
 

 Swansea University E-Theses                                     _________________________________________________________________________

   

Impact and fatigue properties of natural fibre composites.
   

Shahzad, Asim
   

 

 

 

 How to cite:                                     _________________________________________________________________________  
Shahzad, Asim (2009)  Impact and fatigue properties of natural fibre composites..  thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa43056

 

 

 

 Use policy:                                     _________________________________________________________________________  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43056
http://www.swansea.ac.uk/library/researchsupport/ris-support/


 
Impact and Fatigue Properties of 

Natural Fibre Composites

Asim Shahzad

Submitted to the University of Wales in fulfilment of the 

requirements for the Degree of PhD

Swansea University 
Prifysgol Abertawe

SWANSEA UN‘VsRSIT\ 2009
U 3R A R Y



ProQuest Number: 10821448

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10821448

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



ABSTRACT

Low velocity impact and fatigue properties of hemp fibre reinforced polyester 
composites have been studied. The specific tensile properties and impact damage 
tolerance of hemp fibre composites were found to be very low compared to CSM glass 
fibre composites. However hybridisation of hemp with glass fibres even at low 
concentrations improved their tensile and impact properties considerably.

Despite having poorer absolute fatigue strength, hemp fibre composites exhibited better 
fatigue sensitivity than CSM glass fibre composites in tension-tension fatigue. This 
correlated well with the lower stiffness degradation observed during fatigue of hemp 
fibre composites than glass fibre composites at the same normalised stress level. Also, 
images taken during fatigue loading showed that hemp fibre composites were better at 
resisting crack formation and growth than glass fibre composites.

Alkalisation pre-treatment of hemp fibres at low concentrations of 1% and 5% NaOH 
solution resulted in improvements in tensile and fatigue properties of composites made 
from these fibres but no such improvements were observed for 10% alkalised fibre 
composites. The improvements were attributed to improvement in fibre/matrix bonding 
following this treatment which was also confirmed by SEM images. No improvement in 
impact damage tolerance was observed for any of these three alkalised fibre composites.

Immersion of undamaged and impact damaged hemp fibre composites in water 
produced a degradation in tensile properties, particularly stiffness, and made them more 
ductile and susceptible to failure by shear. Most degradation occurred within the first 
100 hours of immersion and longer immersion in water for up to 400 hours did not 
result in any further degradation, although there was some evidence of further reduction 
in strength over much longer periods. However, there was no deterioration in fatigue 
strength and fatigue sensitivity of hemp fibre composites following immersion in water, 
reinforcing the good fatigue properties of these composites.
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1. INTRODUCTION

Global warming, environmental pollution, greenhouse gases, sustainability, 

recycling -  these are all vital issues of our modem age which have gained 

increasing importance in the last decade or so. Read any newspaper on any 

given day and there is expected to be some reference to these issues in one 

way or the other. The award of the 2007 Nobel Peace Prize to the Intergovernmental 

Panel on Climate Change (IPCC) and the American politician A.A. A1 Gore “for their 

efforts to build up and disseminate greater knowledge about man-made climate change, 

and to lay the foundations for the measures that are needed to counteract such change” 

underlines the importance these issues have acquired in this age. As the Nobel Peace 

Prize citation correctly stated, whereas in the 1980s global warming seemed to be 

merely an interesting hypothesis, the 1990s produced firmer evidence in its support. In 

the last few years, the connections have become even clearer and the consequences still 

more apparent. Indeed these issues have become so important that they form an integral 

component of manifestos of political parties (both Labour and Conservative in UK).

The much publicised Stem Report [1] in 2006 put the issue in perspective by 

concluding that the concentration of greenhouse gases could reach double its pre- 

industrial level as early as 2035, virtually committing us to a global average temperature 

rise of 2°C. It estimated that the overall costs and risks of climate change will be 

equivalent to losing at least 5% of global GDP each year. One of the remedial measures 

it suggested was that the support for energy Research and Development should at least 

double, and support for the deployment of new low-cost technologies should increase 

up to five fold.

According to The King Review of Low Carbon Cars [2], in 2000, cars and vans 

accounted for 7% of global carbon dioxide emissions. Under a business-as-usual 

scenario, global road transport emissions are projected to double by 2050.
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The invention of polymers in early 20th century laid the foundation of a revolution in 

materials. This revolution had an inherent drawback with respect to the environment 

because of poor biodegradability of these materials. This meant that disposal of this 

material put extra burden on already dwindling landfill resources in most countries. The 

annual global disposal of millions of tonnes of plastics, especially from packaging, has 

raised the demands for looking for new means of managing this non-biodegradable 

waste. The perfect example of this is the polyethylene shopping bag. In developing 

countries like Pakistan, which lack the basic infrastructure for proper disposal of these 

materials, these bags have become a nuisance and a major source of pollution in cities 

and even in villages.

These environmental issues have resulted in considerable interest in the development of 

new composite materials based on biodegradable resources, such as natural fibres, as 

low-cost and environment-friendly alternative for synthetic fibres. Hemp, sisal and flax 

are some examples of the natural fibres being used in composite materials. Synthetic 

polymers have been conventionally used as matrices in composite materials which are 

not eco-friendly. Now new matrix materials are also being developed, based on natural 

and renewable resources, for the development of ‘green’ biocomposites. Polyactic acid, 

soy oil, and lignophenolic resins are some examples of such biodegradable matrix 

materials.

Making chemical products and new material from renewable and biodegradable 

resources in not a new idea [3]. Most of the chemical products and materials were made 

from renewable resources until the early part of the 20th century. The tremendous 

success and growth of the petrochemical industry in the 20th century slowed the growth 

of bio-based products. Increase in environmental awareness over the last couple of 

decades has resulted in a renewed interest in natural materials, and issues such as 

sustainability, recyclability and environmental safety are becoming increasingly 

important. This has necessitated the introduction of new materials and products based 

on natural materials. It is estimated that about two-thirds of $1.5 trillion world chemical 

industry can be based on renewable resources [3]. Environmental legislation and 

consumer pressure are forcing manufacturers of materials and end-products to consider 

the environmental effects of their products at all stages of their life cycle. This has 

resulted in a ‘cradle-to-grave’ approach, which encompasses recycling and ultimate 

disposal in the production process [4].
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A directive by the European Union (2000/53/EC) has stipulated that by 2015 vehicles 

must be made of 95% recyclable materials, of which 85% can be recovered through 

reuse or mechanical recycling and 10% through energy recovery or thermal recycling.

All member states are required to transpose the directive into national laws by April 

2012. According to the Environment Agency, around 2 million vehicles reach the end of 

their lives in the UK each year. Currently between 74-80% of the weight of a typical 

end-of-life vehicle is re-used or re-cycled. The directive aims to reduce the amount of 

waste from vehicles and includes requirements for member states to introduce strict 

standards for the treatment of the end-of-life vehicles at authorised treatment facilities 

[5]. The directive is of particular concern to composite materials [6] since economically 

feasible recycling and re-use of these materials is relatively difficult to achieve. Hence it 

is vitally important to develop new environment friendly and easily recyclable 

materials.

As a consequence, the use of natural fibre composites in automotives has increased in 

the last two decades. Interior automobile parts (headrests, seat backs, armrests, door 

panels, front and rear panels, trunk liners, headliners, etc.) are the primary market for 

natural fibre composites, which are expected to continue rapid market penetration. In 

2000, the European car industry used 28,300 tons of natural fibres of which flax made 

up 20000 tons, jute 3700 tons and hemp fibre 3500 tons [7]. According to the Business 

Communications report, the global market for natural fibre composites is growing at 

9.9% per year [8].

In automotive parts, natural fibre-composites can reduce the energy needed for 

production by 80%. DaimlerChrysler have introduced flax fibre reinforced polyester 

composites in engine and drive train covers of buses and Mercedes passenger cars. They 

are also using sisal fibre in the production of various car components. Interior parts 

from natural fibre-polypropylene and exterior parts from natural fibre-polyester resin 

are being made. About 30 different natural fibre reinforced materials are being currently 

used in the vehicle interior of Mercedes-Benz C-Class model [9]. The Toyota Motors 

have made a commercial vehicle with door trim panels made of kenaf-PP composite and 

a cover for a spare tyre made of kenaf-PLLA composite. Araco Corporation, Japan, has 

made an electrical vehicle with a body totally made of natural fibre-based composite 

(kenaf fibre plus lignin based matrix extracted from kenaf) [10].
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Further applications are becoming evident in the building and construction industry and 

beyond. It has been estimated that construction and post-construction activities consume 

50% of all material resources globally and 70% of global timber products. In addition 

45% of all energy generated is used to heat, ventilate and light buildings and 40% of 

water is used for sanitation and other uses in buildings. The current population increase 

rate of 73 million per year worldwide will obviously place higher demands on the 

consumption of raw and natural materials. So there is greater need to turn to renewable, 

sustainable and recyclable materials for use in the construction industry.

In the US, Canada and Australia, wood fibre based composite materials have been 

developed for use in construction industry for some time. The Council for Scientific and 

Industrial Research (CSIR), South Africa, is investigating the applications of these 

composites in construction, with the aim of producing construction materials that are 

less harmfid, recyclable and made mainly from renewable materials (www.csir.co.za). 

Significantly their studies have confirmed that natural fibre composites fall within the 

targeted mechanical properties range for tensile strength, flexural strength, and impact 

strength for load-bearing elements in buildings.

The developing countries are also not lagging behind in this field. In India and South 

America, jute and sugar cane fibres are used in low cost housing. In India, composites 

made from jute and sisal fibres are being explored for their potential use as panels, 

doors, roofing sheets, and shuttering [11]. In China husk based composites have 

recently been developed for planking. Projects for manufacturing natural fibre 

composites are already underway in countries like India, Guatemala, Vietnam, Brazil, 

Sri Lanka, and Madagascar. Spider silk has recently emerged as an important material 

to be used as fibre because of its very high strength and toughness [12]. Novel nano­

composites are being made by combining organic biopolymers and nanoscopic 

inorganic particles on a molecular scale. The new nano-composites offer new 

opportunities in advanced biomedical applications since they are biodegradable and 

biocompatible. All these exciting developments point to a promising future of natural 

fibre composites.

Food and Agriculture Organisation (FAO) of the United Nations has identified natural 

fibre composites as a vital source of achieving sustainability in rural areas in developing 

countries in its comprehensive report “Applications of Natural Fibre Composites in the

4



Development of Rural Societies” [13]. The report identifies the following applications 

of natural fibre composites for development in developing countries: roofing panels, 

fluid containers, constructive bridge parts, and small boats. The fact that most 

developing countries still strongly depend on their rural sector, which supplies the raw 

materials for natural fibre composites, gives a good link to transfer the technology, the 

so-called natural fibre link. The link is strongest when making natural fibre composites 

part of the rural industry. A sustainable development approach is pursued, meaning that 

after the introduction of the technology, the receiving country is capable of independent 

further development.

FAO has also designated 2009 as the International Year of Natural Fibres 

(www.naturalfibres2009.org). The objectives have been listed as raising awareness and 

stimulating demand for natural fibres, promoting the efficiency and sustainability of the 

natural fibres industries, encouraging appropriate policy responses from governments to 

the problems faced by natural fibre industries and fostering an effective and enduring 

international partnership among the various natural fibres industries.

However all this development brings its own challenges. The economic success of these 

materials is not obvious at present. Factors such as land fill tax, agricultural land use 

and high costs of recycling make the economic viability of these materials much more 

complex. Consumer demand is not yet sufficient to drive market forces. The energy 

involved in harvesting and treating the fibres should not be more detrimental to the 

environment than the glass processing or the waste disposal. Using a non-recyclable 

thermosetting matrix may also nullify the advantages of using natural fibres. Then there 

are the critical issues of fire/matrix interfacial adhesion, reduction of moisture 

absorption, reduction of undesirable odours during processing, fire and creep resistance, 

durability, and inconsistent mechanical properties of natural fibre composites.

Taking all factors into account, the evidence points towards a promising future of these 

materials, and hence the need of ample investment and research to explore their 

potential to replace conventional materials. This project is also a step in this direction.
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1.1 AIMS OF THE PROJECT

The aims of this project are to address some of the issues of hemp fibre reinforced 

polyester composites by carrying out a series of mechanical tests, particularly a study of 

the performance following impact, i.e., assessing the residual properties including 

tensile and fatigue characterisation. Similar testing of CSM glass fibre composites will 

also be done and the results will be compared. The effects of hybridisation of hemp 

fibres with glass fibres on their mechanical properties will be studied. The study also 

aims to assess the impact of various pre-treatments of fibres prior to incorporation in the 

matrix to improve fibre-matrix bonding. Additionally, it aims to consider the effects of 

environmental conditions such as water immersion, UV radiation, etc, on the 

performance of hemp fibre reinforced polyester composites.
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2. LITERATURE REVIEW

2.1 COMPOSITE MATERIALS

There are a number of possible definitions of composite materials but, broadly 

speaking, a composite material can be defined as “a heterogeneous mixture of 

two or more homogenous phases which have been bonded together” [14]. In 

order to qualify as a composite material, the constituent phases should be 

present in reasonable proportions, they should have different properties from each other 

and from the resultant material, and they should be intimately mixed and combined to 

give the resultant composite material [15].

Like many other scientific inventions, man has learnt from Mother Nature how to use 

the synergistic effects of two or more constituent materials to increase the strength and 

stiffness of the resultant material. Many natural materials designed for load-bearing are 

composites in structure, wood and bone being the best examples. Wood is made up of 

fibrous chains of cellulose molecules in a lignin matrix, while bones are essentially 

composed of hard inorganic crystals in a matrix of tough organic constituent called 

collagen. Typical tensile strengths and tensile modulus values of wood and bone are 100 

and 140 MPa, and 14 and 28 GPa respectively [16].

All materials, in general, are at their strongest when in fibre form compared to bulk 

form. This is because the defects found in the bulk material are reduced to virtually zero 

in the fibre form because of the small cross sectional dimensions of the fibre. For 

example, carbon in monolithic form has elastic modulus of 10 GPa and flexural strength 

of 20 MPa. But in fibrous form the same material has elastic modulus of 290 GPa and 

tensile strength of 3100 MPa [15]. This increased strength of fibres can be utilized by 

stacking them together in some way. For maximum utilization, a matrix for embedding 

these strong fibres is required to provide a strong and stiff material for engineering 

purposes. The properties of the matrix should complement the properties of fibres. The 

matrix serves to bind the fibres together, transfer loads to the fibres, and protect them
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against environmental attack. The resulting composite material combines very strong 

and stiff fibres within a matrix to form a material of much greater strength, stiffness and 

toughness than the fibres and the matrix acting alone. The fibres are also termed as the 

reinforcement in the composite material.

2.1.1 A Brief History of Composite Materials

Composite materials have been is use since pre-historic times. The oldest reference is 

found in the Bible, Book of Exodus, about difficulty of making bricks without straw. In 

the beginning of the 20th century, the invention of polymers was the catalyst for the 

development of composite materials. It was soon realised that polymers could be used 

efficiently as matrices for composite materials. The first such composites were phenolic 

resin reinforced with asbestos fibres. The invention of fibreglass (glass fibre reinforced 

polyester composites) resulted in a big surge in the use of these materials in various 

applications. The first fibreglass boat was made in 1942. By this time reinforced plastics 

were also being used in aircraft and electrical components. The first boron and high 

strength carbon fibres were introduced in early 1960s and were soon used in high- 

performance applications in aircraft components. Metal matrix composites were 

introduced in 1970. Dupont developed aramid fibres (Kavlar®) in 1973. By late 1970s, 

composites were being widely used in aircraft, automotive, sports, and biomedical 

industries. In 1980 a complete composite bicycle was made. The 1980s saw a 

significant increase in high modulus fibre utilisation in composites (new metal-matrix, 

ceramic-matrix, carbon-carbon composites) for high temperature applications. In 1990s 

increasing concerns about the environmental pollution shifted the focus to 

biodegradable composites made of natural fibre reinforced by either synthetic or natural 

biodegradable matrix. Concurrently, more high performance composite materials were 

developed which found applications in micro-light (man-powered) aircraft, Formula 1 

car chassis, un-stayed masts, racing sails, vaulting poles, squash and tennis rackets, 

fishing rods, golf clubs, helicopter rotor blades, commercial and military aircrafts, and 

light weight construction in civil engineering [17]. According to one estimate [17], the 

proportion of weight of composite materials in the airframe of large international 

airliners was about to pass the 50% mark in 2008.

The largest static composite structures are bridges which are made of decking material 

composed of fibreglass [18]. In 2008 a full-size locomotive pulling 26 heavy axle load
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coal cars crossed the first composite railroad bridge in the world, produced by HC 

Bridge Company, USA [19].

Among big mobile composite structures is the B-2 stealth bomber which is made of 

graphite-epoxy composite. The gradual replacement of metals by composite materials is 

best epitomised in the world’s largest aeroplane Airbus A380, “the most spacious and 

efficient airliner ever conceived” [20]. A twin-deck airliner with 555 seat capacity, A- 

380 made its first flight in April 2005 and is now operating successfully. Composite 

materials make up 25% of the A380's airframe by weight. The reduced weight by using 

composites means that the plane bums 17% less fuel per seat and operating costs are 

15% lower per passenger than today’s largest aircraft. Carbon-fibre reinforced plastic, 

glass-fibre reinforced plastic and quartz-fibre reinforced plastic are used extensively in 

wings, fuselage sections, tail surfaces and doors. It is the first commercial airliner with a 

central wing box made of carbon fibre reinforced plastic, and it is the first to have a 

wing cross-section that is smoothly contoured.

Within the last 50 years, there has been a rapid increase in the production and use of 

composites. There are now numerous applications where composite materials have 

replaced traditional materials, mostly in automotive, aerospace, marine, and process 

applications. The total worldwide usage of polymer composites is over 8 million tonnes 

per annum, while their market value is between 10 and 15 billion pounds and the market 

is growing at a rate of 5-10% per annum [21]. Predictions suggest that the demand for 

composites will continue to increase with metal, ceramic and natural materials based 

composites making a more significant contribution.

2.2 CONSTITUENTS OF COMPOSITE MATERIALS

Composites consist of one or more discontinuous phases embedded in a continuous 

phase. The discontinuous phase is usually harder and stronger than the continuous phase 

and is called the reinforcement, whereas the continuous phase is termed the matrix. In 

addition, composite materials also have a third phase on a microscopic scale, called the 

interface or interphase.

Properties of composites are strongly influenced by the properties of the constituents, 

their concentration and the interaction between them. Concentration of the constituents 

is usually measured in terms of volume or weight fraction. The contribution of a
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constituent to the overall properties of the composite is determined by this parameter. It 

is generally regarded as the single most important parameter influencing the composite 

properties [22]. It is also an easily controllable manufacturing variable used to alter the 

properties of the composite.

2.2.1 Reinforcements

The role of the reinforcement in a composite material is fundamentally one of providing 

the main strength and stiffness to the composite material. A wide range of 

reinforcements, mostly in the form of fibres, is now available commercially. A high 

fibre aspect ratio (length/diameter) permits very effective transfer of load via matrix to 

the fibres, thus making fibres a very effective and attractive reinforcement material. All 

of the different fibres used in composites have different properties and so affect the 

properties of the composite in different ways. Other forms of reinforcements used in 

composites are particles, whiskers and flakes. All reinforcements have high strength and 

stiffness and relatively low density.

Glass, carbon and aramid fibres are the principal reinforcements used in polymer matrix 

composites. The most important reinforcement fibre is E-glass fibre because of its low 

cost. Carbon, graphite and aramid fibres are exceptional because of their high stiffness. 

Ceramic fibres, whiskers and particles are used to reinforce metal and ceramic matrices. 

Natural fibres are now being increasingly used in composites. The orientation of the 

reinforcement affects the isotropy of the composite. Equi-axed, uniformly dispersed 

particles or randomly oriented short fibres make isotropic composites whose properties 

are independent of the direction. The hemp fibres used in this research were in the form 

of non-woven randomly oriented mat, and hence the composites made from them were 

expected to have isotropic properties. Using continuous fibres in composites generally 

result in anisotropic material whose properties vary in different direction within the 

material, but they are optimum in the fibre direction. Anisotropy is also one of the main 

advantages of using composite materials since the direction of the fibres in the 

composite can be tailored to coincide with the loading direction.
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2.2.2 Matrices

The matrix comprises approximately 30% to 40% of the composite and fulfils a variety 

of functions in addition to simply maintaining the shape of the composite and aligning 

the reinforcements [23]. These functions are:

• The matrix binds the composite constituents; therefore the thermal behaviour of 

the composite is generally determined by its thermo mechanical stability.

• The matrix protects the reinforcements, typically rigid and brittle, from 

premature wear such as abrasion and environmental attack.

• More importantly, the matrix distributes the applied load and acts as stress 

transfer medium so that when an individual fibre fails, the composite does not 

lose its load-carrying capability.

• For compressive loading, the matrix also plays a critical role in preventing the 

fibres from buckling.

• Durability, interlaminar toughness, and shear, compressive, and transverse 

strengths are also provided by the matrix.

Matrices may be polymers, metals or ceramics. The choice of matrix is related to the 

required properties and intended applications of the composite and the method of 

manufacture. Physical and chemical characteristics of the matrix such as melting or 

curing temperature, viscosity, and reactivity with fibres influence the choice of the 

fabrication process.

2.2.2.1 Polymer matrices

Polymers matrices are the most widely used matrix material for fibre composites. Their 

main advantages are low cost, easy processibility, good chemical resistance, and low 

specific gravity. Their disadvantages are low strength, low modulus, low operating 

temperatures, and degradation by prolonged exposure to UV light and some solvents.

Polymers are composed of long chain-like molecules consisting of many simple 

repeating units. Synthetic polymers used for making composites are generally called

11



resins. Polymers can be classified into two types, thermoplastics and thermosets, 

according to the effect of heat on their properties.

Thermosets:

Thermosets have cross-linked or network structures with covalent bonds between all 

molecules. They do not melt but decompose on heating. Once solidified by cross- 

linking (curing) process, they can not be reshaped. Thermoset resins fulfil most of the 

functions detailed in the start of this Section and it is not surprising that the first 

commercial composites were based on unsaturated polyester resins, a thermoset. 

However, they have many disadvantages as well, including a relatively low resistance to 

elevated temperatures, poor toughness, and the inability to undergo large-scale plastic 

deformation. Thermosets typically have specific gravity of 1.1-1.46, a tensile strength of 

up to 100 MPa, and a tensile modulus of 2-4 GPa [23]. Over three quarters of all 

matrices used in polymer matrix composites are thermosets.

Thermosets are formed from a chemical reaction in situ, where the resin and hardener or 

resin and catalyst are mixed and then undergo a non-reversible chemical reaction to 

form a hard, infusible product. Chemical cross-links between polymer chains are 

formed during the curing process, contributing to rigidity, high strength, solvent 

resistance, and good oxidative and thermal stability. Important examples of thermosets 

include epoxies, unsaturated polyesters, and phenolics.

Unsaturated Polyester Resin:

In this research unsaturated polyester resin was used as matrix. First developed in 1942, 

it is the most widely used thermoset resin because it is easy to use (low viscosity), cures 

at room temperature, has good mechanical properties as a composite constituent, is 

resistant to chemical attack, and is relatively cheap. It has good dimensional stability 

and is relatively easy to handle. Its main disadvantages are poor impact and hot/wet 

mechanical properties, limited shelf life, emission of styrene, flammability, and 

relatively high shrinkage during curing.

It is used in basic hand lay-up manufacture to complex mechanised moulding processes. 

It is manufactured by reacting together dihydric alcohols (glycols) and dibasic organic 

acids, either or both of which contain a double-bonded pair of carbon atoms. By 

elimination of water between acids and glycols, ester linkages are formed, producing a
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long chain molecule comprising alternate acid and glycol units. Processing will largely 

determine the length of the polymer chain. Other influential factors are monomer 

content and filler addition.

