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Abstract

This thesis is concerned with singularities of the stochastic heat and Burgers equations. 
We study the classification of caustics (shockwaves) for Burgers equation and the level 
surfaces of the corresponding heat equation. Particular attention is paid to two examples 
of a two dimensional caustic, namely the semicubical parabolic cusp and the polynomial 
swallowtail. These examples, whose names have been adopted in recognition of Thom’s 
list of seven elementary catastrophes, may be viewed as special cases of the larger class 
of initial functions So(xo) = f { x o) +  g(%o)yo where /  and g are polynomials in Xo.

The thesis is structured as follows:

Chapter 1 introduces many of the concepts required throughout the thesis. In particular 
the stochastic heat and Burgers equations are introduced and the notion of shockwaves 
discussed.

In Chapter 2 we restrict ourselves to the deterministic free case and set about deriving a 
polynomial initial condition that produces a swallowtail type caustic. This is considered 
for both the two and three dimensional cases.

In Chapter 3 the examples of the cusp and polynomial swallowtail are considered under 
the presence of white noise. The stochastic heat kernel is derived by a direct approach 
and used to obtain explicit formulae for the stochastic caustic and corresponding level 
surfaces.

Chapter 4 is dedicated to the study of hot and cool parts of the caustic. Building upon 
the work of Truman, Davies and Zhao we develop a new method for determining whether 
one side of the caustic is hot or cool and show, that under a certain type of noise, only 
the deterministic case need be considered.

In Chapter 5 we consider touching points of the pre-curves and show how this leads to the 
concept of turbulent times in the stochastic case. We derive a stochastic process whose 
zeros are the turbulent times for a particular class of examples and study the properties 
of this process.

In Chapter 6 we repeat much of our earlier analysis in the presence of a harmonic oscillator 
potential.
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Chapter 1 

Preliminaries

This chapter is intended as a primer for many of the concepts that will be required throughout 
this thesis. T he material presented in this chapter is standard and we will only touch upon 
som e very broad subjects o f m athem atics. We begin by providing an elem entary account o f  
Lagrangian and Hamiltonian mechanics. This is followed by discussions on Hydrodynamics, 
Catastrophe Theory and stochastic heat and Burgers equations. T he chapter concludes with  
a consideration o f caustics (shockwaves) o f Burgers equation and th e corresponding level sur­
faces for the heat equation. We claim no originality here apart from the style o f presentation.

1.1 Lagrangian and Hamiltonian Mechanics
In this section we discuss two useful reformulations of classical (Newtonian) mechanics. 
We begin with Lagrangian mechanics, first demonstrated by Lagrange in 1788, which 
essentially uses potential and kinetic energies as the fundamental concepts rather than 
the physics of forces used in Newtonian mechanics. Throughout this section we carefully 
follow the work in [2] and [22]. Other references found to be useful include [47] and [50].

1.1.1 Euler-Lagrange Equations
We consider a system whose instantaneous configuration can be described by n  generalised 
coordinates qi, q2 , . . . ,  qn- Taking the g’s as n coordinates we form a hyperspace called 
configuration space. As time progresses, the state of the system changes and this is 
represented by the system point moving along a path in configuration space. We further 
assume that the system is holonomic, namely a system in which the af s may be varied 
independently without violating the constraints.

Consider the functional

A[q] := [  &[q(s),q(s),s]ds ,
Jo

where qs = q(s), s G [0,£], is a curve in configuration space. Assuming «C[<7(s), q(s), s] G 
C'2,2,1(Rn x Rn x R+) we have the following result.



L em m a 1.1.1. I f  the path qs = q(s), s G [0, t], has fixed end points q(0) =  a  and q(t) =  f3 
then for sufficiently well behaved h(s) we have

d_
de e=0

A[q + eh]= [  
Jo ~d~q

d_ / a c v
ds \ d q  )

h(s) ds .

Proof Let h(s) G Co°[0, t] with h(0) =  h(t) = 0. Then the variation of A  yields 

SA[q] = A[q +  eh] -  A[q]

= J  (&[q + eh, q + eh, s] - £ [g ,  q, s]) ds

=  1  ( S £^ + § H d s + 0 ( £ 2 ) -

Thus it follows from integration by parts and h(0) =  h(t) = 0 that

a m - '
h d ceh—

°Q.5 A b]  =  I  ( S £k  ~  £k

=r ( f - i ( s ) ) £̂ )ds+o(£2)-

+ 0(£2)

□Equation (1.1.1) follows from the definition of the directional derivative.
C oro lla ry  1.1.2. I fq3 =  q(s) has fixed endpoints q(0) =  a and q(t) =  (J then a necessary 
condition for qs to be an extremiser is

d_ / a c \  _  a c  _
ds \d q s)  dqs

fJo
d_
ds \ d q j

h(s) ds =  0 ,

for s G [0, t].
Proof For an extremal, £=QA[q +  eh] = 0, so that by Equation (1.1.1)

a c
dq

for all smooth functions h(s) with h{0) =  h{t) = 0. If h{s) is continuous, or even infinitely 
differentiable, then the desired result follows from the continuity of ^  □

This result may be easily generalised to n-dimensions. We refer to Equations (1.1.2) 
as the Euler-Lagrange equations for the functional A[q], The following straightforward 
corollary highlights the relationship with trajectories of a mechanical system.
C oro lla ry  1.1.3. The trajectories of the mechanical system, in cartesian coordinates q,

(1.1.3)

coincide with extremals of A[q] where £  =  T  — V  is the difference between kinetic and 
potential energy.

Proof. Using T  = y  Q? an(  ̂ ^  = V ( q) in the definition of £ , it is easily shown that 
Equation (1.1.3) is equivalent to the Euler Lagrange equations. □

In a mechanical system we call £  =  T  — V  the Lagrangian and A[7 ] the action 
functional.
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1.1.2 The Ham ilton Equations of M otion
Hamiltonian mechanics was discovered in 1834 by Sir William Hamilton (1805-1865). 
Like Lagrangian mechanics it is a reformulation of classical mechanics. The Lagrangian 
formulation may be thought of as a description of mechanics in terms of the generalised 
coordinates and velocities, with time as a parameter. Hamilton considered a formula­
tion in which the independent variables are the generalised coordinates and generalised 
momenta

d L f ■ A  P i =  W7~{q,q,t) .
OQi

The change in basis from (q ,q , t)  to {q,p,t)  is accomplished by means of a Legendre 
transformation with respect to q on £ . This leads to the following result.

T h eo rem  1.1.4. The system of Lagrange’s equations is equivalent to the solution o f2n  
first order equations

d H  . . dHp  =  _ _  and (1.1.4)

where H (q ,p , t )  = p ^  -£(<?, q,t).

Proof. The Legendre transformation of &(q, q, t) with respect to q is the function

H(q,P ,t )  =  sup{ p q ~ & ( q ,q , t ) }  .
Q

This yields
H {q,p , t )  = p q - & ( q , q , t )  ,

where q is expressed in terms of p  by means of p  = ^ ( q , q , t ) .  Using this we observe 
that

8H  =  8(paqa -  C(q, q , t ))
,  . dH dL
dPaQcr o  dq<r r>. 'oqa ot

However by Lagrange

so that

dH _  d f d ,C \  _  . 
dqa dt \ d q a)  Pc

SH = Spaqa -  pa5qa -  ^ S t  .

This yields the 2n equations in Equation (1.1.4) and ^  The converse is proved
in a similar way. □

Remark 1.1.1.

i). The function H  is called the Hamiltonian and Equations (1.1.4) are the canonical 
equations of Hamilton. The 2n  dimensional space with coordinates 
Pi, - • • iPmQh • • • iQn is called phase space.



10

ii). We obtained Lagrange’s equations by means of a variational principle. A modified 
variational principle may be used to obtain Hamilton’s equations of motion directly, 
details of which may be found in [22].

C o ro lla ry  1.1.5. In a mechanical (conservative holonomic) system in which T  is a 
homogeneous quadratic functions of the q ’s, the Hamiltonian H  is the total energy H  = 
T  + V.

Proof T  is a homogeneous quadratic function of the q*s and so satisfies Euler’s equation,

d r . ac .
2-L qc qa PaQa •

UQcr dq<j
Thus

H  = p A a - &  = 2 T - { T - V )  = T  + V  .

□

1.1.3 Ham ilton-Jacobi Theory
Here we consider the action as a function of coordinates and time as defined below. 

D efin ition  1 .1 .1 . The action function A[q0, q }t] is the integral

A[q0,q,t] = J  L d s  , (1.1.5)
7

along the extremal 7  connecting the points (qo,to) and (q, t).

T h eo rem  1.1.6. The differential of the action function (for a fixed initial point) is equal 
to

dA = p d q  — H d t  ,

where p  = tjjjr and H  = paqcT — -C are defined with the help of the terminal velocity q of 
the trajectory.

Proof See [2]. □

W =  ~ H (P’ 9,t)  and p  =By Theorem 1.1.6 we see that 44 =  —H (p , q , t) and p  = Thus the action function
satisfies the equation

I K ' ‘■H  | u e )
Equation (1.1.6) is called the Hamilton-Jacobi equation, solutions of which are cus­

tomarily denoted by <S, known as Hamilton’s principal function. The preceding theorem 
may be extended to show that the action function with initial condition So, namely

A  = A[q0,q,t] -\-S0(q0) , 

is a solution of the Cauchy problem

d S  -T ( \
- f t + H  ( = 0  ’ S ( q , t 0) = S0(q) .
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Remark 1.1.2.

i). The Hamilton-Jacobi equation may also be obtained by finding a canonical trans­
formation leading to a new Hamiltonian function H  which is identically zero.

ii). In a conservative system where £(<7, q) = 1j q 2 — V(q)  and H(q,p)  = ^  \p\2 + V(q),  
Equation (1.1.6) is simply

± \ V S f  + V(g) + ^  = 0 .

1.2 Hydrodynamics
Consider a region D filled with a fluid which is assumed to be continuous so that it 
contains no holes. A fluid in motion which exerts a tangential stress on a surface with 
which it is in contact is said to be viscous. If the fluid has no tangential reaction with 
any surface of contact then it is said to be perfect or inviscid.

1.2.1 The Continuity Equation
Let u (x ,  t ) denote the velocity of a particle of fluid moving through x  at time t , so that 
u  defines a spatial velocity field of the fluid. If IE is a fixed subregion of D  and p(x, t ) is 
a well defined mass density for each t, then the mass of fluid in W  at time t is given by

p(x, t)  dV  . 
w

Assuming u , p and the boundary d W  are smooth we see

Rate of change =  fLm W  t) 
of mass in IE dt ’

m(IE, t) = J

dE .
w

But the principle of conservation of mass states that this must be equal to the rate at 
which fluid is entering IE, namely

d f
— m(W,t)  = — /  p u . n d A  , 
dt J

aw

where n  is the unit outward normal defined at points of <9IE. Thus by the divergence 
theorem dpJ

w
-Qj: + d iv (p u ) d F  =  0 ,
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for any arbitrary chosen volume W.  Hence the integrand itself must vanish giving

^  +  div(pu) = 0 , (1.2 .1)

which is the differential form of the conservation of mass or the continuity equation.

1.2.2 Convected Derivative
Suppose that an element a  is in position x  at the instant of time t, then at t +  6t the 
element a  will be in position x  +  u(x ,  t)St. Let f { x , t )  be the Eulerian representation of 
any physical variable associated with the element a  tha t is in position x  at time t. Then 
the time rate of change of f { x , t )  for this element is

f ( x  +  u6t, t + 5t) -  /(as, t) 
st-+o St ’

which for x  = (ri, #2, • • •, xn) and u  =  (u1? it2, . . . ,  un) yields

Rate of change d f  d f
off ~ E' lhlUi at 1=1

- §  + <«.v),

The operator := ^  +  (u .V) is known as the material or convected derivative. It takes 
into account the fact that the fluid is moving and that the positions of fluid particles 
change with time. More precisely the term represents the rate of change with respect 
to time at a fixed point in space, whilst ( u . V) gives the rate of change at a particular 
time due to the change in the position of the particle. In particular the fluid acceleration 
is given by

D u  d u  _
—  =  —— I- u  . \ u  .
Dt dt

Remark 1.2.1. Note that we have made explicit use of standard cartesian coordinates in 
space. Care must be employed when other systems are used.

Full introductions to the subject of Hydrodynamics and much more beside may be 
found in [55] and [13].

1.3 Catastrophe Theory
In this section we provide a brief introduction to Catastrophe Theory, the study of sin­
gularities. We carefully follow the work in [11] and [45]. More detailed expositions of the 
subject may be found in [48] and [1].

In what follows any critical points considered are assumed to be at the origin.
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1.3.1 Morse Functions
Consider a function f ( x 0), for Xq € Mn. A point Xq = 0 is a critical point of /  if 
V\XQ=0f ( x 0) = 0 . Any critical point of /  is called a singularity.

D efin ition  1.3.1. If at the critical point Det [f"(xo)] ^  0 then the critical point is said 
to be non-degenerate. Otherwise it is classified as degenerate.

Near a non-degenerate critical point of /  its local geometry looks like a saddle. The 
saddle will curve downwards in r directions and upwards in (n — r), where the integer r 
is called the index of the critical point.

A smooth function having only non-degenerate critical points is called a structurally 
stable or Morse function. For such functions we have the following lemma due to Morse 
(1930).

L em m a 1.3.1 (M orse’s L em m a). I f  xo E W 1 is a non-degenerate critical point of a 
function f  : W 1 —► R, then there are neighbourhoods U of x 0 E Mn and V  of 0 € Rn and 
a diffeomorphism H  : U —> V with the property that

T  Tl

f  o H ~ \ x )  = / ( x 0) -  \  i 2
2 ^ ~ l ' 2 ^  1 ’ 

i= 1 i= r + l

where r is the index of f  at icq*

Proof. Following [23] we note that after a translation and a linear change of coordinates, 
we may assume Xq = 0 and that

/  =  \  ( - * 1  xl + Zr+l +  • ' ' +  +  O (M 3) , (1-3.1)

for x  —> 0 . Observe that using the chain rule we have

f ( x )  = j  ( l - t ) ^ - ( f ( t x ) ) d t

- j y
 ̂ n n ^

=  2 5 Z  9j ,k(x ) x i Xk =  2 (*> Q ( x ) x ) ,
k= 1 j - 1

where Q(x) = (qjtk( x )) and qjtk(x) = 2 / ^ ( l  -  t ) -Q ^ ^ ( t x )  dt. Thus

%'fc(0) =  d ^ & k {0)

— 1 if j  = k < r ,
=   ̂1 ii j  = h >  r ,

0 otherwise,
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and
/  “ I

o

0 (0) = - l

0
1 /

a
’ dxnwhich is the matrix representing the Hessian /"(0) with respect to the basis

We wish to obtain H  of the form H(x)  = A ( x ) x  where the matrix A(x)  depends smoothly 
on x  and satisfies >1(0) =  I. Thus A(x)  should satisfy (x , Q(x)x)  = (A(x)x ,  Q(0)A(x)x),  
i.e. Quadratic part of f o H ( x )  = f ( x ), and so it suffices to have Q{x) = A T(x)Q(0)A(x).

Let Mat(n) denote the space of all real n x n matrices and Sym(n) C Mat(n) be the 
space of symmetric real matrices. Consider the map

£F : Mat(n) 3 A\-+ A TQ(0)A G Sym(n) .

The differential at the point A = I  is

dT : Mat(n) 3 8A  i—> (5A)T Q(0) +  Q(0) (<L4) € Sym(n) .

Now dT is onto and by the implicit function theorem, T  has a local smooth right inverse S, 
mapping a neighbourhood of 0 in Sym(n) into a neighbourhood of 0 in Mat(n). We then 
get A  with the required properties by taking A(x) = S{Q(x)). The map H ( x ) = A ( x ) x  
is then a diffeomorphism from a neighbourhood of 0 onto a neighbourhood of 0, since 
d tf  (0) =  >1(0) = 1. □

An alternative proof of the Morse Lemma may be found in [37].

1.3.2 Universal Unfoldings
Consider an m-parameter family of functions, for instance a polynomial in x with m  
coefficients which may be varied (Eg. f ( x )  = xA + ux2 + vx  is a 2-parameter family). Al­
lowing the parameters to vary continuously they form an m-dimensional coordinate space 
in which any function is represented by a point. Consider a function f p  corresponding to 
the point P. If for any point Q sufficiently close to P , /q  has the same form as fp  then fp  
is a structurally stable function of the family. The complement of the set of structurally 
stable functions is called the bifurcation set.

A family of functions is said to be structurally stable if the small perturbation leaves 
the qualitative nature as a family unchanged. Namely, whatever forms individual mem­
bers of the family have must occur in both the original and perturbed family.

If a function /  has a degenerate critical point, then a family which separates out this 
degeneracy is called an unfolding. Moreover if this unfolding is stable it is called versal.

D efinition 1.3.2. A universal unfolding of a function /  is the versal unfolding that 
contains the minimum number of parameters.
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E xam ple  1.3.1. Consider the structurally unstable function f ( x )  = x 4. Both V(x) = 
x 4 +  ux3 +  vx2 +  wx  +  t and V(x) = x 4 +  ux2 +  vx  are versal unfoldings, but V(x)  is a 
universal unfolding.

Essentially if we have a structurally unstable function then we ask about the minimal 
number of independent terms that need to be added to the non-Morse function to make it 
Morse. This quantity is called the co-dimension and coincides with the n-fold degeneracy, 
i.e. the number of terms beyond the second derivative we have to go to before we can 
identify the type of critical point we have.

1.3.3 The Thom Classification Theorem
We begin by discussing the so-called “Splitting Lemma” . If the Hessian f " ( x o) has rank 
n — r for some r > 0 then there exists a coordinate transformation such that we may 
write

n

f  = p { x i , . . . , Z r) +  ^ 2  6iXi ’
i= r + 1

where the constants e* are equal to ±1 and p is a function of order 3 or higher. Thus the 
structural instability is confined to the essential variables aq, X2 , . . . ,  x r.

The number r is called the co-rank of the Hessian and is a measurement of the 
degree to which the second order terms in a Taylor series are independent of each other. 
Geometrically it represents the number of coordinate directions in which /  is flat near 
the critical point.

Let us now state the pivotal result first proposed by Rene Thom.

T h eo rem  1.3.2 (T h o m ’s C lassification T h eo rem ). Up to multiplication by a con­
stant and addition of a non-degenerate quadratic form, every non-Morse function of codi­
mension less than or equal to 4 is smoothly equivalent near the origin to one of the seven 
forms shown in the table.

Co-rank /  
Codimension

Function Universal
Unfolding

Name

i / i X3 x 3 +  ux Fold
1/2 X 4 x 4 +  ux2 +  vx Cusp
1/3 X 5 x 5 +  ux3 +  v x2 +  wx Swallowtail
1/4 X 6 x 6 +  ux4 +  vx3 +  wx2 +  tx Butterfly
2/3 x 3 — 3 xy2 x3 — 3xy2 +  u(x2 +  y2) -\-vx + wy Elliptic Umbilic
2/3 x 3 + y3 x3 +  y3 +  uxy  +  vx  -I- wy Hyperbolic Umbilic
2/4 2 i 4

x y  +  y x 2y -f y4 +  ux2 +  vy2 +  wx  +  ty Parabolic Umbilic

Remark 1.3.1. The classification stops after functions of codimension 4 because if it gets 
much larger the classification is no longer finite.
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1.3.4 Bifurcation Set
To conclude this section we discuss how one proceeds to examine the geometry of the 
seven elementary catastrophes of Thom. If V (x ) is the universal unfolding then the 
equilibrium surface is determined by V xV(x) = 0. Moreover the singularity set S  is 
defined to be those points at which V xV(x)  = 0 and Det [V"{x)\ = 0.

We obtain the bifurcation set B  by projecting S  down into the control space C. This 
amounts to eliminating x  from

V xV(x)  =  0 and Det [V"(x)] =  0 .

The geometry of the bifurcation set explains the names chosen for the elementary catas­
trophes. See Chapter 2 for an example of the Swallowtail bifurcation set.

1.4 Asym ptotics and Integration

1.4.1 Laplace’s M ethod for Integrals
In this section we follow the work in [7]. We are concerned with integrals over real 
intervals which may depend on a parameter fi~2. Our interest lies in the asymptotic 
behaviour of the integral as fi —> 0. Note that we may extend the interval to the whole 
line (—oo, oo) by defining the integrand to be zero outside the original interval.

Consider the integral

I  = j  exp dz0 ,
R

where A  G C 2(R) and is assumed to have an absolute minimum at Xo = 0 . Without loss 
of generality we assume .4 (0) =  0. Moreover we insist A ( x o) > 0 for Xq ^  0 and that 
there exist b, c >  0 such that

A(x  o) > b  if \x0\>  c .

Furthermore, we require that I  converges for sufficiently small \x and for simplicity we 
assume it converges for /i =  1. Finally we assume ^4"(0) > 0.

The essence of Laplace’s idea is that the integrand decays exponentially fast if xq is 
away from the minimum of A , hence it is sufficient to look at the integral over a small

X 2neighbourhood of Xo = 0 where we approximate A ( x 0) More formally we
have:

Lem m a 1.4.1 (L ap lace’s L em m a). I f  A"(0) > 0 then as fi —► 0 we have

(27t//2) ^ ( ^ ,,(0))-  ̂ , (1.4.1)

to leading order. Moreover if  .4(0) ^  0 then

I  ~  (27TI?) * ( .4 "(0 )H  e- ? - 4(0) . (1.4.2)
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Proof. It follows from our assumptions that for each 5 > 0 there exists r}(5) > 0 such 
that A(xo) > rj(5) for |xo| >  5. Then for p 2 < 1

J  exp { - 1 ^ 0)} d^o =  J  exp { - ^ ( x 0)} exp |  ^1 -  v4(x0) |  dx0
P2

|a:o|>5 |zo|><5

< exp <{ ( 1 -  ) 7i(8) } j  exp {—*4(:co)} d^ 0 • (1.4.3)

For any e G ^0, we can obtain 5(e) > 0  such that

A(x0) -  ^ " ( O ) < £xl ,

for |x0| < 5. This is due to the fact that if </>(xo) := A(xo) — |xo^4"(0), then <j>(0) =  
^(0) =  (f)"(0) =  0. Hence ^  (<f>'(x0) — (f>f(0)) —> 0 as x0 —> 0 so that (f>'(xo) =  o(rr0). 
By the Mean Value Theorem, 4>(xq) — (f)(0) = xo<p'(6xo) for some 0 < 6 < 1, so that 
f)(xo) = xqo(Oxo) = o(:ro). It follows that

~ w  ( x "(0 )+ 2 e) -  ~ ^ A{xo) -  “  2e) ’

so that

[ l e - ^ " ^ d X o <  [ S e - M ^ d x 0 <  f  e - ^ A " (0)~ ^  d x Q .
J-S J-6 J-S

Each of the above integrals differs from the corresponding J^  integral by O
vhere a = a(5) > 0. In the case of the middle integral this is obtained by using Equation 
'1.4.3). Hence for p 2 < 1

J  exp ^-4(a;o)) dx0 < J  exp I  (*4"(0) ~ 2£) |  dxo + O (e ^ )
=  (2V ) h ^ " ( 0) -  2e)“ i  +  O  (e - # )

< ( 2 V ) h ^ " ( 0 ) - 2 e ) “ 5 .

\  similar lower bound may be found, and since e is arbitrary we obtain Equation (1.4.1).
□

Corollary 1.4.2. Consider T0(xo) G Cq°(R), A ( xo) G C2(M) where A(xf)  attains a 
unique minimum at x 0 G int supp To. Then to leading order, i f  A" (xo) > 0,

J  T0(xq) exp { - ^ ( , 0)} dx0 ~  (27t/z2) 2 [A!'(xQ)]~* T0(x0)exp {““ (̂^o) j •
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Let us briefly discuss the n-dimensional case where

/  =  J  T0(®0)exp | _ ~2^ ( x o ) |  d x0 .
Rn

It may be shown that

I  ~  J  T0(x0) exp | - ^ 2  ^ ( * o )  +  ^ (®o -  x 0)T A " ( x 0) (x 0 -  x 0) ĵ j da;0 ,
R n

where A'^xq)  is the Hessian of A  at the critical point x q . Since A " is real symmetric 
we can find an orthogonal matrix B  such that A "(xo) =  B TA B  where A is the diagonal 
matrix with eigenvalues Â of A /f(xo). Thus

(® o -  x 0)TA''(xo)(x -  xo) = (x0 -  x 0) t B t A B ( x  -  Xo)

=  (C -  <)rA(C -  C) where C = B x 0

= E M C i -C02 -
Hence

1 ^4 (* o )| J T 0 (BTC) AjfCi -  C«)2|  dC .
TUn \  I )

I  ~  exp < -----
I V

If we set £ =  so that C =  C +  and B TC, = x 0 +  B T/z£, then assuming all the Â ’sA4
are positive for convergence purposes we obtain

I  ~  exp ^ - j ^ A ( x 0)̂ j J  T0(xo +  B Tn£) exp |  ~  A<£? 1 f / 1 d£
Rn

-  Lin ex p To(x0) U  J  exp d&

=  (27r//2) 2 exp ( — ^A{xo)  ) T0(x0)

Hence
(27r/x2) 2 [Det (*4"(x0))] 2 T0(®0)exp •

1.4.2 The M ethod of Stationary Phase
The work in this section is based on material in Chapter 2 of [35] and the paper [19]. We 
consider the integral

/(//) = J  T0(z0)exp j--̂ .4(:zo) j dz0 , 
n
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where fi C Rn is a bounded domain, T0 G Co°(fi), A (x 0) G C°°(fi), and *4 is real valued.
Our interest lies in the asymptotic behaviour of I(p)  as p —* 0 . Physicists usually refer
to Tq(xq) as the amplitude and p~2A  as the phase of the expression under the integral
sign. We shall simply refer to A  as the phase function.

If A (x 0) has no critical points in fi, namely V A  ^  0 for all xq G fi, then it may
—  * A.be shown that I  (pi) = O (p°°) as p  —► 0. Intuitively e /** oscillates rapidly whilst

T0(x0) changes slowly so that the integrand cancels out due to oscillation. When A ( xq)
has critical points in fi, the principal contribution to I(p)  as p  —> 0 corresponds to the

—  * Acritical points, in the neighbourhoods of which the exponential e ^  ceases to oscillate 
rapidly. We suppose that the critical points of A  are isolated, in which case it is sufficient 
to consider the situation where A  has one isolated critical point in fi.

For the one dimensional case (n = 1) we have the following result.

Theorem 1.4.3. Let T0 G Co°[a, b], A  G C°°[a, b] and let A  be real valued. Consider the 
integral

where we assume that there exists xq G [a, b] such that A '(xq) = 0; A"(x0) 7̂  0 and 
A!(x0) 7̂  0 for Xq 7  ̂ xq. Then as p —► 0 we have I(p) = O(p),  or more precisely to 
leading order

^  ~ ( | ^ o ) l )  e x p _  T ssn-4"(£°)} •

Proof. See [19]. □

Let us now direct our attention to the multi-dimensional case. If the critical points 
of A  are non-degenerate (Det[̂ 4"] ^  0) then it is possible to reduce the analysis of I(p)  
to the one-dimensional case as follows:

i). By Morse (Lemma 1.3.1) we are able, in a neighbourhood of a non-degenerate 
critical point x 0, to transform A ( x q) to a sum of squares.

ii). Successively apply the one dimensional phase method (Theorem 1.4.3) to each of 
the variables in the sum of squares.

These two steps result in the following theorem.

Theorem 1.4.4. Let fi C  R71 be a bounded domain, T q  G C£°(fi), A  G C°°(fi) and let 
A  be real valued. Suppose that A  has exactly one non-degenerate critical point x q  in fi. 
Then as p  —> 0 we have to leading order

n l I 7 77T
I(p)  ~  (2irp2) 2 T q ( x 0 ) I Det [A"(x o)]|_I exp l - — A ( x 0) -  — sgn*4"(£0)

where
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A" is the Hessian of A,  

sgn.4" =  i/+ — V-,

v+ and V- are the respective numbers of positive and negative eigenvalues of 
the real symmetric matrix A".

Remark 1.4.1. If the phase function A (x f )  has a degenerate critical point then 
decreases more slowly. In fact as /z —► 0,

I (fi) ~  Cfj?  ̂In7 î2 +  . . .  ,

where the index 0  is smaller than the usual n. The indices 0  and 7  can, in many cases, 
be found from the Newton boundary of the phase function, see [3] for details.

1.5 Ito and Stratonovich Calculus

1.5.1 The W iener Process
Definition 1.5.1. A real valued stochastic process {Wt : t > 0} is a standard Wiener 
process if it has the properties:

i). Wq{uj) =  0 , Vo;;

ii). the map t p-> Wt(u>) is a continuous function of t > 0 for all cj;

iii). for every £, h > 0, Wt+h — Wt is independent of {Wu : 0 <  u < t}, and has a 
Gaussian distribution with mean 0 and variance h.

For any finite sequence of times 0 < t\ < • • • < tn and Borel sets A i , . . . ,  A n C  M,

P { W ( t1) e A u . . . , w ( t n) e A n}

=  / . - / Pt1{ 0 , X 1)pt2- t 1{ X u X 2) . . . p t n- t n. 1(Xn-UOCn)dXi . . .  d x n ,

A i An

where
pt(x,y)  := (27rt)"2 exp

(x -  y)‘
21

is the Brownian transition density.
The foundations of the Wiener process were laid down by Wiener in 1923 as a mathe­

matical description of Brownian motion, the erratic motion of a grain of pollen on a water 
surface due to continual bombardment by water molecules. We adopt the term Wiener 
process rather than Brownian motion in order to distinguish between the mathematical 
and physical processes.
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1.5.2 Ito Calculus
Much work has been done in the study of stochastic integrals by the mathematicians 
Ito and McKean, see for instance Mckean’s book [36]. An introduction to Ito stochastic 
calculus may be found in [39], [8], [51] and [24], amongst others. Here we briefly describe 
how one defines the Ito integral and consider the main result of stochastic calculus - the 
celebrated Ito’s formula.

Consider a Wiener process W  =  {Ws : s > 0} on the probability space {fi,T, P}. If 
is the sigma algebra generated by Wt(uj), then we define the class of functions H2 as 

follows.

D efin ition  1.5.2. Let H2[Q,t] be the class of functions f ( t , u ) : [0,00) x fi —► R such 
that

i). (t , u ) —> f ( t , u )  is #[0, 00) x ^-measurable,

ii). f ( t , u )  is non-anticipating, that is u  —► f(t,u>) is ^-m easurable for each t > 0,

iii). E /(s ,u ;)2ds < 00.

A function </>(s , uj) G H2[0,t] is said to be a simple non-anticipating  function if

(p(s,UJ) =  ^)^[sj,aj+i){s) ,
j

where the fact that (f> £ H2[Q,t] implies <f)(sj,u) must be 3 Sj measurable. For such 
functions we define almost surely

*t

ro

where

/J 0
<P(s,uj)dWs := X > ( a3.uO[W.i+. -  W Sj](u) ,

Ij.2~m if 0 < j.2~m < t 
0 if j.2~m < 0 
t  if j.2~m > t

This leads to the following definition of the Ito integral.

Definition 1.5.3. For any /  € H2[0,t] there exists a sequence {4>n} of simple non­
anticipating functions such that

E [  { f ( s ,u ) - ( j ) n(s,u))2 ds 
Jo

0 ,
|yo

as n —► 00. The Ito integral of /  is defined by

[  f ( s , u ) d W s(u>) := lim [  </)n(s,uj) dWs(u) , 
J o  n -+°° J o

where the limit is in L2(P) and is independent of the sequence {0n}.
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Remark 1.5.1. It may be shown that there exists a t-continuous version of the integral 
and so we shall assume that f* f(s,oj) dW 3(cj) means a t-continuous version.

It is possible to define the Ito integral for a larger class of functions /  € H [0, t] where 
condition (iii) of Definition 1.5.2 is replaced by

iii’) P Jq /(s , uj)2 ds < oo =  1 for all t > 0.

However whilst f* f ( s ,u )  dWa(u) is a martingale for /  G H2[0,t] it is only in general a 
local martingale for /  G #[0,t], see [32].

The main result of Ito stochastic calculus is Ito’s formula which we now state for the 
one dimensional case.

T h eo rem  1.5.1 ( I to ’s Form ula). A stochastic process X t of the form

X t = X 0 + (  u (s ,u )ds  + f  v(s,uj)dWs ,
Jo Jo

where v , y/\u\ £ H2[0,t] is called an Ito process. I f Y t = g ( t ,X t) where g(t,x)  G C^1,2) 
then Yt is also an ltd process and

dYt =  ^ ( t , X t) d t +  ^ ( t , X t) d X t + ~ f 2{ t ,X t)(&Xty  ,

where ( d X t)2 is evaluated by means of the McKean multiplication table

X d m dt
dITt dt 0
dt 0 0

1.5.3 The Stratonovich Calculus
Ito’s formulation of the stochastic integral f* f ( s ,u )  dWs is not the only one which may
be used. Stratonovich proposed an integral in which the integrand is essentially evaluated
at the mid point |(s^n +  sj+i) °f each partition [sjn\  The major advantage of the 
Stratonovich stochastic integral is that it obeys the usual transformation rules of calculus.

Following [43] and [33] we state the following relationship between Ito and Stratonovich 
integrals, which we adopt as our definition for the Stratonovich integral.

D efin ition  1.5.4. For Ito processes X t and Yt, the Stratonovich integral S =  f Y  o d X  
is defined by

St = [  Y o d X : =  f  Y dX +  i  [  (LV.dy, , (1.5.1)
Jo Jo * Jo

which in differential form is just

Yt o d X t = Yt d X t + ^ d X t dYt
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In order to distinguish between the two types of differential we use d to denote the ltd 
differential and d to denote the Stratonovich differential. Thus (1.5.1) may be written as

dSt =  Yt o  d X t ,

or
ASt =  Yt AXt +  ^ d X t dYt .

Observe that if \  f* dXs dYs = 0 then we have

[  Y o d X =  [  Y d X  ,
J o  Jo

so that the Ito and Stratonovich integrals coincide.
All the information we require to handle Stratonovich integrals is contained in the 

following theorem.

Theorem 1.5.2. The Stratonovich calculus obeys the same rules as the Newton-Leibnitz 
calculus in the following sense. I f  X  and Y  are as before and f  G C3, then

X tYt -  X 0Y0 =  f  X s o 3YS +  f ' Y s  o d X s , (1.5.2)
J o  J o

f (Xt )  -  f { X o) =  r  f ( X 3) O dXs  . (1.5.3)
Jo

Proof Equation (1.5.2) is obtained by applying Ito’s rule for a product and the definition 
of the Stratonovich integral, this yields

d{XtYt) =  X tdYt +  YtdXt +  dXtdYt

=  X tdYt +  U x tdYt +  Y d X t +  hlYtdXt  

=  X t odYt +  Yt ° d X t .

To prove Equation (1.5.3) we observe that for /  G C3 we have

d ( f ( X t)) =  f ' { X t)dXt +  l- f { X t)(dXtf  (1.5.4)

d { f \ X t ) )  =  f " ( Xt)dXt +  1 f"'(Xt)(dX t ) 2 (1.5.5)

but from (1.5.5) we obtain

d ( f ( X t) )dXt =  f"(Xt)(dX t ) 2 ,

so that

f ( X t) o  dXt  =  f ' ( X t)dXt +  I d  ( f ' (Xt)) dXt  

= f { x t ) d x t + ± f " { x t){dx ty

□
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Observe that Equations (1.5.2) and (1.5.3) may be written in differential form as

d(XtYt) = X t odYt + Yt o d X t ,

and

d f ( X t) = f  (Xt) o d X t .

1.6 Burgers and Heat Equation
The viscous Burgers equation is a nonlinear partial differential equation of second order, 
namely

flvV- up
¥  +  K . V ) /  =  | A / ,  (1.6 .1)

with initial velocity vM(x,0) = VSo(x). From our earlier work on hydrodynamics we2
recognise that Burgers equation simply represents a fluid moving under the force ^  Av  
It may be considered as a simplified form of the Navier-Stokes equation and is used in fluid 
dynamics and engineering as a simplified model for turbulence, boundary layer behaviour, 
shock wave formation and mass transport. The equation has even been used in the study 
of the formation of large clusters in the universe, see [46]. Burgers first introduced the 
equation as a simple model of hydrodynamic turbulence for compressible fluids, where 
the parameter /i2 describes the viscosity of the fluid, and the solution vIJj(x,t)  represents 
the velocity field of a fluid particle located at x  at time t.

Applying the logarithmic Hopf-Cole transformation vM =  — /z2V l n u M, see [26], leads 
to the well known heat equation

w  = (1A2>

with ^ ( x ,  0) =  exp where u(x, t)  is the temperature, t is time and ^  is a
constant known as thermal diffusivity which describes the rate at which heat is conducted 
through a medium.

1.6.1 Basic Solution
Following [9], we take

ii/ \ 1 -n, \ T (x ~  xo)2~\ !
u { x < t ) = ^ L F{xo)exp r ^ r . dXo ’

as a general solution of Equation (1.6.2), for an infinite domain and t > 0, where initially 
F(xo) is an arbitrary function with F  G to ensure convergence of the integral.
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Setting xq = x  +  zyfi  and letting t \  0, we obtain

u^(x,t)  = (27r/i2) * I exp 
J —oo

/ oo
exp

-oo
= F (* ) ,

by dominated convergence. Hence

F(x) = u^(x, 0)

V .
F(x  +  zy/t) dz 

.2 -
dz

V .

