

 Swansea University E-Theses ___

GPU-based volume deformation.

Walton, Simon

 How to cite: ___
Walton, Simon (2007) GPU-based volume deformation.. thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa43117

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43117
http://www.swansea.ac.uk/library/researchsupport/ris-support/

GPU-Based Volume Deformation

Simon Walton BSc. (Wales)

Submitted to the University of Wales in
fulfilment of the requirements for the Degree of

Doctor of Philosophy

Swansea University
Prifysgol Abertawe

October 2007

ProQuest Number: 10821509

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10821509

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

i LIBRARY

Summary

Surface-based representations of objects, and consequently their rendering algorithms, cur­
rently dominate the field of computer graphics. It could be argued that this is not just due
to the efficiency of representation (representing merely surfaces, and not internal informa­
tion), but is mostly due to the fact that surface-based graphics as a sub-field has seen many
years of prioritised research and development. Volume graphics as a sub-field of computer
graphics has however seen a rapid rise in research concentration in recent years. Its pop­
ularity can be attributed mainly to its ever-important role in medical applications such as
surgery simulations and medical illustration; however, its rapid growth in the past five years
or so is unquestionably due to the real-time volume rendering techniques implemented on
the Graphics Processing Units of commodity graphics hardware.

The deformation of graphical objects is an important part of animation; particularly in
CGI-based movies where characters must bend and stretch comically according to their
actions. Deformation also plays an important role in surgical simulations, where real-time
physically-based solutions are required to give the surgeon or student a realistic simulation
of a surgical operation. The deformation of volumetric data (as in volume graphics) is a
challenge due to the sheer amount of data that must be transformed, and the lack of topo­
graphical/semantic information that is embedded with freshly-aquired data. Such semantics
must usually be inferred by the user using manual processes such as segmentation.

The work presented in this thesis provides a robust set of methods and techniques for the
real-time manipulation of volumetric data, utilising high-performance graphics hardware to
ensure that the field of volume graphics can continue to be a highly-attractive alternative to
surface-based graphics. The main contributions of this work are:

• A comprehensive review of volume graphics and volume deformation;

• An introduction to important GPU-acclererated volume graphics methods;

• A framework for the non-reconstructive deformation of volume data;

• A GPU-accelerated forward-projection system for interactive volume deformation;

• A real-time backward-mapping raycasting Tenderer for interactive, character-based
volume deformation.

Parts of this thesis have been published internationally in the Journal of the Winter School
of Computer Graphics 2006 [WJ06], and the Fourth International Conference Medical In­
formation Visualisation - BioMedical Visualisation 2007 [WJ07].

Declaration

This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

Signed (candidate)

Date

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is ap­
pended.

Signed (candidate)

Date72r

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside organi­
sations.

Signed

Date

(candidate)

Acknowledgements

I find it rather difficult to believe that I have reached the end of my PhD at Swansea; it must
certainly be true that time flies when you’re having fun. Undertaking a PhD has been the
most challenging chapter of my life to date, but one I have thoroughly enjoyed.

My first acknowledgement goes to my parents for offering their support for me to undertake
a PhD. I would also like to thank my supervisor, Dr Mark Jones for his seemingly infinite
supply of optimism when I would visit him with nothing but pessimism about my work; Dr
Jones would always convince me of the existence of that silver lining. My thanks also go to
my secondary supervisor, Prof. Min Chen, for his invaluable advice on my direction.

I would finally like to thank all of the wonderful people I have worked with in Swansea
over the past three years. I’d particularly like to thank Chris Miller for his advice on GPU
development, and the very long loan of books for this period.

Contents

1 Introduction 1
1.1 Aims and O b jec tiv es.. 1
1.2 Thesis O utline... 2

1.2.1 Chapter 2: Volume G raphics.. 3
1.2.2 Chapter 3: Deformation .. 3
1.2.3 Chapter 4: GPU Volume R endering ... 3
1.2.4 Chapter 5: Volume W ires.. 4
1.2.5 Chapter 6: Forward-Projection of Volume Wires M a p p in g 4
1.2.6 Chapter 7: A Complete Volume Deformation T o o l 4

1.3 Terminology.. 5
1.4 Volume Datasets ... 5

2 Volume Graphics 6
2.1 Data Acquisition ... 7

2.1.1 CT S can n in g ... 7
2.1.2 Magnetic Resonance Imaging (M RI)... 8
2.1.3 U ltraso u n d .. 9
2.1.4 Scientific Simulations ... 10

2.2 Volume M odeling.. 10
2.2.1 Solid Modelling Schemes ... 10
2.2.2 Volume M odeling.. 11
2.2.3 Volume Grid T ypes... 12

2.3 Volume Visualisation.. 13
2.3.1 Isosurfaces and Indirect Rendering... 14
2.3.2 Signal R econstruction ... 16
2.3.3 Transfer Functions and Compositing... 18
2.3.4 Projection M ethods... 20
2.3.5 Raycasting M e th o d s 22
2.3.6 Direct Surface Rendering.. 23
2.3.7 Hybrid Approaches... 24
2.3.8 Lighting.. 24

2.4 Acceleration T echn iques.. 25
2.4.1 Blocking and Octrees.. 25
2.4.2 Space-leaping... 26
2.4.3 Adaptive Termination ... 26

v

CONTENTS vi

2.4.4 Progressive Refinement... 27
2.5 Distance F ie ld s .. 28

2.5.1 Applications of Distance F i e ld s ... 28
2.5.2 Distance T ransform s.. 29

2.6 F ilte ring .. 32
2.7 S u m m a ry ... 35

3 Volume Deformation and Animation 36
3.1 Introduction.. 36
3.2 Computer A nim ation .. 37

3.2.1 Behavioural and Physically-Based S y stem s ; . 37
3.2.2 Scripting Systems ... 38
3.2.3 Control Hierarchies and Skeletal S ystem s.. 38

3.3 Deformation.. 39
3.3.1 Deformation in Computer A n im atio n .. 40
3.3.2 Free-Form Deformation .. 40
3.3.3 Physically-Based Modeling and Sim ulation...................................... 41

3.4 Deformation of Volumetric D a t a .. 43
3.4.1 Difficulties of Volume D eform ation... 43
3.4.2 Spatial Transfer F unctions... 44
3.4.3 Forward and Backward M apping... 45
3.4.4 Reconstructing Volume D a ta .. 47
3.4.5 Deformation Encoding & Dependent Textures................................... 48

3.5 Illustrative Deformation and Visualisation.. 49
3.5.1 Focus+Context... 49
3.5.2 Utilising Deformation for V isualisation... 49
3.5.3 Volume S p littin g .. 51

3.6 Skeletal Systems ... 52
3.6.1 Block-Based D eform ation... 52
3.6.2 Volume Animation Applications... 53

3.7 Sculpting and Soft-Body D eform ation... 54
3.7.1 Free-form Deformation... 55
3.7.2 Sweeping M e ta p h o r .. 55

3.8 Segmentation of Volume D a t a ... 56
3.8.1 M o tiv a tio n .. 57
3.8.2 Stochastic Segm entation.. 57
3.8.3 Using Artificial In te lligence .. 59
3.8.4 Data-Mining M e th o d s ... 59
3.8.5 User Interaction-Intensive Approaches.. 60
3.8.6 Introducing Domain-Specific K now ledge.. 60
3.8.7 Shape-Based Segmentation... 61
3.8.8 Extending 2D Methods to 3D: Slice-Based Segmentation................. 61
3.8.9 Level-Sets... 62

3.9 S u m m a ry .. 63

4 GPU Volume Rendering 64

CONTENTS vii

4.1 The OpenGL Pipeline.. 65
4.1.1 The Programmable P ip e lin e .. 66
4.1.2 General-Purpose Computation using Graphics Processing Units . . 67
4.1.3 The Stream M o d e l .. 68
4.1.4 Render T a rg e ts ... 68
4.1.5 Geometry S h a d e rs ... 69

4.2 Raycasting Volume Rendering on Graphics Hardw are................................... 69
4.2.1 Rasterisation-based Ray S e tu p .. 70

4.3 Cell-Projection & Visibility Sorting .. 73
4.4 Point-Based R endering ... 73

4.4.1 Point Primitives on the G P U .. 74
4.4.2 Point S p r i te s ... 75
4.4.3 Visibility S p la tting ... 75

4.5 A Hybrid CPU/GPU R en d e re r... 76
4.5.1 Related W o rk ... 76
4.5.2 Hybrid M eth o d .. 78
4.5.3 Performance ... 83
4.5.4 Method Conclusion and Future W o r k .. 84

4.6 S u m m a ry .. 86

5 Volume Wires 90
5.1 Introduction.. 90

5.1.1 Goals and Objectives.. 91
5.2 Related Work on Swept Solids and Volum es.. 92
5.3 Deforming with Volume W ire s ... 93

5.3.1 Wire D efinition... 93
5.3.2 Wire M anipulation... 94

5.4 Deformation Evaluation.. 96
5.4.1 Mapping O bjective... 97
5.4.2 Frenet Frame Correspondence... 98
5.4.3 Correct Normal C alcu la tion ..102
5.4.4 Wire Memory A ddressing ...102

5.5 Calculating Deformation Boundary...103
5.5.1 Forward-mapping s l i c e s .. 104
5.5.2 Incorporating Slice M a s k s ...104

5.6 The Mapping Field Encoding of the D eform ation..105
5.6.1 Locating the Closest Point on a W ire... 105
5.6.2 Mapping Field Representation...106
5.6.3 Mapping Field Creation .. 107
5.6.4 Propagating the (7 , t) Attributes in the Mapping F i e l d107
5.6.5 Analysis of Mapping Field M ethods... 108

5.7 A GPU Backward-Mapping Ray c a s te r ..113
5.7.1 Mapping Field Raycasting & Backward-mapping................................. 113
5.7.2 Challenges of GPU Backward-Projection with Deformation 114
5.7.3 Algorithm O verv iew .. 115
5.7.4 Data E n c o d in g ..116

CONTENTS viii

5.7.5 Identifying‘Valid’ R a y s ... 118
5.7.6 Preparing to Raycast - Ray S e tu p ... 118
5.7.7 GPU R ay castin g .. 120
5.7.8 R e s u l ts .. 122

5.8 S u m m a ry ... 125

6 Forward-Projection of Volume Wires on GPU 126
6.1 Introduction.. 126
6.2 GPU Deformation S trateg ies.. 127

6.2.1 Order of Operations ... 128
6.2.2 Crack-Filling... 130

6.3 Method Overview ... 130
6.3.1 Designing a GPU-based $...131
6.3.2 Wire E n co d in g ..133
6.3.3 Vertex/Voxel Data Encoding and Upload ..133

6.4 Rendering A lgorithm ... 135
6.4.1 Performing $ in the Vertex Shader.. 135
6.4.2 Shading in the Fragment S h a d e r ..137
6.4.3 Closing Cracks along the Wire Trajectory ..138
6.4.4 Progressive Refinement... 140
6.4.5 Performance ... 142

6.5 Incorporating Segmentation Information..143
6.5.1 Segmentation Functionality and Data F o rm a t..144
6.5.2 Segmentation-Aware Mapping F ie ld ... 145
6.5.3 Continuity at Wire E n d s .. 147

6.6 Result Im ages .. 147
6.7 S u m m a ry .. 152

7 A Complete Volume Deformation Tool 153
7.1 Introduction... 153
7.2 Related Work on Visibility S orting ... 154
7.3 Method Pipeline... 155

7.3.1 User Interface... 156
7.4 Segmentation Functionality.. 157

7.4.1 User Specification of S nakes.. 158
7.4.2 Additional T o o ls ... 159
7.4.3 Subvolume Polygonal Approximation - Wire B lo c k s 159

7.5 Deformation Rendering A lgorithm ... 161
7.5.1 Algorithm O verv iew ... 161
7.5.2 Scene D efin itio n ... 162
7.5.3 Forward-Mapping the Wire Blocks .. 163
7.5.4 Depth-Sorting... 164
7.5.5 Stage One: Initial Raycasting P ro b e .. 165
7.5.6 Stage Two: Wire Block R asterisa tion ... 167
7.5.7 GPU Backward-Mapping... 169

7.6 Discontinuities in World S p a c e ..171

CONTENTS ix

7.6.1 Wire Splitting...172
7.6.2 Normals at Discontinuities...173

7.7 Improvements and Optimisations.. 176
7.7.1 Future Support for Intersections.. 176
7.7.2 Using the Stencil Buffer for Increased S p e e d 177

7.8 S u m m a ry ..179

8 Conclusions 184
8.1 A Volume Isosurface Renderer with Global Illumination 185
8.2 An Intuitive Volume Deformation Methodology and F ram ew ork185
8.3 GPU-based Forward-Projection Volume D eform ation......................................186
8.4 A Complete, Raycasted Volume Deformation Tool ...186
8.5 Conclusions & Future Work ...187

A Volume Wires XML Schema 189

Bibliography 192

List of Figures 211

List of Tables 215

Chapter 1

Introduction

Contents
1.1 Aims and Objectives

1.2 Thesis Outline . . .

1.3 Terminology

1.4 Volume Datasets . .

1
2
5

5

The field of computer graphics has seen an incredible growth in popularity in the past 20
years due to its applications in the entertainment industry. Movies such as Tron, although
primitive by today’s standards, showed the potential for the use of computer generated im­
agery in the media. Today, it is difficult to find a film that does not take advantage of 3D
rendered scenes; for some films such as Star Wars, almost the entire set is virtual. Compa­
nies such as Pixar and Dreamworks have additionally provided a boost to the industry by
producing award-winning pure CGI films such as Toy Story and Shrek.

It is clear that the majority of computer imagery generated from 3D models is produced
from surface representations, since they provide a compact representation of an object with
the availability of the large number of surface-based rendering algorithms that have been
developed and refined over the years.

An increasingly available alternative however is the field of volume graphics, which has es­
tablished itself as an important area of research in the computer graphics community; mainly
due to its prominent usage in medical visualisation. With the advent of vast improvements
to CT and MRI scanning, doctors are increasingly looking to the introduction of advanced
3D visualisation techniques to view the datasets.

1.1 Aims and Objectives

The majority of literature on volume graphics is concerned mainly with the visualisation
aspect - that is, the synthesis of 2D images from the 3D discrete data. Early work on
volume rendering was conducted by researchers such as Levoy [Lev88], Kaufman[ASK94],

1

1.2 Thesis Outline 2

and Westover [Wes89], all of which have established the fundamentals of volume rendering
approaches; and also the field of volume graphics as its own area of research [KCY93].

Volume graphics, in comparison with surface-based graphics, suffers from a lack of research
into data manipulation techniques; in particular, the amount of research into interactive ma­
nipulation is low in comparison to surface-based manipulation techniques. Tools available
for manipulation sometimes resort to unintuitive user interfaces that expose the low-level
data structure to the user. The user should not be concerned with such detail, and should be
offered a higher level of abstraction. In addition, many approaches necessitate specialised
rendering algorithms or convert to an intermediate representation such as a surface mesh.
This however restricts the possibility of implementation on graphics hardware, and often
removes the main benefit of direct volume rendering - the availability of complete internal
texture information rather than some approximation of a surface using isosurface generation
algorithms.

The most recent works in the area of volume rendering are mainly concerned with GPU im­
plementations of the well-established raycasting algorithms. Two factors drive this research:
firstly, the availability and price of modem consumer graphics hardware, and secondly, the
need for interactive rendering of volume datasets. Consumer graphics hardware units are
most typically used for a very fixed pipeline of rasterising triangular meshes, with pro­
grammable units for manipulating the vertices and shading the resulting pixels. However,
as the hardware technology advances, the programmability and the ease of development
of such cards increases. The result of this increase in power and programmability is that
modem graphics hardware units are used for purposes other than what they were originally
intended to; for example, the implementation of raytracing algorithms, and even general
purpose computation.

The objectives for the work contained in this thesis are:

1. To develop a methodology and framework for the deformation of volumetric datasets
that will enable users to produce global deformations in an intuitive manner. The
framework must support the use of traditional raycasting algorithms.

2. To investigate the feasibility of forward and backward mapping approaches for vol­
ume deformation in real-time.

3. To study visual enhancements to volume rendering through the use of global illumi­
nation techniques.

4. To provide a complete tool for intuitive and interactive volume deformation.

1.2 Thesis Outline

The work contained within this thesis is divided into two components, namely the review
chapters and the research chapters. The former components may be found in the following
two chapters (Chapters 2 & 3) where a review of the field of volume graphics is conducted,
followed by a chapter on the deformation and animation of volumetric data. These chapters

1.2 Thesis Outline 3

set the foundations for the thesis, and give the reader a good working knowledge of the area
before the research contributions of the thesis are given.

These review chapters are followed by the research chapters, which provide the contribu­
tions made by this thesis to the field of volume graphics. Chapter 4 can be considered as a
transition chapter, and provides firstly an extensive review of GPU volume rendering tech­
niques including example shader implementations, and secondly a GPU isosurface intersec­
tion framework for ray tracing applications. The remaining chapters introduce the Volume
Wires volume deformation framework and methodology and give GPU-based implementa­
tions, finishing with the implementation of a complete tool for volume deformation.

The below gives a synopsis of each following chapter contained within this thesis.

1.2.1 Chapter 2: Volume Graphics

This chapter gives the reader an introduction to the subfield of computer graphics known as
volume graphics. It begins with a discussion of the fundamentals of the subject, including
a review of the most important methods for acquiring volumetric data. The reader is then
introduced to a variety of modeling schemes used in computer graphics, including volume
modeling as an alternative modeling scheme. The visualisation of volumetric data follows,
and details the various rendering algorithms that currently exist for rendering volumetric
data to the screen, including a review of important acceleration techniques that can be im­
plemented to improve rendering times. Distance fields, an important concept utilised later
in the thesis, are next introduced; followed finally by a review of filtering methods for volu­
metric data.

1.2.2 Chapter 3: Deformation

A technique for the deformation of volumetric data is one of the major contributions of this
thesis. This chapter first gives the reader an introduction to deformation and animation tech­
niques in general, as used mostly in the entertainment industry with surface-based models.
The deformation of volumetric data is then introduced as a field of research, including a
discussion on the surrounding issues of deforming discretely sampled data such as volume
dataset, in comparison with the deformation of surface meshes. A comprehensive review is
then given of volume deformation techniques that currently exist, using a variety of method­
ologies (from the perspective of the user) and rendering algorithms. The segmentation of
volumetric data is often an important step in providing the necessary semantic information
for deformation and animation, and therefore a review of segmentation methods for volu­
metric data is given to conclude the chapter.

1.2.3 Chapter 4: GPU Volume Rendering

A comprehensive review of GPU-based volume rendering techniques is first given in this
chapter. This includes an overview of the OpenGL pipeline (OpenGL is the graphics API
used throughout this thesis), a review of the current state-of-the-art research into volume

1.2 Thesis Outline 4

rendering on GPUs, and low-level details of an example GPU-based raycasting volume Ten­
derer. The latter half of the chapter introduces a method for providing GPU-accelerated
volume isosurface intersections to a standard ray tracing pipeline, allowing the CPU to con­
centrate on intersections with surface-based objects, and the GPU intersections with the
volume isosurface of choice. In addition, we show the advantage of leveraging the power
of the GPU when deformations of the volume dataset are introduced in the form of Spatial
Transfer Functions. Full global illumination of the isosurface is provided by the ray tracer;
however, the ray tracer is not the focus of the research.

1.2.4 Chapter 5: Volume Wires

In this chapter, a volume deformation methodology and framework is presented, called Vol­
ume Wires. The methodology is based on curve-skeletons defined with the volume dataset,
which are then manipulated to (in turn) manipulate the volume dataset. Because the method
can be viewed as a volume sweeping technique, the chapter first gives a brief introduction
to the related work on sweep representations in computer graphics. A high-level overview
of deforming with the Volume Wires methodology is next given, including the effects that
can be achieved by wire manipulation. This is followed by low-level details on the required
mapping between object and world space, including details on how a one-way version of this
mapping can be effectively encoded into a volume dataset. To demonstrate the framework’s
effectiveness, a raycasting rendering algorithm for the framework is finally given.

1.2.5 Chapter 6: Forward-Projection of Volume Wires Mapping

The previous chapter introduced the Volume Wires methodology and framework to the
reader, and additionally provides an effective mechanism to encode the mapping. Although
the discussed Tenderer provides good results, it is far from interactive as it requires the
computation of the mapping encoding beforehand. This chapter therefore introduces a
forward-projection implementation of the Volume Wires framework that provides real-time
manipulation functionality to the user. Additionally, an analysis of the problem of image-
space cracking artefacts is discussed, and a feasible solution for the system introduced. The
forward-projection rendering algorithm and mapping function are evaluated on the GPU for
optimal performance.

1.2.6 Chapter 7: A Complete Volume Deformation Tool

This chapter takes the Volume Wires framework into its final conclusion, providing a real­
time raycasted volume deformation tool. The tool incorporates segmentation functionality
based on energy-minimising splines, allowing the user to associate subvolumes within the
dataset with each wire defined in the scene. This allows for effective character-based de­
formation without first resorting to manually labelling each voxel. The rendering algorithm
employed utilises the segmentation data to generate ray entry/exit points, and provides a
real-time raycasting of the deformed volume data evaluated on the GPU without any recon­
struction.

1.3 Terminology 5

1.3 Terminology

This thesis uses the consistent terminology given in Table 1.1 throughout. Where deviations
from such terminology occur, the text will make such deviations clear.

Symbol Description
V Volume dataset
V (x , y , z) Result of sampling volume dataset at position (x, y, z) G E 3
Ea 3D Euclidean space
R Set of all real numbers
N Set of all natural numbers
e An arbitrarily small amount
t A parametric offset
T An isosurface threshold
$ / $ -1 Forward / Backward spatial transfer function

Table 1.1: Thesis Nomenclature

1.4 Volume Datasets

The volume datasets used for this thesis have been obtained from a variety of sources, and
are all publicly available. The author acknowledges Stefan Roettgar’s Volume Library [Roe]
as an extremely valuable centralised source for such datasets. Some datasets used, such as
the Visible Human torso dataset, are customised versions of these datasets.

Dataset Acknowledgement
CT Head University of North Carolina
CT Foot Philips Research, Hamburg, Germany
CT Knee Brigham and Women’s Hospital Surgical Planning Laboratory
CT Carp Michael Scheuring, University of Erlangen, Germany
Visible Human National Library of Medicine
Lobster VolVis distribution of SUNY Stony Brook
Bunny Terry Yoo, National Library of Medicine
Tooth GE Aircraft Engines, Evendale, Ohio, USA

Table 1.2: Volume datasets used in this thesis

Chapter 2

Volume Graphics

Contents
2.1 Data Acquisition
2.2 Volume Modeling . . .
2.3 Volume Visualisation .
2.4 Acceleration Techniques
2.5 Distance F ie ld s
2.6 Filtering
2.7 S u m m ary

7
10
13
25
28
32
35

The field of Volume Graphics [KCY93] deals with the modelling and visualisation of vol­
ume data. A volume is defined as three-dimensional discretely sampled object - the most
useful analogy is that of a regular two-dimensional image extended into the third dimension.
The samples in a volume dataset can be obtained from sampling a real-life object, or they
can be synthetically produced. Volume data is most commonly obtained by scanning real-
world data, in a similar manner to a digital camera’s CCD sensor sampling the light entering
through the lens in a regular grid.

The sample values at each point in the three-dimensional grid are referred to as voxels (a
word derived from the words volume element), as opposed to pixels in the two-dimensional
case. The voxels typically represent some measure of density or opacity. For example, the
output of a CT scanner is a volume dataset with values at each voxel representing the density
of material found at that point.

Initial work in the field was conducted mainly on the visualisation of data obtained from
medical imaging devices [Lev88]; the idea that representing three-dimensional objects dis­
cretely could be a rival representation to to the surface mesh was not considered. It soon
became clear however that representing objects in this way provided a neat graphics frame­
work, an idea proposed by Kaufman et al. [KCY93] in 1993.

This chapter gives an introduction to volume graphics as a field of computer graphics, in­
cluding reviews of some of the most important techniques for visualising, modelling, and
manipulating volume datasets.

6

2.1 Data Acquisition 7

(a) A slice from a CT scan (b) A slice from an MRI scan (c) Ultrasound
Image Credit: [Wika] Image Credit: [Wikb] Image Credit: [Wikc]

Note: all images in this thesis are the creation o f the author, except where explicit ac­
knowledgement is given otherwise.

2.1 Data Acquisition

The acquisition of volume data is most commonly obtained from scanning a physical ob­
jec t to determine its internal structure. This section looks at three popular data acquisition
methods, all of which have their primary use in medicine; and additionally looks at the
acquisition o f data from scientific simulations.

2.1.1 CT Scanning

Com puted Tomography (commonly abbreviated to CT) is a process of medical image acqui­
sition that requires patients to be scanned in a slice-by-slice manner. It was devised in 1972
by Godfrey Hounsfield [Hou73], who was awarded the Nobel prize in medicine jointly with
Allan Corm ack (who independently invented the method). Figure 2.1(a) shows a slice from
a CT scan of a patient’s head.

In order to perform a CT scan of a human patient, the patient is typically placed in a ly­
ing down position and the machine is lined up with the current slice of the patient to be
scanned. X-rays are now fired into the patient which are in turn picked up by detectors po­
sitioned opposite the source. The equipment rotates around the current slice to complete the
acquisition, and the data is constructed into a 2D image by a process termed tomographic
reconstruction.

The values com puted at each point represent the density of the material encountered by the
x-rays, and these values are measured in Hounsfield units (after Godfrey Hounsfield). Values
o f around 400 represent dense objects such as bone, and values of around 100 represent
soft tissue, skin, and some muscle. Values less than 100 will either represent very sparse
internal material such as fat/water, or the air surrounding the patient. These values are
usually mapped to 12-bit unsigned numbers, giving a range of 4096. Because the Hounsfield
value for air is around -1000, these mapped values are shifted by 1000 to confirm to the
unsigned data type.

A criticism o f CT is that it is not well-suited to scanning soft tissues, and often produces

2.1 Data Acquisition 8

quite low contrast in these soft-tissue value ranges. To partially improve the contrast in such
areas, the patient is often given a contrast-enhancing agent (the most common agents used
are Iodine and Barium) either in injection or pill form. Intravenous methods are used to
highlight blood vessels and enhance contrast in areas carrying a large amount of blood -
e.g. the brain or kidneys; whereas the pill form is most utilised for enhancing the digestive
system. CT scanning is therefore best suited to tissues with a relatively high atomic density
such as bone, and is the scanning method of choice for detecting abnormalities with these
hard structures, such as fractures.

Early CT scanners typically offered a much lower resolution and a higher scanning time
than the scanners that exist today. Over time, the understanding of the technology and re­
construction software improved. When this is coupled with higher performance computers,
higher resolutions and lower scanning times resulted. Recent advancements in CT scanning
by Philips have seen the introduction of their own Brilliance range of CT scanners, which
are capable of performing full-body scans in less than 50 seconds. The scanner additionally
offers slice resolution up to 10242 [Phi]. CT scanning has become so widespread and easily
accessible that organisations such as Lifescan [Lif] offer ‘peace of mind’ CT scans for early
diagnosis of many potentially serious health issues.

2.1.2 Magnetic Resonance Imaging (MR1)

Magnetic Resonance Imaging (MRI) was devised by Professor Raymond Vahan Damadian
[Dam71] in 1971 as a method of detecting cancerous tissue. The foundations for his work
were laid by Felix Bloch and Edward Purcell almost twenty years previously, both of whom
received the Nobel Prize in Physics for their work on nuclear magnetic resonance and nu­
clear induction. Figure 2.1(b) shows a slice from an MRI scan of a patient’s head; it is
interesting to note the increased detail in the soft tissues in comparison with the CT slice
from (a).

The MRI scanning procedure employs radio and magnetic waves to obtain information on
the magnetic properties of the atoms inside the patient, rather than exposing the patient to
potentially harmful radiation. The patient is exposed to strong magnetic fields, typically of
around 0.5 to 3 Tesla but occasionally up to 7 Tesla; a higher strength of magnetic field gives
a higher signal-to-noise ratio, at the expense of potentially harming the patient. These fields
are generated by large magnets which are usually the main expense of an MRI scanner as
they often have a high running cost due to their strength; indeed it is the case that MRI scan­
ning equipment is many times more expensive to purchase and operate than CT scanning
equipment.

During exposure to these fields, the hydrogen protons inside the patient’s tissues align with
the magnetic field and oscillate, a process known as the magnetic resonance phenomenon.
A radio frequency pulse is applied through a set of coils, which pushes the aligned atoms
away from the magnetic field. When the pulses stop, the protons revert to their original
alignment. This in turn causes them to transmit energy that is picked up by another set of
coils. The amount of energy detected is an indication of the density of water in the material,
since dense materials have a higher density of hydrogen. It is for this reason that bones show
as darker, less detailed objects, since bone does not contain as much hydrogen.

2.1 Data Acquisition 9

MRI is particularly well-suited to scanning soft tissues (such as the brain) due to the manner
in which the object is scanned; soft tissues contain hydrogen atoms which are picked up
extremely well by an MRI scan. MRI scanning, as with CT scanning, can be enhanced with
contrast-enhancing agents that further improve the patient’s response to the magnetic fields.
The contrast in tissues with a higher atomic num ber such as bone is rather low, and for this
reason CT scanning is the preferred method where detail is required in bone tissue.

2.1.3 Ultrasound

Ultrasound scanning was first used for medical imaging purposes in the late 1940’s by Dr
George Ludwig in M aryland, USA [obg]. Early experiments with the method from 1947
to 1949 demonstrated the effectiveness of using sound waves in the ultrasound range for
detecting gall bladder stones. Ultrasound scanning has since proven so popular that the
word ‘ultrasound’ is now used as a verb by the general public - meaning to perform an
ultrasound scan. A large part of this is due to its popularity in showing real-time images of
foetuses; it provides an important role in determining any physical abnormalities before the
baby is bom, and additionally, parents enjoy the experience of seeing their unborn child in
real-time.

Ultrasound scanning is by far most accessible scanning method discussed in this section.
The vast majority of scanners are handheld, and are applied to the region to be scanned. The
skin is first prepared with a special gel which enables a greater contact between scanner and
body, and also provides a smoother surface on which to slide the scanner. Ultrasonic sound
waves are passed into the body, which are then received back by the device. Determining the
physical structure of the objects detected is based on the strength of the returning echo, its
direction, and the length of time it took to return. Images can be reconstructed in real-time
via this simple process, which is one of the reasons ultrasound remains a popular scanning
method.

Though ultrasound is a popular method for acquiring im­
ages from within the body, the method has only very
recently provided volumetric data by employing larger-
scale and more complex acquisition devices such as G E’s
LOGIQ 9 [GEL]. A recent development in the field of
ultrasound scanning is that o f 3D ultrasound scanning
[ult], which directs multiple ultrasound waves from dif­
ferent locations to reconstruct a 3D model of the ob­
ject found by the reflected waves. This can be taken a
step further by introducing time as an additional vari­
able, giving 4D ultrasound - a dynamically updating 3D
model of the scanned object (see Figure 2.1). In addi­
tion, by analysing the Doppler shift o f the returned echo
(the compression and expansion of the waves), the rate
of movement of the object can be inferred. Using this
information, the rate of blood flow can be measured in
real-time to diagnose any blood flow problems with the unborn child.

Figure 2.1: A 3D Ultrasound
model o f a baby’s head
Image Credit: [Wikc]

2.2 Volume Modeling 10

2.1.4 Scientific Simulations

In the field of Computational Fluid Dynamics (CFD), simulations of fluids are commonly
calculated using numerical methods such as the Navier-Stokes equations for fluid flow. A
volume dataset is initialised with default values, and the fluid flow is calculated at each
voxel for a particular time t by solving the equations. Volume rendering techniques can be
used to render the resulting data by interpreting the data either as static or dynamic. The
resulting datasets that are interpreted as static can be rendered quite simply using a standard
direct volume rendering algorithm for giving a realistic interpretation of the liquid [SS91]
or gaseous [EYSK94] phenomena.

The end result of a CFD simulation can often be a vector field, where each sample is rep­
resented as a vector denoting the direction of flow at that point. Such datasets are best
rendered primarily using a forward-projection technique to give important direction cues
such as arrows embedded in the dataset at areas of high flow.

2.2 Volume Modeling

There are many different data structures and representations for 3D objects stored in a com­
puter’s memory. A model refers to the abstraction, representation, and implementation of
the object or phenomena being modeled [Bar92].

The choice of object representation depends on a number of factors:

• The manner in which the object is acquired or created - e.g. via scientific simulation,
a CT scan, a laser scanning model, 3D surface-based modelling tool;

• The choice of rendering algorithm - since the input to a rendering algorithm is the
graphical model in some format;

• The application - e.g. CAD/CAM packages use surface-based representations.

This section explores a variety of object representations used in computer graphics today.

2.2.1 Solid Modelling Schemes

Boundary Representation

Boundary representations represent only the boundary or surface of the object being mod­
elled [FvDFH96, Req80]. Such a representation is defined in terms of vertices, connected
via edges. These vertices are linked topologically to form primitives - the most common
surface-based primitive in use today is a triangle. Triangles are chosen for their attractive
mathematical properties which make them efficient candidates for surface-based rendering
algorithms. Modem graphics cards are highly optimised for dealing with triangle primi­
tives, and higher-level primitives specified by the programmer are usually broken down into
triangles before sending to the graphics card.

2.2 Volume Modeling 11

Spatial Partitioning

Spatial partitioning methods attempt to represent the target object as a set of decomposed
primitives. Spatial Occupancy Enumeration represents solid objects in terms of a fixed
regular grid [FvDFH96], composed of primitive cells. Each cell is marked to denote whether
the object is present at the cell or not absent. Such a binary scheme suffers from poor quality
object reconstruction as there is no notion of partial occupancy in a cell - cells are either
marked as present or absent.

Constructive Solid Geometry

Constructive Solid Geometry (CSG) [FvDFH96] uses boolean set operations to on objects
to form new objects. Though such a representation has an inherently mathematical basis, it
is an analogue of the real-world process of building solid objects, in which large objects are
composed of many smaller objects put together in different ways. The object representation
is a binary tree with the new object at the root; each node represents a Boolean operation
(e.g. union U, intersection fl, and difference —), and the object resulting from the operation
with the two children. Obtaining the object at the root of the tree typically involves a depth-
first traversal of the tree, evaluating the operations at each node until the final object is
obtained.

2.2.2 Volume Modeling

A volume data type is a set of scalar fields that define some property for every point p 6 E3.
A scalar field is defined as a function F : E3 —>• R, and many of these fields can be combined
to form a representation of a volume object, modeling the various properties at each point.
The most common property modeled for volumetric representations is some measure of the
density of opacity at each point.

The representation of a scalar field depends on the application. Chen et al. identify three
approaches for the representation of a scalar field [CWRT02]:

• Mathematically - the scalar field definition function F : E 3 —► M can be used to
mathematically define the properties.

• Procedurally - a function or procedure can be defined in a programming language to
calculate the property of each point p G E 3. Procedural scalar fields can therefore be
considerably more complex than a mathematical definition.

• Discretely - the volume data type can be discretised into a finite set of voxels - a
volume dataset. Associated with the volume dataset is an interpolation function to
recover a continuous approximation to the original signal. This representation is most
common output of medical imaging scanning equipment.

The overall modelling approach is termed field-based modeling and rendering, in which
objects are modeled in terms of their scalar fields, with each scalar field representing a
different attribute of the object, e.g. the red, green and blue colour components, opacity,

2.2 Volume Modeling 12

and also more intricate details such as reflection/refraction coefficients. A spatial object is
defined as one or more of these scalar fields combined as o = {0, A i , . . . , A n}. The most
common attribute field is the opacity field since it is the most common interpretation of
volumetric objects scanned from real-world sources - higher density values can be mapped
to higher opacity values, under the assumption that denser objects are more opaque.

Volume Scene Graphs

Volume Scene Graphs were introduced by Nadeau [NadOO] as a solution to the problem of
combining multiple volumetric objects in one scene. In a volume scene graph, the scene
is represented as a tree structure, with the volume datasets contained within the leaves, and
operators at the intermediate nodes. Where volumetric objects overlap, the operator applied
to each point within the overlap region can be found in the parent node of the volume objects;
a simple ‘union’ operator might be to simply take the largest value sampled. Volume scene
graphs are heavily utilised in the volume graphics API vLib developed by Winter [WC01].

Constructive Volume Geometry (CVG)

The Constructive Solid Geometry representation has been extended to the volume domain
by Chen and Tucker [CTOO] to become Constructive Volume Geometry. CVG defines an
algebraic framework for combining multiple volumetric objects using the Boolean opera­
tions defined in the regular CSG framework. CVG also allows for greater flexibility in the
construction of procedural volume objects.

CVG uses the notion of spatial objects to define Boolean operators which operate on the
scalar fields that comprise the objects. Algebraic signatures are used to define classes of
spatial objects to ensure interoperability, and each class defines the operators that are valid
for that class of spatial objects.

2.2.3 Volume Grid Types

The samples in a discrete volume dataset are most commonly stored as a 3D regular grid
of values. The memory addressing for such a scheme is simple; given the dimensions
dx ,dy , dz of a set of voxels of size dxdydz at memory location ptr, a voxel at integer position
(x, y , z) E N3 is referenced as ptr + z * (dxdy) + (dxy) + x.

Depending on the nature of the data acquisition however, the grid may not be as inherently
simple as this. Volume data can be structured or unstructured, regular or irregular:

• Structured grids have implicit geometry - that is, there is no need for the specification
of the position of each sample and its connectivity to other samples; the position
is implicitly inferred from the structure of the dataset. Unstructured grids therefore
require explicit specification of the sample positions and their connectivity, since this
information cannot be automatically inferred.

2.3 Volume Visualisation 13

• Regular grids contain cells which all exhibit the same geometrical structure - that is,
the geometry and neighbour count of each cell is the same. Irregular grids can differ
in their geometrical shape and structure from sample to sample, making recovery of
the samples substantially more complex.

Figure 2.2 demonstrates the four grid types.

A common approach for dealing with unstructured data is to revoxelise it into a regular,
structured volume dataset which can then be rendered using the standard volume render­
ing algorithms; this approach however presents a trade-off between the quality of the final
reconstruction and the size of the new volume dataset.

regular irregular

" O
CD
Z5
O
3

cn

Figure 2.2: Grid Types

2.3 Volume Visualisation

Volume visualisation methods produce a two-dimensional image from volumetric data in
a meaningful manner. Because of the availability of internal information (as opposed to
just an infinitely thin surface), careful consideration is required as to how this information
is displayed in the final image. Volume rendering algorithms can be classified as either
indirect or direct. Indirect volume rendering algorithms first convert the volume data to an
intermediate (perhaps surface-based) representation, and then use an appropriate rendering

2.3 Volume Visualisation 14

algorithm for this intermediate representation; whereas direct volume rendering algorithms
render the volume data directly from the volumetric representation.

In the area of surface graphics, there exist both forward and backward projection algo­
rithms. Forward-projection algorithms project the data from world space to image-space
(the screen). Forward-projection algorithms for surface graphics are typically utilised in 3D
games, with the bulk of the computation being performed by dedicated graphics hardware
that is heavily optimised for rasterising triangular meshes. Pixar’s RenderMan software is a
forward-projection renderer primarily, but it also has ray tracing capabilities for additional
effects such as complex reflections.

Backward-projection algorithms work the other way around, building an image by obtaining
data for each pixel that comprises the image. The most common algorithms in this class are
referred to as ray casters, in which imaginary rays of light are projected either from the
world to the image or from the image into the world. Whatever data is encountered along
the path of the ray is the data that will be used to shade the pixel.

In general, a volume dataset is visualised by using a discretised implementation of the nat­
ural behaviour of light as it travels through a semitransparent object to the eye - opaque
objects near the viewer have the effect of blocking the light behind. The volume rendering
integral determines how this light behaviour is modeled. There will be multiple pieces of
information for each pixel in the final image, and these must be integrated together to form
one final pixel colour. This process in general is called compositing, and a discussion on
compositing methods can be found in the coming sections.

Because volume datasets often contain simple scalar values, colours and opacities must be
mapped to these values in order to give a better visual representation. For example, it may be
useful to assign a yellow-white colour to values in a medical dataset determined to be bone
density, and a fleshy colour to lesser densities, assuming the these densities are hard and soft
tissue. The functions that map voxel scalar values to colours and opacities are called transfer
functions. In the coming text, C (x) gives an RGB colour for a scalar value x E [0,1], and
a(x) gives the opacity, where the opacity is in [0,1]. If available, a 3D RGB texture can be
used to look up the colour values. This full-colour information is available for the Visible
Human dataset, where the body was cut into extremely thin slices, and a photograph taken
of each slice.

Before discussing direct volume rendering, an overview of the process for obtaining alter­
native data representations from a volume dataset are given in the next section.

2.3.1 Isosurfaces and Indirect Rendering

Because of the large amount of data contained within most volume datasets, early volume
rendering algorithms first converted the discrete data into an intermediate representation in
an attempt to use a more efficient surface-based rendering algorithm; this process is often
termed indirect volume rendering. This indirect rendering is often achieved by extracting
one or more isosurfaces from the volume and rendering just these isosurfaces.

2.3 Volume Visualisation 15

100 60 50

f o o--------------:— o v 2

Figure 2.3: The M arching Cubes Algorithm

An isosurface zsoy within a volume dataset V is defined as:

i s o y (r) = {p £ E 3 : V (p) = r} (2.1)

that is, the set of points p equal to the specified value r. Using an interpolation technique,
the position of the isosurface for each point in each voxel cube can be calculated, if it
exists. W hether the isosurface exists within a voxel cube can be calculated very efficiently by
representing each cube (bounded by eight voxels) as an 8-bit byte b, with one bit representing
each voxel as the voxel can be in one of two states: above / equal r or below r. Each bit is
set to 1 if its voxel value is > r , and if the final byte unsigned value satisfies 0 < b < 255,
then the isosurface exists within the cube. Voxel cubes containing an isosurface are said to
be transverse.

Given the computational complexity of compositing operations and the storage requirements
of volume data, it is easy to see why indirect approaches can be favourable in some situa­
tions. By converting to a surface representation however, the internal texture inform ation
of the volume dataset is lost, and the renderer is simply left with an infinitely thin surface
representation that gives only an estimation of one particular isosurface.

The next sections discuss the most popular algorithms for extracting isosurfaces from vol­
ume datasets, namely the Marching Cubes and Marching Tetrahedra algorithms.

Marching Cubes

The M arching Cubes algorithm [LC87] by Lorensen and Cline is the most well-known sur­
face reconstruction algorithm, and calculates a list of surface primitives for a given volume
dataset and isosurface value. For each transverse cube in the dataset, a surface primitive is
computed representing the isosurface cutting through it (see Figure 2.3). This is achieved by
comparing the transverse bitmask b against a precomputed table containing all combinations
of primitive cutting through the cube. The total number of primitive configurations for each
cube is 256 (28 for a cube bounded by 8 voxels), though the number of configurations can
be reduced to 14 by observing that most of the configurations are simply rotated or reflected
versions of others. Once a primitive list for a given transverse cube is established, the ex­
act point of intersection with the cube edges is computed by linearly interpolating the two
voxels connected to the edge (as shown in Figure 2.3).

2.3 Volume Visualisation 16

A criticism of the Marching Cubes algorithm is that the method of identifying ambiguities
is known to introduce holes into the resulting model, though the problem can be partially
overcome by caching the edge intercepts for each face instead of recalculating for every con­
nected cube. Another criticism is the often large number of triangles generated - severely
impacting both the time of generation and the interactivity of the final mesh when rendered
using a triangle rasterisation rendering algorithm. Schroeder et al. discuss methods for re­
ducing the number of triangles [SZL92] by iterating over the resulting triangles and selecting
vertex candidates for removal such that the resulting mesh is still a good approximation of
the original.

Marching Tetrahedra

Payne and Toga [PT90] further developed the marching cubes algorithm in an attempt to
avoid the ambiguous cases of Marching Cubes. Their method decomposes each voxel cube
into up to five tetrahedra, making note of the tetrahedra intersected by the isosurface. The
number of possible configurations can be simplified greatly from 16 to just three configura­
tions when taking into account rotation and symmetrical equivalence. However, because of
this additional decomposition step, the algorithm generates on average more primitives than
Marching Cubes, adding to storage requirements and rendering times.

Treece et al. [TPG99] later develop the Regularised Marching Tetrahedra algorithm, which
uses a vertex clustering scheme to achieve a triangle reduction rate of around 70% over
standard Marching Tetrahedra.

2.3.2 Signal Reconstruction

Most direct volume rendering algorithms, as will be discussed in coming sections, require
access to the data ‘between’ voxels; the volume dataset should be treated as a continuous
object rather than a discrete one. The process in general is called interpolation from a
computer science or mathematical perspective, or signal reconstruction from an engineering
perpective.

This section looks at three signal reconstruction techniques - namely nearest-neighbour,
trilinear, and tricubic. The choice of technique is a trade-off between reconstruction quality
and the computational complexity.

Zeroth-Order: Nearest-Neighbour Interpolation

Nearest-neighbour interpolation is the simplest method of all conceptually, is quick to com­
pute, but produces very poor results. Nearest-neighbour interpolation chooses the nearest
voxel to the current sample point within the dataset, obtained simply by adding 0.5 to the
coordinate and taking the floor of the result:

V nn(a;, y, z) = /([Z + 0.5J, [y + 0.5J, |z + 0.5j) (2.2)

2.3 Volume Visualisation 17

© ©

(a) Bilinear (b) Trilinear

Figure 2.4: Bilinear Interpolation on a 2D area, and trilinear interpolation inside a 3D cube

This interpolation method produces very blocky, aliased results and should only be used
when speed is of extreme importance and visual quality is of low importance. Its application
therefore is mainly in interaction-intensive volume Tenderers.

First-Order : Trilinear Interpolation

In ID, linear interpolation attempts to obtain a value that lies at position t inbetween two
samples a and b as a + ((6 —a)* t) . An extension of this is bilinear interpolation in 2D, which
computes first the linear interpolation of two edges of the cube, and then linearly interpolates
these intermediate results for the final coordinate (see Figure 2.4(a)). Trilinear interpolation
further extends the linear interpolation into three dimensions, by linearly interpolating the
result of bilinear interpolation of two opposite faces of the voxel cube (Figure 2.4(b)). The
ability to decompose the 3D form into three ID operations is referred to as the method’s
separability.

For fields with unit cubes (of size 1 in all dimensions):

/(L*J k) (k - X, \y] - y , k ~ z) +
I(\x] Lj/J»kl) [x - \ y] k - *) +
I([x\ \ y] . k) (k - X y - [y \ A A - z) +
I(\x] M, k) (x - Ik, y - [yj> k - z) +
I([x\ k> k) (W - X, M - y , z - k)+
J(k [y\, k) (x - [xj \ y] - y , z - k)+
7(L*J \ y l k) (W - X y - [y \ , z - k)+/(jVj M. k) (x - k y - l y \ , z ~ k)

where I { x , y, z) gives the voxel value at location x , y , z in Euclidian space.

Trilinear interpolation therefore produces a value that is linearly interpolated from the sur­
rounding voxels, and is often considered as the best tradeoff between computation and re­
construction quality. Accelerated trilinear interpolation has been offered for some time in
graphics hardware supporting 3D texture capabilities.

2.3 Volume Visualisation 18

Second-Order : Tricubic Interpolation

Tricubic Interpolation makes some attempt to ascertain the shape of the data by fitting a
cubic function to its surrounding samples. The one-dimensional case requires four weighted
neighbouring samples - therefore, the three-dimensional case requires 64. For a given offset
t, the cubic filter:

(12 - 9 B - 6 C) \ t |3 + (- 1 8 + 12B + 6C)
z |2 + (6 - 2 B)

k B C (t) = - l (- B - 6 C) | t |3 + (6 5 + 30C) | t \
6 + (- 1 2 B - 48C) | t | + (8 B + 24C)

0

if \ t \ < l

if 1 < | t \< 2

otherwise

(2.4)

gives the weighting, of t, as shown by Mitchell and Netravali [MN88]. Different values
of B and C give different splines, e.g. B = 0, C = 0.5 is a Catmull-Rom spline. The
interpolated value is now the sum of all weights:

2 2 2 (/ (| z j , [y\, k l) 'K(x - W) + 0

V(ar, y , z) cublc = ^ ~ [v \) + j) (2.5)
*=—l j= —l k=—i [-k((z — |_zj) + k)

Trucubic interpolation gives superior quality due to its higher-order nature, but at the ex­
pense of a large number of data access operations and computations on that data; the com ­
putation however can be reduced up by the use of precomputed lookup tables. In general,
cubic interpolation should only be used therefore where visual quality is of the utmost im ­
portance. Cubic interpolation in general is not yet offered natively on graphics hardware at
the time of writing, but it is feasible to implement such a reconstruction filter in real-time as
in [SH05] where the authors implement bicubic interpolation using ID texture lookups.

2.3.3 T ransfer Functions and C om positing

Due to the nature of the acquisition of volume data, the samples are often single scalar values
representing density or some other kind of measurement. It is desirable for direct volume
rendering to establish a mapping between these scalar values and colours, and this mapping
is referred to as classification [THB+ 90]. For example, high values in a CT dataset are likely
to be bone, with flesh and muscle in the lower ranges. A good visual cue would be to colour
the bone an off-yellow colour, and the skin a fleshy colour.

Because the volume dataset is three-dimensional, and the framebuffer two-dimensional, it
is apparent that more than one voxel will map to the same framebuffer pixel for sufficiently
large datasets. The process of blending the samples together into one final colour is called
compositing.

One of the main strengths of direct volume rendering is the ability to ascertain internal tex­
ture information from inside an object - this can be achieved by setting parts of the volume
to be semitransparent. Therefore, alongside colour mappings, opacities can be additionally

2.3 Volume Visualisation 19

(a) Lookup Table (b) M IP (c) RGB Volume Texture

Figure 2.5: Compositing M ethods

mapped to the scalar values so that these voxels can be blended together to form a final pixel
colour. The opacities are specified as normalised values in [0,1], with values of 0.0 meaning
fully transparent, 1.0 meaning fully opaque, and everything inbetween as various degrees of
semitransparency on a linear scale.

The classification process can occur at different stages in the volume rendering process -
either before the data is rendered (pre-classification), or during (post-classification):

• Pre-classification approaches compute the voxel colours and opacities and interpolate
these values using a suitable reconstruction filter (such as trilinear interpolation). The
resulting interpolated colour and opacity is then used in the compositing operations.
These values can be pre-computed before rendering; however, this approach suffers
from the potentially large overhead of storing the colour/opacity values instead of a
simple scalar that can be mapped to the values at runtime. In addition, changing the
classification transfer function at runtime is not possible without rebuilding the entire
volume.

• Post-classification approaches interpolate the original voxel scalar values from the
dataset first, and then compute the colour and opacity based on the interpolated value.
As well as being more space-efficient in most cases, post-classification provides a
better reconstruction due to the availability of the original signal from the volume
(e.g. in a CT dataset, the density values) for input into shading calculations.

It is not true, however, that such a mapping is always necessary. One compositing method
often used for medical datasets is called maximum intensity projection (MIP) devised by
Wallis et al. [WMLK89] and further developed for volume rendering by researchers such
as Avila et al. [ASK94] w'ho used the method for the visualisation of nerve cells. Figure
2.5(b)) shows a M IP rendering of the Visible H um an’s head. In this compositing scheme,
the highest sampled value falling on a pixel is chosen as the final pixel colour, instead of
compositing the results of all samples found along the ray. M IP rendering is commonly used
for medical datasets as it allows for a relatively simple means of identifying the high-density
structures of the anatomy without having to specify a transfer function.

2.3 Volume Visualisation 20

2.3.4 Projection Methods

Forward-projection methods for direct volume rendering project each voxel onto the view
plane based on the current viewing parameters. Each voxel may map to more than one pixel
in the final image, and each pixel may have more than one voxel projected onto it. There are
a couple of issues that must be addressed with such a technique before an accurate image
can be obtained.

Vo projection

V2 projection ■

v \ projection -

(a) Voxels being projected to the screen (b) Three voxels in image-space

Figure 2.6: A Forward-Projection algorithm acting on voxels vo, v\ and V2

First, as shown in Figure 2.6, a single voxel can map to more than one pixel in the image.
Once the transformation matrix is applied to the voxel’s position to get the image-space
coordinate, the result is a single coordinate. A mechanism must therefore be implemented
to spread the effect of the voxel to neighboring pixels, such that the final projection is an
accurate representation of the shape of the voxel as viewed from the view plane. In addition,
the depth of the voxel at each pixel will differ for non-grid aligned views.

The second issue is that voxels of differing depths in image space are likely to affect a single
pixel. This can be seen in Figure 2.6 where voxels v \ and V2 overlap in image space. All
such voxels are processed either in ascending or descending z-order to be correctly blended.

Splatting

Splcitting as a forward-projection volume visualisation technique was devised by Westover
[Wes89], Voxels are projected onto the image plane, and the voxel’s footprin t on the image
is computed. The name of the method is derived from the analogy of the voxel splatting
against against the screen. The footprint of a voxel is its image-space contribution, and is
computed from a reconstruction kernel k\ the reconstruction kernel is constant throughout
the image for orthographic views.

Figure 2.6(b) demonstrates three voxels’ contributions to the framebuffer, affecting four
pixels. Each voxel’s contribution is greater towards the centre, and less towards its edges,
and it is these contribution factors that are modelled by the kernel. The final contribution

2.3 Volume Visualisation 21

per pixel is integrated along a projected ray from the pixel, and is given as:

/OO

h(x — i ,y — j,w)d w (2.6)
-OO

where h is the reconstruction kernel.

Westover precomputes a table of reconstruction values rather than performing ID z-integration
of the voxels, which increases the efficiency of the algorithm. A guaranteed front-to-back
or back-to-front traversal for accumulation of the voxels can be obtained using an octree
(octrees are discussed in Section 2.4.1), which means that voxels can be blended in the
order they are processed. Splatting can be considered as a special grid-aligned subset of
point-based rendering, first devised by Levoy and Whitted [LW85].

Incremental improvements have been made to the Splatting algorithm since its introduc­
tion including by Westover himself [Wes90]. Mueller and Yagel provided Splatting with a
perspective-correct implementation [MY96] by combining Splatting with a ray casting ap­
proach to give a novel hybrid volume Tenderer. In this approach, rays are fired from each
pixel in the image and are intersected with the splats which essentially hang in mid-air. Once
an intersection takes place, the data from the splat is gathered from a precomputed table and
used in the compositing equation.

Improvements to the problem of aliasing were discussed by numerous authors such as
Zwicker et al. [ZPvBGOla], who introduced Elliptical Gaussian Average (EWA) splatting to
solve the problem of aliasing by introducing a new splat primitive - the elliptical Gaussian
filter. The use of this filter is shown to reduce the blurring effect that is apparent with the
standard splat filters used by Westover, at the expense of additional computation; though
this problem has been partially rectified by subsequent papers detailing GPU-based splat­
ting schemes [CRZP04, BHZK05]. More detail on GPU implementations of Splatting and
point-based rendering is given in Chapter 4.

Cell-Projection

Cell-projection techniques decompose the volume dataset into multiple primitive cells that
can be efficiently rasterised and composited. Shirley and Tuchman [ST90] discuss the Pro­
jected Tetrahedra algorithm, in which the volume is decomposed into tetrahedral cells (and
further into triangles for efficient rasterisation) which are then rasterised in depth order us­
ing the painter’s algorithm and composited into the framebuffer. Wylie et al. [WMFC02]
implement the original Shirley and Tuchman algorithm on the GPU using vertex shaders
to compute the projection of the tetrahedra onto the viewing plane using basis graphs to
represent the topology.

