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Abstract
The main aim of the work described in this thesis was to investigate the potential of 

reactions of Pt(0) phosphine complexes with selected organoselenium reagents to 

provide routes to diselenolenes and related compounds with Pt-Se bonds.

Chapter 1 reviews the background to this work, and introduces some relevant classes 

of compound. Surveys of the coordination chemistry of organoselenium ligands such 

as selenoethers, 1,2,3-selenadiazoles, 1,4-diselenins and selenophenes are included. 

The properties of dithiolenes and diselenolenes are also discussed.

Each of Chapters 2-5 deals with a specific type of reaction, and the characterisation of 

the products, in particular by multinuclear NMR spectroscopy, X-ray diffraction and 

mass spectrometry, supplemented by other techniques as appropriate.

Chapter 2 describes the synthesis of the new platinum diselenolenes

[Pt{Se2 Cn+4 H2 n+4 }(PR3 )2 ] (n = 2, 3 or 4; R = Ph, Et or Bu) and

[Pt{Se2 C8Hi2} {Ph2 P(CH2 )mPPh2 }] (m = 1, 2  or 3), via the reactions of [Pt(PPh3)4]

with cycloalkeno-1,2,3-selenadiazoles, of [Pt(C2 H4 )(PR3 )2 ] (R = Et, Bu) with bis-

cycloalkeno-l,4-diselenins, or phosphine exchange.

In Chapter 3 the reactions of cycloalkeno-1,2,3-thiadiazoles and cycloalkeno-1,2,3- 

selenadiazoles with [Pt(C2 H4 )(PR3)2 ], or a mixture of [Pt(C2 H4 )(PR3)2 ] and 

[PtCl2 (PR3)2 ] (R = Et or Bu), are discussed. Five new classes of compound were 

prepared and characterised: the azo-compounds [PtL(PR3 )] (L =

EC(R‘)=C(R2 )N=NC(R‘)=C(R2 )E; R'-R 2 = (CH2 ) 5 or (CH2)6; E = S or Se); the 

selenaplatinacyclobutenes [Pt{SeCn+4 H2 n+4 }(PR3 )2 ] and their derivatives 

[PtI{Se(Me)Cn+4 H2 n+4 }(PR3 )2 ], [Pt{Se(Me)Cn+4 H2 n+4 }(PR3 )2 ]PF6 (n = 2, 3 or 4). 

Chapter 4 describes the first observation of direct insertion of Pt(0) into the Se-C bond 

of selenophene, leading to the formation of [Pt(SeC4 H4 )(PR3 )2 ] (R = Et or Bu), and 

related reactions.

Oxidative addition of a Se-Se bond to Pt(0) or Pd(0) is considered in Chapter 5. The 

reactions of [Pt(C2 H4 )(PR3)2 ] or [Pd2 (dba)3 ]/PR3 (R = Et or Bu; dba = 

dibenzylideneacetone) with R’2 Se2 (R’ = Ph or Fc, ferrocenyl) or 6/j-benzo-l,2- 

diselenin lead to the new complexes /nms-[M(SeR’)2 (PR3 )2 ], [M(Se2 Ci2 H8)(PR3 )2 ] 

(M = Pd or Pt) and [Pd2 (Se2 C 12H8)2 (PR3 )2 ]



Chapter 6  summarises the results of X-ray diffraction studies undertaken by the 

author. As well as compounds described elsewhere in this thesis, several examples of 

ferrocenyl chalcogenides and their complexes were investigated.

The experimental details for the work are provided in Chapter 7.
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COD 1,5-cyclooctadiene

Cp cyclopentadienyl (C5H5)
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Cy cyclohexyl (0 C6H 11)
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IR infrared
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M metal
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MS mass spectrometry

NMR nuclear magnetic resonance

Ph phenyl (C6 H5)

R/R’ alkyl or aryl

RT room temperature

THF tetrahydrofuran
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Chapter 1 

Introduction
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1.1 Introduction
Before considering the ‘novel’ chemistry presented in this thesis, it is useful to review 

some of the work that has preceded it. This brief introduction begins with a summary 

of the discovery and early uses of the key elements (Pt, S, Se), and continues with a 

consideration of some of the compounds formed by these elements in combination. 

The final parts of the introduction will consider the syntheses and reactions of 1,2,3- 

selena- and 1,2,3-thiadiazoles, diselenins and diselenolenes, these compounds being 

specifically related to the chemistry discussed in following chapters.

In addition there are also short sections on the use of phosphines as ligands in 

transition metal complexes, and the properties of transition metal dithiolenes. The 

majority of the complexes presented in this thesis contain phosphine ligands, and 

many were synthesised in the hope that they would share the desirable 

electrochemical and photochemical properties exhibited by dithiolenes.

By no means is this a comprehensive review; for more detail, it is suggested that the 

reader follow up the references provided.
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1.2 Platinum, Sulphur and Selenium
The use of platinum can be traced back to Egyptian times: a piece detached from a 

metallic casket from Thebes was found to be an alloy of platinum. The hieroglyphics 

on the casket showed it had been dedicated to Queen Shapenapit, and thus dates back 

to the seventh century B.C. Silver and gold alloys of platinum were also used by the 

pre-Columbian Indians of Ecuador in jewellery and ornaments. 1 ,2 In both of these 

cases it is doubtful that platinum was recognised as a separate body, and it wasn’t 

until 1736 that the metal was introduced to Europe by the Spanish astronomer and 

naval officer, A. de Ulloa. After publication of his report in 1748, a full investigation
# o
into platinum and its properties began. Since this time platinum has found many uses 

including applications in catalytic converters, jewellery, and electronics. Platinum is 

rare having a crustal abundance of 0.01 ppm, with large deposits found in Canada, 

South Africa and Russia.

Platinum has a spin-active isotope, 195Pt, which is present in 33.7% natural abundance 

and has a spin lA. Indeed, I95Pt NMR has been known since 1951,4 although due to its 

low relative sensitivity of 9.94 x 1 0 ' 3 (cf. 13C 1.59 x 10’2) it wasn’t until the advent of 

Fourier transform spectroscopy that l95Pt NMR spectroscopy became easily 

accessible. 5 The presence of this spin-active isotope in relatively high natural 

abundance provides a useful analytical probe in NMR studies of platinum-containing 

species.

Only two non-metallic elements were known to the ancient peoples, sulphur and 

carbon, as both these elements occur uncombined in many parts of the world. 

References to sulphur (as brimstone) are found frequently in the bible, where its 

flammability was used to symbolise torment and destruction. 6 Sulphur has found 

many uses through the course of history including: as a fumigant, bleaching agent, or 

medicine; in gunpowder; and most recently in the production of sulphuric acid, which
1 o

has become the world’s most important industrial chemical. 5 Sulphur also held 

particular significance for the early alchemists (tenth century onwards) who believed 

that metals were compounds of sulphur and mercury. 1 Sulphur has a crustal 

abundance of 340 ppm; this makes it the sixteenth most abundant element. Sulphur is 

obtained by mining of the caprock salt domes in the USA and Mexico and the 

sedimentary evaporate deposits of Poland. Compounds of sulphur can be extracted



from natural gas, crude oil, tar sands, shale, coal and from sulphide minerals such as 

pyrites (FeS2 ) . 3

Sulphur has only one naturally occurring spin-active isotope in 3 3 S. Unfortunately it 

has a low natural abundance (0.76%), a low receptivity (0.097 relative to 13C) and is
*3*3 7

quadrupolar (I = 3/2). An early paper predicted a gloomy future for S NMR; 

however, to date hundreds of compounds have now been examined successfully. 

Unfortunately examination is limited to compounds with a high degree of symmetry, 

where the electric field gradient (and thus the quadrupolar broadening) is reduced at 

the sulphur nucleus. 8 ,9  These limitations prevent the use of 33S NMR spectroscopy as a 

routine analytical tool.

Selenium was first isolated in 1817 (35 years after the isolation of tellurium) by J.J.

Berzelius and J.G. Gahn. They observed a reddish brown deposit formed during the

burning of copper pyrites from the Fahlun copper mine in Sweden, reduction of which 
1 ^gave selenium. ’ Selenium is a comparatively rare element comprising some 0.05 

ppm of the earths crust (6 6 th in order of crustal abundance) . 3 Its name was derived 

from the Greek, selene, meaning moon, following tellurium’s derivation from the 

Latin, tellus, earth.

Selenium and its compounds are used for a number of applications, including: as a
*3 i n*

decolouriser of glass and in xerography; and more recently as semiconductors, in
11 17ion-sensitive electrodes, and in catalysis.

Selenium possesses a spin-active isotope 7 7 Se, present in 7.6% natural abundance,
1 7with a spin of lA and a receptivity 2.98 times that of C. These properties allow 

investigation of the nuclear interactions of selenium-containing compounds, and since 

the advent of Fourier transform, 77Se NMR spectroscopy has been used as a routine 

analytical tool. 8 , 9
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1.3 Organoselenium Coordination Chemistry
Despite the discovery of selenium almost two centuries ago, it is only in the past 30 

years that the ligand properties of organoselenium reagents have been systematically
1 3investigated. Organoselenium compounds were prepared as early as 1847, and there 

were several reasons for the neglect of this aspect of selenium chemistry. It was 

believed for several years that they were weak donors and would only coordinate to 

class b metals; even then they were assumed to be little different from their thio- 

analogues. 14 This is exemplified in Livingstone’s review of metal complexes with 

heavy group 16 donor ligands in 1965, by a clear dominance of sulphur compounds. 15 

In addition the belief that selenium compounds had a high toxicity probably dissuaded 

people from their use; to quote from Sax’s 16 assessment of selenium and its 

compounds in 1960: ‘Its (selenium’s) pathology has not as yet been adequately 

studied...In human beings, gastrointestinal disturbances have been noted and it causes 

respiratory irritation, cough, oedema of the lungs, vomiting diarrhoea, abdominal pain 

or cramps, loss of reflexes, cerebral irritation as manifested by convulsions, and 

ultimately death.’ This conception of the toxicity of selenium may have contributed to 

the lack of investigation into organoselenium chemistry. A recent assessment of 

selenium and its compounds by Luxon17 is a little more forgiving: ‘The chlorides and 

solutions of the acids and salts (of selenium) may bum the skin...Selenium dioxide 

dust...irritates the respiratory system, eyes and skin...Inhalation of selenium dust 

over a prolonged period may cause fatigue, loss of appetite, digestive disturbance and 

bronchitis.. .Some salts have shown signs of carcinogenicity and mutagenicity.’

In contrast to the coordination chemistry of organoselenium reagents, the coordination 

chemistry of organosulphur compounds has been known for some time; indeed the 

coordination of thioether (R2 S, R = alkyl, aryl) ligands has been reported as early as 

1883, with Tschugajeff studying d8 metal complexes with thioether ligands in the 

early 1900’s.18 Due to the variation of R, several thioether complexes are known and 

the reader is referred to reviews by Murray and Hartley, 19 and Kuehn and Isiad2 0  for a 

comprehensive listing.



1.4 Complexes with Selenoether Ligands
One of the most explored areas of organoselenium chemistry is that of coordination 

compounds containing selenoether ligands (R^Se); these complexes have been subject 

to several reviews.19,21

1.4.1 Complexes Containing Monodentate Selenoether Ligands

In the 1950’s Chatt and Venanzi reported halogen-bridged platinum and palladium 

complexes containing simple selenoether ligands (figure l . l ) . 2 2 , 2 3 ,2 4

Figure 1.1:
R2S e Cl Cl M =  Pd, Pt

\ r  M R = E‘. 'Pr
/  \  /  \

Cl Cl SeR 2

To date, dimethyl selenide (Me2 Se) has been the most studied selenoether; dimethyl

selenide bonds readily to platinum and palladium to give complexes with an M(II)

centre, which can be oxidised to an M(IV) centre by treatment with a halogen (figure

1.2).25,26
Figure 1.2:

[PtCl2 (Me2 Se)2 ] ■ C l 2  > ■ [PtCI4 (Me2 Se)2]
CCI4

[NBu4 ][PdCl3 (SeMe2)] ° 2 ►  [NBu4 ][PdCl5 (SeM e2)]
CC14

These simple dialkyl selenide complexes of platinum and palladium have been the 

subject of extensive spectroscopic studies, 2 7 ,2 8  with much focus on the pyramidal 

inversion of the chalcogen. 2 9

More recently complexes containing ligands of the type MeSe(C4 H3 E) (E = O, S), 

have been investigated. 3 0  These ligands bond only via the Se donor in 

[MCl2 {MeSe(C4 H3E)}2 ] (M = Pd, Pt); the bonding of 1,4-oxaselenan in [MCI2 L2 ] (M 

= Pd, Pt, L = 1,4-oxaselenan) is similar. 31 These complexes only exist as the trans- 

isomers, whereas the tellurium analogues exist as cis/trans- mixtures in solution and 

cis- isomers in the solid state. In acetone [PdCl2 {MeSe(C4 H3 0 )}2 ] gives small 

amounts of a rearrangement product (figure 1.3), as a result of dimerisation with
• 19incorporation of acetone and loss of two 2 -chlorofuran units.
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Figure 1.3:

//•o/7̂ -[PdCl2{MeSe(C4H30)}2]

Se-------Se

Pd ClCl- Pd—  S e -

+ 2 O ^ c i  +H2°

Monodentate ferrocenyl selenoethers are easily prepared by mono-lithiation of

ferrocene and subsequent reaction with a diorganodiselenide and have been well

studied. 3 3 ,3 4  Ferrocenyl selenoethers with a dimethylamino group ortho to the Se

group will coordinate to Pt or Pd via Se and N (figure 1.4); these types of complexes

can be used as catalysts in Grignard cross-coupling and hydrogenation reactions.
Figure 1.4:

Fe
[MCl2(PhCN)2]

-CH(R)NMe2

^  .
Fe
I

SeR1

M = Pd: R = H; R' = Me, 4-chlorophenyl 
R = Me; R' = Ph 

M = Pt: R = H; R' = Me

-NMe2

-Cl

Cl

1.4.2 Complexes Containing Bidentate Selenoether Ligands

Perhaps the most studied bidentate selenoether ligands are the compounds of the 

general formula RSe(CH2)nSeR (R = alkyl, aryl; n = 1, 2, 3, 6 , 12), which have been 

extensively reviewed in the literature. 14,21 The preparation of these complexes is 

straightforward; addition of the appropriate dihaloalkane to R2 Se2 in Na/NH3 (1)/THF 

gives the diselenoether in mostly high yield.

The methylene backboned diselenoethers RSeCI^SeR have been shown to exhibit 

both monodentate and bridging coordination to M(II) (M = Pt, Pd) centres (Figure 

1.5); chelate coordination is not observed, presumably due to the high ring strain 

which would result from coordination to a single metal centre. These species 

degrade to what is thought to be a polymeric species [MCl2 (MeSeCH2 SeMe)2 ]n.
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Figure 1.5:

M'2 [MC14] + 2 M eSeCH 2 SeM e-

M’ = Na; M = Pd 
M’ = K; M = Pt

EtOH

CH 2 C13
[MCl2 (M eSeCH 2 SeM e)2]

In a similar reaction with the trimethylplatinum(IV) cation MeSeCEhSeMe is

observed to form dinuclear complexes with the diselenoether bridging the metal

atoms; in contrast MeSe(CH2 )2 SeMe and MeSe(CH2 )3 SeMe gave mononuclear

complexes with both selenium atoms coordinated to one metal centre (figure 1 .6 ).

The same effect was also observed for the analogous dithioether complexes.
Figure 1.6:

Me.

Me'

Me'

Me

> <

,S e ^

Me

Pt.

Se.

H H

.Me

'Me

'Me

Me.

Me'

Me

Pt.

Se
'S e

(CH2)n

X = C l, Br, I n = 2, 3

Longer chain diselenoethers are more likely to form bidentate chelate complexes with 

Pt(II) and Pd(II), and complexes of the type [MCI2 L] (M = Pt, Pd; L = RSe(CH2 )nSeR,

n > 2) have been well investigated. 3 8 ,3 9 ,4 0 ,4 1  In particular the fluxional behaviour of 

these species due to the pyramidal inversion of the coordinated selenium atoms has 

been studied. 4 0 >4 1 >4 2 >4 3 >4 4 ’4 5  At room temperature there are two distinct geometric 

isomers which readily interconvert at elevated temperatures (figure 1.7); it has been 

found that the barrier to this inversion is lowest in diselenoethers (30-40 kJ mol"1) and 

highest in dithioethers, with the mixed dichalcogenoethers having intermediate values. 
Figure 1.7:

^,Se Se
^  \  /

.M.
Rapid at 100 °C v

DL-isomer meso-isomer

Not all diselenoethers with a longer chain backbone exhibit bidentate chelating 

coordination; the diselenoether ‘P rS e ^L ^ S e 'P r has been observed to form 

monomeric species with Pt(II) and Pd(II) in chloroform and dimeric species in 

acetone (figure 1.8) . 4 6 ,4 7  As would be expected species with a still longer backbone do
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not exhibit bidentate chelation due to the distance between the selenium atoms. The 

diselenoethers MeSe(CH2 )6 SeMe and MeSe(CH2 )i2 SeMe react with [PdCU]2’, giving 

what are believed to be polymeric species with the diselenoether ligands adopting a 

bridging role.41

In addition diselenoethers with a ferrocene backbone can be prepared; reaction of 

dilithiated ferrocene with RSeSeR gives ferrocenyl selenoethers capable of bidentate 

coordination (figure 1.9).

It is worthy of note that, if there is an amine group also connected to one of the Cp 

rings, then palladium will preferentially bind to the nitrogen and selenium of the same 

ring. A complex is formed similar to that in figure 4, with a redundant SeR group on 

the upper Cp ring.

Ligands which exhibit bidentate coordination through selenium and a non-chalcogen 

group are common, for example unsaturated organoselenides. Here coordination 

through selenium and the unsaturated moiety is observed. Monosubstituted selenides 

readily coordinate to M(II) (M = Pd, Pt) to give complexes of the type [MX2 L] (figure

F igure 1.8:

CHC1

(C H 3)2C O

M  =  Pd, P t

Figure 1.9:

Ph

[PdCI2(PhC N )2] ,CI

Fe
B enzene

- S e P h Cl

1.10).49
Figure 1.10:

Ph
\

PhSeCH2CH2CH=CH2
K2[MC14]



However, organoselenides disubstituted with unsaturated groups do not exhibit the 

expected tridentate coordination; instead bidentate coordination through selenium and 

one of the unsaturated moieties is observed, with the coordinated and uncoordinated

1.4.3 Complexes Containing Polydentate Selenoether Ligands

Reports on the chemistry of selenoethers containing three or more selenium atoms are 

sparser in the literature. Triselenoethers can act as tridentate ligands and chelate to 

one metal centre. The ligand 2,5,8-triselenanonane (MeSe(CH2 )2 Se(CH2)2 SeMe) 

reacts with trimethylplatinum(IV) iodide to give a cation in which one ligand occupies 

all trans- sites of7 foc-Pt(IV)Me3 (figure 1.12) . 5 2 ,5 3  Fluxional NMR studies have shown 

that only the terminal selenium atoms can undergo pyramidal inversion in these 

triselenoether complexes.

Figure 1.12:

Triselenoethers may not always use all three selenium atoms to coordinate to a metal 

centre. For example l,l,l-tris(methylselenomethyl)ethane (tmse) can only coordinate

However, its isomer, bis(3-methylselenopropyl)selenide (bmsp) can coordinate to a 

metal centre through all three selenium atoms. 54

alkene moieties undergoing facile exchange. 50 Further work has shown that these 

ligands can bridge to form dimeric species (figure 1 .1 1 ) . 51 

Figure 1.11:

[PtCl2(SMe2 )2]
S e(C H 2C H 2C H = C H 2)2

+
M e

(CH2)2

in a cis- bidentate fashion to planar metal centres (figure 1.13) due to steric constraints.
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Figure 1.13:

M = Pd, Pt

The first quadridentate selenoether l,3-bis(methylselenoethylseleno)propane (bsep)
f f  O

was prepared in 1976. Quadridentate coordination to one d metal centre wasn’t 

observed; instead the dimeric species [Pd2X4 L] (X = Cl, Br, I; L = bsep) (figure 1.14) 

was formed when Na2 [PdX4 ] was reacted with the ligand.
Figure 1.14:

When the analogous nickel chemistry was attempted, octahedral [N^LjL] was formed; 

the species is believed to be polymeric with the proposed structure shown in figure 

1.15. The analogous thioether forms a complex of the type ‘[NiX2 (S4 )]’. It is 

unknown whether the difference in behaviour is due to a steric or electronic effect.
Figure 1.15:

Recently the coordination chemistry of macrocyclic selenoethers has been 

investigated. Heavier chalcogen analogues of crown ethers are of particular interest 

due to their redox activity, thus finding use as metalloenzyme and metalloprotein 

models. 5 6 ,5 7  The syntheses of these macrocyclic selenium ligands is straightforward, 

typical preparations involving the reaction of the desired 6 w(selenocyanato)alkane 

with sodium, followed by the addition of the appropriate dihalogenated alkane (figure 

1.16).58



N aSe SeN a —■ * ,
Se Se-* ''

W
T ypically  chain lengths o f  1-3 carbon a tom s are used

In a study examining the ability o f these macrocycles to extract heavy metals from 

solution it was found that they coordinate in a bidentate manner, forming [MCI2 L] or 

[{MC^hL] (M = Pd, Pt) . 5 9  It was later shown that the selenium coronands [14]aneSe4, 

[16]aneSe4, [24]aneSe6 etc. could act as quadridentate ligands with Pd(II) and Pt(II) 

(figure 1.17).60 The metal has square planar geometry and sits in the middle o f the 

ligand.
Figure 1.17:

[M ([16]aneS e4)]2+ 

M = Pd, Pt

Upon increasing the size of the macrocycle it is possible to coordinate two metal 

centres. With a controlled reaction stoichiometry [24]aneSe6 will react with PdCh to 

give [(PdCl)2[24]aneSe6] . This complex can be electrochemically reduced to give 

a Pd(I)-Pd(I) bonded dimer (figure 1.18).
Figure 1.18:



1.4.4 Complexes of Unsaturated Diselenoethers

Unsaturated diselenoethers are synthesised by the stereospecific reaction of a 

terminally dihalogenated alkene with RSe' in the presence of NaOEt. 3 5 The 

unsaturated diselenoether is produced in moderate yield only; this has resulted in less 

investigation being carried out on these species. The main difference between 

unsaturated and saturated diselenoethers is the ‘bite’ angle of the ligand; unsaturated 

diselenoethers are typically restricted to forming monomeric czs-planar structures 

(figure 1.19).26,41
Figure 1.19:

c /s -R S e C H = C H S e R

E tO H

Se.

;Se"

,CI

'Cl

R  =  M e, Ph  
M  =  P t; M  =  K  
M  =  Pd; M 1 =  N a

Other ligands of this type are the o-phenylene diselenoethers. These were first 

synthesised in low yield (5%) by the direct reaction of RSeSeR with benzyne. 3 5 Later 

an alternative synthesis from dibromobenzene (figure 1 .2 0 ) was found to give a much 

better yield (53% ) . 6 2

Figure 1.20:

Na2 Se2

DMF
Rongalite

Mel

.SeMe

'SeMe

These unsaturated diselenoethers will complex with trimethylplatinum(IV) halides, 

giving [PtXMe3 (MeSeBSeMe)] (X = Cl, Br, I; B = c;,s-HC=CH, o-Csftt) . 6 3 These 

complexes can also be generated by halogen oxidation of [PtCl2 (MeSeBSeMe)], as 

has been seen for simple monodentate selenoethers. The analogous Pd(IV) species

cannot be prepared in this case. This is presumably due to the moderate o-donor 

properties of the ligands, resulting in them not being able to stabilise this higher 

oxidation state for Pd.



1.5 Phosphines as Ligands in Transition Metal Complexes

Tertiary phosphines (PR3 , R = alkyl or aryl group) are used as ligands in a wide 

variety of transition metal complexes. The reasons for this are the relatively easy 

synthesis of tertiary phosphines and their properties; these properties depend on the 

nature of the phosphine substituents.

1.5.1 Synthesis

The syntheses of phosphines trisubstituted with alkyl/aryl groups are relatively 

straightforward: reacting PCI3 with organolithium6 4  or Grignard (RMgX, X = Cl, Br,

I) reagents gives the trialkyl/aryl phosphines. The product will depend on the 

stioichiometry of the reactants and by careful control it is possible to synthesise 

phosphines with mixed substituents (figure 1 .2 1 ).

Figure 1.21:

C\  R'\ R' \
RMgX or RLi \  R'MgX or R'Li \  R"MgX or R"Li \

3 ■ — ; P — R ------------------------------------► p  R ----------------------------------► P ------- R
1 equivalent /  \ equivalent /  1 equivalent /

Cl Cl R"

X = Cl, Br, I
R, R1, R" = alkyl/aryl group

1.5.2 The Metal-Phosphine Bond

Phosphines, like CO, are classed as 7t-ligands and they form a synergic bonding 

system with transition metals. The lone pair of the phosphine acts as a weak donor 

and forms a a-bond with the metal; in turn there is electron donation from the d- 

orbitals of the metal to the phosphine (7i-backbonding). In the classical model 

phosphorus utilises a pair of its 3d orbitals to accept metal electrons, 65 but, recently a 

model has been proposed (using quantum mechanical calculations) in which the 

phosphine utilises the P-R a* antibonding orbital formed from the phosphorus 3p 

orbitals; 6 6 ,6 7 ,6 8 ’6 9 ,7 0  both of these models are shown in figure 1.22. This 7c-backbonding 

increases the strength of the metal-phosphine bond; it is however, dependent on the 

substituents of the phosphine. In general the 7t-backbonding is greatest for phosphines 

with highly electron-withdrawing substituents (e.g. PF3 ), but strongly electron- 

withdrawing substituents will also cause some weakening of the M-P a-bond.
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Figure 1.22:

g  c?  ^ i y p

P -M  sigm a bon d  C lassical M -P  pi backbond ing  A ltern a tiv e  M -P  pi b ackbond ing

1.5.3 Steric Factors

A wide variety of PR3 compounds can be synthesised, and it is known that their steric 

influence is directly dependent on the bulk of the R group. In 1970 Tolman studied 

the ligand exchange equilibria of a wide range of [Ni(PRs)4 ] (R = alkyl/aryl group)
71complexes, and he found that the steric effects of the ligand were much more 

important than electronic factors. It was found that in general smaller ligands gave 

the most stable complexes, as it is easier to fit four small ligands around the relatively 

small Ni(0) than four larger ligands. It was on the basis of these findings that Tolman 

proposed the 'cone angle' (figure 1.23) as a quantitative measure of a phosphine’s size, 

and thus steric influence. The spheres shown are the van der Waals radii of the 

substituents.

Figure 1.23:

Tolman's cone angle

Tolman further proved the importance of steric effects by investigating the 

substitution reactions of [Ni(CO)4 ] with various phosphines: he found that the degree 

of substitution was completely dependent on the cone angle of the phosphine. The 

degree of substitution ranged from 3.7 for P(OCH2 )3 CCH3 (cone angle = 101°), to 0.3 

for P(C6 Fs) 3  (cone angle = 184°). Tolman later extended this work by proposing a 

method by which the cone angle of unsymmetrical ligands could be calculated (figure 

1.24).72 The effective cone is defined by the relation 0 = 2/3 £0j/2 (i = 1-3).



Figure 1.24:

92/2 /

Tolman's cone angle for unsymmetrical phosphines

Investigation into the steric influence of phosphines has been extended to the other
TXgroup 10 metals, and it has been found that M(0) (M = Ni, Pd, Pt) phosphine 

complexes can exhibit coordination numbers of 2, 3 or 4 depending on the size of the 

phosphine ligand(s). A study carried out on the synthesis and reactions of palladium 

phosphine complexes has shown that an equilibrium exists between [PdLn] (L = 

phosphine; n = 3, 4) and free L . 74

1. PdL4  ^ ^ P d L 3 + L
2 . PdL3 PdL2  + L

For smaller phosphines such as PEt3 and PBu3 (0 = 130°) equilibrium 1 applies in

solution and can be driven to the right under vacuum. For the phosphine PMePh2 (0 = 

136°) the equilibrium lies to the left. For medium sized phosphines such as PPh3 (0 = 

145°) both equilibria apply in solution, and for large phosphines such as PCy3 (0 = 

179°) the dominant species is PdL2 . PdL2 is a 14 electron species and from an 

electronic point of view is not stable, but if a large enough phosphine is used then the 

steric effect gives the compound stability. This is exemplified by the compounds 

[Pd(PPhlBu2 )2 ] and [Pd(PlBu3 )2 ] : 75 [Pd(PPhrBu2 )2 ] reacts readily with O2 to give the 

complex [Pd0 2 (PPhtBu2 )2 ]; [Pd(PlBu3 )2 ] however, is stable in air but will react with 

hydrogen. It is believed that this stability towards air is due to the ligands (PlBu3) 0 = 

182°) shielding the palladium from O2 ; the reaction with hydrogen is possible though, 

as H2 is much smaller than O2 and can thus find its way to the palladium.

1.5.4 NMR

Modem NMR techniques have permitted the study of many nuclei other than *H; 

among these is 31P which, with a spin of V2 , a natural abundance of 100% and a 

receptivity 7% that of ’H, is ideally suited for NMR studies. 76 These properties have 

resulted in 31P NMR spectroscopy becoming a routinely used tool in both organic and



inorganic chemistry. In metal complexes containing phosphine ligands, if the metal 

has a spin active isotope then the M-P coupling contants can be used to give 

information about the substituents and geometry of a complex. For example, 1J(3 1P- 

195Pt) in square planar Pt(II) complexes is sensitive to the substituent trans- to the 

phosphine group, the value increasing as the electron-withdrawing ability of the 

substituent increases. This can be used to determine the geometry of a complex: it is 

observed that czs-[PtCl2 (PEt3 )2 ] has a 1 J(3 1 P-1 9 5Pt) coupling of approximately 3500 Hz, 

whereas for fnms-[PtCl2 (PEt3)2 ] the coupling is approximately 2400 Hz; these values 

allow an easy differentiation of cis- and trans- isomers. 6 6

1.5.5 Metal Phosphine Complexes in Catalysis

Metal complexes containing phosphine ligands have found a wide variety of uses, but 

perhaps the area where they have made the most impact is in catalysis. Successful 

catalysis by an organometallic complex is dependent on that complex’s ability to 

switch between 18 electron species and 16 electron species by the removal/addition of,
77or reaction with a ligand. It is also now accepted that 17 and 19 electron species

70
may take part in catalysis under some conditions. The electronic and steric 

properties of phosphines (as discussed above) make them useful ligands for stabilising 

the intermediate states during a catalytic cycle. Here a few of the catalytic 

applications of metal phosphine complexes are discussed.

One of the first complexes containing phosphine ligands to be used in catalysis was 

Wilkinson’s catalyst [RhCl(PPh3 ) 3 ] . 7 9 , 8 0  This complex was found to catalyse the 

hydrogenation of alkenes and alkynes at room temperature with a H2 pressure of 1 bar 

(figure 1.25); later the catalyst [RhH(CO)(PPh3 )3] was synthesised which specifically
o 1

hydrogenates terminal alkenes (figure 25). [RhH(CO)(PPh3)3 ] is also the catalyst 

used in the Union Carbide hydroformylation process. 64
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Figure 1.25:

R R R R
[RhCl(PPh3)3] \

H2 
R

[RhH(CO)(PPh3)2]

H ,

R =  H or alkyl group

The specificity of these catalytic hydrogenation reactions has been increased further 

by the use of the species [RhL2 (solvent)2 ]+ (solvent = THF/CH3CN),82 where L2 is an 

optically active diphosphine such as DIOP or CHIRAPHOS (figure 1.26).83’84 These 

species asymmetrically catalyse the hydrogenation of prochiral, unsaturated species to 

chiral products, often with high optical purity.
F igu re 1.26:

x\\CH2PPh2

CH2PPh2

*
*

HL w\PPh2

‘PPh,

D IO P C H IR A P H O S

Investigation into the use of metal complexes with phosphine ligands as catalytic C-H 

bond activators has been carried out. 85 It has been found that polyhydride complexes 

such as [IrH5 {P(CH3 )3 }2 ] and [ReH5 {P(CH3)3 }2 ] catalyse the H/D exchange between 

benzene and D2 . In the complex /n m s-I^ C k te -C lM P 'P ^ ]  the platinum can insert 

into the C-H bonds of the methyl groups of 'Pr, and in the presence of D2 O deuterium 

incorporation into the phosphine ligand is observed.

Another area where these complexes find use is in the catalysed formation of C-C 

bonds; examples of this include the Heck reaction8 6  and the use of Grubbs’ 

catalyst. 8 7 ,8 8  In the Heck reaction [Pd(PR.3 )4 ] (R = aryl) reacts with an aryl bromide 

R’Br to give [Pd(Br)R’(PR3 )2]; this then reacts with an a-olefm to give [PdHBr(PR3)2 ] 

and a trans-arylated product (figure 1.27).
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Figure 1.27:

[Pd(PR3)4]

"Bu3N

PR3

[PdHBr(PR3)2]

BrC6H4C 0 2CH3-p 

- 2PR3

R3P '^  ^/C6H4C02CH3-p
Pd

Br PR3

|  h 2c -

R3P \
pd;

Br ' ' 'P R

c h c o 2c h 3

c o 2c h 3

CH2C6H4C 0 2CH3-p

c o 2c h 3

c 6h4c o 2c h 3

Grubbs’ catalyst is a carbene complex of the type [RuCl2 (=C-CH=CPh2 )(PR3)2 ] (R = 

Ph, Cy) which has found use as a ring opening metathesis polymerisation catalyst 

(figure 1.28); it has also recently found use as a ring closing metathesis catalyst, and 

many variations of the catalyst using different carbenes have been synthesised.
Figure 1.28:

Grubbs' catalyst \  ^Ph
(Ph3P)2CI2Ru
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1.6 Complexes of 1,2,3-Selenadiazoles and 1,2,3-Thiadiazoles
Before the reactions of 1,2,3-selenadiazoles and 1,2,3-thiadiazoles are considered, a 

brief overview of the syntheses of these compounds is given.

1.6.1 The Syntheses of 1,2,3-Selena- and 1,2,3-Thiadiazoles

The first reported general synthesis of 1,2,3-selenadiazoles was by Lalezari and 

Shafiee in 1969 when an attempted synthesis of phenyl glyoxal keto-semicarbazone
OQ

took an unexpected path. They found that the reaction of acetophenone 

semicarbazone with SeC>2 in acetic acid gave 4-phenyl-1 ,2 ,3-selenadiazole in good 

yield (6 6 %). This method has subsequently been used to synthesise a variety of 4,5- 

disubstituted 1,2,3-selenadiazoles (figure 1.29, E = Se) . 9 0 ,9 1

Figure 1.29:

/  E r2x
R j, R2 = alkyl, aryl 
E = S, Se

In 1972 Meier and Voigt extended this synthesis to cycloalkeno-1,2,3-selenadiazoles
09(R1-R2 = (CH2 )n) by reacting cyclic semicarbazones with SeC>2 in dioxane. They 

used this method to synthesise cyclopenteno-, cyclohexeno-, cyclohepteno- and 

cycloocteno-1,2,3-selenadiazoles.

1,2,3-Thiadiazoles (figure 1.29, E = S) can be synthesised by the reaction of 

acetylhydrazones, ethoxycarbonylhydrazones, p-tolylsulphonylhydrazones, or 

semicarbazones with thionyl chloride (SOCI2 ). This method can be used for both 4,5- 

disubstituted 1,2,3-thiadiazoles and cycloalkeno-1,2,3-thiadiazoles. 9 3 ’9 4 ’95

1.6.2 Complexes Containing 1,2,3-Selena- and 1,2,3-Thiadiazole Ligands

The only complexes reported containing intact 1,2,3-selenadiazole ligands are those 

of the group 6  carbonyls and Mn. Reaction of cycloalkeno-1,2,3-selenadiazoles with 

the group 6  carbonyl complexes [M(CO)s(THF)] (M = Cr, Mo, W), gave 

[M(CO)5(selenadiazole)] (figure 1.30).96 In addition the reaction of [Mo(CO)4 (nbd)] 

(nbd = norbomadiene) and [Mo(CO)3 (MeCN)3 ] with cyclohexeno-1,2,3-selenadiazole
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gave the complexes [Mo(CO)4 (selenadiazole)2 ] and [{Mo(CO)3 }2 (selenadiazole)3 ]

respectively (figure 1.30). The dimeric species comprises three selenadiazole ligands

bridging through both nitrogen atoms.
Figure 30:

A
■ /

N M(CO)5
\

CO

l / co
N Mo CO

/ oc/ |-qp OO
N

\N:
(O C )3Mo -

NI
Mo(CO)3

M = Cr,M o,W  
R2 = (CH2)n 
n =  4-6

Se

Selenadiazole substituents 
om itted for clarity

The reaction of [Mn(r|5C5H4 Me)(CO)2 (THF)] with 4-terf-butyl-, cyclohexeno- or

cycloocteno-1 ,2 ,3-selenadiazole gives the complexes

[Mn(r|5-C5H4 Me)(CO)2 (selenadiazole)] (figure 1.31).97 The selenadiazole ligand is

bound to the metal through the N(2) atom as was seen for the group 6  complexes.
F igure 1.31:

-Mn(CO)2Cp

R , =  lBu; R 2 = H 

R , - R 2 = (C H 2)4 

R , - R 2 =  (C H 2)6

Complexes containing 1,2,3-thiadiazole ligands analogous to the above species have 

also been synthesised. Of the group 6  carbonyl derivatives only 

[W(CO)5(cycloocteno-1,2,3-thiadiazole)] has been synthesised. 9 6  However, all the 

manganese complexes analogous to those in figure 1.31 have been synthesised with

1,2,3-thiadiazoles as have the complexes [MnCp’(CO)2 (benzo-1,2,3-thiadiazole)]

(Cp’ = t^-CsHs, r|5-C5H4 Me) . 9 7  In addition the complex [PtCl2 (NH3 )(benzo-1,2,3- 

thiadiazole)] (figure 1.32) has been synthesised by the reaction of K[PtCl3 (NH3 )] with 

benzo-1,2,3-thiadiazole. 98 Here the 1,2,3-thiadiazole ligand is coordinated to platinum 

through the sulphur atom and not through the N(2) atom as seen with the group 6  and 

7 species investigated.



1.6.3 Reactions of 1,2,3-Selenadiazoles and 1,2,3-Thiadiazoles

Although reports of complexes containing intact 1,2,3-selena- and 1,2,3-thiadiazole 

ligands are rare, their reactions with the later transition metals are well known. The 

reaction of 1,2,3-selena- and 1,2,3-thiadiazoles with [Fe2 (CO)9 ] was investigated in 

the early 1970’s by Rees and Schrauzer9 9 ,1 0 0  in attempts to trap the 1,3-dipolar 

thiaketocarbenes and selenaketocarbenes. It was found that reaction of various 4,5- 

disubstituted 1,2,3-thia- and 1,2,3-selenadiazoles with [Fe2 (CO)9 ] at elevated 

temperatures gave a hexacarbonyldiiron-thia/selenaketocarbene complex (figure 1.33).
Figure 1.33:

IN

\
/

Heat, [Fe2(C O )9]

r 2

CO

CO
CO

7 t \ /
• — f*~Fe—
*v I /  \

+  N 2 + 3 C O

and

This reaction was further investigated by Mayr, Panned and co-workers, 101 who found 

that the selenaketoketene complex shown in figure 1.34 is an intermediate, 

readily decarbonylates to give the product observed by Rees and Schrauzer.
Figure 1.34:

n =  2,  3,  4

Further work showed that 1,2,3-thiadiazoles would react with [Fe2 (CO)9 ] to give ring- 

opened products with partial or no loss of N2 . Several imine hexacarbonyldiiron
103 •complexes were synthesised, and benzo-1,2,3-thiadiazole gave a linear tmron 

cluster containing two ring-opened diazole molecules (figure 1.35) . 104 It is believed 

that these species are formed with 1,2,3-thiadiazoles and not 1,2,3-selenadiazoles due
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to the stability of the a-diazothioketone which forms upon ring opening. If an

oc-diazoselenoketone is formed it immediately loses nitrogen to give a 

selenaketocarbene.

It has also been found that [W(CO)s(cyclohexeno-1,2,3-thiadiazole)] will react with 

[Fe2 (CO)9 ] to give the hexacarbonyldiiron thiaketocarbene complex and the imine 

hexacarbonyldiiron complex. 9 6  [W(CO)5 (cyclohexeno-l,2 ,3 -selenadiazole)] will react 

with [Fe2 (CO)9 ] to give the hexacarbonyldiiron selenaketocarbene complex, and 

[W(CO)5 (THF)] has been shown to decarbonylate the cyclohexeno-selenaketoketene 

complex giving the hexacarbonyldiiron selenaketocarbene complex.

