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Structural alloys applied to Aerospace and Power Generation applications are expected to operate at 

temperatures exceeding those originally envisaged during design to meet the tightening regulations on 

emissions, satisfy the ‘green lobby’ and improve the efficiency o f operation. Extended periods of high 

stresses over time will induce creep deformation and eventually static failure in such alloys. Current 

empirical methods to predict creep performance are restricted by the amount o f long-term creep data 

generated on the international stage, as such generation of data is a matter o f time and cost. To alleviate this 

shortfall in measured data, a novel extrapolation methodology, the Wilshire equations, has been developed at 

Swansea University for long-term creep predictions. In the current research work, this new methodology has 

been widely studied and successfully used to predict the long-term creep behaviour o f a selected aerospace 

alloy. Titanium IMI834, currently employed in aerospace industry, has been used as the model material to 

enable sensitivity studies, examine and correlate creep performance to the microstructure and deformation 

mechanisms using this technique. For this purpose, tensile, stress relaxation, creep, creep-step or cyclic creep, 

and creep-vacuum tests have been carried out on Titanium IMI834 in order to study the deformation 

behaviour of this alloy and to run the new model. The Metallurgical work involved studying the behaviour of 

this alloy under creep and cyclic creep conditions (in both air and vacuum) and the oxidising layer developed 

on the surface of this alloy, the alpha-case, has also been thoroughly studied under different conditions of 

stresses and temperatures. Besides, the surface cracks were studied and predictions based on the actual 

measurements were obtained. Other parametric techniques have been critically reviewed, examined and 

compared to the Wilshire technique creep predictions. As a milestone o f this project, full creep curves were 

accurately re-constructed, based on this technique, at all stresses and temperatures and compared with the 

available creep curves.
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CHAPTER 1

In t r o d u c t io n

The drive towards more efficient gas turbines and the associated reductions in greenhouse emissions require 

the existing gas turbines to operate under higher severe temperatures. However, this aim is restricted by the 

limitation of the materials used in such harsh environments which may, eventually, lead to the deformation 

and failure of these components. In order to avoid such catastrophic failures and increase the efficiency, 

future designs must utilise novel or improved alloy systems with an enhanced temperature capability. One 

key material property that governs the life of many components within the gas turbine is creep. A detailed 

understanding o f the creep behaviour o f materials is seen as an essential requirement. However, 

understanding and predicting the creep properties is a very important challenge for researchers, which is the 

basis o f this study. Therefore, the current research will thoroughly concentrate and investigate the long-term 

creep predictions of materials as well as their behavioural attributes under the applied stresses and 

temperatures.

1 .1  G e n e r a l

There are many applications where materials are required to survive, without failure, for long periods in 

severe environments characterised by high stresses and temperatures. The best practical application which 

exemplifies this aim is the gas turbine where many components are subjected to very high temperatures, 

resulting from the hot gas stream, and stresses, resulting from the rotational speeds. Therefore, when 

selecting materials for high temperature components, the resistance of these materials to deformation and 

failure over long periods of time must be assessed and evaluated in order to avoid creep failures [1].

Creep is defined as the plastic deformation of materials under the effect o f high stresses and temperatures for 

long durations o f time which, eventually, leads to fracture. Generally speaking, problems o f creep failure and 

excessive distortion are experienced at temperatures equal, or just above, to the half o f the melting 

temperature, TM, of a material. It might be possible to avoid creep problems by either selecting materials of 

high melting temperatures or maintaining the operation temperatures far away from those at which creep 

could take place, typically less than the third of the melting point of a material. However, these simple 

solutions do not provide a comprehensive and convincing answer to the problem. On one hand, materials of



Chapter 1. Introduction 2

high melting temperatures can be developed and employed but will still show creep deformation under the 

high stresses and temperatures encountered in such applications. On the other hand, if temperatures are 

lowered to less than the third of the melting temperature, this will, in return, lower the efficiency, which is 

undesirable in these applications. Therefore, the design stage is the crucial part of the industrial process 

where decisions should be taken so as to avoid the long-term creep failures [1].

During the design stage, a comprehensive study and analysis o f a material’s behaviour should be made before 

this material is considered for a particular application. For certain applications, this might be adequate but for 

fundamental studies o f creep behaviour, full creep curves must be available. For this purpose, creep tests can 

be carried out at different stresses and temperatures in order to provide the designer with the necessary 

information to study and analyse the long-term behaviour of materials under the applied stresses and 

temperatures. Various types of tests were developed for such purposes wherein a specimen is subjected to a 

tensile load, at a specified temperature, and its elongation over time is recorded [1]. The ‘Stress-Rupture’ test 

is one of the creep tests in which the specimen's time to fracture, tf, and its creep ductility at fracture, £f, are 

measured. This test defines only the fracture point o f a material without providing any information about the 

shape of the creep curve, i.e. no creep curves are recorded in such tests. Whereas the ‘Normal Creep’ test 

provides not only the previous fracture coordinates, but also the whole plot of the full creep curve at the 

selected stress and temperature. However, as the cross sectional area o f the specimen continuously decreases 

while the creep test is ongoing under a constant load, the stress on the specimen will, thus, vary accordingly. 

To avoid this variation, the ‘Constant-Stress’ creep test was introduced in order to keep the stress constant 

during creep by using a profiled cam mechanism [1,2].

It is also well known that large variations, or scatter, might exist in the generated data. Many sources of 

scatter might exist, such as: inaccurate measurements of the diameter of the specimens, the applied load and 

thus, the applied stresses, the gauge length, the specimen’s temperature if  the thermocouples were not 

accurately calibrated and the extension, or the strain, if the extensometers were not well calibrated. 

Moreover, scatter might be a result o f the existence o f surface defects and scratches which can become 

possible sources o f surface cracks leading to a premature failure of the material. Therefore, a designer must 

consider this fact when using such information for practical purposes. However, as long as the data are 

available, studies can be carried out in order to predict the creep behaviour under different applied conditions. 

Since it is impractical to perform creep tests for the entire lifetime o f some real applications, particularly 

when lifetimes can range, for instance, from 20,000 to 120,000 hours as in the power generation applications, 

determining a conservative and an acceptable method for extrapolating the short-term measurements is a
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significant goal. Alternatively, for aerospace applications, where the time to a certain percentage strain is 

more desirable, this method should also provide accurate predictions of the creep behaviour based on this 

criterion. Starting from this point, many extrapolation techniques were devised for the purpose of predicting 

the long-term creep behaviour of materials without the need to carry out practical tests which could last for 

many years before being able to size and manufacture the required components. Minimising the scale of 

these larger tests will, in return, reduce the cost and save the time needed for such long-term tests. Hence, 

these predictions require short-term data to be available from the various types o f creep tests at the same 

conditions as the actual application. Extrapolation methods must take into consideration that creep is a 

critical function of stress and temperature, i.e. a relatively small change in either o f these quantities can 

drastically affect the material's lifetime. These methods are being used to predict both creep-rupture and 

creep-deformation behaviours, in which the former has received a greater attention than the latter as a result 

of the more drastic consequences o f brittle failures, i.e. sudden rupture, compared with ductile failures, i.e. 

excess deformation [2].

1 .2  P r o je c t  H ig h l ig h t s

The first part of this research will review the traditional parametric models, most o f which proved their 

invalidity in predicting the creep properties based on short-term measurements, indicating the flaws and 

limitations involved in their use for such purposes which, thus, led to overestimations of the real lifetime of  

many materials and could have caused potentially catastrophic consequences. Furthermore, it will show that 

the inaccuracy involved with these techniques is a result o f ignoring some parameters and factors affecting 

the real creep behaviour of practical applications. In addition, it will prove that many o f these techniques 

were based on individual assumptions which are not necessarily taking place during creep deformation and 

led, thus, to many errors and overestimations in the long-term predictions. For this reason, any lifing 

technique should be accurate, acceptable and generally conservative.

An overview of a new methodology will be presented taking into consideration the flaws and the errors 

involved in the previous proposed techniques. It will be shown that this new methodology was based on 

parameters that have physical meaning in contrast to most of the traditional techniques that have only 

involved 'variable constants' or 'fitting parameters' which did not necessarily have any physical explanations. 

The research will then detail the practical work that has been carried out on the aerospace alloy, Titanium 

IMI834, which included: tensile, stress relaxation, creep, creep-step and creep-vacuum tests. Besides, the 

metallurgical work that has been done on each fractured specimen, which included metallographic and
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fractographic work using the Optical and the Scanning Electron Microscopy (SEM), will also be discussed so 

as to understand the microstructural behaviour under the different types o f testing. The oxidation o f the 

surface layer, i.e. the alpha-case, encountered at high temperatures will be thoroughly studied and related to 

the initiation o f the surface cracks from which the depth of these cracks can be predicted based on the actual 

measurements.

The analytical part will compare the results o f the new technique with those of the other traditional methods 

and relate them to the microstructural studies that have been carried out in order to understand the physical 

meaning of this new technique. For the first time, as a major step forward in creep predictions, the new 

technique will be extended to provide full creep curves at all stresses and temperatures which will be 

compared with the actual creep curves previously obtained under the same conditions.



CHAPTER 2

B a c k g r o u n d  &  L it e r a t u r e  R e v ie w

The deformation o f metals due to creep mechanisms presents a huge problem in power plants and aeroengine 

applications where higher temperatures are required to achieve higher efficiencies. However, this increase in 

efficiency is encountered by the limitation o f materials to withstand such an increase in temperatures. 

Therefore, the design stage is very critical and essential in order to offset the possibilities of failure by 

excessive deformation. This aim can be achieved by predicting the creep behaviour under the applied stresses 

and temperatures. For this purpose, a variety o f parametric methods for extrapolating short-term creep data 

were developed to quantify creep and creep fracture in the high temperature components. These approaches 

will be discussed and critically reviewed illustrating their limitations by reference to information openly 

available for many materials.

2 .1  R e v ie w  o f  C r e e p  P h e n o m e n o n

Creep is defined as the plastic deformation of materials under the effect o f a constant load and temperature 

for a long duration o f time [3]. Applying a constant tensile load to a specimen that is maintained under a 

constant temperature, i.e. a constant-load test, enables us to determine the engineering creep properties of a 

material by recording its strain, s, as a function of time, t [4]. However, during this constant-load test, the 

specimen’s cross sectional area decreases continuously and hence, the stress increases. Therefore, a constant- 

stress test has been introduced to maintain a constant stress on the specimen throughout the test using a 

profiled cam, Figure (2.1), that makes a balance between the decreasing cross sectional area and the applied 

load [1]. This type o f test is very widely used to obtain more accurate results o f the creep behaviour of 

materials for basic fundamental studies [1,4].

Load on specimen
(F)

(a )

Load on specimen

Fulcrum
Fulc rum

cam

Load
(p> (b)

L oad
(P)

Figure (2.1): A  sketch o f  the profiled cam used in creep machines; (a) before and (b) after loading [1].
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Two types o f creep behaviour can be defined, namely: the high temperature creep, Figure 2.2 (a), which 

occurs at temperatures higher than 0.4Tm, where Tm is the melting point o f a material, and the low 

temperature creep (or the logarithmic creep), Figure 2.2 (b), which occurs at temperatures around or lower 

than 0.3Tm. The former type of creep has a more significant effect since it involves re-arrangement o f atoms 

by diffusion inside the crystal lattice leading to fracture whereas the latter has dimensional changes which are 

extremely small, i.e. can be ignored, and rarely leads to fracture [1].

At the beginning o f the creep test, i.e. at time equals zero, an instantaneous increase in strain, e0, takes place, 

elastically and plastically depending on the stress level, followed by a time dependent increase in strain, ec, 

due to creep deformation. As the temperature and/or stress increases, larger values o f s0 and ec are, thus, 

obtained as the material becomes more ductile at higher temperatures [1].

tf

Loctrithnuc cntpcurv*

Figure (2.2): A schematic representation o f  the; (a) high and the; (b) low temperature creep [1].

Creep of crystalline materials occurs as a result o f either migration o f dislocations, grain boundary diffusion 

and shearing, or diffusion of vacancies, which can take place at all temperatures above absolute zero [3]. 

Hence, the main creep mechanisms can be classified as: Dislocation Glide or Creep (i.e. dislocation motion 

along slip planes under high stresses by thermal activation or dislocation motion by vacancy diffusion under 

intermediate stresses, respectively), Diffiisional Creep (vacancy flow under low stresses) and finally, Grain 

Boundary Sliding [4].

The curve of the high temperature creep, Figure 2.2 (a), can be divided into three main stages, namely: 

Primary, Secondary (linear or steady-state) and Tertiary stage that ends with fracture, as illustrated in Figure 

(2.3). The slope at any point on this curve (e = de/dt) represents the strain rate at that point. The primary stage 

represents a region of a decreasing strain rate wherein the creep resistance o f the material increases by its 

own deformation (this process is the predominant at low creep temperatures). In the secondary stage, a 

constant strain rate is observed and hence, it is sometimes called the 'steady-state' stage as the strain rate
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becomes independent of time. The minimum value of the strain rate during the secondary stage is called the 

minimum creep rate, The final stage is the tertiary stage during which the strain rate increases 

continuously leading to fracture [1].

Fracturep r im a ry  stage^ Secondary stage Tertiary stage
-  -  -> < -  - -  - >

Slope = constant

Time

Figure (2.3): A  schematic representation o f  the high temperature creep stages [1].

The secondary stage is usually used to determine the creep properties o f any material. Mainly, the steady- 

state creep rate (es) and the time to fracture (tf) are used to represent the design criteria of any material. They 

are related through the Monkman-Grant relation [2]:

M = es tf  (2.1)

where M is known as the Monkman-Grant constant. It is worthwhile noting that different needs for es or tf are 

involved according to each application. In other words, for short-time and high-temperature applications, the 

time to fracture is the appropriate design parameter since the steady-creep rate is difficult to be measured 

under such conditions. Whereas for long-time and high-temperature applications, the steady-creep rate is the 

critical design parameter [4, 5]. Another important observation that is to be mentioned is the effect of 

increasing the stress, a, at a constant temperature, T, or vice versa. As the stress and/or temperature increases, 

higher values of creep rates are obtained with lower values of time to fracture where the curve becomes more 

tertiary dominated, i.e. primary stage diminishes, as illustrated in Figure (2.4). This is a result o f the 

increased number of voids and cracks with increasing the stress and/or temperature [4, 5, 6].

Increasing stress

tem peraturec
h<»

Tertiary

Secondary

Primary

Time

Figure (2.4): The effect o f  increasing the stress (temperature) at a constant temperature (stress) on creep [1],



Chapter 2. Background & Literature Review 8

2 .2  R e v ie w  o f  C r e e p  M e c h a n ism s

Three types o f mechanisms are likely to take place during creep of materials, namely: Dislocation Glide or 

Creep, Diffusional Creep and Grain Boundary Sliding (GBS).

2 .2 .1  D isl o c a t io n  C r e e p

Dislocation Creep is defined as the deformation controlled and characterised by dislocation slip in the grain 

lattice associated with glide on slip planes and climb over physical obstacles [7], as shown in Figure (2.5). 

This type of creep is regulated by climb-controlled dislocation motion in the grain interiors without affecting 

the dislocation density with stress and thus, it is independent o f grain size. At intermediate stresses, the 

power law creep is observed with n = 3 for solid solutions, and n = 4 - 5 for pure metals.

In the case where solid solutions are involved, creep is controlled by the glide-step in glide/climb mechanism 

as dislocation motion is restricted by solute atoms. In this case, the creep rate is given by [8, 9]:

e = K Ds on  (2.2)

where Ds is the solute atoms’ diffusion coefficient, and n = 3.

glide p lanes

clim b

obstacle

so lu te  atom
I

Figure (2.5): Dislocation Creep associated with climb and glide o f  dislocations [9].

In pure metals, where more energy is required for dislocation climb, creep takes place by an upward 

movement of dislocations over physical obstacles, as illustrated in Figure (2.6). In this case, the creep rate is 

given by [9, 10]:

8 = K DL an  (2.3)

where DL is the lattice diffusion coefficient, and n = 4 - 5.
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D ISLOC ATIONS 
M O V E  MAINLY 

BY CLIMB

Figure (2.6): Power law creep and cell formation by climb [11].

At higher stresses, the power law fails to predict the strain rate values as the measured values o f stresses are 

greater than those it can predict, which is known as the 'power law breakdown'. The process in such a case is 

a glide-controlled flow instead of a climb-controlled, as illustrated in Figure (2.7).

DISLOCATIONS 
MOVE BY GLIDE 

PLUS CLIMB

Figure (2.7): The Power law breakdown [11].

At very high temperatures, recrystallisation, along with the power law creep, occurs which induces new areas 

of primary creep in newly formed grains, as shown in Figure (2.8). This mechanism leads to a huge change in 

the dislocations substructure and leads to a drastic increase in strain rates [3, 9, 11],

O L D  D EFO RM E D
G RA IN S

Figure (2.8): Recrystallisation at high temperatures [11].
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2 .2 .2  D if f u sio n a l  C r e e p

Diffusion of atoms is facilitated by either the presence of vacancies within the crystal lattice or by the thermal 

energy an atom can sufficiently have in order to move. Inside the lattice, as atoms vibrate, energy is 

transferred from one atom to another as they collide and thus, the energy is not uniformly distributed within 

the lattice [1]. Diffusion mainly occurs at very low stresses where dislocation movement is slow and could, 

thus, be negligible and ignored [12]. This type o f creep leads to an elongation of the individual grains along 

the tensile axis, as shown in Figure (2.9).

At lower temperatures, creep is dominated by diffusion o f vacancies and can be either called 'Nabarro- 

Herring' creep if the vacancies flow from grain boundaries in tension to grain boundaries in compression, or 

'Coble' creep if the diffusion of vacancies takes place along the grain boundaries. However, at higher 

temperatures, these two types of creep do not provide accurate estimates of the minimum creep rate since 

work hardening and recovery take place and thus, creep is dominated by dislocation movement [1].

If the transport of matter is controlled by diffusion through the grain lattice, then it is a 'Nabarro-Herring' 

creep. The strain rate of'Nabarro-Herring' creep (eNH) is given by [1]:

sNH a 1/d2  (2.4)

where d is the mean grain diameter. On the other hand, 'Coble' creep is similar to 'Nabarro-Herring' creep but 

it suggests that the mass transport occurs not only through the lattice, but also along the grain boundaries. It 

is described by [1]:

8c a 1/d3  (2.5)

From these two relations, it is obvious that the dependence of Coble creep on grain size (~ 1/d3) is stronger 

than the dependence of Nabarro-Herring creep (~ 1/d2) and has, thus, a greater influence in very fine-grained 

materials which are more likely to be subjected to grain boundary sliding due to the overall increase in the 

grain boundary area.

cr

B O U N D A R Y
D I F F U S I O N

x ' l a t t i c e \
D I F F U S I O N

Figure (2.9): An illustration o f  the diffusional creep [11].
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2 .2 .3  G r a in  B o u n d a r y  S l id in g

Grain boundary sliding (GBS) occurs during creep when the grain boundaries are not perfectly bonded 

together and are, thus, weaker than the ordered crystalline structure o f the grains. The nearby regions relative 

to the grain boundaries can deform plastically at stresses lower than those required for the deformation of the 

interior regions of the lattice [9]. At lower stresses, grain boundary sliding becomes more dominant and helps 

in the initiation of intergranular fracture by facilitating the formation o f wedge or triple-point cracks and 

voids growth on the grain boundaries which are normal to the tensile axis [4]. (N.B. this process is 

thoroughly discussed in section 2.3).

Many models were proposed to describe the grain boundary sliding process. A model set by Gifkins [13] 

describes the grains as if they are made of a separate core and mantle. In this model, the plastic flow consists 

o f two independent slip processes that control the grain boundary sliding, namely: a slip that occurs in the 

mantle region and another slip that takes place within the core of each grain. When the former process 

dominates, superplasticity occurs [12, 14]. As the material is lost from longitudinal boundaries, diffusional 

creep requires grain boundary sliding to occur so as to keep the grains in contact. However, in order to avoid 

cracks or voids formation, additional mass-transfer must, therefore, occur at these grain boundaries. In other 

words, this means that the grain boundary sliding is an accommodating process which is necessary to 

maintain the structural integrity [12, 14]. It has been reported by Todd [15] that the Lifshitz model, Figure 

2.10 (a), was also used to describe the process o f grain boundary sliding in high-temperature diffusion 

viscous flow of polycrystalline materials at low stresses. In this model, it was deduced that sliding is a 

relative grain motion in which each grain keeps its neighbours throughout the deformation process. In 

contrast, Rachinger's model, Figure 2.10 (b), defines the grain boundary sliding as a creep process in which 

no significant elongation is exhibited by the grains, but a displacement with respect to each other takes place 

so that there is a net increase in their number lying along the tensile axis [15]. In other words, this model 

measures the contribution of grain boundary sliding to the axial strain by modeling the relative grain 

translations during plastic flow [15].

(a) / V \ (b)

5>

AAA

V W
W

Figure (2.10): Grain boundary sliding models [15]; (a) Lifshitz's and (b) Rachinger's model.
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2 . 3  R e v i e w  o f  C r e e p  F r a c t u r e

In general, high tem perature  creep  leads to fracture at the end o f  the tertiary  stage as a result o f  m icrocracks 

form ation and grow th along grain boundaries w hich are 90 oriented  relative to the tensile stress axis. This 

kind o f  fracture is called 'in tergranular' fracture since it involves cracks initiated and spread a long  the grain 

boundaries. Tw o general types o f  in tergranular fracture can take p lace, nam ely: w edge or trip le-po in t cracks 

and grain boundary  cavities [1],

2 .3 .1  W e d g e  ( T r ipl e  P o in t ) C r a c k s

U nder the effect o f  high stresses and tem peratures, atom s m ove relative to each o ther causing  a shear 

m ovem ent at the grain boundaries as each grain tries to pull apart from  its ne ighbouring  grains, as illustrated 

in F igure (2.11). This m echanism  occurs as a result o f  the applied  tensile stresses causing  the grains to slide 

above each o ther [1], It has been show n elsew here [14] that grain boundary  slid ing  is necessary  for void 

nucleation. This is a com m on m echanism  in fine-grained alloys w here the overall grain boundary  areas are 

increased.

F

C racks at triple point

Shear

G rains

Figure (2.11): Grain boundary sliding and triple point cracks.

2 .3 .2  C a v it ie s  F o r m a t io n  a t  G r a in  B o u n d a r ie s

At low stresses, cavities form at grain boundaries by nucleation  and grow th [14]. They are found at the early  

stages o f  creep and they increase, link-up and propagate under the effect o f  the applied  tensile  stresses, as 

show n in Figure (2.12). O nce cavities are form ed, they tend to absorb  o ther vacancies from  the surrounding  

grain boundaries. C avities can absorb  and link-up w ith o ther vacancies only w hen the g rains are able to pull 

apart o ther adjacent grains, Figure (2.13), w hich is a constrained  cavity  grow th and thus, it depends on the 

overall creep  o f  atom s [1, 14].
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F F

E quiaxcd grains

Possible p laces for vacancies 
(90  oriented relative to  F)

F

Link-up  o f  adjacent

V acancies propagate  
(90° o rien ted  relative to  F)

Figure (2.12): Cavities link-up and propagation.

I

C a v itie s  (v a c a n c ie s )

F

Figure (2.13): Cavities absorb other cavities as grains try to pull apart from each other.

E quiaxed grain structures, or the conventionally  casted (C C ), can be m ore easily  pulled  apart or separated  by 

crack link-up than the elongated  grains, or the d irectionally  so lid ified  (D S), as can be seen in F igure 2.14 (a) 

and (b), respectively. T herefore, the d ifficulty  w ith w hich link-up betw een the in ternally  cracked regions in 

the DS alloys accounts for the fact that rupture lives and creep ductilities exhibited  are considerab ly  greater 

than those recorded for the CC m aterials [16, 17].

F F

L in k -u p  is d ifficu lt C av itie s  (c ra c k s )

(b )

D ire c tio n a lly  S o lid if ie d  

(D S ) g ra in s
F

Link-up is easy

(a)

Equiaxed grains 
(or conventionally casted. CC) t

Figure (2.14): Equiaxed and directionally solidified grains behaviour.
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Moreover, the improved creep lives and ductilities of the DS materials can be explained on the basis that 

when cracks eventually initiate on the short transverse grain boundary segments o f a columnar grain, they 

can not spread very far without intersecting a longitudinal boundary which has a low component of normal 

stress across it [18]. As the CC and DS materials creep initially at the same manner, i.e. start with primary 

creep followed by consequent stages, the CC materials tend to fracture earlier than the DS materials, Figure 

(2.15), without going through the tertiary stage in some cases [16].

However, the most practical solution to avoid cracks development in a material is the elimination of grain 

boundaries by introducing the single crystal (SC) phenomenon where, in this case, the whole bulk of a 

material consists only of a single grain and thus, no neighbouring grains or grain boundaries exist [16].

CC-Conventional Casting 
(Equiaxed grains).

DS-Directional Solidification 
(Elongated grains).

a
2
55

Fracture o f  DS

Creep o f DS only

Fracture o f  CC

Creep o f CC + DS

Time

Figure (2.15): A  comparison between equiaxed and directionally solidified grains behaviour [1],

2 .4  R e v ie w  o f  C r e e p  P a r a m e t r ic  M e t h o d s

Many approaches were proposed in an effort to predict the long-term creep properties based on short-term 

creep measurements so as to reduce the time scales and costs required to obtain such long-term data. Each of 

these approaches represents a technique through which the short-term creep-rupture data can be extrapolated 

using a time-temperature parameter. This concept is based on the assumption that all creep-rupture data, for a 

given material, can be superimposed to produce a single 'master curve' wherein the stress is plotted against a 

parameter that contains and combines time and temperature. Based on this master curve, that can only be 

constructed using available short-term measurements, extrapolation to longer times can then be obtained 

[19]. These parametric methods play a key role during the design stage in which the high temperature 

components are designed to codes that are intended to assure a specific life. Generally, these design codes 

define a maximum allowable stress that can exist in a component during the anticipated design life [19]. This
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allowable design stress, which is a combined function o f time, temperature and material, is usually based on 

the rupture stress required to give the expected design life. It is tempting to infer that the plant will give a 

satisfactory service up to, but not much beyond, the design life. For this reason, two distinct parts of the 

service life can be defined, namely: (a) the original design life which can typically be 100,000 hours, and (b) 

the safe economic life. Although the latter is normally outside the influence of the design codes, it can be 

considered as a significant fraction of the overall service life. Moreover, due to the time-dependent nature of 

materials' properties at high temperatures and the fact that ultimate failure is, thus, implicit, consideration 

must be always given to a 'beyond design' end-of-life criterion. Since the time required for a crack to grow 

can be very short, life extension is only safe within the time scale for crack initiation unless defect growth is 

being monitored [19].

In general, current methods normally involve two approaches, namely: (1) those which involve the 

acquisition and monitoring of operational parameters, the use of standard materials data, and the life fraction 

rule, and (2) those based on post-service examination and testing which require direct access to the 

component being examined for sampling and measurement [19]. These parametric methods have a great 

advantage, at least in theory, o f requiring only a relatively small amount of data to establish the required 

master curve. Some of these approaches proved their validity for creep predictions by providing satisfactory 

results whereas others failed to give precise long-term predictions.

2 .4 .1  R e v ie w  o f  t h e  P o w e r  L a w

The power law represents a combination of the temperature and stress dependences o f creep rate which are 

described by, respectively, Arrhenius’s and Norton's laws (N.B. These creep rate dependences are explained 

in Figure (2.4), page 7). In these two laws, the secondary strain rate, es, is used to describe the creep rate of 

materials, as follows [1]:

-  Arrhenius Law: As the strain rate, ss, increases with increasing the temperature, T, a straight line relationship 

can be obtained when plotting (In &s) against (1/T), as shown in Figure 2.16 (a). Thus;

es a exp (-Qc/RT) ...............................(2.6)

where Qc is the activation energy for creep and R is the gas constant.

-  Norton's Law; As the strain rate, es, also increases with increasing the stress, a, another straight line

relationship can be obtained when plotting (In es) against (In o), as shown in Figure 2.16 (b). Thus;

£s « o n ...............................(2.7)
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s

(a)

gradient = - Qc/R

1/T

(b)

gradient = n

ln(«)

Figure (2.16): The secondary creep rate dependence o f  (a) temperature and (b) stress, respectively.

where n is the stress exponent. Combining these two laws together, i.e. equation 2.6 and 2.7, gives the power 

law equation as [1]:

es = A on exp (-Qc/RT)  (2.8)

where A is a constant. It was also assumed that the value o f Qc and n is constant but, in fact, after further 

research, it was found that their values vary according to the creep mechanism in different stress and 

temperature regimes [20]. The value o f Qc is related to temperature, according to equation (2.6) and Figure 

2.17 (a), such that Qi and Q2 represent the value of Qc at high temperatures (due to vacancy flow through the 

lattice) and low temperatures (due to vacancy flow along grain boundaries), respectively [1]. On the other

hand, the value of n is related to stress, according to equation (2.7) and Figure 2.17 (b), such that nj and n2 

represent the value of n at high stresses (due to dislocation creep) and low stresses (due to diffusional creep), 

respectively [1].

(b)

High <J regimeLow a regime

In(O)

(a)

High T regime Low T regime

1/RT

Figure (2.17): Transition o f  (a) Qc and (b) n, relative to temperature and stress, respectively.

According to Wilshire and Schaming [21], when creep tests were carried out on the 9-12% chromium steels, 

it was found that the value of Qc and n was changing with increasing the temperature and decreasing the 

stress. Therefore, it can be deduced that there is a variation in the value o f Qc and n used in the power law 

equation depending, respectively, on temperature and stress regimes during the creep process. For this 

reason, and since these values vary in an unpredictable manner, the power law equation does not allow
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accurate estimation o f the long-term rupture strengths by extrapolating the short-term measurements [22]. 

Furthermore, using these relationships for extrapolation will overestimate the actual long-term performance, 

Figure (2.18), which might lead to considerable errors in the prediction of creep behaviour and thus, 

catastrophic consequences. If a certain method is unable to accurately predict the creep behaviour, the 

consequences will be less severe if the method underestimates the actual measurements rather than 

overestimates them as underestimation will keep the component life within the safe operational conditions.

: actual creep data predictive curve. 
: extrapolated creep data curve.

e
I

Extrapolation of high stress (short term) data 
overestimates creep lives at low stress

Tim e to F racture, tr

Figure (2.18): Extrapolation using the power law overestimates actual results.

2 .4 .2  R e v ie w  o f  t h e  L a r s o n - M il l e r  (L M ) M e t h o d o l o g y

This parametric approach is one of the methods used to predict the stress rupture data of metals. It has been 

originally derived from Arrhenius relation (equation 2.6 and 2.8) at a constant stress and thus, a constant 

stress exponent n, but at a variable value of T and Qc, which gave the final form o f this relation as [23]:

P lm  = f  (c) = T (Clm + log tf)  ( 2 .9 )

where CLM and PLM are the Larson-Miller constant and parameter, respectively. The parameter, PLM, can be 

used to superimpose the family o f rupture curves into a single master curve [2]. The constant, CLM, includes 

the Monkman-Grant constant M, described in equation (2.1), which is a function of Qc that was proved 

elsewhere [2, 21] to be a function of stress. Plotting (log tf) against (1/T) at constant stresses, Figure (2.19), 

for some experimental data gave straight lines of slope PLM and an intercept of - CLM [24].

at constant a

gradient = P(

1/T

Figure (2.19): Determination o f  the Larson-Miller constant [24].
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This method was further studied by Krivenyuk and Mamuzic [25], who described the constant CLM, as:

Clm = (T/AT) m' log (a,/a2)  (2.10)

where a, and o2 are the corresponding stresses at a constant time value from two rectilinear stress-rupture 

(SR) curves tested at T] and T2 (where T2 = T] + AT), and m' is the reciprocal o f the slope, at the selected 

time value, o f the SR curve at temperature Tj. When the value of CLM was estimated based on the data of two 

rectilinear SR curves at temperature T, and T2, it was found that the value of CLM depends on the position of 

the two curves relative to each other. In other words, if the curves were parallel then, this means that CLM is 

constant. But, if  the slope changed from one curve to another then, as the time to rupture increases, the value 

of the logarithm in equation (2.10) increases leading to a significant dependence of CLM on time. Hence, for 

equidistant curves, the time dependence of the constant CLM is weak, whereas it might become sharp for 

curves that are distinguished by their slopes [25].

Larson and Miller took one step further in their original proposal, suggesting that the value o f the constant 

CLM could be taken as 20 for many metallic materials [23, 26]. However, it was found that the value o f this 

constant varies from one alloy to another and is also influenced by factors such as cold-working, thermo

mechanical processing, phase transitions and/or other structural modifications [26], Moreover, most 

applications of the Larson-Miller parameter are made by first calculating the value of CLM that provides the 

best fit o f the raw data, which means that CLM is treated as a 'fitting constant' based on a ‘trial and error’ 

method instead of being a physically meaningful constant. For instance, a certain study [26] showed that the 

value of this constant for specific aluminum alloys ranged from about 13 to 27.

In studies of refractory and heat-resistant steels and alloys by Krivenyuk and Mamuzic [25], calculations 

often gave rather lower values o f the constant CLM than the common used value of 20. In these investigations, 

the difference in the values of this constant was mainly a result of the time dependence o f this constant. In 

addition, the refractory metals were primarily studied at short loading times whereas the heat-resistant 

materials were investigated at longer loading times which led to higher values of CLm for the latter, according 

to formula (2.10). In agreement with these findings, Cipolla and Gabrel [27] found a huge stress 

overestimation when the Larson-Miller equation was used on the high chromium steel (Grade 91) at all 

temperatures, especially at 600 C. Therefore, the requirement of a physical realism of extrapolation was not 

completely fulfilled by this method which is less conservative and seems to be less able to describe the strong 

curvature between the low and the high stress regimes.
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The equation of Larson and Miller was reviewed by Wilshire and Schaming [21] on the 9-12% chromium 

steels. Although it was generally accepted that CLM should be taken as 20, the data fit with the curving LM 

plots was, frequently, better with other values, where, in the case of chromium steels, the best fit was 

obtained when CLM was 36 instead of 20. This difference in the value of CLM was attributed to the fact that it 

is a function o f Qc which is, itself, a 'variable'. Thus, Larson and Miller's results were only in agreement with 

the theoretical equation for low temperature deformation, and could not accurately describe the high 

temperature properties.

A very logical explanation was given by Larke and Inglis [28] who assumed that if two different materials 

were tested at the same temperature, T, and fractured at the same time, tf, then if the value of CLM was the 

same for both materials, equation (2.9) would give the same value for PLM, even though, as would in general 

be so, the stress to cause fracture is different for each material. Therefore, if the value o f C LM is considered 

'presumably' as 20, as Larson and Miller suggested, then this suggestion will imply that, for the same 

conditions of testing, the fracture time would be the same for all materials, which is apparently unacceptable. 

In addition, this suggestion also means that if, for a given material, a set o f stress-rupture curves at different 

temperatures are established, then, over the same temperature range, these curves would be valid for any 

other material provided that only the stress scale is altered [28].

The graphical method, Figure (2.19), recommended by Larson and Miller for determining the numerical

value o f C Lm was proved to be quite unsatisfactory [28]. This was based on the fact that, at least, one pair of  

lines intersects at a significantly different value o f log tf than the other pairs, and this, coupled with the fact 

that personal choice enters into the drawing of the curves associated with the basic log a/log tf data, increases 

the doubts on the acceptability o f this method for determining the value of C Lm [28]. Another critical 

assessment o f this method documented in Murry [29] concluded that the different curves which represent the 

variations of the Larson-Miller parameter with the initial stress, at different temperatures, very rarely 

coincided. It was also observed that the value o f CLM could vary from 2 to 55, very often in relation to the 

initial stress. In agreement with this assessment, another study also documented in Murry [29] found that the 

constant CLM varied with the material, the test temperature and the initial stress. Along with these studies, 

another extensive work carried out by Penny and Marriott [2] on the Larson-Miller method stated that this 

method stands alone as the least accurate of all methods, both in correlation and extrapolation, where errors

resulting from its use are significant even when good quality data are available.

Therefore, this parametric formula could only be used to a very limited extent to extrapolate time, 

temperature, stress and elongation since the value o f CLM was found to be variable. Moreover, the unknown
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curvature of the parametric plots o f the Larson-Miller equation makes data extrapolation unreliable. Hence, 

even when tests lasting up to 30,000 hours have been completed, this parametric method does not allow 

unambiguous determination of the 100,000 hours rupture strengths.

2 .4 .3  R e v ie w  o f  t h e  M a n s o n -H a f e r d  (M H ) M e t h o d o l o g y

Manson and Haferd [30] developed a linear time-temperature relationship for extrapolating creep and stress- 

rupture data. The Manson-Haferd (MH) methodology was developed in order to eliminate the errors 

introduced by the Larson-Miller technique which assumed a fixed value o f the constant used in its equation 

that led to inaccuracies in predicting the creep life [2, 30]. This technique assumes the same starting point o f  

steady-state creep dominated by a power law behaviour but considers, later on, that the logarithm o f  the time 

varies linearly with the test temperature at a constant initial stress, according to [29, 30]:

log  t =  a - PMh T  (2 .11)

where t is the time (either the time to fracture, tf, or to a certain strain level, te), a = log ta + PMH Ta (where ta, 

PMH and Ta are the Manson-Haferd time, parameter, and temperature constants, respectively), T is the 

absolute creep test temperature, and the point (Ta, ta) is the point o f intersection o f the straight lines 

corresponding to the various iso-stress lines. Therefore, the Manson-Haferd parameter, PMH, determines two 

constants compared to the Larson-Miller parameter that involves only one constant. Rearranging equation 

(2.11) gives [29,30]:

P mh = f  (a) = (log t - log ta) / (T - Ta)  (2.12)

According to Manson and Haferd's suggestion, the parameter PMH can, thus, be derived graphically from the 

intersection point of the extrapolated iso-stress lines when plotting log tf against T. Moreover, plotting PMH 

versus stress, a, will force all creep data to collapse onto a single 'master curve1. The equation of this curve 

can then be determined by a curve fitting technique, which yields an equation relating time to a given percent 

creep, temperature, and stress [30].

In agreement with Manson and Haferd, it was postulated elsewhere [29] that the parameter PMH was derived 

from the approximately linear relationship found experimentally between log tf and T as well as from the 

trend of the data that converge at a common point (Ta, ta). This parameter, therefore, measures the slopes of  

the straight lines obtained for given values o f stress. Values of Ta and log ta which best fit the data vary for 

different materials [29]. Manson and Haferd showed that the values of Ta for most materials ranged from 0 F 

(-17.78 C) to 200 F (93.3 C) whereas the values of ta varied appreciably [30]. Although single values of Ta
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and log ta might be found and universally agreed and used with satisfactory results, this possibility has not as 

yet been demonstrated. They also added that accurate results could be expected with this parameter, as with 

the LM parameter, only if the proper values of the constants were used for each material. However, the 

variation in the value of Ta and log ta introduced many errors in extrapolating the short-term data, as it was 

found with the LM approach. Murray and Truman [31] also reviewed the MH technique and obtained new 

values of Ta and log ta which accurately fitted the data of the Austenitic steels used in the experiment. They 

also found that the values of the constants obtained were different from the standard values proposed by 

Manson and Haferd. Along with Murray and Truman, different values o f these two constants were obtained 

elsewhere [32, 33] when experiments were carried out on different steels.

An advantage of the MH parameter is that it can be used for various materials and different times which 

could be either the time to a certain percent creep strain or the time to rupture. However, the numerical values 

of the MH constants read from the plots o f log tf against T are not precise enough unless very comprehensive 

experimental data are available. Furthermore, by using this technique, predicting the stress and the time 

values outside the temperature range on which the magnitudes o f the constants are based can lead to 

significant errors [28]. An assessment carried out by Pink [34] stated that none o f the methods had a 

consistent physical basis and that the apparent success of a certain procedure has only resulted from its 

applications in just circumstantial conditions. Furthermore, it was added that on one hand, the method of 

Larson and Miller, for instance, shows better consistency with the deformation processes occurring at low 

temperatures and thus, offers better results in the extrapolation of this type of data. Whereas on the other 

hand, the method of Manson and Haferd does not present any physical meaning, but coincidentally describes 

the complex pattern of deformation controlled by several mechanisms and is, thus, more reliable for long

term predictions of data generated at higher temperatures.

All o f these methods were only proposed to analyse creep testing data since there is no mention in the 

literature of using the hot-tensile testing data, for example, in the analysis using these techniques [32]. 

Therefore, and based on these facts, the validity of this method is limited based on the conditions according 

to which the test is being carried out and thus, further research should be done in order to improve its 

capability of predicting the long-term creep properties before adopting its results.

2.4.4 R e v ie w  o f  t h e  O r r - S h e r b y -D o r n  (OSD) M e t h o d o l o g y

The Orr-Sherby-Dorn (OSD) technique [35] involves a time-temperature parameter based on the parallelism 

of the iso-stress lines of a slope that represents the Orr-Sherby-Dorn Constant, C 0 sd - In this methodology, the
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assumptions o f the Larson-Miller technique have been interchanged. In other words, the constant of the 

Larson-Miller equation, C LM, became a function of stress whereas the parameter, PLM, became a constant [2, 

29]. Based on these new assumptions, the LM relation (equation 2.9) can be re-arranged to give the OSD 

equation as [35]:

P o sd  =  f  ( o ) = log  t f -  C o sd  /  T  (2 .13)

where P 0 sd and C qsd are the Orr-Sherby-Dorn parameter and constant, respectively, T  is the absolute creep 

test temperature and tf is the time to fracture.

The basis o f the OSD life prediction methodology is that the activation energy, Qc, remains constant over the 

entire creep curve, with relatively sparse supporting data [35]. However, since the constant C0sd includes the 

activation energy, Qc, then any variations in Qc will, thus, ensure that the superimposed parametric plots will 

be non-linear [21]. Indeed, there is evidence that in some cases, the creep activation energy seems to increase 

systematically through the primary region [36].

In order to prove the variation in the value o f C 0 sd , tests were carried out by Murray and Truman [31] and 

graphs o f log tf against 1/T at constant stress values were plotted. The gradients o f these plots, i.e. the values 

of C0sd, were also calculated. Eventually, it was found that in spite of the difference between the values of  

C osd  obtained experimentally and the values proposed by Orr, Sherby and Dorn, the data were fitted with 

reasonable accuracy [31]. Since the slope of the resulting log tf against 1/T line will be the numerical value of  

C o sd , it was proposed by Orr, Sherby and Dorn that the adjacent log o/log tf curves will be equidistant from 

each other along the time scale [28], Therefore, in principle, only one line of log tf against 1/T at a constant 

stress needs to be drawn in order to determine the value of the constant C 0 sd , although in practice, the 

average slope o f lines corresponding to different stress levels would be determined. However, it was found 

quite impracticable to obtain such lines and, in consequence, another method for determining the value o f  

Cosd has been employed elsewhere [28]. A paper published by Mullendore et al [37] revealed certain 

limitations in methods that employ only a single time-temperature parameter, as with the OSD method, and 

this became particularly obvious in cases where structural instabilities were involved. It was also added that 

due to the multiplicity o f rate processes affecting the creep strength o f complex alloys at high temperatures, it 

is absolutely impossible for a single parameter to describe precisely all creep properties involved. A review 

was also carried out on some high temperature alloys in which it was observed that the criterion of a constant 

slope o f the lines specified by the ODS methodology was even less accurate than the assumption of the LM 

technique [37]. Another critical assessment documented in Murry [29] and carried out by Garofalo et al [38] 

revealed that at each test temperature, a separate curve could have been found in relation to the initial stress,



Chapter 2. Background & Literature Review 23

which represents the variations of this method as well as the other two methods o f Larson-Miller and 

Manson-Haferd. This leads to the conclusion that the parameters studied were not only functions o f stress, 

but also o f other parameters involved in the process. Therefore, this method is found to be indirect and not 

taking sufficient account for longer tests [39]. According to Brozzo [40], a plot of the logarithm o f the 

minimum creep rate against the reciprocal of the absolute temperature, at constant stresses, should give a 

series of straight lines. The same results should be obtained if the logarithm of the time to fracture is plotted 

against the same variable, since it is linearly related to the minimum creep rate. Therefore, it was possible to 

interpret the ODS and the LM parameters in terms o f these plots. However, appreciable deviations from the 

claimed linearity were generally exhibited, except possibly for a limited range of temperatures. The reasons 

behind the failure of the rate-process equation in solving this problem can be readily recognised from the 

possibility of the metal, or the alloy, to deform according to various creep mechanisms accompanied by 

different activation energies and the likelihood of occurrence of some metallurgical changes during creep. 

Along with these findings, a direct evidence has been obtained by many investigators that metals and solid 

solution alloys can undergo a plastic deformation in different ways depending on the temperature and 

straining-rate conditions [40].

Therefore, based on these investigations, this methodology needs to include more materials and different 

processes in order to construct a complete and a comprehensive agreement about the value o f  its constants 

and the linearity of the plots that its equation implies.

2.4.5 R e v ie w  o f  t h e  M a n s o n - S u c c o p  (MS) M e t h o d o l o g y

The Manson and Succop (MS) methodology [41] is identified by the analysis o f the iso-stress lines in the plot 

of log tf versus T. The Manson-Succop parameter, PMS, was based on the parallelism of these lines o f a slope 

that represents the Manson-Succop constant, CMS, and is given by [41]:

PMS = f(a )  = lo g tf+ C MST  (2.14)

This method, in addition to other methods, was reviewed by Zharkova and Botvina [42] who confirmed that 

during long-term creep tests, fracture mechanisms changed according to the applied stress and the loading 

time. In this regard, they stated that fracture under high applied stresses was purely intergranular, under 

medium applied stresses it was also intergranular but resulted from wedge cracks formation and was also 

intergranular under low stresses but resulted from the formation and development o f pores along grain 

boundaries. The change of fracture mechanisms was responsible for the appearance of the kink points in the
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long-term strength curves [42]. The known timee-temperature parametric methods such as the Larson-Miller, 

Dom, Manson-Succop, Manson-Haferd and mnany others, were based on relations with fixed values o f  

constants in a wide range o f temperatures andi fracture durations which, in return, ignored the changes of 

fracture mechanisms and led to many errors andd overestimations o f  the long-term creep life. For this reason, 

these methods are not necessarily reliable for creeep life predictions [42].