The majority of cell-projection algorithms for volume rendering give GPU implementations,
and for this reason a more complete discussion on Cell-Projection techniques is given in
Chapter 4.

2.3 Volume Visualisation 22

2.3.5 Raycasting Methods

Backward-projection techniques for volume rendering discover the final pixel colour for
each pixel in the image. This is most commonly achieved using a raycasting method. Ray-
casting methods fire parametric rays from each pixel into the volume data and sample at
regular intervals (see Figure 2.7). A ray is defined as a pair Pv , D v where Pv gives the ray’s
start position (a pixel in the image plane), and D v gives the normalised direction of the ray.

The first ray casting algorithm was devised in 1968 by Arthur Appel [App68], Each pixel
has a ray associated with it, which is tested against the objects in the scene for intersection.
The frontmost object is then chosen and shaded accorded to its surface properties and light­
ing conditions. An important extension of this idea was ray tracing, devised by W hitted
in 1979 [Whi79]. Ray tracing takes the ray paradigm further by calculating further rays
bouncing off the surface of objects in a recursive manner, allowing for effects such as reflec­
tions and shadows. Ray tracing today remains a popular method for generating high-quality
images with complex effects such as global illumination. Unfortunately, the computation
time for most raytraced images is very high due to the number of rays fired that further
spawn thousands more. This computation however can be partly parallelised and even hard­
ware accelerated using either specialised raytracing hardware or consumer graphics cards
[PBMH02].

Each ray can sample the volume dataset many times, and a compositing process determines
the final colour for a pixel belonging to the ray.

Figure 2.7: A Backward-Projection raycasting algorithm fires rays from the image plane
into the volume data, sampling at regular intervals.

Voxels that are more opaque will block more of the light of voxels laying behind in image
space, which is how we expect semitransparent objects to behave in the real-world. This

If the samples are gathered in a front-to-back manner, then the process can be formalised by
the integral [DCH88]:

ray

gathering of light along the path of ray through the dataset is given by the volume rendering
integral.

p ix e l(R) = / C { s) e - f X x)dxd>
R s t a r t

(2 .7)

2.3 Volume Visualisation 23

(a) Isosurface value : 85 (b) Isosurface value : 120

Figure 2.8: Two isosurfaces rendered directly from the CT head using Jones’ Direct Surface
Rendering algorithm [JC94b]

where C(s) denotes the emitted light (the colour), and a denotes the opacity. The ray direc­
tion in this case is ds.

Because computers fundamentally cannot deal with continuous functions, a discrete ap­
proximation to the volume rendering integral is obtained from the Riemann sum, with the
equation giving the Porter and Duff ‘over’ operator [PD84]:

where a* gives the opacity value at sample point i, and Ci gives the colour. For n discrete
samples along the ray, the alpha and colours are composited. The more densely sampled
the ray is, the more accurate the resulting colour will be. M ore samples can be taken by
reducing the distance between samples, at the expense of a higher amount of computation.

The above equation evaluates the volume dataset by firing a ray from the viewer into the
scene, compositing samples with the previous sample. Back-to-front compositing reverses
the direction of the ray, firing towards the viewer. The compositing operation must be mod­
ified to take this into account. In general, front-to-back compositing is preferred by most
volume rendering implementations as it allows for a group of simple but important optim i­
sations known as early ray termination optimisations (see Section 2.4.4).

2.3.6 Direct Surface Rendering

A Direct Surface Rendering method was devised by Jones [JC94b] to allow for efficient
isosurface rendering within a volume without converting to an intermediate representation.
The method is conceptually similar to that of Levoy’s ‘isovalue contour surfaces’ [Lev88].

(2 .8)
i —0 j —0

A pre-computation step first marks all cells containing the given isosurface - called trans­
verse cells. The transversity of a cell can be established by first marking those voxels which

2.3 Volume Visualisation 24

are ‘inside’ the object with 1 (i.e. above the isosurface threshold r) , and those which are
not with 0. These values can be stored efficiently as one bit per voxel. A voxel cell is now
detected to be transverse if any of the bits of its eight voxel neighbours are not equal; this
can be efficiently computed by concatenating the bits and treating the resulting byte as an
unsigned char data type - if the value v satisfies 0 < v < 255 then the cell is transverse.

Rays are fired into the volume dataset as with conventional volume rendering. Non-transverse
cells are skipped. For each transverse cell intersected, the actual location of the isosurface
within the cell along the ray can be computed using interpolation. First, the value at the
point where the ray enters the cube, a is computed, followed by the value where the ray
exits, (3, using bilinear interpolation of the four neighbouring voxels. The final offset 7 of
the isosurface along the ray can be computed as:

r — V (a)
7 = a + (0 - a)

V(/3) - V (a)

The computation of shadows with the algorithm is also possible [Jon97], Figure 2.8 gives
two example images of the CT head rendered using the Direct Surface Rendering algorithm.
Figure 2.8(a) shows the head rendered at an isosurface value that represents the skin isosur­
face, and (b) shows the bone isosurface.

2.3.7 Hybrid Approaches

Mroz etal. [MKG00] introduced an object-order raycasting system, whereby pre-preprocessed
cells of the dataset are selectively raycasted for maximum intensity projection. M ora et
al. [MJC02] extended this idea further by giving an object-order raycasting algorithm, whereby
an octree is used to project nonempty cells to the screen. The projected cells are individually
raycasted with full compositing and lighting computations, using rays that are pre-computed
for each given cell; these rays are re-computed when there is a change in viewing parameters
(for this reason, the algorithm is limited to orthographic projection). A regular sampling for
each ray is ensured by taking into account the depth of its cell intersection. The authors
give a very efficient implementation that takes advantage of hierarchical occlusion maps to
avoid processing hidden octree cells. Mora and Ebert [ME05] give a similar scheme for the
production of MIP renderings of volume data.

2.3.8 Lighting

Lighting is an important visual cue in computer graphics, giving the viewer important infor­
mation on the topology of objects and improving the aesthetic appeal of the image. Lighting
in volume rendering was first discussed by Hohne and Bernstien [HB86], based on work
by Chen et al. [CHRU85] who used the central differences method to compute a discrete
estimate of the voxel gradient normal as:

N x = V (x + l , y , z) - V (x - l , y , z)
N y = V (x , y + 1, 2) — V (x ,y — l , z)
N z = V (x , y , z + 1) - V (x , y , z - 1)

(2 .9)

2.4 Acceleration Techniques 25

Once computed, the gradient normal is normalised using standard vector normalisation to
produce a unit vector.

In volume data obtained by means of medical imaging methods (such as CT/MRI scans),
the normals can often be of poor quality and require a preprocessing step to improve them.
This is the case particularly when volume datasets are downsampled to a lower resolution
using a poor quality filter, or when attempting to compute normals deep within a complex
solid object when computing refraction [Rod03]. A filter such as nonlinear anisotropic
diffusion can be used to improve the normals from a volume dataset, at the expense of the
computation of the filter and / or storage of the filtered normals. Nonlinear anisotropic
diffusion is discussed in Section 2.6.

Once the normal of a point inside the volume has been computed, it can be sent to a lighting
equation of the implementer’s choice. Alternatively, the lighting computations can be pre­
integrated into the volume dataset. Beason et a l [BGB+06] pre-compute a 3D volume
dataset containing illumination data for all isosurfaces within the volume, which includes
the computation of shadows falling within a predetermined bounding geometry (such as a
Cornell box). This allows for pre-computation of expensive lighting methods such as global
illumination, which attempts to compute the total light falling on any particular point from
all other points in the scene.

2.4 Acceleration Techniques

The field of surface graphics has benefited from years of research into rendering algorithm
optimisations. Coupled with the introduction of dedicated graphics hardware, the vast ma­
jority of rendering engines written for surface meshes have real-time implementations -
even when simply running on the CPU. This is partly due to the large amount of focus on
surface graphics as a computer graphics field, and partly due to the inherent simplicity of
dealing only with infinitely thin surface representations of objects.

Volume rendering via raycasting is a computationally-expensive operation due to the com­
mon requirement of gathering the internal texture information, and the larger datasets in­
volved for input to the rendering algorithm. To alleviate these issues, a number of important
acceleration techniques have paved the way for more interactive approaches to volume ren­
dering. This section looks at some of the most important optimisations that can be made for
volume rendering algorithms.

Any detail on GPU implementations of volume rendering algorithms is omitted here, and is
instead contained in dedicated sections in Chapter 4.

2.4.1 Blocking and Octrees

Blocking techniques attempt to decompose the volume dataset into blocks with attached
statistical metadata about the block. An example block metadata would be an indication of
whether the block is ‘empty’ - that is, whether the block contains only voxels that map to 0

2.4 Acceleration Techniques 26

opacity using the current transfer function. If a block contains only such data, then it is safe
to ignore such blocks rendering as they will not contribute to the final image.

Octrees are a common acceleration data structure which effectively encapsulate the dataset
in a hierarchical manner [KWPH06]. An octree is represented as a tree data structure. The
root of the tree represents a cell which contains the entire dataset, and its eight children cells
subdivide the space within it. This subdivision process continues down to a desired depth.
To accelerate a volume rendering application, each octree node may store a Boolean value
that denotes whether the cell is nonempty. This octree compilation process is therefore best
achieved from the leaves upwards, as the results from the nodes below can be used at each
step towards the root.

Levoy [Lev90a] first discusses the use of octrees for accelerating volume rendering in this
manner. Each ray is intersected with the topmost cell, and if the cell’s precomputed nonempty
value is true , then each of the cell’s children in the ray’s path are intersected. This process
continues down to the lowest level where the nonempty cell is simply traversed as normal
and the values along the ray can be included in the compositing operation.

Octrees can also be implemented (nontrivially) on graphics hardware to accelerate GPU-
based volume rendering applications [RV06].

2.4.2 Space-leaping

Many acceleration methods for volume rendering employ some kind of space-leaping func­
tionality; a volume rendering algorithm can complete each frame considerably faster if large
empty areas of the scene can be simply skipped over. Such areas of the volume can be
marked in a preprocessing step to assist the volume renderer decide if it is worth firing rays
in that area.

Methods based on occupancy maps [MDHK01] store values in cubes representing whether
data exists in that cube; methods based on distance fields [LK04] use the minimal distance
to the object of interest. Alternatively, the rendering algorithm can exploit the temporal
coherence that exists between successive frames of the rendering process, such as that used
by Yagel et al. [YS93] where the volume is projected to the image plane before each frame
to determine good estimates for new ray starting points based on the previous projection.

2.4.3 Adaptive Termination

For front-to-back ray compositing, adaptive termination, introduced by Levoy [Lev90a],
can be used to halt the ray’s progress if the opacity reaches some threshold near 1.0. The
reasoning behind this optimisation is that once the ray becomes very opaque, future com­
positing operations will not alter the final pixel value substantially enough to warrant its
continuation; therefore the ray can be terminated safely without too much impact on the
final image.

It is mainly due to this optimisation that the vast majority of raycasting volume Tenderers
accumulate front-to-back rather than back-to-front where such an optimisation would be

2.4 Acceleration Techniques 27

impossible. Terminating a ray early can also be of benefit to volume rendering algorithms
that do not composite semi-transparent samples; such as direct isosurface rendering algo­
rithms, where upon discovering the first isosurface closest to the viewer, the ray can safely
be terminated.

2.4.4 Progressive Refinement

(a) 8x8 block, 0.08 secs (b) 4x4 block, 0.19 secs (c) full, 0.86 secs

Figure 2.9: Progressive Refinement with the CT Foot Dataset

Progressive refinement is a well-established technique in nearly all computer graphics fields,
and was first introduced into volume rendering by Levoy [Lev90b]. Progressive refinement
schemes first provides the user with a ‘rough’ render for quick feedback, and then gradually
refine this image during ‘idle’ time by providing more and more detail of the object. ‘Idle
tim e’ is usually defined to be the period when the user has stopped manipulating the viewing
parameters (perhaps when they have released the mouse button that controls the view).

Progressive refinement approaches are particularly well-suited to im age-based rendering
algorithms such as raycasting, as the render time is heavily dependent on the resolution of
the image, and also the refinement scheme can be neatly based upon the number of pixels
that are chosen for processing. Figure 2.9 shows three images of the CT foot dataset rendered
with a direct volume renderer. Image 2.9(a) was rendered with one ray for each 8x8 block
of pixels, 2.9(b) with one ray for each 4x4 block, and 2.9(c) with one ray per pixel. The
rendering times for each refinement step are given.

Distance fields, discussed in the next section, can additionally be used to accelerate the
rendering process by skipping large areas of the dataset.

2.5 Distance Fields 28

2.5 Distance Fields

A distance fie ld is a useful representation of the surface of a volume object in which a
scalar value at each voxel represents the minimal distance to some surface of interest S .
Specifically, a distance field D representing a surface S is defined as D : M3 —» R, and for
p G R 3,

D(p) = m in { \ p — q |: q G S'} (2.10)

where q represents a point on the surface of interest S .

Values at each voxel are often stored with higher accuracy than density information datasets,
requiring a floating-point value at each voxel for accurate representation. The surface S is
a user-defined isosurface value that picks out a particular surface embedded in the dataset;
for example, the bone surface in a CT dataset. D istance fields can also be computed for
triangular mesh datasets by using a case analysis method to decide whether the point is
nearest to each triangle’s vertex, edge, or face [Jon95].

Figure 2.10: Isosurfaces rendered from a distance field. The blocky appearance is intended
to demonstrate a low-accuracy distance matrix.

Values in the distance field can be signed depending on whether the point is inside or outside
S . This can be implemented by multiplying the right hand side o f equation 2.10 by:

sg n (p) = {] l f ^ E S (2 .11)[1 otherwise

Additionally, the gradient o f a point p in a distance field can be computed using central
differences, and is orthogonal to the isosurface passing through p.

2.5.1 Applications of Distance Fields

Applications of distance fields include skeletonisation where the distance field is used to
find local maxima inside the volume object, as developed by Silver et al. [GS99] for volume
deformation/animation purposes, but first discussed much earlier by Rosenfeld and Pfaltz
in 1966 [RP66] for 2D data. A more detailed analysis o f skeleton techniques as used by
Silver et al. is presented in Section 3.6. Distance fields can be used to apply morphological

2.5 Distance Fields 29

effects to volume datasets, such as erosion and dilation. These effects can be combined
to create opening and closing morphological effects on volumetric data for use with facial
reconstruction [JonOl].

Hypertexture, devised by Perlin and Hoffet [PH89], defines a ‘soft’ region around objects
in which a user-defined procedural texture can be rendered. Points in space are defined as
being either outside the object entirely, inside, or in the ‘soft’ region. Satherley and Jones
[SJ02] introduced hypertexturing using a distance field to define this soft region. Using a
distance field means that even complex objects can be hypertextured, as the task of comput­
ing the current region is reduced to simply looking up the value in the distance field. Miller
and Jones [MJ05] have demonstrated real-time hypertexturing on the GPU, considerably
cutting down the rendering time for visualising hypertexture effects on volume objects. The
method loads in a distance field as a 3D texture and performs the hypertexture shading in
the fragment shader.

An important observation is that alongside the distance information, any attributes of the
surface can additionally be stored. Merely knowing the distance to the surface at any par­
ticular point p does not provide any kind of link to the actual minimally-distant point on
the surface. Breen and Mauch [BM99] create distance fields of surface-based CSG scenes
using a scan-conversion approach, storing additionally the colour value associated with the
minimal distance. During the rendering process, the colour values are used to shade the
point on the isosurface.

Jones [Jon96] gives an algorithm for producing volume data from a triangular mesh. The
algorithm uses a distance field as a smooth function in the region of the surface. The worst
case complexity for computing the distance field of size xyz from a set of n triangles is
xyzn , so the method employs a number of acceleration techniques. Firstly, the author dis­
cusses methods for improving the efficiency of the point-to-triangle distance computation
by converting the problem to a 2D one [Jon95]. Secondly, an observation is made that a
large number of triangles can be eliminated from distance computations by observing that
if they are sufficiently far away enough, the true distance does not need to be computed
and instead the comparisons can be limited to within a bounding box. Finally, the author
gives an optimisation specific to the Direct Surface Rendering algorithm, which has been
discussed in Section 2.3.6.

Distance fields can be used to accelerate ray traversal through a volume dataset during ren­
dering. The Proximity Clouds method introduced by Cohen [CS94] computes a distance
field for the object to be rendered, and uses this distance information to skip large parts of
the dataset; if a distance value of d is found at the current ray sample point, then it is safe
to move forward along the ray by distance d since the ray is guaranteed not to hit the object
before moving that distance.

2.5.2 Distance Transforms

The distance field for a volume object can be computed naively with n 2 complexity. First,
all voxels lying on the surface of interest are initialised to 0 and the remainder to infinity. For
each voxel in the distance field, the distance to the closest surface voxel is computed. Clearly

2.5 Distance Fields 30

this approach is too computationally expensive for general use even with octree acceleration
[JBS06, SatOl], with running times sometimes counted in days rather than hours.

Due to computational complexity of the naive algorithm, research has been focused on fast
approximations of the discrete distance field computation. Distance transforms were first
introduced by Rosenfeld and Pfaltz [RP66], where the authors used the distance informa­
tion to compute the skeleton of an object o f interest in a 2D image. Distance propagation
methods have an initialisation phase, where a subset of the voxels are initialised to 0 , and
a propagation phase, where these distance values are propagated to the outer edges of the
dataset.

Chamfer distance transforms store a scalar value representing the distance to the nearest
point. During propagation, the value for a new voxel is decided based on its neighbours and
a distance template. Vector distance transforms store a vector pointing to the closest point,
and new vectors are decided based on its neighbours and a vector template.

Chamfer Distance Propagation

Chamfer distance propagation techniques propagate local distance values outwards from the
surface to the edges of the dataset. Before the main propagation stage, all surface voxels are
initialised to 0 , and the remainder to oo :

Two passes are now made over the field, one from the top-front-left to bottom-back-right,
and the other in reverse. For each point p, and given a distance transform matrix M , the
current point is initialised to the minimum distance from local information. The distance
transform matrix provides a template of distance values that can be used to add to the current
distance value at each point in the algorithm. The choice of transform matrix depends on
the accuracy that is required. Figure 2.11 gives an illustration of a distance matrix, and a
variety of values with varying accuracy.

Figure 2.11: Chamfer matrix and a selection of 3x3 matrix values

0 if p G S
o o otherwise

(2 . 12)

2.5 Distance Fields 31

Algorithm 1 shows both passes of the Chamfer distance propagation algorithm, where i n f
returns the inferior result, and M f p and M bp refer to the forward and backward pass subsets
of the chosen Chamfer matrix, respectively.

Algorithm 1 Chamfer Propagation
{Forward pass}
for z = 0 to dz do

for y = 0 to dy do
for x = 0 to dx do

I { x , y , z) +- infvi,j,k€f p (I (x + i , y + j , z + k) + M f p [i , j , k})
end for

end for
end for
{Backward pass}
for z — dz — 1 to 0 do

for y = dy — 1 to 0 do
for x = dx — 1 to 0 do

I { x , y , z) <- infWitjtk€fp(I (x + i , y + j , z + k) + M bp[i , j , k])
end for

end for
end for

Vector Distance Propagation

Vector distance propagation techniques differ from distance propagation techniques in that
vectors are propagated instead of just distances. The Chamfer distance transform suffers
from a lack of accuracy as the distances from the surface increase. Because of this, vector
propagation techniques were devised to propagate vectors to the surface rather than dis­
tances; at the expense of additional storage requirements (at least 3 float components per
voxel) and computation time [SatO 1]. For a given voxel at (x , y , z) in a vector field, the
vector value is given as:

D(x , y, z) = ra in (| V (z + i, y + j , z + k) - (i , j , k) |) V z,j, k 6 { - 1 ,0 ,1 } (2.13)

First introduced by Danielsson [Dan80] for 2D images, the vector distance transform is con­
ceptually similar to the Chamfer transform in that it requires two passes of the data, utilising
a vector matrix to decide on new vectors at each voxel. The Efficient Vector Distance Trans­
form (EVDT) was devised by Mullikin [Mul92] and performs six passes of the dataset. The
EVDT offers a reduced storage requirement by requiring that only the vector components
for the current and previous slices are stored at any one time - though this is not as much of
an issue with today’s personal computers typically shipping with at least 1GB RAM. Jones
[Jon04] uses the vector distance transform to achieve lossless compression of distance fields
by creating a predictor that predicts new distance values from two known values in the field.
Satherley and Jones [SJ02] use a vector distance field for hypertexturing volume objects.

2.6 Filtering 32

2.6 Filtering

The filtering of volume data can improve the accuracy of the normals computed for light­
ing calculations, particularly if more complex lighting computations are required such as
refraction [Rod03]. Filtering volumetric data can also vastly improve the performance and
stability of volume segmentation algorithms; segmentation algorithms for volumetric data
are discussed in the next chapter. Many segmentation approaches (image-based approaches
in particular) are very sensitive to noise in the image, so any noise filtered out would improve
the segmentation result. Filtering techniques do not necessarily have to remove noise how­
ever, a simple edge-detection convolution filter can provide the desired result if the chosen
segmentation technique has trouble locating a boundary.

Nonlinear Anisotropic Diffusion

Nonlinear anisotropic diffusion [PM90] is an iterative filtering process designed to remove
noise from medical datasets, but preserve edges. The process is given as the following:

d
— vol(t) = V • c(t)Vuo/(t)

where vol is the volume dataset at iteration t and c is the diffusion function. Typically
this function will return higher values for lower voxel gradients. A parameter k is used to
tune the results - larger values of k will have the effect of producing a stronger amount of
nonlinear smoothing. The gradient of the voxel can be defined simply as the difference in
its neighbours in the discrete case.

Figure 2.12 gives a comparison of two different values of k, with the discrete implementation
of function c defined for a given voxel intensity i as:

I (x , y , z , t) ' = t ■ \ c(x ,y , z + 1) ■ (I (x , y , z + 1) - I (x , y , z - 1))]

c(i) = (- i) 2 (2.14)

The filtering of volume datasets also has other applications in volume graphics, such as
the improvement of voxel gradients for rendering with refraction [Rod03]. Sramek and
Kaufman [SKOO] used a low-pass filter to smooth resulting volume data generated by their
voxelisation method, defining a smooth transition between object and non-object.

Convolution filtering can even be performed on the GPU, as in [HE99], where the authors
use a slice-based approach. The recent addition of Superbuffers to OpenGL, and the intro­
duction of DirectX 10 bring the ability to render directly to a slice of 3D texture1, simplify­
ing future implementations. Viola et al. [VKG03] implement a similar slice-based scheme,
this time performing nonlinear filtering with edge preservation for the smoothing of volume
data.

'A t the time o f writing, Superbuffers is a largely unimplemented standard.

2.6 Filtering 33

Morphological Operations

Morphological operations are nonlinear filters that have roots in image analysis where they
are used for noise removal, edge detection and general enhancement [Wol98]. Morphologi­
cal operators involve placing a 3D structural element (or kerne!) defined as 3D grid of values
onto each voxel and performing some operation on each surrounding voxel based on the data
from the structural element.

For a given object X and structuring element B, The two basic operators used are erosion,
defined as:

X © B = {x i B x C X }

and dilation, defined as:
X © B = {x | B x fl X ^ 0}

In addition, more useful operators can be built from these basic operators, namely opening
and closing. Closing is a dilation followed by an erosion: X • B = (X © B) © B, and
opening is an erosion followed by a dilation: X o B = (X © B) © B. The closing operator
results in the eventual closure of holes in the data, and the opening operator results in the
removal of any small objects.

Jones [JonOl] uses morphological closure on a CT skull dataset by mapping points from a
morphologically closed skull to a reference head; giving an excellent demonstration image
of the closure operator applied to the CT skull many times. Liirig and Etrl [LE98] use
morphological operators for facilitating the specification of transfer functions for volume
rendering by performing morphological analysis on the datasets. Hopf and Ertl [HEOO] show
the possibility of implementing morphological operations on volume data on the GPU by
performing three passes over the volume dataset and using the native blending capabilities
of the card to compute the filtered values.

2.6 Filtering 34

OJ

u- !2

58

2.7 Summary 35

2.7 Summary

This background chapter has introduced the field of Volume Graphics and some of the im­
portant concepts and algorithms that exist within. It has been shown how Volume graphics
differs from the more popular field of surface graphics; the former represents objects as sam­
ples in space, whereas the latter represents only the surface of objects. Volume datasets offer
many advantages over surface-based models, such as a conceptually simple data structure
and the availability of internal information. The main disadvantage with volume datasets
it that the necessity of representing so many potentially empty sample points gives often
extremely large datasets. In addition, the field of surface graphics is blessed with the most
attention, and thus receives dedicated consumer hardware acceleration.

A review of the data acquisition techniques was first made in this chapter, detailing how real-
world objects are scanned to produce volume datasets. The details on how these volume
datasets are rendered was reviewed, including methods for converting volume data to a
surface-based representation for surface Tenderers.

Chapter 3

Volume Deformation and Animation

Contents__
3.1 In tr o d u ctio n .. 36

3.2 Computer A n im a tio n ... 37

3.3 D efo rm a tio n .. 39

3.4 Deformation of Volumetric D a t a .. 43
3.5 Illustrative Deformation and Visualisation .. 49

3.6 Skeletal S y s te m s ... 52
3.7 Sculpting and Soft-Body D eform ation .. 54

3.8 Segmentation of Volume Data .. 56

3.9 S u m m ary ... 63

3.1 Introduction

Computer animation has seen a large growth in popularity in the past two decades, mainly
due to the entertainment industry’s demand for computer-generated films and animated
graphics in advertisements. To animate means to ‘bring to life’ - and it is this notion of
animation that most people are familiar with. In the field of computer graphics however,
animation is not restricted to this connotation; animations produced by computer can be of
scientific simulations and thus give additional meaning to aid the viewer in understanding
what is being simulated.

Deformation is the act of changing the shape of an object. The deformation of a model
over time can be classed as an animation, yet the animation of a scene can consist simply of
translations, rotations etc, of the components of the models that the scene comprises; in this
case, the objects are not deformed but merely modified in a linear manner. By linear, we
imply that the transformation of each object can be defined by some single matrix; that is, the
translation of each individual point does not depend on where the point is in Euclidean space.
This is the definition of deformation given by Barr [Bar84]. Deformation and animation are

36

3.2 Computer Animation 37

individual areas of research in themselves, and yet both areas are implicitly linked by similar
algorithms and goals.

Although the main focus of this chapter (and indeed, this thesis) is deformation, the fact
that animation and deformation are linked in this manner necessitates a discussion of both.
This chapter therefore begins by looking at the history of computer animation in general,
and discusses various techniques used for controlling such animations. The chapter then
continues with a look at the technical issues involved with volume deformation, as well
as a review of the most important research conducted in the area. To finish, an in-depth
discussion on volumetric segmentation methods is given.

3.2 Computer Animation

Much of the early work on 3D computer animation was focused on bringing the basis of
hand-drawn animation, pioneered by Walt Disney, to the computer [Las87]. Traditional
techniques, such as key-framing, where key stages in a character’s animation are drawn
and then frames in-between are drawn later, can be implemented algorithmically. Such a
method is commonly implemented as in-betweening (commonly shortened to just tweening),
where an interpolation scheme is used to automatically derive the character’s pose for the
intermediate frames. Varying results can be achieved depending on the interpolation method
used; linear interpolation produces often rigid, unrealistic animations, whereas a higher-
order interpolation scheme can smooth the motions.

Companies such as Pixar have pioneered many of the modelling and rendering techniques
currently used. Luxo Jr. was the first film produced by the company, and demonstrated the
use of an articulated skeleton, giving a high level of abstraction to the animator to bring a
seemingly inanimate object to life. Toy Story, widely regarded as the world’s first fully com­
puter generated feature-length production, grossed over $354 million worldwide in cinemas
according to IMDB [imd].

The control of an animation would be tedious and difficult if the process involved modifying
the vertices/voxel that comprise the model over time. Therefore, a variety of control systems
exist to assist the animators in defining the movement of the models. The sections following
discuss some of the more popular approaches.

3.2.1 Behavioural and Physically-Based Systems

Particle systems were introduced by Reeves [Ree83] to model a wide variety of physically-
based phenomena such as smoke and fire. A particle system spawns small objects called
particles from a fixed or moving spot in the scene. Each particle is given a variety of
attributes, such as its colour and opacity, its behaviour, and the amount of time before it
is extinguished. The behaviour of a particle is governed by the behaviour function assigned
to it, which governs where the particle is located at any one time during the animation. Once
a particle has exceeded its life span, it is extinguished and removed. Particle systems were
extended by Reynolds [Rey87], who modelled the behaviour of flocks, herds and schools.

3.2 Computer Animation 38

Physically-based systems attempt to model the behaviour of an object based on physical
laws such as Newton’s laws. However, physically-based modelling is most often used for
deforming objects by setting material properties and interacting with the model. Related to
physically-based systems are constraint-based systems, which attempt to (for example) set
constraints on the range of movements attainable by a set of muscles for facial animation
[Rut99]. Many methods for physically-based animation are carried over to physically-based
deformation, and such methods are discussed later in this chapter.

3.2.2 Scripting Systems

The control of animation in early computer animation systems was sometimes achieved us­
ing scripting systems such as AS AS (Actor Script Animation System) [Rey82], which pro­
vided high-level commands for object manipulation. Although the syntax can be tweaked to
be as simple as possible, such an implicit methodology requires animators to be program­
mers, and offers little in the way of artistic control. It was clear therefore that a more explicit
system was required to give this control - but not at the expense of such a low-level method­
ology as moving individual vertices; this is particularly true with articulated figures such as
a human.

In this section, methods for controlling computer animation are discussed. Some methods
are high-level in that they are based on abstract concepts (e.g. ‘move the block 5cm north’)
and others rely on low-level control. It would often seem that an automated, physically-
based model would be best suited to animating complex models such as a human being. In
the real world however, animators prefer to have more expressive control over the model.
This is particularly apparent in cartoon-like animations, where the characters (more often
than not) defy the basic laws of physics; for example in the Pixar production Finding Nemo,
the main characters move through the water almost as if they are unaffected by the water.

The most successful methods therefore, are those which bridge the gap between explicit and
implicit control - allowing the animator to be expressive, and yet not give concern to moving
individual vertices around. These methods mostly fall under the control hierarchy category.

3.2.3 Control Hierarchies and Skeletal Systems

Control hierarchies were devised to bridge the gap between a high level of abstraction, and
explicit, low-level control. A control hierarchy allows the animator to move, for example,
the hand of a human model and then have the system automatically define the motion for
the arm bones based on constraints defined on the joints and muscles.

Kinematics is a branch of mechanics, dealing with the movement of bodies. There are two
main methods for achieving skeletal interaction: forward and inverse kinematics:

• forward kinematics involves the animator defining the state of the intermediate joints,
with the system computing the final positions for all segments, and

• inverse kinematics involves the animator defining just the position of the end points
(e.g. the hand), with the system computing the appropriate angles and positions of the

3.3 Deformation 39

other joints.

It is clear that forward kinematics gives the greatest level of control, but at the expense of
the time required to explicitly position the joints. Inverse kinematics removes most of this
burden from the animator, at the expense of less control.

A control hierarchy defined for a skeletal system in a human model will possibly have con­
straints defined, just as joints in the human body do; each joint and muscle in the human
body has a limited range of motions. Inverse kinematics therefore allows the system to au­
tomatically take care of these constraints. A skeletal system is a useful shape abstraction of
an object, as it can be considered as a minimal representation of the object to be manipulated.

Chadwick et al. [CHP89] developed the first layered skeletal model in which the skeletal
model is composed of the skeletal, muscle, and skin layers. The advantage of this separation
into layers is that it allows the animator to concentrate only on the skeletal layer during an­
imation, which is relatively simple compared to the other layers. The system automatically
defines the deformation of the outer skin layer based on the muscles defined underneath.
The muscles in the system are represented by FFD (Free-Form Deformation, discussed later
in Section 3.3.2) blocks, which provide volume-preserving squashing and stretching effects,
as well as muscle expansion and contraction. An interesting problem is that of how to deal
with the joint areas to ensure continuity in the final skin layer, and it is solved by Chad­
wick et al. by defining an additional FFD block at the joint to connect the two FFD blocks
connected to that joint.

3.3 Deformation

Deformation is the act of changing the geometrical shape of an object, and is one of the
ways in which the temporal behaviour of an object can be changed. Deformation is often a
side-effect of computer animation to give greater realism, rather than defining simple linear
transformations of parts of the model. Deformation however is not limited to applications
in animation; the deformation of graphical objects has many application areas, including:

• Animation - as discussed previously, the deformation of soft tissues and muscles in
animated characters conveys important visual cues to the viewer and adds either real­
ism or exaggerated, cartoon-like behavior;

• Surgical simulation - the planning and training of surgical procedures is a large area,
and the physically-based modelling of soft tissues and interaction with surgical tools
must be as realistic as possible for accuracy;

• A Visual Aid - deformation can add important semantic detail to an object (for ex­
ample: focus+context schemes [WZMK05]), perhaps by splitting [ISC07, IDSC04] a
scanned patient’s head in half to reveal the interior structure.

This section explores the use of deformation in the field of computer graphics, without yet
considering its application to volume graphics.

3.3 Deformation 40

3.3.1 Deformation in Computer Animation

The film Luxo Jr. by Pixar set not only a precedent for showing exactly how an articulated
figure should behave and act; it also set a precedent for artistic expressiveness that had never
been seen before in computer graphics. Although the articulated figures comprising Luxo
and Luxo Jr. were rigid, the models were given a typical Disney level of expressiveness by
deforming them as they interacted with the surroundings; for example, the model is seen to
bulge outwards at the base when landing on the ground. This is entirely consistent with the
behaviour of a soft body - the actual volume of the base of the lamp was kept consistent
as the downforce compressed it. This provides us with a view of the animation as being a
deformation over time.

The important observation of the above is that although there is a nexus between defor­
mation and animation, there is a fundamental difference between animating a model and
deforming it - animating a model can simply consist of moving its component parts around
by translations and rotations, whereas deforming a model means changing the geometrical
structure of the model itself. Deforming polygonal meshes is best achieved with a high-level
of control; the connectivity between vertices can present a problem if the animator is forced
to specify each vertex position manually.

3.3.2 Free-Form Deformation

Barr [Bar84] introduced nonlinear local and global deformation into computer graphics by
defining transformations that depend on the position in space on which they act. For exam­
ple, a twisting effect can be achieved by varying the degree of rotation along the twist axis.
Though conceptually simple and mathematically precise, this method requires algorithmic
or mathematical specification of the spatial deformation. Specifying deformations in this
manner is very much on a trial and error basis, and offers no user interaction. Barr later
discusses methods for ray tracing parametric and implicit surfaces [Bar86] by defining the
problem as computing the mapping between world and object space.

{s,t,u)

F F D a F F D b

Figure 3.1: Free-Form Deformation

Free-form deformation (FFD) was introduced by Sederberg and Parry [SP86] as a method
for specifying spatial deformation for any modelling representation. With an FFD approach,

3.3 Deformation 41

objects are embedded in a space (the FFD Block) which is actively deformed, deforming
the object inside. The deformations are modelled by manipulating the control points of a
parametric model; the author uses trivariate Bernstein polynomials. Once an initial paral­
lelepiped lattice is defined, the lattice-space coordinates are found for all vertices within it.
The lattice is then deformed by manipulating the control points of the Bernstein model, and
the deformed vertex positions of the object are found by substituting the lattice space coordi­
nates into the Bernstein equation. Volume-preserving FFDs are also possible, and are useful
for modelling squashing and stretching on solid objects. Coquillart [Coq90] later extended
FFD to deformation in non-parrallelpiped lattices to become EFFD (extended FFD), at the
expense of additional complexity in computing the new vertex coordinates for the deformed
lattice.

Kurizon [KY95] introduced ray deflectors to the raycasting/raytracing pipeline which allow
for both global and local deformations of any object representation that can be rendered
with a raycasting renderer. A ray deflector is defined as a source of gravity with a given
strength and field of influence (its gravity field), which has the effect of deforming the path
of rays fired through world space. The gravity field is defined as a sphere for simplicity, but
the author states that arbitrary shapes are possible. In addition, gravity fields are allowed to
overlap. One source of trouble with this approach, although elegant, is that the user must
think in terms of the opposite effect; gravity pulls rays towards it, not the intended objects.
Placing a gravity source near a box, for example, will produce a noticeable spherical bulge
in the box where rays that were destined to miss the box were pulled towards it. Kurizon and
Yagel [KY97] later followed up with a GPU implementation of ray deflectors, performing
the forward-mapping of the deflection on the CPU and using the GPU to render the resulting
piecewise linear approximation.

3.3.3 Physically-Based Modeling and Simulation

Barzel defines physically-based modeling as a modeling scheme in which ’’...the behaviour
of objects is determined via simulations o f physical laws” [Bar92]. Terrzopoulos et al. [TPBF87]
first applied physically-based models to computer graphics by simulating flexible materials
such as rubber and cloth under the influence of external forces. Physically-based modeling
and simulation plays an important role in CG animation productions, ensuring that objects
interact with their surroundings correctly, and if necessary, are deformed appropriately. The
Pixar production Finding Nemo employed extensive Computational Fluid Dynamics simu­
lations to achieve the highly realistic behaviour of the water. The most important role of
physically-based modeling is found in scientific simulations.

Physically-based modeling plays a large role in surgical simulation due to the requirement
of a high-accuracy simulation of the real world. Surgical simulation is most often used for
the training and planning of particular surgical operations, and involves simulated models
of organs, tissue, etc., and simulated surgical tools such as the scalpel. Such simulations
are commonly undertaken with a haptic input device, so the feedback of forces upon this
device must be faithful also. In surgical simulation, soft tissues must behave as they do in
the real world, reacting to the influence of external forces (i.e. the virtual tools) and internal
forces (stretching, compression, etc); the expense however of such accuracy is usually a

3.3 Deformation 42

high amount of computation involved.

Simulations of real materials often involve the computation of many partial differential equa­
tions, which severely limits the real-time implementation options. Reduced accuracy and
approximations of the models are often employed, along with various optimisation tech­
niques. The two most common simulation techniques, namely mass-spring models and the
finite element method, are discussed below.

Mass-Spring Models

Mass-spring models are regarded as the conceptually simplest physically-based model [CIJ+07].
A mass-spring model represents the deformed object as a grid of mass points, and a set of
springs which connect the mass points together. The connection of mass points is made not
only to neighbouring mass points, but also diagonally-adjacent mass points. At any point in
time, the state of the system is defined as the the positions and velocities of the mass points;
the forces on each mass point are calculated from the internal forces caused by propagation
from neighbouring mass points through the springs. The motion of each vertex based on this
information is calculated from Newton’s second law of motion, and numerical integration
must be applied to solve the system of coupled ordinary differential equations.

Mass-spring models are commonly used in surgical simulation where soft tissue and muscles
must behave correctly in order that the doctors obtain a realistic simulation [NT98J. Such
systems can be implemented on the GPU as in [GW05] where the authors implement a real­
time cloth simulation by solving the system in the vertex shader and writing the new vertices
to a vertex array using render-to-vertex-array functionality.

Finite Element Method

The Finite Element Method (FEM) is a method of simulating the dynamic behaviour of a
deformable object when presented with forces. Because computers cannot deal with the
continual nature of such models, FEM discretises the computation and interpolates between
samples smoothly to approximate the continuous solution. FEM plays a large role in the sim­
ulation of surgical operations as accuracy of simulation is of utmost importance [CIJ+07].
Surgical simulation is useful not only for training purposes, but also for planning a complex
surgical procedure in advance of the real thing.

The disadvantage of FEM for such an interactive application as surgical simulation how­
ever is its computational complexity; FEM requires a typically very large number of partial
differential equations to be computed, making real-time implementations difficult. Many pa­
pers have been published attempting to reduce the computation, including simplification of
the mathematics [BNC96], offloading some computation to the GPU [BFGS03], developing
hybrid FEM/mass-spring models [CDAOO] or providing multilevel approaches [DDCB01].

3.4 Deformation o f Volumetric Data 43

3.4 Deformation of Volumetric Data

A volume dataset offers a distinct advantage over a surface representation of an object: the
ability to view the full internal texture information with semi-transparency. Depending on
the rendering algorithms used, transparency with surface-based graphics can be a complex
procedure; with the traditional OpenGL/DirectX rasterisation pipeline, any semi-transparent
surfaces first have to be depth-sorted in order for the card to perform a correct blending
operation for all pixels. Depth-sorting objects however is nontrivial, as special consideration
is required when objects intersect.

As discussed in Chapter 2, volume graphics offers simple rendering algorithms that can of­
fer high visual accuracy and full internal texture information, and even interactivity when
implemented with optimisations or modem GPUs. Coupled with the increased availability
of volume datasets from scanning equipment, volume graphics is a fast-growing field of
computer graphics. Unfortunately, it is apparent that the vast majority of deformation tech­
niques available are primarily surface-based and do not take the discrete nature of volume
data into account. It would be a great benefit to animators to be able to take advantage of the
wide variety of volume models available scanned from real-world objects, complete with
full internal texture information, and integrate them into the standard graphics pipeline.

This section explores the issues surrounding volume deformation from a technical stand­
point, detailing methods for deforming volume data in the discrete (by treating the volume
as a collection of samples) and continuous (by evaluating the deformation in world space)
cases.

3.4.1 Difficulties of Volume Deformation

There are several areas of difficultly in working with volume data for deformation purposes.
The deformation of volumetric datasets is seen as a more expensive problem than traditional
surface-based animation due to the sheer amount of data that is required to be modified -
surface-based models only need to represent the boundary of objects via mesh approxima­
tions, whereas volume datasets often end up representing much empty space and internal
texture that may not even be seen.

Most volume datasets are created by scanning real-world objects; the end result being a
large group of samples in a grid with no topological or semantic information. The major­
ity of surface-based models used for animation are created with deformation in mind and
thus are created with all geometric and semantic information necessary for intuitive defor­
mation, such as joint/bone connectivity, range of motion and abilities of particular muscles
structures, and so on.

The main issues with deforming a discretely sampled object are given below.

• Lack of geometrical information - the information governing the shape of the objects
contained within a volume dataset has to be inferred with post-processing methods. It
is often useful before adding semantic information to such a dataset to be given infor­
mation on the shape of the objects contained within. Such information however can

3.4 Deformation o f Volumetric Data 44

be approximated using various methods - i.e. the construction of a given isosurface
using the Marching Cubes algorithm [LC87], or added by hand.

• Lack o f semantic information - semantic information with computer models in general
is usually added as a post-processing task - once an animator creates the skeletal
model and skin for a character, the relationship between joints is defined. Volume
datasets are particularly hampered in this respect due to the larger amount of data;
adding semantic information for each voxel would result in a time consuming process.
Semantic information can be added more easily with segmentation techniques, where
portions of the volume dataset are identified quickly as being part of one semantic
object or another; for example, the white matter and grey matter in a CT scan of a
brain. Segmentation techniques are discussed in detail at the end of this chapter in
Section 3.8.

Because of the sheer bulk of data in a volume dataset, deformation methods for volume data
will often convert to an intermediate representation of a pre-computed isosurface (using
Marching Cubes or similar methods). The deformation of a polygonal mesh (ignoring the
deformation methodology used) involves the translation of its vertices. Once these vertices
are translated, the new polygons can be rasterised as before using a forward-projection or
backward-projection method.

3.4.2 Spatial Transfer Functions

Spatial Transfer Functions (STFs), introduced by Chen et al. [CSW+03], define a unified
method of specifying the geometrical transformation of every point in a volume dataset. A
function <£ : E3 —*■ E3 defines, for eachp e E3, the spatial transfer of point p. An associated
inverse function <h_1 : E3 —> E3 defines, for each P e E3, the inverse of this deformation
such that 3>-1 (3>(p)) = p. Depending on the complexity of $, the inverse can be difficult to
obtain automatically. A new volume dataset V ' from a spatial transfer function is therefore
defined as, for each p G E3:

V '(p) = V (S(p)) (3.1)

Spatial transfer functions can be considered as scalar fields in their own right, and are re­
ferred to in this context as spatial transfer objects. Spatial transfer objects can therefore be
represented as a discrete volume dataset where each point p in the dataset contains a new
point p' denoting the spatial transfer of p to p’, or in the case of a backward-mapping, p'
to p. Related to STFs are SDFs - Spatial Displacement Functions [Isl07], which define the
relative displacement of the point instead of a new absolute position.

Figure 3.2 shows two frames from an animation of the CT Carp dataset. The animation was
specified with a backward-mapped spatial transfer function that performed a simple inverse
bend around the x axis. The texture of the carp was produced by obtaining an image of a
carp, and producing a small tessellated image of its skin using the image editing software
Paint Shop Pro’s tessellation functionality; the texture image was applied to the carp by
simply sweeping the texture through one axis. The lighting of the carp was computed using
backward-mapped points for central differences, as shown in equation 3.2. The cost for

3.4 Deformation o f Volumetric Data 45

Figure 3.2: Two frames from a backward-mapped Carp animation, specified using a spatial
transfer function. The carp is textured with a 2D image swept through one axis.

rendering one frame of the animation on a Pentium 4 3.4GHz using a software raycasting
engine was approximately 40 seconds.

The carp animation shows that for simple deformations, spatial transfer functions work well;
the function itself was specified in around 5 minutes including tweaking time. However,
it does highlight one of the drawbacks of backward-m apped spatial transfer functions in
general - the prohibitive cost of rendering. It is not possible to tell in advance, given a point
p on the ray, whether p will contribute in any significant way to the final image; i.e. after
applying 4>_1 (p) = p ' , whether p' will land inside the area representing the body o f the carp.
p' may land outside the carp in a region that maps to zero opacity, or even worse, could land
outside of the dataset entirely; it is only after applying <f>-1 that this can be known for sure.
Various optimisations can be made to the STF to avoid complete evaluation in particular
world-space locations, but the problem is still one with no general solution.

3.4.3 Forward and Backward Mapping

The choice of rendering method used for the deformed volume data is directly affected by the
underlying choice of mapping direction, and vice versa. In the case of a forward-projection
algorithm (such as Splatting, as described in Section 2.3.4), the voxels are projected to the
framebuffer in their newly transformed positions. For backward-projection algorithms, the
renderer must discover the actual point to sample in the dataset for each sample point on
the ray. Assume the existence of a spatial transfer function <f> which takes a point p G E.
The inverse of this function, <f>-1 essentially asks the question “For the current point in the
world, what point should be here based on the deform ation?”. This deformation inverse
function 4>_1 is used with raycasting algorithms for volume rendering.

Figure 3.3(a) shows a forward-projection algorithm operating on a voxel in the dataset with a
spatial transfer function. The spatial transfer function </> is applied to the dataset voxel to ob­
tain a new voxel position (left-hand side of diagram), which is now forward-projected to the
framebuffer. Figure 3.3(b) shows a backward-projection algorithm applying the backward-
mapping function <F_1 to a selected sample point on the ray. The resulting point (right-hand
side of diagram) is the new sample point to be used in subsequent stages of the rendering
process. In the case of direct volume rendering, this point would be sampled and used in the
ray accumulation equation.

In order to obtain accurate lighting information, the gradient computed using central differ-

3.4 Deformation o f Volumetric Data 46

deformation space dataset space

framebuffer

(a) Forward Mapping

(b) Backward Mapping

Figure 3.3: Forward and backward spatial mapping

ences must be evaluated in deformed space by applying the $ -1 to each point used in the
equation. Equation 2.9 for computing a normal with the central differences technique now
becomes:

N x = !/,*))
Ny = V ($ ~ 1(x, y + 1, 0)) - V ($ _1(x ,t/ - l , z)) (3.2)
N z = V & - \ z , y , z + l)) - V ($ - 1(x , y , z - l))

It is apparent from Equation 3.2 that if the cost o f the deformation function is high, then
the cost of com puting an accurate voxel gradient will be especially high, as the deformation
inverse function must be computed an additional six times. If the Jacobian of the deform a­
tion can be discovered, then a much more efficient mapping of normals can be realised by
computing normals in object space and mapping them directly to world space.

There exist a variety of surrounding issues with both the forward-projection (and subse­
quently forward-m apping) and backward-projection (backward-m apping) of deformed vol­
ume data:

• Forward-projection - In the case of forw ard-projection rendering, there exists the
problem of gaps appearing where voxels are pulled apart, creating holes in the final
image. This is due to samples adjacent in world space mapping to non-adjacent pixels
in image space. One solution is to create new samples on-the-fly, but determining

3.4 Deformation o f Volumetric Data 47

where to create these new samples could prove difficult and memory-intensive. An
image-based solution could attempt to close the gaps in the final image, but the diffi­
culty this time is choosing exactly what data to place in the gaps. A related problem
is that of two or more voxels projecting to the same pixel in screen space.

• Backward-projection - Raycasting Tenderers are presented with the difficulty of recov­
ering samples when the volume grid loses its connectivity information. In a structured
grid, the position of each voxel is inferred implicitly - for each sample point on the
ray, the position in the volume dataset can be calculated simply. The lack of structure
caused by any non-linear deformation necessitates additional data to be encoded with
each voxel detailing the explicit position of the voxel. However, even with this addi­
tional information, calculating the sample point position inside the deformed dataset
is nontrivial.

In a structured dataset, the voxels can be accessed in memory implicitly. For example, in a
structured, regular 3D grid, a voxel at position P(x ,y,z) can be accessed at memory location
P(x,y,z) = data + (z * dx * dy) + (dx * y) + x. For a dataset placed at the world origin
with 1:1 scale, world positions within the dataset boundaries correspond to dataset positions.
Affine transformations on the dataset are also possible by transforming world points to ob­
ject space with transformation matrices. When the dataset has been deformed and therefore
de-structured, simple methods for obtaining surrounding voxels for interpolation no longer
exist. If such voxels are located, the method of recovering a continuous value based on their
positions and values presents a further problem.

3.4.4 Reconstructing Volume Data

The most important consequence of the issues discussed in the previous section is that there
is occasionally a close coupling between the deformation methodology / algorithm and ren­
dering algorithm, unless some form of reconstruction takes place; that is, creating a new
volume dataset to be rendered with a standard direct (or even indirect) volume rendering
algorithm. A close coupling of deformation methodology can exist where complex data
structures are devised to maintain deformation information, which must then be evaluated
for rendering. Evaluating the deformed object in world space using a backward-mapping
function however frees such restrictions, provided such a function exists and is easy to com­
pute.

The advantage of reconstructing a deformed volume dataset and rendering this new dataset
is the complete decoupling between the deformation process and the rendering algorithm,
which allows the implementers of both algorithms to create fully generalised solutions with­
out the risk of restrictions caused by the coupling of algorithms. The main disadvantage
however is the potentially large storage cost when one considers the animation of large
datasets such as the Visible Human dataset, which is around 1GB in its static state. If the
Visible Human is moved into a new pose, such as bringing the arms out in front of him,
then there is potentially a large amount of wasted space created by the extension of the di­
mensions of the dataset. A block-based volume representation can partially alleviate this
problem, but such schemes then place an additional burden on the volume rendering algo­
rithm to evaluate this data structure.

3.4 Deformation o f Volumetric Data 48

3.4.5 D eform ation Encoding & D ependent Textures

For deformation methods choosing to work directly with the discretely sampled data, an
encoding of the world space deformation into a new volume dataset is possible. Using such
a system, a renderer can sample each position within the encoding dataset, and use this
information to discover the new sample point in object space.

Backward-mapping algorithms can be implemented on the GPU in this manner by using
dependent textures. A dependent texture is loosely defined as an indirection texture, used
exclusively to gain new texture coordinates for some other texture (in this case, the vol­
ume dataset). The encoded values can represent new absolute texture coordinate positions,
additive coordinate offsets, or a set of parameters to be sent to some mapping function.

A system utilising dependent textures was developed by Rezk-Salama et al. [RSSSG011
deforming volumetric objects by adaptively subdividing the volume using piecewise linear
patches. The user specifies the deformation by picking voxels to drag around. The inverse of
this deformation can be approximated by negating the translated voxel offsets for the texture
lookup. Figure 3.4(a) shows two voxels v\ and V2 being pulled downwards and to the left.

(a) V\,V2 translated (b) Resulting texture coords

Figure 3.4: Deformed Texture Coordinates (2D example)

(a) Volume grid (b) Deformed texture coords

Figure 3.5: Deformed Texture Coordinates (3D example)

3.5 Illustrative Deformation and Visualisation 49

3.5 Illustrative Deformation and Visualisation

Illustrative visualisation of volume data is a useful tool for providing abstractions of medical
data to increase the clarity of the final image and increase the emphasis of particular regions
of the data. This section investigates illustrative visualisation techniques with a particular
emphasis on techniques utilising spatial deformation to achieve their results.

3.5.1 Focus+Context

The aim of illustrative techniques is to bring objects of interest into main focus, but preserve
the overall context; the compliment of this object should also be visible, but brought out of
main focus. This technique in general is known as focus+context visualisation, and is the
subject of much research not just in the graphics community, but in the human-computer
interaction community also. Usability First defines focus+context as [Des03]:

A principle o f information visualization - display the most important data at the
focal point at full size and detail, and display the area around the focal point
(the context) to help make sense o f how the important information relates to the
entire data structure. Regions far from the focal point may be displayed smaller
(as in fisheye views) or selectively omitted.

Focus+context schemes need not always resort to spatial deformation. Viola et al. [VKG04]
implement a focus+context volume rendering algorithm in hardware using a technique called
importance-driven volume rendering in which regions of the volume are labelled according
to their importance and then the most important regions are given priority when visualised
by rendering these regions in front of the other regions. Ikits and Hansen [IH] give a fo­
cus+context interface for GPU volume rendering with the aim of improving user interaction
with volume data. The authors implement an interactive lens for magnifying portions of the
volume that the user is interested in, performing the perturbation of texture coordinates in
the fragment shader.

3.5.2 Utilising Deformation for Visualisation

Wang et al. [WZMK05] implement a focus+context volume rendering algorithm using a
variety of different ‘magic lenses’, similar to Kurzion’s ray deflectors ([KY95]). The lenses
are semantically-aware in that they can deform the path of rays fired into the object depend­
ing on whether the rays are near an important region in the volume. Important regions have
the effect of pulling rays towards them, which on the final image has the effect of making
these regions appear much larger than they actually are.

McGuffin et al. [MTB03] make the case for using deformation methods for improving the
ability to view the internal structures of volumetric data, showing that spatial deformation
can better assist the user in understanding the object interior over simply using semitrans­
parent transfer functions with direct volume rendering. Their system implements a variety
of tools with real-world analogues, such as cutting and peeling tools. The tools are designed
to remove large parts of the dataset ‘out of the way’ to enable the interior of the object to

3.5 Illustrative Deformation and Visualisation 50

be visible primarily. The tools are also semantically-aware in that the tool’s effect differs
depending on the value of the voxel, allowing for effects such as splitting the skin away from
bone. The rendering algorithm is a simple point-based renderer using forward-projection of
the new voxel positions.

