -  b T x  (9.31)

In this way, problem (9.2) can be re-expressed in an equivalent linear system of 
equations16:

Q x =  b (9.32)

A set of important theorems are presented next:

T h eo rem  7 (C o n ju g a te  d irec tio n  th eo rem ) Let {d*}^1 be a set of nonzero Q- 
orthogonal vectors. For any x° G R n the sequence {xfc} generated according to:

x fc+1 =  x fc +  a kd k  ̂ k > 0 ^  33j

with:

Q* =  g*T • d" (9 3 4 )
d tT • Q ■ d fe 1 j

and:

g* =  Q • x* -  b  (9.35)

converges to the unique solution x* such that Q • x* =  b after n steps, that is,
xn =  x*.

T h eo rem  8 (E x p an d in g  S ubspace  T heorem ) Let {d 7} ^ 1 be a sequence of nonzero 
Q -orthogonal vectors. Then for any x° G E n the sequence {xfc} generated according 
to:

x fc+1 =  x fc +  a kd k, k >  0 (9.36)

with:

&kT .

“  =  -  . f  „  ( 9 . 3 7 )d fc Q • d fc v ;

16Reciprocally, given an algebraic system of equations Q(x) ■ x =  b(x), it is feasible to build 
up an objective function whose minimization returns the solution of the initial system, namely, 
/ ( x )  =  l x T • Q (x) • x  -  b (x )r  • x
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and:

gk = Q x k -  b  (9.38)

has the property that that x k minimizes / (x )  =  | x T • Q • x  — b T • x  on the line 
x  =  x fc_1 +  o;dfc_1 with —oo < a  < oo, as well as on the linear variety x° -f Bk, 
where B k is the subspace of R n spanned by {d°, d 1, . . . ,  d fc_1}.

Corollary 4 (G radient direction’s orthogonality) In the method of conjugate 
directions, the gradients gfc, with k = 0 ,1, . . . ,  n satisfy:

gfcT-d* =  0 V i < k (9.39)

In the wake of observing the theorems presented in this section, the only differ­
ence tha t can be established between the different methods of this general family of 
techniques, lies in the selection of the conjugate directions. A classical way of doing 
it, is shown in the next section.

9.11 The conjugate gradient m ethod.

The conjugate gradient method17 is the conjugate direction method that is obtained 
by selecting the successive direction vectors as a conjugate version of the successive 
gradients obtained as the method progresses.Thus the directions are not specified 
beforehand, but rather are determined sequentially at each step of the iteration.

At step k , and to know the feasible direction, one evaluates the current negative
gradient vector and adds to it a linear combination of the previous directions vectors
to obtain a new conjugate direction vector along which to move. For a quadratic 
objective function /  the algorithm can be summarized as follows:

/ ( x )  =  l x T  • Q ■ x  —  bT • x

Starting at any x °  E R n define d° =  — g °  and:

x fc+ 1 =  x fc +  a kd k (9.40)

, c r f T  .

d k+! =  _ g k+ 1 +  p k d k (9.42)

b-/c+iT • O • d fe
d . V q  <»■«>

17Originally presented by Hestenes and Stiefel in 1952.
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It follows from the above equations that the first step is identical to a steepest 
descent method; each succeeding step moves in a direction tha t is a linear combi­
nation of the current gradient and the preceding direction vector. The attractive 
feature of the algorithm is the simplicity of the formula used for its implementation. 
The coefficient (3k is selected according to formula (9.43) in such a way that:

d fcT • Q ■ =  0 V i < k -  1 (9.44)

As a result of the above formulation, this method presents some very interesting 
aspects:

i) The gradient is always nonzero and linearly independent of all previous di­
rection vectors. Indeed, the gradient gk is orthogonal to the vector subspace 
Bk generated by the feasible directions { d ^ d 1, . . .  , d fe-1}. If the solution is 
achieved before n steps, then the gradient vanishes.

ii) A very simple formula is used to determine the new direction vector.

iii) As the directions are based on the gradients, the process makes good uniform 
progress towards the solution at every step.

A collection of methods that are natural to consider at this point are those in 
which the conjugate gradient procedure is carried out for steps m +  1 < n and then, 
rather than continuing, the process is restarted from the current point and m  +  1 
more conjugate gradient steps are taken.

As a consequence, three different generic families can be established according 
to that criterion:

i) If m =  0, the method is the so called steepest descent method.

ii) If m =  n  — 1, we refer to the complete conjugate gradient method.

iii) If m  < n — 1, it represents the partial conjugate gradient method.

Throughout this research, only the second of the above methods is used. The 
algorithmic sequence developed in (9.40) to (9.43) is straightforwardly extrapolated 
for the case when the objective function results to be non-quadratic.

Starting at x° G R n compute d° =  —g° =  — V /(x °) , then:

x fc+1 =  x fc +  a k • d fc (9.45)

( 9 ' 4 6 )

d t+1 =  -g * +1 + 0 k - d k = - V / ( x fc+1) + Pk - d k (9.47)

S M T . V 2/ ( x fc) ■ d*
^  d fcT • V 2/ ( x*!) • d* 9̂ 48^



9.12. Computational improvements to the conjugate gradient method. 125

9.12 C om putational im provem ents to  the conju­
gate gradient m ethod.

Two im portant features can be pointed out from equations (9.45) to (9.48):

• The parameter a k is obtained in an analytical manner by means of the formula 
(9.46).

•  To obtain parameters a k and (3k, the evaluation of the Hessian of the function 
/  at x fe is required, in accordance with the formulae (9.46) and (9.48).

About the first of the above issues, we can prove that expression (9.46) is obtained 
from the minimization of the single parameter function /  along the feasible direction 
defined by the conjugate gradient method, that is:

f ( a k) = / ( x fc +  o fcd fc) =  f ( x k +  a k( - V f ( x k) +  /^ d * "1)) (9.49)

4 4  =  V / ( x fc+,)T • d fc =  0 (9.50)
daK

Using a Taylor series expansion of the gradient of /  at x fe, yields:

V / ( x fe+1) =  V / ( x fc) +  a kV 2f ( x k) • d k  (9.51)

By combining equations (9.50) to (9.51), expression (9.46) is obtained. There­
fore, the above analytical technique can be substituted by any numerical parametric 
line search, to come out with more accurate results. As regards the second aspect 
aforementioned, the evaluation and storage of the Hessian constitutes an important 
brake to the computational performance of the algorithm. For the sake of this rea­
son, there are alternative approaches which enable to overcome such a difficulty. In 
this research, three of the wide variety of available techniques have been employed, 
namely:

• F le tch e r-R eev es  method: f3PR

• P o lak -R ib ie re  method: (5RR

• M odified  P o lak -R ib ie re  method: /3qP

In all of the above numerical schemes, the parameter a k is achieved in the same 
way, that is, by means of the polynomial interpolation technique already described. 
On the other hand, the second parameter (3k is calculated differently according to 
the next expressions:

k v /tx ^ y  ■ v/(xfc+i)
Pfr v/(x*r • v/(xfc) (9.52)
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=  [V /(x fe+1) -  V /(x * )F  . V / ( x fc+1)
^  V /(x * F  • V / ( x ‘ ) ( }

The modified Polak-Ribiere, as gathered by Maurin and Motro (2001), and due 
to the contribution of Gilbert and Nocedal, in 1992, yields:

P o p +  =  m ^n (P F R ->  P p r + )  P p R +  — max(/3pi?, 0) (9.54)
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10.1 Introduction.

As it has been already pointed out, the design of prestressed membranes is a very 
complex process comprised of distinct inter-related stages. A comprehensive design 
might entail, for instance, an initial architectural design, a shape finding problem 
and visualization of results with a CAD tool, a structural analysis under prestressing 
and in-service loading conditions and a final patterning generation, see Ivanyi (2002).

This research intends to deal with all of the above phases, except for the last 
one. Therefore, the main goal is the development of a computer program in order 
to model them successfully. Thus, this chapter will attem pt to summarize the main 
capabilities of the computer code, explaining up to a certain extent the structural 
problems that can be handled.

The analysis process can be depicted by means of figure 10.1. Preprocessor 
and postprocessor programs were performed under the computer language named 
Matlab, see MathWorks (1996) and Perez (1999), whereas the rest of the programs 
are based on the language Fortran 90-95, see Smith (1995), Nyhoff and Leestma 
(1997) and Chapman (1998).

Graphic
preprocessor

Graph generator

Linear
analysis

Shape finding
Non-linear

analysis

Graphic 
postprocessor I

Structural
analysis

I

N on-linear
analysis

Graphic 
postprocessor II

Figure 10.1: Structural analysis strategy

The program is built up on the concept of modular or structured programming, 
that is, there are several independent modules, with multiple subroutines in each 
one of those, which are properly interconnected1.

1This programming technique accelerates considerably the errors’ detection within the main 
code or any of its modules. Some other advantages about the use of this approach can be encoun­
tered in Gaylord and Gaylord (1990).
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10.2 Shape finding.

Two shape finding schemes were included for the determination of an initial equi­
librium shape: Force Density Method and Smoothing Method2. The use of any of 
these methods, requires beforehand the generation of an internal connectivity graph. 
Therefore:

1. Sub-program M ESH ER.EX E generates an internal connectivity graph.

2. Sub-program FD M C .E X E  solves for the Force Density method -see figure 
10 .2-.

3. Sub-programs NLCE.EX E and NLTE.EXE, solve for the Smoothing method, 
namely, cables and membranes, respectively.

Figure 10.2 gathers the flowchart corresponding to sub-program FDM C .EXE. 
The implemented formulation, due to Linkwitz (1971), is detailed.

1. Loop over number of actions ia c t io n

(a) Arbitrary definition of force density coefficients: ^

(b) Stiffness matrix assembling:
a s s e m b l in g — > K <—  K*(p») 2  =  1. . .  nelem

(c) Loop over dimensions i d i m e = l , 2 , 3

i. Initialization of variables: K^zme — K, fextidirne — 0
ii. Boundary conditions: fextm„, <—  x g £ e

iii. Linear system of equations solver:
■Kidime ' X id im e  — ^extidime  ̂ ^ id im e

(d) End loop over dimensions id im e

(e) Calculation of cable geometry and cable stresses:
a^ret = Ligi i = 1. . .  nelem

(f) Calculation of reactions: r e a c t io n — > React

(g) Verifying global equilibrium: Yj f?xt — Y  Reactj
i 3

2. End loop over number of actions ia c t io n

Figure 10.2: Flowchart of the sub-program FD M C .E X E

2In this last m ethod, see Levy and Spillers (1995), given an initial spatial shape, a nonlinear 
analysis can be used to smooth out the forces or stresses in order to obtain either a uniform stress 
pattern or a predefined stress pattern. This method has been reviewed in a novel approach named 
the Updated Reference Strategy, see Bletzinger and Ramm (2001) for further details.
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10.2.1 Sub-program  M E SH E R .E X E  architecture.

The sub-program M E S H E R .E X E  consists of a set of modules which enable to 
generate internal connectivity graphs as a function of a chosen criterion, namely:

1. Intpoint module enables to generate n-polygonal planar graphs.

2. R ect module enables to generate rectangular planar graphs.

3. D ia g lR ect module enables to generate rectangular planar graphs with a di­
agonal direction included.

4. D iag2R ect module enables to generate rectangular planar graphs with both 
diagonal directions included.

5. G rap h 3  module enables to generate triangular planar graphs

6. G ra p h 4  module enables to generate quadrangular planar graphs.

7. R adial module enables to generate radial planar graphs.

As it was formerly explained in previous chapters, these procedures enable to 
generate planar graphs whose edges can be assimilated to cable finite elements to 
perform the subsequent shape finding analysis. Nevertheless, some of these graphs 
generate triangular facets which can be regarded as prospective membrane finite 
elements.

10.3 G eom etrically non-linear structural analysis.
Once established an initial equilibrium shape, the program carries out the static 
structural analysis: either prestressing loading conditions or in-service loading condi­
tions can be studied. Both cable networks or prestressed membranes can be handled 
suitably by the developed code. In particular:

• N L C E .E X E  enables to deal with cable network themselves.

• N L T E .E X E  is designed to perform analysis of prestressed membranes or cable 
reinforced prestressed membranes.

The program was developed under a finite element discretization basis, by using 
isoparametric linear two-noded and three-noded finite elements. A TLF under a 
DCCF was employed. The code allows to tackle a broad set of external loads, 
characterized by the next features:

1. Point loads applied on the nodes of the Lagrangian mesh.

2. Longitudinal distributed loads along the reinforced cables, either per unit of 
real length -gravity loading- or per unit of projected length -snow loading-.
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3. Superficial distributed loads across the fabric membrane, either per unit of 
real surface -gravity loading- or per unit of projected surface -snow loading-.

4. Pressure loading -wind loading-.

5. Thermal effects as a result of an increase or a decrease of temperature.

6. Sudden displacements of supports next to foundations.

Because the program has been designed to deal with tensioned membrane struc­
tures originally, a wrinkling algorithm was implemented to deal with the likelihood 
of wrinkles’ appearance. Furthermore, different essential boundary conditions were 
regarded, namely:

1 .  Fixed supports, where uB C- =  0  to model rigid foundations.

2. Mobile supports, where u B C- =  u, to model sudden displacements in founda­
tions.

3. Elastic foundations, where i B C- = K dast • u B C\

4. Masts which are fixed or pinned to the surrounding medium.

To account for the last two boundary conditions, a new finite element was im­
plemented into the code. These support finite elements will be two-noded with two
possible configurations: pinned-pinned or fixed-pinned. According to that, their 
equivalent internal nodal forces vector and total tangent stiffness matrices can be 
deduced from: Cook, Malkus, and Plesha (1989), Kadlcak (1994), Onate (1995), 
Bathe (1996) or Ghali and Neville (1997). In all theses cases, due to the enormous 
rigidity of these elements with respect to the rest of the membrane, a pure linear 
elastic approach was used in terms of the mechanical properties of the support. 
Thus, the global stiffness matrix K 5, the global equivalent internal forces vector ffnt 
and the strain energy functional Wint will be calculated as follows:

K» =  T ■ K • T T 

=  T ■ fm( =  T • K • u =  T ■ K 9  • u 9  (101)

Wint =  |u 9T • K 9  u 9

where T represents an element rotation matrix and u 9 stand for the global nodal 
displacements.