2 .4 .6  R e v ie w  o f  t h e  M a n s o n -B r o w n  (M I B )  M e t h o d o l o g y

In general, as generated data do not necessarily' show a linear trend in their behaviour, it is then necessary to 

use more complex functions to fit these data. Tfhe simplest function with an adjustable degree o f curvature is 

the power function. Consequently, it is actuallyy not surprising to find a generation of non-linear parameters 

containing the functional forms o f the previous 1 linear parameters raised to some power. The parameter which 

best illustrates this progression in complexity is i the Manson-Brown Parameter, PMB, of the form [43, 44]:

Pmb = f (o) = (Mog t - log O  / (T - T,)"  (2.15)

In this expression, there are three constants (ta, , Ta and the exponent q) which can be determined by a ‘trial 

and error’ graphical method. This equation reppresents the general form of the previously mentioned linear 

parameters such that, it represents [44]:

(a) Manson-Haferd equation when q = 1, (b) Laarson-Miller equation when q = -1 and Ta = 0, (c) Orr-Sherby- 

Dom equation when log ta and 1/Ta are both taktcen to be arbitrarily very large numbers with the condition that 

Ta log ta = Qc, (d) Manson-Succop equation whaen q = 1 and log ta and Ta are both taken to be arbitrarily very 

large numbers such that log ta/ Ta = - CMs- Thiss generalised technique is very beneficial and much better than 

the individual proposed methods in such that thae data would dictate the specific form o f the equation instead 

of trying to force any equation to fit the data [444].

Later on, Manson along with Roberts and Menddelson proposed a generalised parameter of the form [45]:

PKtan = f  (C) = = ov(log t - log t .)  /  (T - T,)q  (2.16)

where v is an additional stress exponent constant. This equation presents a more generalised form o f the 

previous methods where more linear parameters can be derived just with a slight change in the values of the 

constants involved. These generalised equationas, i.e. equation (2.15) and (2.16), provide better techniques to 

predict the creep behaviour since they encompaass most of the known parametric approaches under different 

test conditions.
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2.4.7 R e v ie w  o f  t h e  M o n k m a n -G r a n t  (MG) M e t h o d o l o g y

The Monkman-Grant (MG) parametric method [46] uses the minimum strain rate, s,™,,, as a key variable to 

assess the time to fracture, tf [47]. Monkman and Grant [46] noticed that the rupture time in the long-term 

creep tests could be related to the minimum strain rate by a power function of the form [46, 47]:

CmG = Smin tf ...............................................(2.17)

where CMG is the Monkman-Grant constant and m is the time to fracture exponent. This equation suggests

that the mechanisms that control creep deformation and creep rupture are, to a great extent, the same [46]. 

The constant, CMG, in this relation usually depends on temperature [47]. The practical advantage o f the 

Monkman-Grant rule is that the minimum strain rate, £mjn, can be measured early in a creep test which, in 

return, facilitates the prediction of the long-term time to fracture, tf. In other words, if the value of CMG is 

determined, which is possible from short-term tests, the lifetime o f a long-term test can be predicted once the 

minimum strain rate has been reached and recorded [47]. On the other hand, another study which was carried 

out by Borisenko et al [48] argued that the product o f the minimum creep rate and the time to fracture is a 

constant value, C Mg> which is independent o f stress and temperature. They also added that the value of this 

constant ranges between 0.03 and 0.3 for all materials and that the value of m should be 1.0, which eliminates 

the exponent from this equation. But later, and after some experiments that were carried out on tungsten, they 

found that the relation must be o f the exponential form described in equation (2.17).

Another interpretation presented by Davies and Wilshire [14], which was based on experiments carried out 

on pure nickel, suggested that the constant, C Mg , was only independent of stress and temperature under high- 

temperature creep conditions, i.e. above 0.45Tm, where Tm is the absolute melting temperature o f a material, 

whereas higher values o f this constant were recorded at temperatures below 0.45Tm. Moreover, they found 

that the value o f the exponent m was not varying appreciably from unity and thus, can be ignored.

Baldan and Kaftelen [49] observed that proportionality was generally found between tf and when the 

material was strained. This observation was based on the long-term creep tensile tests where it was found that 

the time to fracture was inversely proportional to the power function o f the minimum creep rate for relatively 

simple alloys such as pure metals and single phase alloys. Their equation is given by [49]:

CmG = £min tf .............................................. (2.18)

where the value of the exponent m ranged between ~ 0.8 and ~ 0.95. Besides, it was found that the value o f  

the constant, CMG, ranged from ~ 2 to ~ 15, depending on the material and the microstructural variables as
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this constant represents the contribution o f the secondary creep strain to the total failure strain [49]. This 

equation was based on that when the material was strained, cavities and cracks grew, linked-up and led, 

eventually, to an intergranular creep fracture. Assuming that creep fracture is actually controlled by the creep 

growth of cavities at grain boundaries, this result would then be consistent with the Monkman-Grant equation 

as, from the very beginning, the fracture process is always linked to the creep process [49].

Dobes and Milicka [50] argued that the value of C Mg  and m changed according to the applied stress in 

contrast to the studies of Davies and Wilshire [14] and Chih-Kuang Lin et al [47] who previously found that 

the value of CMG was dependent on stress and/or temperature. Therefore, Dobes and Milicka modified the 

Monkman-Grant relation into the form [50]:

CmG £f— £min tf  (2-19)

where ef is the fracture strain recorded at tf. This relation accounts for a possible stress dependence of the 

product (Smin™ tf) due to changes in the fracture strain, ef, according to the applied stress. However, this 

modification o f the equation does not improve the prediction capability since, instead of only one long-term 

creep parameter, i.e. tf, their relationship requires also the knowledge of the second long-term parameter, i.e. 

ef. This is actually impractical since having known the values of these two parameters eliminates, in return, 

the need for any predictions which is mainly the aim o f such approaches [51].

Some other studies [52] added that if continuous nucleation occurs, a modeling of the fracture process might 

lead to the Monkman-Grant relationship provided that diffusive and plastic coupling of cavity growth and 

cavity interactions are considered. Besides, this relationship might offer the possibility o f long-term 

extrapolation if the same creep deformation mechanism operates during the whole creep life [53].

A research done by Menon et al [54] on silicon nitride examined the applicability o f the Monkman-Grant 

relationship in predicting the stress rupture life. The data showed that the Monkman-Grant lines relating the 

rupture life to the minimum creep rate were stratified with respect to temperature. For this reason, a 

modification to the known expression o f the Monkman-Grant equation was proposed to accommodate this 

temperature dependence [54]. Following this modification, another generalised form of the equation was 

proposed by Evans [55] who stated that the standard Monkman-Grant relation, equation (2.17), has the 

advantage of the easy estimate of the life of a material once the minimum creep rate is known. This ability o f  

estimating the life of a material can be practically achieved by testing specimens at specified operating 

conditions until the minimum creep rate, which typically occurs well before the material's end-of-life, is 

reached and then, the test can be interrupted. This creep rate can then be used to predict the long-term creep
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life using the Monkman-Grant equation. However, one important disadvantage of using this relation to 

predict the creep life is that at operating conditions, it can still take tens o f thousands o f hours to reach the 

minimum creep rate and tests of this length are often not viable from the practical and the economical 

perspectives [55].

Therefore, although the Monkman-Grant relationship is applicable in some situations, there is still a 

disagreement about a few details such as the values of the constants used in this relationship and whether 

they are stress and/or temperature dependents and thus, more materials have to be tested and examined using 

this technique in order to generalise its use.

2 .4 .8  R e v ie w  o f  t h e  0 - P r o je c t io n  M e t h o d o l o g y

The 0-projection method is one of the extrapolation methods which proved its applicability, in some 

situations, in predicting the creep life. It can be summarised in that creep curves under uniaxial constant 

stress are measured over a range of stresses and temperatures and their shapes are recorded. These shapes are 

then 'projected' to other stresses and temperatures at which full creep curves can be re-constructed. The 

required properties are then read off the constructed curves [56]. Thus, the 0-Projection concept, in its most 

general form, the 4-0 equation, describes the variation of creep strain, e, with time, t, according to [57]:

e = 0] [1 -exp (- 021)] - 03 [1 -exp (041)]   (2.20)

where t and T are the time and temperature, respectively, 0] and 03 are scaling parameters defining the extent 

of the primary and tertiary stages with respect to strain, while 02 and 04 are rate parameters characterising the 

curvature of the primary and tertiary creep curves, respectively [58]. In this equation, the two terms on the 

right hand side describe the normal primary and tertiary components in which a deceleration in creep rate is 

observed during the primary stage whereas an acceleration is recorded during the tertiary stage [59, 60]. This 

method was extensively studied by Evans [57] who argued that this technique has an added advantage over 

the other traditional parametric procedures in that creep predictions are not only limited to the rupture time. 

However, it was found that the interpolation and/or the extrapolation of the 0-function, traditionally used by 

this method, was not really the best predictor o f the long-term life as more accurate results were obtained 

using simpler functional forms. Moreover, this equation was quite poor in fitting the experimental creep 

curve at small strain values [57]. Deviations from the actual creep measurements were also found when this 

equation was used, particularly in the late tertiary stage, by Evans and Wilshire [60] who attributed these 

deviations to the intergranular cracks that present immediately prior to fracture.
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Another study carried out by Evans [61] was in agreement with one done by Evans [57] in that the 0- 

projection method gave the poorest projections o f creep properties at low strains. Therefore, a modification to 

this equation has been suggested by Evans [61] in order to improve the fit o f the experimental data at the very 

small strain values. This has been achieved by adding another two extra parameters to equation (2.20), which 

gave the (6-0 equation) as [61]:

£ = 0j [1- exp (- 021)] - 03 [1- exp (041)] + 05 [1- exp (- 06t)]   (2.21)

Now, in this equation, the first two right hand terms have the same physical meaning as in equation (2.20), 

whereas the third term describes the early primary creep behaviour that results from the initial sliding 

relaxation across grain boundaries [58], According to Evans [57, 58, 61], this modified equation provided 

more precise results when it was used to fit experimental creep data, especially at the early stages o f the 

primary creep. This was a result o f the third term that has been added which took into account the effect o f  

grain boundaries relaxation during the primary creep that was completely neglected by equation (2.20).

In comparison to the previous parametric methods, the 0-projection method was considered to be more 

reliable and more accurate in estimating the long-term creep life and thus, it has been widely used and 

studied in an effort to prove its validity for a wider range of materials. However, further studies are still 

needed to assure that the errors encountered by the first proposed model o f this equation are completely 

eliminated by the introduction of the modified version.

2 .4 .9  R e v ie w  o f  t h e  H y p e r b o l ic - T a n g e n t  M e t h o d o l o g y

This technique has been developed by Rolls-Royce pic in the 1990s for the purpose of creep lifing 

predictions. It implies that the highest stress that can be applied on a specified material at a certain creep 

temperature is the ultimate tensile strength of that material, oTS. The stress rupture behaviour is described by 

hyperbolic tangent curves over a wide range of temperatures, such that [62, 63, 64]:

g  = g ts / 2 {1 - tanh [k In (t / ti)]}   (2.22)

where k and t; are fitting parameters that can be obtained by regression analysis using the actual experimental 

data at each temperature. Once the values o f k and ti are obtained, they can be inserted into equation (2.22) to 

produce the stress rupture predictive curves.

Alternatively, using the creep strain values, another hyperbolic function is used to predict the rupture 

behaviour, such that [62, 63, 64]:

a  = Sj {1 + tanh [S L In (e / £ j)]}   (2.23)



Chapter 2. Background & Literature Review 29

where in this equation, the (cjts/2) term of equation (2.22) has been eliminated and replaced by the parameter 

S; whereas k, t and t* have been replaced by SL, e and e,, respectively. Again, the values o f these parameters 

can be obtained by regression analysis using the actual experimental data at each temperature.

This method differs from the 0-projection method in that it does not try to fit the actual creep curves and then 

find an expression that relates the fitting constants with stress and temperature, but it represents the creep 

data at any temperature as a 3-D surface that combines stress, strain and time [63, 64]. This method provided 

a very good fit for the stress rupture and creep strain behaviour based on the time to fracture and creep strain 

measurements o f many alloys. The only limitation is that inflection points were found in these predictive 

curves with no theoretical explanation [64]. Interestingly, in the stress rupture curves, these inflection points 

took place at around 0.5gts at each temperature as a result of changing the pattern o f stress rupture behaviour, 

which might be expected above and below ay (or oTS). Moreover, in the strain dependent rupture curves, this 

inflection point was found at around 8j which has a physical significance as the strain value at the minimum 

creep rate point o f a creep curve [64].

2.4.10 R e v ie w  o f  t h e  M in im u m  C o m m it m e n t  (M C ) M e t h o d o l o g y

This method was proposed by Manson and Ensign [65] in an effort to give a larger flexibility to the 

parametric analysis o f creep data. In addition, it was invented in order to combine all the conflicting 

approaches into a single equation that will have a sufficient generality. This method is given by [65, 66]:

log t + A P log t + P = G  (2.24)

where t is the time, A is a constant dependent on the metallurgical stability of the alloy, P is a variable equal 

to: Ri (T - Tmid) + R2 (1/T - 1/Tmid), G is a variable equal to: (B + C log o + D o  + E a2), and B, C, D, E, Ri 

and R2 are regression coefficients and Tmid is the mid-value o f the temperature range for which the data are to 

be analysed. In this equation, it is apparent that there are seven constants that need to be determined by 

regression analysis. It was also found that the more unstable the material, the higher the negative value of A 

required to fit the data [67]. As the constant A defines the metallurgical stability of the material, a negative 

value means that the material has the tendency to precipitate embrittling phases whereas a zero value would 

mean that the material is stable [68]. Unfortunately, the use of any value of A other than zero led to non

linear multiple regressions [68].

Among those who studied this methodology was Jow-Lian Ding et al [69] who found that the results o f the 

regression analyses indicated that the Minimum Commitment model fit the data slightly better than the
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Larson-Miller model. The reason was that this model has five independent variables whereas the Larson- 

Miller model has only two. This method was also studied thoroughly by Goldhoff [70] in his attempts to find 

the optimum value o f A. In this regard, he found that when formulating a model using this technique, the 

resulting equations were always non-linear since the values o f A and P were unknown. It was also found that 

when fitting the short-term data, there was, relatively, insensitivity to the value of A which is not true for the 

long-term creep data predictions.

In order to establish a confidence in the use and, alternatively, to reflect problems o f this procedure, it should 

be applied to an existing set o f data as well as much sparser data and there should be immediate research into 

the development o f stability factors to enhance the effectiveness o f this extrapolation procedure [70].

2.4.11 R e v ie w  o f  t h e  G o l d h o f f - S h e r b y  (G S )  M e t h o d o l o g y

This methodology pre-supposed the convergence of the iso-stress lines to the point (1/Ta, ta) located just 

below the region of the experimental data. The general equation of this technique is given by [71]:

P gs =  f  (o) = (log t - log ta) /  (1/T - 1/Ta)  (2.25)

where ta and Ta are the time and temperature constants, respectively. For the purpose of examining this 

equation, it was used to analyse the results o f the experiments carried out by Sobrinho and Bueno [32] on 

steels where it was found that the worst results were obtained when the Goldhoff-Sherby equation was used 

to fit the data in all cases. Therefore, due to the very narrow use o f this methodology in creep data predictions 

in addition to the fact that only few studies were carried out to examine the validity o f this technique, more 

research should be completed before generalising the use of this technique in predicting the creep properties 

for long-term purposes.

2.4.12 R e v ie w  o f  t h e  S o v ie t  M e t h o d o l o g y

This method can be described by two models, namely: Soviet model (1) and (2), given by [72]:

Soviet Model (l): log t = a + b log T + c log a + d / T + f  a / T  (2.26)

Soviet Model (2): log t = a + b  log T + c l o g o / T  + d a / T  + f  / T  (2.27)

where a, b, c, d and f  are constants to be determined. In studying these models, some observations were 

presented by Evans [72] who stated that Soviet model (1) was highly effective in modeling the rupture times 

presented to it for estimation purposes, but it was totally inadequate for predicting data points not used in its
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estimation. However, this inability to generalise, or the tendency to overfit the interpolative data set, is a 

characteristic o f all parametric techniques [72].

2.4.13 R e v ie w  o f  O t h e r  T e c h n iq u e s  a n d  M e t h o d s

In addition to the previous proposed methodologies, many techniques were developed as alternatives to avoid 

the errors and flaws encountered when the old traditional methodologies were used. These alternative 

techniques were based on a relation between the same three variables involved, i.e. stress, a, time, t, and 

temperature, T. For instance, Clauss model [73] was based on a time-temperature parameter. In his equation, 

it was found that in some cases, the rate of change o f rupture life with temperature at a constant stress value, 

i.e. the curve spacing in the stress-rupture plots, was a function of stress as well as temperature. If the curves 

were equally spaced or were in parallel, then this means that the change in rupture life will be only a function 

of temperature. But, since the change in rupture life was a function of temperature and stress, then this means 

that the curves in the stress-rupture plots were unequally spaced, i.e. nonparallel.

Murry [29], who studied a lot o f the parametric formulae, assumed that the parameter P and the constant C in 

both the Larson-Miller and Orr-Sherby-Dorn equations are functions of stress from which he set his first 

model, Murry model (I). The same observation was found when he studied the Manson-Haferd equation and 

set his second model, Murry model (II). Another parameter was suggested by Rabotnov [74] in order to 

correlate creep strain data. He found that the strain-time curves could be re-plotted as strain-stress curves 

which can then be normalised to a single master curve that represents a time-compensated-stress correlating 

parameter. This new model was also studied by Goldhoff [70] who found it promising. In an effort to 

overcome some o f the shortcomings of the time-temperature parameters involved in the traditional methods, 

algebraic methods were found to achieve this aim. For instance, the Conrad equation [75] was one o f the 

algebraic methods that were proposed. In this model, a temperature-compensated-stress parameter was 

introduced to help in finding more rational methods o f extrapolation.

Eventually, graphical methods were invented to find another way of correlating parameters together. For this 

purpose, the Grant and Bucklin method [76] was suggested to identify the metallurgical changes and their 

influence on rupture. In addition, the Glen method [77], which studied the same effects involved in Grant and 

Bucklin method, was developed in order to extrapolate the entire creep curve up to rupture. However, when 

these models were studied, it was deduced that the Grant and Bucklin method had no systematic procedure of  

extrapolation since it was dependent on the analyst's ability and his knowledge o f the material involved.
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However, the Glen method received little attention due to its subjective nature and the very detailed

information required from a systematic creep testing program.

2 .5  D isc u ssio n  a n d  C o n c l u s io n s  o f  t h e  E x t r a p o l a t io n  M e t h o d s

So far, many extrapolation methods have been discussed and critically reviewed so as to find a reliable

method for extrapolation purposes but unfortunately, no such method exists [2]. However, until a better

procedure is developed, they must be considered as mathematical tools without any preferences selecting 

whichever best fits the data. Any method should provide a numerical accuracy in extrapolation since these 

methods are considered and used as ‘practical devices’. Furthermore, a method should give a physical 

feasibility and reflect the actual behaviour o f a material instead of being only empirical so that the results o f  

extrapolation can be trusted. These two criteria depend on the data required to establish the extrapolation 

where there should be a minimum number o f data points and a certain degree o f scatter [2].

Concerning the power law equation, for instance, there had been an increasing realisation that the secondary 

creep is unlikely to be a separate stage of the creep process. But instead, it was agreed that this stage is 

associated with a minimum in creep rate resulting from a balance between the primary and the tertiary creep 

processes [78]. It was also suggested that the high values of the minimum creep rate stress exponent, n, and 

the activation energy, Qc, in this law are a natural consequence o f the combined effect o f the primary and the 

tertiary processes [78]. Another study carried out by Evans et al [59] on the power law revealed that the 

values of the two 'constants' used in its equation were found to vary depending on the creep conditions 

imposed. This variation was explained on the basis that different mechanisms control the creep behaviour in 

different stress/temperature regimes. A similar interpretation was presented by Brown et al [20] and showed 

that the values of n and Qc also vary depending on the creep mechanism involved. In contrast to these 

explanations, Wilshire and Burt’s experiments [79] showed that the variations in the value o f n were not 

caused by creep mechanism transitions, because the microstructural studies and the curve shape analyses 

showed that the dominant deformation and damage processes were unchanged over the entire stress- 

temperature ranges studied. These disagreements about the power law behaviour prove that there are many 

problems will be encountered when such a law is used to predict the creep properties since no unique 

explanation has been presented for the variations in the values of these 'constants'.

The transition in the mode of deformation during creep tests was more obvious through the discontinuity in 

the plots of the time to fracture, tf, versus stress, a, at constant temperatures, according to Grant [80], which 

divided each curve into two different regimes, namely: the transcrystalline region (at the high temperature-
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high stress portion) and the intergranular region (at the low temperature-low stress portion). This 

discontinuity is the primary cause of curvature in the plots of isostatic data versus the reciprocal of the 

absolute temperature [40]. Based on this, the parametric correlations must, thus, cover each regime 

individually instead of covering the whole set o f data at once. Dealing with the data as a whole set is the main 

reason behind the failure of most parametric techniques which are applicable in one range leading to 

considerable errors if they are extended to include the other range o f different conditions data [40].

Many of the traditional approaches ignore a considerable amount of information by reporting only a limited 

number o f data such as the steady-state creep rate and the rupture life. These conventional approaches, 

therefore, should be replaced by procedures which quantify the whole creep curve shape and its dependence 

on test conditions [20]. The linear parametric methods vary in their ability to fit the data accurately and their 

simulation of the real physical behaviour. For example, the Larson-Miller equation is very convenient in 

comparing different materials directly but considered to be the least accurate even with good quality data [2]. 

Moreover, the Manson-Haferd technique provides a closer fit o f the data because of the two independent 

constants used in its equation in contrast with the Larson-Miller and Orr-Sherby-Dorn equations which 

involve only a single constant. However, these methods might work properly with the ‘industrial’ data but 

their correlation o f the ‘research’ data is significantly inferior due to the scatter found in these data. 

Therefore, they can not be reliable to predict the creep life at all times [2]. On the other hand, the complex 

methods, such as the non-linear Manson-Brown method and the graphical methods o f Grant-Bucklin and 

Glen, were found to be more accurate than the linear extrapolation methods. Even though, the non-linear 

methods might be useless when dealing with information of large scatter bands. The graphical methods were 

able to provide accurate results in extrapolation only if accurate data were provided which disqualifies them 

from general use [2]. While short-term data up to several thousand hours indicate a linear relationship 

between the stress and the time to fracture, long-term studies have demonstrated that extrapolating the short 

duration tests can lead to serious overestimations of the rupture life as the stress rupture curves deviate from 

linearity at longer times [81]. The use of parametric extrapolation techniques, such as the Larson-Miller and 

Manson-Haferd methods, overestimates the long-term life. In addition, when data up to, say, 30,000 hours 

are available, the 100,000 hours predictions could be reasonably accurate which means that these 

extrapolation methods are just limited to three times the longest reliable test data available [81].

Due to the multiplicity of rate processes affecting the creep strength o f complex alloys at high temperatures, 

it is impossible for a single parameter to describe accurately all the involved properties. These techniques 

provide only a semi-empirical approximation of the trend o f data and thus, it is difficult to predict in advance
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which technique will be the most suitable for a given alloy [37]. Based on their experiments, Larke and Inglis 

[28] added that whichever method of analysis is employed, errors between predicted and actual stress values 

must be anticipated. Moreover, they found that a significant difference between the observed fracture times 

and the predicted values was obvious from which they concluded that none of these methods are 

recommended for long-term extrapolations [28]. Further studies were carried out by Brozzo [40] in an effort 

to develop a better technique for processing the short-time test data. He found that each of the parametric 

techniques was based on particular simplifying assumptions whose validity had not been confirmed for all 

materials or on a wide range of the test variables. Therefore, he reached the conclusion that none of the 

available parametric techniques appeared to be fully satisfactory. In agreement with that, Goldhoff [70] 

deduced that the conditions imposed on the experimental data when using such techniques, e.g. to force the 

linearity of the iso-stress curves and the subsequent parallelism or convergence of these curves in a manner 

that is not descriptive of the actual behaviour, could induce large errors in extrapolation. This is because data 

do not always conform to these restrictions which might, in return, cause the large errors in extrapolation o f  

the longer-time rupture [82].

In conclusion, the different evaluation procedures yielded significantly different results. These differences 

might be a result o f the poor fitting ability o f the parametric equations or due to the structural changes that 

might take place during the creep of a material. These differences might also be found even if the 

experimental findings agreed very well with the computed stress dependence of the times to fracture. For 

these reasons, there is no indication o f how far the regression equation remains valid outside the boundaries 

of a given experiment [83].



CHAPTER 3

T h e  N e w  E x t r a p o l a t io n  T e c h n iq u e

The previous chapter has established a strong background and a critical review to the most widely used 

extrapolation techniques for creep predictions. It was clear that the majority o f these techniques were unable 

to predict the creep behaviour o f many materials and that was clear from the significant errors obtained when 

such methods were used. For this reason, and in order to avoid such errors, a New Extrapolation Technique 

has been developed at Swansea University by Wilshire [21, 22] for such long-term creep predictions. Current 

programmes at Swansea University with partners in the UK power, aeroengine and automotive industries are 

ongoing to evaluate and assess the predictive capabilities of this methodology for steels and nickel-base 

superalloys, in addition to some aluminum and titanium alloys. The successful validation of this predictive 

technique would then minimise the durations and the costs of acquiring long-term creep data as well as 

simultaneously reducing the delay times between the development and the application o f new creep-resistant 

alloys. The aim o f the current work is to examine the ability of this newly invented methodology in 

predicting the creep behaviour of a chosen high temperature aerospace alloy. As a model material, Titanium 

IMI834, an aerospace high grade titanium alloy, has been employed to enable sensitivity studies using this 

new methodology.

3.1 B a c k g r o u n d  t o  t h e  N ew  M e t h o d o l o g y

By using this new methodology, the values o f the minimum creep rate, 8m, and the time to fracture, tf, 

recorded at different temperatures can be superimposed onto 'Master Curves' by simply normalising the 

applied stress through the ultimate tensile strength, aTS, measured at various creep temperatures [21, 22]. 

Superimposition can also be achieved using the yield strength, oy, but the data fit is usually poorer since the 

value of ay is more difficult to be measured precisely than aTs [84]. Therefore, by selecting aTs values for 

such purposes, property comparisons for different metals and alloys can be significantly simplified [22]. 

Normalising the applied stress in the power law equation, = A on exp (-Qc/RT), and defining the minimum 

creep rate, tm, as in the Monkman-Grant relationship, = M/tf , gives [21]:

fim = M / tf = A* (g/gts)" exp (- Qc*/RT)  (3.1)
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where A V  A and Qc V  Qc. In this case, Qc* is determined from the temperature dependence of and/or tf at 

constant (a/cTS), in contrast to Qc which is normally calculated at constant a. Although this equation still 

does not permit reliable extrapolation o f the short-term measurements as a result o f the unpredictable fall in n 

values as g/ots decreases, it reduces, at least, the scale and the number o f the experimental tests undertaken 

to obtain long-term strength data, but not the maximum duration o f these tests [21, 22].

The failure of the traditional procedures to give acceptable estimates of the 100,000 hours strengths by the 

analysis o f the 30,000 hours data has frequently been attributed to different mechanisms of creep and/or 

creep fracture which become dominant in different stress and temperature regimes [21]. If the dominant 

mechanism changes, measurements made at high stresses would not allow prediction of the low-stress 

behaviour. For this reason, the new methodology has been introduced to examine and assess whether the 

change in the failure characteristics after prolonged creep exposure prevents accurate predictions of the long

term rupture strengths by extrapolating the short-term creep measurements [22]. In this regard, Wilshire [22] 

obtained very accurate estimation of the long-term creep rupture strength using this technique, irrespective of  

the transition from transgranular to intergranular fracture, by extrapolating the short-term creep data.

This technique is mainly based on the data rationalisation achieved through equation (3.1), where it is 

possible to rationalise the minimum creep rate, em, and the time to fracture, tf, measurements by normalising 

g  through g t s . Since oTS represents the maximum stress that can be applied on a material at a specific creep 

temperature, the data sets can be described over the entire stress range from (o/cTS = 1) to (o/oTS = 0). In 

addition, it is evident that (em —»oo and tf —>0) as (o/oTS —>1), whereas (£m —>0 and tf —►<») when (o/oTS —►()). 

These essential criteria are met by replacing equation (3.1), so that the stress and temperature dependences of  

the creep lives are described by [21, 22, 84]:

o/oTS = exp (- k] [tf exp (- Qc*/RT)]U)  (3.2)

where the values of the coefficients ki and u can be easily evaluated from the plots o f In [tf exp (- Qc*/RT)] 

against In [- In (o/oTs)]- The slope o f these plots represents the value of u whereas the intercept with the y- 

axis represents the value o f In (kj) from which kj can be calculated. The value o f Qc* can be evaluated at 

constant o/oTs by plotting In (tf) against 1/T where the slope of these plots represents the value o f  Qc*/R from 

which Qc* can be obtained.

As with the representation of stress rupture properties through equation (3.2), the stress and temperature 

dependences of sm can be described using [21, 22, 84]:

g / g ts = exp (- k2 [£„, exp (Qc*/RT)f)  (3.3)
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where the values o f the coefficients k2 and v can be obtained from the plots of In [£„, exp (Qc’/RT)] against 

In [- In (o/oTS)]. The slope of these plots represents the value o f v whereas the intercept with the y-axis 

represents the value of In (k2) from which k2 can be calculated. The value o f Qc* can be evaluated at constant 

o/oTS by plotting In (e™) against 1/T where the slope o f these plots represents the value o f - Qc*/R from which 

Qc* can be obtained.

In addition to equation (3.2) and (3.3), the planned operational life for some components must take into 

account the times required to reach certain limiting strains, te. As with tf in equation (3.2) and em in equation 

(3.3), the stress and temperature dependences of tE can be quantified as [21, 22]:

a/aTS = exp (- k3 [te exp (- Qc*/RT)]W)  (3.4)

where the values o f the coefficients k3 and w can be calculated from the plots o f In [tE exp (- Qc*/RT)] against 

In [-In (o/aTS)]. The slope of these plots represents the value o f w whereas the intercept with the y-axis 

represents the value of In (k3) from which k3 can be calculated. The value o f Qc* can be evaluated at constant 

a/oTS by either plotting In (tf) and/or In (£„,) against 1/T where the value of Qc* can be obtained from the 

slope of these plots (the slope will be either Qc*/R or - Qc*/R, respectively).

Studies by Wilshire and Schaming [21, 85] revealed that using equation (3.2) allowed extrapolation of the 

short-term creep life measurements and accurately predicted the 100,000 hours rupture strengths for several 

martensitic 9-12% chromium steels at different temperatures. Further studies by Wilshire and Schaming [22] 

also showed that equation (3.2), (3.3) and (3.4) permitted effective rationalisation and extended extrapolation 

of the time to fracture, tf, the minimum creep rate, em, and the time to certain strains, tE, data for lCr-lMo- 

0.25V steel, despite the tempering o f the as received bainitic microstructure and the occurrence of a gradual 

transition from transgranular to intergranular fracture during creep exposure. In another study, Wilshire and 

Battenbough [84] proved that the stress and temperature dependences of em and tf were best described using 

equation (3.2) and (3.3) when they used this technique on polycrystalline copper.

Thus, using this new technique will certainly reduce the scale and duration of the test programmes currently 

undertaken to define the allowable creep strengths of power plants and aeroengines applications [85],

3 .2  O b je c t iv e  o f  t h e  N e w  M e t h o d o l o g y

The 'Wilshire equations', i.e. equation (3.2), (3.3) and (3.4), proved their precise and accurate capability of  

predicting the creep behaviour of different steels [21, 22, 85], copper [84] and aluminium alloys [86]. The 

long-term data obtained from these equations were, at least, as impressive as those obtained from the
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parametric methods, but with the added advantage o f that the empirical terms in the parametric expressions 

being replaced by physically-meaningful properties, i.e. the activation energy for matrix diffusion, Qc , and 

the relevant tensile strength, oTS, values. Moreover, these equations allowed not only data rationalisation and 

extrapolation, but also a straightforward interpretation of the behaviour patterns displayed by pure copper and 

aluminium alloys, as well as a range o f power plant steels [21, 22, 84, 85, 86]. Therefore, the validation of  

this technique will provide a method by which the errors and flaws encountered by the other traditional 

parametric techniques can be, at least, reduced or even eliminated. This was proved, so far, by the reasonable 

predictions obtained using this technique on many different materials. For the same purpose, this capability 

of predicting the long-term creep data will be examined in this work on the Titanium IMI834 alloy using 

actual data obtained from creep tests completed under certain stresses and temperatures. This will, in return, 

provide an additional support to the predictive capability of this technique.



CHAPTER 4

P r o c e d u r e s  & P r a c t i c a l  W o r k

As a limited number of studies have been previously carried out on different materials using the new 

methodology, this research will thoroughly concentrate, for the first time, on using this new technique on 

Titanium IMI834. In addition, all the practical procedures followed, including all mechanical testing, along 

with the procedures adopted to prepare the samples for microstructural analyses will be discussed. The data 

obtained from these tests will be used to run the new model in order to prove the predictive capability o f this 

technique using newly generated Titanium IMI834 data. Moreover, using the generated data, the Wilshire 

equations will be extended to re-construct full creep curves based on these actual measurements. After each 

creep test, the thickness of the alpha-case layer developed at the surfaces of the testpieces, as a result of 

oxidation, will be measured and used for further analysis. All images mentioned in this chapter are 

summarised in Appendix (A).

4 .1  T i t a n i u m  i m i 834 A l l o y  ( T i m e t a l  834)

Timetal 834 is a near alpha alloy which consists of 15% equiaxed primary alpha in a fine lamellar alpha/beta 

phase matrix [87, 88], This unique microstructural composition o f the alloy offers an increased tensile 

strength and creep resistance up to 873K [89]. Besides, the alloy derives its properties from the solid-solution 

strengthening and heat treatment in the alpha/beta phase field which makes it able to retain a good level o f  

properties up to around 75cm diameter, with small reductions in strength in larger sections [89]. It is also 

reasonably forgeable and effectively weldable using all the established titanium welding techniques. This 

alloy is mainly used for the rings, compressor discs and blades o f gas turbines and jet engines applications 

[89].

The chemical composition of this alloy consists primarily of: Ti-5.8Al-4.0Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si

[89]. The different elements which comprise this alloy provide, altogether, a stable composition and superior 

properties necessary for the high temperature applications. For instance, Aluminium (Al), Tin (Sn) and 

Zirconium (Zr) are considered as ‘alpha stabilising elements’ which act to stabilise the hexagonal alpha phase 

whereas Niobium (Nb) and Molybdenum (Mo) are ‘beta stabilising elements’ which act to stabilise the body 

centered cubic beta phase [90], The addition of Silicon (Si) is to enhance the creep performance o f the alloy

[90]. The alpha stabilisers have the effect o f increasing the transformation temperature between the alpha and
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the beta phases in contrast to the beta stabilisers which tend to decrease this transformation temperature [90]. 

Another effect o f the alpha stabilisers, Aluminium (Al) for instance, is that their atoms are slightly smaller 

and less dense than titanium atoms resulting in a lower density of this alloy in comparison with pure titanium

[90]. Moreover, the hexagonal arrangement of atoms, i.e. the alpha phase, increases the hardness of the alloy 

in comparison to the body centered cubic arrangement, i.e. the beta phase, and thus, decreases the 

deformation under the effect o f high stresses and temperatures [90].

This alloy has been developed for the high temperature applications of gas turbines and jet engines in order to 

replace the heavy nickel-base superalloys and increase the payload [91]. It has an added advantage of 

developing a wide variety o f microstructures depending on the solution treatment and the subsequent cooling 

rate. Its bimodal microstructure that consists o f 15% primary alpha in a matrix o f a fine lamellar grained 

transformed beta provides a good combination of creep strength, low cycle fatigue and resistance against 

crack propagation properties [91]. The fact that the disks and blades of the compressor in a gas turbine are 

subjected to very high mechanical strain cycles accompanied by thermal transients during the start and the 

shut-down stages of modern gas turbines required materials that have fatigue, creep, tensile strength and 

fracture toughness capabilities which were specifically found in this alloy, Titanium IMI834 [90, 91].

4 .2  P r e p a r a t i o n  a n d  M i c r o s t r u c t u r e  o f  T i t a n i u m  IM I834  A l l o y

In order to obtain the as-received condition o f the alloy, solution heat treatment was carried out at 1293K for 

2 hours followed by oil-quenching [88]. The solution-treated sample was then thermally-aged at 973K for 

another 2 hours and subsequently air-cooled to improve the creep resistance o f the alloy [88, 92]. The sample 

was then sectioned and mounted in epoxy mounts (Buehler Phenolic Resin Powder) using an automatic 

mounting press (Buehler Simplimet 3000), Figure A.l (a), under a pressure o f 290 bar for 1 minute heating 

time followed by 4 minutes cooling time. The mounting of the specimen was then followed by 4 stages of  

grinding which was carried out using SiC grinding sheets, Figure A.l (b). At each successive stage of  

grinding, the sample was rotated 90 in order to get a better surface finish. The ground specimen was then 

polished using an automatic polishing wheel (Struers Polishing Machine), Figure A .l (c), to achieve a mirror

like finish, and this was carried out in 3-successive steps, namely: (1) Polishing was first completed using the 

MD-Piano-220 disc and water as a lubricant and cooler, under a force o f 25N for 1 minute at a speed of 

300rpm. To keep the disc ready for another use, it should be water-rinsed and air-dried. (2) The specimen 

from the first polishing step was further polished using the MD-Plan disc lubricated by Diapro-Plan under a 

force of 30N for 5 Minutes at a speed of 150rpm. The disc was then air-dried. (3) Finally, the specimen was
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polished using the MD-Chem disc and lubricated by OP-S Suspension (0.04 micron) diluted by water under a 

force of 20N for 8 minutes at 150rpm. The disc was then water-rinsed and air-dried. All the polishing discs 

used for polishing the sample are shown in Figure A.l (d). Subsequently, etching was carried out using

Kroll's reagent, Figure A.l (e), which contains Hydrofluoric Acid (HF), for 40 seconds to highlight the grain 

structure and morphology. The study o f the resulting microstructure under the optical microscope revealed 

the structure of the IMI834 in the as-received condition which consisted o f 15% primary alpha colonies in a 

matrix of lamellar alpha and beta phases, Figure A.l (f). However, this percentage has not been measured 

directly in this study, but the production routes and the heat treatment processes o f this alloy has been 

referenced in the literature [87, 88] and was followed here which implies that the microstructural composition 

should be consistent.

4 .3  E x p e r im e n t a l  P r o c e d u r e s  (M e c h a n ic a l  T e s t in g )

The Titanium IMI834 specimens investigated were supplied by Rolls-Royce pic as cylindrical tensile 

specimens, SCI-type, of a circular cross-section of 5.0 mm diameter and 12.0 mm gauge length in the as- 

received condition, Figure A.2 (a). The creep specimens, RLH 10259-type, were machined and prepared at 

Swansea University Workshop from the original tensile specimens by adding grips which were machined 

into them resulting in a 20.0 mm grip-to-grip distance and a diameter o f 4.0 mm, Figure A.3 (a).

Five different types of tests were completed in order to obtain enough information about the behaviour of the 

Titanium IMI834 alloy under high temperatures, namely: Tensile and Stress Relaxation tests (using the SC1- 

type specimens), Creep, Creep-Step, or Cyclic-Creep, and Creep-Vacuum tests (using the RLH 10259-type 

specimens).

4 .3 .1  T e n sil e  T e st s

Tensile tests are necessary to select materials for engineering applications where the tensile properties 

obtained from these tests can be used to predict the behaviour of a material under different forms o f loading 

other than only the uniaxial tension. These tests can be carried out by mounting a specimen in the tensile 

machine, gripping its ends and subjecting it to a tensile load. During the test, the load is recorded as a 

function of elongation. However, the load can be normalised by the initial cross-sectional area giving a stress 

value whereas the elongation can be normalised by the initial gauge length giving a strain value. A stress- 

strain curve is, thus, obtained having an identical shape to the force-elongation curve with the advantage that
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it is independent of the specimen’s dimensions [93]. It is worthwhile mentioning that the high-temperature 

tensile test is exactly the same as the normal tensile test with the only difference that in the former, the 

specimen is mounted and gripped in the tensile machine and heated up to a specific temperature prior to 

testing. The new gauge length as a result o f the specimen’s extension under the high temperature is, thus, 

recorded and used in calculating the strain of the specimen throughout the duration o f the test. A typical 

stress-strain curve is illustrated in Figure (4.1). All the tensile tests were carried out under 'load' control.

The Titanium IMI834 specimens, Figure A.2 (a), were tested at three temperatures, namely: 823, 873 and 

923K, where the stress-strain curve at each temperature was recorded. In each o f these tests, the ends of the 

specimen were screwed into a threaded grip so that the specimen is held at the maximum load without 

slippage or failure in the grip section and then loaded into the tensile machine, Figure A.2 (b).

o

c

1 - Ultimate Strength.
2 - Yield Strength (elastic limit).
3 - Rupture.
4 -  Elastic Region.
5 - Strain hardening region.
6 - Necking region.

y  In the Elastic Region: Ao/At = E 

>  In the Strain Hardening Region: Ao/Ae = hardening

Figure (4.1): A sketch of the stress-strain curve showing the different regions o f deformation during elongation.

Two type-N high-temperature thermocouples were located along the gauge length of the specimen to ensure 

that the temperature is uniform throughout the specimen’s length, Figure A.2 (c). The temperature readings 

were displayed on a digital multi-meter by connecting the free ends of the thermocouples into the meter. The 

specimen’s displacement was transmitted by heat-resistant rods, through a side aperture in the furnace wall, 

which were secured to the body of the strain-gauge extensometer that was located outside the furnace. The 

rods were attached precisely to the gauge length o f the specimen using a spring system that screws to the 

furnace and uses struts to press the instrument in place, Figure A.2 (c). A small cooling fan was used to 

maintain the extensometer body temperature below 423K. The strain gauge was calibrated using a 12.0 mm 

setting bar so that the extensometer output is set to zero prior to the start of the test. Although this gauge 

length was used throughout the tensile test at different temperatures, it did not actually represent the 'total' 

gauge length when the specimen was heated up. In other words, after applying a high temperature, the 

specimen itself slightly deforms and, thus, extends before even applying any additional load. This extension
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must be added to the original gauge length of 12.0 mm before the test starts. Therefore, the ‘total’ gauge 

length at elevated temperatures is calculated as:

Total gauge length = 12.0 mm + Extension after heating up the specimen (mm).

A Split Tube Furnace with optional side entry extensometer port was used to heat up the specimen prior to 

testing. The case of the furnace is constructed from stainless steel with aluminium and hardened insulation 

board end plates. The optional front cut-out allows the use of side-entry high-temperature extensometry. 

Adjustable stainless steel latches keep the furnace halves locked together during the test and can easily be 

opened once the test is complete. The specimen inside the furnace is heated through a combination of 

convection and radiation, dependent on the test temperature. The furnace's upper and lower sides should be 

securely insulated to reduce the level of heat loss using refractory ceramic-fiber insulation (KAO Wool) 

which consists of thermally efficient high temperature materials that combine the advantage o f low heat 

storage with complete resistance to thermal shock.

During the test at 823K, the furnace was heated up to 843K with thermocouple readings o f  824.5K and 

822.3K giving an average specimen's temperature o f ~ 823.4K. The furnace temperature was always higher 

than the specimen's temperature as a result o f the heat loss from the furnace to the surroundings through the 

openings and unsecured places. Following heating up, a load of 0.5kN was applied to ensure that the 

specimen is kept in place without slippage. The specimen was kept for 2 hours in the furnace before the test 

took place to confirm that the desired temperature is attained, stable and uniform along the specimen’s gauge 

length. The new ‘total’ length was calculated as 12.057 mm due to the specimen's extension under the high 

applied temperature. Eventually, the test started with a tensile rate of lmm/min by increasing the tensile load 

and recording the corresponding elongation increment till the specimen fractured, Figure A.2 (d).

The same procedure was exactly followed at 873K where the furnace was heated up to 888K giving 

thermocouple readings of 874.5 and 872.7K and an average specimen's temperature o f 873.6K. Before the 

test started, the initial tensile load on the specimen was 0.78kN and the new gauge length, following heating 

up, was 12.062 mm. The tensile rate of the test was lmm/min, which is similar to the previous test.

Finally, the last test was carried out at 923K where the initial load was 0.68kN with a furnace temperature of 

958K. The thermocouple readings were 924.4 and 923K which gave an average specimen's temperature of 

923.7K. The total gauge length of the specimen was calculated as 12.068 mm. The tensile rate o f the test was 

2mm/min which is slightly faster than the previous tests.
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Having completed these tests, the stress-strain curves were obtained at the applied temperatures. Besides, the 

fractured specimens, Figure A.2 (d), were then taken for further microstructural investigations using the 

Scanning Electron Microscope (SEM), for studying the fracture surfaces, and the Optical Microscope, for 

studying the grain structure, in order to compare the different modes o f fracture under various test conditions.

4 .3 .2  S t r e ss  R e l a x a t io n  T e st s

The stress relaxation test can be considered as a special case of the tensile test with the only difference that 

after applying a certain amount of load, a sudden finite amount o f constraint or 'constant strain,’ is applied, 

Figure 4.2 (I), and kept constant for a certain duration of time during which the stress starts to drop or 'relax', 

Figure 4.2 (II), with time [94]. The value o f the Elasticity Modulus, E, can be calculated in Figure 4.2 (I) 

from the slope of the stress-strain curve during the initial loading stage before reaching the yield point.

a

(Constant Strain)

£

a
(B) (C)

(stress relaxation at constant strain)

(Loading)

t
Figure (4.2): A sketch of the (I) stress-strain curve with a sudden applied constraint (constant strain) and (II) stress 
relaxation behaviour corresponding to the selected strain levels in (I).