In polyesters, the curing process is started by using organic peroxides as catalysts which 

initiate a free radical copolymerisation reaction. The free radicals are provided by the 

peroxide catalyst as it decomposes and it is the rate at which these free radicals are 

produced which governs the gel and cure times of the resin. Polyester resin begins to 

cure as soon as the catalyst has been added. The reaction is exothermic and the heat 

evolved can raise the temperature to above 150°C very quickly [24]. The reinforcement 

has to be mixed with the resin before the resin cures completely. The possibility of cold- 

curing of polyester resin from liquid state is one of the key reasons for widespread use 

of these systems. For curing of unsaturated polyester resin, methyl ethyl ketone 

peroxide was used as catalyst in this research. It is used for room temperature cure of 

polyester resin in conjunction with a cobalt accelerator over the temperature range 15- 

25 °C. An accelerator assists the speed of cure by increasing the rate at which the 

catalyst breaks down into free radicals and is added in advance to the polyester resin.

Styrene is usually used as the diluent for polyester resin in order to reduce viscosity of 

the resin. It is also used to assist the escape of trapped air, permit greater use of 

reinforcements, increase the heat distortion point, improve quicker wetting of the fibres, 

reduce costs, and increase the resistance to water in the finished product [25].

The most common reinforcements for polyesters are glass fibres. The construction 

industry accounts for the greatest usage of reinforced polyesters, followed by the 

marine, transportation, electrical and sanitary ware industries.

Thermoplastics:

Thrmoplastics soften or melt on heating. They consist of linear or branched-chain 

molecules having strong intramolecular bonds but weak intermolecular bonds. They are 

either semi-crystalline or amorphous in structure. Thermoplastics consist of high 

molecular weight polymer chains which display a linear or slightly branched topology 

and are formable at elevated temperatures and pressures. Thermoplastics, like metals, 

soften with heating and eventually melt, hardening again with cooling. This process of 

crossing the softening or melting point on the temperature scale can be repeated as often
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as desired without any appreciable effect on the material properties in either state. 

Typical thermoplastics include polyethylene, polystyrene, nylon, polypropylene, and 

polyether-ether ketone (PEEK).

2.2.3 Interface/ Interphase

Interface is the surface forming the common boundary between matrix and 

reinforcement where these two are bonded together. It is through interface that the stress 

is transferred from the matrix to the reinforcement. It also provides resistance to crack 

propagation and chemical attack. Hence the interface is vitally important in determining 

the mechanical properties of composite materials.

In some cases, the contiguous region between matrix and reinforcement is a distinct 

added phase, called an interphase. Examples are the coatings on glass fibres and the 

adhesive that bonds the layers of a laminate together. When an interphase is present, 

there are two interfaces, one between each surface on the interphase and its adjoining 

constituents.

Interfacial bonding is sometimes improved by physical or chemical treatment of fibres. 

The main aim is to modify the surface energy to allow better wetting between matrix 

and the fibre, to provide chemical groups that will bond to reacting thermosets, and to 

increase the surface roughness of fibres to improve the interlocking between the matrix 

and the fibre. Coupling agents (generally organosilanes) are the most important types of 

modifications for synthetic fibres, followed by plasma treatments.

2.2.3.1 Effect of Interface on Composite Properties

The mechanism of load transfer through the interface becomes more important in the 

discontinuous fibre reinforced composites and in the continuous fibre reinforced 

composites when the individual fibres fracture prior to ultimate failure of the composite 

[22]. The interfacial bond controls the mode of propagation of microcracks at the fibre 

ends. In case of a strong bond, the cracks do not propagate along the length of the 

fibres. Thus the fibre reinforcement remains effective even after the fibre breaks at 

several points along its length. A strong bond also results in higher transverse strength 

and good environmental properties of the composites. Harris et al [26] showed that poor 

interfacial bonding results in improved fracture toughness but poorer shear strength in
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composites. Favre and Merienne [27] observed that shear strength of composites was 

roughly proportional to square root of the interface strength while Ying [28] observed 

approximately linear increase of shear strength with increase in interface strength.

Interfacial bonding is of particular concern in natural fibre composites. Natural fibre 

surfaces are irregular which should theoretically enhance the fibre-matrix interfacial 

bonding. However this is offset by chemical incompatibility between the fibre and 

polymer matrix. The fibres have an outer waxy layer, typically 3-5 fim thick, of fatty 

acids which are long chain aliphatic compounds not compatible with common resins 

such as polyester. Natural fibres are polar in nature which also makes them 

incompatible with inherently non-polar polymer matrices. This problem may be solved 

by exposing the fibre surface to physical and chemical treatments.

2.2.3.2 Measurement of Interfacial Strength

In order to get a measure of the strength of fibre/matrix interfacial bonding, standard 

tests have been devised. Four methods are generally used for measuring the interfacial 

strength [29]: pull-out, micro-tension, micro-compression, and fragmentation. The pull- 

out method has been found to be the best from the point of view of understanding how 

the interface affects composite properties and this method has been used in determining 

the interfacial shear strength of hemp fibres in polyester resin in this research.

2.2.3.3 Wettability, Contact Angle and Surface Energy

Interlinked with the fibre/matrix interfacial strength are the important parameters of 

wettability, contact angle and surface energy. Good interfacial strength requires proper 

wetting of the fibre surface by the liquid matrix. Wettability is the measure of spread of 

a liquid over solid surface. Good wettability means that the liquid matrix can flow over 

the fibre covering every part of the rough surface of the fibre and displacing the air at 

the same moment. Good wettability requires low viscosity of liquid matrix and a 

decrease in the free energy of the system.

Surface energy of a solid or liquid is a manifestation of unbalanced molecular forces at 

the surface [30]. Because of this imbalance, they possess additional energy at the 

surface. In liquids this excess energy tends to reduce the surface area to a minimum, 

resulting in surface tension. In solids, due to the lack of mobility at the surface, this 

energy is not directly observable and must be measured by indirect methods. These
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methods involve exposing the solid to various liquids, whose surface tensions are 

known, and measuring the contact angle.

Fig. 2.1 shows a thin film of liquid matrix spread over the solid fibre surface where y s g , 

Yl g  and y s l  represent the solid-gas, liquid-gas and solid-liquid surface energy per unit 

area respectively and 0 is the contact angle. The gas is normally air. The work of 

adhesion, Wa, as the liquid matrix spreads over the solid fibre surface is given by the 

Dupre equation,

Wa = Ys g  +  Yl g  -  Ys l ........................................... (2.1)

\  Gm

Liquid

Solid

Fig. 2.1: A liquid in equilibrium with a solid surface [15]

Surface energies y s g  and y l g  are positive because these are the energies required for 

new covering areas of solid-gas and liquid-gas interfaces, and y s l  is negative because 

this energy is recovered as the solid surface is covered. Thus wetting is more favourable 

when surface energies of the solid and the liquid are large and their interfacial energy is 

small. However large values of surface energies of liquids inhibit the spreading of a 

liquid droplet. Contact angle is then used to represent the measure of degree of 

attraction of the liquid for the solid.

Resolving equation (2.1) into its horizontal components in equilibrium conditions,

Ysg = Ysl + Ylg cos0 .................................... (2.2)

If the contact angle is 0° or less than 90°, the liquid is said to spread on or to wet the 

solid. If it is greater than or equal 90°, the liquid/solid interaction is termed to be non­

wetting.

Equation (2.2) shows that for complete wetting to occur (0=0°), the surface energy of 

the solid should be equal to or greater than the sum of the liquid surface energy and the



interface surface energy. Interface surface energies are frequently small enough than the 

solid and the liquid surface energies to be ignored. Therefore fibres with higher surface 

energies than liquids are likely to wet very easily. Therefore, glass fibres (y s g =560 

mJ/m2) are easily wetted by polyester (y l g =35 mJ/m2) and epoxy (y l g =43 mJ/m2) resins 

[21].

Surface energy in terms o f dispersive and polar components:

Fowkes suggested that various molecular attractive forces on the surface can be 

assumed to be linearly additive [31]. Therefore total surface energy of the solid surface 

and the liquid can be written as

Ys = Ysd + Ysp and Yl=  YLd +  Ylp

where the superscript d refers to the contribution due to London dispersive forces (Van 

der Waal’s bonding), common to all materials, and p refers to contribution due to polar 

forces, mostly made up of hydrogen bonding and dipole-dipole interactions.

Owens and Wendt [32] proposed that the interfacial interaction between the solid and 

the liquid is the geometric mean of the individual surface energies. This is expressed as

Y s l =  Ys +  Y l -2 (Ysd Y l V 2 -2 ( y s p Y lp) 1/2........................................... (2.3)

Substitution of equation (2.1) in equation (2.3) and ignoring polar terms gives Fowkes 

equation, which expresses work of adhesion in terms of solid and liquid surface 

energies,

w, = 2 [(Ysd TlY" + (Ysp Y lp) I/2] ..................................................... (2.4)

Substitution of equation (2.2) in equation (2.1) gives another expression for work of 

adhesion in terms of surface energy and contact angle,

Wa = Yl (1+cos0 ) .............................................................................(2.5)

Substitution of equation (2.5) in equation (2.4) gives

Yl  (1+cos0)= 2[(Ysd yLd)1/2 + (rsp Vlp) 1/2] ...............................................(2.6)

For a non-polar substance, ysp =7lp =0, and equation (2.6) is reduced to

Ysd = Yl * (1+cos0)2/ 4 ........................................................... (2.7)
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Equations (2.6) and (2.7) are used in the calculation of the surface energy of solid by 

immersing the solid in a non-polar liquid.

Methods for determining surface energy o f fibres:

Over the years various techniques have been developed to determine the surface 

energies and wettability of fibres. These include sessile drop, capillary rise in a power 

bed or fibre assemblies, air-pressure techniques, Wilhelmy plate, sedimentation volume 

film rotation, inverse gas chromatography, and vapour probe techniques [33]. Wilhelmy 

technique has been widely used in the determination of surface energy of natural fibres 

and this technique will be used in this research for determining the surface energy of 

hemp fibres.

Wilhelmy related the downward force exerted on a vertical plate when it is brought into 

contact with a liquid to the contact angle between them. This method has obvious 

limitations for use with natural fibres because of their rough, heterogeneous, non- 

uniform and absorbent surfaces. However at the moment, this is the best method 

available for determining the surface energy of natural fibres.

2.3 TYPES OF COMPOSITE MATERIALS

Composite materials can be classified into three broad categories according to the type, 

geometry, and orientation of the reinforcement phase [34] as shown in Fig 2.2. 

Particulate composites contain particles of various sizes and shapes randomly 

dispersed in within the matrix. Discontinuous or short fibre composites contain short 

fibres or whiskers as the reinforcement which can be either all oriented in one direction 

or randomly oriented. Continuous fibre composites contain long continuous fibres as 

reinforcement which can all be parallel (unidirectional), or oriented at right angles to 

each other (cross ply or woven fabric), or oriented along several directions 

(multidirectional).

Fibre-reinforced composites can be further subdivided into four main groups according 

to the matrix used. These are polymer matrix composites, metal matrix composites, 

ceramic matrix composites and carbon/carbon composites.
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continuous fiber composite

Multidirectional 
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Fig. 2.2: Classification of composite materials [34]

2.3.1 Polymer Matrix Composites (PMCs)

These are the most common of all composites used. These materials use a polymer 

thermoset or thermoplastic resin as the matrix, and a variety of fibres such as glass, 

carbon, aramid, boron, and natural fibres as the reinforcement. They are primarily used 

in low temperature applications. They commonly exhibit marked anisotropy since the 

matrix is much weaker and less stiff than the fibres. Their main advantages are high 

specific strength and stiffness, design flexibility, higher damping factors than metals 

and better environmental resistance.



2.3.2 Metal Matrix Composites (MMCs)

Increasingly found in the aerospace industry, these materials use a metal such as 

aluminium as the matrix, and reinforce it with fibres such as silicon carbide. These are 

mostly used for applications where high temperature performance or good tribological 

properties are important. Their commercial usage is quite limited compared to PMCs.

2.3.3 Ceramic Matrix Composites (CMCs)

Used in very high temperature environments, these materials use a ceramic as the matrix 

and reinforce it with short fibres, or whiskers such as those made from silicon carbide 

and boron nitride. These materials are still in early stages of development.

2.3.4 Carbon/carbon composites

Carbon-carbon composites consist of carbon or graphite matrix reinforced with graphite 

yam or fabric. They have unique properties of relatively high strength at high 

temperatures coupled with low thermal expansion and low density.

2.3.5 Hybrid Composites

One purpose of this research was to study the properties of hemp/glass fibre hybrid 

composites. A brief review of hybrid composites follows.

Hybrid composites use more than one kind of reinforcements in the same matrix and 

hence the idea is to get the synergistic effect of the properties of reinforcements on the 

overall properties of composites. With hybrid composites it may be possible to have 

greater control of the properties, achieving a more favourable balance between the 

advantages and disadvantages inherent in any composite material.

Hybrid composites offer three main advantages over composites made from one kind of 

reinforcement. First, they provide designers with new freedom of tailoring composites 

to achieve required properties. Second, a more cost effective utilisation of expensive 

fibres such as carbon and boron can be obtained by replacing them partially with less 

expensive fibres such as glass and aramid. Third, they provide the potential of achieving 

a balanced pursuit of strength, stiffness and ductility. Hybrid composites have also 

demonstrated weight savings, reduced notch sensitivity, improved fracture toughness, 

longer fatigue life and excellent impact resistance [35].
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The earlier attempts at hybridisation were made by combining stiffer fibres (carbon, 

boron) with more compliant fibres (glass, Kevlar) to increase the strain to failure of 

composite and hence enhanced impact properties. The effect is greater when the 

proportion of stiffer fibre is small and it is finely dispersed in the composite. Besides 

improving the impact performance, the incorporation of glass fibres also reduced the 

cost.

The following variables influence the behaviour of the hybrid composite [22]: volume 

and weight fraction of each component fibre; lay-up sequence and orientation; relative 

properties of resin and fibres and interlaminar shear strength between plies; and extent 

and nature of voids and any other quality defects.

The properties of hybrid composites may not follow from a direct consideration of the 

independent properties of individual components by rule of mixtures. Therefore, a 

positive or negative hybrid effect is defined as a positive or negative deviation from a 

certain mechanical property from the rule of mixture behaviour. It is commonly agreed 

that the elastic moduli follow the rule of mixture behaviour [36]. The ultimate strength 

is reported to exhibit a negative hybrid effect.

The hybrid effect is explained by assuming that the weakest low elongation fibres that 

break first form cracks that are bridged by the surrounding high elongation composite, 

thus allowing the stronger low elongation fibres to reach their ultimate strength [37].

Aveston and Kelly [38] have suggested the following equation for the ultimate tensile 

strength of unidirectional hybrid composites

&c =  <*Lu V l e  + E L u E h e  V h e ................................................................(2.8)

where am is the ultimate tensile strength of low elongation fibres, Vle is the volume 

fraction of low elongation fibres, em is the strain to failure of low elongation fibre, and 

Ehe and Vhe are the tensile modulus and volume fraction of high elongation fibres. For 

low volume fraction of high elongation fibres, the failure of low elongation fibres leads 

to the fracture of the hybrid and there is no multiple fracture. As the concentration of 

high elongation fibres increases, a transition in failure modes occurs because there is 

sufficient amount of these fibres to carry the load on the fracture of low elongation 

fibres. The fracture mode then is the multiple fracture of brittle fibres and the ultimate 

tensile strength is given by:
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CTc = OHu Vhe. (2.9)

The hybridisation of low strain to failure fibres with high strain to failure fibres results 

in an increase in energy absorption capacity and hence improved impact resistance of 

the hybrid composite. A number of studies (e.g., [39], [40], [41], [42]) have shown the 

improved impact properties of hybrid composites. Charpy impact test, Izod impact test 

and drop weight method have been utilised in these studies.

The hybridisation of glass fibres with carbon fibres also improves the fatigue resistance 

of the hybrid composite [43]. This is attributed to the increased stiffness of the 

composite because of carbon fibres.

2.4 NATURAL FIBRES

Natural fibres are classified according to their source: plants, animals, or minerals. 

Mostly plant fibres are used to reinforce polymers in composites, and hereafter in this 

thesis, the term natural fibres will refer to plant fibres.

Natural fibre crops are the earliest known cultivated plants. They were used as the raw 

materials for making ropes and textiles. Hemp and linen fragments have been found in 

Neolithic sites in Syria, Turkey, Mesopotamia (present day Iraq) and Iran, carbon dated 

back to 8000-6000 B.C. [44]. The ancient Egyptians wrapped their corpses in linen 

cloth (fabric made from flax fibres) for thousands of years. In central Europe there is 

evidence of Swiss lake dwellers cultivating flax and making linen more than 4000 years 

ago. More recently, fibre crops like flax, hemp and nettle were used extensively for the 

production of textile fibres until the late 19th century. The growing demand for and 

production of cheap synthetic textile fibres led to reduction in the importance of natural 

fibre crops in 20th century.

As early as 1896, natural fibres were being used in composite materials for making 

aeroplane seats and fuel tanks [45]. Natural fibres are perhaps the oldest additives used 

in plastics. Their use dates back to the original plastic, Bakelite, in which they were 

used to provide impact resistance, reduce cost, and control shrinkage. In 1908, the first 

natural fibre reinforced composites were made by reinforcing sheets of phenol- or 

melamine- formaldehyde resins with paper or cotton [45]. Their higher cost and poor 

performance compared to standard plastics inhibited any further development. With the
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introduction of thermoplastics in the mid-1900s, natural fibres and fillers were replaced 

by mineral products and glass fibres to reinforce polymer matrices.

2.4.1 Classification

Natural fibres are classified according to the part of the plant they are extracted from. 

Some fibres, like cotton, are part of the seeds of the plants. Some fibres, like hemp and 

flax, are contained within the tissues of the stems of dicotyledonous plants and referred 

to as bast fibres. Some fibres, like sisal and banana, are part of the leaves of 

monocotyledonous plants. Some fibres, like coconut, are part of the fruit of the plants. 

The term fruit here is used in its botanical rather than everyday use. The natural fibres 

used as reinforcements in composites are shown in Table 2.1.

Of these fibres, jute, ramie, flax, sisal, and hemp are the most commonly used fibres for 

composites. According to the Food and Agriculture Organisation (FAO), about 30 

million tons of natural fibres (both plant and animal origin) are produced annually. The 

worldwide production of major fibres is shown in Table 2.2.

Table 2.1: Natural fibres used as reinforcement in composites [46]

Bast (stem) fibres: Flax, Hemp (and Sunhemp), Kenaf, Jute, Mesta, Ramie, Urena, 

Roselle, Papyrus, Cordia, Indian Malow, Nettle

Leaf fibres: Pineapple, Banana, Sisal, Pine, Abaca (Manila hemp), Curaua, Agaves, 

Cabuja, Henequen, Date-palm, African palm, Raffia, New Zealand flax, Isora

Seed (hairs) fibres: Cotton, Kapok, Coir, Baobab, Milkweed

Stem fibres: Bamboo, Bagasse, Banana stalk, Cork stalk

Fruit fibres: Coconut, Oil palm

Wood fibres: Hardwood, Softwood

Grasses and Reeds: Wheat, Oat, Barley, Rice, Bamboo, Bagasse, Reed, Com, Rape, 

Rye, Esparto, Elephant grass, Cannary grass, Seaweeds, Palm, Alpha
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Table 2.2: Current worldwide production of major fibres [47]

Fibre Production (1000 tons)

Jute 2300-2800

Flax 1000

Coir 500

Kenaf 340

Sisal 300

Ramie 280

Hemp 90

Bast fibres:

Because of their superior mechanical properties, bast fibres are the most widely used 

fibres for composite manufacture of all the natural fibres. The estimated worldwide 

production of bast fibre raw materials is about 25 million tons of which about 6 million 

tons are pure fibres [48], Bast fibres form the fibrous bundles in the inner bark of the 

stems which helps to hold the plant erect. In doing so, these fibres offer strength and 

stiffness to the tree. Therefore all the bast fibres have high strength and stiffness. These 

fibres are grown in the temperate and sub-tropical regions of the world. The bast fibres 

mostly used in reinforcing composites are flax, hemp, kenaf, jute, and ramie.

2.4.2 Advantages and Disadvantages

The main advantages and disadvantages of using natural fibres in composites are listed 

in Table 2.3. The environmental advantages of natural fibres seem to override their 

disadvantages. Perhaps the biggest drawback of natural fibres is the variability in their 

physical and mechanical properties. Diameters and properties of natural fibres vary 

significantly depending upon factors such as source, age, retting and separating 

techniques, geographic origin, rainfall during growth, and constituents’ content.

24



Nishino [10] has identified the following factors that can cause the variability in the 

physical and mechanical properties of natural fibres.

Materials: Microscopic: crystallinity; microfibril angle; crystal modifications

Macroscopic: fineness; porosity; size and shape of lumen;

History: source; age; retting and separating conditions; geographical origin; 

rainfall during growth

Measurement conditions: tensile speed; initial gauge length; moisture; temperature; 

different cross-section of fibres at different points.

Morvan et al [49] showed that fibre diameter of flax fibres is greater in the middle part 

of the stem than in the bottom or top regions. The diameter was also found to vary 

depending on the development stage of the plant, the diameter being smaller during 

flowering /capsulation stage than mature capsule or seed maturation stages. It is natural 

to expect that this variability in diameter will also impart variability to the mechanical 

properties of the fibres.

Catling and Grayson [50] measured the diameters of hemp fibres and found the average 

to be 30 pm with a range of 11.68-31.96 pm. The average hemp fibre length was found 

to be 8.46 mm with a range of 1-34 mm. Olsen and Plackett [51] found the average 

hemp fibre diameters to be 25 pm and average hemp fibre length was found to be 25 

mm with a range of 5-55 mm.

Another important factor is price. The price of fibres varies a lot depending on the 

economy of the countries where such fibres are available. The price of the fibre depends 

on availability, the fibre preparation process, and the pre-treatment of the fibre. In recent 

years, prices of natural fibres have been fluctuating, especially for flax fibres. Flax 

fibres are highest strength fibres and are marginally more expensive than glass fibre.
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Table 2.3: Advantages and Disadvantages of Natural Fibres

Advantages Disadvantages

Low cost High moisture absorption

Renewable resource Poor dimensional stability

Low density Poor microbial resistance

High specific properties Low thermal resistance

High Young's modulus Discontinuous fibre

Good tensile strength Anisotropic fibre properties

Non-abrasive to tooling and moulds Low transverse strength

No skin irritations, no respiratory issues Low compressive strength

Low energy consumption in production Local, seasonal quality variations

CO2 neutral Demand and supply cycles

No residues when incinerated Production efficiency dependent on 

environmental conditions

Biodegradable Fibre preparation time, labour 

intensive

Unlimited availability Large areas required for cultivation

Acoustic abatement capability 

Thermal incineration with high energy 

recovery

Can be stored for long periods of time 

Fast absorption/desorption of water

Use of pesticides in some cases

26



2.4.3 Composition and Structure

Natural fibres themselves are cellulose fibre reinforced materials as they consist of 

crystalline cellulose micorfibrils in an amorphous matrix of lignin and/or 

hemicelluloses. These fibres consist of several fibrils that run all along the length of the 

fibre. The hydrogen bonds and other linkages provide the necessary strength and 

stiffness to the fibres.

With the exception of cotton all natural fibres are made of cellulose, hemi-cellulose, 

lignin, pectin, waxes and water soluble substances. Cellulose, hemi-cellulose and lignin 

are basic components that define physical properties of fibres. Cellulose is the stiffest 

and the strongest organic constituent in the fibres. Generally, the fibres contain 60-80% 

cellulose, 10-20% hemicelluloses, 5-20% lignin, and up to 20% moisture. The chemical 

compositions of some common natural fibres are given in Table 2.4. However there is 

considerable variation in the chemical composition reported by different authors, 

depending upon the quality of the extraction method. Therefore the data given in this 

table should be viewed with caution with the understanding that there can be variation 

in results.

