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ABSTRACT

Magnesium is a metal with many desirable engineering properties with the 
most commercially attractive being its excellent strength to weight ratio, making it the 
lightest structural metal used today. Despite Magnesium’s many advantages, its 
major limitation which has hindered its uses in applications across the engineering 
spectrum is its poor corrosion resistance. This is in part due to a lack of 
understanding of the corrosion mechanisms that occur on both Commercial purity 
(C.P.) magnesium and advance magnesium alloys. It is the objective of this thesis to 
spread some light on the fundamental corrosion mechanisms behind the aggressive 
nature of the metals corrosion and also corrosion prevention through the use of 
inhibitor coatings.

This body of work is two fold. Firstly, it deals with the effects of chloride 
induced filiform of organic coated magnesium in which a new proposed mechanism 
for the advancement of filiform propagation is given. Contradictory to current 
literature, it is proposed that filiform propagation is caused by“differential 
electrocatalytic activation” as opposed to the generally accepted differential aeration 
based mechanism. Following this, techniques of inhibiting the localised corrosion of 
Mg in chloride containing electrolytes were investigated and it was found that only 
additions of sodium phosphate and sodium chromate showed any marked 
improvements in corrosion inhibition.

The concluding part of this thesis involved the investigation through Scanning 
vibrating electrode technique (SVET) of a technologically important alloy AZ91 and 
its localised corrosion behaviour. It was found following several hours of immersion 
in 5 w/v NaCl (aq) electrolyte that the corroded surface had become cathodically 
activated and it is proposed to be an enrichment in noble Al-Mn particles as anodic 
attack of the alpha Mg phase occurs.

Further SVET investigations with some rare earth cations showed that they in 
fact accelerated localised corrosion in comparison to the uninhibited electrolyte. As 
with C.P. Mg, chromate again proved to be an effected inhibitor by acting as a 
cathodic depolariser and it was suggested that the inhibition mechanism involves the 
reduction of chromate to Cr(iii) at cathodic sites, where elevated pH produces a solid 
Cr(iii) hydroxide film, which limits further electron transfer.
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Chapter 1
Advanced Corrosion Mechanisms of Magnesium Alloys: Literature Review

1.1 Introduction

Following Sir Humphrey Davy’s electrolysis of the element in the early nineteenth century, 

magnesium has been consistently adopted for use in a variety of spheres; from its military-industrial 

applications throughout the first-world war to its inclusion in the manufacturing of automotive 

parts, magnesium is frequently part of cutting-edge technological research. This is unsurprising 

given that even the most basic features of the metal are highly desirable for a diversity of uses: 

magnesium is lighter than aluminium (being around two-thirds the density of the latter), it is strong, 

has an excellent strength-weight ratio, and is easily obtained through the electrolysis of brine, with 

China currently leading global magnesium production.

Despite its abundance of potentially profitable qualities, we must also be mindful of the 

significant limitations of the metal in its coherent form of pure magnesium. Indeed, it is well- 

documented that magnesium is not only brittle and highly reactive,( although this reactivity is 

cloaked to a certain extent by the process of passivation whereby a thin layer of oxide is deposited 

on the surface of the metal), but that it is also has extremely poor corrosion resistance. Of course, 

there are many instances in which these limitations have been harnessed for practical usage, for 

example the reactivity of magnesium led to its historical uses in fireworks, marine flares, and 

incendiary weaponry; however as I shall go on to discuss, for the present research these aspects of 

magnesium are considered as restrictions to a more effective use of the metal in engineering 

research. It is here that my own work finds its genesis, since even when employed in alloy form, 

scientific research has yet to overcome the aforementioned limitations of magnesium as an element.
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Magnesium is most frequently alloyed with aluminium, resulting in alloys that are both light 

and durable, such as AZ31, and AZ91. As will be demonstrated in the range of materials discussed 

in the literature review to follow, research and development has thus far been unable to 

demonstrate any reliable method of negating the highly corrosive nature of the element. 

Consequently, alloys with higher percentages of magnesium such as A, B, and C, are still hampered 

by similar restrictions to pure magnesium itself. While throughout the course of this thesis my 

results will clearly indicate that some fundamental discrepancies in the current scientific 

understanding of the corrosion process in magnesium have certainly hindered more advanced anti­

corrosion techniques, perhaps here it would be prudent to summarize the corrosion process itself, 

and how it has been characterised in the literature up to this point.
j

The purpose of a review of the existing literature on magnesium and its associated corrosion 

mechanisms is twofold: firstly, to highlight the considerable body of work that already exists in the 

field; and secondly, to situate my own research within that field as a means of filling the gap in 

current scholarship on magnesium alloys. This second purpose, the question of the research I have 

undertaken as part of this thesis, will be elucidated through the critical analysis contained within 

this chapter.