Moreover, other values of the elasticity modulus can be obtained at point A, B and C, o f the same curve, 

where other loadings are being applied after relaxation at each stage [94, 95]. On the other hand, at each stage

of Figure 4.2 (II), it can be observed that the stress continues to decrease with time during relaxation from

which the stress relaxation rate, da/dt, can be obtained [94, 95].

At any time during stress relaxation, the sum of the elastic strain, se, and the inelastic strain (or plastic strain), 

£p, is given by [95]:

£  to ta l — £ p .......................................................................................................................................................( 4 - 1 )

In this equation, if  e tota] is kept constant then: de tota i/d t = 0, and d£p/dt, at any time after the beginning o f the 

stress relaxation, is given by [94, 95]:

d£p/dt = - dee/dt = - d(o/E)/dt............................. ................................ (4.2)

where ee = o/E, which is the elastic strain. This equation can be rearranged to give [94, 95]:
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8p = - (da/dt)/E .................................(4.3)

where 8p is the plastic strain rate, dep/dt. From this equation, calculating the plastic strain rate is a straight 

forward procedure where the value of E is obtained from Figure 4.2 (I) during the elastic loading whereas the 

value of the stress relaxation rate, dc/dt, is calculate^ from Figure 4.2 (II). Plotting the values of £p against 

l/8p might be fitted using regression analysis such that: 1/Sp = f  (8p), which can be rewritten as: dt/d8p = f  (£p), 

from which the time can be calculated according to [95]:

t= |f(8 p )d £ p  ................................. (4.4)

£po

At each value of stress, the corresponding plastic strain, 8p, and time, t, can be calculated using equation (4.1) 

and (4.4), respectively, from which creep curves might be re-constructed [95].

Another type of stress relaxation tests involves loading, stress relaxation and then complete unloading, in 

contrast to the previous type where the load is not removed completely after relaxation [94], as shown in 

Figure 4.3 (I). The behaviour o f the material during the loading and the unloading stages is shown in Figure

4.3 (II), from which two values o f the elasticity modulus, E, can be obtained and an average value can

accordingly be calculated.

<T

(stress relaxation)

(Loading)

(Constant Strain)
(unloading)

t

(stress relaxation)a

(Constant Strain)

(Loading)

(unloading)

8

Figure (4.3): A sketch o f the (I) stress-strain-time curve involving loading, relaxation and unloading, (II) stress-strain 
values obtained from Figure (I) during the loading and the unloading stages from which two values of the elasticity 
modulus, E, can be calculated.

All the stress relaxation tests were carried out under 'strain' control using the same batch of the Titanium 

IMI834 specimens, used in the previous tensile tests, of 5.0 mm diameter and 12.0 mm gauge length, Figure 

A.2 (a), and using the same tensile machine, Figure A.2 (b), but with changing the test conditions. The tests 

were completed at five selected temperatures, namely: 823, 848, 873, 898 and 923K. The machine was 

connected to the logging system via three channels: Channel 0 (Strain; 0.5mm/10volts), Channel 1 (Load; 

50kN/10volts) and Channel 2 (Position; 10mm/10volts). The readings were taken at the order of (1 

Reading/0.2 seconds) for the first 10 seconds, followed by (1 Reading/5 seconds) for the remaining duration
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of the test. A hold period, in which the strain is held constant, of 30 minutes was used for each step followed 

by a specified increase in the value o f strain which was again held constant for another 30 minutes and so on 

for the successive stages. Two type-N thermocouples, calibrated to a high precision of ± 2K, were used, 

Figure A.2 (c). A calibrated extensometer was used to measure the elongation of the specimen, Figure A.2 

(c). The extensometer was accurately calibrated prior to the start of each test using a 12.0 mm setting bar to 

obtain accurate measurements.

The first test was carried out at 923K with a furnace temperature of 935K and thermocouple readings o f

924.5 and 922K giving a specimen's average temperature o f 923.25K. As with the previous tensile tests, 

before the test started, the new gauge length of the specimen, as a result o f extension under the high 

temperature, was calculated as 12.053 mm. The same procedures of the previous tensile tests were followed 

by applying a certain amount of load and recording the stress against strain. After reaching a strain of, say, 

0.5%, this value o f strain was held constant for a period of time, 30 minutes in our test, during which the 

stress started to decrease, or relax. More successive stages were completed by increasing the strain value by 

0.5% at each successive step up to 4% total strain, when the steps were increased by 1% up to 6% total strain. 

It is worthwhile mentioning that at this value of total strain, the specimen did not fracture and thus, the test 

was interrupted and the tested specimen was sectioned and sent to further metallurgical investigations.

At 873K, the furnace was heated up to 880K which gave thermocouple readings o f 875 and 872.3K resulting 

in an average specimen's temperature of 873.65K. The new gauge length was recorded as 12.134 mm. The 

strain was held constant at an order of 0.5% up to 3% when the steps were increased by 1% up to 4% total 

strain. Again, the test was interrupted as the specimen did not fracture and the stress-strain curve was 

obtained. At 823K, the furnace was heated up to 833K, and the new gauge length of the specimen was 12.03 

mm. The thermocouple readings were 824K and 823K with an average specimen's temperature o f 823.5K. 

As with the 873K test, the strain was increased in an order of 0.5% up to 3% when it was changed to an order 

of 1% up to 4% total strain and then, interrupted. The tested specimens were then sectioned and examined 

under the Optical microscope.

The same procedures were repeated at the intermediate temperatures o f 848 and 898K where the stress 

relaxation curves were also obtained. These intermediate tests were necessary to support the results o f the 

previous tests such that if an interpolation was carried out between, say, 873 and 923K, the results o f this 

interpolation must be consistent with the values obtained from the actual 898K test. The same outcome 

should be valid for the results o f the 848K test which should lie between the 823 and the 873K tests results.
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After completing these tests, similar curves as the ones in Figure (4.2) were obtained and many data points 

were recorded to run the analysis which involved the steps mentioned in equation (4.1), (4.2), (4.3) and (4.4) 

from which the creep curves might be re-produced. In addition, the values of the elasticity modulus, E, were 

calculated from the slopes of the stress-strain curves during the loading stage at the different temperatures 

which should be comparable with the values obtained from the former tensile tests at the same selected 

temperatures.

It is worthwhile mentioning that after each stress relaxation test, the machine's control should be changed 

from 'strain' into 'load' control to avoid the fracture of the specimen when the furnace is switched off. In an 

effort to understand this effect, the machine was left under 'strain' control after completing the first two tests 

at 923 and 873K. It was noticed that when the furnace was turned off and cooled down, the specimen 

fractured after shrinkage at room temperature. The reason was that when the machine is held under 'strain' 

control, the cross-head or the actuator of the machine is already fixed in a certain position regardless of any 

change in strain, i.e. the specimen will shrink while its ends are fixed, which then leads to fracture. The 

cooling process o f the specimen means that the atoms’ thermal energy is decreasing which results in bonding 

the atoms together leading to a decrease in the material’s ductility. In this case, the material's toughness is 

decreasing and thus, if there were any surface cracks, this will facilitate the growth o f these cracks into the 

materia] leading to fracture. On the other hand, when the machine was changed into 'load' control, the 

specimen did not fracture after shrinkage at room temperature. The explanation is that under 'load' control, 

the cross-head will move according to any shrinkage of the specimen's length to keep the 'load' constant. In 

other words, as the specimen was shrinking, its ends were moving with the cross-head and thus, no fracture 

took place after cooling down.

4 .3 .3  C r e e p  T e s t s

Cylindrical Titanium IMI834 creep specimens o f 25.0 mm gauge length and 4.0 mm diameter, Figure A.3 

(a), were tested in tension using the high-precision constant-stress creep machines, Figure A.3 (b). Two type- 

R thermocouples located at several positions along the specimen's gauge length, Figure A.3 (c), established 

that temperatures were controlled to a very high precision. The upper and the lower parts of the specimen 

were tightly fixed in the grips o f the creep machine, Figure A.3 (c), such that high stresses could be applied

without causing slippage o f the specimen at the grip position. These grips were attached to the extensometers 

which are responsible for recording the displacement of the specimen during the test. High-temperature paste 

was used to protect the threads of all components used in the harsh environments inside the furnace which
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involved very high temperatures and stresses. The measurements of each specimen's elongation and 

temperature were continuously monitored during the test with a fluke data logger, Figure A.3 (b). The system 

can store a large number o f readings from each machine for subsequent processing. The specimen was 

surrounded by a sliding tube furnace which was connected to the logger system, Figure A.3 (b).

Creep tests were carried out at temperatures 823, 848, 873, 898 and 923K under different stresses ranging 

from a minimum of 140MPa up to a maximum of 600MPa. Rupture times varied from 14.4 hours, as a 

minimum, at 873K and 550MPa, up to 5805.5 hours, as a maximum, at 873K and 200MPa. However, some 

o f these creep tests were carried out at Swansea University in the past using the same batch of Titanium 

IMI834 used in this study and thus, the creep properties from these tests were available. For the purpose of 

having more creep data to fill the gaps between some creep data points, more creep tests were, thus, carried 

out recently on Titanium IMI834, as show in the test matrix in Appendix (C). The data logging rates were 1 

reading/5 seconds at the start of each test followed by 1 reading/1 minute for the first hour or two and then 1 

reading/2 hours throughout the remaining duration o f the test, depending on the creep deformation rates. For 

each test, a total o f 700 to 800 points were stored and then filtered down to 300 to 400 readings only. This 

number o f points was considered sufficient to define well the shape of each creep curve. During each test, 

time was recorded against strain under a defined tensile stress up to fracture.

Many factors could significantly affect the creep life, during a test, if  caution has not been taken in advance. 

The diameter of the specimen and thus, the cross sectional area, for instance, must be accurately measured. 

This was carried out by taking five measurements o f the diameter all the way along the gauge length, and 

then taking the average of these measurements which represents the actual diameter. Based on this calculated 

diameter, the stress can then be calculated through dividing the applied load by the cross sectional area o f the 

specimen. The applied load on the specimens was generated using suspended weights. A ratio of 10:1 was 

used to calculate the required stress where each 1kg of the suspended weights was multiplied by 10 to give 

the required stress value for the corresponding specimen's diameter. Another factor that could minimise the 

anticipated life o f the specimen is the temperature throughout the test. For this purpose, two type-R 

thermocouples were used along the gauge length of the specimen. These thermocouples were calibrated to a 

high precision prior to the start of the test. During each test, the readings of the thermocouples were around 

± 2K o f the actual test temperature which gave a reasonable average value that represents the required 

specimen's temperature. Another very important factor is the surface finish of the specimen. This can 

significantly cause the specimen to fail in an unexpected earlier life time. The specimens were machined and 

polished to an excellent condition so as to eliminate any scratches or surface defects.
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The crept specimens, Figure A.3 (d), were given a certain number related to the test carried out in order to 

differentiate each specimen from the others. The crept specimens were metallographically examined using 

the SEM, for the studying the fracture surfaces, and the Optical Microscope, for studying the morphology o f  

the grains on the longitudinal polished sections.

4 .3 .4  C reep-Step  T ests  (A ir)

This test can be considered as a special case o f the normal creep test previously carried out with the only 

difference that it involves changing the test conditions while the test is still ongoing. In other words, the test 

starts with applying a certain stress at a specified temperature and the specimen is allowed to creep for a 

certain period of time when the test conditions, either the stress and/or temperature, are altered. As with the 

previous creep tests, cylindrical creep specimens of 20.0 mm gauge length and 4.0 mm diameter were used, 

Figure A.3 (a). The same procedures o f the previous creep tests were followed by gripping the specimen in 

the creep machine, Figure A.3 (b), and attaching it to the extensometers. Two type-R thermocouples were 

used to measure the specimen’s temperature, Figure A.3 (c). As the name of the test implies, the creep-time 

curves were recorded at each single step during which the stress and/or temperature were/was changed after a 

certain period of time, At. The crept specimens, Figure A.3 (d), were then sectioned and studied under the 

SEM and Optical microscope in order to compare the modes of fracture involved in the creep-step test 

fractured specimens with the ones obtained from the normal creep conditions.

This kind of step-tests can take any o f the following three scenarios: (1) changing both the stress, Ao, and 

temperature, AT, (2) changing the stress, Ao, at a constant temperature, T, and (3) changing the temperature, 

AT, at a constant stress, a. In all cases, a transition from one creep curve to another is expected to take place. 

However, this transition might not be very obvious due to the narrow change in stress, Aa ~ 220MPa, and 

temperature, AT -  50K, that were used in our tests. The conditions were selected upon a creep life o f no more 

than 300 hours from the previously obtained creep curves. The main aim o f these tests is to study the effect 

of changing the conditions in the actual gas turbines on the creep life during starting-up/shutting-down which 

involve loading/unloading and heating/cooling o f all components and blades.

(1) Changing both the stress. Ac. and temperature. AT. during creep:

This test started with (ci = 455MPa/Tj = 848K) and was changed to (c2 = 280MPa/T2 = 898K) every 24 hours 

till the specimen fractured. These two conditions were selected from the previously completed creep tests 

based on a creep life o f -  300 hours. The test started at step (1) when the furnace was heated up to 870K 

giving thermocouple readings o f 851 and 845K resulting in an average specimen’s temperature of -  848K.
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The specimen was allowed to creep up to a certain level when the test condition was changed to step (2) after 

a period of At = 24 hours, which represents the duration of each step, as shown in Figure 4.4 (a) and (b). This 

change from one condition to another was first done by unloading to o2 at a constant temperature, T,, 

followed by an increase in temperature to T2, at the constant stress, a2. The reason behind this sequence in 

changing the test conditions is that if  the temperature was increased to T2 before unloading to a2, the 

specimen might have fractured as a, could have been higher than the UTS at T2.

C2<Oi and T2>Ti 

°i.T , g„T ,

(a)
V  « 2 > T 2

02<«i and T2>T,
£

(b)

Figure (4.4): A  sketch o f  a creep-step test by; (a) changing the stress and temperature, and (b) the expected creep curve.

After another period of At = 24 hours, the change in test conditions took place in a reverse order, i.e. by 

decreasing the temperature from T2 to T) at a constant stress, o2, followed by reloading to O] at a constant 

temperature, Tj. This sequence was necessary to avoid reaching the UTS at T2 as Oi might have exceeded the 

value of the UTS at this temperature. To reduce the specimen’s temperature, the furnace temperature was 

reduced and a cooling fan was used to speed up the cooling process. The furnace was cooled down to 918K 

giving thermocouple readings of 901 and 896K which gave an average specimen’s temperature of 898.5K. 

Reloading the specimen was done by carefully adding more hanging weights to reach the anticipated stress, 

Gi, with the least amount of scatter in the output data. The test continued with changing the conditions every 

24 hours till the specimen fractured and the strain-time curve was obtained. It is worthwhile mentioning that 

this test has been repeated, under the same conditions, in order to confirm the results obtained from the first 

attempt.

The same steps were carried out for another test with different conditions of (oi = 560MPa/T] = 823K) and 

(o2 = 340MPa/T2 = 873K), where another strain-time curve was obtained for further analysis. These two 

conditions were based on a creep life of ~ 300 hours.

(2) Changing the stress, Ao, at a constant temperature, T:

This test is less complicated than the former one as the temperature, T, is kept constant throughout the test 

while changing the stress from O] to o2 , and vice versa, at each successive step. The specimen should be 

allowed to creep at Oi and T up to a certain point before the test conditions are altered, after a period of 24
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hours, by reloading to o2, at the same T, as shown in Figure 4.5 (a) and (b). After another period o f At = 24 

hours, the specimen should be unloaded to Ci by removing some of the hanging weights. Caution must be 

always taken when reloading to a2 by checking that it is always less than the UTS at the specified 

temperature, by at least 10-15%. The loading/unloading process requires adding/removing certain weights 

while the test is still ongoing which requires an extra caution so as to reduce the amount of scatter in the 

output data.

« 2>O i a n d  T = c o n s t a n t . a2>O i a n d  T = c o n s t a n t .  , T

c *h.T
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<t„ T
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V

(a)
(b)

£
<J,,T

Figure (4.5): A  sketch o f  a creep-step test by; (a) changing the stress at a constant T, and (b) the expected creep curve. 

(3) Changing the temperature. AT. at a constant stress, a :

This test is the least complicated test o f all the previously mentioned step tests as the stress is kept constant at 

o while only adjusting the furnace temperature to switch from T] to T2 , and vice versa, every 24 hours. The 

specimen should be allowed to creep at a constant stress, o, and temperature, Th up to a certain extent before 

the specimen’s temperature is increased to T2, as illustrated in Figure 4.6 (a) and (b).

After another period of At = 24 hours, the specimen’s temperature should be decreased by reducing the 

furnace temperature and using a cooling fan to speed up the process. Caution must be always taken when 

selecting the amount of load that is being applied as it should be always lower than the UTS value.

T2>T, and o=constant. 

o,T2

V  ° ' T 1

T2>T, and o=constant.

£

(b)

Figure (4.6): A  sketch o f  a creep-step test by; (a) changing the temperature at constant a, and (b) the expected creep curve.

In conclusion, many factors could affect the creep behaviour when changing the creep conditions while the 

test is still ongoing and might lead, in return, to an earlier fracture o f the specimen. For instance, the
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maximum load that is being applied to the specimen, at a certain temperature, must be always lower than the 

corresponding UTS at that temperature, by at least 10-15%. Moreover, unloading/reloading must be carried 

out slowly and carefully to avoid a sudden tension and thus, a sudden fracture of the specimen. In addition, 

output data o f inferior quality could be obtained if  the unloading/reloading process is carried out quickly, 

without caution, due to the larger amount of scatter that might result.

4.3.5 C r e e p -S te p  T e s t s  (Vacuum)

Vacuum tests were carried out using a vacuum chamber that has been refurbished and reinstalled on the creep 

machines at Swansea University. The installation o f such a chamber was a challenge since these vacuum 

chambers have not been used for more than 15 years. Therefore, collecting the vacuum kit parts, checking for 

any air leaks, obtaining the necessary pumps, assembling the apparatus together, installing the cooling water 

system and, finally, put it into operation took ~ 4 months of continuous work. These efforts made it possible 

to run, for the first time since 15 years, such vacuum creep tests for future studies at Swansea University.

The motivation behind carrying out such vacuum tests was that previous microstructural studies [87, 88, 96, 

97] revealed that a brittle alpha-case layer was developed at the Titanium IMI834 specimen surfaces when 

tested in oxidising atmospheres, i.e. in air, and thus, modified the mechanical properties of the alloy. This 

layer was a consequence o f the inward diffusion o f oxygen, which is an alpha stabiliser, causing the beta- 

phase to destabilise and transform to an alpha-case layer on the surface [87, 88, 96, 97]. Extensive studies on 

the kinetics o f this brittle layer were carried out by Gurappa [96] where the hardness measurements showed 

that an increase in hardness of this layer was observed when compared to the substrate material. Besides, 

models to predict the rate by which this alpha-case layer builds up were presented by Gurappa [97] under 

different test conditions. To eliminate the effect o f this brittle layer on the mechanical properties, various 

coating techniques were proposed [96, 97].

However, in this research, in order to eliminate the effect o f the alpha-case layer on the creep life and 

whether it actually affects the total life of a material, creep-step vacuum tests were carried out on the same 

creep machines, Figure A.4 (a), using the assembled vacuum chamber that can be fitted into the machine, 

Figure A.4 (b). This test was completed using exactly the same procedure described in Figure (4.4), by 

changing both the stress and temperature during the test, with the only difference that this test was done in a 

vacuum atmosphere. The vacuum chamber can be inserted inside the tube furnace of the machine to maintain

-4
a vacuum pressure o f ~ 4x10 mbar throughout the test. This vacuum pressure was obtained by using two 

vacuum pumps in a series connection, namely: a roughing and a turbo pump, Figure A.4 (a). The main task
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of the roughing pump, sometimes called the ’backing’ pump, is to drop the atmospheric pressure inside the 

chamber to a ‘rough’ vacuum at which the high-vacuum pump, i.e. the turbo pump, takes over to reduce the

.3
pressure to a lower value. In the completed tests, the roughing pump provided a pressure of ~ 6x10 mbar

-4
which was further reduced to the required vacuum pressure of ~ 4x10 mbar by applying the turbo pump. 

The pressure was measured using a pressure gauge which was connected to a digital penning gauge, Figure 

A.4 (a), to display the pressure readings. Rubber O-rings, i.e. gaskets, were used at the top and the bottom 

interfaces of the vacuum chamber to provide the necessary seal which was improved by applying silicon 

grease to these gaskets to preserve them, as it is very tolerant at high temperatures, and to provide an 

additional seal to maintain the vacuum pressure. Cooling water was used at the upper and the lower parts of 

the chamber to preserve these gaskets and to cool the chamber around them, Figure A.4 (b). Two type-N 

thermocouples were inserted securely inside the chamber, through a sealed port, Figure A.4 (b), to measure 

the specimen’s temperature which was displayed on a digital fluke meter. An illustration of the vacuum creep 

kit is shown in Figure (4.7).

d in til  penning gsu te

pump

electricity >uppKf

Figure (4.7): A  schematic diagram o f  the vacuum creep kit showing the main components.

The sequence of the test started by turning the roughing pump on for ~ 10 minutes to get the required rough

-4
pressure followed by the turbo pump that provided the required high-vacuum pressure of ~ 4x10 mbar 

inside the chamber. At this stage, air leaks into the chamber can be detected by either monitoring the penning 

pressure gauge reading or the 4-speed indicating lights on the turbo pump control unit (all lights should be 

on: the red and the green ones). When no air leaks are detected, the cooling water and the furnace can then be 

switched on, respectively. This sequence, i.e. reaching the required vacuum before the furnace is turned on, is
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necessary to ensure that no oxygen exists inside the chamber at the same time when the furnace is turned on 

so as to avoid the formation of the brittle alpha-case on the specimen’s surface, which is the main aim of this 

test. The first test was a repeat, but in vacuum, of the test that was completed in air at (oj = 560MPa/T! = 

823K) and (o2 = 340MPa/T2 = 873K). The same sequence as described in Figure (4.4) was followed after the 

required vacuum pressure was attained, which is: (1) rising the specimen’s temperature up to 823K, applying 

a stress o f 560MPa and then leaving the specimen to creep for a period o f At = 24 hours. (2) unloading the 

specimen down to 340MPa before increasing the temperature up to 873K so as to avoid the UTS value at this 

temperature. (3) a reverse sequence was then followed in the successive step, i.e. cooling then reloading, and 

so on. Each step was then repeated every 24 hours till the specimen fractured and thus, the total life was 

recorded. At the end o f each test, the furnace was first turned off while the vacuum pumps are still ongoing to 

ensure that a high-vacuum pressure is still available inside the chamber while the furnace is still hot to avoid 

any formation of the alpha-case at the end of the test. It is worthwhile mentioning that this test has been 

repeated, under the same conditions in order to confirm the results obtained from the first attempt. Moreover, 

two other tests were carried out at (oi = 455MPa/T! = 848K) and (o2 = 280MPa/T2 = 898K) in order to 

compare their results with the tests carried out in air under the same conditions.

Due to the vacuum chamber’s design limitations, no creep curves were obtained as it was difficult to fit the 

extensometers inside the vacuum chamber. However, the full creep curves are not as necessary as the time to 

rupture of the specimen as the main goal of the test is to compare the life obtained from tests under vacuum 

with the life obtained, under the same test conditions, in an oxidising air atmosphere and thus, the effect o f  

eliminating the alpha-case layer on the total creep life. Metallographic examinations o f the crept specimens, 

Figure A.4 (c), using the SEM and the Optical Microscope were carried out in order to compare the results of 

the crept specimens under vacuum conditions with those previously obtained in air.



CHAPTER 5

R e su l t s  & D is c u s s io n

The tests results that have been obtained from testing the Titanium IMI834 specimens will be used here to 

run the Wilshire new model in an effort to predict the creep life o f this alloy based on some physically 

meaningful parameters. The plots o f results and micro images, tables of all analysed data and the detailed 

analytical and mathematical procedures followed are summarised in Appendix (B), (C) and (D), respectively.

5 .1  E x p e r im e n t a l  T e st s  R e su l t s

This part will discuss the details o f all the mechanical tests results that have been obtained from the 

mechanical testing of the Titanium IMI834 specimens.

5.1.1 T e n s i le  T e s t s  R e s u l t s

The mechanical properties o f Titanium IMI834 were determined through the tensile tests that were 

performed. From these tests, full stress-strain curves at 823, 873 and 923K were produced, Figure (B 1.1- 

B 1.3), respectively, from which the yield (or proof), ultimate and fracture strengths were obtained. At the 

beginning of each test, all tensile curves at the applied temperatures showed a linear-elastic behaviour, as 

described by Hooke’s law: o = s E, from which the elasticity modulus, E, was evaluated, followed by a 

plastic deformation region. From the obtained tensile curves, Titanium 1MI834 showed a ductile behaviour 

wherein elastic, strain hardening and necking regions were observed, in contrast to the brittle materials 

behaviour in which little or no plastic deformation takes place and thus, the material fractures near the end of 

the liner-elastic portion of the curve. At the end of the elastic region, the yield point was observed when the 

linear stress-strain line deviated from linearity as the strain increased rapidly relative to the applied stress. 

The ductility, i.e. the total elongation up to fracture, was found to be proportional to temperature. In other 

words, higher ductility was obtained as the temperature was increased from 823 to 923K. This is apparent 

from the higher strain values obtained at fracture as the temperature increased. In addition to the ductility 

results, another very important outcome of the tensile tests is the ultimate tensile strength, aTS, values that 

were obtained at all temperatures. In contrast to ductility, the ultimate tensile strength values were inversely
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proportional to temperature. This is in agreement with the fact that as temperature increases, the ductility, or 

the malleability, o f a material also increases and thus, a lower stress is required to deform the material. As the 

values of the elasticity modulus, E, yield strength, Oyieid, and the ultimate tensile strength, aTS, showed a linear 

trend when plotted against the temperature, Figure (B1.4), it was possible to obtain the values of these 

parameters at the intermediate temperatures, i.e. 848 and 898K, without the need to carry out tests at these 

intermediate temperatures.

The microstructural examination o f the fractured specimens confirms that a ductile fracture took place at all 

temperatures. The Macro images of the fractured specimen at 823K, Figure (B 1.1), shows almost a cup-and- 

cone ductile failure surface which can be seen more obviously in the SEM images from which microvoids 

coalescence among the grains can be observed. The images o f the fractured specimen at 873K, Figure (B 1.2), 

shows a different trend of the ductile fracture where the cup-and-cone is not as obvious as in the one obtained 

at 823K, but this fracture is still ductile as it can be seen more clearly in the SEM images. The fracture at 

923K, Figure (B1.3), is also ductile but a sheared fracture surface is very obvious. The optical images show 

that no surface cracks were found at the surfaces, along the gauge length, o f the fractured specimens at all 

temperatures, but some voids among the grains were observed. This confirms that the fracture started with 

necking, voids nucleation, coalescence and propagation and ended up with a ductile fracture.

5 .1 .2  St r e ss  R elaxation  T ests R esults

Stress relaxation tests were carried out at 823, 848, 873, 898 and 923K. At each of these tests, three plots 

were necessary to be recorded, namely: the strain-time, stress-strain, and the stress-time (or relaxation) curve, 

Figure (B2.1-B2.5). The strain-time plots show the strain values that have been accumulated throughout the 

test as well as the time intervals between each successive re-loading stages. It is worthwhile mentioning that 

all tests were interrupted at a certain amount of accumulated strain before fracture and thus, no fracture 

surfaces or SEM images were taken for these testpieces. On the other hand, the stress-strain curves provided 

the value o f the elasticity modulus, E, from the slope of the curve during the initial loading before reaching 

the yield point. These values of the elasticity modulus were consistent with those previously obtained from 

the tensile tests curves. Other values o f the elasticity modulus, at each temperature, might also be obtained 

from the same curves during the re-loading stages every 30-minutes interval. However, the values of the 

elasticity modulus in the re-loading stages, after passing the yield point, are expected to be lower than the 

original value obtained during the initial loading. This can be explained based on the fact that when re

loading the specimen after the material has been plastically deformed, less stress is, thus, needed to deform
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the material as an accumulated plastic strain still exists. This means that at each successive stage, a lower 

load is needed to deform the material as the resistance of the material to be deformed, which is the definition 

of the elasticity modulus, decreases and thus, a lower value o f the modulus is obtained.

The stress-time, or the relaxation, curves show a trend according to which the stress decreases with time 

when the strain is held constant. From these plots, the rate by which the stress decreases with time can be 

calculated by dividing the change in stress, Aa, by the change in time, At, using the ‘3-Secant’ method. The 

analytical procedure described by equations (4.1 -  4.4) has been applied to the stress relaxation results but 

did not provide any precise description of the creep curve behaviour when compared to actual creep curves 

previously obtained at the same corresponding conditions, Figure (B2.6-B2.10). This might be a result o f the 

scatter in the output data, the value of E that has been used in the analysis as this value was decreasing at 

each reloading stage throughout the duration o f the test, the strain increment at each stage, the period at 

which the strain was held constant or the calculations involved in the integration function that has been used 

in equation (4.4). Any of these possible sources of errors would, in return, provide results which are 

inconsistent with the actual material’s behaviour. In agreement with these outcomes, when this method was 

used to construct the creep curves based on the data o f the nickel-base superalloys [95], it did not provide any 

precise description of the creep behaviour although: (1) shorter hold periods of 300 seconds were used in 

their experiments which should give more accurate results in comparison to 30 minutes hold period in our 

experiments, (2) the strain increment was 0.1% in their study in comparison to 0.5% in our work, (3) an 

overall average value of E was used in their calculations which should not be the case as more deviations are 

expected when the actual value o f E at each successive stage is used, as in our calculations, (4) their 

predictions of the creep curve was only up to 4% and even though, it was not impressive since less accurate 

predictions would have been obtained if higher strain values have been used. Therefore, even when more 

simplifications are used [95] to predict the creep curves based on this technique, this method was unable to 

construct any full creep curves and thus, it was a motivation to find an alternative method for creep curves 

predictions.

The Optical images o f the sectioned testpieces, Figure (B2.1-B2.5), showed neither surface cracks nor 

internal voids or cavities. In general, since voids nucleate and propagate after necking takes place, this means 

that the tests were interrupted before necking took place at all temperatures. This can be confirmed by 

projecting the stress-strain curves obtained from relaxation onto the tensile curves previously carried out and 

comparing the total ductilities at the end o f each curve. It can be obviously seen that the ductilities in the 

tensile curves at fracture ranged from ~ 0.08, at 823K, to -0 .1 5 , at 923K, in comparison with ductilities of
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~ 0.04, at 823K, to ~ 0.06, at 923K, during relaxation at the point where the tests were interrupted. This 

confirms that the points at which the relaxation tests were interrupted are well below the point at which 

necking took place during the tensile tests.

5 .1 .3  C reep  T ests R esults

Creep tests were carried out at temperature 823, 848, 873, 898 and 923K under various stresses. Full creep 

curves were obtained from which the minimum creep rate, Cm, the time to predefined strains, te, the time to 

fracture, tf, and the creep ductility, sf, values were calculated. The slope at any point o f the creep curve 

represents the strain rate, e = de/dt, at that point which can be easily calculated, using the ‘3-Secant Method’, 

by dividing the change in strain, Ae, by the change in time, At.

In order to study the effect o f stress and temperature on the shape of the creep curve, these curves were 

normalised (by dividing the time and strain values by the total creep life, tf, and ductility, Sf, respectively) and 

then plotted at constant temperatures, Figure (B3.1). From these plots, it can be observed that the curves 

become more tertiary dominated with increasing the stress value, at a constant temperature. This implies that 

the strain rate increases as a result o f increasing the stress, at a constant temperature, which, in return, affects 

the total creep life, tf, and ductility, ef. This effect can be more obviously seen when plotting the actual creep 

curves, at constant temperatures, without normalising them, Figure (B3.2). Here, it is very clear that as the 

stress increases, the creep rate increases and thus, the total creep life and ductility decrease. When comparing 

all the plots at the different temperatures together, it is also true that as the temperature increases, the strain 

rate increases and thus, the total life and ductility decrease. This creep behaviour agrees very well with the 

Monkman-Grant relation, equation (2.1), and the power law, equation (2.8).

Each creep curve was then studied individually in order to understand the creep mechanism more closely. For 

this purpose, the creep curves were plotted at each stress and temperature, separately, along with their 

corresponding strain rate plots and micrographs, Figure (B4.l-B4.28). All creep curves showed a normal 

creep behaviour which consisted of a primary, secondary and a tertiary stage, respectively. In order to 

confirm the existence of these stages during creep, the strain rate was plotted against the strain for all test 

conditions. These plots showed a decreasing, steady-state and an increasing strain rate which corresponds 

with the occurrence of primary, secondary and tertiary creep, respectively. The microstructural examination, 

i.e. the Optical images in Figure (B4.l-B4.28), of all testpieces revealed that different creep mechanisms 

were involved in the creep process and led, eventually, to a different mode of fracture as the stress and 

temperature were altered. This can be summarised as follows:
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- A brittle alpha-case was found in the testpieces crept at higher temperatures, typically at 898 and 923K. 

This layer was found to be temperature and time dependent regardless of the applied stress. In other words, as 

the temperature is higher, the low stresses allow a longer creep life and thus, a longer exposure o f the 

specimen’s surface to the oxidising atmosphere which leads, eventually, to more oxygen diffusion through 

the surface causing the formation of this brittle layer along the gauge length o f the fractured specimen. 

Detailed analysis on the alpha-case and the surface cracks measurements and predictions will follow in the 

remaining part of this chapter and also in Figure (B23.1-B23.6) and Table (Cl 1-CI4).

- Large surface cracks were found along the gauge length of the crept specimens at the lower stresses in 

comparison to smaller cracks found in those crept at the higher stresses at the same test temperature. This is 

in agreement with the fracture toughness (K1C) phenomenon: K]C = a V n c, where c is the surface crack 

depth. For a specific temperature, the value of KIC is constant and thus, an inverse relationship between the 

crack depth, c, and stress, a, can be obtained at the corresponding temperature.

Based on this understanding between the surface cracks depth and stress, at the lower stresses, these cracks 

penetrated well beyond the surface through the central regions of the specimen and led, eventually, to a 

transgranular fracture. This can be explained based on the following: (1) under low stresses, test durations 

were sufficiently long to allow an alpha-case layer to develop on the surface within which surface cracks 

were initiated and propagated through the substrate material, (2) the propagation o f cracks within this brittle 

layer was fast enough to cause deep and more penetrating cracks (3) as creep continues, these cracks develop 

their own alpha-case layer on the sides and ahead o f the crack, (4) the deformation of the central regions 

caused more voids to nucleate at the grain boundaries, link-up and propagate through the material, (5) the 

ductile deformation of the central regions also caused fracture o f the alpha zones ahead of the crack tips 

which facilitated the growth and the penetration of these cracks through the central regions resulting in very 

deep cracks and leading to transgranular fracture. Whereas at the higher stresses, (1) the test durations were 

insufficient to allow the formation o f thick alpha-case layers on the surface, (2) the surface cracks started to 

appear, even before the appearance of the alpha-case, but their growth was inhibited by the ductile substrate,

(3) the stress intensities at the cracks tips were not high enough to allow the propagation of these surface 

cracks, (4) this led to that the central portions of the testpieces were fractured in a ductile intergranular 

manner by creep void nucleation and link up at the grain boundaries.
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5 .1 .4  C reep-S tep  T ests R esults (A ir)

Full creep curves were obtained from these tests which showed the same creep behaviour obtained previously 

during normal creep, i.e. a primary, steady-state followed by a tertiary creep. However, the results obtained 

from the first test, Figure (B5.1), that was carried out at C] = 455MPa/ T] = 848K and changed to o2 = 

280MPa/T2 = 898K, were expected to give a total life o f 300 hours (as these two conditions of stress and 

temperature were selected on this basis) but unexpectedly, it gave only ~ 80 hours total life which is less than 

one-third of the anticipated life of 300 hours. In order to confirm these results, a repeat test at the same 

conditions was carried out and gave a total life o f -  100 hours, Figure (B5.2). In order to understand and 

generalise this trend of the unexpected shorter life, a third test was carried out at (oi = 560MPa/T] = 823K) 

and (o2 = 340MPa/T2 = 873K) from which almost the same creep life was obtained, i.e. -1 1 5  hours, instead 

of 300 hours, Figure (B5.3). The first and the repeat tests showed a ductility o f 0.28 which is higher than the 

one obtained from the third test which was -  0.16. This might be explained on the basis that a higher ductility 

is expected at higher temperatures where in the first and the repeat tests, the change was between 848 and 

898K whereas in the third test, it was between 823 and 873K- Besides, the applied stresses in the first two 

tests were lower than those of the last test which allowed more creep to take place and hence, a higher strain 

or ductility at fracture. On the other hand, comparing these results with the actual creep curves at the same 

conditions, showed a lower ductility in addition to the lower creep life. This might be a result o f that 

lowering the temperatures, while changing from one step to another, makes the parent material less ductile 

and cause a sudden fracture.

In an effort to explain the shorter life obtained from these tests, microscopic analysis was carried out on the 

fractured specimens. The Macro, SEM and the Optical images of the investigated testpieces, Figure (B5.1, 

B5.2 and B5.3), showed large surface cracks that penetrated from the surface through the material, a huge 

reduction in the cross sectional area as a result of necking, a large number of voids among the grains and a 

brittle surface layer o f the alpha-case. The alpha-case layer was expected to build up at these high 

temperatures in the oxidising air atmosphere. The large number o f voids can be explained based on the fact 

that as necking took place before fracture, a lot o f voids, in return, will nucleate, link up and propagate 

speeding up the fracture of the material. The occurrence of necking confirms that the fracture of the specimen 

was purely ductile. The shorter total life obtained might be explained as follows: (1) when applying high 

temperatures, the brittle alpha-case layer starts to build up and surface cracks start to develop while the test is 

ongoing. (2) when switching to a lower temperature, the alpha-case layer becomes more brittle and thus,
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easier to break. (3) when applying a higher stress, these surface cracks penetrate more through the surface 

and get wider and the brittle alpha-case at the tips o f the cracks breaks easily. (4) When switching to a lower 

stress, the surface cracks tend to 'close' and push the oxidised layer outside the cracks as 'flakes', as can be 

seen in the SEM images. (5) as necking took place, voids start to nucleate at the grain boundaries and link up 

with the tip o f the cracks which speeds up the process with which the specimen fractures. However, these 

results do not contradict the fact that this alloy, i.e. Titanium IMI834, is a high temperature creep resistant 

alloy, but the issues o f oxidation in this alloy are the main reasons behind this premature failure under these 

cyclic conditions. In order to confirm these outcomes, ongoing programs at Swansea University are 

examining the effect of this cyclic creep on Titanium Ti-6A1-4V at lower temperatures, i.e. no alpha-case 

layer is developed, and lower stresses. The results revealed that the testpieces lasted for more than 300 hours 

which confirms that when the effect o f oxidation is eliminated, longer creep life can be obtained. Therefore, 

to eliminate the effect o f the alpha-case layer, the test temperatures should be lower to avoid oxidation. 

However, since Titanium IMI834 is used in applications which involve high temperatures between 550 and 

650 °C, in contrast to Titanium Ti-6A1-4V which is used at lower temperatures, this alloy should be always 

evaluated at high temperatures. One way o f testing that combines both high temperatures and the elimination 

of the alpha-case is the vacuum test. For these purposes, the previous tests were repeated, but in vacuum.

5 .1 .5  C reep-S tep T ests R esults (V a cu u m )

In comparison to the third previously carried out creep-step test in air, Figure (B5.3), the vacuum test that 

was carried out at the same conditions did improve the creep life o f the material. For this test at the same 

conditions, i.e. between (ci = 560MPa/T] = 823K) and (c2 = 340MPa/T2 = 873K), the total creep life was 

improved by 48% of the life obtained in air at the same conditions, i.e. increased from 115 hours (in air) to 

170 hours (in vacuum). The same test was then repeated at a higher vacuum o f ~ 8^10'5 mbar where the 

creep life was improved by 160% of the life obtained in air at the same test conditions, i.e. from 115 hours (in 

air) to 300 hours (in vacuum). Interestingly, these new results are very impressive as the 300 hours creep life 

of the vacuum step-test is consistent with the creep life of the ‘normal’ creep tests, without stepping, carried 

out in air at these conditions of stress and temperature. Moreover, the vacuum tests that were carried out 

between O] = 455MPa/Ti = 848K and c 2 = 280MPa/T2 = 898K lasted for more than 300 hours, when the test 

was interrupted. These results confirm that the creep life was improved by ~ 275% of the life obtained in air 

under the same conditions. These improvements o f the creep life in vacuum are consistent with the results 

obtained elsewhere [33] where the improvements ranged from — 150 - 320% of the creep life obtained in air
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when tests were carried out on steels. The SEM pictures taken for the failed testpieces from these vacuum 

tests, Figure (B6.1 and B6.2), revealed that failure by transgranular surface cracks propagation took place in 

comparison to the ductile intergranular fracture obtained for the test carried out in air, Figure (B5.3). Necking 

of the failed testepieces in air is obvious in comparison to the flat fracture surface obtained under vacuum. 

This can be explained based on the results of the optical images where in vacuum, less voids among the 

grains and much deeper and more penetrating surface cracks were found which led to the flat surface fracture 

in comparison to the larger number of voids in the testepieces failed in air which led to necking and thus, an 

intergranular ductile fracture. It can be observed that although more surface cracks were obtained in air, they 

did not penetrate enough, as in vacuum, and thus, necking due to voids nucleation and linking-up took place 

under air conditions. The alpha-case layer was thinner under vacuum which improved the total life o f the 

material.

5 .2  A n a l y t ic a l  a n d  M o d e l in g  R e su l t s

This part of the research will discuss all the analytical work that has been carried out using the experimental 

Titanium IMI834 data obtained from the previously completed mechanical tests.

5.2 .1  T h e  P o w e r  L a w  R e s u l t s

From the obtained creep curves, it was proved that the creep life decreased with increasing either the stress or 

temperature, Figure (B3.1) and (B3.2), which is in agreement with the power law and the Monkman-Grant 

relations [1,2]. For the same purpose, the stress, a, was plotted, at constant temperatures, against the time to 

fracture, tf, obtained from each creep test at the corresponding stress and temperature, Figure (B7). From this 

plot, at any constant value of stress, the creep life decreases with increasing the temperature, T. In the same 

manner, at any constant temperature, the creep life decreases with increasing the stress. In both cases, as the 

creep life decreases, this implies that the creep process is faster, i.e. a higher strain rate, and thus, fracture 

takes place earlier. This trend o f the time to fracture and the strain rate suggests that the former is inversely 

proportional to the stress and temperature in contrast to the latter which is directly proportional to them, 

which agrees well with equation (2.1) and (2.8). These two equations were studied thoroughly in order to find 

the value of n and Qc for Titanium IMI834. Plotting In (a) against In (tf), Figure (B7), reveals the inverse 

proportionality between the stress and the time to fracture, where the slope of these plots represents the value



Chapter 5. Results and Discussion 63

of - n, where n is the stress exponent used in equation (2.8), whereas plotting In (o) against In (6m), Figure 

(B7), shows the direct proportionality between the stress and the minimum creep rate and gives almost 

similar values of the stress exponent n, where the slope of these plots is n. It is obvious from these plots that 

the value of n is not constant and depends on the stress and temperature, which violates the power law which 

assumes that the value of n is ‘constant’. However, the power law provides a direct mean to measure the 

activation energy, Qc, required for the initiation o f creep in a material. This can be obtained by either 

plotting, at constant stresses, In (tf) against 1/T, where the slope of these plots is the value o f Qc/R, where R 

is the gas constant ~ 8.314 J/K mol, or In (£„,) against 1/T, where the slope o f these plots is the value of - 

Qc/R, Figure (B7). From these plots, it is also clear that the value of Qc is not constant and is dependent on 

the stress and temperature which, again, does not agree with the power law. These outcomes are consistent 

with previous studies [20, 21, 22, 59, 79] which also confirmed that the value o f n and Qc was depending on 

the test conditions. Despite this variation in the value o f Qc and n, the minimum creep rate analysis provided 

an average value o f Qc and n for Titanium IMI834 of ~ 344kJ/mol and ~ 5.74, respectively, whereas the time 

to fracture analysis gave an average value of Qc and n o f ~ 327kJ/mol and ~ 5.44, respectively. However, 

these average values and thus, the power law equation, can not be reliable in predicting the long-term 

properties and will, thus, lead to considerable errors and overestimations. All the calculated results using the 

power law are tabulated in T ab l e  ( C l )  and a detailed mathematical analysis using the power law is provided 

in Section (D. 1).

5 .2 .2  T he  M o nk m an-G rant  T ech niq ue  R esults

On the other hand, applying the Monkman-Grant equation to the creep data provided reasonable values as it 

was anticipated. A linear relationship between the time to fracture and the minimum creep rate can be 

obtained using the general form of the Monkman-Grant technique, equation (2.1), by plotting £m against l/tf , 

Figure (B8), where the slope o f this plot is the value of the Monkman-Grant constant, M, which was ~ 0.074. 

This is consistent with studies previously carried out on Titanium IMI834 [87] where the value o f this 

constant was ~ 0.09. Plotting 6™ against tf, according to equation (2.17), gave a power function behaviour, 

Figure (B8), in which the time to fracture is raised to the power m = 1.0631 with a Monkman-Grant constant 

of ~ 0.1925. Alternatively, by changing the axes, i.e. plotting tf against 6m according to equation (2.18), 

another power function behaviour is obtained, Figure (B8), wherein the minimum creep rate is raised to the 

power m = 0.9533 with a Monkman-Grant constant o f ~ 0.1669. These three expressions were used to
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calculate the time to fracture based on the minimum creep rate measurements from which the predicted life 

was obtained and plotted against the actual life values, Figure (B8). From this plot, overestimations o f ~ 25 to 

35 hours of the actual time values were resulted when equation (2.17) and (2.18) were used, respectively, in 

comparison to less than ~ 7 hours underestimation time resulted when equation (2.1) was used. In this case, 

underestimation is more preferable since it keeps, at least, the component within the planned operational life. 