A high cellulose content and low microfibril angle (to be defined later) are desirable 

properties for a fibre to be used as reinforcement in polymer composites. In general, 

bast fibres have higher cellulose content and a few, such as ramie and hemp, have very 

low lignin content. Wood fibre is the richest in lignin. Wood and bamboo have lower 

cellulose content than bast fibres. Different chemical and physical characteristics of 

natural fibres result in wide range of different properties and, consequently, in their 

applications.

2.4.3.1 Cellulose

Cellulose, a semi-crystalline polymer, is the principal component of all plant fibres. In 

1838 Anselme Payne discovered that the cell walls of large numbers of plants consist of 

the same substance which he named cellulose [45]. It is a linear condensation polymer 

consisting of p-D-anhydroglucopyranose units (C6H12O5) joined together by (3-1, 4- 

glycosidic bonds to form a long and thin filament structure, as shown in Fig. 2.3. 

Linkages between anhydroglucopyranose units occur through condensation reactions 

between adjacent carbon 1 and 4 positions. It is thus a (3-1, 4-D glucan. Two
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anhydroglucopyranose units are linked to form a ‘cellobiose unit’ that has a length of

1.03 nm [45].

For plant cellulose the Degree of Polymerisation (DP) range is 7000-15000. For hemp 

the cellulose DP is 4800 [52]. Compared to this, the DP of flax and jute cellulose is 

4700, while that for ramie cellulose is 5800. A similar DP range of these fibres suggest 

that they contain cellulose molecules of approximately the same average molecular 

weight.

Covalent bonds join anhydroglucose units together giving strength to the length of the 

chain. Hydroxyl groups along the cellulose polymer can form two different hydrogen 

bonds depending on the location of the glucose monomers. First type of bonds, which 

occur within a cellulose molecule, are called intramolecular linkages. The other types of 

bonds which occur between adjacent cellulose polymers are called intermolecular 

linkages. Intramolecular linkages help stiffen the chain while intermolecular linkages 

give rise to supra-molecular structures. Thus the molecular structure of cellulose is 

responsible for its supra-molecular structure and this, in turn, determines many of its 

chemical and physical properties.

h o -
OHjplHOHO

HO

Fig. 2.3: Cellulose molecular structure [44]

Intermolecular linkages form cellulose molecules into sheets that can pack together to 

create a crystalline structure. These cellulose chains create the reinforcement structure 

called microfibrils. There are 48 molecular chains of crystalline cellulose at the core of 

microfibrils in the secondary cell wall that have cross section of 5x3 nm. Microfibrils 

themselves have cross section of 10x5 nm. The cellulose surrounding the core of 

microfibril is in non-crystalline state (amorphous cellulose) as well as other molecules 

such as hemicellulose and lignin. Thus chemically, cellulose is a semi-crystalline 

polymer composed of long linear packed chains embedded in a hemicellulose and lignin 

matrix. In general, primary cell walls contain 10-20% cellulose, and secondary cell
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walls up to 50% cellulose. The cellulose crysatllinities have been determined at 90-100 

g/100 g cellulose in plant-based fibres and 60-70 g/100 g cellulose in wood-based fibres 

[53]. At 60% crystallinity, the amorphous regions in the chain have a length of about 

120°A, implying that there are short alternating crystalline and amorphous regions in 

cellulose chains.

The crystal structure of naturally occurring (native) cellulose is called cellulose I. 

Cellulose I crystallises in monoclinic spherodic structures. The structures of regenerated 

cellulose is called cellulose n. The mechanical properties of natural fibres also depend 

on the cellulose type because each type of cellulose has its own cell geometry and the 

geometrical conditions determine the mechanical properties [45]. Most of the studies 

undertaken have found higher characteristic values of elastic modulus for cellulose I 

than for cellulose II [54]. Flax and hemp fibres have cellulose I which have been found 

to have elastic modulus of 74-103 GPa. Overall stiffness of cellulose is in the range 

130-165 GPa [55] and is independent of moisture content.

Cellulose Studies done on cellulose content of hemp bark by Keller et al. [56] showed 

that the cellulose content of the bark increased continuously until the harvest. The 

content increase was different for different parts of the stem. Smallest increase was 

observed in the bottom part, followed by the middle and the top part. The cellulose 

content of the male plants was found to increase more than that of the female plant. At 

the harvest time of 274 days the cellulose content of the hemp bark was about 79%. 

Since the tensile properties of the fibre are dependent on the cellulose content, the study 

found that the tensile strength of the fibres of the two most advanced growth stages 

were significantly higher that those of lowest growth stages. However, the differences 

in tensile strength between different stem sections (top, middle, bottom) were not 

significant for fibres at same growth stage.
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2.4.3.2 Hemicellulose

Hemi-cellulose is not a form of cellulose at all and the name is a misnomer. They 

represent a class of heteropolymers with a selection of sugar molecules as monomeric 

units. The monomeric units consist of D-glucose, D-galactose, D-mannose, D-xylose 

and L-arabinose with glucuronic and glacturoniC units present. These are group of poly- 

sacchrides that remain associated with the cellulose after lignin has been removed. 

Hemicellulosic polymers are non-linear, branched, fully amorphous, and have 

significantly lower molecular weight than cellulose. The degree of polymerisation of 

hemicellulose is between 150-200 monomers in each molecule which is 10 to 100 times 

less than that of native cellulose. Unlike cellulose, the constituents of hemicellulose 

differ from plant to plant.

Hemicellulose is found in the middle lamella, primary wall and the secondary cell wall 

where it is bonded with cellulose and lignin to from the thickest cell wall layer. The 

mechanical properties of the fibres are often determined by the structure and quantities 

of the chemical constituents of the secondary cell wall region. The hydrophilic nature of 

the surface of cellulose is not compatible with hydrophobic lignin thus limiting 

hydrogen bonding. Hemicellulose acts as a coupling agent between crystalline cellulose 

and lignin creating a lignin-polysacchride complex (LPC). Hemicellulose can covalently 

bond to lignin and hydrogen bond to cellulose. The imperfect bond that occurs between 

cellulose and lignin via hemicellulose allows stress transfer to the microfibrils but 

creates a weak interface in the structure that allows failure to occur giving the overall 

structure the toughness required. Because of its open structure containing many -OH 

and acetyl groups, hemicellulose is partly soluble in water and can absorb relatively 

large amount of water. The stiffness of hemicelluloses is dependent on content of 

moisture and can vary from 8 GPa at low moisture content to 0.01 GPa at 70% moisture 

content [55].

2.4.3.3 Lignin

During the biological synthesis of plant cell walls, lignin fills the spaces between the 

cellulose and hemicellulose fibres cementing them together. This lignification process 

causes a stiffening of cell walls and the carbohydrates are protected from physical and 

chemical damage. Lignin is a biochemical polymer that acts a structural support 

material in a plant and is generally resistant to microbial degradation. Lignin is
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complex, highly cross-linked, non-crystalline, high molecular weight, hydrocarbon 

polymer with both aliphatic and aromatic components.

The exact chemical structure of lignin is still obscure but most of the functional groups 

and units which make up the lignin molecule have been identified. The high carbon and 

low hydrogen content of lignin suggest that it is highly unsaturated or aromatic in 

nature. The constituents of lignin are p-coumaryl, coniferyl and synapyl alcohols that 

are formed by dehydrogenative radical polymerisation. Their chief units are various ring 

substituted phenyl-propanes linked together in ways, which are not fully understood. 

Lignin is believed to be linked with cellulose through two types of linkages, one alkali 

sensitive and the other alkali resistant. The alkali sensitive linkage forms an ester type 

combination between lignin hydroxyls and carboxyls of hemicellulose uronic acid. The 

ether type linkage occurs through the lignin hydroxyls combining with the hydroxyls of 

cellulose. Lignin, being poly-functional, exists in combination with more than one 

neighbouring chain molecules of cellulose and /or hemicellulose, forming a cross-linked 

structure.

Lignin content in wood is 20-40% but in hemp it ranges from 3-13%. Lignin levels are 

believed to decrease during fibre processing. Its mechanical properties are distinctly 

poorer than those of cellulose. The stiffness is moisture dependent and can vary from

6.5 GPa at 4% moisture content to 3 GPa at 20% moisture [55].

Lignin can be removed by using chemical or chemo-mechanical processes to release 

individual fibres from fibre bundles. Lignin is softened when fibres are heated to 

temperature above the glass transition temperature of lignin. Glass transition 

temperature of lignin varies for different fibres and increases with decrease in moisture 

content [57]. Lignin starts to degrade at about 214 °C and hence heating the fibres up to 

200 °C may cause some softening of fibre.

2.4.3.4 Pectin

Pectin is a collective name for hetero-polysacchrides, which consist essentially of 

polygalacturonnic acid with high molecular weight. It is found in the middle lamella 

and primary cell walls. It has a linear main chain of 1-4 linked a-D-galacturonic acid. 

Regular intervals of a- 1-2 and a- 1-4 bonded rhamnose units branch from this chain. 

Arabinose and galactose molecules are present as side chains with small amounts of

32



xylose and glucose monomers. Pectin along with hemicellulose binds cell wall layers. 

Removal of pectin facilitates the separation of fibre bundles from the stem. Therefore, 

the removal or degradation of pectin is very important during the retting process. Its 

composition in hemp ranges from 0.8-1.3%. Pectin is soluble in water only after a 

partial neutralization with alkali or ammonium hydroxide.

Waxes make up the part of fibres that can be extracted with organic solutions. These 

waxy materials consist of different types of alcohols, which are insoluble in water.

2.4.3.5 Bast fibre structure

Having identified the chemical constituents of natural fibres, we are now in a position to 

describe the structure of the bast fibre. Natural fibres extracted from the bast of the plant 

are bundles of individual cells. A schematic of the typical structure of a bast fibre is 

shown in Fig. 2.4. Bast fibres transport water and nutrients in the plant and thus have a 

hollow central canal called the lumen. The walls of the cells in each fibre are built of 

smaller structural units called fibrils. In turn each fibril is made up of microfibrils and 

elementary fibrils of cellulose. Microfibrils constructed from crystalline cellulose act as 

a reinforcement bound within a matrix of lignin with amorphous cellulose, 

hemicellulose and pectin acting as a binder between the two phases. The fibrils can be 

5-10 nm in diameter, made up of 50 to 100 cellulose molecules and can have lengths of 

100 nm to several micrometers depending on the source of cellulose. Microfibrils are 

oriented at an angle to the longitudinal fibre axis called microfibrillar or spiral angle. 

The cell walls differ in their composition (ratio between cellulose and 

hemicellulose/lignin) and in their orientation (spiral angle) between different fibres. 

Chemical processes such as alkalisation and acetylation can also result in variations in 

these structural parameters within the same fibre.

The cellulose content and the spiral angle generally determine the mechanical properties 

of natural fibres. The characteristic values of these structural parameters for different 

bast fibres are shown in Table 2.5.
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Table 2.5: Structural Parameters of different bast fibres [58]

Fibre Cellulose

content

(%)

Microfibrillar

angle

O

Cross-sectional

area

(xlO'2 mm2)

Cell length 

(mm)

Cell length/ 

cell 

diameter 

ratio

Hemp 78 6.2 0.06 23.0 960

Flax 71 10.0 0.12 20.0 1687

Jute 61 8.0 0.12 2.3 110

Ramie 83 7.5 0.03 154.0 3500

Secondary wall S3 Lumen

Helically 
arranged 
crystalline 
microfibrils 
of cellulose

Amorphous 
region mainly 
consisting of lignin 
and hemicellulose

Secondary wall S2 

Spiral angle 

Secondary wall S1

Primary wall

Disorderly arranged 
crystalline cellulose 
microfibrils networks

Fig. 2.4: Schematic representation of bast fibre structure [44]

There are four distinct layers in the cell wall: the middle lamella, and the primary, 

secondary, and tertiary cell walls. Each layer has a characteristic variation in 

morphology and composition. The middle lamella at the exterior of the cell is composed 

primarily of pectin that binds the fibres together into a bundle. Adjacent to the middle



lamella is the thin primary cell wall that consists of a disorganised arrangement of 

cellulose fibrils embedded in a matrix of pectin, hemicellulose, lignin and proteins. 

Further in, the secondary cell wall, with the largest proportion of cellulose within the 

wall, consists of three layers of cellulose fibrils, referred to as the outer layer (Si), 

middle layer (S2), and the inner layer (S3), with varying axial orientation that are bound 

by lignin and hemicelluloses.

Microfibrils in the Si layer run parallel to one another in two distinct spirals with an 

angle between 50° and 70° to the vertical axis. The Si layer accounts for about 10% of 

cell wall thickness. The S2 layer is the thickest layer in the cell wall accounting for 

about 85% of cell volume. Microfibrils in the S2 layer also lie parallel to each other in a 

spiral formation.

The S3 layer is similar to the Si layer but it only accounts for 1% of the thickness of the 

cell wall. The longitudinal strength and stiffness of fibres correlates with the 

microfibrillar angle. A smaller angle results in higher mechanical properties. The 

microfibril angles of hemp, flax and sisal fibres are 6.2°, 10° and 20° respectively. Not 

surprisingly the tensile strength and stiffness is greatest in hemp fibres followed by flax 

and sisal fibres. The structure, cell dimensions and defects, and the chemical 

composition contribute to the mechanical properties of the fibres but a small 

microfibrillar angle also plays a crucial part. However, at some locations the angle 

between the longitudinal direction of the fibre and that of the microfibrils differ from 

the angle found in the bulk fibre wall. These local misalignments are known as 

dislocations, kink bands, micro-compressions or slip planes and are a major reason for 

reduction in properties of fibres. Thygesen [59] has reported the successful use of 

hydrolysis method for quantification of dislocations in hemp fibres.

Fig. 2.5 shows the composition and structure of a typical bast fibre, flax in this case. As 

we go on decreasing the fibre diameter, the strength of the fibre increases as does the 

cost of the fibre. Unfortunately, despite various attempts to separate the fibre cells from 

fibre bundles, most of the fibres used in composite applications are fibre bundles. The 

fibre bundles have relatively low strength of 600-700 MPa compared to that of 1500 

MPa of individual fibre cell [4]. The theoretical value of tensile modulus of native 

cellulose has been calculated at 167.5 GPa [60]. Cellulose microfibrils with diameters 

of 50-5000nm have been separated [60]. Some research has shown the promising
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properties of composites made from microfibrils. However the use of microfibrils as 

reinforcement in composites is still in its infancy and needs more research.

technical fibre 
0  50-100 pm elementary fibre 

0  10-20 pm

m eso fibril 
0  0.5 pmbast fibre 

bundle

micro fibril 
0  4-10 nm

flax stem  
0  2-3 mm

hackling

breaking
scutching

Fig. 2.5: Composition and built of a typical bast fibre (flax) [61]

2.4.4 Mechanical Properties of Natural Fibres

The mechanical properties of natural fibres as compared to conventional synthetic fibres 

are shown in Table 2.6. It can be seen that the natural fibres compare well with glass 

fibres, but are not as strong as either aramid or carbon fibres. However the density of E- 

glass fibres is higher than those of natural fibres. Therefore, in terms of specific 

properties, some natural fibres are comparable to E-glass fibres on a stiffness basis. 

They however have lower specific tensile strength than E-glass fibres.
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Table 2.6: Mechanical properties of natural fibres as compared to conventional

synthetic fibres [45]

Fibre Density

(g/cm3)

Elongation

(%)

Tensile Strength 

(MPa)

Tensile Modulus 

(GPa)

Hemp 1.48 1.6 690 70.0

Cotton 1.5-1.6 7.0-8.0 287-597 5.5-12.6

Jute 1.3 1.5-1.8 393-773 26.5

Flax 1.5 2.1-32 345-1035 27.6

Ramie 1.5 3.6-3.8 400-938 61.4-128.0

Sisal 1.5 2.0-2.5 511-635 9.4-22.0

Coir 1.2 30.0 175 4.0-6.0

E-Glass 2.5 2.5 2000-3500 70

S-Glass 2.5 2.8 4570 86

Aramid 1.4 33-3.1 3000-3150 63-67

Carbon 1.4 1.4-1.8 4000 230-240

In natural fibres a range of mechanical properties can be obtained by using different 

ways of processing. Retting of hemp fibres increases their tensile strength and modulus. 

In one study, the tensile strength of hemp fibres was found to be 490 MPa for unretted 

fibres, 560 MPa for less retted fibres and 620 MPa for retted fibres. Similarly tensile 

modulus was found to be 30-50 GPa for unretted fibres and 40-60 GPa for retted fibres 

[48]. The retting process followed by decortication, increases the fineness of fibres, 

loosening up the fibre bundles into thinner bundles or elementary fibres, thus increasing 

their mechanical properties. The higher specific properties are the biggest advantage of 

using natural fibre composites where the desired property is predominantly weight 

reduction.
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Overall the mechanical properties of natural fibres are dependent on the following 

factors [62]: fibre diameter, size of crystalline fibrils and non-crystalline regions, spiral 

angle of fibrils, degree of crystallinity, degree of polymerisation, type of cellulose, 

orientation of chains, and void structure.

2.4.5 Hemp

Hemp is naturally one of the most ecologically friendly fibres and also the oldest. The 

Columbia History of the World states that the oldest relics of human industry are bits of 

hemp fabric discovered in tombs dating back to approximately 8,000 BC [63]. The 

flowering tops and, to a lesser extent, leaves of hemp produce resin secretions 

containing the narcotic 9-A tetrahydrocannabinol (THC) for which marijuana and 

hashish are famous. Since industrial hemp produces less than 0.2% THC, it can not be 

used as a narcotic.

Hemp is an annual plant native to central Asia and known to have been grown for more 

than 12000 years. It probably reached central Europe in the Iron Age and there is 

evidence of its growth in the UK by the Anglo-Saxons (800-1000 AD). It is now grown 

mostly in the EU, Central Asia, Philippines, and China. According to FAO, almost half 

of the world's industrial hemp supply is grown in China, with most of the remainder 

being cultivated in Chile, France, the Democratic People's Republic of Korea and Spain 

[47].

There has been an exponential increase in the use of hemp for various applications in 

recent years. According to FAO, world production of hemp fibre grew from 50,000 

tonnes in 2000 to almost 90,000 tonnes in 2005 [47]. Hemp currently accounts for less 

than 0.5 percent of total world production of natural fibres. A Google search on hemp 

returns about 9,200,000 web links. Most of these websites are devoted to the promotion 

of hemp for medicinal and industrial applications. The number of books written on 

hemp has also increased. The experts on hemp prefer to call themselves ‘hempologists’.

As Annie Kelly wrote in the Guardian in 2006 [63], only fifteen years ago, any farmer 

trying to grow hemp in Britain could be arrested. But in 2006, grown under license, 

more than 3,500 acres of hemp was harvested as an industrial crop, processed, and made 

into a plethora of natural products, including insulation, horse bedding, fabric, biodiesel 

and paper. “Hemp is back and is throwing off its ‘hippy’ shackles to emerge as one of
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the UK's fastest growing sustainable industries”, she wrote. The National Non-Food 

Crops Centre (www.nnfcc.co.uk) recognizes hemp as an established minor crop.

The ban on hemp cultivation, imposed in 1971 under the Misuse of Drugs Act, was 

finally overturned in 1993. Campaigners successfully argued that although industrial 

hemp was a variety of the cannabis plant, it could be grown as a legitimate crop as it 

contained practically no THC.

Still permission of the Home Office is required to grow hemp. Only one company in 

Britain has the license to grow hemp. Hemcore, the UK's first large-scale hemp 

company, has seen rapid growth over the last few years. It now owns the only hemp 

processing plant in the UK and currently contracts 40 farmers to grow 3,500 acres of 

hemp a year, which it converts into industrial materials. It currently provides all BMW 

5 Series cars with hemp door panels, as well as making high-quality horse bedding.

(a) (b)

Fig. 2.6: Hemp crop (a) and hemp leaves and stem (b)

2.4.5.1 Structure of Hemp Plant

Hemp, botanically known as cannabis sativa, is an annual plant belonging to the family 

of Cannabidaceae. When mature, hemp develops a rigid woody stem, ranging in height 

from 1 to 5 metres. It produces long stalks which can grow to a height of 150 to 300 cm. 

A view of fully grown hemp crop, hemp leaves and hemp stem are shown in Fig. 2.6. 

Stalks of hemp are hexagonally shaped and are 4 to 26 mm in diameter depending on 

the plant spacing during growth and sex of the plant. Hemp is dioecious, that is, it 

carries male and female flowers on different plants. Hemp male plants can be 10 to 15% 

taller than female plants but have thinner stalks and often grow fewer branches. Male 

plants ripen earlier and must be harvested earlier. Monoecious varieties, where male and



female plants grow on the same plant, have also been developed by breeding. Dioecious 

varieties yield better textile fibres while monoecious fibres are preferred by the pulp and 

paper industry. Strands of hemp fibres may be 1.8 m or longer. The individual or 

elementary fibres are on average 13-25 mm long [64].

Leaves of hemp plants are fine pinnate shaped containing several pinnations (the 

number of pinnations depends on variety of plant). After retting and decortication 

processes, fibres are obtained in the form of bundles that can be up to 2 meters in 

length. Hemp grows best where the temperature range between 13 and 22 °C. It requires 

plentiful supply of moisture during its growth, ideally 125 mm per month. Hence the 

fibres extracted from the plant are very hydrophilic in nature. It grows best in a deep, 

well-drained clay-loam soil containing considerable organic matter.

2.4.5.2 Composition of Hemp Stem

The cross-section of hemp stem consists of pith, xylem, cambium, phloem, cortex, and 

finally the protective layer of epidermis as shown in Fig. 2.7. The pith is composed of 

thick woody tissues that support the plant. After harvesting, it produces hurds or shives 

which make up 60 to 75% of the total mass. Cambium is the differentiating layer. Pith 

produces bast fibre cells from the inside and bark does that from outside. Short 

chlorophyll containing cells and long bast fibre cells make up the phloem. Cortex is a 

thin wall of cells that contains chlorophyll but produces no fibres. Epidermis is the outer 

protective layer.

Just like physical and mechanical properties, there is considerable variation in the 

composition of hemp fibres reported by different authors as shown in Table 2.7. Various 

factors contributing to variation in composition and properties of natural fibres have 

already been discussed in Section 2.4.2.

40



A B

SP We* |r*v« twr 7 Z+mcxi IprŵOOC*
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Fig. 2.7: Cross-sectional view of hemp stem and hemp fibre [65]

Table 2.7: Chemical composition of hemp fibres as reported by different authors

Cellulose

(%)

Hemicellulose

(%)

Pectin

(%)

Lignin

(%)

Other

(%)

Reference

67 16.1 0.8 3.3 2.8 [66]

74.4 17.9 0.9 3.7 0.8 [67]

74 18 1 4 - [68]

55 16 18 4 7 [69]

76 11.5 1.3 3.2 - [7]

57-77 - - 9-13 - [70]

75.1 <2.0 - 8 - [71]

70-74 17.9-22.4 0.9 3Z7-5.7 0.8 [6]

75.6 10.7 - 6.6 - [72]

78.3 - - 2.9 - [52]

76.1 12.3 1.6 5.7 3.3 [73]



2.4.5.3 Properties of Hemp Fibres

Table 2.8 shows typical physical and mechanical properties of hemp fibre. Again these 

are representative values for these properties with considerable scope for variation. The 

mechanical properties were derived in tension. Apart from their high tensile strength 

and stiffness, their high aspect ratio (length/diameter ratio) and lower density make 

hemp fibres a good material to be used as reinforcements in composite materials. They 

have high tenacity (about 20% higher than flax) but low elongation at break. Their 

disadvantages for use in composite materials, like most other natural fibres, are their 

non-uniform and non-smooth surfaces, variability of properties, and low resistance to 

water absorption and decay.

