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Abstract

During the last decade Levy processes and other processes with jumps
have become increasingly popular for modeling market fluctuations, both
for risk management and option pricing purpose. In this thesis, we focus
on investigating the approximate solutions for stochastic differential delay
equations with jumps. The results include self-contained proof of moment
bounds, the rate of convergence under a local Lipchitz condition, convergence
in probability under nonlinear growth condition, and the minimal relative

entropy martingale measure for a stochastic delay model.



DECLARATION
This work has not previously been accepted in substance for any degree and

is not concurrently submitted in candidature for any degree.

Signed... ... Date..é.%ﬁ.; 2008

STATEMENT 1

This thesis is the result of my own independent investigation, except
where otherwise stated. Other sources are acknowledged by footnotes giving

explicit references. A bibliography is appended.

Signed... ... Date 04 gl WQ

STATEMENT 2

I hereby give my consent for my thesis, if accepted, to be available for photo-
copying and for inter-library loan, and for the title and summary to be made

available to outside organizations.

Signed.... ... Date....(.?...@...@// /Wg



Contents

Introduction | 7
1 Preliminaries 9
1.1 Definition of Lévy processes and related results . . . . . . .. 9
1.2 Martingales . . . . . .. ..o Lo 11
1.3 Semi-martingales and quadratic variation . . . . .. ... .. 13
14 Ité’sformula. . . . . .. ... ... 16
1.5 Some useful inequalities . . . . . .. ... ... ... ..... 17

2 Approximate solutions of stochastic differential equations with

jumps 19
2.1 Introduction . . . . . ... . ... Lo 19
2.2 Moments bound property . . . . . ... ... 20
2.3 Strong convergence under a Lipschitz condition . . .. .. .. 25

2.3.1 Convergence under a global Lipschitz condition . ... 25

2.4

2.5

2.3.2 Convergence under a local Lipschitz and a linear Growth
Condition . . ... ... ... ... ... . 0. 28

Rate of the convergence under a local Lipschitz condition and

a linear growth condition . . . . . ... ... ... ... ... 32

Convergence in probability . . . . ... ... ... ... ... . 36



3 Approximate solutions of stochastic differential delay equa-

tions with jumps 42
3.1 Imtroduction . . . . . ... ... L 42
3.2 The Euler-Maruyama method . . . . ... ... ........ 44
321 Auxiliarylemmas . . . ... ... ... ......... 45
3.2.2 Strong convergence of the EM method . . .. ... .. 50
3.3 A stochastic theta method . . . . . .. .. ... ... . .... 58

3.4 Rate of convergence under a local Lipschitz condition and a

linear growth condition . . . . . . .. .. ... ... ... 68
3.4.1 The Euler-Maruyama method . . . . . .. .. ... .. 68
3.4.2 The stochastic theta method . . . . .. .. .. .. ... 74

4 Stochastic differential delay equations with jumps, under

nonlinear growth condition 79
4.1 Introduction . . . . . . . . ... 79
4.2 Existence and uniqueness . . . . . . . .. .. ... 82
4.3 Convergence in probability . . . . . . ... .. ... 87
4.3.1 Euler-Maruyama method . . . . . .. ... .. ... .. 88

4.3.2 The stochastic theta method . . . . . .. ... ... .. 93

5 Application to finance 99
5.1 Stochastic jump delay models for the stock price . . . . . . . . 99
5.2 Equivalent martingales . . . . . ... ... ... 102
5.3 Minimum relative entropy martingale measure . . . . . . . .. 106



Introduction

Mathematics develops fast in light of the needs of modern financial market
and investment. There is a wide range of fascinating questions in under-
standing financial systems. Stochastic processes of importance in finance are
developed in concert with the tools of stochastic calculus that are methods to
solve problems of practical importance. With the development mathematical
models, many financial problems are solved by mathematical tools, especially
the stochastic differential equations (SDE). Lévy processes provide a conve-
nient framework to model those empirical observations adequately both in
the ‘real’and in the ‘risk-neutral’world, because their sample paths can have
jumps and the generating distribution can be fat-tailed and skewed.

The importance of stochastic differential delay equations (SDDEs) de-
rives from the fact that many of the phenomena witnessed around us do not
have an effect immediately. However, there is seldom an explicit formula for
the solution of an SDDEs, as a result, several numerical schemes have been
developed to produce approximate solutions, for example E.Buckwar [3], [4],
[5], and X.Mao [32], [34], [35], [36].

In chapter 2, we show that, given a stochastic differential equation with
jumps corresponding to a bounded Lévy measure v, the Euler-Maruyama ap-
proximations converge strongly to the exact solution under a global Lipchitz

condition as well as under a local Lipchitz condition. An explicitly formula



for the convergence rate under a local Lipchitz condition is given. We also
investigate the convergence under nonlinear growth condition.

We consider the stochastic differential delay equation of the form

dX (t) = (X (t), X (5(£)))dt + o (X (£), X (5(2)))dB(?)

+ / n7(X(t‘),X(6(t‘)),z)N(dt,dz).

In chapter 3, using the quadric form of a pure jump process [38], we present
a self-contained proof of the p—th moment bounds. A proof that the Euler-
Maruyama method as well as Stochastic Theta method strongly converge to
the exact solution will be presented. We also obtain the rate of the strong
convergence under a local Lipschitz condition and a linear growth condition,
i.e., if the local Lipschitz constants for balls of radius R are supposed to grow
not faster than log R.

In chapter 4, consider the stochastic differential delay equation with
jumps under more weaker conditions i.e., a local Lipchitz condition but non-
linear growth. We prove that the solution is unique, and the approximations
converge to the exact solution in probability.

In chapter 5, we apply such equation to finance. Consider a stock price

process given by
dS(t) = aS(t — 1)S(t)dt + S(t°) / V(S(t = 7Y, )N (dt, d).

We then present the set of martingale measures under which the discounted
process is a martingale. Using the Esscher transform and minimum relative

entropy, we find a optimal martingale measure for this stochastic delay model.



Chapter 1

Preliminaries

In this chapter, we aim to introduce some notations used throughout this
thesis and collect some preliminary results needed in further chapters. We
quote the results and refer to Applebaum [1], Cont and Tankov [8], Ikeda
[19], Klebaner [25], Qksendal [37] and Protter [40].

1.1 Definition of Lévy processes and related
results

Suppose we are given a complete probability space (Q, F,P) with a filtra-
tion (F):>o. By a filtration we mean a family of o—algebras (F);>o that is

increasing, i.e.,, F, C Fyif s < t.

Definition 1.1.1. (cf. Protter [40]) A filtered complete space (2, F, P, (F)i>0)
1s said to satisfy the usual hypotheses if

1. Fy contains all the P-null sets of F;

2. Fi = NustFu, for all 0 <t < oo, that is, the filtration (F),>o is Tight

continuous.



We always assume that the usual hypotheses hold.

Definition 1.1.2. (cf. Protter [40]) Let (2, F, P, (Fi)i>0) he a filtered prob-
ability space. An F; adapted process X = X; with Xo = 0 a.s. is a Lévy

process if

(i) X has independent increments; that is, X; — X, is independent of F,

0<s<t <o

(ii) X has stationary increments; i.e., X; — X, has the same distribution as

Xt—S)OSSStSOO;

(iii) X, is continuous in probability; that is, lim, ,; X; = X, where the limit

is taken in probability.

It is well-know that Brownian motion B(t) and a Poisson process N (¢, z)
have stationary and independent increments. Thus B(t) and N(t, z) are two

Lévy processes.

Theorem 1.1.1. (cf. Protter [40]) Let X, be Lévy process. There exists a

unique modification Y, of X, which is cadlag and which is also a Lévy process.
Theorem 1.1.2. (Lévy decomposition Oksendal and Sulem [37]). Let X,
be a Lévy processes. Then X; has the decomposition

X, =at+ﬁB(f.)+/

ZzN(t,dz ZzN(t,dz), 1.1
e 4 [ aNedD, )

|z|>R
for some constants a € R, 8 € R, R € [0, 00]. Here

N(t,dz) = N(t,dz) — v(dz)t (1.2)

is the compensated Poisson random measure of X, where v(dz) is the Lévy
measure of X;, and B(t) is an independent Brownian motion. Note the pro-

cess

M, := N(i, z) is a martingale. (1.3)

10



If « =0 and R = oo, we call X; a Lévy martingale.

Theorem 1.1.3. (The Lévy-Khintchine formula Jksendal and Sulem A
[87]). Let X; be a Lévy process with Lévy measure v, such that [ min(1, z?)v(dz) <

o0o. Then

]E{eiuX¢} — e—tw(u),

where

o? ; ;
PY(u) = —é—uz —ijau + /|>1|(1 — e"®)y(dx) +/ (1 — e™® + juz)v(dz).

|z)]<1

2

Moreover, given v, 0*, a the corresponding Lévy process is unique in distri-

bution.

1.2 Martingales

Martingales play a central role in the modern theory of stochastic processes

and stochastic calculus.

Definition 1.2.1. (cf. Cont and Tankov [8]) A cddlag process (X;)i>o is
said to be a martingale if X, is adapted to a filtration (F);>0, E|X,| is finite
for any t > 0 and for all s > t,

E[X|FR] = X,

A special role in the theory of integration is played by square integrable

martingales.

Definition 1.2.2. (cf. Klebaner [25]) A process X; is square integrable if
sup;>o E[X?] < oo. If X, is considered on a finite time interval 0 < ¢t < T,
then it is square integrable if supgc,<r E[X?] < co. If X, is a martingale and

s square integrable, then it is called a square integrable martingale.

11



Theorem 1.2.1. (Martingale Convergence Theorem Protter [40]) If
X, is an integrable martingale, that is, if sup,5, E|X;| < oo, then there exists
an almost sure limit

lim X; =Y

t—o0

and Y is an integrable random variable.

Note that expectations E [X;] may or may not convergence to the expec-
tation of the limit E[Y].

We often have to deal with events happening at random times. A random
time is nothing else than a positive random variable T > 0 which represents

the time at which some event is going to take place.

Definition 1.2.3. (cf. Protter [40]) A random variable T : Q@ — [0, 00] is a
stopping time if the event {T <t} € F, for every t, 0 <t < oo.

The most interesting examples of stopping times are hitting times: given
a non-anticipating cadlag process X, the hitting time of an open set A is

defined by the first time when X reaches A:
Ta=inf{t >0, X; € A}.

A key application of these concepts is in providing the following random

time version of the martingale property.

Theorem 1.2.2. (Doob’s Optional Stopping Theorem Protter [40]) If
Xy is a cadlag martingale and S and T' are bounded stopping times for which

S <T as., then Xg and Xt are both integrable, with
E[XTlfs] = XS a.s..

Another useful generalisation of the martingale concept that we will use

extensively is that of a local martingale.

12



Definition 1.2.4. (cf. Protter [40]) An adapted, cadlag process X, is a local
martingale if there exists a sequence of increasing stopping times, T,, with
lim,_,o T, = 00 a.5., such that X,a1, 1{1,>0} 5 a uniformly integrable martin-
gale for each n. Such a sequence T,, of stopping times is called a fundamental

Sequence.

Different martingales can be constructed from Lévy processes by the fact
that they have independent increments. The following proposition shows

some relations between Lévy processes and martingales.
Proposition 1.2.1. (cf. Cont and Tankov [8]) Let (X;);>0 be a real-valued
process with independent increments. Then

iuX
1. —[—I‘* — ) is a martingale for all u € R.
(]E etuXy 150 g

2. If for someu € R, and allt > 0 it holds E [e™*t] < oo then (ﬁ) is
120

a martingale.

3. If E[X;] < oo for all t > 0 then M, = X, — E[X;] is a martingale, and

also a process with independent increments.

If X; is a Levy process, for all of the processes introduced in this proposition
to be martingales it suffices that the corresponding moments are finite for one

value of t.

1.3 Semi-martingales and quadratic variation

Definition 1.3.1. (cf. Klebaner [25]) A regular adapted cddlag process is a
semi-martingale if it can be represented as a sum of two processes: a local

martingale My and a process of finite variation A,
Xt = XO + A4t + At;

13



with Mo = Ao =0.

The classical examples of semi-martingales are Poisson processes, Brow-
nian motion, and more generally all Lévy processes.

We list some examples of semi-martingale.

1. Each adapted process with cadlag paths of finite variation on compacts

(of finite total variation) is a semi-martingale.

2. Each L?—martingale with cadlag paths is a semi-martingale.

3. Each cadlag, locally square integrable, local martingale is a semi-martingale.

4. A local martingale with continuous paths is a semi-martingale.
5. A decomposable process is a semi-martingale.

The quadratic variation process of a semi-martingale, also known as the
square bracket process, is a simple object that nevertheless plays a funda-

mental role.

Definition 1.3.2. (cf. Klebaner [25]) Let X, Y be semi-martingales. The
quadratic variation process of X, denoted [X, X| = ([X, X])i>0 is defined by

X, X]e = lim S(X(67,2) = X @),

i=0
where {t?} o is a partition of the interval [0, t] and the limit is in probability
when 6, = max;(t7,, — t7') — 0. The quadratic covariation of X, Y, also

called the square bracket process of X, Y, is defined by

X, Yt—hmz (t31) = XED (Y (84.) = Y (&),

14



It is clear that the operation (X,Y) — [X,Y] is bilinear and symmetric.

We therefore have a polarization identity

(X,Y]==(X+Y,X +Y] - [X,X] - [V, Y)).

N =

It is known that the quadratic variation of Brownian motion B(t) is [B, B](t) =

t and of a Poisson process N(t, z) is [N, N|(t) = N(¢, 2).

Proposition 1.3.1. (cf. Protter [40]) Let X, Y be two locally square inte-
grable local martingales. Then [X,Y] is the unique adapted cadlag process A

with paths of finite variation on compacts satisfying the two properties:
e XY — A is a local martingale;
e AA= AXAY, Ao = X()Yo.

Proposition 1.3.2. (cf. Protter [40]) Let X be a local martingale. Then X
is a martingale with E[X?] < oo, for allt > 0, if and only if E{[X, X].} < oo,
for allt > 0. If E{[X, X],} < oo, then E[X?] = E{|X, X].}.

Proposition 1.3.3. (cf. Protter [40]) Let X be a continuous local martin-

gale. Then X and [X, X| have almost surely the same intervals of constancy.

Definition 1.3.3. (cf. Klebaner [25]) Suppose that a filtration (F;)o<i<T 1S
given. A process X, is called predictable (with respect to the filtration) if for
each t, X; is F;_1-measurable, that is, the value of the process X at time t s

determined by the information up to and including time t — 1.

Definition 1.3.4. (cf. Klebaner [25]) Let X; be an adapted process of inte-
grable or locally integrable variation. Its compensator A; is the unique pre-

dictable process such that My = X, — A, is a local martingale.

Now, we arrive at another important definition of quadratic variation

15



Definition 1.3.5. (cf. Klebaner [25]) The sharp bracket (or conditional
quadratic variation) (X, X) process of a semi-martingale X is the compen-

sator of [ X, X](t), that is, it is the unique predictable process that makes
[X, X](t) = (X, X) (t)
into a local martingale.

Let X; be a Poisson process with intensity A, the conditional quadratic
variation (X, X), = At. However, Let X; be a Brownian motion the condi-

tional quadratic variation (X, X), = [X, X]; = t.

Theorem 1.3.1. (cf. Klebaner [25]) If X, is a continuous semi-martingale

with integrable quadratic variation, then (X, X), = [X, X];.

Theorem 1.3.2. (cf. Klebaner [25]) Let X: be a square integrable martingale.
Then the sharp bracket process (X, X), is the unique predictable increasing
process for which

Xt2_ (X’X>t

1s a martingale.

1.4 Itd’s formula

We call a stochastic process an Itd-Lévy process if it has the Lévy decompo-
sition (see Theorem 1.1.2) and its differential version is given by

dX, = adt + BdB(t) + /

|z|]<R

zN(dt,dz) + / zN(dt,dz). (1.4)

|z|>R
Theorem 1.4.1. (The Ité6 formula Uksendal and Sulem [37]). Suppose
X(t) € R is an Ité-Lévy process of the form '

dX(t) = a(t,w)dt + B(t,w)dB(t) + / y(t, z, w)N(dt, dz),
R

16



where
Rt ) = { N(dt,d2) — v(dz)dt, if|2| < R;
N(dt,dz), if |z| > R.
for some R € [0,00]. Let f € C*(R?) and define Y(t) = f(t,X(t)). Then

Y (t) is again an It6-Lévy process and

0 :%(t, X ())dt + éi-(t, X (1)) [a(t, w)dt + B(t, w)dB(L)]

1, f

+ §ﬁ (t» )() 2

+ / {10 X(0) + (1 2)) — F(L X (1)
lz|<R

of
—S (L XN z)} v(dz)dt

; / {F(6 X () +(t 2)) — F(t X(8)} N(dt, dz).

(¢, X (8))dt

Example 1.4.1. (The Ité isometry Jksendal and Sulem [37]). Let X, be
a real-valued [t6-Lévy process with Xq =0 and o = 0. Then

E [IX ()] [/ 18] dt+/ /mt 2P dz)dt]

provided that the right hand side is finite.

1.5 Some useful inequalities
In this section, we present some useful inequalities.

Theorem 1.5.1. (Hélder’s inequality Applebaum [1]). Let p,q > 1 be
such that 1/p+1/q = 1. Let f € L*(S) and g € LP(S) and define (f,9) :
S — R by (f,9)(z) = (f(z),9(x)) for allz € S. Then (f,g) € L*(S) and we

have

1 < 1S Hlellglle:

17



Theorem 1.5.2. (Doob’s martingale inequality Protter [40]). If (X;)i>0
is a martingale, then for any p > 1,

E {sup |Xs|p] < ¢E[|X.|"],

0<s<t

where 1/p+1/q = 1.