10.4 Sub-program NLTE.EXE architecture.

The architecture of the program N LTE.EXE is displayed in figure 10.3. The 
flowchart of this sub-program follows the same pattern as the sub-program NLCE.EXE.
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1. Loop over number of actions ia c tio n

(a) Transforming distributed loads into equivalent nodal loads: d is tlo a d , 
longload

(b) Loop over number of increments iin c re m

i. Initialization of variables: S =  (jpret

ii. Incremental strategy. Aancrem — ^ancrem—i +  A  ̂ iincrem-1
iii. Incremental equivalent external nodal forces:

f_______ _ \ f totCXtiincrem iiTlCTGTTl Qxt
iv. Loop over number number of iterations i te r

•  Iterative numerical scheme
v. End loop over number number of iterations i te r

(c) End loop over number of increments i in c re m

2. End loop over number of actions ia c tio n

Figure 10.3: Flowchart of the program N L T E .E X E
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1. Initialization of incremental displacements: A u =  0

2. Incremental boundary conditions: A u f^ rem =  A^ncr.emA us 'atot

3. If i te r = l

(a) Calculation of element geometric properties: e lem en tp ro p

(b) Calculation of element mechanical properties: te n s io n

(c) Stresses transformation from global to local coordinates:
g _  'pT . gg _ »p Q-pret _  piT , g p r e t 9 . pi

4. End if i te r = l

5. Nonlinear numerical method: n o n lin m e th o d — ► A u |^ rcrem

6. Linear parametric search: A u g ^ ,  =  aA u|'"rtm

7. Updating nodal displacements: T n c^ L  +  A u g£rero

8. Recalculating element geometric properties: e lem en tp ro p

9. Recalculating element geometric properties: te n s io n  

10.. Calculation of reactions: re a c tio n — ► R eac t 'L-erj  iincrem

11. Checking global equilibrium: V 'f e:c*Uer — V  R e a c t%-er
^  ^  x ^  n t n c r e m  * * jttncrem

i j

12. Checking convergence of the scheme: converg

13. If converg =  T R U E

(a) Updating of stresses: o = J -1F • S • F T

(b) Principal stresses and principal directions:
S x x  J ^ x y  J S y y  ► S J  ,  S J J  O X X  )  G x y  )  O y y  ^  O / ,  O ’ / /

(c) Maximum and minimum nodal displacements and element stresses

(d) Stresses transformation from local to global coordinates:
g g _  rp g rpj1 g p r e t 9 _  rp _ g p re t , rpT

14. End if c o n v e rg = T R U E

Figure 10.4: Flowchart of the iterative numerical scheme
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1. Loop over number of cable elements i= l ,n e le m

(a) Calculation of coordinates difference between cable nodal edges a  and /?: Ax j = x f  + u f  — x f  — uf  I = 1 . . .  3

(b) Current cable length: L 1 — y / Z X \)2

(c) Initial prestressed cable length:
jjpret1 i  p i  (si i t e r = 1 )

(d) Director cosines of the cable element: 0\ =

2. End loop over number of cable elements

3. Loop over number membrane elements i= l ,n te l e m

(a) If i t e r = l

i. Rotation matrix from local to global axes:' T
ii. Nodal coordinates transformation from global to local axes: 

x  =  T t • x*
iii. Zienkiewicz’s coefficients: b, c
iv. Membrane element’s area: Tpret
v. Displacements transformation from global to local axes: u =  T T • u 5

vi. Deformation and displacement gradient tensors: F, G
vii. Green-Lagrange strain tensor: E

(b) If i t e r ^ l

i. Displacements transformation from global to local axes: u =  T T • u 9

ii. Deformation and displacement gradient tensors: F, G
iii. Green-Lagrange strain tensor: E

4. End loop over number membrane elements

5. Loop over number of masts i= l ,n s u p p o r t

(a) If i t e r = l

i. Rotation matrix from local to global axes: T

(b) End if i t e r = l

6. End loop over number of masts

Figure 10.5: Flowchart of the subroutine e lem en tp ro p
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1. Loop over number of cable elements i = l , n e l e m

(a) Shape finding (Updated Reference Strategy)
i c _  rrPret l. o n  —

(b) Non-linear structural analysis

i. Thermal effects: E qu = X^aAT
ii. Young modulus: E

iii. Second Piola Kirchhoff stress tensor: S n  = &net + E  • (E

2. End loop over number of cable elements

3. Loop over number of membrane elements i = l , n t e l e m

(a) Shape finding (Updated Reference Strategy)

i. {S} =  {apref}

(b) No-linear structural analysis

i. Thermal effects: {Eo} = X ^ a A T  - (11 0)r
ii. Constitutive tangent moduli tensor: C = C{E, v)

iii. Second Piola Kirchhoff stress tensor:
{S} =  +  C ■ ({E} -  {Eo})

4. End loop over number of membrane elements

5. Loop over number of mast elements i = l , n s u p p o r t

(a) Element stiffness matrix:

i. Pinned-pinned mast: K = K(E, A, L)
ii. Fixed-pinned mast: K =  K (E, A, Iy: IZ: L)

(b) Equivalent internal nodal forces vector:
=  T  • K • Tr  • u9

6. End loop over number of mast elements

-■Eli.)

Figure 10.6: Flowchart of the subroutine t e n s io n
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1. Parameters calculation:

(a) Residual force vector:
U n b f o w e C  ___ > f 'u;n ^ er — P}Tititer — cex titer*iincrem  iincrem  iincrem

(b) Total tangent stiffness matrix: 
a s s e m b l in g  — ► K 9 = K 9e°9 +  K mat9 -  K ext9

2. Nonlinear optimization numerical method:

(a) S te e p es t descen t method: 

i A u^er — f unb%teriincrem

ii. Applying boundary conditions: b o u n d c o n  
A u -er <—  A u - C-1iincrem  —  ^iincrem

(b) C o n ju g a te  g rad ien t method:

i. Omitting components of fSncr«r» where B C s exist
ii. Parameter calculation (3: g lter = f^cremiincrem  

i t e r  „ i t e r — 1 \ T  —i t e r  ^  r-, r» ( rri ter  - i t e r — 1 \T
A. Fletcher-Reeves: (3 R =  --f—7 — 7~  g i t e r —1*1 .g t te r—1

uerT
B. P o lak -R ib ie re : (3PR = g V 6gtter  —1 ,g

i t e r  mfri t e r  

i t e r  — 1̂

C. M odified  P o lak -R ib iere :
O P +  _  n ^ / a F R  a P R + \  R P R +  _  m a v / / 3 P f i/?OF+ =  min(/?F"  0™ +), /T * + =  max(/?™, 0)

iii. Updating incremental nodal displacements:
A u -er =  e ifer +  0  • A u -er_1iincrem  o  1 iincrem

iv. Applying boundary conditions: b o u n d c o n
i t e rA u -er <—  A u ^ aiincrem  u n c r ^ , , *

(c) N ew to n -R ap h so n  method:

i. L ev en b erg -M arq u ard t: le v m a r g ls tm a

ii. Scaling: s c a lin g

iii. Applying boundary conditions: b o u n d c o n  
A u - CT <—  A u P C -lteriincrem  iincrem

iv. System of equations solver:
A u ^ er =  — K 5_1 ■ fV :n b x te r

Figure 10.7: Flowchart of the subroutine n o n l in m e th o d .

10.4.1 N um erical schem es.

The final equilibrium solution of the static analysis will be obtained by continuation, 
which means through an incremental multiple-level process: actions, steps or incre­
ments and iterations. These incremental3 procedures could be p u re  in crem en ta l,

3According to Felippa (2001), the incremental methods present numerous positive attributes:
facilitate the convergence, eliminate the erroneous equilibrium solutions and enable a better un­
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only a predictor phase, or ite ra tiv e , that is, a predictor phase will be followed by 
several corrector phases. Each class has relative strengths and weaknesses compared 
to the other class.

A weakness in the iterative methods is that an initial trial solution is required 
in the neighborhood of the exact solution. If the initial guess is within the radius of 
convergence, the convergence itself will be very rapid. The strength of the iterative 
method is that the accuracy of the solution at a particular value of the external 
forces is not dependent on the accuracy obtained in any other value of the external 
forces.

In the purely incremental methods of solution, no initial guess is required. In­
stead, the solution at a certain increment of the external forces is considered as the 
solution at the previous increment plus the solution of the locally linearized equa­
tions of motion. A great drawback is the accumulated error that emerges as the 
analysis progresses.

To combine the strengths of both methodologies, a combined approach, named 
m ixed m e th o d  is used. In this approach, the incremental method is used to obtain 
an initial trial solution, which is then iterated upon to converge within a prescribed 
error bound of the exact solution. The initial trial should be sufficiently closed to 
the exact solution that few iterations would be required.

10.4.2 Increm ental strategy.

In Crisfield (1991a) and Felippa (2001), some of the most known incremental strate­
gies are reported. In this case, the external load will be employed as a parameter 
to control the incremental increase. The discretized equilibrium equations at each 
step can be formulated as:

êxtiŷ -n T ^ a n) -f- A un) 0 un A un (10.2)

where for the n-th load step:

f e x f ( u n  +  A u J  =  AAnf*°J(un +  A un) An + 1 -  A„ =  AAn (10.3)

Any feasible heuristic procedure could have been implemented to modify succes­
sively the parameter AAn. Two different schemes were used as follows:

1. Constant linear increment:

A» =  ^  n =  1. . .  TV (10.4)

derstanding of the structural behaviour by following the so called load, path.
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2. Decreasing increment, which according to Crisfield (1991a) is formulated as 
follows:

AAj = 0.5 AAn+1 =  AA„^p (10.5)
■‘■n

where In stands for the number of iterations required to reach convergence 
at the previous increment, whereas I f ix is a fixed parameter which is usually 
fixed as 3.

10.4.3 U nconstrained  optim ization  m ethods.

Three different families of methods have been implemented into the computer code, 
as follows:

1. Newton-Raphson’s method with a Levenberg-Marquardt correction whether 
required.

2. Steepest descent method.

3. Conjugate gradient method:

(a) Polak-Ribiere method.

(b) Fletcher-Reeves method.

(c) Modified Polak-Ribiere method.

10.4.4 Param etric line search.

Line search increases the effectiveness of every unconstrained optimization method 
when convergence is slow due to substantial deviation of the residual from the un­
derlying linearized model and roughness of the residual. The line search can be 
carried out by means of any one of the following procedures:

1. Exact minimization of the Total Potential Energy functional.

2. Purely quadratic interpolation of the Total Potential Energy functional, ac­
cording to Burden and Douglas.

3. Quadratic and then cubic interpolation of the Total Potential Energy func­
tional, according to Dennis Jr. and Schnabel.

4. By using the directional derivative of the functional, according to Crisfield.
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10.4.5 C onvergence criteria.

To terminate the iterative procedure, different convergence criteria have been im­
plemented into the computer code. All of them will be based on norms pertaining 
to the incremental displacement vector or the residual vector. For the sake of that 
reason, it is recommended to consult appendix A about vector and matrix norms.

The solution at the n-th increment and k-th iteration can be considered to have 
converged, according to any of the following criteria:

1. Euclidean norm on the incremental displacement vector:

n r r P ^  <  t o l  (10.6)
K l l a  “

2. Infinity norm on the incremental displacement vector:

<  T OL  (10.7)
u 7 1  11 C O

3. Euclidean norm on the residual force vector:

Hfr6‘ii2
4. Infinity norm on the residual force vector:

-  < T OL  (10.8)

ACunbk II
n l|o° < T OL  (10.9)

5. Energy error criterion:

K nbk\\oo 

|A u f  • funb-
< TO L  (10.10)n

6. Infinity norm on the residual vector between the external loads and the support 
reactions:

E f“' -  E Reacts O O

E f" '1 -  E React̂ < TO L  (10.11)

The error tolerance TO L  determines the precision with which the displacements 
are calculated before terminating the iterative procedure. Therefore, it determines 
the speed and the accuracy of the final solution. If the criterion is too coarse, 
the solution may be quite inaccurate. On the other hand, a criterion which is too 
tight could entail unnecessary calculations. Infinity norms are more restrictive that 
Euclidean norms. Finally, any norm acting on the residual vector is preferred rather 
than any other one acting on the incremental displacements vector.
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11.1 Introduction.
To illustrate and validate the developed solution process for cable and membrane 
finite elements, different numerical examples will be analyzed in detail. In all in­
stances, numerical results will be checked with the ones reported in the existing 
literature to conclude the validity and quality of the methods used herein.

Cable networks and prestressed membranes will be subjected to different sorts of 
loadings. Wrinkling considerations as well as follower loads will be regarded in some 
of the applications. An attem pt will be made to prove the quadratic convergence of 
the Newton-Raphson scheme.

11.2 Cable networks.

11.2.1 N um erical exam ple 1.

This first example has been extracted from Leonard (1988). Originally, the same 
problem was analyzed by Baron and Vendatesan (1971). It is a 2D cable network 
structure comprised of three cables joined consecutively, whose internal nodes are 
free to move whereas external nodes are fixed, see figure 11.1. All cables dispose of 
the same cross sectional area A  = 0.227 in2 and of an initial length of 1200 in. The 
initial prestressed loading is achieved by applying two downward point dead loads 
on nodes 2 and 3 of identical value 4 kip. The unique Young modulus adopted for 
the whole structure is E  = 12000 K si.

J 1 1 3 2 c? 3 4 0

i i
0 500 1000 1500 2000 2500 3000 3500

OX axis (in)

Figure 11.1: Leonard: discretization.

After the prestressed loading, the structure is subjected to an upward point live 
load of value 3 kip acting only on node 3. For the resolution of the problem, the 
Newton-Raphson method for a single load increment was employed.

Figure 11.2 gathers prestressed and in-service configurations in different colours, 
blue and red, respectively. At the same time, tables 11.1 and 11.2 display nodal 
displacements -u and u;, for horizontal and vertical displacements, respectively-, as 
well as element Cauchy stresses. Comparison of results accomplished in this research 
and in aforementioned references is depicted.

To check the goodness of the numerical technique, convergence curves are dis­
played in figure 11.3. The left hand side graph represents the Total Potential Energy 
of the system with respect to the number of iterations. The right hand side graph 
shows the evolution of the infinity norm taken on the residual force vector through 
the iterative process. The expected quadratic descent of the latter is observed.
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B aro n L eonard P resen t work

N ode u w u w u w
2 26.28 52.08 26.00 52.36 26.31 52.02
3 23.40 -48.48 23.80 -49.11 23.44 ■-48.46

Table 11.1: Leonard: Displacements (in).

E lem en t B aro n L eonard P resen t work

1 53.32 52.96 53.15
2 48.91 48.52 48.70
3 55.52 55.18 55.40

Table 11.2: Leonard: Cauchy stresses (Ksi).

-400

-600
500 03500 1500 10003000 2500 2000

OX axis (in)

Figure 11.2: Leonard: prestressed and in-service configurations.
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Figure 11.3: Convergence curves.
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11.2.2 N u m erica l ex am p le  2.

This example, extracted from Broughton and Ndumbaro (1994), represents a squared 
hyperbolic paraboloid with a 12 foot  horizontal side. The difference between the 
highest and lowest points is measured as 1.5 fe e t .  The sides of the structural model 
are composed of rigid beams which prevent any displacement.

The structure is modeled by means of a cable network depicted a t figure 11.4, 
where a representation of nodes and elements can be observed. The external nodes 
are fixed and the only allowed displacement is for the inner nodes.

100

c
u>
Xro>O

4 2  4 3

-20

64
-40

73 7 4

-60

-80

-100

-100 -80 -60  -40 -20 0 60 80 10020 40
OX axis (in)

Figure 11.4: Broughton: cable discretization.

All the cables are subjected to  a previous prestressed state of 1.2 Kip.  In addition 
to tha t, the cables will be represented by a unique m aterial of 0.618e3 K ip  for the 
mechanical factor EA.

Under service conditions the structural model undergoes a downward point load 
of value 0.22 K ip  applied at node 79, see figure 11.4. The analysis has been solved 
by using a Newton-Raphson numerical scheme in one incremental step.

Figures 11.5 and 11.6 represent both original and displaced shapes. Analogously, 
table 11.3 reflects a survey of displacements according to the different spatial direc­
tions for some remarkable internal nodes. Results according to reference Broughton 
and Ndumbaro (1994) and present work are displayed.

