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Abstract

The Arbitrary Lagrangian Eulerian (ALE) method was first proposed 25-30
years ago as a hybrid technique that attempts to exploit the strengths of traditional
Lagrangian and Eulerian methods for shock hydrodynamic problems without suffer-
ing any of their deficiencies. However, most published ALE algorithms are Simple
ALE (SALE) schemes, that is they restrict all material interfaces to remain La-
grangian. This is a great simplification and it also severely limits the range of ap-
plications to which an ALE hydrocode can be applied.

This thesis describes a robust and accurate adaptive multi-material ALE algo-
rithm. The algorithm offers two types of material interface treatment; a Lagrangian
slide method and a Volume of Fluid (VOF) method, which employs a modified
SLIC interface reconstruction technique. The slide treatment is more appropriate
for low deformation and provides a natural way to include interface physics, whilst
the VOF approach is a very robust technique which is well suited to high interface
deformation. The research that has been carried out to develop the multi-material
ALE algorithm can be divided into four main areas; Lagrangian interface methods,
multi-material interface treatments, mesh adaption algorithms and multi-material
advection methods for non-orthogonal unstructured grids.

The traditional treatment of multi-material cell components during the Lagrangian
phase, that is used in most multi-material Eulerian and ALE hydrocodes has been
re-examined and an alternative approach proposed. The new approach attempts to
introduce sub-zonal Lagrangian physics within multi-material cells. This approach
conserves total energy and produces more realistic state variables for the partial
components of multi-material cells.

This thesis will describe the complete multi-material ALE algorithm, the sup-
porting research that has been carried out in these four main areas, and finally,
present results from some of the calculations that have been performed to verify

and validate the algorithm.
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Nomenclature

R Region number
LR First logical mesh dimension for region number R
KR Second logical mesh dimension for region number R
X Vector of nodal coordinates
Z,r Cartesian coordinates for axisymmetric geometry
X,y Cartesian coordinates for plane geometry
t Time
P Density
p Pressure
vV Volume
e Specific internal energy
u Velocity vector
«, V Velocity components
q Artificial viscosity
Me Element Mass
M nodal Nodal Mass
c Sound speed
Ccl,Co Linear and quadratic coefficients of artificial viscosity
c Courant number
Ni Shape function
W< Weight function
S.KX, SXVi Syy Stress deviators
Y Yield strength
P Shear modulus
£xxi  yifyy Strain rates
AKX Axy- &yy Strain rate deviators
0)x>- Spin tensor
Plastic work
W Elastic work
EP Equivalent plastic strain
Y Ratio of specific heats

Isoparametric coordinates

iv



0.y Winslow’s mesh line potentials

As Minimum distance across Element
/ Volume fraction

Subscripts

i Element number

j Local node number

k Material number
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Chapter 1

Introduction

Hydrocodes are large computer programs used to simulate shock hydrodynam-
ics problems [1]. They differ from Computational Fluid Dynamics (CFD) codes in
that they must be applicable to solid materials as well as to liquids and gases. This
demands that the numerical schemes used are compatible with any general equa-
tion of state, include additional physics such material strength, and provide realistic

material interface treatments.

1.1 Lagrangian and Eulerian methods

There are two main types of hydrocode in common use, that is Lagrangian and
Eulerian codes. Lagrangian codes solve the Euler equations assuming a Lagrangian
frame of reference, the computational mesh moving with the material. Eulerian
codes solve the Euler equations in the Eulerian frame of reference, the mesh re-
maining fixed with the material flowing through it. In practice Eulerian codes are
normally implemented using split methods, where one or more Lagrangian step is
performed each time step, followed by an advection step which remaps the solution
back on to the initial fixed grid. Both the Lagrangian and Eulerian methods have
strengths and weaknesses: in practice this makes neither suitable for all applica-
tions, the best method being chosen on a problem by problem basis. The advan-
tages and disadvantages of the Lagrangian and Eulerian code descriptions will now
be discussed, before moving on to consider the potential benefits of ALE methods.

The initial mesh for a Lagrangian simulation is mapped onto the materials of in-
terest and can conform well to the initial geometry of each material. This means the
initial Lagrangian mesh should be more ideal, or have a higher quality in some re-
spects, than an Eulerian grid. However, since the Lagrangian mesh follows the ma-
terial flow, if the flow becomes highly distorted, then so does the mesh. This means
that the Lagrangian mesh will be lower in quality than the fixed Eulerian mesh for

highly distorted flows and may cause the Lagrangian calculation to fail. Essentially,
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while the flow is well behaved the Lagrangian mesh has resolution where it is re-
quired, does not imprint on the solution and has an effective numerical stencil which
is generally aligned with the principle flow directions. Once the flow becomes dis-
torted the Lagrangian mesh leads to a poorly defined numerical stencil with which
to calculate derivatives, and may be prone to artificial stiffness introduced by ele-
ments locking under certain modes of distortions.

However, the Lagrangian mesh framework allows mesh resolution to be focused
where it is required, and computational cells are only required where there is mate-
rial in the problem, as opposed to an Eulerian code which requires cells throughout
all the spatial domain potentially of interest. Given that fewer cells are required
for comparable resolution and there is no advection phase, Lagrangian codes are
usually computationally less expensive in run time and memory. However, it is
worth noting that if the Lagrangian mesh becomes severely distorted anywhere in
the domain, the time step can drop severely, which will not happen in a Eulerian
computation; in such a case Eulerian calculations can be less expensive.

In a lot of the applications where hydrocodes are applied, material interfaces are
very important. If the material interfaces are not too distorted then the Lagrangian
approach again has significant advantages, since with nodes placed on material
boundaries, the interface can be tracked accurately. It is also possible to decou-
ple the tangential forces from the materials to either side of the interface, allowing
slip or slide to occur. Slide lines also provide a natural way to include interface
physics such as friction, void opening and void closure. However, if the interface
becomes distorted, for example if the interface is unstable, then this will soon lead
to mesh tangling and a Lagrangian calculation will fail. An Eulerian code will cope
with severe interface distortion. However, since Eulerian interfaces are constructed
on top of the mesh, and also remembering that there is advection across the inter-
face, they will not represent the interface as well as a Lagrangian approach. The
Lagrangian description also has benefits for external boundaries. The fixed nature
of the Eulerian mesh means that there will be a point where material expands out
of the domain and is no longer included in the calculation, whereas the Lagrangian
description follows the expansion of the material.

The presence of advection in the Eulerian description has the disadvantage that
it introduces a level of smoothing or numerical diffusion on the solution. This can
reduce the calculational accuracy to some extent, but can also be beneficial in acting
to further reduce numerical oscillations in the solution. In many hydrocodes the
advection step is operator split rather than truly multi-dimensional which may also
compromise the solution. However, it is fair to say that a distorted Lagrangian grid
can also compromise the 2D or 3D nature of a solution.

The final distinction between the two descriptions is the problem of adding other
physics packages to the two types of code. In general it is simpler to implement
additional physics in an orthogonal grid Eulerian code. However, where the La-

grangian grid has a higher mesh quality it potentially offers a more accurate solution
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for the other physics packages as well as the hydrodynamics.
In practical applications as neither technique is ideal for the entire problem, it
is not uncommon to start a calculation on one type of code then link the solution

across to the other to complete the problem.

1.2 Arbitrary Lagrangian Eulerian (ALE) methods

An ALE hydrocode can be viewed as an attempt to maintain an optimum mesh,
to exploit the advantages of both the Lagrangian and Eulerian descriptions by using
the most appropriate description for different parts of the problem, or as an essen-
tially Lagrangian code with an intelligent automatic rezone capability to keep the
calculation running. The latter description illustrates that ALE can also be viewed
as an adaptive mesh scheme. Alternatively, ALE can be described as solving the
Euler equations in a reference frame that is arbitrary and varies with space and
time.

These different descriptions all give an impression of the strengths of the ALE
method and how it can be applied. It has the potential to provide a single code
that can tackle a wide range of applications without the need to transfer the solu-
tion across to another code to complete the problem. It also has the potential to
offer better overall accuracy than either the Lagrangian or Eulerian approach. It is
clear that better mesh quality can be established for the Lagrangian phase, as it is
possible to start with the normal Lagrangian mesh, but as the (low starts to become
distorted the mesh can be relaxed to improve its quality, but still retain a reasonable
representation of the bulk flow. The calculation can also retain further significant
Lagrangian benefits such as slide where interfaces are well behaved, and materials
that do not undergo severe distortion can be treated as pure Lagrangian, minimis-
ing the numerical diffusion that advection methods inevitably introduce. The mesh
movement can also be weighted to improve the resolution of shocks, material inter-
faces, materials or regions. This provides an inexpensive, albeit if penalty based,
mesh refinement capability.

The preservation of symmetry can be very important for some applications, such
as Inertial Contained Fusion (ICF). These problems require very high flow conver-
gence and shock focusing to achieve ignition. It is important to be able to assess
the impact of symmetry perturbations on such problems. This can only be done if
the unperturbed problem remains symmetric calculationally. ALE mesh movement
techniques can be used to keep the mesh isotropic with respect to the symmetry
of interest. This is very important for 2D axisymmetric calculations, which nor-
mally rely on an area weighted scheme to preserve spherical symmetry. ALE mesh
movement algorithms can then be used to preserve equal angular zoning, which is
required for such an area weighted scheme to be effective, and will minimise fur-

ther symmetry errors introduced by the advection step. In contrast, orthogonal grid
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Eulerian codes may introduce symmetry errors in both Lagrangian and advection
steps.

The computational cost to obtain a given level of solution accuracy should also
be lower for a multi-material ALE code than either a Lagrangian or Eulerian codes.
This is because ALE calculations generally run with higher time steps than La-
grangian codes, introduce less advection than Eulerian methods and can focus mesh
resolution more effectively throughout the simulation than either Lagrangian or Eu-
lerian codes.

Although ALE schemes have been in existence for 25-30 years [2, 3, 4, 5, 6,
7, 8, 9J most of the published work has ignored the complexities of material inter-
faces. The methods appearing in the literature are described as SALE or Simple
ALE schemes as they impose the restriction that the interfaces must remain La-
grangian; an approach which is adequate for many CFD applications, but not for
most hydrocodes applications. If ALE codes are to be successful in challenging
both traditional Lagrangian and Eulerian hydrocodes then they must provide ro-
bust and accurate interface treatments that fully exploit the accuracy benefits of
Lagrangian schemes for low deformation and the robustness of Eulerian schemes
for high material deformation.

The present study has focused on the development of an adaptive 2D multi-
material Arbitrary Lagrangian Eulerian hydrocode. This has required the develop-
ment of robust and accurate multi-material advection methods and mesh movement
techniques for unstructured non-orthogonal grids. A strength of the resulting ALE
scheme is that it has two alternative treatments for material interfaces, Lagrangian
slide lines or a Volume of Fluid (VOF) scheme based on the Simple Line Interface
Construction (SLIC) scheme [10]. This flexibility enables the more accurate La-
grangian slide approach to be used when ever an interface is not too distorted. It
also provides a natural frame work for the inclusion of friction and other interface
physics such as void opening and void closure. The Lagrangian approach can also
be used at the start of a problem and the interface then merged and treated as a VOF
multi-material interface once the interface distortion becomes too severe. The tra-
ditional treatment of multi-material cell components during the Lagrangian phase,
also used in most multi-material Eulerian hydrocodes, has also been re-examined
and an alternative approach proposed. The new approach attempts to introduce
sub-zonal Lagrangian physics within multi-material cells. This approach conserves
total energy and produces more realistic state variable for the partial components of

multi-material cells.

1.3 Staggered versus Unstaggered schemes

The first successful numerical method for treating shocks was suggested by von

Neumann [11] in the 1950’s. Von Neumanns’s idea was simply to add additional
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dissipation or artificial viscosity to smear shock discontinuities over a number of
zones and so avoid oscillations near shocks. Since then the two communities devel-
oping CFD codes and hydrocodes have been divided. The CFD community has fo-
cussed on improving the resolution or capture of shocks through the development of
high resolution shock capturing methods, which will resolve shock fronts typically
over 2-3 zones, but require all variables to be collocated either at cell vertices or cell
centres. In contrast, most hydrocodes are still based on staggered mesh schemes,
where positions, velocities and accelerations are stored at the nodes, and all other
variables are at cell centres combined with artificial viscosity methods. Consider-
able work has however been put into improving the artificial viscosity methods used
[12, 13, 14, 15, 16, 17, 18, 19] particularly by the defence hydrocode community,
so that shock capturing with these methods is now almost comparable with what
can be achieved with high resolution schemes.

The high resolution shock capturing techniques used by the CFD community are
of two main types: linear-hybridized schemes and Godunov methods. The former
are hybrid schemes which combine high and low order methods, a notable example
being Boris and Books Flux-Corrected transport (FCT) algorithm [20]. The prob-
lem with high order schemes is that they produce oscillations near shock disconti-
nuities. This is avoided for the linear-hybridized schemes by applying a high order
scheme in the smooth parts of the flow, smoothly blended into lower order method
near discontinuities. This produces a method which produces a monotone solution
throughout the domain. The monotonicity is preserved due to the large dissipative
truncation error of the lower order scheme. Godunov methods [21] are based on the
idea of treating each zone as containing a piecewise constant state, then solving the
non-linear interaction of these states exactly as a series of ID Riemann problems
at each cell boundary. The results from the separate Riemann problems are then
averaged to find the updated flow solution. This approach is an accurate and well
behaved way to treat shocks, but it is only first order accurate, which makes it very
diffusive. However, higher order Riemann based Godunov solvers have been devel-
oped, which retain the benefits of the original approach for shocks. These schemes
are normally based on the use of higher order interpolation methods within a cell.

Godunov methods which solve the Riemann problem have further deficiencies.
These include the need for accurate sound speeds, or a good approximation to them,
for all states that a material can reach during a simulation. This is not always possi-
ble and can be computationally very expensive for the more complicated equations
of state used in hydrocode simulations. It is also difficult to define wave speeds
for the other types of physics such as material strength [22] required in hydrocode
simulations. An operator split approach could however be taken to overcome this
problem [22]. However, this is likely to reduce the benefits of employing a high
resolution method.

Unstaggered methods are not favoured by the hydrocode community for a num-

ber of reasons. In introducing material strength, for example, the strain rate tensor
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must be calculated, and it is difficult to do this accurately on an unstaggered mesh.
It is also difficult to produce accurate material interface algorithms on unstaggered
meshes. Unstaggered schemes may not preserve symmetry as well as staggered
mesh schemes due to the spatial operator splitting required. In contrast, staggered
mesh schemes are naturally multi-dimensional for Lagrangian methods and for the
Lagrangian step of the split methods. Some effort has however been put into devel-
oping multi-dimensional high resolution schemes over the last few years by a num-
ber of researchers [23]. However, these methods have yet to fully mature. Given
these concerns it has also been decided to employ a staggered grid approach in this

work.

1.4 Mesh Adaption

Adaptive mesh schemes dynamically modify the computational grid, as the
problem evolves either to improve the accuracy obtained for a given computational
cost, or to reduce the cost of obtaining a given accuracy. This can be achieved ei-
ther by improving mesh quality or focusing the mesh resolution where and when it
is most required.

Mesh quality is hard to quantify. However, certain desirable properties can be
defined. A high quality mesh will maximise the computational time step and not
imprint upon the solution. The former suggests the need for a fixed uniform orthog-
onal grid as normally employed in Eulerian hydrocodes. However, it contradicts
the latter requirement as an orthogonal mesh will inevitably imprint on the solution
when the flow is not aligned with the mesh. A mesh that is aligned with material
interfaces, principle flow directions and any underlying symmetry in the problem
will tend to minimise mesh imprinting on the solution and so has a high quality.

If an unstructured mesh of triangular elements is used, it is possible to improve
mesh quality and introduce mesh refinement by reconstructing part, or all, of the
mesh by using Delauney triangulation with source points to focus refinement [24].
However, hydrocodes normally employ quadrilateral elements, which do not lend
themselves to totally unstructured mesh adaption. The Eulerian Adaptive Mesh
Refinement (AMR) scheme developed by Berger [25, 26, 27] and Quirk [28] pro-
vides a natural way to introduce mesh refinement/derefinement, but cannot be used
to improve mesh quality. The AMR technique essentially defines a course back-
ground mesh upon which hierarchical mesh refinement can be built dynamically as
required. Error estimators are used to determine where refinement and derefine-
ment is required during the calculation. Some examples of the error estimators used
include the solution gradient, estimates of the local truncation error and physics fol-
lowers. In pure hydrodynamics problems the physics followers may simply be used
to force discontinuities in the flow such as shocks and material interfaces to be held

at the finest mesh resolution. This overcomes many of the numerical difficulties



CHAPTER 1 INTRODUCTION 7

of treating refinement boundaries. Lagrangian hydrocodes require mesh adaption
mainly to improve mesh quality. The Lagrangian method is already computation-
ally more efficient than an Eulerian treatment and naturally refines the mesh in the
vicinity of shocks. But it is unable to robustly handle severe deformation where
mesh tangling occurs. The ALE method discussed above provides a natural way
to improve mesh quality through introducing arbitrary mesh movement at the end
of each time step. This technique can also be used to improve mesh resolution in
some parts of the domain by pulling zones into a feature of interest. This is known
as a penalty based adaption method, as the mesh topology is fixed, and one region
is refined at the expense of another. It is a computationally more efficient approach
as it does not have the data structure overheads of the AMR technique.

However, only limited mesh refinement can be achieved compared to AMR
methods. It is believed by the author that the best approach may be a combined
ALE and AMR code, the ALE techniques used to extract as many of the Lagrangian
benefits as possible while retaining mesh quality and robustness. The AMR tech-
nique only providing the additional mesh refinement that can not be achieved with
the less expensive mesh movement technique. This should offer gains in efficiency
and accuracy and it should keep the data structure overhead of AMR method down

to a minimum.

1.5 An introduction to the adaptive multi-material
ALE algorithm

The adaptive multi-material ALE algorithm has been developed principally for
highly convergent hydrodynamics problems such as Inertial Contained Fusion (ICF)
capsule implosions, which require accurate resolution of peak compressions and
the preservation of spherical symmetry. The ALE algorithm also provides a nat-
ural framework for introducing interface physics and is well suited to modeling
material interfaces under severe deformation. This is important for assessing the
influence of drive perturbations on ICF, and also makes the technique well suited to
shaped charges, explosively formed projectiles (EFPs), projectile impact problems
and other applications where material interfaces are important.

A Lagrangian approach has significant advantages for these problems, but is
limited in its use by its lack of robustness. A number of palliatives can be employed
in pure Lagrangian calculations to increase the robustness of such codes, but these
are generally problem dependent, and often compromise the fidelity of the solution.
The ALE method developed here retains robustness by adapting the mesh by mov-
ing nodes to improve mesh quality at the end of each time step, but strives to retain

as much Lagrangian character to the mesh as possible.
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Given this philosophy, the algorithm employs a split scheme with separate La-
grangian and advection steps. The starting point for the research was a well vali-
dated 2D axisymmetric finite element Lagrangian hydrocode developed by Whittle
at AWE [29]. A predictor corrector time discretization is used for the Lagrangian
step giving second order accuracy in time. A staggered mesh is employed in or-
der to overcome the concerns already expressed over unstaggered schemes for hy-
drocode applications. The spatial discretization employs explicitly integrated bi-
linear quadrilateral finite elements. A scalar monotonic artificial viscosity is used
to introduce irreversible shock heating and stabilise the scheme for shock disconti-
nuities. This viscosity is calculated using monotonically limited velocity gradients
for each cell edge. This offers significant advantages over non-monotonic viscosity
treatments in that it produces sharper shock fronts (typically smearing the disconti-
nuity over 2-3 zones compared to 4-5 for non-monotonic artificial viscosity forms)
and introduces less artificial shock heating. It produces comparable results to Rie-
mann based Godunov codes.

The computational mesh used by the code is indirectly addressed using connec-
tivity arrays typical of most unstructured finite element codes [30, 31]. However,
the algorithms that have been developed do assume some structure. The mesh for
each problem is constructed using a separate generator program, where the code
user builds up problems from a series of logically rectangular mesh blocks or re-
gions. The regions represent different materials and can be arbitrarily connected.
The interfaces between regions can be treated as merged interfaces or slide lines.
The elements on either side of a merged interface are restricted to either line up
exactly 1:1, or be in ratios of 1:2, 1:3 or 1:4. There is no restriction on the mesh
either side of a slide line. It is this flexibility in how the logical rectangular blocks
can be connected that leads to the need for an unstructured data layout.

The code may be used to perform pure Lagrangian or pure Eulerian calculations.
However, although these options may be useful for some problems they really exist
more for validation purposes. In order to realise the strengths of the code the ALE
mesh movement algorithms must be exploited. This requires the user first to decide
which regions and interfaces, if any will, remain Lagrangian. It may be desirable to
treat some interfaces as Lagrangian to enable slide or frictional slide to be used or
simply to retain some Lagrangian character to the mesh adaption. An interface or
region can also be defined to be initially Lagrangian until some time is reached and
it is allowed to adapt.

The user currently selects which mesh movement algorithms are to be applied
to each ALEing region. This could be automated by introducing error estimators
to determine whether the mesh movement algorithm can move a node and possi-
bly even to determine locally how the node should be moved. However, although
some research has been performed on this topic, it is considered preferable to leave
the control with the user. This choice was made as it is difficult to define a mesh

movement algorithm that suits all applications and the best solutions are generally
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obtained when the code user invests some effort in thinking about the best way to
move the mesh, both to achieve a robust calculation and to focus mesh resolution to
capture the physics of interest.

The mesh movement strategy defined by the user for each region is expressed
in terms of three main ingredients: interface movement, internal node movement,
and constraints. It is important to keep some interfaces Lagrangian to both facilitate
the inclusion of interface physics such as friction and to introduce some Lagrangian
character to the internal mesh movement. However, nodes can require redistribu-
tion along these Lagrangian interfaces to maximise mesh quality and robustness. A
number of techniques have also been developed for constraining the mesh move-
ment either to further enhance the Lagrangian character of the mesh movement, or

allow the user to focus mesh resolution on features of interest.

1.6 Thesis Outline

This thesis attempts to describe the adaptive multi-material ALE algorithm in
sufficient detail to enable it to be implemented in a Lagrangian code. The research
that has been performed to develop the current algorithm and investigate potential
improvements to the scheme is then presented, along with calculations, to verify
and validate the method.

A description is first given in chapter 2 of the mesh and data structure used in
CORVUS to implement the adaptive multi-material ALE algorithm. In chapter 3
the 2D axisymmetric finite element pure Lagrangian hydro algorithm that formed
the starting point for this research is described, along with some improvements that
have been made to the scheme during the course of this research.

In chapter 4, the Lagrangian slide algorithms in CORVUS are described, along
with the extension of the scheme by the author to include a model for dynamic
friction. Three forms for the frictional force are introduced which can be applied in
isolation or as a linear combination.

The mesh adaption algorithms that have been developed for improving grid
quality and introducing local refinement are described in chapter 5. In chapter 6
the single and multi-material advection methods that have been developed for non-
orthogonal grids are presented.

In chapter 7 the treatment of multi-material cells during the Lagrangian phase
is revisited, its deficiencies illucidated and demonstrated in sample calculations. A
novel method developed by the author is then presented, which attempts to build
in subzonal Lagrangian physics for multi-material cells. Numerical solutions are
then presented which demonstrate the benefits of this new approach. The extension
of the method to introduce other interface physics, such as void closure, is also
discussed.

The adaptive multi-material algorithm has been applied to many test problems
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and real applications during its development. A sample of these test problems are
presented throughout the text of the thesis where relevant. However, it is also im-
portant to demonstrate the power of this technique on real applications. Chapter
8 includes a selection of validation and application problems that have been per-
formed.

The main conclusions and recommendations for possible further work are sug-
gested in chapter 9.



Chapter 2

Mesh and Data Structure

2.1 Overview

In order to aid the reader’s understanding of what is to follow, a brief overview
is given in this section of the adaptive multi-material ALE algorithm, and the steps
that are performed during a single time step. It is assumed that the ALE code user
has successfully defined the initial geometry, computational mesh, material data and
supplied a control file.

CORVUS performs a series of initialisation steps, which includes initialising all
the element and node based variables, constructing connectivity arrays and the data
structure required to support the slide algorithms.

A stable time step is then calculated at the start of each step, which also attempts
to avoid cell volume collapse, element bow-ties and boomerangs. The sequence of
operations for the rest of the time step can then be divided into three main phases:
the Lagrangian step, mesh adaption step and the advection step.

The Lagrangian step can be further subdivided into (i) a pressure predictor
phase, (ii) acceleration calculation and (iii) a corrector phase. The former estimates
element pressures half way through the time step for use in the acceleration phase.
The acceleration phase applies the conservation of momentum to determine the ac-
celeration of all nodes, and this includes the influence of slide and other interface
physics. The corrector step then updates all the element properties to allow for the
cell volume change calculated during the momentum step. If multi-material cells
are present, then the Lagrangian phase also updates the partial material components
within the cells.

Once the Lagrangian step is completed, then the mesh adaption phase starts by
inserting additional mesh lines in one logical mesh direction, if required, in each
region. The mesh insertion is controlled by the application of a user defined aspect
ratio error estimator. This option was added to CORVUS for high convergence
problems typically involving the implosion of thin layers and as a precursor to the

planned development of a combined ALE and AMR capability.
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However, the main means of introducing mesh adaption is through arbitrary
mesh movement. This process proceeds by first applying a series of constraints
to determine which nodes are allowed to move, then calculates material or region
weights for each node, applies boundary or slide line movement algorithms, and
finally determines new internal node positions by applying these nodal weights and
internal mesh movement algorithms on a region by region basis.

The advection step is then performed first by calculating exact overlap volume
for all faces of all ALEing elements. New multi-material cells are then dynamically
created whenever these overlap volumes indicate that a cell is accepting material
either from a single material cell of a different material, or from a multi-material
cell. The advection equation is then solved using a second order method for the
single material cells, and a first order scheme for the multi-material cells to rezone
all the state variables from the mesh at the end of the Lagrangian step to the new
adapted mesh. The final step is then to remove any multi-material cells that are no

longer required, as they only contain a single material.

2.2 Mesh Structure

CORVUS has been developed to run on unstructured multi-block meshes con-
structed from logically rectangular mesh blocks or regions, which can be arbitrarily
connected. This mesh structure is very flexible, allowing users to mesh complicated
geometries, and potentially offers greater computational efficiency than totally un-
structured grids by enabling the use of algorithms which exploit the local logical
structure of individual mesh blocks. However, the data structure has been kept as
general and unstructured as possible to avoid any restrictions on unstructured mesh
adaption in the future if this is shown to be required. This approach differs from
most of the other published ALE algorithms which have tended to employ a logical
mesh structure.

A staggered mesh data layout is used, as discussed in the introduction, with
positions, velocities and accelerations at cell vertices or nodes, while all other vari-
ables are element centred. Both the node and element centred variables are stored
as ID arrays [32] or vectors in order of element or node number. The elements
and nodes in each region being numbered sequentially on a row by row basis. The
logical mesh dimensions (Lr.Kr) are stored along with pointers to the first and last
element in each region or mesh block. This approach was initially taken to enable
the code to be efficiently vectorised on the CRAY C98D at AWE. However, the code
has been successfully ported to an IBM SP2 a Massively Parallel Processor (MPP)
super computer and to Sun work stations at AWE. Although the released code is
only serial running on one processor of the MPP at the moment, a parallel version

of the code is currently under development.
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2.3 Connectivity Arrays

The unstructured nature of the code requires a series of connectivity arrays to be
defined at the start of the calculation and redefined if the mesh topology changes.
Three types of 2D connectivity arrays are used providing, element to node, element
to element, and node to node [30, 31]. The element to node connectivity defines the
global node numbers for the four local nodes that form each quadrilateral element
and is initially calculated during the mesh generation. It is then used in CORVUS
to calculate the other two connectivity arrays. The calculation of the element to
element connectivity arrays can be expensive if done naively.

A fast method has been developed for CORVUS by exploiting the multi-block
mesh structure. The connectivity arrays are first initialised to a negative values to
denote that they are unset. The algorithm then loops over the four element faces of
each element. A test is then made to see if its value is already set (positive value), if
it is not set then the six most likely element numbers are tested to see if they share
nodes with the element in question across this cell face. These six element numbers
are chosen assuming the neighbouring element is in the same mesh block in which
case if the connectivity is being calculated for element i the six element numbers
tested as potential neighbours are; i+1, i-1, I+ LR, I—LR, 1A KR, I—KR. If none
of these is successful then a rigorous search is performed. Once the neighbouring
element is found, the connectivity information is updated in both directions for the
pair of elements.

The node to node connectivity can be generated directly from the element to
node connectivity without a search. Both the element to element and node to node
connectivities are set to zero if they point out of a free or reflecting boundary con-

dition, or across a non-ALEing material interface.

2.4 Slide lines

The slide line algorithms in CORVUS treat material interfaces as two separate
surfaces, one for each material, which can slide over each other. These algorithms
will also treat both void opening and void closure. In order to implement these
algorithms, a list is stored of all the global node numbers on each slide surface. This
approach improves efficiency, as slide nodes can be addressed indirectly. Storage
requirements are also reduced, as slide specific quantities are only stored at slide
nodes. The slide surfaces are stored in pairs: the master surface first then the slave
in each case. Pointers are also stored which point to the index of the first and last
slide node in these lists for each of the slide surfaces. This enables operations to
performed upon various sets of nodes relevant to the slide calculation such as: all

slide nodes, master surfaces, slave surfaces or one user defined slide surface.
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2.5 Disjoint nodes

It is possible to define merged Lagrangian interfaces with 1:1, 1:2, 1:3 and 1:4
ratios for the mesh spacing across the interface. In the latter three cases this intro-
duces disjoint or hanging nodes. A special treatment is applied for these disjoint
nodes, which requires a dedicated data structure. This is created during mesh gen-
eration and again takes the form of an unstructured list of the disjoint nodes and
their immediate non-disjoint node neighbours. A further array is also created which
gives the relative positions of the disjoint node between these two non-disjoint node
neighbours.

2.6 Multi-material Cells

The volume fractions which define the relative volume of the ALEing materials
in each multi-material cells are simply stored as mesh wide 2D arrays, as this sim-
plifies the implementation of the multi-material advection. There are two ways to
address multi-material cells in CORVUS. The first is simply through a list held of
the current multi-material cells. The second is by the region number stored for all
elements, which is positive for single material cells and negative for multi-material
cells. A further mesh wide integer array is also available that points back from
multi-material cell to their index in the multi-material cell list. A list is also main-
tained of single material cells in ALEing regions so that it is possible to loop sepa-
rately over either multi-material or single material cells.

The state variables for each of the partial material components present in each
multi-material cell are packed into a series of vectors, one for each state variable.
The individual material components are addressed through a special type of connec-
tivity array, which points from the list of multi-material cells to the position in each
vector where the states of that material component are to be found, as illustrated in
Fig. 2.1. This data structure was chosen to minimise storage and to link in naturally
with the vector equation of state package CORVUS uses.
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Partial Mixed cell quantities
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Figure 2.1: Data structure for multi-material cell components.



Chapter 3

Lagrangian Hydro Scheme

The adaptive multi-material ALE algorithm has been implemented within CORVUS,
an existing 2D finite element Lagrangian hydrocode. The pure Lagrangian hydro
scheme in CORVUS was developed at AWE by Whittle [29], An overview will
first be given of this Lagrangian scheme before moving on to consider the adaptive
multi-material ALE algorithm and how it has been implemented in CORVUS.

3.1 Lagrangian Equations

In order to simplify the description of the Lagrangian scheme, material strength
will initially be ignored and deferred to a later section. The system of partial dif-
ferential equations to be solved are the conservation laws of mass, momentum and
energy for inviscid fluid flow with a Lagrangian frame of reference, which can be

written:
Dp
= 0 (3.1)
Dt
Dpu
= -V 3.2
T p (3.2)
Dpe
= —p Veu (3.3)
Dt
where D/Dt is the Lagrangian derivative,
DO ao » . N
_ ~__ + V.(<u) (3.4)

The momentum and internal energy equations maybe expanded by chain differen-

tiation, and using the mass equation rewritten:

pg = -Vp (3.5)
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De
p— = -pV-u (3.6)

These equations are only valid for differentiable compressible inviscid fluid flow,
not shock hydrodynamics problems, which contain discontinuities. This difficulty is
overcome by introducing anartificial viscosity term, as suggested byVon Neumann

in the 1950’s[11].Themomentum and energy equations then become,

Du
Pr- = ~V{ip+gq (3.7

P~ = ~{¢fPJdrq) V-u (3.8)

The artificial viscosity term has two functions; it provides the irreversible shock
heating that shock physics demands, and it stabilises second order numerical schemes,
such as that used in CORVUS, for shock discontinuities. In practical terms this
means the shock discontinuity will actually be smeared over 4-5 computational
zones.

The system of coupled partial differential equations is closed, by introducing an

equation of state for each material in the problem of the form,

p = p{p.e) (3.9)

3.2 Time step control

The numerical solution of any time-dependent problem requires the specifica-
tion of a time increment, A¢, in order to march the solution forward in time. For
explicit methods this value cannot be arbitrary, rather it must be less than some
maximum value allowable for stability. For a Lagrangian formulation, 47 is limited

by the Courant-Friedrichs-Lewy (CFL) criterion,

At = C 1 (3-10)

where Av represents a measure of the minimum distance a signal has to propagate
to cross a computational cell, ¢ is the sound speed, and C is the Courant number.
The CFL criterion says physically that the explicit timestep must be no greater than
the time required for a sound wave to cross any cell in the mesh. This requires that
we know the local sound speed in each cell, as well as the minimum distance across
the cell. In ID the latter distance is simply the cell width. However, in 2D and 3D
Lagrangian codes it is too computationally expensive to rigorously obtain the true

minimum distance, so some approximation must be made. In many 2D codes such
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as DYNA2D [33] the square root of the area of each element is used. In CORVUS,
the minimum of four perpendicular projections from the halfway along each side to
the intersection with another face, is taken.

This is seen as a good compromise between rigorous stability and computational
efficiency. However, it is worth noting that simpler distance measures can often lead
to greater robustness in practice. Although stability may be violated, the time step
will not drop to the same extent for a given mesh distortion. If this stability violation
occurs outside the domain of real interest it probably will not degrade the solution.
However, this is a risky strategy. The approach with CORVUS has been to go with
the more rigorous and computationally expensive distance, described above, and
rely upon the improved mesh quality that can be obtained with the ALE technique
to maintain a high time step.