Theorem 1.5.3. (Burkholder-Davis-Gundy inequality Protter [{0]).
Let X, be a martingale with cadlag paths and let p > 1 be fized, and T a
finite stopping time. Then there exist constants c, and C, such that for any
Xt

o8 {1, x1} <B{ swp x| < GE{1x, X}

0<t<T

The constants are universal: they do not depend on the choice of X;.

Theorem 1.5.4. (Gronwall’s inequality). Let [a,b] C R be a closed
interval and o, B : [a,b] — R be a non-negative with o bounded and 3

integrable. If there exists C > 0 such that, for all t € [a,b],

at) < C’+/ a(s)B(s)ds,

a

then we have t
a(t) < Cexp [/ ﬁ(s)ds}

for all t € [a,b].

18



Chapter 2

Approximate solutions of
stochastic differential equations

with jumps

2.1 Introduction

Consider the following stochastic differential equations (SDE) driven by a

jump process and Brownian motion
X (t) = a(X (£))dt + o(X (£))dB(t) + /R X)) dz) (2)

where X (t~) denotes lim,_;- X(s), o : R* —» R, ¢ : R® — R™*¢ and
v : R* x R™ — R™™, B(t), N(t,z) are standard Brownian motion and a
compensated Poisson process respectively. Let (Q, F, {F;}:>0, P) be a com-
plete probability space with a filtration {F;},>¢ satisfying the usual condi-
tions. Let |- | denote the Euclidean norm for vectors or the trace norm for

matrices. Further we require that the measure with respect to the compen-

sated Poisson process is bounded. As a standing hypothesis we assume that

19



a,0 and v are sufficiently smooth so that Eq. (2.1) has a unique solution.
For a given constant stepsize At > 0, let t, = nAt. We want to compute:
the discrete approximations Y, ~ X(¢,) by setting Yy = X, and forming

Yir1 = Y + a(Ya) AL + o(Y.)AB, + / V(e ANt d2).  (2.2)

n

Here AB, = B(tns1) — B(t,) and AN, = N(tn41, z) — N(ty, z). Let
Y(t)=Y, for t€ [ty tns1)

and define a continuous time Euler-Maruyama approximation Y (t) by

Y(t) = Yo—i—/t a(Y(s‘))ds+/tU(Y(s‘))dB(s)-F/t/ (Y (s7), 2) N(ds, dz).
0 0 0o Jre (2.3)
We notice that the Burkholder inequality can not give bounds of jumps
straightforward, therefore an explicit method for p — th moment bounds is
shown in section 2. In section 3, we prove that the Euler-Maruyama method
convergence strongly if the coefficients function are either global or local Lip-
schitz continuous. In section 4, we focus on the convergence rate. We show
that the convergence rate is one half under local Lipschitz condition with a
special coefficient (Theorem 2.4.1). A convergence in probability theorem is

proved in section 5.

2.2 Moments bound property

In this section, we shall state a lemma which gives an estimate for the mo-
ments of the exact solution and the approximate solution. Generally speak-
ing, in case p = 2 we can use the Itd isometry and the Burkholder-Davis-

Gundy inequality to estimate the moments, however, a p-th (p > 2) moment

20




bound is non-trivial, because we can not apply the Burkholder-Davis-Gundy

inequality for jump terms to get the result straightforward.

Lemma 2.2.1. Assume that the coefficients «, o, <y satisfy the linear growth

condition,

(LG) There exists a constant h > 0 such that
llo(@)||*+|a(z) >+ /Zh(k) (z, 2)Pvi(dz) < h(1+|z|?) for all x € R™

Then for any p > 2 there are constants K; and K, such that the ezact

solution and the approzimate solution of (2.1) satisfy

IE[sup |Y(f)|”] VE Lsup |X(,)|p} < KT

0<t<T

where K, and K, are constants depending only on h, T, zo and K.

Remark 2.2.1. We note that v = (v1,--- ,v,) ts the Lévy measure, and
moreover, if N (dt, dz) is a standard Poisson process, then N (dt,dz) = N(dt,dz)—
v(dz)dt. Each column ¥®) of the n x m matriz v = [v;;] depends on z only

through the k" coordinate zy, i.e.
’Y(k)(x’ Z) = ,-),(k)(x’ Zk); z= (Z], e ,Zm) € R™.
Proof. Using the integral form of (2.1), we obtain

/Ota(X

(X (s7), z)N(ds, dz)

X QP < 47 [Iwol” .

\ / o(X(s))aB(s)|

|

Applying Hoélder’s inequality gives

| sup [X()F]

0<t<T

21



< 4”"1{|X(0)|p +T7"'1]E/0 |a(X (s7))|Pds

+E sup | [otx(sane) |
+1E021:£T[//n (X(s7), 2) N (ds, dz)p]}. (2.4)

The continuous term is trivial, by Burkholder’s inequality (cf. Protter [40])

and using the Holder inequality we compute that

B

E sup [ /Ota(X(s‘))dB(s) ,,] < C,,]E[ 0T|0(X(s‘))|2ds]2

0<t<T

< c,,T’é-llE[ /0 T|cr(X(s‘))|”ds], (2.5)

4

2
where C, = {q”(@)} , with %4— % = 1.

We need pay more attention to the jump term, since the Burkholder
inequality can not give the nice result as we required. In the computations
below, we take a recursive technique and the constant K, depends only on p

and varies from line to line. Let

dn(t) = / A(X(s7), 2) N (ds, dz),

from the definition of the quadratic covariation (cf. @ksendal and Sulem

[37]), using the integration by parts formula we compute

[n,m): = n? — 2/m—-dm

//n dzdt—i—//" N(ds, dz).

Applying Burkholder-Davis-Gundy’s (cf. Protter [40]) inequality we have

p
E sup [ (X (s7), 2)N(ds, dz) }
0<t<T 0 n
t
=E sup / dn(s™
0<t<T |J0O
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T 5

< CPIE d[’% 77]t

and then we arrive at

lEsup[

0<t<T

N(ds, dz)

n ]
sz’%-lc,,lE{/ / |7(X(s‘),z)|2u(dz)ds}g
+28° IC']E{/ u V(X (s7), 2)|* N(ds, dz)}g.

We apply the Burkholder-Davis-Gundy inequality again to the second term

on the right hand side above to obtain
T ) - 3
IE{/ / |v(X(s7), 2)| N(dt,dz)}
0o Jr»
2
<20 [ [ nixs)vazar)
0

14
- 4
10K {/ |7(X(3_),z)|4N(dt,dz)}
o Jre
We continue recursively, which yields

/ot/n Y(X(s7),2) I)N(dS,a'z)]

. gzi”’““)@ e{ [ ) /. |7(X(s_),z)|2iv(dz)ds}%

T P
+2—‘°2P(1-ff)c§1E { / A (X (s7),2)|* N(dt,dz) } . (2.6)
0 n

E sup [
0<t<T

We see that when p = 2", for the second term above, choosing n = ¢+ 1, by

the 1t6 isometry, we have

E UOT g |7(X(s‘),z)|2i]\7(dt,dz)]% =IE/0T/Rn V(X (s7), 2) [P v(dz)ds.
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Moreover, all moments of order less than 2" can be controlled by higher order
moment, which follows form Hélder’s inequality, i.e. E[XY| < (E|X|P)Y/?(E|Y|9)/9
forp>1,1/p+1/g=1.

On the other hand, for any bound measure v, by Holder inequality, we

derive

" < R /R (X (s, 2)Puldz).

[ (), 2mez)

Now we compute the first term of (2.6)

222”“‘?” { / [ (s, P vtda)a }A
<ZZZ”(1"’) Tzi ]E/0 {Rn|7(X(s‘),z)|2iu(dz)}f{ds

< 22 9=zt D(C,)'T T 1 (v(RY) )2’ / / [7(X(s7), 2)|P v(dz)ds

let
2
K, = 22 0P(1=3 (C,)iTF (v (R"))??'_l +2771C,
and by the linear growth condition, we arrive at
E sup [/ / ), z)N(ds, dz)|”] <K hIE/ 1+ ]X(s7)|P]ds.
0<t<T n

(2.7)
Therefore, combining (2.4), (2.5) and (2.7), we have

E sup |X(¢)]?

0<t<T
T
< 47 ooP + 47 R(TP + K, + C,T5)E / [L+1X(s7)I)ds
0
< [ TR 4Ky T

T
+ 4P (TP + K, + C,,T‘%—l)/ E { sup |X(u—)|P} ds
0

0<u<s
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T
=K + Kg/ E sup |X(s7)|Pdt.
0

0<s<t

The well-known Gronwall inequality (see Higham [15]) gives the result as

required. The same argument for Y, we then complete the proof. O

2.3 Strong convergence under a Lipschitz con-
dition

In this section, we shall discuss the strong convergence of the approximate

solution to the exact solution under a Lipschitz condition

2.3.1 Convergence under a global Lipschitz condition

The following condition is called global Lipschitz condition
(GL) There exists a constant L > 0 such that
llo(z) = osWII? + lo(z) — a(y)I®
+ i/R W (z, 26) = vy, 2) Praldar) < Llz -y
k=1
(2.8)

for all z,y € R™.

Theorem 2.3.1. Under the global Lipschitz condition (GL) it holds

E sup |X(t) — Y(t)|* < 6LTC(AL)(T + 8)etLT(T+®)
0<t<T

where C' is a constant independent of At.

In order to prove this theorem, we need the following lemma.
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Lemma 2.3.1. For any t € [tk, tey1],
E sup [|Y(s)—Y(s)]* < (BAt+24)hAt(1 + K1eT52) := C(Al)
U St<tg+1
where h is a constant independent of At, and Ky, K, are defined as in Lemma

2.2.1.

Proof. Applying Doob’s martingale inequality we obtain

E sup [Y(s)-V()P=E sup [(t—talVe) +o(Ye)(B(E) - B(t))

L <t<tg4+1 L <t<tgp41
+/ v(Yz, z)[N(t,dz) - N(tk,dz)”2
]Rﬂ

<3(A’E  sup |a(Ye)]? + 12(A0)E|o(Ya)
te<t<tk+1

2

+ 3E sup

teSt<tg41

[ A0 ) da) - F(e a2

(2.9)

Note that N(t, z) is a martingale, therefore we may apply Doob’s martingale

inequality and the It6 isometry to estimate the last term, which yields

]Et Ssup /n (Y, 2)[N(t,dz) — N(ty,dz)]
< 4E| [ 9% DIV (b dz) ~ Nt )

=4AtE | |y(Yk, 2)|*v(dz).
R»

Substituting this estimate into (2.9), and using the linear growth condition

we obtain

E sup [Y(s)—Y(s)]* < (BAt+24)RAIE(1 + |Yi|?),

Le<t<tpi
and the lemma is proven. 0
Proof of Theorem 2.3.1. Assume Y (0) = X (0). From the identity
t
X(t) = X(O)+/ (X (s ))ds—i—/ (X (s~))dB(s / / N(dt, dz),
0 n
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we have

E sup |X(1) - V()2

0<i<T
/ [a(X(s7)) = a(Y (s7))]ds

+ [ 1o o (MaBes)

=[E sup
0<t<T

2

+ [ [ boxes 08220 a9

< 3TE sup / la(X(s7)) — o ))|2ds
0<t<T
2
+3E sup / o(X (7)) = o(¥ (s~))|dB(s)
0<t<T
) 2
+ 3E sup / / v(Y(s7),2)|N(dt,dz)| . (2.10)
0<t<T n
For the first term of (2.10), applying condition (2.8), we obtain
B sup [ la(X(s) — a(y(s )P
0<t<T
=E sup / |a N —aY(s7) +a(Y(s7)) — a(Y(s7))|?ds
0<t<T
ngmp/ﬂaX@»—a(()W@
0<t<T
+2E sup / la(Y(s7)) — a(Y(s7))|*ds
o<t<T
< 2LE sup / |X(t~ t7)|%ds + 2LTC(At). (2.11)
0<t<T

For the second term, Doob’s inequality gives

2

E sup
0<t<T

<4E / 0(X(s)) — oY (s7))ds

/ (X (s s™)JdB(s)

< 8]E/ l0(X (7)) - o(V(s7))[2ds
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T
+8E /0 l0(7 (7)) — o (Y (s™))Pds
<8LE / ' IX(t™) = Y(t7)|’ds + 8LTC(At)

t
< 8LE sup / |X(t™) = Y(t7)°ds + 8LTC(At). (2.12)

0<t<T Jo
For the last term, we note that N (¢, z) is a martingale, then we apply Doob’s

martingale inequality and the It6 isometry (cf. @ksendal and Sulem [37])

2

E sup
0<t<T

ARﬁ“WW%%Wﬂ@WmW)

/0 Rnh(x(s-), 2) — (Y (s7), 2)|N(ds, dz)

2
<A4E

4B [ [ ()0 =90 (s7),2)Polda)ds
<8E [ (X2 =27 (), 2)Puld)ds
+ 8IE/O - V(Y (s7),2) —v(Y(s7), 2)]*v(dz)ds

< SLE / U IX() - V() ds + SLTC(AD)

< 8LE sup / IX(t) — V(t)2ds + SLTC(At). (2.13)
0<I<T
Together with (2.11), (2.12), it follows that
E sup |X(£)—F () < 6L(T+8)E sup / X (£) =V (¢ 2ds+6LTC(A8) (T+8),
0<t<T 0<t<T
and the result follows from the Gronwall inequality (see Mao [33]). O

2.3.2 Convergence under a local Lipschitz and a linear

Growth Condition

In Section 2.3.1, we have shown the strong convergence of the Euler method

under a global Lipschitz condition. But in many situations the coeflicients
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are only locally Lipschitz continuous. It is therefore useful to establish the
strong convergence of the Euler method under a local Lipschitz condition.

By a local Lipschitz condition we mean:

(LL) For each R € N, there exists a constant Lg such that

lo(@)-o@)|P+a@)—a) P+ / Iy (2, 7)1 (y, 2) 2 (d2e) < Lila—yl?,
k=1 Y R"
(2.14)
for all |z|, |y| < R.

Theorem 2.3.2. Under the local Lipschitz condition (LL) and the linear
growth condition (LG), we define as before the continuous extension of the

Euler scheme by

2(8) = Zo+ /0 " Z(s7))ds+ / o(Z(s7))dB(s)+ / / V(Z(s7), )N (ds, dz),
where Zy = Xg. Then it follows that

lim E sup |Z(t) — X(t)]*=0

At—0  g<¢<T

Proof. We define the stopping times
Tr=1inf{t >0: |Z(t)| > R}, pr=inf{t >0: |X(t)| > R}

and write g = T A pg.

Recall Young’s inequality: for r=! 4+ ¢~! =1 and all a,b,6 > 0
ba

b<6 4
a _;a +q5q/r

Thus, for any § > 0,

E | sup |Z(t) — X(t)|?

0<t<T
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=E [ sup |Z(t) - X(t)|21{7H>T:PR>T}:| +E [ sup |Z(t) — X () Iirp<r or pRST}]

0<t<T 0<t<T

_ 28 _
<E [ sup |Z(t ABR) — X(¢tA BR)I2I{0R>T}] +ZF [ sup |Z(t) — X(t)|”]
P 0<t<T

0<t<T

1-2
+ psT@_/zI‘))]P’(TR <Torpr<T) (2.15)

From Lemma 2.2.1, we deduce that

K1€K2
Rr

I‘.K(TR)IP 1
<T)=E|I < — Pl <
P(tR < T) [ {rR<T) RPIE oi?%lx(t)l

A similar result can be derived for pg, so that

2K1€K2

Pt <Torpp<T) < R

Also from the moment bounds see Lemma 2.2.1, we have

E | sup |Z(t) —X(t)|”] < o1 <]E [O;?TIZ(t)P’} +E [OSZ,?STIX(QVD < K, ek,

0<t<T
These bounds give
E sup |Z(t) — X(t)]* <E sup |Z(t AGg) — X(t A 6R)|?
0<t<T 0<t<T

N PTI5K1eR2 2(p — 2)K ek
D p(sz/(P—z)RP !

for any 4 > 0, where K; and K, were defined in Lemma 2.2.1.

Further, we derive
|Z(t A OR) = X(t A OR)|”

=| /0 o a(Z(s7)) — a(X(s7))ds + /0 o o(Z(s7)) — o(X(s))dB(s)
+/OWR / Y(Z(s7),2) — ¥(X(s7), 2) N (ds, dz)|”

2

<afr [ atzen -axnfias+ | [ o267 - ox(s)aBe

2J

_|_

/Ot/\oa /n ¥(Z(s7), 2) — (X (s7), 2) N(ds, dz)
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Applying Doob’s martingale inequality and the It6 isometry under local Lip-

schitz condition, for any ¢ < T we obtain

E sup |Z(tAfg) — X(tAOR)

0<t<T

TAOR \ TAOR \
< 3TE /0 |o(Z(57)) — (X (57))[*ds + 12E /0 I0(Z(s7))o (X (7)) [2ds
TAGR
+ IZIE/O . 1v(Z(s7),2) = v(X(s7), z)|2dsu(dz)
< 3La(T +8)E /TM)R 1Z(s7) — X (s7)|*ds

TAOR
< 6Lp(T +8) [IE/O 1Z(s™) — Z(s7)|ds

T
+6LR(T+8) E sup |Z(T/\9}{) —X(’I‘/\@R)|2d8 .