Figure 11.7 gathers the convergence curves for the numerical m ethod which has 
been employed. Eventually, a representation of the Cauchy axial forces is shown in 
figure 11.8.
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100

-50
-50

-100 -100OY axis (in) OX axis (in)

Figure 11.5: Structural model: cable isometric view.

100 80 60 40 20 0 -2 0  -40  -60  -80  -100
OX axis (in)

Figure 11.6: S tructural model: cable lateral view.
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B ro u g h to n P re se n t w ork
N ode u V w u V w

83 0.0000 -0.0334 -0.2410 0.0000 -0.0340 -0.2415
79 0.0000 -0.1390 -0.9650 0.0000 -0.1388 -0.9667
43 0.0000 -0.0410 0.0510 0.0000 -0.0414 0.0516
‘23 0.0000 -0.0020 0.0160 -0.0002 -0.0016 0.0155

Table 11.3: Displacements (in).
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Figure 11.7: Convergence curves.
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Cauchy (Kip)
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Figure 11.8: Axial forces(Kip).
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11.3 S t r u c t u r a l  m e m b ra n e s .

11.3.1 N u m erica l exam ple 3.

This example is gathered at Levy and Spillers (1995). It represents a 2D beam with 
a considerable ratio  between its depth and its length. In fact, a length of 30 in  and a 
depth of 28 in  are set up. The beam is fixed in one of its edges but free in the rest of 
its domain. To describe the mechanical behaviour of the structure, a unique Young 
modulus of 29.0e3 K s i  together with a Poisson ratio of value 0.2, are considered. 
Only one downward point load of value l.Oe — 3 K ip  acting on the free edge will be 
included in the analysis.

For the resolution of the problem, the same spatial discretization as in Levy 
and Spillers (1995) was assumed. Figure 11.9 shows the distribution of the 24 
isoparametric linear triangular elements adopted.

>-
o

ox axis (in)

r ■

Figure 11.9: Levy k. Spillers, 111: Discretization and Cauchy stress axx.

The problem was solved by means of a Newton-Raphson numerical scheme in 
just two iterations. Results for the Cauchy stress component oxx can be seen also 
in figure 11.9. In this particular case, it is worthwhile to point out th a t a pure 
membrane theory was used -wrinkling considerations were not included into the 
numerical analysis-. T hat is the reason why compressive triangular elements can be 
observed in such a picture.

Finally, table 11.4 shows displacements u (horizontal) and v (vertical) for some 
of the Lagrangian nodes employed in the mesh1.

1 Although the formulation gathered in Levy and Spillers (1995) is not as robust as the one 
presented in this research, numerical results show perfect agreement. This fact is because of the 
smallness of the strains reached in the loading process.
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Levy &: Spillers, 111 P re se n t w ork
N odo u V u V

1 -.125e-6 -.296e-6 -.125e-6 ■-.296e-6
5 -.965e-7 -.169e-6 -,965e-7 ■-.169e-6
9 -.727e-7 -.950e-7 -.727e-7 •-.950e-7
13 -.419e-7 -.408e-7 -.419e-7 •-.408e-7

Table 11.4: Levy & Spillers, 111: Displacements (in).

11.3.2 N um erical exam ple 4.

This example is considered in Levy and Spillers (1995). It is a squared plane mem­
brane initially prestressed. The edges of the membrane are completely fixed. The 
side’s length is 240 in  and the thickness is measured as 0.004167 in. Mechanical 
properties for the material have the following values: 30,000 K si  for the Young 
modulus and 0.3 for the Poisson ratio. The prestressing effect is considered to be 
80,000 psi isotropically distributed. The mesh adopted is the same as the one em­
ployed in the original reference for the sake of comparison purposes. More accurate 
results would have been achieved with a finer mesh.

In-service loading conditions are taken to be a point transverse load applied in 
the center of the membrane. The load, which takes a value of 10 K ip , is taken 
downwards. According to the figure 11.10, the Lagrangian mesh is comprised of 32 
isoparametric three-node linear elements and 25 nodes.

c

§

OX axis (in)

100

5 0

0

•5 0

•100

Figure 11.10: Numerical example 4: Discretization.

To accomplish the final solution, the method which was employed was the 
Newton-Raphson method for a single load increment. Two convergence curves are 
gathered in figure 11.11. The first of the curves shows the evolution of the Total 
Potential Energy along the iterations’ path, whilst the second curve represents the 
infinity norm over the residual forces vector with respect to the number of iterations 
as well. The second curve shows perfectly the required quadratic convergence of the
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Newton-Raphson algorithm.

1 o°

1O

Od

10

I t e r a t i o n s

Figure 11.11: Numerical example 4: Convergence curves.

Figure 11.12 shows the displacement field along the cartesian axis O X  and OZ,  
respectively. Both representations reveal in a clear manner the axisymmetry of the 
membrane. Table 11.5 details the displacement values for three different nodes of 
the mesh. The accuracy of the numerical example can be observed by checking the 
results with those obtained in Levy and Spillers (1995).

Levy &: Spillers P re se n t w ork
N ode u v w u v w

1 0.015 ■-0.015 -1.431 0.014 -0.014 -1.423
2 0.000 ■-0.017 -2.605 0.000 -0.017 -2.600
5 0.000 0.000 -6.642 0.000 0.000 -6.626

Table 11.5: Numerical example 4: Displacements (in).

Analogously, principal Cauchy stresses 07 and ujj can be viewed in figure 11.13. 
Table 11.6 presents the numerical values for three different elements of the membrane 
as well as its comparison with those of Levy and Spillers (1995). Perfect agreement 
can be deduced.

Levy &: Spillers P re se n t w ork
E lem ent ® xx ^  y y  @ xy ®xx ®y y @xy

1 97377.6 85212.4 -2801.5 97300.1 85163.9 -2796.7
3 83510.2 96859.1 -8657.1 83501.5 96830.3 -8630.7
11 144691.0 97830.7 -15615.6 144470.8 97849.2 -15582.4

Table 11.6 : Numerical example 4: Cauchy stresses (Psi).
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Displacements OX (in)

OX axis (in)

Displacements OZ (in)

OX axis (in)

Figure 11.12: Numerical example 4: Displacements OX &; OZ.
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Figure 11.13: Numerical example 4: Cauchy stresses 0 7  h  ajj.
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11.4 Follower loads and wrinkling analysis.

11.4.1 N um erical exam ple 5.

This numerical example has been taken from Kang and Im (1999), although the 
same problem has been analyzed by previous authors in the past. This example 
allows to compare numerical results provided by the algorithm suggested in this pa­
per with those already reported in the literature. It consists of an initially squared 
airbag under static loading. The loading process will be achieved through an in­
ternal increase of pressure until a desired final configuration is reached -see Simo 
et al. (1991) and Rumpel and Schweizerhof (2004) for implementation purposes-. 
This model will be studied within the wrinkling membrane framework developed in 
previous chapters.

The material will be considered isotropic and its mechanical properties are adopted 
to be Young modulus of 588.0 M P a  and a Poisson’s ratio of 0.4. Prom the geomet­
rical standpoint, the membrane displays a thickness of 1 mm and an initial diagonal 
measured as 1.2 m. Due to the implicit symmetry of the structural model with 
respect to three cartesian planes, namely, O X Y , O X Z  and O Y Z , only one quarter 
needs to be computationally modelled. Moreover, appropriate boundary conditions 
need to be regarded. The internal pressure is raised linearly until a final threshold 
magnitude of 5.0 Kpa  is attained. As boundary conditions, those nodes located on 
the boundary of the structure are considered to remain always in the plane O X Y .

For the numerical solution of the problem, the Newton-Raphson method was 
employed. The load was applied in ten equal incremental steps. To avoid diver­
gence problems within the first increment, due to high instability, the Levenberg- 
Marquardt method was taken into consideration to modify appropriately the total 
tangent stiffness m atrix-see Dennis Jr. and Schnabel (1996) and Luenberger (1989). 
This mathematical modification of the energy functional’s Hessian is, roughly speak­
ing, nothing else than a fictitious prestressed state.

After the corresponding calculation, the convergence curves for the last incre­
mental step are displayed in figure 11.14, where the quadratic convergence is clearly 
verified.

Figures 11.15 and 11.16 represent initial and final shapes for the airbag, both in 
plan and isometric view.

The displacements of some of the most remarkable structural nodes, according 
to the mesh shown in figure 11.15, are displayed in table 11.7. In table 11.7, w\ 
is the deflection at the center point of the airbag, u\2i stands for the displacement 
along the O X  axis at the corner and u u  symbolizes the displacement along the O X  
axis at the center of the airbag. Results agree adequately with previous work.

Finally, the principal components o\ and cr2 of the Cauchy stress tensor are 
represented in figure 11.17. It is worthwhile to point out the numerous amount of 
elements in wrinkling state.

The same structure was analyzed when different prestressed loadings were ap-
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Figure 11.14: Convergence curves.
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Figure 11.15: Kang Sz Im (1999). Initial and deformed airbag. Plan view.

plied on the membrane prior to  the consideration of the internal pressure. An 
initial isotropically distributed prestressing was regarded acting within the plane 
O X Y , which contains the undeformed membrane. Thus, the resulting prestressed 
membrane was subsequently subjected to the internal pressure process. The dis­
placements in some notable nodes were again monitored and its values are displayed 
in table 11.8 for a set of different prestressing magnitudes. Figures 11.18 and 11.19 
show the evolution of the principal Cauchy stress <j// contour diagram in a series 
of images. As it can be noticed, the presence of finite elements in a wrinkling sta te  
increases as the prestressed loading magnitude is risen.
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F ig u r e  1 1 .1 6 :  K a n g  &; Im  (1 9 9 9 ) . In it ia l an d  d e fo rm ed  a irb ag . I so m e tr ic  v iew .

B a u er C on ti Sz Schrefler K an g  &z Im  (1999) P re sen t s tu d y
N o d e 25 e lem  (4 n o d es) 25 e lem  (9 n od es) 200 e lem  (3 n o d es)

Wi 20.5 21.7 21.5 21.6
u \2l -3.3 -4.5 -3.7 -3.5
u n -13.0 -11.0 -12.0 -12.5

Table 11.7: Kang & Im (1999). Displacements(cm).

crpret(x iooo K N /m 2) 2.5 12.5 18.75 25.0
Wi 16.32 7.54 5.77 4.74
1̂21 -6.17 -0.89 -0.35 -0.11
1̂1 -1.88 -0.19 0.00 0.11

Table 11.8: Kang & Im (1999). Evolution of displacements (cm).
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Principal Cauchy SI (N/m2) x 10
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Figure 11.17: Kang & Im (1999). Principal Cauchy stresses: ay and ay/.
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Principal Cauchy Sll (N/m2)
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Figure 11.18: Kang & Im (1999). Evolution of the minimum principal Cauchy stress (I).
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Figure 11.19: Kang & Im (1999). Evolution of the minimum principal Cauchy stress
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11.4.2 N u m erica l ex am p le  6.

This sample has been extracted from Kang and Im (1997). Consider an inflatable 
circular airbag th a t initially consists of two flat circular pieces of fabric sewed to­
gether along the edge. The considered problem will be analyzed by means of the 
classical membrane theory allowing for compressive stresses, as well as according 
to the wrinkling theory developed earlier in the thesis. Results provided by both 
formulations will be compared.

The material will be adopted to be isotropic with Young modulus 6.0 Mpa  
and a Poisson’s ratio of 0.3. The thickness arises to be 0.4 m m  and the diam eter 
of the initial flat membrane takes the value 0.7 m.  Analogously to w hat it was 
established in the previous example, just one quarter of the structure has to be 
modelized for com putational reasons. The airbag will be loaded with an increasing 
internal pressure up to a m agnitude of 10.0 Kpa.  Figure 11.20 represents the initial 
configuration of the analyzed membrane, as well as the adopted discretization.

°  0 15

OX a x is  (m)

01

i  005
N0

0

OY axis (m)
OX axis (m)

Figure 11.20: Kang &; Im (1997). Initial airbag: plan and isometric views.

The load was applied in ten equal incremental steps. To avoid divergence prob­
lems within the first increment, this has been split into ten sub-increments in its 
turn. For the numerical solution of the problem, the Polak-Ribiere numerical method 
was employed for the first increments. After tha t, a change to the Newton-Raphson 
method is performed.

The final configuration of the membrane according to the wrinkling theory is 
showed in figure 11.21. The convergence curves for the last increment are gathered 
in 11.22 and 11.23 for both formulations. Q uadratic convergence is observed.

For the problem accounting for wrinkling, the principal Cauchy stress compo­
nents are shown in figure 11.24. Figure 11.25 displays the final configuration of the 
whole upper half of the airbag.

Figure 11.26 shows the vertical displacement of the center point and the radial 
contraction of a point of the circumference; both of them  with respect to the increase
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Figure 11.21: Kang &; Im (1997). Deformed airbag: plan and isometric views.
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Figure 11.22: Convergence curves: membrane theory.

in the internal pressure. Two different circumstances were analyzed; one obtained 
with wrinkling being taken into account and the other one obtained from pure 
membrane theory with no wrinkling being taken into consideration. The difference 
between both cases is highest in the low pressure region. As the pressure gets higher 
values, the displacement difference is smaller since the wrinkled region decreases.

The results from the present study seems to agree with those gathered in Kang 
and Im (1997). Just only small differences are detected for the case when wrinkling 
is not accounted for. This is due to local bucking effects around the perim eter 
of the airbag. These effects distort the numerical algorithm by offering not very 
reliable results. A suitable way to account for the bending effect should be included 
if accurate results want to be obtained according to the pure membrane theory.

The same circular airbag was studied under the effect of different prestressed
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F ig u r e  1 1 .2 3 : C o n v erg en ce  cu rves: w r in k lin g  th eory .

loadings. An initial isotropically distributed prestressing was considered acting 
within the plane O X Y  which contains the undeformed membrane. Once the airbag 
is deformed in order to reach the prestressed state, the internal pressure is then 
raised linearly. The maximum vertical deflection of the airbag, represented by the 
vertical displacement w of node 1, as well as its radial contraction, symbolized by 
the displacement u along the O X  axis of node 7 8 , are displayed in table 1 1 .9  for 
different prestressed loadings. Analogously, a series of contour diagrams depicting 
the minimum principal Cauchy stress d ; / ,  is shown in figures 1 1 .2 7  and 1 1 .2 8  .

crpret(x  1000 K N /m 2) 0 .2 5 2 .5 12 .5 1 8 .7 5 2 5 .0
W  i 16.98 10.74 4.71 3.90 3.47
U78 -5.00 1.24 8.96 12.13 14.83

Table 11.9: Kang & Im (1997). Evolution of displacements (cm).
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Figure 11.24: Kang h  Im (1997). Principal Cauchy stresses: aj and cr//.
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Deformed shape
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Figure 11.25: Kang & Im (1999). Deformed airbag
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Figure 11.26: Kang Sz Im (1997). Vertical displacement and radial contraction.
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Figure 11.27: Kang &: Im (1997). Evolution of the principal Cauchy stress a n  (I).
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Figure 11.28: Kang &; Im (1997). Evolution of the principal Cauchy stress a n  (II).
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11.4.3 N um erical exam ple 7.