=  exp | — “ 2 J  >

so that
1 r 1 fuM( i , t ) =  ...... /  exp —  ̂•{

_ /i2 i dx0

1 r (a? — x0)J

We actually consider

1 /*°° r 1 (

^ {X’t) = ^ L To{Xo)eXV[ ~ ^ \  2t

where Tq(xq) G Cq°(R). The above will satisfy

+  Sq(Xq) dz0 , (1.6.3)

f  - T “ ' '

with u^(x, 0) =  T’o(x) exp • However, since we are interested in solutions v°(x, t ) =
lim ^ o  v^(x, t)  of the inviscid Burgers equation, we will eventually be able to set To =  1 
because

0) =  — /^ V ln u ^ x , 0)

= -V v r
=  uM(a;, 0) +  O(n2) . 

Thus from here on we drop the use of tilde.

\nT0( x ) -----—

1.6.2 The Inviscid Limit and Shockwaves
Here we choose values of x  and t > 0 and allow the viscosity to tend to zero. As stated 
in [5]: “Roughly, when the viscosity tends to 0, the dynamics of the system of particles 
corresponds to completely inelastic shocks, in the sense that if two (clumps of) particles 
collide at a given time, then they form a larger clump of particles in such a way that 
mass and momentum are preserved.”
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From our work on Laplace and the integral in Equation (1.6.3) we have 

—n 2 lnu^a;, t) —> inf A ( x 0,x,  t) =: S (x , t )  ,
X Q

where

*4(z0, a;, t) := ^  +  '

Hence as /x —► 0, v fl(x, t )  —> u0(x,t) where

U°(z,t) ~  Va-S(x,t)
X — Xo(x, t)

~  t '

The last equality follows from the fact that if VSq has no discontinuities then the
minimum condition for ,4.(£) implies =  0. Hence, observing x x°̂ x,t  ̂ =

X q  — X Q  ( x  j t )

VSo(xo(x, t)) , the asymptotic solution v° is

v°(x,t)  = V S 0(x0(x,t))  , x = x0(x,t) + tV S o (x 0(xi t)) . (1.6.4)

This is the solution formula of the inviscid Burgers equation

dv .
Oi +  (v-V)v =  0 ,

with initial data So(xo) obtained via the method of characteristics.
Rem ark  1.6.1.

i). We have used S (x , t )  to denote the infimum of A(xo,x,  t) because it satisfies the 
Hamilton-Jacobi function, and hence is a Hamilton principal function.

ii). Considering x =  x 0 +  tVSo(xo) we observe that, in some regions, one point x  
corresponds to several different points x l0, (i = 1,2, . . .  ,n). However even though 
all points x l0 are critical points of A (x 0, £, t ), only one (say x 0 = xj) is the infimum 
of A{xQ,x,t)\ A ( x l , x , t )  < A{xl0,x , t )  for i =  2, . . . ,  n. See Chapter 4 for further 
discussion on this.

The fact that solutions of Equation (1.6.4) are not always uniquely determined leads 
to the concept of shockwaves for Burgers fluid. Considering the function S(x , t )  = 
infXo A(xo, x, t)  we will show that shock waves occur when the infimum of A  is attained 
at more than one point.

Observe that the minimum function S(x,  t ) may be described geometrically as follows. 
We plot the (negative) initial data curve — £0(f) and the parabola z = fo0"^).. + c ,  where 
the constant C  is initially large enough so that the parabola is above the initial data 
curve.

The minimum condition requires that ^  =  — ffjj, namely =  0, which is satisfied 
when the tangents of z(xo) and — Sq(xq) are parallel. We push down the parabola (de­
crease C ) until it first touches the initial data curve. The height of the parabola at this 
point gives —S(x,t ) .
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For t small the parabola will be thin and so the point of contact between the parabola 
and initial data curve will be unique, see Figure 1.1. In this case the point of contact 
depends smoothly on x.

For larger t the parabola widens and for certain x  there will be more than one point of 
contact, see Figure 1.1. As soon as double contacts between the parabola and initial data 
curve have appeared this leads to the development of shockwaves in v°(x,t)  considered 
as a function of x.

-s

2XQ X Xo

-S

X  X o

Figure 1.1: Example when x  is non- Figure 1.2: Example when x  is singular
singular

Remark 1.6.2. For very large t the parabola becomes increasingly wide so that it can only 
touch — S 0 (xo) in the vicinity of the smallest minima of Sq(xo). Moreover, because the 
parabola flattens out, the value of S (x ,t)  will approach the smallest minima of So(xq).

E x am p le  1 .6 .1 . Consider the inviscid Burgers equation

dv dv . .
m + v d i  = 0 ’ (U5'5)

where
1 x  <  0

v(x , 0) =   ̂ 1 — x  0 < a; < 1 .
0 x  <  1

The characteristic equations are ^  =  1 and =  v so that Equation (1.6.5) may be 
written ^  =  0. According to the method of characteristics

v(x,t)  = v(x 0 , 0 ) =  F (x 0) ,

where the characteristics are
x = vt + x o .

The characteristics are shown in Figure 1.3, where we observe that points (x , t ) below D  
lie on just one characteristic.

We have

i). For x < t < 1, F (x0) =  u (r0,0) =  1 so that v(x ,t)  = 1,

ii). For x > 1 > t, F (x o )  =  v (xq, 0) =  0 s o  that v(x, t) = 0,
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t

0 . 5 0 . 5 1

Figure 1.3: Characteristics for the Inviscid Burgers Equation

iii). For t < 1, t < x < 1, F( xo) =  1 — x0 so that v(x, t) =  1 — (x — vt) and we obtain 
v(x, t )  =

The appearance of the shockwave in v = v(x, t) can be clearly seen in Figure 1.4.

Figure 1.4: Shockwave for the Inviscid Burgers Equation

We refer to the time t = 1 as the caustic time and call the point D the caustic 
(focus). The region for x  G [0,1] corresponds to the pre-caustic with the minimiser 
Xo(x, t )  jumping from 0 to 1 at t = 1 and x = 1. More shall be said on this in the next 
section.

1.7 S tochastic  Burgers and H eat E quation

Consider the stochastic partial differential equation

iF d^u 1 £
du(x, t) = — -̂ — (Xi t) dt H— - V(x)u(x,  t) dt H— ~k(x, t )u(x , t) dWt +  R(x)u(x , t ) dt ,

2 ox 1 p 2 p z
(1.7.1)

where V,k e  C2 , Wt is a one dimensional Wiener process on the probability space 
P} and R(x)  is a function to be defined shortly. Applying Ito’s formula to S t =
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—/a2 Inu  yields

11̂  c^u
dS t =  — —  dt — V (x ) dt — ek(x,t) dWt — p 2 R{x) dt +  — rk(x, t )2 dt .

2u arc2 2/a2

Hence setting R(x) := - ^ k ( x , t ) 2 reduces the above to

u  ̂d^u
dSt = ~ 2 H d ^ d t ~  F(X) d* “  £fc(X’ dWt ’

or
1 u2

d5t +  r  I V 5 |2 dt + V(x) dt + sk(x, t) dWt = ^ - A S d t . (1.7.2)z z
Equation (1.7.2) arises in the study of stochastic optimisation and may naturally be called
the stochastic Hamilton-Jacobi-Bellman equation. If we now let v = V 5, then we obtain
the stochastic viscous Burgers equation

dv = ^ A v d t - ( v . V ) v d t - ' V V ( x ) d t - e V k ( x , t ) d W t , (1.7.3)

describing a fluid whose particles are subject to a force (—W ( x )  — eVk(x, t)Wt).
Observe that inserting our choice of R{x) into the original stochastic partial differential 

equation (1.7.1) yields
2 1 2 

du =  ^ -A u d t H— -V (x )u d t  +  -^k (x ,  t)udW t +  -̂ —̂ k (x , t )2u d t  . (1-7.4)
A fjb fJj ZifJj

But

ek{x, t)u o dWt = ek{x , t)u dWt +  ^ d(k(x , t)u) dWtz
£2

=  ek ix , t)u dWt +  -r—zk(x, t)2u dt ,
2/a2

so that Equation (1.7.4) may be written in Stratonovich form as
za2 l  p

du =  — A udt H— - V ( x )u dt H— ~k(x, t)u  o <9Wt .
2 /a2 /a2

This is the corresponding Stratonovich type heat equation. Summarising the above we 
have the following proposition.

P ro p o sitio n  1.7.1. The stochastic viscous Burgers equation for velocity field vM =  
v,i(x, t), x  G Rd, t > 0

r)i i#2
+  ( iA V K  =  ^ - A v 11 -  V I/( i)  -  eV k(x , t )W t ,

C/b £

with initial velocity uM(x, 0) =  V S q(x ), is related to the corresponding Stratonovich type 
heat equation

" = ! L A u »+  V (x )u» +  - M x ,  t K  o Wt , 
ot 2 /a2 /a2

with u^(x, 0) =  exp -^So(x)Sj ,  by means of the logarithmic Hopf-Cole transformation 
vM =  —̂ V ln u ^ .
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We are interested in the advent of shockwaves (caustics) in u° where v°(x,t) = 
lim ^ o  vfi(x, t). Defining the stochastic action as

A [* (0) ,x ,<]= mf l j ‘ f ^ X 2 ( s ) - V ( X ( s ) ) \  d s - e J \ ( X ( s ) , s ) d W s\  ,
X ( t ) = x

and
*4[X(0), x, t] = A[X{0), x, t) +  S 0 (X(0)) ,

we expect that,
—/i2ln u M(a;, t) —> inf A [X ( 0 ),x,t] =: S (x , t )  ,

X(0)

for almost all u  as // —► 0 , see [21]. Now S (x ,t )  is a solution of the stochastic Hamilton 
Jacobi equation

dSt +  dt +  V(x) dt + ek{x, t) dWt = 0 , S(x,  0) =  S 0 (x) ,
£

so that S (x ,t)  is Hamilton’s principal function for a stochastic mechanical path.
As /j, —> 0, uv will switch from being exponentially large to exponentially small across 

the level surface
S(x, t) = 0 ,

which is called the wavefront.
Observing that necessary conditions for the extremiser are

dX(s)  +  W (X (s ) )  ds +  eVk{X{s), s) dWs = 0 , X(0) = V S 0 {X{0)) ,

we define the random map <$s : Rd —> Rd by

d A  = - W A )  ds -  e V k A ,  s) dWs ,

with $ 0  = I  and — V5o, so that X (s)  = $ s$ f xx  where we accept Xo(x, t) = x ) 
is not necessarily unique.

It is expected that non-uniqueness of Xo(x,t) will be associated with the appearance 
of discontinuities in v°(x,t)  and u°(x,t)- This can arise if infinitely many paths X (s)  
focus in a set of zero volume centred at x ,

giving the pre-caustic $ t 1 Ct, or eliminating xq by using x = $ t%o we obtain the caustic
Ct

(  d X  (t) \
D 6 t l  dx0 )  

Up to the caustic time X o ( x , t )  is unique and

XQ—̂ t

v°(x,t) = $ A  lx  = V S (x , t )  , (1.7.5)
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is a well defined formal solution of Burgers equation with fi = 0. Moreover, for polynomial 
So, xq(x,t) will usually have finite multiplicity after the caustic time, so that as long as 
the minimising x 0 (x , t) is unique, Equation (1.7.5) may still be assumed true if we take the 
part of the level surface of S (x ,t)  corresponding to xq(x,t). More detailed information 
regarding the behaviour of v° on the caustic is given in [18].

For a non-degenerate critical point, when the multiplicity of xq(x , t)  is finite so that 
=  {x l ( x , t ), Xq(x , £) , . . . ,  Xq(x , t)}, it may be deduced that

u»(x, t) exP | ~ S % ^ 2  ^  |  ’ (1.7.6)

where Si(x,t) = A (x l0 (x , t ) ,x , t )  for i = 1, 2, . . . ,  n  and is an asymptotic series in fj,2 

whose detailed structure may be found in [54].
The zero level surface of Hamilton’s principal function is given by

Ht = {x:  Si(x , t ) =  0, for some i} ,

where i = 1,2, . . . , n .  We denote the corresponding pre-zero level surface by ^ lHt. 
Clearly the dominant term in Equation (1.7.6) comes from the minimising x l0 (x,t)  so 
that

S (x ,t )  = min Si(x,t)  .

Thus Ht includes the wavefront where u° switches smoothly from being exponentially 
large to exponentially small. We shall say more regarding the wavefront and discontinu­
ities in u°(x,t)  in Chapter 4.



Chapter 2 

Polynom ial Swallowtail

In this chapter we study a specific singularity o f the free Burgers equation, namely the swal­
lowtail. At the ou tset we consider Burgers equation in two dim ensions and establish an initial 
polynomial condition S q ( x o ) that gives rise to  a two dimensional shockwave possessing the  
geom etric structure o f a swallowtail. This is then extended to  an initial polynomial condition  
that gives rise to  a three dimensional swallowtail. W e refer to  these non-generic swallowtails 
brought about by polynomial initial conditions as polynomial swallowtails. Explicit expres­
sions for th e pre-caustic, pre-level surface and corresponding im age curves o f the polynomial 
swallowtail are obtained for the free case. Moreover we discuss the relationship between in­
tersections o f the pre-curves and cusped m eeting points o f the im age curves. W e conclude 
the chapter by obtaining explicit equations for th e lines o f intersection o f the shockwave and 
level surface in th e free case.

2.1 Introduction
According to Thom’s famous list of seven elementary catastrophes, see [1], [11], [45] and 
[48], the three dimensional generic swallowtail has universal unfolding

V  =  +  u x q  +  v x l  +  W X q .

The singularity set consists of those points at which both V ^V  =  0 and Det { f j r }  =  0 
are satisfied. Projecting this singularity set onto uvw-space produces the bifurcation set 
shown in Figure 2.1 and the origin of the name “swallowtail” becomes evident. In order 
to obtain a swallowtail shockwave for Burgers equation in two dimensions we can take 
the initial condition S o  =  x % +  |x o |3 2/o- Similarly in the three dimensional case we have 
So = ^0 +  \%o\1+cVo + \xo\czo for |  < c < 1, see [14]. An interesting question is whether we 
can determine a polynomial initial condition that gives rise to a shockwave for Burgers 
equation possessing the geometrical properties of a swallowtail. We shall refer to this as 
a polynomial swallowtail

32
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Figure 2.1: Bifurcation set of the swallowtail 

Our interest lies in the viscous Burgers equation
rjyM /i ̂
—  (®, t) +  K  • V) v» = -  W ( x )  ,

with initial velocity uM(cc,0) =  VSo(x)  where /r2 denotes the co-efficient of viscosity. Let
us begin by considering the classical action for the initial momentum VS0(*)>

A { x 0, X , £) =  A ( x o, cc, t) +  S0( x0) ,

where in the deterministic case

A(xo ,x , t )  = inf  ̂f X 2( s ) d s — f V (X(s)) ds .
x (s) 2 y0 J 0

X( t ) =x

This is the action for the classical mechanical paths starting from x0 and getting to x  at 
time t under some deterministic external potential V(x).

Following the treatment in [14] and [15], we assume A  £ C 2 so that the classical 
mechanical flow is determined by the equation

Vas0.A(a5o, ®, *) =  0 . (2.1.1)

From this we obtain

x  = 4>tx 0 and x 0(x, t )  = x  ,

where because of the possible non-uniqueness of Xq we use the notation x 0 to indicate 
that we are considering the minimiser of A(xo ,x , t ) .  The non-uniqueness is discussed 
further in Chapter 4.
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Using this notation we see that the level surface condition becomes

A { x Qi x, t) = c and S7X0 A { x 0 , x , t )  = 0 , (2.1.2)

where the pre-level surface is obtained by eliminating x  and the level surface Ht
by eliminating Xo.

Moreover recalling from our work on Laplace’s method that the residual expression 
in the integrand for the solution of the heat equation is given by

Cexp ~  x o(x,t))TAn 0 (x 0 , x , t ) ( x  -  ®0(a:,*)) j  ,

we see that the caustic condition is simply

V xoA ( x 0, x , t )  = 0 and Det (M"o(£c0, x , t ) )  = 0 , (2.1.3)

where the pre-caustic $ t lCt is obtained by eliminating x  and the caustic Ct by eliminating
X q .

2.2 Geometrical Results of Davies, Truman and Zhao
Throughout this chapter we are concerned with the free Burgers equation, namely the 
case when V{x) = 0. It is an immediate consequence of Equations (2.1.2) and (2.1.3) 
that the pre-level surface is described by the Eikonal equation

|  |Vas0So(a5o) |2 + S0(x0) =  c , (2.2.1)

whilst the pre-caustic is given by

De t ( /  +  tSo(xo)) =  0 , (2.2.2)

where Sq(xo) is the Hessian matrix of So(x0).
In this section we provide an account of the work done in [15] on the geometrical 

relationship between level surfaces of the heat equation and shock waves of Burgers 
equation. We only consider the two dimensional case and refer the interested reader to 
[15] for details of the three dimensional case.

Let us begin with a brief discussion of singular points, in which we carefully follow 
[25]. Suppose the Cartesian equation of a curve of degree n arranged in ascending powers 
of x  and y is

0 = b0x + biy +  cqx2 +  2 cixy  +  c2y 2 +  d0 x 3 +  Sdix2y +  3d2 xy 2 +  d3 y3 +  e0 x A H .

If we assume bo and b\ are zero then our curve meets y =  m x  where

0 =  x 2(co +  2cira +  c2 m 2) +  x 3 (d0 +  2>d\m +  Zd2 m 2 +  d3 m 3) +  x4(eo H ) H .

Observe that at least two roots of this equation are zero for any value of m. Since every 
line through the origin (except the tangents) meets the curve in two points coinciding 
with O we call the origin a double point. The tangents at O are defined to be those lines
meeting the curve at three points coinciding with O. It may be easily shown that the
tangents at O are

cqX2 +  2 c\xy  +  c2 y 2 = 0 .



D efin ition  2.2.1. Consider a curve with a double point at the origin O. The origin is 
called

point of the curve with no neighbouring point,

iii). a cusp if the tangents are coincident.

The term node is regularly used to mean any double point that is not a cusp. Note 
that the concept of a double point and the corresponding tangents may be extended as 
follows.

P ro p o sitio n  2.2.1. I f  the terms of lowest degree in the Cartesian equation of a curve 
are of degree k, then O is called a multiple point o f order k (a k-ple point). Any 
line through O meets the curve in k points coinciding with O except the k tangents at O 
obtained by equating to zero the terms of lowest degree, which meet the curve in (at least) 
k +  1 points coinciding with O.

The following proposition provides a condition for a double point and moreover a way 
of classifying the type of double point.

P ro p o sitio n  2.2.2. I f  (x,y) is a double point on the curve f ( x ,y )  = 0 then

y up to order k — 1 inclusive must vanish.)

Proof. If we consider a curve with Cartesian equation f ( x , y) =  0, then transferring the 
origin to a point (x , y ) on the curve so that f ( x  + x ,y  + y) = 0  yields

i). a crunode (or node) if the tangents are real so that the curve has two real branches 
passing through O ,

ii). an acnode (or isolated point) if the tangents are unreal, in which case O is a real

Moreover if  f'(xy^{x,y) is the Hessian of f  at (x,y) then the double point is

i). a crunode if Y)et\j"x y)(x,y)

ii). an acnode if  Dei ^f"x y)(x,y)

(Similarly if  (x,y) is a k-ple point, all the partial derivatives of f  with respect to x  and

Observe that if the new origin is a double point then
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and the tangents at the new origin are

y)  +  2x y U - y {^ ] +  y 2U {* ’ i )  =  0 -

□
The previous proposition eludes to a relationship between cusped points of the level 

surface and the caustic curve. This will now be made clear.
Remark 2.2.1. In [15] the term node is used for any singular point with two or more 
different directions of the tangent plane. We reserve the use of the term for a non-cusped 
double point.

D efinition 2 .2 .2 . Consider a curve x = x(s) parameterised by s. We say that x(s) has 
a generalised cusp at s = s if

dx{s) =  0 . (2.2.3)
ds

Recall that x  = $ tx o =  Xq +  tV5o(®o) and observe that the derivative map DQt(xo) 
is defined by

x  +  6 x  =  $ t(x o +  Sxo)
=  $h(:z;o) +  D$t{xo)6x0 +  0(<foo) •

Note that since $ tXo =  x  we have 5x = D $ t(xo)5xo +  0(<fao) s o  that to second order 
D $ t(xo) is a linear map from tangent space TXq to tangent space Tx. Trivially for our 4>t 
we see that D $ t(xo) : TXo —> Tx is given by D $ t(xo) =  (I +  tS fQ(x0)) and it follows that

{ 5  I V ^ S o l^ o )!2 +  5 „ ( X „ )  J =  ( /  +  tSS(x0)) V S 0( x 0) ^

= D $ t(x 0 )V S 0 (x 0) •

Lem m a 2.2.3. Assume that the pre-level surface meets the pre-caustic at the point 
x 0, where the vector n (x 0 ) =  (I  +  tSo(x0)) V ^o^o) is such that ||n(®0)|| 7  ̂ 0 and 
d im (K er(I  +  tSo(x0))) = 1. Then the tangent plane to the pre-level surface TXo is 
spanned by Ker (I  +  tS'd(x0)).

Proof It follows for Equation (2.2.4) that where the pre-level surface meets the pre­
caustic the non-zero normal, n, to the pre-level surface is a linear combination of eigen­
vectors corresponding to non-zero eigenvalues of (I  +  tS'd(xo)). The eigenvector of 
(I  +  tS'd{xo)) corresponding to eigenvalue zero, eo, will be orthogonal to these eigen­
vectors. Hence since TXo is only one dimensional we must have TXo =< eo >. □

Lem m a 2.2.4. Assume that at a point xq on the pre-level surface we have |V5o(*o)| =  0; 
Xo being a singular point with tangent plane in more than one direction, and 
dim (Ker (I  +  tS'f(xo))) = 1. Then

i). if Xo E the image point 4>t(a;0) where the level surface meets the caustic is a
singular point with tangent plane in one direction, namely a cusp,
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ii). if Xo £ $ t 1Ct the image point ^ (z q )  is a singular point with tangent plane in two 
or more directions.

Proof. First observe that if | V 5 o ( # o ) |  =  0 then it follows from Equation (2.2.4) that Xo 
is a singular point of the pre-level surface. If it is a double point, then it will typically be 
a node with two different directions of the tangent plane. Moreover, observing that for 
*o =  ® tlx  we have

V ^ x c M )  = (x ~t Xo) =  VxoSo(x0) -

so that if |VSo(a?o)| =  ^ en the image point x  =  $ tx o we have \VxA (x o ,x ,t ) \  = 0 
meaning x  is also a singular point.

In the first case, when x 0 E § t lCt, let U for i = 1 ,2 , . . . ,  k be the k different directions 
at Xo of the tangent plane to the pre-level surface where it meets the pre-caustic. Since 
D $ t(x0) annihilates the zero eigenvector e0 on the pre-caustic, it follows that each of 
the U must be mapped into (I +  t5o(cco))eo, where eq is the non-zero eigenvector of 
(I + tSo(x0)). Thus each of the t f s get mapped into the same direction as e$ and since 
$ t (xo) is a singular point it must be a cusp.

In the second case, the k different directions U are mapped into the k different direc­
tions ( / +  tSo(x0))ti for i = 1, 2, . . . ,  k. □

Remark 2.2.2. If the singular point in Lemma 2.2.4 is a double point then the lemma 
may be written in terms of nodes. Namely, if Xo is a node of the pre-level surface, then 
xo E $ i lCt implies $ tx  o is a cusped double point, whilst x 0 £ implies <Ftcco is a
node.

What happens in the case when |(7 +  tSQ(x0))V So(x0)\ 7̂  0 is made clear in the 
following proposition.
Proposition 2.2.5. Assume that |(/ +  tS'^Xo)) VSo^o)! ^ 0, so that x 0 is not a singu­
lar point of the pre-level surface. Then $ t ( x 0) can only be a generalised cusp of the level 
surface i f $ t(x 0) G Ct . Moreover if x  = $ t{x  0) £ then x  will be a
generalised cusp of the level surface.
Proof Let the pre-level surface be parameterised as Xo = xq ( s ) and let X o(s) be a point 
of intersection of the pre-curves. We write x(s) =  4>t (:ro(s)) and assume that Xq and x 
are differentiable in s.

Since n (x 0) ^ 0  we have ^ ( s ) | a=g 7̂  0 and it follows that

( 2 . 2 . 5 )

For this to be zero it is necessary that Det[J-KSo] =  0, which means xq G § t lCt so that 
x  = ^(cco) E Ct. Alternatively, if Xq E  $ t lCt it follows immediately from Lemma 2 . 2 . 3  

and Equation ( 2 . 2 . 5 )  that
dx
ds (s) =  0

□
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2.3 The Cusp Singularity
As an example of the results in the previous section, we consider the initial function 

2

£0(^ 0) =  which gives rise to the cusp singularity. To obtain the pre-level surface we 
use the Eikonal equation from Equation (2.2.1), which gives

x i { (  1 \ 2 x it  1
f  + - f - « > = c -

If c =  0 (the zero pre-level surface) this yields the line pair x \  =  0 and the curve

. — 1 ±  J \  — t 2x l  .
Vo(xo) = -------- \ -------- 2 , (2.3.1)

for x l  < As may be seen in Figure 2.2 the zero pre-level surface consists of a line pair 
and ellipse. In addition the pre-caustic is given by

1 +  t y 0 =  t 2x 20 ,

so that
yo(xo) =  j  ( t2x 20 ~  1 )  • ( 2 . 3 . 2 )

Now the mapping corresponding to the classical mechanical flow is given by

* t( * o ) = ( ; ° ) + t ( T ) ,

so that applying to Equation ( 2 . 3 . 1 )  yields the zero level surface as the line pair x 2 =  0 
and the triple cusped hypocycloid (tricuspoid)

XQ± X o y / l  -  t 2x \
x(xo) = ------

y(x 0) =
2

t 2 X0 — 1 ±  Xq^/\ — t 2X0
21

for x l < Similarly applying to Equation (2.3.2) yields the caustic as

x ( x q ) =  t 2x l  ,

. . St 2 1
V ( X q) =  ~ X 0 -  -  ,

which is the semi-cubical parabolic cusp

8(yt +  l )3 =  27t 2 x 2 .

Observe that V50(£c0) =  (^o2/o, ^ )  so that VSo(x0) = 0 at the points (0, — J) and (0,0) 
on the zero pre-level surface. Both of these points have tangents planes in more than one 
direction. However (0,0) ^ so that $ t(0 ,0) =  (0,0) is a singular point with tangent
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Figure 2.2: Zero pre-level surface and pre­
caustic

Figure 2.3: The tricuspoid and cusp

plane in more than one direction, whilst (0, — j )  G $ t lCt so that $ * ( ( ) ,  — |)  =  (0, — j )  is 
a cusp. This may be seen in Figures 2.2 and 2.3 which show the pre-curves and image 
curves respectively at time t — 1. The caustic is identified by the use of a broken line. 

When c ^  0 the pre-level surface is given by the curve

yo{xo) =
- x \  ±  |rr0| \ / 8c£ +  xl  -  t 2 x%

2 txl (2.3.3)

for Xo 7̂  0 and 8ct +  x% — t2XQ > 0. In this case the sign of c affects the geometry of the 
(pre-)level surface. Observe that Set + x l — t 2 xq =  0 has solutions

y/2 t
( l  ±  \ / l  +  32ct3)

so that if c > 0 then only two of the solutions will be real meaning Set +  xl  — t2Xo > 0 on 
one region which includes Xq =  0. This results in the ellipse merging with the line pair. 
If c < 0 and |c| < 3^3 then all four solutions are real meaning Set +  x l — t2x J > 0 on two 
regions neither of which includes Xq = 0. This results in the appearance of two pebbles 
which reduce to two points as |c| 3̂ 3.

The corresponding level surface is given by

x(z0) =  

y(x 0) =

xl ±  \x0 \y/Sct + x% - t 2 x%
2 x 0

t2X0 — x l  ±  \xo\y/8ct +  Xq — t 2XQ
2 tXo

for Xq 7̂  0 and Set +  Xq — t 2xq > 0. 

P ro p o sitio n  2.3.1. The pre-curves meet in

i). two points if  c > 0,
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ii). three points if c = 0,

Hi), four points if —3̂ 3 < c <  0 .

Proof. Writing the pre-caustic as £0(2/0) =  +  tyo» for y0 >  — |  and inserting into
the pre-level surface yields

1 3 9 2 2/0
8 ^  +  if^ 270 +  2/0 +  T  =  C '

Define
N 1 3 9 2 2/0

F(2/o) := + 4F220 +  WtVo + J  ~  ° '
so tha t the pre-curves meet at solutions 2/0 > — 7 of P ( y o )  =  0 .

Observe that at the local maximum F (—j) = —c whilst at the local minimum 
F (— =  —3^3 — c. If —3^3 < c < 0 then F(y0) = 0 has three solutions, two of 
which are greater than — \ .  Thus the pre-curves meet in 2 +  2 =  4 points. If c =  0,
then F(yo) =  0 has two solutions y ^  =  — \  and y ^  > — \.  Thus the pre-curves meet in 
1 +  2 =  3 points. Finally if c > 0 then F(y0) = 0 has one solution, which is greater than 
— j.  Thus the pre-curves meet in 1 +  1 =  2 points. □

C oro llary  2.3.2. The level surface S (x ,t )  = c meets Ct in

i). two generalised cusps if  c > 0,

ii). three generalised cusps if  c — 0,

Hi), four generalised cusps if  —3^3 < c < 0 .

Figures 2.4 and 2.5 show the pre-level and level surfaces fo rc  =  0.01 > 0 a t t  =  1 
together with the caustic. The corresponding pictures for c =  —0.01 < 0 at t =  1 are 
shown in Figures 2.6 and 2.7.

Figure 2.4: Pre-level surface (c =  0.01) 
and pre-caustic for the cusp singularity

Figure 2.5: Level surface (c =  0.01) and 
caustic for the cusp singularity
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Figure 2.6: Pre-level surface (c =  —0.01) Figure 2.7: Level surface (c =  —0.01) and
and pre-caustic for the cusp singularity caustic for the cusp singularity

2.4 Polynomial Swallowtail in Two Dimensions
In this section we attempt to find a polynomial initial condition that produces a caustic 
with the geometrical properties of a swallowtail. We consider an initial function of the 
form

So(xQ) = f ( x 0) + g (x 0 )y0 , 

with f , g  G C3. A simple calculation yields the following result.

Lem m a 2.4.1. For the initial function So(xo) =  f ( x o) +  g(xo)yo with f , g  G C 3 the 
pre-caustic is given by

y o ( x 0 ) =
1 +  t 2g ' ( x 0 ) 2 -  t f " ( x o )

t g " ( x  0 )

for g"{xo) 7̂  0, whilst the pre-level surface is determined by

|  ( / ' (*  o) +  g ' ( x o ) y o )2 +  h g ( x  0)2 +  /(a:0) +  g ( x o ) y o  =  c

(2.4.1)

(2.4.2)

Moreover, the mapping $ t corresponding to the classical mechanical flow is given by

x = $ tx0 = Xo

,yoJ

All important in the derivation of an appropriate initial function is the following 
result.

Lem m a 2.4.2. For the initial function So(x0) =  f ( x o) +  g(x0 )yo, with f , g  G C 3, the 
number of generalised cusps on the caustic is determined by the zeros of F (xo) =  0 where

F(x0) := -
t  d  ( g \ x 0 ) d (  f ' \ x  o)^ +  l / " ( ^ o )

^ ( z o )  c h 0 V  0 ; /( z o )  /  d x o  \ g " ( x 0 ) J  t  g " ( x 0 ) 2
(2.4.3)
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Proof. Prom Equation (2.2.5) in the proof of Proposition 2.2.5 we know that the image 
curve will have a generalised cusp when

(.I  +  tS'f) = 0 ^

which in our case is

f l  + t{ f"(x 0 (s)) + g"(x0 (s))y0 {s)) tg'(x0 (s))\ d x 0 _
^ tg'(x0 (s)) l )  ds [s> ~  ■

Since we are interested in the caustic we use the parametrisation described in Lemma 
2.4.1, namely xq(s) = (s,y0(s)) where yo{s) is given by Equation (2.4.1). Thus we have

1 +  t(f"(s)  +  g"(s)y0 (s)) +  tg'(s)y'0 (s ) \  ( 0 \
tg'(s) + y'0 (s) J  t 0/  ’

which on substitution of our expression for yo(s) yields the equations

tg'(s)(y’0 (s) + tg'(s)) =  0 , 
y„(s) +  tg'(s) =  0 .

Assuming g'(s) ^  0, it follows that we will obtain generalised cusps at the zeros of

F(s) := yg(s) +  tg’(s) ,

which on insertion of the expression for y'0(s) yields the right hand side of Equation
(2.4.3). □

2.4.1 The Pre-Caustic and Caustic
In order to obtain a caustic with the geometrical properties of a two dimensional swallow­
tail we require that F  has two zeros and the image curve has a point of self intersection. 
Observe that if we take f ( x 0) =  a^o and g(xo) =  fa*  for a,(3 ^  0, then we obtain

F (xo) =  tp 2 x 0 — 5axl ,

so that
tff2

F (xo) =  0 = 4> xo = 0 and x 0 = —— •
5a

For simplicity we take a > 0 and set /? =  1 in what follows. Prom Lemma 2.4.1 we see 
that the pre-caustic is given by

, . — 1 +  4t2Xo — 20aten . .v
yo(x o) = ------------ 1  2 , (2.4.4)

whilst our mapping is given by

^ = ( y ^ + t ( 5 aX4° T 0P0)  ■ (2A5)
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Thus the caustic Ct is given by

x (x0) =  — ISatxQ +  4t2a;o ,
1 -  2 in ,  (2.4.6)y(x0) =  -  — +  3tx 0 -  1 0 ax\

Hence the generalised cusps will occur at

and

where for large a  the cusps become increasingly close. Moreover solving the equations 
x(si) =  x(s2) and y(s{) = y{s2) for s x ^  s2 yields si = t and s2 =  t
Thus Ct has a point of self intersection at

f t 5 1 t 3 \
V 500a3’ ~ 2 1 +  50a2 J 'X V 500a3’ 2t +

Hence for all t > 0 and a ^ O w e  will have a polynomial swallowtail. Moreover, the point 
of self intersection lies vertically half way between the generalised cusps.
Remark 2.4.1. Observe that (xa(xo),ya(xo)) = (—x~'a(—xo),y~a(—Xo)) so that the caus­
tic for a  < 0 will simply be the mirror image of the case a > 0 about the line x  =  0 .

P ro p o sitio n  2.4.3. For all t > 0 and a  ^  0 the initial function So(xo) = ax^ +  xfyo 
produces a polynomial swallowtail singularity with generalised cusps at (0, — ̂ )  and
(ISC'- i +  2&?) a n d  self  intersection point ( - g ^ r ,  +  g£ i).

In Figures 2.8 and 2.9 the pre-caustic and caustic are shown for a  =  0.2 and t =  1.

2.4.2 Implicit Equation for the Polynom ial Swallowtail
Alternatively, instead of obtaining the caustic in parametric form, we may obtain a single 
equation for the shockwave by considering the integral

J 1 To{xo)
1 = 1 1  2o(*o) exp ( ) d2x 0 ,

as p ~  0 with T0 e  Cq°, where in our case

A { x 0, x , t) =  2^°-- +  — ■■ +  a x l  +  x ly 0 .

It follows from Laplace’s result that after doing the yo integration we obtain

J  T0 (x0,y  - to g )  exp ( - ^ A ( x 0, x , t)^j dz0 ,
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Figure 2.8: Pre-Caustic at t = 1 with Figure 2.9: Polynomial Swallowtail at
a  =  0.2 t = 1 with a =  0.2

as [jl ~  0 where

A(xo, x, t) =  a x l  — +  Iq Q f  +  J') +  '

This is the generating function of our two dimensional polynomial swallowtail. To obtain 
the equation of the shockwave we need to eliminate xq from =  0 and =  0. Namely 
we must eliminate xq from

-  2 tx 30 + 2 x o ( ^ j . + y )  ~  \  =  0 ’

and
2 0 ax l -  Qtxl +  2 ( ^  +  y  ) =  0 .

After some simplification this gives the equation of the shockwave for the two dimensional 
swallowtail

8 tx  (54 t*x -  15i2(l +  2 t y f a  -  12001x(l +  2ty)a2 +  4000x2a 3)
=  (1 +  2t y f  (32t4 -  675(1 +  2ty )a2) .

2.4.3 The Zero Pre-Level and Zero Level Surface
It follows from Lemma 2.4.1 that the pre-level surface is given by

x l  Q  (25a 2 x 60 +  2 0 a x 30 y0 +  4yl +  xl)  +  a x \  +  y^ j  = c .

Initially considering the case c = 0 we see that the zero pre-level surface consists of the 
line pair x\  =  0 and

, N —1 — 10a tx l  =h y / l 2 a tx l  — 4t2x l  +  1
2/o(®o) = -------------------- ^ ----------------------  ,
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for 1 2 a tx l  — At2xl  +  1 > 0. Applying the flow mapping 4>f to this yields the zero level 
surface as the line pair x 2 = 0 and

x{x0) =  y  ^1 ±  y j  12a tx l  -  M2 x\ +  1^ ,

y(x o) =  y  {^ t2x o — 1 — lOatx^ ±  y j 1 2 atx \ —  At2XQ +  1 ^  .

P ro p o sitio n  2.4.4. For the initial function So(xo) = xl+xfyo the (pre-)zero level surface 
will consist of

5 f“
i). a line pair and one component i f t <  3* ^ ,

5 r~ii). a line pair and two components i f t  > 3* ^ .