Table 2.8: Typical physical and mechanical properties of hemp fibre [22]

Properties Values

Length (ultimate) (mm) 8.3-14

Diameter (ultimate) (/mi) 17-23

Aspect ratio (length/diameter) 549

Specific apparent density (gravity) 1500

Microfibril angel {6) 6.2

Moisture content (%) 12

Cellulose content (%) 90

Tensile strength (MPa) 310-750

Specific tensile strength (MPa) 210-510

Young’s modulus (GPa) 30-60

Specific Young’s modulus (GPa) 20-41

Failure strain (%) 2-4
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Variability in tensile properties of hemp fibres

Perhaps the biggest disadvantage of hemp fibres for use as reinforcement in composites 

is the variability in their mechanical properties. This variability will inevitably be 

transferred to the composites made from them. Even when large number of fibres are 

tested, the variability in their properties can be very high as shown in Table 2.9.

Table 2.9: Tensile Properties of hemp fibres as reported by different authors

Tensile Strength 

(MPa)

Tensile Modulus 

(GPa)

Elongation at break 

(%)

Reference

690 - 1.6 [74]

1235 - 4.2 [66]

310-750 30-60 2-4 [75]

550-900 70 1.6 [76]

690 - 1.6 [77]

895 25 - [68]

500-1040 32-70 1.6 [7]

920 70 - [78]

690-1000 50 1-1.6 [79]

920 70 1.7 [80]

270-900 20-70 1.6 [81]

Pickering et al [82] studied the effect of growth period on tensile properties of hemp 

fibres. During the flowering stage of male plants (99-124 days of growth) the tensile 

strength of fibre increased gradually. Changes in chemical composition of the fibres as 

the plant aged were attributed to the increase in tensile properties. They also found that
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fibres with gauge length of 1.5 mm had higher tensile strength than fibres with gauge 

length of 10 mm.

2.4.6 Fibre Surface Modification Methods

A strong degree of adhesion is needed for effective transfer of stress from matrix to 

fibres in composite materials. This requires surface modification of fibre surfaces. 

Strongly polarized cellulose fibres are not inherently compatible with the hydrophobic 

non-polar polymers matrices. Also the poor resistance to moisture absorption makes 

natural fibres less attractive for making composites to be used in outdoor applications. 

Additionally for several technical oriented applications, the fibres have to be specially 

prepared or modified regarding homogenisation of the fibres’ properties, degrees of 

elementarisation and degumming, degrees of polymerisation and crystallisation, 

moisture repellence, and flame retardant properties [45].

There are two methods of improving the fibre-matrix interface: physical methods and 

chemical methods. Physical methods do not change chemical composition of fibres, but 

improve mechanical bonding to polymers. Commonly used methods are stretching, 

clantering, thermotreatment, production of hybrid yams, electric discharge, corona 

treatment, cold plasma treatment and alkalisation.

Chemical modification is defined as a chemical reaction between some reactive 

constituents of the natural fibres and chemical reagent, with or without catalyst, to form 

a covalent bond between the two. In chemical methods, coupling agents are used to 

bring about compatibility between strongly polarized cellulose fibres that are inherently 

incompatible with hydrophobic polymers [83]. These coupling agents react with the 

hydroxyl groups of cellulose and the functional groups of the matrix. General methods 

used are change of surface tension, impregnation of fibres, and chemical coupling. The 

surface modifications due to coupling agents cause noticeable improvements of the 

characteristic values of composites. The most commonly used chemical methods are 

liquid ammonia, esterification, silane coupling method, isocynates, permengnates and 

graft copolymerisation. In this research, plasma, alkalisation and acetylation were used 

for surface treatments of hemp fibres.
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2.4.6.1 Plasma Treatment

Plasma is a partially ionised gas which contains ions, electrons, atoms and neutral 

species. The process acts under vacuum conditions to ionise the gas in a controlled and 

qualitative way. So a vacuum vessel is pumped down to a pressure in the range of 10'2 

to 10'3 mbar with the use of high vacuum pumps. The gas introduced in the chamber is 

ionised with the help of a high frequency generator. The environment formed, plasma, 

is also known as the 4th state of matter. This environment interacts with the surface of 

the material being treated to make it more reactive.

The main advantage of plasma is that it is a well controlled and reproducible technique. 

Another advantage is that it only reacts with the surface of the material, so the bulk of 

material being treated remains unaltered. Surface activation takes place by the 

replacement of weak bonding by high reactive hydroxyl, carbonyl and carboxylic 

groups. The type of functional group formed is dependent on the type of gas used.

There are three important components of a plasma system: the material being treated, 

the vacuum pump, and a high frequency generator for generating plasma. The following 

sequence follows in a plasma process: 1) Evacuation of the chamber by using vacuum 

pumps, 2) inletting the process gas inside the chamber and ignition of plasma, and 3) 

venting of chamber and removal of material.

The ionisation of the process gas starts with the collision of an electron produced by an 

electrode with a molecule of the process gas. A further electron is shot out from the 

molecule. The molecule becomes a positive ion and goes to the cathode. The electron 

goes to the anode and strikes further molecules. The accelerated cations release 

numerous electrons from the cathode. This process continues like an avalanche until the 

gas is completely ionised.

Plasma technology chemically and physically modifies the top molecular layers of the 

surface of a material. As a result, the surface is chemically cleaned and the surface 

energy rises sharply. The surface becomes activated and new and highly reactive 

chemical groups are created on the surface. This allows complete wetting and spreading 

of a liquid on the surface, leading to robust adhesion of thin films and coatings. A thin 

film of another material can be applied on the activated surface due to excellent 

adhesion of the treated surface.
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2.4.6.2 Alkalisation/ Mercerisation

The standard definition of mercerisation proposed by ASTM D1695 is: “the process of 

subjecting a vegetable fibre to the action of a fairly concentrated aqueous solution of a 

strong base so as to produce great swelling with resultant changes in the fibre structure, 

dimension, morphology, and mechanical properties”. The definition does not mention 

the alkali concentration to be used or the treatment temperature.

Mercerisation is an alkali treatment method and depends on the type and concentration 

of the alkaline solution, its temperature, time of treatment, tension of the material as 

well as the additives used. Most of the non-cellulosic components and part of the 

amorphous cellulose are removed by this process. It results in the removal of hydrogen 

bonding in the network structure. Normally sodium hydroxide (NaOH), also called 

caustic soda, is used in this process.

Native cellulose, also called cellulose I, is a semi-crystalline polymer consisting of short 

alternating crystalline and amorphous regions in the cellulose chains [84]. It shows a 

monoclinic crystalline lattice which can be changed into different polymorphous forms 

through chemical or thermal treatments. The important ones are alkali-cellulose and 

cellulose n, as shown in Fig. 2.8 [85]. As a result of sodium hydroxide penetration into 

crystalline regions of cellulose I, alkali cellulose is formed. After unreacted NaOH is 

leached, regenerated cellulose (cellulose II) is formed. The transformation is an 

irreversible exothermic process resulting in the modification of elementary cells. The 

reaction equation is shown below.

Fibre-OH + NaOH -» Fibre-0-Na+ + H20

The effect of alkali on a cellulose fibre is a swelling reaction, during which the natural 

crystalline structure of the cellulose relaxes. The type of alkali (KOH, LiOH, NaOH) 

and its concentration will influence the degree of swelling, and hence the degree of 

lattice transformation into cellulose DL Experiments have shown that Na+ has got a 

favourable diameter, able to widen the smallest pores in between the lattice planes and 

penetrate into them. Therefore sodium hydroxide results in a high swelling. After 

removal of surplus NaOH the new Na-cellulose-I (alkali cellulose) lattice is formed, a 

lattice with relatively large distances between the cellulose molecules, and these spaces 

are filled with water molecules. The OH-groups of the cellulose are converted into
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ONa-groups, expanding the molecules dimensions. Subsequent rinsing with water 

removes the linked Na-ions and converts the cellulose to a new crystalline structure: 

cellulose n. This lattice is thermodynamically more stable than cellulose I. Thus sodium 

hydroxide can cause a complete lattice transformation from cellulose I to cellulose n, in 

contrast to other alkalis. Thus this process depolymerises cellulose I molecular structure 

producing short length crystallites.

By removing the natural and artificial impurities, alkali treatment leads to fibrillation of 

the fibre bundle into smaller fibres. It reduces the fibre diameter thereby increasing the 

aspect ratio. This treatment increases surface roughness, resulting in better mechanical 

interlocking and the amount of cellulose exposed on the fibre surface. This increases the 

number of possible reaction sites and allows better fibre wetting.
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Fig. 2.8: A schematic representation of the crystalline lattices of cellulose I, Na-

cellulose I and cellulose II [85]

Moreover alkali treatment influences the chemical composition of fibres, the degree of 

polymerisation, and molecular orientation of the cellulose crystallites, due to removal of 

cementing substances such as lignin and hemicellulose [81]. Hemicellulose has been 

shown to be very sensitive to caustic soda which exerts only slight effect on lignin or 

cellulose. With the removal of hemicellulose because of alkalisation, the interfibrillar 

region is likely to be less dense and rigid and thereby makes the fibrils more capable of 

rearranging themselves along the direction of tensile deformation. When natural fibres 

are stretched, such rearrangement amongst fibrils results in better load sharing in them
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and hence results in higher stress development in the fibre. As lignin is removed 

gradually, the middle lamella joining the ultimate cells is expected to be more plastic as 

well as homogenous due to gradual elimination of microvoids. The treatment also 

results in decrease in spiral angle and increase in molecular orientation and crystallinity 

index, which result in increase in the stiffness of fibres.

It has been reported [86] that the alkaline boiling process is a very effective method of 

removing pectin and lignin from hemp fibres for textile applications.

2.4.6.3 Acetylation

Acetylation has been used for years to improve the properties of wood cellulose like 

moisture repellency, dimensional stability and environmental degradation [84]. Their 

use in improving the properties of natural fibres has increased in the last decade or so. 

The method is based on the reaction of lignocellulosic material with acetic anhydride at 

elevated temperature, with or without a catalyst. Acetic anhydride reacts with the more 

reactive hydroxyl groups according to the equation [84],

Fibre-OH + 3(CH3CO)2 -> Fibre-0-CO-CH3 +3 CH3COOH+54Kcal

The acetylation of hydroxyl groups reduces hydrophilicity, causes bulking of cell wall 

and renders the materials less susceptible to biological decay.

2.4.7 Natural Fibre Reinforced Composites

The first natural composite material known in history was made in ancient Egypt some 

3000 years ago, which was clay reinforced with straw to build walls. With the 

development of more durable materials like metals, the interest in natural fibres was 

lost.

2.4.7.1 A brief history

The use of natural composite materials by human kind is almost as old as the species 

itself, notably through animal and plant fibres reinforced with other materials. The 

Egyptians invented papier-mache and there is evidence of the use of natural fibres by 

the Inca and Maya civilisations in making clay pottery to improve toughness ([87], 

[88]). In the USA in 1850s, shellac was compounded with wood floor to mould union
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cases to display early photographs. In France at the same time, Lepage worked in 

France with albumen and wood flour to produce his decorative Bois Durci plaques.

The history of ‘modem’ natural fibre reinforced composites can be traced back to the 

advent of synthetic polymers in the early part of the 20th century [89]. With the 

invention of Bakelite phenolic resin in 1909, natural fibre in the form of wood flour or 

waste strings and rags, were added to form the earliest forms of composites. These 

composites were used in radio and speaker cases [89].

Much of the early work on natural fibre reinforced synthetic resins was spurred on by 

the search for lighter materials for use in aircraft primary structures. In 1924, Caldwell 

and Clay carried out research into the use of fabric reinforced synthetic resins for 

airscrews. In 1930s a composite called Gordon Aerolite was developed by reinforcing 

phenolic resin with unidirectionally aligned flax thread [88]. It was used in the 

fabrication of a wing spar for the Bristol Blenheim and an experimental fuselage for the 

Spitfire fighter because of concerns regarding shortage of aluminium during World War 

n. The research had to be discontinued because the shortage of material did not 

materialise. Cellulose reinforced composites were also used in making aircraft drop 

tanks and aircraft pilot seats for Spitfire during the war. The hygroscopic nature of these 

materials and the high moulding pressures required in their fabrication inhibited their 

further development. Further details about the development of these earlier green 

composites can be seen in the excellent article written by Hughes [89].

On display in the Science Museum, London, is a coffin made in 1938 of phenolic resin 

reinforced with wood flour (www.sciencemuseum.org.uk/ accessed on 10/01/2008). 
This coffin is believed to be the largest phenolic moulding in the world. The coffin did 

not go into large scale production because of the inventor's death in 1944 during World 

War n. It was discovered in the attic of the Bakelite Company, London, in 1985.

In 1941, hemp fibres (and flax) were used in resin matrix composites for the bodywork 

of a Henry Ford car which was able to withstand ten-times the impact on an equivalent 

metal panel [90]. Unfortunately the car did not make into general production due to 

economic limitations at the time. By the mid 1940s, the use of cellulosic fibre, either as 

a fabric or in paper form, reinforced polymers was well established. They were used for 

making seats, bearings, and fuselages in aircraft during WWH due to shortage of 

aluminium at that time. One example of this, the Gordon-Aerolite, has already been
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described above. Another example was a cotton-polymer composite which was 

reportedly the first fibre-reinforced plastic used by the military for aircraft radar. In 

Europe, the body of the East German “Trabant” car, made between 1950 and 1990, was 

one of the first to be built from material containing natural fibres (cotton fibres 

embedded in a polyester matrix).

As late as 1947, Brown [91] was optimistic enough to predict about the “great extension 

in the application of this material”. However these predictions were short-lived. The 

commercial success of glass fibre, having superior properties than natural fibres, and 

concurrent development of synthetic resins such as unsaturated polyester resins and 

epoxies during and just after the Second World War led to the mass production of 

synthetic composites, and corresponding decline in use of natural fibres in these 

composites.

2.4.7.2 Contemporary applications

Ecological concerns of society in issues such as sustainability, recyclability, and 

environmental safety in 1990s resulted in renewed interest in natural fibre composites. 

Two principal drivers have contributed to this surge in interest in natural fibre 

composites -  environment and cost. Driven by increasing environmental awareness, 

automakers in the 1990s made significant advancements in the development of natural 

fibre composites, with end-use primarily in automotive interiors. A number of vehicle 

models, first in Europe and then in North America, featured natural fibre-reinforced 

thermosets and thermoplastics in car components, as described in the Introduction 

chapter. Indeed a company in Japan went to the extent of making a complete car body 

of natural fibre composite components [10].

In recent years, the demand for natural fibre composites has increased for such products 

as decking, window/door profiles, fencing/siding/railings, furniture, flooring, and 

automotive parts, pallets/crates/boxes, and marine components. The components made 

from natural fibre composites for automotive applications are: head rest, seat back, roof 

liner, back covering, parcel shelf, rear hatch, trunk base, sub-floor covering, door 

covering, bonnet insulation, and roof reinforcement.

Daimler-Benz has been working on replacement of glass fibres with natural fibres in 

automotive components since 1991. Mercedes-Benz used coconut fibres in their
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vehicles over a nine year period. Mercedes first used jute-based door panels in its E- 

class vehicles in 1996. In 2000, DaimlerChrysler started using sisal fibres for vehicle 

production.

Promoted as low-cost and low-weight alternatives to fibreglass, natural fibre composites 

signalled the start of a "green" industry with enormous potential. In 2000, the North 

American market for these natural fibre composites exceeded $150 million. In the same 

year the European car industry consumed 28,300 tons natural fibre, including 20,000 

tons of flax, 3700 tons of jute and 3500 tons of hemp fibres [7].

Germany has been at the forefront of using natural fibres in composite materials for 

automobile applications. A recent survey [92] found that the use of natural fibres 

(excluding wood and cotton) in automotive composites almost doubled from 9,600 

tonnes in 1999 to 19,000 tonnes in 2005. Flax fibres had the biggest market share at 

65%, followed by hemp fibres at 10%. According to authors the market share of hemp 

fibres can be increased by establishing further processing capacities or by reduction in 

hemp insulation material market. Similarly the use of natural fibre reinforced 

composites doubled from 15,000 tonnes in 1999 to 30,000 tonnes in 2005. On average 

the 5.4 million passenger cars produced in 2005 used 18 kg of natural fibres per car.

The consumption of hemp fibres in European Union also increased in this time. Another 

survey [93] found the market share of hemp fibre in automotive industry in EU 

countries increased from 1% in 1996 to 15% in 2002.

In 2008, the British company Lotus (www.lotuscars.com) unveiled its environment 

friendly car Eco Elise. The car uses hemp, sisal and wool fibres in the manufacture of 

interior trim, roof, seat covers and hard top. The car has received the thumbs-up from 

drivers of TV programme on automotives Top Gear.

Window frames and floor coverings made of hemp fibre reinforced polymer composites 

were used during the 2008 Beijing Olympics [94].

A consortium of European companies is working on a project called BioCompass 

(www.biocompass.org.uk) assessing the environmental credentials of naturally derived 

construction materials. The project is focusing on key issues such as raw material 

supply, energy requirement, durability of naturally derived materials compared to 

conventional alternatives, and end-of-life issues.
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Another project called COMBINE (www.combineproject.org.uk) is doing research on 

developing high performance bio-derived composites for structural applications by 

using innovative combinations of natural fibres and bio-plastics. The technology will be 

demonstrated by manufacturing and testing three case study components -  a marine bar 

top lid, a marine wheelhouse roof and a mobile baby incubator. The project started in 

November 2006 and will take 30 months to complete. The total value of the project is 

one million pounds.

BioComp (www.biocomp.eu.com) is a project being run by 25 European companies and 

research institutions. The main objective of this project is to obtain a breakthrough for 

SMEs on the development and use of engineering thermoplastic and thermosetting 

materials mainly from natural resources, like lignin from the paper industry and from 

the High Pressure Hydrothermolyses (HPH) process, other biopolymers, furan resins, 

woven and non-woven cellulose fibres and fibre mats to final model products.

Sustainable Composites Ltd. (www.suscomp.com) is a British company that was 

established in 2003 to develop a range of eco-friendly manufacturing materials made 

from sustainable crops such as hemp and castor oil. The company has successfully 

made surfboard and a dinghy from these materials. They have also developed a linseed 

oil based resin that contains 96% vegetable oil.

A Dutch company NPSP Composieten BV (www.npsp.nl) is manufacturing diverse 

products using hemp and flax fibres. Examples of products are mushroom-shaped 

guideposts for bicycle paths, housings of radar units (glass fibres disturb the radar rays), 

boats, furniture and loudspeakers.

Research done by the German Aerospace Centre, DLR, has resulted in successful 

manufacture of industrial safety helmet, train seat panels, and CD holder based on 

natural fibre composites [95]. Pipes, slabs and car door interior panelling have also been 

developed from natural fibre-biodegradable polymer composites [96]. Four German 

companies, sponsored by the German government, have launched an internet portal, 

www.n-fibrebase.net, which contains databases of the properties and markets of natural 

fibre composites.
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Eureka Factory Ecoplast (www.eureka.be/ecoplast) project has successfully developed 

natural fibre reinforced thermoplastic composites which are being used as parts in 

vacuum cleaners, lawn mowers, storage boxes, and speaker boxes.

Milliken, a Belgium-based company, has developed Halo, a natural fibre thermoplastic 

composite. Halo utilizes advanced non-woven fabric formation technology to achieve a 

performance level with natural fibres that can compete with fibreglass-reinforced 

products (www.netcomposites.com, accessed on 9/4/2008).

The Council for Scientific and Industrial Research (CSIR), South Africa 

(www.csir.co.za), is investigating the use of natural fibre composites in construction. 

Their research has confirmed that the properties of natural fibre composites fall within 

the range of those required for load-bearing elements.

Use of natural fibres with cement matrix has been used to make low cost building 

materials, like panels, claddings, roofing sheets and tiles, slabs and beams. Door 

shutters, door frames, roofing sheets, and shuttering plates from sisal and jute 

composites have been successfully developed in India [11].

One estimate [97] puts the present production volume of natural fibre composites in 

Europe at 100,000 tons, half of which are consumed by the European automotive 

industry.

2.4.7.3 Future outlook

On display in the Science Museum in London is the model of a futuristic car made of 

kenaf fibre reinforced lignin matrix composite (www.sciencemuseum.org.uk/ accessed 

on 10/01/2008). Full of revolutionary technology, this one-Unit concept car, designed 

by Toyota, Japan, uses plant-based materials instead of oil-based plastics and metals for 

its body. This is one example of the potential of natural fibre composites to replace 

conventional materials in future.

The technology road map for plant/ crop based renewable resources 2020, developed by 

the U.S. Department of Agriculture and the U.S. Department of Energy, has set a target 

of 10% of basic chemical building blocks to be made from plant-based renewable 

resources by 2020, with developed concepts in place by then to achieve a further 

increase to 50% by 2050 [3].
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The 4th International Conference of the European Industrial Hemp Association (EIHA), 

held in November 2006 in Germany, revealed a globally increasing interest in hemp raw 

materials due to worldwide raw material shortages [94]. 

It was also pointed out that because of increasing wood prices worldwide, 

manufacturers have started to use hemp as a replacement material in lightweight chip 

boards. The conference concluded that the demand of hemp fibre was bound to increase 

in coming years.

On the other hand, a workshop on natural fibre reinforced plastics organised by German 

Federation of Reinforced Plastics (www.avk-frankfurt.de) in February, 2007, concluded 

that natural fibre reinforced plastics needed to be made more competitive through 

innovation. It also concluded that while natural fibres had established their market share 

in the automotive industry, biopolymers were unlikely to tap into the industrial market 

in the near future.

In the comprehensive 2008 research report “European Markets for Naturally Reinforced 

Plastic Composites” [98], the analysts note that the current penetration of wood plastic 

composites in decking and natural fibre composites in the automotive segment remains 

below 10 per cent, with further potential to increase. However, users of natural fibre 

composites have concerns over the available capacity and the effect of a drastic 

reduction in European agricultural subsidies. Still, both the environmental benefits and 

cost competitiveness of natural fibre composites give these materials the capacity to 

replace plastic or non-renewable reinforcements. The main market segments for natural 

fibre composites in 2008 were automotive, building and technical parts. However, while 

the natural fibre composites automotive market is developed in Europe, other regions 

could provide more growth. Growth opportunities abound for natural fibre composites 

in Europe. “Ultimately, however, suppliers will have to concentrate on raising public 

awareness and product development to boost market penetration in existing segments 

and open up new opportunities”, the report concludes.

2.4.7.4 Suitability of natural fibres for use in composites

The mechanical properties of composite material are largely dependent on the properties 

of the fibres and the ratio of the load carried by the fibres. The ratio of the total load 

carried by fibres is given by [22]:
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Pf _ (Ef/Em)
Pc (Ef/E m) + (V./Vf) ....................................... (210)

where Pf is the load carried by the fibres, Pc is the total load on the composite, and Ef, 

Em, Vm and Vf are fibre modulus, matrix modulus, matrix volume fraction and fibre 

volume fraction respectively. Thus to use high strength fibres most efficiently, the fibre 

modulus should be much greater than matrix modulus. The percentage of load carried 

by the fibres will be higher for higher Ef/Em ratio and a higher volume content of fibres. 

Thus for a given fibre-matrix system, the fibre volume fraction must be maximised if 

the fibres are to carry a higher proportion of the composite load.

The excellent strength of glass fibre reinforced composites is a result of high strength of 

the fibres and a high Ef/Em ratio of approximately 20. Considering the maximum 

reported modulus value of 70 GPa of hemp fibres and that of polyester (3.7 GPa), the 

Ef/Em of hemp fibres in polyester matrix is also approximately 20. Using a typical fibre 

volume fraction value of 50%, the fraction of the total load Pc carried by the fibres is

Pf= - ^ - = ° .9 5 P C 
20 + 1

It is thus seen that the natural fibres can carry as much as 95% of the total load on the 

composites. This suggests that natural fibres can carry the load vey efficiently in a 

composite material and hence are good contenders to replace glass fibres.

Another important parameter for efficient transfer of the load from matrix to fibre is the 

aspect ratio which should be at least in the range 100-200 [46]. Most of bast fibres have 

aspect ratio in the range 500-1000. The high aspect ratio of natural fibres means they 

can transfer the stress very efficiently because of good surface area for adhesion and 

makes them suitable for use in composites. Low density and higher specific mechanical 

properties of natural fibres also make them attractive as reinforcements in polymer 

matrix composites.