A tool developed by Chen et al. [CCS06] allows for illustrative visualisations of volume data
through tool-based deformations. The tools are designed to cut, peel and dissect the data to
allow for illustrations like those typically found in medical texts. The authors give examples
of the Visible Human’s wrist being cut open to reveal the internal muscle and bone, and the
skin of the head being separated from the skull. An important distinction is made between
axis, surface, and segment-aligned operations: axis-aligned operations treat space as divided
by an axis-aligned plane; surface-aligned operations treat space as divided by some arbitrary
surface (e.g. a distance isosurface from a computed distance field); and segment-aligned
operations treat space as divided by segmentation operations. The authors additionally give
a normal-blending scheme for correcting normals at discontinuities. A GPU implementation
is discussed by the authors whereby a backward-mapping scheme operates on the fragments
generated by slices aligned with the viewer. The requirement of storing both the volume
dataset and the feature mask as a 3D texture imposes a high memory requirement on the
technique.

Displacement mapping was introduced by Cook [Coo84] as a simple means of adding sur­
face detail to objects by perturbing points on the surface in roughly the direction of its
surface normal. Correa et al. [CSC03] give a system for performing discontinuous dis­
placement mapping on volumetric models in which the displacement mapping function is
discretised into a 3D dataset and stored on the GPU alongside the volume dataset. A slice-
based approach is used to render the displaced volume, allowing the graphics hardware to
perform compositing; the slices chosen are based on the bounding box of the displacement
volume in world space. A fragment program running on the GPU computes the new sample
point p' in the volume dataset as p' = p + (p) where p is the current world-space point
and Dk is the displacement texture. Displacements are handled by defining an alpha mask
stored as an additional 3D texture that defines the region of discontinuity. As with [CCS06],
a normal-blending scheme is used to correct the incorrect normals caused by discontinuities.

Bruckner and Groller [BG06] devised a similar system for illustrative visualisations, in that
the overall context is maintained by keeping non-focus objects in scene. Their methodology
is based around ‘exploding’ segmented portions of the dataset out of view of interesting
portions, termed focus objects - e.g. a head’s skull and outer skin layers can be exploded
outwards, revealing the focus - the brain matter. The volume is decomposed into parts
using tools such as an axis splitter, and each part is rasterised on the GPU in depth order.
The raycasting algorithm correctly skips over areas of the dataset from which data has been
moved, and performs a static transformation to backward-map the exploded parts.

Rautek et al. [RVG06] give a system for caricaturistic visualisation of volumetric data by
specifying points in the volume data corresponding with points in a reference dataset and
exaggerating their positions. Their system also provides a GPU raycasting implementation
using adaptive refinement to give interactive feedback, with a high quality image generated
in around a second.

3.5 Illustrative Deformation and Visualisation 51

Figure 3.6: A series of frames from an animation of a logical/sem antic split o f the CT head

3.5.3 Volume Splitting

Splitting a volume dataset into two or more components is an effective means of provid­
ing an insight into the internal structure of the object, and is discussed in much detail in
[Isl07]. Volume splitting has a large application in medical illustration, where, for exam ­
ple, a CT head can be split in half to reveal the complex bone and muscle structures inside;
such images are indispensable for learning materials. Volume splitting also has an important
application in surgical planning and training, where real-time splitting and rendering m eth­
ods are required with physically-based deformation; in this case, splitting is nontrivial since
splitting the object results in a major change of geometric structure and often results in the
object becom ing two objects.

Islam et al. [IDSC04] present some algorithmic approaches to volumetric splitting. Volu­
metric splitting is defined to be the transformation of two or more component objects over
time such that when the time is zero, the union of all such objects is equal to the original vol­
ume dataset. Explicit and implicit splits are the focus of discussion by the authors; explicit
splitting involves partitioning the volume dataset into explicit component objects and then
applies the transform ations to each of these objects, whereas implicit splitting defines the
regions in terms o f the transformations themselves. For explicit splits, a distinction is made
between geom etric splits where the volume object is split simply in terms of its bounding
geom etry (e.g. down one axis), and logical splitting, where semantic information applied
to the volume dataset is used to split it (e.g. splitting the skin away from the bone in a CT
dataset). The techniques discussed are demonstrated in the form of animations produced
using both explicit splitting, where the visible human is shown to be split into geometrical
blocks and a particle-like behaviour is attached to each block, and implicit splitting, where
the skin and bone are separated in a CT head dataset.

To facilitate easier specification of algorithmic splits, Islam et al. [ISC07, Isl07] devised the
STO M (Spatial Transfer Object M odeler) tool, which allows for both semantic splitting (by
loading a mask volume which explicitly labels each voxel), and geometrical splitting. The
user interface presents the volume dataset as a set o f cubes or spheres to take advantage of
rasterisation hardware if available. Operations such as cutting, peeling and twisting are spec­
ified in real-tim e by viewing the mesh representation of the object. A final ray casted image
is achieved by exporting the operations specified as a spatial transfer object (discussed in
Section 3.4.2, and then importing this object into an API such as vLib.

3.6 Skeletal Systems 52

3.6 Skeletal Systems

The production of realistic-looking animated figures is one of the biggest areas of research
in computer animation today; it is considered by some to be the holy grail of animation
to be able to animate humans and animals in a high-level manner. A comparatively small
amount of research however has been focused on the use of character-based deformations
and animations in volume graphics. This is particularly remarkable when one considers the
availability of the Visible Human dataset, which provides an accurate and complete 3D RGB
volume model of a human being.

Curve-skeletons [CSM05] can be created automatically from volume data and have many
applications, and are considered as minimal representations of an object in that it is possible
to reconstruct the object from the skeleton. An analogy for the creation of a curve-skeleton
is that of a grass fire: if a fire was started on the boundary of the object and began to .
move inwards, then the skeletal lines would coincide with the points inside the object where
the fire fronts meet and extinguish [Blu67]. Such skeletal segments are useful for many
applications, particularly in volume graphics, as will be discussed in coming sections. Hu et
al. [HHCL01] use curve-skeletons for virtual endoscopy, where a reliable path through the
volumetric organ (for example, the colon) can be computed automatically; this path can be
used for intuitive navigation through the dataset by placing the camera on the path.

3.6.1 Block-Based Deformation

Prakash and Wu [WPOO] implement a volume deformation system called Young-Man for the
purpose of animating the Visible Human dataset. Their system first employs a segmentation
method called clustering (discussed later in Section 3.8) to identify the different parts of the
Visible Male’s anatomy, and separating them from the rest of the dataset. The authors em­
ploy this segmentation technique on a dataset-aligned slice-by-slice basis to create disjoint
regions for the arms, legs, and torso of the human. Once these clusters are identified, a series
of bounding polyhedra are placed around them.

The authors produce an animation from this data by deforming the polyhedra and interior
voxel positions using the Finite Element Method (FEM) [CE98], and then revoxelising the
dataset in the deformed state using a technique called voxture mapping (volume texture map­
ping). The voxture mapping process involves computing the position of each voxel inside a
deformed polyhedron block and spreading its contribution to the voxels in the reconstructed
dataset, and the authors give an example parallel strategy for achieving this.

The use of FEM by the system provides a certain degree of realism by ensuring that the
bounding geometry is correctly deformed when forces are applied - e.g. that the arm of the
model flexes. The process of building the bounding polyhedra from segmentation informa­
tion and using FEM and voxture mapping for reconstruction is detailed in [PC98].

3.6 Skeletal Systems 53

3.6.2 Volume Animation Applications

Work by Silver, Gagvani and Kenchammana has established a group of techniques for
character-based deformation and animation of volumetric datasets. The methods published
by the group establish an effective IK-skeleton based method for volume animation that
provides not only a method for the automatic computation of the skeleton given a set of
parameters, but also a method to reconstruct a volume from the modified skeleton.

Initial work on producing skeletons from volumetric datasets was completed in a masters
thesis by Gagvani [Gag97]. This work laid the foundations of the techniques published later
by Gagvani et al., such as a follow-up paper establishing a technique to automatically pro­
duce a skeleton tree from a volume dataset using a volume thinning technique [GKHS98],
with a further paper discussing the thinning technique in more detail [GS99]. The tech­
nique, called Parameter-controlled volume thinning, uses a distance field to identify voxels
belonging to the skeleton of the object. Once a distance field has been created for a sur­
face of interest, the skeleton voxels are identified to be the maxima inside the object. The
authors test for the maxima by comparing the voxel’s distance value with the average of its
26 neighbours. If Avg2Qp gives the average of the 26 neighbours, D istp gives the distance
value, and t is a thinness parameter, then:

Avg26{p) < D ist(p) — t

gives the skeletal voxels, t is a thinness parameter that controls how many voxels are cap­
tured by the algorithm; higher values of t ensure that less voxels are captured, and lower
values result in more voxels being captured, resulting in a thicker skeleton with possibly
many redundant voxels. A thicker skeleton however often gives a better result when the
deformed volume is reconstructed. The subset of voxels defined to be part of the skeleton
(the skeletal voxels) contain no semantic information useful to the animator, so a further
process attempts to automatically derive a skeleton tree from these voxels. The skeleton tree
extraction procedure creates a weighted undirected graph from the voxels. The weight of a
connection is based on the similarity of the distance values, and also the distance between
the voxels; edges connecting voxels close to each other and with similar distance values have
smaller weights. The minimal spanning tree is now computed from this graph to give the
final skeleton tree. Now that the skeleton is created, it can be manipulated by the animator
in an external package such as Alias [GSOOb], where further semantic information such as
joint movement restrictions can be added.

Further papers by Gagvani and Silver detail the reconstruction process further [GSOOa,
GSOOb, GS01]. Once the skeleton tree has been deformed, the skeletal voxels are trans­
formed into place around it. A new volume is reconstructed to be rendered by an volume
rendering algorithm desired. The reconstruction algorithm works by defining spheres around
each skeletal point with radius equal to the saved distance value from the previous stage, and
scan-filling these spheres into the new dataset; the new volume is defined to be the union
of these spheres. Overlapping spheres can result in artefacts near bends where new spheres
overwrite the previous spheres, so voxels with minimal distance to the centre of the sphere
are chosen when conflicts occur. The reconstruction method gives good result images when
rendered with a standard direct volume rendering algorithm. However, it is clear that the
reconstruction phase is not only computationally expensive, but also has a large storage

3.7 Sculpting and Soft-Body Deformation 54

requirement. Datasets such as the Visible Human are often around a gigabyte in size - pro­
ducing an animation at 24FPS would result in a huge number of intermediate datasets being
produced.

Silver, Gagvani and Singh give a real-time rendering algorithm for the deformed IK-skeletons
[SSC03], implemented into a tool called VolEdit. In this system, bounding boxes are de­
fined around each skeleton segment, with a mid-plane algorithm used to connect the bound­
ing boxes to avoid cracks appearing at joint areas. The system now computes a series of
viewport-aligned slices intersecting with the bounding geometry, which are textured with
the original volume object. The slices are composited back-to-front by the hardware, using
the blending capabilities offered by the hardware and API. Though the mid-plane geometry
solves the problem of cracks appearing at joint areas, the solution is still not ideal, as joints
should not be treated in purely linear fashion. This observation is noted by the authors, giv­
ing an example of a joint being rotated around 90 degrees. A better result would be obtained
by smoothing the transition from one segment to another, rather than defining an automatic
mid-plane.

Singh and Silver later applied the VolEdit system to a focus+context scenario [SS04], ad­
ditionally giving a forward-projection algorithm for the rendering stage based on elliptical
Gaussian Splatting. As well as allowing for the rigid transformations implemented in the
previous system, the authors implement additional focus+context tools such as selective
compression (varying the resolution of target areas), selective juxtaposition (splicing sec­
tions of volume objects together), and selective highlighting (varying the transfer function
of target areas).

3.7 Sculpting and Soft-Body Deformation

The sculpting metaphor is based on the act of deforming objects using tools in the same
manner as a potter’s wheel and carving tools. Sculpting can also be used as a method of
creating new volume datasets from template datasets; if the user begins with a dataset with
all voxels set to maximum density, they can carve the dataset into the desired shape. Galyean
and Hughes introduced the sculpting metaphor for volume data [GH91]. The sculpting tools
within the system are represented as volume datasets in their own right, and the interaction
between these tools and the volume dataset governs the modification of the volume data.
For interactive feedback, the system converts the volume dataset into a surface mesh using
the Marching Cubes algorithm, working only on the areas affected by the tool at each frame.
Their system uses a six-degree-of-freedom input device for user input.

Wang and Kaufman [WK95] apply the sculpting metaphor to volume data. A selection
of carving tools is presented to the user, who can apply them to the volume data and see
the results rendered in real-time. The tools are implemented as volume objects (similarly
to [GH91], which simplifies the carving operation to a CVG diff operator. The authors
also give a sawing tool which uses a splatting approach to allow the user to cut out arbi­
trary shapes. A surface-based method called Warp Sculpting was introduced by Gain and
Marais [GM05], which represents the sculpting tools as distance fields to allow for smoothly
weighted operations.

3.7 Sculpting and Soft-Body Deformation 55

The 3D Chainmail algorithm was introduced by Gibson [Gib97] and is regarded as one of
the very first volume deformation algorithms. The method treats the volume dataset as a
set of linked elements in a lattice. Moving one element of the lattice affects connected (in
this case, 6-connected) elements by propagating the stress recursively through the lattice.
The user can specify the object’s elasticity properties, which affect how the stresses are
propagated. The authors specify no rendering algorithm as such, rather the rendering of the
deformation is a simple forward-projection of the voxels as points using OpenGL.

Westermann and Rezk-Salama [WRS01] present a freeform volume deformation technique
that utilises consumer graphics hardware. The technique is based on the idea of explicitly
defining the shape of the volume object to be deformed using a triangular mesh, as a pre­
processing step. The authors’ choice of rendering algorithm involves viewer-aligned cutting
planes (discussed in Section 4.2). Cutting planes intersect with the shape geometry, and
the new volume sample point is chosen based on the inverse of the shape deformation (a
backward-mapping scheme). Rezk-Salama et al. [RSSSG01] produced a followup paper
detailing a similar scheme, this time maintaining a static geometry and deforming only the
texture coordinates, using the inverse of the deformation for the new coordinates calculated
for the slice in the vertex shader. The geometry in this case is specified as piecewise linear
patches to allow for a more accurate interpolation.

3.7.1 Free-form Deformation

Winter [Win02] gives a method for rendering parametric volumes, with a specific example
of Bezier volumes. The approached discussed divides the parametric volume into a set of
tetrahedra, storing the voxel scalar values at each vertex. From this parametric volume the
forward-mapping is computed for each vertex to transform the volume into Euclidean space.
The rendering algorithm is essentially reduced now to an irregular volume rendered - each
ray through Euclidean space is tested against the tetrahedra and once a sample point within
a tetrahedron is found, the new sample value is computed from the tetrahedron’s vertices
using barycentric interpolation.

A customised octree is used to accelerate the process, and additional optimisations are in­
cluded by exploiting coherence between the rays and cells. Normal computation via cen­
tral differences was found to produce artefacts due to the tetrahedral approximation of the
Bezier volume, so instead the normal is computed using central differences in dataset space
and then analytically mapping this normal into Euclidian space.

3.7.2 Sweeping Metaphor

Winter and Chen [WC02] introduced Image-Swept Volumes, whereby a 2D planar template
is swept through a ID trajectory to produce a swept volume. The authors give examples
of sweeping templates defined as images through Bezier curve trajectories, and also simple
sweeps defined by rotating the template around an axis. The method is not limited to simple
2D templates, and the authors additionally give examples of sweeping varying data such as
the slices of a volume dataset through a trajectory to produce a deformed volume. A fire

3.8 Segmentation o f Volume Data 56

effect is achieved by sweeping frames of a flame video around an axis. In order to render
the resulting sweeps, two methods are given: voxelisation and direct evaluation.

The voxelisation method places the planar tem ­
pla te^) along the trajectory and voxelises them
into the new volume dataset using linear interpo­
lation; the planar templates in the case of vox­
elisation therefore are placed using the forward-
mapping of the sweep function. To achieve an
accurate approximation, a recursive subdivision
method is used to position the planar templates on
the trajectory with smaller and smaller distances
between planes until a tolerance threshold is met.

The advantage of voxelising the swept volume in this manner is that the resulting volume
dataset can now be rendered using a standard direct volume renderer with no modifications,
and can thus be integrated into any direct volume rendering pipeline. The disadvantage how ­
ever is the am ount of time required to generate this volume, and the amount of additional
space required to store it.

The authors additionally give a discussion on direct evaluation of the sweep without voxeli­
sation. In order to achieve this, the inverse of the mapping function is required. An analytical
breakdown of obtaining the inverse of the mapping function is given for rotational, trans­
lational, and general sweeps along a trajectory. Computation of the normals in deformed
space is not com puted as in Equation 3.2, the authors instead note that additional com puta­
tion of $ _1 would be prohibitively expensive and therefore give a more optimal solution by
mapping the normal from deformed space to world space using the sweep information.

3.8 Segm entation of Volume Data

Segmentation is a vast subject, due to both the demand for segmentation methods (par­
ticularly in medical image analysis) and the complexity of segmentation in general. Seg­
mentation for 2D discretely sampled objects (i.e. images) has been widely researched and
docum ented; indeed simple segmentation methods exist in off-the-shelf image editing appli­
cations for defining object selections (commonly called the ‘lasso’ tool or the ‘magic w and’
tool). W hile great efforts have been made to devise techniques for segmenting volume
datasets, unfortunately most 2D segmentation methods do not naturally lend themselves to
the additional dimension. This is further exacerbated by the fact that there is a mismatch
in dim ensions between the 3D dataset and the 2D framebuffer, making user-interactive ap­
proaches much more difficult.

The segm entation of images can be defined as the process of partitioning the image into dis­
joint regions, based on some criteria specified by the user. Numerous segmentation methods
have been available in computer graphics aimed at giving users the ability to delineate ob­
jects in an image; for example in the media industry where a graphic designer may wish
to separate a foreground object from the background to apply different operations to each.
Segmentation is therefore one of the primary methods in which semantic information can be

da(t)

Figure 3.7: Sweeping Template (as
used by W inter and Chen [WC02])

3.8 Segmentation o f Volume Data 57

artificially added to a discretely sampled object.

The next section looks at the motivation for segmentation, particularly for volume datasets.
This is followed by a look at various segmentation techniques; firstly image-based tech­
niques which focus on the low-level data, followed by shape-based techniques which at­
tempt to form shapes from segmented regions. These sections also briefly discuss recent
advances in GPU-based segmentation methods.

3.8.1 Motivation

The segmentation of volume data is an important operation in the medical industry. Doctors
might wish to take CT/MRI datasets and remove parts obscuring the parts of interest - e.g.
separating the grey and white matter in the brain is an important step in identifying many
diseases and conditions of the brain, also the separation of the various regions of the brain
aids the doctor in diagnosing the problem.

Segmentation is also a means of adding semantic information to a volume dataset. Such
semantic information can be invaluable in producing deformations and animations of such
datasets, particularly for character-based animation (as discussed in Section 3.6), where, for
example, the arms of the Visible Human dataset need to be delineated from the body in order
to move the arms freely without surrounding parts of the body moving with them. In case
of the Visible Human, the arms are touching the torso, so it is clear that a reasonably high
amount of control and precision would be required to achieve an accurate result.

Segmentation methods can be broadly classified into two categories: stochastic and knowledge-
based. Methods belonging to the former group work only with the data available, with no
knowledge of what the samples in the dataset actually represent. Methods belonging to the
latter category work with some knowledge of what the data represents, and can therefore be
optimised for the specific task at the expense of a less generalised algorithm.

Generalised segmentation algorithms require a larger amount of user interaction in general,
prompting the user for start points for seeding algorithms, or the fine-tuning of input param­
eters that govern the segmentation. Indeed, quite an important and widely-asked question
in computer graphics is whether there exists a segmentation algorithm that can work profi­
ciently on a wide range of input data, with no user interaction. Such a method could employ
Artificial Intelligence methods to provide a result similar to that of a human segmenting the
dataset by hand.

3.8.2 Stochastic Segmentation

Segmentation methods for 2D images have been widely documented. The simplest method
of segmentation is thresholding, whereby a threshold value t is set, and all samples above
or below this value are deemed part of the final segmented object. Figure 3.8(a) shows the
CT foot dataset rendered with a transfer function acting as a segmentation result. In this
image, all voxels above 112 were set to a white colour with full opacity (the bone), and all
voxels below were set to a reddish colour with a very small opacity (the skin). This method

3.8 Segmentation o f Volume Data 58

(a) Threshold (b) Seed Fill before & after (c) W atershed

Figure 3.8: Automatic and semiautomatic segmentation of the CT Foot dataset by means
of (a) a simple threshold implemented as a transfer function; (b) a seed fill, where the left
image shows the original data and the right image shows the seed fill result; and (c) different
parts o f the CT foot segmented using the W atershed algorithm

is adequate for a small number of scenarios, but it offers little in the way of control and often
produces poor quality binary-segmented results.

Algorithm s can be designed to choose thresholds automatically from histogram analysis.
Work presented by Kang et al. [KEK03] presented a method for inferring thresholds based
on analysis o f the histogram, locating Gaussian curves automatically. If the thresholds have
a transition zone inbetween, the classification relies on the standard deviation of the 26
neighbours of the voxel. The remainder of the algorithm relies on morphological closure
and region-growing techniques, with some user interaction required where, for example,
there is a very fine gap between two objects.

Region-growing techniques such as the flood filling algorithm can be easily extended into
3D. A start point (the seed) in the dataset is chosen, and this seed point is grown - that is,
voxels are added in a recursive manner until they hit a predefined boundary. Figure 3.8(b)
shows (left) a slice of the CT foot dataset, and (right) the voxels captured with a seed fill. The
problem s with this approach are carried over from the 2D approach typically used in simple
image editors. Firstly, the filling process easily spills out of the desired area if just a few
boundary voxels are missing. Second, the result is highly dependent upon the user’s choice
of seed point. A seedless version of the method was developed by Zheng et al. [LJTO1] for
volume segmentation.

The watershed algorithm [VS91] has been applied to 2D images in an attempt to improve
the situation. The watershed algorithm treats the image as a set o f disjoint basins, divided by
the edges of the object o f interest. The basis are gradually filled with water, and watersheds
are defined to divide areas where one basin spills into another. The watershed transform is
easily extended into 3D, and hierarchical versions have been devised [HP03] that maintain
the history of the basins merging in order to provide quick user feedback after the initial
com putation. Figure 3.8(c) shows a result from the watershed algorithm applied to the CT
foot dataset. In this image, each basin has been assigned a different colour. The algorithm
has made a reasonable job of segmenting the metatarsals and phalanges.

3.8 Segmentation o f Volume Data 59

3.8.3 Using Artificial Intelligence

A recent trend in the area of image segmentation has been the use of artificial neural net­
works [RAAOO]. The strength of using such methods is that, by definition, they can learn
from past attempts on other datasets and refine themselves in future attempts. The use of
artificial intelligence can be of great benefit to an application as complex as the segmenta­
tion of discretely sampled objects as it is clear that some degree of intelligence is required
to infer higher-level semantic information; e.g. what exactly constitutes a bone structure in
a CT dataset requires a good understanding of the intuitive notion of what a bone constitutes
in terms of its shape, colour, and a good general knowledge of the body in general.

Ahmed and Farag [AF97] use a two-stage system comprising of self-organising analysis net­
works and self-organising feature maps for segmenting a CT dataset. Self-organising feature
maps attempt to represent the three-dimensional data in only two dimensions, grouping to­
gether similar objects with no user interaction. They are also trained automatically.

LEGION (Locally Excitatory Globally Inhibitory Oscillator Network) systems go one step
further into the problem of understanding how the visual cortex interprets multiple objects
in a scene. The systems are derived from experimental evidence on this part of the brain, and
also some theoretical work in mathematically modelling the processes. The central idea is
that the oscillations in the visual cortex can be mimicked in software, attempting to reverse-
engineer the brain’s framework for detecting and identifying the imagery received by the
eyes. Because of the complexity of such a system, simplified algorithms are developed to
work with large datasets [SWY99].

3.8.4 Data-Mining Methods

Clustering can be defined as a measurement of similarity in image regions. Clustering tech­
niques attempt to group voxels together that display similar predefined characteristics. A
TV-dimensional vector is built from each voxel based on the properties of that voxel, and
the set of all TV-dimensional vectors is then fed into the clustering algorithm. One of the
most popular clustering algorithms is iV-means clustering, which attempts to form n dis­
joint, nonempty subsets by grouping together ‘similar’ voxels. Closely related as fuzzy
clustering, which utilises fuzzy ‘if-then’ rules to determine object membership.

Popular algorithms from graph theory can be used in conjunction with clustering. Edges are
built between vertices (in the case of a volume dataset, voxels) that display similar properties
[WL93]), and are then removed from the graph where the vertices touching the edge fail
to satisfy the similarity measure. The result is a graph G that consists of n unconnected
subgraphs, which correspond to the segmented regions.

Markov Random Fields are a statistical method that can be used alongside clustering to
achieve automatic segmentation. Such a field stochastically defines the local properties of
the dataset in a completely generalised manner by modeling spatial interaction between
voxels [RGR97]. Such algorithms unfortunately are computationally expensive by nature
and are heavily influenced by the initial controlling parameters, making segmentation a
trial-and-error experiment.

3.8 Segmentation o f Volume Data 60

3.8.5 User Interaction-Intensive Approaches

Human interaction is often required in medical image segmentation to fine-tune any seg­
mentation efforts made by the system, and also to guide the algorithm as it attempts to
provide segmentation regions. This approach is used with great effect in the PAVLOV sys­
tem [KK99], where a parallel CPU system powers the rendering of the segmented dataset
to allow for real-time updates. The user is invited to segment the dataset using threshold­
ing and morphological dilation and erosion operations. Sherbondy et al. [SHN03] use a
GPU-based implementation of the seed-fill algorithm to segment regions of interest. A sig­
nificant speedup over that of SSE2-accelerated CPU code was achieved. Combined with
hardware-accelerated rendering, the user is able to segment the dataset and view the results
in real-time.

Interactive segmentation need not always use the GPU for the segmentation stage; the CPU
can be used to perform the segmentation step, and the rendering feedback of the segmenta­
tion process can be offloaded to the GPU. Sherbondy et al. [SHN03] render the isosurface
of the segmented object on the GPU. Hadwiger et al. [HBH03] show the possibility of pro­
viding extremely high-quality feedback of volume segmentation techniques that produce 3D
masks as output; demonstrating the potential for many interactive CPU-based segmentation
techniques to use the GPU to render feedback.

3.8.6 Introducing Domain-Specific Knowledge

Stochastic approaches can produces reasonable approximations of the intended result from
the user’s perspective, but very often, introducing a domain-specific solution can produce
highly optimised results tuned for the problem at hand. The requirement of accurate and
automated segmentation techniques for use particularly with medical data often prompts re­
searchers to devise new algorithms and hybrid techniques which are optimised specifically
for a subset of the human anatomy. Such algorithms can often excel completely automati­
cally at the task at hand.

An introduction of domain-specific knowledge to a segmentation algorithm can be achieved
by introducing a pre-generated atlas for the known dataset. An atlas can be considered
as a pre-segmented dataset similar to the dataset to be segmented (the target dataset) and
is used as a reference for the segmentation process. The atlas can be registered with the
dataset to be segmented, that is, aligned to match the target dataset as closely as possible (an
excellent review of medical image registration techniques can be found in [MV98]). Once
the registration is complete, the correspondence can be used define which voxels belong to
which object.

This approach is adopted by Straka et al. [SCD+03] where a watershed transform is com­
bined with the atlas to create partitions of similar areas of the dataset. Atlas information
can also be factored into previously stochastic methods, such as Snakes [KWT88, BB03] or
statistically-based segmentation [FRZ+04] to further improve the results. Grau et al. give
an improved watershed algorithm that uses prior information from an atlas to improve the
accuracy [GMA+04] of the standard watershed transform.

3.8 Segmentation o f Volume Data 61

3.8.7 Shape-Based Segmentation

While image-based approaches can result in the desired result for simple cases, they are less
than adequate in many cases due to their operating on the image pixels with no knowledge
of the object they are attempting to define. Shape-based approaches operate on shapes in the
image, resulting in a much more intuitive segmentation.

One such example of shape-based segmentation is one of the many energy-minimising mod­
els that exit for segmentation. Energy-minimising models are explicitly defined geometric
models defined within the object of interest. Forces then act upon this model to change
its topology, attracting it towards the desired result. Such models used for segmentation
purposes are commonly known as deformable models.

The most popular energy-minimisation technique for image segmentation was introduced
by Terzopoulos etal. [KWT88], The Snakes system uses energy-minimising splines (called
snakes) defined inside the target object. Once defined by the user roughly around the object,
the snake attempts to minimise its internal and external energy as:

The internal energy Eint is defined as the energy of the snake itself - e.g. the severity of the
bends, and its total length (the amount of stretching). This energy gives some predictability
for the shape of the snake and ensures that a satisfactory topology is maintained. The exter­
nal energy is defined as the image energy (and any user-defined constraints specified through
the user interface), and it is this energy which attracts the snake towards areas of interest in
the image. The most common image energy functional would be an edge detection function,
which returns smaller values near edges in the image and larger values in solid areas.

Ballerini et al. developed a bone age assessment system where multiple snakes are defined
around bones [BB03] in order to segment the bones of a hand away from the flesh. Miller
et al. [MBL+91] extended the energy-minimisation model into 3D. Their system works by
defining a polygonal balloon inside the object of interest. Once defined, the balloon grows
outwards due to its internal energy, and due to the external energy, it converges to the shape
of the object. An internal energy functional additionally maintain a correct topology for the
balloon, keeping it closed. The image energy functional used is quite a simple threshold
operation which gave reasonable results.

3.8.8 Extending 2D Methods to 3D: Slice-Based Segmentation

Slice-based approaches to volume segmentation utilise existing 2D segmentation approaches,
but extend them into 3D by operating in a 2.5D manner - building 2D slices of the data and
then stitching the slices together into a 3D segmentation result. Figure 3.9 demonstrates a
slice-based approach to volume deformation where (a) a slice of the volume dataset has been
shown to the user, and a Snake defined on the slice, and (b) the system has constructed a 3D
representation of the segmentation by connecting the slices into a boundary representation.

3.8 Segmentation o f Volume Data 62

s l i c e r

dataset

s l i c e o

s l i c e i

(a) A slice of the dataset is shown to the user (b) A mesh connecting the slices

Figure 3.9: Segmenting a dataset with 2D slices

The sim plest volume segmentation techniques therefore can be implemented by presenting
slices of the dataset to the user and allowing the user to segment each slice until the final
slice is reached. More sophisticated methods would allow for arbitrarily-positioned 2D
planes to be defined within the data, with the user shown an interpolated slice image from
the plane. This process in general is known as contour-connecting, and has origins not in
segmentation but in obtaining isosurfaces from volume data by operating on slices of the
dataset and joining the slices into a final triangular mesh.

Num erous approaches exist for joining contours together. The most common approach is to
discretise the contour into a series of vertices and then attempt to join the vertices between
each slice; however this approach is plagued with problems such as irregular shapes, sudden
large changes in the shape of the contour, and the existence of multiple contours. Fuchs
et al. [FKU77] treat the problem as graph-theoretical by attempting to create a graph of
minimal cost between slices. Shantz [Sha81] treats multiple contours in a single slice as
one contour by concatenating the contours before joining - solving what is known as the
correspondance problem where it is unclear which contours are related [Mey94J. Ekoule et
al. [E P091] use a heuristic approach, dividing the contour into convex and concave regions
and creating intermediate contours for the cases where contours split or merge. Giertsen et
al. [GHF90] give an interactive approach to connecting the slices. Jones and Chen [JC94a]
give an approach based on creating a distance field beforehand, which is used in conjunction
with the M arching Cubes algorithm to create a final triangular mesh. Bajaj [BPS96] give
a method for creating an isosurface triangular mesh from a volume dataset by choosing an
initial seed point and propagating the mesh around the isosurface, effectively propagating
the contours.

3.8.9 Level-Sets

The energy-m inim isation techniques discussed previously all maintain explicit representa­
tions of the surface at any time. Level-set methods represent the surface implicitly by solving
partial differential equations, and are conceptually similar to the shape-based methods dis­
cussed in the previous section; except the underlying surface representation is im plicit rather
than an explicit surface.

3.9 Summary 63

A surface S can be expressed as the level set of a volume dataset as:

S = {s | V (s) = k}

where k is an arbitrary isosurface. When k — 0, the level set is the zero level set of V.

The advantage of an implicit representation is immediately apparent when one considers
the splitting, rejoining, and generally unpredictive nature of some objects; since an explicit
representation is only generated from the implicit representation when required, such topo­
logical changes are handled naturally. The actual segmentation process involves evolving
the level-set surface for an initial curve defined in a slice of the dataset. An explicit surface
can be extracted for rendering if required.

Whitaker et al. [WBMS01] give a framework for the level-set segmentation of volume
datasets, giving excellent results for a complex (that is, the isosurface is complex) dendrite
dataset. The initialisation of the isosurface is achieved interactively. Lefohn etal. [LKHW04]
give a GPU implementation of a level-set solver for volume segmentation, giving interactive
frame rates for the evolution of the isosurface. Cates et al. [CLW04] give a similar, inter­
active method that evaluates the surface on the GPU that relies on a novel GPU memory
management scheme.

3.9 Summary

This chapter has introduced the most important and relevant concepts of animation and de­
formation, with a particular emphasis on their application in volume graphics. With volume
graphics becoming a much more widespread and accepted field of computer graphics, re­
search is increasingly becoming focused on the manipulation of volume datasets. However,
the amount of research focused on the area is still rather limited in terms of scope; concen­
trating mainly on very specific applications such as surgery planning.

A look at animation and deformation was given at the beginning on the chapter, with par­
ticular emphasis on how the two concepts are linked implicitly, and the control systems that
can be used for animation. The subject of deformation of volumetric data was introduced in
Section 3.4, introducing the concept of Spatial Transfer Functions to the reader and giving
an important overview, of the low-level technical issues that exist when deforming discretely
sampled objects such as volume datasets; in particular, the forward and backward mapping
of volume data was discussed, and the manner in which this data must be subsequently
rendered.

An review of the most important works in the field of volume deformation and animation
was conducted in following sections, including a review of the applicability of skeletal sys­
tems (Section 3.6), and soft-body deformation and sculpting (Section 3.7) methods. The
chapter ends with a comprehensive discussion on volumetric segmentation techniques and
the manner in which segmentation can add the necessary semantic information to volume
datasets to enable complex deformation and animation.

Chapter 4

GPU Volume Rendering

Contents
4.1 The OpenGL P ip e lin e ..
4.2 Raycasting Volume Rendering on Graphics Hardware
4.3 Cell-Projection & Visibility S o r t in g
4.4 Point-Based R e n d e r in g ...
4.5 A Hybrid CPU/GPU R e n d e r e r ...
4.6 S u m m a ry ..

65
69
73
73
76
86

The past ten years have seen a revolution in the power and capabilities of consumer graphics
hardware. Moore’s Law, which states how the number of transistors on modem processors
increases over time, has been observed to break down when considering the powerful paral­
lel processors found on consumer Graphics Processing Units (GPUs) due to their excessive
growth. Consumer in this context implies that the hardware can be purchased inexpensively
at a local computer store, and such hardware is most commonly utilised to play modem
computer games.

Due to the increasing power of the hardware and ease of use of the APIs, many researchers
have been using graphics hardware for purely computational tasks - something unforeseen
by GPU manufacturers initially, although NVIDIA have been quick to respond with CUDA
(Compute Unified Device Architecture) which attempts to bridge the gap between the CPU
and GPU by providing both on one chip [CUD].

Volume rendering is often referred to as an ‘embarrassingly parallel’ problem - the primary
method of rendering (raycasting) can be computed entirely in parallel since there is no inter­
ray dependence unless this dependence is introduced explicitly by a specialised algorithm.
Such a rendering algorithm is perfectly suited to the GPU, which can execute many of these
rays in batches. Such parallelism can be defined as:

[A problem o f size N, where] it is quite easy to achieve a computational speedup
o f N without any interprocess communication.... each process is given o f the
computations that can be independently done, and the results do not need to be
combined in any way. [Har]

64

4.1 The OpenGL Pipeline 65

This chapter therefore gives an overview of the tools, technologies and algorithms used to
produce real-time volume rendered images using the GPU; beginning with an overview of
the OpenGL pipeline and the parts of the pipeline exploited for volume rendering. This
is followed by an overview of GPU volume rendering techniques; including a review of
important forward-projection rendering techniques implemented on the GPU and their im­
plementation issues.

The latter half of the chapter documents an example implementation of a new hybrid CPU/GPU
raytracer that takes advantage of the GPU for computing ray/isosurface intersections within
a volume dataset. A raytracing software application, Igneus [Spe] was used in the develop­
ment process. The Igneus raytracer provides realistic images using global illumination, and
is extensible via an object-oriented interface. A customised shading class was implemented
for the hybrid functionality.

4.1 The OpenGL Pipeline

The OpenGL API is a popular graphics API in the research industry due to its extensibility
and cross-platform implementations [WND099]. Any functionality that does not already
exist in the base API can be added by hardware vendors via the extension interface, making
OpenGL attractive for algorithm developers wishing to take advantage of the very latest
hardware capabilities.

Figure 4.1 gives a simplified version of the OpenGL graphics pipeline. The vertices of the
primitives specified by the user are sent to the vertex unit. The standard operation in this unit
is to modify the vertex position to bring it from world space to view space. Next, the vertices
are sent to the rasteriser. The rasterisation process converts the primitives specified by the
incoming vertices (usually a sequence of triangles) into screen-space fragments. A fragment
can be considered to be a pixel in view space corresponding to a pixel in the framebuffer,
except a fragment has an additional depth value specifying its 2-position in view space.

A recent addition to graphics hardware has been the ability to fetch texture data in the vertex
shader - referred to as vertex texture fetch functionality. This functionality allows for large
amounts of data to be input to the vertex stage encoded into the colour values of a 2D texture.
Before this capability, data sent to the vertex shader was only accessible via arrays that had
to be indexed at compile-time.

The role of the vertex processor is to take each vertex comprising the object to be rendered
and bring it into view-space ready for the fragment shader; achieved by multiplying the
vertex’s position in world space by the current model-view-projection matrix. The vertex
can potentially have many associated attributes specified by the API, such as colour / opacity,
texture coordinates, and so on.

Before a fragment is processed by the fragment shader, it must survive several tests to de­
termine whether it will contribute to the final image. The most well-known and commonly
employed of these is the depth test. In real life, opaque objects closest to the viewer obscure
objects behind them. To simulate this, the graphics pipeline includes a depth buffer (other­
wise known as the z-buffer), which contains a scalar value for each pixel in the framebuffer

4.1 The OpenGL Pipeline 66

o o
o ° oa Vertices

Texture
Data

f Vertex "N
V Processing J

V
0 ° o Processed vertices

Rasterisation

V

C Fragment 'N
Processing J

Fragments

V
Processed fragments

Framebuffer

Figure 4.1: The OpenGL Graphics Pipeline

denoting the depth of the closest previously-processed fragment. The depth test compares
an incoming fragm ent’s depth to the depth stored in the depth buffer. If it is less, then the
fragment survives, otherwise the fragment is discarded as it will not contribute to the final
image. The depth testing procedure is customisable for different applications however, and
can be easily modified in OpenGL using the following three functions:

• glEnable/glDisable with bitmask G LJDEPTH.TEST - enables/disables depth testing

• glD epthFunc - changes the depth comparison function. Defaults to < , but can be
changed to other comparisons such as > ,= , etc.

• glD epthM ask with GL-TRUE or GLJFALSE - enables/disables writing to the depth
buffer, but does not affect depth buffer testing.

The stencil buffer provides the user with a means of fragment culling in a similar m anner to
the depth buffer, but in a much more arbitrary manner. The stencil test is performed before
the depth test, and tests the current fragm ent against its competitor in the stencil buffer using
a function defined by the user. The stencil buffer is typically used to mask out areas of the
screen to avoid computation taking place in those areas.

4.1.1 The Programmable Pipeline

As the power of the graphics hardware increased, so did the demand for the realism found
in other media such as film. This realism is achieved by customisation of parts of the graph­
ics pipeline, instructing the pipeline, for example, exactly how to shade a particular pixel

4.1 The OpenGL Pipeline 67

accurately based on its material properties and lighting conditions. A program that modifies
part of the pipeline in this way is called a shader. An example is Pixar’s RenderMan shad­
ing language [Pix05], which is used in Pixar’s motion pictures. The shading instructions in
this case are evaluated on the CPU, not using graphics hardware, and are thus simpler to
implement.

Developers had previously achieved complex effects by using multipass techniques [POAUOO]
Due to the complexity of designing such effects, developers often created their own shad­
ing language that translates into C/C++ API calls, such as the Quake 3 Shading Language
employed in the computer game Quake III : Arena [JH99]. In 2001, NVidia released the
Geforce 256, the first consumer programmable graphics card. The card allowed for devel­
opers to program the pipeline in a well-defined manner by employing shaders to alter to the
vertex and fragment streams.

The shaders written for the Geforce 256 were written in the card’s native assembly language,
and were thus neither portable nor easy to write, maintain and understand. Cg (‘C for
graphics’) was introduced by NVIDIA in 2003 [MGAK03] to solve these problems. Cg
provides developers with a high-level language for developing shaders, improving program
portability and readability. The language has a C-like syntax, but differs from C in several
important ways. The introduction of vector and matrix types as a primitive type allows
for much cleaner code by allowing the developer to write operations that act on all vector
components in one statement, without worrying about the messy array handling caveats of
C.

Microsoft have also produced their own high-level language called HLSL (High-Level Shad­
ing Language), with almost identical functionality to Cg as both generate native code for the
same market of consumer GPUs.

The programs that run in the vertex and fragment stages are called shaders. Shaders running
in the vertex unit can modify vertex attributes such as its colour/opacity, texture coordinate,
etc. The most usual operation is to modify the vertex’s position to bring it into clip-space
ready for subsequent rasterisation operations. Vertices cannot be destroyed explicitly, but
can be removed from view and thus from rasterisation by setting their output positions to
fall outside of clip-space. Fragment shaders work on one fragment at a time, and can either
output a final fragment colour and opacity, or can destroy a fragment altogether. Fragment
programs can additionally modify the depth of a fragment.

4.1.2 General-Purpose Computation using Graphics Processing Units

General-Purpose Computation using Graphics Processing Units (commonly abbreviated to
GPGPU by its community) is a relatively new area of research in the field of computer
science. The area is driven by two factors - firstly, the ever-increasing power and parallel
nature of GPUs, and secondly, the increasingly flexible manner in which these units can be
programmed due to the increasing abilities of the fragment shaders (dynamic branching and
loops) and the manner in which they are programmed using higher-level languages. The
Geforce 6800 is capable of performing hundreds of gigaflops (for 32bit IEEE).

4.1 The OpenGL Pipeline 68

In the same way that CPUs improve their architecture and increase the number of transis­
tors, GPUs follow a similar pattern. The clock speeds of the chips found on modem GPUs
continues to increase, and as memory technology improves and reduces in price, memory
bandwidth increases and latency decreases; however it has been observed that bandwidth is
increasing at such a rate that latency is becoming the predominant factor in computations
[Owe05, Har05].

The GPU by nature is well-suited to highly parallel algorithms, due to the non-dependent
nature in which it operates on vertices and fragments - each computation (pixel) consists
of an input (texture data) and output (final pixel colour) that is non-dependent on all other
computations (pixels) occurring in the current job. In comparison to the CPU, however,
the GPU’s ability to perform control-flow operations is very poor as they were simply not
designed for such instructions - they are available for added flexibility. The number of
instructions executed available per program has risen with ShaderModel 3.0 to 216, due to
the introduction of loops providing the developer with an easier means of high amounts of
computation.

4.1.3 The Stream Model

Typically, the stream data is encoded into a 2D texture and rendered onto a quad in front of
the viewport, ensuring a 1:1 correspondence between texture texels and framebuffer pixels.
The kernel is the fragment program operating on the incoming texels - only one fragment
program can be bound per pass. The fragment program is able to access the texture data, per­
form a computation, and write the result to the framebuffer encoded as the < R ,G ,B , A >
output. Once complete, these results are read back using glReadPixels, or the equivalent.
This is the most common method of operating on stream data, though it is also common
to utilise the vertex shader for intermediate computations, with results being interpolated
across the face of the quad.

Though effective, this system is often difficult to work with due to differences between
GPU capabilities, driver issues, and the amount of up-to-date knowledge required by the
programmer. Projects such as Brook [BFH+04] and Sh [Lib] have attempted to alleviate
this problem by providing some degree of abstraction in the form of either a new language
or an API.

4.1.4 Render Targets

Pixel Buffers (PBuffers) were finalised into the OpenGL specification in 2000, and provided
developers with an offscreen buffer into which they could render intermediate data. An
additional extension called render-to-texture enabled developers to copy the pbuffer data to
a texture. This allows for a technique that is now become known as ping-ponging - where
two textures are utilised, one acting as the input texture, and one as the render target. The
roles of these textures are switched between passes, allowing for multiple computational
passes. While pixel buffers were quickly adopted for such use, their disadvantages made
them impractical and difficult to work with - their implementations were entirely platform
dependent, and switching between buffers required an OpenGL context switch.

4.2 Raycasting Volume Rendering on Graphics Hardware 69

Framebuffer Objects (FBOs) solved these problems by providing a platform-independent
solution that was simpler to use for the developer, enabling the attachment of either off­
screen render targets or textures to the bound FBO. Multiple Render Targets (MRTs) were
introduced in the ShaderModel 3 specification, and allowed for writing to four render tar­
gets in any one pass. The ability to store unclamped (i.e. not clamped into the [0,1] range)
full 16 or 32-bit floating point data in textures was introduced in the form of the float -buffer
extension, driven mainly by the desire to enable High-Dynamic Range (HDR) rendering. It
was quickly adopted by the GPGPU community as a means of storing full precision data.

4.1.5 Geometry Shaders

Geometry Shaders were introduced into Microsoft’s DirectX 10 API, and give increased
flexibility to the developer for vertex manipulation. Geometry shaders are introduced as a
new element in the graphics pipeline, occurring just after the vertex shader. They are not
only able to create new primitives on-the-fly, but are also able to access all of the vertices of
the primitive being operated on. Due to the fact that geometry shaders are a relatively new
concept at the time of writing and were introduced late into the research conducted in this
thesis, they will not be utilised.

4.2 Raycasting Volume Rendering on Graphics Hardware

Volume rendering on texture-mapping graphics hardware has long been a subject of research
[CN94, CCF94, DKC+98]. Volume rendering is one of a class of problems that lends itself
particularly well to the GPU as it can be easily parallelised - a so-called embarrassingly
parallel problem.

The first volume Tenderers to utilise standard consumer graphics hardware used the only
texture mapping functionality available at the time: 2D texture mapping. The idea was to
define a series of quad primitives along an axis of the data, with each slice of the dataset
assigned to a quad [RSEB+00]. If the blending operation is set correctly in the graphics
API, the slices are blended together in a back-to-front manner such that the volume rendering
integral is discretely approximated as with raycasting methods. The system requires that the
slice geometry and axis be modified to suit the current view parameters, and can produce
artefacts when the slice geometry is suddenly changed as the user rotates around the dataset.

Hardware-accelerated 3D texture mapping was first discussed by Cullip and Neumann [CN94]
The paper describes an scheme where image-aligned polygon slices are rasterised inside
the volume dataset. The texture coordinates for each fragment are correctly specified in
OpenGL, and the density information is used as both the grey-level colour and a value to
blend the slices together. The system achieved around 10FPS on a Silicon Graphics Reali­
ty Engine - impressive performance for 1994. Gelder et al. [GK96] implemented a similar
system on a RealityEngine II two years later. Cabral et al. [CCF94] further extended this
idea by discussing the coupling of the medical (tomographic) reconstruction process with
volume rendering for CT datasets.

4.2 Raycasting Volume Rendering on Graphics Hardware 70

3D texturing capabilities were introduced by NVIDIA in 2001 with the introduction of the
GeForce 3 architecture. This functionality allowed for loading volume datasets into GPU
memory, with hardware trilinear interpolation. In 2002, Purcell et al. proposed that the
stream-based computational model of the GPU was particularly well-suited to raytracing
applications [PBMH02], due to the parallel and repetitive nature of the task. The authors
implemented a ray-triangle intersection algorithm for the fragment shader with an estimated
54 million triangle intersections per second, almost three times the speed of a compared
software raytracer.

High-quality renderings of volume data on the GPU are not, however, restricted to raycasting
algorithms. Kaufman et al. [HQK05] give an object-order algorithm for rendering large
datasets such as the full Visible Human dataset. The algorithm works by dividing the dataset
into cells and projecting the nonempty cells to the screen using an octree to guarantee back-
to-front traversal for compositing.

The iterative capabilities of ShaderModel 3 hardware (looping and dynamic branching) al­
lowed for the implementation of the well-established raycasting volume rendering method
[Lev88] on the GPU to be run entirely in the fragment shader with one pass [SSKE05b,
MJ05]. For the application of ray marching for volume rendering, a simple involves a quad
defined as the view plane. Once the quad’s fragments are rasterised, the fragment shader
casts rays from the fragment into the scene. The volume dataset is sampled using 3D texture
lookups, with the card providing trilinear interpolation of samples. Post-integration of the
density information can achieved quickly using a prepared ID or 2D texture as a lookup
function. A more elegant solution is discussed in the next section.

4.2.1 Rasterisation-based Ray Setup

Several important optimisations for the raycasting process were devised by Kruger and
Westermann [KW03]. Their scheme exploits the extremely efficient rasterisation capabili­
ties of graphics hardware to perform a ray setup stage, whereby each ray’s volume intersec­
tion points are precomputed before the raycasting stage. This method requires the ability to
write intermediate results to a texture (known as render-to-texture functionality), and there­
fore requires a reasonably modem graphics card. This ray data can be read back from the
textures in the fragment shader and used to fire the rays through the volume data.

The objective of this ray setup stage is to obtain two 2D framebuffer-sized textures repre­
senting the framebuffer output from the operations that take place. Each texel corresponds
exactly to one pixel in the framebuffer. Texture 1 represents the ray entry points into the vol­
ume, and texture 2 represents the ray exit points from the volume. These values are encoded
into the RGB values of the framebuffer and consequently the texture, and are computed
using a combination of vertex and fragment programs running on the GPU.

A cube (six quads in OpenGL) is defined as the boundary of the volume dataset. Figure 4.2
shows the cube rasterisation process. The front faces of the cube are first rasterised (Figure
4.2(a)), with the incoming texture coordinates for each fragment written to ray start texture’s
RGB colour values. This can be expressed in Cg simply as:

4.2 Raycasting Volume Rendering on Graphics Hardware 71

(a) Front faces

Figure 4.2: RGB

(b) Back faces (c) Ray Directions

Representation of Texture Coordinates

Listing 4.1: Fragment Shader: Outputting a texture coordinate to the framebuffer
float4 PassOne (

float4 texCoord : TEXCOORDO, // current texture coordinate
) : COLOR

{
return texCoord;

}

Next, the back faces of the cube are rasterised (Figure 4.2(b)). The ray entry point texture
from the previous stage is used as input to compute the normalised ray direction. This time,
a fragm ent program computes the normalised direction vector of the ray based on the ray
entry point (from pass one’s texture) and the current texture coordinate. It also computes the
distance between the ray entry point and ray exit point. This pass can be expressed in Cg as:

Listing 4.2: Fragment Shader: Calculation of ray data
float4 PassTwo(

float4 texCoord : TEXCOORDO, // current texture coordinate
uniform samplerRECT rayEntryTex, // ray entry texture from pass one
float3 pos : WPOS // window coordinate of fragment
) : COLOR

{

// get ray start point from previous pass
float3 rayStart = texRECT(rayEntryTex,pos.xy);
// compute ray direction from above and current texture coord
float3 rayDir = normalize(rayStart - texCoord);
// compute ray length
float rayLength = distance(rayStart,texCoord);
// <r,g,b> : ray direction, <a> : ray length
return float4 (rayDir,rayLength);

}

Figure 4.2(c) shows the final texture (a , storing the ray length, has been set to 1 for clarity).
In this case, m ost rays are generally heading towards positive Y, with a gradual fade to Z on
the left caused by the perspective projection.

4.2 Raycasting Volume Rendering on Graphics Hardware 72

Raycasting Steps

start

IDa>w
£

CD Raycast / Mapping

More
Slices?

yes

no C Display
Compositing FBO

cra>

Termination

I J

Figure 4.3: The iterative raycasting process

Once the ray data has been rendered into the FBOs, the raycasting stage can begin. The
overall process is shown in Figure 4.3, which shows a high-level view o f the CPU side of
the scheme. The GPU code is contained within the two rounded boxes.

In order to instantiate the GPU fragment shaders, the back faces of the volume bounding
geom etry are rasterised in a CPU loop. The central concept is that rays are fired in small
steps; for each CPU loop iteration, each ray steps STEP S IZ E through the world.

The code listing below shows the GPU code for raycasting. For each rasterised fragment in
the current iteration, they ray data is read from the ray data textures created in the ray step
stage. Given the current loop index step from the CPU, the ray’s current position can be
calculated. The code omits the compositing operations and associated variables for clarity.

uniform samplerRECT rayEntryTex, // ray entry texture from pass one

) : COLOR
{

// get ray start point from previous pass
float3 rayStart = texRECT(rayEntryTex,pos.xy);
// get ray direction from
float3 rayDir = texRECT(rayEntryDir,pos.xy);
// compute the ray start based on the step
float3 rayPos = rayStart + (rayDir * step * STEP_SIZE);

for(int i=0;i<STEP_SIZE;i++) {
// read from volume, accumulate colour/opacity here
rayPos += rayDir;

Listing 4.3: Fragment Shader: Initialising and firing a ray
float4 Raycast(

floats texCoord : TEXCOORDO, // current texture coordinate

uniform samplerRECT rayDirTex,
uniform float step,
float3 pos : WPOS

// ray direction texture from pass two
// ray step from CPU loop
// window coordinate of fragment

The above listing is the first component of the raycasting algorithm. The second com ponent
(not listed) is a shader called the termination shader, which checks the current ray and

4.3 Cell-Projection & Visibility Sorting 73

decides whether it needs to be terminated based on its progress (i.e. has the ray exited the
volume) and also some early ray termination condition. If the ray needs to be terminated,
then this program writes the fragment depth to ensure that subsequent fragments for this
ray/pixel always fail. It is this reason that the two programs are separate; if the raycasting
program wrote a new depth value each time, then the GPU would be forced to run it every
time because it could not perform early z-culling. Exploiting early z-culling is the key to
many optimisations in hardware volume rendering and GPGPU techniques.

4.3 Cell-Projection & Visibility Sorting

The Z-buffer is an extremely efficient method of removing hidden surfaces on modem graph­
ics cards. However, the Z-buffer has one fundamental disadvantage that prohibits its exclu­
sive use even in modem games - transparencies. The blending of semitransparent materials
in image-space is dependent on the order in which they are drawn. Visibility sorting is an
important issue with cell-projection volume Tenderers, as the order of the projected cells is
vital in achieving correct blending in image space; if the primitives can be drawn back to
front by sorting on the CPU, then the blending of the volume data is reduced to the hardware
compositing operation specified by the API.

An early algorithm was given by Newell et al. [NNS72] as a solution to the visible surface
determination problem, in which primitives are broken down into smaller pieces until the
conflict no longer exists. The A-buffer was introduced by Carpenter [Car84] and is discussed
by Levoy [LW85] as a method of blending point primitives. The A-buffer does not require
objects to be rasterised in any particular order; instead it maintains a linked list of fragments
rasterised into each pixel.