Proof. Let V t(xo) := 12atxl — At2xl  +  1 be the discriminant in the expression for the 
zero pre-level surface. Then it may easily be shown that V t(xo) > 0 on only one region if 
1 — 2 ^ 2  > 0 whilst T>t(xo) > 0 on two regions if 1 — < 0. Hence the zero pre-level

surface will consist of one region for t < -3 and two regions for t > □

Proposition 2.4.4 is illustrated in Figures 2.10 and 2.11 which show a time series for 
the zero (pre-)level surface with a = 0.2. Observe that for t <  3 * ^  the zero pre-level

t = ^ 3114 VJ4

t

1131'4
sVT t =

c

73H4
'■ 4y[5

C3

\

3 3 l/4

2VJ

t=^31/4 y[J

Figure 2.10: Zero pre-level surface for the polynomial swallowtail

surface consists of a line pair and worm whilst the zero level surface consists of a line pair 
and swallowtail shaped curve. However, for t > 3 * ^  the worm separates into a pebble 
and worm whilst the swallowtail shaped curve separates into an arc and tricuspoid.

Alternatively, instead of parametric equations we may obtain a single equation for 
the level surface by observing that after doing the yo integration it follows from Laplace’s 
result that

A{x 0 , x , t )  = ^ - t̂  + x l - ^ f  + Xf t + x l y .
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t = ^  31/4 V J4

t
8 yfJ

11 31'4 
8y[5 t = 33,/4

2VJ

t

Figure 2.11: Zero level surface for the polynomial swallowtail

In order to obtain the zero level surface we now eliminate x 0  from

d A
A (x 0, x , t) = 0 and

dx
=  0 .

After some simplification this gives the equation of the zero level surface as 
,2x l

16£5
(54(:r3 +  y) — 16£7(x2 +  y2) +  t (—27x2 +  3125a;6 +  3800x 3y +  432y2)—

2t2(1250a;5 +  597x 2y +  4500x 3 y 2 -  648y3) +  St6 {5x2y -  3y3)+  
t 5 (x2 +  80 x 3y — 12 y 2 — 48 xy3) +  6t3(75a;4 — 2 xy  — 230x 2 y 2 +  288yA)+

2t*{2x3 — y +  500xAy — 24xy 2 +  900x 2 y 3 +  432y5)) = 0 .

Observe that we have a factor x 2 producing a line pair, a feature missing from the non­
polynomial swallowtail in [14] which possesses a single line since the other has fused with 
the rest of the curve.

2.4.4 The Pre-Level and Level Surfaces
When c ^  0 the pre-level surface is given by

Vo ( x 0 ) =
■lOatxQ — x l  ±  \xo\y/l2 atx l  — 4t2XQ +  Xq +  8ct 

4:tXQ

for Xo 7̂  0 and 12atxl — 4t2XQ +  Xq +  Set >  0. Moreover applying yields the level 
surface as

x (x°) =  — ( * 8  ±  | x 0 1 y j  1 2  a tx l  -  M2 x \  +  xl  +  8  ct'j ,

y{x0) = +  4t2o;4 -  x l ±  \x0 \ y j l 2 atx% -  4t 2 x% +  x l  +  8c ^  ,
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for Xo 7  ̂ 0 and 12atx\ — 4t2Xg +  x% +  8c£ > 0. The geometry in the case when c ^  0 
differs from the zero pre-level surface as the following proposition now explains.

5

P ro p o sitio n  2.4.5. I f t  < ^-y/ct and |c| is sufficiently small then

i). if c > 0 the pre-level surface consists of a worm fused with the line pair,

ii). if c < 0 the pre-level surface consists of two components, namely a pebble and worm.
5

I f t  > ^-y/ct and \c\ is sufficiently small then

i). if c>  0 the pre-level surface consists of a pebble fused with the line pair and a worm,

ii). if c < 0 the pre-level surface consists of two pebbles and a worm.

Proof. Denoting the discriminant by V t{xo) := 12atxl — 4t2Xo +  x l  +  8ct it follows that 
V't(xo) =  2xog{xo) where g(xo) := 30atxl — St2xl  +  1. Now g(x0) has a maximum at 
x o = 0  and a minimum at x 0 = at which g(0) =  1 and g ( ^ )  =  1 -  ^ •

C ase 1: t < |  ( | ) 4 y/5a
The local maximum and minimum are non-negative so that g(x0) = 0 has one real non­
repeated solution Xo = u\ < 0. Thus V t{xo) has a maximum at x 0 = u\ and a minimum 
at Xq =  0 where A (0) =  8ct. If c > 0 then V t(x0) > 0 on only one region which includes 
x 0 = 0, so that the pre-level surface consists of one component fused with the line pair. If 
c < 0 and |c| is sufficiently small so that Ut(ui) > 0, i.e. c must satisfy - g^1-  — 1 >  1,
then Vt{xo) > 0 on two regions, neither of which contains xo =  0. This results in the 
appearance of a pebble and worm.

C ase 2 : t > f (§ )4 and t < ^ -y /a
For t > f ( | ) 4 y/Ea, g(xo) =  0 will have three real solutions U\,U2 ,Us where U\ < 0 and 
U3 > U2 > 0. It follows that V t(xo) will have local maxima at Xq = u\ and Xo = U2 , and 
local minima at X q =  0 and X q =  u $.

We begin by showing that V t{fS) < T>t(us). Using the fact that V t(us) =  0 this is 
equivalent to showing u3 < Observing that a > ^  we see

S t  2 \ / 3  y / S

45a < < I F  ’
and

, V3. c 45V3
9 {1 F } = ~ 5 + > 0 '

Hence since g(j£z) < 0 and g is increasing for x 0 > ^  it follows that U3 < Thus 
©.(0) < T>t(us). Assuming \c\ is sufficiently small so that V t(us) > 0 we arrive at the 
same conclusion as Case 1.

C ase 3: t > ^-y /a
Here we show that V t(us) < X>t(0) or equivalently u3 > Observing that a  < we
cpp

,\/3 45\/3
ff(l r ) =  - 5 + ^ a < 0 -
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Since g{x0) > 0 for Xo > u3 it follows immediately that 113 > ^  so that V t(u^) < V t(0). 
Assume |c| is sufficiently small so that V t{u3) < 0 and V t(u\), T>t(u2 ) > 0 . If c > 0 then 
'Dtfa0) > 0 011 two regions one of which contains x0 =  0. Thus we obtain a pebble fused 
with the line pair and a worm. If c < 0 then V t(x0) > 0 on three regions none of which 
include x0 =  0. This results in the appearance of two pebbles and a worm. □

The above Proposition is illustrated in Figures 2.12 - 2.15 where we have set a — 0.2
5

and t = 1 so that t > Figures 2.12 and 2.13 show the pre-level surface and level
surface for c = 0.005, whilst Figures 2.14 and 2.15 show the pre-level surface and level 
surface for c =  —0.005.

Figure 2.13: Level surface (c =  0.005)Figure 2.12: Pre-level surface (c =  0.005)

Figure 2.15: Level surface (c =  —0.005)Figure 2.14: Pre-level surface (c =  —0.005)

2 .4.5 In tersection  of th e  C austic  and Zero-Level Surface
The basic idea of Proposition 2.2.5 is that the level surface will meet the caustic in a 
generalised cusp at a if and only if at least one inverse image point is a common
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point 011 the pre-curves. Hence points x  at a generalised cusp on the level surface must 
satisfy

A{xo(x , t ) , x , t )  = 0 and Det [A'^0( x0(x, t), x,  t)) = 0 ,

where we are using our usual nomenclature. The points x  satisfying the above must lie 
on both the caustic and the level surface. Clearly in three dimensions we will obtain the 
intersection of two surfaces, namely a curve, whereas in the case of two dimensions they 
will meet in a finite number of points. In both cases the points or curve of intersection 
will evolve in time.

Let us consider our example of the polynomial swallowtail for zero-level surfaces. In 
Figure 2.16 we have plotted the pre-curves at t — 1 with a = 0.2, using a broken line to 
distinguish the pre-caustic. Applying the mapping yields the image curves shown in 
2.17.

Figure 2.16: Pre-caustic and zero pre-level Figure 2.17: Caustic and zero level surface 
surface

Notice that the pre-curves have three distinct points of intersection, one of which is 
a singular point of the zero pre-level surface. Moreover the zero level surface meets the 
caustic in eight places (three generalised cusps and five non-cusped intersection points). 
We remark that this observation does not contradict Proposition 2.2.5, for if a* are non- 
cusped points of intersection of the image curves then ^ lai £ $ ^ lCt CI Ht. This is 
illustrating the fact that lCt fl lHt C ^ l (Ct fl Ht) but the opposite inclusion does 
not hold.

We shall have more to say on the number of common points of pre-curves in Chapters 
3 and 5.

2.5 Polynom ial Swallowtail in Three D im ensions
In order to obtain a polynomial swallowtail in three dimensions our initial instinct is to 
extend our result obtained in two dimensions by considering an initial function of the 
form

50(x0) =  x50 +  f ( x o)?/o +  oc20z0 . (2.5.1)



Taking y(xo) =  K  to be constant it can be shown by the same method as the two 
dimensional case that generalised cusps will occur at the zeros of the function

F(x0) = -  (12a;o +  3 /'(x 0)/"(zo) +  f  (xo) f "  (x0)) -  ^  (60x$ +  f" '(x 0)K ) . (2.5.2)

In order for us to obtain a three dimensional swallowtail we require that there must exist 
C  such that F (x o) =  0 has two solutions for K  > C  and no solutions for K  < C  or 
vice versa. The reason for this is that taking sections of a three dimensional swallowtail 
must produce a two dimensional swallowtail (2 cusps) prior to a certain point and a 
parabola (0 cusps) after it. Immediately we see from Equation (2.5.2) that f ( x 0) must 
be a polynomial of degree greater than or equal to 3. But if /  ~  xn for n > 3 then 
f  ~  xn~ \  / "  ~  x n ' 2 and /" ' -  xn~3. Thus d e g ( f f ' )  = d eg (//'" )  =  2n -  3 so F (x 0) 
will be a polynomial of odd degree and as a result will have at least one real root for all 
values of K. Hence there is no possibility that an initial function of the form in Equation 
(2.5.1) will produce a three dimensional polynomial swallowtail.

Let us instead consider a more general initial function of the form

So(x0) = f ( x 0) +  g(x0 )y0 +  h(x 0 )z0 .

A simple calculation yields the following result.

Lem m a 2.5.1. For the initial function So(xq) = f ( x 0) +  g(xo)yo +  h(xo)zo, with f , g , h  € 
C 3 the pre-caustic is given by

zo{xo,yo) =  (t2 {cf(x o ) 2 + ti{x0)2) -  t ( f ' ( x  o) +  y0 g"(x0)) -  l) ,

for h"(xo) 7̂  0; whilst the pre-level surface is determined by

|  ( f i xo) +  g'(xo)y0 +  h'(x0 )z0 ) 2 +  ^g(x0)2 +  | h(x 0 )2 +  f ( x 0) +  g(xQ)y0 +  h(x 0 )z0 =  c .

Moreover the mapping $ t corresponding to the classical mechanical flow is given by

/  x 0\  /  f ' ( x  0) +  g'(x0 )y0 +  h'(x0 )z0

x  =  $ tx 0  =  I 2/o I + 1 I g(x0)
\ z 0J  \  h(x0)

L em m a 2.5.2. For the initial function So(x0) =  f{xo)+g(xo)yo + h(xo)zo where f , g , h €
C 3 the number of generalised cusps on the slice y = K  of the caustic is determined by the 
zeros of F ( xq) = 0 where omitting the Xq variable for brevity we have
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Proof. For the slice y = K  we have 

y0 {x0) = K - t g ( x 0) ,

zo(xo) = thn ^  T O ^ o ) 2 +  h'(xo)2) -  t ( f" (x o) + { K -  tg{x0 ))g"{x0)) -  l)  , 

which may be differentiated to give 

2/ofao) =  - tg '  ,

4 M  = O'" [2*2 ia'g" +  h'h") - 1  ( /" ' +  9" '{ k  -  -  tg'g")\

-  h'" {t \ g '2 +  V2) -  t ( f"  +  ( K -  tg)g") -  l ]  V
The cusp condition ( /  +  tSQ(xo(s)))dx̂  = 0 combined with our expressions for 2/0(5), 
2/q(s) and 2o(s) yields the equations

tti(s)(tti(s)  +  z'0 (s)) =  0 , 
th'(s) +  z'0 (s) = 0 .

Since by assumption /i'(s) ^ 0  we see that generalised cusps are obtained at the zeros of

F (x0) := th 1 (x0) + z'0 (x0) , 

which on inserting our expression for z'0 (x0) yields Equation (2.5.3). □

P ro p o sitio n  2.5.3. The initial function So(xo) =  xl  +  xfyo +  x^zq produces a three 
dimensional swallowtail singularity. We call this a three d im e n s io n a l  p o lyn o m ia l  
swallowtail.
Proof. With f ( x 0) = x l , g(x0) =  Xq and h(x0) = x%, Equation (2.5.3) reduces to

F (x0) =  —105a;o +  30teo +  — ,

which is equivalent to considering the zeros of

G(xq) := 35rro — 10tx \  — 2tx 0 +  K  .

We need to show that G(x0) = 0 will have either two or zero real solutions depending on
the value of K.

Observe that G'(x0) =  140xq — SOtxl — 21  has a maximum at Xq =  0 and a minimum 
at xo = | .  Moreover G'(0) =  —21 < 0 so that G'(x0) =  0 has only one real solution, 
say Xo(t). Clearly G(x0) will have a global minimum at xq(t) so that if G(xo(t)) < 0 
then G(xo) = 0 has two real solutions whilst if G(xo(t)) > 0 then G(x0) =  0 has no real 
solutions.

Namely if 7Z(t) := xo(t) (21 +  lOt^o(t)2 — 35^o(^)3) then G(x0) =  0 will have two 
solutions when K  < 1Z(t) and none when K  > 7Z(t). Solving the cubic G'{xq) =  0 shows 
that

_ / v 1 (  (  515 Y  1 / 9 8  +  512 + 14V49 +  512
Xoit) = T 4 [ t + Y T ^ T [ w W T W )  + 4 + -------------- 5--------------

□
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Recalling that Thom classifies the swallowtail singularity by x q +  ux^ +  vXq +  wxo it 
would appear advantageous if we could obtain an initial polynomial function of degree 5.
The following corollary shows that this is not possible.

C oro llary  2.5.4. The initial function S q ( x q ) = x^+x^yo+x^ZQ is the simplest polynomial 
that gives rise to a polynomial swallowtail.

Proof Performing the derivatives in Equation (2.5.3), the function F (x0) determining 
the number of cusps on the three dimensional image curve becomes

F (x 0) =  (3h"g'g" +  3h'h" 2 + h"gg'" -  h"'g'2 -  h"'h'2 -  h'"gg")

- ( h " f ' "  + h"gmK - h " ' f - h " ' g " K )  + ^ j - \  , (2.5.4)

where the X q variable has been omitted for brevity.
Note that since any polynomial of odd degree will always have at least one real solution 

and we require that h"(xq) ^  0 for all X q it is necessary that h(xo) must be of even 
degree. Let f ( x o), g(x0) and h(xo) be polynomials of degree I, m  and 2n  respectively.
Since hf,(xo) ^  0 for all X q we may consider the equation

t (3ti'g'g" +  3t ih " 2 +  ti'gg"’ -  h'"g' 2 -  t i" t i 2 -  hn,gg")

-  (h " f"  + h"g"'K -  h"'f" -  h"'g"K) +  —  =  0 . (2.5.5)
t

There are two cases that we need to consider:

C ase 1 : n =  1
The coefficient of K  in F (xo) is given by h"'g" — h"g,n and since h'"(xo) = 0 we require 
that m > 3 in order that the coefficient of K  doesn’t disappear. Hence we have

deg(h7"') = 1 - 3  d eg (h V ') =  m  -  3

Clearly 3h!’g’gn +  h"ggm ^  0, so in order that F  be of even degree we must choose I such 
that Z — 3 is even and I — 3 > 2m — 3, namely I > 2m. Hence in the best case scenario we 
will have m  = 3 and I = 7.

C ase 2 : n > 2
In order that the coefficient of K  doesn’t disappear we must have m >  2. For m  > 2 we 
have

deg (A" <?'<?") )

deg{hmgg") )

2 8 $ } - * - - 5
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with the only difference for m  = 2 being that h " g g = h"gr" =  0. Observing that 
3h'h " 2 — h"'h' 2 ^  0 it follows that for F  to be of even degree we must choose I such that 
2n +  I — 5 is even and 2n +  I — 5 > 6n — 5, namely I > 4n. In the best case scenario this 
will yield 1 = 9.

Hence the simplest polynomial we may use is So(x0) =  x 70 +  x^yo +  x^Zq. □

Remark 2.5.1. The initial condition for generating a polynomial swallowtail is not unique. 
For example So(x0) = x l™- 1  +  xfyo 4- x%z0 will produce a swallowtail for any n > 4.

2.6 Caustic and Level Surface for the Three Dimen­
sional Polynomial Swallowtail

With Sq(xq) = xl  +  x^yo +  x^Zq it follows immediately from Lemma 2.5.1 that the pre­
caustic is

Zq(xq, y0) =  (42t x l  -  9t 2xAQ -  4t 2x \  +  6t y 0x 0 +  l)  . (2.6.1)

Moreover the mapping <£t is given by

/  xo\ (7x1 + Sxly0 + 2x0̂ 0\
x  = $ tx 0  = I 2/0 I +  n  xl I , (2.6.2)

\ zoJ \  xo /
so that the caustic is

x(xq, 2/0) =  x l t ( - 35x l  +  9t x l  -H 4t x Q -  3y0) , 
y(.x0, y 0) =  2/0 +  t x l  ,

9 1
o. Vo) =  —21So +  2 t x o +  3 t x 0  -  3 y o x o -  7̂

(2.6.3)

These are illustrated in Figures 2.18 and 2.19 which show the pre-caustic and caustic 
respectively at time t = 1. The swallowtail shape can be clearly seen in the picture of 
the caustic.

Using Lemma 2.5.1 once more we see that the zero pre-level surface is given by

xo (t  (7xo +  3xoVo +  2z0)2 +  tx o +  t x 20 +  2 +  2xo2/o +  =  0 . (2.6.4)

Thus the zero pre-level surface consists of the line pair x l = 0 and the surface

zo(x0, 2/o) =  — 14foo -  6 tx 0 y0 -  1 ±  y j20tx% -  4t 2 x \ -  U 2 x \  +  4tx 0 y0 +  1^ ,

for 2 0 tx l  — 4t2Xo — At2xl  +  4:ty0xo + 1  > 0. Applying the mapping we see that the zero 
level surface is given by the line pair x 2 = 0 and the surface

x ( x 0t  2 /o) =  y  ^ 1  ±  y j 2 0 t x l  ~  ^ 2 x t  ~  +  4 to o 2 /o  +  1 ^  ,

y ( x 0 , y 0 ) = y o  +  tx%  ,

z{x0 , 2/0) =  ^-14teo +  4t2xl -  6 ty0 x 0 -  1 ±  y j20tx% -  4t 2 x \ -  4t2x l  +  4tx0yo +  1^ ,
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2
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zo

-i

- 2 '
- 2

2

x

-1

Figure 2.18: Pre-caustic at t = 1 Figure 2.19: Caustic at t = 1

for 20txl — H 2Xq — 4:t2xl  + 4tyoX0 + 1 >  0. These are illustrated in Figures 2.20 and 2.21 
which show the zero pre-level surface and zero level surface respectively at time t = 1 .

-11
-1

11

Figure 2.20: Zero pre-level surface at t = 1 Figure 2.21: Zero level surface at t =  1

In order to clarify what is occurring we have plotted a series of slices y — K  of the 
caustic and zero level surface and the corresponding pre-images. Namely for the image 
curves we have plotted the slices (x(xo, K  — txq), z ( x o, K  — t x§)) with the corresponding 
slices (x0, zo(x0, K  — tx^)) being plotted for the pre-images. The pre-curves and image 
curves are shown in Figures 2.22 and 2.23 respectively, where a broken line has been used 
to identify 4 ^ 1Ct and Ct. All our plots are for t = 1 so that 7£(1) ~  0.605344, where 7Z
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is the function defined in the proof of Proposition 2.5.3.

y  = - 0 . 3 9 4 6 5 6 y  = - 0 . 1 4 4 6 5 6 y  = 0 . 1 0 5 3 4 4

0 . 3 5 5 3 4 4y y  = 0 . 6 0 5 3 4 4 y  = 0 . 8 5 5 3 4 4

1 . 1 0 5 3 4y 1 . 3 5 5 3 4y 1 . 6 0 5 3 4y

Figure 2.22: Slices of pre-caustic and zero pre-level surface

It may be observed from Figures 2.22 and 2.23 that depending on the slice, the (pre-) 
level surface consists of either one or two components. Letting V ^ X q) := 20tx$ — At2x l  — 
At2x l  +  ^txoyo +  1 we arrive at the following lemma which provides a condition for the 
number of components.

L em m a 2.6.1. A slice y = K  of the zero (pre-) level surface consists of two components 
if and only if K  satisfies the inequalities

K  < 2x0 (t)t +  8 x 0 (t)3t — 25x0(t)4 , (2.6.5)

where

- / N 2t 1^o(^) — 777 +  —
44t6

25 25 \6251 +  3213 -  25W625 +  6412 )

625* +  32i3 -  2 5 ^6 2 5  +  64£2

and
8 y 2 u\ +  1 2 flU2 — 5 

16£u2
K <

(2 .6 .6)

(2.6.7)

where U2 is a stationary point which is a local minimiser of T>t (xo, K  — txl). Otherwise 
the slice consists of one component.
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y = - 0 . 3 9 4 6 5 6

y = 0 . 3 5 5 3 4 4

y  = 1 . 1 0 5 3 4

y  = - 0 . 1 4 4 6 5 6

y  = 0 . 6 05 3 4 4

y  = 1 . 3 5 5 3 4

y  = 0 . 1 0 5 3 4 4

y  = 0 . 8 5 5 3 4 4

y  = 1 . 6 0 5 3 4

Figure 2.23: Slices of caustic and zero level surface

Proof. We have

T>t(xo, K  — txo) =  20too ~  St2XQ — 4t2xl  +  4 K x 0t  +  1 ,

which has first two derivatives

V't =  lOOtao — 32t2£o — %t2XQ -f 4K t  ,
V ” = 400tx \  -  m 2xl  -  81 2 .

Observe that V"  has a maximum at xq =  0 and minimum at Xo = at which £^'(0) =  
—81 2 < 0 and ^ ( f f )  =  — ̂ 2 < ^ ence ^ t ( x o) =  0 has only one real solution
xq(t) > 0 which is given by Equation (2.6.6). Clearly for V t to have stationary points 
it is necessary that V't(xo(t)) < 0. If this holds then Ufao) = 0 will have two solutions 
U\ < u2. Moreover V t(xo) has a local maximum at tq and since V t is concave down for 
xq < x 0 (t) it follows that V t{u\) > V t(0) > 0. Thus there will be two parts to the zero 
level surface if and only if V t(u2 ) < 0. Using the fact that T>'t (u2 ) = 0 this condition 
reduces to Equation (2.6.7). □

2.6.1 Curves of Intersection of the Swallowtail and Level Sur­
face

The geometrical relationship between cusped meeting points of the image surfaces and 
common points of the pre-curves may be extended to the three dimensional case, as shown
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in [15]. Let us consider the intersection of the swallowtail and zero level surface where of 
course we will now obtain curves of intersection as opposed to points.

First observe that for the line pair x\  — 0 the curves will meet at zo(0,yo) = — ̂  
giving xq = 0, yo £ R, z0 = — Applying <Ft yields the straight line

x(x0) = 0 , y(x0) E R , z(x0) =  ~  . (2.6.8)

For the rest of the pre-level surface we see it shall meet the pre-caustic when

x l  +  x 0 y 0  +  zo(xo, y 0) +  ^ (^o +  +  (7x1 +  3x 0 y 0  +  2z0(zo, 2/o))2) =  0 ,

where zo(xo,yo) is the pre-caustic given by Equation (2.6.1). This reduces to a quadratic

— +  4t(2t2 — l)x% +  15a:o +  S6 t3xl  — 140 t 2 x 70 +  xl  — S15t2xl  +  —£ z z

+  y0  (x0 -  12t2xl  -  27t2xl  +  105to®) +  y\ = 0 >

which may be solved to give

Vo(xo) =  1 +  12t2a:o +  27t2x l  — 105too ±  y j  1 +  S t f x l  -1- 18t2a;o — 60 t x % J  .

To obtain the equation of the cusped curve we simply apply <Ft. This yields, for the 
positive root, the curve

x(rr°) =  —  ^1 — y j l  +  St2XQ +  18t2XQ — QOtxl^j ,

, N — 105foo +  36t2xl  +  1 2 t2xl  — 1 +  V l  +  3t2xl  +  18t2x i  — 60teo (o r
y(x 0) = -------------------------------------—— ---------------------------------------- ,

Q tx o

, N 84 t x l  — 2 7 t 2x l  — Qt2x  § — 1 — 2 a / 1  +  3 t 2x l  +  1 8 t 2Xn — 6 0 t a o

z(*o) = -------------------------------------&t--------------------------------------- -

whilst for the negative root we obtain the two curves (x0 < 0, xq > 0)

x(xo) =  ^  ^1 +  y / l  +  3t2x l  -I- 18t2a:o — 60 tx lJ  ,

, — 10btxl-\-36t2xl■}-12t2xl — l — ^ /T T ~ ^o ^~ + l8 t2XQ~^~60ix^
V^ o) =  9to0 ’

(  ̂ 84ta;o — 27£2iCg — 6t2̂ o — 1 +  2yT +  3t2xl +  18£2:Eo — GOtxl 
Z[Xo) = 6t  '

2.6.2 Form of the Generating Function
We know that the generic three dimensional swallowtail has a generating function of the 
form

V^Zq) =  xl  +  ux\  +  vxl  +  wx 0 . (2.6.11)
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From the outset it seems intuitively obvious that the initial function 5o(*o) =  ^o +  :co2/o +  
x\zp will not give rise to the function in Equation (2.6.11). Let us now discover what the 
analogue is in our case.

We begin by considering the integral

w ‘(x, t) = (27Ttfi2) 2 j I  j  Tq(x 0) exp
A { x 0 , x , t )

M2
d3aj0 , (2 .6 .12)

where

and the convergence factor To(x0) G Co°(R3). Write

\ ( -  _ rt (x ~ x o)2 V2 z 2 7 . G ( y o )  H { z q )  A i x 0 , x ,t) = — ^ —  + -  + - + x 0  + - r  + — r ,

where

and

G (yo)  ■= \  (</o -  2v o ( y  - 1®?)) .

H (zo) := \  (zo -  2zo(z -  *®o)) ■

If y0 and zQ denote the non-degenerate critical points which minimise G and H  respec­
tively, then by Laplace’s method

(2tTty2) 2 J T0 (x0 ,y 0 J 0 ) e x p < ---- -
1 /  (x -  Xq) 2 y

21

7 , G(y0) , H(z0)+

x

x / exp G"(y0)(yo -  yo) > dy0 dx0 ,

as fi ~  0. Assuming G"(yo) > 0 and H n(zp) > 0 we obtain 

(2 irtii2 ) ~ 2 J T 0 (xQ,y 0 , z0) [G"(y0 )H,f(z0)]~^

In our example

x exp < — -
I V2

yo =  y -  t x o

1 f ( x  -  x 0 ) 2 y 2 z 2 7  G{y0) , H (z0)
21 +  Y t +  Y t + X ° +

+

and zQ = z - t x o ,

dz0
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so that

u ~  fa tf j ,2) '*  I To{x<h yo,zo)[G”(yo)H"(z0)\

x exp { - j ?  ( * °  -  r 1 ~  l x ° + x l v + x ° { z + s ) ~  t ° + 1 ) } d2:t

Thus our polynomial swallowtail has a generating function of the form 

V ( x q )  = x 70 +  A x o +  B x o +  Cxi  +  Dx o +  E xo •



Chapter 3

The Stochastic Polynomial 
Swallowtail

In this chapter we are primarily concerned with the stochastic viscous Burgers equation in the  
case V  =  0 and the corresponding heat equation. The noise is introduced by m eans o f a one 
dimensional Wiener process W t on the probability space { 17, jF, P }  which in our case will act in 
a fixed general direction. Analogous results o f the geometrical relationship in th e deterministic 
case are discussed and we consider the examples o f the cusp and polynomial swallowtail in 
the stochastic setting. The chapter concludes with a result concerning the expected number 
o f cusped m eeting points o f the level surface and caustic.

3.1 Introduction
Here we are considering the stochastic Burgers equation for the velocity fields =  
v^(x, t) ,  x  G t > 0

t) +  { i f  - V ) i f  = ^ A v *  -  VV(*) -  e V k { x ,  t)W t ,(Jl/ £
with initial velocity v^(x,0) = VS'o(aj) where p,2 is the coefficient of viscosity and V, k G 
C2. Applying the logarithmic Hopf-Cole transformation =  — /i2V ln iiM we obtain the 
Stratonovich type heat equation

duv Uj2 . .. 1 x„ N „ £ ,, x „ •
+  — V (x)uM +  —zk(x, t ) ^  o Wt , 

at 2 \±l

where 0) =  exp .

Consider a curve 7 =  (A'(s) : s < t, A(0) =  0, X(0) =  po} where X s is adapted with 
respect to Ts. The stochastic action A[7 ] is given by

A[ 7] =  A[x0 ,p0 ,t]

=  I  d s - e f k { X { s ) , s ) d W s ,

60
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where X s = X (s ,x 0,po) must satisfy the second order stochastic differential equation

dX(s)  = - V V ( X ( s ) )  ds -  e X k (X (s ) } s) dWs , (3.1.1)

for s G [0, t\ with X(0) =  x0, -^(0) =  Po• Here p0 is an as yet unspecified function of x0.

Lem m a 3.1.1. Assume So,V  G C 2 and h(x,t) G C2,0, W ,  Vfc are Lipschitz and all 
second derivatives with respect to space variables of V  and k are bounded. I f  X s satisfies 
Equation (3.1.1) and po is possibly xo dependent then

§ f « ( x o , P o , t )  =  X ( t ) ? £ & - X a ( 0 )  , ( 3 . 1 . 2 )

almost surely.

Proof. See [15]. □

We set
X ( s , x 0, x )  =  X(s ,xv ,p 0)\po=p(XOiX:t) ,

where p0 =  p(x0, x, t) is the random minimiser of A(x 0 ,po, t) with X ( t , x 0 ,po) = x  which 
we assume to be unique. Note that we are also assuming here that the map Rn —> Rn 
where p0 X ( t , x 0 ,p0) = X t>xo(p0) is onto.

Similarly setting
A ( X o ,  X,t) A { x § ,  Po> t )  \ p Q= p ( x o , x , t )  ’

it follows from Lemma 3.1.1 that

d
dxg

A ( x 0,X , t )  = - X a(0) ,
fixed (x, t)

for a  = 1, 2 , . . . ,  d. Hence if we define the stochastic action corresponding to the initial 
momentum V5o(xo) by

A ( x 0, x , t) = A(xo, x , t) +  S 0 (x0) ,

then
d

dxg
A (x 0 , x , t )  = 0 ,

fixed (x , t)

for a  = 1, 2, . . . ,  d  defines the classical mechanical flow map with x =  $ t (a:0).

3.2 Geometrical Result of Truman, Davies and Zhao
Here we provide a brief account of the main geometrical results obtained by Truman, 
Davies and Zhao in [15] and [14] for random caustics and level surfaces. We omit all 
proofs and only consider the two dimensional case. Interested readers are referred to the 
original account in [15] where full proofs and arguments in higher dimensions may be 
found.
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We begin by assuming that

d 2A
Det

dxodx
{x0 ,x , t ) t̂ O , (3.2.1)

for x 0,x  6 K2. Although this assumption may be weakened it is sufficient for the situa­
tions we will consider.

L em m a 3.2.1. The classical flow map x = $ t (xo) is a differentiable map from to
Ht with Frechet derivative

m t { x o )  =  ( - ^ (xo’a> t})  ( i ^ (x°’x ’t])  ’

i f A  is C3 in space variables.

P ro p o sitio n  3.2.2. The normal to the pre-level surface at xq is to within a scalar mul­
tiplier given by

C oro llary  3.2.3. In two dimensions consider a point xq 6 Ht where n(xo)
0 and Ker o)»£)) = <  eo >> eo being the zero eigenvector. Then the tangent
plane to the pre-level surface at xo, TXo, is spanned by eo.

P ro p o sitio n  3.2.4. Consider a point x 0  G Q f l Ht where n(xo) ^  0 so that $ f lHt does 
not have a cusp at x 0. Then Ht will have a cusp at x  =  $t(xo) i f $ t (x0) € Ct . Moreover, 
i f  X = $ t (xo) e n  Qf'Ht} ,  then Ht will have a generalised cusp at x.

The point here is that under the assumption in Equation (3.2.1) the geometrical 
results discussed in the deterministic case still hold true in the random setting.

3.3 Explicit Form of the Noisy Heat Kernel
In the section we will derive an explicit form for the noisy heat kernel when V(x) = 0 
and k (x , t) = x. We shall illustrate two possible methods that may be used and prove 
the equivalence of the results obtained. Variations of the explicit heat kernel discussed 
here may be found in a number of works, see for instance [53].

M e th o d  1

For V{x)  = 0  and k(x,t)  = x  the Stratonovich type heat equation reduces to

2

du = ^ - A u d t e - ^ r u  o dWt . (3.3.1)
2 i±l
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If we define gt(x ,x0) by

\agt(x ,x0) := I n H  -  (* ~  Xf  +  f \ x  -  x 0 ) sd W a + e ^ W t , (3.3.2)
ztf i  t g  j o g

then on differentiating with respect to t we obtain 

dgt 1 dt { x - x 0 ) 2 s ( x - x 0) x 0

T  = ~  2 T  + -  ¥ s dt I (x - Xo)s d W s+ £ — i r ~  ° d W t + ° m

= ~ \ l + -  W ^ d t l {x -  Xo)sAW° + 6  J ° dWt ■ (3-3-3)
Differentiating Equation (3.3.2) with respect to x  gives

g[ = _ ( x - x o ) + ± _ r  
9 t  t/ j ,2 t f i 2 1

and on differentiating again we obtain

g [ = ( £ \ 2 _ J _  
gt \ g t J tg 2

Thus from Equations (3.3.3) and (3.3.4) we see that

£ s l d t +  4  o m
2 gt g 2

(3.3.4)

1 dt dt I (x -  x 0 ) 2 £ f  f  JT, r \  2 £(x -  x 0) f  JTJ. I x
= + +  /  s d W s -------- *—■— / sd W s \ + £ - ^ o d W t

\  2 _  2 £ ( x  -  Xq) f l

2 t ' 2 g 2 |  t 2 t 2 \ J 0 ~ ~ " bJ t Jo " ~ " s j  ' ~ n

i +u c m '- < - 5»
Observe that

o , d  Ws = W [ J o S2 ds) = W [ j ) ^ J j  3 .

for large u, so that the integral

f s d W ,  = w (  f Us 2 ds )  ~  ( ^ r X  =  ^  ,

i w G M
is well defined as g ~  0. Since

t  /  r u  \  2

5<*expU ^ U sdWi
=5‘exp< l ! $ r > ( £ adW-) } ^ k ( t sdW)

+  e x p < /„ w U  s d M / s l  } d 9 t '
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we may write (3.3.5) as

,2 J !

^ - — dt + £ ^ o d W t 
2 9t g

Thus if we define

} d ( 9 t e x p { £i ! ^ U o  s d w \

t  /  r u  \  2

(3.3.6)

G t ( x , x 0) :=  ( 2 tth2) s e x p j e 2 ^  2] ^ ?  ( /  Sc^ s)  j & f c . z o ) ,

then the right hand side of Equation (3.3.6) may be written as

dGt
(2?r/x2) 2<2t ((27r/z2)2Gt) =  , (3.3.7)

and so we have
g 2 GI x ii2 gI x
— — dt -\-e— o dWt = - —  +  e - z  o dWt 
2 Gt g 2 2 gt g 2

dGt
Gt

Thus, after applying the integration by parts result, we see that the Stratonovich type 
heat equation with zero potential has heat kernel

^  r n 1 f  (x  ~  x o)2 , x W t (x  ~  x o) C  jGt{x,x0) =  —— — r e x p <  - -  ■ +  £—5-  -  e— ——  / Ws ds
(2 irg2 t ) 2  [ 2 tg 2 g 2 tg 2 J 0

+ ' ' i ‘ 2 ^ 5  ( I  * * • ) ’ }■ (3'M)

Hence, if ufX(x, 0) =  exp s°^°)^ } then the solution is given by

iF(x, t)  = J  Gt(x,Xo)F(xo)dxo ,
R

where F (x 0) = exp |  —̂ 5 o (^ o ) |-  This may be written as

u^(x,t)  = (2 ng 2 t ) ~ 2  J  exp ^ - - ^ A ( x 0, x,t)^j dx0 ,
R

where the phase function A  is given by

A ( x , x 0 , t ) = ^  ^  - £ x W t + £ ^X ^  J  Ws d s - £ 2 J  5dkEs^ + S 0(zo) •

(3.3.9)
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M etlhod 2

The stochastic action in this case reduces to

A(x 0 ,p0 ,t) = ^  X 2 ( s ) d s - e  X ( s ) d W s ,

wher<e X s = X ( s , x 0 ,Po) satisfies the Euler Lagrange equation

dX{s) = - e d W s , (3.3.10)

with X(0) =  po, X(0) =  Xo. From Equation (3.3.10) we obtain

X ( s ) = p 0 - e W s ,

and
X(s)  = x 0 +  spo — £ /  Wu du . (3.3.11)

Jo
Thus;

A (x 0 ,po, t) = ~ J  (pi +  e2W 2 -  2p0 £Ws) d s - £  J  ^ x 0 + sp0 -  £ J  Wu d u j  dWs

= lp2° + J Jo W° ds "  £PotWt ~ £X<>Wt + £2 Jo (Jo Wu du)  dWs '
By integration by parts

* t  /  r s  \  r t  r t

E2 /  (  f  W u  d u ) dW 3 =  e 2W t f  W u d u - s 2 [  W 2 ds , 
Jo \ J 0 /  Jo Jo

so tha t

A(x 0 ,Po, t) = | p i  -  £p0 tWt -  £XoWt +  e2 Wt J  Wu du -  y  J  W 2 ds . 