The same research group later showed how 1,2,3-selenadiazoles could be used as

precursors to metal-stabilised alkynes. 1 0 5 ,1 0 6  Reaction of [Mo2 (tj5 -C5H5)2 (CO)4 ] with

4-phenyl-1,2,3-selenadiazole gave [Mo2 (rj'5-C5H5)2 (p.-r|2 ,ri2 -PhCCH)(CO)4 ] in good 

yield. When cycloalkeno-1,2,3-selenadiazoles were used in the reaction, 

intermediates could be isolated and are shown in figure 1.36.

F igure 1.35:

Fe(CO)3

Fe(CO)3
Fe(CO)3(OC)3Fe-
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Figure 1.36:
Mo(CO)2Cp

[Mo2Cp2(CO)4]

MofCOfeCp

Heat

Mo
(CO)2Cp

[Mo2Cp2(CO)4]

Cp(OC)2M o ^ —  ——;Mo(CO)2Cp 
"Se

-N

NH
/

'M o
(CO)2Cp

The hydrazonato complex is a dead end in the transformation; it decomposes without 

formation of isolable products.

In 1987 Morley and co-workers began investigating the reactions of cobalt complexes 

with 1,2,3-selenadiazoles. 107 They found that the reaction of cycloocta-1,2,3-

selenadiazole with [Co(r|5-C5H5)(PPh3 )2] in refluxing toluene gave a 

selenaketocarbene complex (figure 1.37) analogous to the hexacarbonyldiiron 

selenaketocarbene complex shown in figure 1.33. This is not surprising as CoCp is 

isolobal with Fe(CO)3 . 108 The reaction was also found to proceed at room temperature

using [Co(rj5-C5 H5)(C2 H4 )2 ] in ether, and was later extended to 6,7-dihydrocycloocta-,

6,7,8,9-tetrahydro- and 4,5,6 ,7,8 ,9-hexahydrocycloocta-1,2,3-selenadiazoles. 109 

Figure 1.33:

[C oC p(PPh3)2] 

T oluene, R eflux

Cp
Co

\
— CoCp 

S e

The reaction of [Co(r|5 -C5 Me5)(C2 H4 )2 ] with these 1,2,3-selenadiazoles gave quite 

different products. 109 In this case the products were mononuclear with a structure 

dependent on the degree of unsaturation of the 1,2,3-selenadiazole. For cycloocta- 

and 6,7-dihydrocycloocta-1,2,3-selenadiazoles, incorporation of a C2 H4  unit leads to a 

product with a 5-membered heterocyclic ring system; whereas 6 ,7,8,9- 

tetrahydocycloocta and 4,5,6 ,7,8 ,9-hexahydrocycloocta-1,2,3-selenadiazole give a 

product with a 4-membered heterocyclic ring system and an intact 1,2,3-selenadiazole
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ligand (figure 1.38). The formation of mononuclear products is believed to be due to

the steric effect of the Cp* substituent and the reaction is believed to proceed via the

C0 -C2 H4  intermediate shown.
Figure 1.38:
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It was also found that the reaction of [Co(r|5 -C5H5)(PPh3 )2 ] or [Co(r|5-C5R5)(CO)2] (R 

= H or Me) with 1,2,3-selenadiazoles, in the presence of excess elemental selenium, 

leads to the formation of cyclopentadienyl/pentamethylcyclopentadienylcobalt 

diselenolenes. 1 1 0 ,111 The reaction is believed to proceed via a cobalt selenaketocarbene 

intermediate (figure 1.39) which then undergoes a C-Se bond formation to give the 

diselenolene in moderate yield.
Figure 1.39:
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For cyclocteno-1,2,3-selenadiazole, if excess elemental sulphur is used instead of
119selenium then a cyclopentadienylcobalt dithiolene can be formed. When this

reaction was performed with one equivalent of sulphur the thiaselenolene was also

produced, but it was found that the dithiolene was still the favoured product by a

molar ratio of 1.5:1 (figure 1.40).
Figure 1.40:
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Evidence was found that a Se3 -chelate species (figure 1.41)'13 could be formed by 

direct reaction of cycloocteno-l,2,3-selenadiazole with [Co(rj5 -C5H5)(CO)2 ] and 

elemental selenium or by the reaction of the cyclopentadienylcobalt diselenolene with 

cycloocteno-l,2,3-selenadiazole and elemental selenium.
Figure 1.41:

.Co.
Se

Se

Morley’s group then went on to look at some reactions of platinum and palladium 

complexes with cycloalkeno-1,2,3-selenadiazoles. They found that the reaction of 

cycloocteno-1 ,2 ,3-selenadiazole with [Pt(PPh3 )4 ] gave two products, a

selenaketocarbene complex and a species believed to be polymeric (figure 1.42).1
Figure 1.42:
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Investigation of the reaction of Pd(0) phosphine complexes with cycloalkeno-1,2,3- 

selenadiazoles found that two types of product could be formed, dependent on the 

phosphine used. When trialkylphosphinepalladium(O) complexes were used 

compounds with the general formula [PdL(PR.3 )] (R = Et, Bu) were isolated, where L 

is a Se,N,Se tridentate ligand (figure 1.43) . 1 1 5 ,1 1 6

Figure 1.43:
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When [Pd(PPh3 )4 ] was used then a dinuclear diselenolene was isolated (figure

1.44). 117 It was found that at slightly lower temperatures, trace amounts of 

[PdL(PPh3 )] (L as above) were also formed. The formation of the dinuclear
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diselenolene is believed to proceed via the formation of a 1,4-diselenin from the 1,2,3- 

selenadiazole.
Figure 1.44:

Recently the reaction of [Pt(PPh3 )4 ] with 4-methyl-5-ethoxy carbonyl-1,2,3- 

selenadiazole in toluene, in a sealed vessel, has been shown to give a complex of the 

type [PtL(PPh3 )] (figure 1.45) , 118 where L is a Se,N,Se tridentate ligand analogous to 

that in figure 1.43. The complex was found to act as a selective catalyst in the 

hydrosilylation of terminal acetylenes.
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1.7 Synthesis and Reactions of 1.4-Diselenins
1,4-Diselenins can be synthesised from cyclic 1,2,3-selenadiazoles by vacuum 

pyrolysis, 9 2 ,1 1 9  or by refluxing in xylene in the presence of elemental selenium (figure

1.46). 120

Figure 1.46:

Despite this ready preparation there has been little investigation of the chemistry of

1.4-diselenins. In 1985 Mayr, Pannell and co-workers investigated the reactions of 

[Fe2 (CO)9 ] with some 6 /5 -cycloalkeno-l,4-diselenins. 121 They found that a variety of 

products were given, some of which were dependent on the size of the cycloalkene 

ring (figure 1.47).
Figure 1.47:
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It had been previously reported that the reaction of tetraphenyl-l,4-dithiin with 

[Fe2 (CO)9 ] gave analogues of the first three products in figure 1.47. 122 Mayr and 

Pannell repeated the reaction and found a diironhexacarbonyl-diphenylacetylene 

complex and hexaphenylbenzene to be present. The presence of the acetylene may 

explain the formation of the hexa-substituted benzene species in figure 1.47.

At around the same time the coordination of intact selanthrene (6/s-benzo-l,4-
177 174diselenins) ligands to some group 10, 11 and 12 metals was reported. ’ It was
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found that 2,3,7,8-tetramethoxyselanthrene and 2,3,7,8-

Zus(niethylenedioxy)selanthrene would coordinate to these metals forming [PdCfeLa], 

[PtChL], [AgL]N0 3  and [HgC^L] (L = selanthrene ligand). Note the difference in 

behaviour of Pd which coordinates two selanthrene ligands.

Recently Morley’s group has investigated the reactions of Zus-cycloalkeno-1,4- 

diselenins with platinum and palladium. They found that the reactions of bis- 

cyclohepteno-l,4-diselenin and [MCl2 (PhCN)2 ] (M = Pd, Pt) gave different products 

(figure 1.48).125 In the reaction of the palladium compound the expected [MCI2L2 ] 

complex was formed; for platinum however, an oxidative addition of a C-Se bond to 

Pt(II) occurs and a dinuclear Pt(IV) complex is formed.

Figure 1.48:

They have also investigated the reactions of some Pd(0) complexes with bis- 

cycloalkeno-l,4-diselenins. They found that the reactions of [Pd(PPh3 )4 ] with a bis-

Similarly the reaction of [Pd2 (dba)3 ].dba with PBU3 and a Zus-cycloalkeno-1,4- 

diselenin gives a dinuclear diselenolene if two equivalents of phosphine are used, or a 

mononuclear diselenolene if four equivalents of phosphine are used (figure

[PtCl2(PhCN)2] [PdCl2(PhCN)2]

117cycloalkeno-1,4-diselenin gave a dinuclear diselenolene of the type in figure 1.44.
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Figure 1.49:
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It was found that the tributylphosphine dinuclear diselenolenes reacted with dppe 

(l,2-Z>/s(diphenylphosphino)ethane) to give the mononuclear diselenolenes 

[Pd(Se2Cn+4 H2n+4 )(dppe)] in good yield.
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1.8 Synthesis and Reactions of 1,2-Diselenins and Other

Compounds with an Se-Se Bond.
The chemistry of 1,2-diselenins, like that of 1,4-diselenins, has not been well explored. 

1,2-Diselenins with an aromatic backbone (figure 1.50) are most common due to their 

relatively easy synthesis from brominated aromatic systems via lithiation and
1 ^ 0  1 9 Q  1 O A

subsequent treatment with elemental selenium. ’ ’ Recently the synthesis of 1,2-

diselenins 3,6-disubstituted with 'Pr or *Bu has been documented.131 The synthesis

involves the treatment of butadienes with Ti(0'Pr)4; subsequent treatment with

elemental selenium and reduction gives the 3,6-disubstituted-1,2-diselenins.
Figure 1.50:

0 “ 0  - O —
\  /  S e------ Se
S e Se

3,6-disubstituted-l,2-diselenin 
fe-benzo-l,2-diselenin R = iP r tBu

There are no reported reactions of 1,2-diselenins with transition metal complexes;
119there is a report, however, on the reaction of a 1,2-dithiin with [Pt(COD)2 ]. The

report documents the oxidative insertion of [Pt(COD)2 ] into the S-S bond of

diacenaphtho[1,2-cil’,T -e]- 1,2-dithiin, giving [Pt(S2 C2 4 Hi2 )(COD)] (figure 1.51). 
Figure 1.51:
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There have been some reports of cyclic compounds containing an Se-Se bond reacting 

with transition metal complexes. The group of Abel and Orrell has reported on the 

reactions of 4,4-dimethyl-1,2-diselenacyclopentane with Pt(IV) 133,134 and Re(I)135 

complexes. They found that the reactions of [Pt4Mei2 l4 ] and [Re2 Cl2 (CO)6 (THF)2 ] 

with 4,4-dimethyl-1,2-diselenacyclopentane gave [Pt2 Me6 l2 (SeCH2 CMe2 CH2 Se)] and 

[Re2 Cl2 (CO)6 (SeCH2 CMe2 CH2 Se)] respectively; both complexes are dinuclear and
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contain an intact molecule of 4,4-dimethyl-1,2-diselenacyclopentane which bonds via 

Se to the metal centres (figure 1.52).
Figure 1.52:
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The reactions of 4,4-dimethyl-1,2-diselenacyclopentane with [MX(CO)5]‘ (M = Cr,
• * 1Mo, W; X = Cl, Br, I) in the presence of a Lewis acid were also investigated. It

was found that the ligand would coordinate to the metal through one selenium atom to 

give complexes of the type [M(CO)5 (SeCH2 CMe2 CH2 Se)]. It was found that a 1,2- 

metal shift process occurs, with the metal able to bond to either selenium; a variable
o

temperature NMR study showed this process to be rapid at >80 C. The complexes 

[M(CO)5 (EE’CioH6 )] (E = S; E* = S, Se) were also prepared from naphtho[l,8 -c,d]- 

dithiole and diselenole, and were observed to show no 1,2-metal shift. Complexes of 

a similar ligand - tetrathionaphthalene (TTN, C10H4S4) - have been investigated for
•  1 ”37 1their potential electronic uses. ’

As part of their investigation of the syntheses and reactions of heterocyclic rings 

containing nitrogen and a chalcogen, 1 3 9 ,1 4 0  the group of Chi vers investigated the 

reaction of a P2N4 Se2 ring with [Pt(C2 H4 )(PPh3 )2 ]. They found that oxidative addition 

of the Se-Se bond to [Pt(C2 H4 )(PPIi3 )2] occurred giving [Pt(Se2N4 P2 )(PPh3 )2 ] (figure 

1.53). They also found that P2N4 Se2 r| ̂ -coordinated t 0  [PtCl(PEt3)2 ], would
1undergo the same reaction to give the bimetallic species [Pt{r| -Se,Se -PtCl(r| -N-

P2N4Se2)(PEt3)2}(PPh3 )2].
Figure 1.53:

S e Se

1\ 1\ [Pt(C2H4)(PPh3)2^  Ph3 P \  ^ Se^ N ^ P-------p h,
\  V  / ------- ---------------------------►  Pt X

P  P T o luene , 0 ° C  p ^ X   Ph2

PhJ>h2

The reactions of low-valent platinum and palladium complexes with simple 

diselenides have been fairly well studied. In 1982 Day, Lesch and Rauchfuss reported 

the reaction of [Pt(C2 H4 )(PPh3 )2 ] with diphenyl diselenide (PhSeSePh), which gave 

toms-[Pt(SePh)2 (PPh3 )2 ], as a result of oxidative addition of the Se-Se bond to
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platinum . 141 In 2003 Ananikov et al. showed that the same product was given when 

[Pt(PPh3 )4 ] was reacted with PhSeSePh. 142 In addition, they found that the reaction of 

[Pd(PPh3 )4 ] with PhSeSePh gave the dinuclear species [Pd2 (SePh)4 (PPh3 )2 ]. 

Laitinen’s group found the same behaviour when investigating the reactions of 

[M(PPh3)4] (M = Pd, Pt) with fr/s-(2-thienyl) diselenide (ThSeSeTh) ; 143 the complexes 

[Pd2 (ThPh)4 (PPh3 )2 ] and [Pt(ThPh)2 (PPh3 )2] were the major products formed in each 

reaction (figure 1.54).
Figure 1.54:
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Several reports have been published on the reactions of Pd(II) and Pt(II) complexes 

containing a chelating N-donor ligand with diselenides. Puddephat showed in 1993 

that [PtMe2 (phen)] (phen = 1,10-phenanthroline) reacts with PhSeSePh through an 

oxidative addition of the Se-Se bond, to give [PtMe2 (SePh)2 (phen) ] . 144 In 1998 Canty 

synthesised [PtMe2 (SePh)2 (bipy)] (bipy = 2,2’-bipyridine) by an analogous method, 

and also extended the study to palladium species. 145 They found that the reaction of 

[PdMe2 (L)] and [Pd(CH2 CH2 CH2 CH2 )(L)] (L = bipy, phen) with PhSeSePh gave the 

Pd(IV) complexes [PdMe2 (SePh)2 (L)] and [Pd(CH2 CH2 CH2 CH2 )(SePh)2 (bipy)] 

respectively (figure 1.55). As expected these Pd(IV) complexes were found to be less 

stable than their platinum analogues.
Figure 1.55:

- " V A l /Pd
/ | \• CnDkSePh

V N\i
SePh

SePh

The reactions of [Pt(dmphen)(olefin)] (dmphen = 2,9-dimethyl-1,10-phenanthroline) 

with MeSeSeMe and PhSeSePh also follow a similar path . 1 4 6 ,1 4 7  It has been found that 

under certain conditions the reaction is reversible. 148 This has been found for the
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platinum complexes [Pt(4 -MeOC6 H4 )(CH{CC>2 R} 2X K N  -chelate)] (R = Me, Et, ’Pr) 

reacting with MeSeSeMe and PhSeSePh.
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1.9 Diselenolenes
Although there has been a large amount of investigation into the syntheses and 

properties of dithiolenes (see next section) , 149 their selenium analogues, diselenolenes, 

are less well known. One of the first reported syntheses of diselenolenes was by 

Davison and Shawl in 1970;150 they found that the reaction of 6 /s-(trifluoromethyl)- 

1,2-diselenetene with [Ni(CO)4 ] gave [Ni{Se2 C2 (CF3 )2 }2 ] (figure 1.56). The 1,2- 

diselenetene is prepared by the reaction of hexafluorobut-2 -yne with refluxing 

selenium and so the procedure is limited to the preparation of 1 ,2 -diselenetenes 

containing electron-withdrawing groups that can withstand the harsh conditions 

involved. This synthesis of diselenolenes was later extended to Pt, Cu and Au 

diselenolenes. 1 5 1 ,1 5 2

Figure 1.56:
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In 1982 Bolinger and Rauchfuss reported a synthesis of diselenolenes from
1 ̂ 3dicyclopentadienyltitanium pentaselenide and activated alkynes. They found that 

refluxing [TiCr^-CsEUR^Ses] (R = H, Me) with ZCCZ (Z = CO2 CH3 or CF3 ) gave

titanium diselenolenes of the type [Ti(t|5 -C5H4 R)2 (Se2 C2 Z2 )]. These species were 

found to act as chelate transfer reagents and would react with [MCI2 L2 ] (M = Ni, L2  = 

dppp; M = Pt, L = PPI13) and [Pt2 Cl4 (Ph2PCCPPh2 )2] to give Ni and Pt diselenolenes

(figure 1.57). Note how [Tifr^-CsHUR^Cfe] is essentially catalytic in this process. 

Figure 1.57:
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In 1984 Gautheron’s group reported the syntheses of more group 4 diselenolenes.154 

They found that the reaction of metallocene aryne complexes with elemental selenium

gave diselenolenes of the type [M(T|5-C4 H4 R)2 (Se2 C6 H4 )] (M = Zr, R = *Bu; M = Ti, R 

= H).

In 1985 Wudl’s group reported a synthesis of [Ni{Se2 C2 (CF3 )2 }2 ]2* using bis- 

(trifluoromethyl)-l,3-diselenole-2-selone as a precursor instead of a diselenetene.155 

This method was a lot less harsh than the diselenetene method; in addition the 

synthesis was extended by the use of a nitrogen-containing derivative (figure 1.58). 
Figure 1.58:

Ni(OAc)2 4H20

'S e
MeOH
Reflux

E = Se; R 1 = R2 = CF3 
E = N(CH3)2+; R 1 = CH3; R2 = H, CH3

The use of l,3-diselenole-2-selones as precursors to diselenolenes was extended to

gold, nickel and palladium by Matsubayashi in the early 1990’s.156,157 Treatment of

CsSes with sodium metal gives Na2 [C3 Se5]; this is then reacted with the appropriate

metal chloride to give [M(C3 Ses)L]n' (M = Au, L = CsSes, n = 0 - 1; M = Ni, Pd, L =

C3 S5 , n = 2). Cassoux et al. used this type of reaction to prepare nickel and palladium

diselenolenes with mixed S/Se ligands. 1 5 8 ,1 5 9 These complexes [M(C3 S3 Se2 )2 ]2’ (M =

Ni, Pd) have been found to have temperature and pressure dependent conductivities,

with superconductivity observed under pressure. In their oxidised form these species

crystallise as the dimers [M(C3 S3 Se2 )2 ] 2  with the nickel species linked by Ni-Se bonds

and the palladium species linked by a Pd-Pd bond (figure 1.59).
Figure 1.59:
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It was found that similar systems could be synthesised containing the 1,2,5- 

thiadiazole-3,4-dithiolate ligand (tdas -  C2N2S32‘),160,161,162,163 and recently a nickel 

complex of this type with a mixed S/Se occupancy ([Ni(C2N2 S2 .2 Seo.8)2 ] ’) has been
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reported.164 The ratio of S:Se at the thiolic sites is 3:2, and the presence of selenium 

makes the dianion easier to oxidise than [Ni(tdas)2 ]

In 1986 Kajitani’s group reported a synthesis of a cobalt diselenolene from a 

cyclopentadienylcobalt(I) precursor, elemental Se and di-2-pyridylethyne.165 They 

found that when this diselenolene was refluxed in toluene with elemental S, the 

dithiolene and thiolatoselenolato species were formed (figure 1.60).
Figure 1.60:
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The reaction was extended to diphenylethyne;166 in part of the investigation the group 

found a cubane-type species formed in the absence of the alkyne (figure 1.61). This 

could be reacted with an alkyne to give dithio/diselenolenes and so is believed to be 

an intermediate in the reaction.
Figure 1.61:
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In 1987 a selenolatotellurolato platinum complex -  [Pt(SeTeC6H4 )(PPh3 )2 ] -  was 

reported, along with the analogous ditellurolene and thiolatotellurolato complexes 

(figure 1.62).167 The complexes were synthesised by the reaction of the appropriate o- 

dichalcogenolatobenzene with [PtCl2 (PPh3 )2 ].
Figure 1.62:
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In 1989 a tungsten /m-diselenolene and dinuclear tungsten ^/^-diselenolene were 

reported by Ibers et al.168 They found that the reaction of [WSeJ2' and [W2 Sejo]' with 

DMAD (dimethyl acetylenedicarboxylate) in toluene at room temperature gave
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[W{Se2 C2 (COOCH3 )2 }3]2’ and [W2 Se2 {Se2 C2 (COOCH3 )2 }4 ]' respectively (figure 

1.63).
Figure 1.63:
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The syntheses of cobalt, palladium and platinum diselenolenes from 1,2,3- 

selenadiazoles and 1,4-diselenins by Morley et al. has been discussed in previous 

sections; the group have also reported syntheses of diselenolenes from the 

tetrachalcogenides [ME^dppe)] (M = Pd: E = S; M = Pt: E = S, Se) . 1 6 9 ,1 7 0  They found 

that [ME4 (dppe)] would react with DMAD and DEAD (diethyl 

acetylenedicarboxylate) to give the diselenolenes [M{E2 C2 (COOR)2 }(dppe)] (R = Me, 

Et). They found that less activated alkynes (R = H, Ph) gave no isolatable products 

after reaction. They also found that [PdS4 (dppe)] would react with the carbene 

complex [W(CO)5 {C(OEt)C=CPh}] giving an unsymmetrical dithiolene (figure 1.64); 

no reaction occurs with [PtE4 (dppe)j.
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Figure 1.64:
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Mizobe and Hidea reported a similar reaction of the dinuclear iridium polyselenide 

[Ir2 Cp*2 (H-Se4 )2 ] with DMAD and MAMC (H O C C 0 2 Me).m They found that the 

reaction of [Ir2 Cp*2 (|i-Se4 )2 ] with one equivalent of DMAD gave a mixture of the

dinuclear diselenolene [Ir2 Cp*2 (|i-Se4 ){ji-Se2 C2 (C0 2 Me)2 }] and the mononuclear 

diselenolene [IrCp*{Se2 C2 (C0 2 Me)2 }]. The reaction with two equivalents of DMAD 

gave rise to a third product [IrCp*{Se,£'e,C-Se2 C4 (C0 2 Me)4 }] which results from the 

addition of DMAD to [IrCp*{Se2 C2 (C0 2 Me)2 }] (Figure 1.65). Upon treatment of

[Ir2 Cp*2 (|i-Se4 )2 ] with one equivalent of MAMC, two dinuclear complexes were

produced [Ir2 Cp*2 (|i-Se4 ){|H-Se2 C2 H(C0 2 Me)}] and [Ir2 Cp*2 {fi-Se2 C2 H(C0 2 Me)}2 ], 

corresponding to the addition of one and two molecules of MAMC respectively 

(figure 1.65). In the presence of excess MAMC only [Ir2 Cp*2 {)Li-Se2 C2 H(C0 2 Me)}2 ] 

was formed.
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Figure 1.65:
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Recently Morley’s group have reported the reactions of the dinuclear diselenolenes 

[Pd2 (Se2 Cn+4 H2 n+4 )2 (PR3 )2 ] (n = 2, 3, 4; R = Bu, Ph) with some alkyl halides.172 The 

work concentrated on [Pd2 (Se2 C8H]2 )2 (PR3)2 ] and they found that bridge cleavage 

reactions occurred to give species of the type [PdX(Se{R’}C8Hi2 Se)(PR3 )] (X = Br, I; 

R’ = Me, Et, etc.). Although not fully characterised they also proposed the formation

of [Pd2l2{|i-SeC8Hi2Se(CH2)3SeC8Hi2Se}(PBu3)2] (figure 1.66) from 

[PdI(Se{(CH2CH2CH2l}C8H12Se)(PR3)] and ^(SezC gH nM PR s^]. This species 

consists of two square planar palladium units linked by a hydrocarbon bridge.
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Figure 1.66:
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Although platinum(diimine)(dithiolene) complexes are well known for their desirable 

electronic and photochemical properties, 173 there are only two reports of 

platinum(diimine)(diselenolene) complexes (figure 1.67).174,175 The first report by 

Matsubayashi documents the syntheses of [Pt(C3 Ses)(L)] (L = A-ethyl/i-propyl-2- 

methylpyridine-2-carbaldimine, 2,2’-bipyridine (bipy)), and the second report 

documents the syntheses of [M(Se2 C6 H4 )(bipy)] (M = Ni, Pt). In both cases the 

properties of the complexes proved less desirable than those of the sulphur analogues. 
Figure 1.67:
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Recently Corrigan and Brown have reported the syntheses of ferrocenylselenolate 

bridged Pd(II) and Pt(II) complexes. 176 Although these are not diselenolenes they 

have similar structures with a ferrocenyl backbone replacing the -C=C- backbone. 

They found that the reaction of l , r - 6 /s(trimethylsilylseleno)ferrocene with trans- 

[MC12 (PBu3)2] (M = Pd, Pt) gave the dimeric species

[M2 {|i-Fe(ri5-C5H4 Se)2 }2 (PBu3 )2]; the reaction of c/s-[PtCl2 (PBu3 )2] with 1,1’-
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monomer&w(trimethylsilylseleno)ferrocene gave the

[Pt{Fe(r|5 -C5H4 Se)2 }(PBu3 )2 ] (figure 1.68). An electrochemical study showed that 

there was electronic communication between the Fe centres in the dinuclear 

complexes.
Figure 1.68:
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1.10 Transition Metal Dithiolenes
Since there has been relatively little research into diselenolenes and those 

considerations have been mostly synthetic, here is presented a short summary of the 

properties of the sulphur-containing analogues dithiolenes. It is hoped that some of 

these properties will be present in the diselenolenes discussed in the later chapters. 

The chemistry of dithiolenes has been covered in several recent

reviews, 1 7 7 ,1 7 8 ’1 7 9 ’ 1 8 0 ,181 and it is important to note that this is only a brief overview of 

some dithiolene complexes and their properties. The structure of metal 1,2-dithiolene 

complexes (figure 1.69) comprises of a metal atom, two sulphurs and a C=C unit over 

which there is electronic delocalisation; in the case of bis- and tris- 1 ,2 -dithiolene 

complexes the delocalisation is more extensive, covering the metal, sulphurs and C=C 

units. Note that this delocalisation can be extended by appropriate choice of R groups. 

Figure 1.69:

R

R

1,2-Dithiolene 6w-l,2-Dithiolene /ra-l,2-D ithiolene

It is this delocalisation which can lead to a number of important properties including: 1

(i) The ability to undergo one or more reversible redox processes;

(ii) A low energy absorption into the visible/NIR region;

(iii) A frontier orbital distribution over much or all of the molecule;

(iv) Often a planar arrangement of the complex which allows for good stacking 

and close inter-molecular contacts in the crystal phase;

(v) Sulphur-mediated intermolecular interactions.

1.10.1 Dithiolenes Containing the dmit Ligand

Perhaps the most studied of the metal dithiolenes are salts of [M(dmit)2 ]n" (n = 0, 1, 
^ 1 00

2), ’ where dmit is 4,5-dimercapto-l,3-dithiol-2-thione. In 1986 Cassoux et al.
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1 83studied the properties of some of these complexes where M is a group 10 metal. 

They found that a needle of the complex [TTF][Ni(dmit)2 ] 2  (TTF = tetrathiafulvalene) 

exibited metal-like conductivity down to 4 K along the needle axis (parallel to the 010 

direction). Later investigation showed that under pressure (7 kbar) the complex 

exibited superconductivity at 1.6 K ; 3 this was the first dmit-based superconducting 

molecular metal. The superconductivity is associated with both S-S and S-M 

interactions between lattice planes due to the efficient stacking of these types of 

compound, and with S-S interactions between stacks. Since this time eight 

superconducting compounds containing [M(dmit)2 ] have been synthesised (figure 

1.70), some of which can also exhibit semiconductivity under certain conditions. 3

Figure 1.70:

TTF[M(dmit)2]n-

Superconducting compounds: [D]x[M(dmit)2]y
D = TTF; M = Ni, Pd (2 forms); x = 1, y = 2;
D = Me4N; M = Ni, Pd; x = 0.5, y = 1;
D = Me2Et2N; M = Pd; x = 0.5, y = 1;
D = Me2Et2P; M = Pd; x = 0.5, y = 1;
D =  EDT-TTF; M = Ni; x = 1, y = 1.

Recently it has been found that salts of [Ni(dmit)2] incorporating crown ether 

macrocycles which contain alkali metals can be synthesised; these give 

supramolecular cation structures. 2 One compound of interest, [Lio.6(15-crown- 

5 )H2 0 ][Ni(dmit)2 ] 2  formed a structure in which stacks of macrocyclic molecules 

formed an ion channel between stacks of [Ni(dmit)2 ] . 184 Since in this compound, the

number of Li+ ions corresponds to the number of conduction electrons in the LUMO

band of [Ni(dmit)2 ], there is the possibility of band-filling control by altering the ratio 

ofLi+to [Ni(dmit)2 ].

There have been some examples of fra-dithiolenes containing the dmit ligand; of 

particular note are the complexes [BEDT-TTF]3 [V(dmit)3 ] 185 ’ 186 (BEDT-TTF = 

Zu,s(ethylenedithio)tetrathiafulvalene) and [Fe(C5Me5)2 ][M(dmit)3 ] (M = Mo, W) , 187 

which both exhibit semiconducting properties.



44

1.10.2 Ferromagnetic and Antiferromagnetic Dithiolenes

Ferromagnetism and antiferromagnetism have been observed in some transition metal

centres are coupled into parallel alignment across thousands of atoms (or in the case

of crystals the spins of unit cells align). Below the Curie temperature the spins are

locked and the magnetism persists. The magnetization is not linearly proportional to

the applied field and a hysterisis loop is observed. This loop is broad for hard

ferromagnets (permanent magnets) and narrow for soft ferromagnets (magnets which

respond to changes in the applied field). In anti ferromagnets neigbouring spins are

locked in an antiparallel alignment (leading to a low magnetic moment) through a

mechanism called superexchange: the spin on one metal atom induces a small

polarisation of an occupied ligand orbital which results in the opposite spin on an

adjacent metal. Ferromagnetic and antiferromagnetic materials are used in data
1recording and storage devices such as computer hard drives.

There are few examples of transition metal dithiolenes which exibit ferromagnetism; 

one example is the complex [NH4 ][Ni(mnt)2 ].H2 0  (figure 1.71, mnt = 

maleonitriledithiolate) . 1 8 9 ,1 9 0  Above 100 K the complex displays antiferromagnetic 

coupling; ferromagnetic coupling is observed at 4 K at normal pressure, which 

increases to 7 K at 7 kbar. It has been observed that at 98 K the repeat distance of the 

anionic stack in the crystal doubles; this suggests dimerisation of the anions, and may 

be the reason for the switch from antiferromagnetism to ferromagnetism.
Figure 1.71:

Many more examples of antiferromagnetic dithiolene complexes are known, including 

the dinuclear complexes [AsPh4 ]2 [(C3 0 S4 )CuC2 S4 Cu(C3 0 S4 )], 191

[NEt4 ]2 [Fe2 (bdt)4] 1 92 and [Hpy][{Fe(mnt)2}2] 193 (figure 1.72, bdt = 1,2- 

benzenedithiolate; Hpy = pyridinium). Note that [AsPh4 ]2 [(C3 0 S4 )CuC2 S4 Cu(C3 0 S4)] 

contains a bridging C2 S4 unit, through which the two Cu(II) centres are 

antiferromagnetically coupled, and shows a deviation from planar geometry. This, 

however, only has a small effect on the magnetic properties as the CUC2 S4 CU unit is 

planar and allows a good interaction between the magnetic orbitals through the bridge.

dithiolene complexes. 6 6  In ferromagnetic substances the spins on different metal

NC,

Ni
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In the iron complexes the Fe(III) centres are antiferromagnetically coupled through 

the bridging sulphur atoms.
Figure 1.72:
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1.10.3 Dithiolenes as Q-Switch Dyes in Near-IR Lasers

It has been observed that some bis-l,2-dithiolenes (in particular nickel dithiolenes) 

have a broad absorption with no vibrational fine structure, at the visible edge of the 

near-IR spectrum . 194 Altering the substituents of these dithiolenes can bring this 

absorption into the near-IR region and these dithiolenes can be used as dyes in Q- 

switching lasers. Q-switching is the compression of the full output energy of a laser 

into ultra-short pulses of extremely high peak power. If a ‘dye’ which absorbs 

radiation of similar wavelength to the laser is placed in the laser cavity it acts initially 

as a closed shutter absorbing the radiation. As pumping continues and the population 

inversion increases, the photon flux in the laser cavity reaches a level where the 

excited state lifetime of the dye molecules is too long to allow enough molecules to 

return to a ground state at a rate sufficient to sustain absorption of the laser light. At 

this point the dye temporarily ‘bleaches out’ effectively opening the ‘shutter’ and a 

pulse of laser light in excess of 100 MW is released. Both the laser and dye 

molecules return to the ground state and the process restarts. Since a mechanical 

shutter is not used, this system is referred to as passive Q-switching. The properties 

required for a good Q-switch dye include an absorption maximum close to the 

wavelength of the laser, a reasonable lifetime of the excited state (if the lifetime is too 

long, it bleaches out too soon; if too short bleaching may not occur), and a good 

photochemical and thermal stablity.
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One of the first dithiolenes prepared for use as a Q-switching dye was JUL2 -

tetrajulolidynylnickel dithiolene (figure 1.73) ; 194 note the planar structure and

delocalisation which contribute to the shift in absorption to the near-IR region. The

absorption maximum is at 1270 nm; in 1977 it was used successfully in an iodine

laser (X = 1300 nm). The analogous palladium and platinum compounds were

synthesised and these complexes also have absorption maxima at 1270 nm.
Figure 1.73:

\ /
Ni

, / \

JUL2

There has also been work on ferrocenyl substituted dithiolene complexes; the complex 

[Ni(S2 C2 (Fc)2 )2 ] 195 (figure 1.74; Fc = ferrocenyl) was found to have an absorption 

maximum of 1310 nm and is very stable. These properties make it a potential Q- 

switch dye.
Figure 1.74:
F c ,
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1.11 The Reactions of Selenophenes with Transition Metal 

Complexes
The reactions of selenophenes and thiophenes with transition metal complexes have 

been well studied, with particular attention paid to hydrodesulphurisation (HDS) 

processes. 196 Sulphur contamination of petroleum feedstocks is a problem: sulphur 

oxides produced upon combustion are pollutants and sulphur poisons precious metal 

catalysts used in the production of high octane gasoline. HDS is used to remove the 

sulphur from petroleum; the process used currently involves treatment with H2 at up 

to 200 atm and 350-400 C in the presence of a Mo/Co catalyst supported on AI2 O3 . 

In this process thiols, sulphides and disulphides are easily removed, but aromatic 

species, especially 4,6-disubstituted dibenzothiophenes, are more difficult to remove. 

In the search for a catalyst which will be more efficient at removing these aromatic 

species the reactions of many transition metal complexes with both thiophenes and 

selenophenes have been investigated.

Complexes of the group 6  metals will undergo contrasting reactions with 

selenophenes (and thiophenes). Angelici found that when [Cr(CO)6 ] was reacted with 

selenophene, thiophene and 2-, 3-, 2,5- and 2,3,4,5- alkyl-substituted derivatives,

complexes of the type [Cr(ri5-selenophene)(CO)3 ] were formed. 197 They later found 

that the use of [Cr(CO)3 (MeCN)3 ] gave a more efficient reaction, requiring the use of 

less ligand. 198 The group of W. D. Jones then showed that the photolysis of [M0 CP2 H2 ] 

in the presence of thiophene results in the Mo fragment inserting into the C-H bond at 

the 2-position to give [MoCp2 (H)(SC4 H3 ) ] . 199 They also showed that the photolysis of 

[WCP2 H2 ] in the presence of thiophene gave [WCp2 (H)(SC4 H3 )], but the intermediate 

thiatungstacycle [WCp2 (SC4 H4 )] could be isolated if shorter irradiation times were 

employed. Figure 1.75 shows the different products of the group 6  metals with 

thio/selenophenes.
Figure 1.75:

R

E = S, Se; R = H, Me M = Mo, W
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Manganese forms similar complexes with selenophene as chromium: [Mn(OTf)(CO)s] 

(Tf = SO2 CF3 ) reacts with selenophene, 2-methylselenophene and 2,5- 

dimethylselenophene to give complexes of the type

[Mn(t|5-selenophene)(CO)3 ](OTf) . 198 The species derived from selenophene and 2- 

methylselenophene would undergo nucleophilic addition to the 5-position of the 

selenophene giving [Mn{rj4 -SeCH(nuc)CHCHCR}(CO)3 ] (nuc = H, CN, PBU3 ; R = H, 

Me). The behaviour of rhenium when reacted with selenophene is quite different. 

The reactions of [Re(r|5 -C5R5)(CO)2 (THF)] (R = H or Me) with selenophenes gave 

products, the structures of which are dependent on whether R = H or Me, and the 

amount of substitution of the selenophenes used (figure 1.76).200,201 Reaction of 

[ReCp*(CO)2 (THF)] with selenophene gave the complex

[ReCp*(r| -selenophene)(CO)2 ] where Re is r| -bound to a C=C bond of selenophene; 

reaction with 2 -methylselenophene gave an isomeric mix of 

[ReCp*(r|2 -2 -methylselenophene)(CO)2 ] and the Se-coordinated 

[ReCp*(2 -methylselenophene)(CO)2 ]; and reaction with 2,5-dimethylselenophene 

gave only the Se-coordinated [ReCp*(2 ,5 -dimethylselenophene)(CO)2 ]. For 

[ReCp(CO)2 (THF)] reaction with selenophene gave an isomeric mix of

[ReCp(rj -selenophene)(CO)2 ] and Se-coordinated [ReCp(selenophene)(CO)2 ]; and 

reaction with 2 -methylselenophene gave only [ReCp(2 -methylselenophene)(CO)2 ].
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Figure 1.76:
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The differing behaviours observed are attributed to the enhanced donor ability o f the 

selenium on substitution o f selenophene with electron-donating methyl groups, 

therefore favouring Se-bonded isomers. The differences observed in the behaviour of  

Cp and Cp* complexes are attributed to the Cp* ligand’s increased electron density,

increasing 7t-backbonding in the olefinic system, favouring the rj2-bonded isomer.

The chemistry of [ReCp*(r| -selenophene)(CO)2] was further investigated and it was 

found that reaction with [M(CO)4(L)(THF)] (M = Cr, Mo: L = CO; M = W: L = CO, 

PPI13) gave complexes with M bound to Se (figure 1.77). Reaction with [Fe2(CO)9]

gave a complex with Fe(CO)4 bound to Se, a complex with Fe(CO)3 r|4-bound to the 

selenophene ligand, and a complex where Fe(CO)3 had inserted into the selenophene 

ring and another Fe(CO)3 is coordinated to it (figure 1.77).
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Figure 1.77:
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A complex with rhenium bound to the 2-position of selenophene has also been 

synthesised.202 Deprotonation of [ReCp(NO)(PPh3)(L)]+ (L = selenophene, 2- 

methylselenophene) gives complexes with Re bound at the 2 -position of the 

selenophene ring. When L = selenophene, further reaction with HBF4.Et20 or 

CF3SO3H gives a carbene complex (figure 1.78).

Figure 1.78:
Cp(Ph3P)(ON)Re

Se
H+

-42 °C

Cp(Ph3P)(ON)Re
S e

The reactions of the group 8 metals with selenophene were investigated by Arce et al. 

in 1990/ 1.203,204 They initially investigated the reaction o f [Os3(CO)io(MeCN)2] with 

selenophene and found that two products were given, the 1:1 product 

[Os3(CO)io(SeC4H4)] which includes a selenaosmacycle unit, and the 2:1 product 

[{Os3(CO)io}2(SeC4H4)] in which the selenophene has been opened and acts as a 

bridge between the Os3(CO)io units. Heating [Os3(CO)io(SeC4H4)] to 125 C in 

octane resulted in the loss of an Os(CO)4 unit to give [Os2(CO)6(SeC4H4)]. Figure 

1.79 shows the structures of [Os3(CO)io(SeC4H4)], [{Os3(CO)io}2(SeC4H4)] and 

[Os2(CO)6(SeC4H4)].