0 0<r<s

From Lemma 2.3.1 we have
TAOR _
E / 1Z(s) = Z(s)|ds < C(AY),
0

where C is defined as before.

Then applying the continuous Gronwall inequality gives

E sup |Z(t AOR) — X(t ABR)|* < 6Lr(T + 8)TC(At)ebLrTTH8),

0<t<T
Therefore,

E sup |Z(t) — X(t)|*> <6Lr(T + 8)TC(At)eSrT+e)

0<t<T
2p+15K16K2 2(p— 2)K1€K2
T TR

Given any € > 0, we can choose § such that
2p+16K16K2 €
—_— ——— < _.,
D 3
and then we choose R such that

2(p — 2)Kef2

oD RE

€
3.
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Now for any sufficiently small At it follows that

6LR(T + 8)TC(At)ebLrRTT+) < g

so that Esupye,<r|Z(t) — X (¢)[? < ¢, as required. O

2.4 Rate of the convergence under a local
Lipschitz condition and a linear growth
condition

So far we have investigated the behaviour of SDEs under a local Lipschitz
condition, however, the rate of convergence with such condition can not be
given explicitly. A joint work with N.Jacob and C.Yuan will be discussed
in this section, which shows when the coefficient Ly satisfying some special

condition, we still have the rate of convergence with a local Lipschitz.

Lemma 2.4.1. Under a global Lipschitz condition, compare (2.8), it holds

E sup |X(t) — V(£)[* < 27L%€(27At + 128)R%(At)*(1 + Ky e"K2)2Te LT

0<t<T
where £ is a constant independent of At, more precisely,
512\\? 512)\°
e=1+ (32) T+2(50) TO®? D
Proof. Set e(t) = X (t) — Y(t). We obtain first

le@®I* =X - Y ()

/0 [(X(s7)) — (Y (s))]ds

4
<27

4

+27 ' /0 [o(X(57)) = o(Y (s7))|dB(s)
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4
+ 27

bl

/0 Rnh(x(s_)’z)“V(Y(S—),Z)]d]v(dt,dz)

and we have

4
E sup |e(t)|* < 27E sup

[t - atr (s s

0<t<T 0<t<T
+27E sup / [0(X(s7)) — o (Y (s~ ))]dB(s)
0<t<T |Jo
+ 27]E0i1t1£T /ot - V(X (s7),2) — (Y (s7), 2)]dN(dt, dz)

By condition (2.8), and Holder’s inequality, we estimate the first term

4

E sup
0<t<T

<18 sup [ a(X(57)) = ¥ (s7))[*ds

0<t<T Jo

/0 ((X(s7)) — a(Y (s™)))ds

< T*L?E sup / X (57) = Y(s7) s (2.16)

0<t<T Jo

Applying the Burkholder inequality for treating the second term we find

E sup / [0(X (7)) = o(¥ (s7))|dB(s)
0<t<T

(512) E| / o (X (5™ —a(Y(s-»Pdsr
(2ol -]

< (%) LZT]E/O |X(s7) — (Y(s7)|*ds. (2.17)

Using Lemma 2.2.1, we find a bound of the third term

4

E sup

05t<r/ Rnh 7),2) =AY (s7), 2)|N(ds, dz)

512
<
_2(27>]E

2

/0 e [v(X(s7),2) = v(Y(s7), Z)]Zl/(dz)ds
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2

— (Y (s7), 2)*N(dt, d2)

<512>
<2(59)(N<Rﬂ>+nmf W(X(57),2) = 7Y (s7), 2) v(dz)ds
—_— 27 0 Rn b 7 b

(2.18)

Combining (2.16) , (2.17) and (2.18) we have

E sup [X(t) - V(1)

0<tLT
< 27T3L*E sup / —Y(s7)|*ds
0<t<T
12
27 (5 ) L2T]E/ X (s7) — Y () |*ds

+54 (52172> (T (U(R”))2+1)L2]E/O X (s7) = Y (s7)[*ds

T3 + (?2> T+2 (512> (T(w(R™)*+1)

< 2712
s 27 27

MEwp/ﬂX@W—Y@WP+W@W—Y@Wﬁw

0<t<T Jo
t
= 27L%E sup /[lX(s‘) SV (s + P (s = Y(s7)|]ds.
0<t<T Jo
From Lemma 2.2.1, Lemma 2.3.1 and the linear growth condition, we obtain
E|Y (s) — Y (s)|* < (27At 4 128)h*(At)?(1 + K,eTX?)?,
which substituted into the above, yields
E sup |X(t) - Y (0)]
0<t<T
t
< 27L%E sup / |X(s7) = Y(s7)|"ds
0<t<T Jo

+ 27L2%E(27At + 128)h2(At)2(1 + K1eT52)2T.

Once again, the required assertion follows from the Gronwall inequality . [J
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The next theorem give the convergence rate under a local Lipschitz con-

dition.

Theorem 2.4.1. Under a local Lipschitz condition (LL) and a linear growth

condition (LG), if there is a constant § such that (Lg)%€T < §log R, then

the order of convergence is 3.

Proof. We consider a family of smooth functions ¢z : R — R satisfying

0 < pr <1 such that

¢r(z) =1, for |z| < R;
¢r(z) =0, for |z| > R+ 2.
Define
ar(z) = vr(z)a(z), or(z) = pr(z)o(x)
and

[ m@ 2 wids) = ga@) [ (@ 2)utdo)

]Rn
Let Zg(t) be the Euler-Maruyama approximation to the following stochastic

differential equation

dXr(t) = ar(Xr(t))dt + or(Xr(t))dB(t) +/ Yr(Xr(t), 2)N(dt,dz)

n

with Zp(0) = Xo. By the Lemma 2.4.1 we obtain

E sup |Xg(t) — Zr(t)|* < 27L3E(27AL + 128)R2(AL)?(1 + K eTK2)2Te?TLheT,

0<I<T
Let
X(t) = sup |X(t)] and Z(t) = sup |Z(t)|.

0<t<T 0<t<T
On the one hand

(o ¢]

|X(8) - Z(1)]* = Z |X () = ZO)* [ ror<x(myvzimy<ry
R=1

35



= Z|XR — Zr(t)l? Iip_1<x(rwzm)<ry

where Z(t) is defined as in Theorem 2.3.2. Therefore

< Z(Elxﬂ(t) - ZR(t)|4)1/2(]E]{R—ISX(T)VZ(T)SR})I/Z
R=1

= S (E|XR(t) — Za(®)|)2\/P(R — 1 < X(T) v Z(T) < R)

R=1
and from the condition (Lg)%¢T < dlog R, it follows that

E sup |Xg(t) — Zp(t)|* < 27(27At + 128)h*(At) (1 + K1eTK2)2T R,

0<t<T
On the other hand, let g > 2, then

E|X(T)[ + BIZ(T)) _ , Koe™™

P(R—-1< X(T)V Z(T)) < T <2

Therefore,

E sup |X(t) - Z(t)]*

0<t<T
(K eTK2)1/2
Ra/2

<) V21(27At + 128)Th3(1 + K, eTF2)2(At)R¥2
R=1
If ¢/2 > 276, the right hand side is convergent.

2.5 Convergence in probability

In this section, we concentrate on equation (2.1) satisfying only a local Lip-

schitz condition but no linear growth condition or the bounded pth moment

property. The following theorem describes the convergence in probability, in-

stead of L?, of the EM solutions to the exact solution under some additional

conditions in terms of Lyapunov-type functions.
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Theorem 2.5.1. Let the local Lipschitz condition hold. Assume that there

exists a C? function V : R® — R, satisfying the following three conditions:
(i) limygjmeo V(z) = 0
(ii) for some h > 0,

LV(z) <h(l1+V(z)) VzeR"

where

LV(z) = Za, :E)— % Z(O’GT)LJ‘(.’E)%;U_({I:)

1,7=1

+ / Z {V(z +7¥)(z,2)) - V(z) - VV(2) - v®(z, 2) } vi(dz).
R p=1

(iii) for each R > 0O there exists a positive constant Kr such that for all

z,y € R™ with |z| V |y| < R,

V(z) = VW)IV [Va(a) = Va)] V Ve (z) — Ve (y)] < Krlz =y,

where Vy(z) = (av(z) ‘W(I)), Ver(z) = (M)nxn.

oz ? Ozn Ox;0x;

Then

At—0

lim < sup | X (1) — Y(t)|2) =0 in probability. (2.19)
Proof. For sufficiently large R, define stopping times
=inf{t € [0,T]: |X(¢)| > R},

and
=inf{t € [0,T]: |Y(t)] > R}.

Applying the multi-dimensional It6’s formula (cf. @ksendal and Sulem [37])
and applying condition (i) to V(X (t)), we obtain

V(X(tAB))
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ov

:V(X(O))+/0A Zm

=1

a;(X(s7))ds

it m BV _ 1 tng n T 8V2
* /0 Z@Xi(s‘)ai(x(s NAB(s) +3 /0 MZZI(‘”’ ) X ()0, ()

=1

NG ™
+/0 Z {(VIX(™)+vR(X(s7), )] = V(X(s7))

k=1 /R
— VV(X (s (X (57), 2k) } v(der)ds

tng m

+/ Z/{V[X(s‘)+7(k)(X(s‘),zk)] —V(X(s7))} Ni(ds, dz)
0 /R

tAg thng.
— V(X(0)) + /0 LV(X(s™))ds + /0 ‘ gxii(‘—/s—_—)ai(X(s"))dB(s)

NG ™

[ [V X 4B X () 20] = VX)) lds, da)
0 o YR

where v(¥) is the k—th column of the matrix ().
We note that the third and the sixth term are martingales with zero

mean, taking expectation of V(X (¢t A 8)), and by condition (ii) we arrive at

E[V(X(tA0))] = V(X(0) +E / M eV (X (sm))ds
< V(X(0)) + hE / M VX () ds

t
< V(X(0)) + AT + h]E/ V(X (s A 6))ds.
0
Using the Gronwall inequality we have
E[V(X(tA6)] < (V(X(0)+ AT)e. (2.20)

Let
vg = inf{V(z) : |z| > R}.
By condition (i), vg — 0o as R — oo. Note that | X (8)| = R whenever § < T,

and therefore we derive from (2.20) that
vrP(0 < T) < EV(X(0)I(p<1y) < V(X(0)) + AT)e"T,
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that is
V(X(0)) + hT)ehT

PO <T)<
UR

(2.21)

Once again applying the multi-dimensional It6 formula to V(Y (t A p))

yields
ay)
—veron+ [ 2 i ar(sas

=1

e 2 AV(V(sT)) . | e & VRV (s0))
+/0 ; At o;(Y(s ))dB(s)+§/(; Z(UUT)i'jaE(s—))a}'/j(s—)ds

+/0 pZ/R{V [V (s7) + 78 (Y (57),2)] = V(Y (s7))
— YV (s )Ny O(Y(s7), 2) } vi(dze)ds

+/APZ/ {(V[V(s7) +4®(Y(s7),2)] — V(Y (s7))} Ni(ds,dz)
0 k=1YR

- V(Y(O))+/APEV(Y(3“))ds+/O pZagéigs’__)))ai(Y(s‘))dB(s)

tAp o V(Y (s7)) aVE(Y(s7))
=3 > >w[am-)am-)‘as@(s—)an(s-)]ds

1,j=1

# [ [V ) #9906, 20) — V() 190 (57), )]
k=1

V¥ (s7) - V(Y(sT))]
— [VV (Y (7)) = VWV (Y (s N] (Y (s7), 2) } vi(dze)ds

* /O 2 /R {VF ) +90( () 20) = VY (57) +1O(Y (57), 20))]
= V(7)) = VY ()]} Ni(ds, dzs).

From the definition of the stopping times, we note that there must exist a
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constant C(R) such that
(Y () Vo (Y (5)) v Z [ #9067, ) < 01

when |Y(s)| < R, and in the computation below, the constant C(R) varies

line by line. Taking expectation of V(Y (s~)) and by condition (iii), we have

BV ) < VOr(O) + 8 Y04 v(y(sm))ds

thp 1
+ KRIE/ D (00T |V (s7) = Y (s7)|ds

1,7=1
+KRIE/ |Y(s7) = Y(s™ |Z/'y(k) (s7), zx)vk(dzk)ds.
0

In view of Lemma 2.3.1, we can show that
E[Y(t) = Y(t)] < C(R)At,
so that
E(V(Y(tAp)) <V(Y(0)) + hT + hE /Ot V(Y (s A p))ds + C(R)At
By the same computation leading to (2.21), we obtain
P(p < T) < [V(Y(0)) + hT + C(R)At] %‘;. (2.22)

Now, let7 = p A 6. Recall Theorem 3.3, then we have

E| sup |X(t) - V(OI] < C(R)(AD).

0<t<TAT

Assume €, a € (0,1), set

0= {w: sup [X(t) = Y(O)P > o).

0<t<T
We compute
aP(QN{r > T}) = aE[L>rlg]
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<E[far s [X0)- V()]

0<t<TAT

<E| sw_[X()- 7]

0<t<TAT

< C(R)(AY),
together with (2.21) and (2.22), this yields

PQ) <POQN{r>T}H +P(r <T)

<SPON{r>TH+PO<T)+P(p<T)
C(R) (A1) + (V(X(0)) + hT)eT

(6 VR

<

+[V(Y(0)) + hT + C(R)AL] %

Recalling that vg — o0 as R — 00, we can choose R sufficiently large for

obtaining
eh? €
—2[V(Y(0))+hT] < =,
VR 2
and then choose At sufficiently small to get
C(R) ehT €
—(Al) + — At) < =
a0+ Scman <
hence we arrive at

PQ) =P (02?57‘ |IX(t) - Y (@) > a> <E€.
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Chapter 3

Approximate solutions of
stochastic differential delay

equations with jumps

3.1 Introduction

The importance of stochastic differential delay equations (SDDEs) derives
from the fact that many of phenomena do not have an effect immediately.
However, there are seldom explicit formula for solutions of SDDEs, and sev-
eral numerical schemes have been developed to produce approximate solu-
tions, for example (1], [2], [3], [4], [32], [34], [35]. In this chapter, we investi-
gate numerical schemes for SDDEs with jumps.

Throughout this chapter, let (Q, F, {F;}i>0, P) be a complete probability
space with a filtration {F;}+>o satisfying the usual conditions (i.e. it is right
continuous and Fy contains all P-null sets). Let B(t) be m—dimensional

Brownian motion and N(dt,dz) be a Poisson measure and denote the com-
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pensated Poisson measure by

N(dt,dz) = N(dt,dz) — v(dz)dt.

Let |-| denote the Euclidean norm as well as the matrix trace norm. Let 7 > 0
and C([—,0];R?) denote the family of continuous function ¢ from [~7,0]
to R? with the norm [|@|] = sup_,<4<q|¢(0)|. Denote by C% ([—7,0};R?)
the family of all bounded, F,—measurable, C([—7,0]; R%)—valued random
variables.

Let 7 and T be positive constants. Consider the d—dimensional stochastic

differential delay equation with jumps

dX () = (X (£), X (6(t)))dt + o (X (£), X (6(2)))dB(t)

+/n (X (), X(6(t7)),2)N(dt,dz) (3.1
on t € [0, T] with initial data
{X(t): —7<t<0}={¢(t): —7 <t <0} e Ch([-70]),

and where X (t7) = lim,_,; X(s), o : R* x R? —» R¢, ¢ : R% x R¢ — Ré*™
v : R% x R% x R — R¥"™, We note that each column ) of the d x n matrix

v = [;;] depends on z only through the k** coordinate z, i.e.

W(k)(m,z) = ’Y(k)(w, Zk); z = (Zla e ,Zn) € R"

As the standing hypotheses we assume that «,0 and v are sufficiently
smooth so that (3.1) has a unique solution (see [39]). Moreover, we always

make the following assumptions:
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(A1) The Lipschitz continuous function § : [0,00] — R stands for the time

delay and satisfies

—7<6(t) <t and |6(t) — d(s)| < plt —s|, Vt,s >0
for some positive constat p.

(A2) The coefficients «, o, v are sufficiently smooth in order that Eq. (3.1)

has unique solution on [—7,T].

(A3) (Holder continuity of the initial data) There exist constants K, > 0
such that for all -7 < s <t <0,

E[¢(t) — ((s)] < Kolt — s].

(A4) The measures v = (vq,- - ,V,) are bounded Lévy measures.

The rest of the chapter is arranged as follows, Section 2 prepares two auxiliary
lemmas, namely the moment bounds property. In Section 3, we state the
strong convergence result for the Euler-Maruyama method and the stochastic
theta method respectively. The convergence rate under a local Lipschitz

condition is discussed in Section 4.

3.2 The Euler-Maruyama method

We define the Euler-Maruyama (EM) numerical solution. Let the time step-
size A € (0,1) be a fraction of 7, that is A = £ for some sufficiently large
integer N. The discrete EM approximate solution is defined by
Y((k+1)A) =Y (kA) + a(Y (kA), Y (Ia[6(EA)]A))A
+o(Y(kA),Y (1a[6(kA)A))ABy,
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+/n Y(Y (kA), Y (Ia[5(kA)A, 2)) ANy (dz)

with Y(0) = {(0) on —7 <t < 0. Here £ =0,1,2,..., and I7[6(kA)] denotes
the integer part of §(kA)/A, ABy = B((k+1)A) — B(kA), and AN,(dz) =
N((k+1)A,dz) — N(kA, dz). We note that

—7 < I7[6(kA)]A  for every k > 0.

In fact
T d(kA)
N=—ee <
N A~ A

<k,

SO

~N < Ia[6(kA)] < k.