However, these errors limit the use of the Monkman-Grant relation to predict the long-term creep behaviour 

since they might lead to considerable errors from the long-term perspective. All the calculated results using 

the Monkman-Grant equations are tabulated in Table (C2) and a detailed mathematical analysis using these 

equations is provided in Section (D.2).

5.2 .3  T h e  L a r s o n - M il l e r  T e c h n iq u e  R e s u l t s

This technique has been investigated in order to find out whether the value o f the constant, CLM, used in its 

equation is actually a ‘constant’ or dependent on the test conditions. For this purpose, at constant stresses, log 

(tf) was plotted against 1/T, Figure (B9), which gave straight lines of a slope equals to PLM (the Larson-Miller 

Parameter) and an intercept of - CLM (the Larson-Miller Constant). The first observation that is in agreement 

with earlier studies [28, 29] was that even when these lines were extrapolated, they did not intersect at a 

certain point, which was assumed to represent the value of CLM, as some studies [24] suggested. Besides, it is 

obvious from these plots that the value of CLM is not constant (varied from ~ 14 to ~ 17). This analysis, 

therefore, suggests that the value o f CLM varies according to the test conditions, which agrees with previous 

studies [21, 25, 29] and thus, disagrees with the assumption o f the Larson-Miller technique [23]. However, as 

a first trial, an average value between 14 and 17 was used in order to obtain the stress rupture curves based on 

the Larson-Miller relation, equation (2.9), but unfortunately, these curves did not fit the actual measurements 

accurately. The next attempt was to force all the creep data to collapse onto a single master curve by plotting 

the stress, o, against the parameter PLM, Figure (B9), at randomly selected values of CLM- The value of CLM 

was considered only when it fitted the raw data perfectly based on the trial and error method. It was found 

that the best fit of the data was obtained when the value o f CLM was 20. From this plot, a relationship between 

the stress, time and temperature was obtained from which the stress-time predictive curves were constructed, 

Figure (B9). The obtained curves were linear, equidistant and parallel. This implies that the relation between 

the stress and the time is, simply, linear which could lead, in return, to considerable errors as these curves did 

not fit the creep data accurately, especially at the higher stresses of each temperature, which agrees well with
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previous studies carried out on steels [27]. Actually, if  fitting the creep data was that simple using a linear 

line, there would not have been any need to develop complex relations to fit the data. But since the creep 

behaviour requires more complicated fitting equations to describe the actual creep behaviour, due to changes 

in creep mechanisms, linear relations will eventually lead to wrong estimations. All the calculations are 

tabulated in Table (C3) in addition to a detailed mathematical analysis in Section (D.3).

5 .2 .4  T h e  M a n s o n - H a f e r d  T e c h n iq u e  R e s u l t s

As with all techniques, a relationship between the stress and the creep life at various temperatures is required. 

To start with the Manson-Haferd method, log (tf) was plotted against T, at constant stresses, which gave 

straight linear lines o f slope - P Mh » the Manson-Haferd Parameter, Figure (BIO). When these lines were 

extrapolated, they did not meet at an intersection point of (Ta, ta), as some studies [30] previously suggested. 

For this reason, another procedure was followed in order to calculate the values o f these constants from the 

intersection point of the lines with the y and x-axes. The intercept of these linear lines represents the value of 

( P mh Ta + log ta) from which the value of Ta and ta can be calculated, sequentially. The average calculated 

values o f Ta and log ta for Titanium 1MI834 were -1 0 6 1  and 29.713, respectively, which differ from the 

values suggested by Manson and Haferd and agree with other literature studies [31, 32, 33]. These values 

were then inserted into the Manson-Haferd equation and plotted against the stress, a, at constant 

temperatures, Figure (BIO), from which a relation between the stress and the Manson-Haferd parameter was 

obtained. This plot disagrees with some studies [30] which assumed that plotting this parameter against the 

stress superimposes all the data points into a single master curve. However, the predictive stress-time curves 

were obtained and plotted along with the actual creep results, Figure (BIO). The curves showed a better 

capability of fitting the actual data points when compared with the Larson-Miller technique. This proves that 

the more complex the technique the better its capability in predicting the creep properties. All calculations 

and analytical procedures are summarized in Table (C4) and Section (D.4), respectively.

5 .2 .5  T h e  O r r - S h e r b y - D o r n  T e c h n iq u e  R e s u l t s

The starting point of using this technique is similar to the Larson-Miller’s analysis in which log (tf) was 

plotted against 1/T, at constant stresses, Figure (B ll) . These plots gave straight lines of a slope which 

represents the value of C OSd , the Orr-Sherby-Dorn constant, and an intercept with the y-axis equals to - P 0 sd , 

the Orr-Sherby-Dorn parameter. The first result that can be drawn from these plots is that the value of C 0 sd is
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not constant as the slope was changing from ~ 16,244 to ~ 20,053 with changing the stress and temperature. 

This outcome disagrees with the assumption o f Orr, Sherby and Dorn [35] who assumed that the value of 

Cosd is constant. As with the Larson-Miller technique, the same method employed there was used here to 

force all the data points to collapse onto a master curve by plotting the stress, o, against the Orr-Sherby-Dorn 

parameter, P 0 sd , with randomly selected values of C q sd - The best fit of data was obtained when the value of  

C 0 sd was ~ 20,000, Figure (B 11). This is consistent with the fact that this value lies in the range between 

16,244 and 20,053, i.e. the values of the slopes of the constant stress lines previously discussed, Figure 

(B 11). From this master curve, a relationship between the stress, time and temperature can be obtained from 

which the predictive stress-time curves can be constructed, Figure (B 11), at all temperatures. The curves 

fitted the actual creep data quite well where the curvature of these curves improved the fit. When compared 

with the Larson-Miller curves, Figure (B9), it showed much better fit o f the data at all temperatures and 

stresses. However, the Manson-Haferd curves, Figure (B10), showed better consistency of the predictive 

curves with the actual data than the Orr-Sherby-Dorn curves, Figure (B 11), as a higher degree of curvature 

was involved in the Manson-Haferd’s curves as a result o f the more complex function used in its equation. 

Useful calculations and analyses using the Orr-Sherby-Dorn technique are summarised in Table (C5) and 

Section (D.5), respectively.

5 .2 .6  T h e  M a n s o n - S u c c o p  T e c h n iq u e  R e s u l t s

The analysis using this technique started with plotting the values o f log (tf) against T, at constant stresses, 

which gave straight lines of slope equals to - CMS, the Manson-Succop constant, and an intercept with the y- 

axis equals to PMs> the Manson-Succop constant, according to equation (2.14). These plots, Figure (B12), 

revealed that the slope, and hence the value o f CMS, varied between ~ 0.024 and 0.028 with varying the test 

conditions. This variation is relatively small but it could become more obvious if the tests conditions varied 

within a larger range of stresses and temperatures which might lead to a disagreement with the assumption of  

Manson and Succop [41] who confirmed that the value o f CMS, should be constant regardless of stress and 

temperature. However, an average value for CMS was chosen, ~ 0.025, to superimpose all the data points onto 

a single curve by plotting the stress, o, against the parameter, PMS, from which a relation between the stress, 

time and temperature was obtained, Figure (B12). This relation was then used to construct the stress-time 

curves on which the actual data points were projected, Figure (B12). The stress-time curves were almost 

linear, equidistant and parallel (similar to the ones obtained using the Larson-Miller analysis). However, at
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the high temperatures (898 and 923K), the fits were quite good in the high stress regime in comparison to the 

poor fits obtained in the low stress regime. In contrast, the fits were quite good in the low stress regime of the 

lower temperatures (823, 848 and 873K), in comparison to the inferior fits obtained in high stress regime at 

these temperatures. Generally speaking, the fits were much better than those obtained from the Larson- 

Miller's analysis, but slightly less accurate than those obtained using the Manson-Haferd and Orr-Sherby- 

Dom techniques. All the calculations and analyses used to construct these predictive curves are summarised 

in Table (C6) and Section (D.6).

5 .2 .7  T h e  H yperbolic-T ang ent  T echnique R esults

For the purpose of finding the fitting parameters of equation (2.22), plotting tanh'1 ( 1 - 2  (a/oTS)) against In 

(tf), at constant temperatures, gave straight lines of a slope which represents the value of k and an intercept 

point with the y-axis equals to (k In tj), Figure (B13). From these plots, the values o f the constant k and tj 

were calculated at each corresponding temperature. These values were then inserted into equation (2.22) from 

which the predictive stress-time curves were obtained, Figure (B13). These curves showed an impressive fit 

of the actual creep data as a result of the complex functions used in this technique and thus, the smooth 

curvature which improved the fit. It can also be observed that there is an inflection point at around 50% oTS, 

at each corresponding temperature, which agrees with other studies [62, 63, 64] and implies that the creep 

mechanism is dependent on the applied stress level. Another observation is that at the intermediate 

temperatures, i.e. 848 and 873K, the curves slightly deviated from the actual creep data trend at the stresses 

between ~ 300 and 500MPa. Even though, this technique can be considered as an easy and a straightforward 

method which directly relates the stress to the time and temperature without the need to superimpose the data 

onto a master curve to obtain the stress as a function of these two parameters, as with the previous 

techniques. Moreover, the predictions are much better and more reliable than all o f the previously obtained 

results o f the other methods, as can be seen from the constructed plots. Detailed calculations and 

mathematical analyses are summarised in Table (C7) and Section (D.7), respectively.

5 .2 .8  T he  G o ld h o ff-S h erby  T ech niq ue  R esults

This technique is very similar to the Manson-Haferd methodology concerning the procedure of analysing the 

Titanium IMI834 data with the only difference that log (tf) is plotted against the reciprocal of T at constant 

stresses, as shown in Figure (B. 14), where the slope of the lines represents the value o f the Goldhoff-Sherby
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parameter, PGS. Moreover, this plot provides the value o f the constants log ta and 1/Ta from which a 

relationship between the stress and the Goldhoff-Sherby parameter, PGS, can be obtained. For this purpose, an 

average value of log ta and 1/Ta were taken as 15.824 and 0.0008, respectively. These relations between the 

stress and the parameter PGS were then used in order to construct the stress rupture curves which showed a 

very good description of the actual creep results. The curves are very similar to those obtained by the 

Manson-Haferd technique which explains the similarity between these two methodologies in analysing the 

creep data. This again proves that the more complex the technique the better its capability in predicting the 

long-term creep properties when compared to the simpler techniques. All calculations and analytical 

procedures are summarised in Table (C8) and Section (D.8), respectively.

5 .2 .9  T he  0 -P rojection  T ech niq ue  R esults

Unlike the previously discussed models, this method was intended to fit the actual creep curves at various 

conditions and then express the fitting constants as functions of stress and temperature. The first version o f  

this technique, the 4-0 (equation 2.20), was slightly able to fit the actual creep curves of Titanium IMI834. 

However, it did not give a very accurate description o f the primary creep as many previous studies [57, 61] 

concluded and as can be seen in the obtained results, Figure (B 15.1 -B 15.32). For this reason, the other 

version of this technique, the 6-0 (equation 2.21), was used to fit the actual creep curves. Surprisingly, this 

equation provided a much better description of the primary creep behaviour as can be seen in the obtained 

results, Figure (B15.1-B15.32), which agreed very well with previous studies [57, 58, 61]. This improvement 

in accurately fitting the primary creep confirms that the added two parameters, i.e. 05 and 06, to the first 

version of this equation took into account the effect of grain boundary relaxation during the primary creep 

[58]. For both versions of the 0-method, the fitting procedure was possible by finding the values of the 0- 

parameters involved in their equation. The values of these parameters were obtained by non-linear least 

square curve fitting routines (using SOLVER in Excel). Having obtained these parameters, many points and 

regions along the creep curve can then be defined, such as the primary and tertiary points, the minimum creep 

rate point, and the creep fracture, or the total ductility, point, Figure (B16). In these plots, the variation o f  

each 0-term was plotted against stress at each individual temperature. The 4-0 results did not provide a 

systematic variation of the 0-parameters with stress for the primary creep region whereas the variation with 

the stress for the tertiary stage was slightly better, as it was found before [57]. This might be a result o f the 

poor fit capability of this equation for the primary creep region. On the other hand, the 6-0 results provided a
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better description o f all regions along the creep curve which is evident from the smooth and the linear

variation with the stress, Figure (B16). However, the trend o f 03 and 05 was not purely linear, Figure (B16),

as they were, respectively, increasing/decreasing up to a certain stress level where they started to 

decrease/increase again at higher values of stress above that point. This unexpected change in the slope of  

these two parameters made it difficult to express them as a function of stress. If the trend of all parameters 

was completely linear, the values of these parameters could have been derived for any stress within the 

ranges studied experimentally. This means that this trend could have allowed interpolation o f the data 

although it might have also allowed reasonable extrapolation o f creep properties. If the linear trends of the 

values of these parameters have been obtained, this means that they could have been expressed as functions 

o f stresses and temperatures such that:

0 = / ( a ,T )  ...................................(5.1)

which means that equation (2.20) and (2.21) could have been re-written as:

e = / ( t ,a ,T )  ...................................(5.2)

In conclusion, this method requires the availability o f full creep curves prior to using it as a predictive tool. 

This technique can be considered as a ‘fitting’ technique rather than a ‘predictive’ model as the stress-time 

curves can not be derived from its equation. All calculations and mathematical analyses for the 4 and 6-0 

methods are provided in Table (C9 and CIO) and in Section (D.9), respectively.

5 .2 .1 0  T h e  W i l s h i r e  T e c h n iq u e  R e s u l t s

In order to start the analysis using this technique, it was essential to find the value of the apparent activation 

energy, Qc*, the tensile strength, c Ts, at the applied temperatures and the values o f the fitting parameters (kj, 

k2, k3, u, v and w). Unlike the calculations o f Qc, described in equation (2.8), at constant o, the value of Qc*, 

used in equation (3.1-3.4), was determined at constant o /cTS using the power law principle. This was possible 

by either plotting In (tf) or In (i^) against 1/T at constant c /cTS, Figure (B17), where the slope o f these plots 

represents the value o f Qc*/R and - Qc*/R, respectively. From the plot o f In (tf) against 1/T, the value of Qc* 

was ~ 305kJ/mol whereas it was ~ 332kJ/mol from the plots of In (£m) against 1/T. The difference in the 

value of Qc* using either of these two procedures was not too large and thus, an overall average value o f  

320kJ/mol was used to run the analysis. It can be seen that this overall value o f Qc* is not far away from the 

value of Qc (~ 327-344kJ/mol) calculated at constant o, Figure (B7). The values of the tensile strength, aTS, 

were obtained from the previously carried out tensile tests at various temperatures, Figure (B1.1-B1.3). 

However, although the tensile tests were only carried out at 823, 873 and 923K, the values o f the tensile
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strengths showed a linear trend, Figure (B1.4), from which it was possible to interpolate and find the values 

of the tensile strengths at the intermediate temperatures, i.e. 848 and 898K.

Using equation (3.1), the data of Titanium IMI834 were very well rationalised using Qc* as 320kJ/mol, 

Figure (B17). This was possible by either plotting (em exp (320,000/RT)) or (tf exp (- 320,000/RT)) against 

o/oTS, Figure (B17). However, the adoption of this equation did not eliminate the change in n values (where 

the slope o f these plots, at any point, represents the value of n and - n, respectively), which was approaching 

n ~ 1 with decreasing the value of o/oTS. This confirms that the change in n values is related to the change in 

stress level above and below the yield stress of the material which involves creation of more dislocations 

above the material’s yield point. The calculated values at all test conditions in addition to a detailed 

mathematical analysis are summarised in Table (Cl 1) and Section (DIO).

The values of the constants k] and u were determined using equation (3.2) by plotting In (-In o/oTS) against In 

(tf exp (- Qc*/RT)), Figure (B18), where the slope of these plots provided the value of u whereas the intercept 

is the value of In kj. However, it was observed that the linear trend of these plots deviated at a certain point 

that separated the data into two linear regimes, namely: the high and the low stress regimes. Based on this 

fact, different values o f u and k| were obtained from these two regimes. Equation (3.2) along with the 

calculated values o f u and ki were used to force all the data points to collapse onto a sigmoidal ‘master 

curve’, by plotting (a/oTS) against (tf exp (- Qc*/RT)), Figure (B18). This curve showed the general behaviour 

of the actual creep data at different stress levels and eliminated the temperature dependence of these points. 

This equation was also used to predict the long-term stress rupture behaviour over a wide stress range at the 

selected temperatures, Figure (B18). The predictive curves showed a superb fit o f the actual measurements in 

both the high and the low stress regimes at all temperatures. It can be observed from these curves that there is 

a ’kink’ point at which the trend of the creep data changed according to the stress level involved. This point 

exactly corresponds to the point found earlier in the plots of In (-In o /cTS) against In (tf exp (- Qc*/RT)) and 

this confirms that the dependence on stress level is more dominant than the temperature dependence, as the 

generated sigmoidal curve implied when the temperature dependence was eliminated. This predictability of  

the long-term creep behaviour using this equation proves that it is possible to extrapolate the short-term creep 

measurements at all test conditions. All the calculations are tabulated and summarised in T able (C l  1.1) and 

Section (D.10).

Similarly, the values o f the constants k2 and v were determined using equation (3.3) by plotting In (-In o/oTS) 

against In (em exp (Qc*/RT)), Figure (B19), where the slope of these plots is the value of v whereas the 

intercept point is the value o f In k2. As with the previous plots of equation (3.2), it was observed that there is
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a ‘kink’ point which separated the data into two linear high and low stress regimes and gave, thus, different 

values of v and k2 for these two regimes. These values were then used to construct the sigmoidal ‘master 

curve’, by plotting (c /cTS) against (em exp (QcVRT)), which forced all the data points to be fitted onto a 

single curve and thus, eliminated the dependence of these points on temperature, Figure (B 19). This equation 

was also used to predict the minimum creep rate behaviour over a wide stress range at the selected 

temperatures, Figure (B19). The predictive curves showed a very impressive match with the actual minimum 

creep rate measurements at all temperatures. These curves also showed a ‘kink’ point which corresponds to 

the point at which the slope of the plots of In (-In c/aTS) against In (em exp (Qc*/RT)) changed. The 

calculations using this equation are summarised in Table (C11.1) and Section (D. 10).

In an effort to explain the ‘kink’ points observed in these predictive curves, some investigations were carried 

out on the results obtained from the Titanium IMI834 tests:

(1) The stresses at these kink points, Table (Cl 1.1.1.), were plotted against the corresponding temperatures, 

Figure (B20). The yield and the ultimate tensile stresses, Figure (B1.4), were projected on the same graph. 

These plots showed that the data can be fitted using a decreasing linear trendline. This behaviour o f the 

‘kink’ points confirmed the linearity between the stress and temperature wherein the former was decreasing 

with increasing the latter, which agrees with the tensile results. Interestingly, the lines of the Wilshire 'kink’ 

points and the yield stress regression line were linear, equidistant and parallel (slope ~ 0.6). Besides, the ratio 

of the stresses at the kink points was ~ 85% of the yield stress at each corresponding temperature. This 

implies that the inflection points of the Wilshire curves are a result o f the different deformation mechanisms 

above and below the material's yield point which play a key role in the creep behaviour. This physical 

explanation provides a possible reason for having two stress regimes and thus, the ‘kink’ in the predictive 

curves. It is worthwhile mentioning that the kink points were ~ 60% of the ultimate tensile strength, which is 

almost consistent with the Hyperbolic Tangent technique results, Figure (B13), where the inflection point o f  

its curves was at ~  50% of the ultimate tensile strength at each corresponding temperature.

(2) Moreover, the ductility measurements, Figure (B20), were used to explain the behaviour o f Titanium 

IMI834 in the high and the low stress regimes, i.e. above and below the kink points in the predictive curves 

plots. It was observed that at each temperature, the ductility was increasing up to a certain point where it 

started to fall down with increasing the stress. Accurate measurements confirmed that for each temperature, 

the point at which the ductility started to decrease was exactly the point where the kink in the plots took 

place. The explanation for this variation in ductility can be attributed to that as the stress level increases 

above the kink points, it does not allow the bulk material to deform and extend for a long time and thus, low
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ductility at fracture. Whereas when decreasing the stress level below the kink points, more alpha-case builds 

up and thus, more penetrating surface cracks propagate within the alpha-case in a rate which is faster than 

that of the central regions resulting in a low ductility at fracture.

(3) Microscopic studies revealed that in the low stress regime below the kink points, larger surface cracks, 

less voids, thicker alpha-case layer and transgranular fracture were observed in contrast to the high stress 

regime above the kink points where smaller surface cracks, more voids, thinner alpha-case layer and 

intergranular fracture took place. All these results are summarised in Figure (B20).

The same procedure was used to calculate the value of k3 and w at times to pre-defmed strain levels (from 

0.1% up to 20% strain) by plotting In (-In o/aTS) against In (te exp (-Qc*/RT)), based on equation (3.4), which 

gave the value o f w and In k3 from the slope and the intercept points o f these plots, respectively, Figure 

(B21.l-B21.13). In these plots, the same trend was observed which involved a high and a low stress regime 

separated by a ‘kink’ point. These values o f w and k3 were then inserted into equation (3.4) from which the 

predictive curve at each strain level was obtained, Figure (B21.l-B21.13). The curves fitted the actual 

measurements very well which implies that this equation can be used to predict the creep behaviour at any 

selected level o f strain. For comparison purposes, all the curves o f In (-In a / a Ts) against In (tE exp (-Qc /RT)) 

were plotted on the same graph, Figure (B22.1), so as to study the influence o f changing the strain level on 

the position o f this kink point. It can be observed that the kink points are almost fixed in a certain position 

(which corresponds to 85% of the yield stress) regardless o f changing the strain level. Moreover, it can be 

seen that the slope, which represents the value o f w, of these lines looks almost the same in both the low and 

the high stress regimes whereas the value of In k3, which is the intercept point with the y-axis, was decreasing 

with increasing the strain level. These outcomes are the basis on which full creep curves can be constructed 

based on the Wilshire equations. All calculations are summarised in T able  (C l 1.2-C1 1.14) and Section 

(D.10).

5 .2 .1 1  C o n s t r u c t io n  o f  t h e  F u l l  C r e e p  C u r v e s  B a s e d  o n  t h e  W i l s h i r e  T e c h n iq u e

From Figure (B22.1) along with Figure (B21.1-B21.13), it can be observed that the average value o f w in the 

low and the high stress regimes was ~ 0.21 and ~ 0.8, respectively, at all strain levels. These two values were 

considered at all strain levels and were inserted into equation (3.4) from which the corresponding values of k3 

at each strain level were calculated, Figure (B22.2 and B22.3). The decreasing trend of k3 is logical since it 

represents the intercept with the y-axis of Figure (B22.1) which was decreasing with increasing the strain 

level in both the low and the high stress regimes. This agrees very well with that the intercept point o f the
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curves in Figure (B22.1) was decreasing with increasing the strain level. Besides, based on the fact that the 

kink points occur at ~ 85% of the yield stress, as previously discussed, these kink points have to be in the 

same location for each curve regardless of any values of w and k3 that are being used. Therefore, if w is kept 

constant, the value o f k3 has to decrease, as obtained experimentally, to keep the position of the kink points in 

place at all strain levels.

Since the value o f w and k3 is independent of stress and temperature at any selected strain level, Figure 

(B22.2 and B22.3), they can, thus, be expressed over a range o f selected strains, such that:

w = / ,( e )   (5.3)

and

k 3 = /;(£ )  (5.4)

Inserting these two expressions into equation (3.4) gives:

a/aTS = exp ( - /2(e) [te exp (- Qc*/RT)] fi(e))  (5.5)

Re-arranging this equation will provide an equation that relates the strain, e, to stress, o, and temperature, T, 

with time, t, such that:

e = / (  t ,o ,T )   (5.6)

Obtaining equation (5.6) means that full creep curves at various stresses and temperatures can be re-produced 

based on the Wilshire equation (3.4). This was confirmed by the re-constructed creep curves obtained from 

the Titanium IMI834 data, Figure (B23.l-B23.34). These plots provided a full description of the creep curves 

at various conditions in addition to the very impressive description o f the primary creep. The primary creep 

was described very well in most cases, except at some high stresses. This exception might be a result o f the 

poor curve fitting o f k3 values in the high stress regime, Figure (B22.3), as their values were massively larger 

than those obtained for the low stress regime, Figure (B22.2). In other cases, the tertiary creep was not 

described very well. However, the fracture point of any creep curve can be obtained accurately using 

equation (3.2) which describes the fracture point quite well instead of using equation (3.4).

The advantage o f equation (3.4) can be summarised in that when the time required to reach a certain strain 

level is obtained from a creep curve, the stress-time curves for that strain level can be constructed based on 

this equation. Moreover, expressing w and k3 as functions of strain can provide a description of the creep 

curves at any stress and temperature. Similarly, equation (3.2) presents a way to define the end point o f the 

creep curve. In other words, when the time to fracture is obtained from any creep curve, it can be used to 

construct the stress rupture curves based on this equation. Another way of predicting the long-term behaviour 

can be based on equation (3.3) wherein the minimum creep rates are required to run the analysis. Once these
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values are obtained from the actual creep curves and entered into this equation, the stress versus the 

minimum creep rate curves can then be constructed at any stress and temperature. Therefore, equation (3.2) 

defines the end point o f a creep curve whereas equation (3.4) defines any point along the creep curve and 

equation (3.3) defines the point where the minimum creep rate takes place during creep.

In conclusion, in aerospace applications where the time to reach pre-defined strain levels is the main concern, 

typically ~ 1% strain level, then equation (3.4) provides an impressive description o f the low strain levels 

required for such applications from the constructed creep curves. As an alternative for power generation 

applications, since the constructed creep curves showed some deviations from the actual behaviour at the 

fracture point, equation (3.2) which defines the fracture point can, thus, be used.

5 .2 .12  T h e  A l p h a - C a s e  M e a s u r e m e n t s  R e s u l t s

The micrographs showed that an alpha-case layer was found in the crept specimens of Titanium IMI834 at all 

temperatures from 823 to 923K. However, this layer can be seen most clearly and most deeply penetrated at 

the extreme temperatures, i.e. at 898 and 923K. The depth of this alpha-case was measured at all 

temperatures, Table (C l2), and plotted against the total life, tf, at each corresponding temperature, Figure 

(B24.1). This plot shows a parabolic trend which agrees with the trend obtained from other studies [87, 88, 

97] where at each temperature, the depth o f this alpha-case increases with increasing the exposure time. 

Interestingly, the rate by which the alpha-case depth was building up, which is the slope at any point along 

these curves, was much faster at the higher temperatures in comparison with the lower temperatures. This 

temperature dependence of the alpha-case layer can also be obtained from the micrographs included in Figure 

(B24.1). Therefore, the thickness of the alpha-case layer is, thus, purely time and temperature dependent. In 

order to confirm these outcomes, measurements of the alpha-case layer developed in temperature-exposed 

un-stressed samples, carried out by Brown [98] on Titanium IMI834, were virtually identical to those 

obtained from the crept specimens, as shown in Figure (B24.2). This plot demonstrates that the thickness of 

the alpha-case, under the same temperature exposure, was the same in both the tested and the un-tested 

specimens. Moreover, Brown’s model [98] predicts very accurately the thickness of the alpha-case, Figure 

(B24.2) and Table (C l3), where the predicted measurements also confirmed that the alpha-case layer is 

purely time and temperature dependent as can be seen from the impressive consistency of the predicted 

values and the actual measurements. However, at 873K, the predicted values o f the alpha-case thickness were 

slightly higher than the measured values. The same outcome was observed by Gurappa [97] where the 

predicted values were slightly higher than those actually measured under the same conditions. The
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explanation was that in the actual situation, the oxygen absorbed by the alloy is used up for forming both an 

alpha-case layer (diffused into the material) and an oxide-scale (not diffused, but on the outer surface) 

whereas the predictive model assumes that the entire oxygen is used up in forming a diffused alpha-case.

The depth of the penetrating cracks and the alpha-case thicknesses at the surfaces of each penetrating crack 

were measured at three points down the crack depth, Table (C 12), and plotted at each stress and temperature, 

Figure (B24.3). From these plots, it is apparent that with decreasing the stress value at a constant 

temperature, the test duration, tf, is longer and thus, there is enough time for the surface cracks to penetrate 

more and get deeper through the material. The time required for an alpha-case thickness to be attained can be 

obtained from Figure (B24.1). As each crack penetrates prior to the formation of the alpha-case on its 

surfaces, this means that at a certain crack depth, an alpha-case layer starts to develop at its exposed surfaces. 

Thus, the time at which the alpha-case starts to build up is the same as the time at which that surface crack 

was initiated. Therefore, any thickness of the alpha-case on the exposed surfaces of the penetrating cracks 

can be measured and the time for that thickness to be reached, ta-case, can be read from Figure (B24.1) which 

is a fraction o f the total life, tf, of the specimen. Thus, subtracting the time spent in developing the alpha-case 

from the total life should give the starting point at which that crack was initiated according to:

Initiation time for a surface crack, tcrack = tf - tc_case  (5.7)

This equation was applied to all the plots in Figure (B24.3) to obtain the plots in Figure (B24.4) which relates 

the crack depth to the time, tcrack, at which each crack was initiated. All calculations are included in Table 

(C l4). From these plots, a linear relation between the time, tcrack, and the corresponding crack depth can be 

obtained by regression analysis. At each stress level, these linear lines can be extrapolated backwards to 

intersect the x-axis where the intersection point represents the critical time at which the first crack along the 

surface appeared. Projecting these critical time values on the actual creep curves at the corresponding test 

conditions will provide the strain values at which these cracks were initiated, £crack- This procedure o f relating 

the alpha-case and surface cracks to the critical time and strain (based on the actual creep curves) provides a 

technique which defines the stage of creep at which these cracks appeared. These values are summarised in 

Table (C l5). Plotting the critical time and strain values against stress gives Figure (B24.5) and (B24.6), 

respectively. From these plots, along with Figure (B24.4), the following outcomes can be observed:

- At the lower stresses, the initiation of cracks is late during creep, the alpha-case layer is thick, the time to 

fracture is long, the ductility and the critical strain decrease with decreasing the stress level, at a constant
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temperature, and the cracks depth at fracture is large. The possible explanation for these outcomes is that at 

the lower stresses, a thick alpha-case layer was developed after long time exposures prior to the formation o f  

the surface cracks. Hence, the surface cracks were initiated later in the alpha-case and penetrated more at 

fracture through this brittle layer. As the critical time and strain values are fractions o f the total time to 

fracture and ductility, respectively, they, thus, follow the same trends. The reason behind the drop in ductility 

and thus, the critical strain, as the stress decreases can be attributed to the formation of a thick alpha-case 

which causes the bulk material to become less ductile and thus, less strain is required to cause the cracking of 

the alpha-case layer. This trend of the decreasing ductility with increasing the alpha-case thickness was also 

confirmed in previous studies [87] carried out on Titanium IMI834. In other words, the lower the stress, the 

thicker the alpha-case developed on the surface and thus, the lower the strain required to cause cracking of 

the alpha-case layer. This explains the decreasing trends, to the left o f the kink points, in Figure (B24.6). The 

penetration through the brittle alpha-case was easy and led, therefore, to deeper cracks at fracture. For this 

reason, the fracture in the low stress regime was controlled by surface cracks penetration through the material 

rather than purely creep fracture characterised by voids nucleation at grain boundaries.

- At the higher stresses, the initiation o f cracks is early, the alpha-case layer is thin, the time to fracture is 

short, the ductility and the critical strain increase with decreasing stress level, at a constant temperature, and 

the cracks penetration at fracture is small. The possible reason behind these outcomes is that surface cracks 

were initiated early prior to the development of the alpha-case layer. The alpha-case layer was, generally, 

thinner due to the short times of exposure. Although the surface cracks were initiated early, they did not 

penetrate fast enough as the thin alpha-case did not have any effect on the total ductility of the material which 

made it difficult for these cracks to penetrate through the ductile substrate. For this reason, the absence of a 

thick alpha-case caused the material to behave in a normal manner expected under creep conditions 

characterised by an increasing ductility with decreasing the stress level. The increasing trend, to the right of 

the kink points, in Figure (B24.6) with decreasing the stress can, thus, be explained based on the fact that as 

the ductility increases with decreasing the stress, more strain is required to cause cracking of the substrate. 

This resulted in a purely intergranular creep fracture at these higher stresses due to voids nucleation, 

propagation and link-up along grain boundaries which confirms the normal creep behaviour discussed earlier 

under these stress levels.

In conclusion, an alpha-case of 150pm thickness, for instance, will have a volume fraction o f -  15% of a 

specimen with 4.0mm diameter and 20.0mm gauge length (as with the specimens used in this study). This
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volume fraction will have a considerable effect on the overall performance and ductility o f the alloy, 

especially in thin sections, i.e. when the diameter is relatively small. Whereas in large sections, this effect 

might be negligible as the oxidised layer could be very small when compared to the overall diameter o f the 

component. However, as we are studying the effect o f this alpha-case on the compressor blades o f the gas 

turbine which have thin sections, this is, therefore, considered as a very limiting factor of the life of these 

components.

5 .2 .1 3  T h e  S t r o n g  P r e d ic t iv e  C a p a b il it y  o f  t h e  W il s h ir e  E q u a t io n s

The Wilshire equations were successfully able to predict the long-term behaviour of Titanium IMI834. As 

previously shown in this study and many other studies [87, 88], especially at high temperatures, the oxidation 

problems had a major influence on the mechanical properties and the ductility of this alloy. This oxidation 

and the formation of the alpha-case can be considered as phase changes within the alloy. In general, as 

titanium alloys are produced very precisely to give a specific microstructural composition via heat treatment, 

this means that any changes in this composition by oxidation could drastically change the capabilities of the 

alloy. In real applications, this could be the case and thus, a comprehensive model is needed to predict the life 

of components in both oxidation-free and oxidising atmospheres.

This section is aimed to examine the Wilshire technique's ability to predict the life of the Titanium IMI834 

alloy with real-life problems where surface oxidation is an issue. For this purpose, the previously generated 

creep data have been divided into two categories according to the thickness o f the alpha-case found in the 

fractured specimens, namely: specimens with (< 35pm) alpha-case thicknesses where the alpha-case has a 

very limited, or negligible, influence on the mechanical properties and others with (> 35pm) where the effect 

of the alpha-case is severe and able to drastically affect the mechanical properties of the alloy. The Wilshire 

technique was then used to produce the long-term creep predictive curves based on the data of the specimens 

with the thin, or negligible, alpha-case on their surfaces (i.e. < 35pm), as shown in Figure (B25.1). It can be 

seen from this figure that the Wilshire technique provided a precise description of the creep behaviour of the 

alloy under these conditions. In order to prove the ability of this technique to predict the behaviour of the 

alloy under the severe conditions where the alpha-case thickness is > 35 pm, the predictive curves of Figure 

(B25.1) were used on which the data of the thick alpha-case were then projected, as shown in Figure (B25.2). 

From this plot, it can be seen that the Wilshire's predictive curves slightly under-predicted the data points of  

the heavily oxidised data (i.e. the lower stresses/higher temperatures and longer-lives). This behaviour was
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perhaps unexpected as the oxidation o f Titanium IMI834 can drastically change the long-term life o f this 

alloy and it would, thus, be anticipated that the oxidation would lead to life reduction. However, under

prediction of the long-term behaviour is still better than over-prediction as it keeps the component's life 

within the safe operational life conditions in all cases. Moreover, it should be acknowledged that this under

prediction may be due to the limitations of a relatively small data set.

In conclusion, the ability o f the Wilshire technique to adequately describe the long-term creep behaviour 

based on short-term measurements shows the promise of this technique. This capability was shown using the 

three different possible scenarios, namely: in the case when all the data points are treated as a bulk, Figure 

(B.18), in the case where the alpha-case had a limited effect (< 35pm thickness), Figure (B25.1), and in the 

worst case when the alpha-case effect is considerable (> 35pm thickness), Figure (B25.2). The ability o f this 

technique of predicting the long-term creep behaviour under all conditions is a consequence of using 

physically meaningful parameters in its equations which seemingly makes it more reliable for long-term 

predictions than other parametric methods which mostly used only 'fitting parameters' which did not 

necessarily have any physical explanations.



CHAPTER 6

C o n c l u sio n s  a n d  F u t u r e  W o r k

6.1 M a i n  C o n c l u s i o n s

(1) As a milestone o f this project, the Wilshire Technique has been extended to re-construct, for the first 

time, full creep curves under different test conditions. This aim o f creating full creep curves has 

been an extensive topic for study and a challenge for many researchers using other techniques but 

fortunately, it has been achieved in this study.

(2) Titanium IMI834 creep data have been used, for the first time, to examine the ability of the Wilshire 

technique to predict the long-term creep behaviour. It was proved that the Wilshire equations were 

able to accurately predict the long-term creep properties of Titanium IMI834 under different creep 

conditions. This ability o f the Wilshire technique in precisely predicting the creep behaviour was a 

direct result o f using physically meaningful parameters in its equations, i.e. the material's tensile 

strength, oTS, and the apparent activation energy, Qc*.

(3) The Wilshire technique was able to predict and fit the creep data in the three possible scenarios, 

namely: when treating the whole set o f data as a bulk, when studying the specimens with the thin, or 

ignorable, alpha-case thickness (< 35pm) and in the worst case where the thickness of the alpha- 

case is extremely detrimental (> 35 pm). This ability in fitting the creep data under different test 

environments shows the strength o f this technique.

(4) Unlike other prediction techniques, the 'kink' points which appeared in the predictive curves of the 

Wilshire technique were a real-effect o f the material's behaviour above and below the material's 

yield point, ayieid, where it was found at ~  85% of the yield stress values at all test temperatures. This 

was experimentally confirmed in this study which makes this technique superior when compared to 

the other parametric techniques which tried to ignore such inflection in their predictive curves and 

only attempted to fit the creep data using continuous non-intermittent curves.
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In order to make this study as comprehensive as possible, the Titanium IMI834 creep data have been 

used to examine ten other widely used parametric techniques from which it was proved that the 

Wilshire methodology was on the top o f all other techniques in its ability to predict the creep 

behaviour and also in re-constructing full creep curves under various test conditions.

Oxidation of Titanium IMI834 is a very detrimental effect o f oxygen diffusion that appears and 

quickly builds up when using this alloy at temperatures higher than 600 C. However, in this study, 

the oxidised layer, or the alpha-case, of the crept specimens has been measured and intelligently 

used in predicting the initiation time of the surface cracks under the different test conditions.

Surprisingly, the surface cracks were dependent on the stress level and test temperature where it was 

proved that they appeared during the late stages o f the creep life and penetrated more at fracture 

under the effect o f low stresses, at a constant temperature. Whereas at the higher stresses, they were 

initiated early during the creep life but penetrated less at fracture, at a constant test temperature. The 

critical time values, tc, at which these cracks were initiated were projected on the actual creep curves 

at the corresponding conditions from which critical strain values, ec, were obtained.

The mechanical properties of Titanium IMI834 can be drastically affected by the oxidised layer. 

This was confirmed by the drop in the ductility of the specimens with a thick alpha-case layer. The 

appearance of this oxidised layer can be considered as a phase change in the material's 

exposed/oxidised surface. This effect can be extremely severe in thin sections where an alpha-case 

thickness of 150pm was ~ 15% of the volume fraction of the specimens used in this study (which 

has 20.0mm gauge length and 4.0mm diameter). Therefore, since this alloy is being used in the 

compressor blades which are relatively thin, this effect should be more seriously considered in any 

future studies.
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6 .2  F u t u r e  W o r k

(1) To examine the Wilshire equations using more materials in order to generalise its use for long-term

creep predictions. This could include not only metals, but also other materials such as ceramics and 

composites. Its ability to predict both the long-term creep behaviour along with re-constructing full 

creep curves might become an alternative of carrying out actual creep tests which, in return, will 

save time and cost for such actual tests.

(2) In future studies, the Wilshire technique could be based on other mechanical properties rather than 

only the ultimate tensile strength. In other words, as this technique was able to predict the time 

required to reach a certain strain level based on the ultimate tensile strength, the data could be fit 

using a stress value from the tensile curve that corresponds to that certain strain level (i.e. using c e 

from the tensile curve instead of aTS).

(3) The Wilshire technique fitted the actual creep properties which were obtained from creep tests carried

out in air. Besides, it used the ultimate tensile strength values obtained from tensile tests carried out 

in air. This technique could be able to fit vacuum creep tests data using an ultimate tensile strength 

value that could be obtained from vacuum tensile tests.

(4) When using the Wilshire equations on new materials, the predictive curves of these materials will be 

monitored and compared to the Titanium IMI834 plots concerning the appearance of ‘kink’ points. 

If there are any kink points, they could be physically explained using other techniques, such as:

- Transmission Electron Microscopy (TEM): in order to study the density of dislocations above 

and below the 'kink' points.

- Optical Microscopy (OP): in order to see whether there is any elongation of the individual grains, 

above and below the 'kink' points, especially at the regions where fracture took place.

- Scanning Electron Microscopy (SEM): in order to study the mode of fracture above and below 

the 'kink' points and whether it is intergranular, transgranular or a mixed mode.

(5) The behaviour of the new materials in oxidising atmospheres should be thoroughly investigated. If 

there are any oxidised surface layers, the effect o f these layers should be studied through:
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- Vacuum creep tests: these tests will eliminate the oxdising atmospheres. If the life is improved in 

comparison to tests carried out in air under the same conditions, then these brittle surface layers 

might be the reason behind the shorter creep life obtained in air.

- Testing two testpieces; exposed and unexposed. The exposed one might have developed a brittle 

oxidised surface layer prior to testing. If these test pieces were tested under the same conditions, 

then any difference in the total life can be linked to this brittle surface layer.

- Testing two testpieces; both exposed to high temperatures prior to testing, but the surface 

layer of one of them is removed off the surface by a very precise polishing. This polishing must be 

carried out accurately and should only go few microns through the material’s surface so that the 

cross sectional area does not change. If the total life o f this surface-free testpiece is improved in 

comparison to the oxidised one then this implies that the surface cracks nucleated in the surface 

layer might have affected and shortened the creep life of the oxidised testpiece.

(6) Determining the elasticity modulus value o f the alpha-case layer, Ea. This could be carried out by 

exposing a very thin specimen (diameter ~ 1mm) to high temperatures and allow an alpha-case layer 

to develop on the surface and penetrate through the whole substrate material. Afterwards, tensile 

tests can be carried out from which the elasticity modulus of the exposed material can be obtained.

(7) Studying the effect o f the alpha-case layer on both thin and large sections. The effect o f the alpha- 

case layer on the mechanical properties might be dependent on the volume fraction of the alpha-case 

relative to the bulk material where the fraction might be significant in small sections whereas it 

could be negligible in large sections.

(8) Studying the effect o f the alpha-case not only under creep conditions, but also under tensile and 

fatigue conditions and its effect on the total life and ductility. This can be done by exposing 

testpieces to high temperatures to allow a certain thickness o f the alpha case to develop prior to 

testing. Tests of the exposed and the non-exposed testpieces can then be evaluated.
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(B1.4): Actual and Interpolated values
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(B2.3): 873K
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(B2.6): 823K/450MPa

0.2

0 16

0 14

c

Ic/5
a  C r e e p  

A R e la x a t io n

0 08

006

0.04

0.02

1 E+06 l .E + 0 71 E+01 l.E+04 l .E + 0 51.E+00 1 E + 0 2

T im e  (s)

(B2.7): 848K/570MPa

A Creep 
A Relaxation

I E+04I E+01 I E+D2

Time I s )

(B2.8): 873K/390MPa

a  C re e p  

A R e l a x a t i o n

l.E+07I E+02 I E+031 E+01



Appendix (B). Plots o f  Results and Micro Images
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B . 3  C r e e p  T e s t s  R e s u l t s  (combined creep curves)

(B3.1): normalized creep curves
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(B3.2): normal creep curves
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B .4  C r eep  T e st s  R e s u l t s  (individual creep curv es)
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(B4.2): 823K/565MPa
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(B4.4): 848K/300MPa
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(B4.5): 848K/390MPa
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(B4.6): 848K/500MPa
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(B4.7): 848K/570MPa
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(B4.8): 873K/200MPa
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(B4.9): 873K/280MPa
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(B4.10): 873K/300MPa
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(B 4.ll): 873K/350MPa
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(B4.12): 873K/360MPa
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(B4.13): 873K/390MPa
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(B4.14): 873K/480MPa
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(B4.15): 873K/550MPa
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(B4.16): 898K/175MPa
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(B4.17): 898K/220MPa
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(B4.18): 898K/250MPa
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(B4.19): 898K/280MPa
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(B4.20): 898K/300MPa
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(B4.21): 898K/330MPa
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(B4.22): 898K/400MPa
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(1*4.23): 923K/140MPa
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(B4.24): 923K/155MPa
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(B4.25): 923K/180MPa

141

0.3

0.25

0.2

0.15
cr.