But from Equation (3.3.11)

. N x — Xo £ TT, ,
p{x0 , x , t )  =  —   h -  /  Wu du ,

t t Jo

so that

A (x 0 ,x , t )  = A{xo,po,t)\w=p{x0'Xf) + S0 (x0)

J r* Wu du -  sxWt + ^  ( J *  Wu d u )
(x -  Xo)2 J x  -  Xo) f ‘ „ r J .. , £‘

2t  t
.2 rt- £-̂  J  w 2 d u  + S 0 {xo) . (3.3.12)

We shall see shortly that the results obtained by the two different methods are almost 
surely equal.
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3.4 Equivalence with Earlier Result
In his recent thesis [41], B. Reynolds obtained the stochastic heat kernel for Equation
(3.3.1) by allowing u  \  0 in the stochastic Mehler kernel obtained in [52] by Truman 
and Zastawniak. This gave a Stratonovich type stochastic heat kernel, namely

^  / , . 9 , (x — Xo)2 xW t £
Gt(x ,x0) = (27TfjJ2t) exp ^ ------ ---------- —o — (2: -

2t ^ /.i* t[A
.2 r t

Wrdr( x - x 0) J
odWr

Equivalence with our Ito type stochastic heat kernel, Equation (3.3.8), is provided by the 
Lemma below.

L em m a 3.4.1. If

and

X t(u,) := J  (  j T  a ( l  -  j )  ° dW ,, )  o dWr ,

7 - i r ’
then X t(uj) =  Yt(u) almost surely.

Proof. Using integration by parts on X t yields

W , £ . (1 -  9  f w A  { J \ ( l  -  9  o w ,

-  J  Wrl~Y Jo s ° dw‘+ r (* ~ D  0 9Wr]

f. ?  {rW- *• -  i * r ( ‘ -  D  ° 8 ( ? )

Wo ds dr

-  [  Wr2dr
2 In "

Wo ds dr .

Whilst the process Yt may be written as

W .ds') d r + 1  [  -9r
r  \  2

W* d s i  dr .
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However

\ ! ' M L m
W .ds'l dr = - l  [  (  [  W .ds'l d ( i

_t

1 ~ ' W*ds W«ds Wr dr

W, ds d r .

and we have

But we know

so that

(3.4.1)

u :
Ws ds > = 2 W r l /  Wgds)  dr ,

( I

(  j f  W s d s^ j = 2  J * W r (  j f  W. d s )  dr ,

which when inserted in Equation (3.4.1) completes the proof. □
Remark 3.4.1. Note that Equation (3.4.1) proves the equivalence of the expressions in 
Equation (3.3.9) and Equation (3.3.12). Thus we have three equivalent forms of the 
stochastic heat kernel.

Using our explicit heat kernels we observe that in R3 we have

8 A  f  X q — X  £

d x 0 - \ L w -

dS 0  2/0 -  y dS 0 z0 -  z dS 0

dx0’ t dyo’ t dz 0

so that

Det
d2A

dxdxo
= Det

0 0
0 ~ \  0 

. 0 0 - i i
=  ~ f i * 0>

for all t > 0. Hence the assumption made in Equation (3.2.1) is always true for V  = 0 
and k = x.

3.5 Explicit Examples
We begin with a proposition relating the random and deterministic caustic where su­
perscript zeros and epsilons are used to represent deterministic and random situations 
respectively.
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P ro p o sitio n  3.5.1. The random caustic is determined by

dX°(t)
Det

where

dx 0

Det

=  0 ,

x 0 ~ x o ( x - t ) \ x = x + t  f t  W s  d

dX°{t)
dx 0 X Q  =x%(x,t)

=  0 ,

is the caustic in the deterministic case.

Proof. In the deterministic case X°(s)  = Xq +  sS'0 (x0), so that from

X°(t)  = x = x 0 +  tS'0 (x0) ,

we may obtain xq =  Xq(x, t). Similarly in the stochastic case we have X £(s) 
sS'0 (x0) — £ Jq Wu du so that from

we obtain

Trivially

X £(t) =  x  =  x 0 +  tS'0 (xo) -  e (  Wu du ,
Jo

X q =  X q ( x , t ) =  X q { x  + £ Wu du, t) .
J o

dX°(t)
(■t) = l  + tS'o(x0) =

dx 0 v~' * ' ~~uv u/ dx 0

so that the pre-caustics are identical. Hence the random caustic is given by

^  d X e , .  Det —— (t)

Det

Det

Det

dx 0

d X £
dx 0

dX°
dx 0

dX°
dxn

(t)

it)

it)

xo=xf)(x, t )

xq= x ^{x+ s / J  W u du,t)

xo=x%(x+e  /q  W u du,t) 

x o = x o(x J)\x = x + e j t Wudu

=  0 , 

=  0 , 

=  0 , 

=  0 .

Thus the noise simply displaces the caustic by the random quantity e Wu du. □

We may of course consider the slightly more general case of noise in a fixed general 
direction as opposed to parallel to the x-direction. Namely we are considering a random 
force of the form

£ V k (x , t )W t =  £(cos0,sm0)Wt , (3.5.1)
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for fixed 0, so that k(x , t )  =  xcos 0 +  ysm9.  Choosing to work in a (£, rj) coordinate 
system where

(C \  _  (  cos$ s in 0 \ f x \
\j]J y—sin0 cos 9J \ y j  ’

the noise is parallel to f  so that the heat kernel is given by

-A(£, £0. t) = lg ~^°|2 -  efWi + £ ^ 7 ^  j f  W- d“ -  J ‘ ( j f  SdW*) + ’

where

So(£o) =  5'0(x0(&,^o),2/o(&,^o)) =  S0(£ocos0 -r/o sin0, 770cos0 +  fo sin0) .

In this new coordinate system the pre-caustic is determined by Det[/ +  tS^] = 0 
and the random caustic is simply the deterministic caustic plus a random displacement 
e f* Wu du in the direction f .

Remark 3.5.1. It may be shown that Det[/ +  t5J(£0)] =  Det [I +  £5g(a;o)] so that for the 
more general potential in Equation (3.5.1) the pre-caustic in the (x, y) coordinate system 
is still determined by Det [I +  tS'g(cco)] =  0.

P ro p o sitio n  3.5.2. For the two dimensional Burgers equation with potential of the form 
(xcos9 +  ys in9)Wt, the (pre-)level surface, S (x ,t)  =  c, of Hamilton’s principal function 
is given by

? ( & * ) & ( & )  +  - e  f ) w u d u j  e W i - y  j T w J d u  =  c , (3 .5 .2)

^ (  cos 0 s in 0 \where f  =  . Q Q ] x.sin 0 cos 9J

Proof The stochastic flow mapping is determined by V^.4 =  0 which yields

£ =  £0 +  fVSo(xo) -  P )  j  Wu du .

Thus using our explicit formula for A(£ ,£ 0 ,t) we see that the pre-level surface is given 
by

l 
21

t v  So -  ( q )  J *  Wu du -  e b o  + t ^ ~ e J * W'‘ duj  W‘

+ f  ( ‘ t  -  ‘  s  ( I  ' * • ) ’ + c  •
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which reduces to

V 50 - W ,w-du) - e k o  + t - ^ - ed§» I* wwr‘l w-du Wt

—  £ ' ( M L sdW. + 5 0(€o) = c .

Finally using the fact that

yields the required result. □

For explicit examples it is often easier to work in the (x, y) coordinate system since 
this allows us to obtain the pre-level surface in the form yo(xo)- In this setting Equation 
(3.5.2) becomes

11 V 50|2 +  S 0 (x0)~  < C{6 ), x 0  +  t V S 0  > sWt +  e2 Wt [  Wu du -  ^  f  W 2 du = c ,
6  Jo ^ Jo

(3.5.3)
where C( 6 ) := (cos#, sin 0). Similarly the flow is given by

(x0) =  xq +  t V S 0 {x o) ~  eC(0) [  Wu du .
Jo

Remark 3.5.2. Observe that if p£(xo,yo) denotes the expression on the left hand side of 
Equation (3.5.3) then

E b £(zo,2/o)]=P°(xo,2/o) +  e2E f w t W u d u  -  j  

=  p°{xo,yo)  +  j t 2 .

3.5.1 The Cusp
For So{x0) = \xoVo the pre-caustic is given by yo{xo) =  \ { t2xo — 1) and

du

**<*•>- f e ) + ,( T
so that the stochastic caustic will be

x(xo) =  t 2x 0 — £ cos 9 / Wu du ,
J o

31 1 [ fy(x0) =  -wxo -  -  -  esind Wu du .* t Jq
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For the pre-level surface we have 

|  ( x l v l  +  \ x t )  +  \ x oVo ~  cos 0 (x0 +  txoyo) eWt

-  sin 0  I yo +  - x \  ) eWt +  e2 W t j ' w u d u - ^ j ' w Z d u ^ j  =  c ,

which is simply a quadratic in y0, namely

y° (K~ r f)  + Vo (~2 ~  etx°Wt cos 6 ~ eWt sin

+ ^Xg -  xo cos 8 eWt — ^  sin 6 eWt + e2 ( w t j ^  Wu d u - ^ J ^  W 2d u ) - c  =  0 .

Solving this quadratic yields
, , I f  2 . , e ^ ic o s  9 , eWtsinO

V o M  =  TT-oT 1 -®0 ±  v A  r +  -------------  + xg*
for x0 7  ̂ 0 and V t >  0, where 

V t := 8cfcrg +  Xq — t 2 x® — (sin0 ( l — x^t) — x 0 t co s 6 )

+  4e2 ^VF2 (£x0 cos 6  +  sin 6 ) 2 — 2 tx l  t J  Wu d u — ^ J  W 2 du^ ^ .

Hence applying the mapping yields the level surface

'(x o) = 7r ~  l xo V ^ t  \  + ecosO [  u d W u + e sin 0—
2x0 I J 7o

a;

2/(z0) =  —^  { a # 2 _  x o ±  V A }  -  £sin0 ^  Wu du -  +  ecos0—x lt

i

o

0
-1

Figure 3.1: Brownian Motion Sample Path

In order to obtain plots of the random caustic and level surface we use a Brownian 
Motion simulation in Mathematica (see Appendix A) that can be used to produce the 
random terms. Fixing u  G Cl we consider the sample path t —» Wt(u) of Wt shown in 
Figure 3.1.

In Figure 3.2 we have illustrated the pre-curves for t = 1 ,2 , . . . ,  6 where 0 =  | , e = ^  
and c = 0. As per usual the pre-caustic is identified by the use of a broken line. The 
corresponding image curves are shown in Figure 3.3.
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t = i t  = 2 t  = 3

6t5t4t

Figure 3.2: Pre-Curves for the stochastic cusp with 0 = | , e = ^  and c = 0

t = i t  -  2 t  = 3

4t t  = 5 6t

Figure 3.3: Image-Curves for the stochastic cusp with 9 = | , e = ^  and c = 0
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3.5.2 The Polynom ial Swallowtail
For 5o(cc0) =  x% +  xfyo, the pre-caustic is given by y0 (x0) =  ~ j t +  2t xq — IOzq and

so that the random caustic is given by

x(xo) = —lbtxQ + 4t2xl  — ecosO /  Wu du ,
Jo

2 1

For the pre-level surface we have 

t

1 f*y(x0) =  —— +  3txl — IOzq — esin# / Wu du .
Jo

-  |(5xq  +  2 x 0 y0 ) 2 -f +  a;o +  xfyo -  cos9 (x0 + 1 {px^ +  2 x QyQ)) eWt

-  sin 9 (y0 +  t x0) eWt +  e2 ( \V t J  Wu du -  ^  J  W 2 du^ =  c ,

which reduces to the quadratic

y^(2xlt) +  2/0 (lOtoo +  xl  — 2txoeWt cos 9 — eWt sin 0)
251 o t 
~2 ~x° +  2

 „ /) j-~2.

/  W „ d u - i  f  W l du
Jo 1  Jo y

— xoeWt cos 9 — btx^eWt cos 9 — tx^eWt sin 6  — c =  0 . 

Thus the pre-level surface is given by

. , 1 r c 9 , /— 'i £Wt cos9 sW+sinO
yo&o) = ^ 21  { -lO te?  “  ±  H  --------+

for Xq 7̂  0 and V t > 0 where

:= 12taJ — 4t2Xo +  Xq +  8 ctxl — 2 sW tx l  (sin 6  ( l — 4t2Xo +  lOtXg) — 2 t x 0 cos 6 )

+  £2 ^VF2 (2tx0 cos 6  +  sin Q) 2 — 8 x \ t  ^ W t J  Wu d u — ^ J  W 2 du^ ^ .

Thus applying the random mapping $*(#0) to the pre-level surface gives the level surface
as

x (x0) = \ x l  ±  y / v A  + ecos9 [  u d W u +  -£—Wt s in9 ,
2xq t J J 0 2xo

y{x°) =  —^  {-lO teg  + t t 2xl  - x l ±  y /V t^  - e s i n 9 ( ^J  Wu d u - +  £ cos 9—— , 
2 x 0

for xo 7̂  0 and V t > 0. In Figures 3.4 and 3.5 we have illustrated the pre-curves and 
image curves respectively using our sample path with 9 =  | , e = ^  and c = 0.
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t  = 1 t  = 2 t  = 3

6t
T ~r

5t4t

Figure 3.4: Pre-Curves for the polynomial swallowtail with 0 =  | , e =  ^  and c = 0

t  = 1 t  = 2 t  = 3

6t5t4t

Figure 3.5: Image-Curves for the polynomial swallowtail with 6  = | , e = ^  and c =  0
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3.6 The Three Dimensional Setup
Here we consider the case of one dimensional noise in a general direction for a three 
dimensional coordinate system. If ex , e y and ez are the unit vectors of a right handed 
cartesian co-ordinate system at the stationary point O, and ew is the unit vector parallel 
to the direction of the noise then we have the following situation,

ez

w

If ep denotes the projection of ew onto the xy  plane then

ew = cos 4>ep -I- sin (j>ez
=  cos (p cos 6 ex +  cos 4> sin 0 ey +  sin 4>ez .

Thus we are considering a random force of the form

V k ( x , t ) W t =  (cos </> cos cos</>sin0, sin</>) Wt ,

where Wt(u) is a one dimensional Wiener process. Hence setting

C((f>,6 ) := (cos</>cos^, cos^sin^, sin^) ,

we obtain

A (x ,  x 0 , t )=^~  — (x,C(<j>,6 ) )eWt + j { x - x o,C(<t>,0 ))£ J  Wu du

+ i  ( X  Wu d“)  _ t  £  d“ +5o(Xo) •
P ro p o sitio n  3.6.1. For the three dimensional Burgers equation with potential of the form 
(x cos (f> cos 0 +  y  cos 4>smQ + z  sin (f>) Wt, the (pre- )level surface, S ( x , t )  = c of Hamilton’s 
principal function is given by

l-  |VS'o(®0)|2+5o ( x 0 )+e2 Wt J  Wu d u - j  f  W .2 d u - { x 0 +  t V S 0 (x0), C (0 ,0)) sWt =  c ,

(3.6.1)
where C{4>,9) := (cos f> cos 0, cos 0 sin 0, sin f>).



76

Proof. Observing that

$ l ( x 0) = x 0 -  C( 4*), 6 )e [  Wu du +  t V S 0 (x0) ,
J o

if follows from our expression for A ( x , xq ,t)  that the pre-level surface is given by

1_
21

-C{<j>,6 )e J  Wu du +  tVSo -  ( x 0 -C{<j>,6 )e Wu du +  t V S 0 ,C(<j>,9)\eWt

+ j  l-C{4>, 6 )e J *  Wu du + t V S 0, C(4>, 6 ) \ e  J * W u du + Yt Wu d u )

e2 f*
-  — J  Wu du +  S 0 ( xo) =  c .

Using the fact that \C(<j>̂ 9)\ = 1 yields the required result. □

Remark 3.6.1. Equation (3.6.1) is the analogue of the Eikonal equation obtained in the 
deterministic case. To obtain the level surface we must evaluate Equation (3.6.1) at
x o = ( ^ t ) ~ \ x )-

Let us now consider our archetypal examples in the three dimensional case: the but­
terfly and three dimensional polynomial swallowtail.

3.6.1 The Stochastic Butterfly
The butterfly is generated by taking So(#o) = x\y$ +  x\z§ and is the three dimensional 
analogue of the cuspoidal two dimensional caustic. It is considered in detail in [14], [15], 
and [41]. We only consider it briefly and refer the interested reader to the aforementioned 
references.

Taking 5o(®o) =  xoVo +  x \ zo we see

/  x0\  /  3zo2/o +  2x0Zo\
$ t ( x o) =  I 2/oJ + t  I zjj \ -  C{(f>,e)£ j  Wu du .

The pre-caustic is given by

z(xo, y0) = ~  ( l  -  -  9t2XQ +  6 t x 0 y0) ,

so that the random caustic is

x(x 0 ,y0) =  9t2xl  +  4t2xl  — 3txly0  — e cos 0 cos 4> / Wu du ,
Jo

y(xo, Uo) = yo + t x l ~ e  cos <j) sin 6  / Wu du ,
Jo

1
z(x0, yo) = -  — ( l -  6 t 2 xo -  9t2XQ +  6 tx 0 y0) -  e sin </> j  Wu du .
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Applying Proposition 3.6.1 and solving the resulting quadratic yields the pre-level surface 

zo{x0, yo) = —^  { ~ xo ~  6 t xoVo ±  \ / V t } +  cos9 cos §Wt +  - ^ - 5  s in<j)Wt , 

for xq 7̂  0 and V t > 0 where

V t := e2 ^ (2too cos 6  cos 0  +  sin 4S) 2 W 2 — Stx^Wt J  Wu du +  4too I  W t d u )

+  2xqWt£ (2tx0 cos 9 cos 04-4£ (to^ +  yo) cos 0 sin 0 — (l — 4 +  6to0yo) sin 0)
+  Zq (8ci +  x l  -  4t2Xg -  4t2o;o +  4tooy0) .

Thus the level surface is given by

x(x0, yo) = r — I  £0 ±  \pDt I  +  ^ cos 9 cos 0 f  u dWu +  sin 4>Wt
2x0 I J y0 2z0

y(x 0 ,y0) = y0 + t x l ~  £ cos 4) sin 9 Wu du
Jo

z(x0, 2/o) =  ^ 2  {4i2xo “  ^0 “  6tXo2/o ±  V ^ }  +  2“  cos ^ cos

+ £ s ^ 4 , { ^ k ~  L W u d u ) '

for xo ^  0 and Df > 0 .

3.6.2 The Stochastic 3D Polynom ial Swallowtail
For Sq(x 0) = xl  +  xfyo +  XqZq we have

/  x 0\  f  7xq +  3xjjy0 +  2 x 0 Zo\
&t(xo) = I 2/0 1 +  * I zjj J  -eC(0,6>) J  Wu du .

Using our results from Chapter 2 we know that the pre-caustic is given by

2o(zo, yo) =  “  { l -  4t2Xo -  9t2̂ o +  42^o +  6to0y0} , 

so that the random caustic is

x(x0, yo) =  oĉ t (—35xq +  9tojJ +  4too — 3yo) — £ cos 9 cos 0 / du ,
Jo

y(x o,yo) =  yo +  ^ 0 - £ c o s 0 s in 0 /  >
Jo

9 1 /**
z(x0, y0) =  —21xq +  -too +  3tog -  3x 0 y0  -  — -  £ sin 0 / Wu du .

Z Zt ,/o
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Applying Proposition 3.6.1 and solving the resulting quadratic yields the pre-level surface 

2o(zo, 2/o) =  —^  { -14ta£ -  6too2/o “  xo ±  ^  c°s 0 cos sin W  ,

for and £>* > 0 where

V t := e2 2tXQ cos 0 cos </> +  sin <f>)2 W 2 — S t x ^ W t  J  W u du -1- 4 t x l  i :  W t d u ' j  

+  2xlWte ( 2 tx 0 cos 9 cos <j> +  4t (tx% +  y0) cos (j) sin 6

— (l — 4t2x l  +  14teg +  Gtxoyo) sin

+  xl (Set +  Xq (l — 4t2xl  — 4t 2 x^ +  20tx^ +  4tx0 yo)) •

Thus applying ^(sco) we obtain the level surface,

x(x0, y0) = \ x l ±  y / V t \  +  sin 4>Wt +  £ cos 6  cos 4> [  u  dWu ,
2xq f  J 2xq Jq

yfao, yo) = yo + t x l ~ £  cos 0  sin 0 / du ,
Jo

z ( x 0l y o )  =  ^ 2  { ^ 2xo ~  14teo ”  6^o2/o -  x l  ±  y / V ^  +  7—-  cos  ̂cos

+  £ sin (f) ( - ^ 7  — [  Wu du

for xo ^  0 and > 0.

3.7 Cusped M eeting Points
In the remainder of this chapter we study the number of cusps on level surfaces of Hamil­
ton’s principal function in the two dimensional setting. We begin by contradicting the 
title of this chapter by considering the deterministic situation.

We know that for an initial function of the form So(#0) =  f ( x o) +  g(x o)yo the pre­
caustic is given by

yo(xo) = tgi ,̂x  \ (*V(zo)2 -  t f " ( x 0) -  1) , (3.7.1)

whilst the pre-level surface is

\  { ( f ( x0) +  g'(x o)yo) 2 +  g(xo)2} +  f ( x 0) +  g(x0 )y0 = c . (3.7.2)

If Vi(xo, t ) and y® (x, t) are solutions of the quadratic Equation (3.7.2), then we know from 
the geometrical result considered in Chapter 2 that the number of cusps, Nc(t) ,  on level 
surfaces of Hamilton’s principal function will be given by the number of Zq’s for which
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y®(x,t) = yo(xo) plus the number of £0’s for which y^ixff) = yo(xo). Thus if we denote 
the left hand side of Equation (3.7.2) by p(x0, yo) then the number of cusps on S ( x , t) = c 
is given by

Nc(t)  = {#^0  : p(xo,yo(x0)) = c} .
Substituting in the expression from Equation (3.7.1) and omitting the x 0 variable for 
brevity yields

v { x  o> Vo (xo)) =  -  |  ^ / '  +  ( t2g '2 — t f "  + £ 2 | + /  +  ( ^ V 2 ~  t f ” -  l )  •

Thus setting F0(xo, t) := p(xo, yo(xo)) for fixed t > 0, we are interested in the number of 
xo satisfying F0 (xo,t) = c.

In [31], Mark Kac proved the following lemma concerning the number of zeros of a 
function f { x o). Here we provide an account of the result and accompanying proof.

L em m a 3.7.1 (K ac’s L em m a). I f  f{x)  is continuous for a < x  < b and continuously 
differentiable for a < x < b then assuming f (x )  has a finite number of turning points the 
number of zeros of f ( x )  in (a, b) is given by

/ oo n b

/  cos[f/(x)] \f'{x)\ drrdf ,
-oo J  a

where multiple zeros are counted once and if  either a or b is a zero it is counted as \ .

Proof Let a?o =  a < a\ < < • • • < <  b =  ctk+i be the abscissae of the turning
points. The we may split the integral as follows,

n b  J *  f O i j  +  i

/  cos [f/(x)] \ f (x ) \  dx = ^ 2  cos K /(x)l \ f ' (x )\ dx
a  7 =  1

3 =

k

2 > /
.7 =  1 J a 3

OLj-1_1

cos[€f(x)] f { x )  dx
3=

k

=  ± 7  [sin[£/(a,+i)] -  sin[£/(a,-)]] ,
3=0 ?

where a +  sign is attached if f ( x )  is increasing on (a j , ctj+i) and a — sign is attached if 
f (x )  is decreasing. Hence if n(a, 6; / )  denotes the number of zeros of f ( x )  in (a, b) then

/oo r b

/  cos[£/(x)] |/ '(x ) | d id ?
-oo J  a

k roo -1

= Y1± /  ? [sinK/(a3+i)] -  sm[£/(a,-)]] d£
j=0 . / - o o  S

=  [sSn / ( a J+1) ~  sgn / ( a j) 1
3 = 0

= n(a,b’J )  .
□
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Remark 3.7.1. The above lemma was actually first proved by Kac in [30] whilst studying 
the distribution of values of trigonometric sums with linearly independent frequencies.

Let us consider the function F0 (xo,t) defined earlier for fixed t > 0. Since we are 
dealing with a polynomial there will exist a 6 R such that — c| > 0 for Xo £
(—oo, —a] U [a, oo). Thus it follows from Kac’s Lemma that

/ oo pa

/ cos[?(Fo(xo, t) -  c)] |Fo(x0, t ) I dx0 df .
■OO J  — CL

Let us see how this works for the cusp and polynomial swallowtail in which we shall 
obtain explicit values for the constant a G R.

3.7.1 Cusp
For S 0 (x0) = \ x l y G we have

F0 (xQlt) = Xq
F xq 31

L em m a 3.7.2. For fixed t > 0 , any real solutions of Fo(xo,t) = c lie in the interval 
(—a, a) where

V3 , ( 2 . p i
o:=i r + U |c|

Proof We begin by observing that F0 (xo,t) = 0 has solutions Xq =  0 and x$ =  

Setting x* = ^  and c* = ( ^ |c |) 6 we obtain

F(x* +  c*) =  (x* +  c*)4 ^ ( x *  +  c*)2 -

> c *4 +  ^
V 2 2 8 /

-  t  *6 _  I I 
“  2 C _ | C |

and by symmetry F ( —x* — c*) > |c|.

Thus we immediately have the following result.

□

P ro p o sitio n  3.7.3. For fixed t > 0 and initial condition So(xo) = \x^yQ, the number of 
cusps on level surfaces, S ( x , t )  = c, of Hamilton’s principal function is given by

cos t 2 X5n -  
X̂>

dz0 df ,
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3.7.2 Polynom ial Swallowtail
For So{x0) = Xq +  XqUq we have

F0 {x0, t) = ^ tx l  -  60t 2 x 70 +  St3xl  +  6xq -  ^ X q  .

L em m a 3.7.4. For fixed t > 0, any real solutions of Fo(xo,t) = c lie in the interval 
(—a, a) where

' St 3 +  y/1 2 t4  +  91 /  2 , , \ s
a := max < — , -------~ 3 j  +  ( ^ | c | J  •

Proof. Define a(x0) := ™ tx 8 — 60t2x 70 and P(x0) = 8 t3xl  +  6xg — yXo> s o  that F0(x0, t ) =
a (x 0) +  /?(^o)- Now a(x0) = 0 has solutions x 0 = 0 and x 0 =  so that a(x0) > 0 for
l*o| > §•

Similarly /3(x0) = 0 has solutions x 0 =  0 and xq =  (—3 ±  \/9  +  12t4). Taking the
magnitude of the largest we see /3(x0 ) > 0 for |x0| > ĝ - (3 +  \/9  +  12t4). Hence setting

. S t  3 +  V l2 t4 +  9 , * /  2 |
5 - - - - - - - - - -   “ d  =  V 2 2 5 4  J

we see

a ( z ’ +  c ')  +  0 ( z ‘ +  z ' )  >  ( z '  +  c ' ) ’  ( ^ f ( z '  +  C )  -  60t2)

( f ^  +  ? f  „ • - « # • )

^ 225t *8 | ,  . * . 8t>  c 8 =  c since a;* >-  2 11 ~  15

By a similar method it may be shown that a (—x* — c*) +  P(—x* — c*) > |c|, so that for 
\x0\ >x*  + c* we have F0(a:o, t) > c as required. □

P ro p o s itio n  3.7.5. For fixed t > 0 and initial function So(x0) = x \  +  xfyo, the number 
of cusps on the level surface, S ( x , t )  = c, of Hamilton’s principal function is given by

Nc{t)  = ~  J  J  Xl C0S f  “  ®Qt2 x 0 +  &t3 x 0  +  6^0 -  -  c

x |x0 (l50tXo — 70t2xl  +  8£3Xq +  5xo — t ) | dxo d f ; (3.7.3)

where a := max | f | ,  3+'^ g 4+9} +  { ^ \ c \ ) %.

Let us now return to the stochastic situation. For the sake of simplicity we only 
consider the case of noise parallel to the x-axis. However there is no reason why the 
following argument may not be extended to the case of one dimensional noise parallel to 
a fixed general direction.



82

Prom Proposition 3.5.2 with 6  = 0 the pre-level surface for So(xo) = f ( x o) +  g(xo)yo 
is given by

2 { ( /  +  d'yo))2 +  g2} +  /  +  gyo

-  (xo + t ( f  + g'yo) - £ w u d u j  e W t ~ ~ ^  JQ Wu ^ u = c -

Consider the function

t ( 'l £ ̂
F£{x0, u, v,  w ) := -  | ( / '  +  g'y 0 (x 0 ) ) 2  +  g 2j  +  /  +  gy 0 {x0) -  —w

-  (rr0 -  ev +  t f  +  tg'y0 (x0)) eu  ,

where /  and g are polynomials in £o and yo(^o) is the pre-caustic. Using the expression
for the pre-caustic from Equation (3.7.1) we obtain

Ft {x0, u, v, w) = ^  |  ( / '  +  ^  ( iV 2 -  t f "  -  1)) +  S2|  +  /  +  7̂ O V 2 -  t f "  -  1)

-  -  (x 0 - £v + t f  + y ,  ( fg '2 -  t f "  -  l ) )  eu . (3.7.4)

Then for fixed t > 0 and initial function S q ( x 0 )  =  f ( x o) +  g(xo)yo, the number of cusped 
meeting points of the level surface Ht with the caustic Ct in the presence of white noise 
parallel to the x-axis is given by

Mc{t) := { # x 0 : Fc (x0, Wt, f ‘ Wu du, f ‘ W l  du) =  c} . (3.7.5)

In order to analyse the random quantity Afc(t) it is necessary to study a random poly­
nomial. We remark at the outset that it has been proved in [6] that the number
of zeros of a random polynomial is a measurable quantity. There is much literature
on the subject of random polynomials, see for instance the papers [29], [28] and [17], 
but these are largely concerned with the case when the polynomial has normally dis­
tributed independent coefficients. Unfortunately this assertion is false for our polynomial
Fc (x„, W„ /o Wu du, f j  W l  d u ) .

By Kac’s Lemma it follows that for fixed t > 0 the number of cusps in the vertical 
strip [a, b] is given by

Mc(u>) (a, b) =  (27T)-1 J r°° J  cos [ |  ( f ,  ( xo, Wt, f ‘ Wu du, / 0‘ W l  du) -  c)

X ^ L ( x 0,Wt, f lW udu,ftWldu) dz0d f .  (3.7.6)

Thus if u  = (u , v , w) then the expected number of cusped meeting points at fixed time 
t > 0 is
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[Arc ( u ) ( a ,  6)] =  (27T)-1 f ° °  f  E [ cos [f ( f £ ( x 0 , Wt, f *  Wu d u ,  f ‘  W l  du) -  c)
J — o o  «/ a L

E

x ^ ( x 0,W t, f i W u d u , t i W l d u )

/ oo pb P
/  /  c o s [£{F£(x 0, u ) -  c)]

■oo J a J

dFP
dXr

{,X0 , u )

dxo d£

f x ( u ) d 3 u d x 0 d£ ,

where f x { u , v,  w)  is the joint density function of

x t : = ( w t , J ‘ W u du, J*  W l  du

The challenge is to determine the function f x (u ,v ,  w).
Consider a random variable X  : Cl —> Rn, then the function L x  defined by

Lx(0) =  E [e x p (-< 0 ,X » ]

=  [  e~{9 'x)F [ X €  dx]
Rn

= j  e~{9'al) f x {x) dx  , (0€<C)

is the Laplace Transform of X ,  or more precisely of the measure P [ I  G da?]. In particular 
if we set 6  = — iX for A G R then we obtain the characteristic function

=  L x ( - i X )  =  J  el{x’x) f x (x) d x  ,

which is the Fourier transform of the measure P [X G dec]. Hence it follows from the 
Fourier inversion theorem that knowledge of W  allows us to determine f x { x )  uniquely. 

We begin by considering the quantity

E exp |  -  A, Wt -  A2 /  Wu du -  A3 /  W l  du

Much work has been done on developing methods for the computation of the laws of 
quadratic functionals of the Wiener process, see for example [16], [12] and [40].

Following the work of Dean and Jansons in [16], we remark that a Brownian motion 
started at some point x  and conditioned to be at y at time t is called a Brownian bridge 
on [0, t] between x  and y. It has the representation j3s +  x  +  (y — x) |  where {(3)o<s<t is the 
standard Brownian bridge on [0,t], namely one that starts and ends at zero. It follows 
from Lemma 6 in [16], that the general form of the law of the quadratic functional for a
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path with both end points fixed at arbitrary points is given by 

.2 rt
E:x — >y exp

~ 7 1

at
exp |  — ̂ acoth(at)  (x2 +  y 2 — 2xysech(at)) +  -^ (x  — y)2|  . (3.7.7)

y sinh(at)

Remark 3.7.2. The essence of the proof of Equation (3.7.7) is to observe

j exp =  E exp du

and use the so-called Fundamental Theorem of Statistics. 
Let us consider the expression

m  ■■= e

where p = (f* dp ) - 1  and dp = y- du. Now

exp j -  J  W l dp +  (2p)^ J* Wu dp -  XWt

0 («  =  e x p ( | } E o exp l - U  ( dp +  A Wt

=  exp i - \ E _V § exp /Jo
W l  dp +  XWt +  Af </£

V 2 ^ i eXP I 2

But using Equation (3.7.7) we obtain

ko =

exp
-  ( X dp  +  A y dy .

a : e x p ( f )  / e x p - f - ^ t a n h  ( f f )  +  ^ t a n h
27r sinh(at)  ̂\  2 /  7 F \  at V 2 7 Vt V 2 ,

y2a
coth(atf) — Xy > dy

coSi(at) 6XP {^F } 6XP { a t
at a t

sech(at) sinh ( J ( ( ^ 2 — £2) cos^ ( ‘y

— 2A£ yft sinh f  y

for Re[acoth(a£)] > 0. After slightly more simplification this yields

E exp y ^  W j d u + ^ j f  Wu d u ~ \ W t

=  /  L _ e x p  f  ?  +  4 =  (sechM )  -  1) +  ( t X 2 ~  f 2) }  •y cosh(at) F \ 2  a V t  ' > > 2 ta  y s ' J
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2 £•
In order to obtain the required characteristic function we set zAi =  — ZA2 =  and 
zA3 =  —A. This yields

a ± V ^ ( 1  _  >

A =  —zA3 .

We remark that both signs yield the same expression for our characteristic function, 
namely

^ {A) =  / cosh ( A - » ) eXP +  ( SeCh ( ^ (1 “  * )  “  0

-  tanh (V A i(l -  i) i)  ( a

where we may write

and

w  / w i  exP {2VAI(1 -  *)*} +  1
cosh{v/A i(l -  t)t) =  2 ex p {^ (1 _ i)i} •

exp |2 \/A i( l — i)t j  +  1

Hence for u  = (u ,v,w)  we have

'OO rb
E

/ oo r° r
/  /  cos[^(Fe(a:o,w) -  c)]

-00 J a J

dFr
dXr

(X0, U) f x { u ) d 3 u d x 0 d£ ,

where

f x ( u ) _ L .  f  e -i(.\iu+ \2v+\3w) Vx(A)d3A 
(2tt)3 y

M3

(2tt)3 /  y
TIP 3 f

cosh ( \ ^ ( 1  — i)t) 

— tanh ( a/A i(1 — z

exp< -
i\%t .A2A
 T z—
4Ai 2A

(sech ( \ A i ( l  -  i ) t j  -  l )

( a '  ( A i u + ^ + h w ) } d3A



Chapter 4

On the Hot and Cool Parts of the  
Polynom ial Swallowtail

In this chapter we investigate the behaviour o f the solution o f the heat equation u M( a a s  
we cross the zero level surface o f Hamilton’s principal function and the caustic. Beginning 
with a discussion o f the multiplicity o f 4>̂ _1 we proceed to  introduce the notion o f hot and 
cool parts o f the caustic and illustrate how these are connected to  exponential discontinuity 
in u°(x, t ) .  A new method is developed to  determ ine whether a point on the caustic is hot or 
cool and this is applied to  provide a full description for the cusp and polynomial swallowtail. 
The effect o f one dimensional noise parallel to  a fixed direction is considered and shown to  
displace the hot and cool sections bodily with the caustic.

4.1 Introduction
In this chapter we are guided by the recent paper [15] particularly with reference to their 
results on the exponential discontinuity of u0( x , t )  for the cusp example.

Let Ct and Ht respectively denote the caustic surface and zero level surface of Hamil­
ton’s principal function. The pre-surfaces are simply the algebraic pre-images of Ct and 
Ht under the classical flow map 4>f, which we denote by $>tlCt and ^ l Ht.

Consider a non-degenerate critical point x  where the multiplicity of 4>̂ "1 { x }  has the 
finite value n =  n(x) .  Denoting the elements of {x} by Xq(x, t) where xl0( x , t )  ^
Xq(x, t) for i 7̂  j  we have

fcr1!*} =  {*o(*>*)>••• (*»*)} •
Prom this it may be deduced that

~  ^ 2  ei exP ,

where

S i(sM ) :=  A { x l0( x , t ) , x , t )  =  A  ( x l0( x , t ) , x , t )  +  S0 ( x i ( x , t ) )  , (4 .1 .1)

86
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for % =  1 , 2 and 0* is an asymptotic series in /A  Details of this asymptotic series 
may be found in [54]. With this in mind we now conduct an analysis of the multiplicity 
of <J>,_1 {x}.