The critical length of fibre is an important parameter for short fibre composites. The 

length of the fibres should be greater than the critical length for them to effectively 

carry the load. The value of critical length of a fibre is given by

lc = af D/ 2t................................................(2.11)
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where Of is the fibre fracture strength, D is the diameter of the fibre and t  is the 

interfacial shear strength or the matrix shear strength. Using typical values of 500 MPa 

for Of, 50 fin1 for D, and 5 MPa for x, the values of lc for natural fibre composites comes 

out to be about 2.5 mm. Therefore a fibre of length 12.5 mm (five times the critical 

length) can carry an average fibre stress of 90% of fibre fracture stress. Most of the bast 

fibres have lengths greater than this and hence can effectively bear the stress.

These arguments point at the good potential of natural fibres to be used as reinforcement 

in polymeric composites.

2.4.7.5 Advantages and Disadvantages of Natural Fibre Composites

The main advantages of natural fibre composites are:

Low density, which results in comparable, if not higher, specific strength and stiffness 

compared to glass fibre composites; low cost; less tool wear; and good thermal and 

acoustic insulating properties.

The main disadvantages of natural fibre composites are:

Lower strength properties, in particular impact strength; variable properties; moisture 

absorption leading to degradation of mechanical properties and dimensional instability; 

limited maximum processing temperature; lower durability; and poor fire resistance.

2.4.7.6 Fabrication

Most commonly used processing methods for fabrication of synthetic fibre reinforced 

polymers can also be applied to natural fibre composites. Hand lay-up is the most 

widely used and convenient method to make natural fibre reinforced thermosetting 

matrix composites. Other methods used for making natural fibre composites with either 

thermosetting or thermoplastic matrix, are injection moulding, vacuum injection, 

filament winding, resin transfer moulding (RTM), pultrusion, bulk and sheet moulding 

and film stacking. In this research a combination of hand lay-up and compression 

moulding will be used for making laminates. A brief description of the hand lay-up 

process is given below.
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Fig. 2.9: A schematic diagram of hand lay-up process [99]

As shown in Fig. 2.9, resins are impregnated by hand into fibres which are in the form 

of woven, knitted, stitched, bonded fabrics or non-woven mats. This is usually 

accomplished by rollers or brushes, with an increasing use of nip-roller type 

impregnators for forcing resin into the fabrics by means of rotating rollers and a bath of 

resin. Laminates are left to cure under standard atmospheric conditions for the duration 

as recommended by the resin manufacturer. For some resins, post-curing is 

recommended to get optimum properties.

It is a low/medium volume method for making large, relatively simple parts. The most 

common applications are boat hulls, tanks, equipment housings, building panels, 

standard wind turbine blades. This process is low in investment costs and extremely 

flexible in production. The main disadvantage is the difficulty of removing all the 

trapped air in the laminate.

2.4.7.7 Matrix Materials

Matrix materials most commonly used in natural fibre composites are shown in Table 

2 . 10.

Table 2.10: Matrix materials used in natural fibre composites [70]

Thermosets: Phenolic, Epoxy, Polyester, Polyimide, Polyurethane

Thermoplastics: Polypropylene, Polyamide, Polyethylene, Polystyrene, Polyvinyl 

chloride

Rubber and Natural Polymers: India rubber, Modified starch, Polyactide, Cellulose 

ester, Tannin, Polyhydrooxybutivic acid, lignin based epoxy, soy-based resins.



2.4.7.8 Natural Fibre Reinforced Thermoplastics

Thermoplastics offer many advantages over thermoset polymers for use with natural 

fibres like low processing cost, design flexibility, and ease of moulding complex parts. 

Their biggest disadvantage is that their processing temperature is restricted to below 

230 °C to avoid thermal degradation of natural fibres. Only those thermoplastics are 

useable for natural fibres whose processing temperature does not exceed 230 °C, for 

example, polyethylene and polypropylene. Other thermoplastics like polyamides, 

polyesters and polycarbonates, that require processing temperatures of greater than 250 

°C, can not be used with natural fibres.

Natural fibres generally have higher modulus than thermoplastics, thus resulting in 

higher modulus composites [100], Natural fibre reinforced thermoplastic composites are 

flexible, tough and show good mechanical properties. However the fibre orientation in 

these composites is random and accordingly property improvement is not as high as in 

thermoset composites. Thermoplastics have significant viscosity and therefore their 

good wetting with natural fibres is difficult to achieve. Increasing their temperature to 

reduce viscosity could damage the natural fibres.

Polypropylene (PP) is the most extensively used thermoplastic in natural fibre 

composites owing to its low density, excellent processibility, good mechanical 

properties, high temperature resistance, good dimensional stability and good impact 

strength. Mutje et al [101] determined polarities of hemp fibres, glass fibres and 

polypropylene and observed hydrophobic behaviour of glass and PP in contrast to very 

hydrophilic nature of hemp fibres. However it was found that irregular surface 

morphology of hemp could still improve the fibre-matrix adhesion. The tensile strength 

of hemp-PP composites was 50% of that of glass-PP composites and tensile modulus 

was 80% of glass-PP composites at 40% fibre weight fraction. Using maleated 

polypropylene (MAPP) as a compatibility agent resulted in considerable increase in 

tensile properties of hemp-PP composites. Mechanical properties of some selective 

natural fibre-PP composites and glass fibre-PP composites are shown in Table 2.11.

Wambua et al. [102] studied the mechanical properties of natural fibre/ polypropylene 

composites, using kenaf, coir, sisal, hemp and jute fibres, all at 40% fibre weight 

fraction. Hemp fibre composites showed the highest tensile strength of 52 MPa while 

coir showed the lowest (10 MPa). The strengths of kenaf, sisal and jute composites were
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approximately 30 MPa. Similar results for flexural properties of these composite were 

achieved. Hemp composites showed the best flexural strength properties (54 MPa) 

which is comparable with glass fibre composites with propylene matrix (60 MPa). But, 

more importantly, the specific flexural strength of hemp composite (36.5) was higher 

than that of glass fibre composite (24). Similarly tensile and flexural moduli also 

showed similar trends. Hemp and kenaf composites registered highest tensile modulus 

of 6.8 GPa, which was comparable to that of glass fibre composites (6.2 GPa). It was 

lowest for coir composites with 1.3 GPa. Again the specific moduli of hemp and kenaf 

composite (4.6) were higher than that of glass fibre composite (2.5). The flexural 

modulus was again highest for hemp composite at 5 GPa and it was lowest for coir 

composite at 0.5 GPa. Finally, the Charpy impact strength of these composites was 

investigated. The impact strength of these composites was found to be quite low 

compared to glass fibre composites. The maximum impact strength was registered for 

hemp and sisal composites which was 25 kJ/ m2 whereas it was 54 kJ/ m2 for glass fibre 

composites. The mechanical properties of hemp composites proved them as a promising 

candidate to replace glass fibre. The specific properties of natural fibre composites were 

better than those of glass. It was concluded that natural fibres composite have potential 

to replace glass in many applications that do not require very high load bearing 

capabilities.
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2.4.7.9 Natural Fibre Reinforced Thermosets

Although the use of thermoplastics in natural fibre composites is increasing, natural 

fibre reinforced thermosets still constitute the majority of the composites made from 

natural fibres. The most commonly used thermosets are polyester, epoxy, and 

vinylester. The natural fibre composites made with thermosets are highly solvent 

resistant, tough, and creep resistant. The fibres can carry as much as 80% of the load in 

these composites [116].

The mechanical properties of thermoset biocomposites depend on the mechanical 

properties of the matrix and the fibre as well as the interfacial bonding between the two. 

Interfacial bonding between the matrix and the fibre depends on three factors: 

mechanical anchoring, physical attractive forces (van der Waals force and hydrogen 

bond), and chemical bonding between the matrix and the fibre. The surface of the 

natural fibre contains many hydroxyl groups in its chemical structure which make 

hydrogen bonds with the hydroxyl groups in the main backbone chain of the matrix. 

The polyester resin, having no hydroxyl group in its backbone chain, has generally the 

weakest bonding with the natural fibre compared to epoxy and vinylester resins [117]. 

Considerable shrinkage (up to 8%) during curing of polyester resin also weakens this 

bonding.

Unsaturated polyester resin is by far the most widely used thermoset for natural fibre 

composites. Table 2.12 shows the summary of mechanical properties of various natural 

fibre composites with unsaturated polyester resin reported by various researchers.

Early attempts to investigate the mechanical properties of sunhemp fibre reinforced 

polyester composites were made by Sanadi et al. [118]. They found that tensile strength 

of these composites varied from 50 MPa to 150 MPa depending on fibre volume 

fraction of 5% to 40%. Young’s modulus varied from 5 GPa to 13 GPa and the Izod 

impact strength ranged from 6 kJ/m2 to 20 kJ/m2. It should be pointed out the 

composites were made by using unidirectional fibres; hence these values are higher than 

for the fibres used as randomly oriented mats.

Hepworth et al. [119] studied the properties of flax fibre/ epoxy composites. With 80% 

fibre volume fraction, composites with stiffness of 26 GPa and strength of 378 MPa
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were made. However composites of flax fibre made with phenolic resin produced poor 

composites with stiffness of only 3.7 GPa and strength of 27 MPa.

Hautala et al [120] fabricated plywood-type composites from hemp fibre strips and 

epoxy resin. The flexural strength was found to be comparable to that of traditional 

plywood. The appearance, manufacturing properties and workability was also found to 

be suitable for floor and furniture applications. By using 48 layers of hemp or flax 

fibres, composites of even greater strength were manufactured. The flexural strength of 

the composites at 50-60% fibre weight fraction was determined at 140 MPa and flexural 

modulus at 6 GPa.

Aziz and Ansell [121] studied the mechanical properties of hemp and kenaf -fibre 

reinforced polyester composites, untreated and with alkali treatment. The alkali-treated 

fibres of both types of composites showed superior flexural strength and flexural 

modulus values compared to untreated fibres. The improvement in properties was 

observed for short, long and random mat fibres.

They also studied the effect of using specially formulated polyester resins for natural 

fibres. These resins are more polar in nature, making them hydrophilic so that they can 

bond better with the OH-groups on the surface of natural fibres. It was observed that 

these polyesters made a positive impact to the strength of the composites. The flexural 

stiffness of these composites was found to be close to that of glass fibre composites. A 

considerable improvement was also observed in flexural strength of these composites.

Richardson and Zhang [122] studied the effects of non woven hemp on mechanical 

properties of phenolics and their micro structural features. They found a significant 

increase in flexural strength and modulus in phenolics with the introduction of non- 

woven hemp. Impact toughness was substantially improved. This improvement was 

attributed to two factors. First that hemp is tougher and stronger mechanically than the 

phenolic matrix and this leads to increase in mechanical properties. The second is that 

the presence of hemp has the capability of reducing void (defect) numbers and 

dimensions, which significantly contributes to improvement in mechanical properties.

Rouison et al [123] also studied the optimization of RTM process in manufacturing 

hemp fibre composites and their mechanical properties. The tensile strength of hemp 

fibre/ polyester composites increased linearly with increasing fibre content above 11%

62



fibre volume fraction. A maximum tensile strength of 60 MPa was achieved for fibre 

volume fraction of 35%. The results for tensile modulus also showed a similar trend. 

Again a maximum elastic modulus of 1.7 GPa was achieved for fibre volume fraction of 

35%. The flexural strength and flexural modulus also increased linearly with increasing 

fibre volume fraction. The highest values attained for flexural strength and flexural 

modulus were 113 MPa and 6.4 GPa respectively. The impact strength of these 

composites also increased with increasing fibre content. The highest impact strength of 

14.2 kJ/ m2 was achieved again for fibre volume fraction of 35%. Finally flexural creep 

properties of 21% fibre content were investigated. It was found that these materials are 

not suitable for use under high fatigue load conditions.

Sebe et al. [124] studied the flexural and impact properties of hemp fibre-reinforced 

polyester composites made by Resin Transfer Moulding technique. Flexural stress at 

break and flexural modulus showed an increasing trend with increasing fibre content. 

Impact strength was found to decrease at low fibre content, and then gradually increase 

with further addition of fibres.

Yamamoto et al. [125] studied the processing and mechanical properties of natural fibre 

composites. They used three kinds of kenaf-hemp non-woven materials impregnated 

with acrylic matrix. The mixing ratio of kenaf/hemp was 50:50. The prepregs were 

compression moulded. The tensile strength of these composites varied from 28 MPa to 

75 MPa for moulding pressure of 1.5 MPa to 6 MPa. The tensile modulus varied form 

3.9 GPa to 11 GPa. Elongation to fracture varied from 0.8% to 1.4%. The fractographic 

study of fractured samples was carried out which showed good adhesion between fibre 

and matrix.

Khoathane et al [126] studied the mechanical and thermal properties of hemp fibre 

reinforced 1-pentene/polypropylene copolymer composites. At fibre weight fraction of 

30%, tensile strength was measured at 25 MPa, tensile modulus at 2.5 GPa, flexural 

strength at 3.3 GPa, and impact strength at 1.3 kJ/m2. The thermal stability of the 

composites was found to be better than that of the fibres or the matrix as individual 

entities.
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2.4.7.10 Natural Fibre Reinforced Biodegradable Polymers

The natural fibres reinforced with biodegradable polymers result in completely ‘green’ 

composites. The advantages of using such composites with respect to environmental 

pollution are obvious and the research in such composites has increased substantially in 

recent years. Examples of biodegradable polymers are thermoplastic starch, 

polyhydroalkanoates (PHA), polyactides (PLA), lignin based epoxy, soy based resins, 

and epoxidised linseed and soyabean oil.

Table 2.13: Natural fibre reinforced biodegradable polymer composites

Fibre Matrix Reference

Hemp Cashew nut shell liquid (epoxy) [147]

Flax, hemp and wool Epoxidised soy bean oil [148]

Kenaf Polylactic acid [10]

Flax, jute, ramie, oil palm, Polyester, polysaccharides, thermoplastic

regenerated cellulose Starch [149]

Flax, hemp, ramie Starch, lactic acid [96]

Manila hemp Starch [150]

Hemp, flax Soy oil [151]

Hemp Cellulose ester [152]

Flax, cellulose, pulp, hemp Acrylated epoxised soyabean oil [153]

Hemp Polylactic acid [154]

Hemp Euphorbia oil [155]

Sisal MaterBi-Z [156]

Sisal MaterBi-Y [157]

Jute Polyesteramide [158]
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Although produced from natural sources, these polymers are not necessarily 

biodegradable because it depends mainly on the chemical structure (degree of cross 

linking) of the polymers. One of the major drawbacks of these polymers is their cost. 

Most biodegradable resins currently cost three to five times the cost of commonly used 

resins such as PP, LDPE, HDPE, and PVC [74]. Some examples of studies done on 

these composites are shown in Table 2.13. These studies have shown promising 

properties of these composites, although in most cases these properties are lower than 

those of natural fibre reinforced thermosets and thermoplastics.

2.4.7.11 Natural Fibre Hybrid Composites

One method of increasing the mechanical properties of natural fibre composites is by 

hybridising them with another synthetic or natural fibre of superior mechanical 

properties. The synthetic fibre mostly used for this purpose is glass fibre. Although the 

biodegrability of the composite is reduced, this can offset the advantages gained by the 

increase in mechanical properties. Table 2.14 shows some examples of the studies done 

on natural fibre hybrid composites.

Some researchers have also used two natural fibre reinforcements in hybrid composites 

as shown in Table 2.14. Two natural fibres with different microfibrillar angle, and hence 

different mechanical properties, can result in improved properties of composites.

Santulli [159] has identified the following factors that can be helpful in successful 

development of glass/ natural fibre hybrid composites: larger fibre volume fraction; 

improved effectiveness of interfaces in dissipating impact damage; and modification of 

the configuration to improve impact properties.
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Table 2.14: Natural Fibre Hybrid Composites

Fibres Matrix Reference

Natural fibre/synthetic fibre

Jut d  glass Epoxy, Polyester [160], [161], [8], [162]

Hemp/glass Polypropylene [163], [164]

Coir/ glass Polyester [165]

Sun-hemp/ carbon Polyester [13], [99]

Banana/ glass Polyester [166]

Oil palm/ glass Polyester, Epoxy [167], [168]

Sisal/ glass Polyester [169]

Flax/ glass Polypropylene [170]

Bamboo/ glass Polypropylene [105], [106]

Natural fibre/natural fibre
Banana/ sisal Polyester [171]

Jute/ cotton Novolac [172]

Sisal/ oil palm Natural rubber [173]

Cotton/ kapok Polyester [174]

Ramie/ cotton Polyester [175]

Flax/ cellulose Polypropylene [170]

2.4.7.12 Effects of Fibre Surface Treatments

Sebe et al [124] modified the surface of hemp fibre composites, with polyester as the 

matrix, via esterification of hemp hydroxyl groups using mathacrylic anhydride. 

Increased bonding between fibre and matrix due to this treatment did not vary the 

flexural stress at break but was detrimental to toughness. This behaviour was ascribed to 

a change in the mode of failure, from fibre pull-out to fibre fracture, resulting in a 

marked reduction in the energy involved in the failure of the composite, leading to a 

more brittle material.
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Rouison et al. [146] studied the effect of various surface modifications on the 

mechanical properties of hemp fibre/ polyester composites. Chemicals used for paper 

sizing (AKD, ASA, Rosin Acid and SMA) as well as silane compound and sodium 

hydroxide were used to modify the fibres’ surface. The tensile, flexural and impact 

properties were investigated. All the chemicals, except alkali solution, improved 

substantially the hydrophobic behaviour of fibres. The paper sizing chemicals decreased 

the flexural and tensile properties by creating a weaker fibre-matrix interface. But the 

silane, SMA, and alkali treatments improved these properties slightly. These 

improvements were attributed to better interface interaction due to enhanced 

hydrophobic behaviour of fibres and, for alkali treatment, to better strength properties of 

fibres. The lack of strong adhesion between fibre and matrix was confirmed by the 

slight increase in impact strength of these samples as well as the analysis of their tensile 

fracture surface. A slight improvement in mechanical properties was observed for SMA, 

silane and alkali treated specimens. However close examination of these tests and of the 

fracture surface of the samples showed no improvement in fibre-matrix adhesion.

Hill et al [134] undertook extensive studies to observe the effect of acetylation on the 

properties of coir, palm, flax and jute fibres. The rate of acetylation was found to be 

proportional to the lignin content of the fibres. The effect of acetylation at reaction 

temperature of 120°C on the tensile properties of palm and coir fibres was found to 

damage the fibre structure resulting in poor mechanical properties, whereas at 100° C 

the modified fibres showed improved performance. Also the modified fibres showed a 

high degree of decay resistance over a five month test period.

Abdul Khalil and Hill [134] studied the mechanical properties of oil palm- and coir 

fibre-reinforced polyester composites. Composites made of fibres acetylated at 120 °C 

showed lower tensile properties than untreated fibres due to cell wall damage. However 

for treatment at 100 °C, the cell wall damage was reduced and improvements in tensile 

properties were observed. However the impact strength did not improve significantly 

following the treatment.

Bogoeva-Gaceva et al. [81] studied the effect of dewaxing, alkali treatment, 

cyanoethylation and acetylation on kenaf fibres. All treatments resulted in improvement 

of surface morphology as well as changes in crystalline structure of cellulose.
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Tserki et al. [176] studied the impact of acetylation and propionylation treatments on 

flax, hemp, and wood fibres. The highest effect of esterification was achieved for woof 

fibres due to their high lignin/ hemicellulose content, followed by flax and hemp fibres. 

Crucially, both the acetylation and propionylation treatments reduced water adsorption 

in fibres, rendering them more hydrophobic. The SEM examination showed the surfaces 

of the esterified materials to be smoother than untreated material.

Oujai and Shanks [177] studied the effect of solvent extraction, alkalization and AN 

grafting of hemp fibres on surface properties and mechanical properties of hemp fibres. 

Spectroscopic studies and diffraction techniques showed slight decrease of crystallinity 

index. The structural transformation of fibres from cellulose 1 to cellulose 2 was 

observed at high NaOH concentration of 10-20% wt/v. The AN grafted fibres had no 

transformation of crystalline structure as observed after mercerization. Only a variation 

of X-ray crystallinity index with grafting amount was observed. Moisture regain of pre­

treated and modified fibres depended on the structure of the fibre and amount of 

grafting.

Mwaikambu [174] also used alkalisation and acetylation techniques for hemp, sisal, jute 

and kapok fibres. Both treatments successfully modified the structure of natural fibres 

as well as increase in the crystallinity index of the fibres. A high crystallinity index 

resulted in stiff, strong fibres and hemp fared the best in this respect. By observing the 

first exothermic peak (DSC), hemp had the highest stability after acetylation. This 

implied that acetylation did not result in degradation of the crystalline cellulose. Fourier 

Transform Infrared (FT-IR) spectroscopy showed hemp to be not much reactive. But 

SEM results indicated that after chemical treatment, all the fibres except kapok 

possessed rough surfaces which increased mechanical interlocking with resins. It was 

concluded that hemp had the highest crystallinity index and thermal stability when 

alkalised and acetylated with and without acid catalyst, followed by jute, sisal, and 

kapok fibres.

Mwaikambo and Ansell [178] undertook a thorough analysis of physical and fine 

structure of hemp fibre bundles, namely surface topography, diameter, cellulose content 

and crystallinity index. The fibre bundles were alkalised and their physical and 

mechanical properties analysed. Alkalisation was found to change the surface 

topography of fibre bundles and the diameter decreased with increased concentration of
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caustic soda. Cellulose content increased slightly at lower NaOH concentrations and 

decreased at higher NaOH concentrations. The crystallinity index decreased with 

increase in caustic soda concentration up to 0.24% NaOH beyond which, it decreased 

with increase in NaOH concentration.

It was also found that the tensile strength and stiffness increased with increase in the 

concentration of NaOH up to a limit. Tensile strength and Young’s modulus increased 

with decrease in cellulose content, while crystalline cellulose decreased slightly but with 

improved crystalline packing order resulting in increased mechanical properties. Similar 

observations were elucidated by the crystallinity index. Alkalised hemp fibre bundles 

were found to exhibit a similar specific stiffness to steel, E-glass and Kevlar 29 fibres. 

The results also showed that crystallinity index obtained following alkalisation had a 

reverse correlation to the mechanical properties. Stiffer alkalised hemp fibre bundles 

were suitable candidates as reinforcements to replace synthetic fibres. The improvement 

in mechanical properties of alkali treated hemp fibre bundles confirmed their use as 

reinforcement.

Kostic et al [73] studied the effect of alkalisation of varying concentrations at different 

temperatures on hemp fibres. The treated hemp fibres were finer, with lower lignin 

content, increased flexibility, and in some cases tensile properties were improved.

FTIR analysis of 8% wt/vol NaOH treated hemp fibres by Ouajai and Shanks [179] 

indicated the removal of pectin and hemicellulose by this treatment. The IR lateral 

crystallinity index exhibited slight decrease following this treatment indicating the 

presence of less ordered cellulose structure. X-ray diffraction studies of untreated hemp 

fibres showed the characteristics of cellulose I. Following NaOH treatment of up to 

20% wt/vol, the crystalline transformation to cellulose 2 was observed which resulted in 

decrease of crystallinity.

It is generally accepted that interfacial adhesion can be best described in terms of 

dispersion forces and acid-base interactions. Therefore, there is a need for quantitative 

determination of acid-base character of natural cellulosic fibres. In their study, Gulati 

and Sain [180] determined acid base characteristics and dispersion component of 

surface energy of hemp fibres using inverse gas chromatography. Effect of alkalization 

and acetylation on acid-base characteristics was also examined. The results indicated 

that alkalization and acetylation made the hemp fibre amphoteric, thereby improving
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their potential to interact with both acidic and basic resins. A parallel was drawn 

between the changes in fibre-matrix acid-base interactions and the actual improvement 

in the mechanical properties of the composites manufactured using resin transfer 

moulding process.