To define the continuous extension, we need introduce two step processes

z(t) = Z Lika,(k+1)a) ()Y (KA),
k=0

)= Lpagsnat)Y (Ia[6(kA)]A).

k=0
The continuous EM numerical solution is defined by
rC(t), —7<t<0;
Y(t) = t
¢(0) + / af s7))ds +/ o(z1(s7), z2(s7))dB(s)
0
// s7), 22(s7), 2)N(ds, dz), 0<t<T.

Note that Y(kA Y (kA) for every k > 0.

3.2.1 Auxiliary lemmas

In this section, we will give estimates for moments of the exact solution of

Eq.(3.1) as well as the EM numerical solution.
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Lemma 3.2.1. Assume that o, o, vy satisfy the linear growth condition:

(LG) There exists a constant h > 0 such that

0@ u) + e,y + / S el v, 2) P (dz)
k=1
<R+ |z +y|?) forallz, ye R

Then there is a constant K, which dependents only on T, h, ¢ but is
independent of A, such that the exact solution and the EM numerical
solution to the SDDFE (3.1) satisfy

E [ sup |X(t)|2] VE [Oi?%mt)ﬁ] < K. (3.2)

0<t<T

The proof of this lemma is similar to that for SDEs by using Burkholder-
Davis-Gundy’s inequality, and we omit here. The reader is referred to [9]
and [16]. However, since the quadratic variation of the jump term is different
from the one of a continuous martingale (for example, Brownian motion), the
estimation of the p—moment (p > 2) is different from that of SDEs driven
by Brownian motion. Although there are some results in the literature (cf.

[11]), in order to be self-contained we prove

Lemma 3.2.2. Under the linear growth condition (LG), for any p > 2, there
is a positive constant K, which depends only onp, v, T, h, but is independent
of A such that
E [ sup |X(t)|pJ VE [ sup |}7(t)[”:| < K,. (3.3)
0<t<T 0<t<T
Proof. Using the continuous form of the EM approximation and Holder’s

inequality, we compute straightforward

E | sup [FOP]

0<LtLT
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P

< 4P-1[IE|<(0):"+1E sup

0<t<T

/Ot a(z(s7),22(s7))ds

+E021:£T /ta(zl(s‘),22(s‘))dB(s) ’
B | [ fo e me avena |

s4p-l[m sup [((s) + TP'E / la(za(s7), za(s))Pds

—-7<5<0
t P
+E sup | [ o(ai(s7),2(57))dB(6)
0<t<T | Jo
t _ P
+E sup // Y(z1(s7), 22(s7), 2) N (ds, dz) } (3.4)
0<t<T {Jo JRn

To the term including Brownian motion, we apply Burkholder-Davis-Gundy’s

inequality to get

EOSS?ET /ota(zl(s_)’zz(s_))dB(s) ” <GE [/T |a(z1(5"),z2(3'))|2d8] "
< C,T:'E [/ lae(z1(s7), ))I”ds] :
(3.5)

For the last term in (3.4), we need to use the quadratic variation of jump
processes. In the following computations the constant K, = K(p, v, T, C,)

depends on p, v, T, C, and it may vary line by line. Let

dn(s) := /n ’y(zl(s),zg(s),z)]v(ds,dz)

and compute the quadratic variation

[, ] nt—// szy,, (21(s7), z2(s7), ;) (dz;)dt

=1 j=1

// ZZ%, z1(57), z2(s7), 2,) N(ds, dz;),

=1 j=1

47



to find

dinmle= | (&), 2(0), ) v(dz)di+ /]R (=a(t7), 2(t7), 2) PN (dt, dz).

Applying the Burkholder-Davis-Gundy inequality (see [11]) on page 223),

gives
t _ p
E sup // Y(z1(s7), 22(s7), 2) N (ds, dz)
o<t<T |Jo JRn
t P T p/2
=E sup /dn(s“) SK,,]E/ dinnl-1
0<t<T |Jo 0
and we obtain
t - P
B o [| [ [ e a8 da) |
o<t<T | |Jo JRn

<8 [ [ [ b a0 vl g

+ K,E [/OT - |7(21(s'),zg(s“),z)|2N(ds, dz)} : .

Applying the Burkholder-Davis-Gundy inequality again to the second term

on the right hand side above we obtain
T 5 5
E [/ l¥(z1(s7), z2(s7), 2) PN (dt, dz)}
0o JRn
T g
< KyE [/ |v(z1(s7), z2(s7), z)[4u(dz)dt]
0o Jre

+ K E [/OT - |’y(zl(s_),22(3"),z)|4N(dt,dz)] 5 )

l
< KZE [ etz 2 vtazdas g
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By a recursive argument we arrive at

E sup { /Ot/n y(21(s7), 22(s7), 2) N (ds, dz)

0<t<T




+ K,E [/OT - [v(z1(s7), 22(3_),z)|2k]§/'(dt,dz)] * . (3.6)

Since the measure v is bounded, by Holder’s inequality, we estimate the first

term in (3.6)
K, ZE [ [ [ ntas >,zQ<s-),z>|2"u<dz>dsf

<o 315 [ [ e, me s s

i=1 0

<K, ZT%‘I (RM)#~ 1IE/ [fy zi(s7), z2(s7), 2)[Pv(dz)ds

< K,E /0 [ ea(s), (), 2)Pud)ds.

For the second term of (3.6), choosing p = 2™ and k = n — 1, by the It6
isometry, we have

P
2k

e[ [ bz, )
_E [ /0 i [ (s, (), z)|”1/(dz)ds] .

Moreover, any p — th moment less than 2" can be dominated by the 2"th
moment, which follows from Holder’s inequality, and by the linear growth

condition (LG), we arrive at

// ((57), 22(57), 2) N (ds, d2)

< K,,IE/O . [7(21(s7), 22(s7), 2)|Pv(dz)ds

2n

E sup
0<t<T

T
< K,HE / (1+ |21(s7)P + |22(s7)[)ds. (3.7)
0
Combing with (3.5) and (3.4), we obtain

E | sup 17 (0]

0<t<T
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<4E sup [C(s)PP + 477 h(K, + G TP+ T77Y)

—7<5<0
T
X ]E/ (14 |z1(s7)P + |z2(s7)|P)ds
0

<47'E sup [¢(s)|P + 4P AT (K, + C,TP/*1 - TP71)

-7<s<0

T
+ 22p—1h(Kp + CPTP/Q"l + Tp‘l)/ E sup |)7(8)|pdt.

0 0<s<t

The result follows now from Gronwall’s inequality
| sup [F(OP)
0<t<T
< [4P-1]E sup |C(s)|P + 4P hT(K, + C,TP/*! + T”'l)]
-7<5<0

w @2 Th(Kp+CpTP/2-14T71)

= K,

3.2.2 Strong convergence of the EM method

Convergence under a global Lipschitz condition

In this section we show strong convergence of the EM approximate solution

to the exact solution under the following global Lipschitz condition:

(GL) There exists a constant L > 0 such that

lo(z,y) = o(z,9)1* + le(z,y) - a(z, )

+y / Yz, y, z) — v®(Z, 7, ) Pvi(dze) < Lz — 2 + |y — 9*)
k=1"R

for all z,y,Z,7 € R™.
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To prove the main result we need the following lemmas.

Lemma 3.2.3. Under the conditions of Lemma 3.2.1
E|Y () — z1(t)]* < KA, for allt € [0,T), (3.9)
where Ky is a constant independent of A.
Proof. For any t € [0,7] choose a k such that ¢t € [kA, (k+ 1)A). Then
Y(t) - 21(t) =Y (t) = Y(kA) = Y (t) — Y (kA)
t
= / a(z1(s7),22(s7))ds
kA
t
+ [ olals) (B
kA
t
+/ / o(z1(s7), 22(s7), 2)N(ds, dz).
kA Jre
Thus by the linear growth condition (GL) and Lemma 3.2.1,
t
E[¥ (1) - 2(t)f < (30 + 24)h / (1+ (™) + |- (3)]P)ds
kA
< 27h(1 + 2K))A,
which is the desired assertion with Kp = 27h(1 + 2K,). O

Lemma 3.2.4. Under Assumption A1 and A3, if for A, it holds (p+1)A < 1,
then
E|Y(3(t) — 22(8)|* < K3A, Vi€ [0,T), (3.10)

where K3 is a constant independent of A.

We follows the proof of Mao [16].
Proof. For any ¢ € [0, T], choose a k such that ¢ € [kA, (k + 1)A]. Then

Y(6(t) — 22(0) =Y (6(t) — Y (1a[6(kA)]A),
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and note that
O(kA) — A < IA[6(KA)A < §(kA).

As in Mao [16], we also consider the following possible cases:

case 1. If 6(t) > Io[6(kA)]A > 0, then
5(t) — IA[O(KA) A< 6(t) — 6(kA) + A < (p+ 1)A.
Therefore, by the It isometry and the linear growth condition, we have

EY (5(t) — z2(t)|*

+ 3E

2

8(t)
<3E /I o(2a(s7), za(s™))dB(s)

ald(kn)a
2

5(t)
/ a(z1(s7), 22(s7))ds
I

ald(kn)la

8(8) )
./1 /n v(z1(87), 22(s7), 2) N (ds, dz)

Als(ka)a JR

+ 3E

8(0)
<3[(p+ 1A+ 2]h/ (14 Elz1(s7)[? + Elza(s7)2)ds

INGCOSIN
< K3A.
case 2. If 0 < 6(t) < Ia[6(kA)]A, then
Ial6(kA)A — 8(2) < 6(kA) — 5(¢) < pA
and again by the It isometry and the linear growth condition

E|Y (5(1) - z(t)/?
8(t)

< 3[pA + 2k / (14 Elz1(s7)[? + E|2a(s7)[2)ds
Ia5(kA))A

< KA.

case 8. If 0 > §(t) > Ia[6(KA)A or 0 > IA[6(kA)]A > 6(t) then by

Assumptions Al and A3, we obtain
6(¢) — 1a[6(KA)]A[ < (p+ 1)A,
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hence
EY (8(1)) — z(t)]* = EI(5(t)) — C(1ald(kA))A)?
< Kold(t) — Iald(kA))A
< Ko(p + l)ﬁAﬂ
< K3A.
case 4. If §(t) > 0 > IA[0(kA)]A then
—IA[0(KA)A < (p+1)A, and §(t) < (p+ 1)A,
thus,
EY (5(t) — 22(t)]* = E[Y (5(t)) — C(Ia[6(kA))A)/*
< 2E[Y(8(t)) — ¢(0)]* + 2E[(0) — ¢ (1a[6(kA))A)[?
< K3A
case 5. If In[6(kA)]A > 0 > 6(t) then

—4(t) < pA, and IA[6(kA)]A < pA.

and therefore, E|Y (6(t)) — 22(¢)|*> < K:A.

Combing these different cases, we get
E|Y (5(t)) — z(t)* < K3A

for all t € [0, T] as required. O
Let us now state our main convergence result under a global Lipschitz

condition.

Theorem 3.2.1. Under the global Lipschitz condition, we have

lim E | sup |X(¢t) - Y(t)|*| =0. (3.11)
A—=0  |o<t<T
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Proof. Although the proof is similar to that of the proof of SDDEs
without jump, for further purposes (see section 5) we shall give the details
of the proof. Using the continuous extension of the numerical solution, we

obtain

E| sup 1X() - V(0

<98 awp | [/ [a(X(s7), X(6(7)) - aa(s7) a5l
+38 sup / [0(X(s7), X(5(57))) — o(za(s™), z(s™))]dB(s)
+38 sup | [ t [ BOK) X7 2) = 25, a7, s )

(3.12)

By Hélder’s inequality and (GL), we estimate the first term,
2

3E sup /t[a(X(S_),X(cs(S_))) —az(s7), z2(s7))]ds
0<e<T |Jo
< 3TE sup / la(X (s7), X (6(57))) — az1(s7), 22(s7))|?ds
0<t<T Jo

< 3TLE sup /OtHX(s') — 2 (sT)2+|X(0(s7)) — z2(s)F)ds.  (3.13)

0<t<T

For the second term, Doob’s martingale inequality gives
2

3E sup

0<t<T

/ [0(X(s7), X (6(57))) — o(z1(s7), z(s™))]dB(s)

0

T 2
< 12]E-/0 lo(X(s™), X(6(s7))) —o(z1(s7), 22(s7)) | ds
T
< 12LE / [X(s7) = 2a(s7)P + 1X(5(s7)) — (s ™)Plds.  (3.14)

Applying It6’s isometry and the Doob martingale inequality for the third

term, yields
2

3E sup
0<t<T

[ [0, X 606702 = 2tas(s7), mals7), ) s )
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2

< 19K / [ O, X660, 2) = 2(as7), 257, 2V s, do)

T
< 12E / /R (X7, X(5(57), 2) = A7), (57, 2)Peldz)ds
< 12LE /0 (X (s7) = 21(s7) + [ X (6(s7)) — 2a(s™)[2)ds. (3.15)

Using (3.14) and (3.13) in (3.12), and by the Lemma 3.2.3 and Lemma 3.2.4,

we arrive at

E Lg}g | X (t) - T’(t)l"’} |

<BUT 49 [ 1X(67) = (eI + 1X((7) - 26l

<OLT+8)E [ [IX(s7) - TR +1X(6(57) - T o) ds
+OLT+ OB [ [7(57) = 20 + [ (5(57) - (s

< 12L(T + 8)E /0 C(X(s7) = P(s7))ds + 6L(T + 8)(Kads + K5A)T.

< 12L(T +38) TIE sup (X(s7) — Y (s7))dt

0 0<s<t
+ 6L(T + 8)(K A + K3A)T.
By the Gronwall inequality we obtain
E [ sup |X(t) — Y’(t)|2] < BL(T + 8)(Ky + K3)Te2TI+A  (3.16)
0<t<T

and the required assertion follows. , ]

Remark 3.2.1. Under a global Lipschitz condition, the conclusion of this

lemma not only tells us the strong convergence, but also tells us the rate of

the convergence by (3.16).
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Convergence under a local Lipschitz and a linear growth condition

In many situation, the coefficients «, ¢ and 7 are only locally Lipschitz
continuous. In this section, we shall discuss the strong convergence of the
EM scheme for the stochastic differential delay equation with jumps under a

local Lipschitz condition.

(LL) For each R € N there exists a constant Lg such that

o(z,) — o2, 9) + |a(z, ) — a(z, 5)
/ (2,9, 2) — (.7, 2)Poldz) < Lallz - 2P + |y - 312),
(3.17)

forall z, y, Z, g€ R*, and |z| V|y| V|Z| V|7 £ R.

Theorem 3.2.2. Under the local Lipschitz condition (LL) and the linear
growth condition (LG), the EM approzimate solution converges to the exact

solution of the SDDE with jumps (5.1), in sense that

lmE | sup |X(t) - Y(®)|?| =0. (3.18)

=0 Jo<e<T
Proof. The techniques of the proof have been developed in [9] where the
author showed the strong convergence of the EM scheme for the SDE without
jumps under a local Lipschitz condition. We highlight here, that the proof
tells us how to control the error of the convergence. Define the stopping

times
TR =1inf{t > 0: |X(t)| > R}, pr=inf{t>0: |Y(¢)] > R}

and write 0 = T A pr.

Recall Young’s inequality: for 7= + 47! =1 and all a,b,6 > 0

é 1
q
ab < a + 5q/rb‘
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Thus, for any § > 0,

E [ sup |X(t) - ?(s)|2]

0<t<T

_E [ sup |X (1) - ?(t)lzf{m>T.pR>T}] {E [ sup |X(8) = V(O Lpmer of pmer)

0<t<T 0<t<T
) 92 )
<E | sup [X(¢AOR)—Y(tA 9R)|21{93>T}] +—E { sup |X(t) - Y(t)d
0<t<T 4 0<t<T
1-2
Y P < Tor pa < T). (3.19)

From Lemma 3.2.2, we deduce that

|x(7R)|p 1 KP
Plrr <T)=E |l .<T —R < E up | X ()P < .
( R > ) l:{ns } D = Rp Oits | ()l —_ Rp

A similar result can be derived for pg, so that

K
P(TRSTOTPRST)S—R—Z-

These bounds give

E sup |X(t)— Y (t)]? <E sup |X(tAGg)— Y (tAOR)]
0<t<T

0<t<T
| 2K, | 2p-2)K,
P p(sz/(P‘2) Rp’

In a very similar way as in the proof of Theorem 2.4, we can obtain that
E | sup |[X(tAOr)—Y(tAOR)?| < CrA, (3.20)
0<I<T
where Cr is a constant and independents of A.
Given any ¢ > 0, we can choose § such that

2PH5K, e
<z
D 3

and then we choose R such that

2(p - 2)K,

e 2Rp

<
3

o7

|



Now for any sufficiently small A it following that

€
CrA < ‘3‘,

combing the bounds above and with (3.19), we finally get
E sup |[X(t) - Y@ <e
0<t<T
(]

Remark 3.2.2. Under a local Lipschitz condition and a linear growth con-

dition, so far we can not get the rate of the strong convergence.