0.05

3. E+061 .E+06 2.E+06 2.E+060.E+00 5.E+05

Time (s)

8 .E-07

7 .E-07

6 .E-07

-  5 E-07

I  4 E-07
c

I  3 E-07
C/3

2. E-07

E-07

O.E+OO

0.01 0 10 0001 0 001
Strain



Appendix (B). Plots o f  Results and Micro Images

(134.26): 923K/225MPa
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(B4.27): 923K/260MPa
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(B4.28): 923K/300MPa
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B . 5  C r e e p - S t e p  T e s t s  R e s u l t s  (air)

145

(B5.1): Step between 848K/455MPa and 898K/280MPa
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(B5.2): Step between 848K/455MPa and 898K/280MPa (repeat test)
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(135.3): Step between 823K/560MPa and 873K/340MPa
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B . 6  C r e e p - S t e p  T e s t s  R e s u l t s  (Vacuum)
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(B6.1): Step between 823K/560MPa and 873K/340MPa

(Total creep life recorded at these conditions was ~ 170 hours)
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(Total creep life recorded at these conditions was ~ 300 hours)
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B . 8  T h e  M o n k m a n - G r a n t  A n a l y s i s  R e s u l t s
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B . 9  T h e  L a r s o n - M i l l e r  A n a l y s i s  R e s u l t s
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B . 1 2  T h e  M a n s o n - S u c c o p  A n a l y s i s  R e s u l t s
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B . 1 5  T he  0 - M e t h o d  A n a l y s is  R es u lt s
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(B15.3): 823K/540MPa

♦  A c t u a l  S t ra in  D a t a  —•— T h e  4-9 e q u a t i o n  fit

P nam rv s ta g e

0 2  

0 18

g 0 14

2 0 12E 0.8 
2

C / 3

0.02
C3

0 02 0  12 0 180.4o N orm alised  Time

0.2

0.80 0.2 0.4 0.6

N o r m a l i s e d  T im e

♦  A c t u a l  Strain Data — — T h e  6-0 eq u a t i o n  fit

c
2

g  0.4

0.2

0.80.60.2 0.40

N orm alised  Time



Appendix (B). Plots o f  Results and Micro Images 163

(B15.4): 823K/565MPa
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(B15.5): 823K/600MPa
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(B15.6): 848K/300MPa
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(B15.7): 848K/390MPa
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(B15.8): 848K/420MPa
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(B15.9): 848K/430MPa
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(B15.10): 848K/455MPa
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(B15.ll): 848K/500MPa
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(B15.13): 873K/200MPa
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(B15.14): 873K/280MPa
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(B15.15): 873K/300MPa
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(B15.16): 873K/350MPa
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(B15.17): 873K/360MPa
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(1315.18): 873K/480MPa
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(B 15.19): 873K/550MPa

178

♦  A c tu a l  Strain Da ta  — — T h e  4-0 eq u a t i o n  fit

Primary s ta g e

02
0 16

C
e

0 12

-aa>t/5
o 0.06 

00) 
0 02

012 0.14 0 16 0.18 020.4 002 0 0 4 0,06
O
Z Normalised Time

0.2

0.80.60.40.2

Normal i sed  Time

♦  A c t u a l  Strain D a t a  ——  T h e  6-0 e q u a t t i o n  fit

1.2
Primary s tag e

C

on

|  0.6 
c3

Z  0,06

0.02
012o

Z Normalised Time

0.2

0.80.60.40.2 1.2

N o rm al i sed  Time



Appendix (B). Plots o f  Results and Micro Images

(B15.20): 898K/175MPa
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(B15.21): 898K/220MPa
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(B15.22): 898K/250MPa
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(B15.23): 898K/280MPa
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(B15.24): 898K/300MPa
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(B15.25): 898K/400MPa
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(B15.26): 923K/140MPa
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(B15.27): 923K/155MPa
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(B15.28): 923K/180MPa
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(B15.29): 923K/225MPa
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(B15.31): 923K/300MPa
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(B15.32): 923K/330MPa
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B.18 THE W lLSH IRE TECHNIQUE RESULTS (time to fracture)
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B.19 THE W lLSH IRE TECHNIQUE RESULTS (minimum creep rate)
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B . 2 0  THE W lLSH IRE K lN K  POINTS
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B.21 THE W lLSHIRE TECHNIQUE RESULTS (time to pre-defined strains)

(B21.1): 0.1% strain

0.5
y = 0.1737x+ 5.8426

Low stress regime: 
w = 0.1737 

K3 = 344
-0.5

▲ Low stress
y = 0.5618x+ 20.396

▲ High stress

High stress regime: 
w = 0.5618 A
K3 = 7.2* 108 ]

_2

-2.5

-j

-55 -50 -45 -40 -35 -30 -25 -20 -15

In (t< exp (-Qc /RT))

0.1 % stra in

700

600

500

▲ 823K

«  400 ▲ 848K

▲ 873K.

300

200

l.E+08 l .E + 0 9I E+00 1.E+0I I .E+02 I.E+03 I.E+04 I .E+06 l .E +07I E+05

Tim e  (s )



Appendix (B). Plots o f  Results and Micro Images

(B21.2): 0.15% strain
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(B21.3): 0.2% strain
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(B21.4): 0.5% strain
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(B21.5): 0.7% strain
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(B21.6): 1% strain
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(B21.7): 2% strain
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(B21.8): 5% strain
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(B21.9): 7% strain
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(B21.10): 10% strain
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(B21.ll): 13% strain

210

0.5

0

-0.5

-1

-1.5

-2

-2.5

-3
-45

y =0.6474x+ 19.18

High stress regime: 
w=0.6474

Kj=2.13* 10*

_l 1 I I I I L.

y = 0.19l8x + 5.3216

Low stress regime: 
w=0.1918 
Kj=204

_i i I L_

-40 -35 -30 -25

In (tc exp (-Qc /RT))

-20

▲ High stress

▲ Low stress

-15

13% strain

700 r

600

500 A 823 K

a- 400
A 873k

A 898k2 300
<jn

A 923k
200

100

0 ‘ ‘ — ..............   ■ ■ . . . i o l— L. .Til

l.E+OO l.E+01 l.E+02 l.E+03 l.E+04 l.E+05 l.E+06 l.E+07 I.E+08 l.E+09 l.E+10 l.E+11

Time (s)



Appendix (B). Plots o f  Results and Micro Images 21 1

(B21.12): 15% strain
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(B21.13): 20% strain
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B . 2 2  THE W lLSH IR E TECHNIQUE RESULTS (w and ks curve fits)
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(B22.2): w and k$ (low stress regime)
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(B22.3): w and kj (high stress regime)
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(B23.3): 823K/540MPa
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(1323.5): 823K/600MPa
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(B23.7): 848K/390MPa
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(B23.9): 848K/430MPa
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(B23.ll): 848K/500MPa
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(B23.13): 873K/200MPa
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(B23.15): 873K/300MPa
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(B23.17): 873K/360MPa
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(B23.19): 873K/480MPa
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(B23.21): 898K/175MPa
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(B23.23): 898K/250MPa
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(B23.25): 898K/300MPa
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(B23.27): 898K/400MPa
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(B23.29): 923K/155MPa
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(B23.31): 923K/225MPa
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(B23.33): 923K/300MPa
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B . 2 4  T h e  A l p h a - C a s e  A n a l y s i s
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(B24.1): Alpha-case thickness (measured data)
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(B24.2): Steve-Brown’s ‘Alpha-Case Thickness’ Model 
(measured and predicted)
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(B24.3): Alpha-case thickness at the surface of the penetrating cracks against the 
crack depth (measured)
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(B24.4): Crack initiation predictions (based on Figure B23.1)
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(B24.5): Critical time values (at which cracks appeared) against stress.
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B . 2 5  T he  W il shire  T e c h n i q u e  a n d  t h e  A l p h a - C a se
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(1325.1): The Wilshire predictive curves for alpha-ease thicknesses < 35pm
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(B25.2): The Wilshire predictive curves for all alpha-case thicknesses.
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CREEP TESTS MATRIX

Temperature (K) o (MPa) Source of data tf(s) tr(hrs)

390 Available data 1.15E+07 3189.31562

470 Zak 4.57E+06 1269.68942
823 540 Available data 1.78E+06 493.966503

565 Zak 1.17E+06 326.360432

600 Available data 4.07E+05 113.161188

300 Available data 1.12E+07 3116.71793

390 Available data 2.29E+06 636.352126

420 Zak 1.54E+06 428.694444
848 430 Available data 1.35E+06 375.555556

455 Zak 1.10E+06 306.388889

500 Zak 5.37E+05 149.175499

570 Available data 1.78E+05 49.3966503

200 Available data 2.09E+07 5803.60036

280 Available data 3.72E+06 1033.36111

300 Available data 2.98E+06 828.888889

350 Zak 1.17E+06 326.25

360 Available data 9.85E+05 273.605556

360 Available data 7.86E+05 218.296389

360 Available data 5.32E+05 147.775

360 Available data 5.75E+05 159.766667

360 Available data 6.07E+05 168.669444
873 360 Available data 8.49E+05 235.708333

360 Available data 7.50E+05 208.369444

360 Available data 7.85E+05 218.05

360 Available data 7.05E+05 195.830556

360 Available data 8.53E+05 236.95

360 Available data 8.99E+05 249.647222

360 Available data 6.80E+05 188.791389

390 Zak 6.46E+05 179.348397

480 Zak 1.82E+05 50.6805556

550 Available data 5.34E+04 14.8369444

175 Available data 1.06E+07 2939.72222

220 Available data 3.32E+06 921.861111

250 Available data 1.94E+06 538.583333

898
280 Zak 1.13E+06 313.5

300 Available data 7.62E+05 211.688614

300 Available data 5.91E+05 164.275

330 Zak 3.13E+05 86.8055556

400 Available data 1.1IE+05 30.7916667

140 Available data 5.98E+06 1662.25443

155 Available data 3.75E+06 1042.08333

180 Available data 2.30E+06 639.305556
923 225 Available data 6.96E+05 193.388889

260 Zak 3.62E+05 100.680556

300 Available data 1.50E+05 41.5621016

330 Zak 7.76E+04 21.5624199
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C l .  the P ow er  L aw  A nalysis
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T (K) a (MPa) UTS (MPa) tr (s) Em (S '') In (tf) In (£ra) In (a) 1/T c /U T S

823 390 638 1.15E+07 6.20E-09 1.63E+01 -1.89E+01 5.9661467 1.22E-03 0.611285266

823 470 638 4.57E+06 2.08E-08 1.53E+01 -1.77E+01 6.1527327 1.22E-03 0.736677116

823 540 638 1.78E+06 3.89E-08 1.44E+01 -1.71E+01 6.2915691 1.22E-03 0.846394984

823 565 638 1.17E+06 4.46E-08 1.40E+01 -1.69E+01 6.3368257 1.22E-03 0.885579937

823 600 638 4.07E+05 9.75E-08 1.29E+01 -1.61E+01 6.3969297 1.22E-03 0.940438871

848 300 622.5 1.12E+07 5.82E-09 1.62E+01 -1.90E+01 5.7037825 1.18E-03 0.481927711

848 390 622.5 2.29E+06 1.94E-08 1.46E+01 -1.78E+01 5.9661467 1.18E-03 0.626506024

848 420 622.5 1.54E+06 5.80E-08 1.42E+01 -1.67E+01 6.0402547 1.18E-03 0.674698795

848 430 622.5 1.35E+06 6.12E-08 1.41E+01 -1.66E+01 6.0637852 1.18E-03 0.690763052

848 455 622.5 1.10E+06 7.19E-08 1.39E+01 -1.64E+01 6.1202974 1.18E-03 0.730923695

848 500 622.5 5.37E+05 1.61E-07 1.32E+01 -1.56E+01 6.2146081 1.18E-03 0.803212851

848 570 622.5 1.78E+05 3.07E-07 1.21E+01 -1.50E+01 6.3456364 1.18E-03 0.915662651

873 200 607 2.09E+07 3.56E-09 1.69E+01 -1.95E+01 5.2983174 1.15E-03 0.329489292

873 280 607 3.72E+06 2.25E-08 1.51E+01 -1.76E+01 5.6347896 1.15E-03 0.461285008

873 300 607 2.98E+06 2.91E-08 1.49E+01 -1.74E+01 5.7037825 1.15E-03 0.494233937

873 350 607 1.17E+06 7.20E-08 1.40E+01 -1.64E+01 5.8579332 1.15E-03 0.57660626

873 360 607 9.85E+05 8.96E-08 1.38E+01 -1.62E+01 5.886104 1.15E-03 0.593080725

873 360 607 7.86E+05 9.71E-08 1.36E+01 -1.61E+01 5.886104 1.15E-03 0.593080725

873 360 607 5.32E+05 1.57E-07 1.32E+01 -1.57E+01 5.886104 1.15E-03 0.593080725

873 360 607 5.75E+05 1.50E-07 1.33E+01 -1.57E+01 5.886104 1.15E-03 0.593080725

873 360 607 6.07E+05 1.37E-07 1.33E+01 -1.58E+01 5.886104 1.15E-03 0.593080725

873 360 607 8.49E+05 9.70E-08 1.37E+01 -1.61E+01 5.886104 1.15E-03 0.593080725

873 360 607 7.50E+05 9.88E-08 1.35E+01 -1.61E+01 5.886104 1.15E-03 0.593080725

873 360 607 7.85E+05 9.76E-08 1.36E+01 -1.61E+01 5.886104 1.15E-03 0.593080725

873 360 607 7.05E+05 1.00E-07 1.35E+01 -1.61E+01 5.886104 1.15E-03 0.593080725

873 360 607 8.53E+05 9.60E-08 1.37E+01 -1.62E+01 5.886104 1.15E-03 0.593080725

873 360 607 8.99E+05 9.50E-08 1.37E+01 -1.62E+01 5.886104 1.15E-03 0.593080725

873 360 607 6.80E+05 1.25E-07 1.34E+01 -1.59E+01 5.886104 1.15E-03 0.593080725

873 390 607 6.46E+05 7.74E-08 1.34E+01 -1.64E+01 5.9661467 1.15E-03 0.642504119

873 480 607 1.82E+05 4.57E-07 1.21E+01 -1.46E+01 6.1737861 1.15E-03 0.7907743

873 550 607 5.34E+04 1.55E-06 1.09E+01 -1.34E+01 6.3099183 1.15E-03 0.906095552

898 175 575 1.06E+07 7.12E-09 1.62E+01 -1.88E+01 5.164786 1.11E-03 0.304347826

898 220 575 3.32E+06 2.53E-08 1.50E+01 -1.75E+01 5.3936275 1.11E-03 0.382608696

898 250 575 1.94E+06 4.26E-08 1.45E+01 -1.70E+01 5.5214609 1.11E-03 0.434782609

898 280 575 1.13E+06 ‘ 7.01E-08 1.39E+01 -1.65E+01 5.6347896 1.11E-03 0.486956522

898 300 575 7.62E+05 4.53E-07 1.35E+01 -1.46E+01 5.7037825 1.11E-03 0.52173913

898 300 575 5.91E+05 1.57E-07 1.33E+01 -1.57E+01 5.7037825 1.1 IE-03 0.52173913

898 330 575 3.13E+05 2.89E-07 1.27E+01 -1.51E+01 5.7990927 1.11E-03 0.573913043

898 400 575 1.11E+05 7.89E-07 1.16E+01 -1.41E+01 5.9914645 1.1 IE-03 0.695652174

923 140 543 5.98E+06 1.00E-08 1.56E+01 -1.84E+01 4.9416424 1 08E-03 0.257826888

923 155 543 3.75E+06 2.15E-08 1.51E+01 -1.77E+01 5.0434251 1.08E-03 0.285451197

923 180 543 2.30E+06 3.72E-08 1.46E+01 -1.71E+01 5.1929569 1.08E-03 0.331491713

923 225 543 6.96E+05 1.25E-07 1.35E+01 -1.59E+01 5.4161004 1.08E-03 0.414364641

923 260 543 3.62E+05 2.24E-07 1.28E+01 -1.53E+01 5.5606816 1.08E-03 0.478821363

923 300 543 1.50E+05 3.31E-07 1.19E+01 -1.49E+01 5.7037825 1.08E-03 0.552486188

923 330 543 7.76E+04 7.47E-07 1.13E+01 -1.41E+01 5.7990927 1.08E-03 0.607734807
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C 2 . the M onkm an-G rant A nalysis

T (K) o (MPa) UTS (MPa) tf(s) Sn. (S’’ ) 1/tf (s'1)
tf (predicted) 
equation (2.1)

tr (predicted) 
equation (2.17)

t r  (predicted) 
equation (2.18)

823 390 638 1.15E+07 6.20E-09 8.71E-08 1.19E+07 1.12E+07 1.11E+07

823 470 638 4.57E+06 2.08E-08 2.19E-07 3.56E+06 3.57E+06 3.51E+06

823 540 638 1.78E+06 3.89E-08 5.62E-07 1.90E+06 1.98E+06 1.93E+06

823 565 638 1.17E+06 4.46E-08 8.51E-07 1.66E+06 1.74E+06 1.70E+06

823 600 638 4.07E+05 9.75E-08 2.45E-06 7.59E+05 8.35E+05 8.05E+05

848 300 622.5 1.12E+07 5.82E-09 8.91E-08 1.27E+07 1.18E+07 I.18E+07

848 390 622.5 2.29E+06 1.94E-08 4.37E-07 3.81E+06 3.81E+06 3.75E+06

848 420 622.5 1.54E+06 5.80E-08 6.48E-07 1.28E+06 1.36E+06 1.32E+06

848 430 622.5 1.35E+06 6.12E-08 7.40E-07 1.21E+06 1.29E+06 1.26E+06

848 455 622.5 1.10E+06 7.19E-08 9.07E-07 1.03E+06 1.11E+06 1.08E+06

848 500 622.5 5.37E+05 1.61E-07 1.86E-06 4.60E+05 5.21E+05 4.99E+05

848 570 622.5 1.78E+05 3.07E-07 5.62E-06 2.41E+05 2.84E+05 2.70E+05

873 200 607 2.09E+07 3.56E-09 4.79E-08 2.08E+07 1.88E+07 1.89E+07

873 280 607 3.72E+06 2.25E-08 2.69E-07 3.29E+06 3.32E+06 3.26E+06

873 300 607 2.98E+06 2.91E-08 3.35E-07 2.54E+06 2.60E+06 2.55E+06

873 350 607 1.17E+06 7.20E-08 8.51E-07 1.03E+06 1.11E+06 1.08E+06

873 360 607 9.85E+05 8.96E-08 1.02E-06 8.26E+05 9.04E+05 8.73E+05

873 360 607 7.86E+05 9.71E-08 1.27E-06 7.62E+05 8.38E+05 8.09E+05

873 360 607 5.32E+05 1.57E-07 1.88E-06 4.71E+05 5.34E+05 5.11E+05

873 360 607 5.75E+05 1.50E-07 1.74E-06 4.93E+05 5.57E+05 5.34E+05

873 360 607 6.07E+05 1.37E-07 1.65E-06 5.40E+05 6.06E+05 5.82E+05

873 360 607 8.49E+05 9.70E-08 1.18E-06 7.63E+05 8.39E+05 8.09E+05

873 360 607 7.50E+05 9.88E-08 1.33E-06 7.49E+05 8.25E+05 7.95E+05

873 360 607 7.85E+05 9.76E-08 1.27E-06 7.58E+05 8.34E+05 8.05E+05

873 360 607 7.05E+05 1.00E-07 1.42E-06 7.40E+05 8.15E+05 7.86E+05

873 360 607 8.53E+05 9.60E-08 1.17E-06 7.71E+05 8.47E+05 8.17E+05

873 360 607 8.99E+05 9.50E-08 1.1 IE-06 7.79E+05 8.56E+05 8.26E+05

873 360 607 6.80E+05 1.25E-07 1.47E-06 5.92E+05 6.61E+05 6.36E+05

873 390 607 6.46E+05 7.74E-08 1.55E-06 9.56E+05 1.04E+06 1.00E+06

873 480 607 1.82E+05 4.57E-07 5.48E-06 1.62E+05 1.95E+05 1.85E+05

873 550 607 5.34E+04 1.55E-06 1.87E-05 4.77E+04 6.19E+04 5.77E+04

898 175 575 1.06E+07 7.12E-09 9.45E-08 1.04E+07 9.79E+06 9.76E+06

898 220 575 3.32E+06 2.53E-08 3.01E-07 2.92E+06 2.97E+06 2.91E+06

898 250 575 1.94E+06 4.26E-08 5.16E-07 1.74E+06 1.82E+06 1.77E+06

898 280 575 1.13E+06 7.01E-08 8.86E-07 1.06E+06 1.14E+06 1.10E+06

898 300 575 5.91E+05 1.57E-07 1.69E-06 4.71E+05 5.34E+05 5.11E+05

898 330 575 3.13E+05 2.89E-07 3.20E-06 2.56E+05 3.01E+05 2.86E+05

898 400 575 1.11E+05 7.89E-07 9.02E-06 9.38E+04 1.17E+05 1.10E+05

923 155 543 3.75E+06 2.15E-08 2.67E-07 3.44E+06 3.46E+06 3.40E+06

923 180 543 2.30E+06 3.72E-08 4.34E-07 1.99E+06 2.07E+06 2.02E+06

923 225 543 6.96E+05 1.25E-07 1.44E-06 5.92E+05 6.61E+05 6.36E+05

923 260 543 3.62E+05 2.24E-07 2.76E-06 3.30E+05 3.82E+05 3.64E+05

923 300 543 1.50E+05 3.31E-07 6.68E-06 2.24E+05 2.65E+05 2.51E+05

923 330 543 7.76E+04 7.47E-07 1.29E-05 9.91E+04 1.23E+05 1.16E+05
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C 3 . the L arson-M iller  A nalysis

249

T (K) o (MPa) UTS (MPa) tf(s) lOgtf T (20 + log tf) 1/T

823 390 638 1.15E+07 7.06E+00 2.23E+04 1.22E-03

823 470 638 4.57E+06 6.66E+00 2.19E+04 1.22E-03

823 540 638 1.78E+06 6.25E+00 2.16E+04 1.22E-03

823 565 638 1.17E+06 6.07E+00 2.15E+04 1.22E-03

823 600 638 4.07E+05 5.61E+00 2.11E+04 1.22E-03

848 300 622.5 1.12E+07 7.05E+00 2.29E+04 1.18E-03

848 390 622.5 2.29E+06 6.36E+00 2.24E+04 1.18E-03

848 420 622.5 1.54E+06 6.19E+00 2.22E+04 1.18E-03

848 430 622.5 1.35E+06 6.13E+00 2.22E+04 1.18E-03

848 455 622.5 1.10E+06 6.04E+00 2.21E+04 1.18E-03

848 500 622.5 5.37E+05 5.73E+00 2.18E+04 1.18E-03

848 570 622.5 1.78E+05 5.25E+00 2.14E+04 1.18E-03

873 200 607 2.09E+07 7.32E+00 2.39E+04 1.15E-03

873 280 607 3.72E+06 6.57E+00 2.32E+04 1.15E-03

873 300 607 2.98E+06 6.47E+00 2.31E+04 1.15E-03

873 350 607 1.17E+06 6.07E+00 2.28E+04 1.15E-03

873 360 607 9.85E+05 5.99E+00 2.27E+04 1.15E-03

873 360 607 7.86E+05 5.90E+00 2.26E+04 1.15E-03

873 360 607 5.32E+05 5.73E+00 2.25E+04 1.15E-03

873 360 607 5.75E+05 5.76E+00 2.25E+04 1.15E-03

873 360 607 6.07E+05 5.78E+00 2.25E+04 1.15E-03

873 360 607 8.49E+05 5.93E+00 2.26E+04 1.15E-03

873 360 607 7.50E+05 5.88E+00 2.26E+04 1.15E-03

873 360 607 7.85E+05 5.89E+00 2.26E+04 1.15E-03

873 360 607 7.05E+05 5.85E+00 2.26E+04 1.15E-03

873 360 607 8.53E+05 5.93E+00 2.26E+04 1.15E-03

873 360 607 8.99E+05 5.95E+00 2.27E+04 1.15E-03

873 360 607 6.80E+05 5.83E+00 2.26E+04 1.15E-03

873 390 607 6.46E+05 5.81E+00 2.25E+04 1.15E-03

873 480 607 1.82E+05 5.26E+00 2.21E+04 1.15E-03

873 550 607 5.34E+04 4.73E+00 2.16E+04 1.15E-03

898 175 575 1.06E+07 7.02E+00 2.43E+04 1.1 IE-03

898 220 575 3.32E+06 6.52E+00 2.38E+04 1.1 IE-03

898 250 575 1.94E+06 6.29E+00 2.36E+04 1.11E-03

898 280 575 1.13E+06 6.05E+00 2.34E+04 1.11E-03

898 300 575 7.62E+05 5.88E+00 2.32E+04 1.11E-03

898 300 575 5.91E+05 5.77E+00 2.31E+04 1.11E-03

898 330 575 3.13E+05 5.49E+00 2.29E+04 1.1 IE-03

898 400 575 1.11E+05 5.04E+00 2.25E+04 1.1 IE-03

923 140 543 5.98E+06 6.78E+00 2.47E+04 1.08E-03

923 155 543 3.75E+06 6.57E+00 2.45E+04 1.08E-03

923 180 543 2.30E+06 6.36E+00 2.43E+04 1.08E-03

923 225 543 6.96E+05 5.84E+00 2.39E+04 1.08E-03

923 260 543 3.62E+05 5.56E+00 2.36E+04 1.08E-03

923 300 543 1.50E+05 5.18E+00 2.32E+04 1.08E-03

923 330 543 7.76E+04 4.89E+00 2.30E+04 1.08E-03
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C 4 . the M anson-H aferd A nalysis

250

T (K) a  (MPa) UTS (MPa) tr(s) log (tf) (log tf- 29.713)/(1061 - T)

823 390 638 1.15E+07 7.06E+00 -9.52E-02

823 470 638 4.57E+06 6.66E+00 -9.69E-02

823 540 638 1.78E+06 6.25E+00 -9.86E-02

823 565 638 1.17E+06 6.07E+00 -9.93E-02

823 600 638 4.07E+05 5.61E+00 -1.01E-01

848 300 622.5 1.12E+07 7.05E+00 -1.06E-01

848 390 622.5 2.29E+06 6.36E+00 -1.10E-01

848 420 622.5 1.54E+06 6.19E+00 -1.10E-01

848 430 622.5 1.35E+06 6.13E+00 -1.11E-01

848 455 622.5 1.10E+06 6.04E+00 -1.1 IE-01

848 500 622.5 5.37E+05 5.73E+00 -1.13E-01

848 570 622.5 1.78E+05 5.25E+00 -1.15E-01

873 200 607 2.09E+07 7.32E+00 -1.19E-01

873 280 607 3.72E+06 6.57E+00 -1.23E-01

873 300 607 2.98E+06 6.47E+00 -1.24E-01

873 350 607 1.17E+06 6.07E+00 -1.26E-01

873 360 607 9.85E+05 5.99E+00 -1.26E-01

873 360 607 7.86E+05 5.90E+00 -1.27E-01

873 360 607 5.32E+05 5.73E+00 -1.28E-01

873 360 607 5.75E+05 5.76E+00 -1.27E-01

873 360 607 6.07E+05 5.78E+00 -1.27E-01

873 360 607 8.49E+05 5.93E+00 -1.27E-01

873 360 607 7.50E+05 5.88E+00 -1.27E-01

873 360 607 7.85E+05 5.89E+00 -1.27E-01

873 360 607 7.05E+05 5.85E+00 -1.27E-01

873 360 607 8.53E+05 5.93E+00 -1.27E-01

873 360 607 8.99E+05 5.95E+00 -1.26E-01

873 360 607 6.80E+05 5.83E+00 -1.27E-01

873 390 607 6.46E+05 5.81E+00 -1.27E-01

873 480 607 1.82E+05 5.26E+00 -1.30E-01

873 550 607 5.34E+04 4.73E+00 -1.33E-01

898 175 575 1.06E+07 7.02E+00 -1.39E-01

898 220 575 3.32E+06 6.52E+00 -1.42E-01

898 250 575 1.94E+06 6.29E+00 -1.44E-01

898 280 575 1.13E+06 6.05E+00 -1.45E-01

898 300 575 7.62E+05 5.88E+00 -1.46E-01

898 300 575 5.91E+05 5.77E+00 -1.47E-01

898 330 575 3.13E+05 5.49E+00 -1.49E-01

898 400 575 1.11E+05 5.04E+00 -1.51E-01

923 140 543 5.98E+06 6.78E+00 -1.66E-01

923 155 543 3.75E+06 6.57E+00 -1.68E-01

923 180 543 2.30E+06 6.36E+00 -1.69E-01

923 225 543 6.96E+05 5.84E+00 -1.73E-01

923 260 543 3.62E+05 5.56E+00 -1.75E-01

923 300 543 1.50E+05 5.18E+00 -1.78E-01

923 330 543 7.76E+04 4.89E+00 -1.80E-01
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C 5 . the O rr-S herby-D orn A nalysis
T(K) o (MPa) UTS (MPa) tf(s) log (tf) (20,000/T) - log tf 1/T

823 390 638 1.15E+07 7.06E+00 1.75E+01 1.22E-03

823 470 638 4.57E+06 6.66E+00 1.79E+01 1.22E-03

823 540 638 1.78E+06 6.25E+00 1.84E+01 1.22E-03

823 565 638 1.17E+06 6.07E+00 1.85E+01 1.22E-03

823 600 638 4.07E+05 5.61 E+00 1.90E+01 1.22E-03

848 300 622.5 1.12E+07 7.05E+00 1.68E+01 1.18E-03

848 390 622.5 2.29E+06 6.36E+00 1.75E+01 1.18E-03

848 420 622.5 1.54E+06 6.19E+00 1.77E+01 1.18E-03

848 430 622.5 1.35E+06 6.13E+00 1.77E+01 1.18E-03

848 455 622.5 1.10E+06 6.04E+00 1.78E+01 1.18E-03

848 500 622.5 5.37E+05 5.73E+00 1.81E+01 1.18E-03

848 570 622.5 1.78E+05 5.25E+00 1.86E+01 1.18E-03

873 200 607 2.09E+07 7.32E+00 1.59E+01 1.15E-03

873 280 607 3.72E+06 6.57E+00 1.66E+01 1.15E-03

873 300 607 2.98E+06 6.47E+00 1.67E+01 1.15E-03

873 350 607 1.17E+06 6.07E+00 1.71E+01 1.15E-03

873 360 607 9.85E+05 5.99E+00 1.72E+01 1.15E-03

873 360 607 7.86E+05 5.90E+00 1.73E+01 1.15E-03

873 360 607 5.32E+05 5.73E+00 1.75E+01 1.15E-03

873 360 607 5.75E+05 5.76E+00 1.74E+01 1.15E-03

873 360 607 6.07E+05 5.78E+00 1.74E+01 1.15E-03

873 360 607 8.49E+05 5.93E+00 1.73E+01 1.15E-03

873 360 607 7.50E+05 5.88E+00 1.73E+01 1.15E-03

873 360 607 7.85E+05 5.89E+00 1.73E+01 1.15E-03

873 360 607 7.05E+05 5.85E+00 1.73E+01 1.15E-03

873 360 607 8.53E+05 5.93E+00 1.73E+01 1.15E-03

873 360 607 8.99E+05 5.95E+00 1.72E+01 1.15E-03

873 360 607 6.80E+05 5.83E+00 1.74E+01 1.15E-03

873 390 607 6.46E+05 5.81E+00 1.74E+01 1.15E-03

873 480 607 1.82E+05 5.26E+00 1.79E+01 1.15E-03

873 550 607 5.34E+04 4.73E+00 1.85E+01 1.15E-03

898 175 575 1.06E+07 7.02E+00 1.55E+01 1.11E-03

898 220 575 3.32E+06 6.52E+00 1.60E+01 1.11E-03

898 250 575 1.94E+06 6.29E+00 1.63E+01 1.11E-03

898 280 575 1.13E+06 6.05E+00 1.65E+01 1.1 IE-03

898 300 575 7.62E+05 5.88E+00 1.67E+01 1.11E-03

898 300 575 5.91E+05 5.77E+00 1.68E+01 1.1 IE-03

898 330 575 3.13E+05 5.49E+00 1.71E+01 1.1 IE-03

898 400 575 1.11E+05 5.04E+00 1.75E+01 1.11E-03

923 140 543 5.98E+06 6.78E+00 1.52E+01 1.08E-03

923 155 543 3.75E+06 6.57E+00 1.54E+01 1.08E-03

923 180 543 2.30E+06 6.36E+00 1.56E+01 1.08E-03

923 225 543 6.96E+05 5.84E+00 1.61E+01 1.08E-03

923 260 543 3.62E+05 5.56E+00 1.64E+01 1.08E-03

923 300 543 1.50E+05 5.18E+00 1.68E+01 1.08E-03

923 330 543 7.76E+04 4.89E+00 1.70E+01 1.08E-03
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C 6 . the M anson-Succop A nalysis

252

T (K) c (MPa) UTS (MPa) tr(s) •og (tf) (log tf + 0.025 T)

823 390 638 1.15E+07 7.06E+00 2.76E+01

823 470 638 4.57E+06 6.66E+00 2.72E+01

823 540 638 1.78E+06 6.25E+00 2.68E+01

823 565 638 1.17E+06 6.07E+00 2.66E+01

823 600 638 4.07E+05 5.61E+00 2.62E+01

848 300 622.5 1.12E+07 7.05E+00 2.83E+01

848 390 622.5 2.29E+06 6.36E+00 2.76E+01

848 420 622.5 1.54E+06 6.19E+00 2.74E+01

848 430 622.5 1.35E+06 6.13E+00 2.73E+01

848 455 622.5 1.10E+06 6.04E+00 2.72E+01

848 500 622.5 5.37E+05 5.73E+00 2.69E+01

848 570 622.5 1.78E+05 5.25E+00 2.65E+01

873 200 607 2.09E+07 7.32E+00 2.91E+01

873 280 607 3.72E+06 6.57E+00 2.84E+01

873 300 607 2.98E+06 6.47E+00 2.83E+01

873 350 607 1.17E+06 6.07E+00 2.79E+01

873 360 607 9.85E+05 5.99E+00 2.78E+01

873 360 607 7.86E+05 5.90E+00 2.77E+01

873 360 607 5.32E+05 5.73E+00 2.76E+01

873 360 607 5.75E+05 5.76E+00 2.76E+01

873 360 607 6.07E+05 5.78E+00 2.76E+01

873 360 607 8.49E+05 5.93E+00 2.78E+01

873 360 607 7.50E+05 5.88E+00 2.77E+01

873 360 607 7.85E+05 5.89E+00 2.77E+01

873 360 607 7.05E+05 5.85E+00 2.77E+01

873 360 607 8.53E+05 5.93E+00 2.78E+01

873 360 607 8.99E+05 5.95E+00 2.78E+01

873 360 607 6.80E+05 5.83E+00 2.77E+01

873 390 607 6.46E+05 5.81E+00 2.76E+01

873 480 607 1.82E+05 5.26E+00 2.71E+01

873 550 607 5.34E+04 4.73E+00 2.66E+01

898 175 575 1.06E+07 7.02E+00 2.95E+01

898 220 575 3.32E+06 6.52E+00 2.90E+01

898 250 575 1.94E+06 6.29E+00 2.87E+01

898 280 575 1.13E+06 6.05E+00 2.85E+01

898 300 575 7.62E+05 5.88E+00 2.83E+01

898 300 575 5.91E+05 5.77E+00 2.82E+01

898 330 575 3.13E+05 5.49E+00 2.79E+01

898 400 575 1.11E+05 5.04E+00 2.75E+01

923 140 543 5.98E+06 6.78E+00 2.99E+01

923 155 543 3.75E+06 6.57E+00 2.96E+01

923 180 543 2.30E+06 6.36E+00 2.94E+01

923 225 543 6.96E+05 5.84E+00 2.89E+01

923 260 543 3.62E+05 5.56E+00 2.86E+01

923 300 543 1.50E+05 5.18E+00 2.83E+01

923 330 543 7.76E+04 4.89E+00 2.80E+01
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Cl.  t h e  H y p e r b o lic -T a n g e n t  A n a ly s is
T(K) o (MPa) UTS (MPa) tr(s) I n  t r t a n h ' ^ l ^  ( o / o t s ) )

823 390 638 1.15E+07 1.63E+01 -2.26E-01

823 470 638 4.57E+06 1.53E+01 -5.14E-01

823 540 638 1.78E+06 1.44E+01 -8.53E-01

823 565 638 1.17E+06 1.40E+01 -1.02E+00

823 600 638 4.07E+05 1.29E+01 -1.38E+00

848 300 622.5 1.12E+07 1.62E+01 3.62E-02

848 390 622.5 2.29E+06 1.46E+01 -2.59E-01

848 420 622.5 1.54E+06 1.42E+01 -3.65E-01

848 430 622.5 1.35E+06 1.41E+01 -4.02E-01

848 455 622.5 1.10E+06 1.39E+01 -5.00E-01

848 500 622.5 5.37E+05 1.32E+01 -7.03 E-01

848 570 622.5 1.78E+05 1.21E+01 -1.19E+00

873 200 607 2.09E+07 1.69E+01 3.55E-01

873 280 607 3.72E+06 1.51E+01 7.76E-02

873 300 607 2.98E+06 1.49E+01 1.15E-02

873 350 607 1.17E+06 1.40E+01 -1.54E-01

873 360 607 9.85E+05 1.38E+01 -1.88E-01

873 360 607 7.86E+05 1.36E+01 -1.88E-01

873 360 607 5.32E+05 1.32E+01 -1.88E-01

873 360 607 5.75E+05 1.33E+01 -1.88E-01

873 360 607 6.07E+05 1.33E+01 -1.88E-01

873 360 607 8.49E+05 1.37E+01 -1.88E-01

873 360 607 7.50E+05 1.35E+01 -1.88E-01

873 360 607 7.85E+05 1.36E+01 -1.88E-01

873 360 607 7.05E+05 1.35E+01 -1.88E-01

873 360 607 8.53E+05 1.37E+01 -1.88E-01

873 360 607 8.99E+05 1.37E+01 -1.88E-01

873 360 607 6.80E+05 1.34E+01 -1.88E-01

873 390 607 6.46E+05 1.34E+01 -2.93 E-01

873 480 . 607 1.82E+05 1.21E+01 -6.65E-01

873 550 607 5.34E+04 1.09E+01 -1.13E+00

898 175 575 1.06E+07 1.62E+01 4.13E-01

898 220 575 3.32E+06 1.50E+01 2.39E-01

898 250 575 1.94E+06 1.45E+01 1.31E-01

898 280 575 1.13E+06 1.39E+01 2.61E-02

898 300 575 7.62E+05 1.35E+01 -4.35E-02

898 300 575 5.91 E+05 1.33E+01 -4.35E-02

898 330 575 3.13E+05 1.27E+01 -1.49E-01

898 400 575 1.11 E+05 1.16E+01 -4.13E-01

923 140 543 5.98E+06 1.56E+01 5.29E-01

923 155 543 3.75E+06 1.51E+01 4.59E-01

923 180 543 2.30E+06 1.46E+01 3.51E-01

923 225 543 6.96E+05 1.35E+01 1.73E-01

923 260 543 3.62E+05 1.28E+01 4.24E-02

923 300 543 1.50E+05 1.19E+01 -1.05E-01

923 330 543 7.76E+04 1.13E+01 -2.19E-01
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C 8 . the G oldhoff-S herby  A nalysis
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T (K) o (MPa) UTS (MPa) tr(s) (log tf - 15.824) / (1/T - 0.0008)

823 390 638 1.15E+07 7.06E+00

823 470 638 4.57E+06 6.66E+00

823 540 638 1.78E+06 6.25E+00

823 565 638 1.17E+06 6.07E+00

823 600 638 4.07E+05 5.61E+00

848 300 622.5 1.12E+07 7.05E+00

848 390 622.5 2.29E+06 6.36E+00

848 420 622.5 1.54E+06 6.19E+00

848 430 622.5 1.35E+06 6.13E+00

848 455 622.5 1.10E+06 6.04E+00

848 500 622.5 5.37E+05 5.73E+00

848 570 622.5 1.78E+05 5.25E+00

873 200 607 2.09E+07 7.32E+00

873 280 607 3.72E+06 6.57E+00

873 300 607 2.98E+06 6.47E+00

873 350 607 1.17E+06 6.07E+00

873 360 607 9.85E+05 5.99E+00

873 360 607 7.86E+05 5.90E+00

873 360 607 5.32E+05 5.73E+00

873 360 607 5.75E+05 5.76E+00

873 360 607 6.07E+05 5.78E+00

873 360 607 8.49E+05 5.93E+00

873 360 607 7.50E+05 5.88E+00

873 360 607 7.85E+05 5.89E+00

873 360 607 7.05E+05 5.85E+00

873 360 607 8.53E+05 5.93E+00

873 360 607 8.99E+05 5.95E+00

873 360 607 6.80E+05 5.83E+00

873 390 607 6.46E+05 5.81E+00

873 480 607 1.82E+05 5.26E+00

873 550 607 5.34E+04 4.73E+00

898 175 575 1.06E+07 7.02E+00

898 220 575 3.32E+06 6.52E+00

898 250 575 1.94E+06 6.29E+00

898 280 575 1.13E+06 6.05E+00

898 300 575 7.62E+05 5.88E+00

898 300 575 5.91 E+05 5.77E+00

898 330 575 3.13E+05 5.49E+00

898 400 575 1.11E+05 5.04E+00

923 140 543 5.98E+06 6.78E+00

923 155 543 3.75E+06 6.57E+00

923 180 543 2.30E+06 6.36E+00

923 225 543 6.96E+05 5.84E+00

923 260 543 3.62E+05 5.56E+00

923 300 543 1.50E+05 5.18E+00

923 330 543 7.76E+04 4.89E+00
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C 9 . the 4 -0  E quation  A nalysis

T
(K)

a
JM Pa) 0. 02 03 04 In (0,) In (02) In (03) In (04)

823 390 4.64E-02 1.45E-07 4.48E-03 3.77E-07 -3.070610245 -15.74957195 -5.408432547 -14.79120819

823 470 3.90E-02 5.90E-07 4.88E-03 9.41E-07 -3.244209757 -14.34281377 -5.321805823 -13.87673227

823 540 9.50E-03 6.84E-06 1.96E-02 1.18E-06 -4.656684794 -11.8927553 -3.933971247 -13.65307728

823 565 0.014617836 5.09E-06 1.40E-02 1.67E-06 -4.225512824 -12.18853373 -4.270753978 -13.30521651

823 600 1.29E-02 1.08E-05 0.026948657 2.13393E-06 -4.349488926 -11.43293349 -3.613821831 -13.05754524

848 300 9.96E-02 6.68E-08 0.002906615 4.31589E-07 -2.306524911 -16.52190508 -5.840766098 -14.65579105

: 848 390 6.44E-01 3.58249E-08 0.000344242 1.79822E-06 -0.439420856 -17.14462231 -7.974166744 -13.22871396

848 420 2.75E-01 2.38E-07 1.72E-03 3.05E-06 -1.290978031 -15.25274219 -6.366549318 -12.70130352

848 430 1.83E-01 3.00E-07 1.19E-03 3.3629 IE-06 -1.695643672 -15.01809403 -6.733942334 -12.60270313

848 455 1.16E-01 7.14E-07 2.23E-03 3.88415E-06 -2.158053108 -14.15220431 -6.107606305 -12.45860543

848 500 4.09E-01 4.45632E-07 0.001036492 9.76391E-06 -0.89525134 -14.62377327 -6.871913071 -11.53681745

848 570 0.012244791 4.26308E-05 0.033720071 5.66694E-06 -4.402654627 -10.06293437 -3.389662043 -12.08086168

873 200 0.517515939 7.86936E-09 0.000771099 2.85768E-07 -0.658714954 -18.66028914 -7.167693208 -15.06808409

873 280 0.014916836 7.34216E-07 0.026605152 6.19827E-07 -4.205264788 -14.12446309 -3.626650406 -14.29382469

873 300 0.257408564 1.12947E-07 0.002717524 1.45635E-06 -1.357090712 -15.99635066 -5.908034195 -13.43957924

873 350 0.386895754 2.08978E-07 0.001293222 4.09465E-06 -0.949599992 -15.38103493 -6.650618226 -12.40582967

873 360 0.581993154 1.86354E-07 0.001880636 4.70037E-06 -0.541296594 -15.4956168 -6.276145344 -12.26786836

873 480 0.008401546 4.92249E-05 0.034137655 1.02904E-05 -4.779339522 -9.91911006 -3.377354242 -11.48430334

873 550 0.687649176 2.65895E-06 0.003170021 6.4805E-05 -0.37447649 -12.8375785 -5.754017011 -9.644128437

898 175 0.825511796 8.63129E-09 0.001833508 3.98E-07 -0.191751727 -18.56787155 -6.301524079 -14.73624681

898 220 0.630364985 4.77779E-08 0.00103182 1.55E-06 -0.461456286 -16.85670224 -6.876431115 -13.37596029

898 250 0.210253582 1.51196E-07 5.45E-03 1.9379E-06 -1.559440944 -15.70468648 -5.211589558 -13.15390573

898 280 0.257023247 2.16E-07 0.00991375 2.86325E-06 -1.358588744 -15.34861843 -4.613832602 -12.76355177

898 300 5.11 E-01 8.58625E-07 0.004877238 1.76417E-05 -0.670581087 -13.96793312 -5.323176305 -10.9452438

898 400 0.144600796 5.02339E-06 0.010341223 2.63587E-05 -1.933778462 -12.2014052 -4.571617155 -10.54371068

923 140 0.003509547 5.80592E-06 0.029136121 1.57756E-07 -5.652268221 -12.05663172 -3.535776599 -15.66221926

923 155 0.008901718 2.69634E-06 0.01870926 6.6088E-07 -4.721510941 -12.82361501 -3.978736704 -14.22969325

923 180 0.232041521 1.42794E-07 0.004017979 1.70485E-06 -1.460838955 -15.76186175 -5.516976343 -13.28203509

923 225 0.200264529 4.77913E-07 0.007916714 4.54704E-06 -1.60811614 -14.55383647 -4.838779055 -12.30103381

923 260 0.261224797 9.272E-07 0.004590436 1.13974E-05 -1.342373953 -13.89109601 -5.383780375 -11.38212955

923 300 0.21642504 8.6505E-07 0.015236731 1.20384E-05 -1.530511028 -13.96047807 -4.184046269 -11.32740952

923 330 0.488672067 1.28862E-06 0.016633093 2.48498E-05 -0.716063634 -13.56194181 -4.096361033 -10.60266185
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T

||K )

a

( M P a )
tm

(using O-mcthod)

£ m

(using O-method)

e m

(using O-method)

E p

( Em “ Em tm )

E p  m odified 

(only values >  0)
t f  (actual) E f (actual)

E j

( E f - E p )

£ f

(O-method ft; t f  actual)