Wang et al [72] exposed hemp fibres of nano-scale (30-100 nm width) to 12% NaOH 

solution. The cellulose content was found to increase significantly from 76% for 

untreated fibres to 94% for treated fibres. There was corresponding decrease in 

hemicelluloses of 10.7% for untreated fibres to 1.9% for treated fibres. X-ray 

crystallography of fibres showed that the crystallinity of fibres increased after the 

treatment, thus affirming the increase in cellulose content.

The FTIR analysis of 5% alkalised hemp, kenaf, flax ad henequen fibres by Sgriccia et 

al [181] showed complete removal of hemicellulose and partial removal of lignin 

following the treatment. Pietak et al [182] observed that hemp fibres treated to 18% 

alkali solution for only 30 minutes resulted in removal of non-cellulosic components 

and more cellulose rich surface.

The removal of hemicellulose and lignin following 5% alkalisation was also confirmed 

by Sinha and Rout [183] for jute fibres. The crystallinity index of the fibre was also 

found to increase following the treatment. The mechanical testing of the fibres showed 

that they were stiffer and more brittle than non-alkalised fibres. Taha et al [184] also 

confirmed the removal of hemicellulose from date palm fibres following treatment with 

5% NaOH solution.

Beckermann and Pickering [185] used 10% NaOH and 5% NaOH/2% Na2S03 solutions 

for treatment of hemp fibres. NaOH treatment was more effective in removal of lignin 

and increased the crystallinity index of fibres following the treatment. The treated fibres 

were also more thermally stable than untreated fibres. Both the treatments resulted in 

increase in tensile properties of hemp-PP composites.

Mwaikambo and Ansell [147] also observed increase in tensile properties of hemp fibre 

reinforced cashew nut shell liquid (CNSL) composites following alkalisation of fibres. 

The increase was observed for both unidirectional and non-woven fibre composites.

Bledzki et al [186] used 22% NaOH solution on hemp fibres and studied the properties 

of unidirectional hemp yam-epoxy composites. The flexural strength was increased by
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45% and flexural modulus was increased by 100% following the treatment. The use of 

MAH-PP coupling agent was also studied for unidirectional hemp-PP and flax-PP 

composites. The transverse tensile strength of hemp-PP composites increased by 75% 

but there was no increase in longitudinal strength following the treatment. Flax-PP 

composites showed 150% increase in flexural strength and 65% increase in transverse 

tensile strength following the treatment.

Towo and Ansell [187] studied the effect of 0.06M alkalisation on mechanical 

properties of sisal fibre reinforced polyester and epoxy composites. The treatment 

resulted in 28.5% increase in tensile strength of polyester composites but only marginal 

increase in tensile strength of epoxy composites.

Mehta et al [145] studied the effect of various fibre surface treatments on the 

mechanical properties of hemp/polyester composites. The surface treatments used were: 

5% alkalisation, silane, and acrylonitrile. All treatments resulted in increase in 

mechanical properties of the composites. The only exception was impact strength which 

was found to decrease following alkalisation treatment, and there was only marginal 

increase in impact strength for other treatments. This was consistent with the fact that 

improved fibre/surface adhesion will reduce the impact strength of the composites.

Thygesen et al [188] studied the effects of steam explosion, wet oxidation, and 

enzymatic defibration on chemical composition, crystallinity and cellulose chain length 

of hemp fibres. The degree of crystallisation of cellulose decreased slightly by 

enzymatic defibration but not by other treatments. The cellulose chain length decreased 

significantly only by steam explosion. The cellulose content was highest in the fibre 

bundles after wet oxidation.

Couto et al [114] studied the effects of oxygen plasma treatment on sisal fibres and 

polypropylene and their composites. No improvements in tensile or flexural properties 

were observed but there was some improvement in impact resistance following the 

treatment.

Yuan et al [189] reported an improvement in tensile properties of woodfibre- 

polypropylene composites following air plasma and argon plasma treatments, with air 

plasma being more effective in improving the properties.
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Marais et al [135] studied the effect of plasma treatment on mechanical properties of 

flax fibre- and flax/PET fibre-reinforced polyester composites. It was found that the 

tensile strength decreased from 115 MPa to 102 MPa while tensile modulus increased 

from 11.5 GPa to 13.4 GPa for flax fibre composites. The improvement in modulus was 

attributed to improvement in interfacial adhesion while the decrease in strength was 

attributed to damage to fibres during the treatment. For flax/PET fibre composites, the 

tensile strength decreased from 79 MPa to 78 MPa while the modulus increased from

8.7 GPa to 9.7 GPa following the treatment.

George et al [190] reported a reduction in tensile properties of pineapple leaf- LDPE 

composites at higher concentrations of NaOH. Mishra et al. [137] reported a reduction 

in tensile, impact, and flexural strengths of sisal fibre reinforced polyester composites 

after exposing fibres to 10% NaOH solution. The same composites showed increase in 

tensile and flexural strengths when fibres were treated to 5% NaOH solution compared 

to non-surface treated fibres. This decrease in properties was attributed to increase in 

brittleness of fibres at higher concentration of NaOH. Mukheiji et al [191] reported that 

the use of more than 1% NaOH solution on cellulose fibres weakens the fibres resulting 

in poorer mechanical properties.

From their studies on the effect of chemical modification on sisal-oil palm (hybrid) fibre 

reinforced natural rubber composites, John et al [192] reported that the tensile strength 

of the composites increased with increase in alkali solution concentrations of up to 4%. 

The tensile strength was found to decrease at alkali concentration of 8% which was 

attributed to the degradation of sisal and oil palm fibres following treatment at this 

concentration.

Mehta et al [145] exposed hemp fibres to 5% NaOH solution for one hour. They 

reported an increase in thermal stability of hemp fibres after treatment. After the 

treatment, the carbon content within the fibres was found to increase while oxygen and 

nitrogen contents were found to decrease.

A survey by Santulli [159] of various research papers on the effects of various fibre 

surface treatments on impact properties of natural fibre composites found that fibre 

treatments other than alkalisation did not appear to lead to a substantial improvement in 

impact properties.
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This comprehensive review shows that considerable improvements can be gained in the 

mechanical properties of natural fibre composites by using the suitable surface 

treatment. The choice of treatment will depend on the range of improvement required 

and the applications of the composites following the treatment.

2.4.7.13 Natural Fibre Composites in Comparison to Glass Fibre Composites

The performance of natural fibre composites will inevitably be judged against the 

performance of glass fibre composites because the primary reason of using natural 

fibres is their potential to replace glass fibres. Various studies have been undertaken in 

this regard.

Fig. 2.10 shows a stiffness comparison of natural fibre and glass fibre composites. The 

figure shows that natural fibre composites can attain the same stiffness per unit weight 

at lower fibre weight fraction than glass fibre composites, albeit at slightly higher cost.

Table 2.15 shows the values of different environmental parameters in the production of 

1 kg of hemp fibres and 1 kg of glass fibres. The lower power consumption and lower 

emission of greenhouse gases gives natural fibres a clear edge compared to glass fibre.

Table 2.15: Environmental Parameters in production of 1 kg of fibres [7]

Parameters Hemp fibre Glass fibre

Power consumption (MJ) 3.4 48.3

CO2 emission (kg) 0.64 20.4

SOx emission (g) 1.2 8.8

NOx emission (g) 0.95 2.9

BOD (mg) 0.265 1.75
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Fig. 2.10: Comparison of stiffness of natural fibre composites with glass fibre 

composites per unit weight and cost [193]
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2.5 IMPACT PROPERTIES

The increase in the applications of composite materials has made it essential for them to 

perform well under various types of impact loading. Composite materials have to be 

designed to withstand impact during service life, like a dropped tool or flying debris. 

Stones hitting the under-shield of a car, a lifeboat hitting rocks, a fork-lift truck nudging 

the side of a portable building, are other possible examples of composite structures 

undergoing impact [194]. It has therefore become essential to understand the impact 

behaviour of composite materials.

Composite materials are very sensitive to out-of-plane (transverse) loading because they 

are much weaker in the thickness direction than in the plane of lamination. 

Consequently composite materials subjected to transverse impact may suffer significant 

damage, resulting in deterioration in their overall load-bearing capacity.

An attempt to improve the tensile properties of a composite frequently results in a 

deterioration of impact properties [22]. For example, high modulus carbon fibre 

composites have greater tensile strength but poorer impact strength than low modulus 

glass fibre composites. It is therefore important to have a good understanding of impact 

behaviour of composites for safe and efficient design and to develop new composites 

having good impact properties as well as good tensile properties.

Impact resistance of a material can refer to quite different aspects of a material’s 

behaviour [194]. The impact resistance of a composite may refer to the ability of the 

composite to withstand a given blow without any damage (resilience); the maximum 

force necessary to rupture or separate a composite structure (impact strength); the 

amount of energy absorbed by a given mass of the composite (crush resistance); or the 

level of damage that a composite can sustain during impact loading without undue 

reduction to some primary structural function (damage tolerance). In the aerospace 

industry, the residual compressive strength of an impact damaged composite component 

is the design-limiting factor. Damage tolerance is defined in the aircraft industry as “the 

ability of a structure to sustain anticipated loads in the presence of fatigue, 

environmental deterioration (corrosion), or accidental damage until such damage is 

detected through inspections or malfunctions and repaired” [195]. Other industrial 

sectors also adopt similar damage-tolerant design philosophies. The present study will
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be mostly concerned with studying the impact damage tolerance of hemp fibre 

composites.

Impact is defined as a relatively sudden application of an impulsive force to a limited 

volume of material or part of a structure. There has been considerable variation in 

interpretation of low-velocity. Sjoblom et al [196] defined low velocity impact as events 

which can be treated as quasi-static, the upper limit of which can vary from one to tens 

of m/s. Cantwell and Morton [197] and Hogg and Bibo [194] classified low velocity as 

up to 10 m/s. In contrast Abrate [198] stated that low velocity impact occurs for impact 

speeds of less than 100 m/s. Liu and Malvern [199] suggested that the type of impact 

can be classified according to the damage incurred. Robinson and Davies [200] defined 

a low velocity impact as being one in which the through thickness stress wave played no 

significant part in the stress distribution. Impacts in the speed range greater than 100 

m/s are termed ballistic events, while those at speeds greater than 1000 m/s are termed 

hypervelocity events [194]. Agarwal and Broutman [22] defined low-velocity impacts 

as the ones that do not cause through-the-thickness fracture. Low velocity impact is also 

defined in context of low energy impact, e.g., less than 136 J [201].

The results of an impact are largely elastic at low impact energies, with some energy 

dissipated as heat, sound, internally in the material. At high impact energies, there is 

deformation, permanent damage, complete perforation, or fragmentation of the 

impacting or impacted body, or both. The ability of composites to undergo plastic 

deformation is quite limited with the result that energy is frequently absorbed in 

creating large areas of fracture with ensuing reductions in both strength and stiffness 

[197]. Damage due to impact loading in a composite is a function of velocity, mass, 

hardness, and the shape of the impactor. The nature and extent of impact damage are 

function of impact parameters such as impact energy, impact angle, laminate material 

(and fibre volume fraction and lay-up), and laminate geometry. For composites, impact 

tests are considered to be a more useful method for measuring overall toughness, 

compared to conventional fracture toughness analysis.

2.5.1 Energy Absorption and Failure Modes

Upon impact loading, a solid can absorb energy by two basic mechanisms: creation of 

new surfaces and material deformation. If the impact energy is large enough, a crack
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initiates and propagates, thus actuating the second energy-absorbing mechanism. The 

material deformation continues in advance of the crack during crack propagation. In 

brittle materials, only a small amount of deformation takes place and the energy 

absorbed is also small, so brittle materials exhibit low energy-absorption capability. In 

ductile materials, large plastic deformation takes place and therefore large energies are 

absorbed during their fracture.

The total energy absorbing capability or toughness can be increased by increasing either 

the path of the crack during separation or the material deformation capability. In 

composites this can be achieved by replacing low energy absorbing constituents with 

greater energy absorbing constituents and this is one of the major advantages that 

composite materials have over monolithic materials like metals.

There are five basic mechanical failure modes that can occur in composite materials 

after initial elastic loading. These mechanisms account for the total energy absorbed in 

the fracture process. These are fibre failure and fracture, resin cracking and fracture, 

debonding between fibre and matrix, delamination of adjacent plies in a laminate, and 

fibre pull out.

2.5.1.1 Matrix Deformation and Cracking

Matrix damage is the first type of failure induced by low velocity impact and usually 

takes the form of matrix cracking but also debonding between fibre and matrix. Brittle 

resins such as polyesters and epoxies undergo little deformation prior to fracture and 

hence have low energy absorbing capability. Most of the energy is absorbed in creation 

of new surface during matrix fracture. Thus the contribution of polymer matrices to the 

total impact energy may be insignificant. Matrix cracks also occur due to property 

mismatching between fibre and matrix and are usually oriented in plane parallel to the 

fibre direction in unidirectional layers [202]. The degree of matrix cracking can be used 

as an indicator of the degree of impact and the degree of damage.

The energy required for matrix fracture per unit area of the composite is given by [22]
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where om is the tensile strength of the matrix, d is the fibre diameter, Um is the work 

done in deforming the matrix to rupture per unit volume, and t  is the interfacial shear 

strength. For brittle polymer matrices Um is small and thus the energy required for 

matrix deformation may only be a negligible fraction of the total energy.

2.5.1.2 Fibre/Matrix Debonding

During impact the fibres become separated from the matrix material by cracks running 

parallel to the fibres, thus breaking the chemical or secondary bonds between the fibre 

and the matrix. This type of cracking occurs when fibres are strong and the interface is 

weak. A debonding crack runs at the fibre-matrix interface or in the adjacent matrix, 

depending on their relative strengths. In either case a new surface is produced. An 

increase in impact energy is observed with a decrease in interface strength because it 

promotes extensive debonding or delamination. This may have important implications 

in natural fibre composites where the interfacial bonding is relatively poor.

There is no expression for theoretically estimating the debonding energy. However 

values of the work of debonding have been calculated to be < 500 J/ m2 which is of the 

order of the interface shear strength times the failure strain of the resin [22].

2.5.1.3 Fibre Pullout

Fibre pullouts occur when brittle or discontinuous fibres are embedded in a tough 

matrix. The fibres break at their weak cross sections, thus producing stress 

concentration in the matrix which is relieved by matrix yielding. The fracture may 

proceed by the broken fibres being pulled out of the matrix rather than fibres fracturing 

again at the plane of the composite fracture. This is particularly true for short fibres. 

Fibre pullouts are usually accompanied by extensive matrix deformation.

An expression derived for the energy dissipated during extraction of discontinuous 

fibres of length I is given by [22],

V f  O f I

^  = ~12   (2’13)

where Of is the fibre tensile strength.
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2.5.1.4 Delamination

A crack propagating through a ply in a laminate may get arrested as the crack tip 

reaches the fibres in the adjacent ply. Because of the high shear stress in the matrix 

adjacent to the crack tip, the crack may branch off and start running at the interface 

parallel to the plane of the plies. This is called a delamination crack. A delamination is a 

crack which runs in the resin rich area between plies of different fibre orientation and 

not between lamina of same ply group [202].

Delamination cracks are responsible for absorbing a significant amount of fracture 

energy. They occur frequently when laminates are tested in Charpy or Izod impact tests. 

It has also been shown [22] that matrix cracking and delamination are associated 

phenomena in low-velocity impact. It may be possible to estimate the internal 

delamination by investigating the external matrix cracking patterns.

Liu [203] concluded that delamination was a result of bending stiffness mismatch 

between adjacent layers, i.e. different fibre orientations between layers. He also 

concluded that it is the bending-induced stresses that which are major cause of 

delamination.

Dorey [204] provided a simple expression for the elastic strain energy absorbed at the 

point of delamination failure which suggested that the damage mode is more likely to 

occur for short spans and thick laminates with low interlaminar shear strength.

„  2t2wL3 E = ---------

Where x is interlaminar shear strength, w is width, L is unsupported length, Ef is flexural 

modulus and t is the thickness of the sample.

Delamination due to transverse impact only occurs after a threshold energy has been 

reached and it only occurs in the presence of a matrix crack. It has also been shown that 

delaminations do not always run precisely in the interface region, but can run slightly 

either side. Matrix cracks which lead to delamination are known as critical matrix 

cracks.
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2.5.1.5 Fibre Failure

This damage mode occurs much later in the fracture process. Fibre failure is due to 

locally high stresses and indentation effects, governed by shear forces, and on the non­

impacted face due to high bending stresses [202]. Fibre failure is precursor to 

catastrophic penetration mode. Fibres will fracture when their fracture strain is reached. 

Brittle fibres such as graphite have low fracture strain and hence low energy-absorbing 

capability.

Dorey [49] has derived a simple equation for the energy required for fibre failure due to 

back surface flexure,

a 2w tL

18E  (2.15)

where a and E are flexural strength and modulus respectively, and w, t and L are 

specimen width, thickness and length respectively.

The energy required per unit area of the composite for fracture of fibres in tension is 

given by [22],

v r 4 ,
u = l t ................................................... (216)

where Vf is the fibre volume fraction, Of is the ultimate tensile strength of the fibres, I is 

the fibre length and Ef is the fibre modulus. It has been shown that fracture of fibres 

accounts for only a small fraction of the total energy absorbed. However the presence of 

fibres strongly influences the failure modes thus the total impact energy.

2.5.1.6 Penetration

Penetration is a macroscopic mode of failure. It occurs when fibre failure reaches a 

critical extent, enabling the impactor to completely penetrate the material [202]. 

Cantwell and Morton [205] showed that the impact energy penetration threshold rises 

rapidly in the specimen thickness for Carbon fibre reinforced plastics. They also showed 

that shear-out is the major form of energy absorption (50-60% depending on plate 

thickness) in the penetration process. For glass fibre reinforced plastics, El-Habak [206] 

showed that glass fibre treatment played a key role in determining the perforation load
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and polyester resin performed better than epoxy. Dorey [204] again came up with a 

simplified equation for the energy absorbed in penetration as

E= 7 ty  t d..........................................(2.17)

where y= fracture energy, d= diameter of impactor, and t= sample thickness.

2.5.1.7 Damage Modes in Randomly Oriented Fibre Laminates

The damage modes in randomly oriented laminates, like the ones used in the present 

research, are less easy to establish and less search has been carried out on this topic. 

Most of the research has concentrated on sheet moulding compound (SMC) panels and 

continuous filament mats (CFM) used in pultrusion.

In their research on SMC panels, Liu and Malvern [199] found that matrix cracks on the 

impacted surface were short and formed a series of rings away from the point of contact. 

They also defined three types of impact-induced damage for SMC composites: 

indentation (crushing of matrix under the impactor), bending fracture, and perforation 

(damage resulting from penetration and associated fracture).

2.5.2 Constituents9 Influence on Impact Properties

All the three constituents of composite materials, namely, fibre, matrices and the 

interface, play their parts in the impact response of composite materials. Their roles are 

now discussed.

2.5.2.1 Fibre

For resistance to low-velocity impact, the ability to store energy elastically in the fibres 

is the basic parameter with respect to their impact performance. This corresponds to the 

area under stress-strain curve, which is dictated by the fibre modulus and strain to 

failure. E-glass fibres have higher strain to failure than carbon fibres. Therefore they 

have better impact response than carbon fibres. The same is true for aramid fibres.

Higher fibre failure strains, with same elastic modulus, result in higher energy 

absorption, since the strain energy absorbed by the matrix represents a large portion of 

the total strain energy. For the same impact energy, higher capacity to absorb energy 

result in less fibre breakage and higher residual tensile strength. Also matrix damage, 

which occurs after initial fibre failure, will also be reduced so that residual compressive
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strength is also increased. So the ability of fibres to store energy elastically appears to 

be the fundamental parameter in determining impact resistance.

Fibre orientation also has significant influence on the impact behaviour of the 

composites. Research done by Agarwal and Narang [207] showed that in Charpy impact 

testing of unidirectional fibre composites, the impact energy continuously decreased 

with increasing fibre orientation. Minimum impact energy was observed at fibre 

orientation angle of 90°. For cross-ply composites, Mallick and Broutman [208] showed 

that the lowest impact energy was observed at fibre orientation angle of 45°.

2.5.2.2 Matrix

The properties of the matrix used in the composite material play a significant part in the 

response of the composite material to impact. A ductile matrix will have improved 

residual strength after impact due to better resistance to delamination and matrix 

cracking. Teh and Morton [209] compared damage resistance of nine composites and 

showed that brittle matrix systems have lower threshold velocities and higher damage 

area growth rate than toughened matrix systems.

Epoxy, one of the most widely used thermoset resins, is brittle and has poor resistance 

to crack growth [202]. Plasticizing modifiers, rubber and thermoplastic particles have 

been used in the resin to reduce matrix damage and improve interlaminar fracture 

toughness. However increased interlaminar fracture toughness invariably reduces 

mechanical properties. The inclusion of a thin discrete layer of very tough, high shear 

strain resin has also been used to minimize delamination.

Most of thermoplastic resins give better fracture toughness compared to thermoset 

composites. But thermoplastic resins have their limitations, like low thermal stability 

and chemical resistance, poor fibre-matrix interfacial bonding and poor creep properties, 

which prevent extensive use of these resins.

2.5.2.3 Interface/interphase

Like all other mechanical properties, the interface/ interphase plays a vital role in the 

composite response to impact. Interphase region affects the failure mode which occurs 

at a given load. Poor adhesion results in failure at low transverse stress, leaving clean 

fibres. The bond strength can be used to improve the toughness by absorbing energy in
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fibre-matrix debond. However this leads to reduction in the mechanical properties of the 

composite material [202]. Usually the surfaces of the fibres are chemically treated to 

improve the level of adhesion between matrix and fibre. Carbon fibres are treated with 

oxidative process whereas glass fibres are treated with a coupling agent.

Yeung and Broutman [210] studied the effect of different surface treatments on 

interfacial strengths of glass fabric reinforced polyester and epoxy composites. For 

polyester laminates, interfacial strength was found to vary over a large range by 

changing the coupling agent on the fibre surface. The interfacial strength of epoxy 

laminates was found to be independent of surface treatments because epoxy resin can 

form strong bonds with glass surface even in the absence of a coupling agent.

For polyester laminates, total impact energy appeared to have a minimum. Crucially, it 

was found that the total impact resistance can be maximised by reducing the interfacial 

bonding. The greatest value of impact strength occurred when the shear strength was 

lowest. This is because the initiation of failure requires less energy when the interfacial 

bond is poor and a large value of total impact energy is achieved during the 

delamination phase occurring after failure initiation. The sample supports less load 

during propagation but absorbs more energy because of large deflections that the sample 

can sustain. This is going to be crucial with respect to the fibre surface treatments of 

hemp fibres.

In general, impact on composites with low levels of fibre surface treatment generated 

large areas of splitting and delamination with severe effect on residual compressive 

properties of the material. While impact loading on highly treated composites results in 

a smaller, more localised damage zone, a lower perforation threshold, and improved 

compressive properties. However, the increased notch sensitivity associated with fibre 

surface treatment results in a reduction in the post-impact tensile strength of the 

material.

2.5.3 Measurement of Impact Strength

2.5.3.1 Impact testing techniques

The impact test fixture should be designed to simulate the loading conditions to which a 

component is subjected in service and then reproduce the failure modes and
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mechanisms likely to occur. In simple terms, the impact problem can be divided into 

two separate conditions: low velocity impact by a large mass (e.g. dropped tool), and 

high velocity impact by a small mass (e.g. runaway debris, small arms fire). The former 

is generally simulated using a falling weight or a swinging pendulum and the latter 

using a gas gun or some other ballistic launcher.

The Izod and Charpy impact tests have been traditionally used to assess the impact 

performance of metals. For polymers the Izod test is preferred, while for composites, the 

Charpy test is preferred. In either test, specimen geometries are not representative of 

component dimensions and so these tests are suitable only for ranking the impact 

resistance of composites. Also they give no indication of residual properties after 

impact. In either test, the impact energy may be over estimated because energy is stored 

elastically in the specimen prior to failure, or is dissipated acoustically, thermally, or in 

the kinetic energy of the failed parts. To overcome this effect, a notch is machined in the 

sample. The purpose of the notch is to reduce the sources of error due to stored energy. 