3.3 A stochastic theta method

In this section, we shall develop the stochastic theta method (STM) for (3.1)
(see [6]). For a sufficiently small stepsize A = £ > 0 for some large integer

N and a particular choice of § € [0, 1], the theta method is defined by

Z((k +1)A) =Z(kA) + (1 — 0)a(Z(kA), Z(Ia[5(kA)A))A
+0(Z((k + 1)A), Z(Ia[6((k + 1)A)ADA
+ o (Z(kA), Z(Ia]6(kA))A))ABy

+ /}R AZ(), ZUaBRAND, 2)ANe(dz)  (3:21)
with initial data

{Z(t): —7<t<0}={X(t): -7 <t<0}

={¢(t): -7 <t <0} e Ch([-7,0]),

where AB), and ANk(dz) denote the increments of the Brownian motion and

the compensated Poisson process, respectively. As before IA[6((k + 1)A)]
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denotes the integer part of 6((k + 1)A)/A. For convenience, we will extend
the discrete numerical solution to continuous time. In addition we also need

introduce four step processes

WE

z(t) = Lika,(k+1)a)(t) Z (EA),
k=0

z(t) = i Lika,(k+1)a) () Z (1a[0(KA)]A),
k=0

z3(t) = Z Lika,k+1)a) (D Z((k +1)A),
k=0

24(t) = Z Lika, k48] (D Z(L1a[0((k + 1)A)]A).

The continuous theta approximate solution is defined as

¢(t), -7 <t <0;

€O+ [ 1= Dalarls™), zls i
+ /0 zs(57), 2a(s”))ds
+/t (s1(57), 22(s)dB(s)
// Y(a(s), za(s), 2) N (ds,dz), 0<L<T,

Clearly, z;(kA) = z3((k — 1)A) = Z(kA).

Note that when § = 0 the numerical solution becomes the EM approxima-
tion, however, when 6 # 0, the # method is defined by an implicit equation.
In order to guarantee (3.21) can be solved uniquely, in this section we require

the Assumption (A1) replaced by
(A1) There exists a positive constant € such that
—7<4(t) <t —c¢,
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and

16(t) — 6(s)| < p|t — s|, forall ¢,s > 0 for some positive constat p.

By this assumption, 6(0) < —e and §(kA)/A < k — ¢/A, therefore there

exists a sufficient small stepsize A* such that

o(kAr
0(A*) € —¢/2 and (A ) <k-1. (3.22)
The next lemma will show that the numerical solution is well defined.

Lemma 3.3.1. Under a global Lipschitz condition (GL) with Lipschitz con-
stant L, choose the stepsize A sufficiently small such that A < max{;7=, A"}
then (3.21) can be solved uniquely for Z((k + 1)A) with probability 1.

Proof.

For any k > 0, we assume that there exist two solutions of (3.21),

Zi((k + 1)A) =Z(kA) + (1 — 0)a(Z(kA), Z(Ia[6(kA)A))A
+0a(Zy((k + 1)A), Zi(Ia[6((k + 1)A)A)A
+ o(Z(kA), Z(Ia[6(kA))A))ABy

+ [ AZ08), ZUABRA)S, ) AR(d2)
and
Zo((k+ 1)A) =Z(kA) + (1 — 8)a(Z(kA), Z(Ia[6(kA)|A))A
+0a(Za((k+1)A), Z2(Ia[6((k +1)A)]A))A
+o(Z(kA), Z(Ia[6(kA)])A))AB
+ / (Z(kD), Z(1a[5(kA)]A, 2))AN,(dz).
Under the globe Lipschitz condition, we have
1Z((k+1)A) = Zo((k+ 1A)
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= |0a(Z1((k + 1)A), Z1(1a[6((k + 1)A)]A)
— 0 (Zy((k + 1)A), Zo(Ia[5((k + 1)A)A)|
<OAVL(1Z1((k+1)A) — Zy((k + 1)A)| + | Zi(Ia[6((k + 1)A)]A)
~Zy(Lal8((k + D) A)A)).

Let k = 0, using the condition A < A*, we have IA[6(A)] < 0, this implies,
Z1(1a[8(A)]A) = Z3(1a[6(A)]A) = ((1a[6(A)]A),

therefore |Z)(A) — Zy(A)| < 0AVL|Z(A) — Z5(A)|, thus, when 0AVL < 1,
Z1(A) = Zy(A). Let k =1, by (3.22), we observe that Z;(/a[6(2A)]A) and
Z5(Ia[6(2A)])A) are determined in the interval [—7,A), so that

Z1(1a[6(28)]8) = Z3(1a[6(24)]4),

thus, provided 8AVL < 1, Z,(2A) = Z5(24). Using the same arguments for
k=23, we arrive at, Z;((k + 1)A) = Zy((k + 1)A), when VLA < 1
and A < A*, that is (3.21) has unique solution, i.e., the numerical solution
of theta method is well defined. 0

To state the strong convergence result, we need the following lemmas.

Lemma 3.3.2. Under the linear growth condition (LG), for a sufficiently
small A
E|Z(kA)? < G,

where Cy is a constant independent of A.

Proof. By the definition of the step process, we have
(k+1)A
2+ D) =+ [ (1= Bala(s), 25
0
(k+1)A
+ / fa(z3(s™), za(s7))ds
0
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(k+1)A
+/0 o(z1(s7), 22(s7))dB(s)
(k+1)A .
+/0 /,, ¥(21(s7), 22(s7), 2) IV (ds, d2),

thus, for (k+ )AL T

(k+1)A
Ew«k+namsqqmﬁ+asl (1 - O)a(z(s™), za(s™))

+0a(z3(s7), 24(s7))] d3l2

(k+1)A
+4E /(; o(21(s7), 22(s7))dB(s)

+4E /O(kH)A /n v(21(s7), 22(s7), 2) N (ds, dz) 2.

By the Holder inequality and the linear growth bound, we obtain

2

E

(k+1)A
/0 [(1 —0)a(z1(s7), z2(s7)) + Oce(z3(s7), 24(3‘))] ds

(k+1)A \
< TIE/O (1= 0)a(z1(s7), 22(57)) + Oa(z3(s7), 2a(s7)) | ds
(k+1)A , \
< ZTIE/O []a(zl(s_),zz(s_)ﬂ + la(z;;(s'),a(s‘))’ ] ds

(k+1)A
< 2ThIE/ 24 |20 (s7) + za(s ™) + |2s(s7) % + |za(s™)[?] ds
0

k
< AT?h+8ThAY E|Z(iA)|* + 4ThAE|Z((k + 1)A) 2. (3.23)
1=0
For the second term, the It6 isometry gives

2

(k+1)A
E /0 o(z1(s7), 22(s7))dB(s)

(k+1)A
_E / (0 (21(57), za(s7))|2ds
0
(k-+1)A
sma/ (1+ (s ) + zals™)P)ds
0
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k
< AT +2hA Y E|Z(A)P, (3.24)

i=0
and by the same argument for the third term, we have

(k+1)A 2 k
¥(21(57), 22(57), 2) N (ds,dz)| < hT +2hA Y E|Z(A)[2.

1=0

(3.25)
Combining (3.23), (3.24) and (3.25), we arrive at

k
E|Z((k+ 1)A) < 4/C(0)[* + 16T%h + 8Th + BhA(4T +2) > E|Z(iA)[?

1=0

+ 16ThAE|Z((k + 1)A)|2.

Choosing A sufficiently small, for 1 — 16ThA > %, we obtain,

k
E|Z((k +1)A)* < 8|¢(0)[* + 32T2h + 16Th + 16hA(4T +2) Y E|Z(iA)[.

i=0
The result now follows as an application of the discrete Gronwall inequal-
ity ( see [15]). O
The next lemma shows that the second moment of the continuous ap-

proximation is bounded in a strong sense.

Lemma 3.3.3. Under the linear growth condition (LG), for a sufficiently
small A we have

E sup |Z()]? < Ca,
0<t<T
where Cy s a constant independent of A.

Proof. From the continuous extension and by the Cauchy-Schwarz in-

equality, we obtain

E sup 1200 < 4EICOP +4E sup | [*[(1-0)alaa(s),zas7)
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+0a(z3(s7), 24(s7))] ‘1l3|2

+4]E021tl£T /0 o(z1(s7), z2(s7))dB(s)
+4]Eoilt1£>T /0 /n7(z1(s_),z2(s_),z)N(ds,dz)

< 4E|¢(0)|? + 8TE sup /O [la(z1(s7), z2(s7)) 2

0<t<T

+e(z3(s7), 24(3_))|2] ds

t 2
+4E sup / o(21(s7), za(s™))dB(s)
0<t<T |Jo
48 sup | [ [ Aarls7),ns7),2) (s, do)

Using the It6 isometry and Doob’s martingale inequality, we have

E sup |Z(t)[’

0<t<T

< 4E|C(0)|? + 8THE sup / 1+ |2 (s + (s
0<i<T Jo
+zs(s)* + 24(s7)I?] ds

+ 16]E/0 lo(21(s7), z2(s7))|?ds

+ 16E /0 i / Aar(s7), 2a(57), 2)N (ds, d2)

< AB|C(0)[2 + 8TA(T + 4) + 8h(T + 4) /0 (22(s7)2 + |22(s™)[2)ds
+ 8Th/0 [l25(s7)[2 + |za(s™)|2)ds.

Since some z3(t) and z4(t) can be extended beyond T, over the interval [0, T+
1],we apply Lemma 3.3.2 to get the result. O
In the following, we will show that the continuous approximation conver-

gence to the step process in a strong sense.

64



Lemma 3.3.4. Under the linear growth condition (LG), for a sufficiently

small A
E sup |Z(t) - #()]? < Co
0<t<T

and

E sup IZ(t) - Zg(t)|2 S C4A,
0<t<T

where C3 and C4 are constants independent of A.
Proof. Consider t € [kA, (k + 1)A], we have
20) = 20 = [ 101~ D1alaa(s7),2(67) + Balals ) (57l
+ [ otals ) m(s7)dBG)

/ / A(aa(s7), 2ls7), )V (ds, dz).

Thus,
E sup |Z(t) -z (1)
0<t<T
<3E max su 3/ 1— 0)a(z (u”), zo(u~
k=°v1:'vT/A-1se[kA.(lgq)A]{ kA[( Ja(z1 (u7), z2(u7))

+0a(z3(u™), Z4(U—))]du|2

U( 1(u”), 22(u”))dB(u)

2
+3

(2’1 252 ) )N(du, dZ)

|

Applying Doob’s martingale inequality and the It isometry, yields

n

E sup |Z(t) — « (1)
0<t<T

(k+1)A
< max {GAh(A +4)+6h(A+4)E /kA [[21(s7)? + |22(s7)|*)ds

k=0,1,T/A—1
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(k+1)A
+6AhIE/ [|23(s™)|* + |z4(s')|2]ds} :
kA

Now the result follows from Lemma 3.3.2, and the similar analysis gives
E sup |Z(t) — 23(t)|* < C4A.
0<t<T

O

Lemma 3.3.5. Under the linear growth condition (LG), for a sufficiently
small A
E|Z(5(t)) - 22(t)]* < CsA

and

E|Z(5(t)) — za(t)]” < CeAr,
where Cs and Cg are constants independent of A.

We omit the proof here, because it is very similar to the proof of Lemma
3.2.4.

Now we state the strong convergence result.

Theorem 3.3.1. Under a global Lipschitz condition, for a sufficiently small
A,
E [ sup |Z(t) — X(t)[*] < CLA.

0<t<T

where Cy is a constant independent of A.

Proof. By construction,

E| sup 12() - X(OF|

< 4E sup / (1= 0)a(z1(s7), 22(57)) — (X (s7), X(8(s7)))]ds
+HE sup. / Olo(za(s™), za(s™)) — (X (s7), X (6(s7))
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2

+4E sup / [o(21(57), 22(s7)) — (X (s), X (6(s~)))dB(s)
0<t<T

+4E sup / (a1 (57), 2a(57), 2) = A(X(57), X (6(57)), 2)] N (ds, dz)
0<tLT R"

< A4TE sup / la(21(s7), 22(s7)) — a(X(s7), X(6(s7)))|%ds

+4T]Eos<1tl£T/ |ce(z3(s™ ) — (X (s7), X(8(s7)))|*ds
1 4E sup / (021 (57), 22(57)) — o(X(57), X(6(s™)))}dB(s)
0<t<T 0

2

+4E sup / [v(z1(s7), z2(s7), 2) = v(X(s7), X (6(s7)), 2)| N (ds, dz)| .

0<i<T {Jo JRm

By Doob’s martingale inequality and the global Lipschitz condition, we derive
for the third term,

2
4E sup

0<t<T

/[a 21(s7), 22(s7)) — (X (s7), X (8(s™)))|dB ()
< 16E/0 lo(z1(s7), z2(s7)) — o(X (s7), X (8(s7)))[*|ds
< 16L]E/0 [22(57) = X(s7)? + |2a(s™) — X (8(s7))[2lds,

and for the last term, we apply the It6 isometry to obtain
2

4E sup

0<t<T

/ Rn[’y 21(s7), 22(s7), 2) — ¥(X(s7), X (6(s7)), 2)] N (ds, dz)
< 16E

/0 . [v(21(57), 22(57), 2) — v(X (s7), X (6(s7)), 2)| N (ds, dz)
_ 16]E/ [ () 2257, 2) =2 (X (57, X(657)), 2) wlda)es
<161 " [1a(s7) = X(7) + [2als7) - X057l

Now by Lemma 3.3.4 and Lemma 3.3.5, we arrive at

| sup |2() - X()F

0<t<T
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< @20 +4T0)E [ la(67) = X7+ aas™) — X607 )Pl
+ATLE [ [a(s7) = X + ™) = X667 Pl

< @1+ 16708 [ 17(7) = X()F +1206(7) - X6l
+OL+STHE [ 12(67) ~ 2O +1706(57) - (57 lds
#8TLE [ 17(7) = 25 +1206(57) = 2(67) Pl

< (128L + 32TL)E /OT 1Z(s™) — X(s7)[2ds
+ (64L + 8TL)T(CsA + CsA) + 8T2L(C4A + CoA).

The Gronwall inequality gives the result as required. O

3.4 Rate of convergence under a local Lips-
chitz condition and a linear growth con-
dition

3.4.1 The Euler-Maruyama method

In this section, we will discuss the rate of convergence for the EM method

under a local Lipschitz condition with the Lipschitz coefficient Ly satisfying

L3AT < plogR,

A= [T3+ (%)2(4T+3)} .

where
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Lemma 3.4.1. Under a global Lipschitz condition (GL),

E sup |X(t) = Y (2)|* < 432L2X [8Lh2(1 + 2K + K5)A?] TS0,

0<t<T

Proof. Set e(t) = X(t) — Y (t), we obtain first

E sup |e(?)]
0<t<T
4

< 27E sup
0<t<T

/0 (X (s7), X (6(57))) — alza(57), za(s7))ds

4

+27E sup | [(X(7), X(0(67) = olas7), 25 NdB()

0<tLT

4

+ 27E sup
0<t<T

/ Rn[’)’ X(6(s7)), 2) — v(z1(s7), 22(s7), 2)] N (ds, dz)

By Holder’s inequality, and the global Lipschitz condition (GL), we estimate
the first term,

278 sup | [ (a0 (s7), X(5(7) = aaa(s7), (s )]s
< 2TT°E oiltlgr/ |a 57),X(0(s7))) — a(z1(s7), z2(s7))|*ds

< S4T*L?E sup / [1X(s7) = z(s7)* 4 [X(6(s7)) — 2o(s7)|"] ds. (3.26)

0<t<T Jo

Next we apply the Burkholder inequality to the second term, obtaining

27]E0§135T/[U(X(S‘),X@(S‘)))—0(21(3'),Z2(S'))]d3(8)

<27(52172 £{ / o 0X(67), X(E(67 )~ (e, s s
er(s

s(2

)
) |a(x<s ) X(5(57))) = o (s7), 2a(s7)) s
)

TL21E X(s7) = z1(s7)* + | X(6(s7)) — z2(s7)|*] ds.

(3.27)
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Recall the technique we used in Lemma 2.2.1, and using the It6 isometry, we

drive for the third term
4
E sup

[ [ X)X 657, 2) = v(ea(s), 257, N (s, de)
0<t<T

<ot () L [ [ o) X667,

—Y(z1(57), 22(s7), 2)Pu(dz)ds}’

rot () L[] hexe x@s),

(a5 (), 2PN (ds,dz)}2
< 54 (52172) ve{ [ 1X(57) = a5+ 1X(5(67) - Z2<s->|2]ds}2

27
—y(21(57), 22(s7), 2)|*v(dz)ds

< 162 (52172> LT+ 1)E /0 [1X(57) = 21(s7)|* + | X (6(s7)) — z2(s7)|]ds.
(3.28)

st () e [ [ o) X667,

Combing (3.26), (3.27) and (3.28), we arrive at

E sup |X(t) - Y(1)|*

0<t<T

< 54T3L°E sup / [1X(s7) — z1(s7)|* + | X (6(s7)) — za(s7)|*] ds

0<t<T Jo

. T
4 54 (52172> TL21E/D [1X(s™) = 21(s7)* + X (8(s7)) — za(s7)|] ds

T
+162<52172> L2(T+1)IE/O (X (s7) = 21(s7)[* + [ X(6(s7)) — za(s™)|]ds

= E?AIL2 [TB + (%?)2 (4T + 3) ]E/OT(X(S‘) — z1(s7))%ds

512\ 2

+ 5412 T3+<—2‘7—) (4T + 3)

T
IE/O X (6(s7)) — za(s™)|*ds
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< 432L2)\]E/0 1X(sT)=Y(s)*+|Y(s7) — z1(s7)|*] ds
T
+ 432L2/\]E/0 [1X(8(s7)) = Y (8(s™)|* + [V (6(57)) — za(s7)|*] ds
= 864L*\E /T |X(s7) — Y(s7)|*ds
0

+ 43220 /0 [17(s7) = 22 (s + [V (5(57)) = 2a(s)|] ds,
(3.29)

where A = [T3 + (%)2 (4T + 3)] . By the same computation as in Lemma
3.2.3 and Lemma 3.2.4, we have

E|Y (t) — z1(t)]* < 81h%(1 +2K32)A?,

and
E|Y (8(t)) — z(t)|* < KsA?,
where K is defined as in Lemma 2.1, K5 is a constant independent of A.