Figure 1.79:
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The reaction o f [Ru3(CO)i2] with selenophene in refluxing THF gave two products, 

the first of which, [Ru2(CO)6(|li-C4H4)], is presumed to result from the exchange of Se



for a Ru(CO)3 unit, followed by 7t-complexation to another Ru(CO)3 unit. The second 

product is the tetranuclear [Ru4(p3-Se)(p-C4H4)(CO)n]. The reaction o f [Fe3(CO)i2] 

with selenophene in refluxing cyclohexane gave [Fe2(CO)6(|X-C4H4)], directly

analogous to [Ru2(CO)6(|X-C4H4)], and [Fe2(CO)6(SeC4H4)] which is analogous to

[Os2(CO)6(SeC4H4)]. Figure 1.80 shows the products o f these reactions.
F igure 1.80:

(OC)3M*^—— M(CO)3

M = Fe, Ru

Some ruthenium complexes containing ring-opened selenophene without loss of 

selenium have also been reported. Angelici has reported that the reaction of 

[RuCp*(MeCN)3](OTf) with selenophene gave the complex

[RuCp*(rj5-selenophene)](OTf) .198 Upon treatment with Red-Al 

(Na[Al(0C2H40CH3)2H2]) the selenophene ring opened to give 

[RuCp*(SeCHCHCHCH2)]. The group of Chung has also demonstrated this type of

ring opening for the complex [Ru(r| -C6H6)(r| -selenophene)] . Treatment of this

complex with [C0CP2] and [Mn(CO)3(rj6-l-methylnaphthalene)], in DCM at -78 °C,

gave a C-Se cleaved RuMn2 complex (figure 1.81).
F igu re 1.81:

(CO)3
Mn

Ru

A
A ring opening reaction o f the complex [Os(NH3)5(r| -selenophene)](OTf)2 has also

been reported.206 The reaction of [Os(NH3)5(r(2-selenophene)]2+ with MeOTf results 

in methylation o f the selenium atom; subsequent treatment with TBAB (tetra- 

butylammonium borohydride) results in the ring-opened product shown in figure 1.82 .
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Figure 1.82:

3
[(H3N)50 s]

2+

MeOTf

[(H3N)50 s]-

3+

TBAB
,S e

\\
[(H3N)sOsl-

2+

There have been few reports concerning the group 9 metals and selenophene, and only 

of reactions involving rhodium and iridium. The group o f W. D. Jones has reported

the reactions o f [CoCp*(C2H4)2] with thiophene207 and dibenzothiophene.ZU8 The 

reactions gave complexes of the type [Co2Cp*2(SC4H4)], with a structure analogous to 

that o f [Fe2(CO)6(SeC4H4)], with one CoCp* unit inserted into the thiophene ring and 

the other coordinated to the thiacobaltacycle via bonds to S, Co and C=C. They have 

also reported on the reaction of the rhodium complex [RhCp*(Ph)(H)(PMe3)] with 

selenophene.209 The complex thermally eliminates benzene at elevated temperatures 

to give the 16-electron fragment [RhCp*(PMe3)]; this will insert into the C-Se bond 

of selenophene to give the selenarhodacycle [RhCp*(SeC4H4)(PMe3)] (Figure 1.83).

The reduction of [IrCp*(rj5-2 ,5-dimethylselenophene)] with Red-Al gives the

selenairidacycle [IrCp*{SeC(CH3)CHCHC(CH3)}] (figure 1.8 3 ).198

F ig u r e  1 .83:

208

Se^

•C p^ PMe3

The chemistry of the group 10 metals with selenophenes has not been thoroughly 

investigated. There are no reports of the reactions of nickel complexes with 

selenophene, although there is a report of the reactions of [Ni(PEt3 )3 ] with substituted 

thiophenes.210 It was found that [Ni(PEt3 )3 ] inserted into the C-S bond of 3- 

chlorothiophene giving the thianickelacycle [Ni(SCHCClCHCH)(PEt3 )2 ]. However 

[Ni(PEt3)3 ] inserted into the C-Cl bond of 2-chlorothiophene giving the complex

[NiCl(rj1-SC4 H3 )(PEt3 )2 ], and inserted into the C-H bond at the 4-position of 2-

nitrothiophene giving the complex [NiH(rj1-SC4 H2N 0 2 )(PEt3 )2 ]; these complexes are 

shown in figure 1.84. It was found that the analogous reactions with [M(PEt3 )3] (M = 

Pd, Pt) gave C-S insertion products in all cases.
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Figure 1.84:

S  Ni(PEt3)2

Although the reactions o f platinum complexes with thiophenes have been thoroughly 

investigated, in particular the reactions of [Pt(PEt3)3],211’212’213’214’215’216 there is only 

one report o f a reaction with selenophenes.217 It was found that the reaction of 

[Pt(C2H4)(PPh3)2] with Mn(CO)3+ activated selenophene and benzoselenophene gave 

the C-S e insertion products [{Pt(SeC4H4)(PPh3)2}Mn(CO)3]+ and

[{Pt(Se(C6H4)CHCH)(PPh3)2}Mn(CO)3]+ (figure 1.85). The palladium species 

[{Pd(SeC4H4)(PPh3)2}Mn(CO)3]+ was synthesised by an analogous method using 

[Pd(C2H4)(PPh3)2].
Figure 1.85:

Mn(C0)3+ Mn(CO)3+

S e  Pt(PPh3)2

S e  Pt(PPh3)2

This concludes the summary of the chemistry relevant to this thesis; general uses of 

the elements concerned have been covered, as have specific examples o f compounds 

and reactions highly relevant to the following work. This introduction was 

necessarily brief, but has hopefully provided a platform from which the following 

work can be understood. More detailed discussion (where relevant) will appear with 

the work presented in the next chapters.



Chapter 2

The Syntheses, Reactions and Characterisation of Some
Platinum Diselenolenes
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2.1 The Synthesis and Reactions of [Pt(Se7 CsHi7 )(PPh^)?l

2.1.1 The Synthesis of |Pt(Se?CsHnHPPhA?l

In 1995 Khanna and Morley reported the reaction of [Pt(PPh3)4] with cycloocteno-

1,2,3-selenadiazole (4,5,6,7,8,9-hexahydrocycloocta-l,2,3-selenadiazole) in refluxing

toluene.114 They found that the reaction gave two products, the compound

[Pt(SeC8Hi2)(PPh3)2] containing the selenaketocarbene ligand and a poorly soluble

yellow powder with empirical formula [Pt(Se2CsH|2)(PPh3)2]x. In addition to a poor

solubility the latter product had a high melting point (> 300 °C) and so was believed,

at the time, to be polymeric. The poor solubility prohibited a full spectral analysis,

but it was possible to obtain a MALDI mass spectrum of this species (figure 2.1). The

peak at m/z = 986 (100% relative abundance) is attributed to

[l9̂ Pt(80Se79SeC8Hi2)(PPh3)2]; as can be seen the isotope match is very good. The

peaks at m/z = 907 and 1445 are attributed to [P tlSeC sH ^X PPl^] and

[Pt2(Se2 C8Hi2)2(PPh3)2] respectively; it is believed that [Pt2(Se2CsHi2)2(PPh3)2] was

probably generated in the mass spectrometer.

Figure 2.1: MALDI mass spectrum and isotope profile match of 
[Pt(Se2C8H12)2(PPh3)2]

X?
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7 5 5 1  cr-
p i t  f ' |

M a ss  (m /z)
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On the basis of this result it was concluded that the poorly soluble yellow powder was, 

in fact, the diselenolene [Pt(Se2 CgHi2)(PPh3)2] (figure 2.2). Unfortunately, it was still
# T 1

not possible conclusively to characterize this species as P was the only NMR 

nucleus that could be investigated and it was not possible to obtain a crystal of this 

compound.

Figure 2.2:

P P h 3

\  /  pt
/  \

Se PPh3

Due to the moderate yield (26%) reported for [Pt(Se2CgHi2)(PPh3)2] (experimentally 

this was not exceeded) some alternative routes to this compound were investigated. 

The reaction of [Pt(PPh3)4] with 6/s-cycloocteno-l,4-diselenin in refluxing toluene 

was found to give [Pt(Se2 CgHi2 )(PPh3)2] in 33% yield; there was no evidence of the 

formation of [Pt(SeC8Hi2)(PPh3)2]. Reaction o f [P t^^P U X P P h sX ] with 

cycloocteno-l,2,3-selenadiazole in refluxing toluene also gives [Pt(Se2CgHi2)(PPh3)2]. 

There was no evidence for the formation of [Pt(SeCgHi2)(PPh3)2], although due to the 

small scales on which the reactions were carried out (< 0.1 mmol), it cannot be
'y

presumed that it wasn’t formed at all. In fact [Pt(r| -C2H4)(PPh3)2] reacts with
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cycloocteno-1,2,3-selenadiazole at room temperature in Et2 0  to give small amounts of 

[Pt(SeCgHi2 )(PPli3 )2 ] (see chapter 3).

Reaction of [Pt(SeC8Hi2 )(PPh3 )2 ] with elemental selenium or with cycloocteno-1,2,3- 

selenadiazole in refluxing toluene has not yielded [Pt(Se2 CgHi2 )(PPh3 )2 ].114 This 

indicates that [Pt(SeCgHi2 )(PPh3 )2 ] is not an intermediate in the formation of 

[Pt(Se2 CgHi2 )(PPh3 )2 ]. It is not known whether [Pt(Se2 CgHi2 )(PPh3)2 ] is formed by 

direct reaction of ‘P ^ P P l^ ’ with cycloocteno-1,2,3-selenadiazole and selenium, or 

whether it is formed by reaction of ‘P ^ P P l^ ’ with Zu's-cycloocteno-1,4-diselenin 

formed in solution from cycloocteno-1,2,3-selenadiazole. ’ Figure 2.3 shows the 

proposed reaction routes, all of which are dependent on the loss of dinitrogen from the 

selenadiazole to give the selenaketocarbene.
Figure 2.3:

"Pt(PPh3)2'Toluene, Reflux

Dimerisation

"PUPPhjV

'P t(PPh3)2'

Toluene, Reflux

Due to the limited studies that could be carried out on [Pt(Se2 CgH]2 )(PPh3)2 ] directly, 

some derivatives were synthesised which could be characterised more easily.

2.1.2 Reactions of rPtfSe^CgHifKPPhVhl with trialkvlphosphines and phosphites

Prolonged stirring of [Pt(Se2 CgHi2 )(PPh3)2 ] with an excess of PR3 (R = Et, Bu, 

z-CsHn, OMe) in toluene at elevated temperatures yields diselenolenes of the type 

[Pt(Se2 CgHi2 )(PR3 )2 ] (figure 2.4). Since [Pt(Se2 CgHi2 )(PPh3 )2 ] is immobile on 

alumina purification of lc, 2c, 3c and 4c is straightforward. The diselenolenes lc  and 

2c have been fully characterised and these data are presented later on in this chapter.
o 1

Compounds 3c and 4c were characterised by P NMR spectroscopy and FAB mass 

spectrometry only; they were synthesised to test the range of applicability of the 

phosphine exchange reaction, so a complete spectral characterisation was not
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undertaken. Table 2.1 shows the 31P NMR and mass spectral data for lc , 2c, 3c and

4c (for comparative purposes the data for [Pt(Se2 C8Hi2 )(PPh3 )2 ] are also shown).
Figure 2.4:

.P P h 3
E x cess P R i   —►

T o lu e n e , H eat 
R = E t, l c ;  B u, 2c;  
z-C 5H] j , 3c; O M e, 4 c ..

Table 2.1:31P NMR (CDCI3 solution) and mass spectral data for lc , 2c, 3c and 4c
lc  2c 3c 4c

JIP: 8 /ppm 2A  3 1  3 1  107.0
'j(  P-195Pt)/Hz 2781 2780 2788 4512

MS:a m/z (%)
[M]+ 699(20) 867(30) 951 (10) 711 (15)
[Pt(PR3)2]+ 431 (100) 599(100)

Recorded using FAB; figures are for isotopomers containing 195Pt, 80Se

Compounds lc, 2c, 3c and 4c decompose in air-exposed solution, eventually to a blue 

coloured species; the decomposition is particularly rapid in CHCI3 . The rate of 

decomposition is dependent upon the phosphine/phosphite substituent in the order lc  

> 2c > 3c > 4c; compound lc  completely decomposes in hours, whereas 4c takes 

several weeks. It is believed that the first stage of this decomposition is actually an
o 1

oxidation of one of the phosphine substituents. Following the decomposition by P 

NMR spectroscopy shows loss of the diselenolene resonance accompanied by the 

emergence of two resonances of equal intensity, one of which is at a much lower field
-i 1

(> 100 ppm) than the diselenolene resonance (figure 2.5). Table 2.2 shows the P 

NMR and FAB mass spectral data following decomposition of lc  and 2c (this process 

was not thoroughly investigated for 3c and 4c due to the long reaction times).
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Table 2.2: 31P NMR (CDCI3 solution) and mass spectral data for lc  and 2c 

decomposition products

lc  2c
JlP: 5(PA)/ppm &0 T 9

1 J(3 1P- Pt)/Hz 2777 2808
5(PB)/ppm 119.3 114.7
1 J(3 1P— Pt)/Hz 3317 3339

MS:a m/z (%)
[M]+ 714(30) 883 (90)

8 Recorded using FAB; figures are for isotopomers containing 195Pt, 80Se

Figure 2 .5:31P NMR spectrum of decomposition product of lc
O  r-S fOlh a\ a\
<r> o> cr> co(N <.-■< o  o

<ns roi> m bo
■ CN

<-) '•£> i
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The mass increase of 16 mass units (compared to the diselenolenes) suggests that an 

oxygen atom is incorporated into the diselenolene. The emergence of two phosphorus

molecule, with the low field phosphorus resonance suggesting it adds to one of the 

phosphine ligands (in general phosphorus(V) compounds resonate at much lower field

substituent: decomposition is slower where bulky phosphines are used (steric 

hindrance), and slowest for the phosphite-substituted diselenolene (where there is a 

lower electron density at the phosphorus atom). Based on this information figure 2.6 

shows the structure proposed for these species. This is, however, a tentative 

assignment, as there are two problems associated with it: although there are reports of
j  1 q 990  991

chelating phosphine oxides bonding to platinum, ’ ’ and one report of

[Pt(C6Fs)2 (OPPh3 )2 ], 222 there appears to be no precedent for a platinum 

trialkylphosphine oxide complex; secondly the large 31P-l95Pt coupling constant for 

the low-field 31P resonance suggests that this phosphorus is bound directly to the

These species undergo further decomposition to dark blue solids that are insoluble in 

organic solvents. This has prevented in-depth analysis of these compounds.

2.1.3 Reactions of IPtfSeiCsHnKPPhOil with chelating phosphines

Due to the instability of compounds lc, 2c, 3c and 4c the reactions of 

[Pt(Se2 CgHi2 )(PPh3 )2 ] with the chelating phosphines dppm, dppe and dppp were 

carried out. Prolonged stirring of [Pt(Se2 CgHi2 )(PPh3 )2 ] with an excess of L (L = 

dppm, dppe, dppp) in toluene at 90 °C, followed by column chromatography, led to 

the isolation of the diselenolenes [Pt(Se2 CgHi2 )(L)] (L = dppm, 5c; dppe, 6c; dppp, 7c) 

as green-yellow solids in good yield (figure 2.7).

resonances in the 3IP NMR spectra suggests that it adds asymmetrically to the

o
than phosphorus(III) compounds ). An infra-red spectrum of a sample of lc  which 

had been left to decompose showed a strong absorption band at 1270 cm*1, indicative
910

of a P=0 stretch. The rate of decomposition is sensitive to the phosphine

platinum.
Figure 2.6:

,OPbR3
Pt
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Figure 2.7:

E xcess L

T oluene, 90 °C

L = dppm , dppe, dppp n =  1, 5c; 2, 6c; 3, 7c.

These compounds have a much greater stability than lc, 2c, 3c and 4c, although 

prolonged standing in CHCI3 does lead to some decomposition, evidenced by the 

formation of a blue solid. The greater stability of these compounds is attributed to the 

lower electron density that results upon changing from a trialkyl- to 

diarylalkylphosphine.

Crystals of 5c suitable for x-ray diffraction were grown from a hexane/DCM mixture. 

The molecular structure is shown in figure 2.8; thermal ellipsoids are drawn at 30% 

probability and hydrogens are omitted for clarity. The crystal data are summarised in 

table 2.3, with selected bond lengths and angles listed in table 2.4. Diffraction data 

were collected on an Oxford Diffraction Excalibur 3 CCD diffractometer with Mo-Ka 

radiation (X = 0.71069 A); structure solution was by heavy atom methods (Patterson 

methods) with refinement by SHELXL 97.223
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Figure 2.8: Crystal structure of 5c
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Table 2.3: Crystallographic data for 2a

Empirical formula C3 3 H3 4 P 2 Se2 Pt
Formula weight 845.55
Crystal system orthorhombic
Space group P c 2i n
Crystal dimensions (mm) 0.40 x 0.40 x 0.25
a! A 13.504(1)
b/A 14.049(2)
d A 16.183(2)
al° 90.00
fi/° 90.00

y!° 90.00
VIA 3070.2(6)
z 4
F(0 0 0 ) 1632
Dcalc (g cm'3) 1.829
p (Mo-Ka/mm'’) 7.067
Temperature (K) 293
Reflections collected 26820
Independent reflections 6358
0 Range (°) 4.19-27.33
Reflect, with I  > 2c(7) 4882
No. of parameters 343
Ri; WR2 [/>  2g(7)] 0.0495; 0.1159
Ri; WR2 (all data) 0.0602; 0.1230
GoF 1.053

Table 2.4: Selected bond lengths and angles of 2a
Bond lengths (A)
Pt-P(l) 2.256(3)
Pt-P(2) 2.254(3)
Pt-Se(l) 2.395(1)
Pt-Se(2) 2.404(1)
Se(l)-C(2) 1.936(12)
Se(2)- C(9) 1.904(12)
C(2)-C(9) 1.282(19)

Bond angles (°)
P(l)-Pt-P(2) 73.92(9)
P(l)-Pt-Se(l) 98.33(7)
Se(l)-Pt-Se(2) 88.79(4)
Se(2)-Pt-P(2) 99.15(7)
Pt-Se(l)-C(2) 102.50(37)
Pt-Se(2)-C(9) 103.24(38)
Pt-P(l)-C(l) 96.14(34)
Pt-P(2)-C(l) 96.17(36)



As expected the molecule has a square-planar PtP2 Se2 core; the square plane is quite 

distorted as a result of the acute P-Pt-P angle (73.92(9)°) imposed by the dppm ligand. 

The phenyl groups and hydrocarbon ring deviate significantly from the plane of the 

PtP2 Se2 core. The square plane is essentially symmetrical with the individual Pt-P 

(2.25 A avg.), Pt-Se (2.40 A avg.) bond lengths and P-Pt-Se (98.8° avg.) bond angles 

having very similar values; the asymmetry that has been reported for some platinum 

dithiolenes is not observed.169 The average Pt-Se bond lengths (2.40 A) are slightly 

longer than in the related complexes [Pt{Se2 C2 (CF3 )2 }2 ]151 and [Pt(Se2 C6 H4 )(bipy)]175 

(average 2.37 A, bipy = 2,2’-bipyridyl). The Se-Pt-Se angle (88.79(4)°) is smaller 

than in [Pt{Se2 C2 (CF3)2 }2 ] (90.24° and 90.32°) and approximately the same as in 

[Pt(Se2 C6 H4 )(bipy)] (89.72°); The P-Pt-P angle of 73.92(9)° imposed by the dppm 

ligand is far from the ideal 90° angle of a square planar complex; this will probably 

result in a poorer Pt-P orbital overlap, which may be reflected in the lower 31P-I95Pt 

and avg. P- Se coupling constants observed for 5c.

The NMR spectroscopic data for compounds 5c, 6c and 7c are shown in tables 2.5 and 

2.6 and are in accord with the proposed structures. What is notable here is that there
"X1 77are significant differences in the P chemical shifts of the complexes, but the Se 

chemical shifts are very similar. This suggests that the selenium atoms of the 

diselenolene are not greatly influenced by the ligands present. The 77Se NMR spectra 

show the expected AA’X pattern (77Se is the X part, with the 31P nuclei magnetically 

inequivalent), but unfortunately only in 6c were all five lines visible. In this complex 

we can see large differences in the cis- and trans- coupling constants (6 and 86 Hz
• 77 T1respectively); the small Se- ?cis coupling in these complexes is in part the reason 

the AA’X pattern was not fully resolved in 5c and 7c. The 77Se NMR spectra of 

diselenolenes will be discussed in more depth later in the chapter.

Compounds 5c, 6c and 7c have also been characterized by mass spectrometry and 

infrared and UV-visible spectroscopies; these data are shown in table 2.7. The 

crystallographic and spectroscopic data detailed here provide conclusive proof that 

diselenolenes of the type [Pt(Se2 CgHi2 )(L)] have been synthesized; therefore the 

compound of molecular formula [Pt(Se2 CgHi2 )(PPh3 )2 ] can be confidently assigned 

the structure in figure 2.2.

Interestingly [Pt(Se2 C8H]2 )(PPh3 )2 ] will not undergo substitution reactions with bipy 

(2,2’-bipyridyl) or mnt (maleonitriledithiolate -  [S2 C2 (CN)2 ]2'). This ‘selectivity’ of



substitution suggests the electronic influence of the phosphine ligands is important 

these complexes.
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Table 2.6 P and 77Se NMR spectroscopic data for 5c, 6 c and 7c in CDCI3 solution

5c 6 c 7c
a'P: 8 /ppm -47.4 44.2 -6 . 6

‘j( P-l9 5 Pt)/Hz 2377 2784 2676

7 7 Se: 8 /ppm 457 452a 466
'./( Se-1 9 5Pt)/Hz 294 268 260
avg. 2J(7 7 Se-3 lP)/Hz 35 46 47
2/ (  Se- 3 1 Pcfs)/Hz b

6
b

2J(7 7 Se-3 lP,m„.!)/Hz _b
8 6

_b

a AA’X system, 2J(3 IP-3 IP) by calculation = 7 Hz; b AA’X system but only 3 lines
observed.

Table 2.7 Mass spectral, infrared and UV-Vis data for compounds 5c, 6 c and 7c
5c 6 c 7c

Mass Spectrum3 [M]+ 847(100) 861 ( 1 0 0 ) 875 (100)

Infrared*5 2927(m) 2914(m) 292 l(m)
2834(w) 2842(w) 2837(w)
1584(m) 1586(m) 1585(m)
1572(w) 1483(w) 1572(w)
1481(w) 1434(s) 1482(w)
1459(w) 1260(m) 1433(s)
1434(s) 1186(w) 1350(w)
1349(w) 1099(s) 1305(w)
1308(w) 1025(m) 1259(w)
1276(w) 998(m) 1186(w)
1262(w) 906(s) 1156(m)
1159(m) 878(m) 1124(m)
1125(m) 817(s) 1099(s)
1096(s) 715(s) 998(w)
1026(w) 702(s) 967(m)
997(m) 6 8 8 (vs) 906(s)
878(w) 527(vs) 881(w)
739(s) 829(m)
729(vs) 786(m)
700(s) 715(vs)
6 8 8 (vs) 689(vs)
616(w) 662(s)
542(s) 615(m)

550(w)

UV-Visc

3 / /A  J \  1 1 *  T"t A -Tk r*

365 (3,700) 350 (3,050) 325 (4,000)

a m/z (%); recorded using FAB; figures are for isotopomers containing !9 :>Pt, 8USe. 
b Selected bands (cm'1) only. c (nm); e (cm' 1 M '1) in parentheses; recorded in 
MeCN solution (10*4  M) between 300 and 800 nm.
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2.1.4 Attempted Syntheses of rPt(Se?C7HmHPPlu)?l and [PtrSe^GJHsKPPh^l

[Pt(Se2 C7Hio)(PPh3 )2] (figure 2.9) can be synthesised by methods analogous to the

syntheses of [Pt(Se2 CgHi2 )(PPh3 )2 ]. Refluxing [Pt(PPh3 )4 ] with cyclohepteno-1,2,3-

selenadiazole or frzs-cyclohepteno-l,4-diselenin in toluene gave [Pt(Se2 C7Hio)(PPh3 )2]

as a poorly soluble yellow solid, in a 14% yield. This yield is lower than that of

[Pt(Se2 CgHi2 )(PPh3 )2 ] (-33%), and upon prolonged standing in CDCI3 decomposition

occurs ([Pt(Se2 CgHi2 )(PPh3)2 ] appears to be indefinitely stable in CHCI3).
Figure 2.9:

a
S e  P P h 3
\  /

P t
/  \

S e  P P h 3

The reaction of [Pt(r|2 -C2 H4 )(PPh3 )2 ] and cyclohepteno-1,2,3-selenadiazole at room 

temperature in Et2 0  gave [Pt(SeC7Hio)(PPh3 )2] in a 23% crude yield (compounds of 

this type are discussed in chapter 3). Due to the poor yield of these reactions and

apparent instability of the compounds produced only a 31P NMR and mass spectral

analysis were carried out; table 2 . 8  shows the data collected.
Table 2.8: 31P NMR (CDCI3 solution) and mass spectral data for
[Pt(Se2 C7H ,o)(PPh3)2] and [Pt(SeC7H,o)(PPh3 )2 ]
___________________[Pt(Se2 C7H]0 )(PPh3 )2 ] [Pt(SeC7H 10)(PPh3 )2 ]
JIP: 5(PA)/ppm 

‘J(3 1 P- Pt) 
8 (PB)/ppm 
'J(3 IP- Pt)

18.4
2914

22.7
1905
23.0
3598

MS:a m/z (%) 
[M]+ 973 (100) 893 (100)

8 Recorded using FAB; figures are for isotopomers containing 195Pt, 80Se

Attempts to prepare and isolate [Pt(Se2 C6Hg)(PPh3)2 ] (figure 2.10) in reasonable yield 

were unsuccessful. Treatment of [Pt(PPh3)4 ] with cyclohexeno-1,2,3-selenadiazole or 

6/s-cyclohexeno-l,4-diselenin in refluxing toluene yielded very small amounts of
'X 1crude [Pt(Se2 C6 Hg)(PPh3 )2 ], evidenced by a resonance in the P NMR spectra at 8  = 

17.8 ppm (^ (^ P -^ P t)  -  2900 Hz). The spectra also showed peaks indicative of 

decomposition of [Pt(PPh3 )4 ], or possibly the product. The mass spectra showed 

weak peaks around m/z = 959 ([M]+) and 982 ([M + Na]+).
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Figure 2.10:

S\  / P P h 3  

P t
/  \

Se PPh3

Interestingly in the reaction of [Pt(PPh3 )4 ] (or [Pt(r|2 -C2 H4 )(PPh3 )2 ]) with 

cyclohexeno-1 ,2 ,3-selenadiazole, the reaction mixture becomes a purple colour at 

both room temperature and at reflux probably due to the formation of 

[Pt{SeC(R1)=C(R2 )N=NC(R1)=C(R2 )Se}(PPh3)] (R*-R2 = (CH2)4). This was also 

observed at room temperature when [Pt(PPh3 )4] was reacted with cyclohepteno-1,2,3- 

selenadiazole (although this reaction took several days). The formation of these types 

of compounds will be discussed in full later. No evidence for the formation of 

[Pt(SeC6 Hg)(PPh3 )2 ] was found in the reaction carried out at room temperature; it 

should also be noted, in a prolonged reaction of [Pt(PPh3)4] with cycloocteno-1,2,3- 

selenadiazole at room temperature there was no evidence of the above type of 

complex being formed.
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2.2 The Synthesis of Platinum Diselenolenes 

[Pt(Se,Cn+ ,H ^ KPRVM (n = 2 ,3 , 4; R = Et, Bu)
The platinum diselenolenes [Pt(Se2 Cn+4 H2n+4 )(PR.3 )2 ] (n = 2, 3, 4; R = Et, Bu) were 

obtained by refluxing [Pt(C2 H4 )(PRs)2 ] with 6A-cycloalkeno-l ,4-diselenins in a 

dioxane/toluene/THF mixture. Subsequent column chromatography led to the 

isolation of [Pt(Se2 Cn+4 H2 n+4 )(PR3 )2 ] as pale green solids (figure 2.11).
Figure 2.11:

[P t(C 2H 4)(P R 3)2]

D io x an e/T o lu en e/T H F
R eflu x

n =  2 3 4

R  =  E t la lb  lc
B u  2a 2b 2c

Since 6/.s-cycloalkeno-l,4-diselenins can be synthesised by heating the corresponding 

cycloalkeno-l,2,3-selenadiazoles, the synthesis of la-c and 2a-c in this way provides 

further evidence that in the reaction of [Pt(PPh3 )4 ] with cycloocteno-1,2,3- 

selenadiazole, [Pt(Se2 CgHi2 )(PPh3)2 ] is produced via 6/s-cycloocteno-l,4-diselenin. 

The yields of compounds la  and 2a are poor (the crude yields appear high but the 

material is very impure). It is believed that a cycloalkyne is generated in the reaction 

pathway (figure 2.12); cyclohexyne is a very strained alkyne (due to sp hybridisation 

at carbon, alkynes are ideally linear224) and would not be easily formed. It is proposed 

that this is responsible for the poor yield of la  and 2a; even with a prolonged reflux 

the reaction yield is not improved. A similar situation was encountered in the 

synthesis of [Pd(Se2 C6Hg)(PBu3)2 ] from [Pd2 (dba)3 ].dba, PBU3 and frz's-cyclohexeno- 

1,4-diselenin, where a prolonged reflux in xylene was necessary to give the 

product; 127 unfortunately the ethereal solvents used in the in situ synthesis of 

[Pt(C2 H4 )(PR3)2 ] reduce the temperature at which the reaction can be carried out. 

Cycloheptyne and cyclooctyne are less strained and so lb,c and 2b,c are more easily 

accessed.

The synthesis of diselenolenes of the type [Pt(Se2 Cn+4 H2 n+4 )(L)] (L = dppm, dppe), 

was attempted by reaction of [Pt(C2 H4 )(L)] with 6/s-cycloalkeno-l,4-diselenins. 

These reactions were unsuccessful; there was no trace of the desired products. This 

result reinforces the proposed reaction pathway (figure 2 .1 2 ); it appears a phosphine 

dissociation step is necessary, which for chelating phosphines (dppm, dppe) is not
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favoured, and this would explain why the reaction is unsuccessful. The synthesis of 

2 a was attempted in the presence of excess tributylphosphine, in an attempt to 

increase the yield by favouring the final step of the mechanism; this however failed to 

give any of the product, which suggests, i f  the mechanism in figure 2 . 1 2  is correct, 

that alkyne formation is the key step. The synthesis of 2c was carried out in the 

presence of tetraphenylcyclopentadienone to trap any cyclooctyne generated via a
Q9Diels-Alder reaction; unfortunately the presence of the

tetraphenylcyclopentadienone appears to have interfered in the reaction and no

diselenolene was produced.
Figure 2.12:

(CH2)n (CH2)n
'Pt(PR3)2'

(CH2)n

S e

S e'

(CH2)n'

+PR - -O

-PR ,

(CH2)n

(CH2)n

Although it is possible to synthesise mononuclear or dinuclear palladium
i i<7 I i

diselenolenes (figure 2.13), ’ ’ there is no evidence for the formation of dinuclear

platinum diselenolenes in these reactions. This is probably due to the platinum- 

phosphine stoichiometry of 1 : 2  imposed by the starting material; with the palladium 

compounds the palladium-phosphine stoichiometry could be altered to give either the 

mononuclear or dinuclear product.
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Figure 2.13:
.Se

(CH2)n +  [Pd2(d b a )3].d b a  +  x P B u 3

S e  PB u3

\ /
Pd

y \
S e  PBu3

Compounds la-c and 2a-c appear to be stable in hexane, toluene, EtOAc, acetone and 

DCM; it seems that the decomposition documented earlier only occurs at an 

appreciable rate in CHCI3 . It was possible to obtain crystals of lb,c and 2b by 

recrystallisation from hexane/DCM. Full crystallographic characterisations of lb  and 

lc  were obtained, along with a partial crystallographic characterisation of 2b. 

Diffraction data were collected on an Oxford Diffraction Excalibur 3 CCD 

diffractometer with Mo-Ka radiation (A, = 0.71069 A); structure solution was by SIR 

972 2 5  with refinement by SHELXL 97 2 2 3

Figures 2.14 and 2.15 show the crystal structures of lb  and lc; thermal ellipsoids are 

drawn at 30% probability and hydrogen atoms are omitted for clarity. The structures 

are presented using the Mercury program (version 1.4.1).

n  =  3, 4: 
T o lu e n e , h ea t; 
n  =  2:
X y le n e , h e a t

(CH2)n'
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Figure 2.14: Crystal structure of lb
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Figure 2.15: Crystal structure of lc

i £ 20 

9

3
4

Table 2.9 shows the crystallographic data for lb,c and 2b; table 2.10 shows some 

selected bond lengths and angles of lb,c and 2b. As can be seen from the data, it was 

not possible to determine the bond lengths and angles of 2 b to a reasonable degree of 

accuracy. For this reason these data are not considered in the discussion. The crystal 

structure is still chemically meaningful, however, and is shown in figure 2.16. 

Thermal ellipsoids are shown at 30% probability and hydrogen atoms are omitted for 

clarity.
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Table 2.10: Selected bond lengths and angles for lb, lc  and 2b

lb lc 2b
Bond lengths (A)
Pt-P(l) 2.290(2) 2.277(5) 2.308(7)
Pt-P(2) 2.296(2) 2.272(4) 2.283(5)
Pt-Se(l) 2.4169(7) 2.400(4) 2.404(3)
Pt-Se(2) 2.4137(7) 2.408(5) 2.425(6)
Se(l)-C(l) 1.898(7) 1.894(8) 1.913(25)
Se(2)-C(7) 1.893(7) 1.904(19)
Se(2)-C(2) 1.870(8)
C(l)-C(7) 1.316(9) 1.256(31)
C(l)-C(2) 1.298(9)

Bond angles (°)
P(l)-Pt-P(2) 95.69(6) 96.68(13) 99.37(20)
P(l)-Pt-Se(l) 89.22(5) 90.09(12) 89.01(17)
Se(l)-Pt-Se(2) 86.76(2) 86.72(11) 87.20(14)
Se(2)-Pt-P(2) 88.60(5) 86.67(13) 84.41(17)
Pt-Se(l)-C(l) 104.78(21) 104.25(24) 103.42(65)
Se(l)-C(l)-C(7) 121.47(5) 123.33(1.42)
Se(l)-C(l)-C(2) 122.12(56)
C(l)-C(7)-Se(2) 122.26(48) 122.38(1.81)
C(l)-C(2)-Se(2) 122.20(53)
Pt-Se(2)-C(7) 104.68(20) 103.42(88)
C(2)-Se(2)-Pt 104.71(23)
♦Note that the C(2) atom o f lc  is equivalent to the C(7) atoms o f lb  and 2b

Each complex consists of a (slightly distorted) square planar PtSe2 P2 core, with only 

the hydrocarbon ring and ethyl groups protruding significantly from the plane. The 

size of the hydrocarbon ring appears to have a slight effect on the bond lengths, with 

the Pt-P, Pt-Se and C=C bond lengths in lb approximately 0.2 A longer than those in 

lc. Within the square plane of lb the pairs of Pt-P, Pt-Se lengths and P-Pt-Se angles 

are close in value, but the square plane of lc is slightly asymmetric with one Pt-Se 

bond slightly longer {ca. 0.01 A) than the other, and the P-Pt-Se angles significantly 

different (90.1° vs. 86.7°). A similar distortion has been observed in the structures of 

palladium diselenolenes and platinum dithiolenes. The average Pt-Se bond 

lengths in lb and lc (2.41 A) are slightly longer than in the related complexes 

[Pt{Se2 C2 (CF3)2 }2 ] 1 5 2 ,1 5 5 and [Pt(Se2 C6H4 )(bipy) ] 175 (average 2.37 A, bipy = 2 ,2 ’- 

bipyridyl). This can be attributed to the hydrocarbon backbone being less electron- 

withdrawing than CF3 and benzene substituents. Also the Se-Pt-Se angles in lb and 

lc (average 86.7°) are smaller than those in [Pt(Se2 C2 (CF3 )2 )2 ] (90.24° and 90.32°) and



76

[Pt(Se2 C6 H4 )(bipy)] (89.72°); this is probably a result of the large P-Pt-P angles of 

95.7° (lb) and 96.7° (lc), which can be attributed to the steric repulsion of the ethyl 

groups.

Figure 2.16: Crystal structure of 2b

C8

C12
Se1C2

C16C3 C1

C4

C20C7

C28Se2C6
C5 C24.

The NMR spectroscopic data for la-c and 2a-c are shown in tables 2.11 and 2.12. 

Due to the difficulties in synthesizing and purifying la  and 2a, the spectroscopic 

characterisations of these complexes are incomplete, although the spectroscopic data 

it was possible to obtain fit well with the data obtained for lb,c and 2b,c. The spectra 

are in accord with the proposed structures with the 77Se NMR resonances showing the 

patterns expected for the X part of an AA’X spin system (a result of the P nuclei 

being chemically but not magnetically equivalent). These consist of five lines 

(ignoring the satellites due to 77Se-195Pt coupling) from which the coupling constants 

'j (77Se-l95Pt), 2J(77Se-3lPc,j), 2J(77Se-3lP,ra„,) and V(31P-3IP) can be established by 

calculation based on the relative intensities of the lines. These parameters are more
77 • • ^ 1precisely accessible by analysis of the Se satellite structure of the single P

"X1resonance, but difficulties were encountered in obtaining P NMR spectra with
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sufficiently good signal-to-noise ratios. All five lines of the AA’X pattern were 

observed in lb ,c and 2b,c; as an example figure 2.17 shows the 77Se resonance o f 2c.

Figure 2 .17:77Se NMR spectrum of 2c

>o a Hz 2 0
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«  aĈ CN 
X )  ^

X  o
0 0  1— 1 

w  C N  

O N  O
O S  O n

9 - s f f i  

■ 3  2

ffi o
0 0  ON

ON 0 0  
0 0  C-"
o  ^

n o
<D

n O
4—1
o
o
0
Vh

-*->
o

X

r s

X
o  P h<N . <N 

^ C ] (N  p. <N

P h  U  U  x  X  £.«'■> . <N m , cn m  ”  [ 1
x  V  v  •U O U O ^-ca S

X

o  no
©

©
N O  n i -  N O  c o  
C N  C N  C N

O  ( N  h ;

t-5 n o  
c o  c o  c n

o n  o n  u o  r "
0 0 1

c o  0 0  t " '

• O  N O  c o  O n  C O  H
C N  C N  C N  *— 1 C O  C O  C N

O

O O

C N < 4-
o c n  r -

o
C O  t * '  i—< V O  
1—1 C O  C O  C N

O N

r -3
_ ;  c o  0 0  p

c o  o n  c o  i " -  
*— 1 c o  C O  C N

N O

0 0

c o

0 0

p  t j -

n o  ^
C O  C O

X
PL, U

<N . I N

X
O  O  O  CJ ^  ^  ^  ffi II u u o u u

u

ON

p  P hD JT
w '  O

X^w
Z i*  * ""*  

o  N

£  r -w  II 
N  ^  

K  P h

C N p

N  W)
X  g
o  _ r  
cn  £

«  <D 
/•— \  -*-> 
«  w

<*>

N X
X  -
C N

-t—« r j
P lh £

*C? X  
2  C N ,

U  N

^  no 
°n CN 
a s  „

^  '7 ?  ' « l
O

•O 5  ef
rS w  1Zi N s N  hri N

NO cN NO

7  II ^

PLh Ph
m ov

r f j  6

- D

w

N
X
n f

£

^  « -  
N  j£  N

X  <N X
CN (J

-H  ■ n f

N
X  Xt j  

CN
r .  O O

«  X  N
,o ffi
r i  X! no
n

f f i  N
NO X

N O
Ov

HtH rn ►—
f f i  I N  
w  O ^

N

;  ^ x



71
 

77 
•

Ta
bl

e 
2.