The local sound speeds are calculated within the equation of state routines. The
Courant number (sometimes also known as the safety factor) is chosen to ensure the
stability of the numerical scheme. The maximum allowable value for C for stability
in explicit time-dependent finite difference calculations usually varies from 0.5 to
1.0 depending upon the actual application. The default safety factor, or Courant
number in CORVUS, is taken to be C = 0.5, given that the actual minimum distance
for a signal to propagate across a cell may be less than that calculated using the half
side perpendicular projections.

The introduction of a shock viscosity, Q, requires that the above CFL criterion
be modified [34]. An empirical correction is applied to the square of the sound
speed from the equation of state,

where cHB is the bulk sound speed calculated from the equation of state routines.

The time step will vary from cycle to cycle or step to step, and hence is calcu-
lated at the start of each time step or cycle. Also, the sound speed will vary from
cell to cell in any given cycle, thus the time step is taken over the entire spatial grid.
A time step is therefore calculated for each cell of the mesh according to (3.10),
where the value of the sound speed, c, is taken from (3.11). The minimum time step
over the mesh is then compared with the previous time step multiplied by a growth
factor, and a specified maximum allowable time step, and the minimum of these
three values chosen as the stable time step. The growth factor is used to limit the
amount by which the time step can increase from step to step.

In ALE calculations the time step is also constrained by an advection time step
limit for all the advecting elements. This advection time step limit takes the same
form as (3.10) but replaces the sound speed with the maximum velocity of the ele-

ments four nodes.
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3.3 Artificial Viscosity Treatment

Von Neumann and Richtmeyer [11] first introduced the concept of an artificial
viscosity, g, to enable the numerical calculation of fluid flow problems containing
shocks. Since then, many papers have been written on the subject, and many test
problems defined to investigate and compare different models. Basically, artificial
viscosity allows the representation of a shock discontinuity, by smearing the shock
front over several cells, so that the shock front can be propagated as a travelling
wave. In other words, the discontinuous pressure jump across a shock is replaced
by a rapid but continuous change. The artificial viscosity is added consistently to
the pressure in the governing fluid flow equations and is designed to be non-zero
only in those cells where the local velocity gradient is interpreted as representing
the presence of a shock.

A linear combination of quadratic and linear viscosities is used in CORVUS,
as recommended by Landshoff [12]. Landshoff was first to note that, whilst the
original quadratic artificial viscosity of von Neumann works reasonably well, small
oscillations still occurred after the shock, and linear viscosities used in isolation are
overly diffusive. It is possible to obtain superior results to both techniques in isola-
tion by employing a linear combination of both. Since then many papers have been
presented on artificial viscosity. However, possibly the most significant improve-
ment in the performance of these methods came with the introduction of monotonic
artificial viscosity terms. One such method is the monotonic scalar artificial viscos-
ity [35, 18, 17], devised by Randy Christensen [16], and extended for 2D meshes
by Tipton [19], has been adapted for the unstructured grids used in CORVUS by the
author.

In practical terms, a monotonic artificial viscosity of this type leads to greater
accuracy, as it introduces the minimum of dissipation, like Riemann solvers: sharp-
ening shock fronts, without introducing numerical ringing. It also introduces less
artificial shock heating in regions of isotropic convergence, and where shocks ini-
tially form at material interfaces, rigid and reflecting boundary conditions. The first
origins of the method can be traced back to a 1980 paper where Wilkins [14] noted
the formal similarity between von Neumann’s artificial viscosity and the Hugoniot
relation for a steady state, planar shock. Wilkins showed that the linear Q coeffi-
cient of the von Neumann viscosity should be of order unity based on an analogy
with the Reimann solvers used in Godunov methods. However, in practice a linear
Q coefficient of 1.0 produces an unacceptable amount of numerical dissipation. In
contrast, high order Godunov codes, based upon a more sophisticated use of the
Hugoniot relations (Reimann solvers) do not exhibit this level of dissipation. In
fact they introduce minimum dissipation. In 1986, Christensen [16] explained this
apparent discrepancy. It is insufficient to simply set the linear viscosity coefficient
to some value near unity to obtain a complete correspondence between artificial
viscosity and Reimann solvers. It is also necessary to limit the velocity jump Aun
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used to calculate the artificial viscosity according to a monotonic principle. Chris-
tensen developed a limiting principle for Aun which is trivial to add to the normal
von Neumann artificial viscosity.

Figure 3.1 illustrates how the velocity difference Au used in monotonic Q for
smooth and steep velocity gradients. In contrast a standard von Neumann artificial
viscosity takes Awu to be the simple velocity difference between the right and left

edge of the zone.
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AU=Ui+i-Ui

U-~1 Ui Ui+1 Ui+2

Steep Velocity Gradients

Ui-1 ui Ui+1 Ui+2
Smooth Velocity Gradients

Figure 3.1: Au used by monotonic artificial viscosity for smooth and steep velocity

gradients.
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In contrast, in the monotonic q formulation, the nodal velocities are fitted with a
piecewise linear distribution, whose slopes are adjusted according to the monotonic
principal. The monotonic principle will tend to select the flatter of the two velocity
slopes touching each node. This velocity distribution is then used to extrapolate
velocities from the right and left edge to the zone centre. The difference between
the right and left extrapolated values is then taken as Au and used to calculate the
artificial viscosity. It is also clear from Figure 3.1 that the monotonic Au has the
desirable property that it reduces to the von Neumann Au for steep gradients and
tends to zero for smooth velocity fields. In fact if the velocity field is exactly linear,
then the monotonic q will vanish, whilst the conventional von Neumann q could be
quite large. In this sense, then, the monotonic q is a discontinuity detector that will
only turn on when there is a discontinuity in the velocity field.

It is the latter character that allows the use of order unity linear q coefficients
without introducing excessive damping in smooth flow regions. This is in turn
important, as it is the order unity linear q coefficient that enables sharp narrow
shock profiles of the order of one to two zones thick to be obtained without suffering
numerical ringing. The results obtained using the monotonic artificial viscosity are
in fact quite comparable with those obtained with Reimann solvers.

The monotonic artificial viscosity calculation is best explained by considering
ID first, then moving on to the extension to 2D in CORVUS. The monotonic 4n is
calculated by considering the velocity gradient in the zone of interest and in zones

on either side of it.

(3.12)

Next we define the left and right ratios of the velocity gradient.

(3.13)

Then define () as:

§=max[0.min("(Ri + RR),2RL,2RR. 1)) (3.14)
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Finally the monotonic q for the central zone zone C is given by:
g = C*pclAw|"(l —<|r) + CIPcCsclA«|(1- B (3.15)

where Au = m-+1 —m is the usual zone centred velocity difference, Cg is the quadratic
viscosity coefficient, CL the linear viscosity coefficient and Csc¢ the sound speed of
element C.

CL should always be set to which is its default value. C¢ depends on the
Hugoniot for the material. Christensen [16] showed that it should be equal to half
the slope of the Hugoniot curve for shock velocity plotted against particle velocity.
Since for most metals this is approximately 1.5, the default value in CORVUS for
Co is taken as |.

It is not obvious what the best approach is for extending the scalar monotonic
from ID to 2D. In fact in general there are a number of difficulties associated with
extending artificial viscosity methods to multi-dimensions, in addition to the con-
cerns already expressed for ID. The magnitude of the viscosity should depend on
the strain rate perpendicular to the direction of shock propagation, and should only
act in that direction [14] for example. The optimum approach may be to employ
a tensor rather than a scalar artificial viscosity [13], and make this monotonic in a
2D sense. However, an operator splitting approach suggested by Tipton [19] has
been found to be effective provided the cell aspect ratio is not too far from one to
one. Although Tipton’s original idea was intended for a logical grid code, it was not
difficult to recast it for the indirectly addressed unstructured grids used in CORVUS.

The 2D scalar monotonic artificial viscosity in CORVUS defines four separate
1D-like q’s for each element; g¢ (top), (bottom), qi (left) and gr (right), as shown
in Fig. 3.2; the first two being associated with compressions in one logical mesh
direction, the last two with that orthogonal to the other two. In order to calculate
the four q’s, appropriate directions or mesh legs must be defined. Following the

notation given in Fig. 3.2 these meshlegs are defined by,

Lhorr = —(zi +Z3-Z4 —ZI)

Lhorz = (r2+r3-r4-ri)

Lverr — (zj +Z2-7Z3—Za)

Lverz = —(rl +r2—r3—r14) (3.16)

Distance measures are also required for each of these directions in each cell and are
given by,
area

Axth =
\Lhor\

area
Axir = —a—- (3.17)
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Figure 3.2: Notation for monotonic artificial viscosity.

where area is the area of the zone in question. The projected velocity gradient for

each of the four sides of each element is then given by,

Alit,
Axb

A«/
Axi

Aut
Ax,

Aur

Axr

Lhorm(u\ —1I%)

area

Lver *(u3s —us)

(3.18)
area
Lhore(«2 —M) (3.19)
area .
Lver o (12 —u)) (3.20)

area

Christensen’s monotonic limit is then applied to each of the four sides of each

element, exactly as outlined above for the strictly ID case.
The method is implemented in CORVUS through two main loops. The first

loops over all elements and uses the element to node connectivity to calculate the

two distance measures for each element, unit vectors for the two mesh legs and the

unlimited velocity gradients for each of the four edges of each element. A second

loop then employs the element to element connectivity to calculate the left and right

velocity slope ratios (3.13), which are then used to calculate limiter functions (3.14)
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for each edge. The velocity slope ratio is set to zero across free boundaries and ma-
terial interfaces, but set to one at reflecting boundaries. Although Tipton and Chris-
tensen’s ideas were originally intended for logical mesh based codes, the above
procedure extends the method naturally to an unstructured grid of quadrilaterals:
the only requirements being element to node and element to element connectivity
information. This allows the two logical mesh directions to be identified locally
for each element. The velocity slopes can then be limited, provided neighbours can
be identified to establish the velocity slope ratios. In CORVUS each mesh block
is locally logically rectangular, so within blocks this will always be the case. If a
suitable neighbouring velocity slope cannot be identified, then that edge remains
unlimited as at material interfaces.

Once the velocity slope ratios have been calculated, then any edge velocity slope

which indicates expansion is set to zero,

Au 0 Au 0 (3.21)
1f — > then — = .
Ax At

The four edge q’s can then each be calculated from (3.15). An average element cen-
tred q is then obtained by averaging the two edge q’s for each logical mesh direction

and then summing the averages obtained for the two logical mesh directions,

Oscalar = ~ AT (Gt T QI'T Qr) (3.22)

In addition to setting the edge velocity slopes to zero if they are greater than zero,
it has also been found to be important to set the final scalar q to zero if the element
volume is expanding. This scalar monotonic element centred q or artificial viscosity
is then used consistently throughout the time step in solving both the momentum

and internal energy equations.

3.4 Hourglass Filters

In two dimensions, each fluid parcel has exactly six hydrodynamic degrees of
freedom. This is seen by dividing its motion into two categories: translational
modes and modes leading to deformation. There are clearly two translational de-
grees of freedom, and the number of modes leading to deformation is equal to the
number of degrees of freedom of the total strain rate tensor. By the symmetry of the
tensor and assuming axial symmetry, then the total strain rate tensor has exactly four
independent degrees of freedom. These include a volume changing mode, rotation,
shear and a final mode, where the volume change of the fluid parcel in one direction
due to compression is exactly matched by the volume change for expansion in the
other, leading to no overall volume change.

However, although the fluid parcel should only have six degrees of freedom, a

quadrilateral element or zone has a total of eight degrees of freedom (2 velocity
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components per node x 4 nodes). This leads to the problem that the computational
zones or elements in CORVUS are capable of reproducing the six physical degrees
of freedom plus two non-physical degrees of freedom. These modes are called
hourglass, or zero energy modes. The former term comes from the shape of adjacent
zones when hourglass instabilities are present and latter term from the fact that no
internal energy change occurs because the element volume is unchanged.

If the numerical schemes used are completely faithful to the partial differential
equations they are used to solve, then unphysical modes would never be activated.
However, in practice, small errors are present, which are sufficient to seed these
instabilities. If nothing is done to suppress these errors in Lagrangian calculations,
then the instabilities will grow, to the point where they can destroy the solution or
stop calculations from running to completion.

Hourglass modes are less of a concern for Eulerian simulations where the mesh
is continually remapped and the cells remain orthogonal with a 1.1 aspect ratio.
However, hourglassing can still sometimes be seen in these Eulerian simulations
imprinting on the velocity field. In an ALE code these modes must be suppressed,
as parts of a problem may be Lagrangian or very close to Lagrangian.

There have been many techniques published for suppressing or filtering hour-
glass modes out of the solution. One of the first successful techniques was the anti-
rotational artificial viscosity developed by Seymour Sack and George Maenchen for
their code TENSOR [13]. Since then, most of the published techniques have been
hourglass filters [33, 36, 37, 38]. These methods have two common ingredients:
the first part defining the mode shape, the second defining the resisting force. The
potential benefit of filters over modified viscosities is that they should act only to
suppress the undesirable modes, leaving the rest of the solution unchanged.

Three hourglass filters have been implemented in CORVUS, including Hal-
Iquist’s DYNA2D filter [33], Flanagan and Belytscko [36] and Hancocks’s filter
used in PISCES [39]. In practice the author has found little to distinguish between
the former two well published forms. The PISCES form uses the same mode shape
as the DYNA filter, but a different lengthscale, which appears to be more effective,
as it is free from a dependence on the material’s sound speed.

3.5 Time Discretization

The time differencing is performed using a predictor-corrector solution method.
The predictor corrector method performs a forward Euler half time step with first
order accuracy to calculate a half time step pressure (predictor step). The half time
step pressure is then used to advance the solution with second order accuracy to the
end of the time step (corrector step). It is this centering of the pressure at the half
step that makes the final values second order accurate in time.

At the start of each time step, a stable time step is determined and an artificial
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viscosity calculated for each cell. The time step control and the form of artificial
viscosity used in the scheme has already been discussed. The predictor step then
uses the velocities at the start of each time step to estimate the position of cell

vertices or nodes at the half time step.

xn+? = X7+ ~Ai u" Vnodes (3.23)

A new volume is then calculated for each element and used to obtain half step

densities and internal energies.

Vn+i2 = V(xn+2) Vcells (3.24)
1 Me
= ——r (3.25)
Vn+i
zn+! =tn+ -AtLP" + gn-"V-un (3.26)
2 Me

The half step pressures are then obtained from the equation of state,
pn+i = p(En+*% pn+?) (3.27)
The velocities at the end of the time step can then be obtained with second order

accuracy from the momentum equation,

iTHF? = 0" e — — V(/?'1+? + ¢gn) Vnodes (3.28)
M nodel

The average velocity over the time step is then used to calculate the positions of the

nodes at the end of the time step,

ln+1=x"+ Alu Vnodes (3.29)
where,
u= t(u',+u"+1) (3.30)

This enables the volume of the elements at the end of the time step to be calculated
and used to update the densities, internal energies and pressures with second order

accuracy.
Vn+l = V'(x'1+1) Veells
P o= 332)

1 4. nn)
e-=B» + A ,L £~

.Q (3.33)

prt'=p(e' F1p'H+1)

(3.31)

(3.34
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3.6 Spatial Discretization

The spatial discretization in CORVUS employs explicitly integrated bilinear
isoparametric finite elements. This approach was selected in preference to alter-
native discretization methods, such as finite volume and contour integration meth-
ods, due to the arbitrary choices required by such methods. There are, for example,
many different differencing strategies that can be employed for finite volume meth-
ods, and many different ways to define the contours used for contour integration
methods. However, once the order of the shape functions have been defined then
a fairly unique finite element discretization follows. Bilinear elements are used for
all the node centred variables such as acceleration, velocity and position, whilst a

piecewise constant representation is used for all the element centred quantities.

3.6.1 Isoparametric Mapping

The isoparametric mapping is constructed by adopting a natural coordinate sys-
tem (q,r|) for an element, such that the element has sides § = +1 and 1j = % 1.
The four bilinear shape functions can then be defined as,

w=1I(i-5)(i_n)
N2=j(1+£)(1 -T))
=i -K)(i +n)
A/4=U(1-S)(1+T) (3.35)

3.6.2 The Equation of Conservation of Momentum

The acceleration at any point in an element e, can now be expressed in terms of

the accelerations at its nodes ii* and their assosciated shape functions N

uw= X ukNk (3.36)
k

The momentum equation in axisymmetric geometry (3.2) can then be rewritten

in weak form with the weighting function Wj as,

EI NukNkWjdn=- 1 WjdQ (3.37)
JQ £ Jn ori
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Note that in axisymmetric geometry
dQ. = rdrdz (3.38)

and Petrov-Galerkin weighting must be used,
Wj= -N; (3.39)
r

Note that pe and pe in (3.37) are constant across each element, which leads to a
problem in obtaining partial derivatives of p. However, appealing to Green’s theo-

rem, the right hand side can be rewritten as,

If) . pNindV (3.40)
L ° WidQ = pe L wlJr
where n is a unit vector which is normal to T the boundary of the element. The term
in square brackets can be ignored except along an applied pressure boundary condi-
tion, since when evaluated along the common sides of two neighbouring elements,
the terms will be equal in magnitude, but opposite sign, and so will cancel.

The left hand side of (3.37) is simplified by "mass-lumping”;

JULjukN bl jdn = Ujf  f Yidetld*d]] (3.41)
Hence (3.37) can be rewritten,
otiii 1N jdetdblirl = ped™ e (3.42)

This is exactly the same as for the Cartesian case. It is not obvious why Petrov-
Galerkin weighting must be used, but Galerkin weighting Wj = Nj leads to unac-
ceptable axial behaviour, whilst Petrov-Galerkin weighting forces a spherical prob-
lem to remain spherical. This approach is analogous to the use of area weighted
finite difference methods. If a Galerkin weighting was used then the factor r in the
differential volume places too little a weight (it is actually zero in the limit) on the
nodes along the z axis [18].

The solutions to the integrals on the left and right of 3.42 are presented in Ap-
pendix A. However, it is also worth considering what these terms mean. The right

hand term,
Videtld i (3.43)

is the mass contribution from the element e to its local node j. The best way to think

of this is that each node has some volume associated with it which intersects each
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of its adjacent elements; the mass contribution from each element being defined in
terms of the element density and donated volume.
The term,

pej J -NdetJdtyj] (3.44)

is the force in the r, direction acting on local node j due to the pressure in element
e.

The numerical method in CORVUS is implemented as two steps: a scatter oper-
ation which consists of an outer loop over the four local nodes associated with each
element, and an inner loop over all the elements in the problem. This scatters each
element’s force and mass contributions out to its four local nodes. The second step,
the gather operation, then sums the force and mass contributions for each node and
then calculates a new nodal acceleration for the time step.

3.6.3 The Equation of Conservation of Specific Internal Energy
Ignoring source terms, the energy equation can be written,
pe = —/?V eu (3.45)

A 7weak” form of this equation can be created as before, with an arbitrary weight
function W, and expanding the V ¢u term into axisymmetric components,

du dv\ ( dr dr
I pefclEl— I pe wdo. (3.46)
Jo. Jn Tz+ Tr) + |\ Udz + Vdr

Choosing W =1, noting pe and pe are constant within each element, and putting

«= Xkuk*k and v= X* vkNk,

f [ ( dNj dN ;| VjNj
PtejU n = - PeJtr J (3.47)

Changing to the natural coordinates, and observing that

peJl dQ = Me (3.48)
n

-j- ricNkdetJd™dT] + j J VkNkdetJd"dr\

(3.49)
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The first integral on the left hand side is extremely complex, involving some 32
terms, (note the implied summation), but this can be reduced by a similar process

to mass lumping.

dN;

r dN; A r
L J Uj~rkNdQr&2™ 1 (3.50)
..etc

reducing 3.49 to a simple explicit expression for the rate of change of specific inter-

nal energy for the element e:
Pe dNj dN,
— W v it v N (3.51)
7=1

where

VdetJd~dr\ (3.52)
- 17-1

This differencing was used with reasonable success for several years until it
was determined by the author that the differencing of V *u was the cause of small
axial symmetry errors observed in some axisymmetric problems. A typical exam-
ple of this problem is given in Fig. 3.3 which shows a blow up of the centre of a
high convergence spherically symmetric flow problem. The fundamental problem
with (3.51) is that the nodal velocities on the axis appear in isolation, with a radial
weighting, so they have no influence on V u. The cell volumes are however ac-
curately calculated, and since all we are really trying to do is calculate PdV, the
cell volume change can be used instead to update the cell internal energy. This

significantly improves the axial symmetry, as shown in Fig. 3.4.
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Figure 3.3: Axial symmetry error.
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Figure 3.4: Improved axial symmetry obtained when cell vol-

ume change is used for the internal energy update.
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3.7 Lagrangian test problems

3.7.1 Sod’s shock tube problem

Sod’s shock tube problem [40], although simple in definition, addresses the fun-
damental ability of a code to model shocks, contact discontinuities and rarefaction
waves. It has an analytical solution [41], and many different numerical solutions
have been published for comparison. The problem consists of a rigid walled shock
tube containing two gases which are initially at rest, and separated by a diaphragm.
The initial conditions for these gases are given in Fig. 3.5. The lower pressure gas
is termed the test gas, and the higher pressure gas, the driver. The diaphragm is
burst at the start of the problem and is assumed to have no further influence on the
simulation. A shock wave then forms as the diaphragm bursts and moves to the
right, whilst a rarefaction wave propagates to the left. The solution prior to either
of these waves reaching the end walls can be divided into five regions, as illustrated
in Fig. 3.6. Regions 1and 5 are the remains of the driver and test sections that have
not as yet been reached by the shock and rarefaction waves; region 2 corresponds to
the states within the rarefaction fan; region 3 is a constant state, bounded by the tail
of the rarefaction wave and the contact discontinuity; and region 4 is the constant
state bounded by the shock front and the contact discontinuity.

A 1by 100 uniformly spaced computational mesh has been used for consistency
with the calculations in [40]. Normal reflecting boundary conditions were used for
all the external boundaries, and ideal gas equations of state were used for both gases
with the ratio of specific heats y= 1.4 in both. Two calculations were performed,
the first with bulk artificial viscosity with a quadratic coefficient of 1.0 and a linear
coefficient ofo .1, and the second with monotonic artificial viscosity with a quadratic

coefficient of 0.75 and a linear coefficient of 0.5.
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Figure 3.5: Initial conditions for Sod’s shock tube problem.
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Figure 3.6: Sod’s shock tube problem.
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iNumerical Results

The solutions obtained with the CORVUS Lagrangian hydro scheme are given
for the two artificial viscosities in Fig. 3.7 and 3.8. In both cases the numerical
solution is plotted as a dotted line, and the analytical solution as a solid line. The
bulk artificial viscosity solution stands up quite well in comparison, with the results
in [40]. The degree of rounding at the head and tail of the rarefaction fan is certainly
comparable to results presented for the other second order accurate schemes. The
shock front is captured over 4-5 zones and the contact discontinuity is perfectly cap-
tured as the mesh is moving Lagrangian. However, there is some ringing behind the
shock front and a large disturbance is observed at the initial site of the diaphragm.
The former is related to the artificial viscosity used, and if the coefficients are in-
creased for both the linear and quadratic viscosity terms, then the oscillations will
be reduced, at the expense of increasing the shock smearing. However, the larger
disturbance at the diaphragm site is a wall heating error, which manifests itself here
as a start up error. Essentially, too much artificial shock heating is introduced at
the start of the calculation because it takes a number of time steps for the shock
front to be smeared out over 4-5 zones. This error could probably be reduced by
suppressing the time step until the shock front has spread out to this degree.

The solution presented in Fig. 3.8 clearly show the benefits of adopting a mono-
tonic artificial viscosity. The oscillations behind the shock have been completely
removed without increasing the shock smearing: in fact the shock front is actually a
little sharper, now rising over 3-4 zones. The rarefaction is, as expected, comparable
with the bulk viscosity solution, as artificial viscosity is not applied in expansion.
The start up error at the diaphragm site has also been reduced a little, probably

because the shock front is sharper.
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Figure 3.7: Sod’s shock tube problem calculated with bulk artificial viscosity at
15.0  jjs.
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3.7.2 Noh’s problem

In 1987 Noh proposed three test problems in a paper on artificial viscosity errors
[15]. The three problems all employed an ideal gas with y = | and the same initial
conditions for all three problems: the internal energy is 0.0 Mb cc, the density
1.0gem~3 and the gas has a uniform velocity of -1.0 emjus~1 in the radial direction.
The only difference between the problems is that the first is planar (n=1), the second
is cylindrical (n=2) and the third is spherical (n=3). A shock wave is generated at
the origin in all the problems. The analytical solution for the three problems then
defines the shock velocity to be \em/js~], the internal energy behind the shock
~Mbce and the density behind the shock 4ngem~3 .

The three problems provide a test for two types of artificial viscosity error, which
both manifest themselves as artificial shock heating. The first type of error is the
wall heating error discussed above and is observed as the shock forms at the centre
for all three variants of the problem. The second type of overheating is only relevant
to the cylindrical and spherical problems, and occurs where an artificial viscosity
is unable to distinguish between compression, due to a shock and isotropic com-
pression, due to flow convergence. Only the spherical case will be presented, as it
represents the worse case for both types of error. It also provides a test of how well
spherical symmetry is maintained.

The initial mesh used for Noh’s problem contains 100 radial elements and 3
degree angular zoning as shown in Fig. 3.9. The bulk artificial viscosity calculation
was again performed with a quadratic coefficient of 1.0 and a linear coefficient of
0.1. The monotonic artificial viscosity calculation again used a quadratic coefficient
0f 0.75 and a linear coefficient of 0.5.

Numerical Results

Spherical symmetry is well preserved for both forms of artificial viscosity. Typ-
ical mesh and density contour plots are given at 0.6»s in Fig. 3.10 and Fig. 3.11
for the monotonic artificial viscosity form, whilst Fig. 3.12 shows density profiles
as a function of radius for both of artificial viscosities. The solid line denotes the
monotonic artificial viscosity form and the dotted line the bulk artificial viscosity.
The analytical solution for the density behind the shock is 64.0gcra-3, which is not
reached by either calculation at this mesh resolution. The calculated density in both
cases is not flat, as demanded by the analytical solution, but falls towards the origin.

This drop in density and the corresponding increase in internal energy are the
result of the spurious shock heating, discussed above. Both forms of artificial vis-
cosity are introducing more shock heating than required where the shock is ini-
tially formed, and are introducing shock heating in some parts of the problem where
shocks are not even present. The latter occurs because neither type of artificial vis-

cosity can truly distinguish between isotropic compression, due to flow convergence
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and, compression, due to the presence of a shock. The monotonic form of artificial
viscosity does reduce this type of error, which explains the higher peak density ob-
tained. However, both types of artificial viscosity introduce wall heating errors near
the origin. Once the problem is established, the shock front will be smeared over
a constant number of zones. However the impulsive problem start means that the
shock front will initially rise over a single zone, resulting in excessive shock heat-
ing. A similar error is always introduced using artificial viscosity methods when
ever a shock crosses a material interface. Overall the results obtained are superior
with the monotonic artificial viscosity. The shock front is sharper and there is no
sign of ringing behind the shock front. The peak density behind the shock is also
significantly closer to the analytical solution. However, the density is lower close to
the origin suggesting the wall heating error is larger. This may be because the flux
limiter used for the monotonic form is less effective next to the central boundary
condition, and the linear viscosity coefficient used is higher than for the bulk form.
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Figure 3.9: Initial Mesh for Noh’sproblem.

320

160

°

0000

0.00C 0.C40 0.080 0.12C 0.160 0.200 0.240 0.280 0.320 0.360 C€.400

z (cm) 0.60000 musec

Figure 3.10: Mesh for Noh’s problem calculated with monotonic
artificial viscosity at 0.6 jjs.
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3.8 Material Strength

The treatment of material strength in CORVUS closely follows the method de-
veloped by Wilkins [38], but discretized with a finite element methodology, con-
sistent with that used for the hydrodynamics, as described above. The treatment is
primarily aimed at the ductile elasto-plastic response of metals. The method de-
couples the stress into an isotropic pressure and stress deviator components. The
isotropic response is described by an equation of state for each material, which de-
termines the pressure as a function of material density and specific internal energy
(3.9). The constitutive relations for the deviator part of the material response are
in incremental form, and follow the Prandtl-Reuss treatment of elasto-plastic flow,
which deals with the elastic and plastic strains simultaneously. The elastic response
is described by the hypo-elastic abstraction of linear elasticity. The functions for
the yield strength and shear modulus are those given by Steinberg, Cochrran and
Guinan [42], which allows for strain and pressure hardening and thermal softening,
but does not include strain rate dependence; the stress deviators being forced to lie
on this yield surface by employing Wilkin’s radial return algorithm [38].

The equations for the conservation of momentum and internal energy (3.7,3.5)

are now rewritten to include the influence of material strength.

Du d(pAq) dSxx dSX» SX

PD7 = — +17+T +T ( }

Dv d(p + q) dSyy dSxy Syy Sz

PDF = — ar~+17 +ir +~7~

Dt s
= (/>+<YV-u+p— (3.55)

Clearly if the stress deviator terms and rate of plastic work are all zero, then the

original hydrodynamic equations (3.7,3.s ) are recovered.

3.8.1 Time discretization for material strength model

The following time descritization should be contrasted with that for the pure
hydrodynamic equations given above. Essentially, the stress deviators and plastic
strain rate must be evaluated before the modified conservation equations (3.53,3.54,3.55)

can be solved.
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* a) Pressure Predictor Step (n to n +

43

First the elastic prediction of the Stress Deviators, $%, neglecting plastic strain

rate components is obtained from,

/| DS* \ n+?
(-Jjf) = (2juexx+ 2coxyS:y)n
/DS* | n+2
\~5TJ
/ DS*
(“Of)

where the Strain Rate deviators are given by,

«» = £xt-"(V-u)
&v = £xv

1
eyy = Eyy— 3 (V -1

and the strain rates and spin tensor are,

du
dx
1/dv du
£rv—A1  h*®
Vol M)
. dv
VY o
e.. = -
y
= I( r- A
= 1G5 )

Applying the yield limit to S*. to obtain S/y,

5512 = 2(5+ 2+ 5% 2+ S+ 2+ 5;,-5% )"+5

Sfi 1S
PP = { j— g VA

' D 8*F > f1Y"”

(3.56)

=(2vexy +(3.57)

=(2veyy +(358)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3-66)

(3.67)

(3.68)
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The plastic Strain Rate Deviators, £p, are obtained by writing the strain rate

deviators e as the sum of elastic and plastic components,

eU —ety+ ely (3.69)
then
- (3-70)
<&'= <v- N (N -< (NMN-5"0)) (3.71)
yym = ey -L + B (3.72)
where
DSt (3.73)
Dt lTlat

and the internal energy is given by,

Dzn+1 / DWA"Y
p_ _ =(-pV.U0) +(p— ) (3.74)
where
( DWp\ n
V. Dt") = Syyeyy (" evy+ Syyrxx)” (3-75)

The density update is performed as for the hydrodynamic case, coordinates
being advanced to the n+ j time level; the cell volume recaculated and hence
the new density obtained. The pressure is then obtained from (3.9), but using
the internal energy obtained from (3.74).

* b) Velocity Update

The element contributions to the nodal accelerations are then calculated, not-
ing that the u and v components have different forms as given by (3.54,3.55),
and that all variables are at the » + | time level. The nodal positions are

updated as for the hydrodynamic case,
X'+ 1=xn+ At u Vnodes (3.76)

where

Q= I(u'l+u'+) 3.77)
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* ¢) Volume, Internal Energy and Pressure Update (n to n+1)

The elastic prediction of the stress deviators follows as for step a), but note

the time levels of the variables,

«+i
fD S/\ n+” 9 "+2 n* lo 1
(72 et T dowy Sy (.78
where
C* -i[Cx "+1 1, n
xy j Viry xyn -
..etc

i
Note that this requires the solution of simultaneous equations to obtain §- 2.

The yield limit is applied as in step a). Evaluate the elastic strain rate deviators

(atn - j),
a)«t! - L 2+ 0N+ (3.79)
~ 2/1\ Dt Xy xy
..etc
where,
DSxx
Dt At

Evaluate rate of change of elastic work,

DWe

Iy — 2 (exxSxx + exySxy + eyySyy) + exxyy + eyy$XX (3.80)
re _ws,e T

w =vv + [T a P (3-81)

Update plastic strain rate deviators

(e£)"+i = (3.82)
..etc

Update Equivalent Plastic Strain

At \l —(£xr)“+ (£xy)2 + (£y>")~ 3% £*xLyy (3.83)
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Evaluate rate of change of plastic work as in (a), with all variables atn + | :

Then update internal energy as per (a) from n to n+1, and update pressure.

3.8.2 Finite Element analysis for strength model

As the isotropic (pressure) contributions are decoupled from the deviatoric
components of the material response, the finite element analysis given in
section 3.6 is valid in its entirety and represents the behaviour of materials
without strength. Consequently only the additional terms introduced by the
strength model will be considered here, namely the elastic prediction of the

stress deviators, the strain rate deviators, and the rate of plastic work.

e i) Stress Prediction
Consider a typical term for the rate of change of the (unlimited) stress devia-

tor:

(3.85)

We need to calculate this value for each element. Define a weak form, and
consider the integral over a typical element, noting that in the currently nota-
tion y=r and x=z, and thus dQ. = ydxdy:

la ~8§T Wiydxdy= f exxWjydxdy+2(3.86)

The strain rate deviators can be expanded in terms of strain rates and V - u.

(3.87)

Using an approach consistent with that used for the momentum equation in
section 3.6.2, but noting that here we only require one value, exx, for the
element. In the momentum equation we require the contributions to the four
nodes, and so used the four shape functions that span the element; here we

could simply put W =1, but for consistency we choose:
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Consider the first of the right hand side integrals:

=LkhffretJd dT]
- Xk 3vkjf "detJdqgdr|

-Lwvos SN Rdet]ddr! (3.89)

The final term still has a - dependence: previously the radial dependence has
always cancelled out. A number of more sophisticated treatments of this term
were tried, but the simple mean value was found to be the most successful
and robust approximation. The other terms can be expanded similarly, giving

an explicit expression fOI{ W} __/ / \Udet.]d&_,dnss deviators. Using the

shortened notation
(1T N/ =J  j  ydetJd dr) (3.90)

the expression can be written:

(3.91)

All the other stress deviator rates can be calculated in a similar manner. The
plastic strain rate deviators can also be analysed following the same method,
taking care to use the limited stress deviators where appropriate.