Now we can rewrite (3.29) as

E sup |X(t) - Y (t)[*

0<t<T

T
< 864L2A1E/ sup | X (s7) — Y(s7)|*dt + 432L2) [81R*(1 + 2KT + K5)A?| T,
0

0<s<t

and the assertion follows from the Grownwall inequality. 0

The next theorem gives the convergence rate under a local Lipschitz con-

dition.

Theorem 3.4.1. Under a local Lipichitz condition (LL) and the linear growth
condition (LG), if there ezists a constant o such that LAT < plog R, where

A= [T3+ (@>2(4T+3)

’

27

the order of convergence of the EM approzimation is one half.
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Proof. For each R > 1, define the function

anlz.y) = a(z,y), if 2| V |y| < R;
a(Rz/|z|, Ry/ly]), if |z|Aly| > R,

or(z,y) and vg(z,y, 2) similarly. Let Yz(t) be the Euler-Maruyama approx-

imation to the following stochastic differential equation
dXr(t) = ar(Xr(t), Xr(6(t)))dt + or(Xr(1), Xr(6(¢)))dB(t)
+ [ el Xn(), Xal6(E7)),2) e, 2 (330)
with Yz(0) = X;. By the Lemma 3.4.1 we obtain

E sup |Xg(t) — Ya(t)|* < 432L%A [81h%(1 + 2K? + K5)A?] Te*04 LT,

0<t<T
Let
X(t)= sup |X(t)| and Y(t) = sup |Y(t)].

0<t<T 0<t<T

Define the stopping time
pr =T Ainf{t € [0,T]) : | Xr(t)| V ||Yr(t) > R}.
Clearly, | Xr(t)| V |Xr(6(t))] < R for 0 <t < pg, hence
ar(Xr(t), Xr(6(t))) = art1(Xr(t), Xr(6(2))),

or(Xr(t), Xr(6(t))) = or1(Xr(t), Xr(6(2))),

and

n

|| R0, Xn(3(0),2)0(d2) = | v (Xn(6) Xa(60), 2I(d2)
on 7 <t < pgr. Therefore,
Xgr(t) = Xg41(t) and YR(t) = Yrya(t) if 0 < ¢ < pg.
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This implies that pg is increasing in R. Let p = limg_.o, pg. The property

above also enables us to define X(¢t) for ¢t € [—7, p) as follows
X(t) =XR(t) if —TS t S PR-

It is clear that X(¢) is the unique solution to equation (5.1) for ¢ € [7, p).
On the other hand, for ¢t € [0, T], we compute

tAp
BX(tA p)) = ECO]+E | a(X(s7). X(8(57)ds
tAp
< E[¢(0)] + 2hT + 2E / X (s)ds,
0
and by the Gronwall inequality, we get
E[X(t A p)] < [E[C(0)] + 2hT)e?.

Note that | X (p)| > R, whenever p < T, and therefore we derive

RP(p < T) < E[X(t A p)gpery] < [E[C(0)] + 2AT]e?

that is
[E[¢(0)] + 2hT]e*hT
R .

Letting R — oo, we obtain P(pgr < T') = 0, this implies limg_oc pr =T a.s.

Plpo<T) <

Let po = 0 we compute, for t € [0,T)

|X(t) - l—/(t)|2 = Z |X(t) - Y(t>|21{R—1§X(T)vY(T)5R}
R=1
= |Xa(t) = Ya@) P Lp_1< ki my<ny-
R=1
Therefore

E sup |X(t) - Y (1)

0<t<T
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<) (E|Xr(t) - YR(t)|4)1/2(]EI{R—ISX(T)VY’(T)SR})I/Z

s 708

(EIX(t) — Vr(t)*)/2y/P(R - 1 < X(T) v V(T) < R)

&
,I.l..

and from the condition (Lg)?AT < glog R, it follows that

E sup |Xg(t) — Yr(t)]* < 432 [81A*(1 + 2K7] + K5)A%] TR'™®.

0<t<T
On the other hand, if let ¢ > 2 then

EX(T) +EY (D) _ K,

P(R-1< X(T)VY(T)) < =7 R’

and therefore,

(2K,)'

E sup |X(6)-Y(O)P <) \/432 [B1h2(1+ 2K7 + Ks)| TAR® 21

0<t<T =

Let g be sufficiently large for g/2 > 8629, we see that the right hand side is

convergent, whence we get the rate of convergence is one half. U

3.4.2 The stochastic theta method

In this section, we will discuss the convergence rate of STM, when the coeffi-
cients function a(z,y) satisfying a global Lipschitz condition, and o(z,y) as

well as [¢. v(z,y, z)v(dz) satisfying a local Lipschitz condition i.e.

(A5).
la(z,y) — a(z,§)* < Ll — 2> + |y - §1*)

and
|0'(.7,', y) - 0(i7 ,g)|2 + Z/ |’Y(k)(5f,y, Zk) - ’Y(k)(ja ga Zk)‘2l/k(d25k)
k=1 YR
< Lg(jz = z[* + |y - g1%).
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Since a(z,y) satisfies the global Lipschitz condition, by Lemma 3.3.1, if A <

min{ﬁz, A*}, the numerical solution of theta method is well defined.

Lemma 3.4.2. Under a global Lipschitz condition (GL), we have

E sup |X(t) - Z(t)|

0<t<T
2
<ol [4T3+ %) (5T + 3)| TAPCHe 2 [4T+(37) 67437
Where

C+ = max{(C3 + 05), (C4 + Cﬁ)},

and Cs3, Cy, Cs, Cg were defined in the Section 3.

Proof. For any t € [0,T], we obtain

E sup [X(t) - Z()]*
0<t<T
4

< 64E sup /t(l —N]a(z1(s7), 22(s7)) — a(X(s7), X(6(s7)))lds
0<t<T |Jo
4+ 64E sup / Ola(zs(s™), za(s™)) — a(X(s7), X (8(s7))))ds
0<t<T |Jo
+ 641E0i1tl§T A [0(21(57), 22(s7)) — o(X(s7), X (8(s7)))]dB(s)
+ 64EO§;ET /0 - [Y(21(57), 22(57), 2) — ¥(X (s7), X (8(s7))), 2)|N (ds, dz)

< 128TL°E sup /0 (X (s7) = z1(s)| + | X (6(s7)) — 2a(s7)[*]ds

0<t<T

+ 128T3L°E sup /Ot[pds‘) — z3(s7)|* +1X(8(s7)) — za(s7)|*]ds

+04E sup | [ lo(aa(s7),2a(s7)) = o(X(57), XG5 NIBCS)
+4E sup. /0 / a5 22(57), 2) = A(X(57), X (3(s7))), 2V (ds, de)|
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For the third and the fourth term, the same computation as in Lemma 3.4.1,
gives

4
64E sup

0<t<T

/0 lo(z1(s7), 22(s7)) = o(X (s7), X (6(s™)))dB(s)

<128 (%) TL2/0 [1X(s7) — z1(s7)|* + | X(6(s7)) — 22(s7)[*]ds
and
64E sup /0 Rn[w(m(S"),@(S‘),Z) —(X(s7), X(8(s7))), 2) N (ds, d2)

2 T
<192 (%172) L*(T + 1)‘/0 [1X(s7) = 21(s7)|* + | X (8(57)) — z2(s7)|*]ds.

From Lemma 3.3 then we arrive at
E sup |X(t) - Z()]*
0<t<T

2 T
< 64L2(2T3 + (%?) (5T + 3))]E/0 [1X(s7) = z1(sT)|* + | X (8(s7)) — 22(s7)|*]ds

+ 512ETL? /0 (Z(57) = za(s7)|* + | Z(s7) — za(s7)[*)ds

T
+ 1024IET3L2/ |X(s™) — Z(s7)|*ds
0

122
4T3 + <5—> (5T +3)

< 1024L2
=1 27

E sup /0 |X(s7) — Z(s7)|*ds

0<t<T

512

2
+ 512L°TA? |4T® + (——) (5T +3)| C*,

27

where C* = max{(C; + Cs),(C4 + Cs)}. By the Grownwall inequality, the

result follows. O
Now we can proof

Theorem 3.4.2. Under the condition (A5) and a linear growth condition
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(LG), for o such that

512\ 2
L2 <-27> (5T + 3) < max(plog R — 4T3L?,0) (3.31)

we have as order of convergence of theta method one half.

Proof. Using the methods and ideas of the proof of Theorem 3.4.1 and
denoting by Z(t) the theta method approximation to (3.30), we have the

estimation

E sup |X(t) - Z(t)]

0<t<T

< ) (E|Xr(t) - ZR(t)|4)1/2(]EI{R-15X(T)VZ(T)SR})1/2

s P

(E|Xr(t) - Za(t)|*)/2\/P(R — 1 < X(T) v Z(T) < R).

&
'I_I‘

By the Lemma 3.4.2, and the condition (A5), we estimate

E|Xr(t) — Zr(t)|*

512\ 2
< {20480+T3L2A2 +512C+ L4 A? (—) (5T + 3)

27
X exp { T}

and from the condition (3.31), it follows that
E sup |Xg(t) — Za(t)|* < 512 [C*A?] TR,
0<t<T

T

92 2
4096T3L? + 1024L% (%) (5T + 3)

On the other hand, for p > 2, and any ¢ € [0, T]

E|Z(t)"

<@ 10)+ 2| [ [1- D)alals7),2a57)) + bolea(s ), 27

P
+4P71E

ALU(ZI(S_),ZQ(S_))dB(S)
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+4P71E

/ /n z1(s” s7),z)N(ds, dz)

By the Holder inequality and the linear growth condition, we estimate the

second term,

E /0 (1= 8)a(z1(s7), 22(s7)) + ba(za(s™), za(s™))|ds

<17 1101 - B)ataa(s7), 5(57) + dalas(s7), (5P
<2778 [ fla(a(s7), (NP + a7, (sl
<208 [l )+ aals )P+ a5+ a5 Pl + 2T
(3.32)
For the third and the fourth term we can take the result in the proof of
Lemma 3.2.2, and together with (3.32), we obtain

E|Z(t)P < K.

Let ¢ > 2

PR 1< X(T)V 2T < E|X (T)|s ;EIZ(T)| QRZ

where K, = max{K,, K, }. It follows that

2K 1/2
E sup |X(t) — Z(t)]* < Z\/5120+ Taroe 2 = 2 "

0<t<T Ra/2

For q/2 > 10249, we see that the right hand side is convergent, whence we

get the rate of convergence is one half.
O

78



Chapter 4

Stochastic differential delay
equations with jumps, under

nonlinear growth condition

4.1 Introduction

The classical existence and uniqueness result for solutions of a stochastic
differential delay equations (SDDEs) require the coefficients function satisfy
a local Lipschitz condition and a linear growth condition. However, there are
many SDDEs which do not satisfy the linear growth condition, for example,
the geometric Lévy process:

dX(t) = X(t) |(a — X3(t))dt + bX (t)dB(t) + /

ZN(dt, dz)] :

Since it preserves positivity i.e. an initial value X (0) > 0 implies X (¢) > 0,
it is often used as a model for stock prices, such as the exponential-Lévy
model (cf. [7]).

In this chapter, we investigate the existence and uniqueness of SDDEs

79



with jumps which coefficients which do not satisfy the linear growth condi-
tion, we also study their numerical solutions.

Let (2, F,{Fi}i>0, P) be a complete probability space with a filtration
{Fi}t>0 satisfying the usual conditions (i.e. it is right continuous and F
contains all P-null sets). Let B(t) be m—dimensional Brownian motion and

N(t, z) be a Poisson measure and denote the compensated Poisson measure
N(dt,dz) = N(dt,dz) — v(dz)dt.

Let || denote the Euclidean norm as well as the matrix trace norm. Let 7 > 0
and C([—-7,0];R?) denote the family of continuous function ¢ from [~7,0]
to R? with the norm ||¢|| = sup_,<p<|#(8)|. Denote by C% ([—7,0};R%)
the family of all bounded, Fy—measurable, C([—7,0]; R¢)—valued random
variables.

Consider the d—dimensional stochastic differential delay equation with

jumps

dX(t) = a(X (1), X(t — 7))dt + o(X (1), X (¢ — 7))dB(t)
+/n V(X (17), X ((t = 7)7), 2)N(dL, dz)
(4.1)

for ¢t € [0, T)] with initial data
{X(t): —7<t<0}={((t): -7 <t<0}eCx(-70),

and where X (¢t7) = lim,_; X(s), o : R? x R — R%, ¢ : R? x R? — Réx™,
v : R% xR x R — R¥™, We note that each column v of the d x n matrix

v = [vi;] depends on z only through the k% coordinate z, i.e.

fY(k)(wiz) = ’Y(k)(x)zk); Z = (21, T ,zn) e R™.
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Given V € C*}(R? x [—-7,T); R,), we define the operator LV by

LV(z,y) = Vea(z,y) + %trace[oT(x,y)Vma(:v,y)]

+ /n Z {V(a: + 4B (z,y, 2)) — V(z) — Vo(v®)(z, v, z)) } vi(dz).
k=1

where
aV (x) oV (z) 0%V (x)
Vz = I ) zT = .
(z) ( Oy oz, Vas(2) 02:0%; ) 4.4
Assumption 1. (LL) For each R = 1,2, .-, there exists a constant Lpg
such that

lo(2,y) = o(,9)* + |a(z,y) — a(z,7)|*
+ |’7(/L'> Y, Z) - 7(-7:a g’ Z)|2l/(dz) < LR(|T - ‘;i‘l2 + |y - glz),

(4.2)

forall z, y, Z, g€ R", and |z| V |y| V |Z| V|§| £ R.

Assumption 2. There are two functions V € C?(R?¢ x [~7,T);R,) and
U € C(R? x [-7,T);R,) as well as two positive constants A; and As,
such that

lim V(z) =00 (4.3)

jz|—o00
and
LV(z,y) <M1+ V(z)+V(y) +U(y)] — AU(z).

Assumption 3. The jumps are bounded for all moment i.e. [, [v(z,z)[Pr(dz) =

C, where p and C are positive constants.

The rest of the chapter is arranged as follows, in section 2, we extend Mao’s
work (cf. [36]) to SDDEs with jumps. In section 3, we present the Euler-
Maruyama scheme and Stochastic Theta Method approximation convergence

to the exact solution in probability.
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4.2 Existence and uniqueness

Theorem 4.2.1. Let Assumption 1 and 2 hold. Then for any given initial
data {¢(t) : —7 <t < 0} C C4 ([~7,0]), there is a unique global solu-
tion X (t) to equation (4.1) on t € [—7,T]. Moreover, the solution has the
properties that

EV(X(t)) < o0 and E / “U(X(5))ds < oo
for any t € [0, 7).

Proof. By Assumption 1, for any given initial data ((t) there is a unique
maximal local solution X (t) on t € [—7,7.), where 7, is the explosion time.

For each integer R, we define the stopping time
r =inf{t € [0,7) : | X(¢7)| > R},

and we define inf @ = oo, @ denotes the empty set. Clearly 7g is increasing
as R — 00. Set 7o, = limpr_,o 7Tr. Note that 7, < 7. a.s. To complete the
proof, we need to show P{7,, < T} = 0 a.s. For any R > 0 we derive from

the It6 formula on ¢; € [0, 7],
V(X (t1 A TR))
= vicon+ [ (XDl (57), X (s = 1) s
+/OWR Va(X (7)o (X (57), X ((s = 7)7))dB(s)
= ™ tracelo” (X (s7), X (s — 7))Vaa (X (7)o (X (™), X (5 — 7))}
4 /0 /R V() + (X () X (s = 7)7), ) = VIX(s7)
V(X (X (57, X (s = 7)7),2))} vld2)ds

T /0 - - (VIX() +2X (), X (5 = 7)7),2) = V(X (7))} W(dz, )

tiATR
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— V() + / LV(X(s7), X (s = 7)7))ds
+ /0 VX ()o(X (7). X (s = 1)7)dBs)
+/0 B | VX + (X (57), X (s = 7)), 2)) = V(X (7))} N(dz, ds),

note the last two terms are martingales, we take the expectation and by the

Assumption 2 to get
EV(X(t; A Tr))
=EVO)+B [ LYK, X (s - 7) s
< Vi) -xE [ U s
a8 [ @ V) + VO = 1) + U0 - 1))
<o+ /\1]E/OMTR V(X(s~))ds — AE /OWR U(X(s™))ds (4.4)
where
1= V() + B [ (14 V(s = 1)) + V(X (s = ) )i
— V() +xE [ i(l F V() +U((s))ds
<oo
Since A, is a positive constant, and the function U : R® — R, , so we obtain
EV(X(t1 Aa) < e1 + ME /O (X (57 ))ds
<o+ /\I]E/O V(X(s A r)")ds,
for any #; € [0, 7], and by the Gronwall inequality
EV(X(t; ATR)) < c1eM7. (4.5)

83




In particular, for any R > 0
]EV(X(T A TR)) S C]CAIT.
Define

pr = inf V(z) for all R > 0.

[x}2R

It then follows that

prP(tr < 7) < EV(X (1 ATR)) < c1eM7.
By the condition (4.3), limg_, g = co. Letting R — oo, we arrive at

P(rg < 7) =0.
Letting R — oo in (4.5) yields
EV(X(t)) < c;eM for 0< ¢y < 7.

Moreover, setting {; = 7, we observe that

TATR TATR

MEA WXWM%Sq+MEA V(X(s7))ds.
Letting R — oo, we have
IE/OT U(X(s7))ds < /\iz(cl + T/\lcle’\”) < 00.