4.2 Analysis of the M ultiplicity of 4>̂"1 {a?}
Here we investigate how the cardinality of the set 4>A {cc}, which we denote by 1 { c c }  | , 
depends upon the value x  considered. We illustrate the connection between the multi­
plicity of i x } and the location of x with respect to the caustic.

Consider the stochastic case in two dimensions with noise in a general direction where 
the phase function is given by

I I2\ X — X q
A{x0, x , t) = ---- ----------(x  cos 0 +  y  sin 9)eWt

+  j  ((e -  x0) cos 0  +  ( y -  y o )  sin 0) /  Wu du 
t  J o

e2 / / • * . .  . N2
+ Q f  Wu du)  - eJ j *  W 2U du +  S0(x0) ,

where x 0  = (xo, Vo) € M2, 5o(*o) ^ anc  ̂^ fomd- To obtain the corresponding results 
for the deterministic case one needs simply set e = 0. Choosing to work in a coordinate 
system (£, rj) where

"A _  /  cos 0 s in 0 \ /V  
77y y— sin 9 cos 9J \ y

reduces the phase function to

12 ^ r t  j i  /  r t  \ 2

M t o , & t) = +  f  tf  -  €°) J  +  ^ dn

- j [ w l d u  + So(So),

where

So{£o) = S0 {£o,r}o) = S0 {x0 (£o, 770)5 2/o (?o> Vo))
=  S0(€o cos 0 — rjo sin 0,770 cos 0 +  f0 sin 9) .

Recall from Chapter 3 that in the chosen coordinate system the pre-caustic equation is 
given by

Lem m a 4.2.1. Consider a fixed point £ = (£, rj) and define

dS r t
C(£o) : = & - ?  + ( £ „ ,  voiv, &)) -  £ J  wtt du . (4.2.1)



A s s u m i n g  t h a t  1 +  ^ 0  we m a y  s o l v e  7 7 =  7 7 0  + t o  o b t a i n  a  u n iq u e  7 7 0 (7 7 , £0 )

a n d  th e  v a l u e s  o f  Q f 1 {£ }  a r e  g i v e n  b y

(&>(€, v ,t ) ,V o (v ,& (7 ,v ,t ) )  ;

f o r  i  — 1 , 2 , . . . ,  n  w h e r e  £J(£, cj, t )  a r e  th e  s o l u t i o n s  o f  £(£o) — 0 .

P r o o f  The flow mapping 4>* is determined by V .4 (£ 0, £, t ) =  0, namely

d A  d A  
W oe(° +

Thus we obtain

v )  W  +  V  0

so that assuming ^  ^  0 we may invert the 7 7-coordinate map to obtain 7 7 0 (7 7 , £0 ). Sub­
stituting into the expression for £ yields

£
flc rt

£ 0  +  t - Q j r  (£0 , 7 7 0 (7 7 , £0)) - e  j  W u d u  ,

so that if £ is fixed then the solutions £J(£,cj,t) of the above will yield the values of 

®._1 (£}• □  

R e m a r k  4.2.1.

i). 7 7 0 (7 7 , £0 ) is a purely deterministic function, a fact which will be of crucial importance 
shortly.

ii). The condition 1  + y  0 may be written in terms of S o  as

1 + 1
■ 2 . 9 2 S 0 n n . „ d 2 S 0 , 2 nd2 S 0sin 0-r—5—  2 cos 6  sm v - —  ---- 1- cos

oXq oxouyo dyQ
7̂  0 .

(®o ,yo) = (xo (£0 ,vo) ,yo (f  0 ,vo))

L em m a  4 .2 .2 . U n d e r  t h e  a s s u m p t i o n s  o f  L e m m a  4 - 2 . 1  a  f i x e d  p o i n t  £ =  (£ , 7 7 ) i s  o n  th e  
c a u s t i c  C t  i f  a n d  o n l y  z /£(£ 0 ) =  0  h a s  a  r e p e a t e d  s o l u t i o n  £5(£, t ) .

P r o o f  In order to obtain the 7 7-coordinate of the caustic in terms of £ 0  we substitute 
7 7 0 (7 7 , £0 ) into the pre-caustic equation giving

1 +  t ^jjr(6>.% (»?>6>))j ^1 +  t L j h  (go, V o(r), 6 ) )  j  ~ t 2 ^ 0f ° Q (& ’ Co)) j  = 0 .  

(4.2.2)
However differentiating 7 7 =  7 7 0 (7 7 , £0) +  £§jjj(£o7 7 7 0 (7 7 , £0 )) with respect to £ 0  yields

U  +  f^jJr(fo>>A>(»7,£o)) ) , (4.2.3)
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which may be substituted into Equation (4.2.2) to give 

1 +  t ^ T  (Co, Vo(v, Co))) f 1 +  (Co, Voiv, Co))

+ t U {v ,io ) (i+4 f  ^ - 0 ^ ' v M ) ) = o -

Since by assumption 1 +  t ^  0 the 7 7 coordinate of the caustic must satisfy

l  +  *^Jr(Co,»to(»7,Co))J + ^ d t o d r i o  ^ ° ’1?0̂ ’ ^  = °  ' ^ ' 2 A ')

But this is simply the equation CXfo) =  0- Thus if there exist ££(£,£) such that 
C(fo(£»^)) =  C i € o ( £ i t )  =  0 then £ G C*. Alternatively if £5 (£,cj,£) are the solutions 
° f  C(£o) =  0  but 7  ̂ 0  for all i  =  1 , 2 , . . . ,  n  then Equation (4.2.4) is not
satisfied and so £ ^ C t . □

C oro llary  4 .2 .3 . I f  C(fo(£>*)) =  C '(fo(£^)) =  C"(?o(£>*)) =  0  t h e n  c t  w iU  h a v e  a  
g e n e r a l i s e d  c u s p  a t  £.

P r o o f .  If C t is described by (£(£o)> ^(£0 )) then the above simply says (£(£o)> v i f o ) )  — 0 
which is the condition for a generalised cusp. □

C o ro llary  4 .2 .4 . A s  w e  c r o s s  C t t h e  c a r d i n a l i t y  o f Q f 1 {£} c h a n g e s  b y  a  m u l t i p l e  o f  2 .

P r o o f  This is an immediate consequence of the fact that for £ G C t the equation C(£o) =  0 
has a repeated solution. □

Let us see how this analysis works in practice for the deterministic case ( e  =  0) in the 
examples of the cusp and polynomial swallowtail.

4.2.1 Cusp
Here we take initial condition 6 0 (^ 0 ) =  2 x oVo and consider a fixed point x  =  (x , y ) .  Then 
Equation (4.2.1) yields

C(z0) =  z 0  +  t  (^ x0y  -  ^ x ^ j  -  x  ,

so that
V 2

C'(xo) =  1 +  t y  -  .

Clearly C'(xo) =  0 has the solutions

1 / 2  \  2
(3 =  x 0 =  ± -  ( - ( l  +  t y ) j  ,
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and it follows immediately that if y <  — \  then C(x0) — 0 has only one solution, so 

|$t-1 {*}| =  i-
Alternatively if y >  — then C(xo) has two stationary points, at which

C(/?) =  - i ± ^ y | ( 1  +  ij/)’ •

Thus it follows that C( x o)  =  0 will have

i). three solutions if and only if

2 / 2 \  _ 2 / 2 „
3i V 3  ( ^ ) 2  <  x  3 j y  3  ( ^ ) 2  -

ii). two solutions if and only if

~ , 2 / 2 „  „ x 3x=±Ttn (1+ty)2 -

iii). one solution otherwise.

This is summarised in Proposition 4.2.5 below and illustrated in Figure 4.1.

P ro p o sitio n  4.2.5. For the initial function So(xo) = ^xfyo consider a fixed point x  = 
(x, y) on the image plane. The multiplicity of { x }  will be

i). three if  and only if  x  is inside the caustic,

ii). two if and only if  x  is on the caustic,

iii). one if  and only if  x  is outside the caustic.

Remark 4.2.2. Along the caustic | ( ^ ) |  =  2 except at the cusp where =  1.

4.2.2 Polynom ial Swallowtail
Let us now consider the more complicated example of the polynomial swallowtail with an 
arbitrary positive coefficient a. If So(x0) =  a x q +  xfyo then for a fixed point x  =  (x , y ) 
we have

C (^ o ) =  5atxQ — 2 t2x l  +  Xo (1 +  2ty) — x , (4.2.5)

so that
^(xo) =  2 0 a tx l  — 6£2Xq +  1 +  2ty  ,

and
C"(x0) =  60atxl — 12t2x 0 .
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Figure 4.1: Multiplicity of 4>f 1 for the cusp

Clearly the solutions of C ^ o )  — 0 are xq = 0 and Xo =  ^  so that CX^o) has a local 
maximum at Xq = 0 and a local minimum at Xq =  The values of C ^o) at these points 
are

t  4
C'(0) =  1 +  2ty and C '(j^ ) =  +  1 +  2ty .

This implies there are two cases that we need to consider:

Case 1 : If y <  (below the lowest cusp) or y > — ~  +  ^ 2  (above the highest cusp) 
then C(x o) =  0 has a single non-repeated solution f t  and a repeated solution f t  in the 
case of equality. Thus C(^o) will look like Figure 4.2. Take x — —00 and consider moving

Figure 4.2: Shape of C(^o) for case 1

horizontally to the right. The corresponding effect on Figure 4.2 is to begin with a graph 
contained wholly above y = 0 and proceed to move it vertically downwards. Initially 
((xq) = 0 will have no real solutions so that to the left of the caustic ^ l {x) =  ft 
When we hit the caustic C^o) =  0 will have a single repeated solution xq = Pi so that 
|̂ >̂ "1(x)| =  1. Finally to the right of the caustic (,{xq) =  0 will have two distinct real 
solutions so that |$ ^ 1( i ) |  =  2.
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C ase 2 : If — T < y < —̂  +  25̂ 2 (we lie vertically between the cusps) then (’'{xq) = 0 has 
three distinct solutions f t ,  f t  and f t .  Thus C(^o) will look like Figure 4.3. Let us once

Figure 4.3: Shape of C(^o) for case 2

again take x = —00 and consider moving horizontally to the right. Using the labelling 
scheme defined in Figure 4.4 we obtain the following. To the left of branch (A) the

V )

(5K  /

A D )

^  (C

Figure 4.4: Labelling for caustic

equation C(^o) =  0 has no real solutions so that (*) =  f t Assuming we reach branch 
(A) at a point other than the point of self intersection, C(^o) — 0 will have one repeated 
solution so that I^F1 (*)| =  1- Between branches (A) and (B) or (A) and (C) we have 
l ^ - 1 (*)| =  2. On branches (B) or (C), I^T1 (*)| — 3 away from the cusped points whilst 
at the cusped points l ^ 1 (®)| =  2. In the caustic tail, i.e. between branches (B) and 
(D) or (C) and (D), we have j^ " 1 (ic)| =  4. Finally on branch (D), (ai)| =  3, whilst
to the right of the caustic I^T1 (®)| =  2.

Note that if we reach branch (A) at the point of self intersection then ( (x 0) =  0 will 
have two repeated solutions so that (^)| =  2. Observe that as we move from left 
to right passing over the point of self intersection the multiplicity of (*) changes by 
4(= 2 x 2).
Summarising the above cases yields the following proposition which is illustrated in Figure 
4.5.
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P ro p o s itio n  4.2.6. For the initial function So(xo) = a x g +  xfyo consider a fixed point
x  =  (x, y ) on the image plane. The multiplicity of { x }  will be

i). 4  if  and only if  x  lies inside the caustic tail,

ii). 3 if and only if  x  lies on the portion of the caustic prescribing the tail but not at a
cusp or point of self intersection,

iii). 2  if  and only i f x  lies outside the caustic or on the caustic at a cusp or point of self 
intersection,

iv). 1  i f  and only if  x  lies on the portion of the caustic not prescribing the tail,

v). 0  i f  and only if  x  is inside the caustic but not inside the tail.

/  /

Figure 4.5: Multiplicity of 4>t 1 for the polynomial swallowtail

4.3 M inimising Ham ilton Function and the Wave- 
front

With S i(x ,t)  defined by Equation (4.1.1), the zero level surface of Hamilton’s principal 
function is given by

Ht = {x  : S i (x , t) =  0, for some i)  ,

where i =  1 ,2, . . . ,  n.
It is clear that the dominant term in Equation (4.1) comes from the minimising 

x 1q(x, t ), thus we are concerned with

S ( x , t )  := min Si(x ,t)  .
1=1,2,.. .,71
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Observe that the zero level set of the minimising Hamilton function,

{x  : S (x ,  t) = 0} , (4.3.1)

will be part of Ht. Moreover u°(x ,t)  switches smoothly from being exponentially large 
to exponentially small on S ( x , t )  = 0. The surface defined by Equation (4.3.1) is tradi­
tionally referred to as the wavefront. Note however that u °(x , t) may also switch discon- 
tinuously from being exponentially large to exponentially small as we cross parts of the 
caustic. This will occur when the minimising 5* disappears.

4.3.1 Analysis of D iscontinuity of u°(x,t) for the Polynom ial 
Swallowtail

In [15], Truman, Davies and Zhao were able to obtain a full description of the exponential 
discontinuity in u° for the cusp by first determining the number of negative S^s in different 
regions of the superimposed caustic and zero level surface. Let us attem pt a similar 
approach in the case of the polynomial swallowtail. To determine the number of negative 
Si’s in different regions we must:

•  choose a point a: in a particular region,

• solve 5atxQ — 2 t2x l  -f xo(l +  2ty) — x = 0 to obtain x l0 ( x , t) for i =  1, 2, . . . ,  n,

• evaluate Q(x)  := #  {i : Si(x, t) < 0 , i = 1, 2, . . . ,  n}.

To achieve the above we perform a numerical analysis using the Mathematica procedure 
outlined in Appendix B. Recalling from Chapter 2 that the topological nature of the
zero level surface changes at t =  a ^ -  we perform the analysis separately for t < a ^ -  and

t > a f .  This yields the pictures in Figures 4.6 and 4.7.
In order to analyse Figures 4.6 and 4.7 we set up the labelling schemes shown in

5

Figures 4.8 and 4.9 . Beginning with an analysis of t < we observe that only the 
top part (curve separating A\  U A 2 and Bi  U B 2) and the lower branch (curve separating 
As and B 3) of the zero level surface form part of the wavefront. The remainder of the 
picture is comprised of surfaces {x  : S i(x ,t)  = 0} where Si is not the minimum. Thus 
as we move from the region A{ to Bi (i = 1, 2,3) we see that uM smoothly switches from 
exponentially small to exponentially large.

In addition the portion of the line pair denoted by C  corresponds to the minimising 
Hamilton function and hence forms part of the wavefront. As we move from A\  to 
A 2, smoothly switches from exponentially small to ~  1 on C and then back to 
exponentially small. Similarly as we move from B\ to B 2, smoothly switches from 
exponentially large to ~  1 on C  and then back to exponentially large. Note that the 
remainder of the line pair comes from Si which are not the minimum and hence does not 
contribute to the wavefront.

Let us now turn our attention to the behaviour of u as we cross the caustic C*. As we 
move from D to A3 we go from a region with four Si s, two of which are negative, to a 
region with two Si s, both of which are positive. Hence u° switches discontinuously from
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Figure 4.7: Number of negative S^s for

t > 4 .

Figure 4.6: Number of negative Si s for

C
A; A2

\ \  B, 

\ \

b2 ✓ '/ ̂  ✓

F \ \x \ * \ \  „ ̂ ' G y / /

\ \

/  /  / / /

ftft
B3 \I b4

Figure 4.8: Labelling scheme for t < Figure 4.9: Labelling scheme for t >
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exponentially large to exponentially small since the minimising Si disappears. Note that 
this change cannot occur smoothly, for if we assume it does then the curve separating D 
and A3 must be part of the zero level surface which is a contradiction.

Similarly as we pass from E or Ai to F the minimising Si disappears and so u° will 
be discontinuous along the portion of Ct between E U Ai and F. A discussion of the 
behaviour of inside the region F may be found in Appendix C. This situation requires 
special attention since for x  E F we know VXo*4 (a;o, x, t) ^  0 for all Xo G R. Hence in F 
there is no minimising xq(x,t).

Finally we see that passing from Gi to Bi (i =  1, 2) doesn’t produce any interesting 
behaviour in u° since the minimising Si carries over. However the behaviour as we pass 
from G3 to or G4 to B4 cannot yet be determined. This difficulty will be rectified by 
a study of the hot and cool parts of the caustic.

5

A similar analysis may be performed for t > namely Figure 4.7. The main points 
here are that the tricorn does not form part of the wavefront but the arc separating 
Uj=1 Ai and U*=1 Bi does. This is effectively brought about by the merging of the two 
parts of the wavefront in Figure 4.6.

In addition we observe that as we move from B2 to B\ or B3 to B±, the minimising Si 
survives so that there is no discontinuity in u°. However on crossing the remaining parts 
of the caustic tail the situation is not yet clear.

4.4 Hot and Cool Parts of the Caustic
If x  € M2 and the initial function So is smooth then it is possible to designate parts of the 
caustic as hot or cool. We now explain what is meant by a hot or cool part and moreover 
show how parts of the caustic are designated as such.

Consider a level surface Si(x,t) =  c which has a cusped point of intersection with 
the caustic at 7. Recall that the condition for {x  : Si(x,t) =  c} to have a cusp at 7 
is VS* (7, t) =  0 . Hence if the part of the level surface cusped at 7 corresponds to the 
minimising #0(7, t) then the Burger’s velocity field

v°(x,t) =  VS(x,t)  —*■ V5j(7,i) =  0 ,
as x —► 7 from the cusped side of the caustic. We denote such points 7 as cool since the 
Burger’s fluid has zero velocity on one side of the caustic. Any points not satisfying the 
cool condition are classified as hot. It is important to note that we are only designating 
parts of one side of the caustic as hot or cool.

Recalling our discussion in the previous section we see that u°(x, t) will be expo­
nentially discontinuous as we cross cool parts of the caustic. This occurs because two 
x 0(x , tys are coalescing as the minimiser at the cusp and then disappearing. Hence 
the minimising surface on the cusped side of the caustic cannot be continued across the 
caustic causing an exponential discontinuity in u°(x,t).

4.4.1 Hot and Cool Parts of the Polynom ial Swallowtail
As we have just indicated, knowing how the number of Si s, in particular the number of 
negative Si s, changes as we cross the caustic is all important in determining the nature
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of parts of the caustic. Let us consider the different combinations which may occur as 
we cross Ct in the case of the polynomial swallowtail. The numbers in brackets represent 
the number of negative S^s.

(i)-

Here the two cusped level surfaces coalescing corresponding to positive 5*’s. How­
ever this is clearly not the minimum Si since there are negative Si present. Thus 
the side of Ct that we have approached is designated as hot.

(ii).

Here the two cusped level surfaces coalescing correspond to the only Si present. 
Hence the cusped level surface must correspond to the minimising xo(a,t), and so 
the side we are approaching is designated as cool.

(Hi).

In this situation there is no reason a priori why the minimiser should correspond 
to one of the coalescing surfaces. Thus we are as yet unable to determine whether 
such parts of the caustic are designated as hot or cool.

Observe that the method described in [15] by Truman, Davies and Zhao is sufficient to 
prove that the whole of the polynomial swallowtail is not cool. However it does not 
provide us with a full characterisation of the caustic as it did for the cusp example.

5

Let us illustrate some of the cases above for t < a^-  by choosing a point 7 close to 
the caustic and looking at all the level surfaces passing through it. The behaviour of 
these level surfaces, especially the minimum, should re-enforce our comments about the 
caustic being hot or cool.

Using the labelling scheme from Figure 4.8 we proceed as follows. In Figure 4.10 we 
have chosen a point 7 G A\ which lies close to the caustic. We know that there will be 
two level surfaces Si(x,t) =  q (i =  1,2) where c* =  Si(7, £) passing though the point 
7. The level surface corresponding to the minimiser is identified by the use of a lightly 
shaded curve.

It is clear that as 7 tends to Ct the cusped level surfaces will coalesce. Moreover 
this cusped part of the level surface will correspond to the minimiser £0(7, t). Hence we 
designate one side of this part of the caustic as cool. The above is an example of Case
(ii).

In Figures 4.11 and 4.12 we have chosen a point 7 G G\. Clearly as 7 moves upwards 
towards Ct the cusped level surfaces in Figure 4.11 will coalesce, but this does not make 
the caustic cool since the cusped part of the level surface doesn’t correspond to the 
minimiser £0(7, t). The behaviour of the level surface corresponding to the minimiser 
is shown by the lightly shaded curve in Figure 4.12 and is not cusped at 7 in the limit. 
Thus we designate one side of this part of the caustic as hot. This is an example of Case
i0-

Prior to crossing Ct 4 (3) 4 (0)
After crossing Ct 2 (1) 2 (0)

Prior to crossing Ct 2 (2) 2 (0)
After crossing Ct 0 (0) 0 (0)

Prior to crossing Ct 4 (2) 4 (1)
After crossing Ct 2 (2) 2 (1)
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0 . 6

0.4

0 . 2

0

0 . 2

-0.4

0 . 6
0.40.4 -0.2 0 0 . 2

Figure 4.10: Level surfaces passing through 7 € A\.
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Figure 4.11: Level surfaces passing Figure 4 .12: Level surfaces passing
through 7 € G\ (1). through 7 £ G\ (2).
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Finally to illustrate case (iii) we choose a point 7 6  G4. We know that there are four 
level surfaces passing through 7, three of which correspond to negative 5* (7, t) whilst the 
remainder corresponds to a positive ft (7, t). These level surfaces are shown in Figures 
4.13 and 4.14. In Figure 4.13 we have plotted the two level surfaces corresponding to

-0.46

-0 .47

-0.48

-0 .49

- 0 . 0 0 2  0 0.002 0.004 0.006 0.008

-0.46

-0.47

-0.48

-0 .49

-0.002 0 0.002 0.004 0.006 0.008

Figure 4.13: Level surfaces passing Figure 4.14: Level surfaces passing
through 7 E G± (1). through 7 G G4 (2).

negative f t (7 ,t) which have not come from the minimiser £0(7it). Clearly as 7 —> Ct 
the cusped level surfaces coalesce, but this does not make the caustic cool since the 
cusped part of the level surface doesn’t correspond to the minimiser £ 0(7 , t). To see 
what happens to the level surface corresponding to cco(7 > we must look to Figure 4.15. 
Here the level surface corresponding to the minimiser is represented by the light curve 
and the other represents the positive ft (7, t). Comparing Figure 4.14 with Figure 4.15 we 
see that the level surface corresponding to ®o(751 ) continues as 7 crosses over Ct passing 
from G4 to £ 4. Hence we designate one side of this part of the caustic as hot.

Remark 4.4.1. Note that the preceding discussion has not resolved our concerns regarding 
Case (iii). Although we have shown an example of a point satisfying Case (iii) that is 
hot we may not conclude that all points of Ct satisfying Case (iii) are hot. We reiterate 
that the method of analysing the number of negative f t ’s has shown that not all of 
the polynomial swallowtail is cool. However in order to characterise the polynomial 
swallowtail completely an alternative approach is required.
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-0 .46

-0 .47

-0.48

-0.49

Figure 4.15: Level Surfaces passing through 7  G B 4 .

4.5 A New Approach for Determ ining Hot and Cool 
Parts

We prove our main result for the case of one dimensional noise in a fixed general direction. 
Our main result depends heavily on the following lemma.

L em m a 4.5.1. I f y  = (£7,?77) is a fixed point, the assumptions of Lemma 4-2.1 hold and

■= ~ / ° )2 +  \  f § | ( 6 »  & )))  -  T  £ Wu du + 5o(?0’ ??o{'?7’?o)) ’

then Si(7 , t) = F(fo(7 ,^)) +  ^ (fy ) f or i — 1, 2, . . .  , n  where £J( 7 are the solutions of 
F'(fo) =  0 and

Ytiir) ■= j f 'Wu du +  ^  ( 7 ‘ d u )  W 2U du .

Proof. Consider a fixed point 7  =  (jc7,t/7) on the image plane. If

®t-1 {7} = {$o(7,*)K1i =  {(So(7^),'?o(%,fo(7,«))}’L1 , 

then by definition

S i (7 ,*) =  .A(£o(75*) , 7 ,* )  = ^ ( S ( 7 ^ ) ^ o ( ^ 7» S ( 7 >*))>7,^) •



Omitting variables for brevity we observe that

, J S o  (  a250 , d 2S o d r , o \  £ / \ „  ,  , 8 S 0 , 9 S 0 &no
F i i o )  =  —  + t W 0 { ^  +  l H W o ) - i J o W " dU +  W o + W o W o

 Co _  C7 _  £
_  t t t
= t - ' a z 0 ) ,

/•<
/ Wu du +  — - using Equation (4.2.3), 

7o ^Co

and so from Lemma 4.2.1 the values of &t 1 {7 } are determined by the solutions of 
F'(Co) =  0. Since *4(Co, 770(777, Co), 7, £) =  F ( f0) +  ¥*^7) it follows immediately that

S ( 7 . f )  =  -F « o (7 .t ) )+ ^ ($ r )  ,

where Co(7, t) are solutions of F'(C0) =  0. □

In light of Lemma 4.5.1 it is evident from Corollary 4.2.4 that as we cross Ct the 
number of stationary points of F(C0) decreases by a multiple of two. Moreover Lemma 
4.2.2 shows that on Ct there will exist point(s) C o(C ,0 which are points of inflection of 
F(:ro)- In effect as we travel from inside to outwith Ct at least one maxima and minima 
pair merge to form a point of inflection on Ct which disappears as we pass to the outside.

Let 7 be a point close to Ct and Co (̂7 , 0  and Co1 (7 ,0  be the coalescing maxima and 
minima respectively. Thus as 7 —► Ct the level surfaces

S M(x ,t)  = F ( ^ ( j , t ) )  + Yt ( Q  ,

and
S m ( x , t )  =  F ( t f ( 7 , t ) )  + Y t ( t y ) ,

will coalesce. Moreover since these level surfaces cannot continue over Ct the coalesced 
level surface must be cusped on the caustic.

T h eo rem  4.5.2. Let 50(C0) ^ C2> Co =  (Co, 770) G M2 and assume 1 +  £§% (£0) ^  0

so that 77 =  770 +  *f*(Co ) may be solved to obtain 770(77, Co)- Consider crossing Ct at a 
non-self intersection point 7  =  (C7, t77) travelling in the direction of decreasing Si(£,t). I f

0 ) := ~ ~2 ^ ^  + \  f ^ ( f o ,  Co))) ~ ~T f0 W“ du +  &(&, %(%,?o)) ,

then there will exist a repeated solution Co( 7 ,  ° f  F'(€0) =  0 . One side of Ct will be cool
at 7  if and only if

F (£o(l,t)) < . min F ( ^ ( 7 ,0 )  , (4.5.1)
1= 1,2

i^r
where C o (7 , t) are the solutions of F '(£0) =  0 . Moreover the boundary of the cool part of 
the caustic is given by

F(£o(nf,t))= . m,in F(8>(V>t)) ■ (4-5.2)z=l,2,...,ra
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Proof. From Lemma 4.2.2 we know that if 7 G Ct then there exists £5(7 , t) such that 
F '(£5(7 , t)) =  -F"(£o(7 , 0 )  =  0. From the preceding discussion this point of inflection 
comes from a maxima and minima pair merging which then disappears off Ct. Thus at 
7 there will be a coalesced cusped level surface on the caustic. If Equation (4.5.1) is 
satisfied then the cusped level surface corresponds to the minimising £J(£,£) making Ct 
cool at 7. When the condition in Equation (4.5.2) is satisfied the value of -F(£g(7>t)) is 
equal to the value of F at a non-degenerate critical point. Hence we are on the boundary 
of two regions: one where E(£5(7, t)) is the minimum stationary value (a cool part of Ct) 
and the other where a non-degenerate critical point produces the minimum stationary 
value of F  (a hot part of Ct). Thus we are on the boundary of the cool part of Ct. □

Remark 4.5.1. F(£0) will have more than one point of inflection if 7 is at a point of self 
intersection of the caustic. If these occur at £Sfc(7 ,t) for k = 1 ,2 , . . .  ,m  where m  < n 
then in this case conditions (4.5.1) becomes

min F (fJ ‘ (7,t)) <  . min F (& (7 ,t)) .
k=l,2, . . . ,m i= l ,2  ,...,n

i&k

Moreover if the point of self intersection 7 is cool then it may be a boundary of the cool 
part in the following sense. If on one of the branches emanating from 7 the minimum of 
the inflection points splits into a local maximum and minimum at neighbouring points 
7 +  8  £ Ct then these points will be hot. An example of this may be found in our study 
of the polynomial swallowtail which follows shortly.

Corollary 4.5.3. u°(£,t) is smooth across hot parts of the caustic but switches discon- 
tinuously across cool parts.

Proof. As we cross over Ct the point of inflection disappears. If we are crossing a cool part 
of Ct this means the minimiser £i(£, t) must disappear and so will switch discontinuously 
to another one. Thus ii(£, t) will switch discontinuously across cool parts of the caustic. 
If we are crossing a hot part of the caustic the disappearance of the inflection point has 
no effect on the minimiser and so u°(£,t) is smooth across such parts. □

Corollary 4.5.4. Under noise parallel to the f^-axis the hot and cool parts of Ct are the 
same as in the deterministic case subject to a displacement e Wu du in the £ direction. 
This shows that the hot and cool parts are displaced bodily with, the caustic.

Proof. In order to distinguish between the stochastic and deterministic situation we use 
superscript e and 0 respectively. All important in the following is the fact that ?7o(̂ 7,£o) 
is a deterministic function.

Writing £e =  (£0) and £° =  $?(£o) so that £e =  £° — e / 0* Wu du we consider a point
7° =  (£7^ 7) on the caustic and the corresponding point 7e =  (££,^7) on the random 
caustic. Clearly

dH ^  t dQ ^°’?70̂ 7’ ̂   ̂% 7’
d2F°

-  *r<*> •
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but moreover

dF £
d£o (&)

d F £
%
dF°
d£o

(fo)

(fo)
£7 £7

Hence C Y iY ,  £) =  £o° ( 7 0j £) for i =  1,2, . . . ,  n and in particular the repeated solutions 
and £o°(7°,t) are equal. Thus

=  ^ ( W ,  *))!*,_<.+*(€?)

= F ‘ ( ^ m ^ o _ £ S > „du + Yt( ®

=  n & V ,  t)) U ={» +  ^  ( _ £  d « )  +£- f f ‘ w '‘d u + y*(S)

= S °( j° , t)  + Yt ,

where Yt := ^  ^/g Wu du^ +  ^  f* Wu du +  Yt. Thus if fo°(7°,£) minimises *S'-)(7°,t) 

then it will also minimise S £( Y , t )  because Yt does not depend on fo°(7°,t).
□

Remark 4.5.2. In our original coordinate system the caustic (and hence the hot and cool 
parts) are displaced by £(cos 6 , sin 6 ) f* Wu du.

The benefit of Corollary 4.5.4 is that we need only consider the nature of hot and cool 
parts in the deterministic case and then simply displace everything by e / 0* Wu du.

4.6 Examples

4.6.1 The Cusp
For the cusp example in the deterministic case we have

t 2 -—  x?

and

^ o )  =  - g 4 + g

F'(x0) =  —2 ®o +  xo(l +  ty7) -  x 1  ,

Since 7  =  {x1 ^y1) G Ct we know F'(x0) =  0 has two solutions: the repeated solution

Zo(7.f) =  ( | ( !  + W
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and

x lo(l,t)  =  f | ( l  +  ty7)

where the sign chosen depends upon the branch of Ct that 7 is on. It follows from the 
shape of F (x0) or some simple calculations that F  (x0(7 , £)) < F  (xK'j^t)), so that the 
coalescing cusped level surfaces correspond to the minimiser and the whole of one side of 
the cusp is cool. Hence the level surface

is cusped at 7 and

S (x ,t)  =

<S(x, t) =

(1 +  ty-,)2 (8 tyy -  1) 
5413

4(1 +  ty1)2(10 +  fa/7) 
2713

crosses the caustic at 7. This is illustrated in Figures 4.16 and 4.17 which show the 
pre-level surfaces and level surfaces respectively.

Figure 4.16: Pre-level surfaces. Figure 4.17: Level surfaces at 7

Remark 4.6.1. An immediate consequence of Corollary 4.5.4 is that the whole of one side 
of the cusp with noise in a fixed general direction is cool.

4.6.2 The Polynom ial Swallowtail
For the polynomial swallowtail in the deterministic case we have

F (x 0) = a x l  -  +  | | ( 1  +  tVl) -  +  f l  .

Let us consider the two cases studied earlier for F'(x0).

Case 1 : Vl < or y7 > - i  +  jg*.
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Since 7  =  (rc7, y7) G Ct we know F' ( xq) = 0 has one only one solution, namely the
repeated solution £0(7 , t). Thus F(xo) has only one stationary point which is a point of
inflection and so one side of this part of Ct is cool.

Case 2 : <  j/7 <  + 5̂ .
We once again adopt the labelling scheme for the caustic defined in Figure 4.4. On branch 
(A), F'(xo) =  0 will have one solution which is repeated and as in Case 1 one side of this 
part of Ct is cool.

If 7  is a point on branch (D) then F '(xo) =  0 will have three solutions rcj(7 , t), 
£0(7 , £) an(i xo(7> 0  where the middle one is repeated. This implies F (x0) will have three 
stationary points occurring from left to right as maximum, inflection and minimum. 
Hence F (xr0 (/y,t)) > F (x l( /y,t)) meaning that the coalescing cusped level surfaces do not 
correspond to the minimiser and so one side of branch (D) is hot.

The situation on branches (B) and (C) is slightly more complicated. If 7  ^  (0, - ~ )  
is such a point then F' { xq) possesses one of the shapes shown in Figure 4.18. The 
corresponding shapes of F (x0) are shown in Figure 4.19.

Figure 4.18: Shape of F'{x0) on branches (B) and (C)

Figure 4.19: Shape of F{x0) on branches (B) and (C)

Since F'{0) =  — x 1  it follows that if x7 > 0 then F'{x0) must look like Figure 4.18 
left and so F'{xq) = 0 has solutions xj(7, t ), ^ ( 7 , t ) and repeated solution Xq(j, t). Thus 
F (x0) has three stationary points occurring from left to right as maximum, minimum 
and point of inflection. Thus F(xQ(/y 1 t)) > F(xl('y,t))  and so one side of the portion of 
branch (B) with x7 > 0 is hot.

If x 1  < 0 then F'(0) > 0 and along branch (B) F'(x0) will look like Figure 4.18 left so 
that one side of this part of Ct is hot. As we move towards the point of self intersection 
the global minimum F'(u) 0 so that at the crossover point F '(x0) =  0 will have two



106

solutions £0(7 , t) = u and £0(7 , t ), both of which are repeated. Hence at the point of self 
intersection F (x0) will look like Figure 4.20 and so one side of this part of Ct is cool.

Figure 4.20: Shape of F (x0) at point of self intersection

Since at the crossover point £0(7 , t) > 0 then it follows that if we now travel along 
branch (C) in the direction of decreasing y then F'(x0) will have the shape shown in 
Figure 4.18 right. Effectively the repeated solution £0(7 , t) splits into the non-repeated 
solutions xK'j, t) and £9(7 , t). Hence F (x 0) will look like Figure 4.19 right where initially 
£(xo(7^)) < £(xo(7>^)) so that Ct is cool. However by the time we reach the cusp at 
(0, — ̂ ) , F (x0) has the shape shown in Figure 4.21 in which the coalescing cusped level 
surfaces do not correspond to the minimiser so that Ct is hot. Hence there must exist a

Figure 4.21: Shape of F (x0) at cusp at (0, —̂ )

point A on branch (C) at which Ct will switch from cool to hot. This is found by solving 
the four equations

F(*g(A,i)) =  F(x’ (A,f)) ,
F'(x 20 ( \ , t ) )  = 0 ,
F'(x%(\,t)) = 0 ,

F"(a8(A,t)) = 0,

in four unknowns X\,y\,XQ(\,t)  and x%(\,t). Solving these yields

f - t 5(3 +  8V6) 1 t3 ( 9 - V 6 ) \
~  I 18000a3 ’ 2t 450a2 I ’
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where rrg(A,t) =  ^  ( l  +  \ / 6), x l ( \ , t )  = ^  (3 -  2\/6).
The above example provides a complete analysis of the hot and cool parts of the 

polynomial swallowtail which is summarised in the following theorem.

T h eo rem  4.6.1. Let Ct be the polynomial swallowtail caustic curve with initial function 
So{x0) = a x o +  xfyo where a  > 0. Consider crossing Ct at a point 7  =  (x1, ?/7) travelling 
in the direction of decreasing Si. As we cross Ct the number of S i ’s will decrease by a 
multiple of two. Moreover the approached side is cool if

____

7 — 500a3 *

or

t 5 —15(3 +  8\/6) , 1 t 3 ( 9 - y / 6 )  ^  ^  1 t 3
 r < Xr, < ------------- -—  a n d  1----- --------—-  < yy < -------1---------- - ,

500a3 -  7 -  18000a3 21 450a2 “  ~  21 50a2 ;

and hot otherwise.

The results of Theorem 4.6.1 are illustrated in Figure 4.22. Recall that u ° (x , t ) will

Figure 4.22: Hot and cool parts of the polynomial swallowtail

be discontinuous along the cool parts of the caustic. Thus if k denotes the point of self 
intersection then travelling anticlockwise around a circle centred at k of radius r < \\k —A|| 
we observe that u°(x ,t)  will be discontinuous along three crossover points of Ct.
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C oro llary  4.6.2. Consider travelling anticlockwise around a circle centred at 

K =  ( “ s m b r -  17 +  50Z?) with mdius r - V

t 3 (3200a2 +  i4 (491 -  176^6)) *
6000a3 \/3

then u ° (x , t) will be discontinuous as it crosses Ct at three points. Otherwise u°(x, t) will 
be discontinuous as it crosses Ct at two points.