This numerical example has been reviewed several times in the existing literature 
-see Miller et al. (1985) and Lu et al. (2001)-. It is a 2D beam, which can be 
considered as a 2D rectangular membrane, isotropically prestressed according to the 
principal directions O X  and O Y  with a constant stress oo. The membrane presents 
a cross sectional area of depth h and of thickness t , in such a way, that the total 
axial longitudinal prestressed load acting along the direction O X  turns out to be:

P  = croth (11.1)

Once the initial prestressed loading is applied on the structure, an external bend­
ing moment M  is applied acting on one of the edges of the structure, whereas the 
other edge is fully fixed. As the magnitude of such a bending moment increases its 
value, a compression state starts to be generated in part of the membrane domain, 
so wrinkling must be taken into consideration in order to accomplish an accurate 
result for such a structural problem. The compression domain can be represented 
by a lower horizontal strip of depth b.

Analytically, the ratio between both depths b and h, can be formulated as:

M  ^  1 
P h  ^  6

(11.2)
<  M. <  1
— P h  ^  2

The components crx, cry and rxy of the Cauchy stress tensor can also be obtained 
according to the following expressions:

2 ( f - ! ) / ( i - ! ) 2 > ! < £ < i
(11.3)

0, 0 < I < I

^  =  1 (11.4)
<r o

rxy = 0 (11-5)

Eventually, if we denote as k the curvature, the relationship between the latter 
and the applied bending moment can be written as:

2 M  
T h

1 E th 2 E th 2 1
3 2 P  > 2P  —

,  (H .6)
1   2 /  2P  E th 2 t-. 1
1 3 V E th2* ’ 2p  ^  ^  1

where E  represents the Young modulus of the material. For the resolution of 
the problem, the membrane was discretized into a Lagrangian mesh comprised of 
1024 isoparametric linear triangular elements distributed uniformly. Left hand side
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nodes are immobilized along the O X  axis, being also fixed along the O Y  axis the 
node located a t the center of the section. Discretization is showed in figure 11.29.

The prestressed loading cr0 along the O Y  axis has been accomplished by means 
of nodal loads acting on membrane’s upper and lower lawyers.

W ith the purpose of defining in the most accurate manner the external bending 
moment, a rigid thin beam attached to the main membrane by means of short 
connectors was introduced into the analysis. This rigid beam was modelized through 
membrane elements with Young modulus one hundred times larger than  the one of 
the actual analyzed membrane. Pure membrane theory without wrinkling effects 
was used to represent its mechanical behaviour. The connectors were generated as 
extremely short but stiff cables.

Both the external bending moment and the horizontal prestressed loading were 
achieved by means of two horizontal point loads acting on the upper and lower nodes 
of the right edge of the rigid beam. The so called connectors enable the transmission 
of the bending moment as well as the horizontal prestressed loading from the rigid 
beam to the membrane without introducing any fictitious shear stresses but only 
axial stresses (recall figure 11.29).

4 0

35

- 5  -

_10l-------------1--------1------------ 1----------- 1-----------1------------- 1---------1----------- 1
-1 0  0 10 20 30  40 50 60  70

O X  axis (m )

Figure 11.29: Discretization

For the sake of assimilating the analyzed structural model with the classical Euler 
beam model, a null Poisson ratio was considered. The curvature of the structure as 
the loading process progresses is calculated by interpolating a parabolic or quadratic 
spline along the horizontal center fiber of the membrane. In accordance with the 
Saint Venant principle, localized buckling effects can be omitted.

For the resolution of the problem, a Newton-Raphson method for a single load 
increment was employed. The figure 11.30 represents the Cauchy stress crxx which is 
reached when a loading status of ratio =  0.5 is undergone by the structure. The 
depth of the compressive strip  agrees perfectly with the result of formula (11.2).
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Figure 11.30: Cauchy stress component crxx for ^  = 0 .5

Figure 11.31 represents the bending moment evolution with respect to the cur­
vature. Figure 11.32 represents the Cauchy stress plotted as a function of the depth. 
Both numerical and analytical results seem to agree.

Analytical solution 
o Numerical solution0.9

0.7

0.6

|  0.5

0.4

0.3

0.2

Figure 11.31: Bending moment vs curvature.
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Analytical 2M/Ph=0.8 
Num erical 2M /Ph=0.8 
Analytical 2M/Ph=0.7 
Num erical 2M /Ph=0.7 
Analytical 2M/Ph=0.5 
Num erical 2M /Ph=0.5

06
0.2 0.3 0.4 0.6 0.70.5

y/h

Figure 11.32: Cauchy stress oxx vs depth.

11.5 C ab le  re in fo rc e d  p re s t r e s s e d  m e m b ra n e s .

11.5.1 N u m erica l ex am p le  8.

It results rather difficult to find experimental analyses for prestressed membranes. 
Nevertheless, in M agara and Okamura (1986) some interesting examples may be 
found, whose results will be compared with the numerical method developed in this 
research. Two structures will be studied, one here and another one in the next 
section.

It is convenient to point out in advance th a t some im portant issues are not suf­
ficiently explained in such a reference, specially those pertaining to how the loads 
were applied and how the resulting displacements or stresses were measured. There­
fore, it is fundamental to be cautious when comparing numerical and experimental 
results. Nonetheless, it seems appealing to  cope with these examples at least from 
a qualitative point of view.

This first example deals with a membrane bounded by rigid members and sub­
jected to a successive process of prestressed loading and in-service loading. The 
in-service loading consists in snow uniformly distributed across the m embrane’s do­
main. The structure itself, whose plan and isometric views are shown in figure 11.33, 
presents as initial configuration a hyperbolic paraboloid described by the equation:

2 2
2 =  _ ^  +  JC_ (n .7 )

400 400

with plan dimensions 160 x 160 cm2 and with a difference of height between 
highest and lowest nodes of 32 cm.
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-80  -60 -40  -20 0 20 40 60 80
O X  axis (cm )

Figure 11.33: Numerical example 8: isometric and plan views.

The structural process will be split into two stages. During the first stage, an 
isotropic prestressed loading of value 2.0 is applied on the structure. The re­
sulting membrane shape is accomplished as a form finding problem. Throughout 
the second stage, a to tal snow load of 2080 K p  is exerted2. The mechanical char­

2In M agara and Okamura (1986), because of typographic error, a total snow load of 520 kp  is 
w ritten down.
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acteristics of the m aterial are: E t  = 2.47e2 — andJ v =  0.39. For the sake of thec m

structural symmetry, only a quarter of the whole membrane will be analyzed.

For any point contained in the m embrane’s domain, the direction parallel to the 
O X  axis presents negative Gaussian curvature (bracing direction), whereas along 
the direction parallel to the O Y  axis, the Gaussian curvature results to be positive 
(hanging direction).

Figure 11.34 represents the equilibrium profile of the membrane after prestressing 
it along both  bracing and hanging directions. Numerical and experimental results 
are included.

20

Eo
a;recT3oooM

- 5

- 1 0
-© B ra c in g : n u m e ric a l 

B ra c in g : e x p e rim e n ta l 
-v H a n g in g : n u m e ric a l 

H a n g in g : e x p e rim e n ta l
- 1 5

-2 0 20 10030 40 50
X ,Y  c o o rd in a te s  (c m )

60
(c m )

70 80 90

Figure 11.34: Numerical example 8: equilibrium profile curves.

Then, snow in-service loading is left acting on the structure. All the numerical 
analysis were performed by means of the Newton-Raphson’s method in thirteen load 
increments. Figure 11.35 displays the absolute vertical displacement located at the 
center of the m em brane’s configuration. The displacement was plotted through the 
whole in-service loading process divided into thirteen equal increments.

Analogously, same figure’s right hand side represents on the one hand, the 
Cauchy stress component oxx in the m em brane’s upper right quadran t’s lower right 
point -bracing direction- and, on the other hand, the Cauchy stress component oyy 
in the m em brane’s upper right quadran t’s upper left point -hanging direction-.

Numerical and experimental results seem to agree considerably, although some 
discrepancies can be observed in the stress component along the hanging direction. 
However, qualitatively, the numerical method can be regarded as adequate.

3 E t  represents th e  product of the Young m odulus and th e  m em brane’s thickness.
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□ ---- ------a H a n g in g : n u m e ric a l
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Figure 11.35: Numerical example 8: Displacement and stress vs loading.

11.5.2 N u m erica l ex am p le  9.

The second example, also extracted from M agara and Okamura (1986), is a pre­
stressed membrane bounded by reinforcing cables. As in the former example, pre­
stressed loading and snow in-service loading will be undergone by the structure. The 
initial membrane, whose plan and isometric views can be observed in figure 11.36, 
is described by a hyperbolic paraboloid of equation:

z = - —  + —  (11-8)
600 600 v '

with plan dimensions 240 x 240 cm 2 and with a difference of height between
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highest and lowest nodes of 48 cm.

Figure 11.36: Numerical example 9: isometric and plan views.

The structural process will be split into two stages. During the first stage, an 
isotropic prestressed loading of value 0.57 ~  is applied on the membrane. Reinforc­
ing perim eter cables will be subjected to 90 Kp.  The resulting membrane shape is 
accomplished as a consequence of a form finding problem. Throughout the second 
stage, a to tal snow load of 300 K p  is exerted. The mechanical characteristics of the 
m aterial are: E t  =  2.47e2 — and u =  0.39 for the membrane and E A  =  2.18e4AT>c m  r
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for the reinforcing cables4. For the sake of the structural symmetry, only a quarter 
of the whole membrane will be analyzed.

For any point contained in the membrane’s domain, the direction parallel to 
the O X  presents negative Gaussian curvature (bracing direction), whereas along 
the direction parallel to the O Y  axis, the Gaussian curvature results to be positive 
(hanging direction).

Figure 11.37 represents the equilibrium profile of the membrane after prestressing 
it along both bracing and hanging directions. Numerical and experimental results 
are included.

30

20

10
Eo
CDcpo8N

- 1 0

-© Bracing: numerical 
-e Bracing: experim ental
■v Hanging: numerical 

Hanging: experim ental

-2 0

-3 0
15010050

X,Y coordinates (cm)

Figure 11.37: Numerical example 9: equilibrium profile curves.

Then, snow in-service loading is left acting on the structure. All the numerical 
analyses were performed by means of the Newton-Raphson in six load increments. 
Figure 11.38 displays the absolute vertical displacement located at the center of the 
membrane, plotted along a thirteen increment loading process.

Analogously, same figure’s right hand side represents on the one hand, the 
Cauchy stress component g x x  in the membrane’s upper right quadrant’s lower right 
point -bracing direction- and, on the other hand, the Cauchy stress component G y y  

in the membrane’s upper right quadrant’s upper left point -hanging direction-.
Numerical and experimental results seem to agree considerably, although some 

discrepancies can be observed. However, qualitatively, the numerical method can be 
regarded as adequate. A reason to explain such discrepancies is based on the fact 
that the initial prestressed equilibrium profile does not match perfectly numerically 
and experimentally. This introduces some disagreement that reflects in the final 
in-service loading results.

4E A  represents the product of the cable’s Young modulus with the cable’s cross sectional area.



Lo
ad

(K
p)

 
Lo

ad
(K

p)

Chapter 11. Robustness

30 0

2 5 0

200

150

100

5 0  -

N u m e ric a l
E x p e r im e n ta l

D is p la c e m e n t  (c m )

3 0 0

2 5 0

200

150

100

H a n g in g : n u m e ric a l 
H a n g in g : e x p e rim e n ta l 

-© B ra c in g : n u m e ric a l
v  B ra c in g : e x p e rim e n ta l

5 0

3 0 02 5 05 0 100 150  
T e n s io n  (K p )

200

Figure 11.38: Numerical example 9: Displacement and stress vs loading.
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12.1 Introduction.

To reveal the capabilities and robustness of the procedure, this chapter presents 
two complete structures using the design computer program which incorporates the 
numerical techniques described in the previous chapters. Both structural models 
are comprised of fabric textile, reinforced cables and compressive members or rigid 
supports. Pseudo-static analysis will be run for snow and wind conditions according 
to Spanish standards NBE-AE88.

For the overall analysis, the process will be developed in three successive stages: 
form finding problem, prestressing loading application and in-service loading ap­
plication. The numerical simulations were carried out by means of the Newton’s 
method according to an incremental-iterative scheme.

12.2 Structure 1: E l.
The numerical example presented in what follows is a shade pavilion structure com­
posed of a fabric textile. To provide a better performance of the overall structure, 
reinforcing cables have been added in the interior and in the perimeter of the mem­
brane. The necessary anchorage has been achieved by means of pinned masts. 
Different perspectives of the structure are displayed in figure 12.1. As it can be ob­
served from them, the membrane presents symmetry with respect to the O Y  axis, so 
hereafter half of the model is to be studied in detail provided that suitable boundary 
conditions are set up.

To define the initial equilibrium shape, the Force Density Method -see Linkwitz 
(1999)- was employed for the sake of its appealing simplicity to the detriment of other 
available techniques, namely, Dynamic Relaxation -see Brew and Brotton (1971)- or 
Updated Reference Strategy -see Bletzinger and Ramm (2001). For both internal 
and perimeter cables, the considered force density factor was ten times higher than 
the one for the interior domain. The kinematic boundary conditions for nodes along 
the membrane’s perimeter are depicted in table 12.1. Figure 12.2 shows a plan view 
of the initial configuration, where the nodes’ numbering of the selected Lagrangian 
mesh can be observed.

Node X y z

1 5.0 0.0 10.0
98 6.0 -3.0 0.0
110 6.0 3.0 0.0
104 9.0 0.0 0.0
OY 0.0 - -

Table 12.1: E l: Boundary conditions (m).

As a consequence of this shape finding analysis, it is feasible to come up with 
an initial equilibrium shape under a controllable prestress loading. This control is
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Figure 12.1: El: initial configuration.

5 0 - 5
OX axis (m)

established in term s of the relative values for the force density coefficient among the 
different components of the membrane. Roughly speaking, the uniquely obtained 
equilibrium shape is not dependent on the absolute values of the prestress but on 
its relative ones, so this allows to reduce the former as much as desired. Figure 12.3 
shows the isometric view of the structure, where cable and membrane elements can 
be easily distinguished.

12.2.1 P re s tre s s  load ing

Once an initial referential shape has been set up, an adequate and realistic prestress 
can be applied to the membrane. First of all, masts are added to the structural 
model. This consideration perm its tension membrane, reinforcing cables and masts 
behave in an interactive manner rather than analyzing the compressive members 
separated from the membrane-cable assemblage. This approach is strongly sup­
ported in Li and Siu-Lai (2004). Therefore, the masts will be designed leant with 
a horizontal projected length of 1.5 m along the O X  axis, in such a way th a t the 
com putationally modelled structure will have the appearance drawn in figure 12.4.

The reinforcing cables are adopted to have E A  — 1.2e4 K N , where E  stands 
for the Young modulus and A  symbolizes the cross sectional area. The m ast pinned 
at their respective foundations are considered to have E A  =  2.0e5 K N .  The fabric
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>O

-1
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-3  ■0

textile is assumed isotropic with E t  — 3.0e2 where in this case t is for the mem­
brane thickness. Therefore, the m aterials’ mechanical properties end up completely 
defined.

The prestress process is carried out by means of an imposed displacement on 
nodes 110, 104 and 98, see figure 12.2, which are anchorage points for the interior 
reinforcing cables. As a results of this, the upper node 1, located at the top of the 
mast, see figure 12.2 , is displaced outward and in so doing the overall membrane ac­
quires the desired prestress effect. Table 12.2 summarizes the applied displacements 
u, v and w along the corresponding space directions O X , O Y  and O Z } respectively.