Wittenbrink [WitOl] provides a complete design and software implementation for a hardware-
acclerated A-buffer, called the R-bujfer, and argues that the lack of such a buffer in modem
hardware is detrimental both performance and ease of algorithm development. Visibility
sorting must be performed in object space for rendering algorithms such as cell-projection
volume Tenderers; this process takes not only substantial effort from the developer, but
places a significant burden on the CPU - the opposite of what graphics hardware manu­
facturers attempt to achieve with each release. Wittenbrink et al. [KWW01] later develop
this idea further by implementing a tetrahedral volume Tenderer using a software implemen­
tation of the R-buffer, removing the burden of performing a visibility sort on the tetrahedra.
CPU-based sorting algorithms can be combined with GPU refinement, as with the K-buffer
[CC05], which provides fragment-level refinement after a CPU-based sort.

4.4 Point-Based Rendering

Point-based graphics is a relatively new area in the field of computer graphics. An initial
paper by Levoy and Whitted [LW85] suggested the use of points as primitives, arguing that
as scene complexity increases, the advantages of surface mesh-based rendering begin to
fade. They argue that the addition of new primitives requires new customised rendering

4.4 Point-Based Rendering 74

techniques for each rendering algorithm; the research into these algorithms could be better
spent elsewhere. The authors spend time detailing a rendering algorithm for such data, but
neglect to discuss any possible modelling techniques. Point-based modelling systems such
as the QSplat [RLOO] allow for limited surface deformations and normal perturbations.

In addition to the points made by Levoy and Whitted, there are many other incentives in us­
ing point-based primitives. One such point is made by Reuter et al. [RTSD03] in their paper
on point-based modelling and rendering via the use of radial basis functions. The authors
argue that as scene complexity rises, there is a reduced need for the rasterisation of primi­
tives. For example, for complex scenes, all vertices of a particular triangle may lie within the
same pixel boundaries. In these cases, rasterisation is redundant, but unfortunately is instead
replaced with a new problem unique to point-based rendering, referred to in the community
as hole-filling.

The area has seen recent growth due to systems such as QSplat [RLOO] which has an efficient
software renderer and Point Shop 3D [ZPKG02] which allows for real-time manipulation
of the point data. Methods for rendering point-based datasets need to account for the gaps
between neighbouring samples to construct a continuous surface in image space - surface
splatting [ZPvBGOlb] renders object-space ellipses, with the overlap between ellipses clos­
ing the holes between samples.

4.4.1 Point Primitives on the GPU

Points are a fundamental primitive in graphics APIs such as OpenGL and Direct3D, and
consequently graphics hardware are capable of integrating them into the pipeline to a de­
gree. Until the inclusion of the the point parameters extension [OpeOl] in the OpenGL
specification, developers were limited to allowing the API to rasterise the points, with only
colour and size available as attributes. The point parameters extension allowed for customi­
sation of the distance attenuation of points, and was later promoted to an official OpenGL
specification.

In OpenGL, point primitives can be specified between giBegin / giEnd pairs, or more effi­
ciently using vertex arrays. Vertex arrays allow the developer to point OpenGL at a buffer
containing a possibly large amount of vertex data and have OpenGL treat it as a sequence
of vertices making up primitives. This tends to be more efficient than calling givertex over
and over as the function call overhead is eliminated. A more efficient system still is to use
one or more Vertex Buffer Objects (VBOs) [Cor03]. The VBO mechanism allows for effi­
cient upload of large quantities of primitive data to the graphics hardware. Unlike using the
standard vertex array scheme where the data is still stored on the client side in CPU memory,
the data in a VBO is held on the server side in the low-latency and high-bandwidth GPU
memory. The general mechanism in OpenGL is as follows.

• The buffer is bound to the current context

• Floating-point data is uploaded to the bound buffer

• The data is rendered

4.4 Point-Based Rendering 75

4.4.2 Point Sprites

A point sprite [OpeOl] is defined as an image-space parameterisation of a point primitive
in the graphics pipeline. Point primitives travel through the vertex stages as before, except
when point sprite rendering is enabled, each point is broken into a set of fragments covering
the image-space bounding box of the point. An additional parameter can be set to have tex­
ture coordinates automatically generated for each fragment, giving the developer the ability
to achieve complex effects such as texture-mapping of individual points or simple shaping
of points.

The ability to obtain image-space texture coordinates for points allows for the correction
of splat shape to be computed entirely in the fragment shader based on the point’s normal
relative to the viewing parameters.

4.4.3 Visibility Splatting

Point-based rendering has been implemented on the GPU using many different data en­
coding and manipulation techniques [BK03, KB04, BHZK05, NM05]. Modem GPUs are
very well suited to dealing with the large amount of vertices and repetitive, independent
processing of these vertices. Currently the most efficient method of storing the samples
(points/splats) in GPU memory is to use one or more vertex buffer objects (VBOs) [Cor03],
which allow for large streams of vertex data, color data, normal data, etc., to be uploaded
and held in the graphics card’s memory for quick retrieval.

Most GPU point-based techniques use a two or three-pass approach to correctly blend over­
lapping splats [CH02], as current cards do not offer a-buffer functionality. Multipass ap­
proaches sometimes write intermediate data to a texture and then use this texture data in a
subsequent fragment pass to complete any additional calculations. The visibility splatting
approach was first used by Levoy and Rusinkiewicz [RLOO] for their CPU-based QSplat
algorithm, though the term itself was coined later by various researchers including Pfister et
al. [PZvBGOO]. Several improvements have been made to GPU splatting since, including
perspective-accurate splatting by Zwicker et al. [ZRB+04].

With a visibility splatting approach, a first pass generates a correct z-buffer for the current
view. In order to blend visible overlapping splats, the second pass shifts the viewpoint
back slightly such that the only splats now passing the z-test are those at the front of the
view for each pixel. This technique has the added advantage of allowing the GPU to cull
any fragments failing the depth test before entering the fragment program. The shape of
the splat can be corrected in the fragment shader by using the point sprite extension and
discarding fragments that lie outside of the shape of the splat; the shape of the splat can be
computed from the computed image-space normal.

4.5 A Hybrid CPU/GPU Renderer 76

4.5 A Hybrid CPU/GPU Renderer

The subject of Volume Graphics has developed from the standard techniques of volume vi­
sualisation to an area investigating the rendering, modelling, manipulation and processing
of volume objects. A wide variety of techniques have been proposed for rendering volume
data - ray casting methods (volume visualization), splatting techniques, display of interme­
diate geometry (isosurfacing) and ray tracing. Each of these techniques has benefited from
the advancement of GPU technology, most recently with the standard ray casting approach
being implemented as a programmable shader using a single pass and able to operate in
real-time [SSKE05a].

With advances in CPU speed, and the increasing use of PC clusters, more costly techniques
such as global illumination (GI) are being considered for rendering volume data. The mo­
tivation for using GI is that it allows more complex materials to be used during rendering,
it provides better visual cues for understanding data and objects, and it provides the photo­
realistic quality for which graphics researchers are striving.

During ray tracing, GI requires that for each intersection point, the direct contribution from
the n light sources is calculated by casting n shadow rays. In addition to a transparency ray,
the specular contribution from .reflecting surfaces, and the diffuse contribution from reflect­
ing surfaces must be calculated. For example the diffuse contribution may be approximated
by tracing many rays (e.g. 200) according to a Monte Carlo sampling of the projected hemi­
sphere at the intersection point. It is this large cost, combined with the large size of volume
data sets, that has meant that GI has only recently begun to be used for volume data.

In this section, GI techniques with volume data are implemented. Unlike previous methods,
geometry and volume data are mixed, and materials with complex BRDFs on volume data
are utilised. The role of the GPU is to take rays from the raytracing software (either primary
or secondary) and provide volume isosurface intersection computations quicker than the
raytracing software could itself compute them. The advantage in rendering speed comes
from two aspects - firstly, the GPU is highly optimised for bulk parallel computations.
Secondly, the work can be load balanced between the CPU and GPU; while the CPU is busy
with lighting computations or computing intersections with the surface-based geometry in
the scene, the GPU is busy computing intersections for its rays with the volume isosurface.
To compare this advantage in rendering speed, a software-only method is compared to the
GPU-accelerated method.

4.5.1 Related Work

First, global illumination in the area of volume visualisation is reviewed.

Beason et al. [BGB+06], pre-compute a 3D texture containing illumination data for all iso­
surfaces within the volume. This involves extracting many isosurfaces and calculating the
radiance at each vertex in the direction of its normal. The illuminance at each voxel within
the 3D texture is then interpolated from scattered neighbouring vertices. For display, iso­
surface extraction is used to create a polygonal model, the lighting for which is determined
by interpolation from the 3D texture. Although pre-computed, dynamic caustics and soft

4.5 A Hybrid CPU/GPU Renderer 77

shadows on the floor are created by storing a vector of pre-computed lighting at each vertex
on the floor for each isovalue. This fixes the scene to the one used during computation (e.g.
a Cornell box). Their method applies to diffuse objects.

Wyman et al. [WPSH06], use a similar idea, wherein they use a pathtracer (the real-time ray
tracer [PPL+99]) to calculate the irradiance for each voxel using Monte Carlo pathtracing
against the isovalue at the voxel (for diffuse objects). They extend the method to enable dy­
namic lighting on diffuse objects from a distant lighting environment (e.g. a spherical light
map) by calculating Spherical Harmonics coefficients. They also suggest that non-diffuse
materials could also be pre-computed and stored as Spherical Harmonics coefficients.

Both methods are characterized by very large pre-computational times on clusters - e.g.
hours using 30 processors. Wyman et al. [WPSH06] suggested that it may be possible to
use GPUs to accelerate the illumination computation. In fact, the work we present here
on load balancing global illumination calculation on volume data provides such a method,
and therefore the techniques suggested in this paper will be a valuable contribution to such
pre-computation techniques by making the pre-computation phase more feasible.

Max [Max95] discusses optical models for volume rendering, including scattering, mul­
tiple scattering and shadows. Kajiya and von Herzen [KH84] propose a two stage algo­
rithm for firstly calculating the illuminance at each voxel, and then rendering a view of
the volume. Aspects of these methods can be combined into a hardware implementation
[DK00, KPH+03]. Kniss et al. [KPH+03], give an interactive illumination model. They
render (in GPU hardware) each slice of the volume data to both the view image, and a light
image for calculation of direct illumination. Scattering is implemented using a (spherical)
phase function (the volume equivalent of a hemispherical BRDF), which is encoded as a
ID texture look-up. As each slice is rendered, light is scattered forwards to the next slice,
resulting in an approximation to indirect lighting. The key element of their approach is that
the slice by slice processing is suited to GPU implementation and results in interactive frame
rates.

The past five years have seen a revolution in the power and customisability of graphics
hardware. Starting with the introduction of the Geforce 256, developers have been able
to run programs on the graphics hardware to modify the state of vertices and fragments
as they travel through the pipeline. Higher level shading languages such as NVidia’s Cg,
Microsoft’s HLSL and the OpenGL Shading Language were introduced to allow for greater
portability and ease of use. Since this programmability was introduced,research has been
focused on exploiting the power, memory bandwidth and parallel nature of the GPU to
perform computational tasks unrelated to graphics. Developers are now starting to use the
graphics hardware not only to produce the final image, but also to produce intermediate
results that can be computed quicker on the GPU than with the CPU (as with the work
reviewed next). In each case, the increase in computational power from the GPU must
offset the cost required to upload and download the data from the graphics hardware for
there to be any benefit.

There has been some previous work on using GPUs for ray tracing. Purcell et al. [PBMH02]
suggest that programmable GPUs could be employed for ray tracing, and evaluate various
algorithms, and simulate methods in which they could be achieved. They restrict their explo­
ration to ray tracing (with shadow, reflection and transparency rays), and path tracing with 1

4.5 A Hybrid CPU/GPU Renderer 78

ray per sample (and diffuse objects). Stegmaier et al. [SSKE05a] demonstrates ray tracing
of volume data using a fragment shader where individual effects such as shadows, refraction
and reflection are created by altering the path of the casted ray accordingly. The method we
present here differs from these methods as it utilizes Monte Carlo pathtracing with many
rays per sample. Carr et al. [CHH02] implement a ray-triangle intersection algorithm on the
GPU, and exploit ray caches in a similar way to those presented here to optimise the GPU
utilization.

Barsi et al. [BSKS05] implement GI on the GPU. They calculate visibility by rendering
the scene from one point (the shooter), and check the depth distances to all other points
(the receivers) to see if they are occluded. The points are the centres of texels mapped
on the surface. The radiance at the receivers is updated at each iteration. Shooters are
chosen randomly, and convergence is achieved by averaging each image with all previous
images. Photon mapping is implemented on the GPU by Purcell et al. [PDC+03] using two
methods. The faster method limits the number of photons per grid cell, and employs the
stencil buffer to ensure the number of photons is incremented correctly. Carr et al. [CHH03]
implemented radiosity on the GPU using a Jacobi iteration (because it is suited to parallel
stream processing), however they found that the GPU implementation was slower than the
CPU solver, and restricted the number of tiles they could use (to 2048).

Here, we are not attempting to make any approximations in order to achieve a real-time
algorithm and thereby sacrifice quality, but rather we are employing high quality and costly
GI techniques. We are using a backward sampling for diffuse and specular reflections,
and so the method presented here is more comparable to the gathering methods [BGB+06,
WPSH06], than the latter shooting methods which are known to converge faster, but do have
some visual problems. The main contributions over previous work is that we attempt to load
balance the work across the CPU and GPU, we mix geometry with volume data, and we
integrate a volume animation system. Our approach would also reduce the pre-computation
times of GI 3D textures for visualization of isosurfaces.

4.5.2 Hybrid Method

The work presented in this section integrates several pieces of software to create one system
for the GI rendering of volumes and surfaces. For volume data, an existing fast software
isosurface ray tracer Igneus [Spe] (e.g. 5fps for the CThead at 300 x 300 on a 3GHz P4)
and a GPU ray caster which has the possibility to calculate deformations on the GPU. Both
Tenderers are able to return intersection points with the volume, and surface normals. It is
the integration of both these Tenderers that allows the comparison of CPU-only rendering
with load balanced CPU/GPU rendering.

The Igneus ray tracer also handles complex surface shaders (BRDFs and BSSRDFs), photon
mapping, irradiance caching, etc. Figure 4.4 demonstrates a globally illuminated CThead
with a glossy Phong shader simulating a gold material. Figure 4.5 demonstrates the use of
different materials for different isosurfaces within the volume.

The software isosurface ray tracer is integrated seamlessly into the object-oriented devel­
opment model of the ray tracer. Implicit, parametric and fractal surfaces are handled by

4.5 A Hybrid CPU/GPU Renderer 79

Figure 4.4: A glossy Phong laminate BRDF is applied to the CT Head Dataset

Figure 4.5: M aterial transfer functions - the skull is rendered with a diffuse iridescent painter
and the skin with a translucent shader overlaid with a diffuse, iridescent painter and a glossy
Phong laminate

4.5 A Hybrid CPU/GPU Renderer 80

Initialise outgoing packet with n primary rays
Cache layer = 0
While outgoing packet size > 0

Cast rays using GPU
Cast rays using CPU and update if surface is nearer
Store intersection data in cache layer element
Swap outgoing and incoming packets
For each ray in incoming packet

Run intersected surface's illumination model
Store spawned rays into outgoing packet

End For
Increment cache layer

End While

Figure 4.6: Pseudo-code for ray caching.

their respective intersection classes, and this paradigm is simply extended to handle vol­
umes. This direct compatibility makes the shading and illumination algorithms already
implemented within the ray tracer (photon mapping [Jen04], irradiance caching [WRC88],
complex BRDFs and BSSRDFs [JMLH01, JB02], etc.) automatically available to use with
volume objects.

The load balanced approach introduced in this section makes use of programmable graphics
hardware by offloading volume intersection operations onto the GPU. However, the parallel
processing capabilities offered by this approach requires that rays be cast in substantial bun­
dles in order to make full use of the hardware and to avoid penalties from the initialisation
overhead. This mode of operation is incompatible with the serial processing model used by
standard recursive ray tracers, which generate the ray tree depth first and hence require each
ray to be traced through the scene geometry before another shader operation can be initiated.

Several possible approaches to solving this problem were looked at. To start with, the pos­
sibility of offloading some of the shading operations onto the GPU was considered. This
would require the graphics hardware to take responsibility for deciding how child rays are
spawned according to the BDRF of the material and the lighting setup in the scene. Un­
fortunately, this approach would require extensive and complex reprogramming of the GPU
and would ultimately greatly reduce the feature set of our renderer. A second possible so­
lution would involve pre-spawning rays for every possible interaction with scene geometry.
Illumination would then be determined based upon their subsequent interaction with the
volume. A lthough this method would leave the calculation of the reflection model with the
CPU, many rays would be needlessly traced resulting in unnecessary load on the graphics
hardware.

The next few sections discuss how the problem was approached.

4.5 A Hybrid CPU/GPU Renderer 81

N-ary layer

BRDF Shader

Secondary layer

BR D F Shader

Primary layer

(^) Camera

Figure 4.7: The Ray Tree

CPU Side

A two-pass, breadth-first construction of the ray tree (see figure 4.7) was decided upon,
which leaves the computation of the lighting model on the CPU but also allows arbitrarily
large bundles of rays to be sent to the GPU. The approach uses a ray cache which is utilized
by the reflection and shading models used by the renderer. This approach allows the renderer
to take advantage of hardware acceleration whilst still retaining maximum flexibility when
incorporating new complex lighting models.

The algorithm begins by generating packets of primary rays at the camera and sending them
to both the CPU geometry and GPU volume ray tracers. By using multi-threading, the ren­
derer ensures that these two processes are carried out concurrently wherever possible. The
nearest point of intersection along each ray is calculated and the reflection model associated
with each hit point is executed resulting in a new layer of rays being spawned. The rays in
this new layer are then traced and the process is repeated until either the maximum layer
depth is reached, or the algorithm naturally terminates.

The second pass traverses the ray tree depth first in the conventional manner; only this time,
no rays are traced and data is drawn from the cache. In addition to storing intersection data
in each layer, the information about the state of non-deterministic processes such as the
pseudorandom number generator is also stored. Restoring this information at each shading
operation ensures that both passes will produce identical sets of results, even when Monte
Carlo integration and Russian roulette sampling are used.

The pseudo-code for the algorithm is given in figure 4.6.

4.5 A Hybrid CPU/GPU Renderer 82

CPU to GPU Interface

The ray cache from the CPU ray tracer comprises of two blocks of memory, one containing
the ray position vectors and the other containing normalised direction vectors (see figure
4.8). These bundles of ray data are each directly encoded as a 2D texture through OpenGL.
To allow for arbitrary unclamped floating point data to be recovered from the textures on the
GPU, gl_texture_rectangle is used the texture target and gl_f loat_rgb32_nv as
the internal format. Similarly, to allow for unclamped floating point data to be written to
the framebuffer, the framebuffer object OpenGL extension is used with the same internal
texture target. The texture size is set to 1024x1024, giving a maximum of 10242 rays per
bundle. The volume dataset is loaded into texture memory as a 3D texture once only at the
same time as the first ray cache is loaded into texture memory.

CPU Raytracer GPU Raycaster

Compute ray-
isosurface

intersection
and normal

Further
processing

Figure 4.8: System Overview

A quad is placed in front of the viewport to act as a data stream generator [Har05]. Next,
a fragm ent program on the GPU picks out the ray (P v , D v) pair from the encoded texture
and marches through the volume in the direction of the ray until the specified volume iso­
surface is intersected. Any specified volume deformations are applied to the ray sample
point before the volume is sampled, using Spatial Transfer Functions [CSW + 03]. If the
isosurface is intersected for this ray, the normal at the intersection point is calculated using
central differences. The final result is a quad of floats (5, N x , N y , N z) where 5 is the depth
of the intersection point along the ray, and N is the computed normal. This is written to the
unclamped framebuffer as an RGBA result. If the ray does not intersect an isosurface within
the volume, all values are set to 0 to inform the CPU raytracer of no hit.

The number of rays per bundle is kept to a multiple of 1024 to avoid the necessity of branch­
ing in the fragment program. This allows for rays to be ignored on a per-row basis by limit­
ing both the size of the quad and the texture coordinates used. Once all fragments have been
processed, all valid ray results are read back from the framebuffer into CPU memory. These
results are then used by the CPU raytracer for recasting / shading.

Shader processing

The returned rays are processed by the CPU ray tracer, and for each intersection point, feeler
rays to the light sources are placed into the ray cache as are any additional rays required
by the shader functions (e.g. according to the BRDF or BSSRDF). This represents a new

4.5 A Hybrid CPU/GPU Renderer 83

depth in the ray tree (figure 4.7), and once sufficient numbers are cached, these are sent for
processing by the GPU.

4.5.3 Performance

This section reviews some of the results from the system, with comparisons given between
our new CPU/GPU hybrid renderer (labelled HYB in graph) verses the entirely CPU-based
renderer. The first test is a globally illuminated scene similar to that of figure 4.12 but
w ithout the box geometry (i.e. with the volume data set, light source, and base plane for soft
shadows), and such that the head occupies about 80% of the scene. Results for this scene
given in figure 4.9. This scene is designed to demonstrate the increase in speed of using a
GPU renderer com pared to just a software renderer. The GPU render times include the times
to load the ray caches into 2D texture memory, and the one off time to load the volume into
3D texture memory.

The first test was designed to test the speed of intersections with the volume object by
moving the cam era close to the CT head dataset - such that over 80% o f primary rays hit an
isosurface. Table 4.9 shows the results for this scene.

Figure 4.9: Render times for Scene 1

To measure the increased speed of load balancing with the GPU when the scene comprises
of mixed geometry, the CT skull was placed inside a Cornell box (Figure 4.12). We first
give tim ings for the box minus the volume object, to benchmark the standard CPU raytracer.
A volume object is then placed into the scene, and benchmarked with CPU volume inter­
sections and then GPU volume intersections. The volume time given in Figure 4.10 is the
resulting difference between the base scene and the scene with the volume included.

Figure 4.10: Render times for Scene 2

Although the GPU assisted rendering offers a good speed-up, it did not provide the expected
speed-up. This is due to the fact that on the hardware setup used (a Geforce 6800) the upload
of data to the GPU is extremely fast in comparison to readback performance. Therefore,
although the ray cache can be uploaded to the GPU quickly, the results after processing by
the GPU take a long time comparitively to read back. The performance of reading back data
from the GPU is improving due to the increased demand of GPGPU applications and HDR

4.5 A Hybrid CPU/GPU Renderer 84

techniques, so we anticipate that as the drivers mature, graphics cards will be able to offer
vastly increased readback speeds, which will be comparable to upload speeds.

A nother source of overhead in GPU based computation is that o f branching operations. As
reduced penalties for branching operations in the fragment shader and support for more
optimal looping techniques are implemented, this will further increase the benefits o f load
balancing with the GPU.

A further consideration is the fact that the G PU ’s specialisation is parallel computation rather
than flow control [Har05J. C PU ’s in comparison are highly optimised for flow control,
w ith dedicated branch prediction units and other hardware optimisations. The result o f this
observation is that our GPU load balancing using ray caches performs to the strength of each
unit. The GPU traces a large number of rays through the volume data, whereas the CPU
makes conditional decisions about visibiliy feeler rays, material shaders, photon caching,
etc.

A nother advantage of computing the ray-isosurface intersections entirely in hardware is that
com plex deformation methods can be employed that would otherwise result in a massive
perform ance penalty on the CPU. Figures 4.14 and 4.15 show the result of applying some
spatial deform ations to the volume objects. Notice the reflection of the deformed object
in the teapot in each image. There was virtually no performance penalty in applying these
deform ations in hardware.

-o

Block Size

Figure 4.11: Render times with differing block size

Figure 4.11 gives the times to render two scenes with our system using different block sizes
(render times have been normalised for clarity). Block size here is a variable param eter to
the renderer that governs the num ber of primary rays per bundle in the first layer. It is clear
from the results that the optimal choice of block size varies from scene to scene. Scene 2
in this exam ple was a much more complex scene comprising of many more surface-based
objects, and with higher numbers of hemisphere rays.

4.5.4 Method Conclusion and Future Work

This section has presented images demonstrating global illumination applied to volume data
sets. Such techniques are extremely costly to compute for surface based graphics within ray
tracing, with scenes taking hours to compute (for example rendering complex models such

4.5 A Hybrid CPU/GPU Renderer 85

as the Sponza Atrium with path tracing or even photon mapping and final gathering), and
with the size of volume data sets, this results in an even higher demand.

We acknowledge that for most visualization tasks, such GI renderings of volume data are
not required, but just as GI renderings of surface based graphics are occasionally used for
specific applications (e.g. architectural walk throughs), then GI renderings of volume data
will be valuable in future. There are already many publications in the area, with methods
such as those of Beason [BGB+06] and Wyman [WPSH06], which can take days (on a single
processor) to compute a 3D texture which is then used to produce real-time GI renders of
isosurfaces. Such renders give more visual cues which are important for understanding the
data, or could be used for publication; e.g. Beason has some excellent videos of a rotating
functional MRI data set.

One of the features of the approach introduced in this section is that the renderer is taking
advantage of GPU acceleration to speed-up the process of GI rendering of volume data.
Therefore the approach will be of use for speeding-up precomputation of the 3D textures in
the above methods. Other features of our approach are that surface geometry and volume
data can be mixed, with the load split between the GPU and CPU. It has been shown that
complex surface materials for volume data sets are possible, and additionally the system has
integrated Spatial Transfer Functions [CSW+03] to allow for complex deformations (such
as the twisting (figure 4.14) and splitting (figure 4.15) shown) to be achieved efficiently and
independently of the CPU.

There are still some improvements to be made to the method. A possible area of further
research is that of estimating the optimal block size for a given scene; this optimal block
size can be naively estimated before the main rendering stage by performing render tasks
of a sparse set of blocks placed randomly in the final image, and measuring the results with
differing sizes. More advanced heuristic approaches to this problem would likely gain larger
benefits, it is anticipated that such approaches will give a a further increase in efficiency.

The multi-threading approach introduced in this section is an additional further area of re­
search; particularly with the advent of multi-core CPUs and GPUs. Although it is often
the case that currently both the CPU and GPU code are actively processing rays, there is
no guarantee that both will complete their bundle at roughly the same time, resulting in a
variable delays. Future work in this area will improve the multithreading model to ensure
both CPU and GPU are closer to full capacity at all times. Also, by integrating the software
and hardware volume Tenderers, it is possible to pass ray caches to either CPU or GPU al­
gorithms for isosurface intersection. Therefore one extension to the method will be to allow
unloaded cores (either GPU or CPU) to take bundles of rays from the cache and calculate
them. This assumes that the volume object takes up the main computation. If geometry is
the bottleneck, then systems such as the ray engine [CHH02] would allow the GPU to take
on some of the geometry load.

Finally, figure 4.17 shows the bunny almost entirely illuminated by the focused caustic from
the head, and figure 4.18 shows an augmented reality scene with GI and image-based light­
ing. These demonstrate the many advanced rendering techniques available for surface based
graphics that the method introduced here has applied to volume based graphics.

4.6 Summary 86

Figure 4.12: CT Head in Cornell Box

4.6 Summary

This chapter has been split into two main components : the review component and the
research component, and is intended as a transition from the review chapters of the thesis to
the research chapters.

The chapter began with a review of graphics hardware, the OpenGL pipeline, and an intro­
duction to program m able graphics hardware; including details on the low-level aspects of
providing the GPU with data and obtaining processed data after passes. Section 4.2 intro­
duced the reader to the concept of using the GPU for volume rendering applications, which
included a review of current methods but also an example implementation of the shaders

Figure 4.13: Skull in Teapot

4.6 Summary 87

Figure 4.14: Volume deformation (twisting) on the GPU within GI scene

Figure 4.15: Volume deformation (splitting) on the GPU within GI scene

used with a rasterisation-based ray setup renderer. Point-based rendering was introduced in
Section 4.4, including its history, applications, and details on how such rendering algorithms
can be efficiently im plementation on the GPU.

A new hybrid CPU/GPU load-balancing volume rendering application was introduced in
Section 4.5, dem onstrating the effectiveness of leveraging the power of the GPU for volume
rendering applications. The method extends an existing ray tracing software application
(Igneus [Spe]) to provide the GPU with bundles of rays to intersect with an isosurface inside
the volume dataset. W hile there is much more potential research in this area, it is clear that
the benefits o f leveraging the power of the GPU can be great; particularly when the work
can be load-balanced between the GPU and the much more flexible CPU and its associated
resources.

4.6 Summary 88

Figure 4.16: Volume deformation (splitting) on the GPU within Cornell box

Figure 4.17: Translucent Bunny with Glass Head; rays: « 486 ,000 ,000

4.6 Summary 89

Figure 4.18: Skull on Desk; rays: « 739 ,000 ,000

Chapter 5

Volume Wires

Contents
5.1 In tr o d u ctio n ...

5.2 Related Work on Swept Solids and Volumes . . .

5.3 Deforming with Volume W ir e s
5.4 Deformation E valuation ...

5.5 Calculating Deformation B o u n d a r y

5.6 The Mapping Field Encoding of the Deformation
5.7 A GPU Backward-Mapping R a y c a s t e r

5.8 S u m m a ry ..

90
92

93

96

103
105

113
125

Preceding chapters in this thesis have so far given an overview of volume graphics, including
volume rendering techniques (Chapter 2), and methods for manipulating and deforming
volume data (Chapter 3). The previous chapter gave an overview of GPU-based volume
rendering techniques, and example implementations.

This chapter introduces the Volume Wires methodology for nonlinear volume deformation.
The methodology is based upon the concept of using curve-skeletons (called wires) to de­
form the surrounding space of the volume object.

An initial study of this framework was presented at the Winter School of Computer Graphics
(WSCG) 2006, and was additionally one of the 17 out of 62 conference papers accepted to
the journal [WJ06], outlining the general concepts of the methodology and a CPU-based
raycasting implementation of the rendering algorithm.

5.1 Introduction

Much work has been focused on methods of deforming volume datasets (see Chapter 3),
but the majority of such research leans towards emphasising the low-level details of such
algorithms rather than offering an intuitive interface to the user. By intuitive, we imply a
method that does not concern the user with translating individual voxels and predicting the

90

5.1 Introduction 91

propagated effects of other voxels connected to it, at least when considering global defor­
mation and character-based deformation. The low-level approaches such as those presented
by Gibson [Gib97] (3D Chainmail) are suitable when wishing to treat the volume dataset as
a soft, mouldable body, but not for when the volume dataset is to be treated as a globally
deformable object. An intuitive methodology must also present a familiar object interaction
metaphor to the user.

Much research has been focused on developing deformation systems for surface-based mod­
els for both static and animation purposes. Software tools such as Character Studio (a 3D
Studio Max Plugin) [3ds] and Maya (owned by Autodesk) [May] allow the user to define
skeletal systems for characters. These concepts have been carried over into the volume
graphics domain with work done by Silver et al. [GSOOb, GSOOa, GS01] by producing a
group of algorithms for the semiautomatic extraction of curve skeletons of the volume mod­
els and subsequent reconstruction. A hardware-based renderer also exists for rendering
linear transformations of the skeletal segments [SSC03].

The Volume Wires framework presents an intuitive volumetric deformation methodology to
the user, the Volume Wires methodology, and also details a group of algorithms for rendering
such deformations and dealing with the mapping between object and world space.

5.1.1 Goals and Objectives

It is beneficial to maintain a standard raycasting pipeline for rendering the user-specified de­
formation, as the deformation rendering stage can be effectively integrated into an existing
high-quality raycasting pipeline. The discretised volume rendering integral can be com­
puted in world space by performing a backward-mapping operation (denoted as <h_1) on
each sample point pi along the ray. Many existing volume deformation techniques remove
the advantage of compositing internal texture information by either rendering only a given
isosurface or converting to a surface representation in an attempt to gain efficiency.

The full advantages of utilising an existing volume rendering pipeline are listed below:

• A specialised rendering algorithm is not required - many volume deformation systems
require a rendering algorithm to be developed alongside the deformation algorithm.
This dependence forces the developers to concentrate a vast amount of effort on cre­
ating hacks for correct perspective transformations, normal correction, and general
image quality. As a result, the methodology is often hard to implement and integrate
into another rendering pipeline.

• All the advantages of raycasting volume rendering are maintained, i.e. the availability
of internal texture information. In addition, well-established ray compositing methods
such as MIP are also possible.

• Any advanced effects built into the pipeline can be included also as the object is
treated as being in world space. Accurate light transport [ARC05], and even global
illumination (see Section 4.5).

• The feasibility of a GPU implementation is greatly increased, since many GPU-based
raycasting volume rendering algorithms already exist, as detailed in Section 4.2 of

5.2 Related Work on Swept Solids and Volumes 92

this thesis.

In addition, we wish to work with volume datasets natively rather than convert to some other
representation (such as a triangle mesh, converted using the Marching Cubes algorithm) to
preserve all of the discussed benefits of volume rendering. Although it is true that deforming
a limited surface representation of a volume dataset would be more efficient due to the need
of deforming only the vertices of the surface, such a representation would not provide the
detail and image quality of the full volume dataset.

The aim of the Volume Wires framework is to evaluate the deformed volume object using
backward-mapping in world space; the framework therefore is non-reconstructive in that no
volume dataset is created from the deformation. The issues surrounding the reconstruction
of deformed datasets have been discussed in Section 3.4.4.

5.2 Related Work on Swept Solids and Volumes

An extensive study of volume deformation techniques has already been completed in Chap­
ter 3. Various solid modeling schemes were introduced additionally in Chapter 2. One area
that was not discussed in detail however was that of sweep representations; it is necessary
to give an overview of such representations as the work in this chapter can be considered as
such. This section explores a combination of techniques relating to swept solids and swept
volumes.

In surface graphics, algorithms have been devised to directly evaluate parametric space, such
as that from Catmull [Cat75] which evaluates bi-cubic parametric surfaces by recursive
subdivision of the surface into patches; the algorithm was unfortunately computationally
expensive. Whitted [Whi79] describes an algorithm that evaluates parametric surfaces by
employing first a bounding volume that encapsulates the entire object, and then recursively
subdividing this into subvolumes. The ray-object intersection is then carried out recursively
on the bounding volume first, and then the subvolumes. Kajiya [Kaj82] gives a more com­
plex solution using algebraic geometry to transform the problem of ray-patch intersection
into curve-curve intersection. Wijk [vW84] introduces a set of algebraic methods for calcu­
lating the intersection of rays with objects defined by sweeping planar cubic spline contours.

Sweep representations [BLWJ97, AMY098, AMBJ02] are a solid representation used in
CAD/CAM applications, existing alongside such representations such as Constructive Solid
Geometry (CSG) and Spatial Partitioning schemes. A swept object is defined as the region
occupied when a template object is swept through a trajectory through space [FvDFH96].
Extrusion is an example, and is a common operation in CAD software involving a linear
sweep of some 2D template from one point to another along the axis perpendicular to the
template’s plane. A rotational sweep sweeps the template object around a given axis instead
of an arbitrary trajectory.

More complex sweeps involving arbitrary trajectories (such as parameterised curves through
Euclidian space) are termed generalised sweeps. The template object can be three-dimensional,
and can be varied dynamically along the sweep. Interesting effects can be achieved by ro­
tating and scaling the template depending on its position along the trajectory [Sea97], the

5.3 Deforming with Volume Wires 93

former producing a twisting effect, the latter producing a warping effect.

One method of rendering swept volumes is to voxelise the result and render this new volume
dataset using a standard direct volume Tenderer. The initial work on converting paramet­
ric curves, surfaces and volumes was completed by Kaufman [Kau87], though his method
produces only binary volumes, leading to severe aliasing artefacts. This technique is imple­
mented in by Chen and Winter [WC02], where 2D images are used as sweep templates. The
voxelisation is achieved by recursively subdividing the trajectory, as in [Sea97]. The authors
also give an approach to directly evaluating the resulting swept volume using numerical root
finding techniques. This direct evaluation is however computationally expensive, and suf­
fers from singularity problems, e.g. where an object is swept around an axis, deciding which
points should be sampled on the axis itself is difficult.

5.3 Deforming with Volume Wires

Every volume deformation methodology must present some sort of interface to the user; for
example, providing a means of ‘grabbing’ a voxel and pulling it and watching the effects of
pulling this voxel on the other voxels, or perhaps by allowing them to use sculpting tools to
warp the dataset. This section introduces the wire as a tool for deforming volume datasets.

5.3.1 Wire Definition

The central concept in the Volume Wires methodology presented in this chapter is the wire.
A wire is any parametrically-defined ID trajectory through 3D Euclidean space, e.g. Bezier
curves, Catmull-Rom splines, or even simply a line defined by two points. The wire essen­
tially acts as a curve-skeleton for the volume object that it is defined inside of - deforming
the wire (by modifying the positions of the control points of that wire) deforms the sur­
rounding volume object.

A wire is actually composed of two elements: the object wire and the world wire. The
object wire defines the curve-skeleton of the object in object space; once defined, it remains
static throughout the deformation process until the user decides that their initial skeleton
definition requires modification. Associated with each object wire is the world wire. It is
the role of the world wire to define the deformation of the target object defined by the object
wire; therefore, there is a mapping defined between the space defined by the object wire and
the space defined by the world wire.

To illustrate the wires concept, Figure 5.1 shows two example deformations using the Vol­
ume Wires methodology; on the left is a deformation defined on the Visible Human, and
on the right is a deformation defined on the CT Carp. In the case of the Visible Human
deformation, the object wire (shown as a red curve) defined by the user in this instance is
acting as the ‘backbone skeleton’ or spine of the Visible Human, as the user has defined it
roughly parallel with the spine. The associated world wire (shown as a green curve), has
been deformed to produce a smooth bend; in this case the user has defined a bend of the

5.3 Deforming with Volume Wires 94

Figure 5.1: Two example deformations with the Volume Wires methodology on the Visible
Human dataset and CT Carp dataset. The red curve is the object wire, and the green curve
is the world wire.

Visible Hum an’s spine. This image also shows the final render of the deformation, which
has been rendered using a backward-mapping raycaster in world space.

In terms of how the volume object is deformed, the methodology can be considered in one
of two perspectives:

• The wire deforms / warps the surrounding space of the wire, and consequently the
volume object; or,

• The volume object is swept along the trajectory of the wire; specifically, the sweep is
a type of general sweep along an arbitrary trajectory whose generating area changes
through the sweep [FvDFH96].

For the majority of images in this chapter, Catmull-Rom cardinal splines are chosen as the
wire trajectory definition. Our choice is based on the ability of Catmull-Rom splines to
smoothly interpolate a given set o f points, fitting nicely with the object-skeleton metaphor.
In addition, Catmull-Rom splines are simple to work with, requiring no trajectory specifi­
cations. Catmull-Rom splines however do require two ‘redundant’ control points at either
end as the spline is evaluated between only the 2nd and (n — l) th segments (where n is the
num ber of segments defined by two control points).

5.3.2 Wire Manipulation

A series of different effects can be achieved with the Volume Wires framework. The most
simple, intuitive and immediately apparent effects are those of bending an object, as dem on­
strated in previous Figures. However, the wires can be used for purposes other than simple
bends. Figure 5.2 shows the Lobster dataset. The topmost image shows the lobster with
two object wires, each defined inside a claw. The middle image shows one world wire be­
ing moved away from the other, which has the effect of moving the associated claw away

5.3 Deforming with Volume Wires 95

from the other claw. In this respect, the user is treating the system as a skeletal deformation
system.

Figure 5.2: Lobster M anipulation

The advantage o f the volume wires methodology for this application is that any cracks in
the image (caused by skeletons segments linked via a common joint being deformed sepa­
rately) are dealt with implicitly by the system. This is because the wires are defined in this
case as Catm ull-Rom splines, and thus have a curved boundary that warps the surrounding
space in a smooth manner with no harsh transitions. In the case of deforming this lobster,
the user has associated the voxels representing each claw to a particular wire; these voxels
remain ‘attached’ to the wire as the wire is deformed. It should be noted however that this
functionality requires segmentation information to correctly label each claw; such segmen­
tation functionality can be integrated neatly into the Volume Wires framework, and will be
discussed in Chapter 6.

The bottom image in Figure 5.2 shows a claw being stretched, achieved by simply pulling
one control point o f the world wire towards the right. Because the rendering algorithm used
in this example image is a backward-projection Tenderer, holes in the image caused by voxels
being stretched apart are not apparent, as the values in-between samples are approximated
using trilinear interpolation. Note that in the case of stretching the data, if the rendering
algorithm were a forward-projection algorithm such as Splatting [Wes90], then cracks would
be apparent in the final image where voxels had been pulled apart by the world wire. Any
rendering algorithm implementing a forward-projection view of the deformation would need
to account for this issue.

Another simple operation with a wire is to translate the entire wire around in the scene,
which has the effect o f translating the deformed volume object to this new position. A long­
side these m entioned implicit effects, the Volume Wires framework additionally defines two
explicit effects that can be applied to world wires. These effects are warping and twisting,

5.4 Deformation Evaluation 96

(a) Tapering (b) Twisting

Figure 5.3: Tapering and twisting effects applied to a wire controlling the CT Carp dataset

Figure 5.4: M apping a striped polygonal tube from the object wire (left) to the world wire
(right)

and correspond to offset-dependent scaling and rotation transformations respectively; warp­
ing is a scaling that varies along the length of the wire, and twisting is rotation that varies
along the length of the wire.

Figure 5.3 shows the CT Carp dataset with (a) a tapering effect, and (b) a twisting effect.,
with rotation and scaling values associated with it to achieve twisting and warping effects.
We refer to these values as effect values. The effect values can be added at the control points
of the wire, and are linearly interpolated along the length of the wire.

5.4 Deformation Evaluation

The Volume Wires framework defines a non-reconstructive deformation evaluation system,
whereby the final image is generated using the deformation data and the target volume
dataset rather than a volume dataset that has been reconstructed (revoxelised, in this con­
text) in the deformed state. This section introduces the overall objectives o f the deformation
evaluation stages of the framework and therefore the mapping between object space (where
the dataset is defined) and world space (where the overall scene is defined).

Figure 5.4 gives a polygonal analogy of the Volume Wires deformation framework, whereby
a tube is deformed by placing an object wire (red, on the left) inside and defining the associ­
ated world wire (green, right) to have a distinct curve in its shape. The result is that the tube

5.4 Deformation Evaluation 97

N N x T

Figure 5.5: Correspondence between Frenet frames on the object wire and the world wire,

has been deform ed ‘around’ the world wire.

Since the deform ed volume in the Volume Wires methodology can be considered a swept
volume, each point in both spaces is associated with its nearest wire point. A discussion on
m apping techniques is given in Section 3.4.2. The below gives the series of steps required
to com pute a forward and backward mapping o f the deformations in the Volume Wires
framework.

• A forw ard-m apping function $: E 3 —■> E 3 must discover, for each voxel P in object
space, where P should be relocated in world space; therefore it is a mapping from the
object wire to the world wire.

• A backward-mapping function <J>-1 : E 3 —> E 3 must discover for each point P in
world space where the the sample point in object space should lie; therefore it is a
m apping from the world wire to the object wire.

An inherent symmetry exists between the forward and backward mapping operations in the
framework. Since the goal of the mapping process is to map points from one wire to another,
the m apping can be reversed by switching the roles of the wires:

• A forward mapping operation maps voxel samples v E E 3 from object space to world
space; and therefore from the object wire to the world wire;

• A backward-m apping operation maps samples p E E 3 from world space to object
space; and therefore from the world wire to the object wire.

To keep the text coherent, we discuss only the forward mapping operation here. We use the
following notation throughout the text:

• w 0(t) and w w (t) give the com puted points on the object and world wires at parametric
offset t, respectively;

• w rot(t) gives the rotation effect angle at offset f;

• w sci(t) gives the scaling effect magnitude at offset t.

As discussed, the backward-m apping of the discussed operations below can be achieved by
switching the roles o f the wires.

5.4.1 Mapping Objective

Since the m apping is achieved by mapping from one w ire’s Frenet frame to the other, a
procedure is required to locate a suitable wire offset given a point in space. The most

5.4 Deformation Evaluation 98

suitable correspondence between samples p G E' ̂ and wire offset t is to find the object
wire offset t which minimises the distance between p and w Q(t). This can be achieved
naively by scanning each wire offset and storing the offset that m inimised the distance. A
further discussion on the problem of computing the minimally distant offset for general
curves can be found later in Section 5.6, which additionally gives a m ethod of encoding
such inform ation into a volume dataset.

Figure 5.6: M apping P from the object to the world wire. Note that PQ = w Q(t) and
Pw = w w (t) for the respective i-values found to minimise the distance.

Algorithmically, the steps required to map a point P from object space to world space (and
consequently, from the object wire to the world wire), are given below, and are illustrated in
Figure 5.6

1. D iscover PQ, the nearest point on the object wire to P (at parametric offset t)

2. Com pute vector V = P — P„

3. Com pute (using t) corresponding point on world wire Pw

4. Transform V from P0's Frenet system to Pw 's Frenet system

The next section discusses the local coordinate systems defined for the wires so that the
correspondence can be formalised.

5.4.2 Frenet Frame Correspondence

The text above gives a series of steps that must be performed to map a point in object space
to world space based on the object and world wires. In order to com pute this mapping,
an association must be made between the coordinate systems defined on each wire. The
m apping between wires is achieved by mapping points / samples from one wire offset’s
defined Frenet frame [Blo90] to the other. Frenet frames are defined as the orthonormal
basis o f three m oving vectors T, N , B defined along the trajectory of a space curve:

• T{ t) is the tangent of the curve at offset t, and is is defined as the first-order derivative
of the curve;

• N (t) is the principal normal vector, and is the second-order derivative;

• B (t) is orthogonal to T (t) and N (t) and is therefore T (t) x N(t) .

Figure 5.5 shows (left) a Frenet frame defined on a Catmull-Rom spline, with T (t) shown
in blue, N (t) shown in green, and B { t) shown in red.

5.4 Deformation Evaluation 99

In the discrete case where a wire is approximated as a set of points, an approximation can
be obtained at point index i as:

= W M - W i

I W i + 1 - VOi I

T i - i x T*

* = (5'2)
Bi = N i x T i (5 .3)

The main problem with using the second derivative for computing N on arbitrary offsets is
that the norm als are not ‘stable’ enough to be used for intuitive modeling - N can flip sud­
denly at inflection points (where the sign of the curve changes), producing a sudden, harsh
transition. This problem is discussed by W inter in a PhD thesis [Win02] and Bloomenthal
in two research papers [Blo85, Blo90]. It is illustrated in Figure 5.7.

Arbitrary normal calculation Precalculated and corrected normals

Figure 5.7: A com parison between (left) calculation of Catmull-Rom normals using the
second derivative at arbitrary points, and (right) precalculated and corrected normals by
rotating successive Frenet frames to match trajectory vectors.

The solution to this problem of unstable normals is adopted from work by Bloomenthal
[Blo90], whereby the Frenet frames are calculated successively along the curve and cor­
rected to avoid flipping; the method is also adopted by W inter et al. [WC02, Win02] for
correcting norm als in Bezier trajectory sweeps.

To calculate corrected normals, an initial Frenet frame for offset t = 0 is first computed. This
Frenet frame is then placed at each successive wire offset t n+\. At each new offset t n+1, the
frame is rotated such that the fram e’s trajectory vector Tn_ i matches the trajectory vector at
t n+1, T n+1. The rotation axis is given as Tn_ i x T n , and the rotation angle as cos- 1(r n_ i •
T n). These corrected normal vectors can be stored in a lookup table for later retrieval;
to com pute a corrected Frenet frame at any arbitrary point on the wire, an interpolated
wire norm al can be retrieved from the table with a chosen interpolation kernel. For a GPU
im plem entation, the corrected normals can be encoded into a ID texture for input to the
shaders.

As discussed in Section 5.3.2, rotation and scaling values can be applied to points on the
world wire, which give a twisting and tapering effect respectively. Figure 5.8 shows a func­
tional twisting effect and a tapering effect defined and rendered on a surface-based tube

5.4 Deformation Evaluation 100

using the MATLAB tool suite. The specification of these effects has to be taken into ac­
count during the mapping of one coordinate system to another.

(a) Twist as sin(£ * 20) -f- 2 (b) Scale as cos(t * 4) -I- 2

Figure 5.8: Twisting (rotation) and Tapering (scaling) effects defined on the world wire

To achieve greater efficiency during the mapping process, the observation can be made that
roughly the same transformations will take place on vectors that are matched to the same
wire offset. Therefore, a preprocessing step can rotate the normal vectors defined in the nor­
mal lookup table at each offset t by w rot(t) around the axis defined by the trajectory vector.
This avoids the necessity of computing the rotation of vector V each time as the coordinate
system itself has been pre-rotated. The scaling effect defined along the wire trajectory is rel­
atively cheap to compute, involving only basic multiplication of the coordinates, and would
not benefit from such optimisation.

The next two sections give two possible mapping computation approaches for the Volume
Wires methodology. The choice of mapping approach is very much dependent on the where
the bulk of computation is performed and the performance of the computations on different
sets o f hardware. This is particularly true when considering CPU verses GPU im plem en­
tations, where different programming styles must be adopted and consideration given to
dedicated hardware implementations of important mathematical functions.

Orthogonal Matrices

The first mapping approach is to use the properties of orthogonal matrices to first transform
the object w ire’s Frenet frame system to the common origin axes, and then back to the
corresponding Frenet frame on the world wire.

Two matrices M 0 and M w are defined which transform the origin axes into the object wire
and world wire Frenet frames, respectively:

5.4 Deformation Evaluation 101

0
B w | I N w | 1 ^ 1 0

0
0 0 0 1

where T0,TW are the object and world trajectory vectors, N 0,NW are the precomputed object
and world normal vectors from the precomputed lookup table, and B 0 = N 0 x T 0, B w =
N w x Tw. We also assume the existence of S(p E E 3) which is a homogeneous scaling
matrix with scaling factor p , and T(p E E3) which is a homogeneous translation matrix
with translation amount p.

Given the vector V , the closest point P0 on the object wire, and the corresponding point Pw
on the world wire, the forward-mapping operation is:

p' = T (P W) ■ M w ■ S(w sd) ■ M* ■ V

where a superscript t denotes the matrix transpose. The backward-mapping operation is
given as:

p ' = T(P 0) ■ M 0 ■ 5 (—) - M l - V
^ s c l

These matrices can be pre-multiplied algebraically into one matrix if desired, although we
found that this gave a substantially larger number of computations in this case due to redun­
dant computations in each matrix cell.

Frame Rotation

The second approach to mapping the vector V to its new coordinate system is slightly more
expensive to compute on the CPU, since it requires the calculation of trigonomic ratios.
However, this assumption is based on the speed of acquiring such ratios being relatively
slow; modem GPUs such as the GeForce 6800 onwards can retrieve both the sin and cos of
an angle in one clock cycle.

A universal rotation matrix [Piq90] that can rotate a point around an arbitrary rotation axis
a is given by:

taxay + saz taxaz — say 0
tdy + c tayaz + sax 0

tayaz — sax ta2z + c 0
0 0 1 _

where for brevity in the matrix, s = sin(0), c = cos(0), and t = 1 — cos(0).

Given the object and world trajectory vectors T0 and Tw, object and world normal vectors
N 0 and N w, the rotation axis is derived as:

tax + c
taxay saz
taxaz -|- sdy

0

5.4 Deformation Evaluation 102

with the rotation angle for forward mapping:

a = cos-1 (T0 • Tw)

and backward-mapping simply with a negated.

The rotation effect is already taken into account from the precomputed normal vectors in the
normal lookup table. The scaling amount s is applied finally after the rotation to give the
final derivation:

p' = S{wsd(t)) • R a,a ■ V

5.4.3 Correct Normal Calculation

Since a deformation is applied to the scene and the resulting dataset is not reconstructed but
defined implicitly, each normal used in lighting calculations must be transformed beforehand
from object space to world space according to the deformation.

The normal can be brought into world space by performing a subset of the mapping calcu­
lations. First, the normal TV is obtained from the dataset via central differences. The new
normal TV' in world space is then given as:

TV' = M w • M l0 - N

that is, the standard mapping calculation, but with the translations removed. This gives
an effective and simple method for transforming the normals from object to world space
without resorting to Jacobian matrices. This method was can be computed more efficiently
than setting the fourth component of the normal to zero to ignore the translations.

For a backward-mapping scheme, there exists one more method for computing the new
normal; the world space being sampled can be treated like a reconstructed volume dataset
by performing 4>_1 on each sample point. Using this knowledge, the central differences
operation to infer the normal can be performed in world space: applying $>-1 to six points
in world space, sampling at each backward mapped point, and using these new points in
the central differences equation. This scheme is reasonably accurate (within discrete limits)
but suffers from the computational expense of six extra computations of $ -1 on top of the
computation for the central point. A discussion on normal calculation in this manner has
been given in Section 3.4.3.

5.4.4 Wire Memory Addressing

For Catmull-Rom splines (which are used throughout this chapter in result images), the
individual segments defined between the second and last but one control points are evalu­
ated individually in [0,1]. To fit Catmull-Rom splines neatly into the mapping operations
discussed, the f-value [0,1] should be ‘spread’ through the spline. This could be achieved
by dividing the spline into fixed precision segments. However, this scheme is clearly non-
optimal where the segment length varies greatly as each segment would be given the same
precision; segments with greater lengths would suffer from a lack of precision compared to
their smaller neighbours.

5.5 Calculating Deformation Boundary 103

For the Catm ull-Rom splines used in this and following chapters, the [0,1] range is spread
over the wire evenly based on the length of each segment. This implementation decision
has particular benefits if the wires are to be discretised into a fixed series of points, as
the distance between discrete points will be more consistent and therefore maximises the
precision available.

■[0 , 1]

o

[0 , 1]

o

(a) Default Catmull Evaluation (b) Desired Evaluation

Figure 5.9: Catmull-Rom spline evaluation

Figure 5.9(a) shows the default evaluation for Catmull-Rom splines, where individual seg­
ments (defined by two interior control points) are evaluated in [0,1]. 5.9(b) shows the im­
plem ented evaluation scheme for the Volume Wires system, where the [0,1] range is spread
through the spine. Note that the control point in the middle now lies roughly at t = | .

This evaluation method can be implemented neatly in C++ by defining an abstract base
class o f type Curve and then defining a child class CatmullRomCurve which implements the
methods for evaluating the curve. A member function is defined that takes an offset t and
returns the correctly-evaluated point along the curve. M ethods can be additionally added
for defining any attributes along the trajectory of the wire (such as the scaling and rotation
values for the tapering and twisting effects) by simply defining a new lookup table for each
attribute and offering an interpolated value for given f-values along the curve.

5.5 Calculating Deformation Boundary

The deform ation specified by the user will have a bounding box that is defined by both the
deform ation itself and the size of the volume dataset. In the case of forward-mapping the
deform ation, the boundary can be calculated simply by keeping track of the minimum and
m axim um coordinates of each point after applying function <h. However, as discussed in
Section 3.4.2, there is no trivial process for computing the deformation boundary on-the-fly
using a backward-m apping technique, as it is not certain whether each sample point on the
ray will map to the volume dataset until <E>_1 is actually applied.

A com m on operation in volume graphics is the separation of background voxels from the
rest o f the data. In CT/M RI datasets, the air surrounding the patient would produce very
low scalar values because the air is less dense than the solid material that the patient is
com posed of. It is useful therefore to define a threshold value (3 which defines the border
between background and non-background voxels in the target dataset. All voxels greater
than or equal to this threshold are said to be /3-voxels.