1.2 Basic Localised Corrosion Mechanisms

Before I begin to discuss the complexities of magnesium corrosion relevant here, I will first 

consider the basic mechanisms of corrosion that can affect magnesium alloys. As has been well- 

researched up to this point, there are several key types of localised magnesium corrosion. These 

J  include galvanic corrosion, pitting corrosion, crevice corrosion, intergranular corrosion (IGC),



stress corrosion cracking (SCC) and filiform corrosion. Although it is work on filiform corrosion 

that comprises the bulk of the research related to this thesis, an understanding of other forms of 

corrosion is also important; these will be discussed in the sections that follow.

1.2.1 Galvanic Corrosion

Magnesium is the most active metal in the galvanic series[l].Galvanic corrosion has been a 

considerable hindrance to the use of magnesium in the automotive industry, particularly when 

employed in exterior vehicle parts[2]. It is well-known that magnesium alloys are extremely 

vulnerable to galvanic corrosion [Song and Atrens, 1999 [3]; Zeng et al., 2006 [4]]. This is often 

due to the alloying of magnesium with heavy metals and also to flux contamination, often a 

consequence of a badly-designed or badly-produced magnesium alloy. It usually manifests as heavy, 

localised corrosion of the metal surface adjacent to the cathode. The cathode can either be a metal 

that comes into contact with the magnesium alloy itself, or it can be caused by impurities within the 

alloy itself; thus it can be further separated into external and internal galvanic corrosion, 

respectively, but is observed macroscopically as general corrosion. This localised corrosion is most 

severe when the alloy comes into contact with metals with a low hydrogen overvoltage, such as 

iron, nickel, and copper, since these metals are very efficient cathodes for magnesium. Galvanic 

corrosion can therefore be reduced when metals with a high hydrogen overpotential and active 

corrosion potential come into contact with magnesium. Accordingly, the least damaging metals in 

terms of galvanic corrosion are usually cited as being aluminium, zinc, tin, and cadmium[3].

We can determine the theoretical rate of galvanic corrosion using the following equation: 

ig= (Ec — Ea)/ (Ra + R<. +RS + R,,,) (1.1)
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In the above equation, ig is the galvanic current between the anode and the cathode. Ec and 

Ea are the open circuit potentials of the cathode and anode; Rc and Ra are the resistance of the 

cathode and anode, respectively; Rs is the resistance of the electrolyte solution between the cathode 

and the anode. Rm represents resistance through a metallic path from the surface of the anode to the 

surface of the cathode, but if the two electrode metals are in direct electrical contact, the value of Rm 

will be negligible. Therefore in theory, any factor that affects these parameters will have an effect 

on the rate of galvanic corrosion. In practice, however, given the complex interaction between the 

varying parameters, it can be difficult to estimate galvanic current or current density in reality [5].

The mechanism of galvanic corrosion is such that the high internal purity of the alloy does 

not necessarily ensure corrosion resistance if magnesium is combined with another metal, but 

corrosion resistance can be increased through the selection appropriate materials, better design of 

alloys, the use of coatings, and insulation of the alloy with other materials. The rate of galvanic 

corrosion is increased by electrochemical factors such as having a larger area ratio of cathode to 

anode, having an anode and a cathode in close proximity, high conductivity of the medium, low 

polarisability of the anode and cathode, and a large potential difference between the anode and the 

cathode.

1.2.2 Pitting Corrosion

Pitting corrosion is a localized form of corrosion where a particular area of the surface will 

undergo rapid attack while the rest remains largely unaffected, leading to small holes in the surface 

of the metal or alloy[6]. In fact, it is an extremely localised form of galvanic corrosion, whereby a 

small area becomes anodic through depassivation and a larger area becomes cathodic. While
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observable effects of this corrosion are often masked or seemingly insignificant, it damages 

microstructures within the metal to create weaknesses; some recent research has focussed on 

changing the microstructure as a means of protecting substrates against pitting corrosion. [7] It is a 

common form of corrosion in magnesium alloys when immersed in neutral or alkaline salt 

solutions, since as Song and Atrens note, magnesium is a naturally passive metal that upon exposure 

to chloride ions in a non-oxidising medium will undergo pitting corrosion at its free corrosion 

potential [3]. Pitting corrosion is accelerated by heavy metal contamination [8] In Mg-Al alloys, for 

instance, corrosion pits initiate along the MgnAl^ network as a consequence of selective attack, 

resulting in the undercutting and falling out of grains [3].