Node u V w
98 1.0 - 1.0 - 1.0
110 1.0 1.0 - 1.0
104 1.0 0.0 - 1.0

Table 12.2: E l: Boundary conditions (cm).

12.2.2 In -serv ice  load ing

Once the structure is completely prestressed and stabilized, different loads have been 
applied on it with the purpose of representing properly in-service conditions. Among 
the wide variety of possibilities, snow and wind loading have been adopted as the

Initial shape
110

OX axis (m)

104

Figure 12.2: El: initial configuration: plan view.
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Initial shape

OY

Figure 12.3: El: initial configuration: isometric view.

most prominent ones. As a result of this, these two different cases will be studied 
in detail.

The snow load applied on the structural membrane will consist of 1.0 ^4- dis­
tributed across a central region of the membrane which extends up to 6.0 to2. This 
whole surface is accounted for according to its projection on a plan view according 
to standards.

For the wind load calculation, the Spanish wind loading standard NBE-AE88 
will be used as a valid one. This standard  establishes two possible limit hypotheses, 
namely, I and II, th a t require to  be checked independently. The applied normal 
pressure which is considered to be undergone by any m em brane’s m aterial point is 
the result of two factors. On the one hand, a dynamic pressure coefficient which 
accounts for the wind velocity as well as for the height of the considered location. 
On the other hand, a numerical factor whose magnitude is set up according to 
the angle between the wind direction and the spatial unit normal at the particular 
position of the membrane. Finally, pressure or suction is characterized according to 
the magnitude of the former angle.

Extrem e conditions based upon a wind up to  125 are considered. The wind 
direction is set up along the O Y  axis, where the largest exposure surface can be

axis (m) OX axis (m)
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OY axis (m) OX axis (m)

Figure 1‘2.4: El: initial configuration.

quantified, which results in the most critical situation. Figures 12.5 to 12.10 show 
the displacements contour diagrams for the different loading conditions. Figure 
12.11 shows a comparison of the displaced shape for two different loading conditions. 
Interesting conclusions can be addressed at this point.

The interior and perim eter cables act as stabilizing members for the overall per­
formance of the membrane and, in so doing, they reduce notably the displacements 
as a result of the different applied loads. As it can be observed, high values for 
the displacements are obtained as a consequence of the wind load application, spe­
cially along the wind direction. These results highlight the im portance of a complete 
fluid-structure analysis with the objective of accounting for accurately the interac­
tion between them. From the strain  point of view, it is im portant to emphasize th a t 
a maximum value less than 9.0e — 3 was attained  in the case of snow load whilst a 
figure around 3.0e — 2 was achieved for the wind case. This fact fulfills the moder­
ate strain requirement for the justifiable application of the Saint Venant-Kirchhoff 
hyperelastic model.

Analogously, figures 12.12 and 12.15 displays the contour diagrams for the prin­
cipal Cauchy stresses 07 and <7//. It transpires th a t at the prestressing stage, the 
whole membrane is under pure tension, given the second principal Cauchy stress <J// 
always presents positive values. At the same time, it is remarkable to  point out th a t
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Figure 12.5: El: OX displacements, (a) Prestress load, (b) Snow load.

the maximum stress values are attained across the central region of the membrane. 
This fact is due to  the prestressed effect imposed along the longitudinal interior 
cable which is suitably conveyed to the fabric.

Moreover, the images reflect clearly the im portance of including a wrinkling al­
gorithm to account appropriately for localized buckling regions. In all of in-service 
situations, a wide zone of the membrane is affected by this phenomenon, so an ade­
quate trea tm ent should be used to deal with it. Furtherm ore, the maximum accom-
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Figure 12.6: El: OX displacements, (a) Wind load, hyp. I. (b) Wind load, hyp. II.

plished stress will supply useful information about possible required reinforcement 
and prevent unexpected tearing of the fabric. Results agreed to what it could be 
expected in advance.
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Figure 12.7: El: OY displacements, (a) Prestress load, (b) Snow load.
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Figure 12.8: El: OY displacements, (a) Wind load, hyp. I. (b) Wind load, hyp.
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Figure 12.9: El: OZ displacements, (a) Prestress load, (b) Snow load.
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Figure 12.10: El: OZ displacements, (a) Wind load, hyp. I. (b) Wind load, hyp.
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F ig u r e  12.11: El: S h a p e , (a ) P r e s tr e s se d  lo a d , (b) W in d  lo a d , h yp  11
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Figure 12.12: El: Cauchy stress oy. (a) Prestress load, (b) Snow load.
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Figure 12.13: El: Cauchy stress oj. (a) Wind load, hyp. I. (b) Wind load, hyp. II.
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Figure 12.14: El: Cauchy stress ajj.  (a) Prestress load, (b) Snow load.
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Figure 12.15: E l: Cauchy stress 0 7 /. (a) Wind load, hyp. I. (b) Wind load, hyp. II.
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12.3 S t r u c t u r e  2: E2.

This example relates to another shade pavilion composed of a fabric textile reinforced 
by means of cables in the interior and in the perim eter of the prestressed membrane. 
The necessary anchorage has been achieved by means of pinned masts. Isometric 
perspective of the structure is displayed in figure 12.16 and a plan view is shown in 
figure 12.17. As it can be observed, the membrane as a whole presents symmetry 
with respect to  the O Y  axis, so hereafter only half of the model is to be studied 
with suitable boundary conditions.

10N 
~  8 s
E,

6 x
X  
03

8
2 N
0,
10

5

0

OY axis (m) -10  “ OX axis (m)

Figure 12.16: E2: initial configuration, isometric view.

To define the initial equilibrium shape, once again the force density method 
was used. For both internal and perim eter cables, the considered force density 
factor was ten times higher than  the one for the interior domain. The kinematic 
boundary conditions for nodes along the m em brane’s perim eter are displayed in 
table 12.3. Figure 12.2 shows a plan view of the initial configuration, where the 
nodes’ numbering of the selected Lagrangian mesh can be observed.

Figure 12.19 shows the isometric view of the structure after form finding analysis 
has taken place, where cable and membrane elements can be easily distinguished.

12.3.1 P re s tre ss in g  load ing .

Once the initial equilibrium shape is obtained, the prestressing loading is applied on 
the structure. Firstly, and as it was dome in the previous example as well, m asts are
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OX axis (m)

F ig u r e  1 2 .1 7 :  E2: in it ia l co n fig u ra tio n , p la n  v iew .

Node X y z
13 6.0 -4.5 12.0

130 6.0 0.0 0.0
247 6.0 4.5 12.0

OY axis 0.0 - -

Table 12.3: E2: Boundary conditions (m).

added to the structural model. This allows the tensioned membrane, the reinforcing 
cables and the masts to behave in an interactive manner rather than  analyzing the 
compressive members separate from the membrane-cable assemblage.

Figure 12.20 represents all the m asts and reinforced cables added up to the 
analysis. Spatial coordinates for the m asts’ extreme nodes are displayed in table 
12.4, see also figure 12.20.

The reinforcing cables are taken with E A  =  1.2e4K N ,  where E  stands for the 
Young modulus and A  symbolizes the cross sectional area. The masts pinned at 
their respective foundations are considered to have E A  = 2.0eoKN.  The textile 
1'abric is assumed to behave isotropically with E t  =  5 .0 e 2 ^  and v = 0.3., where in 
this case t denotes the membrane thickness.

The prestress process is carried out by means of an imposed displacement on 
nodes plotted in figure 12.20. Table 12.5 summarizes the applied displacements u ,
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OX axis (m)

F ig u r e  1 2 .1 8 :  E2: in it ia l co n fig u r a tio n , p la n  v iew .

Node X y z

248 5.000 3.500 .0000
249 5.000 -3.500 .0000
250 7.042 10.41 .0000
251 11.91 5.542 .0000
252 11.91 -5.542 .0000
253 7.042 -10.41 .0000
130 5.0 0.0 -5.0

Table 12.4: E2: Spatial coordinates (m).

v and w along the corresponding space directions O X , O Y  and OZ, respectively.

12.3.2 In -se rv ice  load ing .

Once the structure is prestressed and stabilized, different loads were considered, 
namely, snow and wind loading. The snow load applied on the structural membrane 
will consist of 1.0 distributed across a central region of the membrane which 
extends up to 6.0 m 2. This whole surface is accounted for according to its projection 
on a plan view. For the wind load calculation, the Spanish wind loading standard 
NBE-AE88 will be used. Again, two possible limit hypotheses, namely, I and II, 
required to be checked independently.
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Figure 12.19: E2: initial configuration, isometric view.

Node u V w

250 5.0 5.0 -5.0
251 5.0 5.0 -5.0
252 5.0 -5.0 -5.0
253 5.0 -5.0 -5.0
130 5.0 0.0 -5.0
248 0.0 0.0 0.0
249 0.0 0.0 0.0

OY axis 0.0 - -

Table 12.5: E2: Boundary conditions (cm).

Extreme conditions based upon a wind up to 102 are considered. The wind 
direction is established along the O Y  axis, where the largest exposure surface can 
be quantified, which ends up in the most critical situation. Figures 12.21 to 12.26 
show the displacements contour diagrams for the different loading conditions. Figure 
12.27 shows a comparison of the displaced shape for two different loading conditions.

Again, the interior and perim eter cables act as stabilizing members for the overall 
performance of the membrane and therefore, they reduce the displacements th a t 
result from the different applied loads. As it can be observed, high values for the 
displacements are obtained as a consequence of the wind load application, specially
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Figure 12.20: El: Reinforced cables and masts configuration.

along the wind direction. From the strain point of view, a maximum value less than  
l.Oe — 2 was achieved. This fact agrees with the m oderate strain requirement to 
justify the application of the Saint Venant-Kirchhoff hyperelastic model.

Figures 12.28 and 12.31 display the contour diagrams for the principal Cauchy 
stresses aj  and cr//, respectively. As it can be noticed, at the prestress stage the 
whole membrane is under pure tension. Again, images reflect neatly the im portance 
of including a wrinkling algorithm to account appropriately for localized buckling 
regions.
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Figure 12.21: E2: OX displacements, (a) Prestress load, (b) Snow load.



12.3. Structure 2: E2. 203

Displacements OX (m)

-5-
2 3 4 5 6

OX axis (m)

(a)

Displacements OX (m)

0.06

0.05

0 04

0.03

0.02

0.01

- 0.01

0 05

0 04

0.03

0.02

0.01

1 2  3 4
OX axis (m)

- 0.01

(b)

Figure 12.22: E2: OX displacements, (a) Wind load, hyp. I. (b) Wind load, hyp. II.
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Figure 12.23: E2: OY displacements, (a) Prestress load, (b) Snow load.
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Figure 12.24: E2: OY displacements, (a) Wind load, hyp. I. (b) Wind load, hyp.
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Figure 12.25: E2: OZ displacements, (a) Prestress load, (b) Snow load.
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Figure 12.26: E2: OZ displacements, (a) Wind load, hyp. I. (b) Wind load, hyp. II.
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OY axis (m)

Figure 12.27: E2: Shape, (a) Prestressed load, (b) Wind load, hyp II
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Figure 12.28: E2 : Cauchy stress aj. (a) Prestress load, (b) Snow load.
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Figure 12.29: E2: Cauchy stress oy. (a) Wind load, hyp. I. (b) Wind load, hyp. II.
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Figure 12.30: E2: Cauchy stress ay/, (a) Prestress load, (b) Snow load.
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Figure 12.31: E2: Cauchy stress oy/. (a) Wind load, hyp. I. (b) Wind load, hyp. II.



12.4. Conclusions. 213

12.4 C o n c lu s io n s .

The structural models presented in this chapter correspond to realistic examples 
of cable reinforced prestressed membranes. These structures were studied under 
the hypothesis of large displacements but m oderate strains. Due to this issue, a 
Saint Venant-Kirchhoff hyperelastic model was regarded as the most appropriate to 
model the constitutive behaviour of the fabric textile. Indeed, strains no further 
than  l.Oe — 2 were encountered, which dem onstrate the accuracy of the assumed 
hypotheses.

The prestressing loading was applied on a constructive manner by means of 
pulling the supports or stretching the perim eter cables. Because of this, these pre­
stressing loading can be reproduced efficiently in situ. Eventually, in-service loads 
can be applied. A larger nonlinearity is observed in the first loading stage than in 
the latter. This can be easily observed in figure 12.32, where convergence curves are 
plotted for the different loading hypotheses adopted over structure E 2 .
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Figure 12.32: E2: convergence curves, (a) Prestress load, (b) Snow load, (c) Wind load,
hyp. I. (c) Wind load, hyp. II.
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13.1 G eneral considerations.

The preceding chapters have presented the numerical techniques required to de­
velop a finite element program capable of coping with cable reinforced prestressed 
membranes.

These structures, comprised of cables and membranes, with broad application 
in Civil Engineering and Architecture, are subjected to large displacements and 
deformations, yet moderate strains. This fact implies that nonlinear continuum 
principles, under a finite deformations framework, must be accounted for. Hence, 
the physical formulation of the continuum is set up in terms of stress Lagrangian 
entities such as the first and second Piola-Kirchhoff stress tensors and, as a function 
of strain tensors like the Green-Lagrange strain tensor.

As the initial configuration of the problem cannot be established beforehand 
using only architectural criteria, the so called shape finding problem emerges in 
order to provide an initial equilibrium configuration under the imposition of certain 
boundary conditions and a predefined internal prestressing distribution. Amid all 
the available techniques, the force density method has emerged as the simplest and 
most useful.

Once an initial equilibrium configuration with a nominal stress distribution has 
been obtained using the previous shape finding procedure, realistic prestressed con­
ditions can be applied on the structure by means of displacing fixed supports or 
stretching interior or perimeter cables. This prestressed configuration is used as 
the basis for the subsequent in-service loading analysis. For this reason, the finite 
deformations theory under prestressed bodies was developed as the foundation over 
which to build up the whole formulation.

The constitutive model employed to model the material’s behaviour was the so 
called Saint Venant-Kirchhoff hyperelastic model, namely, a linear tensorial rela­
tionship between the second Piola-Kirchhoff stress tensor and the Green-Lagrange 
strain tensor. The finite element method (FEM) was established using a Total La­
grangian formulation (TLF), which was implemented for two-noded and three-noded 
isoparametric finite elements in a Direct Core Congruential format (DCCF).

The final problem comprising the balance equations at the nodal level, is pre­
sented by means of two different variational formulations. On the one hand, the 
Principle of Virtual Work is employed whereas, on the other hand, another approach 
based on the minimization of the Total Potential Energy functional is introduced.

The admissible loading was very versatile, consisting of thermal effects, snow 
loading, wind loading and non conservative forces among others. The resulting 
geometrically nonlinear problem, which involves the minimization of the total po­
tential energy system functional, was solved by using unconstrained optimization 
techniques through a wide group of first and second order algorithms, specifically 
developed for it. These were improved by a parametric line search algorithm ac­
cording to a polynomial interpolation.

The set of equilibrium equations presented a geometrically nonlinear feature, so
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an iterative solution scheme was required. Among all the available methods, the 
second-order Newton-Raphson technique accomplished the best convergence prop­
erties. The total tangent stiffness matrix required to be calculated by this method 
was obtained by linearizing the global equilibrium equations.

13.2 Conclusions.

13.2.1 A bou t th e  proposal of the m ethod.

Even though the physical response of prestressed membranes was perfectly defined 
and set up in early works by Otto (1967), special needs are still requested within 
the field of the numerical simulation. An attempt to accomplish some of the goals 
in this direction has been made in this research.