Proof. Evaluate ||/c — A|| using the explicit expressions for k and A. . □

C oro llary  4.6.3. In the case of the stochastic polynomial swallowtail with noise in a 
general direction the shape is preserved but the point A is now located at

A = ^3 +  8\/6^ -  £ cos 0  J  W u d u , - - ^  + £ sin 0  J  Wu du
18000a 2

and the self intersection point is at 

t 5 C i t 3
£ cos 0 /  Wu du , +  ——  — esinO /  Wu du 

Jo 21 50 a 2 J 0K ' 500a2

4.7 Outline of the n-dimensional free case
Let us briefly consider the n-dimensional free case. Further analysis of this may be found 
in Section 5.9 of Chapter 5. Here we are interested in the expression

u ^(x ,t)  = (27rp2t)~% j T0 (x 0)exp ( — \ A { x 0 , x , t  \  dcc0 ,J Rn V H J
where in the free case

A ( x 0 , x , t ) =  ^  ^  +  S0(x 0 ) .

If x  = ( x ^ \ x ^ 2\  . . . ,  x M) then we have n  equations of the form

x(i) =  Xqi) +  t ^ % ( x 0) , (4.7.1)
d x y

for i = 1,2, . . . ,  n. If 1 +  t 92,% (xq) ^  0 then we may solve the equations (4.7.1) for
dx0

i = 2 , . . . ,  n to obtain
X o \ x , { x O}}j=l,2 ") '

Moreover eliminating x ^  for i = 2 , . . .  ,n  from the above n — 1 equations we obtain 
Xq\x,Xq1)) for i =  2 , . . . ,  n. Then assuming we may apply Laplace’s method n — 1 times
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to the original integral, we obtain

v f f a t )  ~  (27r/i2t)~* J  T0 ( x io \ x io \ x , x {o )) , . . . , x {̂ \ x , x io ))^

x

i

n  t) exp x , t ) j  da#*

as fj, ~  0 where

^ l(4 1}, a?, t) =  *a(41}, 4 2)(*> 4 1})> • • • > 4 n)(*> 4 1})» ®̂  t) •

To obtain the caustic equation we must solve

» c  » £ - < , ,

by eliminating rr^ . Hence if we define

F ( 4 1}) =  A (x {o \ x , t )  ,

then x  E Ct if and only if there exists Xq’1̂ (cc, t ) such that F ^X q’1'* (x , t)) = F"(xo ’̂  {x, t )) 
0. This is the same condition as in the two dimensional case and so our results there may 
be extended to the n-dimensional case.

T h eo rem  4.7.1. Let x  = {x^l\ x 2̂\ . . .  , x ^ )  E Rn, So(xo) E C 2 and assume the equa­
tions

x {i> =  x f  + t — ± ( x 0 )  ,

OX  o

may be solved to obtain Xq\ x , x ^ )  for i = 2, . . . ,  n. Consider crossing Ct at a non self 
intersection point 7  =  { x ^ \ x ^ \  . . . ,  x7^) travelling in the direction of decreasing S i (x , t).
I f

F(xo}) ■=  ̂ 7 2 °  ̂ +  \ it, (*o1). a;o2)( * . 4 1)) . - - - . 4 n)( * . 4 l)))
i = 2 V ^ o

+  S 0 ^Xq \̂ x^P (cc, Xq1}), . . . ,  Xq2̂ (aj, ajQ1}) )  ,

then there will exist a repeated solution XQr,1^(j 1 t) of F ' ( x ^ )  =  0 . One side of Ct will be 
cool at 7  if  and only if

F (x (0r,1}(y,t)) <  min F (4 l,1)(7 , t)) ,
i=l,2,...,k 

i ^ r

where Xq ,1\ /y,t) are the solutions of F ' ( x ^ )  = 0. Moreover the boundary of the cool part 
of the caustic is given by

=  . m in F (* iw ( 7 , i ) )  •
1=1,2, ...,k 

i ^ r
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4.7.1 The Butterfly
The butterfly is the three dimensional analogue of the cusp singularity and has initial 
function So(®o) =  xoVo + XqZq. M l  details of the butterfly may be found in [41], [14] and 
[15]. We are only concerned with its hot and cool nature and it may be easily shown that

t  6 t  4 . 3 . x 0 , 2 X^Xq
H xo) =  +  xoVy + + x ozi  ~2 2  2 1 u ' t

so that

F'{x0) =  -2>txl -  2txl +  3zo2/7 +  x o Q  +  2 -  y -  ,

F "(2;o) =  -15teo -  6^ o  +  6xo2/7 +  y +  2^7 ,
b

F"'(x0) =  —60^o — 12trr0 +  6y7 .

Consider a level surface y = K. Observe that F ^ ( x 0) =  0 has no real solutions so that 
F'"(xo) has no turning points. It may be easily argued that if 7  G Ct then F (x0) has two 
stationary points: a point of inflection and a maximum. Clearly the value of F  at the 
point of inflection will be less that that at the maximum making the whole of one side of 
the slice cool. This will be true for all slices making the whole of one side of the butterfly 
cool.

4.7.2 The Three Dimensional Polynom ial Swallowtail
For the polynomial swallowtail in three dimensions the function F  is given by

F (x0) = x l ~  +  x lv  + x oz + ^  .

which has derivatives

F'(x0) =  7x1 -  3txl -  2txl +  3xly  +  2x 0z  +  ^  ,
b b

F"(x0) =  42xq -  IUxq +  §tx2Q +  6 x 0y +  2z +  y ,
b

F"'(x0) =  210a;o — 60^o — 12tx0  +  6 y  .

Let us consider slices y = K. The important observation here is that the number of 
solutions of F'"(xo)\y=K = 0 determines the number of cusps on Ct. Thus we know that 
this will have either 0 or 2 solutions depending on the slice being considered.

Slice w ith  zero cusps : Since F"'(x0) =  0 has no real solutions it follows F"(x0) =  0 
has one real solutions, say x 0 = u\. Hence F '(x0) will have a minimum at Xq = u\. 
Moreover if 7  £ Ct then this minimum must be a repeated solution of F '(x0) =  0 so that 
F (x0) has only one stationary point, namely a point of inflection. Thus the whole of one 
side of Ct for such slices is cool.
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x f
' x f

y = -1.39466 y -  -1.14466 y = -0.894656

> < r f >
y = -0.644656 y = -0.394656 y = -0.144656

f > ’ ........:
y = 0.105344 )> = 0.355344 y = 0.605344

y = 0.855344 y =  1.10534 y = 1.35534

Figure 4.23: Numerical simulation of the hot and cool parts of the three dimensional 
polynomial swallowtail at t =  1.

Slice w ith  tw o cusps : Adopting the same approach as the two dimensional polynomial 
swallowtail it may be easily shown that not the whole of the swallowtail is cool. Unfor­
tunately due to the high degree of the polynomials involved we are unable to obtain an 
explicit expression for the A curve. However a numerical simulation may be performed, 
the results of which are shown in Figure 4.23 where the hot parts are represented by the 
dark parts of the curve.



Chapter 5

Further Applications - Touching 
Points and Interm ittence of 
Turbulence

Until now we have only considered the number of cusps, Nc(t),  on level surfaces of the 
Hamilton principal function S ( x , t )  =  c for fixed times t > 0. Here we investigate whether 
varying t brings about changes in J\fc{t), or does it remain constant? Beginning with the 
deterministic case we consider our usual examples of the cusp and polynomial swallowtail. 
For the zero level surface (c =  0) of the polynomial swallowtail we locate the exact times at 
which N c(t)  changes.

We show how the initial function So(xq) may be manipulated in order to build in points 
of contact between the zero pre-level surface and pre-caustic. This leads to the notion of 
periodic singularities and the example of the periodic cusp is considered.

Extending this analysis to the stochastic case leads to the concept of turbulent times, 
namely the random times t(u)  at which Afc(t) changes. We show how one determines if 
the turbulence is intermittent by analysing the recurrent nature of a stochastic process. The 
chapter concludes with a unifying approach which relates our earlier work on hot and cool 
parts of the caustic to the ideas of turbulence.

5.1 Introduction
We know that if the pre-caustic is given by yo = yo(xo,t) and the pre-level surface is 
p(%o,yo,t) = c then the pre-curves will meet at solutions xq of Fo(x0,t)  =  c where 
F0(x0,t) := p{xQ,yo(x0, t) ,t) .  However these meeting points correspond to the level sur­
face S ( x , t) = c meeting the caustic Ct in generalised cusps. Thus the number of cusped 
meeting points, A/c(t), is given by

N c(t)  = {#Z o  : F0(x0,t) = c} .

Recall that if the pre-level surface has no cusps then Nc{t)  will also be the number of 
cusps on the level surface. Thus far we have only considered Afc(t) f°r fixed t > 0, but
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let us now consider the effect of varying t > 0. Clearly Afc{t) will only change when 
Fo(x0, t) = c has a repeated root, that is

F0 (x0 ,t) = c , (5.1.1)

and

^ W )  =  0 .  (5.1.2)

If xo(t) satisfies Equation (5.1.2) then Afc(t) will change at solutions t > 0 of Fo(x0 (t), t) =
c. Observe that if Fo(xo{t),t) = c for all t > 0 then this will not constitute a change in
Afcif)-

In the deterministic free case with initial function So(*o) = f{xo)+ g(x 0 )y0, Equations 
(5.1.1) and (5.1.2) yield

Fo(xo, t) = i  |  ( / '  +  (t2g' 2  -  t f "  - 1 ) )  + / J + /  +  J L  ( t y  -  t f "  -  1) , (5.1.3)

and

^ ( * 0 .  t) =  y *  (*V4 -  3,2(1 + t f )  +  99" +  tfg'g")

x (3t2g’g"2 -  tg"f^ -  t2g'2g<3> +  (1 +  tf")g<3>) , (5.1.4)

where the x 0  variables are omitted for brevity.

5.2 Explicit Examples
Let us consider the behaviour of Afc{t) as t varies for our archetypal examples of the cusp 
and polynomial swallowtail.

5.2.1 The Cusp Singularity
For the initial function So{x0) = ^x^yo, we set /  =  0 and take g(xo) =  \ x I  so that 
Equations (5.1.1) and (5.1.2) reduce to

F0(x0,t) =  t- ^ ( 4 t2x2 - 3 ) ,

and

Trivially =  0 has the solutions xq =  0 and xq = ^= . We use this fact in the proof of 
the following proposition.
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P ro p o sitio n  5.2.1. Consider level surfaces of the Hamilton principal function, S ( x , t )  = 
c, for the initial function So(xo) = \xqPq. I f  c > 0 then Afc{t) remains constant for all 
t > 0 , namely Afc{t) = 3 for c = 0 and Afc{t) =  2 for c > 0. I f  c < 0 then Afc(t)
will change a t t =  ( ^ ) 3 at which point Afc(t) changes from 4 to 0. Moreover the cusps 
disappear at the points

( - 3h r  \  V 2  \  V 2

Proof. At Xo =  ± ^ 7 5  we have Fo(±j4j,t) =  — so that Afc(t) will change at those 
t  > 0 satisfying t 3 = —353. This only has a non-negative solution if c < 0, in which case

t =  (-sfe)*-
The only other possibility for changes in Afc{t) comes from x 0 = 0. However F0(0, t) = 

0, so that Fo(0, t) = c has no solutions unless c = 0, in which case it is true for alH  > 0 
and will not constitute a change in Afc{t).

Changes in values of N c(t)  are easily determined from the shape of Fo(x,t) and the 
fact it is an even function. □

t = 2“  -0 .0 6 t = 2"T -  0.04

t = 2“  -  0.02 t= 2 “T

Figure 5.1: Level Surface c = — 1 and Caustic

In Figure 5.1 we have illustrated Proposition 5.2.1 for c =  —1. It can be seen that 
for t < 2“ 3 the number of cusped meeting points is four, whilst for t > 2“ 3 there are no 
cusped meeting points. Effectively as t  \  2~3 the lapels on either side reduce to a single 
point and then disappear.
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5.2.2 Polynom ial Swallowtail
For the initial function So(xq) = +  xfyo, we set f { x o) := x \  and g(xo) := x% in
Equations (5.1.1) and (5.1.2). This yields

F0 (x0, t) = - r ^ t x o -  60t 2 x 70  +  8 t 3 x% +  6 ^  -  ^ txq ,

and

dFo
dx 0

(xq, t) = 6 x 1 (8£2£q — 30txg — l) (t — 5a:o) .

Clearly =  0 has the solutions x 0  = 0 (3 times) and xq = | .  At these points we have

F.(o,0 - o  «,d
In addition it appears that we must solve the cubic

8 t 2:co — 3 0 t a o  — 1 =  0 ,

in xq, but this may be averted by considering the above as a quadratic in t. This yields 
the solutions

. 1 5 x 2 ±  (8  +  2 2 5 ^ ) 5

t(Xo) = ----------- too-------------’

at which we have
21i § t ®o (8 + 2254)»

F0(z0,£(zo)) = 16

Lemma 5.2.2. Consider level surfaces of the Hamilton principal function, S ( x , t )  =  c, 
for the initial function So(xo) =  Xq +  XqPq. I f  c  > 0 then there exists t > 0 at which 
Afc(t) changes.

Proof For xq =  |  we set f(t) := ^ ^ t 9 ~  edso^5 — c anc  ̂ observe that £'(t) = 0 has 
solutions

t — 0 and t = ,
34

at which

Since c > 0, clearly f  < 0 s° that there must exist t(c) > > 0 such that
£(t(c)) = 0. Hence at t(c) the value of Afc{t) will change. □

Lemma 5.2.3. Consider level surfaces of the Hamilton principal function, S(x,t) =  c, 
for the initial function So(xo) = Xq +  xfyo. I f  c < 0 then there exists t > 0 at which 
Afc(t) changes.
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Proof. For t(xo) =  15x° ^ p 25 we se  ̂ ^ x o +  xo (8 +  225xq)* — 16c and
observe that C(x o) = 0 has only one solution Xq =  0. At this point £(0) =  —16c > 0 so 
that there must exist Xq(c) < 0 such that C(^o) =  0 .

Since 15x1 — (8 +  225xq)% < 15x1 ~  ^ x o = 0 and xq < 0 it follows that

1 5 a jj-(8  +  225sj)*  ̂ Q
Sx0

Thus at t = t(xo) the value of Afc(t) will change. □

Combining Lemmas 5.2.2 and 5.2.3 yields the following proposition.

P ro p o sitio n  5.2.4. Consider level surfaces of the Hamilton principal function, S ( x , t) = 
c, for the initial function Sq(xo) =  Xq +  xfyo. For any c e R ,  there exists t > 0 at which 
J\fc(t) changes.

For the zero level surface, c =  0, we are able to explicitly obtain the times t  > 0 at
which N c ( t )  changes. There are only two cases to consider since it follows from the proof

of Lemma 5.2.3 that t(xo) =  15a° will not yield a positive value of t  because
C(x0) = 0 only has the solution xq = 0 .

• When xq =  we have

1 t 9  — t5 =  0
31250 6250

which has solutions t = 0 and t = 15s.

1 5 x g + (8 + 2 2 5 x g )*  ,• For t = ------------------- , we have

21zjj — Iq (8 +  225iq)^ = 0

3 3which has solutions xq =  0 and x 0 = ± 3“ *. Only xq = 3“ 4 produces a valid value
5

of t ,  namely t  =

Thus as we vary t , the number of cusps on the zero level surface will change at t =  15*5
and t = — . Hence for the zero level surface we have the following complete classification 
of f f c (t) as t varies.

Range 0 < t < 15* t =  153 15^ < t <  4 t =6 2 t > f
Afc{t) 3 4 5 4 3
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5.3 Building in Points of Contact
Let us illustrate how the ideas of the previous section lead to a method of building in 
points of contact and the notion of periodic singularities. We take 5o(*o) = f ( x o) +  
g(x 0 )y0 throughout.

P ro p o sitio n  5.3.1. I f  g(oii) =  g'ioci) =  0 and g"(cti) 7̂  0 for i =  1, 2, . . . ,  n then J\fc(t) 
will change at the times

2 (c — /(c*i)) 

f ( a  i) 2 ’
if  f'(oLi) 7  ̂ 0 and f{ai) < c. Moreover i f t ai is such a time then the change will occur at 
the point

( ai< - 1 -  = L  + ta f { a i ) ,  ~ l  ~  Y'Sai)N) •

V *a<5"(ai) )  \  * “•', K  'h t a(g"(ai) J

Proof If g, g' are zero at a* and g''((Xi) 7  ̂ 0 then if follows from Equation (5.1.4), that

dF0 =  0 ,

X q = O t i
dx 0

for i = 1, 2 , . . . ,  n. Thus J\fc(t) will change at solutions t > 0 of To (a;*, t) = c, namely

\ f \< x iY  + f ( a i) = c .  (5.3.1)

Hence if /'(c^) 7  ̂ 0 and /(a* ) < c then N c ( t )  will change at

2(c -  /(a*))
tati —

C oro llary  5.3.2. I f  / ,  g, f  and gf are zero at a* and g"{ai) 7  ̂ 0 for i = 1 ,2 , . . . ,  n then 
the zero pre-level surface will touch the pre-caustic at the points

/  —1 — tf"(aj)\
\ * ’ tg"(ai) )  ’ (5 3-2)

for all t >  0. Hence the zero level surface will meet the caustic in a generalised cusp at

‘ V tg"(a4) )  V )  ’ (5-3’3)

for all t >  0 .

Proof From Equation (5.3.1) we see F0 (ai,t) = 0 and d 

for c =  0 the pre-curves will touch at the points shown in

dF, = 0 for all t > 0. Thus 

Equation (5.3.2) for all t > 0
and the result follows. □



118

Remark 5.3.1. Under the assumption that $ t is continuous we see that as t /  oo we 
obtain generalised cusps at 4>t ~ g"(a-|)* Thus f°r iarge t the pre-curves will meet at

a discrete series of points on the curve h(xo) =  — , where we recognise h(xo) as the
time independent part of the pre-caustic

V o f a o )  =  7 3 7 7 T X  +
tg'fa 0)2 f ' fao )
9" fa o) 9"fa o)

5.4 Periodic Singularities

5.4.1 A Singularity Periodic in x
The point of Corollary 5.3.2 is that it provides us with a method of building in points of 
contact by manipulating the initial function.

For instance if we take /  =  0 then we may build in points of contact at xq = ka for 
k = 0 ,1, 2 , . . . ,  n by taking

_2 71 /  9 \  2

» < - . ) - ? n  ■
k= 1 v 7

If we let n oo and observe that

. (irx0\  irx0 ^  /  x 20 \
s m( — ) = — -

k= 1 x 7

then we see
i \ a2 . 2 (Kxgfa„) =  ^ s m  ( — ) .

Thus the initial function

So{x0) = sin2 2/o , (5.4.1)

is periodic in xq with period a , <So(£o?2/o) =  Soix o +  ka,yo) for k € Z. Moreover near 
Xo — 0 we have

So{xo,yo) ~  2Xo2/o •

With this in mind we refer to the initial condition in Equation 5.4.1 as a periodic cusp 
in x. An immediate consequence of Corollary 5.3.2 is the following.

P ro p o sitio n  5.4.1. For the the initial function Sq(xq) =  ^  sin2 (Z[fa) 2/o the pre-caustic 
and zero pre-level surface will touch at

(zo,2/o) =  ,

for k G Z. Moreover the image curves meet in generalised cusps at

(x,y) = ( k a , ~

for k G Z.
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Proof. We simply observe that g"(x0) =  c o s ( ^ a), so that g”(ka) =  1 which is non­
zero. □
P ro p o sitio n  5.4.2. For Sq(x0) =  ^  sin2 (ZEf£L) 2/o the pre-caustic is given by

, \ SeC( ^ )  • 2 ( ^ o \  2\  ,KAOs
«•(*") =  - ^ { — sm l v J - " ) ' ( 5 -4 -2)

for Xq 7  ̂ £%i) j whilst the caustic is given by

x ( x q ) =  x q  — tan |g7r2 — a2 t 2 +  a2 t 2 cos

w(So) =  i { ° 2t 2 " 8e c ( 2 T £)
47T2 + o2t2 COS (~ “

Proof W ith A  =  ^  -f ^  sin2(2!̂ a)2/o the pre-caustic condition Det[*4"] =  0 yields 
Equation (5.4.2). Moreover 4>* is determined by V XoA  = 0 which yields

at A/0sin (2££a)\<Mo-z0 + — s^2 (22a) J ’
and applying to Equation (5.4.2) yields the expression for the caustic. □

Proposition 5.4.3. For So(x0) = ^ s i n 2 ( ^ )  Vo the zero pre-level surface is given by 
sin2 (2Effl) =  0, namely Xq = ka for k 6 Z ; and

f ~ SeC Lr t   ̂ yĵ 7r2 — 2fl2t2 +  2a2t 2 cos |  ^  2̂-^ °
yo(®o) =  < and cos ( ^ )  > 1 -  %  ,

\  a ? t  _  _  (2fc+l)a

(5.4.3)

Proof From the Eikonal equation we obtain

a2t  2 2 / 7TXq\  . 2 (VXQ\ a4t . 4 f7TX0\  a2 . 2  (KXq\
— 2 y0 cos ( — ) sin ( — j  +  ^  sin ( — j  +  — 2 y0sm ( — )  = 0 ,

so that we have sin2 (zfa) =  0 and

If xq = (2fc+bQ then the above reduces to yo +  =  0, so that y0 =  — Oth­
erwise we have a quadratic in y0 which may be solved to obtain the remaining expression 
in Eauation (5.4.3b □
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P ro p o sitio n  5.4.4. For So(x0) = ^ s i n 2 (ZEf11) yo the zero level surface consists of

i). x = ka for k £ Z ;

ii).

x (x0) = xq — tan i  4tt d= \ 16tt2 — 2 a2 t 2 +  2a2 t 2 cos ^  nX°
87r2 V a J 1 y \  a

y(x0) = ^4 a2t2 sin2 — ir ̂ 47r ±  167r2 — 2a2 t 2 +  2a2 t 2 cos ^ 7rx°

for X q  j- (2fc+ l)a  ^  ^  >  i  -

. (  f ( 2 k + l ) a \  /(2A; +  l ) a \ \  /  (2 k +  l )a a2t
m). x     ) ,y

2 2 /  /  V 2 4 ttV

Proof Simply apply to Proposition 5.4.3. □

The pre-curves and image curves for a = 2 at time t =  1 are shown in Figures 5.2 and 
5.3 respectively. As usual the caustic is distinguished by the use of a broken line. We 
remark that at the touching points (ka, — j )  the common tangent is yo(ka) = 0.

Figure 5.2: Semi-periodic zero pre-level Figure 5.3: Semi-periodic zero level sur-
surface and pre-caustic face and caustic

It may be observed from our figures that touching points of the pre-curves correspond 
to the zero level surface meeting the caustic in a generalised cusp at a cusped  part of 
the caustic. Let us discuss the generic nature of these “cusps within cusps” .

Consider a point xq where the pre-curves touch tangentially and let vq be a vector
that is parallel to the common tangent. We begin by observing that

d A
—  (x0  +  £ V q , x, t) = 0 x = $ t (x0 +  £ V q )  .
O X q
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The first equation here may be expanded to give
&4/~ d A  n 1 /  t-t \2 d A  i _ N _
—  {x0 ,x , t )  + evQ.V X0 —  {x0 ,x , t )  +  -  (euo.Vxo) — (xo.x.t) = 0 , 
ox  o ox  o 2 ox  o

but at a cusp we know uo-VXq̂ ( xq, x , t) = 0, so that

d A  /„ N 1 . _  x2
—  (x0, z, £) +  -  (£v0.VXo) ^ — {xo, x, t) = 0 .
OXq Z OXo

If £ =  x +  5x where x = $*(£<)) and Sx is of 0 (e) then

x  +  Sx = $ t(x 0 +  £V0) ,

or equivalently
d A
- — (Xo +  £V0, X +  &C, t) =  0 .
OX 0

Expanding this we obtain

d A („ _ . d2A  . £2 ~ .v n
^ {xo>x’t] +  a^ (xo’x ’t)5x + j ( Vo-v *°) X'V  = ° -

But §~(xo, x, t) — 0 since x = <J>((£o), so tha t on re-arranging we obtain

e2 (  & A  . .  .  A - 1 , „  ^
=  ~ 2  {V°-Vx°] d7o{X°’X’t] ■

Thus it follows that

$t(xo ±  £Vo) = $ t (xo) +  £2 w(x0, v0) +  o(e2) ,

where
, 1 /  d2A  ,  A - 1 , „  ,2 d A , .  .  .

*>{**,Vo) ■■= - 2  { g ^ - 0 (* o ,z , t ) )  (no-VIO) — (*„, x , t )  ,

is the cusp axis. Let us see how this works for our periodic cusp example.

E xam ple  5.4.1. If 5o(cco) =  2& s*n2 2/°> we see

d A  ( x q - x  a . ( Zttxq\  2/0 — 2/ , a2 . 2 f n x o \ \  
d ^ = { —  + 2 ; S m ( — ) ’ —  + W 8m ( — ) )  ’

so that
d2A  _  f - \  0

dxdxo \  0  — j

At our touching points we may take v0  = (±1,0) so tha t v$. V =  and

, ^  ^dA (  2tt . ^Trrro^ f 27rx0\ \
(t,°-Vxo) = I “ T sin ( —  J ’cos 1'— J J '

Thus
— — sm

v
so that

w

w ^ vo ) = { i acos( h A

>(ka, n0) =  f ° j  .
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5.4.2 A Singularity Periodic in x and y
Thus far we have only discussed a singularity periodic in x 0. Let us now consider how 
one may introduce periodicity in the yo coordinate.

L em m a 5.4.5. Consider the initial function So(xo) = f ( x 0) +  (7(20)7 (2/0) • I f  f , f ' ,  g, g' 
are zero at at for i = 1, 2, . . . ,  n and g"(ai) 7  ̂0 then the zero pre-curves will touch at

( ^ -1 ( _1^K)(ai)) )  ’ {5A4)
for i = 1, 2, . . . ,  n if  7  is invertible.

Proof. The pre-curves meet at solutions Xq of Fo(x0 ,t) = 0 where

F0 (x0, t) = \  ( / ' +  0'7 (2/o(zo)))2 +  I f l V (yo(xo) ) 2  + f  + 9 'r{yo(xo)) , 

and yo(xo) is the pre-caustic. Now

t) = t ( f  +  g'^(yQ(xo))-^-  ( / ' +  p 'tW ^ o )) )  +  tgg 'i(yo(x 0 ) ) 2 
ox0 Ox0

+  t92 i(yo{xo)h"(yo(xo)Wo{xo) +  / '  +  s 'tW ^ o ) )  +  ,

so that clearly F0 (ai}t) =  0 and =  0. Hence the pre-curves will touch at
0 xo=ai

(oi:yo(oi)) where 2/0(^0) is the pre-caustic. However in this case the pre-caustic is given
by

(1 +  t ( f"  + g"~t(yo)) (1 +  *37"(2/0)) -  t W f e o )2 =  0 ,

so that at Xq =  a*

7 W  =  tg"{ai) - ■
Hence

 ̂ \ ~ i ( ~ l —
M a i)  = 1  {  m * )  ) ■

□
C orollary  5.4.6. I f  So(x0) = f ( x 0) +  g{xo)l(yo) where 7  is a periodic function with 
period b and / ,  <7, / ' ,  g' are zero at for i =  1, 2 , . . . ,  n whilst g”(oti) 7̂  0 then the pre­
curves will touch at

( x o , y o ) = ( a i , 7 - 1 ( ~ 1 ~ /̂ )(ai ) ) + ^ )  , 

for I G Z and i — 1 ,2 , . . . ,  n.
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In order to obtain a periodic cusp singularity we set y(-) := £  sin ( • ) ,  where 
b > 0 , so that 7 has period b and 7 (y) ~  y for y  ~  0. Clearly if we take /  =  0 and 
g(x0) := 7^3 sin2 (Z[fa) then / ,  g, / '  and are zero at £0 =  ka (k G Z) and g"(ka) = 1. 
Moreover

7 tg"(ka)
b . f  2 ir' = —  arcsm ——

2?r V bt

which exists if b > Since the conditions of Corollary 5.4.6 are satisfied we obtain the 
following proposition.

P ro p o sitio n  5.4.7. Consider the initial function So(x0) =  sin2 (z[fa) sin ( ^ a) . I f  
b > ^ f  then the pre-curves will touch at

(zo, Vo) = (ka, arcsin >

for k ,l  € Z.

In Figures 5.4 and 5.5 we have shown the pre-curves and image curves respectively 
where a = 3, b =  4 and t = 2 so that b > ^ f .

-4

-4 4-2 0 2

Figure 5.4: Periodic zero pre-level surface Figure 5.5: Periodic zero level surface and
and pre-caustic caustic

We shall not pursue the notion of periodic singularities any further, but suffice to say 
many examples may be easily created. Moreover, it may be possible to use this setup for 
investigating Burgers equation on a sphere.

5.5 Turbulent Times
Let us now return to the stochastic case where we consider a random force parallel to 
the z-axis which is white noise in time. Namely we take k ( x , t ) =  x  and consider the
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stochastic heat equation
1 £

d u (x , t )  = - f i 2 A u(x , t)dt H— - x u ( x , t )  o  dWt .
Z jJj

Denoting the level surface and caustic by Ht and Ct respectively, we define turbulent 
times as follows.

D efin ition  5.5.1. Turbulent times are those random times t(cu) such that the pre-level 
surface and the pre-caustic § t lCt touch at a set of points {ui, a2, . . . ,  an}.

Clearly as time evolves the number of cusps Afc{t) will change at these turbulent 
times. Evidently if Mc{t) is given by the number of solutions Xq of Fe(xo,t) = c, then 
the turbulent times t(u) must satisfy

F£{x 0) t) =  c ,

(x0 ,t) = 0 .

and

m
dx 0

Thus in the stochastic case the turbulent times t(u)  will be the zeros of the stochastic 
process

Yt(u) := Fe(x0 { t ,u ) , t ,u )  -  c ,
where

c)F-
=  0 .

X O = X o ( t , U )dx 0

For an initial function of the form Sq(xq) = f ( x o) +  g(xo)y0 we know from Chapter 3 
tha t the function Fe determining the number of cusped meeting points is given by

F . ( x o ,  t )  =  1 1 ( / '  + ^  { t 2g -  -  t f "  -  1)) 2 + </2} + /  + ^  { e g -  -  t f "  -  l)

~ ~ 2  j  W * dU ~  (^o ~~ £ Jo Wu dU +  tf +  g" ^ 2g'2 ~  t ^" ~  £Wt ’ 5̂'5' 1)

where we have suppressed the x$ variable for brevity. Differentiating with respect to Xo 
and simplifying yields

g  = F .  { g -  { e g -  -  t f "  -  1) + g" (g + tg' (/' -  eWt))}

x {tg" {Ztg'g" -  / ' 3>) -  g { t 2g -  -  t f "  -  l)  } . (5.5.2)

Proposition 5.5.1. Consider an initial condition of the form So(xo) =  f ( x o) -I- g{xo)y0

where / ,  g , f  and gf are zero at xq =  ck* and g"{oLi) ^  0 for i = 1 , 2 , . . . ,  n. Then the zeros 
of the stochastic process

Yt{u>) =  -oneWt +  s2Wt f  Wu d u -  ^  f  W.2du - c ,
Jo * Jo

will be turbulent times. Moreover, the turbulence at $ t is intermittent.
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Proof. This follows immediately from Equations (5.5.1) and (5.5.2) by observing

dFF
dx 0

= 0 ,
x q = a t i

so that A f c { t )  changes at the solutions t ( u )  > 0 of Yt (u )  = 0 where Yt{uS) := F£(ai, t )  — c.
The intermittency will be discussed in Sections 5.6 and 5.7. □

Remark 5.5.1.

i). There is no analogue of this proposition in the deterministic case since the solutions 
Xq =  ai do not provide us with times t  > 0 at which Af c ( t )  changes. Recall that in 
the deterministic case the expression F0(ai, t )  = c will either be true for all time (if 
c =  0) or false for all time (if c ^  0). Hence no change in N c ( t )  occurs.

ii). In general there will be other turbulent times in addition to those which are zeros 
of the stochastic process Yt(tu). These are not necessarily intermittent.

Observe that if we set g(x0) := x% then Equations (5.5.1) and (5.5.2) reduce to

Fe(xo, t) = 8t 3 x 60 -  ^4t 2 f "  +  7 0  £o +  4*2 ( / '  “  e W t)  x o +  y  C1 +  t f" )  4  

-  ( / '  -  teWtf "  +  t f ' f ") x 0 + f +  l- t f 2 -  teWtf  +  e2 Wt J* Wu d u - £-^ J* W 2 du ,

=  ]-x0 ( x 0 (8 t2x l  -  l) +  21 ( / '  -  X qf "  -  eWt)) (l2txQ -  / (3)) . (5.5.3)

and

m
d x 0 2

In light of Remark 5.5.1 (ii) and the fact that Equation (5.5.3) admits such a convenient 
factorisation we are able to state and prove the following proposition for initial functions
of the form 5o (x q ) = Xq +  xfyo where n > 5.

P ro p o sitio n  5.5.2. Consider an initial condition of the form S q(x q ) = Xq +  xfyo where 
n > 5. The turbulent times are given by the zeros of the stochastic processes

i). Yt(u)

H)- & ( U ) : =  F'£ ^ ( n (n —1)(n —2 ) )  ~  C ’

Hi). Ct(^) := Fe(x b(t,w),t) — c, where x l0 (t,u) are the real solutions of

2tn(n — 2)xq_1 — 8 t 2x^ +  x 0 +  2teWt = 0 .

Proof Clearly the conditions of Proposition 5.5.1 hold so tha t the positive zeros of Yt (uj) 
are turbulent times. Moreover

dF  1
" =  ox0 (%o{8 t2x l  -  1) +  21 (nxo_1(2 -  n) -  eWt)) (121 -  n[n -  l )(n -  2)rro"4) ,
u X o  Z
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so that the zeros of =  0 are given by Xq = 0 , x 0 = ( n(n_ ^ n_2))  n 4 and the real 
solutions of

2tn(n — 2)rro_1 — 8t2:Eo +  +  2tsW t =  0 .

The required result then follows. □

5.6 Perfect Sets
In this section we discuss the notion of perfect sets and the relationship with the set of 
turbulent times. We begin with some necessary background work concerning the Strong 
Markov Property and the reflection principle for Brownian motion.

5.6.1 The Reflection Principle
Theorem 5.6.1 (Strong Markov Property). Let (Wt)t>o be a Wiener process on the 
probability space (Q, T, P) with filtration {Tt}; and let r  be a finite-valued stopping 
time. Then the process

w ;  = w T+t - w T , t > o ,

is a Wiener process independent o f 3 r .

Proof. See [44]. □

We define the processes

M(t)  := max{Wg : 0 < s < t} ,

and
m(t) := min{Ws : 0 < s < t} .

If the path Ws is replaced by —Ws then the maximum and minimum are interchanged 
and negated. But —W 3 is again a Wiener process so that

M(t)  Î t —m(t) . (5.6.1)

In addition we define the hitting time of a by

Ha := i n f > 0 : Wt = a} .

Let us now state the so-called reflection principle for Brownian motion.

Proposition 5.6.2 (Reflection Principle). For fixed a G R, the process

Wt : =  f Wt t < H * ,
\ 2 a - W t t > H a ’

is a Wiener process. The process Wt is illustrated in Figure 5.6.
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Wt

Figure 5.6: Sample path and its reflection

Proof. Following [44] we consider the processes Yt := Wt (0 < t < Ha) and Zt := 
Wt+Ha ~~ a• By the Strong Markov Property, Zt is a Wiener process independent of Yt. 
Thus — Zt is a Wiener process independent of V  and so (Yt, Zt) ^  (Yt, —Zt).

The map
4>: (y, Z) -> (:YtX {tiHa} + {a + Zt- Ha)X{t>Ha)) ti0 ,

produces a continuous process, which will therefore have the same law as <f)(Y, —Z). But 
0 (T, Z) = Wt and 0 (y ,- Z )  = wt. □

C oro llary  5.6.3.

V[Ha< t] = P [M, >a] =  2P[>  a] =  2 -  2<I>(aH) (5.6.2)

where <$(•) is the N ( 0,1) distribution function.

Proof. We first observe that for y > 0

F[Mt > a ,W t < a -  y ) — F[Mt > a ,W t < a -  y)
= F[Wt > a + y] .

Thus

P [Ha < t ] =  F[Mt > a]
=  F[Mt > a, Wt < a] +  F[Mt > a ,W t > a]

=  F\Wt > a] +  F[Wt >  a] =  2 -  2< P (a H )  .

□

5.6.2 Level Sets of th e  W iener P rocess
D efin ition  5.6.1. A closed set X  is called perfect if every point of X  is an accumulation 
point of X.  Equivalent characterisations are:

i). X  is closed and contains no isolated points,

ii). X  is closed and dense in itself.
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We are interested in the properties of the zero level set of the Wiener process,

Z 0 := {t > 0 : Wt =  0} .

In particular we wish to show that the set Zq is perfect. It follows immediately from the 
continuity of the path W t  that Z q will be closed. Moreover with probability one Z 0 has 
Lebesgue measure zero. This follows from Fubini’s theorem,

E[ p ( Z0) ] = E
oo

X{wt=o} dt
iJo/Jo

P [T{wt=o}] dt
poo

= / IP [ =  0] d* =  0 ,
Jo

where p>(Zq) is the Lebesgue measure of Z 0.

Lem m a 5.6.4. With probability one, Wt has infinitely many zeros in every time interval 
(0, e), where e > 0.