Et
(E f, A -  Ep>

823 3 9 0 8 .0 7 E + 0 5 6 .7 0 E - 0 3 8 .2 6 E - 0 9 3 .7 8 E - 0 5 3 .7 8 E - 0 5 9 .2 0 E + 0 6 1 .9 4 E -0 1 1 .9 4 E -0 1 1 .7 3 E -0 1 1 .7 3 E -0 1

823 4 7 0 7 .4 8 E + 0 5 1 .8 9 E - 0 2 2 .4 1 E - 0 8 8 .8 9 E - 0 4 8 .8 9 E - 0 4 3 .5 8 E + 0 6 1 .8 5 E -0 1 1 .8 4 E -0 1 1 .7 1 E -0 1 1 .7 0 E -0 1

823 5 4 0 3 .4 9 E + 0 5 1 .8 6 E - 0 2 4 .0 7 E - 0 8 4 .3 6 E - 0 3 4 .3 6 E - 0 3 1 .5 0 E + 0 6 1 .2 5 E -0 1 1 .2 1 E -0 1 1 .0 4 E -0 1 9 .9 7 E - 0 2

823 5 6 5 3 .3 7 E + 0 5 2 .2 5 E - 0 2 5 .4 2 E - 0 8 4 .2 5 E - 0 3 4 .2 5 E - 0 3 1 .4 6 E + 0 6 1 .7 1  E -0 1 1 .6 7 E -0 1 1 .6 0 E -0 1 1 .5 6 E -0 1

823 6 0 0 1 .9 4 E + 0 5 2 .5 1 E - 0 2 1 .0 4 E - 0 7 4 .9 6 E - 0 3 4 .9 6 E - 0 3 8 .0 0 E + 0 5 1 .4 4 E -0 1 1 .3 9 E - 0 1 1 .3 4 E -0 1 1 .3 0 E -0 1

848 3 0 0 - 3 .9 7 E + 0 5 - 3 .1 4 E - 0 3 7 .8 9 E - 0 9 - 2 .4 6 E - 0 6 O.OOE+OO 9 .0 7 E + 0 6 2 .2 5 E - 0 1 2 .2 5 E - 0 1 1 .8 8 E -0 1 1 .8 8 E -0 1

848 3 9 0 - 1 .6 2 E + 0 5 - 3 .8 4 E - 0 3 2 . 3 7 E - 0 8 - 1 .1 6 E - 0 6 0 .0 0 E + 0 0 3 .1 3 E + 0 6 1 .7 7 E -0 1 1 .7 7 E -0 1 1 .6 4 E -0 1 1 .6 4 E -0 1

MS48 4 2 0 - 8 .3 1 E + 0 3 - 5 .8 7 E - 0 4 7 .0 6 E - 0 8 - 4 .9 2 E - 0 9 0 .0 0 E + 0 0 1 .5 4 E + 0 6 3 .1 7 E - 0 1 3 .1 7 E - 0 1 2 .7 2 E - 0 1 2 .7 2 E - 0 1

1848 4 3 0 5 .6 6 E + 0 4 3 .3 5 E - 0 3 5 .9 0 E - 0 8 1 .7 3 E - 0 6 1 .7 3 E - 0 6 1 .3 5 E + 0 6 2 .0 7 E - 0 1 2 .0 7 E - 0 1 1 .7 2 E -0 1 1 .7 2 E -0 1

848 4 5 5 1 .2 2 E + 0 5 1 .1 0 E - 0 2 8 .9 5 E - 0 8 6 .9 0 E - 0 5 6 .9 0 E - 0 5 1 .1 0 E + 0 6 2 .7 0 E - 0 1 2 .7 0 E - 0 1 2 .2 2 E - 0 1 2 .2 2 E - 0 1

848 5 0 0 - 1 .9 3 E + 0 4 - 3 .7 1 E - 0 3 1 .9 2 E - 0 7 - 1 .0 5 E - 0 6 0 .0 0 E + 0 0 5 .0 1  E + 0 5 2 .5 6 E - 0 1 2 .5 6 E - 0 1 2 .1 9 E - 0 1 2 .1 9 E - 0 1

848 5 7 0 6 .2 6 E + 0 4 2 .5 8 E - 0 2 3 .0 9 E - 0 7 6 .4 3 E - 0 3 6 .4 3 E - 0 3 2 .7 1  E + 0 5 1 .6 0 E -0 1 1 .5 4 E -0 1 1 .3 5 E - 0 1 1 .2 8 E -0 1

873 2 0 0 - 2 .3 0 E + 0 6 - 9 .8 2 E - 0 3 4 .2 6 E - 0 9 - 2 .3 0 E - 0 5 0 .0 0 E + 0 0 1 .6 8 E + 0 7 1 .9 0 E -0 1 1 .9 0 E -0 1 1 .5 7 E - 0 1 1 .5 7 E -0 1

873 2 8 0 - 1 .7 7 E + 0 5 - 4 .8 4 E - 0 3 2 .7 2 E - 0 8 - 1 .1 4 E - 0 5 0 .0 0 E + 0 0 3 .7 2 E + 0 6 3 .0 7 E - 0 1 3 .0 7 E - 0 1 2 .5 4 E - 0 1 2 .5 4 E - 0 1

873 3 0 0 - 3 .5 9 E + 0 5 - 1 .1 7 E - 0 2 3 .2 6 E - 0 8 - 4 .6 7 E - 0 5 0 .0 0 E + 0 0 2 .9 8 E + 0 6 3 .4 4 E - 0 1 3 .4 4 E - 0 1 2 .8 1 E - 0 1 2 .8 1  E -0 1

873 3 5 0 - 5 .7 9 E + 0 4 - 4 .9 9 E - 0 3 8 .6 0 E - 0 8 - 2 .5 3 E - 0 6 0 .0 0 E + 0 0 1 .1 7 E + 0 6 2 .8 5 E - 0 1 2 .8 5 E - 0 1 2 .4 1  E -0 1 2 .4 1 E - 0 1

873 3 6 0 - 1 .4 7 E + 0 5 - 1 .7 2 E - 0 2 1 .1 6 E - 0 7 - 6 .4 7 E - 0 5 0 .0 0 E + 0 0 9 .8 5 E + 0 5 3 .3 7 E - 0 1 3 .3 7 E - 0 1 2 .8 8 E - 0 1 2 .8 8 E - 0 1

873 4 8 0 2 .9 0 E + 0 4 1 .8 3 E - 0 2 5 .7 3 E - 0 7 1 .6 5 E - 0 3 1 .6 5 E - 0 3 1 .8 2 E + 0 5 2 .2 4 E - 0 1 2 .2 2 E - 0 1 1 .9 7 E - 0 1 1 .9 6 E -0 1

873 5 5 0 - 1 .4 9 E + 0 4 - 2 .9 8 E - 0 2 1 .9 8 E - 0 6 - 2 .4 3 E - 0 4 0 .0 0 E + 0 0 5 .3 4 E + 0 4 2 .0 3 E - 0 1 2 .0 3 E - 0 1 1 .8 9 E - 0 1 1 .8 9 E -0 1

898 1 7 5 - 3 .8 2 E + 0 6 - 2 .9 1  E - 0 2 7 .5 2 E - 0 9 - 3 .6 5 E - 0 4 0 .0 0 E + 0 0 1 .0 6 E + 0 7 2 .3 0 E - 0 1 2 .3 0 E - 0 1 1 .9 4 E - 0 1 1 .9 4 E -0 1

898 2 2 0 - 3 .4 2 E + 0 5 - 1 .0 8 E - 0 2 3 .1 6 E - 0 8 - 1 .7 8 E - 0 5 0 .0 0 E + 0 0 3 .3 2 E + 0 6 3 .6 7 E - 0 1 3 .6 7 E - 0 1 2 .6 9 E - 0 1 2 .6 9 E - 0 1

898 2 5 0 - 6 .9 4 E + 0 5 - 2 .7 3 E - 0 2 3 .8 1 E - 0 8 - 8 .7 9 E - 0 4 0 .0 0 E + 0 0 1 .9 4 E + 0 6 3 .5 9 E - 0 1 3 .5 9 E - 0 1 2 .8 2 E - 0 1 2 .8 2 E - 0 1

898 2 8 0 - 6 .2 2 E + 0 5 - 4 .5 2  E - 0 2 6 .8 2 E - 0 8 - 2 .7 3 E - 0 3 0 .0 0 E + 0 0 1 .1 3 E + 0 6 3 .7 3 E - 0 1 3 .7 3 E - 0 1 2 .9 7 E - 0 1 2 .9 7 E - 0 1

898 3 0 0 - 7 .5 3 E + 0 4 - 3 .7 7 E - 0 2 4 .9 1 E - 0 7 - 7 .5 3 E - 0 4 O.OOE+OO 2 .1 2 E + 0 5 3 .0 1 E - 0 1 3 .0 1 E - 0 1 2 .8 5 E - 0 1 2 .8 5 E - 0 1

898 4 0 0 - 2 .1 6 E + 0 4 - 2 .1 1 E - 0 2 9 . 6 4 E - 0 7 - 2 .4 2 E - 0 4 0 .0 0 E + 0 0 1 .1 1  E + 0 5 2 .8 3 E - 0 1 2 .8 3 E - 0 1 2 .4 3 E - 0 1 2 .4 3 E - 0 1

923 1 4 0 8 .5 4 E + 0 5 7 .6 9 E - 0 3 5 .4 0 E - 0 9 3 .0 7 E - 0 3 3 .0 7 E - 0 3 9 .7 0 E + 0 6 1 .3 7 E - 0 1 1 .3 4 E - 0 1 1 .0 9 E - 0 1 1 .0 6 E - 0 1

923 1 5 5 6 .1 6 E + 0 5 1 .6 6 E - 0 2 2 .3 1 E - 0 8 2 .3 6 E - 0 3 2 .3 6 E - 0 3 3 .7 5 E + 0 6 2 .5 6 E - 0 1 2 .5 4 E - 0 1 2 .1 3 E - 0 1 2 .1  I E -0 1

923 1 8 0 - 4 .8 9 E + 0 5 - 1 .9 1  E - 0 2 3 .8 5 E - 0 8 - 2 .2 4 E - 0 4 O.OOE+OO 2 .3 0 E + 0 6 2 .7 3 E - 0 1 2 .7 3 E - 0 1 2 .6 4 E - 0 1 2 .6 4 E - 0 1

923 2 2 5 - 2 .5 4 E + 0 5 - 3 .1 2  E - 0 2 1 .1 9 E - 0 7 - 9 .4 1 E - 0 4 O.OOE+OO 6 .9 6 E + 0 5 2 .8 8 E - 0 1 2 .8 8 E - 0 1 2 .3 6 E - 0 1 2 .3 6 E - 0 1

923 2 6 0 - 7 .9 2 E + 0 4 - 2 .2 6 E - 0 2 2 .8 2 E - 0 7 - 3 .0 9 E - 0 4 O.OOE+OO 3 .6 2 E + 0 5 4 .0 3 E - 0 1 4 .0 3 E - 0 1 3 .5 6 E - 0 1 3 .5 6 E - 0 1

923 3 0 0 - 2 .0 2 E + 0 5 - 5 .5 3  E - 0 2 2 .3 9 E - 0 7 - 6 .9 3 E - 0 3 O.OOE+OO 2 .3 2 E + 0 5 3 .2 1 E - 0 1 3 .2 1 E - 0 1 2 .7 3 E - 0 1 2 .7 3 E - 0 1

923 3 3 0 - 9 .7 1 E + 0 4 - 8 .0 3 E - 0 2 7 .5 1 E - 0 7 - 7 .3 9 E - 0 3 O.OOE+OO 1.1 1  E + 0 5 3 .6 3 E - 0 1 3 .6 3 E - 0 1 3 .1 3 E - 0 1 3 .1 3 E - 0 1
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T
(K)

a
(MPa) 0 y 0 2 03 04 Os 0 6

823 390 1.70E+00 3.30E-09 2.78E-03 4.12E-07 2.03E-03 2.35E-05

823 470 2.29E+00 8.31E-09 1.42E-03 1.20E-06 2.41 E-03 5.54E-05

823 540 3.15E+00 1.25E-08 6.45E-04 2.87E-06 3.33E-03 5.09E-05

823 565 4.47E+00 1.05E-08 1.25E-03 2.98E-06 3.97E-03 1.53E-04

823 600 5.44E+00 1.80E-08 9.48E-04 5.15E-06 4.02E-03 1.14E-04

848 300 1.91E+00 3.02E-09 2.54E-03 4.40E-07 1.35E-03 3.51E-05

848 390 3.03E+00 6.87E-09 5.31E-04 1.67E-06 9.32E-04 1.62E-04

848 420 4.73E+00 1.25E-08 1.59E-03 3.07E-06 1.50E-03 4.75E-04

848 430 6.49E+00 7.46E-09 1.10E-03 3.38E-06 1.61 E-03 3.14E-04

848 455 8.62E+00 8.17E-09 1.50E-03 4.14E-06 2.26E-03 6.91 E-04

848 500 9.39E+00 1.74E-08 1.13E-03 9.55E-06 1.70E-03 6.32E-04

848 570 1.19E+01 2.55E-08 7.64E-04 1.58E-05 4.95E-03 2.81 E-04

873 200 2.77E+00 1.31E-09 1.01E-03 2.71E-07 1.47E-03 1.87E-05

873 280 5.04E+00 2.24E-09 1.81 E-02 6.82E-07 1.49E-03 1.29E-04

873 300 5.74E+00 4.91E-09 2.19E-03 1.51E-06 4.14E-04 1.80E-04

873 350 6.49E+00 1.20E-08 1.05E-03 4.23E-06 7.06E-04 8.84E-04

873 360 6.82E+00 1.04E-08 2.37E-03 4.18E-06 3.39E-03 1.39E-04

873 360 6.69E+00 1.35E-08 7.52E-03 4.70E-06 2.42E-03 3.29E-04

873 360 6.79E+00 6.10E-09 1.20E-02 3.00E-06 2.52E-03 1.13E-04

873 360 6.84E+00 1.54E-08 3.09E-03 5.60E-06 2.61 E-03 2.94E-04

873 360 7.00E+00 8.42E-09 1 .OOE-02 3.39E-06 2.78E-03 2.74E-04

873 360 6.62E+00 1.06E-08 7.83E-03 4.15E-06 4.00E-04 1.13E-04

873 360 6.66E+00 9.28E-09 5.31E-03 3.92E-06 2.66E-03 1.33E-04

873 360 6.94E+00 8.08E-09 7.30E-03 3.24E-06 3.24E-03 1.30E-04

873 360 7.03E+00 1.30E-08 4.81 E-03 4.86E-06 2.28E-03 3.17E-04

873 360 6.74E+00 1.43E-08 4.02E-03 5.10E-06 2.13E-03 3.42E-04

873 480 1.99E+01 1.96E-08 7.02E-03 1.63E-05 2.26E-03 1.01E-03

873 550 2.41E+01 6.91E-08 3.88E-03 6.12E-05 1.12E-03 1.96E-03

898 175 6.61E+00 9.05E-10 2.87E-03 3.60E-07 1.76E-03 2.01 E-05

898 220 8.90E+00 2.33E-09 3.26E-03 1.23E-06 2.37E-03 8.80E-05

898 250 1.02E+01 3.94E-10 2.41 E-02 1.21E-06 1.79E-03 5.31E-05

898 280 1.62E+01 3.06E-09 1.04E-02 2.82E-06 9.39E-04 2.93E-04

898 300 1.862E+01 2.391E-08 4.068E-03 1.827E-05 1.128E-03 4.566E-07

898 400 2.20E+01 2.83E-08 1.02E-02 2.59E-05 1.84E-03 3.79E-03

923 140 3.856E+00 8.339E-10 8.960E-03 2.332E-07 2.645E-03 1.097E-05

923 155 5.028E+00 2.748E-09 6.210E-03 8.814E-07 3.093E-03 3.160E-05

923 180 6.344E+00 5.312E-09 3.098E-03 1.790E-06 2.068E-04 2.745E-04

923 225 7.525E+00 9.767E-09 1.091 E-02 4.117E-06 8.699E-04 1.570E-04

923 260 8.477E+00 2.873E-08 3.665E-03 1.189E-05 1.821E-04 2.974E-03

923 300 9.267E+00 1.929E-08 1.511 E-02 1.203E-05 3.799E-04 1.846E-03

923 330 1.062E+01 4.909E-08 1.921 E-02 2.382E-05 1.240E-03 9.668E-03
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T
(K)

o
(MPa) In (0i) In (02) In (03) In (04) In (05) In (06)

823 390 0.528608039 -19.53033395 -5.883762341 -14.7021188 -6.199809569 -10.65759937

823 470 0.82837175 -18.60600762 -6.559773092 -13.6324698 -6.029396788 -9.800606275

823 540 1.148616294 -18.19937804 -7.346210833 -12.76114469 -5.703393924 -9.884851127

823 565 1.496900524 -18.36928669 -6.68447462 -12.72368725 -5.529484749 -8.786453081

823 600 1.694049087 -17.83178923 -6.960920828 -12.17695245 -5.516483794 -9.080123276

848 300 0.649287589 -19.61680869 -5.97427604 -14.63760445 -6.605955099 -10.25740188

848 390 1.107610203 -18.79548197 -7.541571148 -13.30493164 -6.978112946 -8.72580832

848 420 1.553815927 -18.19747085 -6.446846718 -12.69417485 -6.503262706 -7.651256027

848 430 1.869547338 -18.71426453 -6.816743451 -12.59715426 -6.434081866 -8.066678415

848 455 2.153973598 -18.62258745 -6.505099786 -12.39482043 -6.093084184 -7.277148996

848 500 2.239271702 -17.86646026 -6.78121039 -11.55940376 -6.376168007 -7.367078031

848 570 2.476909733 -17.48506669 -7.176472737 -11.05738186 -5.307662259 -8.178016409

873 200 1.017894504 -20.45281733 -6.893817597 -15.12278797 -6.519530912 -10.8892695

873 280 1.6165693 -19.91747762 -4.010039237 -14.19786662 -6.511698429 -8.957855425

873 300 1.747189857 -19.1312643 -6.122029291 -13.40266809 -7.790144578 -8.623533227

873 350 1.869785086 -18.24128933 -6.856617114 -12.37288735 -7.255649186 -7.030621521

873 360 1.919854447 -18.38418881 -6.042852243 -12.38459638 -5.685651386 -8.880302488

873 360 1.901339579 -18.11962494 -4.890036976 -12.26729767 -6.025508779 -8.018311887

873 360 1.915474813 -18.91509601 -4.424996697 -12.7166956 -5.983582924 -9.091690342

873 360 1.922953213 -17.98608416 -5.779891697 -12.09187307 -5.947943441 -8.131250142

873 360 1.945295674 -18.59304364 -4.604927105 -12.59536785 -5.885859796 -8.201659436

873 360 1.890291424 -18.36168886 -4.849317823 -12.39246676 -7.823210965 -9.083930693

873 360 1.895478906 -18.49522572 -5.237233629 -12.44843803 -5.930382176 -8.921481817

873 360 1.937391368 -18.6343707 -4.919794914 -12.64006188 -5.732351337 -8.94711356

873 360 1.950803184 -18.16033582 -5.336505484 -12.23466346 -6.085569552 -8.057326593

873 360 1.907797966 -18.06292618 -5.516920773 -12.1869916 -6.15287471 -7.980894346

873 480 2.990615345 -17.74927288 -4.95877258 -11.02627113 -6.091389244 -6.894026767

873 550 3.183494446 -16.48734525 -5.551521953 -9.701510483 -6.797923789 -6.236430006

898 175 1.88798688 -20.82275026 -5.852621113 -14.83613725 -6.342376824 -10.81506574

898 220 2.18634254 -19.87837444 -5.726242428 -13.60626327 -6.045039755 -9.337634335

898 250 2.321112656 -21.65422567 -3.725837546 -13.62555176 -6.325939738 -9.842972763

898 280 2.785671705 -19.60482072 -4.567996754 -12.78039885 -6.970255338 -8.136810863

898 300 2.924239073 -17.54903891 -5.504698044 -10.91017879 -6.787488141 -14.59954021

898 400 3.092813611 -17.38180083 -4.58215518 -10.55955901 -6.299807049 -5.575285974

923 140 1.349613172 -20.9049225 -4.714991588 -15.27150831 -5.935074292 -11.42040636

923 155 1.614971961 -19.71245676 -5.081579901 -13.94179427 -5.778565336 -10.36233554

923 180 1.847433209 -19.05322649 -5.776873595 -13.2334156 -8.483731117 -8.200670072

923 225 2.018203754 -18.44430272 -4.518438113 -12.40038424 -7.047183389 -8.759573729

923 260 2.137411041 -17.36548634 -5.608811396 -11.33999003 -8.610698449 -5.817808219

923 300 2.226496461 -17.76381285 -4.192459388 -11.32834997 -7.875533759 -6.294712343

923 330 2.362286937 -16.82958519 -3.95220469 -10.64503463 -6.692251218 -4.638895055



A ppendix  (C). Tables o f  all Analyses and Results 259

r
p-

o
(MPa)

tm

(using O-method)

Em

(using 0-mcthod)
Em

(using O-method)

£ p

( Em " Emtm)

E p modified 

(only values > 0)
If(ac tu a l) Ef (actual)

£t
( E f .E p )

Ef

(O-method f t  tf actual)

E t

(E f, 0 ’  Ep)

3 9 0 6 .4 0 0 E + 0 5 6 .4 5 E - 0 3 7 .0 7 E - 0 9 1 .9 2 E -0 3 1 .9 2 E -0 3 9 .2 0 E + 0 6 1 .9 4 E -0 1 1 .9 2 E -0 1 1 .7 3 E -0 1 1.71  E -01

fcf 4 7 0 2 .6 2 9 E + 0 5 7 .9 3 E - 0 3 2 .1 3 E - 0 8 2 .3 2 E - 0 3 2 .3 2 E - 0 3 3 .5 8 E + 0 6 1 .8 5 E -0 1 1 .8 2 E -0 1 1 .7 2 E -0 1 1 .7 0 E -0 1

f 5 4 0 2 .4 7 4 E + 0 5 1 .3 7 E -0 2 4 .3 0 E - 0 8 3 .0 8 E - 0 3 3 .0 8 E - 0 3 1 .5 0 E + 0 6 1 .2 5 E -0 1 1 .2 2 E -0 1 1 .0 9 E -0 1 1 .0 6 E -0 1

r
5 6 5 1 .0 5 1  E + 0 5 9 .3 7 E - 0 3 5 .2 1 E - 0 8 3 .8 9 E - 0 3 3 .8 9 E - 0 3 1 .4 6 E + 0 6 1 .7 1 E -0 1 1 .6 8 E -0 1 1 .6 8 E -0 1 1 .6 5 E -0 1

23 6 0 0 1 .1 7 2 E + 0 5 1 .6 3 E - 0 2 1 .0 7 E - 0 7 3 .7 7 E - 0 3 3 .7 7 E - 0 3 8 .0 0 E + 0 5 1 .4 4 E -0 1 1 .4 0 E -0 1 1 .3 9 E -0 1 1 .3 5 E -0 1

HI 3 0 0 4 .5 1 3 E + 0 5 4 .5 2 E - 0 3 7 .1 4 E - 0 9 1 .3 0 E -0 3 1 .3 0 E -0 3 9 .0 7 E + 0 6 2 .2 5 E - 0 1 2 .2 3 E - 0 1 1 .8 7 E -0 1 1 .8 6 E -0 1

HI 3 9 0 1 .0 2 4 E + 0 5 3 .1 6 E - 0 3 2 .1 8 E - 0 8 9 .2 4 E - 0 4 9 .2 4 E - 0 4 3 .1 3 E + 0 6 1 .7 7 E -0 1 1 .7 6 E -0 1 1 .6 3 E -0 1 1 .6 2 E -0 1

133 4 2 0 3 .8 0 2 E + 0 4 3 .9 4 E - 0 3 6 .4 6 E - 0 8 1 .4 9 E -0 3 1 .4 9 E -0 3 1 .5 4 E + 0 6 3 .1 7 E - 0 1 3 .1 5 E - 0 1 2 .7 1  E -0 1 2 .7 0 E -0 1

|48 4 3 0 5 .5 8 1 E + 0 4 4 .5 3 E - 0 3 5 .2 8 E - 0 8 1 .5 8 E -0 3 1 .5 8 E -0 3 1 .3 5 E + 0 6 2 .0 7 E - 0 1 2 .0 5 E - 0 1 1 .7 2 E -0 1 1 .7 0 E -0 1

HI 4 5 5 2 .8 3 0 E + 0 4 4 .4 4 E - 0 3 7 .7 4 E - 0 8 2 .2 5 E - 0 3 2 .2 5 E - 0 3 1 .1 0 E + 0 6 2 .7 0 E - 0 1 2 .6 8 E - 0 1 2 .2 2 E - 0 1 2 .2 0 E -0 1

HI 5 0 0 2 .6 2 2 E + 0 4 6 .3 1  E -0 3 1 .7 7 E - 0 7 1 .6 6 E -0 3 1 .6 6 E -0 3 5 .0 1 E + 0 5 2 .5 6 E - 0 1 2 .5 4 E - 0 1 2 .1 8 E - 0 1 2 .1 6 E -0 1

148 5 7 0 4 .8 6 3 E + 0 4 2 .0 6 E - 0 2 3 .2 9 E - 0 7 4 .5 8 E - 0 3 4 .5 8 E - 0 3 2 .7 1 E + 0 5 1 .6 0 E -0 1 1 .5 6 E -0 1 1 .4 0 E -0 1 1 .3 6 E -0 1

113 2 0 0 8 .4 7 6 E + 0 5 4 .8 1 E - 0 3 3 .9 7 E - 0 9 1 .4 4 E -0 3 1 .4 4 E -0 3 1 .6 8 E + 0 7 1 .9 0 E -0 1 1 .8 9 E -0 1 1 .5 7 E -0 1 1 .5 5 E -0 1

173 2 8 0 1 .4 7 8 E + 0 5 5 .0 8 E - 0 3 2 .5 0 E - 0 8 1 .3 9 E -0 3 1 .3 9 E -0 3 3 .7 2 E + 0 6 3 .0 7 E - 0 1 3 .0 5 E - 0 1 2 .5 5 E - 0 1 2 .5 3 E -0 1

113 3 0 0 9 .0 3 8 E + 0 4 3 .2 8 E - 0 3 3 .2 0 E - 0 8 3 .9 2 E - 0 4 3 .9 2 E - 0 4 2 .9 8 E + 0 6 3 .4 4 E - 0 1 3 .4 4 E - 0 1 2 .8 1 E - 0 1 2 .8 1  E -0 1

113 3 5 0 2 .1 0 7 E + 0 4 2 .4 4 E - 0 3 8 .2 5 E - 0 8 7 .0 2 E - 0 4 7 .0 2 E - 0 4 1 .1 7 E + 0 6 2 .8 5 E - 0 1 2 .8 4 E - 0 1 2 .4 2 E - 0 1 2 .4 1 E -0 1

113 3 6 0 1 .0 7 0 E + 0 5 1 .2 3 E - 0 2 8 .6 2 E - 0 8 3 .0 8 E - 0 3 3 .0 8 E - 0 3 9 .8 5 E + 0 5 3 .3 7 E - 0 1 3 .3 4 E - 0 1 2 .1 6 E - 0 1 2 .1 3 E -0 1

113 3 6 0 5 .0 1 4 E + 0 4 8 .9 5 E - 0 3 1 .3 5 E - 0 7 2 .1 7 E - 0 3 2 .1 7 E - 0 3 6 .0 7 E + 0 5 1 .8 1 E -0 1 1 .7 9 E -0 1 1 .8 0 E -0 1 1 .7 8 E -0 1

113 3 6 0 1 .3 6 3  E + 0 5 1 .4 2 E -0 2 9 .5 5 E - 0 8 1 .2 0 E -0 3 1 .2 0 E -0 3 8 .4 9 E + 0 5 1 .8 6 E -0 1 1 .8 5 E -0 1 1 .7 8 E -0 1 1 .7 7 E -0 1

173 3 6 0 5 .3 6 5 E + 0 4 9 .3 6 E - 0 3 1 .2 9 E - 0 7 2 .4 4 E - 0 3 2 .4 4 E - 0 3 7 .5 0 E + 0 5 4 .1  I E -0 1 4 .0 9 E - 0 1 2 .8 5 E - 0 1 2 .8 3 E -0 1

173 3 6 0 6 .3 2 2 E + 0 4 8 .8 9 E - 0 3 1 .0 1 E - 0 7 2 .5 1  E -0 3 2 .5 1 E - 0 3 7 .8 5 E + 0 5 1 .8 7 E -0 1 1 .8 4 E -0 1 1 .8 2 E -0 1 1 .7 9 E -0 1

173 3 6 0 5 .0 1 8 E + 0 4 5 .7 4 E - 0 3 1 .1 0 E - 0 7 1 .9 7 E -0 4 1 .9 7 E -0 4 7 .0 5 E + 0 5 1 .8 9 E -0 1 1 .8 9 E -0 1 1 .8 8 E -0 1 1 .8 8 E -0 1

173 3 6 0 1 .1 1 0 E + 0 5 1 .2 4 E - 0 2 9 .4 0 E - 0 8 1 .9 8 E -0 3 1 .9 8 E -0 3 8 .5 3 E + 0 5 2 .2 5 E - 0 1 2 .2 3 E - 0 1 2 .0 1  E -0 1 1 .9 9 E -0 1

173 3 6 0 1 .1 8 2 E + 0 5 1 .3 3 E - 0 2 9 .0 7 E - 0 8 2 .5 5 E - 0 3 2 .5 5 E - 0 3 8 .9 9 E + 0 5 1 .8 6 E -0 1 1 .8 4 E -0 1 1 .8 0 E -0 1 1 .7 8 E -0 1

173 3 6 0 5 .1 5 7 E + 0 4 8 .3 5 E - 0 3 1 .2 1 E - 0 7 2 .1 0 E - 0 3 2 .1 0 E - 0 3 6 .8 0 E + 0 5 2 .0 3 E - 0 1 2 .0 1 E - 0 1 1 .9 0 E -0 1 1 .8 8 E -0 1

173 3 6 0 4 .7 6 6 E + 0 4 7 .8 2 E - 0 3 1 .2 2 E -0 7 1 .9 9 E -0 3 1 .9 9 E -0 3 6 .8 1 E + 0 5 2 .0 5 E - 0 1 2 .0 3 E - 0 1 1 .9 2 E -0 1 1 .9 0 E -0 1

173 4 8 0 1 .6 5 2 E + 0 4 1 .0 9 E - 0 2 5 .3 9 E - 0 7 1 .9 6 E -0 3 1 .9 6 E -0 3 1 .8 2 E + 0 5 2 .2 4 E - 0 1 2 .2 2 E - 0 1 2 .0 3 E - 0 1 2 .0 1 E -0 1

173 5 5 0 7 .1 3 2 E + 0 3 1.51  E - 0 2 2 .0 3 E - 0 6 6 .2 2 E - 0 4 6 .2 2 E - 0 4 5 .3 4 E + 0 4 2 .0 3 E - 0 1 2 .0 2 E - 0 1 1 .8 8 E -0 1 1 .8 8 E -0 1

198 17 5 7 .8 5 8 E + 0 5 7 .4 0 E - 0 3 7 .3 5 E - 0 9 1 .6 2 E -0 3 1 .6 2 E -0 3 1 .0 6 E + 0 7 2 .3 0 E - 0 1 2 .2 9 E - 0 1 1 .9 2 E -0 1 1 .9 0 E -0 1

198 2 2 0 1 .9 4 3  E + 0 5 7 .2 8 E - 0 3 2 .5 8 E - 0 8 2 .2 6 E - 0 3 2 .2 6 E - 0 3 3 .3 2 E + 0 6 3 .6 7 E - 0 1 3 .6 4 E - 0 1 2 .6 3 E - 0 1 2 .6 0 E - 0 1

198 2 5 0 4 .9 0 0 E + 0 4 3 .3 2 E - 0 3 4 .2 0 E - 0 8 1 .2 7 E -0 3 1 .2 7 E -0 3 1 .9 4 E + 0 6 3 .5 9 E - 0 1 3 .5 8 E - 0 1 2 .3 7 E - 0 1 2 .3 5 E - 0 1

198 2 8 0 6 .0 8 9 E + 0 4 5 .9 0 E - 0 3 8 .4 3 E - 0 8 7 .6 9 E - 0 4 7 .6 9 E - 0 4 1 .1 3 E + 0 6 3 .7 3 E - 0 1 3 .7 2 E - 0 1 2 .9 5 E - 0 1 2 .9 5 E - 0 1

198 3 0 0 2 .0 0 0 E + 0 4 1 .0 7 E - 0 2 5 .5 3 E - 0 7 3 .4 6 E - 0 4 3 .4 6 E - 0 4 2 .1 2 E + 0 5 3 .0 1 E - 0 1 3 .0 0 E - 0 1 2 .8 5 E - 0 1 2 .8 5 E - 0 1

198 4 0 0 5 .0 6 5 E + 0 3 6 .4 3 E - 0 3 9 .2 6 E - 0 7 1 .7 4 E -0 3 1 .7 4 E -0 3 1 .1 1 E + 0 5 2 .8 3 E - 0 1 2 .8 1 E - 0 1 2 .4 2 E - 0 1 2 .4 0 E - 0 1

923 1 4 0 1 .8 6 3 E + 0 6 1 .3 5 E - 0 2 6 .4 4 E - 0 9 1.51  E -0 3 1 .5 1 E -0 3 9 .7 0 E + 0 6 1 .3 7 E -0 1 1 .3 5 E -0 1 1 .1 1  E -0 1 1 .0 9 E -0 1

923 1 5 5 4 .7 0 3 E + 0 5 1 .2 8 E - 0 2 2 .2 1 E - 0 8 2 .3 9 E - 0 3 2 .3 9 E - 0 3 3 .7 5 E + 0 6 2 .5 6 E - 0 1 2 .5 4 E - 0 1 2 .1 8 E - 0 1 2 .1 6 E - 0 1

923 1 8 0 2 .0 0 0 E + 0 5 8 .2 8 E - 0 3 4 .1 6 E - 0 8 4 .2 5 E - 0 5 4 .2 5 E - 0 5 2 .3 0 E + 0 6 2 .7 3 E - 0 1 2 .7 3 E - 0 1 2 .6 5 E - 0 1 2 .6 5 E - 0 1

923 2 2 5 4 .0 0 0 E + 0 4 5 .7 6 E - 0 3 1 .2 7 E - 0 7 6 .9 3  E -0 4 6 .9 3 E - 0 4 6 .9 6 E + 0 5 2 .8 8 E - 0 1 2 .8 7 E - 0 1 2 .3 3 E - 0 1 2 .3 2 E - 0 1

923 2 6 0 1 .0 0 0 E + 0 3 4 .6 0 E - 0 4 3 .1 5 E - 0 7 1 .4 5 E -0 4 1 .4 5 E - 0 4 3 .6 2 E + 0 5 4 .0 3 E - 0 1 4 .0 3 E - 0 1 3 .5 7 E - 0 1 3 .5 7 E - 0 1

923 3 0 0 9 .6 7 8 E + 0 3 3 .9 7 E - 0 3 3 .8 3 E - 0 7 2 .6 9 E - 0 4 2 .6 9 E - 0 4 2 .3 2 E + 0 5 3 .2 1 E - 0 1 3 .2 1 E - 0 1 2 .7 3 E - 0 1 2 .7 3 E - 0 1

923 3 3 0 2 .2 0 6 E + 0 3 3 .4 3 E - 0 3 1 .0 0 E - 0 6 1 .2 1  E -0 3 1 .21  E -0 3 1 .1 1 E + 0 5 3 .6 3 E - 0 1 3 .6 2 E - 0 1 3 .1 2 E - 0 1 3 .1  I E -0 1
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C l l .  the W ilshire T echnique A nalysis

T o
(MPa)

UTS
(MPa) o/UTS tf(s) Em (S'1) In (tf) In (em) 1/T tf exp (-Qc*/RT) em exp (Qc*/RT)

823 390 638 0.6113 1.15E+07 6.20E-09 1.63E+01 -1.89E+01 1.22E-03 5.490E-14 1.296722E+12

823 470 638 0.7367 4.57E+06 2.08E-08 1.53E+01 -1.77E+01 1.22E-03 2.18547E-14 4.350292E+12

823 540 638 0.8464 1.78E+06 2.88E-08 1.44E+01 -1.74E+01 1.22E-03 8.50247E-15 6.023482E+12

823 565 638 0.8856 1.17E+06 4.46E-08 1.40E+01 -1.69E+01 1.22E-03 5.61752E-15 9.328031E+12

823 600 638 0.9404 4.07E+05 9.75E-08 1.29E+01 -1.61E+01 1.22E-03 1.9478E-15 2.039200E+13

848 300 622.5 0.4819 1.12E+07 5.82E-09 1.62E+01 -1.90E+01 1.18E-03 2.13115E-13 3.064136E+11

848 390 622.5 0.6265 2.29E+06 1.94E-08 1.46E+01 -1.78E+01 1.18E-03 4.35I26E-14 1.021379E+12

848 420 622.5 0.6747 1.54E+06 5.80E-08 1.42E+01 -1.67E+01 1.18E-03 2.93133E-14 3.053607E+12

848 430 622.5 0.6908 1.35E+06 6.12E-08 1.41E+01 -1.66E+01 1.18E-03 2.56798E-14 3.222081E+12

848 455 622.5 0.7309 1.10E+06 7.19E-08 1.39E+01 -1.64E+01 1.18E-03 2.09503E-14 3.785419E+12

848 500 622.5 0.8032 5.37E+05 1.61E-07 1.32E+01 -1.56E+01 1.18E-03 1.02003E-14 8.476391E+12

848 570 622.5 0.9157 1.78E+05 3.07E-07 1.21E+01 -1.50E+01 1.18E-03 3.37765E-15 1.616306E+13

873 200 607 0.3295 2.09E+07 3.56E-09 1.69E+01 -1.95E+01 1.15E-03 1.45671E-12 5.105944E+10

873 280 607 0.4613 3.72E+06 2.25E-08 1.51E+01 -1.76E+01 1.15E-03 2.59375E-13 3.227072E+11

873 300 607 0.4942 2.98E+06 2.91E-08 1.49E+01 -1.74E+01 1.15E-03 2.08052E-13 4.173679E+11

873 350 607 0.5766 1.17E+06 7.20E-08 1.40E+01 -1.64E+01 1.15E-03 8.18893E-14 1.032663E+12

873 360 607 0.5931 9.85E+05 8.96E-08 1.38E+01 -1.62E+01 1.15E-03 6.86754E-14 1.285092E+12

873 360 607 0.5931 7.86E+05 9.71E-08 1.36E+01 -1.61E+01 1.15E-03 5.47927E-14 1.392661E+12

873 360 607 0.5931 5.32E+05 1.57E-07 1.32E+01 -1.57E+01 1.15E-03 3.70918E-14 2.251779E+12

873 360 607 0.5931 5.75E+05 1.50E-07 1.33E+01 -1.57E+01 1.15E-03 4.01017E-14 2.151381 E+12

873 360 607 0.5931 6.07E+05 1.37E-07 I.33E+01 -1.58E+01 1.15E-03 4.23363E-14 1.964928E+12

873 360 607 0.5931 8.49E+05 9.70E-08 1.37E+01 -1.61E+01 1.15E-03 5.91632E-14 1.391226E+12

873 360 607 0.5931 7.50E+05 9.88E-08 1.35E+01 -1.61E+01 1.15E-03 5.2301 IE-14 1.417043E+12

873 360 607 0.5931 7.85E+05 9.76E-08 1.36E+01 -1.61E+01 1.15E-03 5.47309E-14 1.399832E+12

873 360 607 0.5931 7.05E+05 1.00E-07 1.35E+01 -1.61E+01 1.15E-03 4.91538E-14 1.434254E+12

873 360 607 0.5931 8.53E+05 9.60E-08 1.37E+01 -1.62E+01 1.15E-03 5.94748E-14 1.376884E+12

873 360 607 0.5931 8.99E+05 9.50E-08 1.37E+01 -1.62E+01 1.15E-03 6.26618E-14 1,362541 E+12

873 360 607 0.5931 6.80E+05 1.25E-07 1.34E+01 -1.59E+01 1.15E-03 4.73869E-14 1.792818E+12

873 390 607 0.6425 6.46E+05 7.74E-08 1.34E+01 -1.64E+01 1.15E-03 4.50167E-14 1.110113E+12

873 480 607 0.7908 1.82E+05 4.57E-07 1.21E+01 -1.46E+01 1.15E-03 1.27209E-14 6.554541 E-+I2

873 550 607 0.9061 5.34E+04 1.55E-06 1.09E+01 -1.34E+01 1.15E-03 3.7241E-15 2.223094E+13

898 175 575 0.3043 1.06E+07 7.12E-09 1.62E+01 -1.88E+01 1.1 IE-03 2.5194E-12 2.990835E+10

898 220 575 0.3826 3.32E+06 2.53E-08 1.50E+01 -1.75E+01 1.11E-03 7.90052E-13 1.062754E+11

898 250 575 0.4348 1.94E+06 4.26E-08 1.45E+01 -1.70E+01 1.11E-03 4.61576E-13 1.789460E+11

898 280 575 0.487 1.13E+06 7.01E-08 1.39E+01 -1.65E+01 1.1 IE-03 2.68675E-13 2.944628E+11

898 300 575 0.5217 7.62E+05 4.53E-07 1.35E+01 -1.46E+01 1.11E-03 1.81421E-13 1.902877E+12

898 300 575 0.5217 5.91E+05 1.57E-07 1.33E+01 -1.57E+01 1.1 IE-03 1.40787E-13 6.594959E+11

898 330 575 0.5739 3.13E+05 2.89E-07 1.27E+01 -1.51E+01 1.1 IE-03 7.43939E-14 1.213976E+12

898 400 575 0.6957 1.11E+05 7.89E-07 1.16E+01 -1.41E+01 1.11 E-03 2.6389E-14 3.314282E+12

923 140 543 0.2578 5.98E+06 5.76E-09 1.56E+01 -1.90E+01 1.08E-03 4.55104E-12 7.573759E+09

923 155 543 0.2855 3.75E+06 2.15E-08 1.51E+01 -1.77E+01 1.08E-03 2.85309E-12 2.827011E+10

923 180 543 0.3315 2.30E+06 3.72E-08 1.46E+01 -1.71E+01 1.08E-03 1.75034E-12 4.891386E+10

923 225 543 0.4144 6.96E+05 1.25E-07 1.35E+01 -1.59E+01 1.08E-03 5.29474E-13 1.643611E+11

923 260 543 0.4788 3.62E+05 2.24E-07 1.28E+01 -1.53E+01 1.08E-03 2.7565 IE-13 2.945351E+11

923 300 543 0.5525 1.50E+05 3.31E-07 1.19E+01 -1.49E+01 1.08E-03 1.13792E-13 4.352282E+11

923 330 543 0.6077 7.76E+04 7.47E-07 1.13E+01 -1.41E+01 1.08E-03 5.90352E-14 9.822219E+11
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C l  1.1: Time to fracture, tf, and the minimum creep rate, £m, analyses.
T (K) a (MPa) tf(s) £m (S '* ) In (tf exp (-QcVRT)) In ( Cm exp (Qc*/RT)) In (- In (o/UTS))

823 390 1.15E+07 6.20E-09 -30.53332628 27.89086049 -0.708887321

823 470 4.57E+06 2.08E-08 -31.45436032 29.10126419 -1.185459934

823 540 1.78E+06 2.88E-08 -32.39842021 29.42668659 -1.791144795

823 565 1.17E+06 4.46E-08 -32.81288552 29.86404506 -2.107737711

823 600 4.07E+05 9.75E-08 -33.87207467 30.64616358 -2.79020493

848 300 1.12E+07 5.82E-09 -29.17694243 26.44820176 -0.31476396

848 390 2.29E+06 1.94E-08 -30.76572615 27.65217457 -0.760148702

848 420 1.54E+06 5.80E-08 -31.1607338 28.74734451 -0.932702377

848 430 1.35E+06 6.12E-08 -31.2930718 28.80104869 -0.994364659

848 455 1.10E+06 7.19E-08 -31.49662304 28.96217776 -1.160127515

848 500 5.37E+05 1.61E-07 -32.21635475 29.76830586 -1.518064883

848 570 1.78E+05 3.07E-07 -33.3215956 30.41374925 -2.429200258

873 200 2.09E+07 3.56E-09 -27.25483875 24.65625634 0.10455047

873 280 3.72E+06 2.25E-08 -28.98050052 26.5000111 -0.256520429

873 300 2.98E+06 2.91E-08 -29.20098639 26.75723397 -0.349917376

873 350 1.17E+06 7.20E-08 -30.13340855 27.66316191 -0.596754611

873 360 9.85E+05 8.96E-08 -30.30938501 27.88185111 -0.649274306

873 360 7.86E+05 9.71E-08 -30.53521878 27.96223717 -0.649274306

873 360 5.32E+05 1.57E-07 -30.92538166 28.4427416 -0.649274306

873 360 5.75E+05 1.50E-07 -30.84735809 28.39713109 -0.649274306

873 360 6.07E+05 1.37E-07 -30.79313165 28.30647672 -0.649274306

873 360 8.49E+05 9.70E-08 -30.45847734 27.96120677 -0.649274306

873 360 7.50E+05 9.88E-08 -30.58175982 27.9795934 -0.649274306

873 360 7.85E+05 9.76E-08 -30.53634811 27.96737328 -0.649274306

873 360 7.05E+05 1 .OOE-07 -30.64382273 27.99166598 -0.649274306

873 360 8.53E+05 9.60E-08 -30.45322336 27.95084398 -0.649274306

873 360 8.99E+05 9.50E-08 -30.40102369 27.94037268 -0.649274306

873 360 6.80E+05 1.25E-07 -30.68042986 28.21480953 -0.649274306

873 390 6.46E+05 7.74E-08 -30.73174224 27.73548257 -0.815581399

873 480 1.82E+05 4.57E-07 -31.99553019 29.51117918 -1.449265313

873 550 5.34E+04 1.55E-06 -33.22395219 30.732506 -2.316577402

898 175 1.06E+07 7.12E-09 -26.70700208 24.12140347 0.173603722

898 220 3.32E+06 2.53E-08 -27.86667788 25.38930014 -0.040048862

898 250 1.94E+06 4.26E-08 -28.40413022 25.91035 -0.182830739

898 280 1.13E+06 7.01E-08 -28.9452731 26.40841854 -0.329086962

898 300 7.62E+05 4.53E-07 -29.33795607 28.27438787 -0.429879376

898 300 5.91 E+05 1.57E-07 -29.59153061 27.21474155 -0.429879376

898 330 3.13E+05 2.89E-07 -30.22940183 27.82492243 -0.588287495

898 400 1.11E+05 7.89E-07 -31.26582837 28.82926207 -1.013612827

923 140 5.98E+06 5.76E-09 -26.11566457 22.74795539 0.304145969

923 155 3.75E+06 2.15E-08 -26.58261743 24.06507085 0.226086579

923 180 2.30E+06 3.72E-08 -27.07121211 24.61332667 0.099078044

923 225 6.96E+05 1.25E-07 -28.2668915 25.82533165 -0.126687531

923 260 3.62E+05 2.24E-07 -28.91964194 26.40866396 -0.30594423

923 300 1.50E+05 3.31E-07 -29.80440589 26.79913629 -0.522009859

923 330 7.76E+04 7.47E-07 -30.46064265 27.6130831 -0.697121738
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Cll.1.1: The Wilshire kink points and the UTS and oyieid values