* ii) Momentum Equation

The strength model adds extra terms to the momentum equation involving the
stress deviators. In section i) above expressions were derived for the unlimited
stress deviators, which, when limited, will contribute to the acceleration of
the nodes. This derivation as discussed above is consistent with the Petrov-

Galerkin discretization of the isotropic components of the material response.

The two components of momentum can be written:
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On the right hand side, the first term is exactly as in the pure hydrodynamic
case, and the next two terms can be expanded by exactly the same method,
as, like pressure, the Sij terms are constant across the element. The final term
expands like the left hand side, taking 1 as a mean value, elementwise con-
stant, as in the stress deviator analysis. The contribution to the acceleration

of the local node j of a typical element can thus be written:

+ (3.94)

and

S . 1 / 0 -»>

Note Sxx T Syy T = 0.

e iii) Internal Energy Equation

For the specific internal energy calculation, the strength model adds an addi-
tional term, the rate of plastic work. This has already been defined in terms of
a products of the stress deviators and the plastic strain rates. All that has to be
done is to evaluate the contribution that the plastic work makes to the internal
energy, in a manner consistent with the evaluation of the —pV <u term. All
the terms are known and piecewise constant, and thus the discrete form of the

internal energy equation can be written:

{1 pen = M h’}‘W ? }_’Tj{JM})

+  [2(5xcEN:+ Syyfyy + Sxyexy) + (Sxx£yy + SyyENC) N yj{ f Nj} (3.96)
J

3.9 Strength Test problems

3.9.1 Berylium stopping shell

The berylium stopping shell problem is used to check the symmetry and energy
conservation of the material strength treatment. The problem consists of a 2 cm

thick spherical berylium shell with an inner radius of s cm. The equation of state
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used was developed at LANL by R. K. Osbourne [43], and takes the form of a

quadratic fit to experimental data,

a\ + dr\2+ e(bo + b\ + b2r\2) + e2{co+ ciq)
p = (3.97)

e+ eo

where cil\M2M *bQ,b\,b2,CQ.c\1eQ are material dependent parameters, q = p/po —

1 and,
a—g . on ~° (3.98)

A constant yield strength of 3.3 kb and a constant shear modulus of 3.3 Mb is also
assumed.

An initial radial velocity distribution is applied to keep the shell incompress-
ible while itimplodes. The shells kinetic energy is thengradually converted into
plastic work duringtheimplosion wuntil the shell stops.The initial radial velocity

distribution assumed is of the form,

2
u=(y)«o (3.99)

where ro is the initial radius and ug the initial radial velocity of the inner surface.
It remains then to define vo, this is achieved by specifying a final inner radius and
theoretically determining the initial velocity required to stop at this radius [44]. In
this case the berylium shell was required to stop with an inner radius of 3 cm, which
occurs theoretically at 100.0;us with ug = 0.061504cms~{ [45].

Numerical Results

The problem was calculated on a 2° angular mesh with 45 radial zones in the
berylium shell as shown in Fig. 3.13. The solution obtained at 100.0ps is given
in Fig. 3.14. The calculation stopped at 3.0 cm and the total energy only dropped
by 0.01 % during the calculation. The Lagrangian scheme used in CORVUS does
not conserve energy perfectly because the nodal masses are allowed to vary with
time, due to the finite element nature of the scheme, and the PdV formulation does
not explicitly guarantee that identical work is done in the momentum and corrector

internal energy steps.
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Figure 3.13: Initial mesh for berylium stopping shell problem.
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Figure 3.14: Mesh for berylium stopping shell problem at 100.0

ps.
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3.9.2 Taylor rod impact test
Definition

The Taylor impact test was selected to test the modelling of strain hardening.
The problem involves the normal impact of a copper cylinder with an axial velocity
on arigid target. The cylinder is 10 cm long, 1.5 cm in diameter and it has an impact
velocity of 0.019¢ms~]. The copper was modelled with an Osbourne equation of
state (3.97) and a constant shear modulus 0f 0.477 Mb. The yield strength was given

by,

Y = 0.003(1 + 1.2934s7) (3.100)

where zp is the plastic strain.

Numerical Results

Fig. 3.15 shows the mesh and Fig. 3.16 the plastic work contours obtained for
the Taylor impact problem at 250.04s. The plastic wave has travelled just over 5 cm
down the rod from the impact site, which is in good agreement with the ID plastic
wave velocity, which suggests the plastic wave should be 5.1 ¢cm from the impact
site [45].
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Figure 3.15: Mesh for Taylor copper rod impact test at 250.0 /us.
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Figure 3.16: Plastic work contour plot for Taylor copper rod impact test at 250.0 jjs.
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3.9.3 Berylium vibrating plate test problem
Definition

The berylium vibrating plate is a purely elastic test problem. It consists of a rect-
angular plate of infinite extent in the z-direction with no supports or constraints. The
x- and y- dimensions are ¢ cm and 1 cm respectively. The berylium was again mod-
elled with an Osbourne equation of state (3.97). A simple constant yield strength of
1 Mb and shear modulus of 1.51 Mb constitutive model is used. The first flexural

mode is selected by defining the initial velocity distribution in the y- direction as:

ny = (b\A[Ci(sinh(Q\(jc+ 3)) -fsin(Lli(x + 3)))
— Sl(cosh(x+ 3)) + cos(0i (x+ 3)))] (3.101)
where cbj = 0.235974, A=0.004337, C| = 56.6369, S| = 57.6355 and = 0.7883902.

This should give a period 0of 26.634s and an amplitude of 0.5 cm [45].

Numerical Results

The problem was calculated with 10 cells in the y-direction and 60 in the x-
direction. A 30.0/is period with an amplitude of about 0.5 cm was obtained numer-
ically as illustrated in Fig. 3.17. It is not surprising that the calculated period is
longer than the analytical prediction, as the theory assumes long thin plates, while
the numerical simulation is applied to a 6:1 aspect ratio plate. The energy con-
servation obtained is reasonable with 0.15 % of the total energy lost during the

calculation.
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3.10 Lagrangian multi-material cell treatment

The proceeding sections have detailed the Lagrangian step as it is applied to sin-
gle material cells. In this section the modifications that have been made to the La-
grangian scheme to allow for the inclusion of multi-material cells will be discussed.
The reader should already be familiar with the data structure introduced to support
multi-materials cells which was also discussed in a previous section. However, a
brief reminder of the salient details will first be given here before proceeding.

Volume fractions are defined for each ALEing materials in each cell. These
volume fractions define the fraction of the cell volume occupied by each of these
materials. In a single material cell within an ALEing region, for example, the vol-
ume fraction component for the cells own material will be 1.0, whilst the volume
fractions for all the other material components will be 0.0. In a multi-material cell
more than one of the volume fraction components will be non-zero, indicating that
more than one material is present. The state variables for each of the components
in a multi-material cell are stored in separate arrays, which are indirectly addressed.
Volume fraction weighted averages of these components are stored for each state
variable of each multi-material cell. In order to simplify the discussion, the pure
hydrodynamics without strength is considered first. In this case there are three key
areas that require modification: equation of state calls, the internal energy or work
updates and the acceleration calculation.

CORVUS employs a vector equation of state (EOS) package. This simply means
that one call to the package returns pressures and sound speeds for as many elements
as required. This is a natural approach for unstructured codes such as CORVUS
and allows the EOS package to be vectorised on vector architectures. The exist-
ing calls to the EOS package are essentially unmodified, but the values obtained
for the multi-material cells are discarded. Additional EOS calls are added which
pass vectors containing the state variables for all the multi-material cells material
components and return pressures and sound speeds for all these partial components.
Volume fraction averages are then assembled for the cell pressures and mass frac-

tion weighted averages for the sound speeds of the multi-material cells,

(3.102)

(3.103)

The predictor and corrector internal energy or work updates for the single mate-
rial cells simply calculate the work done on or by the element in terms of an incre-
ment in (p + ¢)V *u (3.3). This is straightforward and simply requires the pressure

and volume change of the element to be known. The latter is simply calculated
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from the divergence of the velocity field for the element. However, when it comes
to updating the partial internal energies for separate material within a multi-material
cell then this is less well defined. Separate pressures are certainly available for the
individual components, and the overall cell or element volume change is known, as
discussed above. But the fraction of the cell volume change that should be apportion
to each individual material component is undefined.

The current default option for CORVUS follows the assumption of equal com-
pressibility made in most multi-material Eulerian and ALE codes [46]. This is
clearly unphysical for most material combination and will not satisfy the pressure
continuity at the material interface that shock physics demands. These concerns
will be revisited later in this thesis and an alternative treatment proposed. However,
the equal compressibility assumption does provide a relatively simple and robust
internal energy update procedure, the volume fractions remaining unchanged dur-
ing the Lagrangian phase, and component volume changes simply being taken as
the product of the material volume fraction and cells volume change. The internal

energy updates for a material component at the half and full step are,

»+5 n,
h,L= £".;+ o " /MV 'U
- Mk,

(n"+5
eft'=chI+ A t-" e —/t,/V cu (3.105)

It should be noted that while separate material component pressures are used to
update the internal energy of each material component, the artificial viscosity or q
term used is the same for all material components.

The acceleration calculation is effectively unchanged with cell average values
used for multi-material cells. The artificial viscosity is calculated at the start of
the time step and essentially does not currently distinguish between the single and
multi-material cells; the lengthscale for the viscosity simply being calculated from
cell average values for the multi-material cells. However, the velocity slope ratios,
used to define the monotonic slope limiters, across multi-material cell boundaries,

are set to zero.

(3.104)



Chapter 4

Sliding Interfaces

CORVUS provides two different interface treatments, a volume of fluid (VOF)
based interface reconstruction method, which will be discussed later, and a La-
grangian slide algorithm. The former is a very robust technique and is the method
of choice for interfaces which undergo high deformation. However, if an interface
is well behaved the Lagrangian slide treatment is preferred, as it should be more
accurate and is more amenable to the addition of interface physics. This chapter
will focus on the Lagrangian slide algorithm that has been developed and how it has
been modified to introduce void closure, void opening and friction.

A slide algorithm defines a material interface as two discrete Lagrangian sur-
faces or slide lines. This allows the nodal acceleration calculation to be decom-
posed, and different procedures used to obtain the normal and tangential acceler-
ations. In calculating the normal acceleration the normal force is assumed to be
continuous at the interface, reflecting the reaction of one material against the other.
However, the details of the tangential acceleration calculation depend on what is
assumed about the tangential force or friction acting between the two materials.
Most codes simply assume zero friction, but in principle any frictional force up to
the limit of a locked interface can be introduced. The main difficulty here is that
the physics of dynamic friction for the regime of interest for most hydrocode appli-
cations, that is pressures in the 50 —200M bar range and relative slip velocities of
about 2mm/js~\ is not well understood [47]. However, the facility to introduce a
frictional force through a slide algorithm [48] is valuable for dynamic friction re-
search, since it allows friction models to be assessed by code comparison against
experimental data. It is also valuable in making engineering assessments of the
potential importance of dynamic friction.

Slide algorithms can be subdivided into two main types. The first stems from
structural analysis, and is mainly concerned with enforcing the correct contact con-
straints at the interface. The approach taken for achieving this is to calculate the
forces across the interface and then apply them as a force boundary conditions.

Typical examples of this approach are the Lagrange multiplier method, discussed in

57
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[49] and the penalty method given in [50].

In contrast the hydrocode community is more concerned with propagating the
correct stress waves across material interfaces. Most hydrocodes, including HEMP
[38] and TENSOR [13], designate one of the surfaces in each pair of slide lines as
a master, and the other as the slave. This choice is somewhat arbitrary, but the rules
of thumb are that the slave should be the material most likely to deform to the other
material. These algorithms then treat the interfaces as merged in calculating the nor-
mal acceleration of the interface, by mapping the mass and stress distribution from
the slave surface onto the master. The CORVUS scheme was strongly influenced
by these schemes, but offers improvements in the symmetry of the scheme, and so
reduces the sensitivity of the solution to the choice of which surface is designated as
the master, and which the slave. The basic CORVUS slide algorithm was developed
principally by Whittle [51] and later extended by the author to include a friction
model [48].

4.1 The CORVUS slide algorithm

Two approaches were considered for the development of slide in CORVUS.
The original slide algorithm was written when the code was purely hydrodynamic.
The algorithm was designed to be as consistent as possible with the underlying
hydrodynamic scheme, and worked by using the pressures in elements on one side
of the interface (the slave side) to define a piecewise constant pressure force on the
other (master) side, which was then integrated and added to the other forces acting
on nodes of the master side. With the assumption that the master interface was now
accelerated correctly”, the slave surface was forced to conform to the master in a
”put-back-on” step (PBO) that conserved the slave side tangential velocity. During
these calculations, master and slave elements are assumed to remain quadrilateral,
even though they may have penectrated and become arbitrary polygons.

This algorithm had several failings. It is a classic ”master/slave” treatment, and
so is not symmetric, and choosing the master/slave relationship at an interface is
not always straightforward. The basic rule appears to be to make the stronger ma-
terial the master, or the denser if they are both weak, or, if there is still no clear
choice, the master should be the material being driven, rather than that driving the
motion. Secondly, the assumption that the free surface tangential velocity of the
slave is a reasonable approximation to the constrained tangential velocity is ques-
tionable. Thirdly, the PBO does not enforce a continuous normal velocity. Finally,
and crucially, the use of the pressure in the slave elements ignores material strength
terms, and this means that the algorithm is invalid for slave side materials with any
strength and it is not clear how to include the strength terms.

For all its limitations, the algorithm was quite effective. However, it was recog-

nised that the slide model would have to be adapted to include material strength
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terms. Attempts to adapt the existing algorithm were unsuccessful, resulting in in-
stability, long wavelength perturbations, and inaccuracy.

As a result of this experience a new slide algorithm was devised which is now
the recommended option in CORVUS. The philosophy in this algorithm was to
compromise a little on accuracy in favour of a robust symmetric treatment. Forcing
the algorithm to be more symmetric makes it much easier to incorporate strength
terms in a physically sensible manner and also makes the algorithm more robust.
Applying the method to real problems has shown that it is less accurate than the old
slide algorithm for coarse mesh calculations on problems with no strength on the
slave side, but both converge to similar results on fine meshes.

The new slide algorithm breaks down into several steps, and these are detailed
below. The slide lines are recorded as a single list of node numbers, with a pointer
to the vector location of the start and end nodes. Slide lines are considered in pairs,
master then slave. Associated with the list of slide nodes there are parallel lists
of the elements that border the slide line, unit tangent vectors at each node and so
forth.

The first four steps are performed after node Lagrangian accelerations have been

calculated, but before they have been applied to move any nodes.

e Step 1 Calculate normals and tangents for all nodes and element faces on the

slidelines.

e Step 2 Calculate free surface tangential velocities, and effective pressure

force at nodes.

e Step 3 Calculate ”"Lower” values, interpolated forces and masses at pseudo

node point on opposite surface.

* Step 4 Modify the accelerations of the nodes.

After all nodes have been moved, but before internal energy or pressure are

updated:

* Step 5 Slave side nodes are ”put-back-on” to master side line segments, and
their normal velocity modified to match the interpolated master side velocity.

Step 5 is thus the only non-symmetric part of the algorithm.

4.1.1 Step 1

The tangents and normals are calculated using a ”’long” measure, the nodes ei-
ther side defining the tangent and normal, rather than the halfside points, to suppress
instability. Unit vectors for normals and tangents, based on half time step node po-
sitions, are stored for all slide nodes, and slide element faces (see Figure 4.1). This

is a profligate use of memory, as either tangent or normal can be derived easily from
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(xnno,ynno)

(xtno.ytno)

(xnel.ynel)

(xtel,ytel)

Figure 4.1: Tangent and normal construction.

the other, but it is justified because the numbers of slide nodes is always small com-
pared with the total number of nodes and it makes the coding much easier to read.
If the algorithm was to be extended to 3D, memory would become more of an issue.
At this point a length scale representing the effective area over which the pressure
at each node acts normal to the free surface is calculated. Later the pressure force
from the opposite surface will be applied to the node as if to an element side of this

length.

4.1.2 Step 2

The accelerations for all nodes for the current timestep have been calculated
from the element contributions, and boundary conditions applied, so that a free sur-
face acceleration is known for each node on the slide lines. The tangential compo-
nent of this acceleration is used to calculate a half-time step free surface tangential
velocity component. For the normal component, the forces above and below the
surface are required so that they can be summed to form the total force (and hence

acceleration) of the node in the normal direction. This is equivalent to producing
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in direction of b)

Figure 4.2: Free surface tangential velocity.

pseudo cell contributions to a nodal acceleration. The contribution could be calcu-
lated by resolving the element pressure and stress contributions, but a simple and
robust way of achieving the required result is to resolve the free surface acceler-
ation in the direction of the normal and divide by the nodal mass, to produce the

equivalent normal pressure (see Figure 4.2).

4.1.3 Step 3

Having derived the “upper” nodal quantities, that is, those that can be calculated
from the elements containing the node, the ”lower” quantities must be interpolated
to allow the opposite surface to influence the normal motion (but not the tangen-
tial). The terminology “upper” and “lower” is used as the same calculations are
performed, whether it is a master side affected by its slave, or vice versa. For each
node on the upper surface, the lower surface is searched for the pair of nodes on the
lower side which bracket it. This search is speeded up by the knowledge that the
lists are of contiguous nodes, and by “remembering” which node-pair were closest

last time, and only searching a small part of the lower list. The lower quantities,
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SNNOL(A)=(12*snno(a) + M1*snno”)/(11+12)

where varea(b)=0.5*(length ac)

UPPER

LOWER

(xnno,ynno)|

Figure 4.3: Lower interpolation.

effective normal pressure and effective nodal mass are interpolated linearly from
the intersection of the upper normal with the lower node pair as shown in Figure
4.3. Note that these are forces and mass per unit lengthscale. The routine is called
twice for each slide line pair, master-slave and slave-master.

4.1.4 Step 4

For each node, the new normal acceleration is calculated from the upper and
lower effective pressures and the effective nodal mass. This is added to the tan-
gential component of the free surface acceleration, modified by averaging with the
acceleration of the inner neighbour nodes. Ifthe actual free surface tangential accel-
eration is used, the elements at the interface tend to skew. CORVUS uses an average
of the nodes acceleration with that of the inner neighbour nodes to overcome this as
shown in Figure 4.4.
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Figure 4.4: Normal acceleration calculation.

4.1.5 Step 5

The put-back-on step is the most unsatisfactory phase of master/slave slide line
algorithms. It is asymmetric and arbitrary, and experience has shown that it to tends
to introduce zero energy modes (hourglass effects) in bilinear element solutions. In
the CORVUS slide put back, slave nodes are made to lie on the master slide line
segments by moving them along the slave side normal, and their normal velocity
is altered so that it matches the interpolated master node velocity, resolved in the
slave normal direction (see Figure 4.5). There remains a small discrepancy between
the normal velocity of the master and slave surfaces, due to the difference between
the normals - but there is no ’right” way to measure the normals for the piece-wise
linear line segments sets that form the two surfaces.

In some ways the approximations used in the old slide are better than those used
in the new algorithm. The evaluation of the pressure field imposed on the master
surface by the slave material is more accurately treated in old slide - each slave
element imparts a contribution derived from a linear shape function in a manner
completely consistent with the element contributions to internal nodes. In compar-

ison, the method in new slide, of taking the closest element as being representative
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U(a) (u,v) of B

Figure 4.5: Slave node put-back-on.

of the pressure held is crude, particularly where there is a significant disparity in
element sides. However, it is this circumstance that makes the old slide method
unworkable for a symmetric treatment, as the summation of multiple contributions
requires the slave side to be meshed finer than the master, and the treatment cannot
be reversed to allow the coarse'’ master to influence the ’fine” slave.

The accuracy of new slide algorithm has been assessed on a range of problems
and it has been concluded that whilst both methods converge to the correct solution,

new slide converges slower and is thus less accurate on a coarser mesh.

4.2 Void Closure

Most published void closure algorithms such as those in HEMP and DYNA be-
tray their origins as subtle variations on slide algorithms where the sliding surfaces
are treated as free surfaces until some geometric closure criterion is satisfied. At
that point, various adjustments are made to the velocities and positions of nodes to
satisfy continuity conditions, particularly momentum. Void re-opening is similarly
ad hoc, HEMP for example allows a node to reopen if it separates from the master
surface by 10 % of its cell size - a measure that is dependent on mesh resolution and
time step. With the knowledge that all most codes did was so approximate, it made

sense to spend some time considering the problem of void closure from a physical
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viewpoint. One aspect of this was to consider the Rankine-Hugoniot conditions at
a planar impact. The other was to consider what variable should be conserved at
impact.

The instantaneous conservation of momentum on impact, implied by the imme-
diate adjustment of node velocities to transfer momentum to the impacted material,
actually implies that all void closure is inelastic. Whilst this assumption may be
reasonable for modelling the impact of a car with a wall, whether it can be justi-
fied for problems involving significantly higher velocities is more questionable. In
fact, on impact, some of the kinetic energy is converted to internal energy through
the compression of material, and one should be wary of adjusting velocities to con-
serve momentum without also checking that the energy balance of the system has
not been changed. The question that arises then is “what is the correct velocity to
impose at a closed boundary?”, and the answer comes from the Rankine-Hugoniot
conditions.

A simple plate impact problem was set up, and some calculations performed
with a variety of simple models for the boundary velocity at closure. Particular
attention was paid to the velocity profile which established itself over « 1045, the
profile of internal energy, and the conservation of total energy in the system. The
problem definition and analytic solution is given below in Figure 4.6.

The velocity of the impact surface was hard-coded to represent various options
- bringing the surface instantaneously to rest, accelerating it to the impact velocity,
adjusting it to conserve momentum, and adjusting it to satisfy the analytic solution.
The results from all these models were broadly in agreement with the analytic solu-
tion, and with the same meshing, total energy was conserved to similar accuracy in
all cases. In fact, the key to obtaining a reasonable solution was to use a sufficiently

fine mesh, and this result is easy to understand if you consider Figure 4.7.
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Problem

Region 1 Region 2
p=3 p=4
P=0 P=0
e=0 e=0
u=0.1 u=0

Analytic Solution (schematic)
U1=-0.2854 p=16 U2=0.06188

__u=CLl j
i
i
i
i
[
i
i

u=0.04641

1 a=

e=0.001436 |
£=0.001077 u=0

(where U1 and U2 are shock speeds)

Figure 4.6: Simple impact problem and analytic solution.
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velocity

velocity

Figure 4.7:

a) Comparison with analytic and best
possible "discrete" solution, after shocks
have travelled ~2 cells

b) Analytic v. Coarse mesh "discrete" solution,
when shocks have travelled < 1 cell

Effect of mesh resolution on momentum summation.
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Figure 4.7a) shows how once the profile is established a discrete solution can,
potentially, provide a reasonable approximation of the total momentum in the sys-
tem, except that the representation of a shock is a ramp of one cell length, and not
a step function. In practise, the shock is smeared over two or three cells, which
means that the effect is exaggerated further. The shaded area is proportional to the
total momentum in the system, as summed for an output print, or for instantaneous
momentum conservation (assuming the elements are mass-matched). This looks to
be a reasonable approximation to the area under the analytic line for an established
profile, but one needs to consider the situation at impact, before the shocks have
travelled a full cell length in either direction Figure 4.7b). At impact, the “best”
solution, where every node has the analytic velocity, may not conserve total mo-
mentum as summed, depending on the shock speeds, the time step and the lengths
of the elements. In fact, to conserve momentum the interface velocity A could be
anywhere between the two unshocked velocities, depending on these other factors.

If momentum conservation is not a practicable or meaningful measure for void
closure, then the alternative of kinetic energy conservation is similarly flawed, as
the step function is now approximated by a quadratic curve, which may provide a
close approximation to the analytic solution or not depending on the same criteria
as for momentum.

4.2.1 Void Closure in CORVUS

Having analysed void closure algorithms and concluded that existing methods
had no especial justification in physics, some different approaches were tried. The
first idea was to calculate the normal velocity at impact from the Rankine-Hugoniot
equations and apply this to master and slave surfaces - the idea being that the in-
terface would move with the correct velocity from impact onwards. The two diffi-
culties with this are the expense of the calculation, and the problem of enforcing a
changed velocity on master nodes. The master nodes do not necessarily align with
slave nodes, and adjusting their velocity affects the closer of neighbouring nodes,
so it is very difficult to define a scheme which does not involve iteration. The con-
clusion drawn from these experiments was that a method which only adjusted slave
node velocities and positions at closure time would be easiest to implement, and
also that some effort should be made to conserve the kinetic energy “lost” in the
adjustment of nodal velocities. It is also clear that void closure can only be mod-
elled with reasonable accuracy if there is sufficient mesh resolution to model the
shocks caused at impact - this implies a fine mesh has to be used. Given that a fine
mesh will be used, most ad hoc methods will result in the correct velocity profile
being established in a few (short) time steps, i.e. a simple and cheap method will be
accurate enough, provided it is robust.

The simplest method of coding void closure is to allow a free slave surface to
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impact a master surface, and move each node onto the master surface as is pene-
trates the master material. The normal velocity of the slave node has to be adjusted
to match the interpolated normal velocity of the master line segment (consistently
using the slave side normal to avoid couples, as with standard slide put-back-on).
There is then the question of whether to correct for the reduction in kinetic energy
resulting from changing the slave node velocity. The natural assumption is that
something must be done, but it is not obvious that this is the case. First, the summa-
tion of kinetic energy has been shown to be strongly affected by the discretization,
and second, since fine meshes are required, the amount of energy lost from the sys-
tem is very small. Despite these considerations, CORVUS void closure has been
coded with the “lost” kinetic energy thrown back into the slave material internal en-
ergy, although test problems show negligible difference between this approach and
losing the energy.

This method has now been in use for a number of years and in general works
pretty well unless the ’lost” kinetic energy becomes too large. This suggests it
may be better either to allow the energy to be lost and simply keep track of the
error introduced, or apply a different method for calculating normal velocity after
the impact which minimises the kinetic energy error. A further robustness problem
has been encountered with oblique impacts where ajet forms ahead of the closure.
In such cases the unit vector normal which is used to detect the time and point of
closure can predict a spurious early impact away from the true impact point. The
latter problem could probably be overcome by using the intersection of the free
surface trajectory vector with the target surface rather than the unit vector normal to

detect closure.

4.3 Void Opening

Void opening was initially coded as the antithesis of the void closure criteria - the
position of the (closed) slave node was calculated with normal contributions from
the master surface, and if, at the end of the time step, the node had separated from
the master surface, the node was treated as “open” and behaved as a free surface
from then on. In practise, nodes would close, reopen and reclose in consecutive time
steps, and this ’bouncing” would continue for many time steps. The problem was
made worse by the zero-energy mode (hourglass) problem caused by the gradual

closure of a void by a tangential pressure wave (Figure 4.8).
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master

slave, Step 1: +ve pressure in 1 drives
node a toward element 3

Step 2: +ve pressure in 3 drives node B
toward element 1, pulling 4 into tension.
Node C pulls away from slave surface,

and "hourglass" propagates ahead of closure.

Figure 4.8: Zero energy tangential closing of void.
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The criteria for reopening was clearly too lax, and a variety of palliatives were
tried. Nodes were prevented from reopening until several time steps after they had
first closed, but it was found that the number of time steps required was problem
dependent. Instead, nodes were “put-back-on” unless they had separated by a per-
centage of the element size - again the percentage required was found to be problem
dependent, and if a very short time step was being enforced from elsewhere in the
problem the nodes might never reopen. The conclusion drawn was that methods
based on highly localised measures such as slave node velocity are flawed.

What was needed was a measure of whether the interface was in tension, but
there is no true measure of interface pressure available. Instead, the state of the
material either side of the interface is considered, and a node is only allowed to open
if both sides are in tension, or at least at zero pressure. This is a relatively crude
approximation to a physical reality, but is easier to justify than the recipes based
on the movement of individual nodes. It has been tested on a variety of problems
and is quite robust. It is not sensitive to the hourglass modes that void closure can
introduce, and in fact tends to oppose them, acting as a damping influence. As
currently coded, slide surfaces in CORVUS can either close and open, or remain

closed for all time.

4.4 Bouncing ball test problem

In order to test the void closure and void opening algorithms the following test
problem was calculated. A stainless steel ball bearing is dropped from a height of
2m onto a thick steel plate, it first deforms, then rebounds. Although the low stresses
and small deformations put this problem into a different regime than the high strain
rate, high distortion problems normally of interest at AWE, it does present a chal-
lenging problem for the void closure algorithm.

The problem is modelled by defining a lcm radius sphere with an initial velocity
0f 0.00626c¢m//us, equivalent to dropping from 2m, toward a steel plate 4cm thick
with a rigid rear boundary. The sphere is initially 0.0lcm from the plate, and so
flies nearly 16ss before the first impact. By 2005 the ball has rebounded clear of
the plate, and is travelling with a near uniform velocity, from which the height of
the bounce can be calculated, and hence the coefficient of restitution.

Figure 4.9 shows four frames from the calculation, colour coded such that black
represents the negative initial velocity (- 0.00626¢m/jjs), and white a positive ve-
locity slightly higher than the rebound speed of the ball (0.004cm/jus). The times

shown are 0, 30, 55 and 1254s. The small amount of distortion is evident.
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Figure 4.9: Bouncing ball test problem at 0, 30, 55 and 125 j4s.
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The calculated bounce speed of 0.00365c¢m/jjs would imply a coefficient of
restitution of 0.34. Intuitively, this seemed low, and the numerical output from the
calculation implied significant amounts of internal energy had been created, leading
to the fear that energy was being dissipated by a numerical process. However, closer
examination of the graphical output showed that there was very little internal energy
in the system, and the high total in the numerical output is therefore attributable to
elastic distortional energy, which is thrown into the regional summation. To satisfy
the unanswered question as to whether 0.34 is a reasonable value for the coefficient
of restitution, a simple experiment was carried out which gave values of between

0.25 and 0.30 for a similar system.

4.5 Friction

The CORVUS slide algorithm discussed above assumes that there is no tangen-
tial force acting across material interfaces (zero friction). Maximum friction can
also be represented by a merged or locked interface, where the nodes on the in-
terface are treated just like internal nodes. If one of the interface materials has no
strength then the frictionless slide treatment is probably the best treatment. How-
ever, some intermediate level of friction is probably the best description when both
materials are strong, but this physics is not well understood (47], The actual physi-
cal processes responsible to dynamic friction are probably very different to those of
classical friction. Dynamic friction may for example result from the formation of
a boundary layer in the weaker material, where the plastic work is focussed reduc-
ing the yield strength within the boundary layer. However, there are many physical
processes including the movement of dislocations, adiabatic shear, material mixing
and shock welding, which may be important [47].

In order to try to represent the effect of such processes, the CORVUS slide
algorithm has been modified to introduce a simple friction model [48]. This can
be used to make engineering assessments of the importance of dynamic friction in
applications and is being used to design dynamic friction experiments [52]. Once
the data from the latter experiments is available it will be used to normalise the
simple model, and ultimately contribute to the development of a predictive physics-
based dynamic friction model.

In developing the current simple friction model it was considered important that
the friction model should always produce frictional forces which are bounded by
the limiting cases of frictionless slide and a locked or merged interface. The model
should also be as free as possible of mesh dependence and introduce the minimum
of new free parameters. There should also be sufficient sensitivity in the model
to suggest that the fit to experimental data can be improved. The model should
however also be based on physics and notjust be a fit to a series of experimental data

points. The simple model that is described here achieves some of these objectives
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and is certainly an improvement over a merged interface, but is really just a first
step. It still shows some mesh dependence and is not in anyway built on physics.
The simple model contains three simple empirical forms for the frictional force
which can be applied in isolation or in a linear combination. They are however
known to fit observation within certain regimes. The first term is believed to be
most applicable for metals at low velocities, a simple example being a metal block
initially at rest on top of a metal plate, which is gradually inclined. At some critical
angle the block starts to slide. In such a situation the block is initially held in
place by friction. The frictional force F for such a situation has been observed to
be proportional to the normal force at the interface. The other two terms express
the observation that friction at high velocities has been observed to increase as the
velocity difference between the surfaces increases. The two forms express linear
and square law dependence on the difference in tangential velocities of the two

surfaces.

F = CL\anm -f oC{utr —utp)A + (X% (utr — Utp)2A 4.1)

where a, are the friction coefficients, an the normal acceleration of the node, m the
mass of the node, u/r is the tangential velocity component for the real node, ufp is
the tangential velocity component for its pseudo node on the opposite surface and
A is the effective area associated with the real node.

In order to introduce a frictional force, the slide package has been modified first
to calculate two tangential accelerations for each slide node assuming a true slip or
zero friction boundary condition and a merged or locked boundary condition. The
latter is achieved by calculating tangential forces required to match the free sur-
face tangential accelerations for each real node, then interpolating tangential forces
for each pseudo node, using the frictionless slide procedure for interpolating nor-
mal forces. A tangential acceleration for the merged boundary condition can then
be calculated by summing the tangential force from the real node and its partner
pseudo node, and applying it to the combined mass. This is again analogous to the
procedure described above for calculating the modified normal accelerations in the
original frictionless slide algorithm.

An effective frictional force for the merged boundary condition is then calcu-
lated from the difference in tangential accelerations for the two boundary condi-
tions. The frictional force is then calculated for the nodes on one of the pair of slide
surfaces using (4.1), but it is limited to not exceed the merged frictional force and
its direction is set to act in the same direction as the merged force would. In order to
ensure the algorithm is conservative, the forces are calculated directly for one side,
then mapped across onto the opposite surface, and applied as a reaction.

The frictional forces obtained on both sides are then used to modify the tangen-
tial accelerations calculated with a slip or zero friction boundary condition. These
tangential accelerations are then simply recombined with the normal accelerations

calculated from the frictionless slide procedure.
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Mesh Adaption

5.1 Mesh movement

Mesh movement for the adaptive multi-material ALE algorithm has four key
ingredients boundary node movement, node movement constraints, nodal weights
and internal node movement. How these options are combined and controlled is
currently under user control. This puts some emphasis on users learning how best
to use these mesh movement algorithms. These choices could be automated, thus
removing this level of control from the user. However, the author believes that it is
better for the users to retain control, both to enable them to devise the best adaption
strategy for a given problem, and also to encourage intelligent use of the code.