The physical models, despite of being interesting to foresee the mechanical be­
haviour of the membrane -see Otto (1962) and Hildebrandt and Tromba (1990)-, 
they only provide a qualitative insight on the real response of such structures. In 
order to facilitate the design process, it is necessary to use numerical methods that 
are efficient and stable. These structures, which undergo large displacements and 
moderate strains, are very sensible to sudden changes in geometry, because of the 
geometrically nonlinearity of its own nature. All of these issues, make the numerical 
simulation a valuable tool to envisage the response when multiple and different sets 
of input loads want to be taken into consideration. The computational cost, namely, 
time, is the only one to face.

For years, the computational analysis of prestressed membranes has been per­
formed by using cable networks as a valid model of its behaviour. However, although 
computationally efficient, this analogy has been proven to be only approximate -see 
Magara and Okamura (1986) and Levy and Spillers (1998)- to represent exactly real 
strains and stresses of the continuum.

On the other hand, a fully nonlinear approach in a Lagrangian format has not 
been reported so far in the existing literature. At most, the classical linear elasticity 
material stiffness matrix along with a modified geometric stiffness matrix to account 
for some geometrically nonlinear effects, are added up to form the final total tangent 
stiffness matrix. References such as Buchholdt (1985), Leonard (1988), Broughton 
and Ndumbaro (1994) or Levy and Spillers (1995) are based on this framework.

By combining a suitable representation of the continuum through three-noded 
finite elements and the fundamentals of the nonlinear continuum mechanics, a more 
robust, comprehensive and accurate approach was developed. References such as 
Oden and Sato (1967), Grutmann and Taylor (1992) and Souza et al. (1995) follow 
the same trend. At the same time, the inclusion of two-noded finite elements enabled 
to represent appropriately which could be likely assembled in the overall structure.

For real applications in the fields of Architecture or Civil Engineering, a mod­
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erate strain-finite deformation continuum theory1 -see Crisfield (1991b), Bonet and 
Wood (1997) and Belytschko et al. (2000)- was shown as adequate to formulate 
the problem. Furthermore, by realizing that the initial equilibrium shape is usu­
ally under the existence of an acting prestressing load pattern, a strong formulation 
based on initially prestressed bodies was developed -see Iesan (1989)- for membrane 
structures.

Numerical examples for two realistic structures were deeply described in an ex­
clusive chapter. Both cases attempted to underline the importance of applying 
the prestressing load in a feasible manner: either moving locally certain nodes of 
the mesh or controlling the prestressed strength in reinforced cables, among other 
methods. The definition of initial shapes according to any form finding method, 
however appealing from a mathematical standpoint2, it does not result achievable 
for practical engineering purposes.

Eventually, with the purpose of accelerating the design process, a modular soft­
ware architecture was implemented with different capabilities: graphical preproces­
sor, form finding solver, shape graphical postprocessor, structural analysis solver 
and stresses graphical postprocessor. A friendly user interface was designed for it.

13.2.2 A bou t th e convergence o f th e  num erical algorithm s.

Some key conclusions has been discovered when dealing with the simulation of the 
different numerical examples:

•  The Newton method has been proven as the most powerful method given its 
quadratic convergence. As a matter of fact, this method should be preferred, 
whether possible, over other techniques, such as dynamic relaxation, steepest 
descent or so on.

•  When analyzing 2D membranes under in-plane loading conditions, the final 
solution is obtained in an incredibly fast rate. Nevertheless, if transverse loads 
are acting on the membrane, the convergence towards the solution is slowed 
down considerably. Indeed, the problem becomes extremely non-linear.

•  Computationally, distributed loads are preferred rather than point loads, when­
ever possible. Another interesting remark already pointed out by Oden and 
Sato (1967), is the fact that in the analysis of membranes which undergo large 
out-of-plane deformations due to external loading, rates of convergence can be 
significantly increased by first analyzing a coarse mesh. Thus, an initial coarse 
mesh could be used initially and then, by a mesh refinement technique, new 
elements could be introduced into the finite element analysis.

1For Biomechanics applications, large strains constitutive laws must be regarded as more ap­
propriate.

2The search of optimum shapes, also named minimum shapes, is well registered in Hildebrandt 
and Tromba (1990), Do Carmo (1995) or Castellano (1995).
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•  The presence of membrane elements in a wrinkling state slows down the conver­
gence of the method, with respect to the convergence rate when fully traction 
is present in the whole domain.

• The initial steps for a prestressing loading analysis are very unstable, specially 
when dealing with nearly plane initial membranes. The inclusion of a fictitious 
prestress or, equivalently, the modification of the Hessian of the Total Potential 
Energy functional by the Levenberg-Marquardt method can be considered very 
useful.

•  Another appealing way to overcome such difficulties throughout the first in­
crements of the analysis is to combine first and second order methods in an 
efficient manner. To avoid initial divergences of the calculation, a more robust 
first order method is employed and only when local convergence is presumed, 
a second order algorithmic technique is used.

•  The inclusion of a parametric line search scheme has been shown as funda­
mental to reach convergence in the majority of the analyses which have been 
carried out.

•  When masts are included into the global analysis of the structure, the over­
all stiffness matrix could end up ill-conditioned, because of the considerable 
difference of stiffness between fabric textile and masts themselves. Scaling 
techniques are efficient to cope with these situations.

•  The prestressing loading stage has been proven to be much more no-linear than 
the subsequent in-service loading stage. Due to this fact, a two-step analysis 
has been seen as very effective computationally.

13.3 R ecom m endations for further research.
According to Lewis (1998), pp. 181, ”... despite an upward trend in popularity of 
lightweight tension structures, factors such as cost and durability can render these 
exciting structural forms uncompetitive against conventional designs. This situation 
can be attributed to the lack of appropriate computational tools ... ”.

These words make clear that there are still many open fronts within the pre­
stressed membranes’s numerical analysis. Even though this thesis can be regarded 
as a forward step towards the proper computational treatment of this kind of struc­
tures, future research lines should be pointed out to cover the demanded needs of 
engineers and designers. Some of them are:

•  Incorporation o f new constitu tive m odels. The consideration of the 
orthotropic model of Saint Venant-Kirchhoff, as well as some other materials’ 
laws should be included within the computer code’s library. This will permit to 
account for materials whose strains can be regarded as larger than moderate.
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•  F lu id -stru ctu re  in teraction . The structural models analyzed in this re­
search, when subjected to follower loads such as wind loading, resulted into 
notable displacements outcomes. This could likely entail a drastic variation 
of the pressure coefficients acting on the membrane. Not just its magnitude, 
but its sign, can be altered, making the pseudo-static approach inefficient and 
inadequate.

•  D ev e lo p m en t o f exp erim en ta l exam ples. It is believed that with the 
purpose of validating more exactly the computer program upshots, feasible 
experimental examples should be designed. A proper measure of strains and 
stresses, specially in terms of prestressing, should be incorporated in order to 
register variations of behaviour of the prestressed membrane, throughout the 
whole structural process. More accurate constitutive laws could be derived for 
further implementation into the computer code.

•  C reep in g  deform ation  analysis. It is necessary to derive constitutive mod­
els to account for this phenomenon, so the stability of the prestressed mem­
brane could be followed throughout its life.

In view of what has been exposed throughout this research, it is believed that 
even at the present state the numerical simulation of prestressed membranes provides 
the design engineer with valuable quantitative information. Nevertheless, much 
effort is still needed for the purpose of improving the accuracy of the analysis and 
including more complexities into the calculations.
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A .l  Introduction.

The use of vectors, matrices and tensors is of fundamental importance in engineering 
analysis because it is only with the use of these quantities that the complete solution 
process can be expressed in a compact and elegant manner. The objective of this 
appendix is to present the fundamentals of matrices and vectors, with emphasis on 
those aspects that are important in finite element analysis.

Multiple definitions, theorems and corollaries are gathered in this appendix. The 
great majority of the demonstrations are omitted because they overcome the scope 
of this brief discussion. Therefore, although a rather limited presentation of matrices 
and vectors is given here, we hope that the focused practical treatment will provide 
enough basis for understanding of the thesis’ main body. Nevertheless, for a further 
and detailed study, some references of contrasted interest are mentioned: Dahlquist 
et al. (1969), Krasnov et al. (1994), Burden and Douglas (1998) and Quesada 
(1996).

A .2 Introduction to m atrices.

In this section, some basic definitions and properties about fundamentals of matrix 
analysis are detailed. Theses concepts will be referred to in some chapters of this 
thesis.

D efinition 6  A nxn matrix A =  is said to be diagonally dom inant when:

n

Wa | >  ^ 2  \dij\ Vi  =  1,2, . . . , 7 2  (A.l)

Analogously, the same nxn matrix A is said to be strictly  diagonally dom i­
nant when:

n

\au \ > \aii\ Vi =  1,2, . . . , n  (A.2)
j =l , j^i

T heorem  9 A strictly diagonally dominant matrix is not singular.
Furthermore, in this case, the Gaussian elimination can be employed for any 

linear system of equations A • x  =  b to come out with its unique solution without 
swapping neither columns nor rows, and the calculations are stable with respect to 
round-off errors.

D efinition 7 A squared matrix A is said to be positive definite if xT • A • x  >
0 , V x ^  0 , where x  is a n-dimensional vector.

D efinition 8  A squared matrix A is said to be p ositive sem idefinite z/xT • A • x  >
0, V x, where x  is a n-dimensional vector.
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Theorem  10 Let A  be a squared positive definite matrix, then all the following 
statements are satisfied:

• A  is no singular.

• an >  0  i =  1 , 2 , . . . ,  n.

• maxi<k,j<n l — maxi<i<n |u |̂.

® ^ Q'iiQ'jj Vi -f- j .

Theorem  11 (S ilvester’s criterion) A  symmetric matrix A  is positive definite if 
and only if its first principal submatrices have positive determinant.

A .3 Vector and m atrix norms.

If we deal with single numbers, we can identify a number as being large or small. 
Vectors and matrices are functions of many elements, but we also need to measure 
their size. A norm is a single number that depends on the magnitude of all elements 
in the vector or matrix.

Vector and matrix norms play an important role in error’s theory and, as a 
consequence, in the definition of the accuracy and stability of the numerical methods 
employed for the resolution of problems with O DE 1  or P D E 2  and boundary , or 
initial conditions.

D efinition 9 A  vector norm in R n is a function, || • ||, from R n to R ; with the 
following properties:

1. 11x|J > 0  V x e  R n.

2. 11x 11 =  0  <;=> x  ee 0 .

3. ||ox|| =  M ||x|| V a  G R, V x E R n.

I  ||x +  y|| < ||x|| +  ||y|| V x j e R " .

D efinition 10 (Euclidean vector norm) The Euclidean vector norm, l2, of a n-
vector x is defined as follows:

D efinition 1 1  (Infinity vector norm) The infinity vector norm, l^, ofan-vector  
x is defined as follows:

n

(A.3)

oo =  m a x  | Xi (A.4)

1 Ordinary Differential Equations.
2Partial Differential Equations.
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The following relationship between the above norma can be obtained: 

T h eorem  12 For all x  E R n,

IMIoo < ||x||2 < v^llxlloo (A.5)

Let Xj be the j th-coordinate of the vector x  such that: H x ^  =  maxi<i<n |a ;* | =  \xj \ .  

Thus, it is verified that:

iixii»= w 2=% < it,*? -  it,*2*= nx?= (a -6)
i=l i=l

Therefore, it is fulfilled:

OO — \
= I|x||2 <  V l̂lxlloo (q.e.d.) (A.7)

i=i

D efinition 1 2  The norm of a matrix of order nxn, written as || • ||; is a real valued 
function from R 2n to R, which satisfies for any pair of matrices A and B and for  
any scalar a, the following requirements:

(i) IIA|| >  0 .

(ii) || A|| =  0 4=s> A =  0.

(Hi) 11o;A11 =  |a |||A ||.

(tv) ||A +  B|| < ||A|| +  ||B ||.

(v) ||A • B|| < ||A ||||B ||.

In order to obtain useful results, we need to employ only specific vector norms 
with specific matrix norms. Here and in what follows, only natural or induced matrix 
norms will be used. These norms are defined as follows:

T h eorem  13 Let || • || be a vector norm in R n, then:

II A l l  =  max IIA  • xll (A.8)
l|x|| = l

is a matrix norm. This norm is named as n atu ra l or in d u ced  m atrix  norm  
associated with the vector norm.

C orollary 5 For any vector x, any matrix A  and any natural or induced matrix 
norm || • ||, the following condition is satisfied:
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Definition 13 The natural or induced infinity and Euclidean matrix norms of a 
matrix A of order nxn are defined as:

HAH*, =  max ||A • x||oo ||A | | 2  =  max ||A • x | | 2  (A.10)||x|| =  l ||x|| = l

Theorem  14 If A  =  ay is a nxn matrix, then:

n

IIA||oo =  max V |a y |  (A .ll)
l < i < n  »

j =1

Definition 14 The spectral radius p(A) of a matrix A of order nxn is defined 
as:

p(A) =  max | Af| where \  is an eigenvalue o f  A
i= l ,  n

Definition 15 If A is a matrix of order nxn, then:

(i) ||A ||2 = Vp(a t  • A). 

p(A) < ||A||, V IIA||.

where all the matrix norms are considered to be natural or induced.
For the demonstration of the above second condition, let X be an eigenvalue of 

the matrix A with its associated eigenvector x such that ||x|| =  1 . I n  this case, we 
can prove that:

W =  |A |M  =  !|Ax|| =  ||Ax|| <  ||A||||x|| =  ||A|| (A.12)

As the spectral radius is equal to the maximum absolute value of the eigenvalues, the 
condition results to be demonstrated.

Definition 16 A matrix A =  â - of order nxn is said to be convergent if:

lim (aij)k =  0 i =  1 ,2 , . . . ,  n j  =  1, 2 , . . . , n. (A.13)
k — >oo

Theorem  15 The following statements are equivalent:

(i) A is a convergent matrix.

(a)  lim || A 7 1 1| =  0, for any natural norm.
n — > 0 0

(Hi) lim ||An|| =  0; for all natural norms.
n — >oo

(iv) p{A)  < 1.

(v) lim A n • x  =  0 V x G R n.
n — >oo
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A .4 Iterative m ethods for the solution of linear 
system  of equations.

The result of the discretization process in structural mechanics problems, is a system 
of algebraic equations, which are linear or non-linear according to the nature of the 
P D E . Matrices derived from partial differential equations are always sparse, i.e. 
most of their elements are zero. Efficient methods for the resolution of systems 
A  • x =  b are strongly demanded.

Although any system of equations can be solved by Gauss elimination or LU 
decomposition, unfortunately, these direct techniques entail a high computational 
cost along with somehow less accurate results, which stem from the presence of 
considerable round-off errors. This leaves an opening for iterative schemes.

The aim is to solve the system A  • x =  b, for which an initial approximate guess 
x(°) is set up. Then, a series of vector solutions of the way {x(fc)}£L0  is generated in 
an iterative manner to converge to x. If each iteration is cheap and the number of 
iterations is small, an iterative solver may cost less than a direct method.