T (K) UTS (MPa) Ovieid (MPa) Wilshire curves kink points, MPa (tr curves) Wilshire curves kink points, MPa (£„, curves)

823 638 520 390 383

848 622.5 508.33 380 374

873 601 500 370 360

898 575 478.33 350 340

923 543 460 330 324
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C l 1.2: Time to 0.1% analysis

T (K) a  (MPa) UTS (MPa) 1 0.1% (s) (S ’) In (t o.i% exp (-QcVRT)) In (-In (o/UTS))

823 390 638 1.07E+04 6.20E-09 -37.51015911 -0.708887321

823 470 638 4.10E+03 2.08E-08 -38.47083478 -1.185459934

823 540 638 1.80E+03 2.88E-08 -39.29403509 -1.791144795

823 565 638 5.75E+02 4.46E-08 -40.43444218 -2.107737711

823 600 638 2.50E+02 9.75E-08 -41.26811612 -2.79020493

848 300 622.5 1.70E+04 5.82E-09 -35.67023239 -0.31476396

848 390 622.5 2.95E+03 1.94E-08 -37.42019706 -0.760148702

848 420 622.5 1.80E+03 5.80E-08 -37.91462539 -0.932702377

848 430 622.5 1.82E+03 6.12E-08 -37.90373993 -0.994364659

848 455 622.5 1.07E+03 7.19E-08 -38.4333345 -1.160127515

848 500 622.5 4.50E+02 1.61E-07 -39.30091975 -1.518064883

848 570 622.5 1.60E+02 3.07E-07 -40.33499352 -2.429200258

873 200 607 6.17E+04 3.56E-09 -33.08037903 0.10455047

873 282 607 5.50E+03 2.25E-08 -35.49809338 -0.265761793

873 300 607 3.39E+03 2.91E-08 -35.98163625 -0.349917376

873 350 607 8.91E+02 7.20E-08 -37.3171356 -0.596754611

873 360 607 7.00E+02 8.96E-08 -37.55868129 -0.649274306

873 360 607 8.98E+02 9.71E-08 -37.30959156 -0.649274306

873 360 607 5.81E+02 1.57E-07 -37.74501087 -0.649274306

873 360 607 1.24E+03 1.50E-07 -36.98528337 -0.649274306

873 360 607 5.75E+02 1.37E-07 -37.75462677 -0.649274306

873 360 607 6.61E+02 9.70E-08 -37.61647167 -0.649274306

873 360 607 1.78E+03 9.88E-08 -36.62636008 -0.649274306

873 360 607 1.48E+03 9.76E-08 -36.81056688 -0.649274306

873 360 607 8.36E+02 1.00E-07 -37.38113302 -0.649274306

873 360 607 1.06E+03 9.60E-08 -37.14751816 -0.649274306

873 360 607 1.05E+03 9.50E-08 -37.15131323 -0.649274306

873 360 607 5.80E+02 1.25E-07 -37.74673352 -0.649274306

873 390 607 7.24E+02 7.74E-08 -37.52436826 -0.815581399

873 480 607 2.09E+02 4.57E-07 -38.76776421 -1.449265313

873 550 607 4.57E+01 1.55E-06 -40.28747037 -2.316577402

898 175 575 2.51E+04 7.12E-09 -32.75038717 0.173603722

898 220 575 6.03E+03 2.53E-08 -34.17798993 -0.040048862

898 250 575 4.47E+03 4.26E-08 -34.47732599 -0.182830739

898 280 575 1.00E+03 7.01E-08 -35.9740063 -0.329086962

898 300 575 6.31E+02 4.53E-07 -36.43452332 -0.429879376

898 300 575 6.92E+02 1.57E-07 -36.34241992 -0.429879376

898 330 575 2.50E+02 2.89E-07 -37.36030066 -0.588287495

898 400 575 1.12E+02 7.89E-07 -38.16146214 -1.013612827

923 140 543 2.35E+04 5.76E-09 -31.65552805 0.304145969

923 155 543 9.55E+03 2.15E-08 -32.55599508 0.226086579

923 180 543 6.61E+03 3.72E-08 -32.92440869 0.099078044

923 225 543 2.30E+03 1.25E-07 -33.97961935 -0.126687531

923 260 543 5.00E+02 2.24E-07 -35.50567565 -0.30594423

923 300 543 1.45E+02 3.31E-07 -36.74669995 -0.522009859

923 330 543 7.41E+01 7.47E-07 -37.41444963 -0.697121738
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C l 1.3: Time to 0.15% analysis
T (K) o (MPa) UTS (MPa) t 0.15% (S) 6m (s'1) In (t o.i5% exp (-Qc*/RT)) In (-In (o/UTS))

823 390 638 2.50E+04 6.20E-09 -36.66294593 -0.708887321

823 470 638 9.00E+03 2.08E-08 -37.68459718 -1.185459934

823 540 638 5.36E+03 2.88E-08 -38.20285778 -1.791144795

823 565 638 2.51E+03 4.46E-08 -38.96078772 -2.107737711

823 600 638 1.40E+03 9.75E-08 -39.54534952 -2.79020493

848 300 622.5 4.44E+04 5.82E-09 -34.70917259 -0.31476396

848 390 622.5 4.47E+03 1.94E-08 -37.00573175 -0.760148702

848 420 622.5 3.50E+03 5.80E-08 -37.24964909 -0.932702377

848 430 622.5 2.95E+03 6.12E-08 -37.42019706 -0.994364659

848 455 622.5 2.14E+03 7.19E-08 -37.74255898 -1.160127515

848 500 622.5 1.40E+03 1.61E-07 -38.16593982 -1.518064883

848 570 622.5 4.27E+02 3.07E-07 -39.35436854 -2.429200258

873 200 607 1.62E+05 3.56E-09 -32.11329329 0.10455047

873 280 607 1.55E+04 2.25E-08 -34.46193009 -0.256520429

873 300 607 1.10E+04 2.91E-08 -34.80411108 -0.349917376

873 350 607 1.91E+03 7.20E-08 -36.55728252 -0.596754611

873 360 607 1.90E+03 8.96E-08 -36.56015246 -0.649274306

873 360 607 1.800E+03 9.71E-08 -36.61421968 -0.649274306

873 360 607 1.75E+03 1.57E-07 -36.64239056 -0.649274306

873 360 607 1.85E+03 1.50E-07 -36.58682071 -0.649274306

873 360 607 1.40E+03 1.37E-07 -36.86553411 -0.649274306

873 360 607 1.46E+03 9.70E-08 -36.82700045 -0.649274306

873 360 607 1.35E+03 9.88E-08 -36.90190176 -0.649274306

873 360 607 1.35E+03 9.76E-08 -36.90561234 -0.649274306

873 360 607 1.55E+03 1.00E-07 -36.7611741 -0.649274306

873 360 607 1.65E+03 9.60E-08 -36.70426596 -0.649274306

873 360 607 1.23E+03 9.50E-08 -36.99499218 -0.649274306

873 360 607 1.35E+03 1.25E-07 -36.90561234 -0.649274306

873 390 607 1.17E+03 7.74E-08 -37.04082539 -0.815581399

873 480 607 6.00E+02 4.57E-07 -37.71283197 -1.449265313

873 550 607 1.91E+02 1.55E-06 -38.85986762 -2.316577402

898 175 575 7.24E+04 7.12E-09 -31.69119803 0.173603722

898 220 575 1.80E+04 2.53E-08 -33.08363455 -0.040048862

898 250 575 1.30E+04 4.26E-08 -33.40905695 -0.182830739

898 280 575 3.50E+03 7.01E-08 -34.72124334 -0.329086962

898 300 575 1.23E+03 4.53E-07 -35.76677365 -0.429879376

898 300 575 1.70E+03 1.57E-07 -35.44441173 -0.429879376

898 330 575 2.00E+02 2.89E-07 -37.58344422 -0.588287495

898 400 575 1.91E+02 7.89E-07 -37.63186757 -1.013612827

923 140 543 4.80E+04 5.76E-09 -30.94132746 0.304145969

923 155 543 3.63E+04 2.15E-08 -31.22049573 0.226086579

923 180 543 2.20E+04 3.72E-08 -31.72148602 0.099078044

923 225 543 4.50E+03 1.25E-07 -33.30845107 -0.126687531

923 260 543 1.20E+03 2.24E-07 -34.63020691 -0.30594423

923 300 543 4.47E+02 3.31E-07 -35.61843325 -0.522009859

923 330 543 2.00E+02 7.47E-07 -36.42196638 -0.697121738
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C l 1.4: Time to 0.2% analysis

265

T(K ) o (MPa) UTS (MPa) t 0.2% (S) ( s 1) In (t o.2% exp (-Qc*/RT)) In (-In (o/UTS))

823 390 638 5.25E+04 6.20E-09 -35.92053251 -0.708887321

823 470 638 1.82E+04 2.08E-08 -36.98056454 -1.185459934

823 540 638 5.75E+03 2.88E-08 -38.13185709 -1.791144795

823 565 638 2.34E+03 4.46E-08 -39.02986527 -2.107737711

823 600 638 8.71E+02 9.75E-08 -40.01997686 -2.79020493

848 300 622.5 1.02E+05 5.82E-09 -33.87421602 -0.31476396

848 390 622.5 1.02E+04 1.94E-08 -36.17680111 -0.760148702

848 420 622.5 6.36E+03 5.80E-08 -36.65206926 -0.932702377

848 430 622.5 5.50E+03 6.12E-08 -36.79766397 -0.994364659

848 455 622.5 3.89E+03 7.19E-08 -37.14388685 -1.160127515

848 500 622.5 2.50E+03 1.61E-07 -37.58612133 -1.518064883

848 570 622.5 4.27E+02 3.07E-07 -39.35436854 -2.429200258

873 200 607 2.82E+05 3.56E-09 -31.56067287 0.10455047

873 280 607 3.72E+04 2.25E-08 -33.58694775 -0.256520429

873 300 607 2.21E+04 2.91E-08 -34.10642874 -0.349917376

873 350 607 7.41E+03 7.20E-08 -35.19875732 -0.596754611

873 360 607 6.31E+03 8.96E-08 -35.35993827 -0.649274306

873 360 607 2.92E+03 9.71E-08 -36.13145066 -0.649274306

873 360 607 2.81E+03 1.57E-07 -36.16846606 -0.649274306

873 360 607 4.70E+03 1.50E-07 -35.65486946 -0.649274306

873 360 607 2.34E+03 1.37E-07 -36.35004986 -0.649274306

873 360 607 2.89E+03 9.70E-08 -36.14144213 -0.649274306

873 360 607 3.50E+03 9.88E-08 -35.94924338 -0.649274306

873 360 607 4.11E+03 9.76E-08 -35.78955703 -0.649274306

873 360 607 3.33E+03 1.00E-07 -36.00023597 -0.649274306

873 360 607 3.06E+03 9.60E-08 -36.0822851 -0.649274306

873 360 607 3.06E+03 9.50E-08 -36.0822851 -0.649274306

873 360 607 4.50E+03 1.25E-07 -35.69792895 -0.649274306

873 390 607 2.45E+03 7.74E-08 -36.30399816 -0.815581399

873 480 607 7.08E+02 4.57E-07 -37.54739411 -1.449265313

873 550 607 1.48E+02 1.55E-06 -39.11315198 -2.316577402

898 175 575 1.12E+05 7.12E-09 -31.25370686 0.173603722

898 220 575 3.72E+04 2.53E-08 -32.35894771 -0.040048862

898 250 575 2.31E+04 4.26E-08 -32.83417369 -0.182830739

898 280 575 9.10E+03 7.01E-08 -33.76573189 -0.329086962

898 300 575 5.13E+03 4.53E-07 -34.33917089 -0.429879376

898 300 575 3.89E+03 1.57E-07 -34.6154811 -0.429879376

898 330 575 2.09E+03 2.89E-07 -35.23717907 -0.588287495

898 400 575 4.47E+02 7.89E-07 -36.77991109 -1.013612827

923 140 543 8.01E+04 5.76E-09 -30.42925262 0.304145969

923 155 543 5.50E+04 2.15E-08 -30.80519529 0.226086579

923 180 543 3.16E+04 3.72E-08 -31.35865083 0.099078044

923 225 543 9.50E+03 1.25E-07 -32.56123667 -0.126687531

923 260 543 2.90E+03 2.24E-07 -33.74781773 -0.30594423

923 300 543 9.33E+02 3.31E-07 -34.88160602 -0.522009859

923 330 543 3.98E+02 7.47E-07 -35.73356251 -0.697121738
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C l  1 .5 : Time to 0.5% analysis

266

T (K) o (MPa) UTS (MPa) t 0.5% (s) em (s'1) In (t 0.5% exp (-Qc*/RT)) In (-In (c/UTS))

823 390 638 4.17E+05 6.20E-09 -33.84760907 -0.708887321

823 470 638 1.24E+05 2.08E-08 -35.05984808 -1.185459934

823 540 638 5.03E+04 2.88E-08 -35.96314096 -1.791144795

823 565 638 2.94E+04 4.46E-08 -36.50123533 -2.107737711

823 600 638 1.84E+04 9.75E-08 -36.97028664 -2.79020493

848 300 622.5 5.50E+05 5.82E-09 -32.1933289 -0.31476396

848 390 622.5 7.08E+04 1.94E-08 -34.24262964 -0.760148702

848 420 622.5 4.52E+04 5.80E-08 -34.69233319 -0.932702377

848 430 622.5 4.00E+04 6.12E-08 -34.8135326 -0.994364659

848 455 622.5 2.88E+04 7.19E-08 -35.14241869 -1.160127515

848 500 622.5 1.74E+04 1.61E-07 -35.64720654 -1.518064883

848 570 622.5 4.53E+03 3.07E-07 -36.99146939 -2.429200258

873 200 607 9.77E+05 3.56E-09 -30.31727692 0.10455047

873 280 607 1.62E+05 2.25E-08 -32.11329329 -0.256520429

873 300 607 1.19E+05 2.91E-08 -32.42532281 -0.349917376

873 350 607 3.50E+04 7.20E-08 -33.64665829 -0.596754611

873 360 607 2.96E+04 8.96E-08 -33.81524602 -0.649274306

873 360 607 2.52E+04 9.71E-08 -33.97516235 -0.649274306

873 360 607 4.14E+04 1.57E-07 -33.47862885 -0.649274306

873 360 607 2.39E+04 1.50E-07 -34.0294677 -0.649274306

873 360 607 2.02E+04 1.37E-07 -34.19597727 -0.649274306

873 360 607 3.32E+04 9.70E-08 -33.70057155 -0.649274306

873 360 607 1.74E+04 9.88E-08 -34.3474345 -0.649274306

873 360 607 2.40E+04 9.76E-08 -34.02395252 -0.649274306

873 360 607 4.40E+04 1.00E-07 -33.41781672 -0.649274306

873 360 607 2.94E+04 9.60E-08 -33.82148798 -0.649274306

873 360 607 2.65E+04 9.50E-08 -33.92648558 -0.649274306

873 360 607 2.12E+04 1.25E-07 -34.15031916 -0.649274306

873 390 607 1.58E+04 7.74E-08 -34.43890424 -0 815581399

873 480 607 5.57E+03 4.57E-07 -35.48479084 -1.449265313

873 550 607 1.81E+03 1.55E-06 -36.60978509 -2.316577402

898 175 575 4.12E+05 7.12E-09 -29.95310432 0.173603722

898 220 575 1.49E+05 2.53E-08 -30.96818631 -0.040048862

898 250 575 9.58E+04 4.26E-08 -31.41224479 -0.182830739

898 280 575 4.62E+04 7.01E-08 -32.14102651 -0.329086962

898 300 575 1.79E+04 4.53E-07 -33.09116977 -0.429879376

898 300 575 2.28E+04 1.57E-07 -32.84939833 -0.429879376

898 330 575 1.05E+04 2.89E-07 -33.62536951 -0.588287495

898 400 575 3.09E+03 7.89E-07 -34.84713055 -1.013612827

923 140 543 3.26E+05 5.76E-09 -29.02613213 0.304145969

923 155 543 1.55E+05 2.15E-08 -29.76756453 0.226086579

923 180 543 9.00E+04 3.72E-08 -30.3127188 0.099078044

923 225 543 3.12E+04 1.25E-07 -31.37262333 -0.126687531

923 260 543 1.30E+04 2.24E-07 -32.24975126 -0.30594423

923 300 543 6.17E+03 3.31E-07 -32.99348625 -0.522009859

923 330 543 2.89E+03 7.47E-07 -33.75103674 -0.697121738
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C l 1.6: Time to 0.7% analysis
T (K) o (MPa) UTS (MPa) t  0.7% (S) Em (S '* ) In (t o.7% exp (-Qc*/RT)) In (-In (o/UTS))

823 390 638 6.90E+05 6.20E-09 -33.34513016 -0.708887321

823 470 638 2.10E+05 2.08E-08 -34.53471423 -1.185459934

823 540 638 9.00E+04 2.88E-08 -35.38201209 -1.791144795

823 565 638 6.00E+04 4.46E-08 -35.7874772 -2.107737711

823 600 638 3.20E+04 9.75E-08 -36.41608586 -2.79020493

848 300 622.5 8.00E+05 5.82E-09 -31.81780033 -0.31476396

848 390 622.5 1.23E+05 1.94E-08 -33.69000921 -0.760148702

848 420 622.5 7.50E+04 5.80E-08 -34.18492394 -0.932702377

848 430 622.5 6.10E+04 6.12E-08 -34.39153819 -0.994364659

848 455 622.5 5.30E+04 7.19E-08 -34.53212014 -1.160127515

848 500 622.5 2.80E+04 1.61E-07 -35.17020755 -1.518064883

848 570 622.5 9.20E+03 3.07E-07 -36.28320857 -2.429200258

873 201 607 1.51E+06 3.56E-09 -29.87978575 0.100047923

873 280 607 2.69E+05 2.25E-08 -31.60672457 -0.256520429

873 300 607 1.78E+05 2.91E-08 -32.0202228 -0.349917376

873 350 607 6.30E+04 7.20E-08 -33.05887162 -0.596754611

873 360 607 4.95E+04 8.96E-08 -33.30003368 -0.649274306

873 360 607 3.50E+04 9.71E-08 -33.64665829 -0.649274306

873 360 607 5.50E+04 1.57E-07 -33.19467316 -0.649274306

873 360 607 4.52E+04 1.50E-07 -33.39090926 -0.649274306

873 360 607 3.34E+04 1.37E-07 -33.69345045 -0.649274306

873 360 607 4.50E+04 9.70E-08 -33.39534386 -0.649274306

873 360 607 6.10E+04 9.88E-08 -33.09113248 -0.649274306

873 360 607 5.14E+04 9.76E-08 -33.26236818 -0.649274306

873 360 607 4.80E+04 1.00E-07 -33.33080534 -0.649274306

873 360 607 3.80E+04 9.60E-08 -33.56442019 -0.649274306

873 360 607 3.80E+04 9.50E-08 -33.56442019 -0.649274306

873 360 607 5.90E+04 1.25E-07 -33.12446891 -0.649274306

873 390 607 2.82E+04 7.74E-08 -33.86325796 -0.815581399

873 480 607 9.20E+03 4.57E-07 -34.98280287 -1.449265313

873 550 607 3.00E+03 1.55E-06 -36.10339406 -2.316577402

898 175 575 6.85E+05 7.12E-09 -29.44458747 0.173603722

898 220 575 2.14E+05 2.53E-08 -30.60898304 -0.040048862

898 250 575 1.45E+05 4.26E-08 -30.99727256 -0.182830739

898 280 575 7.00E+04 7.01E-08 -31.72551106 -0.329086962

898 300 575 3.39E+04 4.53E-07 -32.45105111 -0.429879376

898 300 575 4.27E+04 1.57E-07 -32.2207926 -0.429879376

898 330 575 1.51E+04 2.89E-07 -33.25695589 -0.588287495

898 400 575 5.35E+03 7.89E-07 -34.29690974 -1.013612827

923 140 543 5.62E+05 5.76E-09 -28.48041947 0.304145969

923 155 543 2.57E+05 2.15E-08 -29.2632984 0.226086579

923 180 543 1.66E+05 3.72E-08 -29.70054068 0.099078044

923 225 543 4.82E+04 1.25E-07 -30.93716945 -0.126687531

923 260 543 2.00E+04 2.24E-07 -31.8167962 -0.30594423

923 300 543 1.05E+04 3.31E-07 -32.46389168 -0.522009859

923 330 543 5.20E+03 7.47E-07 -33.16386985 -0.697121738



Appendix (C). Tables o f all Analyses and Results

C l 1.7: Time to 1% analysis
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T (K) <r (MPa) UTS (MPa) 1 1% (s) £m (s'1) In (t ,«/„ exp (-Qc*/RT)) In (-In (o/UTS))

823 390 638 9.16E+05 6.20E-09 -33.06156471 -0.708887321

823 470 638 3.56E+05 2.08E-08 -34.00571195 -1.185459934

823 540 638 1.64E+05 2.88E-08 -34.77964094 -1.791144795

823 565 638 1.17E+05 4.46E-08 -35.12281523 -2.107737711

823 600 638 5.86E+04 9.75E-08 -35.81141135 -2.79020493

848 300 622.5 1.29E+06 5.82E-09 -31.34137242 -0.31476396

848 390 622.5 1.75E+05 1.94E-08 -33.33541111 -0.760148702

848 420 622.5 1.26E+05 5.80E-08 -33.66327708 -0.932702377

848 430 622.5 1.10E+05 6.12E-08 -33.79993369 -0.994364659

848 455 622.5 9.69E+04 7.19E-08 -33.92842299 -1.160127515

848 500 622.5 5.52E+04 1.61E-07 -34.49130883 -1.518064883

848 570 622.5 1.77E+04 3.07E-07 -35.62625192 -2.429200258

873 200 607 2.72E+06 3.56E-09 -29.29262655 0.10455047

873 280 607 4.45E+05 2.25E-08 -31.10476102 -0.256520429

873 300 607 2.96E+05 2.91E-08 -31.51002659 -0.349917376

873 350 607 1.07E+05 7.20E-08 -32.53161038 -0.596754611

873 360 607 7.82E+04 8.96E-08 -32.84277507 -0.649274306

873 360 607 5.85E+04 9.71E-08 -33.13373201 -0.649274306

873 360 607 9.16E+04 1.57E-07 -32.68467334 -0.649274306

873 360 607 5.95E+04 1.50E-07 -33.11589559 -0.649274306

873 360 607 7.61E+04 1.37E-07 -32.86994494 -0.649274306

873 360 607 8.75E+04 9.70E-08 -32.72996764 -0.649274306

873 360 607 8.47E+04 9.88E-08 -32.76286713 -0.649274306

873 360 607 8.07E+04 9.76E-08 -32.81068554 -0.649274306

873 360 607 6.33E+04 1.00E-07 -33.0536472 -0.649274306

873 360 607 6.33E+04 9.60E-08 -33.0536472 -0.649274306

873 360 607 7.97E+04 9.50E-08 -32.82314723 -0.649274306

873 360 607 8.02E+04 1.25E-07 -32.81735815 -0.649274306

873 390 607 4.03E+04 7.74E-08 -33.50635727 -0.815581399

873 480 607 1.63E+04 4.57E-07 -34.4135758 -1.449265313

873 550 607 5.12E+03 1.55E-06 -35.56947352 -2.316577402

898 175 575 1.11E+06 7.12E-09 -28.95946153 0.173603722

898 220 575 3.79E+05 2.53E-08 -30.03563935 -0.040048862

898 250 575 2.22E+05 4.26E-08 -30.56984354 -0.182830739

898 280 575 1.06E+05 7.01E-08 -31.31321221 -0.329086962

898 300 575 5.16E+04 4.53E-07 -32.02967804 -0.429879376

898 300 575 6.32E+04 1.57E-07 -31.82705055 -0.429879376

898 330 575 2.50E+04 2.89E-07 -32.75499234 -0.588287495

898 400 575 8.98E+03 7.89E-07 -33.77956337 -1.013612827

923 140 543 8.97E+05 5.76E-09 -28.01299469 0.304145969

923 155 543 4.06E+05 2.15E-08 -28.80738655 0.226086579

923 180 543 2.55E+05 3.72E-08 -29.27173562 0.099078044

923 225 543 7.34E+04 1.25E-07 -30.51702697 -0.126687531

923 260 543 3.23E+04 2.24E-07 -31.3386384 -0.30594423

923 300 543 1.42E+04 3.31E-07 -32.15995044 -0.522009859

923 330 543 6.14E+03 7.47E-07 -32.99809142 -0.697121738



Appendix (C). Tables o f all Analyses and Results

Cl 1.8: Time to 2% analysis
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T(K) a  (MPa) UTS (MPa) 1 2% (*) (s'1) In (t 2% exp (-Qc*/RT)) In (-In (a/UTS))

823 390 638 2.14E+06 6.20E-09 -32.2142134 -0.708887321

823 470 638 8.11E+05 2.08E-08 -33.18314688 -1.185459934

823 540 638 3.89E+05 2.88E-08 -33.91916829 -1.791144795

823 565 638 3.07E+05 4.46E-08 -34.15608212 -2.107737711

823 600 638 1.41E+05 9.75E-08 -34.93126381 -2.79020493

848 300 622.5 2.69E+06 5.82E-09 -30.60454519 -0.31476396

848 390 622.5 4.27E+05 1.94E-08 -32.44661326 -0.760148702

848 420 622.5 2.85E+05 5.80E-08 -32.85087069 -0.932702377

848 430 622.5 2.61E+05 6.12E-08 -32.93977081 -0.994364659

848 455 622.5 2.19E+05 7.19E-08 -33.11436294 -1.160127515

848 500 622.5 1.20E+05 1.61E-07 -33.71303506 -1.518064883

848 570 622.5 4.68E+04 3.07E-07 -34.65629384 -2.429200258

873 200 607 5.89E+06 3.56E-09 -28.52126055 0.10455047

873 280 607 1.00E+06 2.25E-08 -30.29425107 -0.256520429

873 300 607 6.04E+05 2.91E-08 -30.79919403 -0.349917376

873 350 607 2.34E+05 7.20E-08 -31.74544668 -0.596754611

873 360 607 1.75E+05 8.96E-08 -32.03459525 -0.649274306

873 360 607 1.68E+05 9.71E-08 -32.08096927 -0.649274306

873 360 607 1.65E+05 1.57E-07 -32.09324666 -0.649274306

873 360 607 1.96E+05 1.50E-07 -31.92292277 -0.649274306

873 360 607 1.28E+05 1.37E-07 -32.35185285 -0.649274306

873 360 607 1.95E+05 9.70E-08 -31.92869915 -0.649274306

873 360 607 1.36E+05 9.88E-08 -32.28795538 -0.649274306

873 360 607 1.67E+05 9.76E-08 -32.08695098 -0.649274306

873 360 607 1.67E+05 1.00E-07 -32.08677083 -0.649274306

873 360 607 1.88E+05 9.60E-08 -31.96466054 -0.649274306

873 360 607 1.90E+05 9.50E-08 -31.95719525 -0.649274306

873 360 607 1.44E+05 1.25E-07 -32.23367331 -0.649274306

873 390 607 9.33E+04 7.74E-08 -32.66591372 -0.815581399

873 480 607 3.63E+04 4.57E-07 -33.6099736 -1.449265313

873 550 607 1.20E+04 1.55E-06 -34.71521445 -2.316577402

898 175 575 2.46E+06 7.12E-09 -28.16661827 0.173603722

898 220 575 8.51E+05 2.53E-08 -29.22743198 -0.040048862

898 250 575 4.35E+05 4.26E-08 -29.89840743 -0.182830739

898 280 575 2.17E+05 7.01E-08 -30.59535396 -0.329086962

898 300 575 1.07E+05 4.53E-07 -31.29975857 -0.429879376

898 300 575 1.35E+05 1.57E-07 -31.06950006 -0.429879376

898 330 575 5.62E+04 2.89E-07 -31.94448239 -0.588287495

898 400 575 1.97E+04 7.89E-07 -32.99140993 -1.013612827

923 140 543 1.95E+06 5.76E-09 -27.23702352 0.304145969

923 155 543 8.71E+05 2.15E-08 -28.0429283 0.226086579

923 180 543 5.00E+05 3.72E-08 -28.59852055 0.099078044

923 225 543 1.62E+05 1.25E-07 -29.72381542 -0.126687531

923 260 543 6.69E+04 2.24E-07 -30.60971822 -0.30594423

923 300 543 3.39E+04 3.31E-07 -31.28957328 -0.522009859

923 330 543 1.51E+04 7.47E-07 -32.09547806 -0.697121738
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C l 1.9: Time to 5% analysis
T (K) o (MPa) UTS (MPa) t 5% (S) £. (s'1) In (t s% exp (-Qc*/RT)) In (-In (o/UTS))

823 390 638 5.01E+06 6.20E-09 -31.36225691 -0.708887321

823 470 638 1.88E+06 2.08E-08 -32.34114712 -1.185459934

823 540 638 9.54E+05 2.88E-08 -33.02132582 -1.791144795

823 565 638 7.57E+05 4.46E-08 -33.25243208 -2.107737711

823 600 638 4.05E+05 9.75E-08 -33.8773176 -2.79020493

848 300 622.5 6.46E+06 5.82E-09 -29.72956285 -0.31476396

848 390 622.5 9.77E+05 1.94E-08 -31.61768263 -0.760148702

848 420 622.5 6.58E+05 5.80E-08 -32.01376959 -0.932702377

848 430 622.5 6.10E+05 6.12E-08 -32.0886007 -0.994364659

848 455 622.5 5.17E+05 7.19E-08 -32.25347983 -1.160127515

848 500 622.5 2.82E+05 1.61E-07 -32.86107858 -1.518064883

848 570 622.5 1.32E+05 3.07E-07 -33.61976166 -2.429200258

873 200 607 1.38E+07 3.56E-09 -27.66930406 0.10455047

873 280 607 2.29E+06 2.25E-08 -29.46532044 -0.256520429

873 300 607 1.55E+06 2.91E-08 -29.8567599 -0.349917376

873 350 607 5.31E+05 7.20E-08 -30.92797906 -0.596754611

873 360 607 3.96E+05 8.96E-08 -31.22071841 -0.649274306

873 360 607 4.62E+05 9.71E-08 -31.06581395 -0.649274306

873 360 607 2.88E+05 1.57E-07 -31.54067915 -0.649274306

873 360 607 4.18E+05 1.50E-07 -31.16638139 -0.649274306

873 360 607 3.26E+05 1.37E-07 -31.41599893 -0.649274306

873 360 607 3.72E+05 9.70E-08 -31.28284371 -0.649274306

873 360 607 3.48E+05 9.88E-08 -31.3494591 -0.649274306

873 360 607 4.16E+05 9.76E-08 -31.17165768 -0.649274306

873 360 607 4.38E+05 1.00E-07 -31.11994727 -0.649274306

873 360 607 3.23E+05 9.60E-08 -31.42537312 -0.649274306

873 360 607 3.23E+05 9.50E-08 -31.42537622 -0.649274306

873 360 607 6.03E+05 1.25E-07 -30.80081979 -0.649274306

873 390 607 2.24E+05 7.74E-08 -31.79093138 -0.815581399

873 480 607 9.55E+04 4.57E-07 -32.64288786 -1.449265313

873 550 607 2.95E+04 1.55E-06 -33.81720626 -2.316577402

898 175 575 5.29E+06 7.12E-09 -27.40098113 0.173603722

898 220 575 1.86E+06 2.53E-08 -28.44455305 -0.040048862

898 251 575 8.68E+05 4.26E-08 -29.20791828 -0.187635127

898 280 575 5.25E+05 7.01E-08 -29.71097485 -0.329086962

898 300 575 2.95E+05 4.53E-07 -30.28662112 -0.429879376

898 300 575 2.19E+05 1.57E-07 -30.58595719 -0.429879376

898 330 575 1.23E+05 2.89E-07 -31.16160346 -0.588287495

898 400 575 4.35E+04 7.89E-07 -32.20099252 -1.013612827

923 140 543 4.68E+06 5.76E-09 -26.36204118 0.304145969

923 155 543 2.34E+06 2.15E-08 -27.05281671 0.226086579

923 180 543 1.38E+06 3.72E-08 -27.58241128 0.099078044

923 225 543 3.80E+05 1.25E-07 -28.87185893 -0.126687531

923 260 543 1.70E+05 2.24E-07 -29.67776371 -0.30594423

923 300 543 7.59E+04 3.31E-07 -30.4836685 -0.522009859

923 330 543 3.47E+04 7.47E-07 -31.26654743 -0.697121738
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C l 1.10: Time to 7% analysis
T (K) o (MPa) UTS (MPa) t 7% (s) em (s'1) In (t 7% exp (-Qc*/RT)) In (-In (c/UTS))

823 390 638 6.22E+06 6.20E-09 -31.14629657 -0.708887321

823 470 638 2.37E+06 2.08E-08 -32.11328846 -1.185459934

823 540 638 1.21E+06 2.88E-08 -32.78758691 -1.791144795

823 565 638 9.63E+05 4.46E-08 -33.01176835 -2.107737711

823 600 638 5.33E+05 9.75E-08 -33.60330033 -2.79020493

848 300 622.5 8.91E+06 5.82E-09 -29.40720094 -0.31476396

848 390 622.5 1.32E+06 1.94E-08 -31.31834657 -0.760148702

848 420 622.5 8.34E+05 5.80E-08 -31.77617866 -0.932702377

848 430 622.5 7.10E+05 6.12E-08 -31.93714709 -0.994364659

848 455 622.5 6.56E+05 7.19E-08 -32.01625127 -1.160127515

848 500 622.5 3.80E+05 1.61 E-07 -32.56174252 -1.518064883

848 570 622.5 1.76E+05 3.07E-07 -33.33192806 -2.429200258

873 202 607 1.32E+07 3.56E-09 -27.71535577 0.09554751

873 280 607 3.02E+06 2.25E-08 -29.18901023 -0.256520429

873 300 607 2.04E+06 2.91E-08 -29.58044969 -0.349917376

873 350 607 6.69E+05 7.20E-08 -30.69626713 -0.596754611

873 360 607 5.00E+05 8.96E-08 -30.98739825 -0.649274306

873 360 607 3.65E+05 9.71E-08 -31.302109 -0.649274306

873 360 607 5.24E+05 1.57E-07 -30.94051466 -0.649274306

873 360 607 3.95E+05 1.50E-07 -31.22312058 -0.649274306

873 360 607 4.72E+05 1.37E-07 -31.04502736 -0.649274306

873 360 607 4.30E+05 9.70E-08 -31.13822114 -0.649274306

873 360 607 5.18E+05 9.88E-08 -30.95203111 -0.649274306

873 360 607 5.50E+05 9.76E-08 -30.89208807 -0.649274306

873 360 607 4.08E+05 1 .OOE-07 -31.19073917 -0.649274306

873 360 607 4.08E+05 9.60E-08 -31.19073917 -0.649274306

873 360 607 4.90E+05 9.50E-08 -31.00760096 -0.649274306

873 360 607 4.80E+05 1.25E-07 -31.02822025 -0.649274306

873 390 607 2.95E+05 7.74E-08 -31.51462117 -0.815581399

873 480 607 1.32E+05 4.57E-07 -32.32052595 -1.449265313

873 552 607 3.47E+04 1.55E-06 -33.65602531 -2.354081094

898 175 575 6.60E+06 7.12E-09 -27.17918138 0.173603722

898 220 575 2.24E+06 2.53E-08 -28.26034624 -0.040048862

898 251 575 1.20E+06 4.26E-08 -28.88204422 -0.187635127

898 280 575 7.24E+05 7.01E-08 -29.38861294 -0.329086962

898 300 575 2.85E+05 4.53E-07 -30.32137678 -0.429879376

898 300 575 3.72E+05 1.57E-07 -30.05636261 -0.429879376

898 330 575 2.00E+05 2.89E-07 -30.67806059 -0.588287495

898 406 575 5.57E+04 7.89E-07 -31.95409797 -1.055504291

923 140 543 5.25E+06 5.76E-09 -26.24691193 0.304145969

923 155 543 2.45E+06 2.15E-08 -27.00676501 0.226086579

923 180 543 1.26E+06 3.72E-08 -27.67175852 0.099078044

923 225 543 4.90E+05 1.25E-07 -28.61857457 -0.126687531

923 260 543 2.09E+05 2.24E-07 -29.47053106 -0.30594423

923 300 543 1.00E+05 3.31 E-07 -30.20735829 -0.522009859

923 330 543 4.94E+04 7.47E-07 -30.9121328 -0.697121738
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C l 1.11: Time to 10% analysis
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T (K) a  (MPa) UTS (MPa) 1 1«% (s) em (s'1) In (t ,0% exp (-Qc*/RT)) In (-In (c/UTS))

823 390 638 7.48E+06 6.20E-09 -30.96227496 -0.708887321

823 470 638 2.89E+06 2.08E-08 -31.91312144 -1.185459934

823 540 638 1.43E+06 2.88E-08 -32.61436612 -1.791144795

823 565 638 1.18E+06 4.46E-08 -32.80652021 -2.107737711

823 600 638 6.79E+05 9.75E-08 -33.36131846 -2.79020493

848 300 622.5 7.25E+06 5.82E-09 -29.61390362 -0.31476396

848 390 622.5 1.86E+06 1.94E-08 -30.9729588 -0.760148702

848 420 622.5 1.04E+06 5.80E-08 -31.55582075 -0.932702377

848 430 622.5 1.11E+06 6.12E-08 -31.48867645 -0.994364659

848 455 622.5 8.09E+05 7.19E-08 -31.80627945 -1.160127515

848 500 622.5 5.01E+05 1.61E-07 -32.28543231 -1.518064883

848 570 622.5 2.27E+05 3.07E-07 -33.07781453 -2.429200258

873 200 607 1.44E+07 3.56E-09 -27.62917796 0.10455047

873 280 607 2.36E+06 2.25E-08 -29.43732825 -0.256520429

873 300 607 2.00E+06 2.91E-08 -29.60350677 -0.349917376

873 350 607 8.34E+05 7.20E-08 -30.47567703 -0.596754611

873 360 607 6.28E+05 8.96E-08 -30.75903634 -0.649274306

873 360 607 6.05E+05 9.71E-08 -30.79677789 -0.649274306

873 360 607 5.84E+05 1.57E-07 -30.83210537 -0.649274306

873 360 607 5.05E+05 1.50E-07 -30.97744792 -0.649274306

873 360 607 5.82E+05 1.37E-07 -30.8355359 -0.649274306

873 360 607 6.10E+05 9.70E-08 -30.78854739 -0.649274306

873 360 607 6.28E+05 9.88E-08 -30.75946618 -0.649274306

873 360 607 5.90E+05 9.76E-08 -30.82188381 -0.649274306

873 360 607 5.58E+05 1.00E-07 -30.87764739 -0.649274306

873 360 607 5.78E+05 9.60E-08 -30.84243248 -0.649274306

873 360 607 6.00E+05 9.50E-08 -30.80507669 -0.649274306

873 360 607 6.10E+05 1.25E-07 -30.78854739 -0.649274306

873 390 607 3.39E+05 7.74E-08 -31.37646606 -0.815581399

873 480 607 1.27E+05 4.57E-07 -32.3548316 -1.449265313

873 550 607 3.80E+04 1.55E-06 -33.56568415 -2.316577402

898 175 575 8.10E+06 7.12E-09 -26.97458451 0.173603722

898 220 575 2.25E+06 2.53E-08 -28.25372209 -0.040048862

898 250 575 1.31E+06 4.26E-08 -28.79637657 -0.182830739

898 280 575 7.01E+05 7.01E-08 -29.42117037 -0.329086962

898 300 575 3.46E+05 4.53E-07 -30.12733634 -0.429879376

898 300 575 4.47E+05 1.57E-07 -29.87215581 -0.429879376

898 330 575 1.92E+05 2.89E-07 -30.71713613 -0.588287495

898 400 575 7.08E+04 7.89E-07 -31.71454286 -1.013612827

923 140 543 5.37E+06 5.76E-09 -26.22388607 0.304145969

923 155 543 2.68E+06 2.15E-08 -26.91750223 0.226086579

923 180 543 1.55E+06 3.72E-08 -27.46497107 0.099078044

923 225 543 4.72E+05 1.25E-07 -28.65658816 -0.126687531

923 260 543 2.20E+05 2.24E-07 -29.42044757 -0.30594423

923 300 543 8.51E+04 3.31 E-07 -30.36853924 -0.522009859

923 330 543 6.25E+04 7.47E-07 -30.67729792 -0.697121738



Appendix (C). Tables o f all Analyses and Results 273

C l 1.12: Time to 13% analysis
T (K) <y (MPa) U TS  (MPa) t  13% (S ) 6m (s'1) In (t 13% exp (-QcVRT)) In (-In (a/UTS))

823 390 638 8.30E+06 6.20E-09 -30.8578953 -0.708887321

823 470 638 3.80E+06 2.08E-08 -31.63856712 -1.185459934

823 540 638 2.33E+06 2.88E-08 -1.791144795

823 565 638 1.32E+06 4.46E-08 -32.6933335 -2.107737711

823 600 638 6.46E+05 9.75E-08 -33.41155765 -2.79020493

848 300 622.5 8.04E+06 5.82E-09 -29.51075022 -0.31476396

848 390 622.5 2.93E+06 1.94E-08 -30.51846053 -0.760148702

848 420 622.5 1.19E+06 5.80E-08 -31.42280652 -0.932702377

848 430 622.5 1.23E+06 6.12E-08 -31.38715492 -0.994364659

848 455 622.5 9.12E+05 7.19E-08 -31.68631165 -1.160127515

848 500 622.5 5.37E+05 1.61E-07 -32.21635475 -1.518064883

848 570 622.5 2.59E+05 3.07E-07 -32.94512078 -2.429200258

873 200 607 1.82E+07 3.56E-09 -27.39299385 0.10455047

873 280 607 2.74E+06 2.25E-08 -29.28669469 -0.256520429

873 300 607 2.27E+06 2.91E-08 -29.47244686 -0.349917376

873 350 607 9.44E+05 7.20E-08 -30.35175307 -0.596754611

873 360 607 7.26E+05 8.96E-08 -30.61401566 -0.649274306

873 360 607 7.15E+05 9.71E-08 -30.62972381 -0.649274306

873 360 607 7.04E+05 1.57E-07 -30.64522799 -0.649274306

873 360 607 6.95E+05 1.50E-07 -30.6580945 -0.649274306

873 360 607 6.82E+05 1.37E-07 -30.67697669 -0.649274306

873 360 607 7.10E+05 9.70E-08 -30.63674138 -0.649274306

873 360 607 6.98E+05 9.88E-08 -30.65378725 -0.649274306

873 360 607 6.90E+05 9.76E-08 -30.66531475 -0.649274306

873 360 607 7.08E+05 1.00E-07 -30.63956226 -0.649274306

873 360 607 7.38E+05 9.60E-08 -30.59806252 -0.649274306

873 360 607 7.40E+05 9.50E-08 -30.59535616 -0.649274306

873 360 607 6.90E+05 1.25E-07 -30.66531475 -0.649274306

873 390 607 6.03E+05 7.74E-08 -30.80081979 -0.815581399

873 480 607 1.66E+05 4.57E-07 -32.09026744 -1.449265313

873 550 607 4.45E+04 1.55E-06 -33.4075739 -2.316577402

898 175 575 9.13E+06 7.12E-09 -26.85419257 0.173603722

898 220 575 2.57E+06 2.53E-08 -28.12059568 -0.040048862

898 250 575 1.48E+06 4.26E-08 -28.6755612 -0.182830739

898 280 575 8.05E+05 7.01 E-08 -29.28331311 -0.329086962

898 300 575 4.37E+05 4.53E-07 -29.89518166 -0.429879376

898 300 575 3.99E+05 1.57E-07 -29.98532061 -0.429879376

898 330 575 2.26E+05 2.89E-07 -30.55236572 -0.588287495

898 400 575 9.33E+04 7.89E-07 -31.43791367 -1.013612827

923 140 543 8.91E+06 5.76E-09 -25.71731735 0.304145969

923 155 543 3.06E+06 2.15E-08 -26.78482351 0.226086579

923 180 543 1.77E+06 3.72E-08 -27.33526365 0.099078044

923 225 543 5.40E+05 1.25E-07 -28.52188569 -0.126687531

923 260 543 2.50E+05 2.24E-07 -29.29034781 -0.30594423

923 300 543 1.00E+05 3.31 E-07 -30.20735829 -0.522009859

923 330 543 7.31E+04 7.47E-07 -30.52134327 -0.697121738
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C l 1.13: Time to 15% analysis
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T (K) o (MPa) UTS (MPa) t  15% (S) em (s'1) In ( t  is% exp (-Qc*/RT)) In (-In (o/UTS))