There are however three clear types of problem that can be identified where
different styles of mesh movement are more appropriate. It is worth discussing
these briefly before giving details of the mesh movement algorithms that have been
developed. It is hoped this will enable the reader to obtain an impression of the
flexibility of the adaptive multi-material ALE algorithm and the different ways it
can be applied. This should also give an appreciation of why the author does not
favour fully automating the mesh movement options.

Probably the most common use of the adaptive multi-material ALE agorithm
is for problems containing a limited number of materials undergoing severe de-
formation. This deformation prevents such problems from running to completion
with a pure Lagrangian treatment. However, there are clear benefits to be obtained
from applying Lagrangian mesh motion to as many materials as possible. In such
problems the best approach is to apply ALE mesh relaxation only to the materi-
als undergoing severe distortion. Equipotential mesh relaxation is well suited to
this type of task, provided the boundary nodes are well placed, as they will have a
strong influence over the quality of the internal mesh generated. A number of mesh
movement algorithms have been developed by the author for boundary nodes, in or-
der to ensure that these nodes are well placed before the mesh relaxation procedure

is applied to the internal nodes. Node movement limits are also useful for this type
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of problem, as they can be used to delay mesh relaxation in these ALEing regions
and so retain some Lagrangian character to the mesh.

There are also a number of ways to use ALE mesh adaption to introduce a
limited degree of local mesh refinement for features of particular interest in a sim-
ulation. These features could be a particular material, material interfaces or shock
fronts for example. The refinement is achieved by applying mesh movement weights
to the nodes of elements that are contained within the feature of interest at the start
of each advection step. This weighted mesh movement leads to mesh lines being
pulled from the lower to higher weight regions, with the resolution difference be-
ing proportional to the weight difference applied. This approach is very useful for
problems with a limited number of features of interest.

The final class are problems that are almost suitable to run pure Lagrangian. In
this case local ALE mesh adaption can be beneficial. Problems of this type may
well run through to completion pure Lagrangian, but be slow to complete due to
low time steps. The Lagrangian mesh in this case is usually important for the whole
domain. In this case the best approach may be to employ a series of local element
quality measures. These quality measures are simply calculated at the end of each
Lagrangian step and if they are outside of user defined tolerances the nodes of that
element are flagged for mesh relaxation.

The user applies these algorithms by first defining a series of super regions.
These super regions consist of a number of adjacent regions or mesh blocks. Mesh
relaxation is only allowed across material interfaces between blocks that are in the
same super region. The super region concept also helps the code user to determine
the best mesh movement strategy to use by breaking the problem down into con-
structing a mesh movement strategy suitable for each super region. Different mesh
movement algorithms can be applied to the individual regions within a super region
provided they are compatible.

5.1.1 Interface and boundary node movement algorithms

The quality of an ALE mesh does not just depend on the mesh movement al-
gorithm applied to internal nodes, but is also strongly dependent on the boundary
conditions applied. In the adaptive multi-material ALE algorithm, the boundary
conditions for mesh movement algorithms simply consist of the positions of nodes
on the boundary of each super ALE region, and significant improvements in mesh
quality have been obtained by redistributing the boundary nodes before applying a
global mesh movement algorithm to the internal nodes.

Two options are available for distributing nodes along reflecting boundaries.
The first simply positions each boundary node to lie halfway between its two imme-
diate neighbours on the boundary. This is useful for a limited number of problems,
where spherical symmetry is not an issue. The preferred and most general treatment
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which is suitable for problems where symmetry is important, is to generate symme-
try nodes and also apply the internal mesh movement algorithm to the boundary
nodes.

If a boundary is a Lagrangian slide line then the nodes on one of the pair of slide
surfaces can be redistributed along the other surface. This is a very useful technique
as it improves robustness and mesh quality, helps to retain some Lagrangian char-
acter to the mesh, and allows sliding interfaces to be retained to much later problem
times. Many different ways of redistributing the slide nodes have been consid-
ered. Three simple options were coded first, redistributing the nodes to positions
of equal angular spacing about some centre of convergence, equal x and equal y
from their two immediate neighbours. The former has been very useful for highly
convergent problems, such as ICF capsules where ignition often depends on the
subtle focussing of interacting shock waves. The equi-distribution of nodes in x or
y coordinate directions has also been found to be useful for plane geometry exper-
iments. Such experiments often involve the use of finite explosive charges driving
finite metal plates. These metal plates often become highly distorted during such
experiments, due to the influence of edge effects reducing the drive near the charge
boundaries.

Although these simple methods have been very useful and are still in frequent
use they are not sufficiently general. It is undesirable for users to have to sort
through a vast array of options if a single option can be devised that will handle
all or most of these situations. Also it is not uncommon to encounter more compli-
cated engineering and physics problems where one of these options may be the best
choice for one section of a material interface, but a different redistribution method
may be more suitable for the rest of the interface. In order to address this prob-
lem an option to redistribute nodes to positions of equal arc length from their two
immediated neighbours has been developed. This has been found to be the most
generally applicable interface redistribution method. However, it should be noted
that if small wavelength (relative to the cell size)jets form and continue to grow then
choosing the best of the three simple methods to match the dominant symmetry in
the problem will still offer advantages in terms of robustness.

The momentum advection of slide nodes is not as accurate as that of internal
nodes. It is forced to drop to first order accuracy normal to the interface, as a veloc-
ity slopes cannot easily be formed across a sliding interface. The node movement
along the piecewise linear slide surface also lead to some inconsistencies in how
the nodal control volumes used for the momentum advection. Given these consid-
erations, and the freedom to choose between re-distributing master or slave nodes,
it is always best to redistribute the slave nodes if possible. This is because the
master/slave approach employed by the CORVUS slide algorithm and most other
published slide algorithms puts the emphasis on calculating the master surface as
accurately as possible, with the slave normal velocity components being interpo-

lated from the master after the put-back step. Therefore any errors introduced by
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advecting slave nodes should have little influence on the accuracy of the interface
treatment.

A further option has also been added to further minimise these errors by min-
imising the number of time steps when nodes are redistributed in this way. This
option provides a simple error estimator to control whether the nodes should be
redistributed or not. At each time step the mean arc length is first evaluated for
the slide line in question. The maximum and minimum arc length are then deter-
mined. If the maximum exceeds 1.5 times the mean arc length, or the minimum, is
less than 0.5 times the mean arc length, then all the nodes on the slide surface are
redistributed to positions of equal arc length from their two immediate neighbours.

Another very useful slide node movement option which is included in CORVUS,
and is an important part of the adaptive multi-material ALE algorithm, repositions
each slide node on a slide surface to be coincident with its corresponding slide
node on its partnering slide surface. This option is currently limited to pairs of
slide surfaces which both have the same number of slide nodes, hence forcing the
same mesh resolution to be employed for the materials on either side of the surface.
However, the strength of this simple approach is that it allows the slide surface to
be merged at end stage during a calculation. This means that calculations can be
performed allowing slip between two surfaces, until later stages in the problem,
when the interface is undergoing too much deformation for the calculation to be
continued with a Lagrangian interface. The sliding interface is then merged and
multi-material ALE mesh relaxation is allowed across the interface to enable the
calculation to continue robustly to completion.

Currently it is not possible to redistribute nodes on free boundaries. However,
this may be a useful future extension and could be implemented by creating a slide
like data structure for the free surface nodes. The free nodes could then be reposi-
tioned along their original profile, with their normal velocity interpolated from the
values of the pair of original nodes bracketing their new position. It may also be
advantageous to reposition nodes along merged Lagrangian interfaces. In principal
this can be done by redefining the interface as a slide line and then using the friction
model discussed later in this thesis to represent a merged interface. Any of the slide

line movement options could then be applied.

5.1.2 Mesh movement constraints

A number of mesh movement constraints have been found to be useful to in-
crease the Lagrangian character of the mesh, which should in turn lead to improved
solution accuracy. These include an optional ALE on time for each region and a
series of cell based criteria, which must be satisfied before the nodes of an element
can be relaxed by the mesh movement algorithms.

These criteria include restricting the nodes of high explosive (HE) cells from

being relaxed, until they have fully detonated. In addition to improving grid quality,
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this also avoids the need to advect burn times and burn intervals for programmed
burn. It also offers greater accuracy, in that it improves the resolution of the deto-
nation front, and avoids numerical diffusion across this front.

A similar approach has also been taken for porous materials, which are normally
treated with a simple locking or snow plough model. The code stores the initial den-
sity of the porous material and the solid density of the matrix material. The equation
of state is then fixed to return zero pressure until the solid density is reached. The
nodes of these porous elements are constrained from relaxing until solid density is
reached. This also removes the problem of how to advect the history variable that
denotes whether a cell is still porous or not.

A further constraint that has been found useful is to restrict nodes in ALEing
regions from being relaxed until they have a non-zero Lagrangian velocity, denoting
that a physical signal such as a shock wave has reached this point.

The amount of mesh movement or degree of mesh relaxation once a node is
allowed to relax, can also be controlled. There are two controls for this. The
first is simply the number of iterations that mesh movement algorithm is allowed
to perform for each time step. This is applicable to both Winslow’s scheme, and
the simple averaging of immediate neighbours positions. In most problems one
iteration is sufficient and retains a little of the Lagrangian character to the mesh.
However, some problems require more iterations for parts of the problem to run ro-
bustly. There is also a region dependent acceleration parameter for both these mesh
movement options. This is set to 1.0 by default, which leaves the mesh movement
unchanged. If the acceleration parameter is reduced to 0.0, then pure Lagrangian
mesh motion is obtained. However, most problems benefit from a fairly low value
such as 0.25. This increases the Lagrangian influence on the mesh movement sig-
nificantly and produces what can best be described as a smooth Lagrangian mesh.

It is also possible to introduce adaptivity in time as well as space, by performing
an advection step, only ifthe current time step is lower than that of the previous step.
This strategy constantly reintroduces Lagrangian character into the mesh whenever
an advection step is not required, and so generally produces robust meshes with
more Lagrangian character than would be produced by simply using a low value
for the acceleration parameter. Overall this also improves computational efficiency,
as the advection step is about three times as expensive as the Lagrangian step, but
clearly the time steps required will in general be lower, so there is some trade off.

5.1.3 Mesh movement algorithms for internal nodes

Equipotential zoning was first developed by Crowley [53] for the automatic con-
struction of two dimensional meshes. Equipotential mesh generation is best de-
scribed by considering a structured mesh, constructed from two sets of nonorthogo-

nal but continuous mesh lines, one for each of the logical mesh coordinates. These



CHAPTER 5. MESH ADAPTION 80

mesh lines are assigned two sets of potentials () and y, one for each mesh coordi-
nate. A smooth mesh is then obtained if these potentials satisfy Laplace’s equation

in X y coordinates:
V2@ = 0
V2y = 0 (5.1)

along with suitable boundary conditions.

Equations (5.1) had been suggested before as a basis for mesh generation. But
Crowley made the contribution of inverting the equations to obtain differential equa-
tions for x and y as functions of () and y. Winslow [54, 55] later showed that the
inverse differential equations produced by Crowley were not the simplest form and

that the correct inverse equations are

“0 - 21,8 + v -0 ,1 2>
where
p=a*a*+ fc" (55)
3yd) 3y3p
Y:(ﬁ}’Jrf\j(]‘r)) (5-6)
and the Jacobian of the transformation J — ~ * 77 0-

These equations can be discretized by making the following finite difference

approximations
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d~x A n\
A5 — 1— (5.9)
dry
d\\fz = 1 " VO)yH (5.10)
d2x 1 o .
3y 4 ( I T Wb y+1 sy 1 T-xgi,y—) (5.11)
—] (—Eh M=+ yba,yr1—-1.v+i + Ke1,v-1) (5-12)

and defininga,3 and y to be:
— Tl

PRV = 2 (VAT ~ SQVIED (LY —ND-LV))

+

(iy<t>y+l ~ i)y ., —y<t)-1,y))

i (<) H N/ v Py (Y<OHY — Y1, 2 (5.13)

Then substituting these definitions and approximations into (5.2,5.3) and solving
the resulting equations for.r*y and gives:

X(tw 2 (oM, Ty y) [M-v2A+hv +
+ y/\O/\+i +’\,V-i)

+POYEPHY -1 —AHMA + L —A<e>-11)] (5.14)

W_py = 2 (0Mv~y~"~) tor (st vVt - 1v)
+ Yev-fa )
+ 0 PEWIP<PHN T =yl v T P> = A1 - 1)] (5.15)

Theseformulae are applied to the x and y coordinates of the grid iteratively. If

and yji are the grid points after m iterations, then a smoother grid, represented by
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4 ~' and4',V , can be obtained from:

<tw

+ W-1i N+ VHi+ N iy 0 xs-1 V) (5.16)
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+  Y<tw(lp 1+ >>%-1)
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The Winslow formula is a weighted average of the coordinate values of a nodes
nearest neighbours. However, in practice it behaves far better than a simple average,
which must be the result of the weights used. Notice how the values at the grid
points ((j)+ 1,\j/) and (G>—1,\j/) are weighted by the lengthscale between the grid
points (G)A/ +p1) and (s ,V|/—1). Similarly, the values of the grid points (M |!
and (<|>,%— D
and ) —1,y|/). This cross weighting means that if the grid contains large aspect

are weighted by the lengthscale between the grid points

ratio cells, the Winslow formula will act to connect the grid points that are close
together with a straightline, rather than those that are far apart. This type of mesh
movement is ideal for large aspect ratio zones as it acts to avoid “boomerang” cells
and cell invertion.

It should also be noted that P is proportional to the dot product of () and \/
mesh legs. This means that the p term will vanish if the grid is orthogonal. If P is
small then further iterations will act to reduce it further and make the mesh more
orthogonal.

The Winslow formula also implicitly assumes a weight function which is pro-
portional to the Jacobian of the transformation, which happens to equal the area of
the quadrilateral cells. This contributes to why Winslow’s formula is so effective.
It means that at each iteration large cells will attract grid points more strongly than
small ones and tend to even out cell areas. Some of these observations are clear from
direct inspection of the formula, however, Tipton [56] derives Winslow’s formula
from a variational principle, which leads to further insights.

Winslow’s equipotential mesh relaxation algorithm has been implemented in
CORVUS as part of the adaptive multi-material ALE algorithm by exploiting the
block structured nature of the unstructured grid that the code uses. The node to
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node connectivity enables a nine node stencil to be constructed for all internal nodes
within each region or mesh block. The only complication is the treatment of block
boundaries, where the number of immediate neighbours will depend on the initial
mesh generation for the problem performed by the code user. Reflecting boundary
conditions have been implemented by simply reflecting the nodal coordinates and
then applying the formula directly. Merged material interfaces are either treated as
Lagrangian, or if a nine cell stencil cannot be constructed to allow direct application
of Winslow’s scheme, then a simple average of the coordinates of the immediate
neighbour nodes is used. The latter is considered adequate as this typical only

amounts to a very small fraction of the nodes in the problem.

5.1.4 Weighted mesh movement

In the unmodified form, discussed above, Winslow’s mesh movement algorithm
is unbiased in the sense that it strives for equal mesh quality throughout the domain.
However, in some problems the resolution of certain materials or flow features is of
far greater importance than the rest of the problem. In order to calculate efficiently
this class of problems it is important to be able to focus resolution in these key
areas. This can be achieved, to a degree, by modifying Winslow’s original scheme
to include nodal weights or weight functions [57, 58], the weights simply being
higher in areas of greater importance. Mesh lines are then attracted towards these
features.

Brackbill and Saltzman’s [57] approach was to recast Winslow’s scheme in
terms of a variational principle comprising four optional integral terms. The first
of these is a measure of global mesh smoothness, and if applied in isolation is
equivalent to Winslow’s original scheme. The next two terms provide alternative
measures of mesh orthogonality, whilst the final term is a volume integral of a user
defined weight function. It is this last term which can be used to adapt the mesh to
resolve some feature of interest.

Winslow, in contrast [58] generalizes his original scheme by introducing a dif-

fusion coefficient into (5.1) by writing them in the form
V-(DVe) = 0

V «(DV\])) (5.18)

I
=]

These equations are then inverted in a similar manner to Winslow’s original method.
It was suggested in [58] that the diffusion coefficient for the modified scheme would
be a function of the local gradient of one of the physical variables.

A simpler approach has been taken by the author, principally due to concerns
over the use of the weight functions used by the two schemes discussed above.
These concerns stem from the penalty nature of ALE mesh adaption; that is the

number of zones in the problem is fixed, so ifan area is refined then a compensating
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derefinement must also occur somewhere else in the problem. This means that
the unbounded weight functions could produce severe changes in mesh resolution,
which could actually degrade the quality of the solution rather than improve it.

Given these concerns, a simpler scheme has been developed by the author. The
user simply defines a series of constant weight values for the features or material
to be refined in each region. A background weight value of unity is assumed. This
enables the user to ensure that the mesh resolution does not change to rapidly. This
typically requires the user defined weights to not exceed 3-4, although there is an
element of problem dependence. The weights are assigned at each time step just
prior to the ALE mesh movement algorithms being applied. The weights are as-
signed first by looping over all the elements and testing to see if each element meets
some refinement criterion. If it does, then appropriate user defined weight value is
applied to the four nodes of the element. Two further operations are then required.
The first acts to propagate the high weight values outwards to create a buffer zones
around the features or materials to be refined. This is done by performing a series of
sweeps over all the nodes, redefining the nodal weight to be the maximum weight
value assigned to each node and it’s immediate neighbours. The more sweeps that
are performed, the larger the buffer zone that is created. A final series of sweeps
over the nodes is then performed but now applying the average weight that has been
assigned to the node and it’s immediate neighbours. This last step is required to
ensure a smooth variation in the weights applied. This again attempts to reduce
the errors that can be introduced when shocks propagate across sudden changes in
mesh resolution. The number of sweeps performed for both these latter operations
is again under user control, but five passes for both operations is recommended from
the numerical experiments that have been performed by the author.

It now remains to discuss how to modify Winslow’s mesh movement algorithm
to take account of these nodal weights. This has been achieved simply by taking
(5.16, 5.17) and scaling the a, (3 and y terms by their normalized nodal weight.
Equations (5.16, 5.17) then become,

i Y+ wa_iiw) t Y<SBM(wAvy-i-l T i)

N ) (5.19)

(vv<tAHILM'VO + 1 w>-1 Lyj))

+ PEVYWS)-|-L VAL LV-h1  1\+hl

T on/(j)_ i) W ixMjy) (5.20)
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In order to preserve symmetry where reflecting boundary conditions are applied,
in addition to reflecting the coordinate values, as discussed above, the weights are
also reflected in the same way. The modified iteration equations (5.20, 5.21) are
then applied to generate new positions for the boundary nodes in exactly the same
way as for the internal nodes, using a mixture of internal, boundary and reflected
nodal coordinates and their weights.

This nodal weighting scheme has also been implemented for use in conjunc-
tion with the simpler mesh movement technique, where nodes are repositioned to
take the average coordinates of their immediate neighbours. The nodal weights are
then used to produce a weighted average of the coordinates of the nodes immediate
neighbours. Global weights can also be applied to this scheme to bias the mesh
movement in favour of a particular logical mesh direction throughout a region. This
can be useful in some problems, for example if a material interface is undergoing
severe deformation, but it is important to treat the interface as a Lagrangian slide
line, possibly to allow slip or void opening at the interface. Then the region weights
can be chosen to force the mesh lines to follow the profile of deforming interface,
the mesh adaption being focussed completely on conforming to this boundary. This
works well, provided the rest of the problem is well behaved, and the mesh is not

required to conform to other boundaries or flow features as well.

5.2 Mesh Insertion

In many applications, particularly those involving convergent flows, it is impos-
sible to maintain adequate mesh resolution for all flow features of interest using
node movement alone. A hybrid method, combining ALE with Adaptive Mesh
Refinement (AMR), could solve this problem. In such a scheme, mesh movement
would only be used to maintain mesh quality and robustness, while AMR would be
used to add and remove zones where and when required to maintain adequate reso-
lution of all features of interest. In order to provide some relief from this problem,
and start to assess the possibility of developing a hybrid capability, an Automatic
Mesh Insertion (AMI) facility was developed by the author. AMI dynamically in-
serts mesh lines in one logical mesh direction, as required, to ensure a user defined

aspect ratio is not exceeded [59].
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In order to use the AMI option, the user must define the regions where AMI is
active, select the logical mesh direction in which mesh lines will be inserted, and a
time interval between error checks. The maximum number of mesh lines that can
inserted during the problem and the maximum tolerable aspect ratio must also be
defined for each region where AMI is active. An optional minimum tolerable aspect
ratio can also be defined to avoid over refinement.

The maximum storage requirement is determined at the start of the problem
from the maximum number of mesh lines that can be inserted in each region and
the initial meshing. The aspect ratio error check finds the maximum aspect ratio for
each logical line of elements for each region where AMI is active. If the tolerable
aspect ratio is exceeded, then the line of elements is flagged for refinement. Ad-
jacent lines of elements that have all been flagged for refinement are grouped into
blocks and passed to an integral rezone package.

The cells flagged for refinement are subdivided exactly to simplify this rezone
process and improve computational efficiency. The mesh insertion step is performed
before the ALE advection step, which can then be used to improve the quality of
the refined grid. In order to introduce new elements, the current element and node
indices are shifted upwards at the point where the elements are to be added, to
maintain a continuous list.

The solution must then be interpolated or rezoned from the old mesh onto the
new refined grid. This is a similar process to the continuous rezoning required to
support the ALE mesh movement. However, the latter problem is greatly simplified
by the mesh topology not changing. This restriction allows efficient second order
advection methods to be used. However, inserting meshes does change the mesh
topology and so requires a more expensive integral rezone method to be used.

The two different types of rezone also have different requirements. Both must
be strictly conservative, but advection or continuous rezone methods are applied
every time step, so a first order method would be too diffusive. In contrast, mesh
insertions are less frequent, so a first order integral rezone is considered acceptable.
The cost of the integral rezone has been minimised by exactly subdividing zones:
this fixes the topology ofthe superimposed old and new grids, significantly reducing
the logic that would be required to support mapping between two totally arbitrary
grids.

The element centred quantities such as density and internal energy are mapped
first. If strength is present, then the stress deviators, equivalent plastic strain, plastic
work and elastic distortional energy are also mapped. The two velocity components
are then mapped as momentum components using the same rezone procedure as for
the element centred quantities, but using a dual node centred mesh. The dual mesh
must however first be constructed for both the old and new meshes. This is done by
taking the centroids of each of the old and new cells as vertices for the dual mesh.
As a finite element Lagrangian hydro scheme is used, the nodal control volumes

can only be approximated by the dual mesh, except where the mesh is orthogonal.
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However, this approximation appears perfectly adequate in practice.

The integral rezone simply calculates new values for the state variables of each
of the new elements, by integrating the values from the old mesh contained within
the volume of each new element, and then dividing by the new elements volume for
each new element.

Computationally efficient conservative first and second order rezone methods
have been developed by Dukowitz and Ramshaw [60, 61, 62, 63]. The first order
scheme described in [62] is used here, although it is envisaged that a second or-
der rezone option for the AMI package may be added at a later date following the
approach described in [63].

A first order rezone assumes the conserved quantity to uniform within each old
cell of the original mesh. This reduces the rezone problem to the calculation of
overlap volumes for the superimposed old and new meshes. In [62] an efficient and
straightforward computational procedure is outlined for carrying out this procedure
for arbitrary quadrilateral elements, which is applicable to cartesian and cylindrical
meshes.

The basic building block for Ramshaw’s rezone method for 2D cartesian meshes
is the formula for the area of an arbitrary polygon R If the sides of the polygon are
labelled with an index s, the coordinates of the end points of a side s will be denoted

by (.rj,y5) and (x*y”). Then the area of the polygon P is given by,

AP = (522>

where the summation is over all the sides of P, and ef is either +1 or -1 according
to whether P lies to the left or right, respectively, of side s. It is important to note
that each line segment must be treated as a separate entity, not as part of a particular
polygon. The segment is best visualised as a directed line segment. In this way
left and right can be defined uniquely for each line segment, by taking an observer
who is facing from end point 1 to end point 2. Equation (5.22) can be derived by
integrating the identity V. r = 2 (where r = xi+ yj is the position vector) over the
area of P and then applying the divergence theorem.

Now consider the superposition of two arbitrary 2D quadrilateral meshes, the
original mesh and the new mesh. This superposition creates a network of overlap
areas such as those shown in Fig. 5.1, each of these overlap areas being contained
within a single cell of the old mesh and a single cell of the new mesh. The overlap
areas are all polygons whose sides are line segments. Each segment is common to
two overlap areas, which may both be considered to be associated with the side.

The objective of the rezone is now to apportion a conserved quantity Q, whose
volume density q is uniform within each cell of the old mesh, into the cells of the
new mesh. Consider a particular overlap area that belongs to an old cell of density q.

The overlap area A is given by (5.22), and the quantity V<2 = g4 is the contribution
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Figure 5.1: Superposition of old and new meshes.

of this overlap to the new cell in which it lies. (Note unit depth is assumed for
cartesian problems so areas and volumes have the same numerical values). The
final value of Q for the new cell is the sum of all the WQ contributions from all the
overlap areas that make up the new cell area, where division by the cell area gives
the density q for the new cell. It is clear that this procedure leads to no creation or
destruction of Q at any stage, so the rezoning method is conservative.

Ramshaw’s efficient implementation of this rezoning method for arbitrary 2D
meshes exploits the observation that according to (5.22) each of the overlap incre-
ments V<2 are themselves a sum of contributions associated with the individual sides
that make up the overlap area. Thus instead of calculating each individual overlap
area directly in turn, the efficiency of the computation can be improved, if the same
operations are performed in a different order. A sweep is made over all the line seg-
ments s, which are each common to two overlap areas, contributing N Qi to the left
overlap and VQRr to the right overlap area. Given that both of these contributions
involve the common factor —x"yj), it is more efficient to calculate them at
the same time. However, the way these contributions are calculated, and how they
are used depends on whether the segment is part of the old or new mesh.

If the segment is part of the old mesh, and is common to two old cells, L and R,

then the L overlap is completely contained within the L cell, which has density qi
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and the R overlap is completely contained within the R cell, which has a density gR.
If both these overlap areas are completely contained within the same new cell, then

the quantity Q in this new cell containing s is therefore incremented by an amount

V? = AfqL-qR"AA-"ifx) (5-23)

If side s is a segment of the new mesh and so is common to two new mesh cells,
L and R, then the L overlap area is entirely contained within the cell L and the R
overlap area is entirely contained within the R cell. If both these overlap arecas are
entirely contained within the same old cell of density ¢ @, then the quantity Q in new

cell L, to the left of segment s, should be incremented by an amount

1) (524)

and the quantity Q, in the new cell R by just —V~. Therefore @/ is to be incre-
mented by Vf, while Qr is to be decremented by the same amount.

Clearly, there are ambiguities for the above procedure when an old mesh seg-
ment coincides with a new mesh segment. Ramshaw overcomes these problems by
adding additional rules that handle the problem in a symmetric manner. The incre-
ment VJ for the old mesh segment is evaluated in the usual manner, but each of the
common new cells to the segment s are incremented by The density ga, used
for the coincident new mesh segment, is taken as the average of the density values
for the adjacent old cells. The V f contributions are then evaluated in the usual way
using (5.24).

The extension of the method to cylindrical (r,z) coordinates is straightforward,
and is based on the use of a formula for the volume of revolution of a polygon P
about the z coordinate axis, and is given in terms of the side endpoint coordinates
(z{,r[) and (z£,r|) by

vP= tIX M +'2)(~1'2-4r]) (525)

The cartesian method can then be applied to the cylindrical case, simply by replac-
ing the j(xs>4 -4 71) term by f(r[ + r\)(7\H2 -2 2r\).

In order to implement the rezone procedure for arbitrary old and new quadrilat-
eral meshes, fairly complicated and expensive logic must be put in place to deter-
mine all the intersection points for the old and new meshes. A data structure must
then be created, which describes the resulting network of line segments with all
their end points. However, the topology of the superimposed old and new mesh is
always fixed for the rezones that must be performed in support of the AMI package,
as the zones refined in this case are always exactly subdivided. This has made it
possible to introduce significant simplifications to Ramshaw’s procedure and fur-

ther efficiency improvements.
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Adjacent mesh lines flagged for refinement are first grouped into blocks and
passed to the rezone package. A number of 2D arrays are then created. These in-
clude the x and y coordinates for the element vertices for the old and new meshes,
for mapping the element centred quantities, and the x and y coordinates of the ver-
tices of the dual mesh, used to map the nodal quantities. The element centred quan-
tities are mapped first. For each element centred variable that must be remapped two
sweeps are performed in the two logical mesh coordinates, first for the old mesh,
and then the new mesh. In each case, the contributions to the quantity being rezoned
are calculated using (5.23) and summed for each new element. Similar sweeps are
then performed over the new mesh data structure to sum the contributions from the
new mesh segments using (5.24). The new element volumes are also calculated in
the same way simply by taking the old mesh density to be unity. The integrated
quantities are then divided by the new cell volume to obtain the volumetric density
for the variable to be mapped. The rezone procedure for node centred quantities
such as velocity is analogous, except that it is performed on the dual mesh.

This rezone method is attractive not only for efficiency, but also because there
is a clear means of extending it to second order in the future. The extension of the
above method to second order [61, 63] relies upon reducing the number of dimen-
sions for the rezone, the divergence theorem being used to reduce volume integrals

to surface integrals for 3D or surface to line integrals for 2D i.e.

(5.26)

where F is a flux vector, V¥ is the volume of integration, S| is its surface and &
is the outward unit normal vector to the surface. In order to use this relationship
however the flux vector must be found, whose divergence is equal to the quantity to

be mapped.

5.3 Mesh insertion Test problems

5.3.1 ID Spherical implosion

The ID implosion problem is used to test spherical symmetry and energy con-
servation. The problem consists of a spherical Tantalum shell meshed with 2° angu-
lar zoning and 2 radial zones. The shell is given an initial uniform radial velocity of
1.0cm/us~I. A Osbourne equation of state (3.97), constant yield strength and shear
modulous is used to model the Tantalum. The problem was calculated both with
and without automatic mesh insertion. The AMI calculation was performed with a
maximum of 40 mesh insertions allowed, with aspect ratio error checks made every

0.1jjs and the aspect ratio limit of 1.5.
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Numerical Results

The mesh at 4.0jus from the calculation without mesh insertion is given in Fig.
5.2 and with mesh insertion in Fig. 5.3 and the corresponding density contour plots
are given in Fig. 5.4 and Fig. 5.5. These results show that spherical symmetry
is maintained, but the implosion is a little faster with mesh insertion. The steeper
gradients revealed in the density contour plot from the calculation with AMI on,
suggest the faster implosion is simply a result of increased resolution. The total
energy conservation is comparable for the two calculations which also supports this

conclusion.
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Figure 5.2: Mesh for ID Spherical implosion problem calculated
without AMI at 4.0 jjs.
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Figure 5.3: Mesh for ID Spherical implosion problem calculated
with AMI at 4.0 /is.
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5.3.2 2D Spherical implosion

A 2D implosion test problem has also been calculated, where a Tantalum shell
is imploded using an asymmetric drive that could, for example, have been gener-
ated by the application of explosives or high power lasers. In this case, a blunt
toroidal jet forms around the equator, which presents the main challenge in terms of
accuracy and robustness for the problem. The problem was again calculated with,
and without, Automatic Mesh Insertion. The maximum number of additional mesh
lines that can be inserted in the AMI calculation was again limited to 40; aspect
ratio error checks were again made every o.1 Jus; and the aspect ratio limit was set to
L.5.

Numerical Results

The mesh at 5.24ss from the calculation without mesh insertion is given in Fig.
5.6 and with mesh insertion in Fig. 5.7, and pressure contour plots are also given for
the two cases in Fig. 5.8 and Fig. 5.9. On comparing the interfaces obtained from
the two calculations, the main differences, as expected, are in the jet profile. The
jet obtained in the AMI calculation is blunter with more localised curvature. Away
from the jet, the calculations show very similar interface profiles with the non-AMI
calculation again a little slower. The pressure contours again show steeper gradients
in the AMI calculation, but also show some 2D differences in the jetting region. The
energy conservation is again comparable with and without AMI. This combination
of a similar solution being obtained in the undeformed part of the shell, and local
differences around the jetting site with and without AMI, suggest that the AMI

facility is improving resolution without introducing any significant errors.
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Figure 5.6: Mesh for 2D implosion of a spherical metal shell cal-
culated without AMI at 5.2 jus.
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Figure 5.7: Mesh for 2D implosion of a spherical metal shell cal-
culated with AMI at 5.2 jus.
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Chapter 6

Advection Methods

The process of mapping from one computational mesh to another is termed
a rezone. There are two main types of rezone, integral and continuous methods.
The integral methods overlay the two meshes to form sub volumes, then integrate
each variable to be mapped over each of these subvolumes. The conserved quantity
obtained is then summed for all the subvolumes within each new element, and then
divided by the new element volume to obtain the new quantity for each element.
The advantage of integral methods is that the new mesh is not constrained to have
the same topology or resolution as the old mesh, and there are no limits on how far
a node can move relative to it’s immediate neighbours. The main disadvantage of
integral methods is their computational expense, which in practice precludes their
use at every time step.

Continuous rezones are less expensive and can in practice be used at every time
step, so this is the approach used here. Continuous rezones are derived from the
solution of the linear advection equation, and so are usually termed advection meth-

ods.
6.1

a(x,t0) = aQx)

where « is the variable to be rezoned and A(x,#) the mesh velocity. If A is taken to

be constant then the exact solution is simply

a(xj) = cox —Ai) (6-2)

which corresponds to the initial data profile being translated at a speed of A over a

distance A/ without changing profile.

97
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6.1 Single material advection

6.1.1 van Leer Advection

van Leer developed a series of second and third order ID advection methods
as part of his seminal work to develop a high order Godunov method [64, 65, ¢¢,
67, ¢s]. These advection methods can be extended to 2D using the well known
Strang operator splitting [69] technique. This alternates the order with which ID
advection steps are performed at each time step, in order to obtain second order
accuracy on 2D orthogonal grids, van Leer’s advection methods were the starting
point for the single material advection scheme used in the adaptive multi-material
ALE algorithm. Although van Leer’s advection methods are fully described in [67],
a summary will be given here to aid the reader’s understanding of how the method
was modified to make it compatible with the non-orthogonal unstructured grids used
in CORVUS.