When the sample is impacted, the failure starts at the notch before significant energy 

storage occurs elsewhere in the specimen. The notch produces a high stress 

concentration and thus minimises the energy required for initiation of failure. The total 

measured energy required for fracture is then essentially the energy required for 

propagation of failure [22]. Notches are also used to determine if the material is notch- 

sensitive, for example, due to a scratch or a surface flaw.

It has been shown that composites exhibit a reduced modulus and, hence greater energy 

storage, in impact loading. It is therefore considered that while a place exists for these 

tests in a laboratory context for the purpose of material development, the tests can not 

be considered suitable for predicting the response of thin composite structures [194]. In 

this research some Izod tests will be carried out to compare results with other tests.

Another popular method of assessing impact energy is the drop weight test, and is more 

representative approach for assessing the impact response of composite materials, and 

this type of test will be used extensively in this research. Again there is a large variety 

of specimen shapes used in this test. The steel striker has a polished hemispherical head 

up to 20 mm in diameter, and is allowed to fall from a height of up to 2m 

(corresponding to a maximum velocity of 6.3 m/s) onto the specimen. It has been noted 

that pyramidal and hemispherical indenters give different results so these different test
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methods are not comparable. To increase the impact velocity, the projectile may be fired 

at the specimen. This may involve a conventional bullet, an anti-tank shell, a small ball 

fired by a gas gun, or a liquid drop. The impact velocity can range from 20-100 m/s to 

6000 m/s.

2.5.3.2 Impact Testing Parameters

For composites, a variety of test parameters have been used. A summary of these 

parameters is given below.

Impactor shape and dimension:

Mostly hemisphere steel noses with diameter of 12.7 mm have been used in impact 

tests. The size and shape of the impactor directly influence the impact event. The stress 

during the impact will be more localized with the small impactor. Therefore the damage 

threshold energy for a certain specimen will be lower compared to a large one.

Impact velocity and energy:

For fibre reinforced polymer composites, the impact behaviour is dependent on the 

velocity of impactor when striking the sample [22]. The impact energy can be changed 

by either changing the impact velocity or impactor mass. The degree of damage in a 

sample is dependent on the impact energy. Low velocity impact loading by a heavy 

object induces an overall target response, whereas high velocity impact by a light 

projectile induces localized mode of target deformation resulting in energy being 

dissipated over a small region immediate to the point of impact. For impact velocities 

up to 50 m/s, the target impact response and the amount of resulting damage are found 

to be a function of the impactor mass. However for impact velocities of 1 to 5.5 m/s, the 

range mostly used in drop weight tests, the effects of impact velocity are so small that 

they are hardly noticed or measured, even for the strain sensitive glass-fibre composite 

materials. This was confirmed by Rydin et al [211] for low velocity impact testing of 

woven and non-woven glass fabric reinforced vinylester composites. For impact 

velocity of less than 7 m/s, impact energy and contact force, rather than impact velocity, 

were the determining factors of the extent and type of damage.

From their studies on low velocity impact testing of graphite/epoxy and graphite/PEEK 

laminates, Sjoblom et al [196] concluded that low-velocity impact testing of composites
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should be instrumented; total impact energy is not a very good parameter to use for 

direct material characterization, impact force history is a much more relevant measure; 

and the energy loss during impact is a more direct measure of the damage formed 

during impact than is the impact energy.

Specimen dimensions and clamp mode:

The geometry of a specimen is a fundamental parameter in determining the impact 

response of composite materials. The failure process in the specimen can be changed by 

the geometry of the specimen and the support conditions. Delamination is more likely 

with short spans, thick laminates whereas flexural failures are more likely with large 

spans or thin skins. Penetration is most likely for small projectiles which are moving at 

such a high velocity that the laminate cannot respond quickly enough in flexure and 

high stresses are generated close to the point of impact.

In their studies on the effects of impact on laminate thickness of carbon fibre reinforced 

epoxy composites, Matemilola and Stronge [212] found that the ratio of missile nose 

radius to laminate thickness r/h was important in determining the side of the plate where 

damage first occurred. Damage developed first on the impact side of the laminate for r/h 

<1, while for r/h >1 damage developed first on the distal side.

In their studies on low velocity impact testing of woven E-glass/epoxy laminates, Datta 

et al [213] observed that for a constant impact energy level, as the laminate thickness 

increased the number of drops to failure also increased. However it was found that a 

thinner laminate can be chosen in place of a thicker one when its usage mainly calls for 

only the impact resistance of the material, thus providing an economical design for the 

composite structures.

In their studies on impact properties of woven-roving and CSM glass reinforced 

polyester composites, Sutherland and Soares [214] found that the effect of laminate 

thickness variation was more important for CSM laminates than woven roving 

laminates. Hence the data for thin laminates of CSM composites may not be applicable 

for thick laminates.

Finally, it should be mentioned that the impact data generated using a particular test 

geometry and specimen size may not necessarily represent the results generated using of 

striker, specimen, span and support conditions influence the distribution of tensile,
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compressive and shear stresses throughout the thickness of samples and thus influence 

the values obtained for various test parameters.

2.5.4 MECHANICS OF IMPACT LOADING

Impact energy of a plastic or composite is given by:

U = - ^ - ................................................. (2.18)b (d-c)

where U is the impact energy and E is the energy registered in the test, for a specimen 

of breadth b and depth d, containing a notch of depth c. The fracture energy can be 

expressed as:

U= T 7 7 7 - ; ................................................. (2.19)0 b (d-c)

where 0  is a calibration factor dependant on specimen and crack dimensions and 

compliance [215].

An impact test gives a load history curve of the type shown in Fig. 2.11 [22]. The load 

history is divided into two distinct regions, a region of fracture initiation and a region of 

fracture propagation. In the fracture initiation phase, elastic strain energy is accumulated 

in the sample with the increase in the load and no gross failure takes place. In this phase 

some failure mechanisms on a microscale, for example, microbuckling of the fibres on 

the compression side or interfacial debonding, can take place. As the critical load is 

reached at the end of this phase, the sample may fail either by a tensile or a shear failure 

depending on the relative values of the tensile and interlaminar shear strengths. At this 

stage the fracture may propagate either in brittle manner or a progressive manner 

continuing to absorb energy with reduction in loads. By integrating the area under the 

load displacement curves, and noting the value up to the maximum load or the load at 

first failure, the energy required to start or initiate damage can be deduced and related to 

energy required to propagate damage and the total energy involved. The ratio of the 

propagation energy, Ep, to the initiation energy, Ei, is known as the ductility index D 

[215]. Values range from zero upwards. The zero value indicates a completely brittle 

material. A large value of D means more energy is used in propagating failure compared 

with that to cause initiation.
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The total impact energy is then the sum of the initiation energy and propagation energy 

and is equal to the area under the curves in the load-time graph as shown in Fig. 2.11. 

The energy absorbed by the sample at any time is given by:

E = JP v d t ...........................................................(2.20)

where P and v are the instantaneous load and velocity respectively.

E * / P v d t
Initiation 
Phase s

Propagation 
/  PhaseT>

Timet t

Fig. 2.11: Total impact energy absorbed by a composite during low velocity impact

[22]

2.5.5 Post Impact Residual Properties

A significant loss in residual strength and structural integrity results in composite 

materials due to impact damage. Low velocity impact is potentially dangerous because 

it can produce extensive subsurface delaminations that may not be visible on the 

surface. Even barely visible impact damage (BVID) can cause strength reductions of up 

to 50% [215]. High velocity impact produced by projectiles, shock waves, and 

fragments from exploding ammunition is a highly dynamic event leading to penetration 

or perforation of composites. All impact damage is detrimental to mechanical and 

structural properties of composites. Residual strengths in tension, compression, bending 

and fatigue are reduced to varying degrees depending on the dominant damage modes. 

In general impact damage has greater effect on residual strength than on stiffness. It has
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also been shown that impacts at higher energy levels produce more degradation than a 

number of lighter impacts.

2.5.5.1 Residual Tensile Strength

There appears to be a threshold impact energy required to cause a reduction in tensile 

strength of a laminate. This threshold is different for different laminates and is 

dependent on material parameters such as laminate thickness, fibre type, and matrix 

material. Residual tensile strength normally follows a curve of the form shown in Fig. 

2.12 [216]. In region I no damage occurs as the impact energy is below the threshold 

value for damage initiation. Once the threshold has been reached, the residual tensile 

strength reduces sharply as shown in region n. In Region in the minimum value of 

residual tensile strength is reached just before complete perforation. Region IV results 

from a constant value of residual tensile strength because perforation has occurred in the 

material leaving a neat hole. In this region, the residual tensile strength can be estimated 

by considering the damage to be equivalent to a hole the size of the impactor. In region 

IV the hole diameter becomes practically independent of impact velocity.

In their studies on impact properties of graphite/epoxy and Kevlar/epoxy composites, 

Cairns and Lagace [217] observed that a threshold damage size existed below which no 

strength degradation was found to occur.

DAMAGE SIZE

RESIDUAL
STRENGTH

IMPACT VELOCITY

Fig. 2.12: Schematic diagram of the residual strength and damage size after impact
[216]
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2.5.S.2 Residual Compressive Strength

The residual compressive strength also decreases with increasing impact energy and is 

significant for even very light impacts. Poor post impact residual compressive strength 

is the greatest weakness of composite laminates [202]. This is mainly due to local 

instability resulting from delamination causing large reduction in compressive strength. 

Under a compressive load, delamination can cause buckling in one of three modes: 

global instability/ buckling of the laminate, local instability, or a combination of both. 

The mode of failure changes from global, to local to mixed mode as the delamination 

length increases. However post-impact compressive strength testing is often avoided 

due to the difficulty in providing a large enough gauge section to accommodate the 

damage.

2.5.5.3 Residual Flexural strength

It has been reported that both flexural strength and flexural modulus decrease with 

increasing low-velocity impact energy for ductile specimens (glass/ epoxy) while brittle 

specimens (graphite/ epoxy) showed no losses until complete failure occurred [202]. 

Because of complex stress patterns in the material, a detailed analysis of damage on 

residual flexural strength is still to be carried out.

2.5.5.4 Residual Fatigue Life

The post-impact fatigue behaviour of composites is important, especially because of the 

presence of barely visible damage and internal damage. It has been found that the ability 

of composites to withstand cyclic loading is far superior to their static strength when 

they are damaged or have defects [218]. In one study on graphite-epoxy laminates [204] 

it was found that the S-N curve for 3J impact damaged laminate was very flat and after 

one million cycles, the fatigue strengths of the damaged and undamaged laminates were 

similar.

It has been reported that compression-compression and tension-compression are the 

critical fatigue loading cases, with compression being the worst case static loading 

condition [202]. The maximum residual compressive load divided by the static failure
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load (S) typically decreases from 1.0 to 0.6 in the range 1 to 106cycles. In compression, 

the rate of degeneration is at its highest up to 100 cycles and after 106 cycles no further 

degradation occurs. So S=0.6 can be taken as the fatigue threshold. Therefore, it is 

believed that fatigue loading is not a good method of characterising residual properties.

2.5.5.5 Modelling post-impact residual strength

Various attempts have been made to model the post-impact strength of composites. 

Amongst the most prominent was the one proposed by Caprimo [219] who considered 

that the damage at the impact site could be modelled as an equivalent hole and 

calculated residual strengths based on fracture mechanics concepts using the following 

relationship

<*r

where or is the residual strength, a0 is the undamaged strength, U0 is the threshold 

impact energy, and U is the impact energy, and a is a constant dependent on the 

geometry and the material. Work done on low velocity impact behaviour of 

carbon/epoxy laminates by Found and Howard [220] showed that this equation gave a 

good approximation of residual tensile and compressive strengths of the laminates 

following low velocity impact.

2.5.6 Impact Properties of Natural Fibre Composites

The impact properties of natural fibre composites are poorer than their synthetic fibre 

counterparts because of their poor mechanical properties. Santulli [221] has outlined the 

characteristics of impact behaviour of natural fibre composites as follows. The 

measurement of impact damaged area can be difficult as an effect of fibres suffering 

early debonding around the impact point even at low stress. The variability of properties 

of natural fibres will also have an effect on their impact properties. The presence of 

defects in natural fibres reduces the possible effect of bridging from the fibres during 

impact loading. As a result, the fibres are likely to bend and pull out of the matrix rather 

than fracture under impact loading.

The natural fibre composites are expected to possess superior impact properties because 

of their ability to absorb tremendous amount of energy during impact fracture [222].

UjL
u
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Since natural fibres themselves are cellulose fibril based composite materials, their 

fracture modes include uncoiling of fibrils, fibril pull out, plastic deformation of fibrils, 

fibril splitting and diversion of the crack at fibril-fibril interface. These fracture 

mechanisms are expected to contribute to high toughness of natural fibre composites 

[222]. However in practice the impact strength of natural fibre composites has been 

found to be quite low compared to glass fibre composites as shown in Table 2.12. The 

following factors can be ascribed for the poor impact properties of natural fibre 

composites: lower fibre strength; micro-compressive defects along fibre length causing 

stress concentrations; defects induced during manufacture; poor interfacial bonding; 

non-uniform cross-section of fibres limiting fibre pull-out. A selection of studies 

undertaken so far on this subject are summarised below.

The work of fracture increases linearly with fibre volume fraction for natural fibre 

reinforced polyester composites. This has been shown to be true for sunhemp fibres 

[118] and for jute fibres [127]. The Izod impact strength of sunhemp/polyester 

composites at 24% fibre volume fraction was reported to be 21 kJ/m2 [118] which is 15 

times greater than that for polyester resin alone.

Santulli [131] investigated damage due to low velocity impact on jute fibre reinforced 

polyester composites. A number of post-impact mechanical tests, including tensile tests, 

three-point bending and indentation, were carried out. On all these tests acoustic 

emission activity (AE) was monitored. The results showed that AE gave reliable 

measurement of the level of post-impact damage.

Wambua et al. [223] studied the response of flax, hemp and jute fibre reinforced 

polypropylene composites to ballistic impact by fragment simulating projectiles. They 

found that flax composites exhibited better energy absorption than hemp and jute 

composites.

Pavithran et al. [165] determined the fracture energies for sisal-, pineapple-, banana- 

and coconut-fibre-polyester composites (fibre content approximately 50vol.%) in 

Charpy impact tests. They found out that, except the coconut-fibre-polyester 

composites, an increase in fracture energy was accompanied by an increasing fibre 

toughness (determined by the stress-strain diagram of the fibres). Natural fibre 

reinforced plastics with fibres which show a high spiral angle of the fibrils, indicated a 

higher composite-ffacture-toughness than those with small spiral angles. That is why
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composites with sisal fibres (spiral angle=25°) show an optimum of impact properties. 

They also investigated the specific toughness of sisal-UHMPE composites, which is 

approximately 25% below that of comparable glass-fibre based composites (same fibre- 

volume-content).

Fracture toughness is another parameter which can be used to assess the damage 

tolerance properties of composites materials. Hughes et al [130] used linear elastic 

fracture mechanics to study the fracture toughness properties of jute-polyester and 

hemp-polyester composites and compared them with CSM glass-polyester composites. 

The fracture toughness of natural fibre composites was found to be almost three times 

lower than that of glass fibre composites at same fibre volume fraction. The values of 

critical strain energy release rate were also five to ten times lower that those of glass 

fibre composites. The estimation of crack tip plastic zone radii of natural fibre 

composites were up to five times lower than that of glass fibre composites. Since the 

volume of damage zone (proportional to crack tip radius) gives a measure of energy 

absorbing capacity of the material, this again pointed at the poor toughness properties of 

natural fibre composites. The use of linear elastic fracture toughness thus reaffirmed the 

poor toughness properties of natural fibre composites.

Yuanjian [86] reported that hemp fibre reinforced polyester composites exhibited 

greater reduction in strength and stiffness than glass fibre composites in low velocity 

impact. These studies have thus pointed at generally poor impact properties of natural 

fibre composites.

2.5.7 Impact Properties of Natural Fibre Hybrid Composites

One way of increasing the relatively poor impact properties of natural fibre composites 

is to combine them with stronger and tougher glass fibres and make hybrid composites. 

It has been shown for E-glass/flax hybrid epoxy composites [224] that hybrid laminates 

were much more impact resistant (up to four times for the same laminate thickness) 

when impacted on the glass side. It was thus suggested that the sandwich configurations 

with glass fibre skin and natural fibre core can be considered the most suitable 

configuration for higher impact resistance.

Table 2.16 summarises the results of impact strength of E-glass/ natural fibre 

composites reported by various researchers. In their studies on damage tolerance
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properties of jute-glass/ polyester hybrid composites, Ahemd et al [225] observed that 

jute composites had better energy absorption capacity compared to jute-glass hybrid 

composites. However they had poor damage resistance and tolerance capability 

compared to hybrid composites.

Table 2.16: Impact strength of E-glass/ natural fibre hybrid composites

Natural

fibre

Matrix Natural fibre 

wt. fraction 

(%)

Glass fibre 

wt. fraction 

(%)

Impact

strength

(kj/m2)

Reference

Bamboo Polyester 6.2 18.8 32 [160]

Coir Polyester 15 30 40 [226]

30 (vol) 5 (vol) 24 [165]

Jute Polyester 6 8 44 [227]

Sisal Polyester 2 (vol) 6 (vol) 5.8 (J/m) [187]

Flax Polypropylene 30 20 43.2 [170]

Polypropylene 30 20 43.2 [228]

Soybean oil 16 25 33.6 [229]

Hemp Polypropylene 30 10 75 J/m [230]

Oil palm Polyester 3.5 31.5 17 [167]

Epoxy Variable Variable Max. 95 [168]

Jute Polyester " ” 29 [231]

From their studies on impact properties of flax/glass epoxy hybrid composites, Santulli 

et al [224] observed that composites containing 2/3 glass and 1/3 flax fibres had 

penetration energy of 56J compared to 18J for flax only composites.
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2.6 FATIGUE PROPERTIES

Fatigue is defined as a process which causes damage in a material and structure under 

fluctuating loads of a magnitude much less than the static failure load. The accumulated 

damage results in a gradual and significant decline of mechanical properties such as 

strength and stiffness, in crack growth and finally into complete failure or collapse. 

Fatigue loads are almost unavoidable for materials in service. The fatigue strength of all 

materials including metals, plastics and composites is lower than their static strength 

[22].

The total number of load cycles that can be endured by the material or structure before 

failure is called fatigue life. The number of cycles to failure depends on a number of 

factors: stress levels, stress state, mode of cycling, process history, material 

composition, dimension and geometry, loading conditions and load history, 

environmental conditions, and lastly, by the mutual influence of all these parameters. 

The maximum cyclic load or stress range a material or structure can withstand for a 

given fatigue life is called fatigue strength.

Composite materials are generally regarded as having good fatigue strength. Therefore 

they find applications in aircraft and other vehicles which experience significant amount 

of fatigue [232]. Unidirectional continuous fibre-reinforced composites are especially 

known to possess excellent fatigue resistance in the fibre direction [22]. This is because 

load in unidirectional composites is primarily carried by the fibres which generally 

exhibit excellent fatigue resistance. Laminated composites may have lower fatigue 

resistance than unidirectional composites because some plies are weaker than others in 

loading direction and may show physical evidence of damage much before the final 

fracture. The damage may be in the form of the failure of fibre-matrix interface, matrix 

cracking or crazing, fibre fracture or delamination.

In composite materials subjected to fatigue, although initial damage may appear early, 

its propagation may be arrested by the internal structure of the composite. In this respect 

composite materials have clear advantage over metals subjected to fatigue where a crack 

may rapidly grow to final fracture. In composites subjected to fatigue loading, damage 

takes the form of numerous micro-cracks predominantly in the matrix material or at the 

fibre-matrix interface [17]. The damage is sustained and spreads throughout the bulk
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material. Unlike metals in fatigue, there is no dominant crack and so it is difficult to 

assess the nature of future damage by present knowledge.

Salkind [233] argued that although the initial imperfections in composite materials 

(broken fibres, delamination, matrix cracking, fibre debonding, voids) can be much 

larger than corresponding imperfections in metals (cracks), the growth of damage in a 

metal in fatigue is typically much more abrupt and potentially more dangerous than in a 

composite material. Accordingly the typical S-N curves in a composite are much flatter 

than that for a metal [234]. The composite materials are also less susceptible to the 

effects of stress concentrations like notches, holes, etc, than metals. The specific 

endurance limit of composite materials subjected to cyclic tensile loading is greater than 

that of metals [235]. Cyclic compressive loads lead to significant damages in 

composites. The damage mechanisms of composites do not develop only on the surface, 

as with metals, but inside the material as well.

The inhomogeneous and anisotropic nature of composite materials means that fatigue 

processes in these materials are generally very complex, involving accumulation of 

many damage modes. The fatigue behaviour of composites has been studied extensively 

ever since the introduction of composite materials. However, because of the complexity 

of composite materials, the knowledge of their fatigue behaviour is still far from 

enough.

Hertzberg and Manson [236] summarised the results of research on fatigue of fibrous 

composites by various researchers in the following five points:

• Failure criteria vary widely. Fatigue damage is progressive but physical integrity 

can be maintained for many decades of cycles.

• Many individual processes are involved in the failure of fibres, matrix, and 

interfacial regions.

• The nature of damage is complex, depending on the mode of loading, the 

relative orientation of the stress and the fibre axes, the coupling of stress fields, 

constraints due to in-plane and through-thickness elements in continuous fibre 

systems and the presence and nature of flaws.

• The concept of cracking needs redefining.
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• While strength and fracture toughness generally decrease on cycling, the 

occurrence of certain combinations of individual failure processes with certain 

fibre arrays may result in effective crack blunting so that fracture toughness may 

increase, at least over part of the fatigue life.

2.6.1 Fatigue Testing Methods

Fig. 2.13 shows a typical stress-strain-time diagram in a fatigue test. A cyclic load is 

applied between predetermined maximum and minimum limits of stress, omax and Omin. 

or strain. The ratio of minimum to maximum stress is called R ratio. The mean stress, 

stress amplitude, and cyclic frequency are also important parameters. The cyclic stress 

mode can be sinusoidal, triangular, or whatever is most appropriate for the end 

application in mind.

range

omean

Time

Fig. 2.13: Typical stress-strain-time diagram in fatigue testing [232]

There are six main types of fatigue test methods: tension-tension, tension-compression, 

flexural, interlaminar shear, torsion and compression-compression fatigue. The majority 

of fatigue tests on fibre reinforced polymer composites have been performed with axial 

tension-tension cycling. Tension-compression and compression-compression cycling 

are not commonly used since failure by compressive buckling may occur in thin 

laminates. Completely reversed tension-compression cycling is achieved by flexural 

fatigue tests. In addition limited numbers of interlaminar shear fatigue and in-plane 

shear fatigue tests have been performed.

99



The relationship between the fatigue strength (S) and the fatigue life (N) is mostly 

presented in diagrams by means of S-N or Wohler curves for constant amplitude 

loading. The ordinate is generally the stress amplitude or the maximum stress in a cycle 

and is plotted on a linear scale. The abscissa is the number of cycles to failure for a 

particular stress cycle and is plotted on a logarithmic scale. This is the most widely used 

form of data presentation and provides a simple-to-interpret indication of how material 

properties are degraded by constant amplitude fatigue. The S-N curves for all materials 

including metals, polymers and composites have negative slope. The exact shape of the 

curve differs from material to material.

2.6.2 Damage Development

Fig. 2.14 shows a schematic representation of a typical S-N curve with damage 

development and residual strength variations superposed [237]. The cyclic loading 

amplitude is represented as 60% of the static ultimate strength, which is a typical value 

for long term behaviour.
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Fig. 2.14: Three stages of damage development during fatigue loading of composite

materials [237]
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As shown in the figure, the damage process can be considered in three stages. Stage I 

occurs during the first 10-15% of life and is characterised by a rapid (and rapidly 

decreasing) rate of damage development. For laminates that have off-axis plies, Stage I 

usually involves matrix cracking through the thickness of off-axis plies parallel to the 

fibres and perpendicular to dominant load axis. The matrix cracks cause a reduction in 

the stiffness of the laminate since cracked laminae carry less load than they did prior to 

cracking. However these stiffness changes are of small order and are generally not of 

great engineering consequence [237]. During this stage there is small but measurable 

effect on residual strength of the laminate.