In the next section, a method of encoding the deformation into a volume dataset, called the
mapping field , will be discussed. Before this encoding is possible however, a method must

5.5 Calculating Deformation Boundary 104

be devised for com puting a bounding box of the specified deformation to ensure that there
is minimal waste; it would be trivial to provide a ‘good enough’ bounding box, but a better
solution would be to ensure a tight-fitting bounding box that can be computed without too
much com putational overhead.

(a) Grey-level data (b) Thresholded

Figure 5.10: A slice taken along the carp with (a) The slice image, (b) A threshold of 0.25

5.5.1 F o rw ard -m ap p in g slices

An approxim ate bounding box of the current deformation specified by the user in the Volume
Wires methodology can be obtained by forward mapping slices of the data from object
space to world space. Figure 5.10(left) shows a slice defined along the object wire of the
CT Carp dataset; the resulting slice image is shown to the right with (a) the slice image
retrieved directly from the scalar data, and (b) the slice image with a thresholding operation
to delineate background from non-background voxels. A threshold value of around f3 =
0.25 was decided upon based on trial and error, as it was seen to remove the packing material
existing around the fish at the time it was scanned; though it also removed the hollow region
inside the fish’s stomach.

This slicing approach could be used to estimate the deformation boundary based on (3. A set
o f planar slices can be defined along the object wire, aligned with the tangent o f the wire.
The slices are sized automatically in-place to tightly fit the data defined by (3, as shown by
the blue border in Figure 5.10(b).

If these slices are now forward-mapped onto the world wire, then an approximate bound­
ing box is estim ated by computing the bounding box of the new slices. The slices can be
forward-m apped by applying <f> to each of the slice’s geometry vertices.

5.5.2 In co rp o ra tin g Slice M asks

There is an am ount of redundancy caused by this approach in that the slices in this im ple­
m entation have a set rectangular shape; in theory however, arbitrary shapes are possible.
One simple approach to reduce the redundancy is to incorporate slice masks into the system.
The slice mask associated with each slice is defined as a 2D bitmap of the thresholding result
- the bit is set to 1 if the voxel is above or equal to (3, and 0 otherwise. If the snapshot is

5.6 The Mapping Field Encoding o f the Deformation 105

obtained from the slice on the object wire and mapped to its new position on the world wire,
a rough binary approximation to the deformed object is obtained.

The slice masks for the deformation need only be computed when a change is made to the
object wires in the scene. The resolution of the slice masks can be varied; however for
simplicity, the mask resolution is set to the size of the associated plane in our implementa­
tion. The computation of the slice masks using nearest-neighbour interpolation is extremely
efficient and adds no significant computational time to the bounding box calculation stage.

To further optimise the bounding box estimate, this slice mask can be traversed with pointer
arithmetic while ‘attached’ to the forward-mapped slice in world space. The final bounding
box defined for the deformation is now based the set of all forward-mapped slice mask texels
with value 1.

Alternatively, the slice mask information can be used to provide a segmentation facility.

5.6 The Mapping Field Encoding of the Deformation

This section introduces a set of algorithms for ‘encoding’ the deformation data used in
the mapping process into a discrete 3D dataset, which is referred to in coming text as the
mapping field.

According to the mapping operation given in Section 5.4, the datum required for each sample
point pi on the ray at render time is the offset of the closest point on a wire in the scene.
If a forward-mapping operation were required for a forward-projection renderer, then the
desired offset would be to the closest object wire point. Conversely, if a backward-mapping
operation were required for a backward-projection renderer, the required offset would be the
closest world wire point.

The coming text describes the mapping field generation process in a projection-independent
manner for simplicity. An encoding using the object wires would facilitate a forward-
mapping, since each voxel in object space can be associated with its nearest wire point
and subsequently translated to its new position in world space; an encoding using the world
wires would facilitate a backward-mapping since each sample point pi in world space can
be associated with its nearest world wire point and backward-mapped into the dataset (in
object space).

5.6.1 Locating the Closest Point on a Wire

The main reason that encoding the deformation into a mapping field is desirable is that
discovering the closest point on the wire can be an expensive operation; the closest point
on a ID line segment can be discovered easily using the equation of the line. However,
discovering the closest point on a parametrically-defined curve is a nontrivial problem if the
curve is cubic.

There is unfortunately no general, closed-form analytic solution to finding the closest point
on cubic curves such as Bezier curves and Catmull-Rom splines. Schneider gives a numeri-

5.6 The Mapping Field Encoding o f the Deformation 106

. 7 (1) min{t: l e [0 . 1]) 1}

Figure 5.11: Closest point on curve

cal root-finding algorithm for finding the closest point on a Bezier curve [Sch90a, Sch90b].
The algorithm exploits known properties of Bezier curves (such as the curve always lying
within the convex hull of its control points) to subdivide the curve and find the closest point.
This algorithm is implemented by Chen and W inter [WC02] to evaluate sweeps of 2D tem ­
plates along Bezier trajectories at render-time. This algorithm, however, is still expensive
as it requires numerical root finding methods and thus becomes impractical for render-time
evaluation at interactive frame rates. W inter gives an additional commentary on the subject
of finding the closest point to a cubic spline in his PhD thesis [Win02],

A brute-force approach to computing the closest point on the curve might involve recursively
subdividing the curve into smaller and smaller segments until a given tolerance is reached,
but such approaches are unpredictable both in the time they take to compute the closest point
and in the accuracy of the final result, particularly for curves with sharp bends.

5.6.2 M app ing Field R epresentation

Conceptually, encoding the deformation into a discrete 3D dataset is similar to ‘dependent
texture’ techniques used in volume deformation on graphics hardware, such as that used by
Rezk-Salam a et al. [RSSSG01], where the deformation is encoded by means of displaced
texture coordinates. The key difference between dependent textures and the mapping field
is that the mapping field stores the parameters to a mapping function instead of displaced
texture coordinates.

Figure 5.12: A 2D slice through the mapping field

At each voxel in the mapping field is a tuple (7, t) where 7 gives the identifier for this voxel’s
nearest wire, and t gives the nearest offset along the wire given by 7. These values are used
at render-time to evaluate the deformation, with full details of this process (the mapping
process) given later in this chapter. 1

'For efficiency o f memory usage, just one floating-point value would suffice by defining a [0, 1] space as the

5.6 The Mapping Field Encoding o f the Deformation 107

5.6.3 M app ing Field C reation

The mapping field is created using a distance propagation technique (see Section 2.5 for a
discussion on distance propagation techniques). As discussed, an observation of distance
propagation techniques in general is that alongside the minimum distances, any attributes
of the surface (e.g. colour) can additionally be propagated from their original locations,
outwards towards the dataset boundaries, such that the distance field becomes:

D (p) = (m i n { \ p - q |: q € S}, a i , . . . , a n) (5.4)

where a i , . . . , an are the additional attributes at point p. Looking up a value in such a field
gives not only the minimal distance to an object of interest, but also the attributes that were
found at this closest point.

In a traditional distance field, the distance value at each voxel represents the minimal dis­
tance to some isosurface r . For a Volume Wires deformation, it is not an isosurface that
is of interest; instead, the minimally-distant wire offset is the value that is required at each
voxel. Therefore, voxelised versions of the wires themselves are to be propagated instead
of a chosen isosurface value. Specifically, the values to be propagated are the (7 , t) values
denoting the wire reference and the wire offset, respectively. The field now becomes:

A(p) = (m i n { \ p - q |: q G W] , 7(g), t{q)) (5.5)

The distance values are discarded once the propagation algorithm has completed, saving 4
bytes per voxel for floating-point accurate fields; the distance values are not required for any
of the rendering algorithms discussed in coming sections.

5.6.4 P ropagating the (7 , t) A ttribu tes in the M apping Field

Before distance propagation techniques can propagate the distances (and in this case, the
additional attributes (7 , i)), an initial set of voxels must be initialised at points of interest; in
this case, the points of interest are a finite series of points lying on each wire.

Initially, the distance values of the voxels in the mapping field are set to 00. As with general
distance propagation, an initial set of voxels must now be initialised with default (7 , t) val­
ues in order that these values can be propagated outwards towards the edges of the mapping
field.

Algorithm 2 gives the full method for pre-propagation initialisation, and Figure 5.13(a) gives
a 2D illustration of the process. The objective of the initialisation phase is to ensure that each
voxel belonging to a cube that the wire traverses is aware of its nearest point on the wire.
In order to achieve this, the wire is incrementally followed through the field at a specified
arbitrary precision of n points wpo, w p \ , . . . , w pn- i -

space o f all discrete wire offsets; or a 32-bit integer could be used to store both values using bit masking and bit
shifting.

5.6 The Mapping Field Encoding o f the Deformation 108

(a) Voxel Cube Calculation

7 = 7n
t t n

d | U4 7 n (^ n)

m m m m m m m m m m m m rn m m m m m .

(b) V4 data

Figure 5.13: Voxel Cube Pre-Propagation Initialisation

Once a set of points inside a voxel cube is established, the algorithm computes for each of
the cube’s voxels, the closest wire point to that voxel. If this minimal distance value is less
than the current value stored at the voxel, then the distance value is updated along with the
(7 , t) pair. This is illustrated in Figure 5.13(a) as an arrow pointing from a voxel to a point
on the wire. Figure 5.13(b) shows a snapshot of the data that is maintained for voxel iq .

Note that it is possible that a voxel may be updated with a wire point inside a different
cube than was previously stored. This is shown in Figure 5.13(a), where voxel V4 has just
been updated with its new nearest wire point tn . The previous choice of closest wire point
is shown as a greyed-out arrow, and the new current data for the voxel is shown in Figure
5.13(b).

Once this initialisation process is complete, the initialised distances and (7 , t) values are
propagated using a distance propagation algorithm. Our preference is to use a vector dis­
tance transform instead of a standard distance transform, due to its increased accuracy in
this application (a visual comparison between distance and vector techniques is given later
in this chapter). M ullikin’s 3D vector distance transform algorithm [Mul92] is used for the
propagation, which propagates vectors pointing to the closest wire point, resulting in in­
creased accuracy at the expense of slightly increased memory usage due to the requirement
of storing vector data instead of just distance data. This increased memory requirement how­
ever was found not to be a problem with today’s machines; and additionally the algorithm
only requires the storage of three slices’ worth of vectors at any one time.

5.6.5 A nalysis o f M apping Field M ethods

In this section, a CPU-based raycasting volume rendering algorithm utilising backward-
mapping is used to compute the Volume Wires mapping operations and produce a rendered
image of the deform ation, complete with lighting and a ID transfer function.

The focus in this section however is not on the implementation of the renderer; a complete
GPU-based rendering algorithm is given to complete the chapter in Section 5.7. The focus
here is give a brief analysis of how varying mapping field variables (namely, its size and the
choice of distance field creation technique) affect the final image quality.

5.6 The Mapping Field Encoding o f the Deformation 109

Mapping Field Size

The size of the mapping field has a large effect on the quality of the rendered image, due to
the increased number of voxels available for trilinear interpolation; a higher number of vox­
els gives a more accurate result, but at the expense of greater memory usage and increased
computation time.

Figure 5.14 shows a comparison between images rendered with differing sizes of mapping
fields, all computed using the Chamfer distance transform using a 3 x 3 x 3 quasi-Euclidean
matrix. At the top is an image rendered with a full size mapping field - that is, a 1 : 1
correspondence in scale between the volume dataset and the mapping field. This image is
used as a reference image for the three comparisons below, which show final renders with
mapping fields of reduced size; i.e. the first row shows a render achieved from a mapping
field with 1% of the voxels of the reference mapping field, taking 0.01 seconds to compute.
Note how the image difference between this render and the reference render is greater than
that of the increased size mapping fields below.

Distance verses Vector Transform

The naive method of computing the mapping field would be to compute, for each voxel, the
nearest point on any wire in the scene; essentially this would be an Euclidean distance field.
This process is extremely expensive, but creates an optimal result.

Figure 5.15 shows a comparison between the naive approach and two different propagation
methods, namely the Chamfer transform with a 3 x 3 x 3 quasi-Euclidean matrix, and
Mullikin’s EVDT algorithm. Each comparison is computed with three sizes of field, with
the field size (and therefore accuracy) increasing down towards the bottom of the page.
For each rendered image computed from a propagated field, we give the image difference
(negated for clarity) and root mean square between it and the image rendered using the naive
field.

As expected, the vector transform significantly outperforms the chamfer transform; it is
clear from the images that the EVDT algorithm gives the highest quality results of the two
propagation methods, based on measured error and visual difference from the naive method.

5.6 The Mapping Field Encoding o f the Deformation 110

Reference image (6.05s)

(a) 1% (0 .01s) Reference difference

(b) 3.7% (0.17s) Reference difference

(c) 12.5% (0.76s) Reference difference

Figure 5.14: Deformations encoded into varying mapping field to volume dataset scales.
Scale numbers given in percentage of full-scale mapping field. The time to propagate the
field is given alongside. Difference images have been negated for clarity.

5.6 The Mapping Field Encoding o f the Deformation 111

Algorithm 2 Pre-propagation Wire Freezing

Function Freeze
Description M ain entry-point function for the algorithm
Parameters

arrWirePts An array of wire points

1: for all points p in a r r W i r e P t s do
2: if a new cube is entered then
3: F r e e z e N e ig h b o u r s { w i r e l D , a rrP lo ts)
4: a rrP lo ts .c le a rQ
5: end if
6: a rrP lo ts [p lo tC o u n t\ . (p o in t , o f f set) <— (a r r W ir e P ts [i \ , i)
7: end for

Function FreezeNeighbours
Description Takes an array of plots within one cube (bounded by eight voxels) and sets

all neighbours to reference their minimally-distant point.
Parameters

xvirelD Current Wire ID
arrPlots Array of plots

1: m i n D i s t <— oo
2: m i n O f f se t <— 0
3: for all neighbouring voxels v in current cube do
4: for i = 0 to a rr P lo ts . s i ze Q do
5: d <— | arrP lo ts[i \ .point — (x, y, z) \
6: if d < m i n D i s t then
7: m i n O f f se t <— p
8 : m i n D i s t <— d
9: end if

10: end for
11: m a p p in g F ie ld [v \ .5 <— m i n D i s t
12: m a p p in g F ie ld [v \ . t <— m i n O f f set
13: mappingFie ld[v] . 'y <— w i r e l D
14. end for

5.6 The Mapping Field Encoding o f the Deformation 112

<D

C_o
C3
60eg
D.
Ou.
CL
u

2 ’13
* aGO

a «
i - .a

• r t e/3C T-l-c 2O 1)
a <e
c co <u •a >eg
60 eg 4>a. js o — is *-*CL O
4> ^ O "O
§ .a

60

4)JC

3
CL

"O
H
Q
>
BJ
T3
C
eg

X■r c *3 <u
eg
E S
C 4)

. 2 E
2 ~
o a
3 SUJ'"7 GO
*GO
| o
5 2 ^
1:0 r v c
x & a
oo « 2
x ^ |

CO eg 7 3 '—' 4) 4)is Lh 60 <2 2 2
E ' Z . i

a | i
-C 1)<+h O L«o ^ 2

c ^ 2̂
2 o- ^
•c B* c
cl d a
£ .£ S
g e o
< g 2
. . ^ 1)

^ 2 ■£
io B 4
H 2 o3 £ £
60 ~ u£ E E

5.7 A GPU Backward-Mapping Ray caster 113

5.7 A GPU Backward-M apping Raycaster

Before highly-optimised rendering algorithms for the Volume Wires methodology can be
discussed in coming chapters of this thesis, it is necessary to lay the groundwork for a
reference GPU implementation of a raycasting volume renderer that uses backward-mapping
on ray sample points p t to compute new sample points p \ in the volume dataset. These
sample points at p\ are then sampled, and the discovered values used in the transfer function
and subsequently the compositing operation.

The implementation introduced in this section highlights the advantages of using a backwards-
mapping raycaster; many of the deformation algorithms discussed in Chapter 3 employ
specialised rendering algorithms and often do not offer fully customised compositing oper­
ations. The Volume Wires framework can be integrated into a standard raycasting pipeline
more easily.

This section introduces a GPU-based raycasting volume renderer that evaluates the Volume
W ires mapping field to discover new sample points in the volume dataset. The end result is
a dynam ically-com puted image of the deformation running at interactive frame rates.

5.7.1 M apping Field R aycasting & B ackw ard-m apping

A standard CPU-based raycasting volume renderer can be modified quite simply to project
its rays into the mapping field M instead of the volume dataset V , and call the inverse
mapping function <f>-1 (p, 7 , t) for each sample point along the ray.

for all Rays r do
for all Sample points pi on r do

P m f P i ' M w o r l d —* f ie ld

(7 , t) = M (pm f)
p ' = $ - 1 (7 , £)
s a m p l e = V (p ')
c o m p o s i t e (s a r n p l e)

end for
end for

Before this can be achieved however, a mapping between world space and mapping field
space must be established to allow the renderer to locate the correct point in the mapping
field for each world space sample point. Figure 5.16 shows the required coordinate system
mappings for the rendering process. Rays cast into world space (5.16(a)) are first mapped
into mapping field space (5.16(b)). Since the mapping is affine, only the ray P v and D v
vectors need to be mapped, and all sample points in mapping space can be linearly interpo­
lated by simply adding the required difference when traversing the mapped ray. The matrix
required to map points from world to mapping space is defined as:

5.7 A GPU Backward-Mapping Raycaster 114

- l
f t l w o r ld —> f ie ld

(a) World Space (b) Mapping Field Space (c) Volume D ataset Space

Figure 5.16: M apping from world space to the volume dataset

ft'fworld^> f ie ld

L____ 0 0

0
A

0

0 0
A
Sz

0 0 0

8 m i n ■

A _ $.x um m x
— — 8$ Vminy
— — 8um in z

1

(5.6)

where A is the field size, and 8 = 8 r

For each sample point inside the mapping field, the (7 , t) pair is obtained. These values are
now sent to the backwards-mapping function <f>“ 1 along the the current sample point pi on
the ray in world space. <f>-1 gives a new sample point p[which becomes the position in the
volume dataset to sample (Figure 5.16(c)). The volume dataset is now sampled at this point,
and the value is used in the compositing scheme that is being used for the current rendering.

Mapping Field Volume Dataset

<f> (p) = p

Figure 5.17: Sampling the mapping field at each ray sample point and performing -1

The advantage of using a backward-m apping function for the deformation rendering is clear
- once the function is implemented, it is relatively straightforward to implement it into an
existing volume rendering pipeline. In addition, the advantages of volume rendering such as
internal texture information, shadows, etc are all maintained.

5.7.2 Challenges of GPU Backward-Projection with Deformation

Many GPU-based raycasting algorithms exist for volume rendering, and a review of the
most popular algorithms can be found in Section 4.2. Early GPU-based volume rendering

5.7 A GPU Backward-Mapping Raycaster 115

algorithms used a slice-based approach where slices (aligned either with the viewer or the
dataset) were textured with the corresponding volume dataset slices; the volume rendering
integral is approximated in this case by the hardware blending the slices together. Later
generations of consumer GPUs brought programmable shaders; the ability to perform trilin-
early interpolated 3D texture lookups and dynamic looping are of particular importance to
volume rendering as traditional raycasting can be performed on such hardware.

The most optimal manner in which to generate rays is to use a dataset rasterisation technique,
as introduced by Westermann et al. [KW03] and discussed in detail in Section 4.2.1. By
rasterising the front and back faces of the volume dataset, the ray entry and exit points in
world space can be inferred by interpreting the resulting framebuffer < R, G ,B > values
as world coordinates. These values can be written to a texture as input to a fragment shader
which then performs samples along the ray. At each sample point pi along the ray, <f>-1 is
applied to give p[, the new sample point in the volume dataset.

It is immediately apparent however that such a scheme would only make sense where a static
volume dataset is rendered; if a real-time deformation is applied to the dataset, then points
inside the volume dataset boundaries may be transferred by <3? ‘outside’ the boundaries. It
is generally not possible to judge whether a given ray will ‘contribute’ to the final image -
i.e. whether sample points P i,. . . ,Pi+i will backward-map (using <£-1) to sample points
p[,. . . , p'i+i within the volume dataset boundary. Rasterising the volume dataset to generate
the ray entry / exit points therefore would be unreliable; some method for approximating
the boundary of the deformation is required so that this boundary can be rasterised instead
(such as the method given in Section 5.5).

A technical issue for consideration when performing a backward-mapping function on each
ray sample point is the maximum instruction limit for fragment shaders. When this limit
is hit, the GPU writes out the contents of its debugging registers to the framebuffer. The
maximum primitive instruction limit on GPUs such as the Geforce 8800 is 216, which can
be surpassed easily by performing high amounts of computation inside loops; if <E>-1 is
compiled to around 512 primitive GPU instructions, then the number of ray steps needs to be
less than 128 to avoid hitting this limit, and this is without taking any auxiliary computations
into account such as the compositing operations, ray operations, etc. Fortunately, the high-
level shading languages Cg and HLSL provide details on the instruction counts to assist
the developer. The developer can however achieve many more instructions per pixel by
performing multiple passes.

5.7.3 Algorithm Overview

The GPU raycasting algorithm introduced in this section uses a rasterisation-based ray setup
stage. Since the rays defined in the world are to be fired into the mapping field, the boundary
of the mapping field (mapped to world space) is rasterised to generate the ray entry and exit
points for the fragment shader.

The raycasting and backward-mapping operations discussed previously in this chapter are
computed in the fragment shader on the GPU. Because of the computational power of the
GPU, the mapping operation is computed many times faster than the equivalent number of

5.7 A GPU Backward-Mapping Ray caster 116

mapping operations computed on the CPU.

The following GPU functionality is used for the algorithm.

1. Framebuffer Objects (FBO) and attached depth RenderBuffers (with 16-bit floating­
point accuracy) - provide a means of writing intermediate results such as ray entry/exit
points and compositing information, to a texture;

2. Fragment discarding and Early Z-Culling - an important means of providing efficient
early ray termination;

3. Multiple Render Targets (MRTs) - this functionality allows the graphics hardware to
write colour values to more than one render target. In this case, the render targets will
be separate Framebuffer Objects;

4. Runtime looping (not unrolled at compile time) / branching in fragment shader.

A discussion on these technologies in the context of GPU volume rendering is given in
Chapter 4 of this thesis. During the coming discussion, we denote the three framebuffer ob­
jects used as FBOq, F B O \, and F B O 2 . A particular framebuffer object may be used more
than once for a different purpose throughout the rendering process, and is usually cleared to
all-zero before use. The data used in the mapping operation is encoded as described in the
next section.

5.7.4 Data Encoding

In order for the fragment shader to compute the deformation backward-mapping, it requires
access to the volume dataset, mapping field, and the wires. The manner in which the data is
encoded for the GPU therefore deserves discussion.

Volume Dataset & Mapping Field

The volume dataset and mapping field are both encoded as 3D textures. The volume dataset
encoding is trivial, and simply involves setting the correct dimensions and data format in
OpenGL, with the scalar value semantically mapped to the red component of the texture.

The encoding of the mapping field however requires special attention since it is actually
comprised of two values per voxel: (7 , £). One possible encoding of the mapping field
would be to use an < R ,G , B > internal format where 7 is mapped to the red values and t
to the green values. This however introduces some redundancy in the blue component, and
additionally, consideration must be given to the fact that the volume dataset must also exist
in GPU memory at the same time.

A more space-efficient GPU encoding of the mapping field can be realised with a single
value floating-point field, with the full range of each wire’s f-value spread through the [0, 1]
range. The t value can be recovered from the mapping field by multiplying the mapping
field value by the number of wires and subtracting the floor of the the result (which in turn
becomes 7).

5.7 A GPU Backward-Mapping Raycaster 117

Object and World Wires

Along with the nearest wire point obtained from the mapping field at each ray sample point,
the fragm ent shader requires access to the wire information, including the precomputed
norm als (as per Section 5.4.2) for input into the mapping operation.

Consideration must first be given to whether the wires are discretised before encoding. The
advantage of pre-discretising the wire is that the logic required to turn f-values into the final
point on the wire is shifted to the CPU; GPUs are designed to perform large amounts of sim ­
ple com putations, but not flow-control and logic operations. Since the i-value will be used
to com pute a wire point, the GPU will be required to calculate a wire point given a f-value
once for each active voxel in the scene. Therefore, a great deal of computation can be saved
by precom puting the discrete wire representation into a relatively small number of points
beforehand, as the request for a wire point is reduced to a memory address computation.

The discrete wire points can be provided to the GPU as an n x 2m 2D texture, where n is
the num ber of discrete points per wire (referred to in future as the wire precision and m is
the num ber of wires in the scene. Each wire occupies two rows in the texture: one row for
the object wire points, and one row for the world wire points. Each < x , y , z > wire point
occupies one texel by encoding the coordinates into the < R , G , B > values of the texel;
the alpha component is utilised for the scalar value representing the scaling effect factor at
that point.

The num ber of points the wire is discretised into (and subsequently the number of columns
in the texture) is set to a power of two to provide the greatest lookup speed 2. In addition,
the precom puted and corrected wire normals are encoded into a separate 2D texture in the
same manner.

Since the textures are used as data storage, the interpolation is set to nearest-neighbour to
ensure that no interpolation of values occurs between the wires in each row of the tex­
ture. To improve the results o f computing points along the wire in the shaders however,
linear interpolation can be implemented cheaply by providing the shaders with a function
for interpolating between wire points (columns) but not the wires (rows). The Cg code for
achieving this is given below.

Listing 5.1: Linear interpolation for sampling a wire
float3 wireSample(

uniform sampler2D wire,
float2 pos)

{
return lerp(tex2D(wire, pos), // sample a

tex2D(wire,float2(pos.x+(1/WIRE_PREC), pos.y)), // sample b
frac(pos.x*WIRE_PREC)); // [0,1] offset

}

where W I R E - P R E C is the precision of the wire.

;The GPU is highly optim ised for fetching data from power-of-two sized textures - though m odem GPUs
have the ability to fetch from non-power-of-two textures if required

5.7 A GPU Backward-Mapping Raycaster 118

5.7.5 Identifying ‘Valid’ Rays

The m ethod given in Section 5.5 for determining the boundary of the deformation can addi­
tionally provide an important optimisation for the rendering stage, by providing an approx­
imation o f the image-space projection of the deformed object. The planes and associated
plane masks used in the process can be used to mark voxels in the mapping field that con­
tain ‘valid’ data; that is, data that backward-maps to voxels above the (3 threshold. Voxels
in the m apping field that do not satisfy this property are referred to as 0 -voxels in coming
text.

During rendering, many rays will potentially travel through the mapping field and hit only
0 -voxels. The optimisation task therefore becomes the identification of rays (or bundles
o f rays) that will hit one or more valid voxels in the mapping field before they exit; the
elim ination o f such rays will help avoid redundant computation of <$_1. We denote such
rays valid rays, and all others 0 -rays.

(a) W ithout VRI (b) With VRI

Figure 5.18: Usage of Valid Ray Identification. The green area shows rays that have hit only
0 -voxels.

This process is referred to as Valid Ray Identification, and its effect is shown in Figure 5.18.
To elim inate as many 0 -rays as possible from being fired, the mapping field is first divided
into large blocks (e.g. 20'3), and blocks containing one or more valid voxels are identified.
For each of these ‘valid’ blocks, a point in space centred at each active block is added to a
list of valid blocks. These points can now be rasterised at a sufficiently large size to give
a rough estim ation of the active areas of the final image. All framebuffer pixels containing
valid rays are guaranteed to be within this pixel subset (along with a comparatively small
num ber of 0 -rays around the perimeter). The manner in which the rays are eliminated from
com putations is using the Z-buffer, and the complete process is given in following sections.

5.7.6 Preparing to Raycast - Ray Setup

The first stage in the rendering algorithm is to generate the ray entry and exit points based
on the m apping field’s position in world space.

Z-culling is utilised for the elim ination of unnecessary computation by eliminating fragment
com putation on fragments which are defined to belong to these invalid rays. A caveat of

5.7 A GPU Backward-Mapping Raycaster 119

using Z-culling for this purpose is that in order to enable it, the state of depth computation
cannot be modified after being cleared. This means that once the depth function is chosen, it
cannot be altered to perform subsequent passes - all passes must work with the same depth
function. In addition, the depth cannot be altered in the fragment shader. However, the
Geforce 6600 used during development allowed fragments to be discarded without disabling
Z-culling.

Stage 1 - Rendering the valid points

Depth testing is initially disabled. The points generated from the block list (as discussed
in section 5.7.5) are rasterised to FBOq. In order to use the depth buffer to cull the 0 -
rays, the depth buffer must contain 0 for 0 -rays, and 1 otherwise. When this is the case,
all fragments falling into a 0 -pixel (in turn corresponding to a 0 -ray) will be immediately
eliminated without being processed.

The below table shows the state of the depth buffer and three Framebuffer Objects. A
greyed-out entry indicates that the buffer state has not changed as a result of the previous
operation.

Buffer Current contents of pixel p
Depth Initialised to a maximum depth of 1

F B O q
J 1 if p was hit by a valid-block

^ red [0 otherwise
F B O \ Initialised to {)
F B O -2 Initialised to 0

Depth testing is now switched on, and depth function is set in OpenGL as g l_ g e q u a l mean­
ing that incoming fragments will only be further processed if their depth is greater than or
equal to the current depth buffer value. The depth is initialised to 0.

A viewport-sized quad is drawn (a ‘data-stream generator’ in GPGPU terminology), and
a fragment program picks out the values from FBOq to determine how the depth is set.
If there is a value of 1 for the red component, then this implies that this pixel was hit by a
valid-block, so the fragment is discarded (using the discard keyword in Cg). Otherwise, the
fragment is kept and the colour is set to an arbitrary value, since it is not used in subsequent
stages. The below table shows the current buffer state.

Buffer Current contents of pixel p

Depth
J O if p is a 0 pixel
(1 otherwise

F B O q Cleared to 0
F B O , Initialised to 0
F B O -2 Initialised to 0

5.7 A GPU Backward-Mapping Raycaster 120

Stage 2 - Ray Setup

This stage involves performing a rasterisation-based ray setup stage on the mapping field.
The mapping field boundary coordinates are first brought into world space. The six faces of
the boundary are each defined as a g l _ q u a d .

The front faces are drawn by culling all back-facing faces. A fragment program running
on the GPU writes the incoming texture coordinate to the framebuffer as the < R , G, B >
colour value, and these values are stored in the attached framebuffer object F B O q . These
texture coordinates represent the normalised world coordinates of the boundary of the map­
ping field.

Buffer Current contents of pixel p

Depth buffer
f 0 if p is a 0 pixel
[1 otherwise

F B O q Texture coordinate (world position in [0,1])
FBO) 0
F B O 2 0

Next, the back faces are drawn by culling all front-facing faces. This time, the fragment
shader takes in F B O q as an input and uses it to compute the ray direction given the current
texture coordinate. The ray direction is written to render target F B O i ’s < R , G , B >
values, and the ray length is written to the a component. The ray length is computed as the
distance between the two rasterised points, which correspond to the ray intersection points.

The table below gives the final buffer state for the ray setup stage. F B O q and F B O \ will
be used as input textures to the raycasting stage, providing the necessary ray parameters for
each pixel.

Buffer Current contents of pixel p

Depth buffer
f 0 if p is a 0 pixel
[1 otherwise

F B O q Texture coordinate / world position in [0,1]
F B O i p rgb : Normalised ray direction, p a : Normalised ray

length
F B O 2 0

5.7.7 GPU R aycasting

The raycasting stage consists of multiple passes with an initially fixed number of ray steps
per pass. F B O q and F B O \ are used as input textures to the raycasting stage, providing the
necessary ray parameters for each pixel. F B O 2 is used as a compositing buffer, storing the
accumulated colours and ray opacities. Therefore, F B O 2 is used both as an input texture
and as the (single) render target3.

3The com position calculations benefit from the high precision and dynamic range offered by the internal
format used by the Framebuffer Object (16-bit per component).

5.7 A GPU Backward-Mapping Raycaster 121

start

y e sRaycast / Mapping

More
Slices?

Display
Compositing FBO

no

Termination

Figure 5.19: The iterative raycasting process

Figure 5.19 shows the iterative raycasting process. Each pass is invoked by rasterising the
back faces of the bounding box. The resulting fragments will pass the depth test (set to
greater than or equal) as they were the last rasterised primitives (from the ray setup stage).

A fixed number of these passes is made based on the ray step. Each pass is actually com ­
posed of two stages controlled by two different fragment programs - the ray traversal shader
and the termination shader. The ray traversal shader traverses each ray, performing the back­
ward mapping operation <f>_1 and accumulating the colours and opacities. The termination
shader then checks if the ray should be terminated based on its opacity value - if the opac­
ity is above 0.95, then the ray is terminated by setting the depth value to 1 to ensure the
fragment belonging to the ray fails the depth test in future passes.

These two stages are split into two in order that the GPU can perform early-Z termination,
which is a capability of the GPU to avoid invoking the fragment shader if it can guarantee
that the fragment will fail the depth test; to qualify for this guarantee, the shader must not
modify the fragment depth itself. For this reason, the GPU code that decides when a ray is
to be term inated is kept in a separate, dedicated shader.

Performing <F_1 in the Fragment Shader

At each ray sample point p l in world space, the world space to mapping field space matrix
(given in Equation 5.6) is applied to give the mapping field sample point. The mapping field
is next sampled at this point, and the value obtained is used to derive the (7 , t) pair required
for the wire point lookup.

The following information is obtained from the textures:

• P 0 and P w - the nearest object wire point and the associated world wire point;

• T 0 and T w - the object wire and world wire trajectories;

• N 0 and N w - the precomputed object wire and world wire normals.

The parametric offset t is already normalised and therefore addresses the correct texel. The
(7 , t) values are first used to obtain the object and world wire points PQ and Pw. The
norm alised trajectory vectors for the object and world wires T0 and Tw are obtained from
the discrete approximation of the first derivative by subtracting the computed wire point

5.7 A GPU Backward-Mapping Raycaster 122

from the next point in the texture and normalising the result; achieved by adding a small
amount e = 1/ w irePrecision to the offset to obtain the next wire point. Additionally, the
wire normals N 0 and N w are obtained from the wire normals texture.

Once these six vectors have been obtained from the texture information, 3>-1 is computed
as per the mapping derivations given in Sections 5.4 to obtain the final sample point p\ in
the volume dataset. The volume dataset is now sampled at p\ and the value used a lookup
function encoded as a ID texture to obtain an < R ,G ,B ,a > value to be included in the
compositing equation.

Ray Termination

The number of ray steps is only modified near the end of the ray in the case where the
number of steps would take the ray out of the volume. Listing 5.2 gives the Cg code for
computing this.

// calculate the distance from ray origin to the current ray position
float currDist = distance (rayOrigin,rayCurr);
// calculate the distance from ray origin to where it would end up
// after MAX_STEP steps
float finalDist = distance(rayOrigin,rayCurrt(MAX_STEP*rayDir));
// if that takes the ray out of the boundary...
if(finalDist >= rayLength) {

// be sure the opacity is set to 1 when done (termination condition)
terminateAtEnd = true;
// calculate the final number of steps to avoid redundant calculations
stepCount = ((rayLength-currDist)/(finalDist-currDist))*MAX_STEP;

}

Listing 5.2: Cg code for calculation of ray length

5.7.8 Results

A selection of result images are now shown, along with the total time to render them (i.e. the
sum of both mapping field generation and the time to generate the image on the GPU). Addi­
tionally, to judge the speed of the GPU algorithm, we give the approximate number of frames
per second achieved when interacting with the resulting deformation using a trackerball-like
interface to rotate the camera around the data with a512 x 512 framebuffer.

Figure 5.20 shows four frames from an animation of the CT Knee dataset. The animation
wires were specified for a total of 24 frames in less than a minute, and the time taken to
generate the 24 mapping fields and produce the images was 10.43 seconds on a P4 3.4GHz
with a GeForce 6800. Once the mapping field was created, navigation of the deformed data
in world space was performed at around 4FPS.

Figure 5.21 shows three frames from an animation of the CT Carp dataset. The animation
was specified not through user interaction, but by defining the movement of the control
points as a sine wave, producing a travelling sine wave deformation in the carp’s body. The

5.7 A GPU Backward-Mapping Raycaster 123

total time for m apping field generation and rendering of the 24 frames was 12.8 seconds. The
rendering speed was calculated during interaction with the deformed data as approximately
4FPS.

Figure 5.22 shows two example deformations of the Visible Human torso, with the initial
object wire shown in the leftmost image. The mapping field for the first deformation (middle
image) took 0.23 seconds, and the second (rightmost image) 0.26 seconds. In both cases,
the interaction speed after mapping field generation was found to be approximately 6FPS.

Figure 5.20: Four frames from an animation of the CT Knee dataset

Figure 5.21: Three frames from an animation of the CT Carp dataset

5.7 A GPU Backward-Mapping Raycaster 124

"O
cd

C<oo
<ux:

"Oo-C
<D£
<u

TDOJc
<u•o
T3iU

5.8 Summary 125

5.8 Summary

A volumetric deformation methodology named Volume Wires has been introduced in this
chapter along with a group of techniques and algorithms for implementing it. The method­
ology presented provides an intuitive interface to the user, providing the ability to treat
the volume objects as bendable objects attached to wires which the user defines inside the
dataset. Along with effects such as compression, stretching, and bending, the user can spec­
ify explicit effects such as warping and twisting along the wire trajectory.

We have given an analysis of the mapping that exists between object space and world space
given a set of user-defined wires, and have introduced a method of encoding this mapping
into a volume dataset called the mapping field. The mapping field is created using a distance
or vector propagation technique, and we have given a visual and analytical comparison of
various mapping field generation methods defined for a given deformation.

A GPU-based raycasting algorithm was finally introduced in this chapter that provides an
effective means of generating interactive images from a given deformation in the Volume
Wires methodology. The algorithm evaluates a given mapping field encoding to generate
new sample points in the volume dataset, and thus provides interactive frame rates for a
given deformation for varying viewing parameters.

Chapter 6

Forward-Projection of Volume Wires

The Volume Wires methodology defines a group of methods and algorithms to perform
nonlinear deformation of volumetric data. To validate the effectiveness of the methodology
in use however, a more interactive approach that allows the user to perform the deformation
interactively is needed. In this chapter, a forward-projection system for the forward-mapping
of Volume Wires deformations is introduced in the form of an easy-to-use software tool. The
tool is flexible, stable, and can be ported easily to any OS supporting Trolltech’s QT toolkit,
OpenGL, and NVidia’s drivers.

Parts of the work in this chapter has been published in the Proceedings of the Fourth In­
ternational Conference on Medical Information Visualisation - BioMedical Visualisation
(MediViz 2007) [WJ07].

6.1 Introduction

In designing an intuitive and comprehensive user interface for an implementation of the
Volume Wires framework, it is necessary to implement suitable visualisation algorithms to
enable the user to view the deformation interactively (or at least obtain a preview, perhaps

on GPU

Contents
6.1 In tr o d u ctio n ...

6.2 GPU Deformation S tr a te g ie s

6.3 Method O v e r v ie w ...
6.4 Rendering A lg o r ith m

6.5 Incorporating Segmentation Information

6.6 Result I m a g e s ..
6.7 S u m m a ry ..

126

127

130

135

143
147
152

126

6.2 GPU Deformation Strategies 127

using a scheme such as progressive refinement). Interactively in this case, we define to be
five frames per second or above.

An early implementation of the Volume Wires framework used a simple user interface built
with GTK 2 (Gimp ToolKit, a user interface library) on GNU/Linux. The interface presented
two purely static views of the volume dataset and allowed the user to define object and world
wires. The user would then click a button to produce a raycasted image with the full mapping
process running on the CPU. A later implementation (the implementation provided in the
latter half of Chapter 5) extended this by providing an interactive raycasted image of the
dataset (using the GPU) during wire specification. However, there are still two problems
with this approach:

• The lack of deformation preview meant that the user had to predict the effect that
moving the object and world wires would have on the volume object;

• The large delay that presented itself to the user when the mapping field is built for the
current deformation is frustrating.

It is clear therefore that in order to verify the usefulness and intuitiveness of the Volume
Wires deformation methodology, an interactive implementation is required that enables the
user to deform a given volume object interactively. In the context of the Volume Wires
methodology, such an implementation should enable the user to deform the world wires
of the object and view the resulting deformation interactively; a limited amount of pre­
processing is acceptable if kept to a minimum and not computed while the user is actively
deforming a world wire or adjusting the viewing parameters.

As will be discussed in the coming sections of this chapter, the pre-processing operations are
limited to the deformation of the object wire defined inside the target object; specifically,
a mapping field is constructed for the object wires that permits the deformation in world
space. The construction of such a mapping field can be justified in an interactive application
as it is only required when the object wires are defined or modified; this is an operation that
takes place rarely in the Volume Wires methodology.

The methods introduced in this chapter are targeted specifically at the generation of graph­
ics hardware available at the time of implementation. As the technology progresses, newer
possibilities of implementation will arise; this will inevitably make the methods given in this
chapter non-optimal. However, such methods will still form the basis of future implementa­
tions as the boundary between the CPU and GPU is expected to become fuzzier over time,
with architectures such as CUDA [CUD] lifting the sometimes harsh restrictions placed on
algorithm developers. This will bring the possibility of new feature-specific optimisations
for the methods to further refine the speed and image quality.

6.2 GPU Deformation Strategies

Section 3.4.2 gives an overview of forward and backward mapping functions in the context
of the Spatial Transfer Functions framework (Chen et al. [CSW+03]). Forward-mapping
functions apply the deformation function to each element in object space (in volume graph­
ics, the elements are the voxels) and then render these elements in their new positions in

6.2 GPU Deformation Strategies 128

world space. Backward-mapping functions achieve the reverse, discovering sample points
in object space based on current world space positions. For the latter case, because there
is no guarantee where the samples will fall in object space, the object-space representation
must be treated as continuous.

Forward-mapping functions cannot be trivially applied to volume rendering, as the ultimate
goal of volume rendering is to produce a continuous rendering from a set of discrete sam­
ples. As discussed in Section 3.4.2 however, forward-projection methods such as Splatting
[Wes90] can achieve visually impressive approximations to this by projecting the individual
voxels to the screen. In addition, many GPU-based implementations exist for Splatting, pro­
viding interactive framerates by exploiting the blending capabilities of the hardware; though
many of the Splatting algorithms available are geared towards point-based rendering appli­
cations and thus are not required to offer full blending capabilities (see Section 4.4.3 on
Visibility Splatting).

Backward-mapping functions are more suited to raycasting volume rendering generally, pro­
viding relatively simple image-based methods for revealing the internal texture information
of the volume dataset. When the user introduces a deformation however, the rendering algo­
rithm must be able to apply the inverse of the deformation to each world sample point (and
additionally bring the computed normal into world space). However, forward-projection
provides an attractive property when deformation is added to the pipeline in that only the
deformation function $ is required, not the inverse.

6.2.1 Order of Operations

The principle behind point-based rendering on the GPU is to define each point sample /
voxel as a vertex with associated attributes such as colour, opacity and its normal, and then
project each vertex to the framebuffer. Special considerations are required for pixels in
the framebuffer being affected by more than one splat, as the order of blending determines
the final pixel colour. With a CPU-based Tenderer, the developer of the algorithm has the
option of building a depth-sorted list of splats per pixel and then performing the final shading
calculations on each list once the projections have been completed. However, the GPU offers
no capabilities for storing arbitrary lists in each pixel; though some algorithms such as the
k-buffer [CC05] for assisted visibility sorting are able to function by storing very small lists
in off-screen buffers.

The options for blending are:

• Depth-sort before projection - The world-space voxels (vertices) can be depth-sorted
on the CPU using an octree before being sent into the pipeline. This will guaran­
tee a front-to-back or back-to-front rendering that is necessary for correct blending
operations;

• Perform limited blending - Only perform a small amount of blending for the voxels at
the very front of all the others, reducing the possibility of depth artefacts but providing
a reduced quality image with little internal texture information if such information is
available.

6.2 GPU Deformation Strategies 129

CPU

• World to View

Blend

GPU

(a) Less optimal: the CPU has to perform <F, but is able to perform depth sorting.

• •

- CPU

$
World to View

&
Limited Blend

GPU

(b) M ore optimal: The GPU carries out all of the computation, but is unable to depth-sort.

Figure 6.1: Objectives of a GPU forward-mapping function $

The first option is suitable only when the data is static - that is, an octree can be computed
easily and stored for use throughout the rendering process. Now assume some the existence
of some deform ation function : E 3 —> E 3 that takes each point sample and brings it into
world space based on some user-defined deformation. In order to render the deformation on
the point-based dataset, <3> would need to be performed on each and every point sample, and
the new point sam ple positions used in subsequent pipeline operations. This operation can
be potentially costly by itself, but ascertaining a correct depth-sort each time the samples
are deform ed would further exacerbate the cost. In the case of an octree, the octree would
need to be recalculated once the deformations had occurred. This would normally not be
a problem - intuitively, the cost o f building an octree of a set of points is less costly than
perform ing some deformation on each point. It does however limit the possibilities for GPU
acceleration, as illustrated in Figure 6.1 where two possible CPU / GPU boundaries are
shown.

Figure 6.1(a) shows the situation discussed in the previous paragraph, where $ is applied to
dataset points on the CPU, and then a depth-sort is performed (again on the CPU), before
letting the GPU project and blend the newly-positioned samples to the framebuffer. It is
clear that it would be extremely beneficial to leverage the parallel processing capabilities of
the GPU to perform $ on each incoming sample. This can be achieved by performing
in the vertex shader and modifying the vertex’s position semantic. The potential speedup is
dramatic, as not only is the GPU is heavily optimised for trigonometric and computationally
intensive calculations, but the GPU operates on many vertices in parallel. Once each vertex
is modified, it is broken down into fragments by the rasterisation unit, where each fragment
is then processed by the fragment shader.

6.3 Method Overview 130

6.2.2 Crack-Filling

One of the major issues with point-based rendering is that of ‘filling’ the gaps between sam­
ples that appear in image space. These gaps occur when neighbouring samples in world
space do not map to neighbouring samples in image space, producing a discontinuity and
consequently a noticeable gap artefact in the final image. When rendering rectilinear struc­
tured volume datasets using a point-based algorithm such as Splatting, this issue is not as
common or indeed difficult to deal with because there is some level of guarantee of the space
between voxels, and thus suitable fixed solutions can be inferred relatively simply. However,
with unstructured point-based datasets obtained from scanning equipment, no such guaran­
tee exists, and thus methods must exist to close the gaps between samples. Some approaches
resort to creating new samples in world space, and other approaches work in image space to
detect and close the gaps.

Adding deformation to this scenario makes any attempts at closing the gaps much more diffi­
cult, as any such attempts must not only deal with potentially large deformations (large gaps
would be created as samples are pulled apart), but also must be efficient to maintain high
levels of interactivity. Point-based rendering algorithms typically do not support dynamic
deformations and can therefore assume a reasonable sampling density. Where such a den­
sity does not exist, the image-space splat shape and/or sizes are modified to close any holes
in the final image. The PointShop 3D system [ZPKGQ2] detects insufficient sampling den­
sity due to dynamic stretching deformations and introduces new sample points to maintain
a continuous surface.

6.3 Method Overview

This section introduces a set of methods and algorithms for the forward-projection of Vol­
ume Wires deformations, implemented on the GPU. A diagram illustrating the overall method
is given in Figure 6.2.

A two-pass visibility splatting rendering algorithm (visibility splatting is discussed in Sec­
tion 4.4.3) is used to give an interactive point-based rendering of the deformation as the user
is modifying the world wires or changing the viewing parameters. The vertex shader takes
in voxel samples encoded as vertices and performs the Volume Wires deformation mapping
function on their positions to bring them into world space. The fragment shader colours
the resulting fragments based on the data from the volume dataset and the associated transfer
function.

In the first pass of the algorithm, the vertex shader shifts the voxel’s resulting image-space
position (after applying <$> and the ModelView matrix) backwards by e in view space after
performing $ on the voxel’s position, generating the required shifted depth-buffer for visibil­
ity splatting. In the second pass, the vertex shader performs only 4>, and the fragment shader
performs the shading and blending operations on the samples that survived the shifted depth
buffer; these samples are said to be within the e boundary. The volume dataset is encoded
as a 3D texture in order that the normals can be computed efficiently in the fragment shader.
The first pass is typically highly efficient on Geforce 6 hardware (and upwards) due to in-

6.3 Method Overview 131

glDepthMask(GL_FALSE)
eyePoint.z -=r

Voxels

Vertex Program

Wire
Texture

Fragment ProgramVertex
Buffer

Splat Correction

User Interface

Figure 6.2: GPU Forward-Projection algorithm for Volume Wires

temal optimisations when writing only to the Z-buffer (known as double-speed Z-writing
[NVI05]).

The implementation of the deformation algorithm on the GPU is spanned over three main
shaders, which will be referred to by name in this chapter:

• VW-VertexJPassl - The first vertex stage; applies <E> on the voxel and then shifts the
resulting position backward by e

• VW-Vertex .Pas s2 - The second vertex stage; applies $ on the voxel and pre-computes
some shading variables for the fragment shader

• VW-Fragment - The fragment stage; performs the shading computations on the frag­
ments created by each voxel.

In addition, the system utilises versions of these shaders that have the deformation-specific
computations removed. This allows for fast rendering of the volume dataset while the user
is initially placing the wires in the scene; branching operations inside the shaders can in
theory provide this functionality without the necessity o f writing additional shaders, but it
was found in practice that the branching overhead was prohibitive on the hardware used for
implementation.

6.3.1 Designing a GPU-based <£>

In the backward-mapping function described for the raycasting rendering algorithm in Sec­
tion 5.7, the closest world wire point is discovered from the data encoded in the mapping
field. Conversely, the forward-mapping function must discover, for each voxel, the closest

6.3 Method Overview 132

object wire point and apply the forward-mapped deformation function <f> to that voxel. The
most suitable manner in which to achieve this would be to encode the closest wire 7 and
closest param etric offset t with each voxel; once this voxel enters the mapping function 3>,
it will be immediately clear how to transform it based on the encoded attributes and the wire
data.

In the backward-m apping renderer, a mapping field was created using distance propagation
to discover the closest world wire point for each ray sample point. The mapping field can be
used in the forward-mapping case also, by using it to associate voxels in object space with
their closest wire offset. Instead of creating the mapping field based on the set of all world
wires, the field is created based on the set o f all object wires. This enables each voxel in
the volume dataset to be associated with its nearest object wire point (assuming the voxels
can be tagged with additional attributes) by traversing each voxel in the mapping field and
tagging its associated volume dataset voxel (based on its position) with the (7 , t) values at
the same location.

Voxels

Wires

,(7 .0

CPU

Vertices

2D Texture

*

— Vertex Shader

, World to View
&

• Limited Blend

— Fragment Shader

Figure 6.3: Proposed GPU Implementation of a Forward-M apping Volume Wires Rendering
Algorithm

Figure 6.3 gives an overview of the proposed GPU implementation for the forward-projection
of Volume Wires deformations. The computation of $ is performed by a vertex shader run­
ning on the GPU. Each voxel in the system is defined as a single vertex with the closest wire
and offset attributes encoded into the vertex’s colour value: 7 can be encoded into the red
component, and t into the green component. These values are obtained from the mapping
field created based on the set o f all object wires. The wires themselves in the scene are
discretised into a 2D texture for input to the mapping equation.

The advantage of using forward-projection for the Volume Wires mapping is immediately
clear. Since the object wires are designed to represent the static curve-skeletons in the
dataset, they are modified infrequently by the user. This in turn implies that the mapping
field will be constructed infrequently during the deformation process - since the vast m a­
jority of interaction with the system is carried out by the user modifying the world wires.
W hen the world wire is modified, each voxel being brought into world space using the clos­
est object wire point as input to <3>. This makes a forward-projection system for the Volume
Wires methodology extremely attractive from a usability point of view.

In a typical volume dataset, only a subset of the voxels can be classified by the user as
non-background, or active voxels. For example, in a CT dataset, the voxels with small den-

6.3 Method Overview 133

sity values (perhaps representing the surrounding air or some form of packing material) are
not useful in the sense that they add value to the visualisation. The distinction between
background and active voxels is of small importance in backwards-projection Tenderers.
Such values are typically removed from visualisations by setting a transfer function that
sets voxels with these values as having zero opacity. However, in forward-projection ren­
dering where each sample must be represented by a set of attributes (position, colour, etc)
and deformed individually, this distinction is of utmost importance for efficient rendering.
Therefore, all operations on voxels in the system given in the coming sections are performed
on voxels deemed active by the user - achieved by setting a single scalar threshold value
(3 which separates background from active voxels by discarding those with values falling
below it.

6.3.2 Wire Encoding

The ability to fetch random-access data in the vertex shader (with runtime array indices)
can be obtained using the Vertex Texture Fetch (VTF) functionality of modem graphics
hardware (ShaderModel 3.0). The ability to fetch texture data in the vertex shader is a
relatively recent feature for GPUs, as texture fetches are most intuitively required in the
fragment processing stage to apply texture data to the fragments created from primitive
objects. However, vertex texture fetches allow for a great degree of flexibility by allowing
the vertex shader to modify the geometry of the scene based on texture data [GFG04]. The
system introduced in this chapter uses VTF functionality to obtain the wire points from a
texture, which are then given the forward-mapping function to complete the mapping.

The internal format chosen for the wire texture is GL-RGBAJFLOAT32-ATI and GL-RGB-FLOAT32-ATI
for all others. These texture formats offer full 32-bit components (128bit per texel for
RGBA), and have the added advantage that they are unclamped formats, and thus will not be
subjected clamping to [0,1] by OpenGL prior to GPU upload. In addition, the formats are
one of few internal formats allowed for vertex texture fetches at the time of writing [GFG04],
Another benefit of this format is that unlike with some unclamped, 32-bit formats, it does
not necessitate the use of extension-based texture targets, such as the texture-rectangle range
of extensions. These texture targets allow for non-power-of-two textures, at the expense of
reduced efficiency with texture lookups at runtime. In addition, these texture targets use
integer-based addressing; as will be discussed in coming sections, this would be less than
ideal.

6.3.3 Vertex/Voxel Data Encoding and Upload

Each active voxel in the scene is encoded as a single vertex with the associated (7 , t) (ob­
tained from the mapping field) encoded into the colour value. These vertices are stored as
two floating-point buffers and uploaded to the GPU using Vertex Buffer Objects (VBOs).
An overview of Vertex Buffer Objects has already been given in Section 4.4. VBOs allow
for large amounts of vertex and vertex attribute data to be stored and evaluated on the GPU.
Example data includes colour (which is used by this system to store the (7 , t) attributes), sec­
ondary colour, normal, and texture coordinate. Each of these attributes is contained within

6.3 Method Overview 134

a separate buffer; they are not interleaved.

The system given in this chapter uses the vertex (position) and colour buffers to store the
voxel attributes. Table 6.1 gives the VBO arrangement for the system:

Attribute description Type Buffer Used
Voxel XYZ position in object space 3 floats Vertex Buffer

(7 , t) pair for the voxel 2 floats Colour Buffer
‘Deformed’ flag - set to 0 or 1 1 float

Table 6.1: Vertex Buffer arrangement

The total memory required for the buffers on both the CPU and GPU (since each ultimately
has a copy) depends on the number of active voxels in the dataset. For example: a dataset
containing 4,000,000 active voxels requires 4,000,000 *(34-2 + 1)* s izeo f(G L floa t) «
92 MB. Note: that the voxel normal data is computed at runtime in the fragment shader
rather than being bundled with the voxels, saving 12 bytes per voxel.