1.2.3 Crevice Corrosion

Crevice corrosion is a form of corrosion similar to pitting corrosion that occurs, as its name 

suggests, in small spaces or “crevices” where moisture becomes trapped and causes active corrosion 

through a combination of two factors: the potential drop into the crevice itself and the chemical 

composition of the electrolyte therein. It is found at sites where there is one metal part and two 

connected environments, for example between a tube and a tube sheet. It was previously thought 

that crevice corrosion did not occur in magnesium alloys; however, as I shall go on to discuss in 

more detail below, filiform corrosion is now being considered as a specific type of crevice 

corrosion. Furthermore, Ghali et al., (2003) [9] speculate that crevice corrosion in magnesium 

alloys might be initiated by a hydrolysis reaction.
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1.2.4 Intergranular Corrosion (IGC)

Intergranular corrosion is caused by the precipitation of the secondary phase, and manifests 

at grain boundaries. Since grain boundary phases in magnesium alloys are cathodic to the grain 

interior, for this reason some scientists argue that corrosion cannot penetrate inwards, and therefore 

that magnesium alloys are not susceptible to intergranular corrosion, for example as argued by 

Maker and Kruger, (1993 )[10]. Ghali et al (2003) [9] also imply that IGC does not happen in 

magnesium alloys, although they do note that inter-crystalline corrosion, a form of IGC, often 

occurs in the initial stages of immersion. Therefore, while it is certain that IGC is not a major 

problem in the overall picture of magnesium alloy corrosion, research has demonstrated that we 

cannot say that it does not occur at all. In addition to Ghali et al. (2003), Valente (2001) reports IGC 

in WE43 magnesium alloy, a mechanism that was also apparent after immersion in an artificial sea­

water solution, and that grain boundaries were the most vulnerable to IGC attack[l 1],

1.2.5 Stress Corrosion Cracking (SCC)

Stress Corrosion Cracking (SCC) refers to microscopic cracks that occur in certain alloys 

when in a corrosive environment; it is considered a dangerous form of corrosion since it is rarely 

observable or obvious until sudden failure. Winzer et al.(2005) note the three-way interaction that 

causes SCC: 1) Stress from mechanical loading; 2) a susceptible alloy; 3) an environment where 

there is an acceptable rate of corrosion [12]. SCC of magnesium alloys can occur in several 

corrosive environments, including moist air, high purity water, NaCl+K2Cr04 solution, NaBr, 

Na2S 04, NaCl, NaN 03, Na2C 03, H2S04, KF, Kcl, Nal, MgC03, NaOH, H2S04, HN03, and hydrogen 

chloride solutions [13]. Increased rates of corrosion are also seen in aluminium alloys when 

exposed to chloride solutions, as well as air and distilled water [4].
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Two distinct mechanisms are thought to be responsible for SCC in magnesium alloys; 

continuous crack propagation by anodic dissolution at the crack tip, or brittle fractures 

(discontinuous crack propagation) caused by hydrogen embrittlement (HE). These are referred to in 

the literature as the dissolution and embrittlement models. In addition to this, most researchers 

classify SCC into two types according to the fractures present in samples: transgranular SCC 

(TGSCC) and intergranular SCC (IGSCC). TGSCC is the most significant in magnesium and its 

alloys, and is associated with HE, while IGSCC is not a major cause of fracture in magnesium [3] 

[14]. According to Miller, experimental evidence for HE involvement in TGSCC includes: 1) 

hydrogen evolution accompanying SCC initiation and propagation; 2) the appearance of similar 

fractures to SCC when sample is immersed in a cracking solution before the application of stress; 3) 

reversal of effects of pre-immersion in cracking solution when sample is exposed to vacuum 

annealing or to room-temperature air; 4) crack characteristics apparent when testing with gaseous 

hydrogen are identical to those produced in aqueous solution test; 5) SCC occurs at crack velocities 

that indicate only absorbed H could be present at the crack tip.