In [67] van Leer discusses three second order and three third order advection
schemes. These can all be summarised in four steps as follows:

1. Given the initial function a(x,t0), determine cell average values

(6.3)

2. Replace the original distribution with either a piecewise constant, linear or
parabolic function depending on which of the schemes is to be used.

3. Integrate over a finite time step A¢ subject to the normal CFL condition

lg|<1 (6.4)

where o = ~ is the Courant or CFL number.

4. Determine the new mesh averages and then repeat the sequence from step 2
onwards.

The order of the scheme is defined by the level of approximation used for the
initial data in step 2. A Ist order scheme is obtained if a piecewise constant distri-
bution is assumed, a linear distribution gives 2 nd order and a parabolic distribution
a 3rd order scheme.

A 2nd order advection method has been seclected for CORVUS, as this is consis-
tent with the accuracy of the Lagrangian step and is believed to offer best balance
between accuracy and computational cost. However, the simple Ist order case, as
in Godunov’s original method, will be described first for completeness and to aid
understanding of what follows.

The initial distribution is replaced by a piecewise constant distribution 4(x,t0)

given by

A(A,to) = a/+\, Xi < x < xi+ |l (6.5)
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This is then integrated over a timestep to obtain new values,

a(x,t\) = A(x-\At,to) (6.6)

New mesh averages are then obtained for a(x,#1). The numerical scheme for updat-

ing the cell average value is then given by the conservative formula

(6.7)
I+-
" Ax)
where the intercell fluxes f are given by
Ai i if A>o
. 2 ~ .
fi = A LN if A< 0 (6.8)

The 1st order upwind scheme for the linear advection equation obtained is the CIR
scheme of Courant, Isaacson and Rees [70],

The piecewise linear method developed by van Leer assumes a piecewise linear
distribution of the form

Aai+
A(x,r0) = aiA+21+ Ay {(A-X/Azi), Xi < X < X3, (6.9)

'+ 2

As for the Ist order case, (6.7) is used to update the cell average values, but the form
of the fluxes is clearly different. In the 1st order scheme Af defined a rectangular
area crossing the cell boundary. In this case the areas will be trapezoids and the

fluxes given by,

Aa

a,-4 + 2Apw(IV 4 - XA) if X
a i

A

(6.10

I
A

1t
a;+ 4 -Hr/ (Ajri+i+ XA) V<0

It now remains to define how to calculate the slopes used. Three different slope
definitions are proposed by van Leer in [67] which lead to three different 2nd order
schemes.

Definition I simply obtains Aa from a central finite difference of 4, i.e.

1 .
Aa’,i%: i(a.,%— a-/Nii (6.11)

Definition II differences the original initial value distribution a(x,z0)

Aai+1 = a(xi+1,to) - a{xi,to) (6.12)
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Aa is then taken to be independent from « and separate methods used to update Aa
and a as described in [67].
Definition III requires Aa for each cell 4{x,t0) to have the same first moment

as a(x,to), i.c.

(6.13)

Aa is again independent from ¢ and as with definition II separate methods are used
for updating Aa and a as described in [67]. The three schemes resulting from these
three definitions are all 2 nd order accurate but can produce spurious oscillations.
In order to overcome this problem van Leer applies a monotonic limiter [67] to the
slopes calculated by the above definitions. This approach will completely remove
the spurious oscillations for linear advection problems. The slopes, as modified by
the monotonicity algorithm, are given by

if p>o
mono . (6.14)
otherwise

where
a = mm(-|Atf;+i],2]ai+] —a+il,2]aiti—a, i)
P = K+H-a Hp(a,+1
Comparable third order advection schemes are also developed by van Leer in [67].

These methods are simply obtained by approximating the initial value distribution

by a quadratic polynomial of the form,
(6.15)

Again, three different schemes are proposed which correspond to third order exten-
sions of the three second order schemes given above. However, these will not be

discussed further as a second order method is used in CORVUS.
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6.1.2 Advection on 2D unstructured non-orthogonal grids

In developing the 2D Eulerian code MUSCL (Monotonic Upstream-centred
Scheme for Conservation Laws) [67] Woodward used the operator splitting ap-
proach of Strang [69] to extend van Leers’s ID advection methods to 2D. However,
although this is a natural approach for logical orthogonal meshes, it is not obvious
how to apply Strang splitting to unstructured non-orthogonal grids, where there are
no natural sweep directions. In CORVUS an isotropic method is used to extend van
Leer’s method into 2D. The isotropic method simply calculates the four quasi ID
advection fluxes to be exchanged between each cell and its four immediate neigh-
bours, and then performs a single advection update for each cell using these fluxes.
This treatment will clearly lead to a corner coupling error, since it will take two time
steps for information to propagate from a cell to its immediate diagonal neighbours.
However, these corner coupling errors should be small, since the mesh movement
algorithms used in CORVUS will tend to keep the mesh aligned with the underlying
flow. If problems are encountered later then a solution to the corner coupling prob-
lem may be to adopt some variant of Collela’s Corner Transport Upwind (CTU)
[71] scheme, which is compatible with the multi-block unstructured grids used by
CORVUS.

The slope and distance measures used by van Leer also require modifications
to allow for the non-orthogonal ALE meshes used. In CORVUS [59] the volume
coordinate approach developed by Benson [9] is used to overcome this problem.
Benson uses van Leer’s second order scheme, which assumes a linear initial dis-
tribution of the variable to be mapped in each cell. However, given the potentially
large variations that can occur in mesh size for ALE computations, the slope for
each isoparametric direction is obtained by fitting a parabola to the variable o to be
mapped in each cell. For a cell a and with two immediate neighbours, a — 1 and

a+ 1 the slope of the parabola at a is given by:

50a _ (0a+l1 -0q)A 4 + (0a-0a-1)A4-n
dx AxaAxa+ [(Axa + Ara+))
A*a = *a-*ga-] (6.16)

This slope gives second order accuracy, but is unstable. Stability is achieved as with

van Leer’s original scheme by applying a monotonic limiter to this slope. Benson’s
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limiter [9] is essentially the same as that used by van Leer.

0a = N(sgn(A”™a) Tsgn{A("a+i))min
xXa~xa-1
Ao a-fi fari—0a (6.17)
*ar 1 —Xa

The volume swept out along the isoparametric coordinate directions then provides
a natural and unique distance measure for non-orthogonal grids. Physical intuition
also suggests this approach if the element boundaries are considered to define a
variable cross section channel in one of the two isoparametric coordinate directions.
The volume between integration points is then the mean path length for particles
flowing down the channel scaled by the average cross sectional area.

The slope in volume coordinates is then obtained by substituting the following
definitions into (6.17), where the notation used is explained in Fig. 6.1 and Benson
calculates the partial volumes exactly. In CORVUS these volumes are replaced by
volume integrals of the four shape functions for each element, which are already
available as they are calculated during the Lagrangian step and used to apportion or

scatter element masses and forces out to the nodes.
Xa - Viz+ V\3+ V21+ V24 (6.18)

Xa+ 1 -  V22+ V23+ 31 + V34 (6.19)

Advection fluxes are then calculated across each of the four edges of the ALE-
ing elements, each flux being defined in terms of an overlap volume, AVou, and the
average value of the variable to be mapped within this volume. The overlap volumes
are constructed from the superposition of the old and new meshes as shown in Fig.
6.2. The overlap volumes are always quadrilaterals, so their volume can be calcu-
lated exactly using the same procedure as used to calculate element volumes. This
requires four bi-linear shape functions to be defined for each overlap volume. The
four vertices of these quadrilaterals are given by the coordinates of the two nodes
defining the edge where the flux is to be calculated, at the end of the Lagrangian
step and after mesh relaxation. The volume can then be obtained from the sum of

the volume integrals of thecac chona fanctinne in icgparametric coordinates,

o / /_ NjridetJd&dm

1 z Lyjrucivus \dX\ (6 .20)

14 1 R~x

i=Tal-

These overlap volumes will be calculated twice as they are common to two ele-

ments. In order to simplify the implementation of the advection scheme, the overlap

'JeRS/Fp
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Figure 6.1: Notation for volume coordinates and overlap volumes.

volumes are set to zero, if they represent an incoming flux, and set positive, if they
represent a donated or outgoing flux.

The fluxes, AJla/, are evaluated using one-point integration, where a refers to
the element number, and the second subscript is the side through which the flux
flows. Following the notation given in Fig. 6.1 the element sides are numbered one

through four. The derivatives o, - and (), n are the monotonic slopes, in the rl and

~-directions respectively, evaluated using the volume coordinates from (6.17) and
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Old Mesh

New Mesh

Figure 6.2: Overlap volumes are formed from the superposition of the old and new

meshes.

(6.19). Then the fluxes become:
APl = AXI —<FPAE1+ \2+ -AV21))
AR = A2 2ZN("2+ B+ - AR))
Al = (122452 ~ "ar23 + V2UH2AVI))

Ars = ABa(~' 224t D+ -AV2A) 621)
The new value of (j) is then evaluated using:
62 = M+ (22 v2 ~ X A"2/+ 53 + AD34+ Acsr + Aci2] (6.22)

It should also be noted that the advection scheme described above is expressed

in what is termed a volume weighted form: that is, that the slopes and distance
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measures are expressed in terms of volume. A mass weighted form is simply ob-
tained by replacing the overlap volumes with mass fluxes and the slopes used as
gradients with respect to change in mass, rather than volume. The author is not
aware of any theoretical arguments that support the use of one of these weightings
in preference to the other, but in practice the results from some problems do show
an improvement, when internal energy is advected with a mass rather than a volume
weighting.

In CORVUS mass is advected with a volume weighting, but the mass fluxes are
stored for later use as overlap masses. The nodal velocities are then advected with
a mass weighting, which seems natural as it is the momentum that is conserved.
Internal energy is then advected with a mass weighting. The remaining variables
are currently advected using volume weighting as no sensitivity to mass or vol-
ume weighted has been noted for these variables. These include the three stress
deviators, equivalent plastic strain, elastic distortional energy and plastic work. A
number of other variables are also advected when other optional physics packages

are active.

6.1.3 Momentum advection

The advection of node centred variables, such as velocity, will now be discussed.
The principle difficulty in advecting node centred variables is that there is no direct
analogue of the element overlap masses for the nodes. Advection of nodal quanti-
ties on unstructured meshes adds additional complications, because a node can be
connected to an arbitrary number of elements. This means that, in general, it is not
possible to simplify the advection algorithm by only considering the exchange of
advection fluxes with four main neighbours, as has been done for the element cen-
tred variables. However, given that CORVUS meshes are constructed from locally
logically rectangular mesh blocks, it can be assumed that most nodes are only con-
nected to four neighbours, and a special treatment applied to the block boundaries.

There are two main strategies in use by most hydrocodes for advecting nodal
quantities [72]. Additional element centred variables can be introduced, advected
using an element centred advection scheme, and the post advection values of these
variable quantities used to determine the required nodal velocities. Alternatively
the nodal mass fluxes can be estimated from the mass fluxes for the elements sur-
rounding the node. The latter approach is usually referred to as a staggered mesh
algorithm, as it creates a new mesh for the nodes, and then uses the new staggered
mesh to perform the advection of the nodal quantities. This staggered mesh advec-
tion strategy was first used in a code call YAQUI developed at Los Alamos [2].

Staggered mesh schemes are attractive because they inherit the same dispersion
and monotonicity characteristics as the underlying cell centred advection scheme
used. They also only require one variable to be advected for each velocity com-

ponent, whereas cell centred advection algorithms require several variables (two
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for one dimension, four for two dimensions, and eight for three dimensions) in
order to avoid adding dispersion errors to the solution [72]. However, the more
expensive element centred advection algorithms do have the advantage that they
are directly amenable to unstructured grids. However, as the grids currently in use
with CORVUS are locally logically rectangular the more computationally efficient
staggered mesh algorithm has been exploited within each mesh block, and a more
general unstructured approach is applied to the relatively small number of nodes on
block boundaries where more than four immediate neighbours must be considered.
In order to simplify the presentation, the staggered mesh scheme used within blocks
is described first, before moving on to discuss the more general treatment which is
applied to the nodes on block boundaries.

The staggered method used in CORVUS differs a little from that in YAQUI [2],
in that it does not explicitly define momentum control volumes. The nodal mass is
simply obtained by dividing the mass of each element evenly among all its nodes.
The mass fluxes are then derived by invoking the consistency condition of DeBar
[73], which states that if a body has a uniform velocity and a variable density before
advection, then the body must have the same uniform velocity after advection. This
consistency condition is satisfied if the nodal mass fluxes are defined as the average
of the mass fluxes for the four elements surrounding the node. This can also be
further justified, if the momentum control volume of each node is taken to be con-
structed from | of the volumes of its four adjacent elements. The boundary of this
control volume is then a polygon, whose vertices are the centroids of the adjacent
elements and the halfside points along the edges of the elements which are directly
connected to the node, as shown in Fig. 6.3. Mass fluxes are then exchanged be-
tween these momentum control volumes, along the cell edges or mesh legs. Each
of these mass fluxes can then be subdivided into the two sub-fluxes across the two
sides of the momentum control volume adjacent to each mesh leg. The mass flux
along each side of the control volume can then be obtained as | the average of the
upstream and downstream element edge mass fluxes, where the factor » is required,
as each side of the control volume only extends from the edge of each element to
its centre.

The method is illustrated in Fig. 6.3 where a mass flux dmns is exchanged
between two regular nodes no and ns. In this example node no is connected to 4
other nodes; nl,n2, and /14, is surrounded by the 4 elements el,eo0,:3 and ¢4 and
so its momentum control volume is defined as a s sided polygon. The mass flux
required dmn4 is subdivided into the two sub-fluxes dmnss and dmn<|\, which can
be obtained, as discussed above, from the element edge mass fluxes; dmess,dmess,

dme\4 and dme 12 as,

dmn4 = dme\4 + dmei2+ dmess + dme”) (6.23)

Once all the nodal mass fluxes have been defined, then the rest of the advection
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Figure 6.3: Nodal mass flux calculation for regular node.

procedure simply mirrors the description given in the previous section for the ad-
vection of element centred quantities. In this case the two velocity components are
advected as two separate variables using mass weighting, the four advection fluxes
required are calculated as for the element centred advection from (¢ .2 1), where AVij
(forj= 1,4) is replaced by the corresponding nodal mass fluxes, and V?; (forj=1,4) is
redefined in mass coordinates centred on the node. The momentum advection fluxes
are then used to obtain new nodal velocity components from (s .22 ), where V? and
V2~ are now the pre and post advection nodal masses. The pre-advection nodal mass
is defined as | of the sum of the mass of the node’s four adjacent elements. The post
advection mass can then be obtained by allowing for the nodal mass fluxes entering
and leaving.

It now remains to describe the more general momentum advection scheme that
is required when a node is connected to an arbitrary number of immediate neigh-
bours. This requires more general expressions for the nodal mass, mass fluxes and
the slopes that are not tied to four immediate neighbours. However, having dis-
cussed the regular case in some detail, this now follows quite naturally. The nodal
control volume is again defined as a polygon enclosing the » volumes of all the ele-
ments adjacent to the node. The control volume can however now have an arbitrary
number of sides as shown in Fig. 6.4. The mass flux for each mesh leg can then

again be obtained from the sum of mass fluxes through the two sides of the polygon
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Figure 6.4: Nodal mass flux calculation for a typical irregular node with 3 mesh
legs.

that are adjacent to that mesh leg. The mass flux through each side of the polygon
is obtained from the element mass fluxes exactly as explained above for the regular
nodes. For example in Fig. 6.4 the mass flux exchanged between nodes no and /13

is given by,

dmn3 = \(dmeu + dme24+ dme23 + dme34) (6.24)

The only detail that remains is the evaluation of the slope for each mesh leg. A
monotonically limited slope is again required, which implies that three nodal ve-
locity values are needed. Two of these are the node to be advected and the node
with which it is exchanging momentum. The third node is selected from the re-
maining direct neighbours. This choice is made by defining a series of mesh leg
unit vectors, which point from the node being advected to its the immediate neigh-
bours, and from the node with which momentum is being exchanged to the node
being advected. The latter defines the preferred direction for the third node, that

must be identified. The third node is then selected, as the node whose mesh leg unit
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Figure 6.5: Selection of 3rd node required for monotonic slope limiting.

vector lies most in line with this preferred direction. This is illustrated in Fig. 6.5
for the calculation of an advection flux between nodes no and ni, where no is the
node being updated during the advection step. In this case if 0i < o2 then node /13
is selected as the third node or ifo j > = 0 2 node is selected.

This completes the description of the momentum advection used in CORVUS
for both single and multi-material cells. It should however be noted that whilst the
current scheme conserves all the variables that are advected, it does not conserve
total energy. This simply reflects the fact that if we choose to advect mass, momen-
tum and internal energy it is not possible to also directly conserve kinetic energy
and, so conservation of total energy is not achieved. However, some hydrocodes
overcome the problem by also advecting kinetic energy. The difference between
the advected kinetic energy and kinetic energy calculated using velocities obtained
from the momentum advection, is then added to the internal energy to conserve total
energy [I12]. This has not been done in CORVUS as the author feels this is just trad-
ing errors in total energy for errors in internal energy. However, the issue requires

further investigation.
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6.2 Multi-material advection

Multi-material advection is a well established technique for Eulerian hydrocodes,
but is only in use in a limited number of ALE hydrocodes. This is probably due
to the increased complexity introduced when non-orthogonal grids are used. Ad-
vection schemes of this type require the relative volume of each material in each
multi-material cell to be known. A set of rules is then used to determine how much
of each material is advected. These rules are based either on explicitly or implicitly
tracking the interfaces between the materials. Two reviews which cover most of the
published interface tracking methods are given in [74, 75]. Most of these methods
track the surfaces with marker particles, or reconstruct the surfaces using the vol-
ume fractions of the different materials in each cell, although a number of codes are
now using level set methods.

The interface tracking problem is largely geometrical in nature as there is only
one velocity field available for all the materials within each multi-material cell. This
means that its impossible to calculate slip explicitly at multi-material cell interfaces.
In problems containing a gas next to a solid, for example, a boundary layer will be
formed in the solid at the interface with a non-zero shear stress, and the velocity
profile of the gas close to the wall will be altered by the artificial ahhesion of these
two material that is introduced when a multi-material cell representation is used.
This is one of the reasons why a Lagrangian slide treatment has also been devel-
oped for CORVUS. However, it should be noted that methods have been developed
for Eulerian codes which approximate slide for multi-material cells. However, al-
though they have yet to be able to match the accuracy of traditional Lagrangian
slide algorithms for low deformation problems, they are robust and can be applied
to high deformation problems where relative slip may be important [76, 77].

6.2.1 Donor cell methods

The most popular methods used in production Eulerian hydrocodes are volume
of fluid (VOF) based interface reconstruction methods, the volume fraction for each
material being defined as the fraction of the cells volume occupied by each mate-
rial, where the sum of all the volume fractions for each cell must always equal
[46]. Volume fraction based methods are attractive as the volume fraction provides
a simple and economical means of describing the geometry of material interfaces. A
more accurate representation could potentially be achieved using marker particles.
However, the marker particle approach is both expensive and very complicated to
work with.

The simplest of the volume fraction based methods do not explicitly construct
material interfaces, the fraction of each material in the transport volume typically
being determined by a simple averaging procedure. Although such methods may

appear efficient, they will in general smear the interface significantly more than the
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more advanced schemes. The best schemes should be able to resolve the width of
the material layer with a volume fraction less than 1 that separate two materials
to within a single computational cell. Whilst this layer may extend over several
multi-material cells for the simpler schemes, this not only reduces the accuracy of
the interface treatment, but also has efficiency implications, as multi-material cells
are significantly more expensive computationally than single material cells. Hence,
although a given multi-material cell may be less expensive to treat with a simpler
multi-material advection scheme, the overall cost may be greater if the smearing it
introduces creates significantly more multi-material cells in the problem.

Typical examples of the simple volume fraction based schemes include those
used in PISCES [39], TOIL [78] and the original versions of CSQ [79] and JOY
[80]. The method used in PISCES is a generalisation of that used in TOIL and will
be described here as a typical example of these simple methods.

If we denote upstream and downstream volume fractions respectively by Fj* and
Vf, the upstream and downstream cell volumes by Vu and Vj, the volume trans-
ported between adjacent elements as /,, and the volume transported for each of the
k material components that is to be determined by ff. Then the first step only con-
siders materials that are common to both the upstream and downstream elements.
Each of these materials is then advected in proportion to the downstream volume
fraction, unless that exceeds the available material in the upstream zone. If the

summation is limited to the common materials, this step can be expressed as,

f} = min(vy\TT)(6.25)
Al j

If some of the materials are exhausted during this first stage then the sum of
will be less than the total available transport volume //. In order to rectify this a
second step is required, where the summation is further restricted to the remaining

materials and / is the remainder of the available transport volume.

ff = min(V“V\-iTL) (6.26)
J

This step is repeated until all the transport volume has been used or there is know
longer any available material which is common to both the upstream and down-
stream cell remaining in the upstream cell, all the increments from each of these
stages being summed for each material.

A final stage is then performed where the remaining materials in the upstream

cell are used to fill the transport volume.
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The original version of JOY [80] used a similar procedure, but took the average

value of the volume fractions to define the flux for the common materials.

F; min(ViuV u, (6.28)

When materials were depleted the original JOY algorithm then selected materials
based upon how close they were to the original common materials to make up the
remainder of the transport volume. That is, if material 2 is depleted it will then
look to the material next to it in the cell. If this is already depleted it searches back
through the materials in the cell in order, until it finds enough unused material to fill
the transport volume.

The next level of increased complexity involved the explicit reconstruction of
material interfaces in an element from the common materials in adjacent elements.
Methods of this type typically only consider two materials at a time. That is the
material of interest and all the other materials combined. One example of this ap-
proach is the method used in the BBC code [81], which was the precursor to the
SLIC [10] algorithm. Although the basic concepts of the BBC algorithm are quite
simple, its actual implementation is quite complicated.

The four adjacent elements are searched for the presence of the material of in-
terest. This leads to a 4 bit code for each material, with either a 0 for ”no” or a 1
for ”yes” being used to record the presence or absence of the material in each of
the 4 elements. The code has 30 possible configurations, which are reduced to eight
types, three of which have subcases, which are finally divided into three classes.
The first class contains material in horizontal layers, the second vertical layers and
the third contains the exceptions. These are mostly where material is concentrated
either at the corners or mid sides of the elements, with the thickness of the layers
being taken to be proportional to their volume fractions. The material concentrated
either at the corners or mid way along the sides is taken to have the same aspect
ratio as the element in which it resides.

The amount of each material transported is next calculated from the geometry
of the reconstructed interface and the geometry of the transport volume (i.e. volume
and which edge). Since each material is considered independently, they can overlap
and there is no guarantee that the sum of the individual material volume fluxes will
sum to equal the transport volume. In order to overcome this problem the volume
transported for the last material is chosen to be equal to the difference between the
transport volume and the sum of the volumes calculated for the other materials.
However, this is constrained to be positive and to not exceed the amount of the last
material in the upstream element. If this constraint is not satisfied then further steps
are required. These steps essentially strive to uniformly scale back the transport
volumes of the other material until their sum matches the total transport volume.
Adjustments are applied, as required, to ensure the scaling does not exceed the
volume available for any of the materials. If this scaling does not work the actual

transport volume is reduced.
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6.2.2 The SLIC algorithm

The Simple Line Interface Calculation or SLIC algorithm developed by Noh and
Woodward [10, 82] is probably the best of the first order interface tracking meth-
ods. It is also the closest of the published interface tracking methods to the scheme
that has been developed by the author for CORVUS. Given these two important
considerations it warrants special consideration. SLIC is an alternating direction
method which constructs the interface out of straight lines which are either perpen-
dicular or parallel to the advection direction, the choice of interface topology being
completely defined by testing whether or not the four adjacent elements contain the
various materials. This is a similar approach to that of the BBC algorithm [81] dis-
cussed above. However, the excessive complication of the latter method has been
removed, a further major advantage of the SLIC scheme being that volume transport
for each material can be defined in a single pass.

Fluid occupation numbers are defined for each material /, IL/ and IR[. These
values are o if material / is absent and 1 if it is present in the elements to the left
and right of the current element, respectively. This leads to four possible combi-
nations or fluid groups, and so materials that have the same (7Lt, //?,-) values are
treated as belonging to the same fluid group and are treated equally. Six possible
configurations are allowed for these four fluid groups as shown in Fig. .. The
relative sizes of the rectangles used to construct these are simply obtained from the
known volume fractions of the materials present. It should be noted that the inter-
faces are constructed independently for each advection direction, and so there is no
requirement for consistency between the two directions. A modified version of the
SLIC algorithm has also been developed by Chorin [83] to introduce the facility to
explicitly construct interface corners.

6.2.3 Higher order YOF methods

The higher order interface reconstruction schemes in today’s Volume of Fluid
(VOF) based Eulerian hydrocodes employ arbitrarily oriented straight line segments
to represent material interfaces. These interfaces will however almost certainly be
discontinuous at element boundaries. Codes which employ high order interface
reconstruction schemes of this type include CAVEAT [s], KRAKEN [73], SOLA-
VOF [46], PELE [84], MESA [85], CTH [s¢] and AWEs codes PETRA [87] and
NUTMEG . The main differences between the higher order VOF methods stem
from how the interface slope is calculated and how the materials within a given
multi-material cell are ordered.

The first and simplest technique for calculating the slope was proposed by Hirt
and Nichols and implemented in the SOLA-VOF code [46]. Given a rectangular
mesh, the height of a each material above the bottom edge of the row of elements

Z is first defined, in terms of the elements dimensions, Ay and Az, and the volume
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Figure ¢ .« : The six fluid-configuration types used in the SLIC algorithm.

fractions f, where the indices reflect a 2D logical mesh as,

Zit) = +/(/+ij+ DAZ(H+Aj+ i) + [(J+7j+3) Az A+ 3)

(6.29)

Given these material heights, the slopes can then be defined as,
az 2(z (+
(6.30)
(«**j+1i) jti)+ M

If the calculated slope is nearly vertical then the slope a¥

is calculated following a
similar procedure. The interface position is then adjusted to match the cell’s volume
fractions.

The next increment in complexity was introduced in the KRAKEN and PELE
codes, which generate a set of interfaces for each cell edge, the transport of material
across each edge was then calculated using the appropriate set of interfaces. Each
set of interfaces are constructed by fitting straight lines through the two cells adja-
cent to the edge in question, the interface slope and intercept with the edge being
determined by the requirement that the area below the line in each cell should match
the volume occupied by the appropriate material in that cell, as defined by the ma-
terial’s volume fraction. There are four different configurations that can occur (for
further details see [18]).
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A different strategy for calculating the interface slope was proposed for 2D prob-
lems by Youngs [87] and then later extended to provide a 3D interface reconstruc-
tion method [ss ]. A similar approach has now also been implemented in CTH [s5s ].
The KRAKEN/PELE approach is used as a starting point with straight line being
fitted to match the volume fractions for each pair of elements adjacent to each of the
four edges, exactly as discussed above. The intercepts of these lines with each of

the edges are then used to define edge fractions, b(@j+iy These edge fractions cor-

respond to the distance along each edge to the intercept where the element is treated
as a unit square. The edge fractions are then differenced to obtain the interface

slope.

Si+1 N —T (0.31)
2 2 b(i+iJ+1)  b+W)

The position of the interface must then be adjusted while maintaining this slope,
until the volume occupied by the two materials is matched. The advantages of
Youngs’ method over the KRAKEN/PELE approach are that it uniquely defines
both the slope and position of the straight line interface for the cell, which can then
be consistently used in calculating the advection fluxes across the four cell edges.
Further, for straight line material interfaces the interface construction is exact.

Since there is no natural extension of concept of side fraction to three dimen-
sions, Youngs hastaken a slightly different approach for 3D.In this case Youngs
calculates the normalto the interface by differencing thevolumefractions of the
surrounding elements. The position of the interface is then adjusted by translating
it in the direction of the normal, as in 2D. In order to illustrate Youngs’ method
for the 3D slope calculation we consider the normal calculation in 2D. A uniform
orthogonal structured 2D mesh is again assumed, with the volume fractions of all
eight of the elements neighbours having some influence over the interface slope.
Effective volume fractions are then expressed for four principal directions, N, E, S
and W as,

Zitil+ 1) F azZitiH)

IE =

2+a
B J+\)+
fw = 2+ a
, JMj+i) Tazrcise AT+
" 2+a
i-hy-k) + /541 L,yA)
rs = J-hJ-k) ol TLTLY (6.32)

2+a



CHAPTER 6. ADVECTION METHODS 116

The components of the normal vector for the interface are then obtained by differ-

encing these quantities as follows,

*
v T
d.tl 2Ax)\
A
- (6.33)
dxi 2Ax2

Youngs’ method has also been extended to non-orthogonal meshes and axisymmet-
ric geometry for use in CAVEAT by Johnson [89]. Johnson’s extension of Youngs’
method evaluated (6.33) in logical mesh coordinates, L,-, and then transformed the
normal vector back into real coordinates by inverting,

' dLi dL2 L
d) A :
T e dxi ari dLl (6.34)
df dLi dL2 3/ )
. dx2 dx2 azs

Once the normal vector has been determined it then remains to adjust the position
of the interface again to match the known volume fractions for the cell in ques-
tion. However, while for Youngs’ original scheme as applied to orthogonal grids,
the position could be calculated explicitly. In axisymmetric geometry with a non-
orthogonal grid, the location of the interface is given by a cubic equation which
Johnson solves using Newton iteration.

McGlaun and Thompson [ss] use a contouring algorithm to reconstruct inter-
faces in CTH. An average volume fraction is assembled at element corners from
the adjacent element values. Then a set of straight line volume fraction contours
are constructed for the element. The contour which matches the known volume
fractions for the element is then selected for the material interface.

Once the interface slope and position has been defined the advection step can
be performed. First order or donor cell differencing is used in all the codes that
the author has encountered. This means that problem becomes a geometric one of
determining how the fluxing volume is divided by the interfaces that have been con-
structed. This determines the individual volume fraction fluxes for each material
across each element face. This is clearly well defined but involves reasonably com-
plicated logic which increases rapidly in moving from structured orthogonal grids to
unstructured non-orthogonal grids with the computational cost increased even more
rapidly when the method is applied to 3D unstructured non-orthogonal meshes. Al-
though increasing the accuracy of the multi-material cell advection above first order
is clearly attractive, however, the problem is far from trivial: the natural extension
that is compatible with the single material advection in CORVUS, for example,
would require monotonic slopes to be defined for the flow variables in the two
isoparamatric directions across the multi-material cell. However, while the pres-

sure and particle velocity are continuous across a material interface, other variables
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such as density and internal energy are not guaranteed to be. Hence separate slopes
would be required for each material component, and there is insufficient informa-

tion to define these.

6.2.4 Handling more than two materials

The high order VOF based algorithms for explicitly calculating interfaces have
all been described in terms of two materials. There are two natural ways to extend
these methods to an arbitrary number of materials. However, none of these explic-
itly handle T’ junctions and the materials are always assumed to lie in continuous
layers of material that can overlap.

The simplest approach is to calculate the interface between each material in
turn and a mixture of all the others. The second approach requires the ordering of
the materials through the cell to be defined. This could be a user defined priority
list. An interface is then constructed between the first material and a mixture of all
the others. The next interface is then calculated between a mixture of the first and
second materials, and a mixture of all the remaining materials, and so on, until all
the interfaces have been constructed. The second approach does not eliminate the
problem of materials intersecting, but it does minimise this problem and enables
isolated thin layers which are less than an element thick to be tracked accurately.

6.3 Multi-material advection in CORVUS

Higher order VOF schemes such as Youngs’ method can be modified to make
them compatible with non-orthogonal grids, as discussed above, but this makes
these methods computationally expensive, especially for 3D. Given that it is planned
that the adaptive multi-material ALE algorithm will be extended to 3D in the fu-
ture a new computationally less expensive interface scheme has been developed for
CORVUS. The aim with the new scheme is to resolve material interfaces with at
least equivalent, if not greater, accuracy on an ALE grid than can be achieved with
a high order VOF scheme on an orthogonal Eulerian mesh. It is accepted that the
new scheme will not however perform as well as the higher order VOF schemes
when both schemes are applied on orthogonal Eulerian grids.

The starting point for this new scheme was the CALE interface scheme devel-
oped at LLNL by Tipton [19]. Since it has been so influential on the develop-
ment of the CORVUS interface scheme, a brief description will first be given of
the CALE method before proceeding to describe the CORVUS scheme in detail.
The problem to be solved for any multi-material advection scheme is how to di-
vide the fluxing volumes amongst the materials present in each donor cell. The
CALE scheme breaks down this advection problem into different flow topologies

like the SLIC algorithm, but only allows two flow topologies: serial and parallel. It
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is this simplification which vastly reduces the complexity of the advection method
for non-orthogonal grids compared to the high order VOF methods. The choice of
flow topology is made separately for each material and for both mesh directions. An
initial selection is made from the slope of the material interface. Flowever, this may
then be over ruled depending on the results of a series of heuristic tests which at-
tempt to detect corners. If the serial flow topology is selected for a material then it is
advected in preference to all other serial materials behind it, while all the materials
with a parallel flow topology are given equal preference, although some account is
given to the inclination of its interface. A final normalisation step is then performed
to ensure that the total volume of material advected at each face matches the overlap
volume.

The CALE algorithm was initially implemented in CORVUS, essentially as de-
scribed above, except that it had to be modified to make it work with the isotropic
single material advection method used in CORVUS. CALE is a logical mesh code,
so it is able to use Strang operator splitting [69] to reduce advection corner coupling
errors. This breaks the advection step down into two separate sweeps in the x and y
directions, so there is no risk that more material in total can be advected out of a cell
than is initially present. However, this can occur with isotropic multi-material ad-
vection, if measures are not taken to avoid it. This problem was solved in CORVUS
by simply storing the initial volume fraction for each material at the start of the
multi-material advection step as a temporary variable. The volume fraction fluxes
were then calculated first for one direction, where the volume fraction flux out of the
cell was then limited to not exceed the value held of this temporary variable. The
temporary volume fraction variable is then updated to hold any remaining volume
fraction. The volume fraction fluxes are then calculated for the remaining direction,
again limiting the flux out of the cell to not exceed the value stored in the temporary
volume fraction variable. At each time step the mesh direction whose advection
flux is calculated first is alternated to avoid any directional bias.