The position buffer stores the voxel’s position in object space and is required to be uploaded
only upon loading a new volume dataset. The colour buffer is used for the (7 , t) attributes
for each voxel (the data for which is obtained from the mapping field created from the
object wires, as discussed in Section 6.3.1) and needs to be recomputed and uploaded upon
modification of an object wire. In addition, the blue component of the colour buffer is used
as a flag to denote whether the voxel must be translated to a new position with 4>; voxels set
to 0 are unmodified and will be simply projected to the screen in their object-space positions.
Such a flag allows for parts of the dataset to be singled out for deformation based on some
criteria decided on the CPU.

As discussed in Chapter 5, a mapping field need not be the same size as the volume dataset.
The choice of size of the mapping field is a trade-off between the time taken to generate
it, and the quality of the mapping. The same principle applies in the forward-projection
case, since the mapping field is required to be computed before the user can proceed with
deforming the volume dataset by manipulating the world wires.

Table 6.2 gives the amount of time to generate the mapping field for two datasets, along with
the resulting size of the field for three chosen dataset to field ratios. Additionally, we give
the time to modify and upload the VBO vertex/color buffer with the new attributes once the
mapping field has been recreated.

Dataset Field size Generation time VBO modification time
Visman Torso 77 x 47 x 100 0.1s Negligible

155 x 95 x 200 0.76s 0.29s
310 x 190 x 400 6.16s 0.56s

CT Carp 64 x 64 x 128 0.14s Negligible
128 x 128 x 256 1.10s 0.31s
256 x 256 x 512 8.93s 0.71s

Table 6.2: Mapping field generation timings

6.4 Rendering Algorithm 135

6.4 Rendering Algorithm

Once the required buffers on the CPU have been computed, organised and uploaded to the
GPU, the GPU is able to begin rendering frames. The rendering of a frame is instantiated
by either the user changing the viewing parameters (i.e. rotating the volume dataset), or
deforming a world wire. In either case, the entire deformation must be computed from the
object-space voxels, since the vertex position states cannot be saved between frames in the
case of changing the viewing parameters.

Algorithm 3 Forward-Projection Rendering Algorithm Pseudo-Code : CPU Side
1: {Pass one}
2: Depth : 1, DepthFunc : <, DepthMask : 1
3: Bind VW_Vertex_Passl
4: Rasterise voxels in buffer
5: {Pass two}
6: Enable point sprites
7: DepthMask : 0
8: Bind VW_Vertex_Pass2
9: Bind VW_Fragment

10: Rasterise voxels in buffer

Algorithm 3 gives the pseudo-code for the most important steps of the CPU side of the
rendering algorithm. The first pass runs only vertex program VW.Vertex JPassl and writes to
the depth buffer only (the disabling/enabling of colour writes is omitted in the pseudo-code
for clarity). After multiplying the new vertex position by the modelview matrix, the shader
shifts the new voxel position in image-space backwards by e so that in the next pass, only
fragments in front of this boundary will pass the depth test. The second pass runs vertex
program VW-Vertex J*ass2 to compute $ along with some important shading variables for
fragment program VW -Fragment, which computes the final colour of the voxels closest to
the viewer inside the e boundary defined by the visibility splatting procedure.

The next sections detail the GPU shader implementation of the rendering algorithm - Sec­
tion 6.4.1 details the computation of $ in the vertex shader; Section 6.4.2 details the com­
putation of the final voxel colour in the fragment shader; and finally Section 6.4.3 details a
method for closing the gaps that appear between image-space samples that utilises the vertex
and fragment shaders.

6.4.1 Performing $ in the Vertex Shader

The vertex shaders VW-Vertex-Pass 1 and VW-Vertex-Pass2 must transform each voxel first
from object to world space, and then from world to view space; the latter is the most fun­
damental operation performed by the vertex shader and is achieved by a multiplication with
the modelview projection matrix. The former operation is performed specifically for the
Volume Wires deformation, and is discussed below.

To perform $ on the voxel, the (7 , t) pair are retrieved from the voxel’s colour values (en­

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21

22
23
24
25
26

6.4 Rendering Algorithm 136

coded into the colour values from the mapping field on the CPU) and used as offsets within
the encoded wire textures to obtain the relevant wire information. The manner in which the
wire data is obtained and computed is the same as in the backward-mapping case, given in
Section 5.7.7.

Since the combined mapping matrix contains redundancy, the mapping is performed in
sm aller stages, as shown in the Cg Listing 6 .1 :

Listing 6 .1: Com putation of <3? in the vertex shader
half row = l.Of / wireCount; // height of wire texture row in [0,1]
half col = l.Of / wirePrecision; // width of a column

// only deform voxels with 'deformed' flag set
if(voxel.b == 1) {

half wirelD = voxel.r;
half t = voxel.g;

// fetch the wire points, trajectories, and normals
float3 P_o = tex2D(wire,half2(t,wirelD);
float3 P_w = tex2D(wire,half2(t,wirelD+row));
fixed3 T_o = normalize(tex2D(wire,half2 (t+col,wirelD))-P_o);
fixed3 T_w = normalize(tex2D(wire,half2 (t+col,wirelD+row))-P_w);
fixed3 N_o = tex2D(normals,half2(t,wirelD));
fixed3 N_w = tex2D(normals,half2(t,wirelD+row));

// calculate the binormals (N x T)
half3 B_o = normalize(cross(N_o, T_o)) ;
half3 B_w = normalize(cross(N_w,T_w));

// perform the forward-mapping on the vertex
vertex -= P_o;
vertex = mul(half3x3(B_o,N_o,T_o),vertex) ;
vertex = B_w*vertex.x+N_w*vertex.y+T_w*vertex.z;
vertex += P_w;

}

Lines 6 and 7 create the required binormals from the normal and tangent vectors obtained
from the textures. The mapping takes advantage of hardware matrix multiplication for the
first stage (line 23) since the matrix can be defined neatly inline in column order. The sec­
ond stage o f the mapping (line 24) takes advantage of vectorised multiplication, equivalent
to transposing a 3x3 matrix created from the B W,N W and Tw vectors. The final step of
the vertex program (not shown for brevity) is to multiply the new vertex position by the
modelview matrix.

The vertex texture fetch functionality typically incurs a higher latency than the equivalent
fragm ent texture fetches. This is particularly true of NVIDIA cards such as the 6 series,
where vertex texture fetches suffered from larger latency than their fragment counterparts
due to the fact that the functionality was brand new and mostly unoptimised. It has been
verified from the native assembly code generated by NVIDIA’s Cg com piler that part o f the
latency of fetching the texture information is hidden automatically by the Cg com piler by
perform ing the first half of the mapping as the object data is available.

6.4 Rendering Algorithm 137

Attribute Description
TEXCOORDO Original object-space position (before 3> applied)
TEXCOORD1 Point Sprite Coordinate
TEXCOORD2 Image-Space Tw
TEXCOORD3 No
TEXCOORD4 N w
TEXCOORD5 T0
TEXCOORD6 Tyj

Table 6.3: Texture coordinates utilised in passing data from the second vertex stage to the
fragment shader.

6.4.2 Shading in the Fragment Shader

The fragment program VW-Fragment runs only on the second pass of the algorithm, and
therefore operates only on voxels within the e boundary generated by the depth-shifting
operations.

For lighting calculations, the voxel normal must first be calculated from the volume dataset
3D texture and brought from object to world space - the computation of the voxel normal is
therefore performed per-fragment instead of per-vertex. Although there is a certain amount
of redundancy in performing the normal calculation for each fragment (each vertex will
create multiple fragments, all with the same normal), the alternative is to precalculate the
voxel normals on the CPU and store them in a VBO of their own. This would present a
unnecessary memory overhead since each voxel normal would consume 12 bytes of GPU
memory and potentially millions of active voxels are defined in the dataset. The vertex
shader cannot calculate the normal from the volume dataset since vertex shaders currently
have only access to 2D textures, although this situation is expected to improve with future
implementations of the vertex texture fetch functionality.

The fragment shader needs to have access to the original object-space position of the incom­
ing fragment to calculate the normal of the voxel it is representing. Since the $ has been
performed on the incoming fragment, its original object space position can no longer be
inferred using the inverse of the original modelview projection transformation. The second
pass of the vertex shader therefore writes the original object-space position to one of the
outgoing texture coordinates. The central differences operation can now be performed using
this texture coordinate to give the object-space normal for the current fragment.

The final stage of the fragment shader must perform <f>n on the object-space normal to bring
the normal into world space based on the current deformation. Such a transformation re­
quires access to the object and world normals / trajectories N 0, N w, T0, and Tw, but not the
object and world wire points PQ and Pw due to the fact that the translations are not included
in <f>n (unlike with the standard <£>)• These variables could potentially be obtained from the
textures as with the vertex stage, but a more efficient solution would be to encode these
variables into the texture coordinates available for general use to pass data from the vertex
to the fragment stage. Such coordinates are available to be written to by the vertex program
and read from by the fragment program, and are primarily used for applications such as

6.4 Rendering Algorithm 138

multitexturing where layers of textures are blended together to form a final fragment colour.

Table 6.3 shows which texture coordinates are used by the algorithm. The required object
and world normals / trajectories N 0, N w, T0, and Tw are encoded into the texture coordinates
by the second vertex stage, which are subsequently available to the fragment shader for each
fragment created from the voxel. The final voxel normal is computed using the normal-
specific mapping <f>n. The voxel colour is computed from a transfer function encoded as a ID
texture using the grey-level value obtained from the volume dataset. Lighting is then applied
to the fragment using the Cg function l i t to compute specular and diffuse coefficients.

6.4.3 Closing Cracks along the Wire Trajectory

During deformation of a discretely sampled object such as a volume dataset, two types of
crack artefacts may be introduced - those that correspond to a joint in the curve skeleton,
and those due to the expansion of a deformed region. The former problem has been encoun­
tered previously by Silver et al. [GS01, SSC03] and one solution is that of using mid-plane
geometry [SSC03] to artificially stretch and warp the individual the skeletal segments to fit.
This solution however may not produce a smooth connection, as it is purely linear in nature.

With regards to GPU point-based rendering, creating new samples in the vertex buffer would
be costly since samples would need to be added on the CPU and then re-uploaded. The
dynamic creation of vertices on the GPU is now possible using geometry shaders, although
at the time this research was conducted, such functionality was not available. A highly
limited form of vertex creation could be realised however by rendering to a texture and
reinterpreting this texture as a vertex buffer during subsequent passes (known as render-
to-texture). This method however would be impossible with even a reduced-sized volume
dataset, since the maximum 2D texture size would restrict the number of voxels.

The Volume Wires system allows for the sharp bending of objects, and stretching and com­
pression of the volume object along the wire as a by-product of the deformation process.
A backward-mapping algorithm can recover values in these areas simply by interpolation
in the original volume dataset. However, when using a forward-projection algorithm with a
finite set of voxels, cracks can occur in image space as the voxels are pulled apart along the
wire trajectory (see Figure 6.4). This effect is also apparent along the outer edges of a bent
object where the curvature of the wire is high. The effect of the gaps in the image is often
distracting and disconcerting, and additionally spoils the aesthetic quality of the final im­
age. It would be highly beneficial if the forward-projection algorithm for the Volume Wires
methodology to cover these cracks as much as possible to maintain a smooth, continuous
image without revealing the true discrete nature of the underlying data to the user.

An observation of the Volume Wires methodology is that the ‘stretching’ of samples (and
subsequently, the gaps the occur) occurs along the image-space trajectory of the wire. If the
samples could be stretched in image space along the trajectory of the wire, then these gaps
could be reduced substantially, greatly improving the image quality. This process would
require that the shape of the voxels processed by the fragment shader are altered, and is a
common operation in point-based rendering algorithms whereby the splat shapes are altered
depending on their normals such that the resulting shape is a disc. This shape-changing abil­

6.4 Rendering Algorithm 139

ity is achieved by obtaining an image-space parameterisation of each point such that each
fragment is aware of its im age-space position relative to the original point. The param eteri­
sation functionality is given by the point _sprite_nv OpenGL extension. W hen enabled,
the extension forces the rasterisation unit to break point primitives into squares represented
by n x n fragments, where n is the current point size set in OpenGL. Associated with each
fragment is a texture coordinate in [0 , 1] representing its position within the square; this
coordinate can be used to govern the shape of the final point by selectively discarding (or
alpha-modifying) fragments based on the texture coordinate.

W ithout correction With correction

Figure 6.4: Correcting cracks

To ‘stretch’ the shape of point samples along the wire trajectory, it is necessary to set a
large enough point size to give a large number of potential fragments. Therefore, the point
size and the splat size become separate variables in the system; the former governs the
number of fragments that a point is broken into, and the latter governs the number of these
fragments accepted through the pipeline to give the final size of the sample (without regard
to the stretching). The point size chosen is a tradeoff between the effectiveness of the splat
correction (larger points give a larger space for splat correction) and speed (bigger points
produce a larger num ber of fragments which must be processed by the fragment shader).

As the user modifies the world wire, the distance between consecutive points on the world
wire is compared to the points on the corresponding object wire to obtain a scaling value s,
which is stored in the a component of the object wire texture for each point (the a com po­
nent of the world wire texture is already used by the scaling effect values), s is derived for
each wire point as the distance between the current control point and its previous point over
the distance between the current object point and its previous point. In the second vertex
stage, the vertex shader computes the image-space wire tangent from Tw by multiplying it
with the inverse transpose of the modelview matrix, storing the result in a texture coordinate
for input to the fragment shader.

(a) (b) (c)

i ' L - 0 ^
* 1 — ■

<
>

,

1 l \ /

Figure 6.5: Correcting the splat shape along wire trajectory

The fragment shader must now make the decision to either accept (shade) or reject (discard)
the fragment based on this information. This decision is made by testing whether the frag­
ment lies within a rectangle of s p la tS iz e height defined around the image-space tangent

6.4 Rendering Algorithm 140

vector T . The position of the current fragment / within the point sprite is obtained from the
texture coordinate given by the point sprite extension. First, the fragment / is brought into
the tangent’s space:

T x - T y
Tu Tr (/ — 0.5)

The test for fragment retention is now reduced to a simple inside-rectangle test, with the
splat size used to determine the y-extent o f the test. In the example shown in Figure 6.5,
fragm ent / survives the test and continues to be processed. Any fragments failing the test
are destroyed using the discard keyword.

Figure 6 .6 : Splat Shape Correction - Exaggerated Rendering

The effect o f the splat shape correction in this manner is shown in Figure 6 .6 , where a small
subset o f voxels have been chosen with an exaggerated size and opacity to better show the
effect.

6.4.4 Progressive Refinement

For large volume datasets with many active voxels, a significant drop in the num ber of
frames per second can occur during interaction with the wires. This is due to the high num ­
ber of com putations being performed in the vertex and fragment shaders. This slowdown
will be particularly noticeable on lower-end graphics cards which suffer not only from fewer
vertex and fragment shaders, but also from slower memory speeds and less onboard RAM to
store the vertex buffers. Unavailability of a particular feature of the storage area often entails
a CPU emulation of that method if feasible, which results in vastly reduced performance.

To speed up a system based on forward-projection, the number of samples that define the
volume object must be reduced, and the splat size increased to compensate for the larger
gaps between samples; analogous to reducing the size of an image and zooming in such
that the viewable size is the same. This technique however often leads to significant loss of

6.4 Rendering Algorithm 141

image quality, as the fine details of the volume object are lost; the volume data is given a
smoothed out appearance as if a low-pass filter has been applied.

A suitable solution to the general problem of low interactivity, adopted by many interac­
tive graphics applications, is to use an progressive refinement scheme whereby the user is
presented with a low quality version of the object for interaction, and a high-quality ver­
sion when the interaction stops. Progressive refinement for raycasting volume rendering has
already been discussed in Section 2.4.4.

There are three approaches that have been identified for reducing the number of samples that
ultimately make it through the pipeline, all of which have trade-offs in terms of efficiency
and memory usage, and all of which have been implemented for use with the forward-
projection algorithm. The approaches are object-space approaches; operating on the voxels
(above the (3 threshold) in object space before they are transformed into world space.

Discarding Vertices in the Vertex Shader

The first approach is to selectively discard vertices entering the fragment shader such that <f>
is never performed and the vertex ultimately creates no fragments. Vertices cannot currently
be discarded in the same manner as fragments; however, they can be transformed in such
a way that they are guaranteed to lie outside of clip-space, resulting no rasterisation unit
invocation and therefore no fragment processing. In addition, with dynamic branching, $
need never be computed for these voxels as the rejection is performed in object-space before
$ is applied. The sparse set of voxels can be computed simply using modular arithmetic on
the voxel’s object space position (assuming the object space is the size of the dataset and not
in [0,1]) to select only even coordinates. Cg pseudo-code for such a scheme is given below.

Listing 6.2: Selecting only voxels belonging to the ‘sparse’ set
if(mod(floor(voxel.x),2) == 0 &&

mod(floor(voxel.y),2) == 0 &&
mod(floor(voxel.z),2) == 0) {
// perform forward-mapping on voxel
voxel = phi (...);

}
else {

// this voxel will fail to fall in clip-space
voxel = float4 (-9999,-9999,-9999, 0) ;

}

From experimental usage, this scheme was found to have a performance hit during rendering
of approximately 30% over precomputing the sparse set.

Using a Vertex Indexing Buffer

The second approach is to give the GPU some indication of which voxels to choose to be
sent into the pipeline when given a pointer to the voxel buffer. OpenGL allows for arbitrary
‘striding’ of the data within a vertex buffer on ID basis only - resulting in severe artefacts
when the buffer is ultimately interpreted as a 3D representation. It is possible to organise

6.4 Rendering Algorithm 142

the data in memory to account for this before uploading; however, it is desirable to maintain
the standard memory layout to avoid such re-computation when modifying the voxels on the
CPU.

Vertex Indexing is a technique that allows for the creation of an element index array that
contains a list of indices to a vertex buffer. This index buffer is bound before drawing the
vertices to instruct OpenGL to look up the indices of each vertex in the element index array,
rather than sending them all to the graphics card. During the construction of the Vertex
Buffer Objects, an additional buffer is constructed to hold the 32-bit integer vertex indices
that represent the sparse set of voxels. When the user is actively deforming the world wires,
this buffer is used to govern which voxels ultimately are put into the pipeline.

Unfortunately, it was found in practice that the vertex indexing method gave a severe speed
hit of around 30% during rendering (a very similar hit to the vertex shader discard method),
possibly due to the fact that the vertices are selectively uploaded one-by-one rather than in
one large memory block.

U sin g Tw o B u ffers

If the graphics card memory allows it, two separate buffers can be defined: a dense buffer
and a sparse buffer. The buffers can then be selectively switched at runtime simply by
instructing OpenGL to use one buffer or the other depending on whether the user is currently
deforming a world wire. If both sets of buffers will not fit in GPU memory at the same time,
then they will need to be uploaded on demand.

Though this method is by far the most naive, it has been been found in practice to be the
most effective at giving an interactive deformation experience for larger datasets.

6.4.5 Performance

We now give an analysis of the performance of the rendering algorithm by deforming a
variety of datasets and measuring the average frame rate while actively deforming the dataset
over a period of 30 seconds. The implementation of the system was written on a Pentium
4 at 3.4GHz with 2GB RAM, in C++ on GNU/Linux x86 using NVIDIA’s Cg tookit and
OpenGL. The graphics card used for measurements is a GeForce 8800.

Each dataset entry in Table 6.4 contains two rows with differing voxel values. These values
indicate the number of active voxels based on the progressive refinement level; the first
entry denotes the number of active voxels present when the user is actively deforming, and
the second entry (with a larger number of voxels) represents the full dataset. The latter entry
therefore gives an indication of how much of a delay exists between the user releasing the
mouse button after deforming a world wire and the refined image being rendered.

6.5 Incorporating Segmentation Information 143

Dataset # Active voxels Average FPS

Visman Torso
716,139 8.76

4,112,368 1.68

CT Carp
641,022 8.93

5,128,313 1.37

Tooth
52,536 30.15

420,289 13.09

Table 6.4: Forward-Projection timings

6.5 Incorporating Segmentation Information

The segmentation o f volume datasets is a useful means of adding semantic information to the
dataset for the purposes of data analysis and manipulation. A large variety of segmentation
algorithms exist for volume data, each with their own strengths and weaknesses, that are
capable of ultimately outputting a volume dataset where each voxel is labelled according to
the unique ID of the disjoint segmented ‘set’ it belongs to. A review of volume segmentation
algorithms has been conducted in Section 3.8.

The segmentation o f disjoint regions within a volume dataset can be of great benefit to vol­
ume deformation algorithms, as it allows the user to modify individual semantic regions of
the dataset. It would be of particular advantage to the Volume Wires framework to introduce
such semantic information, as the wires are analogous to the skeletons that comprise many
character-based deformations and animations; the added advantage being that due to the fact
that space is curved around the wires, joints need not be treated as special cases, producing
smooth transitions from segment to segment.

Figure 6.7: Associating segmented portions of the of the volume with each wire

Figure 6.7 shows an image produced from the forward-projection algorithm when segmen­
tation information is incorporated. In this case, the segmentation procedure has marked the
right arm of the Visible Human, which has then been associated with an object wire defined
within the arm. In the image, the world wire has been moved in such a way as to position

6.5 Incorporating Segmentation Information 144

the arm away from the body. From an algorithmic point of view, only the voxels that have
been associated with the wire have had $ applied to them to bring them into world space;
all other voxels in the scene (those belonging to the head, body and left arm) in this example
remain static.

The following sections give details on the manner in which the segmentation information is
specified, and how the various stages of the pipeline discussed previously in the chapter are
modified to take the segmentation into account.

6.5.1 Segmentation Functionality and Data Format

For the coming discussions, we assume that there is some segmentation method which pro­
duces a mask volume marking the voxels in the volume dataset belonging to each wire. The
mask volume is a signed 8-bit volume dataset of the same dimensions as the target volume
dataset, where each voxel contains a value representing the index of the wire it is associated
with. The default value for a voxel is —1, meaning that the voxel is not associated with any
wire and therefore remains static throughout the deformation process.

A variety of segmentation algorithms have been devised for use with the forward-projection
algorithm, including a seed filling algorithm and an algorithm based on energy-minimising
Snakes. The latter algorithm has been implemented in a more advanced form into a complete
tool, which is discussed in detail in the next chapter.

A 3D seed filing algorithm has been implemented with some success in the system. The
user interface for the algorithm is shown in Figure 6.8, where the user is presented with a
small dialog box to control the seed fill, and a dynamically updated green overlay on the
volume dataset to show the segmented regions. The seed points for the filling algorithm are
chosen as a small sequence of points along the wire. Two parameters control the seed filling
algorithm: a threshold and a range. The threshold value defines the boundary of the fill
(voxels above and equal are filled), and the range value defines the maximum distance that
the seed fill algorithm is allowed to operate.

The green overlay on the image is computed by dynamically updating the seed fill volume
represented as a 3D texture in GPU memory. The pipeline has one final fragment stage
added to the end which fires rays through the mask volume positioned in the same location
as the volume dataset. If a value representing a ‘filled’ voxel is found along the ray, then
the final pixel colour is given a green hue; otherwise, the pixel is passed through. This is a
similar feedback method to that implemented by Hadwiger et al. [HBH03], though without
complex blending of the mask volume.

In Figure 6.8, a small wire has been placed inside the head to show which areas of the
volume are deemed to be connected to the head by the filling algorithm. It is apparent from
this example that the majority of the brain, skull, and some of the spine have been filled.
In practice, the seed filling algorithm was found to be rather unreliable and inaccurate for
most tasks. For example, attempting to segment the arm of the Visible Human resulted in
an inaccurate result due to the fact that the arm of the Visible Human is resting upon his
stomach, resulting in a connection when the algorithm hunts for the next candidate point.
Methods to avoid this could include:

6.5 Incorporating Segmentation Information 145

• Pre-filtering the dataset using Adaptive Nonlinear Diffusion or a similar filter;

• Setting a sm aller range param eter for the algorithm;

• A more specialised algorithm that makes use of heuristics to judge when a ‘spill’ of
such a nature exists.

However, it is clear that such solutions are merely skipping around the problem o f the seg­
m entation m ethod being fundamentally difficult to control, and segmentation in general be­
ing an unsolved problem.

V o l u m e W i r e s _ □ x

File View Tools D eb u g

° ° R eload CG

j J l f n D a r j U j a / j ' i j J i o i j f e d

C h o o se a lab e l a n d s e g m e n ta tio n fu n c tio n

T h re sh o ld

R an g e

Figure 6 .8 : Basic seed-filling functionality to create the segmentation mask volume

The segm entation method used to produce the mask volumes in the remainder o f this chapter
is based on energy-m inim ising Snakes. The mask volume can be created within the user
interface using whatever segmentation functionality is available, or loaded into the system
in the same m anner as a volume dataset. Although there is a memory overhead in loading
the mask volume, it is not required by the system during the deformation process itself, and
is never uploaded to the GPU. The mask volume can therefore be discarded before the user
begins m odifying a world wire.

6.5.2 Segmentation-Aware Mapping Field

W hen segm entation information is introduced into the system, the task of identifying which
wire a particular voxel belongs to is no longer a case of asking which wire is closest; the

6.5 Incorporating Segmentation Information 146

(a) Mask Indexes (b) Bounding Boxes (c) Union of mini mapping fields

closest wire may not be the wire that the user has decided should be associated with that
voxel. For example, if the user has defined a wire for the Visible H um an’s right arm and one
for his torso, voxels at the edge of the torso may be closer to the arm wire than to the torso
wire; and yet the user wishes that such voxels are associated with the torso.

For clarity in the text below, all references to wires are to be taken as the object wires only.

Figure 6.9: Building the segmentation-aware mapping field from the union of ’m ini’ m ap­
ping fields

It is clear that the mapping field generation algorithm must be modified to incorporate this
segmentation data obtained from the mask volume. The standard mapping field represents,
for each voxel, the closest offset on the closest wire. The mapping field that is required
for a segmentation-aware rendering algorithm should represent, for each voxel, the closest
offset for the associated wire based on the segmentation information. Distance propagation
methods (such as Chamfer and EVDT as used in the Volume Wires framework) rely on
propagating distances globally through the dataset; such algorithms would fail make sense
if instructed to propagate only within the associated wire index regions since they require
information from their neighbours at each step.

A segmentation-aware mapping field can be realised by creating a ’m ini’ mapping field for
each segmented region, and then pasting the mini mapping field into place in the full m ap­
ping field based on the mask volume. Figure 6.9 gives an illustration of the segmentation-
aware m apping field generation algorithm. The first step of the algorithm is to create a
bounding box for each wire in the scene. For each wire with index i (w ir e i), the mask vol­
ume is scanned for voxels containing value i, and the minimal / maximal coordinates for the
union of such voxels are tracked. The result is a bounding box ((x \ , y \ , z \) , (x 2 , y 2 ,Z2)) for
all voxels affected by w irei. Next, a ‘m ini’ mapping field is constructed for each w ire i with
the same dimensions as its computed bounding box. This ‘m ini’ mapping field represents
the minimal offset t to w ire i, and is created by propagating distances from only w ire i to
the outer edges of the bounding box. Essentially, it is as if the volume dataset has been cut
around the bounding box, and a mapping field created with the remains.

Once this 'm in i’ mapping field has been created, it is pasted in place into the full mapping
field. The pasting procedure is given below;

l: bboxes *— c re a te B o u n d in g B o x e s [) \

6.6 Result Images 147

2: fo r all Wires W i r e x do
3: for Voxel v E M iniM apField do
4: if M a s k V o l (v + bboxes[i\. o r ig in) = = i then
5: F u l l M apF ield (v+ bboxes[i\ .orig in) = M i n i M apF ield (v+ bboxes[i\ .o rig in)
6: end if
7: end for
8: end for

The pasting procedure involves placing the mini mapping field into position (based on its
bounding box) inside the full mapping field, and copying each voxel into the volume dataset
only where the mask volume value is equal to the wire index. Once this process is completed
for all wires, the end result is a mapping field which contains distances propagated to its
associated wire based on the segmentation information. This mapping field can now be
used as input to the procedure for creating the vertex buffers, without any modification
to the vertex buffer generation procedure itself since each voxel in the mapping field now
correctly contains a reference to its associated wire and the nearest offset on that wire.

The segm entation-aware mapping field generation process does not add any significant time
penalty over the standard mapping field generation process. The biggest overhead in the time
to generate the field with respect to a standard mapping field is the amount of overlap that
exists between the bounding boxes of each segmented region; such regions will have dis­
tance com putations performed for more than one wire. In practice, for simple segmentation
operations such as segmenting the arms of the Visible Human, we found that incorporating
segmentation information often brought the mapping field generation times down due to the
fact that the volume of the union of the bounding boxes was far less than that of the full
volume dataset.

6.5.3 Continuity at Wire Ends

When segmentation functionality is introduced to the system, care must be taken to ensure
continuity at the ends of wires with respect to the other volume data. If the trajectories of
the world and object wires do not match at the end of the wire, then a visible discontinuity
will exist.

6.6 Result Images

Figure 6.10 gives an example deformation of the CT Knee dataset, with the object wires
shown in the leftmost image and the world wires (and resulting deformation) shown in the
rightmost image. Figure 6.11 shows an example deformation of the Tooth dataset. Figure
6.12 shows a split of the CT Carp dataset. The split in this case is not explicitly defined -
the split is a byproduct of the mapping field process, whereby each voxel will be associated
with a closest point on either one wire or the other. When the two world wires are pulled
apart, it is clear that the divide occurs at the points halfway between the object wires. Figure
6.13 gives two more example deformations of the CT Knee dataset. It should be noted
that in the case of the CT Knee dataset, no explicit segmentation functionality was required

6.6 Result Images 148

to associate each leg with its wire; the gap between the legs was wide enough such that
their regions of influence were in-between the legs. Figure 6.14 finally shows four example
images of deformations specified on the Visible Human torso dataset.

(a) Object wires (b) World wires

Figure 6.10: Deforming the CT Knee dataset (« 15 FPS)

Figure 6.11: Deforming the Tooth dataset (« 20 FPS)

6.6 Result Images 149

Figure 6 .12: A split of the CT Carp dataset. The point o f the split is chosen as a by-product
of the m apping field process; voxels will attach themselves to their closest wire offset («
8FPS)

6.6 Result Images 150

Figure 6.13: Deforming the CT Knee dataset. Segmentation was not required in this case as
the legs were sufficiently separated in the dataset (« 14F P S) .

6.6 Result Images 151

6.7 Summary 152

6.7 Summary

This chapter has introduced a forward-projection rendering algorithm for the volume de­
formation methodology Volume Wires. The rendering algorithm offers a high amount of
interactivity, and enables the user to deform the volume object interactively. The only inter­
mediate data that is created for the mapping process is a mapping field created from the set
of all object wires that facilitates the association of voxels to their nearest wire offsets.

The work in this chapter has focused almost entirely on the technical aspects of forward-
projecting volumetric datasets with interactive deformations. As such, only limited attention
has been given to the visual quality of the rendering algorithm based on splatting since many
such rendering algorithms already exist. A review of the most popular forward-projection
algorithms, with a particular emphasis on GPU implementations, is given in Section 4.4.

Special attention has been paid however to solving the issue of cracks in image space caused
where the density of samples in world space is not great enough. For this problem, a solution
has been developed that is specialised to the Volume Wires methodology, taking advantage
of the stretching of samples along the image-space trajectory of the wire to close these gaps
in image-space. This solution effectively closes gaps introduced both by the stretching and
bending of the wire.

Parts of the work in this chapter have been published in the Proceedings of the Fourth Inter­
national Conference Medical Information Visualisation - BioMedical Visualisation (Medi-
Viz 2007) [WJ07].

Chapter 7

A Complete Volume Deformation
Tool

Contents__
7.1 In tr o d u ctio n .. 153

7.2 Related Work on Visibility S o r tin g ... 154

7.3 Method P ip e l in e ... 155
7.4 Segmentation Functionality .. 157

7.5 Deformation Rendering A lgorith m ... 161
7.6 Discontinuities in World S p a c e .. 171

7.7 Improvements and O p tim isa tio n s ... 176

7.8 S u m m a ry ... 179

Previous chapters have established the Volume Wires volume deformation methodology, al­
gorithms, and a forward-projection rendering algorithm for its mapping function. This chap­
ter introduces a complete tool for volume deformation utilising the Volume Wires method­
ology. Its approach is substantially different from the rendering algorithms given in the
previous chapters in that it provides a completely real-time raycasting approach without the
aid of a mapping field, and offers built-in segmentation functionality to provide the user with
a means of adding useful semantic information to the volume dataset.

7.1 Introduction

In the previous chapters of this thesis, methods for evaluating the deformation specified
in the Volume Wires methodology were discussed, all of which utilised the mapping field
encoding of the deformation in some way. The manner in which the mapping field encoding
was used depended on the direction of projection, and consequently, the mapping direction:

• The backward-projection renderer used the mapping field to evaluate $ _1 while ren­
dering to obtain the nearest world wire point;

153

7.2 Related Work on Visibility Sorting 154

• The forward-projection renderer used the mapping field in a pre-computation stage to
link each voxel with its nearest object wire offset. $ was then evaluated at render time
based on the linked offsets.

The forward-projection renderer has the advantage that the bulk of the computation (the
mapping field distance propagation) is precomputed when the user defines the object wires;
the user is free to manipulate the dataset at render time and can view a constantly updated
rendering of the deformation because the deformation function $ simply requires the (7 , t)
values encoded into the voxel. This renderer however has the disadvantage that the only
compositing taking place is inside the e boundary due to the limitations of the GPU.

Conversely, the backward-projection renderer given in Section 5.7 gives a very high render­
ing quality, but at the expense of user interaction as the mapping field must be recomputed
every time a world wire is modified. A pitfall of rendering the deformation directly from
the mapping field additionally is that the complete method is not easily parrallelisable - for
this to be the case, the generation of the mapping field would need to be split into chunks
and sent to separate processes for computation. Current distance transform techniques are
inherently serial, although there has been some limited research conducted into separable
distance transforms [Rag93].

This chapter therefore introduces a complete tool for volume deformation that provides the
best of both rendering algorithms. The rendering algorithm used is a high-quality raycasting
algorithm with 32-bit floating-point compositing operations that computes the backward-
mapping of the deformation in real-time without the aid of any intermediate data (the map­
ping field). In addition to the real-time rendering, the tool also allows the user to associate
interactively segmented subvolumes with each wire, allowing for greater flexibility.

The tool has been implemented primarily on GNU/Linux x86 (Debian) using OpenGL and
NVIDIA’s Cg toolkit. Our choice of GUI framework is Trolltech’s QT framework, which
provides an object oriented approach to the placement of user interface controls and user
input. The toolkit is also cross-platform, and since the rendering algorithm is implemented
in OpenGL, provides a relatively simple means to port the tool to other platforms such as
Windows and Mac OS X (where capable GPUs are available).

7.2 Related Work on Visibility Sorting

The rendering algorithm presented in this chapter uses a visibility-sorting technique. The
ultimate goal of visibility sorting is to take a list of primitives and produce a sorted list
based on the inferred depth of each object. The inherent complexity of such a task however
prohibits simple sorting algorithms; it is not always true that two objects are comparable in
the case that they do not overlap in image-space, and additionally some objects may intersect
/ overlap and form cycles.

Max et al. [MHC90] give a software-based algorithm for rasterising and compositing poly-
hedra obtained from volume data by analytical computation of the ray integral at each frag­
ment, and depth sorting of the polyhedra using a customised priority graphic algorithm.
Stein et a l [SBM94] present a hardware-based approach to tetrahedral cell projection based

7.3 Method Pipeline 155

©
D efine O bject Wire Segm en ta tion / Su bvolum e A ssociation

Figure 7.1: Step by Step guide for the Skeletal Volume Deformer

©
Deform World Wire

on the Shirley-Tuchman algorithm using compositing and texture mapping. The authors
also describe an r r complexity algorithm for sorting the primitives. Weiler et al. [WKE02]
take a different approach and provide a solution for current consum er graphics hardware.
Their approach uses a rasterisation-based ray setup technique (see Section 4.2.1 for further
details) to compute the ray inside each cell. The method however is unable to deal with
optical models requiring blending; the sorting of tetrahedral meshes is not considered.

Sorting objects in terms of their depth is an atypical sorting problem as the relationship
between two objects is not always defined; two objects not interacting in image-space do
not have a relationship and therefore cannot be compared. Naga et al. give the efficient
Vis-Sort algorithm for sorting objects in a 3D scene [GLM04]. In the paper, the authors
give an example of an efficient GPU solution that takes advantage of occlusion queries. The
algorithm also detects cycles efficiently and drops out when one is discovered. Callahan et
al. introduce the ^-buffer [CC05] designed for unstructured volume rendering. Their overall
algorithm first performs a ‘rough’ visibility sort of the primitives at the object level, and then
utilises the ^-buffer for further refinement at the fragment level.

7.3 Method Pipeline

Figure 7.1 gives an overview of the three-step pipeline for the tool introduced in this chapter,
which is called the Skeletal Volume Defonner. The definition of the object wire and world
wire are already familiar from previous chapters, but an intermediate stage (step 2) is now
introduced to allow for greater flexibility by allowing the user to define portions of the
volume to be associated with each wire.

Upon loading the Skeletal Volume Deformer, the user is presented with the option of either
selecting a volume dataset to work with, or loading a previous deformation specification
(that is, the state of the object and world wires, and segmentation information) from an
XM L file. The complete XM L schema can be found in Appendix A. The XM L form at
stores the path and filename of the volume dataset being deformed, all of the object and
world wires, and additionally the vertices of each snake defined in the segmentation stage.
Volume dataset transfer functions are associated as a file <filename>.transfer in the same

7.3 Method Pipeline 156

directory, which is a user-configurable plaintext file containing mappings from the [0, 1]
range to < R , G , B , A > values.

Assuming that the user has just loaded a volume dataset and associated transfer function
into the system, the pipeline is as follows (referring to Figure 7.1):

1. Define Object Wires - the user defines the initial curve-skeletons for the volume
dataset;

2. Associate Subvolume - for each object wire, the user defines the portion of the volume
to be associated with that wire (e.g. the arm of the Visible Human);

3. Deform World Wires - the user is now free to modify the world wires and view the
deformation of each subvolume.

The user defines Catmull-Rom object wires by clicking with the left mouse button on the
volume dataset; each click adds a new control point, with the intermediate spline being
drawn as the points are added. Since the clicking is performed on a 2D screen, a suitable
depth value must be chosen for the control point before it is brought from view to world
space. This is achieved by projecting a ray from the view plane (at the point of the click)
into the screen through view space and taking regular samples along the ray. The final
depth chosen is the mean depth of the first region at which nonzero-opacity voxels were
discovered. For example, clicking the arm of the Visible Human in Figure 7.2 would produce
a point halfway into the arm in view space. If no such data is found along the depth of the
ray, the system chooses a point as close to the centre of the volume datasets as possible.

Once the user is satisfied with the current wire being added, the enter key completes the
process by adding the wire to the system. Since Catmull-Rom splines are evaluated only
between the second and last -but-one control points, the computation of additional ‘invisible’
endpoints for the spline evaluation is carried out automatically to make the interface as
intuitive as possible.

The next step in the system is to define the portion of the volume that should be associated
with the wire. In Figure 7.1, the initial object wire has been defined inside the right arm of
the Visible Human, and the arm of the Visible Human has been chosen to be associated with
the wire. This association is performed by using built-in segmentation functionality, and is
discussed in detail in the next section.

Once a segmented subvolume is associated with each wire, the user is able to drag the
control points of the wire around (or drag the entire wire by holding down the shift button),
and obtain an interactive raycasted rendering of the deformation.

7.3.1 User Interface

Figure 7.2 gives a screenshot of the user interface for the Skeletal Volume Deformersoft-
ware. To navigate the volume dataset as easily as possible, a trackerball-like functionality
is provided in the system; clicking and dragging on the scene with the right mouse button
rotates the dataset around in the viewport. In addition, the renderer provides a perspectively-
projected view of the scene at all times, so a zooming functionality is provided by scrolling

7.4 Segmentation Functionality 157

View Object or World Wires

Add a new Wire

Sync World with Object Wire

4 . 6 9 FPS

A

Figure 7.2: User Interface for Skeletal Volume Deformer

the mousewheel, or when not available, the up/down arrow keys.

The wires in the scene are drawn as a finite sequence of connected OpenGL lines, with
a fragment program shading the lines a darker colour as the depth increases. The control
points for the wires are drawn as circles (drawn using a fragment program and the point
sprite OpenGL extension), with a different colour chosen for the currently selected control
point.

The user is able to split a world wire into two by right-clicking on a control point and select­
ing the split option from the context menu that appears. In addition, the context menu offers
the user with a twist option that applies rotation to world wire control points, thus allow­
ing a twisting operation which is linearly interpolated between control points. A tapering
operation is applied in a similar manner by applying a scaling value to each control point.

7.4 Segmentation Functionality

The segmentation functionality that allows the user to associate portions (or subvolumes) of
the volume with each wire is integrated into the system, and the user is able to modify their
subvolume specification at any stage.

□ -/pJujua Lutiununr _ _ tr
File View J o o ls Q eb u g

o) w) C) R eload S h a d er s

7.4 Segmentation Functionality 158

The specification of each wire subvolume is achieved using a segmentation technique based
upon energy-m inim ising Snakes [KW T88]. Since Snakes are usually 2D (though more com ­
plex polygonal 3D implementations such as Cohen’s Balloons [TK95J do exist), a slice-
based approach is used to gradually build up an approximation of a 3D surface (as discussed
in Section 3.8.8).

S n ak e | M orphological |

Alpha 5 .0 *

Minimise

D ilate

S lice Control

Figure 7.3: User Interface for the Built-In Segmentation Functionality

Figure 7.3 shows a screenshot of the subvolume association dialog window, which is invoked
by right-clicking on a wire and selecting ‘Associate s u b v o lu m e . .

7.4.1 User Specification of Snakes

The central idea is that each snake is defined on a finite plane, and there are multiple planes
defined along the trajectory of the object wire; hence the system is dubbed ‘Snakes on a
P lane’. The software defines a series o f k planes along the trajectory of the wire, all equally
spaced. Each plane’s normal is equal to the wire tangent, and the precomputed and corrected
wire norm al (see Chapter 5, section 5.4 for details) is chosen as the ‘up’ vector for the plane.
Associated with each plane is a 2D snapshot of the scalar volume data cut by the plane;
essentially a 2D greyscale image 1. The image is obtained quickly from the plane definition
and volume data using pointer arithmetic and nearest neighbour interpolation.

Initially when the user interface is shown, the first slice image is shown to the user; that
is, the image obtained from the plane positioned at offset t = 0 on the object wire. The
vertices of the Snake are added by clicking the left mouse button on the plane image, and
can be later moved with the right mouse button. The minimise button minimises the Snake

’To assist with the segmentation process, an adaptive nonlinear diffusion filter is first applied to the volume
dataset

7.4 Segmentation Functionality 159

around the object of interest. The minimisation algorithm employed uses a local minimisa­
tion approach, attempting during each step to find the minimal setup of vertices for a small
radius defined around each Snake vertex. The image energy functional employed is an edge
attraction functional based on the gradient of the pixel as E iTnage = —VI .

A satisfactory minimisation of the snake around the object of interest may take more than
one minimisation attempt, but the user is able to fine-tune the minimisation process by al­
tering the Snake’s a and j3 parameters. The a and (3 parameters of the Snake control its
continuity (the elastic force of the Snake) and curvature (the energy caused by bending),
respectively, and can be modified by the user using the spin boxes present on the right hand
side of the dialog. These parameters have a large effect on the shapes that the Snake can
form; unfortunately in practice however, the modification of the parameters to fit the desired
result is often rather arbitrary.

Once the user is satisfied with the snake definition, they can advance the slice index to show
the next slice in the slice series. Upon selecting a new slice, the Snake defined from the
previous slice is copied to the new slice, and attempts to minimise itself around the newly
discovered data; the assumption behind this behaviour is that the object of interest has not
changed substantially since the previous slice, and therefore a minimisation attempt will
most likely be successful.

7.4.2 Additional Tools

Alongside the basic minimisation functionality, the user interface dialog presents some basic
Snake manipulation tools for quickly dilating and eroding the snake vertices (moving the
vertices away and towards from the the ‘mean’ vertex position, respectively). The tool also
allows for basic manipulation of the 2D slice image used by the Snake minimisation process,
which is a particularly useful operation for noisy data. The ‘Morphological’ tab allows for
thresholding operations to be applied to the image, as well as image dilation, erosion, and
closure operations. These operations often have a substantial effect on the final result where
the boundary of the object of interest is not well defined.

7.4.3 Subvolume Polygonal Approximation - Wire Blocks

The end result of the segmentation step is a set of Snakes defined along the trajectory of the
object wire, as shown in Figure 7.4(a). These Snakes however do not define a continuous
boundary of the desired object of interest by themselves. In order to form a continuous
representation of the subvolume boundary, a polygonal mesh is fitted around the Snakes,
which is defined by joining the Snakes together. For implementation reasons discussed in
detail later, this polygonal mesh is further decomposed into a series of blocks. Figure 7.4
shows two such blocks defined along the trajectory of a wire; the blue faces indicate the
boundary between blocks.

This is an example of a 2D-based segmentation methodology applied to 3D, where slices
of segmentation data are ‘stitched’ together; a review of such techniques has already been
given.

7.4 Segmentation Functionality 160

2

(a) A set o f object wire snakes (b) The resulting wire blocks

Figure 7.4: The subvolume boundaries are approximated using polyhedral blocks. The wire
offset t is encoded into each slice’s vertices.

Since the Snake splines defined around the object are higher-order splines, a polyhedral
mesh will only approximate the final subvolume; the density of vertices in the polyhedral
mesh governs the accuracy of the approximation. The polyhedron is defined as two polygo­
nal faces (created from the first and last snake splines), connected via a triangular strip that
approxim ates the Snake splines in between.

The polygonal structure is built by discretising each Snake spline. This is achieved by
evaluating the spline at a fixed interval, giving a set of discrete points. The control points
are also an acceptable ‘discretisation’; though through experimentation it was discovered
that this m ethod relied too heavily on the number of control points defined by the user. The
first Snake spline is discretised into a relatively sparse set of points. For each vertex on this
first slice, the algorithm attempts to find the offset on the next Snake that minimises the
distance between them. Once this offset is found, a vertex is created on the next slice at the
minimal offset, and a temporary connection is made between the two vertices.

A m biguities are dealt with by ensuring that each vertex is connected to only one other ver­
tex. This continues for each discretised vertex on the first slice. Once com plete for all
vertices, a triangular strip is created between the two slices by joining using the connectivity
inform ation. This process continues until a complete polygonal representation of the seg­
mented subvolume has been constructed. It should be noted that this method is sensitive to
topological changes, and the splitting / merging of Snakes is unsupported.

The polyhedron is now decomposed further into blocks of fixed size k (with a possibly
variable rem ainder sized block at the end). For each k slices connected with triangular
strips, two polygonal face ‘caps’ are created from the associated slices to create a closed
polyhedron from the k slices. These caps are represented in Figure 7.4 as blue faces. Once
each block is specified, it is saved as an OpenGL display list for simple invocation in the
rendering algorithm.

The rendering algorithm introduced later in the chapter requires, for a given rasterised frag­
ment belonging to a block, that a reasonably accurate t-value can be obtained for the frag­
ment which represents the nearest wire offset. Since each snake is associated with a plane
at a particular offset along the wire, this offset can be encoded into the R colour com ponent
of each vertex on that slice. W hen this representation is rendered and the correct blend­
ing operations are specified in OpenGL, these values will be linearly interpolated between

7.5 Deformation Rendering Algorithm 161

slices.

In addition, parts of the rendering algorithm that deal with normal computation require that
the normals of each cap are correctly specified. These normals are computed by choosing
three of the vertices on the cap, creating two vectors from these vertices, and then taking
the cross product. Care is taken to ensure that the normal is correctly pointing ‘out’ of the
block.

7.5 Deformation Rendering Algorithm

The rendering algorithm employed in this chapter is substantially different from the algo­
rithms presented in the previous two chapters for two main reasons. Firstly, the tool in­
troduced in this chapter allows the user to define segmented portions of the volume to be
associated with each wire; this needs to be taken into account during rendering to ensure that
the correct portions of the volume are deformed. Secondly, the goal of the tool is to give the
user a complete, interactive raycasted view of the deformation process, without any inter­
mediate delays. Thus, a real-time raycasting rendering algorithm is required that evaluates
the Volume Wires backward-mapping function on-the-fly.

In this section, a GPU-based rendering algorithm is introduced that implements these re­
quirements. The algorithm exploits the segmentation information defined by the user to ob­
tain optimisations for the mapping process, which is discussed in detail in coming sections.
The ray casting/mapping operations introduced require ShaderModel 3.0-capable hardware,
as extensive use is made of looping and dynamic branching instructions. A ShaderModel
2.0 implementation of all shaders has been evaluated to be possible, but would result in
less efficiency. In addition, several ShaderModel 3.0 optimisations make its implementation
much more favourable.

Framebuffer Objects (FBOs) are used in the implementation for the compositing operations,
and also to store intermediate ray entry and termination points. The compositing buffer
stores the composited colour in the < R , B , G > components and the ray’s current opacity
in the a component. The ray entry / termination point buffers are alternated using a ping-
pong technique (swapping the roles of the buffers for each pass), as reading and writing
to a single buffer is undefined and therefore discouraged. The internal format used for the
Framebuffer Objects is a 32-bit floating-point internal format that provides a high precision
of compositing.

7.5.1 Algorithm Overview

The rendering algorithm presented in this section is a hybrid surface and volume-based algo­
rithm which makes extensive use of the polyhedra generated during the segmentation step
to generate the entry and exit points for the rays to be fired through the segmented por­
tions of the volume. This rasterisation-based ray setup method was first devised by Kruger
and Westermann [KW03] for standard volume rendering by rasterising the volume dataset

7.5 Deformation Rendering Algorithm 162

Figure 7.5: Rendering algorithm overview: The subvolume meshes are forward-mapped
from object space to world space; a GPU raycasting algorithm internally raycasts these
meshes.

boundary and saving the framebuffers as the ray entry / exit points (discussed in detail in
Section 4.2.1 of this thesis).

Referring to Figure 7.5, an outline of our rendering algorithm is given below.

Forward-map wire subvolumes The subvolumes defined on the object wires (red in Fig­
ure 7.5) are forward-mapped into world space using the forward-mapping function
$

Raycast subvolumes The subvolumes are rasterised in depth order and internally ray-
casted by evaluating <f»-1 to backward-map each ray sample point into the original
volume dataset.

The remaining parts of this section are structured as follows. First in Section 7.5.2, a defini­
tion of what comprises a scene in the system is given based on the segmentation information.
Sections 7.5.3 and 7.5.4 next detail the process of forward-mapping the wire subvolumes
into world space and the depth-sorting procedures used on them. Finally, Sections 7.5.5 and
7.5.6 detail in the main portions of the rendering algorithm.

7.5.2 Scene Definition

To recap, each polyhedral representation of the subvolumes is decomposed into a series of
blocks. In a traditional volume renderer, the ray entry and exit points are typically defined
by the dataset boundaries. If an octree is used, then the process is changed such that the
applicable octree blocks generate the entry and exit points at each stage depending on their
contents. For rendering algorithms that deal with unreconstructed deformed data, the gen­
eration of ray entry and exit points is not always straightforward as it is not immediately
obvious where the boundary of the deformation lies.

Due to the segmentation step involved in this system, the new positions of the deformed
objects represented by each wire can be approximated by forward-mapping (using <f>) the
applicable wire blocks from object space (where they were defined segmenting the volume
data) into world space (where the deformed model and scene exist). Once these blocks are
in world space, the only task that remains is to discover the volume data that should lie
within the block interior by projecting rays through the block, aligned with the viewer. For

7.5 Deformation Rendering Algorithm 163

each ray sample point inside the block, the sample point is backward-mapped using <h_1 to
discover the true sample point in object space (which will always lie within the boundary of
the block when in object space).

The above process effectively takes care of the segmented portions of the volume, but addi­
tional consideration is required for other regions also:

• First, regions of the dataset which we refer to as static', that is, regions that have not
been encapsulated by a wire block during the segmentation step and therefore remain
static in the dataset. Such regions must be raycasted ‘as-is’ without evaluating <3>-1 ,
and must be able to integrate with the deformed volume data in the scene;

• Second, regions of the dataset which have been segmented by the user and no longer
contain the segmented data due to the deformation, which we refer to as abandoned',
for example, in Figure 7.1 (step 3), the region where the visible human’s arm used
to be before it was moved away by deforming the world wire - such a region is only
empty in world space, but not object space.

Let O be the set of all points within an object block, W the set of all points within a world
block, and D the set of all points within the volume dataset. A more formal definition of
the static regions can be defined as D — (O U W)\ that is, the entire volume dataset, minus
the object and world blocks. The abandoned regions can be defined as O — W \ that is, all
object blocks regions except where a world block subvolume intersects it.

7.5.3 Forward-Mapping the Wire Blocks

The first step of the rendering algorithm must forward-map each wire block into world space
based on the current deformation specified by the state of the object and world wires. This
process simply involves invoking $ on each block vertex and creating a new block in world
space using the new vertex positions. This can be achieved efficiently as the nearest wire
offsets for each snake vertex are explicitly set by the segmentation step and are therefore
available to $ without any distance computations. The mapping performed on the vertices
is the full Volume Wires mapping, including the rotation and scaling effects, as specified by
the derivation in Section 5.4.2.

Figure 7.6(a) shows the wire blocks rendered as wireframe meshes. The object blocks are
shown along the sides of the body, and were defined during the segmentation step. In this
example, the user has stretched both arms out to the side, which in turn repositions the
associated world blocks as they are mapped into world space. Figure 7.6(b) shows the
resulting render from the scene using the rendering algorithm discussed in this section.

The forward-mapping of wire blocks into world space could easily be performed by the
GPU. However, the next stage of the algorithm requires a CPU depth-sort of all blocks such
that the block can be processed on the CPU side in depth order, and therefore, performing
$ on each block vertex would be insufficient. A possible speedup could be obtained by
writing the new vertices to the framebuffer and then binding the resulting buffer as a the
new vertex buffer representing that particular block. It is unclear however how much of a
speed improvement this would achieve over simply performing the mapping on the CPU,

7.5 Deformation Rendering Algorithm 164

(a) With blocks shown (b) Final render

Figure 7.6: The object and world meshes defined for the Visible Human.

since the number of vertices involved is small enough - typically less than a thousand.
The decision was made therefore when implementing the system to perform the forward-
mapping of blocks on the CPU rather than the GPU.

7.5.4 Depth-Sorting

The second step of the rendering algorithm involves a depth-sort of all wire blocks defined
in the scene. The input to the sorting algorithm is a list o f all blocks; there is no distinction
made between object and world blocks. The sorting algorithm used in the system is based
on the Vis-Sort algorithm [GLM04], which provides a near-linear time sorting algorithm for
nonintersecting primitives. In the case of intersections between blocks therefore, it is clear
that a decision procedure must be able to choose one block over the other.