Proof. From Equation (5.6.2), P [Me > 0] =  1 so that P[me <  0] =  1, by Equation (5.6.1). 
Since Wt is continuous it follows from the intermediate value theorem that Wt will have 
at least one zero on (0, e] almost surely. Thus for each k G  N there exists at least one zero 
in (0, £) almost surely. But now we can find a zero t\ G  (0,1), then by choosing k large 
enough so that £ < t\ we can find a zero t 2 G  (0, £), and so on. Thus with probability 
one we can find an infinite sequence {tn} of zeros converging to zero. □

We now state and prove the main result concerning Z q. Variations of the following 
argument may be found in [27], [32] and [20].

Proposition 5.6.5. With probability one, the set Z q is a perfect set.

Proof. We already know Z 0 is closed so it remains to show that for every t G  Zq there is 
a sequence of distinct elements tn G Zq such that limn_+oo tn =  t.

Consider q G Q+ and define

H q0 := inf{t > q : Wt = 0} .

Since Wq ^  0 almost surely, then Hq is well defined and H q > q almost surely. By the 
Strong Markov Property and Lemma 5.6.4, W[Hq +£] — W[Hq] will have infinitely many 
zeros in the time interval (0, e). But W[Hq] = 0 and Q+ is countable so that Wt will have 
infinitely many zeros in every interval (Hq, Hq +  e) where q G Q + and e > 0.

To conclude we let t be any zero of the path. If there exists an increasing sequence 
tn of zeros such that tn /  t then we are done. If not then there will exist an interval 
(t — e, t) which is free of zeros for some e > 0. But now there exists a rational q G  (t — e, t) 
so that Hq = t. Hence by the preceding discussion there exists a decreasing sequence of 
zeros {£n} such that tn \ t .  □
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An immediate consequence of the above and the strong Markov property is the fol­
lowing corollary.

Corollary 5.6.6. For each c, the set

Z c := {t > 0 : Wt = c} ,

is almost surely a perfect set.

5.6.3 Turbulent Times and Perfect Sets
Let us assume for the moment that the Wiener process is one of the stochastic processes 
whose zeros determine the turbulent times. Then it follows from Proposition 5.6.5 that 
the set of turbulent times will contain a perfect set. Of course we are more interested in 
the set of zeros of the stochastic process

e2
Yt = - e a iWt + e2 Wt /  Wu d u - -  /  W 2 d u - c ,

Jo * Jo

where a* and c are time independent constants. It may be shown that Yt is a continuous 
semi-martingale. This follows by applying the product rule,

Wt f w u d u ]  = d Wt [  Wu du + W 2dt ,
Jo . Jo0

so that t u 2 t
Yt =  -eoaWt + £2 J  ( £  W 3 d s) d w ^ + j J o Wu d u - c .

In Section VI.(1.26) of [40], Revuz and Yor show that the set Z q(lj) = {£ : Mt(u) =  0}, 
where Mt is a continuous Tr martingale with Mq = 0, is a perfect set. It is possible that 
this result may be extended to cover the case of a continuous semi-martingale. However 
for our notion of turbulent behaviour the following argument will suffice.

We use the law of the iterated logarithm, namely

Wt - W a ,
l imsup—   =  1 a.s.,

F h(t -  s)

and
v . t Wt - W alimmf —--------  =  —1 a.s.,

t \ a  h(t ~  s)

where h(s) := (2s log log Q ) ) 2. Now

Yt - Y .  = -eat(W t -  Ws) +  e2 Wt J  Wu du -  e2 Ws J  W"du~ j J  w l du

= -sa t(W t -  Ws) + e2 (Wt -  W.) J *  Wu du + e2 W 3 f  Wu du -  j  P  W 2 du .
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Hence by the law of the iterated logarithm and continuity it follows that with probability 
one there will exist a sequence {tk}k=1,2,... such that

lim -^7— -^r = (-ea-i +  e2 [  Wu du^) . 
tk\s hytfc s) y Jq J

Similarly with probability one there exists a sequence {sa:}a:=i)2,... such that

lim -^7— ~  = -  ( s a i  + £ 2 [  Wu du^) .
Sfc\s h{tk s) y Jo J

But with probability one, —sai +  e2 J0S Wu du 7  ̂ 0 for s ^  0, so that lim sup and
lim inf are non-zero and have opposite signs. Hence if we choose s such that Ys = 0 
(we know there will exist such an s by the work in Section 5.7) then there will be infinitely 
many changes of sign in a neighbourhood of s. This illustrates the turbulent nature of 
the process.

Remark 5.6.1. Since we have used the law of the iterated logarithm there will be a set 
of measure zero of times at which it will fail. Thus we are unable to claim that the set 
{t : Yt = 0} is perfect, but our result is sufficient to prove the turbulent nature.

5.7 Interm ittence of Turbulence
The work in this section is based upon ideas by David Williams concerning Strassen’s law 
of the iterated logarithm. We begin by stating Strassen’s result and providing a (brief) 
sketch proof. Full details may be found on pages 49-68 of [20] or in the original account 
[49] by Strassen.

Definition 5.7.1. A subset H  of C[0,1] is compact if and only if every sequence in H  
has a convergent subsequence whose limit is in H. H  is said to be relatively compact if 
each subsequence converges to a limit not necessarily in H.

Definition 5.7.2. Let K  be the set of absolutely continuous functions /  on [0,1] with 
/(0 ) =  0 and f ' ( u ) du <  1. We refer to such functions as Strassen functions.

Remark 5.7.1. It may be shown, see [20], that the set K  is compact.

Theorem 5.7.1 (Strassen’s Law of the Iterated Logarithm). Define

Zn(t) := (2n log logn)-  ̂Wnt(u) ,

for  0 < t < 1 where Wt is the Wiener process on the probability triple (f2, T, P). For 
n  > 3, Zn may be viewed as a measurable map from (fl,T) to (C[0,1], B[0,1]), where 
B[0 ,1] is the Borel a-field in C [0,1], and for almost all u  the indexed subset

{Zn(-,u) : n =  3 ,4 , . . . }  ,

of C[0,1] is relatively compact with limit set K .
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Proof. The proof is divided into three parts:

P a r t  (1) (Show Zn app roaches K )
Define a system Zn>rn(*,a;) G C[0,1] by the requirements

• Zn,m (£ ,v )  = Z n ( ± ,u )  for z =  0 , 1 , . . . , ra,

• Zn>m(-, u) is linear on [ ^ ,  for z =  1, 2, . . . ,  m.

Let a > 1, b > 1 and make the following set definitions.

i). Gi(a, b, m) is the set of u  G for which there exists a J\(a, b, m ,u )  < oo such that 
j  > Ji implies a -1 Z# >m(-, u) G if.

ii). (^(e, 6, m) is the set of u  G ^  for which there exists a J2(€, b, m, u) < oo such that 
j  > J2 implies | 4 im(-,w) -  Z6,-(-,w)|| <  e.

iii). C?3 (<5,6) is the set of u  G 0  for which there exists a J 3(<5, b,u) < oo such that j  > J3
implies fr7-1 < n < b3 implies ||Zn(’,u ) — b(n ,j)Zbj(',uj)\\ < 5 where 8  > 0, b > 1

_ i  . 1
and b(n, j )  = (n log log n ) 2 (fr7 log log b3) 2.

iv). (^4(77) is the set of u  G for which there exists an N  = N(r],u) < 0 0  such that
n >  N  implies d(Zn(-,u), K) < 77.

Essentially it may be shown that Gi G T and P(G») =  1 for i = 1, . . . ,  4. Hence if 
G§ := n ~ i  ^4  (n) t îen (^5 G T and P(<25) =  1. But <25 is the set of u  G 0  such that 
limn_>ood(Zn(- ,u ) ,K )  = 0, thus

lim d(Zn(-, w), /IT) =  ol =  1 . (5.7.1)
1—* 0 0 J

P a r t  (2) (Show Zn approaches a  co u n tab le  dense su b se t o f K )
For m = 1 ,2 , . . . ,  let Cm be the set of /  G C [0,1] such that:

•  / ( 0) =  0

• / ( ^ )  is rational for i =  1, . . . ,  m,

• f  is linear on [— , —1 for z =  1, . . . .  71,J L m 7 mJ 7 7 7

•  /o / '( « ) 2d u <  1.

If C = Um=i Cm then C  is a countable subset of K. Moreover it may be shown that C 
is dense in K. Take e > 0 and /  G C  and let A ( f , e) be the set of u  G PL such that

||Zn( . , u ; ) - / | | < e ,

for infinitely many n. It may be shown that A (f,e )  G T and P [A(f,e)] =  1. Thus if we 
now define

A  :=  f l  i A ( f '  n) : f  G C  and n  =  C  2, • • • } ,
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then A  £ T  and P [A\ = 1. But A  is the set of co £ ft such that

lim inf ||Zn(-, <j ) — / | |  = 0  ,
n — > 0 0

for all f  £ C. Thus
P [liminf \\Zn(’,u )  -  f\\ =  ol =  1 ,

. n—+oo
(5.7.2)

for all f  £ C, which is a countable dense subset of K.

P a r t  (3) (C onclusion) Consider the space C [0,1]°° of sequences (p = {(po,(pi , . . . )  of 
elements of C[0,1]. Let i f  be a compact subset of C [0,1] and if* be the set of (p £ C [0 ,1]°° 
such that the indexed subset ((j>n : n = 0 , 1 , . . . )  of C[0,1] is relatively compact, with limit 
set if . Define

A := {(p : <p £ C[0,1]°° and lim sup d(<pni if)  = 0 and lim inf d(<pn, g) = 0 for all g £  i f 0} ,
n—+ oo n—>oo

where ff0 is a countable dense subset of if. It may be shown that

where Wt(u) is a Wiener process starting at zero, c is a real constant and are time 
independent. Then there exists a sequence (tn) of times with tn /*  oo such that Ytn = 0 
for every n almost surely.

Hence by Strassen’s Law of the Iterated Logarithm we know that after throwing away 
a null set of paths, we can path-wise find a sequence tn such that if

if* =  A . (5.7.3)

The desired result follows for Equations (5.7.1), (5.7.2) and (5.7.3). □
T h eo rem  5.7.2. Consider the stochastic process

Yt(u) := -CHeWt +  e2 Wt /  Wu d u - ~  W 2 du -  c ,r* . e2 r‘
Jo z Jo

Proof. We begin by finding a sequence of times tending to infinity at which Yt > 0. 
Define f ( r )  := r for 0 < r < 1 so that clearly /  is absolutely continuous, /(0 ) =  0 and 
Jq1 f '(u )2du < 1. Thus f ( r )  is a Strassen function.

h(t) := (2 t  In In i )2 ,

then
K t n Y ^ W ^  f ( r )  ,

uniformly over r  in [0,1].
We show that for each u  with tn = tn(u) we have h{tn)~2 t~lYt, 

each of the terms that comprise the stochastic process Yt(u).
Let us consider



Combining the above we see that for each u  with tn = tn(u) we have

*(*»)-vn. -  s2 Q - 1) = j  ■

To conclude we must find a sequence of times tending to infinity at which Yt <  0. If 
c > 0 then we simply choose times when Wt = 0. For c <  0 we must choose a Strassen 
function such that

/i(tn) - V  Wt„ f "  W. ds -  / ( l )  f  f ( r )  d r <  0 .
Jo Jo

Taking

/(»•)= (a r > V i \ 'I |  — r for  ̂ <  r  <  1 , 

it may be easily shown that /  G K  and / ( l )  f ( u )  du =  — ̂  < 0. □

Remark 5.7.2. The recurrent nature of the process Yt coupled with the fact that there 
will be infinitely many changes of sign in a neighbourhood of s where Ys =  0 produces 
the intermittency of turbulence mentioned in Proposition 5.5.1. Essentially we witness 
the occurrence of bouts of turbulence.

5.8 Explicit Examples

5.8.1 The Cusp Singularity
Consider So(x0) = \xlyo  so that setting f  = 0 and g(xo) := in Equations (5.5.1) and
(5.5.2) yields
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and
dF  3
—- ( x 0, t) = - t x l  (2 t2xl - X q -  2teWt) .
OX o ^

Hence the turbulent times are given by the solutions of

£ 2 F
s 2 Wt /  Wu du — — /  W 2d u - c  =  0 (5.8.1)

Jo 2 Jo

and
6 M  =  0 i

where £t (o>) := Fe(a;o(£,<j),£) — c, x l0 (t,uj) being the real solutions of the cubic

2 t 2 x 30 - x q -  2teWt =  0 . (5.8.2)

It follows from Equation (5.8.1) and Theorem 5.7.2 with a* =  0 that the turbulence 
at $t(w)(0 , — ijjjy) is intermittent and recurrent.

In order to analyse the remaining turbulent times we must solve the cubic in Equation
(5.8.2). Adopting the method outlined in [38] we consider the reduced cubic

axl — Sa52xo + Vn  = 0 , (5.8.3)

where in our case a = 2t 2, 3ad2 =  1 and — —2teWt. Hence S2 = Using the
identity

(p +  q) 3 -  3pq(p + q ) ~  (.P3 +  93) =  0 ,
we see that zo =  p +  q is a solution where

pq = S2 and p3 + q3 = - — . (5.8.4)
a

Solving the above equations yields a quadratic in p3 which may be solved to obtain

p3 =  3<h ( 18*2eW*±  \/324t4s W (2 -  6) .

There are two cases we need to consider:

Case 1 : e2 W 2 > 5̂ 4. Here the cubic has one real solution given by

x 0 = p  + 8 2p~l
2

63 +  ( l 8t2eW, +  x/324t4e2W(2 -  6 ) 1 

63t  (l&t2eWt +  -v/324t*e2W? -  6)  5 

For large £ it is evident that x 0 ~  0 so that

F£(x0(o;, t), t) ~  £2Wt [  Wu d u - ^ -  f  W l du .
Jo  ^ J o

Hence as before we expect the turbulence will be recurrent.
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C ase 2 : e2W 2 < ^ 4. In this case the cubic will have three real solutions. These are 
found by substituting x 0 =  2$cos# in Equation (5.8.3), giving

2a53 (4 cos3 6  — 3 cos #) +  =  0 .

Hence
cos 3# =  — =  3\f§t2 eWt ,

2 ao6

so that
6  = i  arccos (3 \/6 i2eVT,) . 

Thus the solutions of the cubic are given by

2/c7r\
X q = 28 cos ( 6  +  ^

_ 1  2  

t V 3 C0S

for k = 0,1,2. Hence xo ~  0 for large t and we arrive at the same stochastic process as 
in Case 1.

5.8.2 Polynom ial Swallowtail
Let us now consider the polynomial swallowtail initial condition S q(x o ) =  Xq +  xfyo. 
Setting f(xo)  := x^ and g(x0) := Xq in Equations (5.5.1) and (5.5.2) yields

Fe(xo, t) = ~T^txo — 60t2x 70 +  8 t 3 x o +  6zo +  ^15etWt — Xq — 4et2 Wtxl

+  e 2W t f  W u du -  ^  [  W 2 du , 
Jo * Jo

and
dF
7—̂  =  6xq (—30txQ +  8 t2x l  — Xo — 2teWt) (t — 5xo) .
UX o

The solutions of =  0 are xq = 0, xq =  |  and the solutions x l0 (u, t) of the quartic

30txQ — 8 t 2 x \  +  xo +  2teWt = 0 . (5.8.5)

Thus the turbulent times are given by the solutions of

■wt r  Wu du -  [  W2 du -  c =  0 , (5.8.6)
Jo Jo

s2'

1 -  ( S  -  s i (5. 8. 7)31250 
and

F£(xo(u,t),t) = c . (5.8.8)
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The process in Equation (5.8.6) is recurrent by Theorem 5.7.2. For the process in Equa­
tion (5.8.7) it follows from the large time behaviour of Wt tha t for large t the process is 
dominated by the t 9 term. Hence the process will not be recurrent.

Turning our attention to the quartic in Equation (5.8.5) we remark that solving it 
explicitly yields an extremely complicated expression. Instead we opt to analyse the 
equation numerically as illustrated in the table below.

t Solutions
1014 -0.0000195743 2.66667 x 1013 9.78717 x lO-6 ±  0.0000169519i
1016 -9.0856 x 10-6 2.66667 x 1014 4.5428 x 10“6 ±  7.86836 x 10““*
1016 -4.21716 x 10-6 2.66667 x 1015 2.10858 x 10~6 ±  3.65217 x 10"6i
1017 -1.95743 x 10~6 2.66667 x 1016 0 ±  1.69519 x 10~6i
1018 0 2.66667 x 1017 0

We expect three of the solutions to tend to zero whilst the other tends to infinity. 
Hence for large t we expect the equation to behave like 8xq =  0. This has solution 
Xo = 0 (3 times) so that for large t, F£(x10 (uj: t) ,t)  — c behaves like the recurrent process 
e2Wt Si Wu d u -  y  J l  W l  du -  c.

In summary the stochastic processes in Equations (5.8.6) and (5.8.8) will be recurrent, 
but the process in Equation (5.8.7) will not.

5.9 A Unifying Approach
In this section we aim to expound upon the ideas of Chapter 4. We will discuss how 
the method employed in Chapter 4 to analyse hot and cool parts of the caustic may be 
extended to study intermittence of turbulence.

Let x  = (x1, x2, . . . ,  xn) and Xo =  (zj, £0, • •., Xq). We know that

X = $ tXo Va.0̂ 4(®o, x , t )  = 0 .

Assume that ^  0 for i =  2 , 3 , . . . ,  n, so that

d A
Oxq

Using the shorthand notation x%( ) =  Xq(x , xj, x§, . . . ,  Xq-1, t) we see

rr.n-1 _  ~ n - l (  1 n —2 y.\
J'0 — va/5 • • ’ » **'0 ’ 0J ’

2 _  n - 2 (  1 n - 3 +\J/q — ^ 0  \“'j **/0’ • • • » 0 i 0/ J

which eventually leads to

d A
dx%

—  (xm xl, ■. •, xg \ x S (  ), t)  =  0

d A
dx n0

n  (*o.x l , . . . , x l  4( ) , xg(( ) ) , * )=  0

(xj, x l , . . . , X q ,  X ,  t) =  0 •*=>• xl| =  x 2 ( x ,x L x 0, rn'
5 X 0 \ t )

^ 5  ( x l , x l , x 30( ) ,xj((  xj(((- ••))), t) = 0  <=*■ x l  =  xjj(x, xj, t)



Using back substitution we have

xl =  x20(x, xl, t) =  xl ( )  ,
xl =  xl (x,xl ,xl , t )  =  xl (x,xl ,xl (  ),t)) =  Xo(( )) .
* 0  =  ^o(x <xo<xo<xo^) =  xl(x,xl ,xl (  ),x§(( ))) =x£((( ))) ,

xl  =  4  (x,xl ,xl{  ),xl(( xS_1(((-••)))) .

Thus substituting these n — 1 expressions into A(x0, x, t) we define the function

f (x l ,x , t )  := A{x\ , x l (  ),zj5(( ) ) , . . . ,xS~1(((---))),x,t) ,

where we recall that /  was the function we defined and studied in Chapter 4.
By the method of stationary phase and repeated integration we have

f  ' "  J ?o(*o)exp ^ - j ^ A ( x 0,x, t )^  dxg d^o- 1 . . .  dxj 
R R

~  (2wn2) 1 e±!i  J  ■ ■ ■ J  To(xltxl , . . . ,x%())  ô. -  ■. xo ( ). *. *))
R R

x exp (x l ,x l , . . .  ,x£( ) ,x , i )  j  dxj- 1 . . .  dzj

~  (2vfi2) 5 e±!? e±!? J  " J  T0(xl , . . . , x%- \  ) ,x g ( ( )))
R R

x )»So(( ))>*.*))

x e x p | - ^ y l ( z J , . . . )iS_1( ),xS(( ))>*.<)} dig- 2 ...

~  (2Trfi2) ~  e ^ ,/tT J  f 0(xl ,x, t)  \ f [ - ^ ^ { ^ a ^ l (  ).•■• ,^o(((•••))).*.
R 'i=2

x d x j ,

where f 0 (xJ, x , t) = T0 (xj, xg(), xj|(( xj(((- • •)))) and vk =  ±1.
If xj is a degenerate critical point then it follows that the caustic is given by
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where the first term in the product is f " ( x l> x ,t) .
Let us now return to the two dimensional setting where x  = (x,y)  G M2 and Xo = 

(zo> Vo) € M2. Recalling our work in Chapter 4 on the function f ( x J, x , t), we see that for 
fixed t > 0 the number of cusps is given by

N c(t)  = j# £ o  : f ( x 0 , x , t )  = c , ^ - ( x 0 , x , t )  = 0 , ^ ( x 0 , x , t )  =  o |  .

We have three equations in three unknowns Xq, x , y  which may be solved to obtain the 
common points of the pre-curves Xq(t). Using f ( x o ,x , t )  = c and J^ (^ o , x , t )  =  0 we 
obtain x  = x ( x 0 ,t)  so that

■A/cW =  { #xo(t) ■ ^ ( x 0 , x , t ) = c (5.9.1)
X = x ( x o  , t )

It is helpful to think of the equations /  =  c, / '  =  0 and / "  =  0 as being intrinsically 
linked with the level surface, flow mapping and caustic respectively.

If we now allow t > 0 to vary then J\fc{t) will change when

d
dx o dxl

x = x ( x q  , t )

=  0 ,

that is
^ f (XoiX>t) + f ± . Vx

d x l
= 0 (5.9.2)

x = x ( x q  , t )

Hence the turbulent times are given by those t(u)  satisfying Equations (5.9.1) and (5.9.2). 
Namely if x 0 =  Xq(t) satisfy Equation (5.9.1) then the turbulent times are given by the 
solutions of

f ^ ^ d x T 7 ^ ^ 2 f ]  _ n
d x l  V d̂ o J  d x l  '

X Q = X 0  ( t )

We remark that the true turbulent times are those random times t(u)  at which the 
number of cusps on cool parts of the caustic changes. Of course for the cusp singularity 
all turbulent times are true turbulent times because the whole of the cusp is cool. For 
the polynomial swallowtail we are only interested in the number of cusps changing on the 
A-shaped part of the caustic. Denoting the set of turbulent times by Turb it follows 
that the true turbulent times will be given by

t(u>) € Turb t fl {t : x ( x 0 (t), t) G Cool(Ct)}



Chapter 6 

Harmonic Oscillator Potential

In this chapter we no longer restrict ourselves to  the case o f a zero potential. Instead we 
consider the harmonic oscillator potential V( x )  =  \ x TQ2x  where f i 2 is a real symmetric 
positive definite matrix. Considering both the determ inistic and stochastic  situations we 
obtain the Mehler heat kernel and corresponding stochastic Mehler heat kernel for noise 
potential k ( x , t )  =  x.  T hese are employed to  obtain explicit expressions for th e caustic and 
level surface under the harmonic oscillator potential. Our usual exam ples o f the cusp and 
polynomial swallowtail are studied in som e detail.

The chapter concludes with a discussion o f hot and cool parts o f the caustic and turbulent 
tim es. Several o f our results from Chapters 4 and 5 are extended to  include th e case o f the  
harmonic oscillator potential.

6.1 Harmonic Oscillator Potential

6.1.1 Introduction
In this chapter we study the Burgers equation

—  ( x , t )  +  (uM • V )vM =  -  - V ( x Tn 2x )  -  eWt ,

with initial velocity vfI( x :0) =  V So(x ), representing a fluid whose particles are subject 
to the force (—\ V ( x TQ?x) —£Wt). The corresponding Stratonovich type stochastic heat 
equation is

FjiiV' //  ̂ 1 p
—  (x ,t)  = —  AV? +  —  (xTQ2 x)u tl +  — xu^ O Wt , 
ot 2 2 n 2 ii1

with ^(iCjO) =  exp djS'o(cc)^. We initially consider the deterministic case e =  0. 
Consider the time dependent Schrodinger equation

ih ^ ip t(x) =  f - y A  +  V(a:)  ̂ ipt{x) ,

139
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which on dividing through by H and re-labelling as fi2 becomes

* =  ( —y A  +  ^ ( x ) )  t/>t(x) ■ (6-1-1)

More on Schrodinger’s equation and other aspects of quantum mechanics may be found 
in [34]. We are simply interested in the well known fact that for harmonic oscillator 
potential V(x) = ^ u 2 x 2, the Schrodinger equation has Green’s function

r, < \ I ^  f  iu> {x2 + xl) cos(ut) -  2 x x 0\Gt(x ,x o) =  . /  . 2 . . . exp — j -------------— — 7-----------  , (6.1.2)
y 2m fi2 sm(ut) \ 2 / r  sm{ut) J

for all positive t ^
It is possible, see for example [10], to reduce several types of partial differential equa­

tion to the heat equation. In particular, applying the transformations 1 1-> it and u  i—> iu  
in Equation (6.1.1), namely setting r  =  it and u  = iu, yields

dtd . , . . .  d , .
—  l j j { X , t { T ) )  =

t = t ( r )

=  ( y A  +  iw 2x2)v>(x,t(-r)) .

Setting u (x , t ) =  ^(:e,£(t)) and re-labelling r  as f and w as w yields the heat equation 
with harmonic oscillator potential

^ U(x, t )  = A +  ^ -u 2x 2̂ \ u (x , t) .
d t '  ’ '  V 2 2

Hence the Green’s function for the heat equation with harmonic oscillator potential is 
found by setting t  =  —it and u  = —iu  in Equation (6.1.2). This gives the Mehler heat 
kernel

I W (  U (x2 +  X q )  cos(iilt) — 2xx0 \  . ,
G ((x,x0) =  . / - — 2 . , . exp r   • ,   • (6.1.3)

y 2tt(i sm(cjt) \  2fi2 sm{ut) J

Thus the heat equation for the harmonic oscillator potential with initial condition u(x, 0) =  
exp ^sSoix^j has solution

u (x,t) = J  Gt(x ,x 0)exp ^ -^S oO ^o)^  dx0

u
27r / i 2 sin(u;t) / exp(-^— - A (x 0 , x , t )  dx0 ,

where the phase function A (x o, x ,t)  is given by

. , . U  (x2 +  Xn) cos{ut) — 2xx0 „ , .
A (x 0, x , t) =    +  So(x0) .2 sm (ut)
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Remark 6.1.1. In practice one would obtain the Mehler heat kernel in Equation (6.1.3) 
directly by the method described in [4]. However, since we intend discussing the stochastic 
case, we have chosen a method analogous to the one we shall use in the stochastic setting.

6.1.2 Caustics and Level Surfaces
If we define the real n x n diagonal matrix fi by

3 1 0 otherwise,

then for a column vector x  the phase function A ( cco, x , t ) may be written as

A ( x 0 ,x ,  t) = ]i-xT£lcot(Q,t)x + ^-XoTQcot(£lt)xo — x TVt [sin(fi£)]_1 Xo + So{x0) . (6.1.4)

Hence the flow mapping $ t defined by V xoA(xo, x , t) =  0 is given by

x  = cos(Qt)x0  +  fi-1 sm(Qt)VSo(xQ) . (6.1.5)

Proposition 6.1.1. For the deterministic case with harmonic oscillator potential the 
(pre-)caustic is given by

Det [fi cot (fit) +  5o(cc0)] =  0 ,

evaluated at Xo = $ t lx .

Proof. This follows immediately by inserting Equation (6.1.4) in the pre-caustic condition 
Det[*4"] =  0. □

Proposition 6.1.2. For the deterministic case with harmonic oscillator potential the 
(pre-)level surface is given by

— ̂ X q fisin(2fit)®o — Xq sin2(fit)VS'o(£Co) +  jV S ^ f i-1 sin(2fit)V5o(aJo) +  <Sb(*o) =  c ,
(6.1.6)

evaluated at xo = $ t 1x .

Proof. The pre-level surface is determined by A ( x 0 , x , t )  =  c and V XoA (x o ,x , t )  =  0. 
Inserting Equation (6.1.5) into (6.1.4) and observing that all matrices are real diagonal, 
we see that the pre-level surface is given by

icc0r ficot(fit)(cos2(fit) — I ) x Q +  x 0T(cos2(fit) — I)VSq  
z

+  i(VS'o)Tfi-1 cos(fit) sin(fit)V5'0 +  So(x0) = c . 
z

Using the identities cos 2(fit) —/  =  — sin2(fit) and cos (fit) sin(fit) =   ̂sin(2fit)) we obtain 

— ia j0Tfisin(2fit)£c0 — cc0r sin2(fit)V»S'o +  ^ V S jf i-1 sin(2fit)ViS'0 +  S 0 (x0) =  c .fi fx

□
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6.2 Explicit Examples
If we take 5o(®o) =  f ( x°) 9 (xo)yo in Proposition 6.1.1 then we see that the pre-caustic
is determined by

u 2 cot(u2 t) (u 1 cot(wit) +  f " ( x o) -I- yog"(x0)) -  g'(x0 ) 2 =  0 .

If g"{xo) 7̂  0 and t ^  then this may be solved to give the pre-caustic as

Vo(xo) =  } , ( 9  ^  ta n u 2t -  f " ( x 0) -  ui cotcJiA . (6.2.1)
g"{x0) \  u;2 J

Similarly, it follows from Proposition 6.1.2 that the pre-level surface is determined by

x 2 y 2
-  sin(2ui£) -  ~~uj2 sin(2 uj2 t) -  x 0 sin2(cjit)(/' +  g'y0) -  y0 sin2 (u2 t)g

+  -j— sm(2 u i t ) ( f  +  g'y0 ) 2 +  sin(2 uj2 t)g2 +  /  +  gy0 = c , (6 .2.2)
4cJi 4uj2

where the xq variables have been omitted for brevity.
Remark 6.2.1. If t = then the pre-caustic condition reduces to g'(xo) =  0 so that
the caustic is given by

x(x0) = [cos(a;i^)a;o +  w1_1sin(a;it)//(xo)];Eo=(5/)- i (0) , 

y(x0) =  [ u ^ i - l ^ g i x o ) } ^ ^ ^  .

6.2.1 The Cusp Singularity
Here we set /  =  0 and g(xo) := \ xq. Then g'{xo) =  Xo and g"{x0) =  1 so that the 
pre-caustic

„2
2/o(^o) =  — tan(cj2t) — k q c o t^ it)  . 

lj2

for t 7̂  -2ĥ ~. The flow mapping is

x  = $ tx o =  cos (tit) (^°^j +  ^ _1 sin(fii) ^ ,

so that the caustic is

x(xo) = ——  xlt&n(u 2 t) sin(u;it) ,
0)\UJ2

3
y(xo) =  - — sin(o;2̂ )^o — u i cot(uit) cos(u2 t ) .

2 u 2

Observe that the vertical orientation of the pre-caustic is determined by sgn(cjJ1 tan(u;2£)). 
Namely, in quadrants 1 and 3 the pre-caustic will have its usual orientation but in quad­
rants 2 and 4 it will be upside down. Similarly, in the deterministic case the vertical 
orientation of the cusp is determined by sgn(a;̂ "1 sin(u;2t)) so that in quadrants 1 and 2 
the cusp has its usual orientation but in quadrants 3 and 4 it is upside down.
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Remark 6.2.2. If t  = then the pre-caustic is given by the line x 0 = 0 so that the
caustic is (x , y ) =  (0,0).

To obtain the pre-level surface we use Proposition 6.1.2. This gives

-  s in fiu it fx l  -  sin(2 u 2 t)y% -  sm2 (u it)x ly 0 -  ^  sin2 (u2 t)x ly 0

+ -j— sm{2uit)xlyl +  sin(2a;2t)4 + iUo2/o = c ,
4aq ioc^2 ^

which is a quadratic in yo. Solving this quadratic yields

. . 2 u\X^ sin2(o;it) — ljixI cos2 (u2 t) ±  U\y/V[
X° Xq sin(2cjit) — u iu 2 sin(2 u 2 t)

for V t > 0 where

V t := 7 (^ 0  (1 — 2 cos(2u;ii) — cos(2a>2£))2 H —  (xl sin(2 uit)  — u iu 2 sin(2 u 2 t))
4 I uj\UJ2

x (4^0 sin(2u;i£)u;ia;2 +  1600̂ 2 — ^0 sin(2a>2£)) } •

In order to obtain the level surface we apply the flow mapping which gives

x l  sin(a>i£)(l — cos2 (u2 t)) — xqUiuj2 cos(uit) sm(2 u 2 t) ±  x 0 sin(a>it ) > f D t
00 f 00c\ J —

Xq sin(2a>it) — UJ\U2 sin(2cj2£)
^ x i  sin(uot) sin(2a;

y(x o) =
2^Xq  sin(o;2 )̂ sin(2aqt) +  XqUi cos(a'2 0 (2 sin2(a>it) — 1) =L ui  cos{oJ2 t)y /V l

X q  sin(2 uj1t ) — u iu 2 sin(2 u 2 t) ’

for V t > 0.
Figures 6.1 and 6.2 show the pre-curves and image curves, respectively, of the cusp 

singularity with u>i =  |  and u 2 = ^. As usual the caustic is identified by the use of a 
broken line and we have varied t from 0.1 to 3.6 in steps of size 0.1.

6.2.2 The Polynom ial Swallowtail
Here we take f ( x 0) := Xq and g ( x 0 ) := Xq. Inserting into Proposition 6.1.1 we see that 
for 1 7̂  ~22̂ ~ the pre-caustic is given by

2 X 2 qj
V o ( x o )  =  — ^tan(a;2^) — IOzq — r ’ Cot(wit) . lj2 2

The flow in this case is given by

x  = 0 — cos(Vlt) (^°^j +  ^ _1 sin(fli) ^ X° ,

so that the caustic is
X5 4 oô

x ( x q )  =  Xq s i n ( o ; i t )  H — sin(uit) tnn(uj2 t) ,
D\ UJ\U2

y ( x 0) =  ' ^ - s in ( u 2 t) — 10x 1 cos(cj2 t) ~  cot(uit) cos(u2 t) . 
u 2 2



144

for the cusp singularityFigure 6.1: Pre-Curves with u\

Figure 6.2: Image-Curves with lji = |  and = § for the cusp singularity
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Remark 6.2.3. Observe that the horizontal orientation of the polynomial swallowtail is 
controlled by s g n ^ f 1 sin(o;it)).

From Proposition 6.1.2 we see that the pre-level surface is determined by the quadratic

yl ( - \ u j 2 sm{2 uj2 t) +  — sm(2 u)it)\
\  4 Ui J

+  y0 2xq sin2(cjit) — Xq sin2(cj2t) +  — sin(2u;i£) +  x j^

(  x 2 25 1 \
+  ( — sin(2o;it) — 5xq sin2(u;it) +  -— Xq sin(2o;it) + -— %o sin(2u;2t) +  x{j — c I = 0  

y 4 4cdi 4 u 2 J

Solving we obtain

4uqXo sin2(a;it) — IOxq sin(2a;it) — 2u>i Xq cos2(uj2t) ±
X° 4x§ sin(2o;it) — U\U2 sin(2tj21 )

for V t > 0, where

A rpt
V t = ----  —  sin(2cjit) sin(2u;2t) H   sin(2cdit)(l +  5cos(2u;2t))

U) 1 UJ\
4x6

 — sin(2u;it) sin(2o;2t) +  2xgo;2(5cos(2a;it) — 3) sin(26j2t)
UJ\t0 2

+  2xq (3 — 2 cos(2a;it) +  cos(2t(cJi — cu2)) — cos(2u2t) +  cos(2t(u;i +  u2)))
x2

-I— -  sin(2o;it) (l6c — sin(2o;2t)a;2cj2) — 4ca;2 sin(2c<;2£) .
u  i

Thus applying &t we obtain the level surface, 

x(xo) =  (4xq sin(2o;it) — u \u 2 sin(2o;2t)) 1 ^  — 5xquj2 s in ^ it)  sin(2o;2t)

+ 4xq sin(c<;it)(2 — cos2(u;2t)) — x0c<;iu;2 sin(2o;2t) cos(uit) ±  2x0 sin(c<Ji£) a / a |  ,

y{xo) = (4xq sin(2o;it) — u iu 2 sin(2o;2t)) 1 < — IOxq sin(2u;it) cos(u;2t)

4%̂  j 1
H   sin(2cjit) sin(o;2t) — 2xqu;i c o s {u2t) cos(2o;it) ±  u \  cos(u2t ) y V t > ,

2̂ J
for V t > 0.

Figures 6.3 and 6.4 show the pre-curves and image curves, respectively, of the poly­
nomial swallowtail with ui = |  and u 2 =  §. As usual the caustic is identified by the use 
of a broken line and we have taken t from 0.1 to 3.6 in steps of size 0.1.
Remark 6.2.4. Proposition 6.1.1 and 6.1.2 may of course be used to find explicit formulae 
for the butterfly and three dimensional polynomial swallowtail with harmonic oscillator 
potential. Due to the fact that the argument is identical to the two dimensional case we 
have chosen to omit the derivation and result.
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Figure 6.3: Pre-Curves with u\ = |  and u 2 = § for the polynomial swallowtail

Figure 6.4: Image-Curves with =  |  and u 2 = § for the polynomial swallowtail
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6.3 Harmonic Oscillator Potential w ith Noise

6.3.1 Stochastic Mehler Heat Kernel
In this section we begin with the stochastic Schrodinger equation for harmonic oscillator 
potential, namely

iKdipt(x) = y  A +  &{%) dt — ek(x, t)ijjt(x) ° dW t , (6.3.1)

where Wt is a one dimensional Wiener process and o indicates the Stratonovich stochastic 
differential. Dividing through by H and relabelling as fi2 yields

idipt (x )=  ( ^ ~ Y ^  + - ^ u j 2 x 2 Sj'ipt ( x )d t - - ^ k ( x , t ) ' ip t { x )o d W t .

We use the following well known fact: if the noise Wt in some stochastic Stratonovich 
equation is approximated by means of smooth functions

Wt f  q(s) ds , (6.3.2)
Jo

then the solutions of the corresponding deterministic equations will tend to the solution 
of the given stochastic equation. Considering Wt to be of the form in Equation (6.3.2) 
we have

i dTpt(x) = ^  dt -  dt .