Now we proceed to prove T, > 27 a.s. For any R > 0 and ¢, € [0, 27],

nothing changed but 7; substituted by 7 in (4.4) and we get

EWX@AWDgQ+MEAMWWXMM$—MEAmmWXMﬂ%,
(4.6)

where
e = V(((0) + ME / W VX (s = 7)) + UX((s — 7))))ds
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- )qIE/OT(l F V(X (s7)) + U(X(s7)))ds

+ ME / (14 V(C(s7) + U(C(s™)))ds

T

< 00.
Therefore, we have
EV (X (ty ATr)) < c2e®™7, 0< t; < 27 (4.7)
In particular,
EV (X (27 ATR)) < ce®7,  for any R > Ry.

This implies

prP(TR < 27) < cpe®™7.

Letting R — oo, we then obtain that P(tg < 27) = 0.
Moreover, by letting R — oo and setting t; = 27 in (4.6), we observe

that

Repeating this procedure, we can show, for any integer 1 < ¢ < [%J +1,

that 7., > i7 a.s. and
EV(X(t)) < cie™™ 0 < t < i,

as well as

iT 1 ]
]E/ U(X(s™))ds < ;\—(ci + A TcieMT)
0 2
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where
i—11
¢ = V(C(0) + ME / (1+ V(X(s7)) + U(X(s7)))ds < oo.
0
Therefore, we have P(7,, < T') = 0 as claimed. O

Example 4.2.1. Consider a one-dimensional SDDE with jumps

dX(t) = X(t) [aX(t —7) = X%(t)dt + bX (t — 7)dB(t) + / zN(dz, dt)} ,

) (4.8)
where B(t) is a one dimensional Brownian motion and N (dz, dt) is a Poisson
measure. Both a, and b are constant. We now let V(z) = 22, Then the
corresponding operator LV (z,y) has the form

LV (z,y) = 22%(ay — 2°) + 22b%y? + 22 /R 22v(dz)

< 2ax’y — 2z* 4+ b%2%y? + Cz’.

By the elementary inequality,

o < (u? +v?)
— 2 )
we derive
4 pa,4
52x2y2 < ECE_ZE)_QJ (4.9)
Recalling the Young inequality
w8 < Bu+ (1 - B)v, for any u,v >0, 8 € [0,1],
we compute, for some ¢ > 0
2\ 1/2
2 an1/2 (Y €4, 14
= = < — —yc,
Ty (e:c) (e) _2x+26y
Choosing € = 2, we have
2azx’y < z* + a2 (4.10)
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Combining (4.9) and (4.10), we arrive at
LV(2,9) S M+ + ) - 52

where \; = max{C, a?, %} Therefore, we choose U(x) = z* and Xy =
to fulfill Assumption 2. Moreover, by Theorem 4.2.1 we conclude for any
initial data {(t), —7 <t <0, that there is a unique global solution X (¢) on

t e [—7,T].
Remark 4.2.1. By Theorem 4.2.1,
t
EV(X(t)) < oo and ]E/ U(X(s))ds < oo,
0

if welet V(z,y) = |z|? and U(z,y) = |z|? for any p, ¢ > 2 we get the moment
bounded property.

4.3 Convergence in probability

In this section, we will introduce the Euler-Maruyama scheme and Stochastic
Theta Method for SDDEs with jumps and prove convergence to the exact so-
lution in probability under some additional conditions in terms of Lyapunov-
type functions. We replace Assumption 2 by :

Assumption 4 The C? function V : R® — R, satisfying

lim V(z) =00
|z| =00
and

LV (z,y) <A1+ V(z) + V(y).

Assumption 5 for each R > 0 there exists a positive constant K such that

for all z,y € R™ with |z| V |y| < R,
V(@) = V)V Valz) = V@]V [Vaalt) — Vaaly)] < Knlo — 3.
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4.3.1 Euler-Maruyama method

We now define the Euler-Maruyama approximation. Let the time stepsize
A € (0,1) be a fraction of 7, that is A = £ for some sufficiently large integer
N. The discrete EM approximate solution is defined by

Y((k+1)A) =Y (kA) + a(Y (kA), Y (Ia[kA — 7]A))A
o (Y (kA), Y (Ia[kA — 7]A))AB,

+ / (Y (kD). Y (Ialkd =718, 2)) AR (dz)

with Y(0) = ¢(0) on —7 < t < 0. Here k = 0,1,2,..., and Ja[kA — 7]
denotes the integer part of kA —7/A, and ABy, = B((k+1)A) — B(kA) and
ANi(dz) = N((k +1)A,dz) — N(kA, dz).

To define the continuous extension, we need to introduce two step pro-

cesses

Z Lka,k+1)a) (1) Y (KA),

k=0
Zl[kA (k+1)A] )Y ( IA[kA - T]A)

k=
The continuous EM numerlcal solution is defined by

)
¢(t), —7 <t <0;

t

a(z1(s7), z2(s7))ds
o(21(s7), z2(s7))dB(s)
/ / (z1(s7), 22(s7), 2)N(ds,dz), 0<t<T.

Y(t) = <¢0)+

o~

\c\

Note that Y (kA) = Y (kA) for every k > 0.
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Theorem 4.3.1. Let Assumptions 1, 8, 4, 5 hold. Then
lim ( sup |X(t) — Y(t)|2> =0 in probability. (4.11)
A—0 0<t<T

Proof. We divide the whole proof into three steps.
Step 1. For sufficiently large R, define the stopping time

6, =inf{t € [0,T] : | X(t7)] > R}.
Applying the generalized Tto formula, yields
V(X(tAB))
Vo) + [ O DalX (), X (s - 1) s
+ [ o0 X - 1B
[ rncelo (K067, X (5 = 77 WanlX (57
X (X (s7), X((s = 7)7))]ds
[ ) a6 X (s = 170,20 - VX))
VX (X (57, X (s — 7)), )} wlda)ds
[ ) 26X (=17, 2)
~V(X(s7))} N(dz,ds)

tAB

= V(¢(0) + i LV(X(s7), X((s —7)7))ds

*3

tAG,
T / Vo(X (s )o(X(57), X (5 — 7)7))dB(s)

0
N / AV ) 2K (), X (s = 1)7),2)) = VIX(5)} N(dz,ds),

Note that the last two terms are martingales, taking the expectation of

V(X (t)), and by the Assumption 4 we arrive at
E(V(X(tA61)))
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tA)
=V(((0)+E i LV(X(s7),X((s—7)7))ds

tAG
<V(C(0)) + hE / 1+ V(X(s7)) + V(X ((s - 7)7))]lds

SVIC(O)+ AT+ _sup EV(((5) + 248 /0 V(X (s A B))ds,
by the Gronwall inequality we have
E(V(X(£A0) < (VICO) +1T + sup BV, (412)
Let
v = inf{V(z) : |2| > R).

By condition (i), vg — oo as R — oo. Note that |X(6;)] = R whenever
6, < T, and therefore we derive from (4.12) that

vaP(6; < T) < EV(X(61)I{6,<1y) < (V(C(0)) + AT + sllp<OIEV(((s)))ez"T,
that is

(V(¢(0)) + AT +sup_,<,<o EV/(((5)))e*"

UR

PO, <T) < (4.13)
Step 2. For sufficiently large R define the stopping time
p1 = inf{t € [0,7] : |Y(t7)| > R}.

Once again, we apply the It formula to V(Y (t)), and taking the expectation

we obtain
E[V(V(t A pr))]
= V(((0)) +E / "V (s )ala(s7), za(s7))ds

+ %]E/O " trace[o” (21(s7), 22(s7)) Vaa (Y (s 7))o (21(s7), 22(s7))]ds
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B[ " v tals ) mls ), ) - V()
0 R™

~Va(Y (s7)v(21(57), 22(57), 2) } v(dz)ds

=V({O0)+E A LV (21(87),z2(s7))ds

{E / " Ve (57)) - Valaa(s))] alaa(s™), za(s7))ds

+ %]E /0 " trace [0 (21(57), 23(57)) (Vaa (P (57)) = Vaa(22(57)))

xo(a1(s),22(s7))] ds
B[ [ V) ) a2
V(a(s7) + (), 257), )
H(a(s7) - VV(s)
= V757 = Vel (D] 2ea(57), 2a(s7), 20} wld2)ds

tAp1

< V(¢(0)) + AT + sz/O V(Y (s7))ds
e [ W) - Vi las
w8 [V 6) = Vel
rC [ 176 - als)lds

tAp1

< V(¢(0)) + AT + 2RE /Ompl V(Y (s7))ds + h,KR/O IY(s7) — 21(s7)|ds

tAp1

+ hKR/O " |V (s7) — z2(s7)|ds + CRIE/O Y (s7) — z1(s7)|ds,

where Cf is a constant independent of A, and in the computation below Cr
varies line by line. In the same way as we proved in the previous Lemma

3.2.3 we can show that
E[Y (s) — z1(s)]* < C(R)A
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and
E[Y (s) — z(s)]* < C(R)A,
so that

tApy

EV(¥(s)) < V(¢(0)) + AT + CrA + 2hE /0 VT (57 ds.

By the same computation leading to (4.13), we obtain

2hT
P(p; < T) < [V(C(0)) + hT + ORA]GU—.
R
Step 8. Let 71 = p; A 6. Recall Theorem 3.2.1, then we have
E| sup |X(t)-Y()]*| <C(R)A.
0<t<T AT
Assume €, « € (0,1), set
Q={w: sup |X@t) =Y > a}.

0<t<T

We compute

aP(QN{n >T}) = aE[I,,>rg)]

SE{IHZT sup |x<t>—?<t>|2}

0<t<m AT

<E [ sup |X(t) - Y(t)]?

0<t<T AT

< C(R)A,
together with (4.13) and (4.14), this yields

PQ) <POQN{n>T}H) +P(rn<T)
<PQN{n >T} +P6 <T)+P(p, <T)

< W5 4 g+ + CRN%
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L V(C(0)) + AT+ sup._r s ]EV(C(S)))eth.

VR

Recalling that vg — 00 as R — oo, we can choose R sufficiently large for

obtaining

[V (¢(0)) + AT i’: + (V(¢(0)) + hT + suI;;TSSSO EV(((s)))e*hT .

)

N

and then choose A sufficiently small to get

2hT
C(R)A (*RAE %

hence we aim at

PQ)=P ( sup |X(t) - Y(t)]* > a) <e

0<t<T

4.3.2 The stochastic theta method

Given a sufficiently small stepsize A = % > 0 for some large integer N and

a particular choice of 8 € [0, 1], the theta method is defined by

Z((k+1)A) =Z(kA) + (1 — 0)a(Z(kA), Z(Ia[kA — T]A)A
+0a(Z((k + 1)A), Z(Ia[(k + 1)A — T]A)A
o(Z(kA), Z(IalkA — T)A))AB;

+/ Y(Z(kD), Z(Ia[kA — T]A, 2))ANk(dz)  (4.15)
with initial data

{Z(t): —7<t<0}={X(t): —7<t<0}
={C®: —r <t <0} e Ch([-m.0),
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where ABj, and AN, (dz) denote the increments of the Brownian motion and
the compensated Poisson process respectively. Ia[(k + 1)A — 7] denotes the
integer part of (k + 1)A — 7/6.

For convenience, we will extend the discrete numerical solution to con-

tinuous time. In addition, we also need introduce four step process
[e o]
1(8) =D ljga ) (D Z(kA),
k=0

z(t) = Z Lika,k+1)a) (D) Z (IalkD — T]A),

z3(t) = Z Lga,k+1)a) (1) Z((k + 1)A),
k=0

Z Lika,k+1)a) (1) Z(1a[(k + 1)A = T]A).
k=0

The continuous theta approximate solute is defined by

.
¢(t), —7<t<0;

0+ [ (1= Oaas ) (s s
+/0t fa(z3(s™), za(s7))ds
+ / o(aa(s7), 2a(sNB(S)
// (21(s7), za(s7), 2)N(ds,dz), 0<t<T.

Clearly, z,(kA) = z3((k — 1)A) = Z(kA).

Clearly, when 6 = 0 the numerical solution becomes EM approximation,

however, when 6 # 0, the § method is defined by an implicit equation. In
order to make sure the Stochastic Theta Method is well defined, we require
the coefficient function a(z,y) satisfying a global Lipschitz condition, i.e.

there exists a constant L > 0 such that
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Assumption 6
lo(z,y) — (Z,9)I* < Lllz — 2 + |y — 7%), (4.16)

and o(z,y) as well as [, v(z,y, z)v(dz) still satisfying the condition

in Assumptions 1, i.e.

lo(z,y) —o(z,9)* + L @y.2) =9(2,3, 2)*v(dz)
< La(lz -2 +1y - 91°),
forall z, y, Z, g€ R", and |z] V |y| V|Z| V|7| £ R.
Then for A < min{#,r}, the numerical solution of theta method is
well defined. (see [23))

Theorem 4.3.2. Let Assumption 3, 4, 5, 6 hold, then we have
lim ( sup |X(t) — Z(t)|2> =0 n probability. (4.17)
A—0 0<t<T

Proof. Again we divide the whole proof into three steps.

Step 1. For sufficiently large R, define the stopping time
6, = inf{t € [0,T] : | X (¢)| > R}.

By the same computation as in the proof of Theorem 4.3.1, we have

< (V(C(0) + AT +sup_, <, BV (¢(5))e”

]P)(gg < T) vn

(4.18)

Step 2. For sufficiently large R define the stopping time

pe =inf{t € [0,T] : |Z(t)| > R}.

Once again, we apply the It6 formula to V(Z(t)), and taking the expectation

to obtain
E[V(Z(t A p2))]
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= V(¢(0)) +]E/01 - Ve(Z(sT)I(A = O)a(zi(s7), 22(s7))
+0a(zs(s™), 24(s7))]ds

+ -;-IE/O ” trace[o” (z1(57), 22(57))Vaz (Z(s7))o(21(57), 22(s7))]ds

VB[ [ @) o) w6 2) - V)
V2 (5), (s, 2) ) w(de)ds
— V() + E/OMPZ LV (21(s7), 2(s7))ds
+ E/omm Va(Z(s7))0la(z3(s7), za(s7)) — a(z1(s7), z2(s7)))ds

+E / " ValZ(57)) = Valaa(s7)] alza(57), z2(s7))ds

+ %E/o i trace [UT(zl(s‘), 20(87)) (Var(Z(57)) = Vau(21(s7)))

o(a1(s7), 2o57))] ds
vE [ [ V) +1a)m0),2)
V(o) + (), 257, )
V(@) VIZ(7)
- [Vl ~ Vel )] o5, 2ls7), ) ). (419)

Let us now have a look the behavior of the third term of (4.19). We know that
at each gridpoint z;(kA) = z3((k — 1)A), and for each 7 = NA, z3(kA) =
24((k — 1))A. Since some z3(t), z4(t) may extend beyond T, we have to work

in the interval [0,T + 1], by the Lipschitz condition

E / VA2 WPlo(eals), 24(57) ~ alar(57), 2ol )ds
< ]E/O APZ Ve(Z(57)0VL(|23(s™) — 21(s7)| + |2a(s™) — 2a(s7))ds
=0.
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Therefore
E[V(Z(t A p2))]

< V(C(0)) + AT + 2hE / (2 (sds
+AE /0 "WV (7)) = Via(s)lds
+hE /0 " V(Z(s7)) = V(za(s™))|ds

+ CxE /0 " V() = Via(s))ds

tAp2

< V(C(0)) + AT + 2hE /0 V(Z(s7))ds + hKgE /0 N 2(5) = 21 (57)\ds

tAp2

+ hKRE /0 1Z(s7) = 2a(s7)|ds

+ CRE /0 " WV(2(57)) = Via(sm))ds

where Cp is a constant independent of A, and in the computation below Cgr
varies line by line. In the same way as was proved Lemma 3.2.3 in [23] we

can show that

E|Z(s) — z1(s)]* < C(R)A

and

E|Z(s) — z(s)* < C(R)A,

so that

tAp2

EV(Z(s)) < V(¢(0)) + AT + CrA + 2hE V(Z(s7))ds.

By the same computation leading to (4.13), we obtain

P(pz < T) < [V(C(0)) + hT + CRA]%. (4.20)

Step 3. Let 72 = py A 65. Recalling Theorem 3.3.1 in [23], we have

E| sup |X(t)—Z()]*| < C(R)A.

0<t<m AT
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Assume ¢, a € (0,1), set
Q={w: sup |X(t) - Z(t)]*> > a}.
0<t<T
We compute
PN {r > T}) = aE [I,,>71g)]

<E|Lsr s [X() - 2]

0<t<TAT

Z(t
S]E[ sup ]

OStS'rz/\T

C(R)A,
together with (4.18) and (4.20), this yields

P(Q) <PON{r>T}) +P(r, < T)
<PON{ra>T}) +P@, < T)+P(p, < T)

CK)A+W’ 0)) + AT + CrA]
UR

i (V(¢(0)) + AT 4 sup_, <,<o ]EV(C(S)))thT.

Recalling that vg — o0 as R — o0, we can choose R sufficiently large for

obtaining

[V (¢(0)) + hT) " i (V(¢(0)) + hT + SUP_, <5<0 EV(C(S)))E%T 3
VR VR

7

DN

and then choose A sufficiently small to get

2h.T
(R)A+0A——<§

hence we find
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Chapter 5

Application to finance

During the last decade, Lévy processes (especially the exponential Lévy pro-
cesses) have become increasingly popular for modeling market fluctuations,
both for risk management and option pricing purposes. However, the Lévy
market is incomplete, that is contingent claims cannot in general be hedged
by a suitable portfolio. Many different approaches to this problem have been
proposed in recent years. In this chapter, we focus on seeking a minimum
relative entropy martingale measure for the stochastic jump-diffusion delay

models.