The visibility sorting procedure makes extensive use of OpenGL occlusion queries to de­
termine whether a particular object is in front o f another. Occlusion queries are a useful
mechanism for asking the hardware how many fragments made it through the pipeline based
on the fragment tests; in this case, the depth test is the most relevant. To test whether object
a is fully in front of another, object a is drawn with no depth operations and the number of
passed fragments counted. Next, object b is drawn, followed by object a again, this time
with depth testing and writes enabled. If the number of fragments passing is the same as
previously measured, then it follows that object a is fully in front. Face culling has an im­
portant effect on the results also - it is important to distinguish the results o f comparing just
the front faces of an object with all faces of the object. For the depth-sorting procedure
employed in this system, face culling is enabled to remove back-facing polygons.

For the purpose of this system, the Vis-Sort algorithm given in [GLM04] must be modified
to account for the case of overlapping blocks, since the Vis-Sort algorithm assumes that such
overlaps do not exist. Therefore, the comparison function for two blocks cannot simply be
a comparison between the numbers returned by the occlusion queries. The depth-sorting
o f wire blocks has an important effect on the final image, as some world wire blocks (and
consequently, the associated deformed volume data) will take precedence over other inter­
secting world blocks in the final list. In the event that two world blocks intersect, a decision

7.5 Deformation Rendering Algorithm 165

has to be made as to which block takes the front position. The following rules are therefore
defined for intersections:

• world and object block - as will be discussed, the exact order between the two is
unimportant, but the world block is chosen as the winner

• object and object block - the block with the lowest mean image-space z-coordinate

• world and world block - the block with the lowest mean image-space z-coordinate

There is a possibility of popping artefacts occurring due to the third rule defined above -
although this can be minimised by the possibility of implementing a CVG scheme (discussed
later in the Chapter).

7.5.5 Stage One: Initial Raycasting Probe

Once the wire blocks have been created and sorted by depth, the main rendering algorithm
must take each block in turn and use rasterisation of the block geometry to advance rays
through world space; much in the same manner as the standard rasterisation-based raycast­
ing techniques. The exact ordering of rasterisation and the blocks chosen for rasterisation at
each stage determines the starting and ending points for each ray.

Figure 7.5 shows a cross section of all wire blocks defined in the scene, including the dataset
boundary and the static data within the dataset. Static data is defined in this context as data
which has not been segmented by the user for potential deformation - e.g. the torso of
the Visible Human in Figure 7.1. Such data must be rendered without evaluating $ -1 and
included in the compositing steps. In Figure 7.5, the static data is everything except the right
arm of the human model.

The rendering algorithm itself is broken into two stages - namely the probe stage (discussed
in this section), and the block rasterisation stage, discussed in Section 7.5.6. The composit­
ing buffer is initialised to all zeroes.

Ray Instantiation

The first step of the probe stage is to instantiate rays for the scene and fire these rays until
they hit either a wire block or one of the back faces of the dataset. Referring to Figure 7.5, a
ray is instantiated for a given pixel in the framebuffer if the pixel is hit by either a rasterised
object or world block, or the dataset boundary. Instantiating rays based purely on the latter
case would often result in an incorrect rendering, as it* is possible that the user will have
deformed part of the volume object outside of the dataset boundaries.

The procedures for instantiating the initial ray entry / termination points are given below.
The entry points are written to one Framebuffer Object, and the termination points to an­
other.

Entry points The depth buffer is first cleared to 1 and the depth test is set to <. The front
face of the volume bounding box is now rasterised, followed by all wire blocks (object
& world).

7.5 Deformation Rendering Algorithm 166

Termination points The back faces of the volume dataset boundary are rasterised, followed
by the front faces of all blocks.

The ray entry and termination points are output by a fragment program running on the GPU
that converts the world-space coordinates of the fragment (given to the fragment shader by
the vertex shader, encoded into a texture coordinate) to the output < R ,G ,B > triple for
the framebuffer. In addition, the length of the ray is output into the a component of the
entry point Framebuffer Object for later determination of ray termination based on the ray’s
progress through the block.

Firing the Rays

Once the initial ray entry and termination points are computed, the rays are fired from the
entry to the termination points. Some rays will not be fired - for example, rays created for
world blocks outside of the volume dataset boundary. Such rays will have length 0 and can
be immediately terminated. The useful work in this probe stage therefore is raycasting any
static data that is encountered in the dataset before any blocks (either object or world) or the
back dataset boundary is hit.

Algorithm 4 gives this raycasting procedure.

Algorithm 4 CPU Invoking raycasting shader
l CPURayStep = 0;
2 repeat
3 {Run termination shader first}
4 Bind Termination Shader
5 Rasterise back faces of Blockj
6 DepthFunc : =
7 {Next, run the raycasting shader}
8 Bind Raycaster Shader
9 Rasterise Blockj

10 {Get number of fragments passing depth test}
11 Passed = OcclusionQueryO;
12 {Advance the ray section index}
13 CPURayStep += STEP.SIZE;
14 until Number of fragments passing depth test = 0

This loop iterates until there are no more rays to process. The algorithm takes advantage
of early-Z termination in a similar fashion to the GPU raycasting algorithm introduced in
Section 5.7.

The termination shader simply checks the ray’s progress (based on the C PU Ray S tep pa­
rameter passed into it) against the ray’s length saved into the a component of the entry point
buffer by the ray instantiation stage. If the number of unit steps are greater than the ray
length, then the shader outputs a fragment of depth 0 to cause the ray to fail the depth test
in future attempts. This termination shader additionally acts as an adaptive ray termina­
tion system (first discussed by Levoy [Lev90a]), halting the ray when its opacity reaches a

7.5 Deformation Rendering Algorithm 167

predefined threshold (set to 0.95).

The raycasting compositing operations are performed on the CPU in steps, with variable
S T E P S I Z E determining the num ber of ray steps performed each time the shader is in­
voked in the CPU loop. The GPU raycasting algorithm itself is based on the implementation
given in Section 4.2.1. Note that the depth test is set to = before casting rays to ensure that
only one ray per pixel is fired for the case where more than one front face is rasterised to the
same pixel (for non-convex meshes).

□ Object Block
□ World Block

Q Static Data

— ► Initial Probe
— ► Intermediate Static Traversal
— ► World Block Traversal using

Figure 7.7: Rays in the scene negotiating the static volume data (grey), object blocks (red)
and world blocks (green). Inside world blocks, <J>-1 is applied to each ray sample point pi
obtain the new sample point p\ from its associated object subvolume.

The initialisation of the next rays to be fired through the scene is made by the wire block
rasterisation stage, discussed in the next section.

7.5.6 Stage Two: Wire Block Rasterisation

The aim of this stage is to render the deformed subvolumes by processing each wire block
in turn contained in the depth-sorted list. This stage therefore requires consideration of
not only the wire blocks attached to world wires (where the ray sample points must be
backward mapped using <f>- 1), but also of the original object wire blocks defined during the
segmentation step.

The algorithm is based around a main loop that iterates through each block contained in
the depth-sorted wire block list. In order to generate rays where appropriate, the blocks are
rasterised to the framebuffer and the world coordinates written as the < R ,G , B > values,
similar to the previous ray instantiation stage. The handling of the block depends on its type
(whether it is an object or a world block), and the procedure for each block type is given
below.

Object Blocks define the static, segmented subvolumes. Each ray must skip over these,
as it is their world representation that must be rendered. More correctly, the rays

Volume Boundary

7.5 Deformation Rendering Algorithm 168

must skip over the difference o f the object blocks and the world blocks; since any
intersection of a world block implies that there exists freshly deformed data.

World Blocks define the dynamic subvolumes deformed around the world wires. The Ten­
derer must send rays through these blocks and perform the backward-mapping op­
eration <E>-1 on each sample point pt, to discover the sample point p\ in the volume
dataset. This backward-m apping process is discussed in detail in Section 7.5.7.

Algorithm 5 gives the block rasterisation procedure employed in the system. The fram e­
buffer objects used for storing the ray entry and termination points are referred to as Rayentry
and Ray^rm respectively. The code for swapping the roles of these buffers is omitted for
clarity.

□ World Block

— ► Intermediate Static Traversal
— ► World Block Traversal using

Figure 7.8: Intersecting World Blocks

The first half o f the algorithm (lines 2 to 18) deals with the backward-mapping raycasting
inside world blocks, shown as solid green lines in Figure 7.7. Each ray always terminates
at the back face of the world block. It is possible however that world blocks will intersect
each other; in this case, there will be some rays that will begin their progress at a lower depth
(closer to the viewer) than where they terminated at the back face of the previously rasterised
world block. If a terminated ray from the previous ray block has a greater depth than the
current ray, then the ray for the current block will need to begin at the previously-terminated
depth. This is illustrated in Figure 7.8.

To correctly generate ray entry points for a world block therefore, the front face of the
current world block is first rasterised. Next, the depth test is set to > , and the back faces of
all obscuring world blocks are rendered to capture any possible ray termination points that
have the greater depth. The termination points for a world block are simply at the back faces
of the block.

The second half (lines 20 to 35) deals with any static data between blocks, shown as solid
black lines. The ray starting points for rendering the static data must be the back faces of
Block i (whether it is an object or a world block), except in the case that an object block is
intersecting it. If this occurs, then the ray will need to begin at the back face of the object
block as the data inside the object block must not be rendered. The termination points for
the rays are generated from the front faces o f any object or world block behind Blocki.

7.5 Deformation Rendering Algorithm 169

7.5.7 GPU Backward-Mapping

The largest block of fragment shader code, the GPU backward-mapping raycaster, is invoked
when a world block is rasterised (Algorithm 5, line 17). The purpose of the GPU backward-
mapping raycaster is to fire rays through the world block, establishing new sample points in
object space using $ -1 and com positing the results in the compositing framebuffer object.
Line 17 of Algorithm 5 is broken down into several steps which invoke this shader, and
they are sim ilar to those shown in Algorithm 4 for the raycasting of static data in the ray
instantiation stage.

Refining the Lvalue

The key piece of information that is required for the backward mapping of a Volume Wires
deformation is the nearest wire offset t given a point in world space. In previous im plem en­
tations (such as that given in Section 5.7), this information was obtained from the mapping
f ie ld , which is simply a distance field of the wires. However, it is clear that generating a
new mapping field each time the user deforms a world wire would result in an unacceptable
performance penalty in terms of the generation time, and the time to upload the mapping
field to the GPU.

world wire

t o = refine(fromFace(p o), P o)
t i = refine(t o , p i)

t 2 = re f in e (t1 , p 2)

£3= re fin e (t2 , p 3)

Figure 7.9: Obtaining the Lvalues for the initial sample point on the face and subsequent
sample points.

Since the wire offset t is encoded into the red colour component of each wire block ver­
tex (corresponding with the slice aligned with a particular offset t along the wire), a linear
approxim ation to the nearest wire point (at the ray entry point) is found by hardware inter­
polation across the polyhedron face. Figure 7.9 shows a ray entering a face belonging to a
block. For the initial sample point po, the approximate nearest Lvalue is discovered from
the interpolated red component. This approximation gives a good starting value since the
value is interpolated linearly along the approximate trajectory of the wire.

From this, a more accurate value can be derived by a refinement procedure. A function

7.5 Deformation Rendering Algorithm 170

refine (t,p) is defined that searches the points on the wire around t for a more accurate
f-value for point p. This function can be implemented by defining a fixed-sized window
around the f-value and finding the minimally-distant f-value for point p inside this window.
The function is implemented in Cg using a loop, and the size of the window is set as a
predefined even integer constant. Once this initial f-value has been discovered for a given
ray entry point, it can be continually refined with each new sample point along the ray by
sending the previously refined f-value into refine along with the current sample point. This
gives an effective mechanism for continually refining the nearest wire point in small steps.
The size of the window is derived empirically through observation of rendering quality on a
variety of datasets, and the most suitable constant was found to be around 14.

Performing $ _1 and Compositing

For each ray sample point pi, the refined f-value is used to look up the associated world wire
point pw via a texture lookup on the wire texture using the f-value as the x-offset. Once this
world wire point has been discovered, the associated object wire point p0 is obtained using
the same offset. The other variables required for input to the mapping equation are computed
using texture lookups on the wire texture, wire normal texture, and wire effects texture, in
the same manner as described previously for the forward-projection system; described in
Section 6.4.1.

Once the required mapping variables are available, the backward-mapping operation <J?_1 is
computed to discover the new sample point in object space. This point is sampled using a
texture lookup in the volume dataset 3D texture, and the colour/opacity values are derived
from the transfer function specified by the user. These values are now used in a compositing
equation to blend them with the current colour/opacity values, which were initially obtained
from the compositing framebuffer object. The current sample point on the ray is now ad­
vanced, and the f-value is further refined for the next sample by using the previous f-value
as an approximation.

The raycasting scheme discussed in this section operates in slices, stepping a constant num­
ber of steps along the ray before writing the results to the compositing buffer and exiting.
This behaviour was first devised for GPU raycasters to allow for adaptive ray termination
and to more effectively load balance the GPU’s available shading units. The behaviour is
especially important for the backward-mapping raycaster introduced in this section, as it
additionally avoids the possibility of hitting the instruction limit of the fragment shader (216
for ShaderModel 3.0).

It is clear that interpolated approximation of the f-value will only be accurate when the
ray begins its journey through the block. When the block is re-rasterised for the second and
subsequent passes, the interpolated value across the face will be only reasonably accurate for
the intersection of the ray and the face. To solve this problem, the current f-value at the end
of the previous pass is packed into the alpha component of the compositing buffer. This is
achieved by dividing the compositing buffer into two 16-bit floats: the ray opacity value and
the refined f-value. The packing of floats in this manner is supported by the FP40 fragment
profile with a dedicated instruction. By packing values in this manner, care must be taken to
unpack the ray opacity correctly in subsequent operations, and in the ray termination shader.

7.6 Discontinuities in World Space

7.6 Discontinuities in World Space

171

(a) Artefacts noticeable (b) Higher resolution mapping field

Figure 7.10: Aliasing artefacts caused by encoding discontinuities into a single mapping
field. Encoding the split into a higher resolution mapping field alleviates the aliasing slightly.

The Volume Wires methodology allows for the splitting of wires into two to produce an ex­
plicit discontinuity, and consideration must be given to how the wire split affects the blocks
associated with the wire. Consideration must additionally be given to the com putation of
normals for lighting calculations in the areas where a discontinuity has been created; both in
the case o f an explicit split o f the wire, and the case where a discontinuity has been created
by moving a segmented subvolume away from a static portion of the dataset.

The advantage of using the segmentation information for splitting is that an explicit, continu­
ous split boundary has been created; this boundary can be used during the rendering process
to decide whether a ray sample point is inside or outside the data. Figure 7.10 shows an
attempt to encode a split o f the Visible H um an’s head into a mapping field and rendered
using the mapping field-based raycasting renderer introduced in Chapter 5. The blocky
aliasing artefacts are noticeable in Figure 7.10(a) in the areas near the split, and are caused
by the signal reconstruction (trilinear interpolation) taking place in object space, which does
not have the discontinuity and thus for the object interior cannot give a smoothly blended
object-to-em pty-space value. This problem can however be alleviated slightly by using a
higher-resolution mapping field, as shown in Figure 7.10(b), where the blocky artefacts are
not as noticeable.

This section looks at the splitting functionality in the Skeletal Volume Deformer, and addi­
tionally looks at the problem of computing correct normals near the split.

7.6 Discontinuities in World Space 172

7.6.1 Wire Splitting

Many interesting effects can be achieved by splitting a wire in half to reveal the interior of
the object defined along the wire trajectory. This section reviews the implementation details
and caveats of splitting wires.

Figure 7.11: Splitting the CT Carp in half, revealing the interior.

A wire split is achieved by choosing a control point, and using the context menu on that
control point to select the ‘cut wire here’ option. If control point at index i is chosen as the
cut point and the wire has n control points, then in the general case this operation involves
creating two new wires, and copying p o , . .. ,Pi to the first and p*, . . . , p n- i to the second.
We can also find the approximate i-value of the control point in question.

It is important that continuity at the point of the split is maintained, particularly for the
object wires as they maintain the segmentation information. There should be no change in
the mapped positions of the object blocks before and after a split.

Figure 7.12: Splitting a Catm ull-Rom Wire

Since the wires used in this chapter are Catmull-Rom splines, maintaining continuity in the
object wires simply involves matching the ‘ending’ control points with the correct points on
the other wire (see Figure 7.12).

When a wire is split, the snake slices defined in the segmentation stage must be distributed
correctly to each new wire. Each snake slice before the split is copied to the first new wire,
and then all others are copied to the second wire. The wire block list is now rebuilt for the
new wires.

7.6 Discontinuities in World Space 173

7.6.2 Normals at Discontinuities

N orm als in the interior o f the blocks are sampled in object space and transformed with <J>n
to bring the normal into world space. The Volume Wires mapping fortunately provides a
mapping that can offer such a straightforward mapping from one space to another; with
many other systems that rely on analytical approaches, the Jacobian of the m apping must
be computed to forward-map the normal. The alternative approach is to perform the normal
calculations in world space by performing <f>-1 on each central difference sampling point;
something to avoid when the cost o f <&-1 is high or there are time / calculation constraints
such as those that exist in the fragment shader.

Forward-mapping the object-space normals gives accurate normals for the usual cases in
the system. However, it can lead to inaccurate normals when there exists a discontinuity
in world space that does not exist in object space. As illustrated in Figure 7.13, such a
discontinuity can be introduced by two means:

• Implicit - The user has revealed a static portion of the volume that is cut by a seg­
mented portion; or

• Explicit - The user has split the dataset using the wire splitting functionality.

Figure 7.13: Computing normals at discontinuities requires special handling.

The former case is illustrated in Figure 7.13(a) and occurs in situations where the user re­
veals a static portion of the dataset by moving segmented portions out of the way. In this
example, the user has deformed the arm of the Visible Human and has then translated the
entire wire away, moving the segmented arm away from the body. The split area revealed
cutting through the shoulder is an implicit split in world space. The latter case is illustrated
in Figure 7.13(b) and occurs when the user invokes the wire splitting functionality of the
system. In this example, an explicit split is created halfway along the arm. Note that the
outward-pointing faces belonging to the innermost wire blocks both mark the point o f the
split if they were backward-mapped into object space.

Figure 7.13(c) demonstrates an attempt to compute a normal near a discontinuity; the green
area is interpreted as the volume data, the white area as the empty space created by the
discontinuity, and the red as the split boundary. Around the main sample point, a set o f points
for central differencing are created to be backward-mapped using $. It is clear that two

(a) Implicit Split (b) Explicit Split (c) 2D analogy

7.6 Discontinuities in World Space 174

of these sample points fall into empty space - space that was created by the discontinuity.
Since these two points would be backward-mapped into object space and the discontinuity
does not exist there, an incorrect normal is ultimately computed.

The problem of recovering correct normals at discontinuities has been discussed in detail
by Weiskopf [WEE03] where a GPU-based volume clipping algorithm is implemented. The
author discusses methods for approximating normals at the boundary of the clip, even for
arbitrary volumetric clip templates; achieved by defining the discontinuous ‘surface’ to have
a finite thickness. Inside this transitional layer, the normal is blended from the normal in the
volume (below the surface), N voi, to the normal of the discontinuity-causing surface Ndis:

N = ujNdiS + (1 — uj)Nvol (7.1)

where cu is a blending factor in [0, 1]; higher values give a normal that is biased towards the
discontinuous surface normal. In a sense, the normal is being interpolated. This approach is
also used by Correa et al. [CSC03] for a GPU-based volume displacement mapping system
that allows for cuts to be performed.

Identifying Discontinuous Boundaries

Before any normal correction can take place, the fragment shader must be able to ascertain
whether the ray point it is currently dealing with is on a discontinuous boundary.

In the explicit case, the discontinuity can be flagged on the mesh itself and picked up in the
fragment shader. When a wire is split into two, a flag is set with the ‘discontinuous’ faces
to inform the fragment shader that they are discontinuous, which is achieved by setting the
unused green colour component of the face to 1. When a ray initially begins from a face
(where the C P U Step variable is 0) and the ‘discontinuous’ flag is set to 1, we know that
the normal must be corrected at the first sampling point (essentially approximating some
finitely thick surface).

In the implicit case, no such explicit ‘discontinuous’ flag exists; it must be inferred from
the information available. An observation of the rendering process described in previous
sections is that if a ray has just finished ‘skipping’ an object block and begins to traverse
static data, then this data must be implicitly split and is therefore a candidate for normal
correction. This identification is handled easily on the CPU, and informing the fragment
shader is a case of sending a uniform boolean value into the shader that deals with the
raycasting of static data.

Figure 7.14 gives a comparison between the normal correction techniques implemented in
our system. Note that the only light in the scene is arriving from the bottom right of the
image; pointing towards the viewer on the image-space z-axis. Figure 7.14 empirically
shows the correctness of the discontinuous world scheme in this case, as the surface of the
split is almost black due to receiving no light.

Now that methods for identifying discontinuous regions have been discussed, we next dis­
cuss the implementation of both normal blending and a more advanced normal correction
scheme based on computing the normal in discontinuous world space.

7.6 Discontinuities in World Space 175

(b) Blended (c) Discontinuous World(a) No correction

Figure 7.14: Comparison between normal correction schemes

Implementing Normal Blending

The technique discussed above for blending the surface and volume normals can be im ple­
mented in our rendering algorithm as follows.

The volume normal N voi can be computed as the forward-mapped world normal at the next
ray sample point: N voi = <bn (C e n t r a lD i f f (po)), and Ndis is the normal of the discon­
tinuous face, i.e. the normal of the current fragment. With these two normals computed,
equation 7.1 is applied with a suitable blending factor u to produce the corrected normal.
This normal is now used in the lighting equations to light the discontinuous region more
accurately. Figure 7.14(b) shows the normal blending technique implemented in the system.

Implementing Discontinuous World Space Normal Computation

The technique of blending the normal from volume to surface produces a reasonable ap­
proxim ation of the discontinuous normal, but it remains only an approximation. We have
the advantage in our wire cutting system that the block face representing the discontinuity
is essentially a plane, and can thus be expressed in the form ax 4 - by + cz = 0. Using this
information, the normal at the discontinuity can be computed in world space by backward-
mapping the central differencing sample points using $ - 1 , and correctly identifying those
sample points which fall in empty space.

Figure 7.13(c) illustrates (in a 2D analogy) a ray beginning its journey from a discontinuous
face, which has a normal of N d is . Around the first ray sample point p o on the surface are the
sample points required for the central differencing equation. To compute a correct normal
N for the discontinuity, we use Equation 7.2:

N x = D is P o in t { x + 1, y, z) — D i s P o i n t (x — 1, y, z)
N y = D i s P o i n t (x , y + 1, z) — D i s P o in t (x , y — 1 , z) (7.2)
N z = D i s P o i n t (x , y , z 4-1) — D i s P o i n t (x , y , z — 1)

where D i s P o i n t is a function that takes a point in the discontinuous world space p G E 3
and returns a correct sample point in object space. It works by returning a point inside the
volume if and only if the point is deemed to be inside the wire block; i.e. if the point is
‘past’ the plane based on its outward-facing normal. If the point is deemed to be outside of
the wire block, then a value of zero is returned to represent the empty space caused by the

7.7 Improvements and Optimisations 176

discontinuity:

D isP oin t(P) = { W W) (7.3)

where NdiS is the discontinuous face normal and po is the initial ray sample point on the
face.

This method of computing the normals in discontinuous world space inherently produces
more accurate normals since world space is being treated correctly as discontinuous; the
alternative method of blending the normal from the interior to exterior plane is just an ap­
proximation.

7.7 Improvements and Optimisations

The rendering algorithm given so far gives high-quality results for rendering the deforma­
tions, yet there is still room for improvement when one considers the possibility of support­
ing intersections (Section 7.7.1), and providing an important optimisation using the stencil
buffer (Section 7.7.2).

7.7.1 Future Support for Intersections

The rendering algorithm presented in Section 7.5 provided a simple priority system for world
blocks - if two world blocks intersect, then the ray traverses completely through the first
(in the depth order), and then continues through the second from the point of termination.
This method does not allow for the intersection of two segmented sub volumes; inside the
intersection, only one of the blocks is chosen for including in compositing operations. In a
future implementation of the tool, it would be beneficial to provide intersection support so
that segmented subvolumes can coexist in the same space. This section discusses a possible
implementation of such functionality.

An example intersection is illustrated in Figure 7.15, which shows two world blocks inter­
secting (the blue area) and two rays travelling through. Blocki is the currently-processed
block in the main loop, and Blockj is a block deemed to be intersecting. The leftmost ray
does not touch the intersection area, but the rightmost ray travels partway through the world
block (stage 1), then through the intersection (stage 2), and finally back through the world
block (stage 3).

An algorithm for the implementation of intersections is given in Algorithm 7.

• Stage one raycasts (with <f>-1) through Blocki up until either the back faces or the
front face of Blockj

• Stage two raycasts (with CVG and double-3?-1) the intersection area

• Stage three raycasts (with 3>-1) through the remainder of Blocki (if it exists)

7.7 Improvements and Optimisations 111

Blocki

Blockj

□ World Block
I Intersection

— ► CVG Traversal using double-
— ► World Block Traversal using

Figure 7.15: Dealing with the intersection of two world blocks

Raycasting the Intersection

An observation of intersections is that the rays in such areas are defined as having a starting
depth greater than the termination depth. To render such an intersection of two world blocks
therefore, the fragment shader can be instructed to fire rays from the termination point to the
starting points. The fragment shader can perform two evaluations of <f>_1 at each ray sample
point (halving the S T E P . S I Z E to prevent the maximum instruction limit being hit) and
use the CVG [CTOO] intersection operator to combine the values.

Either of the two blocks can be rasterised to initiate the rays, but the CVG raycasting shader
must have access to the interpolated f-value of both blocks for each ray. In addition, the
f-values will both need to be refined inside the loop and saved for retrieval in the next pass.
Since the compositing buffer is fully utilised, the ray termination buffer’s a component can
be used for this purpose. This requires the M ultiple Render Target (MRT) functionality of
m odem graphics hardware, which allows for up to four buffers to be written to in a single
pass by writing values to the available colour output semantics.

Before the intersection is raycasted, B lo c k j is rasterised, and its interpolated f-values are
written to Ray*erm’s a components. The CVG raycasting shader is then instantiated by
rasterising Blocki. Because each block will potentially have a different wire ID, the wire ID
of B lo ck j is passed into the shader as a uniform variable. At each ray step, <3>~1 is performed
for both blocks, the final value derived for each sample point using CV G ’s intersection
operator, and the result composited. Because two blocks are being raycast, their f-values
must both be refined before the ray loop iterates. Before exiting, the shader writes the
refined f-value for Block i to the com positing buffer’s a value (packed as a 16-bit float), and
B lo c k j ’s refined f-value back into Ray*erm ’s a value.

7.7.2 Using the Stencil Buffer for Increased Speed

A simple optimisation that can be made in the system is that o f optimising the number of
rays sent through the scene for every frame, avoiding raycasting areas of the image that are
unchanged from frame to frame. During a deformation session, two events can prompt the
renderer to draw a new frame:

7.7 Improvements and Optimisations 178

• Camera Adjustment - in this case, new rays must be fired through the world based on
the new viewing parameters to discover the true data.

• Deformation o f wires - since the user only deforms one object at a time, only the
portions of the image affected by the deformed object are required to be redrawn. The
results for all other pixels (and consequently, rays) can be kept in the framebuffer.

Note that the deformation optimisation identified here assumes that the deformation of an
object within the scene has no effect on other portions of the volume - i.e. there are no
secondary rays being fired from the object for shadow computations or global illumination.
Such a restriction however could be alleviated slightly by redrawing the complete scene
(with information from the secondary rays) once the user has released control of the de­
formed object.

The aim of the optimisation is to correctly identify, for each frame, the rays that are required
to be cast into areas that have changed. In the coming text, a pixel refers to a pixel in the
framebuffer that is associated with a set of rays; many blocks may generate many rays, but
the change of just one sample along the ray will ultimately cause a different composited
colour.

For the scenario where the user is manipulating the wires (not changing the viewing param­
eters), a change in pixel value can occur in two areas:

• A pixel affected directly by a wire block being actively moved behind it; and,

• A static pixel directly affected by a wire block in the previous frame.

In both cases, all rays generated by wire blocks for those ‘dirty’ pixels should be re-fired.
The detection of dirty pixels and subsequent optimisation is achieved using the stencil buffer
functionality of the API and hardware. Because Framebuffer Objects are used, a stencil
buffer is required to be attached to the bound framebuffer object, via thepackedjdepthjstencil
extension which internally divides the depth buffer into a 24-bit depth value and and 8-bit
stencil value.

The main rendering algorithm utilises the fast stencil rejection ability of the graphics hard­
ware to ensure that only image areas made invalid by user operations are computed. If the
viewing parameters are changed, the stencil buffer is cleared to 1 and the entire scene is
redrawn, as a change in viewing parameters automatically implies that each pixel will be
made invalid.

A new stage is introduced into the rendering pipeline to deal with the stencil buffer, prior to
the initial probe stage. When the user modifies a world wire, its corresponding world blocks
have an update flag set to denote that the block is being actively deformed in world space.
Each frame has the previous frame’s stencil buffer as input; at the beginning of a frame, all
updated blocks from the previous frame will have set the stencil pixels to 1, though in the
case of a change in viewing parameters, the stencil buffer is cleared to 1 at the end of the
frame.

All blocks that are actively being deformed by the user (with the update flag set) are first
rasterised, resetting the compositing buffer’s < R ,G ,B ,A > values to 0 (and consequently,
the new ray’s alpha value to 0) and the stencil buffer to 1. The stencil buffer now contains

7.8 Summary 179

1 where the updated blocks for the current frame were rasterised. In addition, the stencil
buffer will also contain 1 where an updated block existed in the previous frame.

The initial probe stage now fires rays into the scene where the stencil buffer is equal to 1.
The main block loop (detailed in Algorithm 5) rasterises only blocks that are connected to
blocks with the update flag set in the depth graph, and only rays belonging to stencilled
pixels with value 1 are fired.

Before the rendering algorithm completes, the stencil buffer is cleared to 0, and all active
blocks are rasterised with no colour writes, setting the new stencil buffer to 1 where these
blocks are to be updated, ready for the next frame. The block’s update flag is finally re­
moved.

7.8 Summary

This chapter has introduced a complete tool for volume deformation. The tool not only of­
fers the interactive specification of deformations, but also offers a real-time raycasting algo­
rithm that evaluates the deformation in world space on-the-fly, without generating interme­
diate data. The deformation methodology implemented is the Volume Wires methodology,
which is discussed in previous chapters of this thesis. The user specifies the deformation
by adding object wires to the scene and using built-in segmentation functionality to define
which portion of the volume is to be controlled by the wire. The segmentation functionality
introduced is based on energy-minimising Snakes and uses a slice-based approach to build
a 3D representation of the segmentation result from a sequence of 2D snakes defined along
the trajectory of the wire. The tool therefore not only facilities deformation, but also the
addition of semantic information necessary for character-based deformation.

The rendering algorithm employed by the system provides a complete, real-time fully ray-
casted view of the deformed object. The scene in world space is defined by the union of all
segmented subvolumes and the static, unsegmented volume data. The algorithm exploits the
segmentation information defined by the user to generate the starting and termination points
for those rays that must be fired through the deformed subvolumes in world space. The set of
all subvolumes (in object space) and forward-mapped subvolumes (in world space) defined
in the scene are depth-sorted and rasterised in depth-order in order to progress rays through
the scene; the algorithm can therefore be viewed as a hybrid object / image-space rendering
algorithm.

The rendering algorithm introduced for the deformation has been accompanied by a dis­
cussion on the correct computation of normals in the case that world space has become
discontinuous, and details on the implementation of normal correction techniques. Finally,
two improvements to the tool have been discussed; including a method for rendering inside
the intersection of deformed sub volumes, and a method for improving the interactivity while
the user is deforming a wire by selectively raycasting only the parts of the image that will
change as a result of the interaction.

7.8 Summary 180

Dataset Action Average FPS

Visman Torso
Navigation 8.44

M anipulation 8.59

CT Carp
Navigation 2.63

M anipulation 3.05

Tooth
Navigation 6.06

Manipulation 6.29

Lobster
Navigation 8.72

Manipulation 7.66

Table 7.1: A selection of timings achieved with four datasets. For each dataset, we give the
average FPS achieved while firstly simply navigating the deformed dataset, and secondly
while m anipulating the world wires.

S k e l e t a l V o l u m e D e f o r m e r _ o x

£ile View Ioo ls fiebug

f) (") , Reload Shaders

Figure 7.16: A split of the Visible H um an’s head. A full RGB colour texture was registered
with the CT data and used as the transfer function, which reduced the rendering speed (« 3
FPS).

7.8 Summary 181

Algorithm 5 W ire B lock R asterisation

1: for i : 1 —> S o r te d B lo c k L is t . s i z e f) do
2: if B lock i is a W orld B lock then
3: {G enerate ray entry points for the w orld block}
4: D raw B uffer(R ayen*rj/)
5: D epth : 1, D epthFunc : <
6: R asterise front faces o f B locki
7: D epthF unc : >
8: for all W orld B locks B lock j obscuring B lo c k r do
9: R asterise back faces o f B lock j

10: end for
11: {G enerate ray term ination points for the w orld block}
12: D raw Buffer(Ray*erm)
13: D epth : 1, D epthFunc : >
14: R asterise back faces o f Blocki
15: D epth : 0, D epthFunc : <
16: D raw B uffer(C om positing)
17: R aycast (w ith <F- 1) R ay e n t r y —> Ray*erm

18: end if
19: {G enerate ray starting points for possible static data}
20: D raw B uffer(R ay entry)

21: D epth : 0, D epthFunc : >
22: R asterise back faces o f B lo ck t
23: for all O bject B locks B lock j obscuring B locki do
24: R asterise back faces o f B lock j
25: end for
26: {G enerate ray term ination points for the object block}
27: D raw Buffer(Ray*erm)
28: D epth : 1, D epthFunc : < , D epthM ask : f a l s e
29: R asterise back faces o f Volum e D ataset
30: D epthM ask : tru e
31: for all B locks B lo ck j behind B lo c k t do
32: R asterise front faces o f B lock j
33: end for
34: D raw B uffer(C om positing)
35: R aycast Ray entry -> Ray* erm
36: end for

7.8 Summary 182

Algorithm 6 GPU Backward-Mapping
1 ray = FromRayTextures();
2
O

finalColour = FromCompositingTexture();
J
4 if CPURayStep = = 0 then
5 WorldWirePoint = RefineWirePoint(FromFragmentColour());
6 else
1 WorldWirePoint = Refine WirePoint(FromAlphaComponent());
8
o

end if
y

10 for all ray sample points pi do
11 samplePt = $ _1();
12 sampleColour = TransferFunction(SampleVolume(samplePt));
13 if sampleColour.Q! > 0 then
14 normal = NormalToWorld(CentralDifferences(samplePt));
15 finalColour += composite();
16 end if
17 if finalColour. a > 0 then
18 break;
19 end if
20 WorldWirePoint = RefineWirePoint();
21 end for

Algorithm 7 Intersection Rendering
{Stage One}
Generate ray entry points as per Algorithm 5
Generate ray termination points from the back of Blocki and front of intersecting block
Rasterise Blocki and raycast (with 3>-1) Ray entry —► Ray term
Generate ray entry points
{Stage Two}
Rasterise Blockj and write f-values to Rayterm’s a component
Rasterise Blocki and raycast (with CVG-3>-1) Ray term —► Ray entry

{Stage Three}
Generate ray entry points as back face of intersecting block
Generate ray termination points as back face of Blocki
Rasterise Blocki and raycast (with 3?-1) Rayentry —» Rayterm

7.8 Summary 183

. W ir e 1

Figure 7.17: M anipulation of the CT Knee dataset (« 4 FPS).

Figure 7.18: A series of artistic deformations with the tooth dataset. The roots have been
bent around into new shapes, and also pulled away from the body of the tooth to separate
them, without invoking the splitting functionality (« 6 FPS average).

Chapter 8

Conclusions

Contents
8.1 A Volume Isosurface Renderer with Global I l lu m in a tio n 185

8.2 An Intuitive Volume Deformation Methodology and Framework . . 185

8.3 GPU-based Forward-Projection Volume D efo rm a tio n 186

8.4 A Complete, Raycasted Volume Deformation T o o l 186

8.5 Conclusions & Future W o r k 187

The objectives of this thesis, as stated in Chapter 1, are:

1. To develop a methodology and framework for the deformation of volumetric datasets
that will enable users to produce global deformations in an intuitive manner. The
framework must support the use of traditional raycasting algorithms.

2. To investigate the feasibility of forward and backward mapping approaches for vol­
ume deformation in real-time.

3. To study visual enhancements to volume rendering through the use of global illumi­
nation techniques.

4. To provide a complete tool for intuitive and interactive volume deformation.

In this final chapter, the contributions of this thesis are summarised in the context of the
thesis objectives.

Parts of this work have been published internationally:

• Parts of the work contained in Chapter 5 was presented at the Winter School of Com­
puter Graphics (WSCG) 2006, and additionally accepted for publication in the Journal
of the Winter School of Computer Graphics [WJ06].

• Parts of the work contained in Chapter 6 was presented at the Fourth International
Conference on Medical Information Visualisation (MediViz) 2007 [WJ07].

184

8.1 A Volume Isosurface Renderer with Global Illumination 185

8.1 A Volume Isosurface Renderer with Global Illumination

Chapter 4 introduced the area of GPU-based volume rendering to the reader, and later gave
an implementation of a load-balancing renderer capable of combining both volume objects
and surface-based objects in the same scene. To achieve this, an existing renderer called
Igneus [Spe] was utilised that provides an extensible object-oriented interface for adding
additional functionality.

Rays computed by Igneus are bundled together into contiguous memory blocks, and sent to
the GPU using Framebuffer Objects with a 32-bit floating-point internal format. The GPU
tests for intersections with the volume dataset (including any deformations enabled on the
data), and returns a list of intersection depths, if any. While the GPU is computing the
intersections, Igneus is able to perform any of its own computations (including intersections
with surface-based data in the scene, and lighting computations) that do not depend on the
result of the ray depths computed by the GPU. This provides an effective load-balancing
scheme in that both the CPU and GPU are being worked concurrently as much as possible
within the limitations of the ray tracer.

We have given an analysis of method when volume isosurface intersections are computed
only on the CPU, and shown that the GPU-based method provides a significant improvement
in rendering times. In addition, many example images from the system have been given,
showing the extremely high-quality renderings that are possible when combining volume
isosurfaces with an advanced ray tracing application that incorporates global illumination.

8.2 An Intuitive Volume Deformation Methodology and Frame­
work

Chapter 5 introduced a volume deformation methodology and framework called Volume
Wires; an initial study of which has been published in the Journal of the Winter School of
Computer Graphics 2006 [WJ06]. A study of existing volume deformation methods and
algorithms was given in Chapter 3, where it was shown that although much research has
been conducted in the area, a comparatively small amount of research has gone into making
intuitive and simple methodologies for character-based and globally-based deformations.

The Volume Wires methodology introduces the concept of using curve-skeletons to deform
volume objects. The user first defines the curve skeletons in object space (the object wires),
and then deforms these wires in world space (world wires) in order to deform the volume
object. Curve-skeletons are not new in themselves; and nor is their application in volume
deformation (see the works of Silver [GS99, GSOOb, SSC03]). However, our method given
in Chapter 5 defines non-reconstructive framework for such a methodology; as such, the
volume dataset integrity is retained and only referred to via backward-mapping operations.
The mapping operations used have been analytically detailed using example images from
MATLAB.

A variety of example high-quality result images have been shown which highlight that the
rendering stage for the framework can be any existing raycasting volume renderer capable

8.3 GPU-based Forward-Projection Volume Deformation 186

of evaluating a backward-mapping function 3>-1 for each sample point on the ray. The
images demonstrate not only the advantage of utilising a backward-mapping operation with
full raycasting, but also the intuitiveness of the methodology.

8.3 GPU-based Forward-Projection Volume Deformation

During development of the Volume Wires methodology and framework, it become clear
that an interactive implementation would demonstrate its effectiveness and intuitive na­
ture. Chapter 6 introduced a GPU-based forward-projection algorithm for the Volume Wires
methodology. Before implementation details were given, a detailed discussion was given on
the issues surrounding forward-projection on the GPU; particularly when the data has been
deformed prior to rendering. The issue of cracks appearing in the final image due to samples
being pulled apart was also discussed, with possible object and image-space solutions.

The rendering algorithm introduced in the chapter utilised the GPU for almost all of the
render-time computation, with the full Volume Wires forward-mapping operation being per­
formed in the vertex shader on each incoming voxel encoded as a vertex. The advantage of
using forward-projection for a volume deformation tool for the Volume Wires methodology
immediately became apparent in that the mapping field was only required to be computed
previously to the user deforming the world wires in the scene. Once the object wires were
defined, the mapping field could be computed for the object wires, and an association set up
between voxels in object space and their nearest wire offsets.

In addition, the integration of segmentation information (in the form of a mask volume)
was detailed, with the only modification required to the system being in the mapping field
generation stage.

8.4 A Complete, Raycasted Volume Deformation Tool

The final chapter of the thesis, Chapter 7, introduced a complete volume deformation tool
based on the Volume Wires methodology and framework. The goal of the tool was to pro­
vide a complete, real-time, and interactive deformation tool that computed the Volume Wires
backward-mapping function $ -1 in real-time. The ability for the backward-mapping func­
tion to be computed in real-time provides a real-time raycasting approach to volume defor­
mation.

The tool introduced in Chapter 7 provides the user with a real-time raycasted view of de­
formations achieved in the Volume Wires methodology, complete with the full deformed
internal texture of the volume dataset. The software employs a built-in segmentation tool
based on energy-minimising Snakes [KWT88]. Once the segmented subvolumes within the
volume dataset are defined for each wire, the rendering algorithm is able to forward-map
these subvolumes (defined as polygonal meshes) into world space and generate the ray en­
try/exit points. After depth-sorting, the blocks are internally raycasted.

8.5 Conclusions & Future Work 187

We have shown from the resulting images that the rendering algorithm provides very a high-
quality output, complete with full interior lighting computations (with normals forward-
mapped into world space) and 32-bit compositing. In addition, an analysis has been given
to the tool’s splitting functionality, including a discussion on the computation of normals in
areas of discontinuity.

8.5 Conclusions & Future Work

The main contribution of this thesis was to introduce the concept of Volume Wires to enable
forward and backward mapping of volume deformations. The use of such a methodology
has enabled continuous sampling of deformed space by backward mapping into object space.
The merits of such a technique can be further studied including applications to other areas
of discretely sampled object representations (for example: image morphing and point based
rendering).

Three rendering algorithms for visualising deformations in the Volume Wires framework
have been introduced. Chapter 5 introduced the Volume Wires framework, and gave an ex­
ample GPU-based raycasting rendering algorithm that evaluated an indirection volume (the
mapping field) in order to gain the necessary values for input into the backward-mapping
function <E>_1. Though the rendering algorithm was interactive, the process of generating the
mapping field each time the world wires were modified did not facilitate interactive manipu­
lation. Chapter 6 took a different approach, presenting a GPU forward-projection algorithm
that required the mapping field to only be generated for the object wires; thus facilitating
interactive manipulation during world wire manipulation. Though the interaction/rendering
was interactive, a full blending of the samples could not be achieved due to a guaranteed
image-space traversal being unfeasible to compute. Chapter 7 finally presented a method
that combined the best of both these algorithms - forward-projecting the boundaries of the
deformed model and internally raycasting these boundaries. This algorithm was shown to
provide full internal raycasting of the Volume Wires mapping, with interactive frame rates
in most cases.

Further studies for usability can be anticipated. In this work, the user is provided with a seg­
mentation tool, with examples of segmenting the visible human arm and the ability to move
it away from the body. This still relies on the semi-automatic placement and segmentation of
snakes. Usability could be increased if the segmentation can be deduced from merely where
the user is pointing. In this example, a segmentation algorithm could use the fact that the
user is pointing to the arm to segment the most likely region (this is partially implemented
by inferring the best depth by casting a ray through the data and choosing the mean depth of
all non-empty data). Techniques such as the magnetostatic active contour method [XM07]
may allow such a method.

As the line between CPU and GPU programming becomes less clear over time, new meth­
ods for volume rendering and volume deformation will become viable for GPU implemen­
tations. The work contained within this thesis uses the state-of-the-art hardware available at
the time, but it is clear that the field will evolve significantly with the hardware capabilities.
In particular, the work contained within Chapter 7 has much scope for further development

8.5 Conclusions & Future Work 188

as the harsh restrictions placed on GPU developers are lifted; paving the way for gradually
more flexible algorithms running at higher speeds.

We are confident that this thesis has provided a firm foundation for future researchers wish­
ing to develop volume rendering and deformation techniques on graphics hardware. It is an
immensely rewarding and challenging field to be a part of.

Appendix A

Volume Wires XML Schema

189

Li
sti

ng

A
.l:

 V
ol

um
e

W
ire

s
St

ate

XM
L

Sc
he

m
a

190

G G G0> CU 0)
A C O' CO\ (1) <D (1)
E p p . pC C C

A A A A A p\ \ N \ N .
E E E e E E
1—t i-H 1—i (—1 1—1 tu
to to tO to E
E a E E E to

-H •H •H •H •H c
U 0 0 O O d)
(U d) d) <D d) A rH

n t j TS T) T> E •H
•• d> pH
to to to to to E E
X X X X X P II

E E E E E A t—1 d>
II II II II II e 0 E
<U d) d) <U 0) d) > to
CL a , a cl CL P p c
>1 Ph >< >1 fO <U
P p p A p P P c r tu

E CO G p
E E E X E £ to to p
X >H N tu X d> H A A X!E E E p B E G E d> 0) •H
II II II G II II -H II CL O g

A CL) <0 CU tu OJ d) s tu >1 c p
E E E E > E E <u E H 0) p
P m to to tu to to e to X p to
c c G c x c c p c d) cr

•rH to i-H i-H 0) to
O p P p A A c p p A A 0 p CL to X
Oli A A c C c d) d) co A A c G d) d) > A A c E V
E <U a> d) CU <D U a E d> CU d> <U O cl CU d> tu O to
II a 0 E E E c >1 II CL O E E C > 1 li CL O E O X
<U c a> <U CU d) H d) C d) <U dJ H (u >1 C d> V
E H <U rH <—i i-H p X E t-l d) iH rH P X E H <U i-H to
(X) X p tu <U tu c r d> to X P d> tu c r d) tO X P tu X
c <U c r (U •—1 A c <U c r tu rH A c CU c r V

i-H tu to to to to & P r-H tu to to to a P 1--1 <u to
p a to X X X £ G p a , to X X E c p CL to X
c E • • V V V to 0 d) G E V V to 0 tu c E • • V
tu 0 to X O E <U O to X 0 E d) O to
E a X N d) E O X \ • « d) E O X
(D V V to r—1 tu V V to r-H d) V

1—| to X tU rH to X <U 1—1 to
<U X N d) X \ tu X
• t V V to V V to V
to X to X to
X \ X \ X
V V V V V

tO p P P
•• -H -H *H
co w to to
X o o o
- CL CL CL

tu 11 "1 "ii
CL <U 0) <U
>1 a a a0*̂

P p p

E E C
X >H N
tu tu tu
N N N

*H *H - Hm co w
<0 tO 10
p p p
tO ro (0
Q Q Q

<U <U
E E m (0
c c

p p
c c
tu tu
E E
<U <U1—I I—I
tu tu

w to
x x

0) A tu
E E G
to to •H
c CU s

G E
p A A •H II
c tu tu <u
d> 0 CL E
E c >1 "il to
0) tu H tu c

i-H p X E
d) cr <U to p

tu I- 1 A c c
to to CL P <u
X E G p E
V (0 O <U c <u

X O E tu rH
\ <U E tu
V to i-H tu

X tu rH to
<u X

V to V
X to

X

Po
in
t"

ma
xO

cc
ur

s=

191

do O
g
<0 Pc c

do
p g

A A c do
do do do 1—1Oh O g <10c do
H do rH co
X 0 do X
do & V

rH do to
a CO X
g Vo COo X

V

a)
g
<0
c

p
c 00
g 0)i—I CO d) '—I

A c
A \ p

\ E o
E P A xo
P do E G
do cr> TJ p

do do E
do p TJ II
p c C to
c M P p
M o p

CO XI to
CO X a o
X E p o

E II E X
II d) II to
do a co g
a >i p
>i 4-> P E
4-0 o X

E co do
E <10 o p
p N X p
c -H to d)

A p co g >
S o d) 00
4-0 CJ c E -X
CO X tO do to

•H to 1—1 co c
j s Pj ■H CO
do £ E i-H E
o II II co II

•H d) <10 E 4H
r—1 g g II 00
C/0 td td do p
E c c g
II Id p
do do do c c A
g p p 00 p
to P p p g c
c xo X! c do 0)

-H •H do rH g
4-> p P g oo d)
c 4-> P do t—1
do P P rH CO do
g (0 <0 do X
d) • • • • V to

rH co to to X
do X X X

V V V V
X CO

\ X
V V

A A
<10 CDO d,
C >ia) h
P Xtr a)
(U -H A
B B, *J
•• g c
to o oo
x to g\ •• a)
V tO rH

A
P
C A A
a> <u cu
g o ac

oo
p

oo >iH
X

\ t r dJV (0 »
X

A
co a p•• g c
CO O
X o

oo
g o

V 10 rH

V CO
X

Bibliography

[3ds]

[AF97]

[AMBJ02]

[AMY098]

[App68]

[ARC05]

[ASK94]

[Bar84]

[Bar86]

[Bar92]

[BB03]

Autodesk 3d studio max. h t t p : / / www. a u t o d e s k . com/3dsmax.

Mohamed N. Ahmed and Aly A. Farag. Two-stage neural network for vol­
ume segmentation of medical images. Pattern Recogn. Lett., 18(11-13): 1143—
1151,1997.

K. Adbel-Malek, D. Blackmore, and K. Joy. Swept volumes: Foundations,
perspectives, and applications. In International Journal o f Shape Modeling,
2002.

Karim Abdel-Malek, Ham-Jou Yeh, and Saeb Othman. Swept volumes: void
and boundary identification. Computer-Aided Design, 30(13): 1009-1018,
1998.

Arthur Appel. Some techniques for shading machine renderings of solids. In
AFIPS 1968 Spring Joint Computer Conf, volume 32, pages 37—45, 1968.

Alfie Abdul-Rahman and Min Chen. Spectral volume rendering based on the
kubelka-munk theory. Computer Graphics Forum, 24:413—4-22, 2005.

R. S. Avila, L. M. Sobierajski, and A. E. Kaufman. Visualizing nerve cells.
14(5): 11-13, September 1994.

Alan H. Barr. Global and local deformations of solid primitives. In SIG-
GRAPH ’84: Proceedings o f the 11th annual conference on Computer graph­
ics and interactive techniques, pages 21-30, New York, NY, USA, 1984.
ACM Press.

Alan H. Barr. Ray tracing deformed surfaces. In S1GGRAPH ’86: Proceed­
ings o f the 13th annual conference on Computer graphics and interactive
techniques, pages 287-296, New York, NY, USA, 1986. ACM Press.

Ronen Barzel. Physically-Based Modeling for Computer Graphics. Aca­
demic Press, Inc., 1992.

L. Ballerini and L. Bocchi. Bone segmentation using multiple communicating
snakes. In M. Sonka and J. M. Fitzpatrick, editors, Medical Imaging 2003:
Image Processing. Edited by Sonka, Milan; Fitzpatrick, J. Michael. Proceed­
ings o f the SPIE, Volume 5032, pp. 1621-1628 (2003)., pages 1621-1628,
May 2003.

192

BIBLIOGRAPHY 193

[BFGS03]

[BFH+04]

[BG06]

[BGB+06]

[BHZK05]

[BK03]

[Blo85]

[Blo90]

[Blu67]

[BLWJ97]

[BM99]

[BNC96]

[BPS96]

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schroder. Sparse matrix
solvers on the gpu: conjugate gradients and multigrid. ACM Trans. Graph.,
22(3):917-924, 2003.

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,
Mike Houston, and Pat Hanrahan. Brook for gpus: stream computing on
graphics hardware. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages
777-786, New York, NY, USA, 2004. ACM Press.

Stefan Bruckner and Meister Eduard Groller. Exploded views for vol­
ume data. IEEE Transactions on Visualization and Computer Graphics,
12(5): 1077-1084, 2006.

Kevin M. Beason, Josh Grant, David C. Banks, Brad Futch, and M. Yousuff
Hussaini. Pre-computed illumination for isosurfaces. In Visualization and
Data Analysis 2006 (SPIE Vol. 6060), pages 6060B: 1—11, 2006.

Mario Botsch, Alexander Homung, Matthias Zwicker, and Leif Kobbelt.
High-quality surface splatting on today’s GPUs. In Proceedings o f the Eu­
rographics Symposium on Point-Based Graphics, pages 17-24, June 2005.

Mario Botsch and Leif Kobbelt. High-quality point-based rendering on mod­
em GPUs. In PG ’03: Proceedings o f the 11th Pacific Conference on Com­
puter Graphics and Applications, pages 335-343. IEEE Computer Society,
2003.

Jules Bloomenthal. Modeling the mighty maple. In SIGGRAPH ’85: Pro­
ceedings o f the 12th annual conference on Computer graphics and interactive
techniques, pages 305-311, New York, NY, USA, 1985. ACM Press.

Jules Bloomenthal. Calculation of reference frames along a space curve.
In Andrew S. Glassner, editor, Graphics Gems, chapter 10, pages 567-571.
Academic Press Professional, 1990.

H. Blum. A Transformation for Extracting New Descriptors of Shape. In
Proceedings o f the Symposium on Models for the Perception o f Speech and
Visual Form, pages 362-380, 1967.

D. Blackmore, M. C. Leu, L. P. Wang, and H. Jiang. Swept volume: a retro­
spective and prospective view. Neural, Parallel Sci. Comput., 5(l-2):81—102,
1997.

David E. Breen and Sean Mauch. Generating shaded offset surfaces with
distance, closest-point and color volumes. In Proceedings o f the International
Workshop on Volume Graphics, pages 307-320, March 1999.

Morten Bro-Nielsen and Stephane Cotin. Real-time volumetric deformable
models for surgery simulation using finite elements and condensation. Com­
puter Graphics Forum, 15(3):57-66, 1996.

Chandrajit L. Bajaj, Valerio Pascucci, and Daniel R. Schikore. Fast isocon-
touring for improved interactivity. In W S ’96: Proceedings o f the 1996 sym­

BIBLIOGRAPHY 194

[BSKS05]

[Car84]

[Cat75]

[CC05]

[CCF94]

[CCS06]

[CDAOO]

[CE98]

[CH02]

[CHH02]

[CHH03]

posium on Volume visualization, pages 39-ff., Piscataway, NJ, USA, 1996.
IEEE Press.

A. Barsi, L. Szirmay-Kalos, and G. Szijarto. Stochastic glossy global illumi­
nation on the GPU. In SCCG ’05: Proceedings o f the 21st spring conference
on Computer graphics, pages 187-193, New York, NY, USA, 2005. ACM
Press.

Loren Carpenter. The A -buffer, an antialiased hidden surface method. In
SIGGRAPH ’84: Proceedings o f the 11th annual conference on Computer
graphics and interactive techniques, pages 103-108, New York, NY, USA,
1984. ACM Press.

Edwin E. Catmull. Computer display of curved surfaces. In Proceedings of
the IEEE Conference on Computer Graphics, Pattern Recognition, and Data
Structure, pages 11-17, May 1975.