Applying the transformations t i—► it and u  >-*■ iu, namely setting r  = it and u  = iu  
yields

i dip{x, t(r)) =  i ^ y  A +  ^ (z , t(r))  d r  +  ij~k{x ,  £(r))^(x, t{r))q{t{r)) dr  .

Setting u ( x , t ) := ^(x ,£(r)) and k{x,r) := k(x ,t(r))  gives

du(x, t ) =  ^ y A  +  J j j i ^ x 2̂  u(x, r )  dt +  k(x , r)u(x, r)q(t(r))  d r  ,

which on re-labelling t  as t and u  as u  will tend to the stochastic heat equation 

du(x, t) = ( ~  A +  - ^ - z ^ x 2 ] u(x, t) dt +  - ^ k ix ,  t)u (x , t) o dWt .
V 2  2 ^  )  M

We remark that if k(x ,t)  = k(x), namely k is time independent, then we have k = k. 
In particular this will be true for the position operator case, (ku ) (x) = xu(x), which we 
now consider.
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P ro p o sitio n  6.3.1. The Stratonovich type stochastic heat equation with harmonic oscil­
lator potential,

a . 1 . 2 2 '  ' ^du(x, t) = +  — a;2 x 2 J u{x, t) dt +  j ^ x u (x ,  t) o dWt ,

with initial condition u(x, 0) =  F(x)  G Cq>(R) has a solution

\{x,t) = J  G t{x,x 0 )F(xo)dx 0  ,u(
where the stochastic M ehler heat kernel Gt(x ,x o) is given by

U (X2 +  xl)  cos (cut) — 2 x X q
Gt(x ,x 0) := y

u
exp

2 'Kfi2 sin(ut)
( e x si

x exp ( fj,2 J0

x exp
- i t  \ L

2  fi2 sin(cjt)
sin(a;r) — x 0  sin(u;(r — t)) 

sin (ajt) 
sin(a;s) sin(a;(r — t))

odWr

odW»
u  sm(ut)

for all positive t ^  where k G Z.

Proof It is known, see [52] and [42], that the Schrodinger equation

i&ipt{x) = +  - ^ c j 2a;2>) Tpt (x) -  xipt (x) o dWt ,

o d W r \ , (6.3.3)

2p?

has stochastic Mehler kernel 

Gt(x , x 0) =
u

exp
2 mpi2 sin(u;t) \2yLt2

iuj (x 2 +  xl)  cos(ut) — 2 xxq
sin(a;t)

x exp
a s :

x exp

x  sin(ur) -  x 0 sin(u(r -  t)) ^ ^  ' 
sin(o;t) r t

sin(u;s) sin(u;(r — ut))f e2i f* r  si
I T2 Jo [Jo u  sin (ut)

odW< OdWr

for all positive t ^  To obtain the stochastic Mehler heat kernel we must set r  = it 
and u  = iu, which gives

G(x , x 0) =
u

2 it/i2 sin(a;r)
exp

U (x2 +  X q) cos (u t)  — 2 x X q

2 p? sin(a;r)

x

(~i)fo

exp{ f H ) 2 h /

£ 1

XeXp^ ( -  
.2

T —x  sin(u;f) +  Xq sin(u(r —
^  o d W f \

— sin ( l o t )

(— sin(d;s)) (— sin(a)(f — r))) 
iu  sin(o>r)

Re-labelling r  as t and dropping the tildes yields the desired result.

odWz OdWr

□
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Remark 6.3.1. Observe that if we allow u  \  0 in Equation (6.3.3) then by virtue of small 
angles we obtain

Gt =
1

exp
(:x - x 0)2 £ xr - x Q{r - t )

J 1  r t

ii2 /P Vo
s(r — t)

L«/0 t
o d W ' OdWr

2 'KtlJS
exp

(x — X q ) 2 ex
2 t\xl +  ^ w * -  T i  (x -  x°) f  W" duV? t v 2 Jo

which agrees with the stochastic heat kernel considered in Chapter 3.

6.3.2 Caustics and Level Surfaces with Noise
Continuing with the nomenclature adopted in the deterministic case we see, that for 
x e W 1, the action may be written as

A (x o ,x , t )  = ^-xTClcot(Clt)x + ^-XQflcot(Clt)xo — x TCl [sin(flt)]-1 xq 
z  z

_  e / l gsin0J ir ) ~  ^0 sm(ui(r -  t)) o
[o

*t r /*?■
+ £' J  JJo .Jo

sin (uit) 
sm(uis) sin(a;i(r — t))

o dW s o dW r +  (So(®o) j (6.3.4)u>i sm(u>it)

so that the flow mapping $ t defined by V XoA{xo, x , t )  =  0 is given by

( f* sin(<xq(r — t)) o dWr  ̂
0

x  =  $ tx o =  cos(Qt)xo +  Cl sm(Clt)VSo +  sCl»-i

V o

. (6.3.5)

Remark 6.3.2. Note that if 4>?(a?o) denotes the flow mapping in the deterministic setting 
then

4>̂ (cco) =  (®o) +  £ [  ^  1 sin(fi(r — t)) o dWr ,
Jo

where

Wt(u) =
0
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It follows from the action expression in Equation (6.3.4) that the pre-caustic $ t l Ct 
is still determined by

Det [flcos(flt) +  S'JOeo)] =  0 •

Since the pre-caustic is purely deterministic, it is clear from the preceding remark that 
noise does not affect the shape of^the caustic. It merely displaces Ct by the random 
amount s fl-1 sin(fl(r — t))o  dWr.

P ro p o sitio n  6.3.2. Let x  £ Rn and consider the Stratonovich type stochastic heat equa­
tion with harmonic oscillator potential V (x )  = \ x TSlx,

d u (x , t) = ( — A +  — r x  Six ) u(x, t) H— -xu (x ,  t) o dWt ,

where u(x,  0) =  exp ■ The (pre-)level surface of the Hamilton principal function,
S ( x , t )  = c, is given by

— flsin(2flt)cco — X q  sin2(flt)V So(x0) +  iv5'o(aJo)r ^ _1 sin(2flt)V5o(#o)

+  e ( xq cot(a;i£) +  — ^ j ( cos(uqt) [  sinhjT r — t)) o dW r — f  s i n ^ r )  o dWr
\  u jid xo j  V Jo Jo

e2cot(cjit )  (  o n / V  2 f l (  sin(cjis) sin(cji(r — t ) )  \
+ - M  U  - ’  I  U  J , . m U . )

+  So(xo) =  c ,

evaluated at Xo =

Proof The pre-level surface is obtained by evaluating A { x 0, x , t )  = c at x  =  $ tx o- This
amounts to inserting Equation (6.3.5) in Equation (6.3.4), giving

i  ( x 0T cos(flt) +  V S jf l-1 sin(flt) +  e sin(fl(r — t)) o dW ^j  f l-1 ] flcot(flt)

x cos

—  | X q  COS

(Slt)xo +  SI 1 sin(flt)VSo +  ^  1 J  sin(fl(r — t)) o ^xjflco t(flt)a;o

(Sit) +  V S^fl-1 sin (Sit) -f s (^ J  sin(fl(r — t)) o Si j  fl [sin(flt)]-1 Xq

e [ Xq cos(Slt) +  V S qSI 1 sin(flt) +  £ sin(fl(r — t)) o dW.^j fl 1

•t
x Ism ''' ' 1-1in(flt)] 1 f  sin(flr) o dWr +  £Xq [sin(flt)] 1 f  sin(fl(r — t)) o dWr 

Jo Jo

+  £2/  ( /  sm(Sls)sin(Sl(r — t)) o dW ^j  fl-1 [sin(flt)]-1 o dWr +  So(xQ)
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w h i c h  a f t e r  e x p a n s i o n  b e c o m e s  

1
^Xq cot (fit) (cos2 (fit) — I ) x  o +  Xq (cos2(flt) — J)V5o +  -VS'jfft 1 sin (fit) cos(flt)VSo

+  e ( x0 cot(uJit) +  —  ) ( c o s ( c j i t )  [  s in(ui(r  — t ) ) o  dWr — [  s i n ( ^ i r )  o  dWr J
\  U i OXq J  \  Jo Jo J

£2 COt ( u q t )

2co

uj i sin(o;it)

u\  sin(cjit)

1— sin(o;i(r — t)) o dW ^j

f  sin(o;i(r’ — t)) o dWr f  sin(a;ir) o dWr 
Jo Jo

a i  sin(a;is) sin(cji(r — t)) o dW ^j o dWr +  So(x0) =  c .

Using the identities cos2(flt) — /  = — sin2(flt), cos(flt) sin(flt) =  \  sin(2flt) and observing 
that

F M  sin(uis) sm(ui(r — t))^ o dWr — J  sin(cjis) sin(cji(r — t))^  o dWr

- S M  sin(cjis) sin(o;i(r — t))^ o dW r ,

y i e l d s  t h e  r e q u i r e d  r e s u l t .

6.3.3 An Aside on Ito Forms of the H eat Kernel 
L em m a 6.3.3. The stochastic Mehler heat kernel in ltd form is given by

□

Gt{x,x0) :=
u u  (x2 +  Xq) cos(cjt) — 2 xxo 1 

27xp2 sin(cjt) 6X̂  \  2p? sin(o;t) J

x  e x p
( e x  s i

l ^2 Jo
s i n ^ r )  — Xq s i n ( ^ ( r  — t))

s i n  (ut)
dWr

x
f e2 ( 1 f* 2 , /** f r WrWs cos(u(r — t ) )  cos(us) \  ) . .

“ p { ? ( 2  L  K i r - “ l  I  — . . V  H }  ■ ( 6 3 6 )

for all positive t ^  ^  where k G Z.

Proof If
r rr s i n ( c j s )  s in (c < ;(r  — t))

X t : =
- F IJo .Jo u  s i n ( c j t )

O dw„ o d W r ,

a n d

y , : . l f [
WrWs c o s ( c j ( r  — t ) )  cos(ljs)

s i n ( c j t )
d s d r  ,

t h e n  w e  n e e d  o n l y  s h o w  t h a t  X t = Yt a l m o s t  s u r e l y .
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Using integration by parts we see

X t  =  f  Wrdr f f  SinMSin^(^-t)) o  a w . \
Jo [Jo usm(ut)  J

[cos( u ( r - t ) )  f r . sin(cjr) sin(o;(r - t))
=  / Wr < — \  N ■ dr / sin ws dWs +  — *—  . ) \ -------   ° 9W,Jo [ sin(wi) J0 u  sm{ut)

^ W r C o s i u i r - t ) )  f  f r \
= / --------— — v------- \ Wr smfcjr) — / Ws cosfcjsjcjds > dr

J  o sin(urf) t Jo J
sin(a;r) sin(u(r - t ) ) Q f W j \

J0 usm(ut)  V 2  /
/** W j  sin(a;r) eos(cc;(r — t)) /** f r WrWs cos(u(r — t)) cos (us)

Jo sin (ut) Jo Jo sin (ut)
f r W 2

~  /  ^— “ 7— r^r (sin(ct/r) sin(a;(r — t))}Jo 2cjsin(cut) 1 v v
1 p  W 2 sin(a;r — ur  +  ut) /** f r WrWs cos(u(r — t)) cos(us)
2 Jo sin(ut) Jo Jo sin (ut)

= Yt .

ds dr

ds dr

□
Corollary 6.3.4. The (pre-)level surface of the Hamilton principal function, S ( x , t )  = c, 
is given by

— ^ X o ^ l s m ( 2Q t ) x 0 — X q s i n 2( Q t ) V S o(x 0) +  ^V5o(a;o)TQ-:l sin(2f2t)VS'o(a;o)

+ e ( x o c o t ( u i t )  + — ——) (cosfurf) f  s i n i u H r  — t ) )  dWr — [  sinhjir) dWr J 
V u i d x o j  V Jo Jo J

+ ( J  Mull {r _  t)) dWr) 2 _  £ V  jf* j f  ^ ^ c o s M r - t ) ) c o s K , )  ds dr

e2 /** /*
-  — /  W 2 dr +  £2 / Wr cos(u;i(r -  t) )d r  +  aS'o(cco) =  c ,

* Jo ./o

evaluated at x Q = $ t l x -

Proof. This follows from Proposition 6.3.2, Lemma 6.3.3 and the fact that 

'l rt sin (us) sin(o;(r — t))
o  d W 9 O dWru  sin (ut)

isy ( / sinKr _ t)} 0 m ) ( i sin(wr) °5Wr)
=  —Wt f  WT cos(u,(r - t ) ) A r  + u f  f  ™  c o s H r  -  t )) c o s M  ^  ̂  

Jo Jo Jo sm(ut)

u  sin

□
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Remark 6.3.3. Observe that if we allow u  \  0 in Corollary 6.3.4 then we obtain

J2 /  p t \  2
^ |V5o | 2 - £ U 0 +  ^ W t +  ^ (  I ( r - t ) d W ,£ G £ V - «

^{(/ Wrdr) ~  Jo Jo ŴW>dsdr
F2 /■* /**

- T /  K dr + e2 Wt Wr dr + S 0 = c . (6.3.7) 
2 jo Vo

Using the facts that

and

Q f  Ws ds^ = 2 J 0 J 0 WrW ,dadr  , 

f  ( r - t ) W T = -  [  Wr dr ,
JO JO

we see that the expression in Equation (6.3.7) coincides with that obtained in Chapter 3 
for the stochastic free case.

6.4 Explicit Examples
Let us consider the initial function So(x0) =  f ( x 0 )+g(x 0 )ya. We know that for t  ^  
and g"{x0) ^  0 the pre-caustic is given by

yo{xo) =  r {tan (^2t)g'{x0 ) 2 -  cot{uit)uJiu2 -  U2 f " ( x o)} .
w2g i^oj

The flow mapping is now

x =  $ tx„ =  c o s tf i^ o + f i - 1 sin(fit) ( f,{XO\ +{x^ Xo)y° )  + rf> -‘ (J° sin^ r ~  ° dWA  , 

so that the caustic is given by

x{xq) =  — -—— { sin(c<j1t) t&n(uj2t)g '3 — a)2 f u +  u 2 sin(u)it) f  g"
Ui(j2g

e
u \u 2 cos(u>it)(g' — x 0 g")} H / sin(cji(r — t)) o dWr ,

Joro

y(x0) = ---- -  {sin(cj2̂ )p/2 -  cos(u2 t) cot(a;it)a;i£j2 -  cos(w2 t)u 2 f ” +  gg" sin(cj2t)} ,
uj2g
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where the Xq variables are omitted for brevity. In order to obtain the pre-level surface 
we must use So(x0) = f ( x o) +  g(xo)yo in Proposition 6.3.2, which yields

-  ^x^u i  sin(2u;i£) -  j 2/o^2 sm(2 u 2 1 ) -  x 0  sin2 ( u i t ) ( f  +  g'y0)

-  2/0 sm 2 (u2 t)g +  sm(2 u i t ) ( f  +  g'y0 ) 2 +  sin(2u 2 t)g2 
4  U)\ QUJ2

+e (^xq cot(o;it) +  — ( / '  +  gfyo)^j ^cos(o;it) J  sin(cji(r — t)) o dWr — J  sin(cjir) o dWr

+  ^ M ( /  sin(ui(r -  t)) o d W ^

-  /  -  a m W r  -  t)) q ^  oSWr + f  + gyo = Cm (6A1)
—  £

0 \ J r ui  sin(u;it)

It may easily be observed that Equation (6.4.1) is a quadratic in 2/0 which may be solved 
to obtain the pre-level surface as yo(xo,t). The formula for the level surface is then 
obtained by applying the flow mapping so that (x(xo), 2/(^0)) — 2/o(zoj £))• The
explicit formulae are omitted here for the sake of brevity.

In Figures 6.5 and 6.6 we have illustrated the pre-curves and image curves for the 
cusp example. As usual the caustic is identified by the use of a broken line and for the 
purposes of our example we have taken ui = u>2 = §, £ = ^  and c =  — 2-4. The
random terms have been generated by means of a numerical simulation similar to that 
outlined in Appendix A.

t = 2

t = 4 t = 5 t  = 6

Figure 6.5: Pre-Curves for the stochastic cusp with harmonic oscillator potential
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t = i t  = 2 t  = 3

4t 5t 6t

(6.5.1)

Figure 6.6: Image-Curves for the stochastic cusp with harmonic oscillator potential

6.5 Hot and Cool Parts of the Caustic w ith Har­
monic Oscillator Potential

Recall that in the stochastic harmonic oscillator case we have

4>f (cc0) =  cos(£lt)x0 +  H-1 sin(f2t)V5o(a;o) +  s f  Q-1 sin(fi(r — t)) o dWr
Jo

= $?(#o) +  £ [  ^ -1 sin(ft(r — t)) o dWr .
Jo

Observe that if cos(uj2 t) + c^ 2 1 sin(cc;2̂ ) ^  0, then the y coordinate in Equation (6.5.1) 
may be solved to obtain the purely deterministic expression y0 = yo(y, Xo, u 2). Moreover, 
the values of (4>£)_1 {a?} are obtained from the solutions x l0 (x ,t)  of ( (x 0) =  0, where

\ t \ sm(uit) dS 0 . . .. £ / ' * . / /  OTXr
Q(x0) := cos(uit)x0 H------------ —— (x0, 2/0( 2/ ,  ^o, ^ 2)) H / sm(wi(r -  t)) o dWr .

U 1 O X0 U \  J 0
Adopting the same approach as used in Chapter 4 for the free case, we obtain the following 
analogue of our earlier theorem concerning hot and cool parts of the caustic.

T h eo rem  6.5.1. Take Sq(x0) to be a smooth function of x 0 =  (xo,2/o) £ R2, t ^  — for
k e Z  and assume cos(u2 t)+U2 1 ^  0, so thaty = cos(u2 t)y0 + u 2 1 s i n ^ ^ ) ! ^
may be solved to obtain yo = 2/o(y, £0, ^ 2)- Consider crossing Ct at the point 7  =  (x7,y7) 
travelling in the direction of decreasing S i(x ,t) .  I f

F (x  ) •= Ul cos^ t ) ~  2 x i x 0 , ^2 yojyj, Xq, u 2 ) 2 cos{u2 t) -  2 y1 y0 (y1, x 0, u 2)
X° 2 sin(cjit) 2 s in ^ ^ )

+  £Xo /  — 7 7 '  0 dWr +  S0 (x0 , 2/0(2/7) x o, ^ 2)) , (6.5.2)J 0 sm(o;it)
sin(ct;i(r — t))
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then there will exist a repeated solution 2:0(7,t) of F '(xo) =  0. One side o fC t will be cool 
at 7  if and only if

Fixlh’t)) <  . “ P  jF(zo(7,*)) ,t= l,2
i^r

where £0(7 , t) are the solutions of F '(x0) =  0. Moreover the boundary of the cool part 
is given by

F (xro ( l , t ) )=  . min F (x i0 ('y,t)) .
1 = 1 , 2 , .  ..,71 

i^r

Remark 6.5.1. It may easily be shown that F'(x0) =  s in ^ ^ Cfoo)- Moreover, since 
sin̂ lt) 7̂  0 it follows that F'(x0) =  0 has the same solutions as ( (x 0) — 0.

Observe that since F"(x0) =  0 is deterministic it may be shown, by the same method 
employed in the free case, that the nature of the hot and cool parts in unchanged by the 
introduction of noise parallel to the z-axis. They are simply ^displaced bodily with the 
caustic by the random amount Yt = e f*  f2_1 sin(r2(r — t )) o dWr. Hence for k(x ,t)  = x 
we need only consider the hot and cool nature of the deterministic caustic.

6.5.1 Example: The Cusp
Earlier we saw that the cusp caustic is determined by

x 3
x ( x o )  =  — —  s i n ( c j i t )  t a n ( c j 2 1) ,

0J 1U 2

3x2
y{x0) =  —— sin(u2 t) — cot(u>it) c o s ^ t )  ,

2 U 2

where we observe that the vertical orientation of the caustic is determined by sgn ^sin̂ 2t̂ . 
Thus the caustic, Ct , will have the usual orientation in quadrants 1 and 2, but will be 
“upside down” in quadrants 3 and 4.

For the cusp example, the condition c o s ^ ^ )  + sm̂ 2̂  7̂  0 reduces to c o s ^ t )  7̂  0,

that is t 7̂  ^ 2̂ ^  • Assuming this is true we may solve

x 2
y = y0  cos(u2 t) +  —1-  sin(u>2 t) , 

zu 2

to obtain
x 2

y0 {y,x 0 , u 2) = ysec(u 2 t) -  —1- ta n { u 2 t) .
zu  2

Substituting into Equation (6.5.2) with e = 0 and omitting terms not containing x0, since 
these do not affect the shape of F (xq), yields

rr4 x 2
F(x0) =  ~r~~ tan(u2t) +  -£■ (ui cot(u>it) +  y1  sec(u>2t)) — x0x^ui cosec(uit) . 

olu2 2
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The first two derivatives of this function are given by 

x ^
F '(xo) =  — — ta n ^ t)  +  £o {u)\ cot(cJit) +  y1  sec^ t))  — x 7 u>i cosec(o;it) ,

2Ll>2

and
3x2

F"{xo) =  — — - t a n ^ O  +  u>i cot(u)it) +  y7  sec(u2 t) .
2u>2

Solving F"(xo) = 0 yields

Xq — ±  cot(o;2 )̂ (t̂ i cot(cjit) +  y7  sec(uj2 t))

both of which must be real since 7 £ Ct. Now F '(x0) is a cubic with two zeros: a non­
repeated zero and a repeated zero at Xq. Hence F (x 0) will possess two stationary points, 
one of which will be a maxima or minima and the other a point of inflection.

i). If ^ t a n ^ t )  > 0 then limx_+±0o F(xo) =  —00, so that F(xq) has a maximum and 
a point of inflection. Due to the shape of F (x 0) the value at Xq will be less than 
the maximum so that the whole of one side of Ct is cool.

ii). If ^  ta n ^ t)  < 0 then limx_±00 F (x0) = +00, so that F (x 0) has a minimum and a 
point of inflection. Due to the shape of F (x0) the value at xrQ will be greater than 
the minimum so that the whole of one side of Ct is hot.

P ro p o sitio n  6.5.2. The hot and cool nature of the cusp caustic is determined by the 
vertical orientation of the pre-caustic. Namely, when the pre-caustic has its usual orien­
tation (quadrants 1  or 3) the whole of one side of Ct will be cool, but when the pre-caustic 
is upside down (quadrants 2 or 4) the whole of one side of Ct will be hot.

Remark 6.5.2 . It follows that there exist hot and cool versions of the cusp with usual 
orientation and the upside down cusp.

6.5.2 Example: The Polynom ial Swallowtail
In this case the function F (x0) is given by

F (x0) =  x l — t&n(u)2 t) + x \  cot(a;i£) +  y7  sec^ t)^  — xqx7ui cosec(uit) ,

so that

2 x 3
F'(x  0) = 5xq   ta n ^ t)  + £0 ( 1̂ cot(cjit) +  2 y7  secfat)) — x 7 uj\ cosec(u;it) ,

UJ2

Qx 2
F"(x0) =  20x1------  tan(u>2i) +  cot(o;it) +  2y7  sec(u2 t) ,

U2
1

F"'{x0) =  60a;o---------t a n ^ t )  .
0 )2
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Clearly F"'(xo) =  0 has solutions x$ =  0 and Xq =  ta^ 2̂ , so that by Section 6.2.2 the 
cusps are located at

^0, — ̂  c o t^ i t)  cos(uj2 t) ĵ ,

and
{ sm(uit) tan4(cjot) 1 x sinfcjoO tan2(o;2^)\
(  ’ )  ■

In order to determine the hot and cool parts of the polynomial swallowtail we must 
perform an analysis of the function F (xo) similar to that conducted in Chapter 4. This 
yields the following Proposition.

P ro p o sitio n  6.5.3. I f  t&n̂ 2t) > o then the hot and cool parts of the caustic are as shown 
in Figure 6 .1 where

(  (3 +  8\/6) sin(u;i£) tan4(a;2 )̂ cos(o;2t)(225 cot(uit)uiU 2 — (9 — V&) tan3^ ^ )
=  1 8 0 0 0 ^ 1  ’ 450ZJ|

(6.5.3)
However if  tan̂ -2-  < 0 then the hot and cool parts of the caustic are as shown in Figure
6 . 8  where

( ( —3 +  8\/6) sin(u;i£) tan4^ ^ )  cos(o;2^)(225cot(a;it)a;ia;2 — (9 +  \/6) ta n ^ u ^ A
=  ^  18000a ; i ^  ’ 450^  J

(6.5.4)
In both cases the point n is given by

(  sm(uit)t&n4 (u2 t) Ui . . , . sin(cj2£) tan(cj2i)2
K =  ( ---------- 5 0 0 ^ 1 --------’ “ 2 C° t ( a , l t )  C°M  + ---------- 5 0 w |----------

Cool

Hot

Cool

Hot

Figure 6.7: Hot and cool parts of the poly- Figure 6.8: Hot and cool parts of the poly­
nomial swallowtail for u f 1 tan (u2 t) > 0. nomial swallowtail for u f 1 tan(c^t) < 0.
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Proof (sketch). If 7  G Ct is a point vertically above the highest cusp or below the lowest 
then F"(xq) = 0 has only one real solution, which will be the single (repeated) solution 
of F'{xq) =  0. Hence F (x0) has only one stationary point, which is a point of inflection, 
thus all such points 7  are cool.

If 7  G Ct is a point vertically between the cusps then F'{x0) has three stationary 
points occurring from left to right as minimum, maximum and minimum. We adopt the 
labelling scheme defined in Figure 4.4 and assume for simplicity that cof1 sin(cJit) > 0 so 
that the polynomial swallowtail has the usual horizontal orientation.

As in the free case, branches (A) and (D ) are easily shown to be cool and hot, 
respectively. For branches (B ) and (C) there are two cases to consider.
C ase 1: *2 2 ^  > 0W2

In this case F'(x0) will look like one of the graphs in Figure 6.9. If x 7  > 0 then F'{0) =

Tan(<\t)

Figure 6.9: Shape of F'{x0) on branches (B) and (C) for case 1

—XryUi cosec(uit) < 0 so that F'(xo) must have the shape in Figure 6.9 left. Thus F (x o) 
will have three stationary points occurring from left to right as maximum, minimum and 
inflection. But the value at the point of inflection will be greater than the local minimum 
so that for x 1  > 0 branch (B) is hot. Arguing, as in Chapter 4, it may be shown that as 
we travel anticlockwise around branch (B) and then (C) the caustic remains hot until we 
reach the A point given by Equation (6.5.3).

C ase 2: <  oU>2

In this case F' ( xq) will look like one of the graphs in Figure 6.10. If > 0 then F ’{0) < 0

Figure 6.10: Shape of F'(xo) on branches (B) and (C) for case 2 

so that F' ( xq) must have the shape in Figure 6.10 right. Thus on branch (B), F'(xo)
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has the shape in Figure 6.10 right whilst on branch (C) it will have the shape in Figure
6.10 left. Clearly branch (C) will be hot since F (xo) will have three stationary points 
occurring from left to right as maximum, minimum and inflection. Moreover as we travel 
clockwise along (B), away from the point of self intersection, the caustic will be initially 
cool until we reach the A point given by Equation (6.5.4). □

Remark 6.5.3. As with the cusp example it is changes in the sign of ujf1 tan(co2 t) that 
alters the hot and cool nature of the caustic.

6.6 Turbulent Times and the Harmonic Oscillator
Let us consider the initial function S'o(xo) =  f ( x o) +  g{%o)yo- We know that the pre­
caustic is given by

2/o(zo, t) = 1 f 9 (x °) tan (u2 t) -  f " ( x 0) -  u x cot(cjit)} ,
g (xo) I ll>2 j

whilst the pre-level surface is given by p(xo,yo,t) = c where p(xo,yo,t) is the left hand 
side of Equation (6.4.1).

The pre-curves will meet at solutions x 0 (t) of F£(x0, t) = c where we define F£(x0, t) := 
p(xo,yo(%o,t),t). Recall that in order to obtain the turbulent times we must find those 
t > 0 satisfying F£(x0 ,t) = c and ,t) =  0.

Using our expression for p(xo, yo(x0, t),t)  it may be shown that

^  =  ~ ^ x 0uJi sm(2 ujit) -  ^ y 0(x 0, t)y'0 (x0, t)u 2 sin(2 u 2 t) -  sin2(o;i t ) ( f  +  g'y0(x 0, t))

-  x 0 sm2 (u it)( f"  + g”yo(x0 :t) + g'y'0 (xo,t)) -  y'0 (x0, t)g sin2 (u2 t)

-  yo{x0, t) sin2 (u2 t)g' +  sin(2(Jit) ( / '  +  g'y0 (x0, t)) ( /"  +  g"yo{x0, t) +  g'y'oixo, t))
ZUJ\

+  sin(2 uj2 t) +  £ ^cot(cJit) +  ^ - ( / "  +  g”yo{xQ, t) +  gfyb(x0l t ) j

x ^cos(cjit) J  sin(cji(r — t)) o dWr — J  sin(a;it) o

+ f ‘ + g'yo(xo>t) +gy'o(xo,t) . (6 .6 .1)

P ro p o s itio n  6.6.1. Consider the initial condition Sq(xq) =  f ( x 0) +  g(xo)yo where 
f , g , f ' , g \ f m and g"' are zero at x 0 = a* and g"(ai) ^  0 for i =  1,2, . . . n .  Then
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the zeros t(u) of the stochastic process 

Yt := sin(2cj^) -  +  u i cot(u;i£))2

+  eai cot(uJit) ^cos(u;it) J  sin(iJi(r — t))  o dWr — J  sin(u;ir) o dWr

+  cot(uJit) ( /  sin(o;i(r — t )) o dW ^j  

£2 rt /  rt
J  (/ sin(<Jis) sin(o;i(r — t )) o dW ^j o dWr — c , (6.6.2)

will be turbulent times. Moreover, if t{u ) are the solutions o fY t = 0, then the turbulence 
occurs at the points

(<*i, (/"(“<) + cot(o>it))) .

Proof It may be easily shown that y'0 (ĉ i) = 0 so that 

dFe
dxr

= — a t U !  sin(2o;it) -  a { sin2 {u1 t) ( /" (a /)  +  g" ( a i ) y o ( o t i ) ) )
X o = O t i

+  £ ^cot(wii) +  ^ ( / 'V i )  +  

x ^cos(a;it) J  sin(a;i(r — t)) o dWr — J  sin(a;it) o dWT

Moreover, we observe

2/o(a») =  (f"(ati) +  ^  cot(uit)) ,
9

so that =  0. Hence the turbulent times are given by solutions of Yt (u) :=
X Q — a i

Fe(cti,t) — c, which on evaluation yields the expression in Equation (6.6.2). □

P ro p o sitio n  6.6.2. There exists an increasing sequence {t*} with U /  oo such that 
Yti(u) = 0 almost surely.

Proof. Observe tha t the stochastic process Yt (u) may be written as

Yt(u) = — ^.2 . sin(2o;2t) cosec2(o;it) {sin(uit) f "  (ai) +  U\ cos(o;it)}2
49 \®i)

+  ecosec(uit)Rt{u) — ^o^u i  sin(2u;it) — c ,
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where

R(u) := ^  ^cos2(cji£) J  sin(cji(r — £)) o dWr — cos(uit) J  s in ^ ir )  o dWj^j

+  cos(uJit) sin(a;i(r — t)) o dW r^

— — [  (  sin(o;is) sin(a;i(r — t))o  dW s o dWr ,
Jo J r

is a stochastic process well defined for all t.
As t —► ^  we have cosec2(u\t) —> oo. Let {£*,} denote an increasing sequence at

which cosec2(cJitfc) =  oo, then limt_>tfc Yt = —oo if S1"i2̂ 2̂  > 0 but limt_>tfc Yt = +oo if 
< 0. However, we can find an infinite increasing subsequence { t^  } such that Yt 

is continuous on (t*. , tkj+1) and

sgn (sin(2u 2 t kj) =  -  sgn (sin(2o;2tfci+1) ,

so that l i m ^ fc. Yt successively switches between plus and minus infinity.
Hence, by continuity and the intermediate value theorem, there will exist an increasing 

sequence {^} with tj oo at which Ytj — 0 almost surely. □

Remark 6.6.1.

i). The above argument fails if

2 u 2 kir
sgn I sin

ui

is the same for all k E Z+. This will only be the case if =  2n7r, namely 
u 2 =  ncJi, for some n  E  Z. Hence in Proposition 6.6.2 we must assume U2 ^  n u i  
for all n E  Z.

ii). There is no need to use Strassen’s law of the iterated logarithm in this situation.



A ppendix A

Sim ulating Brownian M otion

We have written the following module in Mathematica in order to simulate a random 
walk approximating Brownian Motion. This is used to calculate the random quantities 
we require.

Brownianl[T_, a_, O ptional[s_, P lo tS ty le  -> RGBColorfO, 0, 0 ]]] := 

Module [{k, S, t ,  X, n, d},

S[0] = 0 ;  t[0 ]  = 0 ;  d = SqrtCa]; n = Floor[T/a] ;

Do[k = Random [In teg er]; I f[k  == 1, X = d, X = -d] ;

S [i] = S [ i -  1] + X; t [ i ]  = t [ i  -  1] + a, { i ,  n>] ;

Wl[r] := S [F lo o r[r /a ]];

W2[r] := Sum[S[i -  1] (t [i]  -  t [ i  -  1 ] ) ,  { i ,  Floor [r /a ]}] ;

W3[r] := Sum[S[i -  l] 's2 ( t [ i ]  -  t  [ i  -  1 ] ) , { i ,  Floor [r /a ]}] ;

L is tP lo t[T a b le [{ t [ i] , S [ i ] } ,  { i ,  0, n}] , PlotJoined -> True, s]]

In the above module the user selects the time (T) that the process will run for and the 
time step size (a) to be used. This produces a sample path and calculates the following 
quantities

W1 [t] «  W{ t )  ,

W2 [t] «  f  W (u ) du ,
Jo

W3[t] «  f  W ( u ) 2 d u .
Jo

Finally the command L istP lo t produces a picture of the sample path. Information on 
the Mathematica commands used in the above module may be found in [56]

163



A ppendix B

M a t h e m a t i c a  M odule for 
Calculating the Num ber o f N egative  
R oots

Firstly we define the functions F'(x0) and Si (x , t )  using the letters h and S respectively 
as follows:

h[X_, Y_, t_ , a_] := 5 a t  x~4 -  2 t~2 x~3 + x ( l  + 2tY)
-  X

S[X_, Y_, x_, y_, a_] := (X -  x )~2 /(2  t)+  (Y -  y )~ 2 /(2 t)  + a x~5 + 
x~2 y

The module used to determine the number of negative S i ( x , t ) ’s is shown below. 

NegS[X_, Y_, t_ , a_] := M odule[{negvals, r , v a lso fS },

r = Cases[x / .  NSolve[F[X, Y, t ,  a] = = 0 ,  x ] , _R eal];

valsofS  = Table[S[X, Y, r [ [ i ] ] ,  Y -  t  r [ [ i ] ] ~ 2 ,  t ,  a] ,  { i ,
Length[r]}]; negvals = C ount[Select[valsofS , #1 < 0 &], _];

P r in t [r ] ;

P rin t[va lsofS ] ;

StringJoin["Number of so lu tio n s = ", ToString[Length[r]] ,  ",
Number of negative S 's = ", T oString[negvals]]]

The real solutions of the equation F '(x 0 ) =  0 are assigned to the variable r. S i ( x , t ) is 
evaluated at each of these solutions and the results are assigned to the variable valsofS. 
Using the Count command the number of negative S i’s are counted and this is assigned 
to the variable negvals. The remaining commands simply print the real solutions of
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F'(xo) =  0, the corresponding values of Si and the number of negative Si s. An example 
of the module in practice with t = a  — 1 is shown below.

i n [ l ] := NegS[-0 .5 , 0.483,  1, 1]

{-0.447542, -0.305457}

{0.0601047, 0.0569773} 

out [1]= "Number of so lu tion s = 2, Number of negative S ’s = 0"



A ppendix C

Behaviour o f u ^ { x ^ t )  when there’s no 
minimiser

We are interested in the behaviour of an integral of the form

I (x , t )  = J To(xo)exp{-fj,~ 2 A (x 0 , x , t ) }  dx0 .

In the case when the equation V XoA (xo ,x ,t)  =  0 has solutions Xq = x$(x,t) G R and 
there is a unique minimiser x 0  = x 0 (x,t)  this leads to the behaviour

I (x , t )  ~  (27r/i2)2 T0 (x0 (x,t)) [A!'(xQ(x,t),x,t)}~* exp {~ n ~ 2 A (x 0 (x , t ) ,x , t ) }  .

Now let us assume that for all x  G S  there does not exist a minimiser xq(x,t). Namely 
for all x  G 5,

V XoA {x 0 ,x , t )  ±  0 ,

for any x 0  G R. W hat can we say about the behaviour of uM(a;, t) in this case? Turning 
our attention to I (x , t )  we observe

I (x , t )  = J T 0 (x0) exp {-fj,~ 2 A (x 0 , x , t ) }  ( _Ai_2^ )  d:C°

=  J T0 (x0) - ^ e x p  {-(j,~2 A {x 0 , x , t ) }  dxo

=  M2/ e x p { - ^ ( W ) } ^ { r „ ( * „ )  J dx0 ,

by integration by parts. Applying the same method again yields

/ ( M )  =  S  J  ^ P { - » - 2Axo,x , t)}  ^  { toM  ( ^ )  }  dx„

=  ^ / e x p { - M- M ( x o , x , i ) } A | ^  A . ( r 0(x0) ( ^ j  J J dxo.

Thus if this process is repeated N  times then we observe that I ( x , t) ~  °{^2N) as /z ~  0.
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