5.1 Stochastic jump delay models for the stock
price

We let (Q, F, {Fi}i>0, P) be a complete probability space with a filtration
{Fi}i>0 satisfying the usual conditions (i.e. it is right continuous and Fq
contains all P-null sets). Let N (t,z) be a compensated Poisson process with
bounded intensity A = v(R) where v is a bounded Lévy measure. Let 7 > 0

and C([—7,0]; R) denote the family of continuous function ¢ from [—7,0] to R
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with the norm ||¢|| = sup_,<y<o |6(6)|. Denote by C% ([—7,0];R) the family
of all bounded, Fy—measurable, C([—7,0]; R)—valued random variables.
We consider the stock price process S(t) satisfying the following stochastic

differential delay equation with jumps on t € [0, T:

R

dS(f) = aS(t — 7)S(B)dt + S(2) / VSt =), )N dz)  (5.1)
and with initial data |
{S@t)y: —7<t<0}={¢(t): -7 <t<0}eCh([-70].

Where « is a constant and v : R — R is continuous functions.
As defined in the real world, we would like to show that positive initial

data leads to positive solutions.

Theorem 5.1.1. The SDDE (5.1) has a pathwise unique solution S(t) for a
given Fo—measurable initial process ((t). Furthermore, if ((0) > 0 a.s. and

for any x € R y(z,2) > —1 then S(t) >0 for all t € [0,T] a.s.

Proof. For any ¢ € [0, 7], with the initial value S(0) = {(0), we have

ds(t) = S(¢) [a((t —T7)dt + /R'y(C(t —7)7,2)N(dt,dz) (5.2)

Set
N S(t)
S(t) = @
and define
Y(t) = /0 al(s —7)7ds +/0 /R’y(C(s —7)7,2)N(ds,dz),
then

dS(t) = S(t)dY (t)
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with initial value $(0) = 1. The condition v(¢(t — 7)~,2) > —1 implies
AY (t) > —1. Apply Doléans-Dade exponential formula (see [6]), we have

5() = exp{¥i-} [ (1 +47))

0<s<t

So the solution of (5.2) is given by

S(t) = CO)exp{Fi-} [ (1+A,).

0<s<t

Since AY(t) > —1, it is obviously that S(¢) > 0 for all ¢ € [0, 7] almost
surely, when ((0) > 0 a.s.. By a similar argument, we may obtain S(t) > 0
for all t € [,27] a.s.. Therefore S(t) >0 for all t € [0,T] a.s..

Note v(z,z) > —1, for all ¢t € [0, 7], define

Y(t)=1n((0)+/0 a((s—7)'ds+/(; /Rln [1+’)’(C(s——'r)‘,z)] N(dz,ds)
+/OLA{ln [1+7(C(s—7’)_,z)] —’y(((s—T)‘,z)}l/(dz)ds.

Let X (t) = ¢¥®, and the It6 formula gives

dX(t) = e¥® {ag(t -7) + /}R {In[1+~(CEt-7)",2)] =yt —7)",2)} V(dz)} dt
Y O-In[1+v(Ct=-1)".2)] _ YO (4,
+/]R N(dz,dt)
+ /R {eY(t)—]n[1+‘Y(C(t—T)‘,z)]
—e¥® _ YWy [1+(¢(t—7)7,2)]} v(dz)dt
= X(t) {a((t —T7)dt + /R (¢t —7)7,2)N(dt, dz)} .

Since the solution to Eq.(5.1) is unique, S(t) = X (¢) = e¥'®, and this gives

the solution

S(t) = ¢(0) exp {/Ot al(s—71)7ds+ /ot/mln [1+7v(¢(s—7)7,2)] N(dz,ds)
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+/)'A{1n[1+v(c(s—%)‘,2>]—7( (=7} }

This clearly implies S(t) > 0 for all ¢ € [0, 7] a.s.. Repeating this procedure

above on [7, 27], therefore, we have the solution

S(t) = ¢(0) exp { / aS(s — 7)ds + / / In [1+(S(s = 7)™, 2)] N(dz, ds)
+/(; /R {In[14+~(S(s = 7)7,2)] = v(S(s = 7)7,2)} u(dz)ds}

Therefore S(t) > 0 for all ¢ € [0,7] a.s. when v(S(s —7)7,2) > —1 and
¢(0) > 0.

5.2 Equivalent martingales

The fundamental asset pricing theorem showed us “there is no free lunch

with vanishing risk”, in a mathematical word

Proposition 5.2.1. The market model defined by (2, F,{F:}+>0, P) and as-
set prices S(t) is arbitrage-free if and only if there exists a probability measure
Q ~ P such that the discounted assets S(t) are martingales with respect to
Q.

We consider a world with just one risky asset with price process S(t)
satisfying the SDDE (5.1) and a risk-free saving account paying constant
interest rate r, we set the bond B(t) = €. Consider an option, written on a
stock, with maturity at some future time 7" > t and exercise price K. Assume
also that there are no transaction costs and that the underlying stock pays
no dividends.

We denote the discounted stock price process by

S(t)

S(t) == B

= e S(t), te(0,T].
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Then by It6’s formula, we obtain
dS(t) = e " dS(t) + S(t)(—re ™)dt
= S(t) |:(aS(t —7)—r)dt + /RW(S(t —17),2)N(dz, dt)] :
We seek an equivalent martingale measure Q of the process S (t).
Theorem 5.2.1. Given the discounted price S(t) of the form
dS(t) = S(t) [(aS(t —7) —r)dt + /R (St — 7), z)N(dz,dt)] .
Assume that there exists a Borel measurable function q(z, z), such that
q(z,2) <1
and
/7(1:, 2)q(z, 2)v(dz) = az —r. (5.3)
Define the process )
Z(t) =exp {/Ot/kln (1-q(S(s — 7)7,2)) N(ds,dz)
+ /ot/m n(1-q(S(s—7)7,2)) +q(S(s—1)7,2)] V(dz)ds}
Define a measure Q on Fr by

dQ = Z(T)dP,

Ep|Z(T)] =1,
then Q 1is an equivalent local martingale measure for S (t).

Proof. Set F; := Fp for any ¢t < 0. Since g(z, z) is measurable with
respect to the o—algebra Fy. Then for any ¢ € [0,T], Set

Y (t) =/0 /Rln (1—q(S(s = 7)7,2)) N(ds,dz)
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t
+ / / lIn (1 - ¢(S(s — 7)7,2)) + q(S(s — 7). 2)] v(d2)ds
o Jr
by Itd’s formula, we obtain
t
eY(t) =1 _+_/ [eY(s)+ln(1—q(S(s—T)‘,z))
0
—e¥() — ¥ 1n (1 - ¢(S(s — 7)7,2))] v(dz)ds
t
+/ / [eY(s)+ln(l—q(S(s—‘r)',z)) _ey(s)] N(dz, ds)
0o JR
t
+/ eY(s)/ [In (1—q(S(s —7)7,2)) +q(S(s — 7)7,2)] v(dz)ds
o Jr
=1+/ / [eY(s)+1n(l—q(S(s—_‘r)_,z)) _eY(s)] ¥ (dz, ds).
o JR
We note that N(dt,dz) is a martingale measure, therefore
t ~
Ep {1 +/ / [ey(t)ﬂn(l—q(s(s—r)‘,z)) — eY(t)] N(dz,dt)I]:o} =1.
o JR
Define measure
N®(dt,dz) = N(dt,dz) + q(S(t — 1), z)v(dz)dt,
by Girsanov’s theorem ([5])

/Ot/RNQ(dt,dz)=/ot/RN(dt,dz)+/0t/Rq(5(t_T)’z)U(dz)dt

is a (J—martingale.

We then derive for the discounted price
S(t) = ¢(0) exp {At(aS(s —7)" —r)ds +_/(; Aln [1+7(S(s—17)7,2)] N(dz, ds)
+/O /IR {In[1+~4(S(s=7)7,2)] =v(S(s = 7)7, z)} u(dz)ds}
— ¢(0) exp { /0 A In [14(S(s — 7)™, 2)] N9(dz, ds)
—/O /m {In [1 4+ ~(S(s = 7)7)] = 1(S(s = 7)™, 2)}
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x(1—q(S(t—7),2))v(dz)ds

+ /0 t [(aS(s —) —r— /R g(S(t — 1), 2))7(S(s — T)_)u(dz):| ds} .

by the condition (5.3), S(t) is a martingale with respect to the measure Q.

Consider a portfolio in this market is a predictable process

¢(t) = (do(t), 41(t)) € R?

such that .
/ [62(t) + #3(t)]dt < oo a.s.
0

The value process is a stochastic process and defined by
V() = ¢o(t)B(t) + 1 (1)S(¢), 0<i<T
Assume that (¢o(t), #1(t)) is self-financing, then V (t) is given by
Vi =vO)+ [ 6B + [ (5)aS()
From (5.4), we obtain
¢o = e V() — ¢1(£)S(1)),

and

O

(5.4)

dV (t) = rV(t)dt + ¢ S(t) [(aS(t — ) —r)dt + / y(S(t — 7),2)N(dz,dt)| .

R

This implies

d(e ™V (t))
= e " dV (t) — re "V (t)dt

= ¢1 " S(t) |(aS(t — 7) — 7)dt + Av(S(t -7), z)N(dz, dt)
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That is
T
e "V (t) =V(O)+/ $1dS(t).
0
Assume there exists a measure @ absolute continuous to P, such that the

discount asset processes S(t) are martingales with respect to Q. When V (0) =

0, we see that
T
Bo V()] =Bo | [ 8] =0,
0
this shows that there is no arbitrage in this market, i.e. Proposition 5.2.1

holds.

5.3 Minimum relative entropy martingale mea-
sure

So far we have discussed the equivalent martingale measure and its relation
with absence of arbitrage, which is both a reasonable property to assume in
a real market and a generic property of many stochastic models. However,
for the option pricing model we described in the previous section, there exist
many equivalent measures under which the discounted price process is mar-
tingale, in other words, such a market is incomplete. In a complete market
there is only one arbitrage-free way to value an option. In real markets, as
well as in jump models described markets, contingent claims cannot in gen-
eral be hedged by a suitable portfolio. This forced us to select an appropriate
martingale measure from among the uncountably many such measures with
which to price a contingent claim. During the last decade, many investiga-
tions and approaches to this problem, such as [4]. Nevertheless, there is no

definitive way of pricing contingent claims in incomplete markets which is
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preferable to the other possible methods in all situations. In this section, we
focus on the minimal relative entropy martingale measure for the stochastic

jump delay models.

Definition 5.3.1. For a fized measure P, the relative entropy Ip(Q) of any

measure ) with respect to P is defined to be

_ Q| _np|dQ, dQ

By Theorem 5.2.1, for any s € [0, 7] the relative entropy in terms of the
Q-martingale N9 is therefore

Ip(Q) = E© [m g%]
_ E° [/Ot [1n (1= a(S(s = 7). 2)) (s, a2
# [ [ im0 = a(Sts =), 2) + a(S(s = )7, 2] wlde)as
=E° [/Ot /}R In(1-g(S(s —7)7,2)) N9(ds,dz)
— /:/Rln (1-q(S(s=7)7,2)) q¢(S(s — 7)7, 2)v(dz)ds
+./ot/m [In(1-q(S(s—7)7,2)) +q(S(s —7)7,2)] V(dz)ds}
=E? [/Ot /R[(l —q(S(s—=7)7,2)In(1 —q(S(s—7)7,2)) +q(S(s - 1), z)]u(dz)ds] :

The problem of finding the equivalent martingale measure of minimum rela-
tive entropy can clearly be reduced to that for a fixed s € [0, T, ¢(S(s—7), z)

satisfying (5.3), and minimizing

EQ [ [ = a(ts = 717, 201 = (55 = )7, 2) + a(SCs = )", z)]u(dz)] .
R

Note that Ip(Q) > 0 for any @. If @ is not absolutely continuous with

respect to P, Ip(Q) is infinite. Since the problem can be reduce further to
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that of minimizing

/R [(1-g(S(s = 7)™, 2)) In(1 — g(S(s — 7)™, 2)) +a(S(s — 7)™, 2)]w(dz) (5.5)

In terms of the variation of ¢(S(s — 7)7, z) leads to different measure, one
can choose the optimal ¢(S(s — 7), z), and denote by @Q* the corresponding
measure. The optional value of (5.5) is therefore deterministic and for any

other choice of ¢(S(s — 7), z) with associated measure @, we have
Q| [10 - a(5(s = 17, ) 1 = g(S(s = 7)) + (S(s = 77 )
>I"=Q I

Letting A be a Lagrange multiplier associated with the constraint (5.3),

then we arrive at

L(/\v q(S(S - T)1 Z))
- / (1 = q(S(s — 7)™, 2)) In(1 — g(S(s — 7)™, 2)) + a(S(s — 7)™, 2)w(d2)

+ / M (S(t —7)7,2)q(S(s — 7)7, z)v(dz).
R
For all u and F, we require

%L(/\, q(S(s —7),2z) + uF) =0, (5.6)

u=0
we calculate (5.6) as follows

iL()\ q(S(s —7),2)+ uF)

/{ 1-q(S(s—7)",2) —uF)In(1-q(S(s—7)7,2) — uF)
+q(S(s —7),2z) +uF + M (S(t —7)7,2)(g(S(s —7)7,2) + uF)} v(dz) .

—/du {In(1 = ¢(S(s = 7)", 2) - uF)
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—q(S(s —7)7,2)In(1 = g(S(s —7)7,2) — uF)
—uFIn(l —q(S(s=7)",2) —uF)+q(S(s —7)7,2) + uF

+M (St —7)7,2)q(S(s—7)7,2) + (St —1)7, z)uF} v(dz) )

_ /}R F(n(l = ¢(S(s = 7)7, 2)) + M(S(t — 7)", 2))(dz)

= (,

therefore,

In(1—¢q(S(s—7)7,2))+ M (S(t—=7)",2) =0

and we have

a(S(s = 7)7,2)) = 1 — ¢ M),

Therefore, writing the discounted price S(t) in terms of Q*—martingale, we

have
30 = cO)exp { [ laS(s = 7)7 sl
/t/{ln [14+7(S(s = 7)7, 2)] = ¥(S(s = 7)", 2)} w(dz)ds
//ln[1+’y s— 1), 2)] Nz, ds)}
— ¢(0 exp{/o[ass—f) — r]ds
+ [ 14080 = )7, 2] = 2(S(s = 777,20} lde)ds
+/0t/Rln [1+7(S(s — )7, 2)] N9 (dz, ds)
- /0 t e A n [1+4(S(s — 7)7, 2)] u(dz)ds}
= ¢(0) exp{ /t/m [1+7(S(s = 7)™, 2)] N9 (dz,ds)
# [ (st =m0, 2] = 2(ts - )72}
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x e 1(S(s=7)" ’z)l/(dz)ds

_/0 /R{ln [14+4(S(s — 7). 2)] = ¥(S(s — )7, 2)}

xeMSE=72) y (d7)ds
+/0t/R{ln [1+7(S(s = 7)7,2)] =v(S(s = 7)7, 2) } v(dz)ds
- /ot /m (1= 67 D)In [1 4 4(S(s — 1), 2)] v(dz)ds
+/0t[aS(s - r]ds}
= e {+ [ [ 11400 - 1) 2] 7 (dsa9
+/0t /R {In[1++(S(s—7)7,2)] =(S(s = 7)7,2)}

x MG "2 (d7)ds
¢
+/ [— /(1 — e’\V(S(s_T)_’Z))y(S(s —7)7,2)v(dz)
0 R

+(aS(s—71)” —1)] ds},
by the condition (5.3), we see that
S(t) = = X t n S—1T)" VO (dz, ds
5(t) = = (0)e p{+/0 /Rl [1+7(S(s — )7, 2)] N9 (dz, ds)
+/0 /R{ln [1+7(S(s—7)7,2)] —¥(S(s —7)7,2)}
xeAV(S(S‘T)-’Z)V(dz)ds}

is a martingale with respect to Q™.

We then have the following theorem

Theorem 5.3.1. Given the jump delay model of the form

dS(t) = aS(t — 7)S(t)dt + S(t) / +(S(t = 7)7, 2)N(dt, dz)
R
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with bounded moments. The minimum relative entropy martingale measure

is constructed via a Lagrange multiplier A, such as

q(z,2) =1 — e (@2
for any t € [0,T), where q(z, z) is defined in Theorem 5.2.1.

Remark 5.3.1. Open question: there is a lack of technique to control models

such as:

dS(t) =aS(t — 7)S(t)dt + o (S(t — 7)) S(£)dW (t)

+ /]R Y(S(t = 7)7, 2)S(t™) N (dt, d=).

Since coefficients involves the initial process, which is not independent on

W (t) and N(t, z). It is difficult to seek a equivalent martingale measure.
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Index of notation

R™ n-dimensional Euclidean space.

E the expectation.

Ep the expectation with respect to the measure P.
N(dz,dt) Poisson measure.

N(dz,dt) compensated Poisson measure.

v bounded Lévy measure

AX(t) the jump of X (t) defined by AX(¢) = X (1) — X (¢7).
X(t7) the left limit of X at time ¢.

a(t) variable time delay.

|- | the Euclidean norm for vectors or the trace

norm for matrices.

C%, the family of all bounded, Fy-measurable functions.
(X, X]. quadratic variation of X;.

cadlag right continuous with left limits.

SDE stochastic differential equation.

SDDE stochastic differential delay equation.

EM Euler-Maruyama approximation.

118