By means of an iterative method, the problem A  • x  =  b is transformed into one 
of the form x =  T -x +  c, for any matrix T and a vector c. Hence, the solution of the 
system of equations is accomplished according to the following iterative formula:

X<*> =  T  • +  c fc =  1,2,3, . . .  (A. 14)

As a conclusion, direct methods3 are preferred rather than iterative methods 
when dealing with small order system of equations, on account of its shorter com­
putational time to achieve the solution. Nevertheless, large dimensional system of 
equations with a wide range of zeros among their matrices’ components, should be 
preferably solved in an iterative manner4. These iterative schemes behave efficiently 
in terms of both computational time and storage capacity.

Theorem  16 For all x 0̂̂ E R n; the series {x^}£L 0  set up as:

x (fe) =  T ■ x (fe_1) +  e V f c > l  (A .15)

converges towards the unique solution o f x  =  T • x  +  c if and only if p(T) < 1.

A .4.1 Jacobi m ethod .

This method, regarded as the simplest iterative technique, consists of solving the 
i-th equation of the system A  • x  =  b with the purpose of obtaining Xi -the following

3 Among these m ethods, Gauss method, G auss-Jordan  m ethod and matrix factorization schemes 
such as D ootlittle scheme, Crout scheme or Cholesky scheme, must be highlighted as the most 
common in use.

4These system s of equations usually emerge from com putational techniques such as finite differ­
ences, finite elements or finite volumes, among others, when employed to solve P D E  with boundary 
conditions of any type, that is, essential or D irichlet, natural or N eum ann  and mixed boundary 
conditions.



234 Appendix A. Vector and tensor Algebra

condition must be fulfilled: an ^  0. The method is formulated as follows:

(*) ) + h  . , „ ,4 1C,
x\ ’ =  — -— —----------    z =  1,2, (A.16)

an

A .4.2 G auss-Seidel m ethod .

A possible improvement of the former algorithm can be achieved if the following 
alternative formulation is employed:

J = (A,7)
an

where in order to calculate the i-th component of the solution vector , the com­
ponents x k̂~^ with j  =  i +  1, . . . ,  n and x ^  with j  — 1, . . . ,  i — 1 are used.

T h eorem  17 If the matrix A  is strictly diagonally dominant, then for any initial 
guess both Jacobi method and Gauss-Seidel method, generate a series of vectors 
which converge towards the solution of the system A  • x  =  b.

T h eorem  18 (S te in -R osen b erg ) If the following condition is verified, that is, 
aij <  0 i j ,  and if an >  0 V i =  1, . . .  ,n, then one and only one of the following 
statements will be verified:

(i) 0 < p(Tg) < p(Tj) < 1.

(ii) 1 < p(Tj) < p(Tg).

(Hi) p(T g) =  p(Tj) =  0.

(iv) p(T g) =  p(Tj) =  1.

where:

•  T g represents the T  matrix obtained by means of the Gauss-Seidel iterative 
scheme.

•  Tj represents the T  matrix obtained by means of the Jacobi iterative scheme.

D efin ition  17 Let x  G R n be an approximation to the solution of the system of 
equations A  • x  =  b. The residual vector o f x  with respect to this system is defined 
as r =  b — A x.

By accounting for this definition, the Gauss-Seidel iterative scheme can be refor­
mulated as follows:

( ,k )

x f ] =  x f ~ l) +  (A.18)
<H i

The above formula can be slightly modified to yield:
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(,k)

i f  > =  i f  _1> +  (A. 19)
an

where for certain values of the positive scalar uj, a faster convergence can be accom­
plished.

D efinition 18 The iterative methods which may be summarized by means of the 
aforementioned equation (A. 19), are named r e la x a t io n  m e th o d s .  Those with the 
parameter uj satisfying 0 < u  < 1 are specifically named sub-relaxation methods, 
and enable the convergence of those systems of equations which do not converge 
under the Gauss-Seidel method. On the other hand, those methods where u  > 1 are 
referred to as over-relaxation methods and enable to speed up the convergence of 
those systems of equations which already converge under the Gauss-Seidel methodI5.

The equation (A. 19) can be rewritten in an alternative manner for the sake of 
computational implementation, that is:

i f )  =  (1 -  u )x f _1) +  —  [hi -  d i jx f ) -  “y ^ f  _1)] (A.20)
j = i  j =<+ i

T heorem  19 (Kahan) If an ^  0 V i =  1 , 2 , . . .  ,n, then p (T u) >  \uj — 1|. This fact 
implies that the relaxation method converges if and only if 0 < u j  <  2 .

Theorem  20 (O strowski-Reich) If A is a positive definite matrix and if 0 <  
u < 2 ,  then the relaxation method converges for all possible guesses of the initial 
solution vector x ^ .

A .4.3 On th e  convergence of th e m ethod .

When using iterative solvers, it is important to know when to quit. The most 
common procedure is based upon te difference between two successive iterates; the 
procedure is stopped when this difference, measured by some norm, is less than a 
pre-selected value. Unfortunately, this difference may be small when the error is not 
small and a proper normalization is essential.

At first, it seems logical to think that if x  is an approximation to the solution 
x  of the system of equations A  • x  =  b, and if the residual vector r =  b — A  • x  
has got the attribute of having a small norm ||r||, then the following norm ||x — x|| 
will be small as well. Nonetheless, there are certain systems of equations where this 
reasoning is not verified.

T h eorem  21 If Sc is an approximation to the solution x, A  is a non-singular matrix 
and r is the residual vector of x, then for all natural or induced matrix norms, the 
following condition is fulfilled :

5These m ethods are abbreviated by means of the following acronym: S O R  ( S u c c e s iv e  O v e r  
R e la x a t io n ) .
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||x — x|| < ||A- 1 1| ||r|| (A.21)

Or rewritten in an alternative manner:

lx -  xll . „ .  _lM Hr
< || A|| || A  || 777717 such that x ^ O ,  b ^ O  (A.2 2 )

Definition 19 The c o n d i t io n  n u m b er  of a non-singular matrix A , that is, K (  A),  
related to the norm || • || is defined as:

if(A ) =  ||A ||||A -I|| (A.23)

In accordance with this definition, the above formuale (A.21) and (A.22) can be 
rewritten as follows:

| |x -X || <  A (A )M -  (A.24)

< - ( A ) M  (A.25)

Theorem  22 For all non-singular matrices A and under any natural or induced 
matrix noun || • ||, it is verified that the condition number is always greater or equal 
to one. Indeed, this is easily proved as follows:

1 =  p || =  ||A • A - 1 1| < || A ||||A - 1 1| =  K { A) (A.26)

Corollary 6  A matrix A is w e ll  c o n d i t io n e d  if K  (A) approaches 1 and it is i l l
c o n d it io n e d  if K (  A) is significantly larger than 1.

Corollary 7 If the matrix A is not ill conditioned, then a small residual vector will 
imply an accurate approximation to the exact solution of the system of equations. 
On the contrary, if  the matrix A  may be regarded as ill conditioned because of its 
large condition number, then a small residual vector will not guarantee an accurate 
iterate next to the final exact solution of the system.

Theorem  23 For all positive definite matrices A and under the existence of a nat­
ural or induced matriz norm || • ||, it is verified that the ratio between the largest and 
the smallest of their eigenvalues is less or equal to the condition number:

A (A ) =  ||A ||||A -1||; p(A) < ||A||; p(A_1) =  -— 1 —r < ||A - 1 1|

Therefore:

where:

r ( A )  =  T ^ T a T  -  l l A I H I A _ I l l  =
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Am;n(A ) is the smallest eigenvalue of the matrix A .

p(A) is the spectral radius or equivalently, the largest eigenvalue of the matrx A.

r( A ) is the ratio between both eigenvalues of the matrix A .

As a consequence, if the matrix A  is well conditioned, then the ratio between the
largest and the smallest of its eigenvalues is very near the unity.
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B .l  Introduction.
The concept of optimization is now well-rooted as a principle underlying the solution 
of numerous structural problems. Most of these problems end up in unconstrained 
optimization1 problems or, equivalently, nonlinear system of equations.

Although multiple algorithms may be established to solve these kinds of prob­
lems, all of the algorithms exposed in this research will present the following at­
tributes:

1. Iterative, that is, an iterative sequence will be generated in such a way that 
every solution is generated based on a previous one.

2. Descent, as the iterative process progresses, the value of a certain function 
decreases.

3. Convergent, and in the best of the cases, globally convergent.

In this appendix, some definitions and theorems of interest will be detailed.

D efin ition  20 An algorithm A is a mapping defined on a vector space x  that assigns 
to every point x  G x  a subset of x-

Operated iteratively, the algorithm A initiated at x° in x  would generate the 
sequence defined as:

x *+1 =  A {xk)

In general, x  be a vector space which dispose of an Euclidean norm -see
appendix A-. As the algorithm A is not a point-to-point mapping, the sequence
generated by the algorithm A  cannot, in general, be predicted solely from the knowl­
edge of the initial point x°. This is to reflect the uncertainty that we may have in 
practice as to specific details of an algorithm.

D efin ition  21 (D escen t function ) Let T C y  6e a given solution set and let 
A be an algorithm on x- A continuous real-valued function Z on x  is said to be a 
descent function for T and x  if it satisfies:

(i) i f - x . ^ r  and y  G A(x) ==> Z(y)  <  Z(x)

(ii) z /x  G T and y  G A(x) = >  Z{y)  <  Z(tl)

The basic idea of a descent function, is that for points outside the solution set, 
a single step of the algorithm yields a decrease in the value of the descent function.

D efin ition  22 (C losed  m apping) A point-to-set mapping A from x  to 7 is said 
to be closed at x  G x  if the assumptions:

1See Dennis Jr. and Schnabel (1996) and Luenberger (1989) for an extensive revision about the 
subject.
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(i) x k — ► x, x fc G x

(%%) y k — ► y, y fc G A( x k)

imply:

(in) y  G A(x)

Corollary 8  The point-to-set mapping A is said to be closed on x  if it is closed at 
each point of x-

Theorem  24 (G lobal Convergence Theorem ) Let A be an algorithm on x, and 
suppose that given x°, the sequence {xfc}£ i 0  is generated satisfying:

x k+1 G A (xfe)

Let a solution set T C X  be given, and suppose:

i) all points x k are contained in a compact set S C x-

ii) there is a continuous descent function Z on x-

Hi) the mapping A is closed at points outside T.

Then the limit of any convergent subsequence of { x k} is a solution.

Corollary 9 If under the assumptions of the Global Convergence Theorem, T is 
represented uniquely by the point x, then the sequence {xfc} converges to x.

Definition 23 (D egree of convergence on series) Let x* G Rn, x k G Rn, k =
0,1 ,2 ,__  The sequence {x fe} =  {x°, x 1, x 2, . . .} is said to converge to x* if it
satisfies:

lim ||xfc-x * || = 0
k  mx>

If there exits a constant c G [0,1) and an integer k >  0 such that for all k >  k,

||xfc+1 -x * || < c||xfc -  x*||

then {xfc} is said to converge linearly to x*.
If for a sequence {c^} which tends to 0,

||x f c + 1  - x* | |  < cfc||xfe — x*||

then {xfc} is said to converge super-linearly to x*.
If there exit constants p > 1, c >  0 and k >  0 such that {xfc} converges to x*, 

and for all k >  k,
||x f c + 1  -x * || < c||xfc - x * | |p

then {xfc} is said to converge to x* with order p.
Ifp  =  2 o rp  =  3, the sequence is said to be quadratically or cubically convergent, 

respectively.

Corollary 1 0  The greater the order of convergence, for an initial point x°; the 
faster the speed of convergence towards the solution.
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C .l Introduction.

The discrete locations at which the variables are to be calculated are defined by the 
numerical grid which is essentially a discrete representation of the geometric domain 
on which the problem is to be solved. It divides the solution domain into a finite 
number of subdomains.

The generation of grids for complex geometries is an issue which requires too 
much space to be dealt with in great detail here. However, we shall present some 
basic ideas about graphs theory, because of its interest for the development of grids 
in membrane structures, as it can be read in a specific chapter of this thesis.

C.2 Fundam entals of Graphs theory.

D efin ition  24 A graph is a pair (V , E), where V  is a finite set whose elements are 
the vertices of the graph and E  is a collection of pairs of vertices called the edges of
the graph. Therefore, (e = {a, b] E E\ a, b E V), where a and b are adjacent vertices
and extremes of the edge e.

An m-dimensional cable net, mathematically represented by (V , E , p ), can be 
obtained starting from the so called mathematical entity graph (V , E)  and a function 
p, so that:

p : V  R m
(C.l)

a i—> p(a)

p(a») =  P i =  (xi,yi,Zi) E R 3  with a* E K (structure’s node) (C.2)

p(a»)p(aj) with a ^ a ^ E V  (structure’s cable) (C.3)

Consequently, (V, E)  is called the structure graph of the cable net, and p is a 
function that transforms the topological structure into a spatial one.

Those properties of a cable network which strictly depend on the connectivity 
among their nodes and not on the spatial distribution of them, are named combina­
torial properties. These properties are common attributes for all the cable networks 
sharing the same connectivity. Nonetheless, those aspects which are related to the 
spatial configuration of the structure are named geometric properties.

D efin ition  25 A graph (V, E) is said to be disconnected i f  the vertex set V  can de 
partitioned into two nonempty and disjointed sets, so that no edge belonging to the 
set E  has its endpoints in each one of the sets simultaneously. Otherwise, the graph 
is said to be connected.
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D efin ition  26 The number of edges of the graph with the vertex a as an endpoint 
is called the valence or degree of a and it is formulated as p(a). In this way, it is 
implied:

^aevpio) — 2 \| E  |
(C.4)

where:

1. | E  | represents the cardinal of E.

2. p is the average valence of a vertex.

D efin ition  27 A graph (U, D ) comprised of some vertices and edges belonging to 
the graph (V,E),  in such a way that U C V, D  C E, is referred to as subgraph of 
(V,E).

D efin ition  28 Let (V , E) be a graph. I f exists a series of vertices a = a0, a i . . .  an = 
b, in such a way that every pair of consecutive vertices are interconnected by an edge, 
then it is said that the vertices a and b are connected by a path which belongs to the 
graph.

L em m a 1 A graph (V , E) is said to be connected if and only i f  every pair of vertices 
of the graph is connected by a path of the graph.

D efin ition  29 A graph (V , E) is said to be planar if it can be drawn in the plane 
without its edges crossing. Starting from that one, a plane graph can be defined as 
a graph which is planar along with a specific drawing in the plane.

Once the graph can be drawn in a plane, we will name faces as those regions 
of the plane which are bounded by edges of the graph. A remarkable structural 
application of this sort of graphs which must be pointed out, is the covering of open 
spaces by means of roofing structures. For the sake of this reason, a planar graph 
(V,E,F)  is introduced where F  represents the set of faces of the graph.

D efin ition  30 Given a plane graph, the valence of a face can be thought of as the 
number of edges surrounding the face and it is represented by p(f ) ,  with f  6 F.

T h eo rem  25 (T h eo rem  o f E u le r) Let (V , E , F) be a connected plane graph. Then 
we have that:

\ V \ - \ E \  + \ F \ = 2  (C.5)

where:

1. |V| is the number of vertices.

2 .  \E\ is the number of edges.
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3. |F | is the number of faces.

L em m a 2 Let (V , E, F) be a plane graph. Then l^l < =  3 • |V\ — 6 with equality if  
and only if all the faces are triangular.

In order to guarantee an adequate discrete representation of a domain by means 
of a planar graph, a sufficiently enough number of nodes, edges and faces must be 
accounted for. Coarser or finer meshes will depend on the selection of the cardinal 
of these sets. According to Graver (2001), in the case of anticlastic surfaces -shape 
shown by prestressed membranes-, it is helpful to ensure tha t the valence of every 
vertex is less or equal to six, in order to avoid coplanar nodes.
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D .l  Introduction.