12
: 

P 
and

 
Se 

NM
R 

sp
ec

tro
sc

op
ic

 
da

ta 
for

 l
a-

c 
and

 
2a

-c 
in 

d6
-a

ce
to

ne
 

so
lu

tio
n

u
CN

X
CN

el
c n

a

o  
.-h oo

i CN

r-" cn vo
i  C N

OO 00

OO ^  r-
CN CN

n J S
C N  ( N

OO
C N  C N

N

vo o  
c n  ^

T3<L)-OVh
+-> o  O o
£  2

V D  ^  O V

i-H 00
r t  vo O  vo cn O  
' t  CN rn vo (N

ooOO vo T—, Tj- o
T f  C N  1 V O  C N

cn voin m i—' 
' t  C N

N

N
N  f f i

x  3  N
^  i ^  i  53O , <D Vj i:  “

CO O h P h > ■
O'* r~~ —i —. p_ ,

<U > -vGO <n

CO —

<D
GO

ro m -m > i < <D <L> 
G O  C/D

Ohi" i~~ ro 
C3 (N (N <N

TJ
W

'oco
<D
M

Ofi
6
<L>

s
P h

X



80

The two 3 1 P-77Se coupling constants (2J(7 7 Se-3 1 PM ) = 67 Hz (lb), 63 Hz (lc), 64 Hz 

(2b,c); 2J(7 7 Se-3 1Pc/J) = 14 Hz (lb), 16 Hz (lc, 2b), 18 Hz (2c)) are very similar to 

those of [Pd(Se2 Cn+4 H2 n+4 )(PB u3)2] (avg. 2 J(7 7 Se-3 1 P,ra/w) = 6 6  Hz, 2J(7 7Se-3 1 Pc*) = 

16 Hz). The calculated 3 1 P-31p coupling constants are quite different however: 2 J(3 1 P- 

3 1P) = 20 Hz (lb,c), 19 Hz (2b), 18 Hz (2c), c f  2 J(3 1 P-3 1 P) = 44 Hz in 

[Pd(Se2 Cn+4 H2n+4 )(PBu3 )2 ]. The calculated 2 J(7 7 Se-3 1 P/ra„J) coupling constant of 8 6  Hz 

for compound 6c is greater than those for lb,c and 2b,c; this could be a direct result of 

the geometrical constraints placed on the PtSe2 P2  core by the chelating phosphine. 

Although there is no crystal structure for 6c the Pt-Se and Pt-P bond lengths of 5c are 

shorter than those of lb  and lc  by approximately 0 . 0 1  and 0.03 A respectively. The
77 • •Se chemical shifts of complexes 5c, 6c and 7c are not significantly different from 

those of lc  and 2c however. One point of note is that the 77Se resonances of 

compounds lb  and 2b are at much lower field (approximately 30 ppm) than those of 

la, lc  and 2c. This phenomenon is also observed in diselenolenes, 117’ 127 1,2,3-
• 07selenadiazoles and 1,4-diselenins: the number of carbon atoms in the aliphatic ring

appears to have an influence on the electronic environment of the selenium atoms, 

with the C7 ring giving lower field 77Se NMR resonances than the C6  and Cs ring 

analogues. It is not clear why this is the case and whether it is limited to the C6 -Cg 

ring sizes: syntheses of diselenolenes with a C5 ring are highly unlikely to be 

successful (due to cyclopentyne being a very strained alkyne), and cyclononanone (an 

assumed precursor to cyclononeno-1 ,2 ,3-selenadiazole) is too expensive to warrant 

syntheses of diselenolenes with a C9 ring. This effect of ring size upon chemical shift
1 7is also observed in the C NMR of these compounds: the resonances of the aliphatic 

ring carbons are all at lower field for lb  and 2b. The resonances associated with the 

C=C group were weak, and as such the coupling constants associated with these peaks 

could not be determined.

Characterisation by FAB mass spectrometry (la-c, 2a-c) and IR and UV-visible 

spectroscopy (lb,c, 2b,c) has also been carried out with the data presented in table 

2.13. The mass spectra show a dominance of the [Pt(PR3 )2 ]+ ion indicating that 

cleavage of the Pt-Se bonds is relatively easy under mass spectrometry conditions. 

The colours of la-c and 2a-c (pale green) differ significantly from those of 

[Pd(Se2 Cn+4 H2 n+4 )(PBu3 )2 ] and [Pd2 (Se2 Cn+4 H2n+4 )2 (PBu3 )2 ] (purple) , 120 highlighting 

the sensitivity of the electronic properties of diselenolenes to the chemical
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environment. The UV-visible spectra of the palladium diselenolenes show 

absorptions in the UV and the visible region, which are associated with a ligand to 

metal charge transfer (LMCT) band. Compounds lb ,c and 2b,c show no absorptions 

of significant intensity in the visible region, but do show large absorptions in the UV 

region. Since platinum is more difficult to reduce than palladium, it is assumed that 

the lowest energy LMCT band has been shifted into the UV region due to the higher 

energy associated with charge transfer to platinum. Unless we consider these 

complexes as diselenolates coordinated to an M centre, then LMCT is not a wholly 

suitable description here; what is probably happening is that within the delocalised 

electron system of the diselenolene an electron is moving from a molecular orbital 

with a significant selenium component to one with a greater contribution from the 

metal. A comparison of the UV-visible spectra of [Pd(Se2 CgHi2 )(PBu3 )2 ] and 2c is 

shown in figure 2.18.
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Figure 2.18: UV-visible spectra of 2c and the palladium analogue
[Pd(Se2C8Hi2)(PBu3)2] (not on same scale)
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2.3 Attempted Syntheses of [PtSeafPRO?! (R = E t Bu)
The synthesis of diselenolenes by reaction of metal polyselenides with activated 

alkynes was first reported by Bollinger and Rauchfuss for titanium diselenolenes. 153 

Subsequent work by Ibers et al. and Mizobe and Hidea has shown this to be a viable 

route to tungsten and iridium diselenolenes respectively. 1 68 ,171 This is also a possible 

route to platinum diselenolenes. Morley et al. have reported that the tetraselenide 

[PtSe4 (dppe)] can be synthesised from [Pt(dppe)2 ] or [PtCbfdppe)] by treatment with 

elemental selenium or lithium polyselenide respectively (figure 2.19).

Figure 2.19:

[Pt(dppe)2]

Ph2

.Se—
Sex _ \  /  Se

Pt | + dppeSe2

\ .  ^ Se ^ P  Se
Ph2

toluene, heat

[PtCl2 (dppe)]
Li2 Sex

THF, heat

Ph2

\  / Se' 
Pt

■/ VPh2

Se

Se
LiCl

Subsequent reaction of this tetraselenide with the activated alkynes DMAD and 

DEAD yields diselenolenes of the type [Pt{Se2 C2 (C0 2 R)2 }(dppe)] (R = Me, Et; figure 
2 .20).169,170,226

Figure 2.20:

[PtSe4 (dppe)]
r c o 2 c = c c o 2r
------------------------=H

R = Me, Et

C02R

co2r

The applicability of this route to trialkylphosphine-substituted platinum complexes 

was investigated, following the methods documented in Mark Lewtas’ thesis. 170 

Firstly the reaction of [Pt(C2 H4 )(PR3 )2] (R = Et, Bu) with elemental selenium was 

investigated. It was found that stirring [Pt(C2 H4 )(PR3 )2 ] with a 10-fold excess of 

elemental grey selenium at room temperature or at reflux (dioxane/THF/toluene 

solvent mix) for varying periods of time gave black-brown solutions. After filtration 

and concentration of the liquors, brown residues were obtained; analysis of these 

residues by 31P NMR spectroscopy showed only P(Se)R3 signals.
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The alternative route using c/s-[PtCl2 (PEt3)2 ] and lithium polyselenide was also 

attempted (c/s-[PtCl2 (PBu3 )2 ] is more difficult to synthesise than ds-[PtCl2 (PEt3 )2 ] 

and so wasn’t investigated). Treatment of elemental grey selenium with LiBEt3 H (0.6 

eq) in THF gave a purple solution (characteristic of Li2 Sex); this was refluxed for 30 

minutes, treated with a hot THF suspension of ds-[PtCl2 (PEt3 )2 ] and refluxed for a 

further 1 hour. The reaction was also carried out with prolonged reflux and at room
n i

temperature with overnight stirring, but in all cases P NMR spectroscopic analysis 

showed only P(Se)Et3 .

It is not known if the product forms in these reactions and decomposes, or whether 

under these conditions PR3 is extracted from the platinum starting material. What is 

known is that the success of this approach depends on the nature of the phosphine. It 

may be that the dppe has a stabilising effect as a chelating ligand, or that its lower 

basicity compared to the trialkylphosphines has an influence. The sensitivity of these 

reactions to the phosphine substituents is further exemplified by the reaction of 

[Pt(PPh3 )4 ] with elemental selenium, which gives the dinuclear Se-bridged species 

[Pt2(n-Se)2 (PPh3)4 ] 2 2 7



Chapter 3

The Reactions of Cycloalkeno-l,2,3-thiadiazoles and 
Cycloalkeno-l,2,3-selenadiazoles with Platinum(O) 

Phosphine Complexes



86

3.1 Reactions of [Pt(C?H4)(PRi)?l with Cvcloalkeno-1,2,3- 

thiadiazoles

The chemistry of 1,2,3-thia- and 1,2,3-selenadiazoles was documented in the 

introduction; what is noticeable is that the chemistry of 1,2,3-thiadiazoles has been 

less explored, particularly in combination with the group 10 metals. To our 

knowledge there are no reports of the reactions of 1,2,3-thiadiazoles with platinum 

complexes; there has been a small amount of work on their reactions with palladium 

complexes. 120 Although the main focus of the work in this thesis is on the reactions of 

organoselenium compounds with platinum complexes, the lack of investigation in this 

area warranted an exploration of some organosulphur chemistry.

Refluxing [Pt(C2 H4 )(PR3)2 ] (R = Et, Bu) with two equivalents of cyclohepteno- or 

cycloocteno-l,2,3-thiadiazole in a dioxane/THF/toluene mixture for one hour led to 

deep orange reaction mixtures. Subsequent column chromatography led to the 

isolation of compounds 8 b,c and 9b,c as deep orange solids (figure 3.1).
Figure 3.1:

R3\  /  
P t

/  \Dioxane/THF/toluene
Reflux

R = Et: 8 b 8 c 
R = Bu: 9b 9c

Compounds 8 b,c and 9b,c are of the general formula [PtL(PR3 )] where L is the ligand 

SC(R1)=C(R2 )N=NC(R1)=C(R2)S (R‘-R2 = (CH2)s or (CH2)6); this is the first example 

of this type of ligand containing sulphur. The ligand can be considered an alicyclic 

analogue of an azo dye, which may explain the intense colour of these complexes. 

The complexes are indefinitely stable in the solid state, but they have been observed 

to decompose upon prolonged standing in chloroform (evidenced by the solutions 

losing colour).

The proposed mechanism of the reaction is shown in figure 3.2: insertion of 

4Pt(PR3)2 ’ into the S-N bond of a molecule of 1,2,3-thiadiazole is followed by 

addition of a thiaketocarbene fragment to this Pt(II) intermediate with loss of a 

trialkylphosphine to give the product. A similar mechanism has been proposed for the
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synthesis of the analogous palladium complexes from cycloalkeno-1,2,3- 

selenadiazoles.115> 116 

Figure 3.2:

[Pt(C2H4)(PR3)2] + (CH2)n (CH2)n
R(PR3)2

(CH2)n'

(CH2),

Both 1,2,3-thia- and 1,2,3-selenadiazoles generally react by elimination of dinitrogen 

to form thiaketocarbene and selenaketocarbene intermediates (figure 3.3), the fate of 

which decides the outcome of the reaction. ’ Addition of these ketocarbenes to 

another molecule of intact 1,2,3-thia/selenadiazole is (to our knowledge) 

unprecedented; hence it is unlikely there is coupling between thiaketocarbene and

1,2,3-thiadiazole followed by reaction with ‘Pt(PR.3 )2 \
Figure 3.3:

(CH2)n'
Heat (CH2)n' (CH2)n'

Attempts to synthesise the cyclohexeno- analogues of 8 b,c and 9b,c were 

unsuccessful. This is attributed to the difficulty of removing dinitrogen from 

cyclohexeno-1,2,3-thiadiazole. Thiaketocarbenes are intermediates in the 

decomposition pathway of 1,2,3-thiadiazoles; thiaketocarbenes decompose via a 

radical mechanism to elemental sulphur and a substituted acetylene (figure 3.4). ’ 

Formation of cyclohexyne is not a favoured process due to the steric constraints 

placed upon it; this will limit the formation of the thiaketocarbene, which is necessary 

for the product to form.
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Figure 3.4:

(CH2),

The compounds 8 b,c and 9b,c are very soluble in most organic solvents. This 

hindered their crystallisation, but it was possible to obtain crystals of 8 b, 9b and 9c by 

slow evaporation of ethanol solutions of these compounds. The crystals of 8 b and 9b 

were suitable for structure determination by X-ray diffraction. The crystal structure 

of 8 b is presented and discussed in chapter 6 . The crystal structure of 9b is shown in 

figure 3.5: thermal ellipsoids are drawn at 30% probability; hydrogen atoms are 

omitted for clarity. The diffraction data were collected with an Oxford Diffraction 

Xcalibur 3 CCD diffractometer, using graphite-monochromated MoKa radiation (X = 

0.71069 A). The structure was solved by direct methods using SIR 972 2 5 and heavy-
'yo'xatom procedures, with refinement by SHELXL 97.

Table 3.1 shows the crystallographic data for 9b, with some selected bond lengths and 

angles shown in table 3.2.
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Figure 3.5: Crystal structure o f 9b
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Table 3.1; Crystallographic data for 9b
Empirical formula C2 6H4 7N2 PS2 Pt
Formula weight 677.84
Crystal system triclinic
Space group P - l
Crystal dimensions (mm) 0.35 x 0.20 x 0.18
a!A 10.096(3)
b/A 12.555(4)
d A 12.914(4)
al° 88.54(3)
p/° 68.15(3)

r 73.89(3)
VIA 1454.1(8)
z 2

F(0 0 0 ) 684
Dcalc (g cm'3) 1.548
p (Mo-Ka/mm'1) 5.040
Temperature (K) 296
Reflections collected 16961
Independent reflections 8525
0 Range (°) 4.20-34.28
Reflect, with I  > 2c(I) 4616
No. of parameters 303
Ri; wR2 [ />  2c(I)] 0.0442; 0.1017
Ri; WR2 (all data) 0.0762; 0.1091
GoF 0.841

It can be seen that 9b consists of a slightly distorted square-planar PtS2NP core with 

the phosphine trans- to the platinum-bound nitrogen of the ligand. The 

crystallographic sites are occupied by 9b in one of two possible ‘orientations’ 

dependent on which nitrogen atom is bound to the platinum centre. It was found that 

there was a 2 : 1  ratio of these orientations in favour of the orientation shown in figure 

5. This has also been observed for the analogous selenium and palladium-containing 

species [Pd{SeC(Rl)=C(R2 )N=NC(R1)=C(R2)Se}(PBu3)] (R‘-R2 = (CH2)4), where it 

was possible to resolve the structure showing both possible orientations of the 

ligand. 116 The twelve atoms associated with the ra-system of the ligand (SC(C)=C(C)- 

N=N-C(C)=C(C)S) are coplanar, as was observed for the 7t-system of 

[Pd{SeC(Rl)=C(R2 )N=NC(R1)=C(R2 )Se}(PBu3)]. These twelve atoms do not lie in 

the same plane as the PtS2NP unit, although the deviation is small with a dihedral 

angle of 1 .2 °. The Pt-S(l) bonds are approximately 0.04 A longer than the Pt-S(2 )
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Table 3.2: Selected bond lengths and angles of compound 9b 

Bond lengths (A)
Pt-S(l)  2.271(2)
Pt-S (2) 2.228(2)
Pt-P 2.258(1)
Pt-N(2) 2.079(4)
N(l)-N(2) 1.252(6)
S(2)-C(8) 1.689(5)
S(l)-C(l) 1.719(6)
N(2)-C(9) 1.385(7)
N(l)-C(2) 1.438(7)
C(l)-C(7) 1.368(7)
C(2)-C(l) 1.344(8)

Bond angles (°)
S(l)-Pt-S(2)
S(2)-Pt-P
S(2)-Pt-N(l)
S(l)-Pt-P
S(l)-Pt-N(l)
P-Pt-N(l)
Pt-S(2)-C(8)
Pt-S(l)-C(l)
Pt-N(l)-N(2)
Pt-N(l)-C(2)
S(2)-C(l)-C(9)
C(9)-N(2)-N(l)
N(2)-N(l)-C(2)
N(l)-C(2)-C(l)
S(l)-C(l)-C(2)

177.34(6)
92.12(6)
94.13(13)
88.67(6)
85.18(13)
173.41(12)
110.48(20)
98.40(20)
131.34(37)
115.93(36)
127.12(43)
124.60(48)
112.47(46)
117.32(49)
123.03(42)

bonds; this is comparable to the situation in the complex 

[Pt{SeC(COOEt)=C(Me)N=NC(Me)=C(COOEt)Se} (PPh3)],118 where the Pt-Se bond 

in the 5-membered ring is approximately 0.05 A longer than the Pt-Se bond in the 6- 

membered ring. The average Pt-P and Pt-N(2) distances of 2.259 and 2.080(43) A are 

comparable to those of [Pt{SeC(COOEt)=C(Me)N=NC(Me)=C(COOEt}Se)(PPh3)] 

(2.260(1) and 2.071(5) A respectively). The average N(l)-N(2) distances of 1.230 A 
are shorter (cf. 1.295(7) A); they are also shorter than the reported N=N distances for 

[Pd{SeC(R!)=C(R2)N=NC(R1 )=C(R2)Se}(PBu3)] of 1.29(3) and 1.26(4) A. The 

effect of the presence of sulphur atoms instead of selenium may be the donation of 

less electron density to the 7c-system, resulting in less electron density at the nitrogens, 

and a shorter N=N bond. The average Pt-S bond lengths of 2.226 and 2.265 A are of
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a comparable length to that in the similar complex 

[Pt{PhSNC(MeC6 H4 )N=NC(MeC6H4)NSPh}(PPh3 )] (2.266(3) A).229

The multinuclear NMR data for compounds 8b,c and 9b,c are shown in tables 3.3 and

3.4. The NMR data at room temperature confirm the structure of these complexes

shown in figure 3.5. It is known that disorder due to a ‘pedal motion’ exists in

crystals of stilbenes and azobenzenes. This has also been observed in the

crystallographic analysis of [Pd{SeC(R1)=C(R2)N=NC(R1)=C(R2)Se}(PBu3 )], and

corresponds to the potential of the nitrogen atoms to interchange between a bonding

and non-bonding state with respect to the palladium atom. A similar situation can be

envisaged in 8b,c and 9b,c and is shown in figure 3.6:
Figure 3.6:

R1 R1

S

N — — NP t

S

S

P t  N = - N

S

The NMR spectral data show that this process does not occur at room temperature on
1 ̂the NMR timescale, as each carbon in the two alicyclic rings gives a separate C 

NMR resonance; if this process were occurring rapidly then one signal would be 

observed for each ring carbon and its ‘equivalent’ in the adjacent ring.
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To investigate whether fluxionality could be observed at higher temperatures a 

variable temperature NMR study was carried out. NMR spectra of compound 9b 

(in d6-DMSO) were run at room temperature, 60 °C, 80 °C and 100 °C; these spectra 

are shown in figure 3.7. It can be seen that in the regions 8 = 1.1-1.8 and 2.2-3.3 ppm 

(where the aliphatic ring protons resonate) there is very little change upon increasing 

the temperature. The fact that this process is slow on the NMR timescale even at 100 

°C, suggests that interconversion of the isomers requires a lot of energy.

The energy barrier of this interconversion in the analogous species 

[Pd{SeC(R1)=C(R2)N=NC(R1)=C(R2)Se}(PBu3)] (R'-R2 = (CH2)5) was quantum 

mechanically calculated by Professor M. Di Vaira (University of Florence, Italy) to be 

approximately 30 kcal mol"1; this is too high for interconversion of the isomers on the 

NMR timescale. Due to platinum being much less labile than palladium, the 

energy barrier for this process in 8b,c and 9b,c should be higher, and preliminary 

calculations have indicated that this is the case. Therefore this isomerisation does not 

occur on the NMR timescale, even at elevated temperatures.
1 3As was observed with the diselenolenes (chapter 2) the C resonances of 7-membered 

aliphatic rings (in 8b and 9b) are at lower field than the corresponding 8-membered 

rings; this effect appears to be common to both cycloalkeno-l,2,3-thia- and 

cycloalkeno-l,2,3-selenadiazoles and their derivatives. The !H NMR spectra are 

relatively complex, as would be expected from the structure shown in figure 3.1, but 

four multiplets are typically observed at low field (8 = 3.06-3.51 ppm) which are 

assigned to the a-CFh groups.

The mass spectral, infrared and UV-visible data for 8b,c and 9b,c are shown in table

3.5.
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Figure 3.7: 'H NMR spectra (5 = 0 -  3.5 ppm) of 9b at room temperature, 60 °C, 80 
°C and 100 °C

Room Temperature:

60 °C:

 A ________ V  A

80 "C:

f t

100 °C:
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The mass spectra all show molecular ion peaks at 100% relative intensity, which 

suggests that these complexes are quite robust. Their intense orange colour is 

explained by the UV-visible spectra, which all show an intense, relatively broad 

absorption at X ~ 520 nm with a shoulder at X ~ 460 nm. The nature of the phosphine 

appears to play no part here and so the absorptions are assumed to be ligand based. 

The absorptions at X ~ 220 nm may be attributed to a LMCT process as was observed 

with platinum diselenolenes (chapter 2). The intensities of the absorptions are greater 

than those found for [Pd{SeC(Rl)=C(R2)N=NC(Rl)=C(R2)Se}(PR3)] (R'-R2 = (CH2)„, 

n = 4, 5, 6; R = Et, Bu).116
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3.2 Reactions of [PtfC.H^fPR ^l/[PtC l,(PR ^l with 

Cvcloalkeno-l,2,3-selenadiazoles
The chemistry of 1,2 ,3-selenadiazoles with low-valent transition metal complexes has 

undergone more investigation than the corresponding 1,2 ,3-thiadiazole chemistry. In 

particular there have been two reports (chapter 1) of the reactions of 1,2 ,3- 

selenadiazoles with low-valent platinum complexes. The reaction o f cycloocteno-

1.2 .3 -selenadiazole with [Pt(PPh3)4] was discussed in chapter 2 . There has also been 

a report on the reaction of 4 -methyl-5-ethoxycarbonyl-l,2 ,3-selenadiazole with 

[Pt(PPh3)4] which gave the complex [PtL(PPh3)], where L is the ligand 

SeC(COOEt)=C(Me)N=NC(Me)=C(COOEt)Se.118 These complexes are analogous to 

8b,c and 9b,c and importantly, they have been shown to be selective catalysts in the 

hydrosilylation of terminal acetylenes.

It was found that the reaction of [Pt(C2H4)(PR.3)2] (R = Et, Bu) with cycloalkeno-

1.2 .3-selenadiazoles gives complexes of the type [Pt(SeCn+4H2n+4)(PR3)2] (n = 2 , 3 , 4 ); 

these reactions are discussed later on in this chapter. However, the reaction of a mix 

of [Pt(C2H4)(PR3)2]/[PtCl2(PR3)2] with cycloalkeno-1,2 ,3-selenadiazoles was found to 

give complexes of the type [PtL(PR3)] where L is the ligand 

SeC(R1)=C(R2)N=NC(R1)=C(R2)Se (R*-R2 = (CH2)„; n = 4 , 5 , 6). These species are 

the selenium analogues of complexes 8b,c and 9b,c (figure 3 .8). All reactions were 

carried out in refluxing dioxane/THF/toluene for one hour.

Figure 3 .8 :

(CH2)n'

[Pt(C2H 4)(P R 3)2]/[P tC l2(P R 3)2]
D ioxane/T H F/ 
T oluene, reflux

(CH2)n

R  = Et: 10a 10b 10c 
R  = Bu: 11a l i b  11c

(CH2)n

The mechanism for this reaction is unclear; investigation has shown that neither 

[Pt(C2H4)(PR3)2] nor [PtCl2(PR3)2] is catalytic and the formation of lOa-c and lla -c  

depends on a critical ratio of the platinum reagents. [Pt(C2H4)(PR3)2] is synthesised 

by the addition of NaCioHg to [PtCl2(PR3)2] under an ethene atmosphere, and the ratio 

of [Pt(C2H4)(PR3)2] to [PtCl2(PR3)2] is determined by the amount of NaCioHg added
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to the reaction (figure 3.9). There are no reported methods precisely to determine the 

molarity of N aCioH g solutions and complete conversion of [PtCl2 (PR.3)2 ] to 

[Pt(C2 H4 )(PR.3 )2] is determined visually, by the solution keeping the green colour of 

the NaCioHg for about 5 minutes before clearing. Unfortunately, because the molarity 

of the N aCioHg solutions was unknown, it was not possible to determine the ideal 

ratio of [Pt(C2 H4 )(PR.3 )2 ] to [PtCl2 (PR.3 )2 ] for the formation of lOa-c and lla-c. 

What is known is that approximately 1-1.5 equivalents of N aCioH g are necessary: if 

there is a dominance of [Pt(C2 H4 )(PR3)2 ] then formation of the compounds 

[Pt(SeCn+4 H2n+4 )(PR3 )2] is the main reaction, and if there is a dominance of 

[PtCl2 (PR3 )2] then there is effectively no reaction. In fact (as would be expected) the 

syntheses of lOa-c and lla -c  were difficult to reproduce and the reactions often 

yielded no product.
Figure 3.9:

x N a C  H
[PtCl2(PR3)2] ---------- 10 8 > (x/2)[Pt(C2H4)(PR3)2] + (l-x/2)[PtCl2(PR3)2]

C2H4
0 < x < 2

This difference in reactivity of the cycloalkeno-1,2,3-selenadiazoles compared to the 

cycloalkeno-l,2,3-thiadiazoles is attributed to the ease with which 1,2,3- 

selenadiazoles lose dinitrogen to form selenaketocarbenes (figure 3.3); it is essential 

for the formation of lOa-c and lla -c  that one 1,2,3-selenadiazole molecule retains 

dinitrogen. It is believed that the presence of [PtCl2 (PR3 )2] somehow aids this 

dinitrogen retention; this is not necessary in the formation of 8b,c and 9b,c as the loss 

of dinitrogen from 1,2,3-thiadiazoles to form thiaketocarbenes requires much more 

energy.

Compounds lOa-c and lla -c  are deep purple in colour, the same as the palladium 

analogues [Pd{SeC(R1)=C(R2)N=NC(R1)=C(R2)Se}(PR3 )].116 Unfortunately it was 

not possible to obtain crystals of these complexes for an x-ray crystallographic study. 

Also due to the capricious nature of these reactions and difficulty in obtaining pure 

products some spectroscopic data have not been obtained. Tables 3.6 and 3.7 show 

the NMR spectroscopic data obtained for compounds lOa-c and lla-c.
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The NMR spectral data confirm the structures o f lOa-c and lla -c  as those shown in 

figure 3.8. The selenium atoms are inequivalent and give rise to two signals in the
77Se NMR spectra; each of these signals is split by coupling to the phosphorus atom in 

the cis- position and has a 195Pt satellite structure. As an example the 77Se NMR 

spectrum of 10c is shown in figure 3.10.

Figure 3.10: 77Se NMR spectrum of 10c

r> _> p  f

9 77 11The J( Se- P) coupling constants (avg. 23 Hz) are significantly larger than those 

observed in the analogous palladium species (9 Hz).116 Generally in heterocyclic Pt(II)
• 77compounds with Pt-Se bonds the Se resonances for 5-membered rings are at lower 

field than those of 6-membered rings;232 therefore the resonance at 5 ~ 575 ppm is 

attributed to the selenium atom in the PtSeC2N ring, and the resonance at 5 ~ 310 ppm 

is attributed to the selenium atom in the PtSeC2N 2 ring. This suggests that there is 

greater electron delocalisation in the 5-membered ring; indeed the 5 values of the 

selenium in the 5-membered ring are comparable to those of selenophenes (5 = 513-
999717 ppm) and platinum diselenolenes (5 = 441-481 ppm, chapter 2). In addition the

9 77 91J( Se- P) coupling constants are approximately 5 Hz larger for the selenium in the
• • • 775-membered ring, which may be a result o f this delocalisation. As in the Se NMR
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spectra of the diselenolenes (chapter 2) the resonance in the region 8 = 550-600 ppm

is observed at lower field for 10b and l ib  compared to 10a,c and lla ,c; this increase

in 8 value appears to be indicative of the presence of a cyclohepteno-backboned
11species in most of the compounds studied. The C NMR spectra show resonances for

each individual carbon atom showing the structure in figure 3.8 to exist in solution;

there is no evidence for an interconversion of isomers analogous to that shown in

figure 3.6. As discussed for 8b,c and 9b,c this isomerisation has been calculated to be

a high-energy process for the analogous palladium species, and therefore would not

be expected to occur on the NMR timescale. Due to the capricious nature of the

syntheses of complexes lOa-c and lla -c  and difficulties in purification, the data may

not be as reliable as those for 8b,c and 9b,c, but some trends are apparent. The

resonances for the carbon atoms of the PR3 groups are similar in 8b,c, 9b,c and lOa-c,

lla-c, showing that the chalcogen present has little electronic effect on the phosphine

group. The ring carbon atoms of compounds 10b and l ib  exhibit lower field

resonances than those of 10a,c and lla ,c , as has been observed in all compounds so
1 1 ̂   ̂1far. The absence of some coupling constants, for example the J( C- P) coupling 

constants for the CH2 P resonances, is attributed to the poor quality of some of the data 

obtained. The *H NMR data are quite complex as would be expected; in some cases 

due to difficulties with purification no useful information could be gained from the 

spectra (hence few peaks in the spectra are assigned) and the data are not reported. 

However through this complexity three well-spaced multiplets were observed at 

relatively low field (8 = 3.0-3.5 ppm) which are assigned to three of the 01-CH2  groups.

The mass spectral data of lOa-c and lla -c  are shown in table 3.8, together with the 

IR and UV-visible spectral data of 10b and lib . Due to difficulties with obtaining 

pure material the IR and UV-visible spectra of 10a,c and lla ,c  were not acquired. 

Small amounts of pure 10b and l ib  were obtained by slow recrystallisation from 

ethanol solutions; the crystals obtained were very small and not suitable for an X-ray 

crystallographic investigation.
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The presence of molecular ion peaks in the mass spectral data, most of which are at 

100% relative intensity, suggests that these complexes are quite robust; the molecular 

ion peaks all exhibit the expected isotope patterns. The UV-visible spectra explain 

the purple colour of these compounds. The absorptions in the visible region start at 

-450 nm and finish at -600 nm; because there is effectively no absorption in the 350- 

450 nm and 600-700 nm regions the compounds appear purple. The two peaks (495 

and 545 nm) are shifted closer together than those of the palladium analogues (480 

and 570 nm);116 they are also more intense with average e values of 11,000 and 

12,000 cm'1 M '1 compared to 1,550 and 2,100 cm'1 M*1 for the palladium compounds. 

The UV-visible spectra differ quite markedly, in structure and position from those of 

8b,c and 9b,c. In these complexes the two peaks in the visible region are of much 

different intensity; the higher energy peak is less intense and appears as a shoulder on 

the more intense peak. In addition these peaks are shifted to the blue region by 

approximately 25-30 nm compared to 10b and l ib . As a result these peaks tail off 

into the blue region of the spectrum; this explains why compounds 8b,c and 9b,c are 

orange-red in colour and lOa-c and lla -c  are purple. Figure 3.11 shows a comparison 

of the UV-visible spectra of 9b and l ib . Because changing from platinum to 

palladium does not have a dramatic effect on the UV-visible spectra, but changing the 

chalcogen atom does, the absorptions in the visible region of the spectra are assumed 

to be ligand-based.
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Figure 3.11: UV-visible spectra of 9b and l ib  
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3,3 The Reaction of [PtfPPh^l with Cvclohexeno-1,2,3- 

selenadiazole
In chapter 2 the reaction of [Pt(PPh3)4 ] with cyclohexeno-1,2,3-selenadiazole in 

refluxing toluene was discussed; it was found that this reaction gave a very poor yield 

(if any) of the expected diselenolene [Pt(Se2 C6Hg)(PPh3)2 ]. It was noted that the 

reaction mixture sometimes became purple in colour. If the same reagents were 

stirred at room temperature for 2-4 days then a deep purple solution was formed. 

Concentration of the reaction mixture and subsequent column chromatography led to 

the isolation of a purple solid which was identified as [PtL(PPh3 )] (L = 

SeC(R‘)=C(R2 )N=NC(R')=C(R2)Se; R'-R 2 = (CH2)4; 25% yield); this compound is 

analogous to 10a and 11a (figure 3.12).
F igure 3.12:

[Pt(PPh3)4]

N
xNn

Se

Toluene, rt 
2-4 days

It is also possible to synthesise 12a using [Pt(C2 H4 )(PPh3 )] as the starting material 

instead of [Pt(PPh3 )4]. The compound has been characterised by 31P and 77Se NMR 

spectroscopy and mass spectrometry; these data are shown in table 3.9.

What is noticeable from the data is that the 1J(7 7 Se-1 95Pt) coupling constants are
7 77 31approximately 60 Hz less than those found for lOa-c and lla -c , and the Se- P) 

coupling constants are larger; this may be a direct result of the lower basicity of PPI13  

compared to PEt3 and PBU3 . In addition the 77Se resonances are at lower field; this 

could be due to PPI13 withdrawing electron density from the PtSe2NP core.
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Table 3.9: 31P and 77Se NMR spectroscopic (CDCI3 solution) and mass spectral data 

for 12a

P: 5/ppm 9.9 Mass Spectrum (FAB):a [M]+ 805 (100)

iii

5/ppm
' j r p - l9 5 pt)/HZ

9.9
3262

5(SeA)/ppm
‘j ( 7 7 SeA- '9 5 Pt)/Hz
2J(7 7 SeA-3 1 P)/Hz

599
183
40

5(SeB)/ppm 
1J( 7 7 SeB - 1 9 5Pt)/Hz 
V(7 7 SeB -3 1 P)/Hz

353
134
31

a m/z (%); recorded using FAB; figures are for isotopomers containing 1 9 5Pt, 8 0 Se, 14N, 

12C, *H.

As reported in chapter 2 the reaction of [Pt(PPh3 )4 ] with cyclohepteno-1,2,3- 

selenadiazole in refluxing toluene gave [Pt(Se2 C7Hio)(PPh3 )] in poor yield, but when 

the reaction was carried out at room temperature for several days a purple-red mixture 

was produced, from which small amounts of [PtL(PPh3 )] (L = 

SeC(R1)=C(R2 )N=NC(R1)=C(R2 )Se; R l-R2 = (CH2)5) could be isolated after column
^  1chromatography. The purple solid shows a P NMR resonance at 5 = 10.3 ppm, 

]J(3 1P-19 5Pt) ~ 3200 Hz and the FAB mass spectrum shows a peak at m/z = 833 (100%) 

confirming the synthesis of this species.

The reaction of [Pt(PPh3 )4 ] with cycloocteno-l,2,3-selenadiazole in toluene at room 

temperature gave an orange solution, in which there was no [PtL(PPh3 )] (L = 

SeC(R‘)=C(R2 )N=NC(R')=C(R2 )Se; R'-R2 = (CH2)6) present. These reactions are 

believed to proceed via the mechanism proposed in figure 3.2 and they offer a good 

insight into how ring size affects the reactivity of these cycloalkeno-1,2,3- 

selenadiazoles. In these reactions it is critical that dinitrogen is retained by some of 

the 1,2,3-selenadiazole molecules; as has been discussed above dinitrogen is more 

difficult to remove from the cyclohexeno-1,2,3-selenadiazoles, due to the geometric 

constraints which would be placed on a resulting cyclohexyne species, whereas it is 

relatively easily removed from cycloocteno-1,2,3-selenadiazole as cyclooctyne is less 

strained. This explains why this reaction is successful for cyclohexeno-1,2,3- 

selenadiazole, less successful for cyclohepteno-1,2,3-selenadiazole and unsuccessful
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for cycloocteno-1,2,3-selenadiazole. It also explains why, in the syntheses of the 

diselenolenes [Pt(Se2 Cn+4 H2 n+4 )(PPh3 )2 ] (chapter 2), where dinitrogen loss is critical, 

the opposite trend exists i.e. the synthesis of [Pt(Se2 C8 Hi2 )(PPh3 )2 ] is the most 

successful and the synthesis of [Pt(Se2 C6H8)(PPh3 )2 ] is the least successful.

The reaction of [Pt(PPh3 )4 ] with 4-phenyl-1,2,3-selenadiazole was also investigated.

After stirring the reagents in toluene at room temperature for 3 days a purple reaction

mixture was given; concentration and column chromatography led to the isolation of

[Pt{SeC=C(Ph)N=NC(Ph)=CSe}(PPh3 )] as a purple solid (figure 3.13, 32% yield).

The compound is air-sensitive and so was not thoroughly investigated (in view of the
 ̂1fact that 8b,c, 9b,c, lOa-c and lla -c  are air-stable). The P NMR spectrum was 

recorded and showed a resonance at 8  = 24.1 ppm, *J(3 1 P-19 5Pt) = 3304 Hz which is 

attributed to this compound.
Figure 3.13:

P h
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3,4 Reactions of [Pt(C?H4)(PRV)?l with Cvcloalkeno-1,2.,3- 

selenadiazoles
In the previous sections of this chapter it was shown that complexes of the type 

[PtL(PR3)] (L = EC(R')=C(R2)N=NC(R‘)=C(R2)E; E = S, Se; R = Et, Bu) could be 

synthesised by the reaction of [Pt(C2 H4 )(PR.3)2 ] with cycloalkeno-1,2,3-thiadiazoles, 

or by the reaction of [Pt(C2 H4 )(PR.3 )2 ]/[PtCl2 (PR.3 )2 ] with cycloalkeno-1,2,3- 

selenadiazoles. In the absence of sufficient [PtCl2 (PR.3)2], the reaction of 

[Pt(C2 H4 )(PR.3 )2 ] (R = Et, Bu) with cycloalkeno-1,2,3-selenadiazoles in refluxing 

dioxane/THF/toluene gave complexes of the type [Pt(SeCn+4 H2 n+4 )(PR3 )2 ] (figure 

3.14).
Figure 3.14:

P R

S e P t  P R
Dioxane/THF/
Toluene
Reflux

S e

n = 2 3 4
R = Et 13a 13b 13c 
R = Bu 14a 14b 14c

This type of product has been observed previously (as has been well documented in 

the introduction) in the reaction of [Pt(PPh3 )4] with cycloocteno-1,2,3-selenadiazole, 

where the compound [Pt(SeC8Hi2 )(PPh3)2 ] was one of the products.114 The reaction

of [Co(ri5-C5 Me5)(C2 H4 )2 ] with cycloocteno-1,2,3-selenadiazole gives 

[CoCp*(SeC8Hi2 )L], where L is an intact selenadiazole molecule.109 In addition the 

reaction of [Fe2 (CO)9 ] with various 1,2,3-thia- and 1,2,3-selenadiazoles results in the 

addition of the Fe2 (CO) 6  unit with loss of N2  to give compounds with a C2 Fe2 E 

heterocycle.99,100 In these examples the reaction was believed to proceed via the 

reaction of the low-valent metal species with a thia/selenaketocarbene and this could 

be the mechanism for the formation of 13a-c and 14a-c. However, given that 

insertion of ‘Pt(PR3 )2 ’ into the E-N bond is assumed to be a step in the formation of 

8b,c, 9b,c, and possibly lOa-c and lla -c , it is feasible that the mechanism involves 

insertion of ‘Pt(PR3 )2 ’ into the Se-N bond followed by dinitrogen elimination (both 

mechanisms are shown in figure 3.15). It is unclear which of these mechanisms is 

correct. Compound 14c can be synthesised at room temperature if the reaction 

mixture is stirred for five days. This may suggest the reaction is dependent on the



112

formation of the selenaketocarbene (which is relatively slow at room temperature); 

alternatively this could be due to dinitrogen elimination from the PtN2 C2 Se species 

shown in figure 3.15 being a slow step. It is assumed that insertion of ‘Pt(PR.3)2 ’ into 

the N-Se bond should be relatively fast as the bond is relatively weak (the reactivity of 

1,2,3-selenadiazoles is based on the easy cleavage of this bond); it is, however, 

entirely possible that this is the rate-limiting step.
Figure 3.15:

Filtration and concentration of solutions of 13a-c and 14a-c typically gave thick, deep 

red oils. It was necessary to analyse these under inert atmosphere conditions, as they 

are quite unstable; upon prolonged stirring the products decompose. This instability 

led to problems with purification; the compounds decomposed when column 

chromatography was attempted (even under inert atmosphere) and attempts at 

recrystallisation proved unsuccessful. Since only very crude products were obtained 

their characterisation is limited to 31P and 77Se NMR and mass spectral data; these are 

shown in table 3.10.