823 390 638 8.66E+06 6.20E-09 -30.81498231 -0.708887321

823 470 638 3.80E+06 2.08E-08 -31.63856712 -1.185459934

823 540 638 2.40E+06 2.88E-08 -32.09859774 -1.791144795

823 565 638 1.39E+06 4.46E-08 -32.64239144 -2.107737711

823 600 638 5.25E+05 9.75E-08 -33.6187903 -2.79020493

848 300 622.5 8.41E+06 5.82E-09 -29.46552072 -0.31476396

848 390 622.5 3.05E+06 1.94E-08 -30.48089319 -0.760148702

848 420 622.5 1.45E+06 5.80E-08 -31.22624316 -0.932702377

848 430 622.5 1.28E+06 6.12E-08 -31.34483235 -0.994364659

848 455 622.5 9.68E+05 7.19E-08 -31.62757261 -1.160127515

848 500 622.5 5.50E+05 1.61 E-07 -32.1933289 -1.518064883

848 570 622.5 2.19E+05 3.07E-07 -33.11436294 -2.429200258

873 200 607 1.64E+07 3.56E-09 -27.49990086 0.10455047

873 280 607 2.93E+06 2.25E-08 -29.21778215 -0.256520429

873 300 607 2.42E+06 2.91E-08 -29.40990518 -0.349917376

873 350 607 1.00E+06 7.20E-08 -30.2905579 -0.596754611

873 360 607 7.80E+05 8.96E-08 -30.54219974 -0.649274306

873 360 607 7.55E+05 9.71E-08 -30.5752886 -0.649274306

873 360 607 7.34E+05 1.57E-07 -30.60349732 -0.649274306

873 360 607 7.35E+05 1.50E-07 -30.60213585 -0.649274306

873 360 607 7.82E+05 1.37E-07 -30.54015161 -0.649274306

873 360 607 7.10E+05 9.70E-08 -30.63674138 -0.649274306

873 360 607 7.98E+05 9.88E-08 -30.51989775 -0.649274306

873 360 607 7.70E+05 9.76E-08 -30.55561583 -0.649274306

873 360 607 7.68E+05 1.00E-07 -30.55821662 -0.649274306

873 360 607 7.48E+05 9.60E-08 -30.58460337 -0.649274306

873 360 607 7.30E+05 9.50E-08 -30.60896181 -0.649274306

873 360 607 7.50E+05 1.25E-07 -30.58193314 -0.649274306

873 390 607 6.46E+05 7.74E-08 -30.73174224 -0.815581399

873 480 607 1.59E+05 4.57E-07 -32.13499072 -1.449265313

873 550 607 4.81E+04 1.55E-06 -33.32828768 -2.316577402

898 175 575 9.63E+06 7.12E-09 -26.80116014 0.173603722

898 220 575 2.74E+06 2.53E-08 -28.05665212 -0.040048862

898 250 575 1.57E+06 4.26E-08 -28.61250382 -0.182830739

898 280 575 8.61E+05 7.01E-08 -29.21567954 -0.329086962

898 300 575 4.29E+05 4.53E-07 -29.911664 -0.429879376

898 300 575 3.47E+05 1.57E-07 -30.12544017 -0.429879376

898 330 575 2.44E+05 2.89E-07 -30.47540468 -0.588287495

898 400 575 1.02E+05 7.89E-07 -31.34581027 -1.013612827

923 140 543 3.89E+06 5.76E-09 -26.54624799 0.304145969

923 155 543 3.25E+06 2.15E-08 -26.7263336 0.226086579

923 180 543 1.89E+06 3.72E-08 -27.26587103 0.099078044

923 225 543 5.79E+05 1.25E-07 -28.45074252 -0.126687531

923 260 543 2.68E+05 2.24E-07 -29.22060909 -0.30594423

923 300 543 8.71E+04 3.31E-07 -30.34551339 -0.522009859

923 330 543 7.91E+04 7.47E-07 -30.44133531 -0.697121738
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C l 1.14: Time to 20% analysis
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T (K) o (MPa) UTS (MPa) t 20% (*) em (s'1) In (t 2o% exp (-Qc*/RT)) In (-In (o/UTS))

823 390 638 . . . 6.20E-09 — -0.708887321

823 470 638 . . . 2.08E-08 — -1.185459934

823 540 638 . . . 2.88E-08 . . . -1.791144795

823 565 638 . . . 4.46E-08 . . . -2.107737711

823 600 638 . . . 9.75E-08 . . . -2.79020493

848 300 622.5 8.97E+06 5.82E-09 -29.40123944 -0.31476396

848 390 622.5 — 1.94E-08 . . . -0.760148702

848 420 622.5 1.41E+06 5.80E-08 -31.25390799 -0.932702377

848 430 622.5 1.35E+06 6.12E-08 -31.2930718 -0.994364659

848 455 622.5 1.05E+06 7.19E-08 -31.54701013 -1.160127515

848 500 622.5 4.83E+05 1.61 E-07 -32.32200211 -1.518064883

848 570 622.5 — 3.07E-07 . . . -2.429200258

873 200 607 — 3.56E-09 . . . 0.10455047

873 280 607 3.34E+06 2.25E-08 -29.08854976 -0.256520429

873 300 607 2.69E+06 2.91E-08 -29.30657034 -0.349917376

873 350 607 1.11E+06 7.20E-08 -30.19169448 -0.596754611

873 360 607 8.77E+05 8.96E-08 -30.42505476 -0.649274306

873 360 607 8.25E+05 9.71E-08 -30.48662296 -0.649274306

873 360 ■607 8.14E+05 1.57E-07 -30.50004598 -0.649274306

873 360 607 8.55E+05 1.50E-07 -30.45090488 -0.649274306

873 360 607 8.82E+05 1.37E-07 -30.41981429 -0.649274306

873 360 607 8.90E+05 9.70E-08 -30.41078489 -0.649274306

873 360 607 8.18E+05 9.88E-08 -30.49514401 -0.649274306

873 360 607 8.20E+05 9.76E-08 -30.49270201 -0.649274306

873 360 607 8.08E+05 1.00E-07 -30.50744429 -0.649274306

873 360 607 8.48E+05 9.60E-08 -30.45912571 -0.649274306

873 360 607 8.40E+05 9.50E-08 -30.46860446 -0.649274306

873 360 607 8.80E+05 1.25E-07 -30.42208444 -0.649274306

873 390 607 8.32E+05 7.74E-08 -30.47845788 -0.815581399

873 480 607 1.79E+05 4.57E-07 -32.01702567 -1.449265313

873 550 607 3.16E+04 1.55E-06 -33.74812871 -2.316577402

898 175 575 1.04E+07 7.12E-09 -26.72358021 0.173603722

898 220 575 3.05E+06 2.53E-08 -27.95009356 -0.040048862

898 250 575 1.74E+06 4.26E-08 -28.50984037 -0.182830739

898 280 575 9.74E+05 7.01E-08 -29.09290306 -0.329086962

898 300 575 4.37E+05 4.53E-07 -29.89518166 -0.429879376

898 300 575 4.89E+05 1.57E-07 -29.7819097 -0.429879376

898 330 575 2.83E+05 2.89E-07 -30.32877144 -0.588287495

898 400 575 1.02E+05 7.89E-07 -31.35050516 -1.013612827

923 140 543 — 5.76E-09 . . . 0.304145969

923 155 543 3.59E+06 2.15E-08 -26.62751275 0.226086579

923 180 543 2.11E+06 3.72E-08 -27.15590752 0.099078044

923 225 543 6.50E+05 1.25E-07 -28.33495629 -0.126687531

923 260 543 3.01E+05 2.24E-07 -29.10405701 -0.30594423

923 300 543 1.12E+05 3.31 E-07 -30.09222903 -0.522009859

923 330 543 9.21E+04 7.47E-07 -30.28988157 -0.697121738
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C12. t h e  A l p h a - C a s e  A n a l y s i s
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lest
conditions

a-case
depth
(pm)

tf(hrs)
a-case 

thickness at 1 
(pm)

vertical crack 
depth at 1 

(pm)

a-case 
thickness at 2 

(pm)

vertical crack 
depth at 2 

(pm)

a-case 
thickness at 3 

(pm)

vertical crack 
depth at 3 

(pm)
f 823K/390MPa 1 7 .7 2 .5 6 E + 0 3 1 1 1 5 3 .3 8 .1 4 6 9 .6 5 .9 1 0 2 .2

823K/565MPa 9 .7 4 .0 6 E + 0 2 4 .4 3 3 .3 2 .2 4 4 .4 1 .8 6 2 .2

823K/600MPa 6 2 .2 2 E + 0 2 2 .2 17.1 1 .4 8 2 5 .1 1.2 3 8 .2

848K/300MPa 3 2 2 .5 2 E + 0 3 12 .5 7 2 8 .4 111 4 .4 1 56

848K/390MPa 2 2 8 .6 9 E + 0 2 7 .4 4 2 4 .8 9 6 5 3 8 6

848K/500MPa 5 .6 1.4 9 E + 0 2 3 19 2 2 7 1.5 3 7

873K/200MPa 5 4 .8 4 .6 7 E + 0 3 3 2 .6 9 0 .3 2 4 .4 1 2 9 .6 19 .2 2 0 4 .4

873K/269MPa 4 5 .8 2 .5 0 E + 0 3 11.1 4 1 .2 7 .7 6 8 .1 2 .9 9 7

873K/280MPa 3 1 .8 1 0 3 E + 0 3 1 4 .8 5 1 .8 1 1 .8 6 8 .8 9 .5 8 6 .6

873K/300MPa 2 6 .2 8 .2 8 E + 0 2 1 4 .8 5 9 .2 7 .4 1 1 4 .8 2 .9 1 8 4 .4

873K/338MPa 2 1 .3 5 .0 2 E + 0 2 9 28 .1 4 .4 5 6 .3 3 .7 6 2 .9

873K/350MPa 1 7 .9 3 .2 5 E + 0 2 7 .4 3 0 .3 4 .4 3 9 .2 2 .9 5 7 .7

898K/175MPa 7 0 .9 2 .8 0 E + 0 3 3 9 .2 1 16 .3 2 5 .1 1 5 5 .5 17 .7 2 0 8

898K/220MPa 4 2 .9 9 .2 2 E + 0 2 17 6 5 .9 1 1.8 9 0 .3 8 .1 4 1 3 2 .5

898K/250MPa 3 2 .8 5 .3 9 E + 0 2 17.1 3 4 10 4 1 .4 4 .4 5 6 .2

898K/300!\1Pa 1 5 .7 1 .0 I E + 0 2 5 .9 3 2 .5 2 .9 5 1 .1 1 .4 8 7 6 .3

898K/330MPa 13.5 8 .6 9 E + 0 1 4 .4 4 2 6 2 .2 3 4 .8 2 4 7 .4

923K/l40MPa 8 8 .9 2 .6 9 E + 0 3 5 7 1 1 9 .2 4 1 .5 1 4 2 .2 2 8 .9 2 0 5 .9

923K/155.MPa 71 .1 1.0 4 E + 0 3 3 6 .2 1 0 4 .4 2 4 .4 151.1 13 .3 2 3 6 .3

923K/l80MPa 5 4 6 .3 9 E + 0 2 2 2 .2 8 2 .9 1 7 .7 1 2 5 .1 8 1 1 .8 5 171 85

923K/225MPa 31 .1 1.9 3 E + 0 2 14 3 3 .3 8 .8 4 7 .4 7 .8 6 4 .4

923K/260MPa 25 .1 I .0 1 E + 0 2 111 3 2 .3 7 .4 5 0 .3 3 .7 6 8 .1

923K/330.MPa 13.3 3 .0 8 E + 0 I 8 .8 8 1 7 .7 5 .1 8 2 3 .3 4  4 4 3 3 .3

surface crack depth
a-case  thickness

(specimen
diamater)

Gauge length
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C 1 3 . S teve-B row n’s M odel  A nalysis

Actual a-case thickness:

277

Temperature (K) Time (hrs) a-case depth (pm)

848 1000 18.50

873 n 5.00

873 57 10.00

873 247 15.00

873 500 18.00

873 992 27.50

873 2371 43.75

873 4252 55.25

898 2 2.00

898 4 3.00

898 8 2.25

923 2 1.70

923 8 4.00

923 100 21.50

Predicted a-case thickness:

Temperature (K) Time (hrs) a-case depth (pm)

848 1000 19.5

873 11 4.5

873 57 8.4

873 247 13.8

873 500 20.7

873 992 31.5

873 2371 47.8

873 4252 59

898 2 3

898 4 4.2

898 8 5.4

923 2 4.2

923 8 7.2

923 100 19.5

Steve Brown’s Model (only temperature exposure, un-tested specimens)
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C 1 4 . the A lpha-C ase T hickness and S urface C racks
(MEASURED AND PREDICTED)

T
(K)

a
(MPa)

a-case thickness 
(pm)

Time for a-case formation 
(hrs)

vertical crack depth 
(pm)

Time for crack intiation 
(hrs)

Normalised time 
(Time for crack initiation/tf)

823 390 11.1 608.5921498 53.3 1946.90785 0.76

823 390 8.14 323.5863678 69.6 2231.913632 0.87

823 390 5.9 200.6247451 102.2 2354.875255 0.92

823 565 4.4 145.6675484 33.3 259.8324516 0.64

823 565 2.2 91.08866497 44.4 314.411335 0.77

823 565 1.8 83.63573677 62.2 321.8642632 0.79

823 600 2.2 91.08866497 17.1 131.111335 0.59

823 600 1.48 78.11490828 25.1 144.0850917 0.64

823 600 1.2 73.58396951 38.2 148.6160305 0.66

T
(K)

o
(MPa)

a-case thickness 
(pm)

Time for a-case formation 
(hrs)

vertical crack depth 
(pm)

Time for crack intiation 
(hrs)

Normalised time 
(Time for crack initiation/tf)

848 300 12.5 312.9144199 72 2206.48558 0.87

848 300 8.4 201.6975896 111 2317.70241 0.92

848 300 4.4 131.4097731 156 2387.990227 0.95

848 390 7.4 181.2101198 42 688.1898802 0.79

848 390 4.89 138.4910197 65 730.9089803 0.84

848 390 3 113.110286 86 756.289714 0.87

848 500 3 113.110286 19 36.06521302 0.24

848 500 2 101.6210878 27 47.55441115 0.32

848 500 1.5 96.32182651 37 52.85367248 0.35

T
(K)

<T
(MPa)

a-case thickness 
(pm)

Time for a-case formation 
(hrs)

vertical crack depth 
(pm)

Time for crack intiation 
(hrs)

Normalised time 
(Time for crack initiation/tf)

873 200 32.6 1057.5636 90.3 3609.0364 0.77

873 200 24.4 600.1092152 129.6 4066.490785 0.87

873 200 19.2 418.9690813 204.4 4247.630919 0.91

873 269 11.1 239.3903858 41.2 2260.609614 0.90

873 269 7.7 189.2670923 68.1 2310.732908 0.92

873 269 2.9 135.8408861 97 2364.159114 0.95

873 280 14.8 309.1299525 51.8 724.1700475 0.70

873 280 11.8 251.2541302 68.6 782.0458698 0.76

873 280 9.5 214.3343788 86.6 818.9656212 0.79

873 300 14.8 309.1299525 59.2 518.5700475 0.63

873 300 7.4 185.3840314 114.8 642.3159686 0.78

873 300 2.9 135.8408861 184.4 691.8591139 0.84

873 338 9 207.0556999 28.1 294.9443001 0.59

873 338 4.4 150.6761256 56.3 351.3238744 0.70

873 338 3.7 143.5614843 62.9 358.4385157 0.71

873 350 7.4 185.3840314 30.3 139.6159686 0.43

873 350 4.4 150.6761256 39.2 174.3238744 0.54

873 350 2.9 135.8408861 57.7 189.1591139 0.58
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1
<K)

o
(MPa)

a-case thickness 
(Urn)

Time for a-case formation 
(hrs)

vertical crack depth 
(pm)

rime for crack intiation 
(hrs)

Normalised time 
(Time for crack initiation/tf)

898 175 39.2 538.402688 116.3 2261.597312 0.81
898 175 25.1 214.9999984 155.5 2585.000002 0.92

898 175 17.7 132.8030479 208 2667.196952 0.95
1898 220 17 126.886663 65.9 795.313337 0.86

898 220 11.8 90.44596533 90.3 831.7540347 0.90
898 220 8.14 71.26970584 132.5 850.9302942 0.92

898 250 17.1 127.715443 34 411.084557 0.76
898 250 10 80.44430681 41.4 458.3556932 0.85

898 250 4.4 55.86744162 56.2 482.9325584 0.89

898 300 5.9 61.59853088 32.5 38.90146912 0.38

898 300 2.9 50.66956938 51.1 49.83043062 0.49

898 300 1.48 46.19527888 76.3 54.30472112 0.54

898 330 4.44 56.01311936 26 30.88688064 0.35

898 330 2.2 48.4122366 34.8 38.4877634 0.44

898 330 2 47.78595514 47.4 39.11404486 0.45

T
(k)

<T
(MPa)

u-case thickness 
(pm)

Time for a-case formation 
(hrs)

vertical crack depth 
(pm)

Time for crack intiation 
(hrs)

Normalised time 
(Time for crack initiation/tf)

923 140 57 560.2481475 119.2 2134.151852 0.79

923 140 41.5 230.0628893 142.2 2464.337111 0.91

923 140 28.9 111.5917141 205.9 2582.808286 0.95

923 155 36.2 169.6980795 104.4 871.9019205 0.83

923 155 24.4 86.181 18093 151.1 955.4188191 0.92

923 155 13.3 45.56216182 236.3 996.0378382 0.95

923 180 22 2 75.95381116 82.9 563.3517444 0.88

923 180 17.7 58.65837976 125.18 580.6471758 0.91

>23 180 11.85 41.92226154 171.85 597.383294 0.93

923 225 14 47.43082623 33.3 145.9580627 0.75

>23 225 8.8 35.18720851 47.4 158.2016804 0.82

923 225 7.8 33.22363495 64.4 160.1652539 0.83

>23 260 11.1 40.15516842 32.3 60.52538713 0.60

>23 260 7.4 32.46923668 50.3 68.21131888 0.68

>23 260 3.7 26.25443677 68.1 74.42611878 0.74

>23 330 8.88 35.34921941 17.7 1.345675432 0.43

923 330 5.18 28 58317414 23.3 2.216825865 0.72

923 330 4.44 27.39407122 33.3 3.405928778 0.11

end o f  testcreek initiation
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C 1 5 . t h e  A lp h a -C a se , S u r fa c e  C r a c k s  and  t h e  C r i t i c a l  
T im e and  S tr a in  f o r  C r a c k s  I n it ia t io n s

T

( K )

o

(MPa)
tf

(hours)
a-case depth at tf 

( p m )

time (t) for 1st crack appearance 
(hours)

strain (e) at 1st 
crack appearance tcrack initiation/tf

Ductility
(ef) £  crack initiation/

823 390 2555.5 17.7 1489.2 0.055 0.582743103 0.19395 0.283578242

I 823 565 405.5 9.7 171.8 0.039 0.423674476 0.17146 0.227458299

I 823 600 222.2 6 116.3 0.051 0.52340234 0.14368 0.354955457

848 300 2519.4 32 2054.5 0.106 0.815471938 0.22467 0.471803089

848 390 869.4 22 623.8 0.069 0.717506326 0.17711 0.389588391

848 500 149.175 5.6 18.1 0.013 0.121333598 0.25598 0.050785218

873 200 4666.6 54.8 3094.5 0.061 0.663116616 0.19036 0.320445472

873 269 2500 45.8 2184.3 0.072 0.87372 0.27432 0.262467192

873 280 1033.3 31.8 583.6 0.083 0.564792413 0.30669 0.270631582

873 300 827.7 26.2 439.3 0.066 0.530747856 0.34432 0.191682156

873 338 502 21.3 242.2 0.073 0.48247012 0.37234 0.196057367

873 350 325 17.9 82.9 0.025 0.255076923 0.28455 0.087858021

898 175 2800 70.9 1690.6 0.061 0.603785714 0.23015 0.265044536

898 220 922.2 42.9 740.7 0.14 0.803188029 0.36656 0.381929289

898 250 538.8 32.8 298.8 0.069 0.554565702 0.35948 0.191943919

898 300 100.5 15.7 27.4 0.064 0.272636816 0.30068 0.212850871

898 330 86.9 13.5 18.1 0.031 0.208285386 0.28123 0.110230061

923 140 2694.4 88.9 1458.9 0.041 0.541456354 0.13671 0.299904908

923 155 1041.6 71.1 775.1 0.107 0.744143625 0.25626 0.417544681

923 180 639.306 54 532 0.154 0.832152944 0.27321 0.563668973

923 225 193.389 31.1 128.2 0.096 0.662912956 0.28813 0.333182938

923 260 100.681 25.1 48.1 0.068 0.477748655 0.40313 0.168680078

923 330 30.8 13.3 0.92 0.005 0.02987013 0.36318 0.013767278
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A P P E N D I X  (D )

M a t h e m a t ic a l  &  A n a l y t ic a l  G u id e

This appendix illustrates some of the calculations that are useful for creep predictions analysis. These 

calculations range from the derivation of curves from raw experimental data to the interpolation and 

extrapolation o f creep properties using different creep predictions techniques. Many o f the calculations can 

be obtained using simple graphical means, e.g. the minimum creep rate, 8m, can be read directly from the plot 

of the creep rate, £, against time, t, or strain, s, the time to fracture, tf, can be obtained from the end point of 

the strain-time plot as well as the ductility, 8f, which represents the creep strain at fracture. The calculations 

and procedures presented in this appendix can be considered as a ‘Mathematical Guide’ for creep lifing 

techniques and a very useful tool for comparison purposes using the different lifing techniques based on any 

available creep data of any material.

D.l The Power Law Lquation

The general form of the Power Law equation is:

es = A on exp (-Qc/RT)  (D. 1 *)

This equation can be re-arranged in a linear form by taking the natural logarithm of both sides to give:

In ss = InA + n In a - (Qc/R) 1/T  (D.2*)

Now, there are two possibilities to solve this equation: at constant stress, o, or at constant temperature, T.

- Constant Stress: To solve equation (D.2*) at constant stress, this equation can then be written as:

In es = - (Qc/R) 1 /T + B  (D.3*)

where B is a constant equals to (InA + n In a). Now equation (D.3*) has the linear form: (y = mx + c). 

Therefore, plotting (In £s) against (1/T), at constant stress, will give a straight line of slope (-Qc/R) and an 

intercept of B with the y-axis, as shown in Figure (D l).

s at constant a

gradient = - Qc/R

1/T

Figure (Dl): The linear relationship between In £s and 1/T, at constant stress.
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- Constant Temperature: To solve equation (D.2*) at constant temperature, this equation can then be 

written as:

In es = n In o + C  (D-4*)

where C is a constant equals to (In A - (Qc/R) 1/T). Now equation (D.4*) has the linear form: (y = mx + c). 

Therefore, plotting (In es) against (In a), at constant temperature, will give a straight line o f slope (n) and an 

intercept of C with the y-axis, as shown in Figure (D2).

o  A  at constant T

gradient = n

In (o)

Figure (D2): The linear relationship between In es and 1/T, at constant stress.

In addition to the above, the creep rate, es, in equation (D.l*) can be replaced by the time to fracture, tf, 

according to Monkman-Grant relationship which suggests that the product of the creep rate and the time to 

fracture is always constant (i.e. tf es= M). Therefore, equation (D.l *) can be re-written as:

M/tf = A on exp (-Qc/RT)...............................................................(D.5*)

Re-arranging equation (D.5*) will give a final form, such that:

tf = D o'n exp (Qc/RT)................................ .................................(D.6*)

where D is a constant equals to M/A. This equation can be re-arranged in a linear form by taking the natural 

logarithm of both sides to give:

In tf = In D - n In o + (Qc/R) 1/T......................................................(D-7*)

Now, there are two possibilities to solve this equation: at constant stress, a, or at constant temperature, T.

- Constant Stress: To solve equation (D.7*) at constant stress, this equation can then be written as:

In tf = (Qc/R) 1/T + E....................................... ................................  (D .8*)

where E is a constant equals to (In D - n In o).

Now equation (D .8 ) has the linear form: (y = mx + c). Therefore, plotting (In tf) against (1/T), at constant

stress, will give a straight line of slope (Qc/R) and an intercept of E with the y-axis, as shown in Figure (D3).
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a

gradient = Qc/R

1/T

Figure (D3): The linear relationship between In tf and 1/T, at constant stress.

- Constant Temperature: To solve equation (D.7*) at constant temperature, this equation can then be 

written as:

ln t f = - n ln a  + G  (D-9*)

where G is a constant equals to (In D + (Qc/R) 1/T). Now equation (D.9*) has the linear form: (y = mx + c). 

Therefore, plotting (In tf) against (In a), at constant temperature, will give a straight line of slope (-n) and an 

intercept o f G with the y-axis, as shown in Figure (D4).

at constant T

e

gradient = - n

Figure (D4): The linear relationship between In tf and In a, at constant temperature.

D .2  The Monkman-Grant Equation

The general form of the Monkman-Grant equation is:

M = tf ss  (D.10*)

This equation can be re-arranged in a linear form (y = mx), such that:

es=M /tf  (D .ll*)

Plotting (es) against (l/tf) gives a straight line o f a slope equals to M and an intercept of zero, as shown in 

Figure (D5).
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gradient =  M

1/tf

Figure (D5): The linear relationship between £s and l/tf.

Other scholars plotted tf against £s, as in Figure (D6), and obtained the power relationship of the form:

M '= tf esm  (D.12*)

where in this equation, the creep rate is raised to the power m. It is worthwhile noting that the value o f M' 

does not equal the value o f M in equation (D.10*)

Figure (D6): The relationship between tf and 6S.

Other Scholars plotted es against tf , i.e. by just swapping the axes as in Figure (D6), as show in Figure (D7) 

and obtained the form:

m *
M '= e stf .................................(D .l3 )

tr

Figure (D7): The relationship between £s and tf.

In this equation, the time to fracture is raised to the power m, in contrast to equation (D.12*) wherein the 

strain rate is raised to the power constant. Moreover, the value o f m and M' in this equation are different to 

those in equation (D.12 ).
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- The power law equation (D.l ) and Monkman-Grant equation (D.12 ):

In this case:

M 7 tf = 6sm ................................. (D.14*)

but from the power law equation, we know that: es = A on exp (-Qc/RT). Therefore:

M7 tf = [A a n exp (-Qc/RT)] m..................................................... (D. 15*)

simplifying and re-arranging equation (D .l5*)gives:

tf = (M7Am) o -m n exp (mQc/RT) .................................. (D. 16*)

From equation (D .l6*), plotting In tf against 1/T, at constant stress, gives a straight line of slope equals to 

mQc/R, as shown in Figure (D18).

gradient = m Qc/R

1/T

Figure (D8): The linear relationship between In tf and 1/T.

Alternatively, plotting In tf against In a, at constant temperature, gives a straight line of a slope equals to 

- m n, as shown in Figure (D9).

at constant T

e

gradient = - m n

In a

Figure (D9): The linear relationship between In tf and In a.

- The power law equation (D.l*) and Monkman-Grant equation (D.13 ):

In this case:

M 7 tfm = ss (D .1 7 )

but from the power law equation, we know that: es = A on exp (-Qc/RT). Therefore:
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M7 tf m = A o n exp (-Qc/RT)  (D. 18 )

simplifying and re-arranging equation (D. 18") gives:

tf = (M '/A )1/m a _n/m exp (Qc/mRT)  (D. 19*)

From equation (D .l9*), plotting In tf against 1/T, at constant stress, gives a straight line of slope equals to 

Qc/mR, as shown in Figure (DIO).

at constant o
a

gradient = Q c/m R

1 /T

Figure (DIO): The linear relationship between In tf and 1/T.

Alternatively, plotting In tf against In o, at constant temperature, gives a straight line of a slope equals to 

- n/m, as shown in Figure (D ll) .

at constant T

D

gradient =  - n/m

In o

Figure (D ll) :  The linear relationship between In tf and In a.

D .3  The Larson-Miller Equation

The general form o f Larson-Miller equation is:

(D.20 )PLM = T (C + log t) ......................

This equation can be re-written in a linear form (y = mx + c), such that:

log t = PLM (1/T) - C  (D.21*)

Plotting (log t) against ( 1/T), at constant stresses, gives straight lines o f a slope equals to PLM and an intercept

point with the y-axis equals to - C, as shown in Figure (D12).
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at constant cr

gradient = P[

1/T

Figure (D12): The linear relationship between log t and 1/T, at constant stress, based on equation (D.21*).

The average value of C for Titanium IMI834 was around 20. Using this value, the stress was then plotted 

against equation (D.20*), i.e. against T (20 + log t), which superimposed all the data points onto a single 

curve, as shown in Figure (D13).

T (20 + log t)

Figure (D13): Finding the relationship between stress, o, and time, t.

The stress rupture curves (o against t) were then obtained, at each temperature, by substituting random values 

of time (from 0 to, say, l*10n seconds). The actual creep data were then projected on those curves in order 

to evaluate the predictive curves capability of fitting those data.

D .4  The Manson-Haferd Equation

The general equation o f Manson and Haferd is:

P m h  = (log t - log ta) / (Ta - T) .............................. (D.22*)

This equation can be re-written in the linear form (y = mx + c), as:

log t = - Pmh T + {Pmh Ta + log ta}  (D.23 )

Plotting (log t) against (T), at constant stresses, gives a linear line with a slope of ( - P m h )  and an intercept

value of ( P m h  Ta + log ta), as shown in Figure (D14), where log ta and Ta are the intercept points with the y

and x axes, respectively.
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-  A

gradient = - P,

T

Figure (D14): The linear relationship between log t and T, at constant stress, based on equation (D.23*).

Hence, obtaining the average value of PMh will help finding the value of the constant ta and Ta. This can be 

done in two successive steps: firstly, the value o f ta can be calculated from Figure (D14) by substituting Ta = 

0 and finding the corresponding value of log ta and, secondly, substituting log ta = 0 and finding the 

corresponding value of Ta, as shown in Figure (D15).

Find value of t, when T, = 0-  A

Find value of T, when log t, = 0

Figure (D15): Finding the value o f ta and Ta, at constant stress.

For Titanium IMI834, the calculated values of the constants were: PMH = 0.025, Ta = 1061 and log ta = 

29.713. Substituting the values of ta and Ta into equation (D22*) gives:

Pmh = (log t - 29.713) / (1061 - T)  (D.24*)

A relationship between the stress and the time can be obtained, at each temperature, by plotting the stress, o, 

against equation (D.24*), i.e. against (log t - 29.713) / (1061 - T), as shown in Figure (D16).

At this stage, the stress rupture curves (a against t) were obtained, at each temperature, by substituting 

random values of time (from 0 to, say, l*10n seconds). The actual creep data were then projected on those 

curves in order to assess the accuracy of the fitting curves.

at constant T

(log t - 29.713)/(1061-T)

Figure (D16): Finding the relationship between stress, a, and time, t, at each temperature, T.
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D .5  The O rr-Sherby-D orn Equation

The general form o f Orr-Sherby-Dom equation is:

Po s d  = C/T - log t  (D.25*)

This equation can be re-arranged to give the linear form (y = mx + c), as:

logt = C ( l /T ) -P OSD  (D.26*)

Plotting (log t) against (1/T), at constant stresses, gives straight linear lines of a slope equals to C and an

intercept with the y-axis equals to - P 0 sd , as shown in Figure (D 1 7 ) .

gradient = C

1/T

Figure (D17): The linear relationship between log t and 1/T, at constant stress, based on equation

The value o f the constant C that was obtained from the analysis o f Titanium 1MI834 data was around 18,427 

based on Figure (D17) analysis. The stress was then plotted against equation (D.25 ), i.e. against (C/T - log 

t), by substituting 18,427 instead of C, which forced the data to be superimposed onto a single curve. 

However, changing the value of C gave a better fit o f the data where it was observed that the best fit was 

achieved when the value of C was 20,000, as shown in Figure (D18).

The stress rupture curves (o against t) were obtained, at each temperature, by substituting values of time 

(between 0 and, say, 1*10" seconds). The actual creep data were then projected on those curves so as to 

assess the accuracy of the predictive curves.

to

u

20000/T - log t

Figure (D18): Finding the relationship between stress, o, and time, t.
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D .6  The Manson-Succop Equation

The genera] form o f Manson and Succop equation is:

PMS = log t + CMS T .............................. (D.27*)

This equation can be re-arranged in a linear form (y = mx + c), such that:

log t = - Cms T + Pms .............................. (D.28 )

Plotting (log t) against (T), at constant stresses, gives straight lines of a slope equals to - CMS and an intercept 

with the y-axis equals to PMs> as shown in Figure (D19).

at constant o-  A

gradient = - C,

T

Figure (D19): The linear relationship between log t  and T, at constant stress.

The average value of CMS for Titanium IMI834 was around 0.025. Using this value, the stress was then 

plotted against equation (D.27 ), i.e. against (log t + 0.025 T) which superimposed all the data points onto a 

single curve, as shown in Figure (D14).

D '
•T
$u

log t + 0.025 T

Figure (D20): Finding the relationship between stress, o, and time, t.

The stress rupture curves (a against t) were then obtained, at each temperature, by substituting values of time 

(from 0 to, say, 1*10" seconds). The actual creep data were then projected on those curves in order to 

compare the predictive capability of those curves with the actual data.
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D .7  The Hyperbolic -Tangent Equation

The general form o f the Hyperbolic-Tangent equation is:

a  =  ( c t t s / 2 )  (1 - tanh (k In (t/tj)))  (D.29*)

This equation can be re-arranged in a linear form (y = mx + c), such that:

tanh'1 ( 1 - 2  (o/aTs)) = k l n t - k l n t j   (D.30*)

Plotting {tanh' 1 ( 1 - 2  (c /cTs))} against (In t), at constant temperatures (and thus constant oTS), gives a straight 

line of slope k and an intercept o f (k In t;), as shown in Figure (D21).

at constant T

gradient = k

In t

Figure (D21): The linear relationship between tanh"1 ( 1 - 2  (o /o ts ))  and In t, at constant temperatures.

From these linear plots, the value o f the constant k and f  can be calculated at each temperature. Substituting

the values o f these constants into equation (D.29*) gives a direct relationship between the stress, o, and time, 

t, from which the stress rupture curves can be constructed.

D .8  The Goldhoff-Sherby Equation

The general equation o f Goldhoff and Sherby is:

PGS = (log t - log ta) / ( 1/T - 1/Ta) ...................(D.31*)

This equation can be re-written in the linear form (y = mx + c), as:

log t = PGS 1/T + { log ^ - P mh  1 /T .}................................... ...................(D.32*)

Plotting (log t) against (1/T), at constant stresses, gives a linear line with a slope of (PGS) and an intercept 

value of (log ta - PMH 1/Ta), as shown in Figure (D22), where log ta and 1/Ta are the intercept points with the y 

and x axes, respectively.

Hence, obtaining the average value of PGS will help finding the value of the constant log ta and 1/Ta. This can 

be done in two successive steps: firstly, the value of log ta can be calculated from. Figure (D22) by 

substituting 1/Ta = 0 and finding the corresponding value of log ta and, secondly, substituting log ta = 0 and 

finding the corresponding value of 1/Ta, as shown in Figure (D23).
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i t  com Unto

w

IT

Figure (D22): The linear relationship between log t and T, at constant stress, based on equation (D.32 ).

For Titanium IMI834, the calculated values o f the constants were: 1/Ta = 0.0008 and log ta = 15.824. 

Substituting the values of ta and Ta into equation (D.31*) gives:

PGS = (logt — 15.824)/(1 /T -0 .0008)  (D.33*)

F in d v a lu e o f  lo g t,w h e n  1/T4= 0

F in d v a lu e o f  1/T .w h e n  lo g t ,= 0

1 /T

Figure (D23): Finding the value of log ta and 1/Ta, at constant stress.

A relationship between the stress and the time can be obtained, at each temperature, by plotting the stress, a, 

against equation (D.33*), i.e. against (log t -  15.824) / (1/T -  0.0008), as shown in Figure (D24).

At this stage, the stress rupture curves (a against t) were obtained, at each temperature, by substituting 

random values of time (from 0 to, say, l*10n seconds). The actual creep data were then projected on those 

curves in order to assess the accuracy of the fitting curves.

•  '

1

( k ; t - 15.824)/(1/T -8.0008)

Figure (D24): Finding the relationship between stress, a, and time, t, at each temperature, T.
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D .9  The 0 - P r o je c t io n  E q u a t io n s

The general equation o f this technique is the (4-0 equation) of the form:

e = 0i[1-exp (-02t)] - 03[1-exp (04t)]  (D.34*)

where the first right hand side of this equation describes the primary creep whereas the second half is a 

description of the tertiary stage, as show in Figure (D25).

(a) Primary creep: €p = 0, (1- exp (-02t))

01 quantifies the  
total prim ary 

strain02 determ ines the 
curvature o f  the 
prim ary creep

Time

B /

(b) Tertiary creep: € T = 03 (exp (04t) -1 )

fracture

94 determ ines the 
curvature  o f  the 

tertiary  creep
03 scales the 
tertiary  creep 

strain

Time

Figure (D25): The description o f the: (a) primary creep, and (b) the tertiary creep, using the 9-method.

Differentiating equation (D.34*) provides the creep rate equation as:

de/dt = e = 0i 02 exp (-02t) + 03 04 exp (04t)  (D.35*)

At any point along the creep curve, equation (D.35 ) provides a mean to measure the creep rate value, as 

shown in Figure (D26).

de/dt = e (at any point)

Time

Figure (D26): Calculating the creep rate value at any point along the creep curve using equation (A.32*).

To find the minimum creep rate point, a plot o f (e) against (t) provides the easiest way to read the point at 

which the minimum creep rate takes place, as shown in Figure (D27).

Differentiating equation (D.35*) gives:

de/dt = - 0] 022 exp (-02t) + 03 042 exp (04t)  (D.36*)
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de/d t (at any poin t)

the m in im um  creep  rate  poin t

Time, t

Figure (D27): Determining the minimum creep rate point.

From this equation, the minimum creep point (tm, sm) occurs when de/dt = 0, which means, at t = tm:

de/dt = - 0i 022 exp (-02 tm) + 03 042 exp (04 tm) = 0 

-> 01022 / exp (02t j  = 03 042 exp (04t j

-> 0 1 022 / 03 042 = exp (02tm) exp (04tm) = exp (02 + 04) tm 

taking the natural logarithm for both sides gives:

In (©, e22 / e3 e42) = (e2 + e4)

which gives the time at which the minimum creep rate point takes place, as:

tm= (i/(e2+ 9,» in (9, e22/ e3 e,2) (D.37*)

At tm, calculate em from 
equation (D.34*) when t = tn

At tm, calculate £m from 
equation (D.35*) when t = t„

- Calculating the primary creep (cP) and the tertiary creep ( c t ) :

The general creep curve can be plotted as in Figure (D28). From this figure, the primary creep can be 

calculated according to:

en -  e - em tm ................................... (D.38 )p m  m  m v 7

where em and &m can be calculated from equation (D.34*) and (D.35*) at t = tm, respectively, and tm can be 

calculated from equation (D.37*).

The tertiary creep can be calculated, from the same figure, according to:

eT = ef - ep  (D.39*)
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where ep is calculated from equation (D.38 ) and ef is either obtained from the actual creep curves at fracture 

(i.e. at t = tf) or it can be calculated, from equation (D.34*), at t = tf (NB. in both cases, tf is obtained directly 

from the actual creep curves at fracture).

.5  A

t i m e

Figure (D28): The general creep curve showing the necessary strain values and the corresponding time values. 

The modified form of the 4-0 method is the 6-0 o f the form:

e = 0][l-exp (-02t)] - 03[l-exp (04t)] + 05[l-exp (-06t)]  (D.40*)

In this equation, the first two hand right terms have the same physical meaning of equation (D.34 ) whereas 

the third term was added to improve the fit o f the primary creep. The same sequence starting from equation

(D.34*) up to equation (D.39*) can be applied to equation (D.40*) in order to get the full description o f the

creep behaviour.

D .1 0  The Wilshire Equations

The general form o f this equation is:

o/oTS = exp (-ki [tf exp (-Qc*/RT)]U)....................... ...................................(D.41*)

this equation can be written in a linear form (y = mx + c) by taking the double-natural logarithm o f both 

sides, such that:

In (-In g/cts) = u In (tf exp (-Qc*/RT)) + In k] .....................................(D.42*)

- The value of Qc*;

The value of Qc* can be obtained by plotting (In tf) against (1/T) at constant o/oTS, unlike Qc that was 

obtained at constant a, based on:

tf = D* ( c / c t s )"1 exp (Qc*/RT).................. ................................... (D.43*)

this will give a straight line of slope (Qc*/R) from which Qc* can be calculated, as shown in Figure (D29).
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at constant cs/a.
c

gradient = Qc‘/R

1/T

Figure (D29): The linear relationship between In tf and 1/T.

- The value of ki and u:

From the linearity o f equation (D.42*), the value of k] and u can be obtained by plotting In (-In c / g T s )  against 

In (tf exp (-QcVRT)), as shown in Figure (D30).

kink  point

gradient =  u 

Intercept =  In k.

In (t, exp (-QcVRT))

Figure (D30): The relationship between In (-In a /aTS) and In (tf exp (-Qc /RT)).

The slope of these plots represents the value of u whereas the intercept with the y-axis is the value of In kj. 

However, it was observed that there was always a ‘kink’ point in these plots which separated the data into 

two linear regimes, namely: the high and the low stress regimes. Based on this fact, different values of u and 

k] were obtained for these two regimes.

Accordingly, having obtained the value of Qc*, k] and u for the high and the low stress regimes, the stress 

rupture curves (stress versus the time) can be constructed from the direct relationship between the stress and 

the time in equation (D.41*).

The other Wilshire equation is o f the form:

a/oTS = exp (-k2 [£„, exp (Qc*/RT)]V)  (D.44*)

this equation can be written in a linear form (y = mx + c) by taking the double-natural logarithm o f both 

sides, such that:

In (-In a/aTS) = v In (em exp (Qc*/RT)) + In k2 .....................................(D.45*)
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- The value of Qc*:

The value of Qc* can be obtained by plotting (In em) against (1/T) at constant c/oTS, unlike Qc that was 

obtained at constant o, based on:

£„, = A* (o/oTS)n exp (-Qc*/RT)  (D.46*)

this will give a straight line of slope (-Qc*/R) from which Qc* can be calculated, as shown in Figure (D31).

at constant a/a.

gradient = - Q c '/R

1/T

Figure (D31): The linear relationship between In £mand 1/T.

- The value of fo and v:

From the linearity of equation (D.45*), the value of k2 and v can be obtained by plotting In (-In a/aTs) against 

In (em exp (Qc*/RT)), as shown in Figure (D32).

kink point

gradient = - v 

Intercept = In k:

In (tm exp (QcVRT))

Figure (D32): The relationship between In (-In a/aTS) and In (em exp (Qc*/RT)).

The slope of these plots represents the value of -v whereas the intercept with the y-axis is the value of In k2. 

However, it was observed that there was always a ‘kink’ point in these plots which separated the data into 

two linear regimes, namely: the high and the low stress regimes. Based on this fact, different values of v and 

k2 were obtained for these two regimes. Accordingly, having obtained the value of Qc*, k2 and v for the high 

and the low stress regimes, the stress rupture curves (stress versus the minimum creep rate) can be 

constructed from the direct relationship between the stress and the minimum creep rate in equation (D.41*).
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The last Wilshire equation is o f the form:

c/oTS = exp (-k3 [tg exp (-Qc7RT)]w)  (D.47*)

This equation can be considered as a special case of equation (D.41*) just by replacing the time to fracture, tf, 

by the time required to reach a certain strain, te. This equation can be written in a linear form (y = mx + c) by 

taking the double-natural logarithm o f both sides, such that:

In (-In a /cTS) = w In (te exp (-Qc*/RT)) + In k3 .................................... (D.48*)

- The value of Qc*:

The value o f Qc* can be obtained by either plotting (In tf) or (In £m) against (1/T) at constant a/oTS, as 

discussed earlier in Figure (D29) and (D31), respectively.

- The value of fa and w :

From the linearity o f equation (D.48*), the value o f k3 and w can be obtained by plotting In (-In c / g Ts )  against 

In (tg exp (-Qc*/RT)), as shown in Figure (D33).

kink point

g rad ien t =  w  

In te rcep t =  In k 3

In ( t t  ex p  ( -Q c '/R T ) )

Figure (D33): The relationship between In (-In o /oTS) and In (te exp (-Qc*/RT)).

The slope of these plots represents the value of w whereas the intercept with the y-axis is the value of In k3. 

However, it was observed that there was always a ‘kink’ point in these plots which separated the data into 

two linear regimes, namely: the high and the low stress regimes. Based on this fact, different values o f w and 

k3 were obtained for these two regimes.

Accordingly, having obtained the value o f Qc*, k3 and w for the high and the low stress regimes, the stress 

rupture curves (stress versus the time), for a certain strain level, can be constructed from the direct 

relationship between the stress and the time in equation (D.47 ).

The advantage of equation (D.47*) can be summarized in that at any strain level, the time required to reach 

that strain level can be read directly from the creep curves at multiple stresses and temperatures and thus, the 

stress rupture curves can be constructed based on these readings. Similarly, equation (D.41 ) presents a way
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to define the end point o f a creep curve. In other words, the time to fracture can be read from the creep curves 

at multiple stresses and temperatures alongside the corresponding strain at fracture. These values can then be 

entered into this equation and the stress rupture curves can be constructed accordingly. Another way of 

constructing the long-term predictive curves can be based on equation (D.44*) wherein the minimum creep 

rates are required to start the analysis. Once these values are obtained and entered into this equation, the 

stress versus the minimum creep rate curves can be constructed at any stress and temperature.

In conclusion, equation (D.41*) defines the end point of a creep curve whereas equation (D.47*) defines any 

point along the creep curve and equation (D.44*) defines the point where the minimum creep rate takes place 

during creep.