Nonlinear continuum mechanics is a fundamental instrument for the correct study 
of structures undergoing large deformations. As it is well known, two sources of non- 
linearity exist in the analysis of solids, namely, material and geometric nonlinearity. 
The latter is the one of major concern throughout this thesis. Practical stress analy­
sis of complex solids and structures requires to be solved by non-classical structural 
techniques. Numerical analysis such as the Finite Element Method have acquired a 
stunning acceptance among the scientist community.

In Reference Bathe (1996), a rigorous classification is presented for the different 
nonlinear structural mechanics problems that can be encountered. In actual analysis, 
it is necessary to decide in advance whether a problem falls into one or another 
category of nonlinear problem. This fact will impose the use of a specific formulation 
rather than another one.

This appendix intends to present briefly the basic kinetic and kinematic tools 
in nonlinear continuum mechanics. Strain and stress tensors will arise in a natural 
manner. Basic definitions and relations among them will be developed for the sake 
of completeness. Nevertheless, for an extensive revision of these concepts, a wide 
bibliography can be encountered. According to the author’s criterion, some of the 
most remarkable References are: Timoshenko and Goodier (1968), Green and Zerna
(1968), Malvern (1969), Diaz del Valle (1989), Truesdell and Noll (1992), Bonet and 
Wood (1997), Chadwick (1999), Holzapfel (2000) and Belytschko et al. (2000).

Finally, let us remark the importance of disposing of a sufficient knowledge of 
tensor analysis. This topic will be assumed to be known by the reader, although 
some comprehensive studies are mentioned, namely: Lichnerowicz (1962), Santalo
(1969), Gonzalez de Posada (1983) and Sokolnikoff (1987).

D .2 An introduction to kinem atics.

Let 3  a deformable solid, also named material body, which satisfies the requirements 
to be regarded as a continuum1, that is, we disregard the molecular structure of 
m atter and picture it as being without gaps or empty spaces. Under the presence of 
a displacements field2, the movement of the material body can be tracked as a series 
of configurations throughout the time domain. Furthermore, it is feasible to define 
a mapping between the initial undeformed configuration B 0  at time t = 0 and any 
other configuration B* at time £, which is given as:

J- : Bo — > B*

X  =  O n ,  x 2, x 3) = JF(X0, t) = X l  X l  t)

1In this particular investigation, the solid B  could be either a structural membrane or a cable.
2Tensor (Tij) and matrix (T) notations will be employed throughout this appendix indistinctly, 

unless otherwise stated.
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where x  stands for the current or spatial coordinates whereas X 0 represents the 
coordinates of the material particle itself. In Malvern (1969), four distinct classical 
nonrelativistic descriptions of a continuum are cited, namely:

1. M aterial description where the independent variables are the instant t and 
the material particle itself Xo-

2. Referential description3 whose independent variables are the instant t and 
the coordinates of a material particle X 0 in an arbitrarily chosen referential 
configuration B rey, formulated as X. This description is frequently referred to 
as the Lagrangian description4.

3. Spatial or Eulerian description5 where the independent variables are the 
instant t and the current position of the particle X 0, namely, x.

4. R elative description where the independent variables are the current coor-
*

dinates x  of a material particle X 0 and a time variable r , which corresponds 
to the instant in which the particle occupies certain location z different to the 
current x.

As a consequence of the previous classification, here and in what follows a La­
grangian, referential or material description will be regarded as the most suitable. 
Therefore, any dependent magnitude of the continuum will be described by means 
of two independent variables: on the one hand, the current time t when the particle 
X 0 occupies the location x  and, on the other hand, the Lagrangian, referential or 
material coordinates X  of the particle X 0 when it belongs to the configuration B ref .  

This can be displayed as follows:

H  : B r e f  — > B f  

X  =  ( x i , x 2l X 3 ) = H{X,  t) =  H { X  1 , X 2, X 3, t)

In accordance with this formulation, two second order tensors arise naturally to 
describe the kinematic of the process, namely:

D efinition 31 (D eform ation gradient tensor) The deformation gradient ten­
sor F  is defined as the gradient of the current position vector x  of a material particle, 
with respect to its position in the referential configuration B ref ,  that is6:

3This description was introduced by Euler in 1762 according to Truesdell and Noll (1992).
4Some authors also employ the term m aterial description  when referring to it, although it 

should not be confused with the previous one. In this case, coordinates X o are replaced by X  as 
independent variables.

5This description was introduced by d ’Alembert in 1752 according to Truesdell and Noll (1992).
6For the development of the forthcoming formulation, only cartesian coordinates in an Euclidean 

vector space will be taken into consideration, that is, { i , j , k }  E R 3 will be adopted as the usual 
orthonormal triad. Hence and for the sake of simplicity, no distinction between covariant and 
contravariant coordinates has to be introduced.
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Fij = Q ^r F  =  V re/x  (D.l)

Alternatively:

dx ■
dxi = - f - d X j  = FijdXj  dx =  F  • d X  (D.2)

oXj

The current coordinates x  can be expressed in terms of the referential coordinates 
X  by means of the displacement field u  as follows:

x  =  (a?i, £2 , xf)  =  (Xi +  Ui, X 2 +  U2 : X 3 +  U3 ) =  X  +  u  (D.3)

D efin itio n  32 (D isp lacem ent g rad ien t ten so r) Combination of equations (D.l) 
and (D.3) enables to define the displacement gradient tensor G as follows:

„ _  d(Xi  + Ui) _  r dui _  _
— — ~dX ~~ j ~dX~ ~  j ij F  — I +  G (D.4)

where Sij and I stand for the well known Kronecker delta tensor and second order 
identity matrix, respectively.

D .3 Strain numerical measures.
In contrast to linear elasticity, many different measures of strain may be used in 
nonlinear continuum mechanics. Provided that moderate strains are expected to 
emerge, finite deformation definitions are preferred rather than infinitesimal defor­
mation ones. In this section, two important concepts are presented with the purpose 
of describing in an adequate manner the moderate strain undergone by a deformable 
body. We are referring to the so called Green-Lagrange strain tensor and the strain 
rate tensor. These two measures must satisfy a simple requirement, this is, their 
values must be null when representing a rigid body motion, either translation or 
rotation. Mathematically, a rigid body motion is recalled as follows:

x(X , t) = R(f) • X  +  xT(«) (D.5)

where the m atrix R(f) is an orthogonal matrix describing a rotation7 whereas 
x T(t) can be identified as a translation vector.

As a starting point, firstly we introduce:

D efin ition  33 (R igh t C auchy-G reen  d e fo rm a tio n  te n so r)  This deformation ten­
sor is formulated by means of the deformation gradient tensor as:

Cij = FkiFkj C =  Fr ■ F  (D.6)

7Recall that a rotating matrix represents a change between orthogonal bases or, equivalently, 
an isometric transformation and, hence, it verifies: R  • R T =  I.
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As a result of the above definition, a valid8 measure of the deformation can be 
defined as follows:

D efinition 34 (G reen-Lagrange strain tensor) This tensor, closely related to 
the right Cauchy-Green deformation tensor, is defined by means of the following 
formulation:

Eij =  ~  hj)  =  2 ^ ki^kj ~  ^  =  2 ^ ij +  +  ~2^kl<̂ kj

or in matrix notation:

E =  i ( C  -  I) =  i ( F r . F -  I) =  i (G  +  G T) +  i ( G T • G) (D.8)

In expressions (D.7) and (D.8), the term \{Gij +  Gji) stands for the linearized 
strain tensor, commonly used in linear elasticity, whereas \GkiGkj represents a non­
linear source for the deformation. When dealing with large deformations, this non­
linear term must not be neglected. As a matter of fact, the only way to represent 
accurately rigid body motions is by accounting for it. References Crisfield (1991a) 
and Belytschko et al. (2000) show a detailed demonstration of this issue.

Another useful measure of the strain is the so called strain rate tensor. To 
develop its definition, a previous concept should be introduced, which is the spatial 
gradient of the velocity.

Definition 35 (Spatial gradient of the velocity) This tensor is formulated as 
follows:

dvi
Lij = d f ,  L =  V v  (D-9)

This spatial gradient tensor9 can be split into the summation of a symmetric 
tensor and a skew-symmetric tensor, that is, L =  D +  W . Each component of the 
right hand side of the previous equation is defined as:

Definition 36 (Strain rate tensor or rate o f deform ation tensor) This ten­
sor presented as the symmetric component of the spatial gradient of the velocity 
yields:

Dij =  \ ( L i} +  La) D  =  i(L  + Lr ) (D.10)

8The Green-Lagrange strain tensor constitutes a valid measure for the deformation because as
it was previously mentioned, in the case of a rigid body motion, R  =  F , and this entails that
C =  I. Eventually, E =  0.

9Note the slight but notable difference between the Lagrangian operator V re/  =  formerly 
used for the definition of the deformation gradient tensor F , and the Eulerian operator V  =
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D efinition 37 (Spin or vorticity tensor) The skew-symmetric component is, anal­
ogously, formulated as follows:

WV =  -  Lji) W  =  I(L  -  Lr ) (D .ll)

Finally and as a way to conclude this section, some mathematical relationships 
can be set up between some of the kinematic magnitudes mentioned so far, namely10:

j  =  JV  • v  =  Jdiv(v) (D.12)

L = F  • F _1 (D.13)

D =  F~t • E  • F _1 (D.14)

Demonstrations of the above relationships may be found in any of the References 
mentioned at the outset of this appendix.

D .4 Stress numerical measures.
When dealing with geometrically nonlinear problems, different measures of the stress 
state must conveniently be introduced for the sake of completeness. When we define 
strain as a function of the material coordinate X  in a reference state B ref  other
than the current configuration B t, we need also to express the stress as a function
of the material coordinate X  and derive equations of motion in such a reference 
state. The two Piola-Kirchhoff stress tensors11, along with the Cauchy stress tensor, 
are the common alternative ways to define the stress state. These tensors will be 
symbolically represented as follows:

<t represents the real or Cauchy stress tensor.

P  is known as the nominal stress tensor, also known as the transpose of the first 
Piola-Kirchhoff stress tensor, abbreviated as PK1.

S symbolizes the second Piola-Kirchhoff stress tensor, abbreviated as PK2.

The basic ideas of the definition of the two Piola-Kirchhoff stress tensors can be 
indicated by means of the formulas detailed right below in matrix notation:

n T • crdT = t Td r  = d fT (D.15)

n je,  ■ PdFref = t^efdTre,  = d fT (D.16)

10The dot above any magnitude stands for its derivative with respect to time.
n Due to Piola in 1833 and Kirchhoff in 1852.
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n Tre,  ■ S • dTref =  df?ef =  d fT ■ F - t  (D.17)

where:

•  n and nre/  represent the normal unit vectors in both current B t and reference 
configuration B ref.

•  t and t ref symbolize the stress vector in B t and B ref, respectively.

• d f  and d fref  are the force vectors in both configurations.

• d r  and dTref are the surface differentials in both configurations.

Nanson’s rule -see Chadwick (1999) and Belytschko et al. (2000)- enables to 
establish a formal relationship between the unit normal vectors n and nre/, which 
turns out to be:

n Td r  =  J n jef • F _1d r re/  (D.18)

The above equations (D.15) to (D.18) can be combined in a simple manner to
come out, by means of the deformation gradient tensor F and its determinant J ,
with the following relationships among the different stress tensors, namely12:

(Tij =  J~ 1FikPkj (T = J ' 1 F  • P  (D.19)

Pij = S ikFjk P  =  S F t  (D.20)

(Tij =  J-'FikSkiFu a = J ' 1 F  • S • F t  (D.21)

The above equations gather the concept of push forward and pull back operations, 
extensively described in the literature about the subject -see Bonet and Wood (1997) 
and Holzapfel (2000)-.

12These relationships along with the fulfillment of the angular momentum balance law, make the 
first Piola-Kirchhoff to be a non-symmetric tensor, unlike the second Piola-Kirchhoff stress tensor 
and the Cauchy stress tensor, which are fully symmetric.
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E .l  Introduction.

Let us define the Helmholtz’s free energy functional wint in terms of the invariants 7* 
of the Green-Lagrange strain tensor E, as well as of its eigenvalues For the case of 
a prestressed hyperelastic Saint Venant-Kirchhoff material, the first two invariants 
and eigenvalues are just required. With the purpose of deriving adequate expressions 
for the second Piola-Kirchhoff stress tensor S and the fourth order tangent moduli 
tensor C, first and second order derivatives of wint with respect to Ii are a necessary 
requisite. In this appendix, an elegant technique is presented by following the work 
of Mahaney (2002).

E.2 First derivatives.

The Helmholtz’s free energy functional can be gathered as follows:

Wint Wint(I\) I 2 ) (E.l)

I I  — I e  — E i i

I 2 — I I E  —  E i j E i j

(E.2)

(E.3)

The first order partial derivatives of wint with respect to Ii can be expressed 
through & by means of the straightforward chain rule. This can be carried out to 
get:

duiini   dWini d^j
~dh

dWint

~ W  ji
(E.4)

dCj dli

By considering the mathematical definitions of the invariants I\ and / 2, suitably 
displayed in formulae (E.2) and (E.3) respectively, the inverse of the matrix 
yields:

nr.i =  ^  
y d ij

1 1 
26  26

(E.5)

The actual m atrix is obtained simply by:

n  .. =  ^ 1 =  1
13 d ij 2(6  -  6)

26 -1  
•26 1

(E.6)

Therefore, the equation (E.4) can be detailed as follows:

dWint dWint 1 9W{nt dwint [ 26 _ 1 1d h  d h ~  2(6 -  6 ) d£i d& L -2?1 1 J
(E.7)
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E.2.1 Second derivatives.

By taking heed of the equation (E.4), the calculation of the second order partial 
derivatives of Wint with respect to I{ can be carried out, namely:

d2Wiint d ( dwi
d lid lj d lj d£k

ki

By means of the chain rule:

& m in t  d  'Mint
n tjQki + d2 n‘ dZ ki%

(E.8)

(E.9)diidij ■ dik at,
The second term of the right hand side of equation (E.9) can be deduced by 

realizing that:

d(QknQnm) dSkm , q  ^ n r a
— — +  III

%  d&
By expanding the above formula:

%
Jkn ‘

d(,

anki    q  q  nm
%  - - - - - -

By substituting (E .ll)  back into (E.9) and applying Schwartz’s lemma:

d2wint d2wint
— ' *ki ci/- /- lj r

>-1

d lid lj
dWint n  dflnm n

’' “fcn ~ ■- '

(E.10)

(E .ll)

(E.12)

Hence, by redefining dummy indices, the following formula can be concluded:

d2u)iint

a iid L — f^ki (
d2w.int dw int

\  d£k€i
If detailing some of the above terms, namely:

a
dQ

%
(E. 13)

(E.14)

The final expression for the second order partial derivatives can be summarized 
as follows:

«lu

1
o

1o

d^2k ‘ 2

1----
o

dti 1 o 1
o

% i o to 1

d^Wint O dWint
0*i0* i " d l 2

d 2w int

' d 2 Wint
=  n T -

0*10*2
n

[ d l i d l j  \ d^Wint
0*20*1

S2Wint O dWint
0*20*2 " 0/2 J

(E.15)
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