T#PR3)2

\  ,Pt(PR3)2l
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What is immediately obvious from these data is the absence of 7 7 Se-195Pt coupling in 

the 77Se NMR spectra; it is unusual that this coupling is absent and it must be due to 

the particular electronic environment of selenium and platinum in these complexes. 

It is known that the magnitude of the coupling constant between two nucleii is 

dependent on a number of factors, including the amount of s-character the bond(s) 

between those nucleii have (the more s-character, the greater the coupling constant) . 9  

As the geometric constraints of the four-membered ring are likely to impose a C-Se-Pt 

bond angle close to 90°, the Pt-Se bond in 13a-c and 14a-c may have low s-character 

(it is probable that the Se orbitals involved are almost entirely p-based) which results 

in the 7 7 Se-195Pt coupling constant being small enough not to be observed. The 77Se 

NMR spectrum of [Pt(SeCgHi2 )(PPh3 )2] has been recorded and shows a multiplet at 6  

= -13 ppm. The resonance was weak and difficult to analyse but it appears that there 

is 7 7Se-195Pt coupling and 7 7 Se-3 1Pc/i coupling; this suggests that the type of phosphine 

present also has an influence.

The absence of observable 7 7 Se-3 1 Pc/s coupling in these species is not unexpected; it is 

typical for the 7 7 Se-3 1Pc/j coupling to be much less than the 7 7 Se-3 1 P/ram coupling, as 

was observed for the diselenolenes in chapter 2. The 77Se NMR spectrum of 13c is 

shown in figure 3.16 as an example. The 77Se NMR resonances of 13a-c and 14a-c 

are at much higher field than any of the compounds discussed so far. This, and the 

absence of 7 7 Se-I95Pt coupling are a reflection of the unique chemical environment of
• 77selenium in these compounds. Again a lower field resonance is observed m the Se 

NMR spectra of compounds 13b and 14b compared to 13a,c and 14a,c; this pattern is 

also observed in the 31P NMR spectra of 13a-c and 14a-c. The lower field 31P NMR 

resonances of 13a-c and 14a-c are attributed to the phosphorus nuclei trans to the 

selenium atom on the basis of their larger 3 1 P-195Pt coupling constants. Generally 

platinum-phosphorus coupling constants are low (~ 1800 Hz) for phosphines trans to 

a Pt-C bond, and higher for phosphines trans to a Pt-X bond (X = chalcogen or 

halogen) . 2 3 3

The mass spectral data are quite poor reflecting the impurity of the material used, 

although it was possible to see the molecular ions (except for 14a) all of which 

showed the correct isotope patterns. The low intensity of some of the molecular ions 

may be attributed to the instability of these compounds, which is why peaks for 

[Pt(PR3 )2 ] are observed.
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Figure 3.16: 77Se NMR spectrum of 13c

i  3  3  -• J 3  4  -13  u  -  II 3  8 — :1 4  C -  _ df H M

The reactions o f [Pt(C2 H4)(L)] (L = dppm or dppe) with cycloocteno-1,2,3- 

selenadiazole were investigated to see if it was possible to synthesise the compounds 

[Pt(SeCgHi2)(L)]; these reactions were unsuccessful. The lack of success of these 

reactions may indicate that insertion of platinum into the Se-N bond is an important 

step in the mechanism of this reaction; ‘PtL’ fragments are less nucleophilic than 

‘Pt(PR3)2 ’ and so oxidative insertion will often not occur for ‘PtL’ where it does for 

‘Pt(PR3)2 ’ (mainly due to the greater basicity of trialkylphosphines). It may also 

indicate that phosphine dissociation/association plays a part; the fact that it is possible 

to synthesise [P^SeCgHnXPPl^X] means steric factors are unlikely to be affecting the 

outcome of the reaction.
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Since it has been shown that bimetallic selenaketocarbene complexes can be formed 

with iron9 9 ,1 0 0  and cobalt, 109 (figure 3.17) the reaction of cycloocteno-1,2,3- 

selenadiazole with a two-fold excess of [Pt(C2 H4 )(PBu3 )2 ] was attempted to see if an 

analogous platinum complex could be synthesised. The reaction yielded only 

[Pt(SeCgHi2 )(PBu3 )2 ]; this was perhaps to be expected. In this compound platinum 

would have to be in the + 1  oxidation state; also the Pt(PBu3 ) 2  moieties are large and it 

would be difficult to fit two of them into a 5-membered ring.
Figure 3.17:

—M

Se

M  =  Fe(C O )3, CoC p
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3.5 Reactions of [PtfSeCn+aHin+aKPRV)?! with Mel
Due to the difficulties in isolating and characterising 13a-c and 14a-c attempts were 

made to make a crystalline derivative and confirm its structure. The reaction with 

Mel was attempted as palladium diselenolenes have been successfully derivatised this
1 77way; the reaction of dinuclear palladium diselenolenes with Mel gives mononuclear 

products of the type [PdI{Se(Me)Cn+4 H2 n+4 Se}(PR.3 )] via a bridge cleavage reaction 

(section 1.9).

Stirring 13a-c and 14a-c with an excess of Mel in a foil-covered flask overnight, 

followed by filtration and column chromatography led to the isolation of pink-purple 

oily solids. Based upon early spectral characterisations (and the chemistry observed 

for palladium diselenolenes) these products were believed to be 

[PtI{Se(Me) Cn+4 H2 „+4 }(PR3 )] (figure 3.18).
Figure 3.18:

(CH 2)n

Mel
Dioxane/THF/
Toluene

(C H 2)n

Upon further data collection it became apparent that there were two chemically and 

magnetically equivalent phosphorus atoms present. This suggested that oxidative 

addition of Mel to the Pt centre may have been occuring generating an octahedral 

species with the phosphines trans to one another. The reaction of 14c with EtI was 

carried out and a 77Se NMR spectrum recorded. The 77Se chemical shift was 352 

ppm, whereas with the analogous Mel product it was 235 ppm; this result suggested 

that alkylation of the selenium atom not the platinum atom occurs. It is therefore 

proposed that methylation of the selenium atom occurs with the iodide adding to the 

platinum to give a product with a square pyramidal geometry (figure 3.19). It has not 

been possible to deduce from the spectral data whether the selenium atom lies in an 

equatorial or axial position; the phosphine groups are trans to each other in both 

situations and are chemically and magnetically equivalent.

Compounds 15a-c and 16a-c have been isolated as pink-purple oily solids. They are 

very soluble in all organic solvents, which has unfortunately prevented the growth of 

crystals of these compounds. It has been possible to isolate these compounds in a 

relatively pure state by chromatographing 3-4 times; the most difficult part of the
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purification is separating the compounds from the residual naphthalene present from 

the synthesis of 13a-c and 14a-c.
Figure 3.19:

The formation of compounds 15a-c and 16a-c and not the products proposed in figure 

3.18 suggests that the Pt-P bond in 13a-c and 14a-c is very strong and is not easily 

broken; this may be a result of the electronic properties of the PtSeC2  system which 

were discussed above.

Compounds 15a-c and 16a-c have been characterised by multinuclear NMR 

spectroscopy and mass spectrometry; these data are presented in tables 3.11, 3.12 and 

3.13. The NMR spectra are in accord with the structures proposed in figure 3.19. The
77Se NMR resonance is split by the two equivalent phosphorus atoms into a triplet; the
7 7  1 q c __________________________________________________________________________________________________________________________________________________________________

Se and Pt NMR spectra of 16a are shown in figure 3.20 as an example. The Se- 

195Pt coupling constants of 15a-c and 16a-c are large and so the 195Pt satellites are 

visible, unlike the situation in 13a-c and 14a-c. The presence of 7 7 Se-195Pt coupling 

and the triplet structure in the 77Se NMR spectra confirms that the selenium remains 

bound to platinum in these compounds. Were the reactions to proceed via 

methylation of Se followed by cleavage of the Se-Pt bond, most of the spectral data
77 77 IQSwould be similar to 15a-c and 16a-c, but the Se NMR data would show no Se- Pt

77  l i  77
coupling and probably no Se- P coupling. The Se resonance is shifted downfield 

by more than 350 ppm compared to 13a-c and 14a-c. This shows that methylation 

has a big impact on the electronic environment of the selenium atom; not only is the 

electron density about selenium reduced (as evidenced by the change in chemical 

shift), but the character of the Se-Pt bonding is altered so the 7 7 Se-195Pt coupling 

constant is increased by approximately 500 Hz. The C-Se-Pt bond angle must still be 

approximately 90°, but now the selenium atom has a 3-coordinate geometry (and is 

probably sp hybridised); this obviously increases the s-character of the Se-Pt bond by
77 1 OS •a significant amount resulting in the relatively large Se- Pt coupling constant.

D ioxane/TH F/
Toluene

n =  2 3 4
R = Et: 15a 15b 15c 
R  =  Bu: 16a 16b 16c
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Figure 3.20: 77Se and 195Pt NMR spectra of 16a 

7 7 Se:

i

\ \

A j ( A

22S 224 223 2C2 221 220 -.0 313 21/ 21fi 2 15PPM

1 9 5Pt:

 T-- 3B6!2 7 B O .1 i  i O .) 1
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As expected the 77Se chemical shifts of compounds 15b and 16b are at lower field
77 1 OSthan those of 15a,c and 16a,c; it appears also that the Se- Pt coupling constant

increases with the aliphatic ring size. The 195Pt chemical shift of 16a is at lower field

than that of 15b; although the compounds are not directly comparable it is believed

that this is largely due to the differing phosphines present.
1 ̂  1The C and H NMR data are fairly consistent; there are some data missing due to the 

difficulties in obtaining pure material. The chemical shift of the selenium-bound 

methyl group is quite low indicating that there is a lot of electron density about this 

group. As usual the chemical shifts of the ring carbon atoms in compounds 15b and 

16b are at slightly lower field than in the other compounds, especially for the fi-CYii 

groups. Although the *H spectra were complex, in most cases it was possible to pick 

out the CZ-CH2 multiplets as their lower-field resonances separate them from the 

majority of the other peaks.

The mass spectra of the compounds all show high intensity (except 16c) peaks 

corresponding to [M-I]+. [M]+ peaks were not observed at significant intensity; this 

suggests that the Pt-I bond in these complexes is relatively weak. The isotope 

patterns of the [M-I]+ ions match the theoretical isotope patterns well.

It was found that 14c would not react with dimethyl sulphate (Me2 S0 4 ). This indicates 

that alkylation of the selenium atom is the critical step, and it is dependent on the 

strength of the alkylating group (Me2 SC>4 is a weaker methylating agent than Mel). 

This is also the case in the bridge cleavage reactions of palladium diselenolenes, 

where the first step of the reaction was proven to be alkylation of the selenium atom
1 77and not halogen-induced bridge cleavage.
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3.6 Reactions of [PtI(Se(Me)Cn4JH7n+4 HPRV)?l with TIPF*
Since a crystallographic characterisation of compounds 15a-c and 16a-c was not 

possible, these compounds were further derivatised by reaction with T1PF6. Stirring 

15a-c/16a-c with a slight excess of T1PF6 in acetone for 2-3 days gave orange-red 

solutions with a fine yellow precipitate (Til); filtration followed by concentration gave 

the orange-yellow oily solids 17a-c and 18a-c (figure 3.21).
Figure 3.21:

+ PF/f(C H 2)n

T1PF,

acetone
(C H 2)n

+ Til

n = 2

R = Et 17a 17b 17c 
R = Bu 18a 18b 18c

The reactions proceeded as expected, iodide being extracted from 15a-c and 16a-c by 

Tl+ to give [Pt{Se(Me)Cn+4 H2 n+4 }(PR3 )2 ]+ for which PF6 * acts as the counterion. 

Compounds 17a-c and 18a-c have been characterised by multinuclear NMR 

spectroscopy and mass spectrometry; unfortunately at the time of writing no crystals 

of these compounds have been isolated and so an x-ray crystallographic study has not 

been carried out.

Tables 3.14, 3.15 and 3.16 show the NMR spectral and mass spectrometric data for 

compounds 17a-c and 18a-c. The NMR data are consistent with the proposed 

structures; the phosphines are not chemically equivalent and give rise to separate 

peaks in the 3 1 P, 13C and !H NMR spectra. As for compounds 13a-c and 14a-c the 

phosphine trans to the selenium atom is assumed to give rise to larger coupling 

constants; this phosphorus (shown in figure 3.22) is assigned as Pa.

Figure 3.22:

S e
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The 77Se NMR resonances of 17a-c and 18a-c are split into doublets by coupling to 

the trans phosphorus atom. The 7 7 Se-3 ,P/ra„J coupling constants are much larger than 

were observed for 13a-c and 14a-c, but the 7 7 Se-3 1Pc/J coupling constants are still too 

small to be resolved; figure 3.23 shows the 77Se NMR of 18b as an example. The 

77Se NMR resonances are at high field, in a similar region to those of 13a-c and 14a-
77c; the Se NMR resonances of compounds 15a-c and 16a-c were at much lower field.

77 77Unlike those of 13a-c and 14a-c the Se spectra of 17a-c and 18a-c do show Se-

195Pt coupling (figure 3.23) although the value is small compared to 15a-c and 16a-c
7 7  1 1(~ 90 Hz compared to ~ 475 Hz). The Se- Vtrans coupling constants are fairly 

consistent for each of the compounds, but the 7 7 Se-195Pt coupling constants do seem to 

increase upon increasing the size of the aliphatic ring. Typically lower field 

resonances are observed for 17b and 18b. The 77Se NMR spectra of compounds 13a- 

c, 14a-c, 15a-c, 16a-c, 17a-c and 18a-c have shown how even slight changes in 

structure can greatly change the electronic environment of the selenium atom; these 

changes would not have been revealed in as great a detail by any other spectroscopic 

technique.

The P NMR spectra are as expected and are very similar to those of 13a-c and 14a- 

c; the 3 1 P-,95Pt coupling constants are slightly larger, which could be a result of the
I i i

decreased electron density in 17a-c and 18a-c. The P- P coupling was not 

resolved; as the PF6 - resonance dominates the 31P NMR spectra, the phosphine signals 

are relatively weak and no splitting was observed.

The ,3C data are fairly consistent and are similar to those of 15a-c and 16a-c. One 

noticeable difference however, is that the chemical shift of the selenium-bound 

methyl group is higher (by approximately 1 0  ppm) indicating that there is a loss of 

electron density about this group upon removal o f f .  As usual the carbon atoms in the 

aliphatic rings of 17b and 18b resonate at slightly lower field. As has been observed 

previously, although the *H spectra were complex in most cases it was possible to 

pick out the «-CH2  multiplets as their lower-field resonances separate them from the 

majority of the other peaks.
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Figure 3.23: 77Se NMR spectrum of 18b

 1 ■---------
- 1  I B

P P M

The ESI (electrospray ionisation) mass spectra all show [M]+ peaks with 100% 

relative intensity in the positive ion spectra at a cone voltage of 20 V. The high 

intensities of these peaks could be attributed to the relatively ‘soft’ conditions used; at 

higher cone voltages (50 and 90 V) fragmentation occurs, typically with loss of a 

phosphine at 50 V, and extensive breakdown of the molecules at 90 V. There is no 

evidence of iodine in either the positive or negative ion spectra; this confirms that the 

reaction proceeds as shown in figure 3.21.

Although crystallographic characterisation of compounds 15a-c, 16a-c, 17a-c and 

18a-c has not been possible, the multinuclear NMR spectroscopic and mass spectral 

data provide enough evidence to confirm the proposed structures for 13a-c and 14a-c 

(figure 3.14).



Chapter 4

The Syntheses, Reactions and Characterisation of Some 
Complexes Derived from Selenophene
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4.1 The Reactions of [PtlCiEDfPRO?! with Selenophene
In chapter 1 the reactions of selenophenes with low-valent transition metal complexes 

were discussed; those with group 6 , 7, 8  and 9 metals have been well covered, but the 

investigation of reactions with Ni, Pd and in particular Pt has been limited. To our 

knowledge the reaction of [Pt(C2H4 )(PPh3 )2 ] with selenophene activated by Mn(CO)3+ 

is the only reported reaction of a 6 /s-phosphine platinum(O) complex with a
717selenophene. Oxidative addition of the C-Se bond to Pt(0) occurs to give the 

selenaplatinacycle [Mn(CO)3 (r|5-{Pt(SeC4 H4 )(PPh3 )2 })]+; the ‘Pt(PPh3)2 * fragment is 

a relatively weak nucleophile and activation of the C-Se bond (through electron 

withdrawal) of selenophene by Mn(CO)3+ is necessary for the reaction to proceed. 

Stirring [Pt^HUXPRj^] (R = Et, Bu) with selenophene in dioxane/THF at 50 °C 

overnight followed by column chromatography (19) or crystallisation (20) led to the 

isolation of the selenaplatinacycles [Pt(SeC4 H4 )(PR3 )2 ] (figure 4.1) as yellow (19) or 

orange (2 0 ) solids.
Figure 4.1:

[Pt(C2H4)(PR3)2] ^50 °C,
Dioxane/THF Se yn  P R 3  R = Et: 19

R = Bu: 20

The reaction proceeds via oxidative addition of the C-Se bond of selenophene to the 

‘Pt(PR3 )2 ’ moieties; due to the greater basicity of PEt3 and PBU3 compared to PPI13  

‘Pt(PR3 )2 J is sufficiently nucleophilic for the reaction to proceed without activation of 

the C-Se bond. Analogous reactions have also been attempted using [Pt^FLtXL)] (L 

= dppm, dppe) and selenophene. That these were not successful is attributed to the 

4Pt(L)’ moieties having a comparable nucleophilicity to ‘P^PPl^X’; the reaction 

should not be affected by steric factors here (i.e. the reactions should proceed with 

activated selenophene).

It was possible to purify 20 by recrystallisation from hexane; these crystals were 

suitable for an x-ray diffraction study. The molecular structure is shown in figure 4.2; 

thermal ellipsoids are drawn at 30% probability and hydrogens are omitted for clarity. 

The crystal data are summarised in table 4.1, with selected bond lengths and angles 

listed in table 4.2. Diffraction data were collected on an Oxford Diffraction Excalibur
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3 CCD diffractometer with Mo-Ka radiation (X = 0.71069 A); structure solution was 

by SIR 972 2 5  with refinement by SHELXL 97 2 2 3

Table 4.1 Crystallographic data for 20
Empirical formula C2 8H5 8P2 SePt
Formula weight 730.73
Crystal system orthorhombic
Space group F 2dd
Crystal dimensions (mm) 0.70x0.18x0.14
a!A 10.280(1)
b/A 31.707(3)
d A 42.304(3)
cd° 90.00
P!° 90.00

r 90.00
VIA 13789(2)
z 16
F(0 0 0 ) 5888
Dcalc (g cm'3) 1.408
p (Mo-Ka/mm'1) 5.232
Temperature (K) 295
Reflections collected 22996
Independent reflections 6350
0 Range (°) 4.28-29.12
Reflect, with /  > 2c(7) 4382
No. of parameters 310
Ri; WR2 [/>  2c(/)] 0.0532; 0.1370
Ri; WR2 (all data) 0.0764; 0.1511
GoF 1.014
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Figure 4.2: Crystal Structure o f 20
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Table 4.2: Selected bond lengths and angles of compound 20

Bond Lengths (A)
Pt-Se 2.4270(8)
Pt-C(l)2.096(6)
Pt-P(l) 2.276(2)
Pt-P(2) 2.355(2)
Se-C(4) 1.824(13)

Bond Angles (°)
Se-Pt-C(l) 89.28(15)
Se-Pt-P(l) 169.72(7)
Se-Pt-P(2) 84.70(6)
P(l)-Pt-P(2) 102.32(7)
P(l)-Pt-C(l) 84.25(16)
P(2)-Pt-C(l) 172.48(15)
Pt-C(l)-C(2) 135.51(51)
Pt-Se-C(4) 108.85(28)
Dihedral angle between PtSeCP2 plane and Se-C(l) plane = 8.7°

The geometry about the platinum(II) centre is distorted square-planar. The P(l)-P(2)
o

angle of 102.32° is assumed to be greater than 90 due to steric repulsion of the bulky 

PBu3 groups; this angle is larger than that seen in thiaplatinacycles with PEt3 ligands 

(ica. 98°),210 probably due to the larger size of PBu3. The Se-Pt distance of 2.427(0) A 

is comparable with the Pt-Se distance in [Mn(CO)3 (r|5-{Pt(SeC4 H4 )(PPh3 )2 })]+ 

(2.421(9) A) , 2 1 7  although the P-Pt-Se angles are less (169.72 and 84.70° compared to 

171.61 and 86.82°); this correlates with the smaller P-Pt-P angle (96.79°) in 

[Mn(CO)3 (r)5 -{Pt(SeC4 H4 )(PPh3 )2 })]+. The Pt-Se distance is ca. 0 . 1  A bigger than the 

Pt-S distance in analogous thiaplatinacycles, 2 1 0  as expected given the larger size of the 

selenium atom compared to sulphur. The C(l)-Pt-Se angle of 89.28° is similar to that 

of [Pt{SCHC(Cl)CHCH}(PEt3 )2] (89.84°),210 but quite different from that of 

[Mn(CO)3 (rj5-{Pt(SeC4 H4 )(PPh3)2})]+ (85.55°); this may be due to the smaller P-Pt-P 

angle in this species or the influence of the Mn(CO)3+ moiety. The Se-C(4)-C(3)- 

C(2)-C(l) component of the selenaplatinacycle is essentially planar; the platinum 

atom deviates from this plane and the dihedral angle of the Se-C(4)-C(3)-C(2)-C(l) 

and Se-Pt-C(l) planes is 8.7°. Deviation of platinum from this plane is typical of this 

type of complex, 2 1 0 ,2 1 7  and angles ranging from 1.3° ([Pt(SCHC(Cl)CHCH)(PEt3 )2 ]) to 

37.5° ([Pt{SC3 H3 C(N0 2 )}(PEt3 )2 ]21° have been observed. The deviation of platinum 

from the selenophene plane indicates that, even though this is a 6 7 1-electron system
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like the diselenolenes discussed in chapter 2 , there is not extensive electron 

delocalisation about the PtSeC4 ring system. In the case of compounds 19 and 20 the 

steric factors favouring a non-planar PtSeC4 ring outweigh the electronic benefits of a 

six-membered delocalised ring system.

Tables 4.3 and 4.4 show the multinuclear NMR data for compounds 19 and 20, which 

are consistent with the proposed structures. The phosphines are not chemically 

equivalent and give rise to separate peaks in the 3 1 P, 13C and *H NMR spectra. As in 

chapter 3 the phosphine trans to the selenium atom is assumed to give rise to larger 

coupling constants; this phosphorus (shown in figure 4.3) is designated Pa-

Figure 4.3:

S e  Pt PaR3

Table 4.3: !H and 13C NMR spectroscopic data for 19 and 20 in d6 -acetone solution

19 20
H CH3 0.81-0.93 (18H, m) 

1.75-1.89 (12H, m)
0.70 (18H, t)a

CH2 P
c u 3c h 2c u 2 
c h 2 c h 2p

6.50-7.40 (4H, m)

1.71-1.88 (12H, m)
1.13-1.45 (12H, m)
1.13-1.45 (12H, m) 
6.44-7.73 (4H, m)

13C CH5 (1)
CH5 (2) 
CH2 P(1) 
CH2 P(2) 
CH2 CH2 P(1) 
CH2 CH2 P(2)
c h 3 c h 2 c h 2

8.5b
8.4°
16.8d
16.9e

13.9
13.8 
24.6d 
24.7e 
27.0f 
26.9s
25.1 
130.5h 
128.4'
121.8
112.01

C(l)
C(2)
C(3)
C(4)

131.0h
128.4'
121.8
112.01

" 3J('H-'H) = 7.2 Hz; b3J(l3C-l95Pt) = 25 H z;c 3J(13C-l95Pt) = 14 H z;d ‘J(,3C-31P) = 32 Hz (19), 13 Hz (20), 3J(,3C-3IP) = 2 Hz (19), 
2J(,3C-195Pt) = 31 Hz (19);e ‘J(13C-3IP) = 27 Hz (19), 13 Hz (20), 2J(13C-l95Pt) = 13 Hz (19); f3J(13C-l95Pt) = 23 Hz; *3J(13C-195Pt) = 
13 H z;h 2J(13C-3lP,raM) = 98 Hz (19), 99 Hz (20), 3J(13C-31Pc„) = 9 Hz (19), 10 Hz (20);12J(l3C-I95Pt) = 106 Hz;j 2J(l3C-31P,rani) = 7 
Hz, 3J(13C-31Pm) = 3 Hz.
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1 <1*7
Table 4.4: P and Se NMR spectroscopic data for 19 and 20 in d6-acetone solution.

19 20
8 (PA)/ppm 10.4 2.9
1J(3 1 PA-1 9 5Pt)/Hz 3190 3157
8 (PB)/ppm -0 . 8 -8.4
1/ ( 3 1 PB-1 9 5Pt)/Hz 1732 1693
2J(3 1 Pa-3 ,Pb)/Hz 15 14

?/P£ m m e
303 294

./( Se- Pt)/Hz 171 169
V(7 7 Se-3 1 P,ra„s)/Hz 71 70
2J(7 7 Se- 3 1 Pc/i)/Hz 48 49

77The Se NMR spectra are as expected with Se the X part of an AMX pattern, so a

doublet of doublets, due to splitting by the chemically inequivalent phosphines is

observed. Figure 4.4 shows the 77Se NMR spectrum of 20; the AMX structure is very

clear due to the relatively large values of the 7 7 Se-3,P coupling constants. The 7 7 Se- 
11 Ptrans coupling constants are comparable to those of the diselenolenes la-c and 2 b,c 

discussed in chapter 2, but the 7 7 Se-3 1 Pc/s coupling constants are much larger (49 Hz c f  

14-18 Hz). Indeed they are by far the largest 7 7 Se-3 1 Pc/iS coupling constants of any of 

the compounds discussed in this thesis; this is attributed to the unique chemical 

environment of the selenaplatinacycles. The 195Pt satellites are clearly visible in the 

spectra from which we can obtain the 7 7 Se-195Pt coupling constants; these are 

approximately 100 Hz lower than the 7 7 Se-195Pt coupling constants of the 

diselenolenes la-c and 2b,c. In addition the chemical shifts of 19 and 20 are much 

lower than those of the diselenolenes (5 ~ 300 ppm c/ 8  ~ 460 ppm); this is believed to 

be due to the lack of electron delocalisation around the selenaplatinacycles compared 

to the diselenolenes (as discussed above). The 31P NMR spectra are as expected; the 

lower field resonances are attributed to the phosphine trans to the selenium on the
71 1 QC O'l’l

basis of the greater P- Pt coupling constant. The same protocol has been used in
13the assignment of the carbon and hydrogen atoms of the phosphines. The C NMR 

spectra are as expected; due to low intensity (C(l)-C(4)) or overlap (PBU3 ) some of 

the 13C-195Pt and 13C-31P coupling constants could not be established, but a resonance 

for every carbon atom was present. The ]H NMR spectra were quite complex 

(especially in the olefmic region) but were of sufficient quality to confirm the 

structures of 19 and 20.
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Figure 4 .4 :77Se NMR spectrum of 20

s M i
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P P M

Table 4.5 shows the mass spectral data for 19 and 20 and the infrared and UV-visible 

spectroscopic data for 20. Purification of compound 19 was difficult and material 

suitable for infrared and UV-visible spectroscopic analysis was not obtained.

The low relative intensity of the molecular ion peaks compared to the [Pt(PR3)2 ]+ 

peaks suggest that 19 and 20 are not very stable; this was perhaps to have been 

expected. In general the main aim of investigations into the reactions of low-valent 

transition metals with thiophenes and selenophenes, is to find catalysts for the 

removal of chalcogens from chemical feedstocks.196 It is thus a key requirement of 

these reactions that the products are not too thermodynamically stable to facilitate 

further reaction. In the mass spectrum of 20 there is a small cluster at m/z = 667-680 

(7 %) which may correspond to [PtSe(PBu3 )2 ]+, but it is not of high enough intensity 

to suggest deselenation is a major process here.
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Table 4.5: Mass spectral data for 19 and 20 and infrared and UV-visible

spectroscopic data for 20

_______________________________ 19________________ 20
Mass Spectrum3 [M]+ 563 (30) 731 (25)

[Pt(PR3)2]+ 431 (100) 599(100)

Inffaredb Not 2954 (s)
recorded 2927 (s)

2870 (m)
1462 (m)
1418 (w)
1377 (m)
1206 (w)
1160 (w)
1087 (m)
1050 (w)
967 (w)
905 (m)
784 (s)
723 (m)
643 (s)

UV-Visc Not 230(15,700)
Recorded 280(10,700)

350sh (4,300)

a m/z (%); recorded using FAB; figures are for isotopomers containing Pt, Se, P, 
12C, !H; expected isotope patterns were observed. b Selected bands (cm'1) only. c Xmax 
(nm); e (cm'1 M’1) in parentheses; recorded in DCM solution (10’5 M).

The UV-visible spectrum of 20 explains the orange colour of the compound: the 

major absorbance bands are in the UV region of the spectrum, but there is a shoulder 

at 350 nm that tails off into the visible. The intensity of absorption drops to a very 

low value at approximately 400 nm, but doesn’t drop to zero until approximately 600 

nm; the fact that there is no absorption in the 600-800 nm region gives rise to the 

orange colour of this compound.



4.2 Reactions of [PfrSeC.H.lfPBu^l (20)
Some reactions of 20 were investigated. There is a report of the thiaplatinacycle 

[Pt{C,S-(CH=CHC6 H4 S)}(PMe3)2 ] reacting with a slight excess of dppe to give 

[Pt{C, S'-(CH=CHC6 H4 S)} (dppe)] ; 2 3 4  the reaction is presumably driven by the chelate 

effect. A similar reaction with 20 was attempted. Compound 20 was stirred with an 

excess of dppe in toluene for 3 days; during this time the pale yellow reaction mixture
T 1darkened. Subsequent analysis by P NMR spectroscopy showed no starting material 

or product with a 3 ,P-195Pt couple to be present.

In chapter 1 (section 1.6.3) the insertion of S or Se into the Co-C bond of 

[Co(r|5-C5R5)(SeC8Hi2 )] (R = H or Me) was documented;110,111 a similar reaction was 

attempted with compound 20 in an attempt to synthesise a product of the type shown 

in figure 4.5. This type of compound could be considered a vinylogue of 

diselenolenes.
Figure 4.5:

Stirring 20 with 2.5 equivalents of elemental grey selenium in toluene under an argon 

atmosphere at 80 °C for 15 minutes gave a dark brown reaction mixture; analysis by 

31P NMR spectroscopy showed mostly SePBu3 . These results suggest that compound 

2 0  is not very stable: in solution ‘Pt(PBu3 )2 ’ and selenophene may be in equilibrium 

with 20 (figure 4.6), and in the presence of oxygen or selenium ‘Pt(PBu3)2 ’ reacts 

with loss of EPBU3 (E = O, Se) driving the equilibrium to the left with loss of the 

product.
Figure 4.6:

+ 'Pt(PBu3)2'

Bu3P

Compound 19 is less stable than 20 and is lost quickly in air-exposed solution 

(whereas 20 is stable enough to be crystallised from an air-exposed solution). This is
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presumably a steric effect: PEt3 is more easily oxidised than PBU3 , meaning it is 

removed from the equilibrium shown in figure 4.6 more quickly.
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4,3 Miscellaneous Reactions
The reactions of [Pt(C2 H4 )(PR.3 )2 ] with thiophene and 2,5-diphenyltellurophene have 

been investigated; along with the reactions of low-valent palladium phosphine 

complexes with thiophene and selenophene, these reactions are documented below.

4.3.1 Reactions of [PtfCJbWPRVhl with Thiophene and 2,5- 

Diphenvltellurophene

Although the reactions of ‘Pt(PEt3 )2 ’ with thiophenes are well 

documented, 2 1 3 ,2 1 4 ,2 1 6 ,2 3 4  there are (to our knowledge) no reports of the reactions of 

‘Pt(PBu3 )2 ’ with thiophenes. [Pt(C2 H4 )(PBu3)2 ] was stirred with thiophene overnight 

at room temperature and at 70 °C; in both cases subsequent column chromatography 

led to the isolation of a yellow oil, the 31P NMR spectra of which showed equal 

intensity peaks at 5 = 3.3 ppm (J(3 1P-195Pt) = 3084 Hz) and 8  = -7.6 ppm (J(3 1P-195Pt) 

= 1643 Hz). The FAB mass spectrum of the product obtained from the reaction 

carried out at 70 °C showed peaks at m/z = 599 (100%) and 683 (10%) corresponding 

to [Pt(PBu3 )2]+ and [Pt(SC4 H4 )(PBu3 )2 ]+ respectively. So it appears a thiaplatinacycle 

(figure 4.7) has been synthesised, but the yield was low (5-10%) and the reaction was 

therefore not investigated further.

Figure 4.7:

Bu3P

The reactions of [Pt(C2 H4 )(PR3)2 ] (R = Et, Bu) with 2,5-diphenyltellurophene were 

also investigated; 2,5-diphenyltellurophene was used as it is more stable than 

tellurophene and its synthesis is relatively straightforward. The reactions were 

carried out under the same conditions used to synthesise 19 and 20 substituting 

selenophene with 2,5-diphenyltellurophene. The yellow reaction mixtures were 

filtered, concentrated and analysed by 31P NMR spectroscopy under an argon 

atmosphere; these analyses showed peaks at 8  = 2.9 ppm (J(3 1 P-19 5Pt) = 1992, 3125 

Hz) and 8  = -4.0 ppm (J(3 1 P-19 5Pt) = 2205, 3125 Hz) for R = Et and Bu respectively. 

These peaks are attributed to the telluraplatinacycle shown in figure 4.8, assuming in
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both cases that the P chemical shifts of the two inequivalent phosphines are 

accidentally degenerate.

Figure 4.8:

Te Pt PR3

/
r3p

Unfortunately purification of these telluraplatinacycles was not possible by column 

chromatography. When allowed to stand in solution the deposition of 2,5- 

diphenyltellurophene occurs indicating that an equilibrium similar to that in figure 4.6 

exists and it is biased to the left.

4.3.2 Reactions of PaHadium(O) Phosphine Complexes with Selenophene

Since palladium diselenolenes analogous to the platinum diselenolenes discussed in 

chapter 2  can be synthesised from in situ generated ‘Pd(PR.3 )2 \ 1 2 0 ,1 2 6 ,1 6 9 an 

investigation into whether this was a viable method for insertion of Pd into 

selenophene was carried out. Under Ar a mixture of [Pd2 (dba)3 ].dba and PR3 (R = Et, 

Bu) in toluene was treated with selenophene and stirred at 50 °C overnight. The 

reactions were attempted several times, but unfortunately none of the desired 

selenapalladacycles were isolated and spectroscopic analysis showed, if they were 

present it was in very small amounts. The reason for this could be due to the lability 

of palladium compared to platinum, resulting in an unstable selenapalladacycle 

forming, which quickly returns to starting materials. Alternatively ‘Pd(PR3 )2 J may 

not be a strong enough nucleophile to insert into the C-Se bond of selenophene; as 

discussed previously the nucleophilicity of the metal centre is critical to the success of 

the reaction.



Chapter 5

The Reactions of Compounds Containing an Se-Se bond 
with Zerovalent Platinum and Palladium Trialkylphosphine

Complexes
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5,1 The Reactions of (PhSe)? and (FcSe)? with 

[Pt(C?HLi)(PRVM and with rPd,(dba).l,dba/PR. (R = E t Bu)
In chapter 1 the reactions of various diaryl diselenides with low-valent platinum and 

palladium complexes were briefly discussed; the main focus of the research has been 

on triphenylphosphine derivatives. The reaction of diphenyl diselenide with 

[Pt(C2 H4 )(PPh3 )2 ] or [Pt(PPh3 )4 ] gives trans-[Pt(SePh)2 (PPh3)2 ] ; 141 ’ 142 the reaction 

with [Pd(PPh3 )4 ] gives the dinuclear compound [Pd2 (p2 -SePh)2 (SePh)2 (PPh3)2 ] . 2 3 6  

Similar trends are observed in the reactions of [M(PPh3 )4 ] (M = Pt, Pd) with bis-{2- 

thienyl) diselenide where the products are /nms-[Pt(SeTh)2 (PPh3 )2 ] (Th = 2-thienyl) 

and [Pd2 (p2 -SeTh)2 (SeTh)2 (PPh3 )2 ] . 143 Although there are reports of the reactions of 

ferrocenyl selenolates with platinum and palladium complexes, 2 3 7 ,1 7 6  there is only one 

report of oxidative addition of (FcSe) 2  (Fc = [Fe^-CsHsXr^-CsFLj)]) and that
• 'J IO

concerns a ruthenium complex. There are no reports of the reactions of (PhSe) 2  

with platinum(O) trialkylphosphine complexes to produce complexes of the type 

/ra«5 -[Pt(SeR’)(PR3 )2 ] (R = Et, Bu); although there is a report of the synthesis of 

trans- [Pd(SePh)2 (PBu3 )2 ], it was prepared by the reaction of [PdCl2 (PBu3 )2] with 

NaSePh. 2 3 9  With this in mind the reactions of [Pt^FLjXPRsX] with (R’SeX (R’ = Ph, 

Fc) and the reactions of [Pd2 (dba)3 ].dba/PR3 with (FcSeX were investigated.

Stirring [Pt(C2 H4 )(PR3 )2 ] and (R’SeX in a dioxane/THF mixture overnight, followed 

by column chromatography led to the isolation of the compounds trans- 

[Pt(SePh)2 (PR3 )2 ] (2 1 a ,b, yellow solids) and fnms-[Pt(SeFc)2 (PR3)2 ] (2 2 a ,b, orange 

solids) as shown in figure 5.1.
Figure 5.1:

PhSe^ ^PR 3

SePhPhSeSePh

1,4-dioxane/THF/toluene 
RT, overnight

FcSeSeFc FcSe, PR-
\  /

‘SeFc

21a: R = Et 
21b: R = Bu

22a: R = Et 
22b: R = Bu

Similarly the reaction of a [Pd2 (dba)3 ].dba/PR3 mixture with (FcSeX in toluene at 

room temperature overnight, followed by precipitation by hexane and filtration led to



the isolation of the compounds /nms-[Pd(SeFc)2 (PR3 )2 ] (23a,b, red/orange solids) as 

shown in figure 5.2.
Figure 5.2:

—— * . FcSe. PR,
excess PR3, toluene \  /  23a: R = Et

[Pd2(dba)3]/PR3 + FcSeSeFc ---------------------------- ►  Pd 2 3 b - R = Bu
RT, overnight /  \

y R3P SeFc

A [Pd2 (dba)3 ].dba/PR3 mixture is used as the precursor in the palladium reactions as

there are no reported syntheses of [Pd(C2 Fl4 )(PR3 )2 ] (R = Et, Bu) and our attempts to

prepare these complexes have been unsuccessful. In the syntheses of 23a,b an excess

of phosphine was used; the synthesis of compounds of the type

[Pd2 (|i2 -SePh)2 (SePh)2 (PR3 )2] by using a palladium to phosphine ratio of 1 : 1  was

attempted under the same conditions. Brown reaction mixtures were given and

chromatographic purification or precipitation with hexane gave brown solids; analysis
i

by P NMR spectroscopy showed many peaks and recrystallisation was unsuccessful. 

These reactions obviously do not proceed cleanly and isolation of any products is 

difficult, so they were pursued no further.

Only the trans- isomers of 21a,b, 22a,b and 23a,b are isolated. There is no evidence 

for the presence of the cis- isomers; this is attributed to the steric influence of the 

bulky phosphine substituents which are further apart in the trans-isomers. The initial 

formation of the cis- isomers cannot be ruled out; it is possible that they form and then 

isomerise to the trans- isomers. It has been reported that the reaction of 

[Pt(C2 H4 )(PPh3 )2 ] with (PhSe) 2  gives c/s-[Pt(SePh)2 (PPh3 )2 ] which isomerises to 

/r<ms-[Pt(SePh)2 (PPh3 )2] at room temperature in solution; 2 4 0  the same isomerisation 

has been reported for c/s-[Pt(SePh)2 (PPh3 )2 ] generated from the reaction of cis- 

[PtCl2 (PPh3)2] with NaSePh.2 4 1 2 4 2

Crystals of 21a, 21b and 22a suitable for an x-ray diffraction study were obtained by 

recrystallisation from toluene/hexane at -20 °C; the results of this study are presented 

in chapter 6 . One point of note from this study is that the unit cell of 21a contains 

both the syn- and anti- stereoisomers (figure 5.3). The unit cells of 21b and 22b 

showed only the tfft/f-isomer.
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Figure 5.3: Syn- and anti- isomers of 21a 

S y n - iso m e r :

v4/ifi-isomer:

C22P12

C19

C20Se2 C21
C13CM

C15
C23

C18

C24
C17

C16

Interconversion of these isomers via pyramidal inversion of the selenium atom is a 

process that has been well studied4 4  and is generally fast in solution, so the individual 

isomers are often not shown upon spectroscopic analysis, especially where simple 

monodentate selenolate ligands are present.