This approach was found to work well in most applications, and gives solutions
almost as good as Youngs’ scheme for orthogonal grids. However, noisy step inter-
faces were obtained for convergent flow problems involving long thin aspect ratio
zones. In addition, expanding isolated thin layers where observed to break up ar-
tificially. These problems were eventually traced to a number of deficiencies with
the CALE algorithm. Noisy interfaces on long thin zones were traced to be due
to a combination of the heuristics, which can override the choice of flow topology
and lead to the serial flow topology being applied to the same material on adjacent
faces: that is, a corner is detected, which is not real. However, this noise was also
increased by the choice of volume fraction slope used for the parallel advection
scheme in CALE. The poor treatment of thin layers was traced to how the multi-
dimensional slope was calculated in zones containing more than two materials.

The new CORVUS multi-material advection algorithm which has been devel-

oped to address these issues will now be described in detail. The two material cases
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Figure 6.7: Serial flow topology.

will be assumed initially, then the scheme will be generalised to an arbitrary number
of materials.

The serial and parallel flow topologies are illustrated in Figures 6.7 and ¢ .s.
These illustrate the main ideas that for the parallel topology, the two materials are
advected symmetrically, while for the serial case, all of material A must be advected
before any of material B can be advected.

In CORVUS the choice of flow topology is made purely on the basis of the
interface slope relative to the mesh. This enforces adjacent edges to always have
opposite flow topologies. If only two materials are present the CORVUS scheme
calculates the interface slope S using the volume fractions of the cell’s four imme-
diate neighbours; FNm, FAm, FUm and FLm as defined in Fig. 6.9.

JFNm- FAm)
\FUm - FLm\

If this slope S is greater than 1 then serial flow is assumed, otherwise the parallel
flow topology is used.

If more than two materials are present then slopes are calculated for all the
interfaces using an onion skin model. The code user must define a priority list for
the materials in the problem. This simply defines the order that the materials should
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Figure 6 .s : Parallel flow topology.

be encountered and allows an integrated volume fraction variable, Fm, to be defined

for each material m in terms of a sum of the first m volume fraction, Fm, that is,

Fm= X 6-36)

i— 1,m

The multi-dimensional slope is then calculated from (6.35) for each material inter-
face in each multi-material cell using the integrated volume fraction, which always
provides a well defined slope for all material interfaces, even those associated with
isolated thin layers. Given that the flow topology of isolated layers should depend
on the topology of the two interfaces that enclose it, the average of the two interface
slopes on either side of isolated materials is then used to determine their flow topol-
ogy, whilst for the first and last materials in the cell, the flow topology is uniquely
determined from the slope of a single material interface.

Once the flow topology has been defined for the element, the fraction of the
transfer volume AV corresponding to each material, rp,,, can be determined for each
of the four cell edges. If the material is to the front of the cell and a serial flow
topology has been selected then as much of the material is advected as the transport
volume requires. This however is limited to not exceed the remaining material

present in the donor cell as discussed above. Materials to the back of the cell are
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Figure 6.9: Notation for interface slope calculation.

not advected until the materials at the front have been exhausted.
v (Ehm > B 1y "PmVd

else rim= 0 (6.37)

If there is more of the material in the neighbour than in the donor cell, and only a
small amount of the material in the acceptor, then it is not advected preferentially,

even though the material may be towards the front of the cell.

if ((FNm >=F D m)

and (FAm < |.0e~6)) rim= 0 (6.38)

If the parallel flow case is selected, then the materials on either side of the inter-
face are advected with equal preference. However, in contrast to the SLIC scheme,
some allowance is made for the inclination of the interface in an attempt to raise
the accuracy of the interface treatment towards second order for this flow topology.
Three volume fraction slopes are defined in volume coordinates following a similar
approach to that used for the single material advection in CORVUS: the first slope

being taken across the acceptor face, the second across the neighbour cell face and
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third obtained by taking the slope at the centre of the donor cell of a parabolic fit
taken through the neighbour, donor and acceptor volume fractions. If Va is the ac-
ceptors cell volume, Vn the neighbours and Vd the donor cells volume, then these

three slopes are given by,

dF _ FAm- FDm

(6.39)
AVd + Va)
dF FDm- FN,,
(6.40)
Wn {(Vn + Vd)
dFj (Fn-F d)AVI + (Fd -F a)AVt
dv AVaAVn(AVa + AVn)
NVa = N d + Val
AVn = Vi + Vd) (6.41)

The slope from the parabolic fit is then made monotonic by applying the van Leer’s

limiter (6.17) used for the single material advection, which becomes,

dF 1. dF dF 5F dF

dF .
av =2 (ssn(Wa)-Fsgn(Vide ava ' av,

Once the volume fraction slope has been obtained, a volume Vx is defined as a
measure, in volume coordinates, of the distance from the centre of the donor cell to
the centre of the transfer volume 4V,

Va='-(Vd-AV) (6.42)

A second order estimate of the volume fraction at the centre of the transfer volume
is then calculated, and used to define the fraction of the transfer volume that the
material of interest occupies, rp. This is obtained in terms of this distance measure

and the volume fraction slope as,

dF
m—FDm+ (6.43)

As discussed for the serial flow case, care must be taken to ensure that more
material is not advected than there is remaining in the donor cell. In CORVUS this

is again achieved through the use of a temporary variable which keeps track of the
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volume fraction of each material, reducing it by the volume fraction flux leaving the
donor cell through each face as they are calculated.

The r j ’s for each cell face must sum to unity. This is clearly not guaranteed
since the total flux through each face may contain some materials exhibiting serial
flow and other materials experiencing parallel flow. A normalisation phase is there-
fore required for the rj”’s corresponding to each donor cell face. The normalisation
procedure is divided into three stages. The first simply defines a normalisation fac-

tor for the n materials in the cell, qrorm, where

rinorm =  -— (6.44)
Im=\"i
If the original rlm is significant (r|m > ].%)lhen it is multiplied by rlmorm This
is of course still subject to the limit that more material cannot be advected out of
the donor cell than there is remaining.

A second pass is then made over the middle materials: that is, all the materials
which exhibit serial flow and are not either at the front or back of the donor cell.
This means that the materials of interest must not have been involved in the first
pass of the normalisation procedure, so rim < 1.0f-80. The definition used to define
a middle material is that it exhibits serial flow (5 > 1), the donor cannot be almost
clean (FDm< (1 —1.0e-10)), there must be more of the material in the donor than
in either the neighbour (FDm > FNm) or acceptor (FAm < 0.01) and there must be
less material present in the donor than in either the neighbour (FNm < 0.01) or the
acceptor (FAm < 0.01).

If material m is determined to be a middle material from this definition, then, as
much of the remaining transfer volume as remains after the first pass, is given to the
material as is possible, without exceeding the volume of the material that remains
in the donor cell and ensuring that rim > = o .

The third and final pass then loops over the all the materials present in the donor
cell in the priority order defined by the user, and gives away the remaining transfer
volume. The only constraint on the final pass is that the remaining volume of each
material in the donor cell still cannot be exceeded. The sum over all materials of
rfs for each face should always be unity. The volume fluxes, Av/ji/n, for material
m across face j of the ith element are now uniquely defined in terms of q,j> and

transfer volume across facej AVij as,

Av,jill = T|J>A (6.45)

6.4 ALE Test problems

Many of the test problems that have been used to verify the ALE capability in
CORVUS have already been presented as pure Lagrangian test problems. This is
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deliberate as it also enables a direct comparison of such results, further increasing
confidence in the ALE results and illustrating the benefits of the ALE approach.

6.4.1 Sod’s shock tube
Definition

Sod’s shock tube problem was fully described in section 3.7.1, so itjust remains
to discuss the differences in how the ALE calculations were performed. The ALE
calculations were all performed using monotonic artificial viscosity and Eulerian
mesh motion. Eulerian grid motion was used to allow direct comparison with pub-
lished results from Eulerian schemes. The first calculation was performed without
interface tracking on a 1x100 mesh. The remaining two were both performed with

interface tracking, one on a 1x100 mesh and the other on a 1x500 mesh.

Numerical Results

The solution obtained without interface tracking (dotted line) on a 1x100 mesh
is given in Fig. ¢ .10. It compares favourably with the analytical solution (solid line)
also given in Fig. 6.11 except close to the contact discontinuity. The constant states
are all in good agreement with the analytical solution and the rarefaction is well
matched except for some rounding at the head and tail. There are no signs of post
shock oscillations, just a small disturbance at the site of the burst diaphragm, which
is due to a wall heating, or start up error when the shock is initially formed. The
contact discontinuity is however smeared over 2-3 zones.

The solution with interface tracking (dotted line) on a 1x100 mesh is compared
with the analytical solution (solid line) in Fig. 6.11. This is a very similar result
to that in Fig. 6.10 as expected, but in this case the interface tracking captures the
contact discontinuity over 1 to 2 zones.

The solution on a 1x500 mesh (dotted line) is compared with the analytical
solution (solid line) in Fig. 6.12. It is now very difficult to distinguish between
the numerical and analytical solutions, although the main deficiency is still present
at the burst diaphragm site it is very small. In practice the solution is essentially
unchanged, with further increases in mesh resolution, and is considered to be mesh

converged at this resolution.
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Figure 6.10: Sod’s shock tube problem calculated with Eulerian mesh motion and
monotonic artificial viscosity on 1xi100 cell mesh at 15.0 JUS without interface track-

ing.
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Figure 6.11: Sod’s shock tube problem calculated with Eulerian mesh motion and

monotonic artificial viscosity on 1x100 cell mesh at 15.0 jus.
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Figure 6.12: Sod’s shock tube problem calculated with Eulerian mesh motion and

monotonic artificial viscosity on 1x500 cell mesh at 15.0 us.
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6.4.2 Berylium stopping shell
Definition

The Berylium stopping shell problem was described in section 3.9.1, so itjust
remains to describe any differences in how the ALE calculations were performed.
Two versions of the test problem have been calculated both with 2° angular zon-
ing. The first retains a Lagrangian outer interface, but with the central void zoned
with 100 radial zones, so that multi-material advection could be used across the
inner interface. The second applies multi-material advection to both the inner and
outer interfaces. In this case a second 3 cm thick void region was added outside
the Berylium shell. In both calculations Winslow’s equipotential mesh movement
algorithm was used, with weights applied to maintain a mesh with equal spacing
in radius and angle. The latter problem then becomes a non-orthogonal Eulerian
calculation.

Numerical Results

The initial mesh for the first calculation is given in Fig. 6.13 and the correspond-
ing mesh at 100.0ss in Fig. 6.14. An initial mesh for the second ALE calculational
methodology is given in Fig. 6.15 and its mesh at 100.04s in Fig. 6.16. The first
ALE route stops at about 2.99 cm and it’s total energy increases by 0.02 % dur-
ing the calculation. The second ALE route also stops at about 2.99 cm and the
total energy in the problem increases by 0.015 %. The advection scheme does not
conserve kinetic energy exactly, although it will conserve mass, momentum and in-
ternal energy. This results in the ALE solutions not conserving total energy as well
as the Lagrangian scheme. However, the errors in total energy for both approaches
are very small and considered insignificant for practical calculations. The stopping
radius obtained in both these ALE calculations was also closer to the analytical
value, and the energy conservation was improved over the previous Eulerian results
obtained at AWE for orthogonal and spherical geometry calculations [45].
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Figure 6.13: Initial mesh for Berylium stopping shell problem for

Eulerian mesh motion.
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Figure 6.14: Mesh for Berylium stopping shell problem at 100.0

#s with Eulerian mesh motion.
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Figure 6.15: Initial mesh for Berylium stopping shell problem for

Equipotential mesh motion.
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Figure 6.16: Mesh for Berylium stopping shell problem at 100.0
ss with Equipotential mesh motion.
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6.4.3 Taylor rod impact test
Definition

The Taylor impact test was fully defined in section 3.9.2. It has also been calcu-

lated in ALE mode using Eulerian grid motion.

Numerical Results

Fig. 6.17 and Fig. 6.18 show the ALE solution calculated with Eulerian grid
motion on CORVUS. The interface profiles and plastic work contours are in good
agreement both with the Lagrangian solution presented in Fig. 3.15 and Fig. 3.16
and with previous results obtained using Eulerian codes at AWE [45]. The reflex
profile of the rod after impact and the position of the plastic wave both also agree
well with ID theory.
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Figure 6.17: Mesh for Taylor copper rod impact test at 250.0 jus

calculated with Eulerian mesh motion.
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Figure 6.18: Plastic work contour plot for Taylor copper rod impact test at 250.0 jus

calculated with Eulerian mesh motion.
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6.4.4 Berylium vibrating plate test problem
Definition

The Berylium vibrating plate test problem was fully defined in section 3.9.3.
It has also been calculated in ALE mode with Eulerian mesh motion on a 0.1 cm
resolution mesh to give comparable resolution to the Lagrangian calculations of the

problem.

Numerical Results

A 30.0"5 period and an amplitude of about 0.5 cm was again obtained as illus-
trated in Fig. 6.19. The solutions are in good agreement with previous Eulerian and
Lagrangian code results. It is not surprising that the calculated period is longer than
the analytical prediction, as the theory assumes long thin plates, while the numerical
simulation is applied to a 6:1 aspect ratio plate. The energy conservation obtained
is reasonable, with the ALE solution having lost 2.5 % of its total energy by 60.0ins
compared to the 0.15 % observed for the pure Lagrangian simulations presented in
chapter 3. It also agrees closely with the quoted energy losses for AWE’s Eulerian
codes [45]. If a more Lagrangian mesh movement strategy was used in the ALE

calculation, this error would probably be reduced.
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Figure 6.19: Berylium vibrating plate test problem at 7.5, 15.0, 22.5 and 30.0 Jss

calculated with Eulerian mesh motion.
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6.4.5 ID Spherical implosion
Definition

The ID Spherical implosion problem was fully defined in section 4.2.1. The
problem is used to demonstrate that spherical symmetry is still maintained when
the problem is calculated using the multi-material ALE package. The spherical
Tantalum shell is again initially meshed with 2° angular zoning and 2 radial zones
as shown in Fig. 6.20. In this case the void inside the shell is also meshed to allow
multi-material ALE to be used to maintain the mesh resolution in the shell as it

implodes.

Numerical Results

The initial mesh is given in mesh at 4.0jjs for the ALE calculation is given in Fig.
6.21 and can be compared with mesh obtained when the calculation was performed
in pure Lagrangian mode with Automatic Mesh Insertion in Fig. 5.3. The results
clearly demonstrate that spherical symmetry is retained for the ALE calculation and

show good qualitative agreement in terms of the inner shell radius at 4.04s.
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Figure 6.20: Initial Mesh for ID Spherical implosion problem cal-

culated using ALE with Equipotential mesh motion.
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Figure 6.21: Mesh for ID Spherical implosion problem calculated
using ALE with Equipotential mesh motion at 4.0 Jss.
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6.4.6 2D Implosion of spherical metal shell
Definition

The 2D Spherical implosion problem which was fully defined in section 4.2.2
has also been calculated using the multi-material ALE package. In this case the
central void is again meshed to allow Equipotential mesh relaxation to be used to
maintain the mesh resolution of the Tantalum shell. This also demonstrates the ro-
bustness of the ALE approach in treating the high deformation of the inner boundary
of the Tantalum shell.

Numerical Results

The mesh at 5.2/JS from the ALE calculation is given in Fig. 6.23 and can
be compared with the pure Lagrangian calculation with Automatic Mesh Insertion
given in Fig. 5.7. Qualitative agreement is obtained in terms of both the inner and
outer interfaces of the Tantalum shell. The small differences observed are probably

mainly due to greater resolution in the AMI calculation.
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Figure 6.22: Initial mesh for 2D implosion of a spherical metal

shell calculated with ALE and Equipotential mesh motion.
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Figure 6.23: Mesh for 2D implosion of a spherical metal shell cal-
culated with ALE and Equipotential mesh motion at 5.2 Jyus.



Chapter 7

The Lagrangian treatment of
multi-material cells

7.1 Introduction

The extension of any staggered grid Lagrangian hydrodynamic scheme to the
treatment of multi-material cells requires two fundamental issues to be addressed:
how to determine the thermodynamic states of the individual materials within each
multi-material cell, and the forces generated at its nodes. These two issues are
clearly related, since the forces will depend on the states within each zone. The main
difficulty is the lack of information about the velocity distribution within multi-
material cells.

A separate set of material properties is normally maintained for all the materials
in each multi-material zone, along with the volume fractions which dehne the frac-
tion of the cell’s volume occupied by each of it’s materials. A sub-element model is
then required to define how the volume fractions and states of the individual mate-
rials evolve during the Lagrangian step. Three different types of sub-element model
are in routine use in hydrocodes. The simplest of these assumes that the volumet-
ric strain is equal in all the materials within each multi-material cell and so leaves
the volume fractions unchanged during the Lagrangian phase. This is the default
treatment in CORVUS. The main deficiency of this approach is clearly illustrated
by considering a cell containing a mixture of gas and metal. The gas is clearly more
compressible than the metal and so should take up most of the volume change, but
the simple equal strain model forces the metal to undergo the same volumetric strain
as the gas. Although the equal strain treatment is physically unrealistic in practice
it does a surprisingly good job.

The other two types of sub-element model either enforce pressure, or pres-
sure and temperature equilibrium, for all the material components within a multi-

material cell. The pressure at a material interface should be continuous, however,
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as the pressure within a computational zone represents an average pressure inte-
grated over the cell volume, there is no physics requirement for absolute pressure
equilibrium within a multi-material cell. In fact, for the entire computational zone
to come to pressure equilibrium, a shock wave would have to cross the element
many times, while the CFL stability condition restricts a shock wave from crossing
any cell in a single time step. However, pressure continuity at material interfaces
does suggest that the pressure within a multi-material cell should move towards
pressure equilibrium, not diverge away from it. If pressure separation is allowed
to continue unabated, as can occur with the constant strain treatment, non-physical
thermodynamic states are likely to be produced, which will inevitably lead to code
robustness problems. The assumption of thermal equilibrium is more questionable,
as it implies the need for infinite thermal conductivity within each multi-material
cell.

Once the thermodynamic states for the individual materials have been deter-
mined, by one of these sub-element models, then the definition of the nodal forces
follows naturally, proceeding exactly as for a single material cell, but using a volume
fraction weighted average pressure for the equal strain model, and the equilibrium
pressure for the other two sub-element models. Both of these will be consistent
and conserve energy, since the work done in the momentum step will be equal to
the total change in internal energy for the zone calculated in the corrector internal
energy step.

At AWE a further type of sub-element model has been developed and is used
in the 2D multi-material Eulerian code PETRA. This method attempts to move to-
wards pressure equilibrium in a controlled manner, which is more representative of
the true interface physics, and is hence termed a pressure relaxation scheme. The
pressure is however only relaxed at the end of the Lagrangian after the equal volu-
metric strain method has been applied.

In this chapter a new method which has been developed for CORVUS by the
author will be presented. The new scheme attempts to emulate the behaviour of
a series of Lagrangian subzones, rather than a single mixed element. A series
of test problems have also been developed for benchmarking Lagrangian multi-
material cell schemes. The results from these test problems are presented for the
new scheme, the equal volumetric strain treatment and the pressure relaxation method
discussed above.

7.1.1 PETRA pressure relaxation scheme

The method in PETRA was derived by applying a weak shock wave approxi-
mation. In order to explain the method and its derivation only two materials are
considered as the procedure is applied to each interface in isolation, with the result-
ing volume and internal energy exchanges then being combined to obtain the final

material states.
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Figure 7.1: Notation for PETRA pressure relaxation scheme.

Consider two materials with pressures and densities of (pi,pi) and (/72 »P2)*
where p | > p2and allow a weak shock to be generated. After a time, dt, the situation
will be as shown in Fig. 7.1, the disturbances will both have travelled a distance,
cdt, where c is the local sound speed.

From the definition of the sound speed it can be written

¢\=Lt~-"r 70

cl= 4~ (7.2)
P2~ P2

where p = p { = p~is the pressure in the disturbed region. Then by simply applying

the conservation ofmass we can obtain,

pleldt pi(ci + v)dt (7.3)

P.G<t = p2(<2

v)dt (7.4)

where v is the material velocity in this disturbed region relative to the frame of
reference of the cell, which can be eliminated to obtain the pressure p at the material

interface,

P2(c\+cc2) + p[c2(clpi-pi -pi)-ci(c\p2+ P\ +Pi))

+ C\P\(C:p: + Pi) + c2p2(c\pi +Pi) =0 (7.5)
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The weak shock approximation simplifies this further by assuming that for a small
disturbance v <*¢l and v <§: c2, so pj % pi and po % p2. This allows (7.3) and (7.4)

to be rewritten as,

piv= -c\(Pi - pi) (7.6)

p2v=cz2(p2-p 2) (7-7)

p, and pT can then be eliminated using (7.1) and (7.2) which then allows the follow-
ing expressions to be obtained for the interface pressure p and the relative velocity

of the interface with respect to the frame of reference of the cell v,

P\P2C2 + P2P\C)

(7.8)
PiCl + p2Q
V= —— — (79)
Pici + pz2c2
The volume exchange between the two materials is then defined as,
5V = v5t4 (7.10)

where bt is the time step and A the area across which the volume is exchanged.
This volume exchange is however also limited from changing the volume fraction
of either of the materials by more than 25 %, which reflects the approximate nature
of the procedure. The complete set of volume exchanges is then used to define a
new set of volume fractions and densities for all the materials in the multi-material
cell. The product of the interface pressures p and the volume exchange is then used
to define the internal energy exchange between the two materials.

7.2 The new Lagrangian multi-material cell algorithm

In view of the deficiencies of the four sub-element models discussed above a
new algorithm has been developed. The new scheme is formulated as an integral
part of the Lagrangian step, with pressure equilibrium being approached in a con-
trolled manner which attempts to mimic the behaviour of individual Lagrangian
subzones. The aim is to improve the accuracy of both the individual thermody-
namic states of the material components and the average response of the cells in
terms of the forces generated at its nodes.

Only two materials will be considered in the following description. However,
the algorithm does naturally extend to m materials in a similar manner to the PE-

TRA pressure relaxation algorithm discussed above, by operating on each pair of
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materials associated with each interface in isolation. This enables a volume ex-
change to be determined between each material pair. The total volume change is
then accumulated for each material component. The densities, internal energies and
pressures are then updated for each material.

The first problem that had to be solved in developing the new method was how to
allow volume fractions to vary during the Lagrangian step and still conserve energy.
This was achieved by noting that to conserve energy the total work done on or by a
multi-material cell during the momentum step must equal the total internal energy
added or removed from this zone during the corrector internal energy update. This is
achieved for the equal volumetric strain treatment. The average cell pressure used
in the momentum step is the volume fraction weighted average of the individual
half step material pressures (7.11). The change in internal energy applied to each
individual material component during corrector internal energy update is simply the
product of the material components, pressure, volume fraction and the cells volume
change (7.12).

(Dn+*+ an\
£+ = ejJ,%—A/-A o (7.12)
TG
In order to retain this consistency when volume fractions are allowed to vary during
the Lagrangian step, a new, more general, definition is required for the average cell
pressure used for multi-material cells in the momentum step. This can be achieved
by defining the relative compressibility (3*; for material k in element i as the ratio

of the materials volume change A t o the total cell volume change AV/,

iav. 1 (7.13)
The average cell pressure can then be defined as a weighted average of the individual

material pressures using the new compressibility factors (3*/ as the weights.

m

k=1

This means that the sum of the products of material component pressures and vol-
ume changes will always be equal to the product of the average cell pressure used in
the momentum step and the total cell volume change, so the work done on or by the
multi-material cell in both the momentum step and corrector internal energy update

must again be the same.
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The use of this new definition for the average cell pressure of a multi-material
cell has a number of consequences. The value of (3"/ must be determined at the pre-
dictor internal energy update, so that it can be consistently used in the momentum
step and the corrector internal energy update. In practice, individual material vol-
ume changes must also have the same sign, or non-physical average pressures are
calculated. However, the volume change of a components can be zero, so significant
differences in relative compressibility or expansivity are still allowed.

It remains to determine how to calculate the relative volume changes for the
material components. The interface velocity could be calculated by solving the
Riemann problem exactly. However, such schemes are expensive especially for
general equations of state. An approximate non-iterative Reimann solver such as
that due to Dukowicz [90] could be used. However, Duckowicz’s method requires a
strong shock limit for the maximum density change of each material. This may not
always be available, so a simpler method is proposed here which approximates one
of the Rankine Hugoniot relations [91],

Pl~ Pi

(7.15)
PG

where the subscript 1 corresponds to the higher pressure material and subscript 2> to
the lower pressure component. The interface velocity v relative to the frame of ref-
erence of the computational cell is assumed to equal the change in particle velocity,
the difference in pressure between the two materials is taken as an approximation
to the shock pressure and the sound speed of the lower pressure component as an
estimate of the shock speed.

The interface velocities are then converted into volume fraction fluxes. An area
weighted form is used to preserve symmetry in axisymmetric geometry. The ori-
entation of the interface is calculated from the multi-dimensional slope. The half
side perpendicular length /| across the cell is then calculated in the logical mesh
direction that lies parallel to the interface. This lengthscale relates to the area over
which the volume fraction flux is exchanged, as illustrated in Fig. 7.2. For a time
step s/ and cell area A then the area weighted volume fraction flux is given by,

vbtL 1
(7.16)

In practice it has been found important to limit these volume fractions changes to
not exceed 25 % of there original values. This isjustified by the approximate nature
of (7.15) and the need to minimise any overshoot past pressure equilibrium.

The preferred volume fraction changes are now defined. However, the sum of
the volume changes applied to all material components must not exceed the total
cell volume change, and all the material volume changes must be applied in the

same direction. In order to ensure the former, the volume fraction changes for all
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Interface velocity, v
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Figure 7.2: Area weighted volume fraction flux.

the materials are converted into volume changes and summed to give a total volume
change. If this is larger than the cell volume change, then all these individual volume
changes are simply scaled back uniformly to match the total available cell volume
change.

The sense or direction of these volume changes then depends on whether the
cell is in compression or expansion. If the cell is in compression then the lower
pressure component in each pair of materials associated with each interface will be
reduced in volume. If the cell is in expansion then the higher pressure component
in each pair will be increased in volume. If the total volume change associated with
these changes in volume fraction is less than the total volume change for the zone,
then new volume fractions are calculated and the remaining volume distributed in
proportion to the new volume fractions.

The volume changes for all the materials have now been defined for the pre-
dictor internal energy step. The volume fractions and half step densities are then
recalculated using these half step volume changes. The half step internal energies

are then calculated from,
(7.17)

This is equivalent to the equal volumetric strain update, but now uses the new vol-

ume changes and a multi-phase artificial viscosity for each material component.
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The multi-phase form is calculated in the same manner as the single phase artificial
viscosities but now uses the appropriate density and sound speed for each mate-
rial component instead of cell average values. A cell average artificial viscosity is
however still required for the momentum step. This is defined as a compressibility
factor |3ki weighted average of the multi-phase artificial viscosities, which ensures
the multi-phase artificial viscosities also conserves energy.

In the momentum step, the compressibility factors are calculated and then used
to evaluate the average pressures and artificial viscosities for the multi-material
cells. The latter are then used to calculate the nodal accelerations exactly, as with
the equal volumetric strain method.

The compressibility factors p”,/ are then used to define the fraction of the total
cell volume change given to each material during the corrector internal energy up-
date. These volume changes are also used to determine the final volume fractions
and densities at the end of the Lagrangian step for each material component. The
internal energy for each of the material components at the end of the step is obtained
from the volume change, half step pressure and multi-phase artificial viscosity for
each material component (7.18).

e}ﬂfj": eti+ (p*”mki K1 <7-18)

7.2.1 Compatibility with Material Strength

If the algorithm is to be fully compatible with material strength, a number of
issues need to be resolved. The first issue is how to modify the interface velocity
definition (7.15) to reflect the stress difference across the material interface. In
principle this could be achieved by simply replacing the pressure difference in (7.15)
with the difference in the normal stress at the interface. The compressibility factors
and changes in volume fraction can then be evaluated as above. The compressibility
factors can then be used to redistribute the element’s strain rate deviator components
amongst the materials. The modified strain rate deviators obtained can then be
used to calculate stress deviators, and yield limiting applied. Plastic strain rate
deviators can then be calculated and used to calculate the plastic work done on
each of the material components. The element average stress deviators required for
the momentum step can then be defined as a compressibility weighted average of
the stress deviators for the individual material components. The arguments already
presented for energy conservation without material strength should then also apply
with material strength present.
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7.3 Test Problems

In order to assess the potential benefits of the new Lagrangian multi-material
cell scheme, a series of interface test problems have been developed. The problems
were designed to run to completion with Lagrangian mesh motion, using either a
conventional Lagrangian or multi-material cell based interface treatment. Multi-
material cells have been introduced into the Lagrangian calculations by merging the
pairs of cells on either side of the material interface to form larger multi-material
cells. The problems were then calculated with the following Lagrangian multi-
material cell schemes, equal volumetric strain, the PETRA pressure relaxation and
the new CORVUS scheme.

This approach allowed a direct comparison of the three schemes with a con-
ventional Lagrangian interface treatment on the same computational mesh. The
absence of advection in these calculations increases the sensitivity of the solutions
to the details of the Lagrangian multi-material cell schemes. Three test problem
will be presented here; Sod’s shock tube [40], a modified version of Sod’s shock

tube and a ID spherical implosion.

7.3.1 Sod’s Shock Tube

Shock tube problems are well suited to the testing of Lagrangian multi-material
cell schemes, as they allow an arbitrary initial pressure step to be created across the
material interface at the start of a problem, by defining appropriate initial condi-
tions for the driver and test gases. They are also simple to interpret and analytical
solutions are easily obtained, which allows a detailed comparison to be made of all
the thermodynamic state variables for all material components in the multi-material
cells with analytical values.

Sod's problem has been calculated on a 1by 100 cell computational mesh with
the two cells either side of the material interface merged to form a single multi-
material cell. The solutions obtained at 0.1573” for the three different Lagrangian
multi-material cell schemes considered; equal volumetric strain, PETRA pressure
relaxation and the new CORVUS scheme are given in tables 7.2 to 7.4 respectively.
The tables include state variables and sound speeds for the individual material com-
ponents and cell averages. The sound speeds are included for two reasons: high
sound speeds are indicative of code robustness problems, and provide a single vari-
able that is sensitive to errors in all the state variables. This makes the sound speed
quite a good figure of merit of the quality of the interface scheme. An analyti-
cal solution for the jump conditions across the material interface is also given for

comparison in table 7.1.
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Material Density Internal Energy Pressure Sound Speed

no. gem Mbcrr?g- 1 Mb cm/js~ 1
1 0.4263 1.7776 0.30313 0.9977
2 0.2656 2.8535 0.30313 1.2641

Table 7.1: Analytical solution to Sod’s shock tube problem.

Material Density  Internal Energy Pressure Sound Speed
no. gem-~ 3 Mberr?g- 1 Mb cm/js~ 1
cell average 0.3675 2.0624 0.30314 1.0747
1 0.6533 2.1089 0.55107 1.0867
2 0.0817 1.6903 0.05521 0.9729

Table 7.2: Solution to Sod’s shock tube problem with equal volumetric strain treat-
ment.

Material Density Internal Energy Pressure Sound Speed
no. gem-3 Mbcrr?g- 1 Mb cmids~1
cell average 0.3675 2.0624 0.30314 1.0747
1 0.3932 1.9274 0.30314 1.0389
2 0.2411 3.1428 0.30314 1.3266

Table 7.3: Solution to Sod’s shock tube problem with the pressure relaxation
scheme.

The equal volumetric strain treatment produces by far the worst solution of the
three schemes. The average multi-material cell pressure is in reasonable agreement
with the analytical solution, but the individual pressures for the two material compo-
nents are well separated, and both differ significantly from the analytical value. The
other state variables for the two materials also differ significantly from the analytical
solution by between 19 and 83 % as shown in table 7.5. The test material expands,
when it should contract, while the driver material expands, but not as much as is
required to match the analytical solution. The sound speeds are also higher for the
driver material, and lower for the test material than their corresponding analytical
values, which leads to a cell average which is too high.
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Material Density  Internal Energy Pressure Sound Speed
no. gem -3 Mbcm3g -1 Mb cmps- 1
cell average 0.3947 1.9202 0.30318 1.0369
1 0.4212 1.7994 0.30318 1.0038
2 0.2626 2.8862 0.30318 1.2713

Table 7.4: Solution to Sod’s shock tube problem with new CORVUS scheme.

Material Density Internal Energy Pressure Sound Speed

1 +53% + 19% +83% +9%
2 -69% -41% -82% -23%

Table 7.5: Percentage errors for Sod problem calculated with equal volumetric
strain treatment.

The pressure relaxation scheme offers a considerable improvement over the
equal volumetric strain procedure. The pressures for the two materials are in equi-
librium and both within 0.003 % of the analytical solution, and the other state vari-
ables for both materials are all within 10 % of their analytical values, as shown in
table 7.6. The densities are in this case too low and the internal energies too high
for both materials. The sound speeds are, as a result, too high for both materials,
which again leads to a cell average sound speed which is too high and comparable
in value to that obtained with the equal volumetric strain method.

Material Density Internal Energy Pressure Sound Speed

1 - 8% + 5% +0.003% +4%
2 -9% +10% +0.003% -5%

Table 7.6: Percentage errors for Sod problem calculated using the pressure relax-
ation treatment.

The new Lagrangian multi-material cell scheme performs the best of the three
methods considered. It achieves pressure equilibrium matching the analytical pres-
sures to within o.02 %, and the analytical values for all the other state variables
to within 1 % as shown in table 7.7. The new scheme also produces lower sound
speeds for both the material components than either of the other two methods con-

sidered. This also gives it the lowest cell averaged sound speed of the three methods,
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suggesting it should lead to greater robustness and computational efficiency as well

as accuracy.

Material Density Internal Energy Pressure Sound Speed

1 - 1% + 1% +0.02% +o0.6 %
2 - 1% + 1% +0.02% +o0 .6 %

Table 7.7: Percentage errors for Sod problem calculated using new CORVUS
scheme.