1.2.6 Filiform Corrosion (FFC)

Filiform corrosion is the corrosion mechanism most pertinent to this thesis, and therefore 

warrants significant treatment in this literature review. It was first described by Sharman in 1944, 

writing in the journal Nature, when he remarked the “growth of hair-like corrosion tracks known as 

‘underfilm corrosion’” on the inside of old tobacco tin lids[14]. Fundamentally, filiform corrosion is 

localized corrosion that commonly occurs on magnesium alloys with an organic coating, as well as 

aluminium alloys and steel. The general diagram in Figure 1.1 illustrates the basic mechanism:
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Coating

Alloy M

Figure 1.1: A schematic representation of the basic mechanism involved with filiform corrosion

It occurs at high humidity[15], and appears as worm-like structures, known as filaments, 

beneath the coating of the alloy, often causing this coating to bulge. From the above, we can 

describe the mechanism of filiform corrosion in simple terms: oxygen and water are able to 

permeate the coating of an alloy, and where the oxygen concentration becomes highest at the tail 

region, the area becomes cathodic. The head therefore becomes the anode, since this is where 

oxygen is depleted. The impetus behind the corrosion mechanism, then, comes from the potential 

difference between these two areas.

Though it is largely considered to be a superficial form of corrosion that does not damage 

the internal structure of the metal alloy, it is still true that research on filiform corrosion is 

nonetheless in high demand. Given the application of many metal alloys in the automotive and 

aerospace industries, many manufacturers seek to constantly improve the external appearance of 

products that contain these alloys in response to market demand . However, filiform corrosion is not 

merely a superficial concern, since FFC has also long been known to facilitate stress corrosion 

cracking around rivet heads leading to catastrophic results in aeronautic applications [16].
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1.2.6.1 General Characteristics of Filiform Corrosion

As I have already mentioned, FFC can occur on aluminium and iron alloys as well as 

magnesium alloys, and most research indicates that the fundamental mechanisms of filiform 

corrosion occur under similar environments, as well as sharing some electrochemical processes that 

I shall briefly discuss here; however, I will then go on to consider the specific mechanisms of FFC 

in relation to magnesium alloys, as is the main remit of this thesis.

Generally, for FFC to occur on an alloy, one or more of the following conditions are present, 

according to [ 19] [ 17] [ 18]:

a) Initiates at points in the coating where weaknesses or defects can be identified.

b) Can only occur between a relative humidity of 30 -  95%.

c) Propagation of FFC requires oxygen

d) Initiation requires aggressive anions.

e) Anions of the inoculating salt (most frequently a chloride salt) are conserved in the

filiform head; cations are not.

f) Front edge of the filiform head is the most anodically active area, and usually contains a 

low pH solution.

g) Size and speed of filament cells are not contingent on the physical properties of the

alloy coating.

h) Filament motion is stable, and tracks will propagate in the rolling direction.

i) Generally, tracks neither cross nor break the surface coating, but there are isolated

examples of this in the literature.
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The filament itself moves across the surface of a metal alloy by means of an “active” head 

and a “passive” tail, where the head contains an electrolyte and the tail contains porous corrosive 

products. In their analysis of mass transfer in FFC, Ruggieri and Beck confirm through 

experimental evidence that the transfer of oxygen and water into the corrosion site does indeed 

occur via the porous tail[19]. This preferred mechanism for FFC has been consistently noted by 

other scholars, from earlier to more current research. Although some initial scholarly research did 

suggest that FFC might caused by diffusion through the coating products, this theoretical view is 

now considered defunct, since calculations indicate that oxygen transport through the coating would 

be ten times slower than through the porous tail marking a coating defect [19] Since oxygen is 

supplied through the tail in a unidirectional manner, a differential aeration cell is established at the 

filament head, whereby the deaerated front of the head forms the anode and the aerated back of the 

head forms the cathode. It has therefore been established in the literature that as a consequence of 

this differential aeration cell, the oxygen reduction occurs at the back of the head in a cathodic

j reaction, causing metal dissolution at the front of the head in an anodic reaction. But how does the
j

| literature characterise this corrosion mechanism in the specific case of magnesium alloys?
1?

11.2.6.2 Filiform Corrosion of Magnesium Alloys
i
I
I

\

| Although filiform corrosion is not observed on bare pure magnesium, the scientific
j
j literature on corrosion suggests that aluminium and magnesium alloy filiform corrosion basically

j function according to the same corrosive principles. While the bulk of this thesis will demonstrate

| that this notion is in fact flawed, since magnesium alloys do not conform to the same corrosion
!
[ patterns as those observed in aluminium alloys,

Williams et al. have shown that the rate of FFC advance is in fact insensitive to the presence
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