The multinuclear NMR spectroscopic data for 21a,b, 22a,b and 23a,b are presented in 

tables 5.1 and 5.2.
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The NMR spectroscopic data are in accord with the proposed structures, based on 

the assumption that there is rapid interconversion of the syn- and anti- isomers (via 

pyramidal inversion at the selenium atom or rotation of the metal-selenium bond); 

this is usual for monodentate selenolates. 4 4 The chemically and magnetically 

equivalent environments of the two phosphorus nuclei in each compound give rise to
77 77a triplet in the Se NMR spectra (as an example figure 5.4 shows the Se NMR 

spectrum of 22b); the satellite structure due to 7 7 Se-195Pt coupling is of course not 

present in 23a,b. The 77Se NMR chemical shift and the 7 7 Se-195Pt and 7 7Se-31P 

coupling constants are predominantly determined by the nature of the selenium 

substituent; the 77Se NMR chemical shifts of 22a,b and 23a,b are at much higher 

field than 21a,b indicating that the ferrocenyl substituents contribute more electron 

density to the selenium than phenyl groups do. The 7 7 Se-195Pt and 7 7 Se-31P coupling 

constants for 22a,b are approximately two times greater than those of 21a,b, which 

may be a direct result of this greater electron density provided by the ferrocenyl 

groups. The nature of the phosphine substituent has less of an effect, but it is clear 

that the PBU3 substituted compounds have higher 77Se NMR chemical shifts than 

their PEt3 substituted analogues; this trend is reversed in the 31P NMR spectra of 

these compounds.

The 13C and NMR are as expected; in the 13C NMR spectra there is a slight 

increase in the chemical shifts of the phosphine carbon atoms of 22a,b and 23a,b 

compared to 21a,b attributed to the presence of ferrocenyl selenolate ligands instead 

of phenyl selenolate ligands.

Compounds 21a,b, 22a,b, and 23a,b have also been characterised by FAB mass 

spectrometry, UV-visible and infrared spectroscopies; these data are shown in tables 

5.3 and 5.4.
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Figure 5.4: 77Se NMR spectrum of 22b

A !/ I \ f
/ v v l

/  \ /V  vvAY H  - " v \

PPM

The mass spectra o f all the complexes show a molecular ion peak, although in most 

cases it is weak and peaks corresponding to the loss o f selenolate ligands are more 

intense. It is notable that compounds 21a, 22a and 23a only showed ion peaks 

corresponding to the loss of one selenolate ligand, whereas compounds 21b, 22b and 

23b show peaks corresponding to the loss of one and two selenolate ligands; this 

indicates that the selenolate ligands may be more tightly bound in the compounds 

with PEt3 ligands.

The differing colours of the phenylselenolate (21a,b) and ferrocenylselenolate 

(22a,b, 23a,b) complexes are explained by the UV-visible spectra. The 

ferrocenylselenolate ligands of 22a,b and 23a,b give rise to absorptions in the visible 

region at approximately 465 nm, explaining the orange-red colour of these 

compounds. These absorption bands are absent in the spectra of 21a,b, which are 

yellow in colour, presumably due to the absorption at 350 nm tailing off into the 

visible region. The UV-visible spectra of 22a,b and 23a,b are similar and thus so
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are the colours of these compounds; this is in contrast to what has been observed in 

the case of neutral ferrocenyl selenide ligands. 2 4 3  Investigation of the related 

complexes [MCl(ECHR’CHR’NMe2 )(PR3)] (M = Pd or Pt; E = S, Se or Te; R’ = H 

or Me; R3 = Me2 Ph, etc.) has shown their highest wavelength absorption bands to be 

ligand (E) to ligand (PR3) charge transfer based; this is not the case with 21a,b , 

22a,b and 23a,b.
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5.2 The Reactions of (PhTeY> and (FcTe)? with 

HPtfC JL V P R ^.1 and with [Pd,(dba),l.dba/PR, (R = E t Bu)
Since the syntheses of 21a,b , 22a,b and 23a,b were relatively straightforward, the 

analogous tellurium chemistry was investigated. The reactions of [Pt(C2 H4 )(PR.3 )2 ] (R 

= Et, Bu) with (R’Te) 2  (R’ = Ph, Fc) in dioxane/THF overnight at room temperature, 

followed by column chromatography led to the isolation of yellow (R = Ph) or orange 

(R = Fc) solids believed to contain [Pt(TeR’)2 (PR3 )2 ] (Figure 5.5).
Figure 5.5:

PhTe PR3
x  /  24a: R = Et

24b: R = Bu
TePhPhSeSePh

1,4-dioxane/THF/toluene 
RT, overnight

FcSeSeFc FcTe, PR.

TeFc

25a: R = Et 
25b: R = Bu

Unfortunately only 25b was isolated in sufficient purity for a multinuclear NMR 

spectroscopic and mass spectral analysis; compounds 24a and 25a decompose rapidly 

upon isolation even when stored under an inert atmosphere indicating that 

Ms(triethylphosphine)platinum tellurolate complexes are not stable. The NMR 

spectra of compound 24b indicated that there were many species present; the mass 

spectra showed a number of high mass peaks indicating that some or all of these 

species may be of high nuclearity. The NMR spectral and mass spectrometric data for 

25b are shown in table 5.5.

The data are in accord with the proposed structure for 25b; again there is no spectral 

evidence for the cis- isomer. The data correlate well with those of 22b, although in 

25b the 13C NMR chemical shifts are approximately 2 ppm greater than in 22b. The 

125Te NMR spectrum shows a triplet with 195Pt satellites, as was observed in the 77Se 

NMR spectrum of 22b. As expected the 125Te-195Pt and 1 25Te-31P coupling constants 

are much larger than the 7 7 Se-195Pt and 7 7 Se-31P coupling constants for 22b; this is an 

effect of the difference in the gyromagnetic ratios of 77Se and 125Te (5.115 and -8.497 

107 rad. T ' 1 s' 1 respectively) . 76
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Table 5.5: !H, 13C, 31P, 125Te NMR spectroscopic and mass spectral data for 25b in

d6-benzene solution

NMR spectra:

8 (!H) CH3 
CH2 P
CH3 C//2 CH2

C//2 CH2 P
C 5 / / 4

C5H5

8 (13C) CH3

c h 2p
CH3 CH2 CH2

CH2 CH2 P
C5H4

C5H5

5(3 1 P)

8 (1 2 5Te)

Mass spectrum8

0.97 (18H, t)a 
1.95-2.22 (12H,m)
1.35-1.69 (12H, m)
1.35-1.69 (12H, m) 
3.97-4.08 (4H, m) 
4.50-4.63 (4H, m) 
4.17-4.30(1 OH, m)

14.9
27.2b
28.4
25.3°
80.4d
Not observed
70.3
71.1

6.2e

-1 0 f

[M]+
[M-Fc]+
[M-TeFc]+
[Pt(PBu3)2]+

1223 (5) 
1038 (25) 
911 (100) 
599 (55)

a 3J ( 'H - 'H )  = 7.2 H z ;b virtual triplet, avg. J ( 3IP -13C) = 17 H z ;c virtual triplet, avg. J ( 3IP -13C) = 7 H z ;d 
3J ( 31P -,3C) = not reso lv ed ;e V(31P -195Pt) = 2556 H z ; f ' j ( 125T e-l95Pt) = 1283 Hz, ' j ( ,25Te-3,P) = 30 Hz; 
8 m/z (%); recorded using FAB; figures are for isotopomers containing l95Pt, 128Te, 56Fe, 31P, 12C, 'H ; 
expected isotope patterns were observed.

The mass spectral data shows a weak [M]+ peak with strong [M-TeFc]+ and 

[Pt(PBu3)2]+ peaks; this suggests that the Pt-Te bonds are quite weak and may go 

some way to explaining why only 25b has been successfully isolated.

The reactions of a [Pd2 (dba)3 ].dba/PR3 mixture with (R’Te) 2  in toluene at room 

temperature overnight, followed by chromatography or precipitation from hexane, 

gave dark coloured solids for which the spectral data were poor, and no products 

could be identified. It is apparent that the reactions of diaryl ditellurides with low-



154

valent platinum and palladium phosphine complexes are quite different from those of 

diaryl diselenides. The differences could be attributed to an instability of complexes 

of the type [M(TeR’)2 (PR.3 )2 ] (which is probably the case for 24a,b and 25a), or it 

may be that the reaction is following different paths, giving rise to different products. 

It has been reported in a study of the reactions of (PhE) 2  (E = Se, Te) with [Pd(PPh3)4 ] 

in dichloromethane, that where E = Se, the product is [Pd2 (p2 -SePh)2 (SePh)2 (PPh3 )2 ], 

and where E = Te a mixture of products is given, including the polynuclear compound 

[Pd6 Cl2 Te4 (TePh)2 (PPh3 )6].236 It may be that a similar situation exists here.
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5.3 The Reactions of (FcSe)? and (FcTe)? with [PtfPPhVM
The reactions of (FcE) 2  (E = Se, Te) with [Pt(PPh3 )4 ] had not been previously 

explored and so these reactions were investigated. Stirring [Pt(PPh3)4 ] with (FcE) 2  in 

toluene at room temperature overnight followed by filtration led to the isolation of a 

yellow (E = Se) or red (E= Te) solid. These solids were very insoluble in organic 

solvents and water, which prevented their analysis by NMR spectroscopy, but it was 

possible to obtain mass spectral data for them. These data confirmed the structure of 

the product where E = Se to be /nms-[Pt(SeFc)2 (PPh3 )2 ] (26, figure 5.6), but the mass 

spectral data where E = Te showed several high mass peaks, none of which could be 

assigned. This suggests that (as was observed previously) the tellurium reactions 

proceed via a different path and these were not pursued.

Figure 5.6:

(SeFc)2 Ph3P. SeFc
[Pt(PPh3)4] —  i — ►

toluene, RT

26

Table 5.6 shows the mass spectral data for 26.

Table 5.6: Mass spectral data for 26_________________________________________
[M f 1249 (50)
[M-PPh3]+ 987(100)
[Pt(PPh3)2]+ 719 (80)

“ m/z (%); recorded using FAB; figures are for isotopomers containing ly5Pt, 80Se, 56Fe, JIP lzC, 'H; 
expected isotope patterns were observed.

The structure of 26 has also been indirectly proven by derivatisation: stirring 26 with 

an excess of PBU3 in toluene for 3 days gave an orange solution. Concentration of 

this solution and analysis by 3IP NMR spectroscopy showed two peaks, one due to 

OPBU3 and one at 6  = 11.7 ppm (1J(3 1P-195Pt) = 2606 Hz) which can be attributed to 

2 2 b, showing that phosphine exchange has occurred and that the structure assigned to 

26 is correct.
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5.4 The Reactions of Ms-Benzo-l,2-diselenin with 

[Pt(C?lL)(PRi)?l and with [Pd,(dba^l.dba/PR, (R = E t Bu)
The syntheses of compounds 21a,b, 22a,b and 23a,b showed the oxidative addition of 

Se-Se bonds to zerovalent platinum and palladium phosphine complexes to be a 

viable synthetic method; the investigation was therefore extended to the reactions of 

6zs-benzo-l,2-diselenin (figure 5.7).
Figure 5.7:

Se Se

The reactions of low-valent transition metal complexes with some cyclic compounds 

containing Se-Se bonds were discussed in the introduction. There are (to our 

knowledge) no reports of the reactions of low-valent transition metal complexes with 

1 ,2 -diselenins; there is however a report of the reaction of 

diacenaphtho[l,2-c:r,2’-e]-l,2-dithiin with [Pt(COD)2], which gives 

[Pt(S2 C24 Hi2 )(COD)] via oxidative addition of the S-S bond to the zerovalent 

platinum centre. 132

5.4.1 The Syntheses of fPt(Se?Ci?H sK PR^l and [Pd(Se?Ci?Hg)(PR^l

The reaction of [Pt(C2 H4 )(PR3 )2] (R = Et, Bu) with ft/.s-benzo-l,2-diselenin in a 

dioxane/THF/toluene mixture at room temperature overnight, followed by column 

chromatography led to the isolation of 27a (yellow solid) and 27b (orange solid) as 

shown in figure 5.8.
Figure 5.8:

\  f  \  )
Se— Se

[Pt(C2H4)(PR3)2]
Se .P R 3

Se PR3

27a: R = Et 
27b: R = Bu

Similarly, stirring a mixture of [Pd2 (dba)3 ].dba and excess PR3 in toluene followed by 

treatment with bis-benzo-1 ,2 -diselenin at room temperature overnight, then addition
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of hexane and filtration, led to the isolation of 28a and 28b both of which are red 

solids (figure 5.9).
Figure 5.9:

[Pd2(dba)3].dba/ 
excess PR3

S e — S e Se^ ^  PR3 

Pd\
PR-*

28a: R = Et 
28b: R = Bu

Crystals of 27a,b and 28a suitable for an x-ray diffraction study were obtained by 

recrystallisation from hexane/toluene at -20 °C. The structure of 27a was established 

whilst at the University of Florence and so is discussed in detail in chapter 6. 

Diffraction data were collected on an Oxford Diffraction Excalibur 3 CCD 

diffractometer with Mo-Ka radiation (X = 0.71069 A); structure solution was by SIR 

97225 with refinement by SHELXL 9 7 223

The structures of 27b and 28a are shown in figures 5.10 and 5.11; thermal ellipsoids 

are drawn at 30% probability and hydrogens are omitted for clarity. Crystal data and 

selected bond lengths and angles (with 27a) are shown in tables 5.7 and 5.8.



Figure 5.10: Crystal structure of 27b

Figure 5.11: Crystal structure of 28a
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The crystal structure of compound 27b does not contain a toluene solvate molecule 

like those of 27a and 28a; it does, however, share the same space group (P -1). There 

are two molecules in the asymmetric unit; the data reported are for the molecule 

shown in figure 3.10. The compound contains a square-planar PtSe2 P2 core with a 

cis- geometry imposed by the chelating diselenolate ligand; the butyl and biphenyl 

groups protrude significantly from this plane. The square plane is slightly asymmetric 

with one Pt-Se bond approximately 0 . 0 1  A longer than the other (the deviation is 

larger in 27a, where a difference of approximately 0 . 0 2  A is observed) and the P-Pt- 

Se angles differing by 3°. A similar distortion has been observed in platinum 

diselenolenes (chapter 2) and dithiolenes. 169 The Pt-P and Pt-Se bond lengths are very 

similar to those found in cw-[Pt(SePh)2 (PPh3)2 ] , 241 but the Se-Pt-Se angle is 

significantly smaller (88.00° vs 95.10°), probably as a result of the constraint imposed 

by the Se2 Ci2 Hg ligand; interestingly the angle is also significantly smaller than the S- 

Pt-S angle of [Pt(S2 C2 4 Hj2 )(COD)] (94.02° ) . 132 The dihedral angle of the biphenyl 

group (53.9°) lies between the values found for [Pt(S2 C2 4Hi2 )(COD)] (45.6°) and 27a 

(64.2°). The Pt-Se and Pt-P bond lengths of 27b are slightly shorter than those of 27a; 

this could be the influence of PBU3 compared to PEt3 , with PBU3 perhaps contributing 

more electron density to the Pt centre, or the disorder which was found in the butyl 

chains affecting the bond lengths and angles.

Compound 28a has a structure isomorphous to that of 27a; it similarly contains a 

PdSe2 P2 square-planar core with a cis- geometry enforced by the Se2 Ci2 Hg ligand. 

The ethyl and biphenyl groups protrude from the plane; the dihedral angle of the 

biphenyl group is very similar to that of 27a and much greater than that found in 

[Pt(S2 C2 4 Hi2 )(COD)] (45.6°). Like 27a,b the square plane is slightly asymmetric, 

with the Pd-Se bonds and P-Pd-Se angles differing by 0.03 A and 3° respectively. 

Similar distortions have been observed in the crystal structures of palladium 

diselenolenes. 127 The Pd-Se bond lengths are similar to those found in 

[Pd(SePh)2 (dppe) ] , 2 4 4  although the Pd-P bond lengths are approximately 0.05 A 
longer (avg. 2.328 A vs avg. 2.279 A) and the Se-Pd-Se angle is significantly smaller 

(90.3° vs 99.1°). The angle is however almost identical to the Se-Pt-Se angle of 27a 

and similar to that of 27b, showing it to be constrained by the Se2 Ci2 Hg ligand. The 

bond lengths and angles of 28a are almost identical to those of 27a; this can be 

attributed to the isomorphous structures of these compounds. The M-P bond lengths 

are approximately 0 . 0 2  A longer in 28a, due to the (slightly) smaller atomic radius of
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Pt compared to Pd. Compounds 27a,b and 28a,b can be considered vinylogues of 

diselenolenes, but 27a,b and 28a,b do not exhibit an analogous electron delocalisation 

in the PtSe2 C4  ring as evidenced by the distortion of the ring. In order for there to be 

significant electron delocalisation the ring would have to lie in the same plane as both 

the benzene rings of the biphenyl group and this is obviously not favoured.

The multinuclear NMR spectroscopic data for 27a,b and 28a,b are shown in tables 

5.9 and 5.10.

The data are in accord with the proposed structures. The 77Se nucleus is the X part of 

an AA’X system (due to the inequivalent magnetic environments of the phosphorus 

nuclei), and the spectrum should consist of five lines; these are observed for 27a,b
77and the Se NMR spectrum of 27a is shown in figure 5.12 as an example. For 27a,b

77  71the "Se-JiPds coupling constants have been calculated to be 11 Hz (27a) and 27 Hz 

(27b), and the 77Se-31P,ra/w coupling constants have been calculated to be 90 Hz (27a) 

and 104 Hz (27b). These cis- coupling constants are similar in magnitude to those 

found for platinum diselenolenes (chapter 2) and [Pt(SeC4 H4 )(PBu3 )2 ] (chapter 4), but 

the trans- coupling constants are greater (for example the 77Se-31P/mm coupling 

constants for [Pt(Se2 C7Hio)(PEt3 )2 ] and [Pt(SeC4 H4 )(PBu3 )2 ] are 67 Hz and 70 Hz 

respectively); the complex [Pt{Fe(r|5-C5H4 Se)2 }(PBu3 )2 ] is reported to have a 77Se-
71 17 f \  77 71Ptrans coupling constant of 84 Hz. These values indicate that the Se- Ptrans 

coupling constants may be dependent on the size of the Se-Pt heterocycle with 

increased ring size leading to increased values of 77Se-31P/ra„5.. Although 

[Pt{Fe(r|5-C5H4 Se)2 }(PBu3 )2 ] can be formally considered to contain an 8-membered 

heterocyclic ring, the presence of the ferrocenyl backbone alters the geometry enough 

to make the 77Se-31P/râ  coupling constant lower than those of 27a,b. The lack of 

electron delocalisation around the PtSe2 C4 ring in these compounds is further 

evidenced by the 77Se NMR chemical shifts of 27a,b and 28a,b which are 

approximately 200 ppm less than the 77Se NMR chemical shifts of platinum
1 70  177diselenolenes (chapter 2) and palladium diselenolenes.
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Figure 5.12 : 77Se NMR spectrum of 27a (arrow shows !J (77Se-195Pt))

221 2 2 0 2 1 9 2 1 8 2 1 7
PPM

2 1 6 2 1 5 2 1 4 2 1 3

For the palladium complexes 28a,b the weakest two lines in the 77Se NMR spectrum

were not observed and so only an average value of 2J(77Se-31P) could be obtained. It

has been observed that solutions of 28a have limited stability and will decompose

over several hours; the long acquisition time of 77Se NMR spectra means that this

decomposition becomes significant and is observed in these spectra. The

decomposition process is discussed further in the next section.
11 1 ̂  1The P, C and H NMR spectra of 27a,b and 28a,b are in accord with the proposed 

11structures. In the C NMR spectra the signals for CH2 P are complex multiplets; they 

do not have the expected AA’X structure and peak overlap complicates their 

appearance. There are only six signals for the Se2 Ci2 Hg ligand indicating that, in 

solution, the benzene groups are equivalent, probably through pyramidal inversion of 

the selenium atoms. It has been possible to assign the C(l), C(2) and C(6) atoms of 

the ligand (numbering based on figures 5.10 and 5.11). The C(l) and C(6) signals are 

of lower intensity with the relatively large 2J(13C-195Pt) coupling constant for one of 

the signals facilitating differentiation of the CSe (C(l)) and quaternary (C(6)) carbons. 

The C(2) group is assigned based on the presence of a small 3J(13C-195Pt) coupling and
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an intensity comparable to the other CH signals. In the case of 28a,b C(l) and C(2) 

were distinguished by running 13C DEPT NMR spectra of these compounds. It is 

worthy of not that in 28a,b the C(l) resonances are at lower field than the C(2) 

resonances, whereas the opposite is true for 27a,b.

Compounds 27a,b and 28a,b have been further characterised by FAB mass 

spectrometry, infrared and UV-visible spectroscopy; these data are shown in table 

5.11.
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The FAB mass spectra of 27a,b and 28a,b all show ions corresponding to the loss of a 

SeC^Hg fragment; this is similar to the behaviour of [Pt(S2 C2 4 Hi2 )(COD)] which 

decomposes upon heating to 80 °C for 3 hours to SC2 4 H 12 and [PtS(COD)] (figure 

5.13).132 A similar reaction was attempted with 27a. A toluene solution of 27a was
1 1

heated to 80 °C overnight; subsequent analysis of the sample by P NMR 

spectroscopy showed that no decomposition had taken place. This may be due to the 

phosphine groups having a greater stabilising effect than COD; indeed the 

[MSe(PR3 )2 ]+ peaks in the mass spectra are more intense for 27a and 28a than for 27b 

and 28b, suggesting that PBU3 has a greater stabilising effect than PEt3 . If this is the 

case then the stability of these complexes is quite sensitive to the ancillary ligands.
Figure 5.13:

80 °C, 3 hrs

F?t‘

- [PtS(COD)]

COD = 1,5-cyclooctadiene
COD

The UV-visible data explain the differences in colour of 27a,b and 28a,b. An 

absorption band at ~ 330 nm in 28a,b tails off into the visible region and results in the 

red colour of these compounds; this band is absent in 27a,b so these compounds are 

yellow/orange in colour. If this band is LMCT-based then it would be expected at a 

lower wavelength for the platinum complexes due to the greater difficulty in reducing 

platinum compared to palladium; a similar situation was encountered in the UV- 

visible spectra of platinum and palladium diselenolenes (chapter 2 ).
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5.4.2 The Syntheses of IPd^Se^CnHaWPR*)?!

The dinuclear compounds [Pd2 (Se2 Ci2 H8)2 (PR3 )2 ] (R = Et, Bu) can be synthesised by 

a method analogous to that for 28a,b if the Pd/PR3 stoichiometric ratio used is 1 :1 . 

Stirring a mixture of [Pd2 (dba)3 ].dba and two equivalents of PR3 in toluene followed 

by treatment with bis-benzo-1 ,2 -diselenin at room temperature overnight, then 

addition of hexane and filtration, led to the isolation of 29a and 29b both of which are 

red solids (figure 5.14).
Figure 5.14:

rw = \ ^
\ _ T y J

[Pd2(dba)3].dba/PR3 -------- - ~ ~ Se------ ►
1 2 Toluene,

RT, overnight R P Se Se

It has been found that 29a will form from 28a (in addition to some other unidentified 

decomposition products) in chloroform and acetone solutions that have been exposed 

to air (figure 5.15). The reaction may be driven by the formation of OPEt3 ; it has 

been found that in the presence of excess PEt3 , under an inert atmosphere the 

conversion of 28a to 29a is suppressed. Upon prolonged stirring of 29b with an 

excess of PBU3 there was no formation of 28b, however. This suggests that the 

condensation reaction is irreversible.
Figure 5.15:

S e  S e  PR 3

\ / \ /
Pd Pd

/ \ / \
R= Et: 29a 
R = Bu: 29b
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These condensation reactions have been proposed to occur in the synthesis of 

[M(p2-SeTh)2(SeTh)2(PPh3 )2] (Th = 2-thienyl),143 and be involved in the formation of 

the polynuclear compounds o f the type [Pd6Cl2Te4 (TePh)2(PPh3)6].236 

Crystals of 29a suitable for an x-ray diffraction study were obtained from a toluene 

solution of 28a at -20  °C; the results of this study are presented in chapter 6. One 

point of note is the orientation of the biphenyl groups. Figure 5.16 shows the crystal 

structure of 28a with the phosphine groups and hydrogens removed (generated using 

the Mercury program, version 1.4.1, thermal ellipsoids at 30% probability); it can be 

seen that both ligands have a DL- configuration and that the bridging Se-C bonds both 

point ‘downwards’. A different isomer can be envisaged where one of the bridging 

Se-C bonds points ‘downwards’ and the other ‘upwards’ with respect to the Pd2 Se4P2 

plane.

Figure 5.16: Crystal structure of 29a with phosphine groups removed

The multinuclear NMR spectroscopic data for 29a,b are shown in tables 5.12 and 5.13. 

The NMR spectra of 29a showed two equivalent species to be present which are 

assigned as the isomers proposed above; these isomers could be distinguished by the 

intensities of their signals in the NMR spectra with the most intense assigned as 

29a(l). The interconversion of these isomers would rely on the pyramidal inversion 

of two Se atoms and therefore is assumed to be a relatively slow process; hence both 

isomers are seen in the NMR spectra.
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The NMR data are in accord with the structures proposed in figure 5.14. The 

presence of two isomers for 29a and not 29b suggests that the phosphine has a large 

influence on the chemistry of these compounds; the presence of the butyl chains may 

be sterically hindering the formation of the second isomer of 29b (which would 

involve a large movement of the biphenyl groups) so that only one isomer is observed. 

Two signals are observed in the 77Se NMR spectra corresponding to the terminal and 

bridging selenium atoms. The terminal selenium atom resonances are apparent
7 77 *31

singlets as the J( Se- Pc,5) coupling is too small to be resolved; however both the
7 77 7 77  ̂1J( Se- PCis) and J( Se- Ptrans) coupling constants are resolved for the bridging 

selenium atoms. As was the case for 27a and 27b the cis- 77Se-31P coupling constants 

of 29a (14 Hz) and 29b (11 Hz) are similar to those of platinum diselenolenes 

(chapter 2) and [Pt(SeC4 H4 )(PBu3 )2 ] (chapter 4), but the trans- 77Se-31P coupling 

constants (29a, avg. 117 Hz; and 29b, 109Hz) are much larger. Both the cis- and
77 71trans- Se- P coupling constants are close in value to those of the dinuclear 

palladium diselenolenes [Pd2 (Se2 Cn+4 H2n+4 )(PBu3 )2 ] (9 Hz and avg. I l l  Hz),120’127 

which also have a Pd2 Se4 P2 core. There is a large difference in the chemical shifts of 

the terminal (5avg. = 350 ppm) and bridging (8avg. = -239 ppm) selenium atoms, which 

suggests that there is a lot more electron density around the bridging selenium atom. 

This is in contrast to the situation encountered in dinuclear palladium diselenolenes 

where the chemical shifts of the terminal and bridging selenium atoms are close in 

value (8avg. = 488 ppm terminal and 417 ppm bridging). The difference may be 

attributable to the delocalised electron system of the dinuclear palladium 

diselenolenes, which is not present in 29a and 29b.
71The P NMR spectra show the expected singlets. Because there are two resonances 

in the 31P NMR spectrum of 29a corresponding to different isomers a variable 

temperature 31P NMR study was carried out to investigate their possible 

interconversion. 31P NMR spectra of 29a were recorded at 40, 60, 80 and 100 °C; it 

was found that the peaks did not merge and so any interconversion process is slow on 

the NMR timescale. It was observed that the peak attributed to 29a(2) did appear to 

grow in intensity until at 100 °C the peaks were equal in intensity, but upon standing 

at room temperature the peak dropped to its original intensity. Stirring the NMR 

sample at 70 °C for 3 days did not increase the relative intensity of the peak attributed 

to 29a(2).
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The 13C and !H NMR spectra are in agreement with the structures proposed. The 13C 

NMR spectra show only nine or ten of the expected twelve resonances for the 

Se2 Ci2 Hg ligand. It is unclear why this is the case; it may be attributed to signal 

overlap although none of the signals had an unusually high intensity. The two lowest 

field signals are assigned to the quaternary carbons due to their lower intensity; this 

was further confirmed by DEPT NMR spectra in which these peaks were absent; 

these spectra also facilitated identification of the CSe signals. As was observed in 

27a,b and 28a,b the CSe signals are at relatively high field (compared to the C(C) 3  

signals), it is not known why this is the case. Unfortunately no C- Se coupling was 

observed presumably due to the low intensity of the signals. The presence of a peak
1 ' Xat approximately 145 ppm in the C NMR spectra of 29a,b provides a method for 

distinguishing these compounds from 28a,b. The *H NMR spectrum of 29a was 

difficult to interpret due to signal overlap of the two isomers present; this is reflected 

in the broad ranges reported for some of the resonances.

Compounds 29a,b have also been characterised by mass spectrometry and infrared 

and UV-visible spectroscopy; these data are presented in table 5.14.

In the mass spectra of 29a,b the loss of SeC^Hg fragments is observed; in both cases 

the [M-2 SeCi2 H8 ]+ ion is dominant suggesting that the loss of SeC^Hs is a relatively 

easy process under mass spectral conditions. The [M-2SeCi2Hg]+ ion is more intense 

for 29a than 29b; this is similar to the behaviour of 27a,b and 28a,b and suggests that 

PBu3 has a greater stabilising effect than PEt3. The thermal decomposition of these 

complexes has not been investigated. The UV-visible spectra are analogous to those 

of 28a,b with the absorption band at -335 nm tailing into the visible region, giving 

rise to the red colour of these compounds. The absorption is more intense for 29a,b 

and it is observed that 29a,b are deeper red than 28a,b.
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Table 5.14: Mass spectral, IR and UV-visible spectroscopic data for compounds

29a,b

29a 29b
Mass Spectrum3 [M f 1070 (45) 1240 (50)

[M -S eC i2H8]+ 838 (17)
[M -  2SeCi2H8f  606 (100) 776 (50)

Infrared15 2963 (w) 2953 (w)
2934(w) 2926 (m)
2873 (w) 2867 (m)
1446 (m) 1446 (m)
1414 (m) 1415 (m)
1373 (vw) 1377 (w)
1249(w) 1251 (vw)
1099(w) 1092 (m)
1028 (s) 1048 (m)
1001 (vw) 1001 (vw)
980 (m) 903 (m)
763 (s) 764 (m)
747 (vs) 730 (vs)
728 (vs) 721 (vs)
692 (s) 652 (m)
653 (w)

UV-Vis° 230 (76,600) 230 (116,000)
330(105,800) 335 (43,750)

a m/z (%); recorded using FAB; figures are for isotopomers containing Pd, Se, 
56Fe,31P, 12C, !H; expected isotope patterns were observed. 
b selected bands only (cm'1).
c X̂nax (nm); e (cm'1 M '1) in parentheses; recorded in CH2C12 solution (2x 10'5 M).

The synthesis of platinum analogues of 29a,b has not been investigated; it may be 

possible to synthesise this type of compound using a [Pt2(dba)3 ].dba/PR3 mixture as a 

precursor instead of [Pt(C2H4 )(PR3 )2].
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The Reactions of (FcSeV> and &/s-Benzo-l,2-diselenin with 

(L = doom, dppe)
The reactions of [Pt(C2 H4 )(L)] (L = dppm, dppe) with (FcSe) 2  and 6zs-benzo-l,2- 

diselenin were briefly investigated to see if the reactions were feasible, and to 

compare the properties of any products with those of the compounds already 

synthesised. Stirring [Pt(C2 H4 )(L)] with (FcSe) 2  or &/s-benzo-l,2-diselenin in a 

dioxane/THF mixture followed by precipitation with hexane and filtration led to the 

isolation of yellow orange solids (figure 5.17).
Figure 5.17:

(F cS e )2

[P t(C 2H 4)(L )]

L =  dppm , d ppe

D ioxane/T H F 
R T , overn igh t

S e — Se

n = 1:30a 
n = 2: 30b

(CH2)n
n = 1: 31a
n =2: 31b

Compounds 30a,b and 31a,b were poorly soluble in most organic solvents; in

addition they were not very pure and purification by either column chromatography or

repeated reprecipitations was unsuccessful. The spectral data of these compounds
^  1

were therefore limited to P NMR spectroscopy and mass spectrometry; these data 

are shown in table 5.15.

The data are in accord with the proposed structures, and it is likely that these 

compounds have formed, but due to the lack of success in purification, these reactions 

were pursued no further. The insolubility of these types of compounds may be 

attributed to the aryl substituents on the phosphine, as the reactions of [Pt(PPh3 )4 ] 

with (FcE)2 (E = Se, Te) also gave very insoluble products.
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Chapter 6

An X-ray Crystallographic Study of Some Organometallic 
and Coordination Compounds
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6.1 X-Ray Crystallography
One of the fundamental quests of the chemist is to gain knowledge of the structure of 

materials: x-ray crystallography is a technique which can provide this information. 

Determination of a crystal structure provides the precise spatial arrangements of 

atoms in that crystal; from this, information such as connectivity, bond lengths, angles 

and stereochemistry can be obtained. In addition it often provides conclusive proof of 

the structure of a compound.

Here is provided a (very) basic overview of x-ray crystallography; for a more 

thorough consideration the reader is referred to the texts by Massa245 and Clegg.246 

X-ray crystallography differs from most spectroscopic techniques as, instead of 

measuring the absorption or emission of radiation, the diffraction of the x-ray 

radiation is measured. X-ray radiation lies in the region of the electromagnetic 

spectrum which has a similar wavelength to that of interatomic bond distances (1-3 A, 
1 A = 100 pm). By directing x-ray radiation at a crystal the lattice will convert 

(through interference) this radiation (with no change in wavelength) into a number of 

observable reflections (the diffraction pattern); hence this part of the technique is 

called x-ray diffraction. From this diffraction pattern the ordering of the atoms in the 

crystal can be deduced.

In order to understand and interpret these interference phenomena, it is necessary to 

know what exactly a crystal is: Massa245 provides a good description. ‘A “crystal” is 

a solid object in which a basic pattern of atoms is repeated over and over in all three 

dimensions. In order to describe the structure of a crystal, it is thus only necessary to 

know the simplest repeating “m otif’ and the lengths and directions of the three 

vectors which together describe its repetition in space.’ Thus if each molecule were 

represented by a point, the crystal structure is a regular array of points, equivalent to 

each other by translation; this is the lattice. The smallest repeating volume of the 

lattice is the unit cell, characterised by the three vectors a, b, c, (the lattice constants)

and by the three angles a, p, ^(figure 6.1). The positions of atoms within the unit 

cell are given in terms of fractional coordinates (.x, y, z), which describe fractions of 

the lattice constants (a, b, c respectively).
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Figure 6.1:

Due to restrictions imposed by rotational and reflectional symmetry there are seven 

possible types of crystal called the seven crystal systems. Table 6.1 shows these 

systems and the restrictions on their cell dimensions.

Table 6.1: The seven crystal systems and restrictions

Crystal System Restrictions
Triclinic none
Monoclinic oOo\IIII8

Orthorhombic a  = |3 = y = 90°
Tetragonal a = b>a  = P = y = 90°
Trigonal, hexagonal a = b, a  = p = 90°, y  = 120°
Cubic a = b = c ,a  = P = Y = 90°

The most basic unit cells are those in which a lattice point exists at each vertex 

(primitive unit cells). It is often possible to expand these to larger cells (of 2, 3 or 4 

times the volume), which correspond to crystal systems of higher symmetry. These 

systems can have lattice points centred on the faces or in the middle of the cell and 

when added to the six primitive lattices, give rise to the fourteen Bravais lattices. 

Computer programs have been developed which can check if transformation of a unit 

cell to one of higher symmetry is possible. As well as translation, rotation, reflection 

and inversion symmetries, crystals can also exhibit glide planes and screw axes, 

which correspond to reflection-translation and rotation-translation symmetry 

operations. The symmetry elements of a crystal are regularly arranged in space in 

accordance with the lattice translational symmetry; there are 230 possible 

arrangements of these symmetry elements, which give rise to the 230 space groups. 

These space groups can be found in the International Tables for Crystallography, 

Volume A.247

We now consider the interaction of x-ray radiation with the crystal. A beam of 

monochromatic (usually Mo-Ka, or Cu-Ka) radiation is directed at the crystal and the



180

diffracted radiation collected by a photographic plate, point counter or CCD area 

detector. The resulting diffraction pattern should ideally be a pattern of relatively 

well-defined spots, formed by the various ‘reflections’ of the radiation. The geometry, 

symmetry and intensity of these spots (and the absence of spots) can then be used to 

determine the unit cell, space group and subsequently the positions of the atoms in the 

crystal. To understand this, we need to consider what happens when radiation is 

diffracted by a row of regularly spaced objects (figure 6.2). The scattered radiation 

will have zero intensity due to destructive interference of the individual scattered rays, 

unless they are all in phase.

Figure 6.2:

For the waves to be in phase the differences in their path lengths must be equal to 

whole numbers of wavelengths, and so for rays scattered by two adjacent points: PD =

a sin\|/j + a sin\|/d = tik (PD = path difference, i = incident beam, d = diffracted beam, 

h = integer). Expansion of this consideration to a three-dimensional lattice gives rise 

to the integers k and /, corresponding to the b and c axes respectively. These hkl 

indices can be used to label the spots observed in the diffraction pattern. An 

alternative description, derived by W. L. Bragg, requires the use of only one equation, 

the Bragg equation. Bragg showed that by appropriate orientation of the crystal 

relative to the x-ray beam, the diffracted beam could be considered a reflection from 

parallel lattice planes, passing through lattice points. A plane is defined by the hkl 

integers which specify its position relative to the three unit cell edges; the spacing 

between the planes is determined by the lattice geometry (figure 6.3).
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Figure 6.3:

lattice

2 x cosine

It is from this that the Bragg equation is derived: PD = 2dhkisin0 = nA,. By considering 

planes with small spacing, n can be set to 1 and often the Bragg equation is used in 

the form 2dhkisin0 = X. Using the Bragg equation each diffracted beam can be 

labelled with its three indices and its net scattering angle calculated. Rearrangement 

of the Bragg equation shows an inverse relationship between sin0 and dhki; thus there 

is an inverse relationship between the diffraction pattern and the crystal lattice.

Since the diffraction phenomena observed are mainly due to the interaction of the x- 

ray radiation with electrons, then the intensities in the diffraction pattern are 

essentially the Fourier transform of the electron density in the unit cell. Therefore, by 

carrying out Fourier transforms of the diffraction pattern intensities, a picture of the 

electron density in the unit cell, and hence atomic positions can be gained. This can 

(after refinement) provide the molecular structure of the crystal analysed. It should be 

re-iterated that this is a very basic overview of x-ray crystallography and for thorough 

accounts the reader should consult the references given.

planes hkl
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6.2 Crystal Structure Determinations
The remainder of this chapter deals with the actual crystal structure determinations 

carried out. In all cases crystals were mounted on a glass fibre and secured with 

superglue. Diffraction data were collected on an Oxford Diffraction Xcalibur 3 CCD

diffractometer using monochromated Mo-Ka (X = 0.7109 A) radiation (exceptions are 

discussed). Data collection was carried out using the Oxford Diffraction software 

package, CrysAlisCCD (version 1.5); data reduction was carried out using the Oxford 

Diffraction software package, CrysAlisRED (version 1.5). All graphics were 

generated using ORTEP-3.248
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6.3 Crystal Structure Determinations of trans- 
fPt(SePhU PR ^l (R = Et. Bu). fra/is-[Pt(SeFcUPBu^l and 

rPt(Se,C„H«KPEt^l
6.3.1 Crystal Structure Determinations of frfljis-fPtfSePh^fPBu.Vhl (21b) and 

trans-lPt(SeFcV>(PBuVbl (22b)

Pale green crystals of 21b were obtained by recrystallisation from toluene/hexane at 

-20 °C; from these a prism with dimensions 0.20 x 0.20 x 0.10 mm was chosen for 

analysis. The crystal had a few smaller crystals (‘passengers’) stuck to its surface. 