7.3.2 Sod's Problem with an Artificial Interface

In order to investigate the behaviour of the Lagrangian multi-material cell schemes
at an interface between identical materials, Sod’s shock tube has also been calcu-
lated with an artificial material interface inside the driver section. The driver section
in this case is subdivided into two materials, both with identical equations of state.
Solutions obtained with the three different Lagrangian multi-material cell schemes
were then compared with the solution obtained without the artificial interface.

Density plots for a section of the rarefaction fan centred on the position of the
artificial interface are given in Figures 7.4 to 7.6 for the three different Lagrangian
multi-material cell schemes. The solution obtained when the artificial interface is
not present is given Fig. 7.3 for comparison. The equal volumetric strain and new
CORVUS scheme solutions both show a similar perturbations created by the pres-
ence of the artificial material interface. A similar perturbation was also obtained by
Sim’s [92]. In contrast the PETRA pressure relaxation scheme Fig. 7.6 produces a
smooth solution comparable to that obtained without the artificial material interface
Fig. 7.3.
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Figure 7.3: Sod’s shock tube calculated without the artificial material interface at
0.154s.

Figure 7.4: Sod’s shock tube calculated using equal volumetric strain with an artifi-

cial material interface in the driver section at 0.15/4s.
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Figure 7.5: Sod’s shock tube calculated using new CORVUS Lagrangian multi-
material cell scheme with an artificial material interface in the driver section at
0.\5s.

Figure 7.6: Sod’s shock tube calculated using the PETRA pressure relaxation

scheme with an artificial material interface in the driver section at 0. \5/ss.
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The origin of the perturbations is probably due to the differences in the advec-
tion fluxes entering and leaving the multi-material cell that contains the artificial
interface. Clearly within the rarefaction fan this will lead to pressure separation
between the two material components. As the equal volumetric strain method does
not change the volume fractions during the Lagrangian phase, it will not act to
ameliorate this problem. The new CORVUS scheme does attempt to modify the
volume fractions. However, the sum of the material volume changes is not allowed
to exceed the total cell volume change for the cell. The cell volume change will be
small inside the rarefaction, and insufficient to allow the new method to reach pres-
sure equilibrium. In contrast, the PETRA pressure relaxation scheme is not limited
by the cell’s volume change, and so can achieve pressure equilibrium. A multi-
material cell, once in pressure equilibrium, will behave essentially like a single
material cell, which explains the good solution obtained with the PETRA pressure
relaxation scheme for this problem. It also suggests that the new CORVUS scheme
may be further enhanced by employing the PETRA pressure relaxation scheme in

multi-material cells when the cell volume change over a time step is small.

7.3.3 Modified Sod’s Shock Tube

Sod’s problem is not particularly challenging, so a modified version of the prob-
lem has been defined. The new problem was defined by increasing the ratio of the
initial pressures from 10:1 to 25:1, which was achieved by raising the ratio of spe-
cific heats y for the driver gas from 1.4 to 2. This problem also demonstrates the
conclusions drawn from Sod’s problem are generally valid.

An analytical solution to the modified Sod problem is given in table 7.8 and the
results obtained with the three different Lagrangian multi-material cell schemes in
tables 7.9 to 7.11. The opportunity was also taken to calculate the problem with
the new CORVUS scheme combined with a standard single phase rather than the
recommended multi-phase artificial viscosity to demonstrate it benefits. The results

obtained are given in table 7.12.

Material Density Internal Energy Pressure Sound Speed

no. gem -3 Mberr?g- Mb cmjjs- 1
1 0.45 1.13 0.5122 1.503
2 0.36 3.6 0.5122 1.414

Table 7.8: Analytical solution to modified Sod's shock tube problem.

The equal volumetric strain method produces an average cell pressure which is
within 1 % of the analytical interface pressure. However, it produces material com-

ponent pressures that are in error by as much as 90 %. The errors obtained for the
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Material Density Internal Energy Pressure Sound Speed
no. gem-~ 3 Mbcti?g- Mb cm/js~ 1
cell average 0.3506 1.5713 0.51203 1.6959
1 0.6234 1.5596 0.97219 1.7661
2 0.0779 1.6647 0.05188 0.9655

Table 7.9: Solution to modified Sod’s shock tube problem with equal volumetric
strain treatment.

other state variables are given in table 7.13 and vary from 18 to 90 %. The gen-
eral behaviour is similar to that obtained with Sod’s problem. The driver material
again fails to expand sufficiently to reach the analytical value, and the test material
expands when it should be compressed. The sound speeds are again higher for the
driver material, lower for the test material than the analytical values, and the cell
average value is too high.

Material Density Internal Energy Pressure Sound Speed
no. gem- 3 Mbcrr?2g- Mb cmjjs- 1
cell average 0.3670 1.6654 0.51209 1.6379
! 0.3745 1.3674 0.51209 1.6537
2 0.3161 4.0497 0.51208 1.5059

Table 7.10: Solution to modified Sod’s shock tube problem with pressure relaxation
scheme.

The PETRA pressure relaxation scheme improves the solution significantly over
equal volumetric strain. The pressures for the two materials are in equilibrium and
both within 0.002 % of the analytical solution. However in this case all the state
variables are only matched to within 21 % of the analytical values, as shown in
table 7.14. The densities are too low and the internal energies too high for both
materials. The sound speeds are too high for both materials, and the cell average
sound speeds are again no better than the values obtained using the equal volumetric
strain method.

The new CORVUS Lagrangian multi-material cell scheme combined with the
multi-phase viscosity again clearly performs the best of the three methods consid-
ered. It achieves pressure equilibrium, matches the analytical pressures to within
0.002 % and the analytical values for all the other state variables to within 3.5 %,
as shown in table 7.15. The new scheme also produces significantly lower sound

speeds for both the material components than either of the other two methods and
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Material Density Internal Energy Pressure Sound Speed
no. gem -3 Mbcm?g- 1 Mb cm/js~ 1
cell average 0.4278 1.4339 0.51221 1.5165
! 0.4381 1.1692 0.51221 1.5292
2 0.3606 3.5512 0.51221 1.4102

Table 7.11: Solution to modified Sod’s shock tube problem with new CORVUS
scheme.

Material Density Internal Energy Pressure Sound Speed
no. gem -3 Mbcen?g~} Mb cm/js~ 1
cell average 0.4278 1.4536 0.5123 1.5140
1 0.4436 1.1548 0.51224 1.5198
2 0.3332 3.8435 0.51223 1.4671

Table 7.12: Solution to modified Sod’s shock tube problem with new CORVUS
scheme using single phase artificial viscosity.

has the lowest cell average sound speed of the three methods. This also supports
the conclusion that it should provide overall greater robustness, computational effi-
ciency and accuracy than the other two schemes.

The errors for the new CORVUS scheme with the single phase viscosity are
also given for comparison in table 7.16. These results are significantly less accurate
overall than those with the multi-phase artificial viscosity supporting the need to
use the multi-phase form. The errors for the test material increase from less than 1
% with the multi-phase artificial viscosity, to up to s % with the single phase form,
but with a decrease of about 1 % in the state errors for the driver material.

Material Density Internal Energy Pressure Sound Speed

1 +39% +38% +90% + 18%
2 -78% -54% -90% -32%

Table 7.13: Percentage errors for modified Sod problem calculated with equal vol-
umetric strain treatment.
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Material Density Internal Energy Pressure Sound Speed

1 -17% +21 % +0.002% +10%
2 - 12% +12% +0.002% - 6%

Table 7.14: Percentage errors for modified Sod problem calculated using pressure

relaxation treatment.

Material Density Internal Energy Pressure Sound Speed

1 -2.6% +3.5% +0.002% + 1.7%
2 +o0.2% + 1% +o0.002% +0.3%

Table 7.15: Percentage errors for modified Sod problem calculated using new
CORVUS scheme with multi-phase artificial viscosity.

The latter may be explained by considering the process by which pressure equi-
librium is established at the contact discontinuity with the new Lagrangian multi-
material cell scheme, and contrasting this process with the physics that actually
occurs. Shock and rarefaction waves should form with the driver material expand-
ing and the test material compressing simultaneously to maintain pressure equilib-
rium at the interface. However, numerically the new Lagrangian multi-material cell
scheme divides this process into separate periods of expansion and compression,
the volume changes applied to the materials within each multi-material cell being
only allowed to occur in the one direction or sense during each time step. If the cell
is in expansion, the volume change will be given away preferentially to the higher
pressure component. If the zone is in compression then the volume change will
preferentially go to the low pressure component. Pressure equilibrium is then es-
tablished numerically by initially expanding one material component for a number
of steps, then compressing the other component, and so on, until pressure equilib-
rium is established over a number of time steps.

This approach allows for variable compressibility of the different materials and
also attempts to apply the right entropy increase to the shocked material, without
changing the entropy of the unshocked material, with the test material component
undergoing shock heating while the driver material is cooled adiabatically. How-
ever, the approximate nature of the procedure for calculating the interface velocities
inevitably leads to overshoots, which in turn lead to the need to recompress the
driver material to achieve pressure equilibrium. The use of a multi-phase artificial

viscosity produces more realistic shock heating in the test material, but also leads
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Material Density Internal Energy Pressure Sound Speed

1 -1.4% +2.2% +0.008% +1.1%
2 +7.4% +6 .8 % +0.006% m +3.8%

Table 7.16: Percentage errors for modified Sod problem calculated using new

CORVUS scheme with single-phase artificial viscosity.

to too much shock heating in the driver material if it expands past pressure equi-
librium and must be recompressed. Hence, while the states obtained for the test
material are significantly more accurate, the errors introduced in the driver material

states increase.

7.3.4 1D Spherical Implosion

The third test problem consists of a spherical axisymmetric metal shell contain-
ing a high pressure gas. An initial uniform radial velocity of 1.0 mm »s~ 1 is applied
to the metal shell. The metal shell then implodes inwards compressing the gas un-
til the gas pressure is high enough to turn the shell around. The problem tests the
symmetry and the accuracy of a Lagrangian multi-material cell scheme for a range
of interface conditions.

A series of calculations were performed, restarting at 3.5 /is and then introducing
multi-material cells, by merging the line of zones either side of the interface. These
calculations were then continued to 6.0 »s using each of the three Lagrangian multi-
material cell schemes. The initial mesh at 0.0 »s is given in Fig. 7.7 and at 3.5 /is in
Fig. 7.8. Typical mesh and interface plots are given at 4.2 /is for equal volumetric
strain in Fig. 7.9 and for the new CORVUS Lagrangian multi-material cell scheme
in Fig. 7.10. The volume fractions are of course unchanged for the equal strain
treatment, while a similar compression is observed for the gas components of the
multi-material cells to that in the single material gas zones with the new CORVUS

scheme.
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Figure 7.7: Initial mesh for spherical implosion problem.
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Figure 7.8: Lagrangian mesh at 3.5 jus for spherical implosion

problem.
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Figure 7.9: Spherical implosion at 4.2 ss calculated with equal volumetric strain.
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Figure 7.10: Spherical implosion at 4.2 /us calculated with new Lagrangian multi-

material cell scheme.
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A more quantitative comparison is given in Fig. 7.11 where the gas cavity
volume is plotted against time for all three of the Lagrangian multi-material cell
schemes, and for a conventional Lagrangian interface treatment. These results
clearly show that the equal volumetric strain method provides by far the worst match
to the conventional Lagrangian interface treatment. It also fails to match the max-
imum compression, turns the implosion around too early and expands too rapidly
compared to the conventional Lagrangian interface calculation. In contrast the PE-
TRA pressure relaxation scheme and the new CORVUS scheme both provide a good
match to the Lagrangian treatment, matching the time and value of the minimum
volume for the gas cavity. However, the new CORVUS scheme then follows the
Lagrangian gas cavity volume more closely on expansion than either of the other

multi-material cell schemes.
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Figure 7.11: Gas cavity volume v’s time for spherical implosion
calculated with Lagrangian mesh motion using three different La-

grangian multi-material cell schemes.
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Figure 7.12: Gas cavity volume v’s time for spherical implosion
calculated with equipotential mesh relaxation using three different

Lagrangian multi-material cell schemes.
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Fig. 7.12 shows the results obtained when the three calculations were repeated
with advection present, and the mesh moved using Winslow’s equipotential mesh
movement algorithm. In this case all three interface schemes produce solutions in
good agreement with conventional Lagrangian interface treatment. These results
demonstrate how the presence of significant advection acts to reduce the errors that
can be introduced by Lagrangian multi-material cell schemes. It also demonstrates
that accurate solutions are obtained with the new CORVUS scheme, whatever mesh

motion is used.

7.4 Multi-material Void Closure

The background gas in most impact problems has little influence over the physics
of the problem, but can introduce numerical difficulties if it is modelled explicitly.
In Lagrangian simulations the time step will collapse in the gas as impact is ap-
proached, while multi-material ALE and Eulerian simulations tend to trap some gas
between the impactors, leaving it in a non-physical (P,V) state. However, these dif-
ficulties can be overcome by replacing the background gas with an idealised void
and using a dedicated void closure scheme. In Lagrangian codes this is usually
a modified slide line algorithm like the one described in chapter 4. However, al-
though these schemes are accurate, they are not robust for all applications, so a
multi-material void closure scheme has also been developed for CORVUS.

7.4.1 Void Closure Algorithm

The only part of the CORVUS Lagrangian multi-material cell scheme which
is invalid when voids are present, is the interface velocity definition (7.15), which
assumes a shock will form in the lower pressure material, which clearly cannot
occur in a void. The scheme also introduces a limit on the changes in volume
fractions that are allowed, which will stop the void closing completely. A new
constraint is also required to ensure that when impact or void closure does occur it
closes the void exactly.

These issues could be overcome by always giving away the cell volume change
preferentially to void materials. However, when a shock wave arrives at a free sur-
face the non-void material should be compressed and then expand as the rarefaction
wave forms, leaving the material with more entropy than it had before the shocks
arrival. If this simple void closure extension is used, the non-void material will not
go through this cycle, and its entropy will remain unchanged.

Given this concern, a more conservative approach has been taken in modifying
the new CORVUS Lagrangian multi-material cell scheme to include void closure. If
a multi-material zone contains a void material and has adjacent single material void

cells or is expanding, then the equal volumetric strain procedure is applied to all
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the void material interfaces in that cell. All other non-void interfaces in the cell are
calculated using the algorithm described above. If no adjacent single material void
zones are detected and the cell is under compression, then the voids are considered
to be closing and all the cell’s volume change is given to the void materials in the
cell, in preference to all other materials. This procedure is then followed until the
voids are all closed exactly, and then the remaining cell volume change is distributed
following the original Lagrangian multi-material cell algorithm, as described above.
The algorithm then proceeds as before.

The definitions used for the multi-phase viscosity and the compressibility weighted
averages for the average cell pressure and artificial viscosity also ensure that energy
conservation is maintained with voids present. It is also encouraging to note that
these definitions also ensure that there is no cell pressure in a multi-material cell

containing two materials if they are separated by a void until the void has closed.

7.5 1D Plate Impact Problem

The problem consists of two identical s mm thick metal plates, each travelling
with a velocity of 0.5m m /js~] towards each other. Symmetry allows the problem to
be reduced calculationally to one plate colliding with a reflecting boundary condi-
tion. The pure Lagrangian interface calculations were performed by starting with
the plate in contact with the boundary and applying a timing offset, while the multi-
material cell calculations required the void to be explicitly meshed.

A range of mesh resolutions were used in both cases from 4 mm down to j*mm
to assess the rate of mesh convergence. In the Lagrangian multi-material cell calcu-
lations the void stand off was scaled so that there was always only one cell across the
void, and a timing offset applied. The void cell and first zone in the metal plate were
then merged, as in previous test problems, to create a large multi-material cell. All
the calculations were run to 30.0fis. In order to compare the solution obtained us-
ing the new Lagrangian multi-material void closure scheme against the Lagrangian
interface treatment, the maximum density obtained in the metal plate was recorded
at each time step for all of the calculations, and compared against the analytical
solution for the density post impact of 35.0 gem ~3.

7.5.1 Numerical Results

The maximum density plots with Lagrangian mesh motion for a conventional
Lagrangian interface and the new multi-material cell based void closure treatment
are compared in Fig. 7.13. At each mesh resolution the density plots overlay exactly
for the conventional Lagrangian interface and the new multi-material void closure

scheme. This suggests the void closure scheme is doing as good ajob as it can do
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and any discrepancies from the analytical solution are due to lack of mesh resolu-
tion, and the limitations of the underlying Lagrangian hydro scheme, not the void
closure treatment. The plot also demonstrates that for an impactor of this size, a
minimum mesh resolution of 2 mm is required to reach the analytical peak density
before release occurs, and that the solution is only just mesh converged at jrinm.
Density plots for Eulerian calculations are also given in Fig. 7.14. These results
are comparable to those with Lagrangian grid motion except for a few subtle differ-
ences in the rise of the profiles, and a similar rate of mesh convergence is obtained.
In order to assess the potential benefits of the new scheme when combined with
more optimum ALE grid motion, a further CORVUS calculation was performed
using Winslow’s Equipotential mesh movement algorithm. The results obtained are
given in Fig. 7.15. This strategy results in finer mesh resolution around the impact
site than the Eulerian calculations, and significantly accelerates the rate of mesh
convergence. Even the 4 mm calculation almost reaches the analytical density, and

the 1 mm initial mesh is effectively mesh converged.
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Chapter 8

Validation and Application

The aim of this chapter is to increase the reader’s confidence in the adaptive
multi-material ALE algorithm and demonstrate how the method can be applied to
real physics and engineering problems. Three problems are presented to achieve
this. The first is an example of the validation of CORVUS against experiment and
another code, while the others are modelling problems where CORVUS has been
used. The calculations presented were all performed by the author using CORVUS
either at AWE Aldermaston or at the Los Alamos National Laboratory (LANL).

8.1 Shock bubble interaction

In the previous chapters of this thesis a series of test problems have been pre-
sented to demonstrate and verify the adaptive multi-material algorithm as imple-
mented in CORVUS. These problems were simple in nature, allowing direct com-
parison to be made against analytic solutions and desirable properties such as sym-
metry. They also allowed the performance of individual parts of the algorithm to
be assessed in relative isolation. However, it is also important to validate codes.
This tests the codes fitness for purpose or its ability to model its target applica-
tions. This can usually only be achieved through code comparison against relevant
experiments.

One experiment which is well suited to hydrocode validation was performed by
Haas and Sturtevant [93]. The experiment consisted of a cylindrical bubble of R22
refrigerant gas (CHCIFi,y = 1.249, R = 91 J/kg K, Cv= 365 J/kg K) surrounded
by air in a shock tube. A planar shock wave (Ms = 1.22) was then generated which
travelled down the tube and collided with the bubble, the shock fronts and the bubble
interface locations being recorded as a series of Schlieren images as the problem
evolved.

In this section, calculations will be presented of the Haas and Sturvevant exper-

iment performed on CORVUS by the author. These results are then compared both
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against the available experimental data and another numerical solution obtained
using a Free Lagrange (FL) code, VUCALM [94]. The VUCALM simulations
were performed using comparable mesh resolution by the developer of VUCALM
Graham Ball from Southampton University while on Sabatical to AWE [95]. VU-
CALM is an interesting code to compare against since it is based on a radically
different numerical scheme, but has been developed with similar target applications
in mind. It is a non-staggered finite volume hydrocode which employs a high res-
olution Godunov-type shock capturing method. Comparison against VUCALM is
also interesting since it is a pure Lagrangian technique which is amenable to high

deformation problems.

8.1.1 CORVUS Calculations! Methodology

A single rectangular mesh of 0.5 mm square zones was defined for the entire
domain. Air was then defined as the background material and the R22 bubble was
painted on top. This introduces multi-material cells at the start of the problem as
shown in Fig. 8.1. The strength of this approach is that it separates the geometry
definition from the mesh generation, so the mesh quality is not compromised by the
need to conform to the problem geometry. A constant velocity boundary condition
0f0.011358¢m /js~] was then applied to the right hand boundary in order to generate
an equivalent shock to that found in the experiment. Normal reflecting boundary
conditions were applied to the remaining edges of the domain, to represent the rigid
walls of the shock tube and the symmetry of the problem.

The first attempt to calculate the experiment then applied Winslow’s equipoten-
tial mesh movement algorithm at every time step, but with each node constrained
to only be relaxed once it had recorded a non-zero velocity. The mesh relaxation as
required by the Winslow’s algorithm was also reduced by a factor of four to retain
some Lagrangian character to the mesh. However, these initial results showed the
calculated bubble to be slow relative to the experiment. This loss in kinetic energy
was attributed to result from explicitly advecting momentum but not kinetic energy.
The error is probably more significant in this problem because of the long time
scales involved ss 1000/ss.

In order to improve the match to the experiment a new mesh movement strategy
was devised, where the mesh motion constraints were turned off and the advec-
tion step was only called if the new time step was lower than that of the previous
step. This significantly reduced the loss in kinetic energy of the bubble bringing its
position into very good agreement with experiment throughout the problem. The
meshes generated by this approach also retained more Lagrangian character than
the constrained Winslow method, and the computational cost of the calculation was
also significantly reduced.
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Figure 8.1: Section of initial mesh for CORVUS shock/bubble interaction calcula-

tion showing how the bubble was painted on top of the background mesh.
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8.1.2 Numerical Results

An early stage in the development of the R22 shock/bubble interaction, at ¢ =
135/38 from first shock impact on the bubble, is shown in Fig. 8.2. The transmitted
shock inside the bubble lags behind the air shock, due to the lower sound speed
in R22, while significant displacement of the right bubble boundary has occurred.
The details of the pressure field in the ALE and FL solutions, including the shock
thickness, are almost identical.

Figure 8.3 shows an intermediate stage of the interaction, at / = 417/Is. The
dominant flow feature is the roll-up of the top of the bubble, which is associated
with a strong counter-clockwise vortex. Here some differences are apparent - the
ALE solution shows a lower pressure at the vortex core, and a more extensive roll-
up. The reason for this difference is obscure. One other difference of note is the R22
spike to the left of the bubble, on the symmetry axis, which is narrower and longer in
the ALE solution. In the experimental image the spike is present, and is intermediate
in shape between the FL and ALE solutions, while the amplitude of the roll-up is
probably less than seen in the FL case, but the experiment is subject to mixing
and viscous effects which are absent from the simulations. In all other respects the
solutions are again very similar, and in good agreement with experiment.

Figure 8.4 corresponds to the final experimental image, at + — 1020/iS. The
macroscopic features of the three solutions continue to agree acceptably with each
other, and with the experimental data in shape and amplitude. The variation in the
horizontal position of the right bubble boundary, on axis, between the two simula-
tions is only 1.4 mm. The movement of this boundary is approximately 5% more
than in the experiment, as estimated from the published image. The scatter in the
left boundary position, on axis and ignoring the spike, is about :.1mm, and both
results agree with the experiment to better than the measurement uncertainty. Fi-
nally, scatter in the maximum leftward extent of the bubble tip is within 2 mm. The

experimental image is too indistinct in this region for comparison.
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Figure 8.2: Shock/bubble interaction at+ = 135/ss, Schlieren image from experiment
(top), VUCALM solution (middle) and CORVUS solution (bottom). Contours are
pressure, Ap=0.05bar. The scale is in centimetres and the origin is at the initial
centre of the bubble.
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Figure 8.3: Shock/bubble interaction at ¢ = 411/s, Schlieren image from experiment
(top), VUCALM solution (middle) and CORVUS solution (bottom). Contours are
pressure, Ap=0.05bar. The scale is in centimetres and the origin is at the initial

centre of the bubble.
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Figure 8.4: Shock/bubble interaction at ¢z = 1020”, Schlieren image from experi-
ment (top), VUCALM solution (middle) and CORVUS solution (bottom). Contours
are pressure, Ap=0.05bar. The scale is in centimetres and the origin is at the initial

centre of the bubble.
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The detailed structure of the roll-up does however show significant differences.
Figure 8.5 shows details of the local mesh structure in the roll-up. The FL mesh
is approximately uniform in resolution, with typical cell aspect ratios near unity,
whereas the ALE mesh exhibits significant spatial variations in resolution, with cell
aspect ratios of order ten in some regions. Consequently, the ALE solution yields
a very smooth R22/air interface on the upper bubble surface, where the local mesh
pitch is very fine in the normal direction and the mesh is aligned closely to the
interface. On the underside of the roll-up, where the ALE mesh is less well aligned,
steps occur on the interface. Towards the vortex core, the FL calculation shows an
extended, and almost continuous, filament of R22, while in the ALE solution this
feature fragments into isolated islands. The process can be seen at an early stage
at the tip of the roll-up where the ALE solution shows two consecutive “necks” in
the R22. This is thought to be an artefact of the multi-material advection algorithm,
aggravated by the relatively coarse mesh resolution in this region.

Both ALE and FL simulations are in good agreement with the experimental
data. For the early stages of the shock/bubble interaction, when shock propagation
is dominant, the ALE and FL results are nearly identical, demonstrating the mono-
tonic artificial viscosity approach used in CORVUS provides comparable resolution
for shock fronts to the Reimann based approach used in VUCALM. Later, when in-
terface deformation is the dominant process, differences occur in details, primarily
due to spatial variation in the quality of the ALE mesh. The FL scheme appears
to be better able to capture thin material Filaments. While the ALE simulation is
resolving a far steeper vortex in this area which may also have an influence on the
filament break up. Turbulent mixing is also clearly present at the interfaces in the
experiment and not included in either simulation, which makes it difficult to say
definitively which code is providing the best overall simulation. However, accept-
ing the omission of turbulence, the level of agreement between both codes and the

experiment is considered very encouraging.
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Figure 8.5: Mesh details in roll-up region at / = 1020s, ALE (top) and FL (bottom)
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8.2 Projectile impact problem

In this section, a typical projectile impact problem calculated on CORVUS is
presented. The problem involves the normal impact of a 12 mm diameter spherical
steel projectile travelling at 0.2¢m jjs~] with a water tank. The tank is cylindrical
with two 3.2 mm thick aluminium walls 250 mm apart at its front and back. The
top and bottom walls are assumed to be rigid. CORVUS is used to simulate the
trajectory of the projectile from its impact with the front wall to its final exit out of
the tank through the back wall. The influence of mesh resolution on the trajectory
is considered and a simple but effective mesh adaption strategy presented. But the
main aim is to demonstrate the strengths of the multi-material ALE algorithm for

projectile impact and penetration simulations.

8.2.1 Calculational Methodology

The problem was generated with the centre of the projectile positioned at the
origin, but offset from the near tank wall by o .6 cm, leading to an initial impact with
the near aluminium wall at 3.04s. An initial velocity of 0.2¢m /js- 1+ was applied to
the steel projectile. A tabular equation of state was used for the water. Both Steel
and Aluminium were treated as elasto-plastic materials with a linear shock particle
velocity equation of state, and Steinberg, Cochran and Guinan Constitutive model
[42] used in both cases.

Simulations were performed for two different mesh resolutions, the coarser cal-
culation employing 212x105=22260 elements with ¢« elements initially across the
aluminium walls and 10 across the diameter of the projectile. The mesh for the finer
calculation was simply constructed by doubling up the coarse mesh, giving a total
of 424x210=89040 elements. The projectile was explicitly meshed, as shown in
Figure s .c . The void regions were also meshed in front of, and behind, the tank to
allow the mesh to be relaxed across the front and back interfaces of the tank walls.
Winslow’s equipotential mesh movement algorithm was applied to all regions in the
problem, although nodes in the rear wall and in the void region behind it were con-
strained to not be allowed to relax until they had obtained a non-zero Lagrangian
velocity.

However, initial calculations showed the motion of the projectile to be very
sensitive to mesh resolution. So, in order to maximise the mesh resolution of the
projectile for both the coarse, and fine mesh calculations, material weighted mesh
movement was used with a material weight of 2 assigned to the projectile mate-
rial and a weight of 1 to all other materials. A 5 cell deep buffer zone was also
introduced around the projectile in order to improve the orthogonality and aspect
ratio of the zones in projectile. This improved mesh quality also improves the ac-

curacy of the momentum advection by reducing corner coupling errors and ensures
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that the mesh ahead of the projectile is sufficiently well resolved to minimise dif-
fusion errors. It should also naturally resolve gradients within the tank walls at
impact. The effective resolutions obtained with this mesh movement strategy in the
vicinity of the projectile was 0.25-0.5mm (fine calculation) and 0.5-1.0mm (coarse
calculation), the resolution in the rest of the problem typically being 1.0 mm (fine

calculation) and 2 .o mm (coarse calculation).
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8.2.2 Numerical Results

Mesh and interface plots are given at 10, 200,400 and 550 jus for the coarse mesh
and the fine calculation in Figures 8.7 to 8.20. These mesh plots clearly confirm
both the resolution estimates quoted in the previous section, and give a good feel
for the quality of the mesh retained around the projectile throughout the run for
both calculations. Figure s.s in particular illustrates how well the mesh refines in
front of the projectile and conforms to the deformation of the target material during
penetration.

The interface plots show the projectile to undergo very little deformation from
penetrating either wall, with just a little flattening to its front. The interface plots of
the complete problem at 550 »s for the coarse mesh calculation in Figure 8.17 and
at 450 jus for the fine mesh calculation in Figure 8.19 clearly show the deformation
predicted for the front and rear walls.

Distance against time plots are given for the projectile in Figures 8.21 for the two
resolutions. The coarse mesh calculation predicts a significantly lower projectile
velocity, with the projectile just reaching the rear wall by 550 jus. The fine resolution
calculation impacts at about 325 jus and has broken out of the other side of the tank
by 410 jus. Further finer mesh calculations, indicate that this fine mesh calculation
is close to mesh converged in terms of the projectile break out time.

The projectile velocity against time is plotted for both resolutions in Figure 8.22.
Again this emphasises the significantly lower projectile velocities in the coarse
mesh calculation. However, it also shows oscillations, which are believed to be
related to the reverberations of elastic waves within the projectile generated by the
initial impact. The amplitude of these oscillations generally falls during the prob-
lem for both resolutions. However, the fine mesh calculation also shows an increase
in amplitude at about the time that the reflected shock off the back wall reaches the
projectile.

These results clearly demonstrate that adaptive multi-material ALE algorithm
offers a robust and computationally efficient technique for the simulation of impact

and penetration problems.
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Figure 8.7: Mesh and interface plot at 10 fjs for coarse mesh projectile impact
problem.
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Figure s .s : Mesh and interface plotat 1 0 for fine mesh projectile impact problem.
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Figure 8.9: Interface plot at 200 sss for coarse mesh projectile impact problem.
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Figure 8.10: Mesh plot at 200 jjs for coarse mesh projectile impact problem.
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Figure 8.11: Interface plot at 200 jijs for fine mesh projectile impact problem.
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Figure 8.12: Mesh plot at 200 jus for fine mesh projectile impact problem.



CHAPTER 8 VALIDATION AND APPLICATION

INTERFACES

40.00c -
36.00C -
32.00C -
28.00C -

24.00C -

0oc

4.000

z!lcm) 400.0000C musec

Figure 8.13: Interface plot at 400 /us for coarse mesh projectile impact problem
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Figure 8.14: Mesh plot at 400 jus for coarse mesh projectile impact problem.
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Figure 8.15: Interface plot at 400 jus for fine mesh projectile impact problem.
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Figure 8.16: Mesh plot at 400 jus for fine mesh projectile impact problem.
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Figure 8.17: Interface plot at 550 jus for coarse mesh projectile impact problem.
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Figure 8.18: Mesh plot at 550 jus for coarse mesh projectile impact problem.
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Figure 8.19: Interface plot at 450 jus for fine mesh projectile impact problem.
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Figure 8.20: Mesh plot at 450 jus for tine mesh projectile impact problem.
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Figure 8.22: Calculated velocity history for projectile.
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8.3 Dynamic friction experiments

Dynamic friction experiments are currently being performed at AWE to vali-
date the friction model described in section 4.4. CORVUS is being used to model
these experiments because it allows material interfaces either to be represented us-
ing an interface reconstruction technique or Lagrangian slide lines. The former
offers robustness for the interfaces that undergo severe deformation, whilst the slide
treatment potentially offers greater accuracy and allows the influence of friction to

be assessed.

83.1 FN1

A schematic of AWEs first dynamic friction experiment FNI1 is given in Figure
8.23 [52]. The experiment consisted of aluminium and steel target plates with a
high explosive drive. The explosive drive was used to provide a strong shock in
each of the target plates. Aluminium and steel were chosen for the target materials
as they have significantly different shock speeds. A single fiducial marker was
placed normal to the interface between the target plates 4.0 cm from the drive end.
The fiducial was made of tantalum inside the aluminium and lead inside the steel
to improve radiographic contrast. A single radiograph of the fiducial was taken at
40.0jus.

In the absence of friction after the leading shock has passed, the fiducial should
remain fairly straight in the aluminium with a break at the interface, due to the dif-
ference in shock speed between the two materials. However, if friction is present the
fiducial will bend back, lagging towards the interface in the aluminium and bend-
ing forwards in the steel. The higher the friction, the more bending should occur.
The aim of the FN1 experiment was to measure the bending of the fiducial marker
and compare it against CORVUS calculations with different friction treatments. In
addition to inferring the amount of friction present, the variation in curvature of the
fiducial with distance away from the interface should also provide an indication of

the distribution of plastic work near the interface.
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Figure 8.23: Schematic of FN1 experiment.
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8.3.2 Calculational Methodology

Winslow’s equipotential mesh movement algorithm was applied to all materials
except the target plates. However, the nodes were also constrained to not be al-
lowed to relax until they had achieved a non-zero velocity. The mesh relaxation, as
required by Winslow’s algorithm, was also reduced by a factor of ~ to retain more
Lagrangian character to the mesh. Lagrangian mesh motion was enforced through-
out most of the target plates to enable the Lagrangian mesh lines to be compared
directly with the experimental fiducial markers.

The principal difficulty in performing these calculations was that a Lagrangian
slide line was required between the target plates to allow friction to be included,
whilst for robustness the multi-material cell treatment was required for all the other
interfaces. This required the slide line to be terminated at the T-junction in a robust
and accurate manner: this was achieved by tying the last node on each of the two
slide lines together at the T-junction, and then allowing mesh relaxation for the first
few zones in the target plates, and across the interface between the HE drive and the
target plates. It was also necessary to employ advective slide for the first few zones
along the slide line adjacent to the T-junction.