Steven P. Callahan and Joao L. D. Comba. Hardware-assisted visibility sort­
ing for unstructured volume rendering. IEEE Transactions on Visualization
and Computer Graphics, 11 (3):285—295, 2005. Student Member-Milan Ikits
and Member-Claudio T. Silva.

Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In W S ’94:
Proceedings o f the 1994 symposium on Volume visualization, pages 91-98,
New York, NY, USA, 1994. ACM Press.

Min Chen, Carlos Correa, and Deborah Silver. Feature aligned volume manip­
ulation for illustration and visualization. IEEE Transactions on Visualization
and Computer Graphics, 12(5): 1069-1076, 2006.

Stephane Cotin, Herve Delingette, and Nicholas Ayache. A hybrid elastic
model for real-time cutting, deformations, and force feedback for surgery
training and simulation. In The Visual Computer, volume 16(8), pages 437-
452. Springer, 2000.

Jegathese CR and Prakash EC. Goal-directed deformation of the visible hu­
man. In Proceedings o f the Visible Human Project Conference, Maryland,
USA, October 1998.

Liviu Coconu and Hans-Christian Hege. Hardware-accelerated point-based
rendering of complex scenes. In Simon Gibson and Paul Debevec, editors,
Proceedings o f the 13th Eurographics Workshop on Rendering, pages 43-52,
Pisa, Italy, June 2002.

Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In HWWS
’02: Proceedings o f the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 37-46, Aire-la-Ville, Switzerland, Switzerland,
2002. Eurographics Association.

Nathan A. Carr, Jesse D. Hall, and John C. Hart. GPU algorithms for ra-
diosity and subsurface scattering. In HWWS ’03: Proceedings o f the ACM

BIBLIOGRAPHY 195

[CHP89]

[CHRU85]

[CIJ+07]

[CLW04]

[CN94]

[Coo84]

[Coq90]

[Cor03]

[CRZP04]

[CS94]

[CSC03]

[CSM05]

[CSW+03]

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 51-
59, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered construction for
deformable animated characters. In SIGGRAPH ’89: Proceedings o f the 16th
annual conference on Computer graphics and interactive techniques, pages
243-252, New York, NY, USA, 1989. ACM Press.

Lih-Shyang Chen, Gabor T. Herman, R. Anthony Reynolds, and Jayaram K.
Udupa. Surface shading in the Cuberille environment. 5(12):33-43, Decem­
ber 1985.

M. Chen, S. Islam, M. W. Jones, P.-Y. Shen, D. Silver, S. J. Walton, and P. J.
Willis. Manipulating, deforming and animating sampled object representa­
tions. Computer Graphics Forum, 26(4): 824-852, December 2007. Initially
presented in Eurographics State of the Art Report in 2005.

J. Cates, A. Lefohn, and R. Whitaker. Gist: an interactive, gpu-based level set
segmentation tool for 3d medical images. Technical Report UUCS-04-007,
University of Utah School of Computing, 2004.

Timothy J. Cullip and Ulrich Neumann. Accelerating volume reconstruction
with 3d texture hardware. Technical report, Chapel Hill, NC, USA, 1994.

Robert L. Cook. Shade trees. In SIGGRAPH ’84: Proceedings o f the 11th
annual conference on Computer graphics and interactive techniques, pages
223-231, New York, NY, USA, 1984. ACM Press.

Sabine Coquillart. Extended free-form deformation: a sculpturing tool for
3d geometric modeling. In SIGGRAPH ’90: Proceedings o f the 17th annual
conference on Computer graphics and interactive techniques, pages 187-196,
New York, NY, USA, 1990. ACM Press.

NVIDIA Corporation. Using vertex buffer objects, 2003. Whitepaper.

Wei Chen, Liu Ren, Matthias Zwicker, and Hanspeter Pfister. Hardware-
accelerated adaptive EWA volume splatting. In Proceedings o f IEEE Visual­
ization 2004, October 2004.

Daniel Cohen and Zvi Sheffer. Proximity clouds-an acceleration technique
for 3d grid traversal. Vis. Comput., 11 (1):27—38, 1994.

Carlos D. Correa, Deborah Silver, and Min Chen. Discontinuous Displace­
ment Mapping for Volume Graphics. In Proc. Volume Graphics 2003, pages
9-16, 2003.

Nicu D. Cornea, Deborah Silver, and Patrick Min. Curve-skeleton applica­
tions. In IEEE Visualization, pages 95-102, 2005.

M. Chen, D. Silver, A. S. Winter, V. Singh, and N. Cornea. Spatial transfer
functions - a unified approach to specifying deformation in volume modeling
and animation. In Proc. Volume Graphics 2003, pages 35-44, Tokyo, Japan,
2003.

BIBLIOGRAPHY 196

[CTOO]

[CUD]

[CWRT02]

[Dam71]

[Dan 80]

[DCH88]

[DDCB01]

[Des03]

[DKOO]

[DKC+98]

[EP091]

[EYSK94]

[FKU77]

Min Chen and John V. Tucker. Constructive volume geometry. In David
Duke, Sabine Coquillart, and Toby Howard, editors, Computer Graphics Fo­
rum, volume 19(4), pages 281-293. Eurographics Association, 2000.

NVIDIA developer : CUDA. h t t p : / / d e v e l o p e r . n v i d i a . c o m /

o b j e c t / c u d a . h t m l .

Min Chen, Andrew S. Winter, David Rodgman, and Steven M. F. Treavett.
Enriching volume modelling with scalar fields. In F. Post, G.-P. Bonneau, and
G. Nielson, editors, Data Visualization: The State o f The Art, pages 345-362.
Kluwer Academic Press, 2002.

R. Damadian. Tumor detection by nuclear magnetic resonance. Science,
171:1151-1153, 1971.

Per-Erik Danielsson. Euclidean distance mapping. Computer Graphics and
Image Processing, 14:227-248, 1980.

Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering.
In SIGGRAPH ’88: Proceedings o f the 15th annual conference on Com­
puter graphics and interactive techniques, pages 65-74, New York, NY, USA,
1988. ACM Press.

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. Dy­
namic real-time deformations using space and time adaptive sampling. In
Computer Graphics Proceedings, Annual Conference Series. ACM Press /
ACM SIGGRAPH, Aug 2001. Proceeding.

Foraker Design. Usability first, usability glossary, 2003. h t t p : / / w w w .

i n f o v i s - w i k i . n e t / i n d e x . p h p / F o c u s - p l u s - C o n t e x t .

Frank DachillelX and Arie Kaufman. Gl-cube: an architecture for volumetric
global illumination and rendering. In HWWS ’00: Proceedings o f the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 119—
128, New York, NY, USA, 2000. ACM Press.

Frank Dachille, Kevin Kreeger, Baoquan Chen, Ingmar Bitter, and Arie Kauf­
man. High-quality volume rendering using texture mapping hardware. In
HWWS ’98: Proceedings o f the ACM SIGGRAPH/EUROGRAPHICS work­
shop on Graphics hardware, pages 69-ff., New York, NY, USA, 1998. ACM
Press.

A. B. Ekoule, F. C. Peyrin, and C. L. Odet. A triangulation algorithm from
arbitrary shaped multiple planar contours. ACM Trans. Graph., 10(2): 182—
199, 1991.

D. S. Ebert, R. Yagel, J. Scott, and Y. Kurzion. Volume rendering methods
for computational fluid dynamics visualization. In Visualization’94, pages
232-239, 1994.

H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface reconstruction
from planar contours. Commun. ACM, 20(10):693-702, 1977.

BIBLIOGRAPHY 197

[FRZ+04]

[FvDFH96]

[Gag97]

[GEL]

[GFG04]

[GH91]

[GHF90]

[Gib97]

[GK96]

[GKHS98]

[GLM04]

[GM05]

Daniel Freedman, Richard J. Radke, Tao Zhang, Yongwon Jeong, and George
T. Y. Chen. Model-based multi-object segmentation via distribution matching.
In CVPRW ’04: Proceedings o f the 2004 Conference on Computer Vision and
Pattern Recognition Workshop (CVPRW’04) Volume 1, page 11, Washington,
DC, USA, 2004. IEEE Computer Society.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics — Principles and Practice. The Systems Programming
Series. Addison-Wesley, second edition in c edition, 1996.

Nikhil Gagvani. Skeletons and volume thinning in visualization. Master’s
thesis, Graduate School, Rutgers, The State University of New Jersey, 1997.

Ge logiq ultrasound scanning, h t t p : / / w w w . g e h e a l t h c a r e . c o m /
u s e n / u l t r a s o u n d / r e i m a g i n e d / u s r i _ v o l u m e _ l a n d i n g . h tm l .

Philipp Gerasimov, Randima Fernando, and Simon Green. Us­
ing Vertex Textures. NVIDIA Corp., 2004. Whitepaper,
ftp://download.nvidia.com/developer/Papers/.

Tinsley A. Galyean and John F. Hughes. Sculpting: An interactive volumetric
modeling technique. In Computer Graphics (Proceedings o f SIGGRAPH 91),
volume 25, pages 267-274, July 1991.

C. Giertsen, A. Halvorsen, and P. R. Flood. Graph-directed modelling from
serial sections. Vis. Comput., 6(5):284-290, 1990.

S. Gibson. 3D chainmail: a fast algorithm for deforming volumetric objects.
In Proc. 1997 Symposium on Interactive 3D Graphics, pages 149-154, April
1997.

Allen Van Gelder and Kwansik Kim. Direct volume rendering with shading
via three-dimensional textures. In W S ’96: Proceedings o f the 1996 sym­
posium on Volume visualization, pages 23-ff., Piscataway, NJ, USA, 1996.
IEEE Press.

Nikhil Gagvani, D. Kenchammana-Hosekote, and D. Silver. Volume anima­
tion using the skeleton tree. In IEEE Symposium on Volume Visualization,
pages 47-53, 1998.

Naga K. Govindaraju, Ming Lin, and Dinesh Manocha. Vis-sort: Fast vis­
ibility ordering of 3-d geometric primitives. Technical report, University of
North Carolina at Chapel Hill, 2004.

James Gain and Patrick Marais. Warp sculpting. IEEE Transactions on Vi­
sualization and Computer Graphics, 11(2):217—227, 2005. Member-James
Gain and Member-Patrick Marais.

[GMA+04] V. Grau, A.U.J. Mewes, M. Alcaniz, R. Kikinis, and S.K. Warfield. Improved
watershed transform for medical image segmentation using prior information.
23(4):447-458, April 2004.

BIBLIOGRAPHY 198

[GS99]

[GSOOa]

[GSOOb]

[GSOl]

[GW05]

[Har]

[Har05]

[HB86]

[HBH03]

[HE99]

[HEOO]

[HHCLOl]

[Hou73]

[HP03]

Nikhil Gagvani and Deborah Silver. Parameter-controlled volume thinning.
CVGIP: Graph. Models Image Process., 61 (3): 149—164, 1999.

N. Gagvani and D. Silver. Animating the visible human dataset. In NLM
Visible Human Conference, October 2000.

N. Gagvani and D. Silver. Realistic volume animation with alias. In Min
Chen, editor, Volume Graphics, pages 253-263. Springer, 2000.

Nikhil Gagvani and Deborah Silver. Animating volumetric models. Graph.
Models, 63(6):443—458, 2001.

Joachim Georgii and Rudiger Westermann. Mass-spring systems on the gpu.
Simulation Modelling Practice and Theory, 13:693-702, 2005.

Aaron Harwood. Parallel algorithms, h t t p : / / www. c s . m u . o z . a u /
4 9 8 / n o t e s / n o d e 4 0 . h tml .

Mark Harris. Mapping computational concepts to GPUs. In Randima
Fernando, editor, GPU Gems 2 : Programming Techniques for High-
Performance Graphics and General Purpose Computation, chapter 31, pages
493-508. Addison-Wesley, 2005.

K.H. Hohne and R. Bemstien. Shading 3D images from CT using grey level
gradients. IEEE Transactions on Medical Imaging, 5(1):45—47, March 1986.

Markus Hadwiger, Christoph Berger, and Helwig Hauser. High-quality two-
level volume rendering of segmented data sets on consumer graphics hard­
ware. In VIS ’03: Proceedings o f the 14th IEEE Visualization 2003 (VIS’03),
page 40, Washington, DC, USA, 2003. IEEE Computer Society.

Matthias Hopf and Thomas Ertl. Accelerating 3d convolution using graphics
hardware (case study). In VIS ’99: Proceedings o f the conference on Visual­
ization ’99, pages 471-474, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

M. Hopf and T. Ertl. Accelerating Morphological Analysis with Graphics
Hardware. In Workshop on Vision, Modelling, and Visualization VMV ’00,
pages 337-345. infix, 2000.

Taosong He, Lichan Hong, Dongqing Chen, and Zhengrong Liang. Reliable
path for virtual endoscopy: Ensuring complete examination of human organs.
IEEE Transactions on Visualization and Computer Graphics, 7(4):333-342,
2001.

Godfrey N. Hounsfield. Computerized transverse axial scanning (tomogra­
phy): Part 1. description of system. British Journal o f Radiology, 46:1016-
1022, 1973.

Horst Hahn and Heintz-Otto Peitgen. Iwt - interactive watershed transform:
A hierarchical method for efficient interactive and automated segmentation of
multidimensional grayscale images. Proc. Medical Imaging,, Feb 2003.

BIBLIOGRAPHY 199

[HQK05]

[IDSC04]

[IH]

[imd]

[ISC07]

[Isl07]

[JB02]

[JBS06]

[JC94a]

[JC94b]

[Jen04]

[JH99]

[JMLH01]

[Jon95]

Wei Hong, Feng Qiu, and Arie Kaufman. GPU-based object-order ray-casting
for large datasets. In Eduard Groller and Issei Fujishiro, editors, Eurographic­
s/IEEE VGTC Workshop on Volume Graphics, pages 177-185, Stony Brook,
NY, 2005. Eurographics Association.

Shoukat Islam, Swapnil Dipankar, Deborah Silver, and Min Chen. Tempo­
ral and spatial splitting of scalar fields in volume graphics. In Proc. IEEE
VolVis2004, pages 87-94. IEEE, October 2004.

Milan Ikits and Charles Hansen. A focus and context interface for interactive
volume rendering. Manuscript.

IMDB. http://www.imdb.com/.

Shoukat Islam, Deborah Silver, and Min Chen. Volume splitting and its
applications. IEEE Transactions on Visualization and Computer Graphics,
13(2): 193-203, 2007.

Shoukat Islam. Field-Based Volume Deformation. PhD thesis, Swansea Uni­
versity, 2007.

Henrik Wann Jensen and Juan Buhler. A rapid hierarchical rendering tech­
nique for translucent materials. In SIGGRAPH ’02: Proceedings o f the 29th
annual conference on Computer graphics and interactive techniques, pages
576-581, New York, NY, USA, 2002. ACM Press.

Mark W. Jones, Andreas Baerentzen, and Milos Sramek. Discrete 3D distance
fields: Techniques and applications. IEEE Transactions on Visualization and
Computer Graphics, 12(4):to appear, July/August 2006.

M. W. Jones and M. Chen. A new approach to the construction of surfaces
from contour data. Computer Graphics Forum, 13(3):75—84, 1994.

Mark. W. Jones and Min Chen. Fast cutting operations on three dimensional
volume datasets. In M. Gobel, H. Muller, and B. Urban, editors, Visualization
in Scientific Computing, pages 1-8. Springer-Verlag Wien, May 1994.

Henrik Wann Jensen. A practical guide to global illumination using ray trac­
ing and photon mapping. In SIGRAPH ’04: Proceedings o f the conference on
SIGGRAPH 2004 course notes, page 20, New York, NY, USA, 2004. ACM
Press.

P. Jaquays and B. Hook. Quake 3: Arena shader manual, revision 10. De­
cember 1999.

Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan.
A practical model for subsurface light transport. In SIGGRAPH ’01: Pro­
ceedings o f the 28th annual conference on Computer graphics and interactive
techniques, pages 511-518, New York, NY, USA, 2001. ACM Press.

Mark W. Jones. 3D distance from a point to a triangle. Technical Report
CSR-5-95, Department of Computer Science, University of Wales, Swansea,
February 1995.

BIBLIOGRAPHY 200

[Jon96]

[Jon97]

[JonOl]

[Jon04]

[Kaj82]

[Kau87]

[KB 04]

[KCY93]

[KEK03]

[KH84]

[KK99]

[KPH+03]

[KW03]

[KWPH06]

Mark W. Jones. The production of volume data from triangular meshes using
voxelisation. Computer Graphics Forum, 15(5):311—318, 1996.

M. W. Jones. An efficient shadow detection algorithm and the direct surface
rendering volume visualisation model. In Proc. 15th Ann. Conf. o f Euro­
graphics (UK Chapter), pages 237-244, 1997.

Mark W. Jones. Facial reconstruction using volumetric data. In Vision, Mod­
eling, and Visualization, pages 135-142, 2001.

Mark W. Jones. Distance field compression. Journal ofWSCG, 12(2): 199—
204, 2004.

James T. Kajiya. Ray tracing parametric patches. In SIGGRAPH ’82: Pro­
ceedings o f the 9th annual conference on Computer graphics and interactive
techniques, pages 245-254, New York, NY, USA, 1982. ACM Press.

Arie Kaufman. Efficient algorithms for 3d scan-conversion of parametric
curves, surfaces, and volumes. In SIGGRAPH ’87: Proceedings o f the 14th
annual conference on Computer graphics and interactive techniques, pages
171-179, New York, NY, USA, 1987. ACM Press.

Leif Kobbelt and Mario Botsch. A survey of point-based techniques in com­
puter graphics. Computers & Graphics, 28(6):801-814, 2004.

Arie Kaufman, Daniel Cohen, and Roni Yagel. Volume graphics. Computer,
26(7):51-64, July 1993.

Yan Kang, Klaus Engelke, and Willi A. Kalender. A new accurate and precise
3d segmentation method for skeletal structures in volumetric ct data. IEEE
Trans. Med. Imaging, 22(5):586-598, 2003.

James T. Kajiya and Brian P Von Herzen. Ray tracing volume densities. In
SIGGRAPH ’84: Proceedings o f the 11th annual conference on Computer
graphics and interactive techniques, pages 165-174, New York, NY, USA,
1984. ACM Press.

Kevin Kreeger and Arie Kaufman. Interactive volume segmentation with the
pavlov architecture. In PVGS ’99: Proceedings o f the 1999 IEEE symposium
on Parallel visualization and graphics, pages 61-68, New York, NY, USA,
1999. ACM Press.

J. Kniss, S. Premoze, C. Hansen, P. Shirley, and A. McPherson. A model
for volume lighting and modeling. IEEE Transactions on Visualization and
Computer Graphics, 9(2): 150-162, 2003.

J. Kruger and R. Westermann. Acceleration techniques for GPU-based vol­
ume rendering. In VIS ’03: Proceedings o f the 14th IEEE Visualization 2003
(VIS’03), page 38, Washington, DC, USA, 2003. IEEE Computer Society.

A. Knoll, I. Wald, S.G. Parker, and C.D. Hansen. Interactive isosurface ray
tracing of large octree volumes. SCI Institute Technical Report UUSCI-2006-
026, University of Utah, 2006.

BIBLIOGRAPHY 201

[KWT88]

[KWW01]

[KY95]

[KY97]

[Las87]

[LC87]

[LE98]

[Lev88]

[Lev90a]

[Lev90b]

[Lib]

[Lif]

[LJT01]

[LK04]

[LKHW04]

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
International Journal o f Computer Vision, 1:321-331, 1988.

Davis King, Craig M. Wittenbrink, and Hans J. Wolters. An architecture for
interactive tetrahedral volume rendering. In Klaus Mueller and Arie E. Kauf­
man, editors, Volume Graphics, volume Proceedings of the Joint IEEE TCVG
and Eurographics Workshop on Volume Graphics in Stony Brook, New York,
USA, 2001.

Yair Kurzion and Roni Yagel. Space deformation using ray deflectors. In
Rendering Techniques ’95 (Proceedings o f the Sixth Eurographics Workshop
on Rendering), pages 21-30, New York, 1995. Springer-Verlag.

Yair Kurzion and Roni Yagel. Interactive space deformation with hardware-
assisted rendering. IEEE Comput. Graph. Appl., 17(5):66-77, 1997.

John Lasseter. Principles of traditional animation applied to 3d computer
animation. In SIGGRAPH ’87: Proceedings o f the 14th annual conference on
Computer graphics and interactive techniques, pages 35-44, New York, NY,
USA, 1987. ACM Press.

W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. Computer Graphics, 21(4): 163-169, July 1987.

Christoph Lürig and Thomas Ertl. Hierarchical volume analysis and
visualization based on morphological operators. In VIS ’98: Proceedings of
the conference on Visualization ’98, pages 335-341, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics
& Applications, 8(3):29-37, May 1988.

Marc Levoy. Efficient ray tracing of volume data. ACM Trans. Graph.,
9(3):245-261, 1990.

Marc Levoy. Volume rendering by adaptive refinement. Vis. Comput., 6(1):2-
7, 1990.

Libsh. http://libsh.org/.

Lifescan. http://www.lifescanuk.org/.

Zheng Lin, Jesse S. Jin, and Hugues Talbot. Unseeded region growing for 3d
image segmentation. In Peter Eades and Jesse Jin, editors, Selected papers
from Pan-Sydney Area Workshop on Visual Information Processing, volume 2
of CRPIT, pages 31-37, Sydney, Australia, 2001. ACS.

Sarang Lakare and Arie Kaufman. Light weight space leaping using ray co­
herence. In VIS ’04: Proceedings o f the conference on Visualization ’04,
pages 19-26, Washington, DC, USA, 2004. IEEE Computer Society.

Aaron E. Lefohn, Joe Michael Kniss, Charles D. Hansen, and Ross T.
Whitaker. A streaming narrow-band algorithm: Interactive computation and

BIBLIOGRAPHY 202

[LW85]

[Max95]

[May]

[MBL+91]

[MDHK01]

[ME05]

[Mey94]

[MGAK03]

[MHC90]

[MJ05]

[MJC02]

[MKGOO]

[MN88]

visualization of level sets. IEEE Trans. Vis. Comput. Graph., 10(4):422—433,
2004.

M. Levoy and T. Whitted. The use of points as display primitives. Technical
Report TR 85-022, The University of North Carolina at Chapel Hill, Depart­
ment of Computer Science, January 1985.

N. Max. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 1(2):99-108, 1995.

Autodesk maya. h t t p : / /www. a u t o d e s k . com/maya.

James V. Miller, David E. Breen, William E. Lorensen, Robert M. O’Bara,
and Michael J. Wozny. Geometrically deformed models: a method for ex­
tracting closed geometric models form volume data. In SIGGRAPH ’91: Pro­
ceedings o f the 18th annual conference on Computer graphics and interactive
techniques, pages 217-226, New York, NY, USA, 1991. ACM Press.

Michael MeiBner, Mike Doggett, Johannes Hirche, and Urs Kanus. Efficient
space leaping for ray casting architectures. In Volume Graphics, Workshop
on Volume Graphics, pages 149-161, Stony Brook, NY, USA, June 2001.

Benjamin Mora and David S. Ebert. Low-complexity maximum intensity
projection. ACM Trans. Graph., 24(4): 1392-1416, 2005.

D. Meyers. Reconstruction of surfaces from planar contours, 1994.

William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard.
Cg: a system for programming graphics hardware in a c-like language. ACM
Trans. Graph., 22(3):896-907, 2003.

Nelson Max, Pat Hanrahan, and Roger Crawfis. Area and volume coherence
for efficient visualization of 3d scalar functions. In W S ’90: Proceedings
o f the 1990 workshop on Volume visualization, pages 27-33, New York, NY,
USA, 1990. ACM Press.

C. M. Miller and M. W. Jones. Texturing and Hypertexturing of Volumetric
Objects. In Proceedings o f the International Workshop on Volume Graphics
’05, pages 117-125, 2005.

Benjamin Mora, Jean Pierre Jessel, and René Caubet. A new object-
order ray-casting algorithm. In VIS ’02: Proceedings o f the conference on
Visualization ’02, pages 203-210, Washington, DC, USA, 2002. IEEE Com­
puter Society.

Lukas Mroz, Andreas Konig, and Eduard Groller. Maximum intensity pro­
jection at warp speed. Computers and Graphics, 24(3):343-352, 2000.

Don P. Mitchell and Arun N. Netravali. Reconstruction filters in computer-
graphics. In SIGGRAPH ’88: Proceedings o f the 15th annual conference on
Computer graphics and interactive techniques, pages 221-228, New York,
NY, USA, 1988. ACM Press.

BIBLIOGRAPHY 203

[MTB03]

[Mul92]

[MV98]

[MY96]

[NadOO]

[NM05]

[NNS72]

[NT98]

[NVI05]

[obg]

[OpeOl]

[Owe05]

[PBMH02]

Michael J. McGuffin, Liviu Tancau, and Ravin Balakrishnan. Using defor­
mations for browsing volumetric data. In Proceedings o f IEEE Visualization
(VIS) 2003, pages 401^4-08, October 2003.

James C. Mullikin. The vector distance transform in two and three dimen­
sions. CVGIP: Graph. Models Image Process., 54(6):526-535, 1992.

J. Maintz and M. Viergever. A survey of medical image registration. Medical
Image Analysis, 2(1): 1—36, 1998.

Klaus Mueller and Roni Yagel. Fast perspective volume rendering with splat-
ting by utilizing a ray-driven approach. In VIS ’96: Proceedings o f the 7th
conference on Visualization '96, pages 65-ff., Los Alamitos, CA, USA, 1996.
IEEE Computer Society Press.

David R. Nadeau. Volume scene graphs. In W S ’00: Proceedings o f the
2000 IEEE symposium on Volume visualization, pages 49-56, New York, NY,
USA, 2000. ACM Press.

Neophytos Neophytou and Klaus Mueller. Gpu accelerated image aligned
splatting. In Arie E. Kaufman, Klaus Mueller, Eduard Grdller, Dieter W.
Fellner, Torsten Moller, and Stephen N. Spencer, editors, Volume Graphics,
pages 197-205, 2005.

M. E. Newell, R. G. Newell, and T. L. Sancha. A solution to the hidden
surface problem. In ACM’72: Proceedings o f the ACM annual conference,
pages 443-450, New York, NY, USA, 1972. ACM Press.

L. P. Nedel and D. Thalmann. Real time muscle deformations using mass-
spring systems. In CGI ’98: Proceedings o f the Computer Graphics Interna­
tional 1998, page 156, Washington, DC, USA, 1998. IEEE Computer Society.

NVIDIA Corp. NVIDIA GPU Programming Guide (version 2.4.0), 2005.
http://developer.nvidia.com/object/gpu_programming_guide.html.

The history of ultrasound: A collection of recollections, articles, interviews
and images, h t t p : / /www. obgyn . n e t / u l t r a s o u n d / ? p a g e = / u s /
n e w s .a r t i c l e s / u l t r a s ound_hi s t o r y / a s p - h i s t o r y - t o e .

OpenGL Architecture Review Board. NV.pointsprite extension specification,
2001. http://www.opengl.org/registry/specs/NV/point_sprite.txt.

John Owens. Streaming architectures and technology trends. In Randima
Fernando, editor, GPU Gems 2 : Programming Techniques for High-
Performance Graphics and General Purpose Computation, chapter 29, pages
457-470. Addison-Wesley, 2005.

Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray trac­
ing on programmable graphics hardware. ACM Trans. Graph., 21(3):703-
712, 2002.

BIBLIOGRAPHY 204

[PC98]

[PD84]

[PDC+03]

[PH89]

[Phi]

[Piq90]

[Pix05]

[PM90]

[POAUOO]

[PPL+99]

[PT90]

[PZvBGOO]

[RAAOO]

Edmond C. Prakash and Jegathese CR. A new approach for goal-oriented
deformation of voxel models. In Proceedings o f Pacific Graphics 1998, pages
214-215, Singapore, October 1998.

Thomas Porter and Tom Duff. Compositing digital images. Computer Graph­
ics, 18(3):253, July 1984. Proceedings of SIGGRAPH 84.

Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen,
and Pat Hanrahan. Photon mapping on programmable graphics hardware. In
HWWS ,’03: Proceedings o f the ACM SIGGRAPH/EUROGRAPHICS con­
ference on Graphics hardware, pages 41-50, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

K. Perlin and E. M. Hoffert. Hypertexture. In SIGGRAPH ’89: Proceedings o f
the 16th annual conference on Computer graphics and interactive techniques,
pages 253-262, New York, NY, USA, 1989. ACM Press.

Philips brilliance ct. h t t p : / / w w w . m e d i c a l . p h i l i p s . c o m / m a i n /
p r o d u c t s / c t / p r o d u c t s / b r i l l i a n c e / i n d e x . h tml .

Micheal E. Pique. Rotation tools. In Andrew S. Glassner, editor, Graphics
Gems, chapter 11, pages 607-611. Academic Press Professional, 1990.

Pixar. The RenderMan Interface, V3.2.1. 2005.
https://renderman.pixar.com/products/rispec/.

P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. IEEE Trans. Pattern Anal Mach. Intell, 12(7):629-639, 1990.

Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive
multi-pass programmable shading. In SIGGRAPH '00: Proceedings o f the
27th annual conference on Computer graphics and interactive techniques,
pages 425-432, New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

S. Parker, M. Parker, Y. Livnat, P.P. Sloan, C.D. Hansen, and P. Shirley. Inter­
active ray tracing for volume visualization. IEEE Transactions on Visualiza­
tion and Computer Graphics, 5(3):238-250, 1999.

Bradley A. Payne and Arthur W. Toga. Surface mapping brain function on 3D
models. IEEE Computer Graphics and Applications, 10(5):33—41, September
1990.

Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Sur-
fels: Surface elements as rendering primitives. In Siggraph 2000 Proceedings,
pages 335-342, 2000.

Constantino Carlos Reyes-Aldasoro and Ana Laura Aldeco. A combined al­
gorithm for image segmentation using neural networks and 3d surface recon­
struction using dynamic meshes. In Rev Max Ing Biomed, volume 21, pages
73-81, 2000.

BIBLIOGRAPHY 205

[Rag93]

[Ree83]

[Req80]

[Rey82]

[Rey87]

[RGR97]

[RL00]

[Rod03]

[Roe]

[RP66]

[RSEB+00]

[RSSSG01]

[RTSD03]

[Rut99]

I. Ragnemalm. The euclidean distance transform in arbitrary dimensions.
Pattern Recognition Letters, 14:883-888, 1993.

W. T. Reeves. Particle systems-a technique for modeling a class of fuzzy
objects. ACM Trans. Graph., 2(2):91-108, 1983.

Aristides G. Requicha. Representations for rigid solids: Theory, methods,
and systems. ACM Comput. Surv., 12(4):437^464, 1980.

Craig W. Reynolds. Computer animation with scripts and actors. SIGGRAPH
Comput. Graph., 16(3):289-296, 1982.

Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In SIGGRAPH ’87: Proceedings o f the 14th annual conference on
Computer graphics and interactive techniques, pages 25-34, New York, NY,
USA, 1987. ACM Press.

J. Rajapakse, J. Giedd, and J. Rapoport. Statistical approach to segmentation
of single-channel cerebral mr images, 1997.

S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution Point Rendering
System for Large Meshes. In SIGGRAPH 2000), pages 343-352, August
2000.

David Rodgman. Refraction in Volume Graphics. PhD thesis, Swansea Uni­
versity, 2003.

Stefan Roettger. The volume library, http://www9.cs.fau.de / Persons /
Roettger / library/.

Azriel Rosenfeld and John L. Pfaltz. Sequential operations in digital picture
processing. J. ACM, 13(4):471-494, 1966.

C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive
volume rendering on standard PC graphics hardware using multi-textures
and multi-stage rasterization. In Stephan N. Spencer, editor, Proceedings o f
the 2000 SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware,
pages 109-118, N. Y., 2000. ACM Press.

C. Rezk-Salama, M. Scheuering, G. Soza, and G. Greiner. Fast Volumetric
Deformation on General Purpose Hardware. In Proc. SIGGRAPH/Eurograph-
ics Workshop on Graphics Hardware, 2001.

Patrick Reuter, Ireneusz Tobor, Christophe Schlick, and Sebastien Dedieu.
Point-based modelling and rendering using radial basis functions. In
GRAPHITE ’03: Proceedings o f the 1st international conference on Com­
puter graphics and interactive techniques in Australasia and South East Asia,
pages 111-118, New York, NY, USA, 2003. ACM Press.

Zsofia M. Ruttkay. Constraint-based facial animation. In 1024, page 25.
Centrum voor Wiskunde en Informatica (CWI), ISSN 1386-3681, 31 1999.

BIBLIOGRAPHY 206

[RV06]

[RVG06]

[SatOl]

[SBM94]

[SCD+03]

[Sch90a]

[Sch90b]

[Sea97]

[SH05]

[Sha81]

[SHN03]

[SJ02]

[SK00]

[SP86]

D. Ruijters and A. Vilanova. Optimizing GPU volume rendering. In WSCG -
Winter School o f Computer Graphics, pages 9-16, 2006.

Peter Rautek, Ivan Viola, and Meister Eduard Groller. Caricaturistic vi­
sualization. IEEE Transactions on Visualization and Computer Graphics,
12(5): 1085-1092, 2006.

Richard A. Satherley. Computation and Applications o f Distance Fields in
Volume Graphics. PhD thesis, Swansea University, 2001.

Clifford M. Stein, Barry G. Becker, and Nelson L. Max. Sorting and hardware
assisted rendering for volume visualization. In W S ’94: Proceedings o f the
1994 symposium on Volume visualization, pages 83-89, New York, NY, USA,
1994. ACM Press.

Matus Straka, Alexandra La Cruz, Leonid Dimitrov, Milos Sramek, Do-
minik Fleischmann, and Meister Eduard Groller. Bone segmentation in ct-
angiography data using a probabilistic atlas. In Vision, Modeling and Visual­
ization, pages 505-512. VMV, November 2003.

Phillip J. Schneider. A bezier curve-based root-finder. In Andrew S. Glassner,
editor, Graphics Gems, chapter 8, pages 408-415. Academic Press Profes­
sional, 1990.

Phillip J. Schneider. Solving the nearest-point-on-curve problem. In An­
drew S. Glassner, editor, Graphics Gems, chapter 11, pages 607-611. Aca­
demic Press Professional, 1990.

G. Sealy. Representing and rendering sweep objects using volume models. In
CGI ’97, pages 22-27, Washington, DC, USA, 1997.

Christian Sigg and Markus Hadwiger. Fast third-order texture filtering. In
Randima Fernando, editor, GPU Gems 2 : Programming Techniques for
High-Performance Graphics and General Purpose Computation, chapter 20,
pages 313-329. Addison-Wesley, 2005.

Michael Shantz. Surface definition for branching, contour-defined objects.
SIGGRAPH Comput. Graph., 15(2):242-270, 1981.

Anthony Sherbondy, Mike Houston, and Sandy Napel. Fast volume segmen­
tation with simultaneous visualization using programmable graphics hard­
ware. In VIS ’03: Proceedings o f the 14th IEEE Visualization 2003 (VIS’03),
page 23, Washington, DC, USA, 2003. IEEE Computer Society.

Richard Satherley and Mark W. Jones. Hypertexturing complex volume ob­
jects. The Visual Computer, 18(4):226-235, 2002.

M. Sramek and A. E. Kaufman. Volume Graphics, chapter vxt : A class
library for object voxelisation, pages 243-252. Springer, 2000.

Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid
geometric models. In SIGGRAPH ’86: Proceedings o f the 13th annual con-

BIBLIOGRAPHY 207

[Spe]

[SS91]

[SS04]

[SSC03]

[SSKE05a]

[SSKE05b]

[ST90]

[SWY99]

[SZL92]

[THB+90]

[TK95]

[TPBF87]

ference on Computer graphics and interactive techniques, pages 151-160,
New York, NY, USA, 1986. ACM Press.

Ben Spencer. Igneus ray tracer, h t t p : / /www. i g n e u s . co . uk.

Paul Gene Swann and Sudhanshu Kumar Semwal. Volume rendering of flow-
visualization point data. In VIS ’91: Proceedings o f the 2nd conference on
Visualization ’91, pages 25-32, Los Alamitos, CA, USA, 1991. IEEE Com­
puter Society Press.

Vikas Singh and Deborah Silver. Interactive volume manipulation with se­
lective rendering for improved visualization. In W ’04: Proceedings o f the
2004 IEEE Symposium on Volume Visualization and Graphics (W ’04), pages
95-102, Washington, DC, USA, 2004. IEEE Computer Society.

V. Singh, D. Silver, and N. Cornea. Real-time volume manipulation. In Pro­
ceedings o f the 2003 Eurographics/IEEE TVCG Workshop on Volume graph­
ics, pages 45-52, 2003.

S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible volume
rendering framework for graphics-hardware-based raycasting. In E. Groller,
I. Fujishiro, K. Mueller, and T. Ertl, editors, Volume Graphics, pages 187—
195. Eurographics, 2005.

Simon Stegmaier, Magnus Strengert, Thomas Klein, and Thomas Ertl. A
simple and flexible volume rendering framework for graphics-hardware-based
raycasting. In Volume Graphics, pages 187-195, 2005.

Peter Shirley and Allan Tuchman. A polygonal approximation to direct scalar
volume rendering. In W S ’90: Proceedings o f the 1990 workshop on Volume
visualization, pages 63-70, New York, NY, USA, 1990. ACM Press.

N. Shareef, D.L. Wang, and R. Yagel. Segmentation of medical images using
legion. 18(1):74-91, January 1999.

William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decima­
tion of triangle meshes. Computer Graphics, 26(2):65-70, 1992.

Ulf Tiede, Karl Heinz Hoehne, Michael Bomans, Andreas Pommert, Martin
Riemer, and Gunnar Wiebecke. Surface rendering. IEEE Computer Graphics
and Applications, 10(2):41—53, 1990.

H. Tek and B. B. Kimia. Shock-based reaction-diffusion bubbles for image
segmentation. In Nicholas Ayache, editor, Computer Vision, Virtual Reality
and Robotics in Medicine. Springer-Verlag, 1995.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically
deformable models. In SIGGRAPH ’87: Proceedings o f the 14th annual con­
ference on Computer graphics and interactive techniques, pages 205-214,
New York, NY, USA, 1987. ACM Press.

BIBLIOGRAPHY 208

[TPG99]

[ult]

[VKG03]

[VKG04]

[VS91]

[vW84]

[WBMS01]

[WC01]

[WC02]

[WEE03]

[Wes89]

[Wes90]

[Whi79]

[Wika]

[Wikb]

[Wikc]

[Win02]

G. M. Treece, R. W. Prager, and A. H. Gee. Regularised marching tetrahedra:
improved iso-surface extraction. Computers and Graphics, 23(4):583-598,
1999.

Ultrasona of columbus ohio. h t t p : / /www. u l t r a s o n a c o l u m b u s .
com/.

Ivan Viola, Armin Kanitsar, and Meister Eduard Groller. Hardware-based
nonlinear filtering and segmentation using high-level shading languages. In
K. Moorhead G. Turk, J. van Wijk, editor, Proceedings o f IEEE Visualization
2003, pages 309-316. IEEE, October 2003.

Ivan Viola, Armin Kanitsar, and Meister Eduard Groller. Importance-driven
volume rendering. In Proceedings o f IEEE Visualization’04, pages 139-145,
2004.

L Vincent and P Soille. Watersheds in digital spaces: An efficient algorithm
based on immersion simulations. 13(6):583-598, 1991.

Jarke J. van Wijk. Ray tracing objects defined by sweeping planar cubic
splines. ACM Trans. Graph., 3(3):223-237, 1984.

Ross T. Whitaker, David E. Breen, Ken Museth, and Neha Soni. A framework
for level set segmentation of volume datasets. In Volume Graphics, 2001.

A.S. Winter and M. Chen, vlib: A volume graphics API. In Volume Graphics
2001. Springer-Wien New York, 2001.

A.S. Winter and M. Chen. Image-swept volumes. Computer Graphics Forum,
21(3):441—441, 2002.

D. Weiskopf, K. Engel, and T. Ertl. Interactive Clipping Techniques for
Texture-Based Volume Visualization and Volume Shading. IEEE Transac­
tions on Visualization and Computer Graphics, 9(3):298—312, 2003.

Lee Westover. Interactive volume rendering. In W S ’89: Proceedings o f the
1989 Chapel Hill workshop on Volume visualization, pages 9-16, New York,
NY, USA, 1989. ACM Press.

Lee Westover. Footprint evaluation for volume rendering. CG, 24(4):367-
376, August 1990.

Turner Whitted. An improved illumination model for shaded display. In SIG­
GRAPH ’79: Proceedings o f the 6th annual conference on Computer graphics
and interactive techniques, page 14, New York, NY, USA, 1979. ACM Press.

Computed tomography - wikipedia.

Magnetic resonance imaging - wikipedia.

Medical ultrasonography - wikipedia.

Andrew S. Winter. Field-Based Modelling and Rendering. PhD thesis,
Swansea University, 2002.

BIBLIOGRAPHY 209

[WitOl]

[WJ06]

[WJ07]

[WK95]

[WKE02]

[WL93]

[WMFC02]

[WMLK89]

[WND099]

[Wol98]

[WPOO]

[WPSH06]

Craig M. Wittenbrink. R-buffer: a pointerless a-buffer hardware architec­
ture. In HWWS ’01: Proceedings o f the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, pages 73-80, New York, NY, USA, 2001.
ACM Press.

SJ. Walton and M.W Jones. Volume wires : A framework for empirical
nonlinear deformation of volumetric datasets. Journal ofWSCG, 13:81-88,
2006.

Simon Walton and Mark Jones. Interacting with volume data : Deforma­
tions using forward-projection. In Fourth International Conference Medical
Information Visualisation - BioMedical Visualisation (MediViz 2007), 2007.

Sidney W. Wang and Arie E. Kaufman. Volume sculpting. In SI3D ’95:
Proceedings o f the 1995 symposium on Interactive 3D graphics, pages 151—
ff., New York, NY, USA, 1995. ACM Press.

Manfred Weiler, Martin Kraus, and Thomas Ertl. Hardware-based view-
independent cell projection. In W S ’02: Proceedings o f the 2002 IEEE sym­
posium on Volume visualization and graphics, pages 13-22, Piscataway, NJ,
USA, 2002. IEEE Press.

Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell., 15(11): 1101-1113, 1993.

Brian Wylie, Kenneth Moreland, Lee Ann Fisk, and Patricia Crossno. Tetra­
hedral projection using vertex shaders. In W S ’02: Proceedings o f the 2002
IEEE symposium on Volume visualization and graphics, pages 7-12, Piscat­
away, NJ, USA, 2002. IEEE Press.

J.W Wallis, T.R Miller, C.A Lemer, and E.C. Kleerup. Three-dimensional
display in nuclear medicine and radiology. Nuclear Medicine, 32(3):534-
546, 1989.

Mason Woo, Jackie Neider, Tom Davis, and OpenGL Architecture Re­
view Board. OpenGL Programming Guide: the Official Guide to Learning
OpenGL, version 1.2, Third Edition. Addison-Wesley, Reading, MA, USA,
1999.

George Wolberg. Image morphing: a survey. The Visual Computer,
14(8/9):360-372, 1998.

Zhongke Wu and Edmond C. Prakash. Volume graphics, chapter Visible
Human Animation, pages 243-252. Springer, 2000.

C. Wyman, S. Parker, P. Shirley, and C. Hansen. Interactive display of iso­
surfaces with global illumination. IEEE Transactions on Visualization and
Computer Graphics, 12(2): 186-196, 2006.

[WRC88] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing
solution for diffuse interreflection. In SIGGRAPH ’88: Proceedings o f the

BIBLIOGRAPHY 210

[WRS01]

[WZMK05]

[XM07]

[YS93]

[ZPKG02]

[ZPvBGOla]

[ZPvBGOlb]

[ZRB+04]

15th annual conference on Computer graphics and interactive techniques,
pages 85-92, New York, NY, USA, 1988. ACM Press.

Rudiger Westermann and Christof Rezk-Salama. Real-time volume deforma­
tions. Computer Graphics Forum, 20(3):443-451, 2001.

Lujin Wang, Ye Zhao, Klaus Mueller, and Arie E. Kaufman. The magic
volume lens: An interactive focus+context technique for volume rendering.
In IEEE Visualization, page 47, 2005.

Xianghua Xie and Majid Mirmehdi. Mac: Magnetostatic active contour
model. IEEE Transactions on Pattern Analysis and Machine Intelligence,
to appear, December 2007.

Roni Yagel and Zhouhong Shi. Accelerating volume animation by space-
leaping. In VIS ’93: Proceedings o f the 4th conference on Visualization ’93,
pages 62-69, 1993.

Matthias Zwicker, Mark Pauly, Oliver Knoll, and Markus Gross. Pointshop
3D: An interactive system for point-based surface editing. In Stephen
Spencer, editor, SIGGRAPH 2002, volume 21, 3 of ACM Transactions on
Graphics, pages 322-329, New York, July 2002. ACM Press.

Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. Ewa
volume splatting. In VIS ’01: Proceedings o f the conference on Visualization
’01, pages 29-36, Washington, DC, USA, 2001. IEEE Computer Society.

Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus Gross. Sur­
face splatting. In SIGGRAPH 2001, pages 371-378, New York, NY, USA,
2001. ACM Press.

Matthias Zwicker, Jussi Rasanen, Mario Botsch, Carsten Dachsbacher, and
Mark Pauly. Perspective accurate splatting. In G/ ’04: Proceedings o f Graph­
ics Interface 2004, pages 247-254, School of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada, 2004. Canadian Human-Computer
Communications Society.

List of Figures

2.1 A 3D Ultrasound model of a baby’s head
Image Credit: [W ikc]...

2.2 Grid Types..
2.3 The Marching Cubes A lg o rith m ..
2.4 Bilinear Interpolation on a 2D area, and trilinear interpolation inside a 3D

c u b e ...
2.5 Compositing M ethods...
2.6 A Forward-Projection algorithm acting on voxels vo, v\ and V2
2.7 A Backward-Projection raycasting algorithm fires rays from the image plane

into the volume data, sampling at regular intervals..
2.8 Two isosurfaces rendered directly from the CT head using Jones’ Direct

Surface Rendering algorithm [JC94b]
2.9 Progressive Refinement with the CT Foot D a ta se t...
2.10 Isosurfaces rendered from a distance field. The blocky appearance is in­

tended to demonstrate a low-accuracy distance matrix
2.11 Chamfer matrix and a selection of 3x3 matrix values
2.12 A comparison of two different k values for nonlinear anisotropic diffusion

filtering on a slice of the Visible Male dataset, Since the filter is iterative,
we give snapshots at two time intervals across the x-axis...............................

3.1 Free-Form Deformation...
3.2 Two frames from a backward-mapped Carp animation, specified using a

spatial transfer function. The carp is textured with a 2D image swept through
one axis..

3.3 Forward and backward spatial mapping ..
3.4 Deformed Texture Coordinates (2D e x am p le) ...
3.5 Deformed Texture Coordinates (3D ex am p le)..
3.6 A series of frames from an animation of a logical/semantic split of the CT

h e a d ..
3.7 Sweeping Template (as used by Winter and Chen [W C 02])..........................
3.8 Automatic and semiautomatic segmentation of the CT Foot dataset by means

of (a) a simple threshold implemented as a transfer function; (b) a seed fill,
where the left image shows the original data and the right image shows the
seed fill result; and (c) different parts of the CT foot segmented using the
Watershed a lg o rith m ..

9
13
15

17
19
20

22

23
27

28
30

34

40

45
46
48
48

51
56

58

211

LIST OF FIGURES 212

3.9 Segmenting a dataset with 2D s l ic e s .. 62

4.1 The OpenGL Graphics Pipeline... 66
4.2 RGB Representation of Texture Coordinates... 71
4.3 The iterative raycasting process... 72
4.4 A glossy Phong laminate BRDF is applied to the CT Head D a tase t 79
4.5 Material transfer functions - the skull is rendered with a diffuse iridescent

painter and the skin with a translucent shader overlaid with a diffuse, irides­
cent painter and a glossy Phong laminate ... 79

4.6 Pseudo-code for ray caching.. 80
4.7 The Ray Tree . 81
4.8 System O verview .. 82
4.9 Render times for Scene 1 .. 83
4.10 Render times for Scene 2 .. 83
4.11 Render times with differing block s i z e .. 84
4.12 CT Head in Cornell B o x .. 86
4.13 Skull in T e a p o t ... 86
4.14 Volume deformation (twisting) on the GPU within GI scene........................ 87
4.15 Volume deformation (splitting) on the GPU within GI scene 87
4.16 Volume deformation (splitting) on the GPU within Cornell b o x 88
4.17 Translucent Bunny with Glass Head; rays: « 486,000,000 88
4.18 Skull on Desk; rays: « 739,000,000 .. 89

5.1 Two example deformations with the Volume Wires methodology on the Vis­
ible Human dataset and CT Carp dataset. The red curve is the object wire,
and the green curve is the world wire.. 94

5.2 Lobster M anipulation... 95
5.3 Tapering and twisting effects applied to a wire controlling the CT Carp dataset 96
5.4 Mapping a striped polygonal tube from the object wire (left) to the world

wire (right) .. 96
5.5 Correspondence between Frenet frames on the object wire and the world wire. 97
5.6 Mapping P from the object to the world wire. Note that P0 = w0(t) and

Pw = ww (t) for the respective t -values found to minimise the distance. . . 98
5.7 A comparison between (left) calculation of Catmull-Rom normals using the

second derivative at arbitrary points, and (right) precalculated and corrected
normals by rotating successive Frenet frames to match trajectory vectors. . 99

5.8 Twisting (rotation) and Tapering (scaling) effects defined on the world wire 100
5.9 Catmull-Rom spline evaluation..103
5.10 A slice taken along the carp with (a) The slice image, (b) A threshold of 0.25 104
5.11 Closest point on curve .. 106
5.12 A 2D slice through the mapping field ..106
5.13 Voxel Cube Pre-Propagation In itialisation...108
5.14 Deformations encoded into varying mapping field to volume dataset scales.

Scale numbers given in percentage of full-scale mapping field. The time to
propagate the field is given alongside. Difference images have been negated
for clarity.. 110

LIST OF FIGURES 213

5.15 A comparison of the Chamfer (3 x 3 x 3 quasi-Euclidian matrix) and EVDT
distance propagation techniques with the most accurate, but brute force
naive approach. Given for each approach is the time taken to compute the
field for the given field size, and for the propagation methods, the root mean
square of the image difference... 112

5.16 Mapping from world space to the volume d a ta s e t ..114
5.17 Sampling the mapping field at each ray sample point and performing $ _1 . 114
5.18 Usage of Valid Ray Identification. The green area shows rays that have hit

only 0 - voxels.. 118
5.19 The iterative raycasting process... 121
5.20 Four frames from an animation of the CT Knee dataset 123
5.21 Three frames from an animation of the CT Carp datase t.................................. 123
5.22 Deforming the Visible Human Torso - the leftmost image shows the object

wire (red) defined inside the body; the centre and rightmost image show two
deformations of the world wire (green) and their final rendering........................124

6.1 Objectives of a GPU forward-mapping function $.. 129
6.2 GPU Forward-Projection algorithm for Volume W ires......................................131
6.3 Proposed GPU Implementation of a Forward-Mapping Volume Wires Ren­

dering Algorithm .. 132
6.4 Correcting c ra c k s ... 139
6.5 Correcting the splat shape along wire tra jec to ry 139
6.6 Splat Shape Correction - Exaggerated R endering ..140
6.7 Associating segmented portions of the of the volume with each wire 143
6.8 Basic seed-filling functionality to create the segmentation mask volume . . 145
6.9 Building the segmentation-aware mapping field from the union of ‘mini’

mapping fields..' .. 146
6.10 Deforming the CT Knee dataset (« 15 F P S) 148
6.11 Deforming the Tooth dataset (« 20 F P S).. 148
6.12 A split of the CT Carp dataset. The point of the split is chosen as a by­

product of the mapping field process; voxels will attach themselves to their
closest wire offset (« 8F P S) ... 149

6.13 Deforming the CT Knee dataset. Segmentation was not required in this case
as the legs were sufficiently separated in the dataset (« 14F P S) 150

6.14 Manipulation of the Visible Human dataset ... 151

7.1 Step by Step guide for the Skeletal Volume D eform er......................................155
7.2 User Interface for Skeletal Volume D e fo rm e r .. 157
7.3 User Interface for the Built-In Segmentation Functionality 158
7.4 The subvolume boundaries are approximated using polyhedral blocks. The

wire offset t is encoded into each slice’s vertices... 160
7.5 Rendering algorithm overview: The sub volume meshes are forward-mapped

from object space to world space; a GPU raycasting algorithm internally
ray casts these meshes..162

7.6 The object and world meshes defined for the Visible Human.............................164

LIST OF FIGURES 214

7.7 Rays in the scene negotiating the static volume data (grey), object blocks
(red) and world blocks (green). Inside world blocks, $ _1 is applied to each
ray sample point pi obtain the new sample point p ■ from its associated object
sub volume... 167

7.8 Intersecting World Blocks .. 168
7.9 Obtaining the t -values for the initial sample point on the face and subsequent

sample points.. 169
7.10 Aliasing artefacts caused by encoding discontinuities into a single mapping

field. Encoding the split into a higher resolution mapping field alleviates the
aliasing slightly...171

7.11 Splitting the CT Carp in half, revealing the interior. 172
7.12 Splitting a Catmull-Rom W i r e ...172
7.13 Computing normals at discontinuities requires special handling........173
7.14 Comparison between normal correction schemes ...175
7.15 Dealing with the intersection of two world b lo c k s177
7.16 A split of the Visible Human’s head. A full RGB colour texture was regis­

tered with the CT data and used as the transfer function, which reduced the
rendering speed (« 3 FPS).. 180

7.17 Manipulation of the CT Knee dataset (« 4 FPS).....................................183
7.18 A series of artistic deformations with the tooth dataset. The roots have been

bent around into new shapes, and also pulled away from the body of the
tooth to separate them, without invoking the splitting functionality («6 FPS
average)...183

List of Tables

1.1 Thesis N om enclature.. 5
1.2 Volume datasets used in this th e s is .. 5

6.1 Vertex Buffer arrangem ent.. 134
6.2 Mapping field generation tim ings... 134
6.3 Texture coordinates utilised in passing data from the second vertex stage to

the fragment shader.. 137
6.4 Forward-Projection tim ings...143

7.1 A selection of timings achieved with four datasets. For each dataset, we
give the average FPS achieved while firstly simply navigating the deformed
dataset, and secondly while manipulating the world wires.........................180

215

List of Algorithms

1 Chamfer Propagation... 31
2 Pre-propagation Wire F reezing ... I l l
3 Forward-Projection Rendering Algorithm Pseudo-Code : CPU Side 135
4 CPU Invoking ray casting s h a d e r ..166
5 Wire Block R asterisation.. 181
6 GPU Backward-Mapping.. 182
7 Intersection R en d erin g ..182

216

Listings

4.1 Fragment Shader: Outputting a texture coordinate to the framebuffer 70
4.2 Fragment Shader: Calculation of ray d a t a .. 71
4.3 Fragment Shader: Initialising and firing a r a y .. 72
5.1 Linear interpolation for sampling a w i r e ... 117
5.2 Cg code for calculation of ray len g th ..122
6.1 Computation of 4> in the vertex sh a d e r ... 136
6.2 Selecting only voxels belonging to the ‘sparse’ s e t ... 141
A.l Volume Wires State XML S ch em a ...190

217