The crystal gave a poor diffraction pattern, only exhibiting low angle reflections with 

a powder diffraction pattern evident. After a short data acquisition the UM TTT 

command (which proposes possible unit cells, based on analysis of the diffraction 

pattern) in the Oxford Diffraction software package, CrysAlisCCD (version 1.5), 

suggested a triclinic unit cell with dimensions: a = 8.67(4) A, b = 10.24(5) A, c =

12.31(8) A, a =  77.63(6)°, p =  85.64(6)°, y  = 81.9(4)°, V = 1052 A3. A full data 

acquisition was carried out, after which the UM TTT command proposed the same 

triclinic cell. The data were reduced and processed with absorption correction using 

SADABS,249 ABSPACK (Oxford Diffraction software) and ABSPACK with a shape 

correction; SADABS gave the best Rjnt value. The structure was solved by direct 

methods using SIR 97225 and refined using SHELXL 97 223 In the structure 

refinement it was necessary to apply a SHEL command due to a large number of 

unobserved reflections in the original data set. This command limits the reflections

considered to a certain 0 range (in this case 0 values corresponding to values of d 

between 20 and 1.1 A). There were found to be no extinction effects. The space 

group is P -1 with half a molecule in the asymmetric unit (the minimum group of 

atoms whose positions, together with those generated by the symmetry operations of 

the space group generate the complete contents of the unit cell), with the Pt atom 

lying on an inversion centre. It was necessary to impose a restraint on the thermal 

parameters of Cl and all non-hydrogen atoms were anisotropically refined. The 

hydrogen atoms were added in calculated positions and constrained. Table 6.2 shows 

the crystallographic data obtained for 21b (and 22b). Figure 6.4 shows the crystal 

structure of 21b; thermal ellipsoids are drawn at 30% probability, and hydrogens are 

omitted for clarity.
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Table 6.2: Crystallographic data for 21b and 22b

Compound 21b 22b
Empirical formula Ci8H3oPSePto.5 C22H36PSeFePto.5
Formula weight 455.91 563.83
Crystal system triclinic triclinic
Space group P - l P - l
a!A 8.483(6) 10.577(2)
b/A 10.335(7) 10.645(2)
d A 12.246(9) 10.866(2)
aJ° 77.63(6) 99.95(1)
j3/° 85.64(6) 100.99(1)

r 83.43(6) 91.748(1)
VIA 1040.3(13) 1180.39
z 2 2
F(000) 456 564
Dcalc (g cm'3) 1.455 1.586
p (Mo-Ka/mm'1) 5.22 5.20
Temperature (K) 293 293
Reflections collected 5961 5997
Independent reflections 1610 4451
0 Range (°) 4.32-18.84 4.42-26.02

Reflect, with />  2c(I) 964 3969
No. of parameters 187 233

Ri; wR2 [/>  2g(I)] 0.0717; 0.1648 0.0309; 0.0769
R i; wR2 (all data) 0.0918; 0.1797 0.0305; 0.0796
GoF 0.931 1.108
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Figure 6.4: 21b
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Orange crystals of 22b were obtained by recrystallisation from toluene/hexane at -20 

°C; from these a prism with dimensions 0.40 x 0.35 x 0.22 mm was chosen for 

analysis. After a short data acquisition the UM TTT command suggested a 

monoclinic face-centred (mC) cell with dimensions: a = 14.74(1) A,b  = 15.19(1) A, c

= 10.85(2) A, a =  90.0°, /?= 105.0(1)°, y=  90.0°, V= 2345 A3. The alternative UM F 

command (Oxford Diffraction software package, CrysAlisCCD (version 1.5)), 

however, suggested a triclinic cell, which could be transformed into the monoclinic 

cell described above. A full data acquisition was carried out and a data reduction 

performed according to the suggested monoclinic face-centred cell. Subsequent 

attempts to solve the structure by direct methods failed; the monoclinic cell volume 

was apparently too small to host more than two molecules, and this would have 

imposed too high a symmetry on the molecule. The data were reduced according to 

the triclinic cell proposed (table 6.2), with subsequent processing with absorption 

correction using SADABS and ABSPACK with a shape correction. The structure 

was solved by direct methods using SIR 97 and refined using SHELXL 97, with the 

ABSPACK corrected data used in the final cycles. There was found to be no 

extinction. As for 21b, the space group is P -1 with half a molecule in the 

asymmetric unit, and the Pt atom lying on an inversion centre. All non-hydrogen 

atoms were anisotropically refined; the hydrogen atoms were added in calculated 

positions and constrained. Table 6.2 shows the crystallographic data obtained for 22b 

(and 21b). Figure 6.5 shows the crystal structure of 22b; thermal ellipsoids are drawn 

at 30% probability, and hydrogens are omitted for clarity.

Table 6.3 shows some of the bond lengths and angles of 21a (discussed later), 21b 

and 22b. Since the asymmetric units of the complexes contain half a molecule the 

PtSe2 P2 core is highly symmetric. The Pt-Se bond lengths are of comparable 

length (2.452 A for 21a, 2.463 A for both 21b and 22b), and longer than in the 

related complex rnms-[Pt(SePh)2 (PPh3 )2 ]240 (avg. 2.418 A), though a similar 

length is observed in the complex fr<ms-[Pt(SeTh)2 (PPh3 )2 ]143 (avg. 2.464 A). The 

Pt-P bond lengths of 21a,b and 22b are comparable to those of 

/nms-[Pt(SeTh)2(PPh3)2 ] (2.311 and 2.316 A c f  avg. 2.315 A) and longer than 

those of /lra«,s-[Pt(SePh)2 (PPh3 )2 ] (avg. 2.29 A). The Se-Pt-P angles of 21a,b (avg 

93.5 and 86.5°) are similar to those observed in rr<ms-[Pt(SePh)2 (PPh3 )2 ] (avg 94.6
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and 86.0°) which can be attributed to the similarities of the complexes. The angles 

are closer to 90° in 22b (91.56 and 88.44°), whereas in /nms-[Pt(SeTh)2 (PPh3 )2 ] 

they are observed to deviate most significantly from 90° (avg 96.4 and 85.9°). The 

differences in these values can probably be attributed to the different steric 

influences of the substituents.

Table 6.3: Selected bond lengths and angles for 21a,b and 22b

Compound 21a 21b 22b
Bond lengths (A)
Pt-Se(l) 2.4522(8) 2.4627(28) 2.4631(6)
Pt-P(l) 2.311(2) 2.311(6) 2.316(1)
Se(l)-C(l) 1.893(9) 1.890(23)
Se(l)-C(13) 1.902(4)

Bond angles (°)
Se(l)-Pt-Se(2) 180. 180. 180
Se(l)-Pt-P(l) 86.29(5) 93.39(16) 91.56(3)
Se(l)-Pt-P(2) 93.71(5) 86.61(16) 88.44(3)
P(l)-Pt-P(2) 180 180 180
Pt-Se(l)-C(l) 104.56(25) 104.85(73)
Pt-Se(l)-C(13) 102.74(14)

Note that the angles P t-Se(l)-C (l) and Pt-Se(l)-C(13) refer to the same angle (see figures 4 and

5).
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Figure 6.5: 22b
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6.3.2 Crystal Structure Determination of [Pt(SeiCnHs)(PEtVbl (27a)

Although the preparation of 27a was similar to that of 21b and 22b, the product has a 

cis- geometry enforced by the Se2 Ci2 Hs ligand. Pale yellow crystals of 27a were

obtained by recrystallisation from toluene/hexane at -20 °C; from these a prism with 

dimensions 0.40 x 0.30 x 0.25 mm was chosen for analysis. After a short data 

acquisition, both the UM F and UM TTT commands suggested a triclinic cell with

dimensions: a = 9.79(1) A ,b =  11.44(1) A, c = 14.17(1) A, a=  80.7(1)°, 0=  69.3(1)°,

Y~  86.1(1)°, V= 1465 A3. A full data acquisition was carried out and was consistent 

with the proposed cell. The data were reduced and processed with absorption 

correction using SADABS and ABSPACK with a shape correction. The structure 

was solved by direct methods using SIR 97, and refined using SHELXL 97 with the 

SADABS data giving the best results in the final refinement cycles. It was necessary 

to use a SHEL command to limit the data considered (0.8 < d < 20 A). There was 

found to be no extinction, and anisotropic refinement was applied to all non-hydrogen 

atoms. Hydrogens were added in calculated positions and were constrained. The 

space group is P -1 with one molecule of 27a and half a molecule of toluene in the 

asymmetric unit. The toluene molecule lies partly disordered, around an inversion 

centre. This caused problems with the refinement; three different models were 

refined to see which gave the best result.

1. A model with three ring carbons and a methyl group, with the methyl group 

weighted 0.5.

2. A model with a complete, rigid benzene ring, weighted 0.5. The ring lies in 

proximity of the inversion centre with its mirror image.

3. A model with three benzene carbons around the inversion centre suitably 

restrained and no methyl group.

The third model showed - through difference Fourier transformations - that there is 

practically no trace of the methyl group (indicating a higher disorder than first 

thought). When the presence of the methyl group was ‘forced’, then the model 

oscillated; it was not possible to add fractional methyl groups (models 2 and 3), as 

well as hydrogens to each benzene carbon. Model 2 proved to give the best results, 

allowing a refinement with no damping factor necessary (in cases where a structure is 

difficult to refine, a damping factor allows the program to suppress oscillations and 

divergences, but the use of this factor leads to a less accurate result). At a later date
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the whole toluene molecule was refined based on the toluene methyl group being 

partly hidden by the molecule of 27a. The data presented are of this (better) 

refinement.

Table 6.4 shows the crystallographic data for 27a and figure 6.6 shows the crystal 

structure; thermal ellipsoids are drawn at 30% probability, and hydrogens are omitted 

for clarity.

Table 6.4: Crystallographic data for compound 27a

Empirical formula C2 4 H3 gP2 Se2 Pt.C3 .5H4

Formula weight 787
Crystal system triclinic
Space group P - l

at A 9.794(1)
b/A 11.457(1)
c/A 14.197(2)
cd° 80.67(1)
fl/° 69.16(1)

yi° 86.15(1)
v /A 1469.0(3)
z 2

F(0 0 0 ) 766
Dcalc (g cm'3) 1.78
p (Mo-Ka/mm'1) 7.37
Temperature (K) 293
Reflections collected 5890
Independent reflections 4719
0 Range (°) 4.13-26.37
Reflect, with I  > 2c(I) 4423
No. of parameters 310

Ri; wR2 [/>  2c(l)] 0.0287; 0.0524
Ri; WR2 (all data) 0.0410; 0.0558
GoF 0.936

The calculated bond lengths and angles of 27a are shown in table 6.5. Like 21b and 

22b, compound 27a contains a square-planar PtSe2 P2 core, although here a cis- 

geometry is exhibited. The ethyl groups and biphenyl ring protrude significantly from

the plane. The dihedral angle of the biphenyl group of 64.1 ° is greater than that in the
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Figure 6.6: 27a
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analogous complex [Pt(S2 C2 4 H]2 )(COD)] (45.6°);132 this may be due to the greater 

size of Se compared to S, allowing the ligand more flexibility. The square plane is 

slightly asymmetric: one Pt-Se bond is approximately 0.02 A longer than the other

and the P-Pt-Se angles differ by 3°. This contrasts with the symmetry observed in 

21b and 22b; however, similar distortions have been observed in platinum 

diselenolenes (see chapter 2) and dithiolenes.169 The Pt-P and Pt-Se bond lengths (avg. 

2.30 and 2.47 A respectively) are almost identical to those found in 

c/$-[Pt(SePh)2 (PPh3 )2 ] (avg. 2.29 and 2.47 A respectively),241 but the Se-Pt-Se angle

is significantly more acute (89.94° vs 95.10°) reflecting the constraint imposed by the

Se2 Ci2 H8 ligand; as expected, a similar value (94.02°) is observed in 

[Pt(S2C24H \ 2)(COD)].

Table 6.5: Selected bond lengths and angles for compound 27a

Bond lengths (A)
Pt-Se(l) 2.4873(6)
Pt-Se(2) 2.4613(6)
Pt-P(l) 2.302(1)
Pt-P(2) 2.299(1)
Se(l)-C(l) 1.926(5)
Se(2)-C(8) 1.925(4)

Bond angles (°)
Se(l)-Pt-Se(2) 89.94(2)
Se(l)-Pt-P(l) 175.24(3)
Se(l)-Pt-P(2) 84.16(3)
Se(2)-Pt-P(2) 174.08(3)
Se(2)-Pt-P(l) 87.55(3)
P(l)-Pt-P(2) 98.29(4)
Pt-Se(l)-C(l) 100.47(14)
Pt-Se(2)-C(8) 113.18(13)
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6.3.3 Crystal Structure Determination of fra/t.s-[Pt(SePh)7(PEtVbl (21a)

The crystal structure determination of 21a warrants an extended discussion, as it 

took several attempts, with various models examined which eventually proved 

inaccurate, before the final structure was accurately determined. In the first 

analysis undertaken, it was possible to obtain an approximate model of the crystal 

structure of 21a. Yellow crystals of 21a were obtained by recrystallisation from

toluene/hexane at -20 °C; from these a small crystal (ill-formed) of dimensions 

0.30 x 0.25 x 0.15 mm was chosen for analysis. The intial diffraction pattern was 

poor and showed what were believed to be split reflections. After a short data 

acquisition the UM TTT command suggested an orthorhombic unit cell with

dimensions: a = 9.20(1) k , b =  10.11(1) A, c = 14.95(1) A, a =  90.0°, J3= 90.0°, y  

= 90.0°, V = 1390 A3. A long data acquisition was carried out and the same unit 

cell proposed; the data were reduced according to this unit cell with a scan width 

of 1.2 (an arbitrary value, which should reduce errors caused by the poor 

diffraction pattern). Subsequent attempts to solve the structure by direct methods 

failed.

The structure determination was reattempted using a crystal from a different batch; 

the crystal was a fragment cut from a larger crystal, and had the dimensions 0.40 x 

0.35 x 0.40 mm. Although this crystal was, visually, of better quality than the last, 

the diffraction pattern was very similar; however after a short data collection the 

UM TTT command suggested a triclinic cell of dimensions: a = 8.81(1) A, b =

9.04(1) A, c = 10.23(1) A, a  = 63.3(1)°, >9= 74.5(1)°, y =  88.2(1)°, V=  699 A3. 

After a long data acquisition, the UM TTT command showed two possible triclinic 

cells, the one detailed above and another with double the volume and dimensions:

a = 9.069(3) A, b = 11.538(3) A, c = 15.204(3) A, a =  81.15(2)°, p =  71.96(2)°, y  

= 68.66(2)°, V=  1407 A3. This second triclinic cell was only found by using a 

threshold intensity of 2000 in the peak-hunting command (i.e. looking for 

reflections in the diffraction pattern of intensity 2000 or above); the first cell was 

found using threshold intensities of 3000-10000. The data were reduced according 

to a triclinic cell, with subsequent processing with absorption correction using 

SADABS and ABSPACK with a shape correction. The structure was solved by 

direct methods with SIR 97 and refined as far as possible by SHELXL 97; the
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larger cell was used, as solution with the smaller cell was not possible. The space 

group o f this model is P 1, and there are two molecules in the cell, which are

apparently not symmetry related. The R values are high (for data with I  > 2o(7): 

Ri = 0.0985; WR2 = 0.2591), so, although chemically meaningful at the time, from 

a crystallographic point o f view the model was not satisfactory. Figure 6.7 shows 

the model obtained; thermal ellipsoids are drawn at 2 0 % probability.

Figure 6.7: 21a (first model)
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At a later date, recrystallisation o f 21a from hexane/DCM at -2 0  °C gave large 

yellow crystals o f 21a. From one o f these crystals, a smaller fragment with 

dimensions 0.30 x 0.30 x 0.30 mm was cut and analysed. Initial analysis was 

carried out using Cu-Ka radiation (A, = 1.5418 A), due to Mo-Ka radiation being 

unavailable. A model was established using these data o f a triclinic cell with

dimensions: a = 9.047(1) A, b = 9.195(1) A, c = 39.903(4) A, a  = 83.38(1)°, J3 =

83.67(1)°, y=  59.39(1)°, V= 2832.7 A3. The presence o f the long c-axis results in 

the closely spaced spots observed in the diffraction pattern. The space group was 

P -1 , with one molecule and two half-molecules (both with Pt on an inversion 

centre) in the unit cell. The model could not be refined due to problems with 

negative temperature factors, which are associated with the use o f Cu-Ka radiation. 

The structure was then conclusively determined using Mo-Ka radiation. After an 

initial short data acquisition, the UM TTT command proposed the same cell as 

observed in the Cu-Ka radiation experiment. A long data acquisition was carried 

out, with the CCD detector set a distance of 80 mm from the crystal (normally 50 

mm), to allow a good separation o f the closely spaced spots in the diffraction 

pattern. When the data acquisition was complete, the UM TTT command 

proposed a monoclinic cell with double the volume: a = 15.533(2) A , b -  9.168(1)

A, c = 39.852(3) A, a =  90.00°, >9= 97.76(1)°, y =  90.00°, V=  5623.1 A3. The 

data were reduced according to this cell, with absorption correction processing 

carried out using SADABS and ABSPACK with no shape correction. The 

structure was solved by direct methods using SIR 97 and refined using SHELXL 

97. It was necessary to apply a small correction for extinction (using the EXTI 

command with a final value o f 0.000181); the SADABS corrected data were found 

to give the best results. The space group is the face-centred monoclinic C 2/c; 

there are 2  half-molecules in the asymmetric unit, one o f which lies on an 

inversion centre and the other on a two-fold axis. Hydrogen atoms were added in 

calculated positions and were constrained. Table 6 .6  shows the crystallographic 

data obtained for 2 1 a; selected bond lengths and angles for the molecule lying on 

the inversion centre are shown in table 6.3. Figure 6 .8  shows the crystal structure 

of 2 1 a: both molecules are shown (not as they are orientated in the unit cell!), 

thermal ellipsoids are drawn at 30% probability and hydrogens are omitted for 

clarity. The SePh groups exemplify the different symmetries o f the two
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molecules: inversion symmetry shown by the molecule with one SePh group 

pointing ‘up’ and one ‘down’, and the two-fold axis symmetry shown by the 

molecule with both SePh groups pointing ‘up’.

Table 6.6: Crystallographic data for 21a

Empirical formula C24H4oP2Se2Pt
Formula weight 743.51
Crystal system monoclinic
Space group C 2/c
a/A 15.533(2)
b /A 9.168(1)
c/A 39.852(3)
aJ° 90.00
p/° 97.76(1)

yi° 90.00
v /A 5623.2(9)
z 8
F(0 0 0 ) 2880
Dcaic (g cm*3) 1.773
p (Mo-Ka/mm-1) 7.702
Temperature (K) 293
Reflections collected 7301
Independent reflections 5744
0 Range (°) 4.17-26.37
Reflect, with I  > 2o(7) 4641
No. o f parameters 271

Ri; wR2 [I> 2o(I)] 0.0466; 0.0835
Ri; WR2 (all data) 0.0585; 0.0897
GoF 1.126
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Figure 6.8: 21a (final model)
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6.4 Crystal Structure Determination of

[Pd?(Se?Ci?Hg)?(PEti)?l and Partial Crystal Structure 

Determination of ;ra/is-[Pd(SeFc)?IPBuV)?l
In the reaction o f [Pd2(dba)3].dba, PEt3 and Se2Ci2Hg, NMR spectral evidence 

suggested the formation o f both a mononuclear and a dinuclear product. We were 

able to obtain crystals o f the dinuclear product and its crystal structure was 

established. The partial crystal structure determination o f a related palladium 

compound is also described in this section.

6.4.1 Crystal Structure Determination of fPd?(SeiCi?H«)?(PEti)il (29a)

Orange-red crystals o f 29a were obtained by recrystallisation from toluene/hexane

at -2 0  °C; from these a prism with dimensions 0.40 x 0.30 x 0.20 mm was selected 

for analysis. After a short data collection, two alternative unit cells (both 

orthorhombic) were proposed; the UM F command proposed a cell with

dimensions: a = 7.49(1) A, b = 12.37(1) A, c = 21.60(1) A, a =  90.0°, /3= 90.0°, y  

= 90.0°, V -  2001 A3; whereas the UM TTT command proposed a cell twice as 

big, with dimensions: a = 12.37(1) A, b = 14.96(1) A, c = 21.64(1) A, a =  90.0°, ft

-  90.0°, y  = 90.0°, V = 4007 A3 (note the doubled a axis becomes b by 

convention). A long data acquisition was carried out and the data reduced. The 

first solution was attempted using the cell proposed by UM F. Analysis o f the hkl 

indices suggested a Okl condition for k + /, pointing toward P nm2i or P nmm as 

possible space groups. Attempted solutions using these space groups failed and 

the data were corrected (SADABS, ABSPACK with shape correction) according to
n #

the larger cell. The structure was solved by direct methods using SHELXS 97 m 

the space group P 2inb, and refined using SHELXL 97, with the ABSPACK 

corrected data yielding better results. There was found to be no extinction. All 

non-hydrogen atoms were anisotropically refined; hydrogens were added in 

calculated positions and constrained. The “enantiomeric” structure was refined 

also and found to have slightly worse R-values. It was difficult to assign an 

absolute configuration, as reflected by a Flack parameter o f 0.5 (the Flack 

parameter is used where inversion twinning is possible; a Flack value o f 0
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indicates the refined structure is correct, whereas a value o f 1 indicates the inverse 

structure is true; a value o f 0.5 indicates a 1:1 ratio o f both structures). This high 

value o f the Flack parameter is attributed to the essentially centrosymmetric 

pattern o f the heavy atoms present.

Table 6.7 shows the crystallographic data for 29a. Figure 6.9 shows the crystal 

structure: thermal ellipsoids are drawn at 2 0 % probability, and hydrogens are omitted 

for clarity. Also included is a picture of the packing to show the essentially 

centrosymmetric pattern o f the heavy atoms.

Table 6.7: Crystallographic data for 29a

Empirical formula C36H46P2Se4Pd2
Formula weight 1069.31
Crystal system orthorhombic
Space group P 2 jnb

a!A 12.373(1)
b/A 14.962(1)
dA 21.642(1)
od° 90.00

fl/° 90.00

r 90.00
v / k 4006.5(5)
z 4
F(0 0 0 ) 2080
Dcalc (g cm'3) 1.773
p (Mo-Ktx/mm-1) 4.635
Temperature (K) 293
Reflections collected 19325
Independent reflections 8001

0 Range (°) 4.00-26.37
Reflect, with / >  2o(I) 3894
No. o f parameters 403

Ri; w R 2 [ />  2c(I)\ 0.0432;0.0879
Ri; WR2 (all data) 0.0984;0.1028
GoF 0.845

Table 6 .8  shows some selected bond lengths and angles o f 29a. The Pd2Se2 core 

exhibits a hinged arrangement (2 0 .6 (1)° dihedral angle between square planes), as is 

observed in [Pd2(Se2CgHi2)2(PPh3)2]117 (75.6(1)°); a coplanar arrangement is also 

possible and is observed in the complexes [Pd2(SePh)4(PPh3)2],236
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[Pd2{n-'n,-Fe(n5-CsH4Se)2}2(PBu3)2] 176 and

[Pd2(Tl3-C3H5)2{Ph2P(0 )NP(Se)Ph2-& }2].250 The PdSe3P square planes are slightly 

distorted, probably as a result of the geometry imposed by the chelating ligand.
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Figure 6.9: 29a
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Table 6.8: Selected bond lengths and angles for 29a

Bond lengths (A)
Pd(l)-Se(l) 2.460(2)
Pd(l)-Se(2) 2.432(2)
Pd(l)-Se(3) 2.446(2)
Pd(l)-P(l) 2.298(4)
Pd(2)-Se(l) 2.464(2)
Pd(2)-Se(3) 2.454(2)
Pd(2)-Se(4) 2.435(2)
Pd(2)-P(2) 2.280(4)
Se(l)-C (l) 1.907(14)
Se(2)-C(12) 1.938(14)
Se(3)-C(13) 1.939(14)
Se(4)-C(24) 1.949(16)

Bond angles (°)
Se(l)-Pd(l)-Se(2) 92.76(7)
Se( 1 )-Pd( 1 )-P( 1) 171.85(12)
Se(l)-Pd(l)-Se(3) 82.80(4)
Se(l)-Pd(2)-P(2) 97.31(10)
Se(l)-Pd(2)-Se(4) 174.10(7)
Se(l)-Pd(2)-Se(3) 82.55(4)
Se(2)-Pd(l)-Se(3) 175.56(7)
Se(2)-Pd(l)-P(l) 87.40(9)
Se(3)-Pd(l)-P(l) 96.99(10)
Se(3)-Pd(2)-P(2) 173.88(12)
Se(3)-Pd(2)-Se(4) 92.03(6)
Se(4)-Pd(2)-P(2) 87.83(10)
Pd(l)-Se(l)-Pd(2) 94.41(7)
Pd(l)-Se(3)-Pd(2) 95.03(7)
Pd(l)-Se(l)-C(l) 97.01(41)
Pd(l)-Se(2)-C(12) 107.35(36)
Pd(l)-Se(3)-C(13) 106.25(43)
Pd(2)-Se(3)-C(13) 97.30(39)
Pd(2)-Se(4)-C(24) 108.09(35)
Pd(2)-Se(l)-C(l) 109.44(47)

Dihedral angles for 29a: 60.48° and 60.54° between phenyl rings for C1-C6/C7-C12 
and C13-C18/C19-C24 respectively. The rings C1-C6 and C7-C12 form dihedral

angles with the Pd(l)Se(l)Se(2)Se(3)P(l) plane o f 79.13° and 65.23° respectively; 
The rings C13-C18 and C19-C24 form dihedral angles with the
Pd(2)Se(l)Se(3)Se(4)P(2) plane of 80.34° and 65.69° respectively.

There is only a small variation in the Pd-Se bridging bond lengths (2.446(2)-2.464(2) 

A), whereas in the complexes [Pd2(Se2CgHi2)2(PPh3)2] and
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[Pd2{|i-ri1-Fe(ri5-C5H4Se)2}2(PBu3)2] larger variations in bond lengths are observed 

(2.459(1)-2.492(1) A and 2.413(4)-2.489 A respectively). The terminal Pd-Se bonds 

are almost equal in length (avg. 2.434 A); this is also observed in the complexes

[Pd2(Se2C8H12)2(PPh3)2] (avg. 2.385 A) and ^ W - F e ^ - C s F U S e ^ M P B ^ h ]  (avg. 

2.454 A). The bond angles of the Pd(l) and Pd(2) square planes differ slightly (as 

previously mentioned the molecule is not quite centrosymmetric), with the maximum 

difference occuring between the Se(l)-Pd-P(l) and Se(3)-Pd-P(2) bond angles 

(171.8(1)° and 173.9(1)° respectively). The Se-Pd-Se bridging angles are less than 90°

(82.80(4)° and 82.55(4)°), but this is expected: [Pdz^-TV-Fe^-CsFUSekMPB^k] 

and [Pd2(SePh)4(PPh3)2] both exhibit bridging angles o f approximately 84.1°, and 

[Pd2(Se2C8Hi2)2(PPh3)2] has very acute bridging angles of an average 77.7°. Perhaps 

to compensate for this Pd-Se-Pd angles larger than 90° are observed (94.41(7)° and 

95.03(7)°); similar angles were observed in [Pd2(SePh)4(PPh3)2] (95.89(4)°), but in 

[Pd2(Se2C8Hi2)2(PPh3)2] the angles are much less than 90° (avg. 77.8°), which may be 

a corollary of the greater dihedral angle between the Pd square planes than in 29a. 

The dihedral angles formed by the phenyl groups in the chelating ligands are both 

approximately 60° which is slightly less than that observed in 27a (approximately 64°).

6.4.2 Partial Crystal Structure Determination of fra/is-IPdtSeFcWPBuVbl (23b)

It was possible to obtain an approximate model for the structure of 23b. Brown

crystals o f 23b were obtained by recrystallisation from toluene/hexane at -2 0  °C; 

from these a small crystal o f dimensions 0.35 x 0.20 x 0.15 mm was chosen for 

analysis. Although the diffraction pattern appeared to be good, after a short data 

collection there was difficulty with the cell determination. The UM F command 

consistently failed, and the UM TTT command consistently suggested a cell with

dimensions: a = 10.48(1) At b = 1 1 .1 1 ( 1) A, c = 12.04(1) A, a  -  71.9(1)°, =

63.6(1)°, y  = 82.9(1)°, V=  1194 A3, but this cell was based on only ~ 50% o f the 

measured reflections (no matter what threshold intensity was set). A long data 

acquisition was run, but the situation was the same, although now the cell was 

proposed with a greater degree o f precision (a = 10.478(3) A, b = 1 1 .1 12(3) A, c =

12.044(3) A, a =  71.88(2)°, J3 = 63.61(2)°, 82.85(2)°, V =  1193.8 A3); it is
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worthy o f note that the reciprocal lattice is poor. The data were reduced and 

processed with absorption correction using SADABS and ABSPACK with a shape 

correction. Attempts to solve by direct methods using SIR 97 and SHELXS 97 

failed. The structure was ‘solved’ using Patterson methods, with the Pd atom 

assumed to lie on an inversion centre in the P -1  space group (with half a molecule 

in the asymmetric unit); the VECT command was used to place the Pd vector at 

the origin. The model was resolved as far as possible with a final Ri value of 

approximately 0.16. A second attempt at data reduction using a scan width o f 2.0 

(the standard width used is 0.8) was attempted, but this failed. The width is the 

parameter for the amount o f the diffraction pattern the program reads at a time: for 

example, if  a pattern has a lot o f small, closely spaced reflections, then it is best to 

use a shorter width so the program will ‘see’ all o f the spots; alternatively, for a 

poor diffraction pattern, then using a larger width may help to eliminate anomalous 

reflections. The model is believed to suffer from poor quality data rather than other 

sorts of errors; this may be resolved by analysis of other crystals, should they become 

available.

Figure 6.10 shows the structure resolved: thermal ellipsoids are drawn at 20% 

probability; hydrogen atoms were not included in this model.
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Figure 6.10: 23b
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6.5 Crystal Structure Determination of

[Pt(SC(R1)=CfR2)N=NCrR1)=CrR2)SKPEt^l (R*-R2 =

(CH2)s) (8b)
The high solubility o f 8b in all solvents made its recrystallisation difficult, but it 

was possible to obtain small dark orange crystals by recrystallisation from ethanol 

at -2 0  °C. From these a rhombohedron o f dimensions 0.30 x 0.20 x 0.30 mm was 

selected for analysis. The diffraction pattern exhibited closely spaced spots; this 

suggested the presence o f a long cell axis, or possibly a poor quality crystal. After 

a short data collection the UM TTT command suggested a monoclinic cell with

dimensions: a = 12.91(1) A, b = 10.24(1) A, c = 17.79(1) A, a  = 90.0°, P =

99.1(1)°, y -  90.0°, V -  2318 A3. A long data acquisition was carried out and the 

UM TTT command proposed the original cell (albeit slightly more refined) and a 

cell three times as big, with dimensions: a -  12.922(12) A, b = 10.247(1) A, c =

52.957(5) A, a =  90.00°, P  = 94.82(1)°, y=  90.00°, V=  6987 A3. A data reduction 

according to the first cell was carried out, but all subsequent attempts at structure 

solution using these data failed. It was decided that the larger cell may be correct 

(it correlates with the closely spaced spots), and a second long data collection was 

carried out with the CCD detector set at a distance o f 80 mm (standard setting: 50 

mm); an increased detector distance increases the distance between spots in the 

diffraction pattern, making it easier for the program to distinguish individual spots. 

Applying the UM TTT command to these data gave the larger cell, although the

dimensions differ slightly: a = 12.912(1) A,b  = 10.241(1) A, c = 52.886(1) A, a  =

90.00°, P=  94.84(1)°, y=  90.00°, V=  6968.7 A3. Data reduction was carried out 

and absorption correction processing carried out using SADABS and ABSPACK 

with and without a shape correction. The structure was solved by direct methods 

using SIR 97, and refined using SHELXL 97, with the SADABS corrected data 

giving the best result. There was found to be no extinction present, and data from 

a reduction with a scan width o f 1.2 (compared to 0.8) gave no improvement. The 

space group is P 2j/c with three independent molecules in the asymmetric unit (12 

in the unit cell). There was found to be disorder in the C7 ring o f one o f the 

molecules; it was necessary to refine this as two independent and complementary
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rings with several geometric restraints. It was also necessary to apply restraints to 

S-C, N-C and C-C bonds, due to the large thermal motion present. Hydrogen 

atoms were added in calculated positions and were constrained; an attempt to 

allow free rotation o f methyl groups (using code 137 in SHELXL 97) offered no 

improvement.

Table 6.9 shows the crystallographic data for 8 b and figure 6.11 shows the crystal 

structure(s). The figure shows the molecule with disorder in the C7 ring (thermal 

ellipsoids 10%) and one o f the molecules with no disorder (thermal ellipsoids 

2 0 %); hydrogen atoms are omitted for clarity.

Table 6.9: Crystallographic data for 8b

Empirical formula C2oH35N2PS2Pt
Formula weight 593.68
Crystal system monoclinic
Space group P 2,/c
at A 12.922(1)
b/A 10.247(1)
d A 52.957(5)
cd° 90.00
P!° 94.82(1)

r 90.00
VIA 3070.2(6)
z 4
F(0 0 0 ) 3528
Dcalc (g cm'3) 1.693
p (Mo-Ka/mm'1) 6.280
Temperature (K) 293
Reflections collected 86055
Independent reflections 14060
0 Range (°) 3.90-26.37
Reflect, with I  > 2c(I) 9885
No. o f parameters 770

Ri; WR2 [ />  2o(7)] 0.0627; 0.1352
Ri; WR2 (all data) 0.0885; 0.1468
GoF 1.088
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Figure 6.11: 8b
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One interesting feature, shown in figure 6.12, is the configuration o f the C7 rings 

in the three molecules o f the asymmetric unit. Viewing these molecules from the 

side shows one to have a ‘boat’ conformation, one to have a ‘chair’ conformation, 

and in the molecule with a disordered ring both conformations are observed. It is 

important to note that the figure does not reflect the relative orientation o f these 

molecules in the asymmetric unit.

Table 6.10 shows some selected bond lengths and angles o f 8b. Because there are 

three slightly different molecules in the asymmetric unit there are three sets o f 

data, molecules I, II and III; note that molecule I contains the disordered C7 ring, 

which has been considered as two rings i and ii. Data for 9b have also been 

included for comparitive purposes.

The molecule consists o f a PtS2NP core which is approximately square planar as 

would be expected, with the phosphine trans- to the platinum-bound nitrogen of 

the ligand. The square plane is slightly asymmetric with an average difference 

between P-Pt-S angles o f 2.92° within each molecule, probably a result o f the 

shape o f the ligand. There are two possible orientations o f  the ligand, dependent 

on which nitrogen is coordinated to platinum; the ratio o f these in the crystal o f 9b 

analysed was found to be 2:1. A similar property has been observed for the 

analogous palladium species [Pd{SeC(R,)=C(R2)N=NC(R1)=C(R2)Se}(PBu3)] 

(RJ-R2 = (CH2)4 ) ,116 for which the structure was resolved showing both possible 

orientations o f the ligand. The twelve atoms associated with the 7c-system of the 

ligand (SC(C)=C(C)-N=N-C(C)=C(C)S) are not coplanar, as was observed for the 

jc-system o f [Pd{SeC(R‘)=C(R2)N=NC(R')=C(R2)Se}(PBu3)]. The Pt-S(2) bonds 

are approximately 0.04 A longer than Pt-S(l); this is comparable to the situation in 

the complex [Pt{SeC(COOEt)=C(Me)N=NC(Me)=C(COOEt)Se}(PPh3) ] , 118 where 

the Pt-Se bond in the 5-membered ring is approximately 0.05 A longer than the Pt- 

Se bond in the 6 -membered ring. This is probably a result o f the strain in the 5- 

membered ring, preventing the sulphur atom from getting as close to platinum, as 

it can in the 6 -membered ring. The average Pt-P and Pt-N(2) distances o f 2.259 

and 2.080 A are comparable to those of
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Figure 6.12: Different conformations of 8b in the asymmetric unit
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[Pt{SeC(COOEt)=C(Me)N=NC(Me)=C(COOEt)Se}(PPh3)] (2.260(1) and 

2.071(5) A respectively). The average N (l)-N (2 ) distances o f 1.230 A are shorter 

(c f  1.295(7) A); they also shorter than the reported N=N distances for 

[Pd{SeC(RI)=C(R2)N=NC(R1)=C(R2)Se}(PBu3)] (R*-R2 = (CH2)4) o f 1.29(3) and 

1.26(4) A. The average Pt-S bond lengths o f 2.226 and 2.265 A are o f a 

comparable length to those in the similar complex 

[Pt{PhSNC(MeC6H4)N-NC(MeC6H4)NSPh}(PPh3)] (2.266(3) A).229
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6.6 Crystal Structure Determination of

rPtCl{FcSe(CH^Se(CH^SeFc}l[PF.i
The compound [PtCl{FcSe(CH2)3Se(CH2)3SeFc}][PF6] was prepared and 

recrystallised by Su Jing as reported in her PhD thesis.251 Recrystallisation by ether 

diffusion into a solution of [PtCl{FcSe(CH2)3Se(CH2)3SeFc}][PF6] in acetone gave 

orange plates, from which a smaller plate of dimensions 0.48 x 0.34 x 0.04 mm was 

cut and analysed. The diffraction pattern was good; after a short data acquisition the 

UM F command proposed a monoclinic cell with dimensions: a = 20.01(1) A, b =

7.62(1) A, c = 20.18(1) A, a  = 90.0°, J3= 97.6(1)°, y  = 90.0°, V=  3051 A3. A long 

data acquisition was carried out and the UM F command proposed the same cell 

(albeit slightly refined); the UM TTT command proposed a different cell, but in view 

of the reliability o f UM F (at the time of analysis) compared to UM TTT, this was 

ignored. The data were reduced and processed with absorption correction using 

SADABS and ABSPACK with and without a shape correction. The structure was 

solved by direct methods using SIR 97 and refined using SHELXL 97; it was found 

that the ABSPACK data with a shape correction gave the best results. There was 

found to be a small extinction, which was corrected (using EXTI command with a 

final value of 0.000374); it was also necessary to eliminate one reflection (hkl = -3 0 

23), to damp oscillations in the model. In addition it was necessary to apply soft 

restraints to the anisotropic thermal parameters o f four ferrocenyl carbons. The space 

group is P 2\/c with one [PtCl{FcSe(CH2)3Se(CH2)3SeFc}]+ cation and PF6- in the 

asymmetric unit. All non-hydrogen atoms were refined anisotropically; hydrogens 

were added in their calculated positions and restrained.

Table 6.11 shows the crystallographic data for 

[PtCl{FcSe(CH2)3Se(CH2)3SeFc}][PF6]. Figure 6.13 shows the crystal structure 

(cation only); thermal ellipsoids are drawn at 30% probability and hydrogen atoms are 

omitted for clarity.



214

Table 6.11: Crystallographic data for compound
[PtCl {F cSe(CH2)3 Se(CH2)3SeF c} ] [PF 6]

Empirical formula C26H3oClFe2Se3PtPF6
Formula weight 1066.59

Crystal system monoclinic
Space group P2i/c
atA 20.049(2)
b/A 7.631(1)
c/A 20.181(2)
a/° 90.00
p/° 97.54(1)

yf° 90.00
VIA 3060.9(6)
z 4
F(000) 2016
Dcalc (g cm'3) 2.315
p (Mo-Ka/mm'1) 9.255
Temperature (K) 293
Reflections collected 41961
Independent reflections 6203
0 Range (°) 4.06-26.37
Reflect, with />  2c(I) 5182
No. of parameters 362

Ri; WR2 [/>  2c(7)] 0.0480; 0.1045
Ri; WR2 (all data) 0.0603; 0.1142
GoF 1.124

Table 6.12 shows some selected bond lengths and angles for 

[PtCl{FcSe(CH2)3Se(CH2)3SeFc}][PF6]. As expected the PtSesCl core is square 

planar, although it is slightly distorted. The Pt-Se bond trans- to Cl is slightly shorter 

(2.370(1) A) than the Pt-Se bonds cis- to Cl (average 2.415 A); this is attributed to

SeR having a greater /nmy-effect than Cl", possibly due to its greater 7t-acceptor 

properties. This effect is also observed in the cation [(PdCl)2([24]aneSe6)]2+,61 

although the Pd-Sec/s bond lengths are slightly longer (avg. Pd-Sec/s = 2.428 A, avg. 