8.3.3 Numerical Results from the FN1 Calculations

Preshot calculations were required, both to optimise the design of the experi-
ment, and to determine the best time to radiograph. These calculations were per-
formed for the two limiting cases of zero friction and a locked or merged interface
treatment, in order to enable an assessment to be made by the experimentalists as
to whether the two cases could be distinguished radiographically. The radiograph
time 0of 40.0”" was chosen as it corresponded to maximum slip for the zero friction
calculation. The initial mesh used for the pre-shot calculations is given in Figure
8.24. A mesh plot at 40.0/ss is given in Figure 8.25 for a locked or merged inter-
face calculation. The calculated fiducial bending from this calculation is plotted in
Figure 8.26 providing a prediction of the maximum bending that could have been
observed experimentally.
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Figure 8.25: Preshot FN1 calculation with a merged interface treatment at 40 jus.
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Figure 8.26: Calculated fiducial bending for a locked interface at 0, 10, 20, 25, 30,
35 and 40 jus.
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FN1 was fired in April of 2001 with both a static and a dynamic radiograph
at 40.0ps being successfully obtained, as shown in Figures 8.27 and 8.28. Unfor-
tunately the experiment was only partially successful. The primary objective had
been to prove the diagnostic approach, i.e. check that the fiducial markers could
be seen radiographically. This first objective was achieved, as the markers can be
seen clearly on the original static and dynamic radiographs, although they are less
clear on the images reproduced here. The other objective was to collect some initial
data that could be used for friction model validation. This was not achieved because
the plates separated. This possibility had not been considered, and so void opening
had not been allowed in the preshot calculations. Unless void opening is expected,
this option is not normally enabled, as it can lead to robustness problems for some

applications. The radiograph also showed no appreciable curvature to the fiducial.



CHAPTER 8 VALIDATION AND APPLICATION 195

Figure 8.27: FN1 Static Radiograph.
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Figure 8.28: FN1 Dynamic Radiograph at 40 /xs\
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Post shot calculations were then performed with the void opening option en-
abled. A mesh plot from this calculation at 40.0"5 is given in Figure 8.29. These
calculations predicted void opening to have occurred between 10.0— 15.0jus. Given
this prediction, and assuming that once the plates separated any fiducial bending
would be frozen in, Figure fnlfid was re-examined to determine whether the ex-
periment could still offer any data to discriminate between friction models. Unfor-
tunately there is no appreciable difference at this time between the two interface
treatments of zero friction and a merged interface treatment. Given these conclu-
sions, further analysis of the data from FN 1 was abandoned and effort was focussed
on redesigning the experiment in order to delay void opening long enough to obtain
useful data for friction model validation. However, it should be noted that the post
shot calculation did provide a fairly good match in terms of the size of the gap that
opened, and the relative displacement of the end of the two target plates at the free
surface end. There was some suggestion that void opening at the target end may be
under estimated, possibly due to the technique employed for terminating the slide
line. However, the overall level of agreement was qualitatively very good, suggest-
ing that it would be possible to determine by calculation if, when and where, the

target plates would separate in future target designs.
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Figure 8.29: Post shot FN1 calculation with slide and void opening at 40 jus.
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8.3.4 FN1/2 Calculations

FN1/2 was designed by the author using CORVUS in order to delay the void
opening that occurred in FN 1[52]. The aim was to allow sufficient fiducial bending
to occur in the merged interface calculations to suggest that it would be possible to
discriminate experimentally between different friction models. The new design was
also required to retain as many of the original components from FN1 as possible,
to enable the follow on experiment to be fired without delay. This was achieved
simply by adding an additional steel plate, identical to that used in FN1, onto the
other side of the aluminium to form a three plate target. The HE dimensions were
also unchanged from FN1, but the charge was moved up and re-centred on the
aluminium plate.

The initial meshing and geometry for a preshot calculation of FN 1/2 is given in
Figure 8.30. FN1/2 was calculated with zero friction and void opening enabled, to
establish how much time was available for the fiducial bending. Mesh plots from
this calculation are given for 25.04s and 30.0/s in Figures 8.31 and 8.32 respec-
tively. These results show the plates start to separate at % 25.04s which is much
later than for FN1. The plates also separated on release from the far end of the
target away from the HE drive and so remained in contact at the fiducial site until
about 30.0/is, as can be seen in Figure 8.33. Therefore the best radiograph time
should be somewhere between 25.0 and 30.0/us. In order to determine whether such
a radiograph time would offer sufficient model discrimination, a calculation was
then performed with a merged interface. The calculated fiducial shapes for both
zero friction and a merged interface, and a range of possible radiograph times, are
presented in Figure 8.34. This shows that, at a conservative radiograph time of
25.0s, there is maximum difference of « 1.4mm in fiducial position at the inter-
face between the two treatments. The curvature for the merged interface calculation
spreads over as 1.5cm. These differences should be resolvable using flash X-ray

radiography.
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Figure 8.31: Preshot FN1/2 calculation with slip and void opening at 25 #ss.
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Figure 8.32: Preshot FN1/2 calculation with slip and void opening at 30 »s.
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Figure 8.33: Blow up of FN1/2 calculation with slip and void opening at 30 s

showing the extent of the void opening.
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Figure 8.34: Calculated fiducial bending for true slip and a locked interface at 0,
10, 15,20, 25 and 30 ss.



Chapter 9

Conclusions and Suggestions for
Future Work

In this chapter, the findings from this study will be collected and reiterated. In

addition, recommendations for possible further work are suggested.

9.1 Conclusions

Hydrocodes are used to simulate unsteady compressible flow problems that may
involve solid materials which can undergo severe deformation. This requires numer-
ical methods that can capture shock waves and material interfaces accurately. It also
requires the inclusion of interface physics such as slip, void closure, void opening
and friction. The numerical methods used in hydrocodes must also be compatible
with general equations of state and allow the inclusion of the influence of mate-
rial strength. Although Lagrangian and Eulerian schemes are the most widely used
techniques for hydrocode applications, there is also third type of method, the Ar-
bitrary Lagrangian Eulerian (ALE) technique, which potentially offers significant
advantages over the other two techniques for many hydrocode applications. How-
ever, most of the ALE methods that appear in the literature are Simple Arbitrary
Lagrangian Eulerian (SALE) schemes, where material interfaces are restricted to
remain Lagrangian. This limits the accuracy and robustness of SALE codes and
the range of applications to which they can be applied. The purpose of this work
was to develop an adaptive multi-material Arbitrary Lagrangian Eulerian (ALE) hy-
drocode, where material interfaces are not constrained to remain Lagrangian. The
most novel aspects of this work are concerned with the numerical treatment and
modelling of material interfaces in an ALE code.

The adaptive multi-material ALE algorithm has been implemented in an existing
2D staggered grid Lagrangian hydrocode CORVUS, which was developed at AWE

205
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by Whittle [29]. This was possible because the adaptive multi-material ALE algo-
rithm splits each timestep into separate Lagrangian and advection phases. A split
approach was preferred, as opposed to solving the ALE equations directly in conser-
vative form. This simplifies the treatment of material interfaces and the inclusion of
additional physics. The CORVUS Lagrangian step is fully described in chapter 3. In
summary however, the Euler equations are solved in Lagrangian non-conservative
form, using a predictor corrector time discretization and explicitly integrated bi-
linear isoprametric quadrilateral finite elements for the spatial discretization.

The only change required to the original Lagrangian step to implement the adap-
tive multi-material ALE algorithm, was to make it compatible with the presence of
multi-material cells. However, during the course of this study some improvements
were also made to the Lagrangian hydro scheme. The most significant of these was
the introduction of a monotonic artificial viscosity. This significantly improves the
shock capture of the scheme, making it comparable with second order Godunov
methods, as illustrated by the bubble/shock interaction problem in chapter s. The
original DYNA-like anti-hourglass filter used by Whittle was also modified in a
dimensionally consistent manner, to remove its dependence on the material sound
speed. This has significantly improved the performance of the scheme for long thin
aspect ratio zones. Finally, spherical symmetry for axisymmetric problems was
found to be improved by the author, if the divergence of the velocity field used in
the internal energy update was replaced by the rate of change of the cell’s actual
volume. A number of idealised test problems are also presented to demonstrate
the quality of the solutions that can be obtained with the underlying Lagrangian
scheme.

In the author’s opinion, one of the great strengths of the adaptive multi-material
ALE algorithm is that it provides two different schemes for modelling material in-
terfaces. In chapter 4 the Lagrangian slide algorithms are described. These methods
are potentially more accurate than multi-material cell based methods, because they
restrict nodes to always lie on the material interface. This enables force and mass
contributions to be calculated directly at the interface and the tangential force con-
tributions to be decoupled. Inevitably however, these methods will suffer robustness
problems when a material interface undergoes severe deformation. Slide algorithms
also provide a more natural framework for the inclusion of interface physics than
multi-material cell based interface schemes. The slide algorithm used in the multi-
material ALE algorithm was developed by Whittle [29] and is fully described in
chapter 4.

The author’s first real involvement in the development of CORVUS came dur-
ing the extension of the slide algorithm to include void closure and void opening.
The author made two main contributions here, the first of which was the sugges-
tion that an oblique impact at close to normal incidence between two metal plates
would provide a 2D test of the accuracy and robustness of the void closure algo-

rithm. The solution to this problem should approximate that of a normal impact: a
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problem which can be solved analytically. This ID analytical solution could then
be used to assess the 2D numerical solution. In practice, the main difficulty en-
countered by Whittle [29] in extending the slide algorithm to provide void opening
and void closure, was a tendency for a slide line to reverberate opening and closing
for numerical reasons, rather than as a result of the physics being simulated. The
author proposed the solution to this problem, whereby if the slide surface accelera-
tion indicates that the slide line should open, the pressures in adjacent elements are
examined to determine whether or not the interface is in tension. If these elements
are all in tension, then the slide line is allowed to open, otherwise it remains closed.

However, the author’s main contribution to the slide line algorithms used in
CORVUS has been in the field of dynamic friction. Dynamic friction refers to the
physics that govern the relative tangential motion of two strong materials in contact
when a shock wave propagates across the interface. This physics is not well under-
stood and is an area of active research. It has been speculated by the author that a
boundary layer is formed in the weaker material, where the plastic work is focussed.
This could be as a result of changes in microstructure, dislocation dynamics, shock
welding or adiabatic shear. However, the focussing of plastic work into this bound-
ary layer may then lead to a local reduction in yield strength, producing more local
shear or slip than would otherwise be predicted for a locked interface.

A conventional slide algorithm assumes there is no friction or tangential force
coupling the two materials. If one or both the materials have no appreciable mate-
rial strength then this is a good approximation. In addition, a Lagrangian interface
can also be treated as merged, which is equivalent to the maximum amount of fric-
tion that could be present. However, it is speculated that reality lies somewhere
between these two limits, and what is really required in a hydrocode is an interface
constitutive law, which adequately represents the physics that actually occurs. In
order to start to investigate dynamic friction, the CORVUS slide line algorithm has
been modified by the author to allow a frictional force to be introduced. The current
model is very simple, including three terms that can be applied in isolation or as a
linear combination. The first term is simply a function of the normal force acting
at the interface, while the second two terms are functions of the tangential velocity
difference across the interface. Given user defined friction coefficients, the fric-
tional force is then evaluated for the nodes on one slide surface. The magnitude of
the force is then limited so that it cannot exceed the frictional force required to lock
the interface. An equal opposite reaction is then mapped to the opposite surface to
make the scheme conservative and preserve symmetry. Experiments are currently
being performed at AWE to provide data to validate, and if necessary, to refine this
model. The calculations used to design and analyse these experiments have all been
performed on CORVUS by the author, some of which were presented in chapter s .

In chapter 5, the mesh adaption algorithms that have been developed by the
author for CORVUS, were presented. Two different mesh adaption strategies are

available: mesh movement and mesh insertion. The former is principally used to
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improve mesh quality and robustness: the latter is used to maintain resolution in
one logical mesh direction for convergent flow problems. The mesh movement al-
gorithms that have been developed are very flexible and can be used in a number of
different ways. However, in general the author has found that best approach is to
constrain the mesh movement to retain as much Lagrangian character to the mesh as
possible. The mesh movement options that have been developed can be subdivided
into algorithms for interface and boundary node movement, node movement con-
straints, internal node movement and weighted node movement. Winslow’s equipo-
tential algorithm is used to moved the internal nodes. However, the quality of the
meshes generated by this algorithm have been found to depend strongly on the po-
sitions of the nodes on the boundaries of the region to which Winslow’s method is
applied.

In order to improve the mesh quality obtained using Winslow’s scheme, a num-
ber of methods have been developed by the author for repositioning nodes along
slide lines before Winslow’s method is applied. The best overall method of this
type that has been developed is one which adaptively repositions slide nodes in arc
length along slide surfaces, whenever the minimum arc length between the slide
nodes is smaller than some user defined fraction of the mean node spacing. This
approach has been shown both to improve the quality of the meshes generated, and
to allow slide lines to be retained in calculations for longer, under more severe inter-
face deformation. This also increases the range of interface physics options that can
be applied and introduces more Lagrangian character into the mesh. The retention
of more Lagrangian character in the meshes generated by the mesh movement al-
gorithms is beneficial, as it naturally refines and aligns the mesh with flow features
of importance, such as shock fronts. It should also reduce advection errors and nu-
merical diffusion. The Lagrangian character of the mesh has also been improved
by introducing a number of mesh movement constraints to limit when and by how
much nodes can be moved by Winslow’s algorithm. Winslow’s mesh movement
algorithm has also been modified to allow a user defined material or region weights
to be applied. This provides a penalty based mesh refinement capability, which will
pull zones into materials or regions of interest to the user, a technique which was
demonstrated to be very effective on the bullet impact problem presented in chapter
8.

In convergent flow problems the computational domain of interest generally
changes aspect ratio as the problem evolves. This leads to a reduction in resolu-
tion in one direction, which cannot be improved by mesh movement. In order to
address this issue an automatic mesh insertion option has been added to CORVUS
by the author. This option simply inserts additional mesh lines in one logical mesh
direction, as required by a aspect ratio error estimator. An efficient integral rezoner
method has been used to implement this scheme, based on the work of Dukowitcz
and Ramshaw [60, 61, 62, 63]. The method has been demonstrated on ID and 2D

spherical implosion test problems.
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The single and multi-material advection methods developed for the adaptive
multi-material ALE algorithm were described in chapter 6. The single material
advection employs van Leer’s second order advection method, implemented using
an isotropic approach on 2D unstructured non-orthogonal grids, using volume co-
ordinates as proposed by Benson [9]. The main novel aspect of the single material
advection method here is the generalisation of the YAQUI [2] for momentum advec-
tion method, to make it applicable to arbitrarily connected nodes, which may have
any number of immediate neighbours. A new multi-material advection method has
also been developed by the author for non-orthogonal grids. This scheme is based
on the improved SLIC method developed by Tipton at LLNL for CALE. The author
had to modify the CALE scheme to make it compatible with the isotropic advection
used in CORVUS. Further improvements were then made to the scheme to improve
it’s tracking of isolated thin layers and to remove the noise the scheme generated
on long thin aspect ratio zones in convergent flow problems. The Lagrangian test
problems which were presented in chapters 3 and 5 have also been repeated using
the ALE capability, and are presented in chapter 6 for comparison. These ALE cal-
culations are in good agreement with the Lagrangian results, giving confidence in
the accuracy and robustness of the new method.

The main difficulty in the Lagrangian treatment of multi-material cells is the
lack of information about the velocity distribution within the cell. This means a
subcell model must be assumed in order to determine the thermodynamic states of
the material components and the forces such zones generate at the nodes. An equal
volumetric strain treatment was initially applied to all the material components of
each multi-material cell in CORVUS, and the average cell pressure was taken to
be a volume fraction weighted average of the individual material pressures, as de-
scribed in chapter 3. However, this is clearly unphysical, as at a gas metal interface
the metal must undergo the same compression as the gas in a multi-material cell.
This treatment can lead to code robustness problems, material components enter-
ing non-physical (P,V) states and does not provide a suitable platform for building
in additional interface physics such as slip and void closure. In chapter 7 the La-
grangian treatment of multi-material cells was revisited, and a novel new scheme
was developed, which attempts to emulate the behaviour of separate Lagrangian
subzones, allowing the volume fractions of a multi-material cells to vary during the
Lagrangian step in order to move the material components towards pressure equi-
librium.

In the predictor phase of the Lagrangian step, the new scheme applies a simple
wave interaction model at each material interface within each multi-material cell.
This is analogous to applying an approximate Riemann solver, and is used to cal-
culate an interface velocity relative to the frame of reference of the cell from an
approximation to one of the Rankine Hugoniot relations. This velocity is used in
turn to calculate a volume fraction flux between the two materials. The volume

fraction fluxes are then applied as volume changes. But the sum of these volume
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changes for each multi-material cell is constrained to not exceed the total predicted
cell volume change, and the volume changes are only allowed in one sense or direc-
tion at each time step. Compressibility factors are then evaluated from the fraction
of the predicted cell volume change that has been given to each material. These
new volume changes are then used to update the half step density and internal en-
ergy of each material component. It was also shown that more accurate states are
obtained if a new multi-phase artificial viscosity is used. This is simply calculated
as a separate artificial viscosity for each material component, using the components
individual density and sound speed. New average cell pressures are then defined as
compressibility weighted averages of the values for the individual material compo-
nents to ensure the work performed in the momentum step is consistent with that in
the corrector internal energy update. The final cell volume changes are then appor-
tioned to the materials, according to the compressibility factors for each material.

A novel approach was also used to demonstrate the accuracy of the new method,
where multi-material cells were introduced at the start of a calculation, which was
then performed with pure Lagrangian mesh motion. The states of the individual
material components were then compared with an analytical solution and other nu-
merical solutions, employing the equal volumetric strain scheme and a pressure
relaxation algorithm. The new method was in close agreement with the analytical
solution and showed significant improvement over the other two numerical tech-
niques. The method has also been extended to provide a consistent void closure
treatment which has been benchmarked in a similar manner. This suggests that
the new scheme should form a suitable framework as desired for the inclusion of
additional interface physics.

In chapter 8, three examples of the validation and application of CORVUS were
presented. In the first example, CORVUS is used to calculate a shock bubble inter-
action problem. The CORVUS calculations were compared against both the exper-
imental data, and another hydrocode, VUCALM. This experiment is well suited to
hydrocode validation in that it offers a series of images for a range of problem times
which clearly show shock fronts and material interfaces. VUCALM is an interest-
ing rival numerical technique to compare against as it is unstaggered, and employs a
Riemann solver rather than an artificial viscosity method, as used in CORVUS. So it
is interesting to compare the ability of the two codes to capture shocks. VUCALM
is also a free Lagrange code, so it also represents a pure Lagrangian technique which
can be applied to high deformation problems. As CORVUS must reconstruct mate-
rial interface it is also interesting to compare the ability of the two codes to model
material interfaces which under high deformation.

In modelling the experiment with CORVUS, a new mesh movement strategy
was also devised. This introduced a simple procedure for temporal adaption, where
the advection step is only called if the time step is dropping. This was found to be
computationally very efficient for this problem as the cost of the Lagrangian step

is about a third of that of the advection step. This approach also acts to constantly
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build in Lagrangian character to the mesh. The solution obtained with this method
showed good agreement with all the experiment images throughout the problem
in terms of the position of the shock fronts and bubble interfaces. CORVUS and
VUCALM both provided an equally good match to experiment. The two codes
also provided comparable shock capture. In addition to providing validation of
the adaptive multi-material ALE algorithm, these results also demonstrate that a
staggered grid hydro method, combined with a monotonic artificial viscosity, can
capture shocks with a similar level of accuracy to that achievable with second order
Godunov methods.

The adaptive multi-material ALE algorithm should be well suited to projectile
impact and penetration problems. A typical example of such a problem was also
given in chapter 8, which involved the impact of a steel projectile with a tank of wa-
ter with aluminium walls. This problem demonstrated how the weighted Winslow’s
mesh movement algorithm can be used to focus mesh resolution into a feature of in-
terest, in this case the projectile. The calculations presented followed the trajectory
of the projectile as it penetrated the outside wall, travelled through the tank, and
exited through the back wall, demonstrating the robustness of the adaptive multi-
material ALE algorithm for problems of this type.

One of the many uses of CORVUS at AWE is in the design and analysis of
dynamic friction experiments. These experiments are required to validate the au-
thor’s friction model, described in chapter 4, and to increase our understanding of
the physics of dynamic friction. In chapter 8 some of the calculations that have
been performed by the author to model these experiments were presented. These
calculations clearly demonstrate the importance of the two interface treatments that
the adaptive multi-material ALE algorithm provides. The experiments to date in-
volve two metal plates under shock loading from a high explosive charge placed
at one end. In order to allow different interface physics models to be assessed
the CORVUS slide line treatment had to be used between the two metal plates.
However, such calculations will not run to completion with a Lagrangian interface
treatment for the explosive material interfaces, since the relatively untamped explo-
sive products expand rapidly around the metal plates, producing severe interface
deformation. The explosive interfaces can however be modelled robustly using the

multi-material cell based interface reconstruction technique, available in CORVUS.

9.2 Possible Future Work

A brief review will now be given of possible future work on CORVUS. This
will include priorities, and a brief update on the status of any work that has al-
ready commenced, and will be subdivided into further improvements to the adaptive
multi-material ALE algorithm, and increased functionality.

It may be necessary for some future applications of CORVUS to develop a more
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local or minimum intervention mesh adaption strategy. This may be important, for
example, in radiation hydrodynamics problems. In such applications users typically
employ meshes with large aspect ratio cells (% 100 : 1) to reduce run times. This
will put far greater emphasis on the underlying Lagrangian step. A series of recent
papers by Caramana at LANL [96, 97, 98, 99] describe a compatible, energy and
symmetry preserving Lagrangian hydrodynamics algorithm which appears to offer
some significant improvements over the current Lagrangian step used in CORVUS.
Caramana’s finite volume scheme could be used as a replacement for the current
finite element Lagrangian step. Alternatively, it may be possible to modify the
current fine element scheme to exploit some of Caramana’s ideas.

Caramana’s scheme is termed “compatible” since instead of updating the inter-
nal energy of an element using a PdV formulation, a compatible work update is
performed. This updates the internal energy, using the nodal forces from the ac-
celeration step and the distance moved by each node during the time step. This
has two benefits it ensures that energy is conserved to round off for the Lagrangian
step, which is not achieved with a PdV formulation, and it enables edge based arti-
ficial viscosities to be used. Both of these are obvious improvements, but the latter
potentially offers greater benefits. The current scalar monotonic artificial viscosity
used in CORVUS is very effective, but does not behave as well as desired for large
aspect ratio zones. One route forward is to develop a tensor monotonic artificial vis-
cosity. However, tensor viscosities often introduce additional problems, especially
at centres of convergence on non-orthogonal grids. The monotonic edge viscos-
ity proposed by Caramana should avoid these difficulties, while still improving the
behaviour of large aspect ratio zones.

The current slide line algorithm in CORVUS could also be improved in a num-
ber of ways. An equal voracity treatment which does not distinguish between master
and slave surface may offer improved accuracy. A simple way to achieve this may
be to alternate which surface is taken as the master at each time step. However, the
author has not noticed any significant problems which stem from the current ap-
proach. The most significant deficiencies of the current slide treatment in practice
appear to lie in the void closure treatment. The current approach is not robust when
two surfaces gradually close, and ajet forms between the two surfaces. This gener-
ally leads to poorly defined unit vector normals for the slave surface, and errors in
the positions of slave nodes, as they are put back onto the master surface, this in turn
may result in mesh tangling and time step collapse. This problem may be solved
by using the free surface trajectory of the node to calculate the point of impact,
rather than its unit vector normal. A more significant problem that has been noted
in some applications is a strong sensitivity to the choice of master and slave and
their respective mesh resolutions in void closure problems. This is believed to be
due to the current method for correcting a node’s velocity after impact, and the in-
ternal energy fix-up introduced to conserve total energy after the impact, described

in chapter 4.
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In the author’s opinion, something closer to an equal voracity treatment is re-
quired for void closure. The current method simply puts the slave nodes back in
contact with the master surface, and then interpolates a new velocity for the slave
node from adjacent master nodes. If kinetic energy has been lost, this is then added
back in as internal energy. A better approach may be to conserve momentum in the
normal direction between each pair of real and pseudo nodes, which collide, and
so define new normal velocities for each real node after it’s collision. This should
minimise the loss or gain in kinetic energy. Since pressure continuity should be en-
forced at an impact, the lost or gained internal energy could be distributed amongst
the two materials in such a way as to move towards pressure equilibrium.

The remaining deficiency with the current slide algorithms in CORVUS is that
the void closure algorithm is currently incompatible with the friction model. This
is important as real engineering problem inevitably have tolerance gaps, and gaps
may open during an experiment, as discussed in chapter 8. This may cloud the
interpretation of the influence of friction, both in applications and dynamic friction
experiments, so it is of relatively high priority that this deficiency is corrected.

The new Lagrangian multi-material cell scheme that has been developed for
CORVUS was a significant improvement. However, this work could also be taken
further. The next step should be to extend the method to make it fully compatible
with material strength. One possible way to achieve this has already been discussed
in chapter 7. If this is achieved then the great challenge is to extend the method
further to provide multi-material slide. A multi-material cell scheme that includes
all the interface physics that can be introduced through slide algorithms would be
a very robust technique, and would allow the importance of slide and friction to be
assessed for the first time for interfaces undergoing high deformation. In addition,
it may also be possible to extend the multi-material void closure scheme, to also
treat impact problems where a gas initially separating the impactor and the target is
important, and must be modelled explicitly, rather than treated as an idealised void.

As discussed at the beginning of this section, it may be possible to further im-
prove the accuracy of the adaptive multi-material ALE algorithm by developing
more local mesh movement algorithms. However, the risk of such an approach is
that while gains may be achieved for some problems, it may make the code less
robust. This is why a constrained global mesh movement strategy is currently used.
However, it may be possible to further refine the adaptive in time mesh movement
algorithm, that was demonstrated for the shock bubble interaction problem in chap-
ter 8. This approach employs a minimum intervention strategy, and attempts to
run with as close to Lagrangian mesh motion as possible, but when it does adapt it
applies a global mesh movent algorithm. Possibly the simple time step based crite-
rian could be improved and additional criteria devised to define when a Lagrangian
interface should be relaxed. It has also been noted by the author that Winslow's
algorithm does sometimes move a node in the wrong direction, particularly in the

vicinity of Lagrangian boundaries with high local curvature. It may be possible to
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modify Winslow’s algorithm to detect these situations and apply a different strategy
in such circumstances.

There are also a number of improvements that could be made both to the single
and multi-material advection algorithms. Corner coupling errors introduced by the
isotropic advection method used can be seen in idealised test problems, but do not
appear to have any significant effect on real applications. These errors could be re-
duced significantly however, by either using an advection method based on Collela’s
corner transport upwind (CTU) algorithm, or simply calculating how much of each
overlap volume actually lies in the donor cells diagonal neighbours, rather than their
main neighbours, and subdividing the advection fluxes appropriately. However, pos-
sibly the most important deficiency of the advection methods used in the adaptive
multi-material ALE algorithm is the loss in kinetic energy, which is incurred when
momentum and internal energy are advected. This loss in kinetic energy could be
calculated and added back in as additional internal energy, as is done in a number
of codes. However, in the author’s opinion this is just trading one error for another.
The author has also found a significant sensitivity in some applications where this
approach is taken. A better approach may be to try to minimise the energy error,
rather than fix it up after the error has been introduced. This may be achieved by
comparing the mass weighted van Leer advection of velocity (momentum) and the
square of the velocity (kinetic energy). This may imply that the error would be
reduced if a higher order initial value distribution was assumed for the momentum
advection, such as in the piecewise parabolic method.

The multi-material advection method used again performs well in real applica-
tions, but could be further improved. An explicit treatment of T-junctions would
certainly be useful for some problems. In addition, it would also be interesting
to implement Youngs’ interface reconstruction method [87], and assess whether it
offers any significant advantages over the current CORVUS treatment for applica-
tions. An interesting research topic which would complement the work done here by
the author in improving the Lagrangian treatment of multi-material cells, would be
to attempt to take the multi-material advection above first order. In practical terms
the main deficiency that has been noted with the current method is with large aspect
ratio zones where the interface sometimes still appears a little noisy. This may be
due to the switch over from serial to parallel advection. Possibly there could be
some merit in smoothing this transition.

In chapter 8 the gas bubble was painted on top of the mesh at the start of the
problem using a dedicated subroutine. This allowed a more ideal initial mesh to be
generated and higher quality meshes to be generated during the problem by the mesh
movement. This is quite a powerful approach would could be exploited in many
problems, by developing a general ALE generator that would allow the problem
geometry to be separated from the mesh generation. This would greatly simplify the
set-up of many complex engineering problems, as well as significantly improving

both the level of engineering detail that can realistically be represented, and the
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mesh quality that can be achieved in many problems. In terms of the usability of
CORVUS this is a high priority.

The highest priority at present is to reduce the run time for large, high resolution,
calculations on CORVUS. Two routes are being pursued to achieve this: distributed
parallelism and the development of an adaptive mesh refinement (AMR) capability.
The main challenge in parallelising CORVUS is to achieve scalability, given the
more limited amount of work available in a 2D code, and the local nature of the
algorithms used in CORVUS. The Lagrangian step has been parallelised, and work
is now focussed on parallelising the advection step.

In the author’s opinion, the best way to introduce time dependent mesh adaption
into a hydrocode may be through the development of a hybrid ALE and AMR ca-
pability. The less expensive ALE capability principally would be used to maintain
mesh quality and the other benefits that have already been discussed. The AMR
capability would provide additional resolution for the physics and features of in-
terest such as shock, detonation waves and material interfaces. Given the ALE
framework, the refinement could be anisotropic in nature to improve its efficiency.
Although a number of Eulerian AMR codes have been developed, the author is
aware of only one other ALE/AMR code which is under development at LLNL
[100], and this has still to address the challenges introduced by the presence of slide
lines and multi-material interfaces. The coding of a prototype version of CORVUS
which combines its current ALE capability with AMR has just begun. Whilst it is
unlikely that such an AMR capability could compete with parallelisation, in terms
of the reduction in run times that can be achieved for most pure hydro problems,
it may offer greater benefits for problems including additional physics which must
be solved using implicit methods, that do not offer the same parallel scalability as
explicit hydrodynamics.

Many of the important engineering and physics problems to which hydrocodes
are applied are 3D in nature. The adaptive multi-material ALE algorithm currently
is being implemented in a 3D code at AWE known as PEGASUS.
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Appendix A

Evaluation of Shape function
integrals

In chapter 3, weak integral forms of the conservation equations were reduced to
simple forms, involving the integral of the shape functions and their derivatives over
a square in a local coordinate space. The isoparametric space will now be derived
for each element, and used to derive the various terms required in chapter 3, by
exact integration. A more complete explanation can however be found in [30].

Recall the shape functions (3.35) expressed in terms of the local coordinate
system.

M = 3(1 -")(1-T() (A.])
l

=5 - (A.2)

v3 = j(1+4)(1+n) (A.3)

A= (1 —£)(! + T)) (A.4)

An isoparametric formulation is used for the Lagrangian step in CORVUS,
which means that both the geometry of the element and the functions to be in-
tegrated are represented in terms of discrete nodal values and these same shape

functions. Whilst the area of an element is given by

dxdy = detJd"dx)\ (A.S5)
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where the Jacobian matrix J is defined as

I
—
J="'< 5y (As)
- S J
dN, -
X1 dZ, _X1 L
dNi Y ™ (A7)
czioanxo 11 >
and the derivatives of the shape functions are given by
(A.s)
(A.9)

.etc

Thus the x,y coordinates at any point *,p within an element can be obtained from

*4.11)= X MVA

(A. 10)
which can be expanded as
1
F(£p) = (g + X2HF3 HFOFECH] H3D4%T -5
+p(-*1 -x2 X5+ X))+ p(Fi - X2+ X3~m)) (AlD)
and similarly fory(”,p).
Using the chain rule of differentiation
dNj dNj d dNj dr
d | (A.12)
dx dx 3p dx
and obtaining the partial derivatives of £ and p from the identity
dr, dif
Xk =
T 1 s (A.13)
ay dy
3v _dx
a
(A. 14)
detj -% &
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We can then write:

dx y, dNj

A S Xi

X1+X2+X3-X4) + -{X\1- X2+ *3 - X4)

= Ai +A 27 (A.15)
Similarly:

dx 1
- XV - x2F 3R L1 -x 24 X3-X4)
r

= A1T A2 (A. 16)
AN . .

=]j(-y1 +y2+y3-y4) +yi -y2 +y3-y4)

= B\ + 52T (A.17)

0L = A-yi -y2+y3 + ) + Nyi -y 2+y3-y4j

=b2+ b2s (A. 18)
The Jacobian matrix (A.7) and its inverse (A. 14) can now be formed to give

Ai+A2rf B[+B2¢
J= (A. 19)
A3+A28 7B+ ZR2f

B3 + B2~ —(L?i+2?22T)) (A.20)
-(A3-fA2q) Ait+AZ2j '
where
C=detj = [(Ai + A20XB3+ B2%) - (Bj + B2")(A3 + Azr|)] (A.21

The partial derivatives of the shape functions in the global coordinate space can then
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be written totally in terms of the local coordinate system as
= ir (@ B3 +B& (A22)
—n s+ Ay + (A.23)

..etc

The integrals that were obtained from the analysis of the weak forms of the conser-

vation laws in chapter 3 can then be evaluated.

{/*,}:j [ Nidetjde,dr\
S/ ,(* -i,)(B3+B25,)a~1—T))(i ‘bﬁ)ﬂ

~\J (1- SNA3+A42Z)dZf (\-r|)(B, +B 2\)dr|

:l[(B- B2)(3At-A2) = @8—%— B2) QA.\ZD

and similarly

= 1[(3Bs + S2)(3A, - A2)- (3A: + A2)(3B, - S2)] (A.25)
= 1[(3Bs + B2)(3A| +A2)-(3A: +A:2)(3Bi+B2)] (A.26)
= i[(3Bs - B2)(3A, + A2)- (3As —A:)(3B| + B2)] (A.27)

The partial derivative terms are integrated in the same way, and reduce to very neat

expressions in A and B.

i =L il-, + 1)(Bi +B2r|)]drtJdqdT]

-S s+ B\ (A.28)
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and similarly,

dy
dN2 .
= B3+ B1
dx
dN2
= -43-4 1
dy
dN3 .
= B3-Bi
dx
dN3 )
= -As3+Aj
dy
dN4
= -B3-B 1
dx
dN4
—As3 AA
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(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)