Pd-Se,rans = 2.368 A). The Pt-Setrans bond lengths are similar to the Pt-Se bond lengths 

found in [Pt([16]aneSe4)]2+ (avg. 2.419 A).60 The Se-C bond lengths o f the aliphatic 

part o f the ligand are fairly consistent (avg. 1.963 A) and are similar to those found in 

[(PdCl)2([24]aneSe6)]2+ (avg 1.95 A). The Se-C bonds lengths o f the ferrocenyl part 

of the ligand are shorter (avg. 1.902 A). There is a deviation from the ideal square 

planar geometry, probably as a result of the shape of the ligand; the Se(l)-Pt-Se(3)
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Figure 6.13: [PtCI{FcSe(CH2)3 Se(CH2)3 SeFc}]+
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Table 6.12: Selected bond lengths and angles for
[PtCl{FcSe(CH2)3 Se(CH2)3 SeFc}][PF6]

Bond lengths (A)
Pt-Se(l) 2.412(1)
Pt-Se(2) 2.3701)
Pt-Se(3) 2.416(1)
Pt-Cl 2.316(2)
Se(l)-C (l) 1.960(9)
Se(l)-C(7) 1.901(8)
Se(2)-C(3) 1.959(10)
Se(2)-C(4) 1.971(9)
Se(3)-C(6) 1.965(10)
Se(3)-C(17) 1.903(9)
C(l)-C(2) 1.489(13)
C(2)-C(3) 1.515(14)
C(4)-C(5) 1.493(15)
C(5)-C(6) 1.496(16)

Bond angles (°)
Se(l)-Pt-Se(2) 94.17(3)
Se(l)-Pt-Se(3) 167.77(3)
Se(l)-Pt-Cl 83.90(7)
Se(2)-Pt-Se(3) 97.40(3)
Se(2)-Pt-Cl 172.96(7)
Se(3)-Pt-Cl 85.08(7)
Pt-Se(l)-C(l) 106.72(30)
Pt-Se(l)-C(7) 107.17(23)
Pt-Se(2)-C(3) 108.08(30)
Pt-Se(2)-C(4) 110.10(35)
Pt-Se(3)-C(6) 110.11(33)
Pt-Se(3)-C(17) 106.05(24)
Se(l)-C(l)-C(2) 115.63(59)
Se(2)-C(3)-C(2) 115.37(62)
Se(2)-C(4)-C(5) 114.72(73)
Se(3)-C(6)-C(5) 115.80(72)

angle is significantly less than 180° (167.77(3)°), and the Se(l)-Pt-Se(2) and Se(2)-Pt- 

Se(3) angles deviate significantly from 90° (94.17(3) and 97.40(3)° respectively). 

Similar effects are observed in [(PdCl)2([24]aneSe6)]2+ (the equivalent Se(l)-Pt-Se(3) 

angle is 170.3° (avg), the other Se-Pt-Se angles lie in the range 90.7 to 97.8°), whereas 

in [Pt([16]aneSe4)]2+ the platinum has an almost square planar geometry (the 

equivalent Se(l)-Pt-Se(3) angle is 180°, the other Se-Pt-Se angles lie in the range 88 .8  

to 91.2°); this is attributed to the high symmetry of the [16]aneSe4 ligand.
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6.7 Crystal Structure Determinations of FcSe(CH?)iSeFc 

and rM IFcEfCH^EFcHCm i
The compounds FcSe(CH2)3SeFc and [M{FcE(CH2)3EFc}(CO)4] (M = Mo, E = Se;

M = Cr, W, E = Te) were synthesised and recrystallised by Su Jing as reported in her 

PhD thesis.251

6.7.1 Crystal Structure Determination of FcSefCHfBSeFc

Pale yellow plates of FcSe(CH2)3SeFc were obtained by ether diffusion into an 

acetone solution o f [Cr{FcSe(CH2)3SeFc}(CO)4] (it was originally intended to obtain 

crystals o f this compound, not the ligand); from one o f these plates a fragment with 

dimensions 0.60 x 0.40 x 0.10 mm was cut and analysed. After a short data 

acquisition, both the UM F and UM TTT commands suggested a triclinic cell with

dimensions: a = 5.85(1) A, b = 12.08(2) A, c = 15.89(1) A, a  = 108.2(1)°, =

94.1(1)°, y  = 92.1(1)°, V = 1061 A3. A long data acquisition was carried out, after 

which the same cell was suggested (albeit slightly refined). The data were reduced 

according to this cell with absorption correction processing by SADABS and 

ABSPACK without a shape correction. The structure was solved by direct methods 

using SIR 97, with refinement using SHELXL 97; the SADABS data gave better 

results and were used in the final refinement. There was found to be no extinction. It 

was necessary to apply restraints to all C-C bonds, but this had no adverse effects on 

the R values. The space group is P -1 with one molecule in the asymmetric unit; the 

initial solution gave an asymmetric unit containing the FcSe(CH2)3Se unit o f one 

molecule and the Fc unit of the other. This was resolved by translating the Fc unit by 

applying the symmetry operation -x, -y, -z. All non-hydrogen atoms were 

anisotropically refined; hydrogen atoms were added in calculated positions and were 

constrained.

Table 6.13 shows the crystallographic data for FcSe(CH2)3SeFc. Figure 6.14 shows 

the crystal structure; thermal ellipsoids are drawn at 30% probability.
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Table 6.13: Crystallographic data for compound FcSe(CH2 )3 SeFc

Empirical formula C23H24Fe2Se2
Formula weight 570.04
Crystal system triclinic
Space group P -l
a/A 5.875(1)
b/A 12.077(2)
d A 15.905(2)

cd° 108.13(1)
p/° 94.07(1)

yi° 92.25(1)
V/A 1067.5(3)
z 2
F(000) 564
Dcalc (g cm'3) 1.773
p (Mo-Ka/mm'1) 4.774
Temperature (K) 293
Reflections collected 10574
Independent reflections 4281

0 Range (°) 4.33-26.37
Reflect, with I  > 2o(7) 2 2 2 0
No. o f parameters 248

Ri; WR2 [ />  2 a(7)] 0.0541; 0.1231
Ri; WR2 (all data) 0.0877; 0.1371
GoF 0.870

Some selected bond lengths and angles of FcSe(CH2)3SeFc are shown in table 6.14. 

It can be seen that the molecule is not completely symmetrical, with significant 

differences in the Se-C distances of the aliphatic chain (1.995(7) and 1.979(6) A), 

although the Se-C distances for the Fc groups differ less (1.872(6) and 1.879(6) A), 

and as expected are shorter.
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Figure 6.14: FcSe(CH2)3 SeFc
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Table 6.14: Selected bond lengths and angles for FcSe(CH2)3SeFc

Bond lengths (A)
Se(l)-C (l) 1.995(7)
Se(2)-C(3) 1.979(6)
Se(l)-C(4) 1.872(6)
Se(2)-C(14) 1.879(6)

Bond angles (°)
C(l)-Se(l)-C(4) 97.32(30)
C(3)-Se(2)-C(14) 97.73(27)
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6.7.2 Crystal Structure Determinations of [MIFcEfCH^EFcHCO)*!

The crystal structure determinations of [M{FcE(CH2)3EFc}(CO)4] (M = Mo: E = Se; 

M = Cr, W: E = Te) were relatively straightforward, as it was possible to use the 

model from a previous determination of [Mo{FcTe(CH2)3TeFc}(CO)4]. The model 

was o f a monoclinic P 2 j/c unit cell with approximate dimensions: a = 15 A, 6 = 1 2  A,

c = 15 A, a  = 90°, P  = 102°, y  = 90°, V = 2800 A3, with one molecule o f  

[Mo{FcTe(CH2)3TeFc}(CO)4] in the asymmetric unit.

Dark orange crystals of [Mo{FcSe(CH2)3SeFc}(CO)4] were obtained by ether 

diffusion into an acetone solution of [Mo{FcSe(CH2)3SeFc}(CO)4]; from these a 

prism with dimensions 0.60 x 0.50 x 0.30 mm was chosen for analysis. After a short 

data collection the UM TTT command proposed an orthorhombic unit cell with

dimensions: a = 18.47(1) A ,b  = 23.83(2) A, c = 12.46(1) A, a =  90.0°, fi=  90.0°, y=  

90.0°, V= 5484 A3. After a long data acquisition the same cell was proposed, but this 

turned out to be unsuitable, mainly due to problems with systematic absences. The 

data were revisited and using the UM F command with a threshold limit o f 10,000

gave the correct cell: a = 15.030(3) A ,b  = 12.468(3) A, c = 15.066(3) A, a -  90.00°,

P=  104.46(2)°, y  — 90.00°, V = 2733.9 A3. The data were reduced according to this 

cell with absorption correction processing using SADABS. Application of the model 

to the SADABS-corrected data and refinement using SHELXL 97 quickly gave a low 

R value. It was necessary to correct for extinction (final value -  0.001986); all non

hydrogen atoms were anisotropically refined; hydrogen atoms were added in 

calculated positions, riding. Figure 6.15 shows the structure of  

[Mo{FcSe(CH2)3SeFc}(CO)4]; thermal ellipsoids are drawn at 30% probability; 

hydrogen atoms are omitted for clarity. The crystal data are shown in table 6.15. 

Orange crystals o f [Cr{FcTe(CH2)3TeFc}(CO)4] were obtained by ether diffusion 

into an acetone solution of [Cr{FcTe(CH2)3TeFc}(CO)4]; from these a prism with 

dimensions 0.40 x 0.40 x 0.25 mm was cut from a larger crystal and analysed. After a 

short data collection the UM TTT command again proposed an orthorhombic cell

with the dimensions: a = 18.86(1) A, 6 = 23.96(1) A, c = 12.39(1) A, a =  90.0°, P = 

90.0°, y=  90.0°, V=  5595 A3. The UM F command, on the other hand proposed the 

monoclinic cell: a = 15.18(1) A, b=  12.39(1) A, c = 15.31(3) A , a=  90.00°, P=
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103.6(1)°, y=  90.00°, V = 2798 A3. A long data acquisition was carried out. Data 

reduction based on the orthorhombic cell resulted in an unacceptable Rjnt value o f 0.5, 

so this route was not pursued. Data reduction according to the monoclinic unit cell 

was carried out, with absorption correction processing using SADABS and 

ABSPACK without a shape correction. The data were applied to the model with 

refinement by SHELXL 97; as with [Mo{FcSe(CH2)3SeFc}(CO)4] the SADABS data 

gave the best results. There were found to be no extinction effects; all non-hydrogen 

atoms were anisotropically refined; hydrogen atoms were added in calculated 

positions, riding. The structure is shown in figure 6.16: thermal ellipsoids are drawn 

at 30% probability; hydrogen atoms are omitted for clarity. The crystal data are 

shown in table 6.15.

Dark orange crystals of [W{FcTe(CH2)3TeFc}(CO)4] were obtained by ether 

diffusion into an acetone solution o f [W{FcTe(CH2)3TeFc}(CO)4]; from these a 

prism with dimensions 0.30 x 0.20 x 0.15 mm was cut from a larger crystal and 

analysed. After a short data collection the UM F command proposed the monoclinic

cell: a = 15.23(1) A, b = 12.45(1) A, c = 15.39(1) A, a =  90.0°, p =  103.2(1)°, y  = 

90.0°, V = 2841 A3. A long data acquisition was carried out after which the UM F 

command proposed the same cell (albeit slightly refined). The data were reduced 

according to this cell, with absorption correction processing using SADABS and 

ABSPACK without a shape correction. The data were applied to the model with 

refinement by SHELXL 97; as in the previous examples the SADABS data gave the 

best results. No extinction effects were found to be present; all non-hydrogen atoms 

were anisotropically refined; hydrogens were added in calculated positions, riding. 

The structure is shown in figure 6.17: thermal ellipsoids are drawn at 30% probability. 

The crystal data are shown in table 6.15, and selected bond lengths and angles for all 

three complexes are shown in tables 6.16 and 6.17, along with those for the complex 

[Mo{FcTe(CH2)3TeFc}(CO)4] (previously determined), for comparative purposes.



Figure 6.15: [Mo{FcSe(CH2)3SeFc}(CO)4]
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Figure 6.16: [Cr{FcTe(CH2)3TeFc}(CO)4 ]
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Figure 6.17: [W{FcTe(CH2)3TeFc}(CO)4]
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The complexes [M{FcE(CH2)3EFc}(CO)4] exhibit the expected octahedral geometry 

about the metal atom, although the octahedron is slightly distorted, probably due to 

the ‘bite angle’ of the ligand (the E-M-E angle is on average 87.5°). The C-0 

distances are affected by the ligand: it is observed that in all of the complexes, the 

C- 0  distances trans- to the chalcogen are, on average, 0.068 A longer than the C- 0  

distances cis- to the chalcogen atoms. Similar effects have been observed in the 

complexes c/s-[W{(MeSeC5H4)2Fe}(CO)4 ] , 252 [Cr{MeSe(CH2)2 SeMe}(CO) 4] 253 and 

[W(xyte)(CO)4] (xyte = l,2-6/s(methyltelhiromethyl)benzene): 254 all M-C bonds 

trans- to a chalcogen are observed to be shorter (on average by 0.063 A) than the M-C 

bonds cis- to a chalcogen; this is attributed to the chalcogen’s weaker trans- effect 

compared with CO. The M-E distances are observed to vary with M  and E as 

expected, so average distances of 2.67, 2.66, and 2.80 A are observed for Mo-Se, Cr- 

Te, and M-Te (M = Mo, W) respectively; the similar lengths of Mo-Te and W-Te are 

attributed the similar atomic radii of Mo and W, due to the lanthanoid contraction. 

The E-M-E angles are similar in all complexes (average 87.5°), and are similar to the 

E-M-E angles of m-[W{(MeSeC5H4)2Fe}(CO)4] (86.3°) and

[Cr{MeSe(CH2)2SeMe}(CO)4] (86.59(5)°); a much greater angle is observed in 

[W(xyte)(CO)4] (95.69(3)°) which is attributed to the rigidity of the xyte ligand. The 

M -E-Caiiphatic angles are also similar in all the complexes with average values of 

107.88° (M-E(l)-C(5)) and 104.88° (M-E(2)-C(7)).
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6.8 Crystal Structure Determination of

fra«y-fPdCI->fn1-FcSeCH^SeFc)->l
fra/is-JPdC ^V -FcSeC I^SeFch] was synthesised and recrystallised by Su Jing as

i
reported in her PhD thesis. Recrystallisation from DCM/MeCN gave dark 

brown, rhombohedral crystals, from which a crystal with dimensions 0.40 x 0.40 x 

0.25 mm was selected for analysis. Initially a model was determined using Cu-Ka 

radiation (due to the unavailability of Mo-Ka radiation). After a short data 

acquisition the UM TTT command proposed a monoclinic cell with dimensions: a

= 9.86(1) A, b = 19.27(1) A , c =  10.82(1) A, a =  90.0°, /? = 99.2(1)°, y=  90.0°, V = 

2029 A3. A full data acquisition was carried out, after which the UM TTT 

command proposed the same cell (albeit slightly refined). The data were reduced 

and processed with absorption correction using SADABS and ABSPACK with no 

shape correction. The structure was solved by direct methods using SIR 97 and 

refined using SHELXL 97; the refinement was limited by negative temperature 

factors (due to the use of Cu-Ka radiation). The space group of this model was 

found to be P 2j/a with half a molecule in the asymmetric unit; the Pd atom lies on 

an inversion centre.

At a later date a data acquisition was carried out using Mo-Ka radiation; after both 

short and full data acquisitions, both the UM TTT and UM F commands proposed 

the cell given above. The data were reduced with processing for absorption 

correction by SADABS and ABSPACK without a shape correction. Using the 

model established above, with these data, it was possible quickly to refine the 

structure using SHELXL 97 (the SADABS data gave the best result). There was 

found to be no extinction, but it was necessary to apply a SHEL command due to a 

high number of unobserved reflections (0.8 < d < 20 A). The hydrogen atoms 

were added in calculated positions, and were constrained.

Table 6.17 shows the crystallographic data for frajis-lPdChO^-FcSeCHiSeFc)!]. 

Figure 6.18 shows the crystal structure: thermal ellipsoids are drawn at 30% 

probability; hydrogens are omitted for clarity.
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Table 6.17: Crystallographic data for fra/is-IPdCl^i^-FcSeCI^SeFc)^

Empirical formula C2 1 H2oClFe2Se2Pdo.5
Formula weight 6 3 0 . 6 4
Crystal system monoclinic
Space group P2,/a
at A 9 . 8 5 1 ( 1 )
b/A 1 9 . 2 2 6 ( 2 )
c/A 1 0 . 7 9 1 ( 1 )

al° 9 0 . 0 0

fi/° 9 9 . 2 4 ( 1 )

r 9 0 . 0 0
VIA 2 0 1 7 . 2 ( 3 )
z 4
F(000) 1 2 2 4

Dcalc (g cm'3) 2 . 0 7 7

p (Mo-Ka/mm'1) 5 . 6 1 4
Temperature (K) 2 9 3
Reflections collected 2 0 1 5 4
Independent reflections 4 0 9 5

0 Range (°) 4 . 3 2 - 2 6 . 3 6

Reflect, with I  > 2c(I) 3 1 5 7
No. of parameters 2 4 1

Ri; w R 2  [ / >  2 g ( 7 ) ] 0 . 0 2 7 7 ; 0 . 0 6 0 0
Ri; w R 2  (all data) 0 . 0 3 8 7 ; 0 . 0 6 3 8
GoF 0 . 9 8 1

Table 6.18 shows some selected bond lengths and angles of 

f#wis-[PdCl2(ti !-F cSeCH2SeF c)2]. The PdCl2Se2 core is square planar as would 

be expected for Pd(II), although it is slightly distorted. The Pd-Se bond lengths of 

2.4351(4) A are very similar to those of fr*<ms-[PdCl2{(C4 Fl3 S)SeMe}2] (2.439(2) 

A)30 but longer than the Pd-S bond lengths of /raHj-fPdCl^T^-PhSCI^SPhJJ 

(2.329(1) A);36 this is attributed to the greater size of Se compared to S. The Pd-Cl 

distance of 2.2965(8) A is similar to that found in /ra/w-tPdChOi’-PhSCI^SPhJJ 

(2.292(1) A); the Pd-Cl distance in /nms-[PdCl2{(C4 H3 S)SeMe}2] is slightly 

shorter (2.263(6) A). The Se(l)-Pd-Cl angle of 85.93(3)° is approximately 10° less 

than those of /nm?-[PdCl2{(C4 H3 S)SeMe}2] and rra«.s-[PdCl2(r|1-PhSCH2SPh)2] 

(96.3(2) and 95.3(1)° respectively), although the Se-Pd-Cl angle to the opposite Se 

atom is 94.07°, which accounts for this discrepancy. The Pd-Se(l)-C(l) and 

Se(l)-C(l)-Se(2) angles of 102.54(10) and 111.06(16)° are comparable to those
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Figure 6.18: [PdChOl'-FcSeCHzSeFch]

C15 C11
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Table 6.18: Selected bond lengths and angles for [PdChCV-FcSeCEhSeFc^]

Bond lengths (A)
Pd-Se(l) 2.4351(4)
Pd-Cl 2.2965(8)
Se(l)-C(l) 1.950(3)
Se(l)-C(2) 1.907(3)
Se(2)-C(l) 1.931(3)
Se(2)-C(12) 1.898(4)

Bond angles (°)
Se(l)-Pd-Se(l) 180.00(2)
Se(l)-Pd-Cl 85.93(3)
Pd-Se(l)-C(l) 102.54(10)
Pd-Se(l)-C(2) 106.85(11)
Se(l)-C(l)-Se(2) 111.06(16)
C(l)-Se(l)-C(2) 99.36(13)
C(l)-Se(2)-C(12) 100.66(14)

found in ^ 5 - [P d C l2(ri1-PhSCH2SPh)2] (104.5(1) and 113.2(2)°). The Pd-Se(l)-C(2) 

angle (106.85(11)°) differs from the same angles in /raft.s-[PdCl2 {(C4 H3 S)SeMe}2] 

(101.5(6)°) and rrarcs-fPdChtV-PhSCPhSPhh] (110-8(1)°); this is attributed to 

differences in the steric influences of the ligands.
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6,9 Partial Crystal Structure Determination of 

[PdCl? (F cSefCH? Y) SeF ell
It was possible to obtain a partial structure determination of

[PdCl2 {FcSe(CH2)2 SeFc}]; this compound was synthesised and recrystallised by Su 

Jing as reported in her PhD thesis.251 Recrystallisation from DCM/MeCN gave small 

dark brown plates of [PdCl2 {FcSe(CH2)2 SeFc}]; one of these plates of dimensions 

0.35 x 0.14 x 0.06 mm was chosen for analysis. After a short data acquisition the UM 

TTT command suggested several different cells, dependent on the peak threshold

selected. A full data acquisition was carried out, after which time the UM TTT

command consistently suggested the monoclinic cell: a = 28.552(8) A, b = 8.524(2)

A, c = 9.621(3) A, a  = 90.0°, p=  107.57(3)°, y=  90.0°, V = 2232.3 A3. The data were 

reduced according to this cell with absorption correction processing by SADABS and 

ABSPACK without a shape correction. The structure was solved using SIR 97 and 

refined as far as possible using SHELXL 97. The SADABS data gave the best 

results, but the R values remain high; this can probably be attributed to poor data. 

Initial solution in the space group C c appeared to give the correct result, but this 

model proved very difficult to refine. It was later established that the correct space 

group is C 2/c (monoclinic face-centred), with half a molecule in the asymmetric unit 

and the Pd atom lying on a two-fold rotation axis. Hydrogens were added in 

calculated positions and constrained. The final Ri value of 0.13 could not be 

improved, so, though the model is chemically meaningful, it is not satisfactory from a 

crystallographic point of view. The model is shown in figure 6.19: thermal ellipsoids 

are at 30% probability; hydrogens are omitted for clarity,
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Figure 6.19: [PdCl2{FcSe(CH2)2 SeFc}]



Chapter 7 

Experimental Details
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7.1 Experimental Details
All reactions were performed using standard Schlenk techniques under an atmosphere 

of dry argon; the majority of procedures followed were taken from ‘Advanced 

Practical Inorganic and Metalorganic Chemistry’ . 256 Dry solvents, when required 

were distilled over molten potassium (benzene, hexane, THF), molten sodium (1,4- 

dioxane, toluene, xylene), CaFb (CHCI3, DCM, MeCN) or magnesium alkoxide 

(MeOH, EtOH). Solvents were degassed by repeated boiling under reduced pressure 

followed by saturation with inert gas.

XH, 13C and 31P NMR spectra were recorded using a Bruker AC400 with
1 1 1tetramethylsilane as internal standard ( H, C) or 85% phosphoric acid as external

standard ( P). Se and Te NMR spectra were recorded on a Bruker WM250 with
11 11dimethyl selenide or dimethyl telluride respectively as external standards. All C, P, 

77Se and 125Te NMR spectra were ’H decoupled. IR spectra were recorded using a 

Perkin-Elmer Spectrum One FTIR spectrometer with ATR. UV-visible spectra were 

recorded on a Unicam UV300 spectrometer using quartz cuvettes; due to the small 

amounts of pure material available the UV-visible spectral data are subject to an error 

in the range 1-10%. Mass spectra were recorded by the EPSRC Mass Spectrometry 

Service Centre using fast atom bombardment (FAB) or electrospray ionisation (ESI). 

X-ray structural analyses not reported in chapter 6  were carried out by Prof. Massimo 

Di Vaira at the University of Florence; crystals were mounted on a glass fibre and 

analysed using an Oxford Diffraction Xcalibur 3 CCD diffractometer.

Cycloalkeno-l,2,3-selenadiazoles,92 cycloalkeno-l,2,3-thiadiazoles,94 bis- 

cycloalkeno-l,4-diselenins, 120 (FcSe)2 , 257 (FcTe)2 , 258 6 w-benzo-l,2 -diselenin, 129 2,5- 

diphenyltellurophene,235 [Pt(PPh3)4], 259 [PtCl2(PEt3)2], 260 [PtCl2(PBu3)] 261 and 

[Pd2(dba)3].dba262 were synthesised by literature procedures (slightly adapted in some 

cases). Platinum and palladium salts were obtained on loan from Johnson Matthey 

pic; P(z-CsHn) 3 and (PhSe)2  were obtained from laboratory sources; PEt3 and T1PF6 

were obtained from Strem Chemicals Inc.; cyclohexanone, cycloheptanone, 

cyclooctanone, dppm, dppe, dppp, ethene, EtI, LiBEt3H, Mel, naphthalene, PBu3, 

P(OMe)3, potassium, selenium, selenophene, sodium and thiophene were obtained 

from Aldrich Chemical Company. All chemicals were used as supplied.
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Standard safety procedures were followed as outlined in the University of Wales 

Swansea, Chemistry Department safety handbook.
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7.2 Synthetic Procedures
Synthesis of lc. 2c. 3c and 4c

Under argon in a pre-dried Schlenk tube, [Pt(Se2 C8Hi2 )(PPh3 )2 ] (50 mg, 0.05 mmol) 

was slurried in dry toluene (4 mL); the slurry was treated with 1 mL of PEt3 (lc), 

PBu3 ( 2 c ) ,  P(/-C5Hn )3 (3c) or P(OMe) 3  (4c) and stirred at approximately 70 °C for 3 

days. After this time a green/yellow solution had formed. This was concentrated in 

vacuo and the residue chromatographically separated on AI2 O3 with toluene/EtOAc 

( 1 :1 ) elution (lc  and 2c only); collection of the green/yellow fraction and subsequent 

concentration in vacuo gave lc  (green solid, 32 mg, 93% yield) or 2c (green solid, 40 

mg, 90% yield). 3c and 4c were isolated as green/yellow oils due to the presence of 

excess phosphine or phosphite respectively.

Synthesis of 5c. 6c and 7c

Under argon in a pre-dried Schlenk tube, a mixture of [Pt(Se2 CgHi2 )(PPh3)2 ] (60 mg, 

0.06 mmol) and dppm (230 mg, 0.6 mmol), dppe (240 mg, 0.6 mmol) or dppp (250 

mg 0.6 mmol) in dry toluene ( 8  mL) was heated to 90 °C for 4 days. After this time a 

green solution had formed. This was concentrated in vacuo, and the residue 

chromatographically separated on alumina with toluene/DCM (1:1) elution; collection 

of the green fraction and subsequent concentration in vacuo gave 5c (green solid, 44 

mg, 8 6 % yield), 6c (green solid, 36 mg, 69% yield) or 7c (green solid, 36 mg, 6 8 %). 

Crystals of 5c suitable for an x-ray diffraction study were obtained from a 

hexane/DCM solution at -20 °C.

Synthesis of la-c and 2a-c

All experiments were carried out according to the following general procedure. 

Under argon [PtCl2 (PR.3 )2 ] (0.4 mmol; R = Et, Bu) was taken up in 1,4-dioxane (20 

mL) and the solution degassed. This solution was put under an ethene atmosphere 

and treated dropwise with NaCioHg (~ 0.12 M solution in THF), complete conversion 

to [Pt(C2 H4 )(PR3 )2 ] being evidenced by the solution holding the green colour for 

approximately 2-3 minutes before clearing. The ethene atmosphere was replaced with 

an argon atmosphere, and the reaction mixture was treated with a solution of bis- 

cycloalkeno-l,4-diselenin (0.6 mmol) in degassed toluene ( 8  mL). The reaction 

mixture was refluxed for 1 hr after which time it was pale green in colour;
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concentration in vacuo gave an green oil, which was purified by column 

chromatography on alumina with a 3:1 mixture of toluene and ethyl acetate. 

Collection of the pale green band gave lb,c and 2b,c as analytically pure green solids, 

and la  and 2a as impure products. Yields: la: 201 mg, 75%, lb: 218 mg, 80%, lc: 

192 mg, 69% 2a: 178 mg, 53%, 2b: 201 mg, 59%, 2c: 218 mg, 63%. Crystals of lb  

and lc  suitable for an x-ray diffraction study were obtained by recrystallisation from 

toluene/hexane at -20 °C.

Synthesis of 8b,c and 9b,c

All experiments were carried out according to the following general procedure. 

Under argon [PtCkCPR^] (0.4 mmol; R = Et, Bu) was taken up in 1,4-dioxane (20 

mL) and the solution degassed. This solution was put under an ethene atmosphere 

and treated dropwise with NaCioHs (~ 0.12 M solution in THF), complete conversion 

to [Pt(C2 H4 )(PR3 )2 ] being evidenced by the solution holding the green colour for 

approximately 2-3 minutes before clearing. The ethene atmosphere was replaced with 

an argon atmosphere, and the reaction mixture was treated with a solution of 

cycloalkeno-l,2,3-thiadiazole (1.2 mmol) in degassed toluene (8 mL). The reaction 

mixture was refluxed for 1 hr after which time it was deep orange in colour; 

concentration in vacuo gave an orange oil, which was repeatedly purified by column 

chromatography on alumina with a 1:1 mixture of toluene and hexane. Collection and 

concentration of the orange band gave 8b,c and 9b,c as analytically pure orange solids. 

Yields (based on Pt): 8b: 71 mg, 30%, 8c: 65 mg, 26%, 9b: 81 mg, 30%, 9c: 116 mg, 

41%. Crystals of 8b and 9b suitable for an x-ray diffraction study were obtained by 

recrystallisation from EtOH at -20 °C.

Synthesis of lOa-c and lla -c

All experiments were carried out according to the following general procedure. 

Under argon [PtCl2 (PR3 )2 ] (0.4 mmol; R = Et, Bu) was taken up in 1,4-dioxane (20 

mL) and the solution degassed. This solution was put under an ethene atmosphere 

and treated dropwise with NaCioHg (8 mL of an estimated 0.08 M solution in THF), 

to give a cloudy white reaction mixture. The ethene atmosphere was replaced with an 

argon atmosphere, and the reaction mixture was treated with a solution of 

cycloalkeno-l,2,3-selenadiazole (1.2 mmol) in degassed toluene (8 mL). The reaction 

mixture was refluxed for 1 hr after which time it was deep purple in colour;
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concentration in vacuo gave a purple oil, which was repeatedly purified by column 

chromatography on alumina with a 1:1 mixture of toluene and hexane. Collection and 

concentration of the purple band gave 10b,c and llb ,c  as analytically pure solids and 

10a, 11a as reasonably pure solids. Yields (based on Pt) 10a: 132 mg, 50%, 10b: 118 

mg, 43%, 10c: 29 mg, 10%, 11a: 134 mg, 45%, lib : 46 mg, 15%, 11c: 54 mg, 17%.

Synthesis of 12a

Under argon, [Pt(PPh3 )4 ] (200 mg, 0.16 mmol) and cyclohexeno-l,2,3-selenadiazole 

(50 mg, 0.27 mmol) were taken up in dry toluene (5 mL), giving a yellow slurry 

which was stirred at room temperature for 4 days. After this time a purple solution 

had formed; concentration in vacuo, followed by column chromatography 

(A^CVtoluene) and collection and concentration of the purple band gave 12a as a 

purple solid (21 mg, 16% yield).

Synthesis of 13a-c and 14a-c

All experiments were carried out according to the following general procedure. 

Under argon [PtCl2 (PR.3 )2 ] (0.4 mmol; R = Et, Bu) was taken up in 1,4-dioxane (20 

mL) and the solution degassed. This solution was put under an ethene atmosphere 

and treated dropwise with NaCioHg (~ 0.12 M solution in THF), complete conversion 

to [Pt(C2 H4 )(PR3 )2 ] being evidenced by the solution holding the green colour for 

approximately 2-3 minutes before clearing. The ethene atmosphere was replaced with 

an argon atmosphere; the reaction mixture was then treated with a solution of 

cycloalkeno-l,2,3-selenadiazole (0.3 mmol) in dry, degassed toluene (2 mL) and 

refluxed for 1 hr, during which time it changed colour from orange to red. The cooled 

reaction mixture was filtered under an argon atmosphere and concentrated to give 

13a-c and 14a-c as red/orange oils. As purification of these compounds was 

unsuccessful no yields were recorded.

Synthesis of 15a-c and 16a-c

All experiments were carried out according to the following general procedure. 

Under argon [PtCl2 (PR3 )2 ] (0.4 mmol; R = Et, Bu) was taken up in 1,4-dioxane (20 

mL) and the solution degassed. This solution was put under an ethene atmosphere 

and treated dropwise with NaCioHs (~ 0.12 M solution in THF), complete conversion 

to [Pt(C2 H4 )(PR3 )2 ] being evidenced by the solution holding the green colour for
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approximately 2-3 minutes before clearing. The ethene atmosphere was replaced with 

an argon atmosphere; the reaction mixture was treated with cycloalkeno-1,2,3- 

selenadiazole (0.3 mmol) in dry, degassed toluene (2 mL), refluxed for 1 hr then 

allowed to cool to room temperature. The flask was covered in foil; the reaction 

mixture was treated with Mel (0.5 mL) and stirred at room temperature overnight. 

After this time a pink/orange solution had formed with a fine white solid present (Nal); 

this was filtered through a pad of celite (1 cm) and concentrated to a pink/purple 

residue. Repeated chromatographic purification on alumina with hexane/toluene (1:0 

to 2:1 gradient) elution, and collection and concentration of the pink/purple bands 

gave 15a-c and 16a-c as analytically pure pink/purple oily solids. It is necessary to 

carry out chromatographic purification of these compounds until they are free of 

residual naphthalene. Yields: 15a: 90 mg, 31%, 15b: 200 mg, 67%, 15c: 149 mg, 

49%, 16a: 198 mg, 55%, 16b: 150 mg, 41%, 16c: 78 mg, 21%.

Synthesis of 17a-c and 18a-c

All experiments were carried out according to the following general procedure. 

Compounds 15a-c and 16a-c (0.1 mmol) were taken up in acetone (5 mL) and treated 

with T1PF6 (39 mg, 0.11 mmol); the resulting yellow/orange slurries were stirred at 

room temperature for 2-3 days. After this time the reaction mixtures were filtered 

through a pad of celite (1 cm) and the red liquors were concentrated to give 17a-c and 

18a-c as analytically pure red oily solids. Yields: 17a: 68 mg, 90%, 17b: 70 mg, 

91%, 17c: 74 mg, 95%, 18a: 83 mg, 90%, 18b: 86 mg, 92%, 18c: 85 mg, 90%.

Synthesis of 19 and 20

Both experiments were carried out according to the following general procedure. 

Under argon [PtCl2 (PR3 )2 ] (0.4 mmol; R = Et, Bu) was taken up in 1,4-dioxane (20 

mL) and the solution degassed. This solution was put under an ethene atmosphere 

and treated dropwise with NaCioHg (~ 0.12 M solution in THF), complete conversion 

to [Pt(C2 H4 )(PR3 )2 ] being evidenced by the solution holding the green colour for 

approximately 2-3 minutes before clearing. The ethene atmosphere was replaced with 

an argon atmosphere and the reaction mixture was treated with selenophene (1.6 mL 

of a 5% v/v toluene solution). The reaction mixture was stirred at 50 °C overnight, 

then filtered under argon; the filtrate was concentrated to give the products as brown 

oils. Compound 19 was purified by column chromatography and isolated as a yellow
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oil (200 mg, 89% yield). Compound 20 was purified by recrystallisation from hexane 

to give analytically pure brown needles (76 mg, 26% yield).

Synthesis of 21a,b and 22a,b

Experiments were carried out according to the following general procedure. Under 

argon [PtCl2(PR.3)2] (0.4 mmol; R = Et, Bu) was taken up in 1,4-dioxane (20 mL) and 

the solution degassed. An ethene atmosphere was introduced, and the solution treated 

dropwise with NaCioHg (-0.12 M solution in THF), until the green colour held for 

approximately 2-3 minutes before clearing. The ethene atmosphere was replaced with 

argon, and a solution of the diselenide ((PhSe)2 , 0.13 g, or (FcSe)2 , 0.21 g; 0.4 mmol) 

in degassed toluene ( 8  mL) was added. After stirring at room temperature overnight, 

concentration in vacuo gave a yellow or orange solid, which was purified by column 

chromatography on alumina with toluene/hexane elution. Collection of the coloured 

band and recrystallisation at -20 °C from toluene/hexane gave 21a (yellow, 30 mg, 

38% yield), 21b (yellow, 140 mg, 38% yield), 22a (orange, 40 mg, 32% yield) and 

22b (orange, 50 mg, 35% yield). Yields are based on [PtCl2(PR3)2]; conversion to 

[Pt(C2H4)(PR3)2] may not be 1 0 0 %.

Synthesis of 23a,b

Under argon [Pd2(dba)3].dba (0.06 g, 0.05 mmol) was taken up in dry toluene (5 mL). 

The resulting purple solution was treated with PR3 (0.1 mL) and the reaction mixture 

allowed to stir for 5 minutes, after which time it was brown/yellow in colour. (FcSe)2  

(0.05 g, 0.1 mmol) was then added. After stirring at room temperature overnight, 

concentration in vacuo followed by treatment with hexane resulted in the precipitation 

of brown/orange solids. Filtration followed by recrystallisation from toluene/hexane 

at -10 °C gave 23a (orange, 50 mg, 57% yield) and 23b (red, 30 mg, 33% yield).

Synthesis of 24a,b and 25a,b

Experiments were carried out according to the following general procedure. Under 

argon [PtCl2(PR3)2] (0.4 mmol; R = Et, Bu) was taken up in 1,4-dioxane (20 mL) and 

the solution degassed. An ethene atmosphere was introduced, and the solution treated 

dropwise with NaCioHg (-0.12 M solution in THF), until the green colour held for 

approximately 2-3 minutes before clearing. The ethene atmosphere was replaced with 

argon, and a solution of the ditelluride ((PhTe)2 , 0.16 g, or (FcTe)2 , 0.25 g; 0.4 mmol)
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in degassed toluene ( 8  mL) was added. After stirring at room temperature overnight, 

concentration in vacuo gave a yellow or orange solid, which was purified by column 

chromatography on alumina with toluene/hexane elution. Collection of the coloured 

band gave 24a (orange, >100% yield due to impurities), 24b (orange, 385 mg, 96% 

yield), 25a (orange, 380 mg, 90% yield) and 25b (orange, 400 mg, 82% yield). 

Yields are based on [PtCl2 (PR.3 )2 ]; conversion to [Pt(C2 H4 )(PR.3 )2 ] may not be 100%.

Synthesis of 26

Under argon [Pt(PPh3)4 ] (124 mg, 0.1 mmol) and (FcSe) 2  (53 mg, 0.1 mmol) were 

taken up in dry toluene (5 mL) and the resulting red solution was stirred at room 

temperature overnight. After this time the solution was filtered and the orange solid 

(26) washed with toluene and dried in vacuo (60 mg, 48% yield).

Synthesis of 27a,b

Under argon [P tC ^ P R ^ ] (0.4 mmol; R = Et, Bu) was taken up in 1,4-dioxane (20 

mL) and the solution degassed. An ethene atmosphere was introduced, and the 

solution treated dropwise with NaCioHg (-0.12 M  solution in T H F ), complete 

conversion to [Pt(C2 H4 )(PR3 )2 ] being evidenced by the green colour holding for 

approximately 2-3 minutes before clearing. The ethene atmosphere was replaced with 

argon, and a solution of Se2 C]2 Hg (0.12 g, 0.4 mmol) in degassed toluene ( 8  mL) was 

added. After stirring at room temperature overnight, concentration in vacuo gave a 

yellow or orange solid, which was purified by column chromatography on alumina 

with toluene/hexane elution. Collection of the coloured band and recrystallisation 

at -20 °C  from toluene/hexane gave 27a (yellow, 150 mg, 50% yield) and 27b (orange, 

200 mg, 55% yield).

Synthesis of 28a,b and 29a,b

Under argon [Pd2 (dba)3 ].dba (0.06 g, 0.05 mmol) was taken up in dry toluene (5 mL). 

The resulting purple solution was treated with PR3 (28a,b: 0.1 mL, neat; 29a,b: 1 mL 

of a 5% v/v toluene solution) and the mixture allowed to stir for 5 minutes, after 

which time it was brown/yellow in colour. Se2 Ci2 Hg (0.03 g, 0.1 mmol) was then 

added. After stirring at room temperature overnight, concentration in vacuo followed 

by treatment with hexane resulted in the precipitation of brown/orange solids. 

Filtration followed by recrystallisation from toluene/hexane at -10 °C gave 28a (red,
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30 mg, 42% yield), 28b (red, 20 mg, 14% yield), 29a (red, 150 mg, 70% yield), 29b 

(red, 30 mg, 18% yield).

Synthesis of 30a,b and 31a,b

Under argon [PtCl2 (L)] (0.1 mmol; L = dppm, dppe) was taken up in 1,4-dioxane (5 

mL) and the solution degassed. An ethene atmosphere was introduced, and the 

solution treated dropwise with NaCioHg (-0.12 M solution in THF), complete 

conversion to [Pt(C2 H4 )(L)] being evidenced by the green colour holding for 

approximately 2-3 minutes before clearing. The ethene atmosphere was replaced with 

argon, and a solution of (FcSe) 2  or Se2 Ci2 Hg (0.1 mmol) in degassed toluene (2 mL) 

was added. After stirring at room temperature overnight, filtration gave a yellow or 

orange solid. 30a: orange (37 mg, 33% yield), 30b: yellow (24 mg, 21% yield), 31a: 

yellow (13 mg, 15% yield), 31b: orange (yield not recorded).
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