Stage II corresponds to the next 70-80% of life, during which damage continues to 

initiate and grow, but at a slower rate than during Stage I. During this stage matrix 

cracks couple and grow, especially along interfaces, and delaminations (if present) may 

grow. However the cracks quickly stabilise to vary nearly constant pattern with a fixed 

spacing. Similar behaviour is observed for off-axis plies. The stability of the crack 

pattern is the reason for sudden decrease in the damage rate. During this stage, the 

interface separation (delamination and debonding) mechanisms dominate the damage 

development. The strength reduction is of the order of 30 to 40% [237]. The reduction is 

stiffness during this stage is relatively small.

But at the end of Stage n, the laminate is severely damaged to the level where continued 

cyclic loading accelerates the damage process during Stage HI, the final 10-15% of life. 

The decrease in the stiffness during this stage is quite sudden and sharp. Final failure, 

and the events immediately preceding it, is dominated by fibre fracture, which is also 

the reason for sudden drop in stiffness. The accumulation of damage of all types results 

in the fracture of the laminate.

Fig. 2.15 traces the damage process as a function of percentage of life of composite 

laminates which contain 0° plies (principal load direction) and off-loading axis plies 

subjected to cyclic loading [238]. Although the number of possible damage modes and 

combination of damage modes is large, the number of failure modes is comparatively 

small.



2.6.2.1 Matrix Cracking

The major damage mode during Stage I is matrix cracking. Matrix cracks initiate in 

plies which experience tensile stress perpendicular to fibres in those plies if those 

stresses exceed amplitudes sufficient to cause failure of matrix material between fibres 

or separation of fibres and the matrix phase. These cracks generally occur in composites 

which have brittle matrix materials, but also occur under cyclic loading in composites 

which have ductile matrix components such as metal matrix components. Primary 

matrix cracks are the source of subsequent damages development under cyclic loading, 

and form the basis not only for damage development localization under tensile loads, 

but also for the development of localized buckling and the growth of delamination 

under compressive loads. Matrix cracking is observed to occur at similar load or strain 

levels in cyclic loading as is observed for quasi-static loading situations.

3 -Dflominotkjfl 
Flbtr Breaking

0*taJ
(9

i
2 COS

2-Crock Coupling, Inttrfociol 
Oebonding, Fiber Breaking

4 - De lamination Growth, Fiber 
Breaking (Localized)

PERCENT OF UFE 100

Fig. 2.15: Damage development during fatigue of composite materials [238]

Throughout Stage I, the number and density of matrix cracks increases until a uniform, 

saturation spacing is reached. This state of damage is known as the Characteristic 

Damage State (CDS). It is a laminate property and is completely defined by the 

properties of individual plies, their thickness, and the stacking sequence of the variously 

oriented plies. It is independent of extensive variables such as load history and
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environment, and internal affairs such as residual or moisture related stresses. It is 

achieved near the end of Stage I as shown in Fig. 2.14.

2.6.2.2 Interfacial Debonding

As the loading history continues, Stage II damage begins whereby matrix cracks grow 

along the interfaces between plies. Crack coupling produces interfacial debonding 

which is confined to the material near the edge of the laminate. Debonding occurs in the 

fibre-rich regions of the plies in which the fibres lie perpendicular or at a large angle to 

the loading direction [22]. Large stress and strain concentrations at the fibre-matrix 

interface are responsible for initiation of debonding. After initiation the cracks usually 

propagate along the fire-matrix interface. With more cycles, the interfacial debonds on 

interfaces with high interlaminar shear stress begin to grow in the plane of the laminate 

to form delaminations. The remainder of Stage II is taken up by initiation and growth of 

delaminations and additional fibre fractures.

For randomly oriented fibrous composites also, the first stage of the damage is the 

formation of debonding cracks along the fibres lying perpendicular or at the largest 

angles to the direction of load. In their studies on fatigue properties of chopped strand 

mat polyester resin laminates, Owen and Smith found the first signs of damage to occur 

at about 30% of the ultimate tensile strength [22].

2.6.2.3 Fibre Fracture

The locally high stress fields associated with crossing matrix cracks and the intersection 

of matrix cracks and ply interfaces is one of the factors responsible for fibre fracture. 

Fibre fracture is the major damage mode in laminates subjected to tensile and 

compressive cyclic loads. Fibre fracture occurs during all three stages of fatigue life. 

Some failures are random fractures of statistically weak fibres but most fibre fractures 

are associated with matrix cracks in adjacent plies.

The consequences of fibre fracture depend on the state of the matrix [239]. There are 

three possible states:

1. The matrix is intact. In this case fibre failure would cause a shear stress 

concentration in the interface which may lead to fibre-matrix debonding.
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2. The matrix has cracked in a dispersed failure mode. In this case fibre failure 

increases the matrix crack length leading to enhanced stress in the neighbouring 

fibres.

3. The matrix has cracked fully in a cross-section and the fibres have bridged the 

crack. In this case the load shed by the cracked matrix is shared equally by the 

bridging fibres. The weakest fibres fail first and the load shared by the broken 

fibres is shared equally by the surviving fibres.

When a fatigue crack in the matrix approaches a fibre, it may grow in three ways. With 

a weak interface and strong fibres, the crack can bypass the fibre by an antiplane-strain 

mode of crack growth. When the interface is strong, high stresses ahead of the crack tip 

affect the fibres. In ductile fibres the crack growth is rapid. Brittle fibres fail abruptly 

because of the large crack-tip stresses. Fatigue crack growth in fibres results in poor 

fatigue resistance of composites.

2.6.2.4 Delamination

Delamination cracks are responsible for final fracture of the material. The onset of stage 

HI is characterised by an increase in the damage rate caused by damage localisation and 

delamination growth. The presence of delamination cracks prevents load distribution 

between plies and the composite is essentially reduced to a number of independent plies 

acting in parallel to support the load. The weakest of these plies fails and triggers failure 

of the remaining individual plies. Broutman and Sahu [240] found that delamination 

cracks are clearly marked out only at a late stage (after about 90%) of fatigue life. 

Under cyclic tensile loads, laminate fracture is coincident with the catastrophic fracture 

of the major load-bearing plies. Under cyclic compressive loads, failure occurs when 

laminate stiffness degrades to such an extent that the laminate can not support the 

applied loads. Failure is usually due to buckling or micro-buckling and subsequent shear 

crippling.

Laminates subjected to both tensile and compressive loads may exhibit either tensile or 

compressive fracture modes, depending on the response of competing damage modes to 

the magnitude of loads and the material system. Delaminations may produce a great 

reduction in the laminates life subjected to reversed cyclic loads than in the life of 

similar laminates subjected to either tensile or compressive cyclic loads of the same
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amplitude. When loads are reversed, delaminations are subjected to a cyclic shear stress 

range twice as large as the range under either cyclic tensile or compressive loads alone.

Fatigue life diagrams:

Talreja [239] proposed fatigue damage mechanisms in polymer matrix composites 

based on the so-called fatigue life diagrams, as shown in Fig. 2.16. The horizontal band 

centred about the composite static failure strain shows the dominant region of 

catastrophic damage while the sloping band corresponds to progressive damage. The 

horizontal line below the sloping band shows the fatigue strain limit of the matrix. The 

relations between fatigue damage and fatigue loading are apparent. At low cycles, 

catastrophic fibre damage is dominant resulting in failures within the tensile static 

strength scatter band. For intermediate cycles, progressive damage mechanisms become 

dominant, while at high cycles, below the matrix limit, only matrix microcrack 

nucleation is seen. Thus that the fatigue performance of fibre reinforced composites is 

bounded by two limiting factors, fibre strength and fatigue limit of the matrix material. 

The relative magnitude of their values determines the slope of the fatigue life curve, 

which is one measure of the fatigue resistance of composite materials.
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Fig. 2.16: Fatigue life diagram of composites [63]

2.6.3 Factors Affecting the Fatigue Behaviour

The fatigue behaviour of composites is dependent on the properties of the constituents, 

the matrix and the reinforcing fibre, and their interaction. Such dependencies include the
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type of matrix and fibre, the interface between the matrix and fibre, volume fraction of 

the fibres, and stacking sequence. For a particular structure, however, the fatigue 

loading parameters will also largely affect the performance during the cyclic loading. 

The fatigue loading parameters include test method, maximum loading stress or strain, 

the loading control mode, the mean stress or strain, R ratio, fatigue loading frequency 

and the test environment.

2.6.3.1 Matrix

The damage due to fatigue usually begins with matrix cracking for fibre reinforced 

polymer composites. The resins most commonly used as matrices for PMCs are 

polyesters and epoxy resins. The fatigue behaviour in these composites is similar to 

fatigue in metals and is cycle dependent rather than time dependent. Epoxy resins are 

slightly superior to phenolic, polyester and silicone resins in terms of fatigue properties. 

The better behaviour of epoxy resins is attributed to their greater strength, better 

bonding to the fibres, lower shrinkage resulting in smaller residual stresses and inherent 

toughness [241]. Despite great chemical differences, the influence of the resin on the 

fatigue strength of PMCs is rather small when compared with the influence of the 

different reinforcements. In her studies on fatigue properties of thermosetting glass fibre 

composites, Dyer [242] observed that composites made with polyurethane-vinylester 

resin showed better fatigue performance than those made with polyester resin.

2.6.3.2 Fibre

Various studies have shown that a ranking of materials from best to worst in fatigue 

performance is high modulus carbon fibre, high strength and low modulus carbon, 

aramid/carbon hybrid, glass/ aramid hybrid, s-glass, and E-glass. Glass fibre suffers the 

maximum degradation in fatigue and its endurance limit is about one third of its static 

strength, which is comparable to its counterpart in the case of steel and aluminium 

[218]. The better performance of carbon and aramid fibre as compared to E-glass can be 

attributed partly to their higher ultimate strength. However their better behaviour under 

fatigue loading is, above all, the result of the considerably greater modulus, almost three 

times that of glass fibres, which also results in a much greater modulus of the laminate. 

A laminate with a greater modulus of elasticity needs a higher cycling stress level to 

reach the critical strain level. This is especially the case under tensile loading 

conditions, as the resin is far less sensitive to cracking under compression. However,
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under compression load, the buckling strength of the fibres dominates the fatigue 

behaviour, especially in the case of aramid but somewhat less with high modulus carbon 

fibres. The higher thermal conductivities of carbon and boron, which tend to reduce 

hysteretic heating, also contribute to their superior fatigue performance.

Mandell [243] studied the general trends of tensile fatigue sensitivity of unidirectional 

composites loaded parallel to different fibres. The high modulus materials graphite, 

boron, and aramid were found to be very fatigue resistant Both E- and S-glass 

composites lost on the order of 10% of their static strength per decade of cycles. 

However in off-axis loading directions and in compression, the higher modulus 

materials tend to approximate the glass fibre trend line.

Tanimoto and Amijima [244] studied the effect of glass fibre content on fatigue 

properties of laminated glass fibre-polyester composites. Their results showed that the 

fatigue strength increased with increasing glass content in both axial fatigue and 

rotating bending fatigue. This increase was attributed to increase in static strength of the 

composites as a result of increased fibre content.

Flexural fatigue (73“ F)
—  ■-» —  Axial fatigue (7T  F)

E 30

Random
'Wading compound 
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Fig. 2.17: Effect of fibre orientation on fatigue strength of composite materials

[241]
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Boiler [245] studied the influence of fibre orientation on fatigue strength and found that 

unlike static tensile strength, unidirectional composites do not have optimum fatigue 

strength and isotropic fibres show better fatigue resistance. Davis et al [241] also 

studied the influence of different laminate constructions on the fatigue strength as 

shown in Fig. 2.17. Non-woven materials were found to be superior to woven materials 

in fatigue because the fibres do not get crimpled as in the fabric construction. Thus non 

woven materials were found to possess optimum fatigue properties.

2.6.3.3 Interface

The influence of interfacial properties on the fatigue behaviour of composites is 

complex, and has been studied by many researchers. It is now widely accepted that an 

improved interfacial adhesion between high strain fibres and high strain matrices results 

in improved fatigue performance for various polymer matrix composites.

Studies done by Hofer et al [246] on untreated and organosilane surface treated glass 

fibre reinforced composites showed that untreated glass exhibited the highest fatigue 

strength in a dry environment but lowest strength in a humid environment. The research 

was inconclusive regarding the effectiveness of various surface treatments on fatigue 

strength.

2.6.3.4 Test Parameters

Fatigue test parameters include load control mode, test frequency, mean stress, stress 

ratio R, etc. All these affect the fatigue response of composite materials to some degree.

The viscoelastic nature of polymers causes a phase difference between cyclic stresses 

and strains in polymeric matrix composites exemplified by hysteresis loops even at low 

stress level. This results in energy accumulation in the form of heat within the material. 

Owing to the low thermal conductivities of the material, the heat is not easily dissipated, 

which in turn creates a temperature difference between the centre and the surfaces of a 

polymeric laminate. At a constant stress amplitude level the temperature difference due 

to viscoelastic heating increases with increasing frequency of cycling.

Dally and Broutman [247] have shown that the magnitude of the test frequency affects 

the internal heating of composites in tension-tension axial fatigue. As the frequency of 

fatigue loading increases, internal heating of the composite increases and fatigue life
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decreases. Frequencies of fatigue load under 5 Hz have been reported to produce 

negligible internal heating in glass fibre reinforced polymer composites. However 

frequency effects have been found to have negligible effect on fatigue lives of both 

cross-ply and isotropic composites.

The influence of mean stress in fatigue tests is usually presented through a plot of 

permissible stress amplitude as a function of mean stress for a fixed cyclic life. It has 

been found that the influence of mean stress on the fatigue behaviour of composites is 

similar to that of metallic materials [22]. For a fixed cyclic life the permissible stress 

amplitude decreases as the mean stress increases. For a negative mean stress, the stress 

amplitude is larger than for a zero mean stress. For a given mean stress, cyclic life 

decreases as the stress amplitude increases.

The stress ratio R, which is defined as the ratio of minimum stress and the maximum 

stress during fatigue loading, is also an important fatigue parameter. A wide range of R 

values have been used in the fatigue testing of composite materials. Generally, when the 

stress ratio increases the fatigue strength decreases. For tension-tension fatigue test, R 

of 0.1 is usually used to ensure no compressive load to the specimen.

Mandell and Meier [248] studied the effects of stress ratio, frequency and loading time 

on the tensile fatigue of 0/90° E-glass epoxy laminates. It was observed that the S-N 

curves were influenced by waveform and frequency even in the absence of heating 

effects. The initial strength and the rate of loss of initial strength were greater for 

waveforms with less time at maximum stress. At low cyclic stresses, the S-N curves for 

various waveforms tended to converge to a lifetime determined solely by the number of 

cycles. The degradation rate was generally much higher under cyclic loading than under 

constant load but the cyclic lifetime converged to the static lifetime as the amplitude of 

the cyclic stress approached zero.

Stress concentrators such as notches, holes, fasteners, impact damage and other 

imperfections have less effect on tensile fatigue strength than on static strength. 

Depending on the laminate configuration, these concentrators can reduce static tensile 

strength by up to 50%.

The fatigue behaviour may also be affected by the production process and quality 

control. The curing and hardening process can affect the properties of the resin and the
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interface. During the laminating process air bubbles may be entrapped in the fabric 

weave or in the surface layer. Such voids may result in a fatigue strength reduction 

factor up to 1.3 to 1.4 for the onset of resin cracking. The distribution of the resin, the 

saturation of the reinforcement and the stretching of the fibres are determined by the 

laminating process. Inhomogeneous distribution of the resin and slack of the fibres may 

result in an overall or local influence on stiffness and fatigue strength.

The effects of increasing ambient temperature on fatigue life of composites are usually 

detrimental; the higher the temperature, the greater the damage, though the degradation 

is not necessarily linear with respect to temperature [236].

2.6.3.5 Moisture

It is well known that some polymeric materials may absorb moisture when exposed to 

humid environments. The absorbed moisture lowers the glass transition temperature of 

polymeric resins and their composites, and also causes a degradation of mechanical 

properties, especially in shear and compression. Cyclic loading of composites may 

accelerate the diffusion of moisture into the composites due to matrix cracking. Fatigue 

life may be reduced considerably due to environmental conditions, as in seawater, 

especially if the surrounding medium can penetrate into the laminate along surface 

cracks and along debonded fibres. The reduction of the fatigue strength is considerable 

at higher load amplitudes, whereas the effect will be small at lower stress levels.

Studies undertaken on the effect of water on fatigue life of composites ([249], [250]) 

observed that fatigue life was inversely proportional to the initial water absorption of 

the matrix resin. However some researchers have reported little specific effects of 

moisture on the behaviour of graphite fibre- and graphite/glass hybrid-composites [251].

2.6.4 Mechanical Properties Degradation

The post-fatigue performance of a fibre-reinforced composite is studied by measuring 

its static modulus and strength after cycling for various fractions of its total life to 

fracture. Both static modulus and strength are reduced with increasing number of cycles. 

The actual shape of residual strength and stiffness versus cycles varies with material, 

stacking sequence, loading history and environment.
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2.6.4.1 Strength Reduction

In general, the tensile and compressive residual strengths of composite laminates 

decrease throughout the fatigue lives. In their studies on glass fibre-epoxy composites, 

Broutman and Sahu [240] found that most of the strength reduction occurred in the first 

25% of the fatigue life beyond which the rate of decrease in static strength was reduced. 

The shape of residual strength degradation curve can be related to fatigue damage 

mechanisms. Matrix cracks and early fibre fracture, which develop during the first 10% 

to 15% of fatigue life and are widely scattered throughout the laminate, have a small, 

but measurable, effect on stiffness and strength, particularly residual tensile strength. 

After the Characteristic Damage State (CDS) of regularly spaced matrix cracks forms 

and as stage II damage develops, residual strength decreases at an increasing rate. 

Residual strength continues to decrease throughout stage II and into stage HI where 

delamination and fibre fracture greatly influence response. This has been shown in Fig. 

2.14 above.

2.6.4.2 Stiffness Reduction

The use of stiffness change as a quantitative indicator of fatigue damage has received 

considerable attention because it is generally accepted now that the strength degradation 

does not always reflect the fatigue damage [252]. Stiffness is a well-defined engineering 

property, routinely measured, clearly interpreted, and directly involved in mechanics 

calculations. Stiffness changes are directly related to internal stress redistributions, and 

where strength reductions are large, the attending stiffness changes are also large [237].

One major difference between the behaviour of composites and metals in fatigue is the 

change in stiffness which can occur continuously over a large portion of fatigue life to 

fracture. Several experimental studies on composite materials in late 1960s and early 

1970s observed reduction in stiffness in the loading direction during fatigue. Until mid- 

1970s, this phenomenon had been observed in fatigue testing of glass, graphite, and 

boron reinforced epoxy, glass reinforced polyester and polypropylene, and boron 

reinforced aluminium [253].

Hahn and Tsai [254] formulated a gradual failure model that attempted to relate the 

modulus degradation to the interior damage. Hahn and Kim [255] proposed another 

model that suggested a fatigue failure criterion based on longitudinal modulus
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degradation. On the basis of studies done on stiffness changes in boron-epoxy 

laminates, Reifsnider and O’Brien [256] argued that the nature of fatigue damage in 

composites is anisotropic and therefore all fatigue properties would be affected.

Determining the change in stiffness of composites under cyclic loading is important for 

two other reasons [257]. First, many engineering structures made of composite 

materials, for example aerospace components, are deformation-limited structures. The 

compressively loaded columns and shell structures are also designed to have high 

stiffness to carry load without buckling. Any change in stiffness during fatigue loading 

will alter the response of the component to loads and reduce the performance level of 

the structure. In designing stiffness-critical composite structures, therefore, fatigue 

failure criteria based on stiffness changes, rather than fracture, is used.

Secondly, change in stiffness provides a good non-destructive technique for monitoring 

change throughout a loading history. Stiffness changes are directly related to the 

severity of damage by the mechanics associated with the subsequent response of the 

material. The stiffness change in composites during cyclic loading is greater than the 

change in residual strength. Thus stiffness change can be used to anticipate and predict 

remaining strength and life of the structure.

The stiffness decreases monotonically during cyclic loading, as has been shown for 

[0/90°] graphite-epoxy laminates [258], [±45°] glass-epoxy laminates [253], and 

[±45/0/±45/0°] glass/graphite-epoxy laminates [253]. It has been shown experimentally 

[259] that the magnitude of stiffness degradation increases as the maximum cyclic stress 

level decreases. However the stiffness degradation rate is not strictly linear.

The stiffness change because of cyclic loading depends on the specific material and 

loading. However a general relationship of stiffness change-expended cycles has been 

established and verified for many composite materials, including metal matrix 

composites [257]. This relationship identifies three distinct stages of stiffness reduction. 

First stage is characterised by initial rapid decrease in stiffness caused by matrix 

cracking and some early fibre fracture. The second stage is an intermediate but long 

period of stiffness reduction which results from additional matrix cracking, crack 

coupling along ply interfaces, and delaminations. The third stage is again short and is 

characterised by rapid decrease in stiffness resulting from increase in damage growth 

rates.
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The three-stage stiffness reduction regime was confirmed by Kim and Elbert [260] for 

unidirectional E-glass/polyester composites. They were also successful in relating these 

stages to the micro-mechanisms of failure by examining the fractured specimens. 

During stage I, the fibre surface flaws apparently coalesce and result in interfacial 

failure and the onset of transverse and shear cracking in the matrix. During stage n, the 

static modulus remains nearly steady but the hysteresis energy rapidly increases. During 

stage HI, the matrix cracks coalesce and fibres on a plane fail, causing delamination 

through the specimen cross-section. The three stages of stiffness reduction were also 

confirmed for [0,0,±45°] woven carbon fibre/polyester composites by Khan et al [261].

In his studies on stiffness degradation of composites in fatigue, Yuanjian [262] observed 

the same three stages of stiffness reduction for [±45°]4 glass fibre reinforced polyester 

and [±45°]4 glass fibre reinforced polyvinylester composites. However [0/90°]2s glass 

fibre reinforced polyester composites were observed to show much lesser reduction in 

stiffness with increase in fatigue cycles compared to [±45°]4 glass fibre reinforced 

composites.

Dyer [242] also reported same three stages of stiffness reduction for [90/0°]2s and 

[90/0/±452/0/90°] glass fibre reinforced-polyester and -polyurethane composites. 

However the composites made with lay-ups of [±45°]4 showed only two stages of 

stiffness reduction in both matrices.

Setiadi et al [263] compared the performance of continuous randomly oriented glass 

fibre reinforced composites in polyester and polyurethane matrices under zero-tension 

fatigue loading. The polyurethane-based composites showed better fatigue resistance 

than the polyester-based composites in terms of mild modulus degradation and high 

energy dissipation rate when tested at 50% of UTS. The good fatigue resistance of the 

polyurethane-based composites mainly came from the tough polyurethane resin, which 

resisted the development of matrix cracks. This suggests that polyurethane has a better 

fatigue resistance than polyester.

Beaumont [264] proposed a model for stiffness reduction during fatigue loading of 

composite materials. The relationship between the modulus and the number of fatigue 

cycles for glass fibre reinforced polymer composites is given by the following equation:
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where E is the current (damaged) modulus, E0 is the undamaged modulus, Omax is the 

maximum applied stress, and N is the number of cycles. This equation has been applied 

successfully to 0/90 glass fibre-epoxy laminates and Kevlar-epoxy laminates.

Most of the studies have concentrated only on observing the effect of fatigue on the 

longitudinal stiffness. Talreja [252] devised an experiment to observe the effect of 

tension-tension fatigue on the four elastic constants of unidirectional glass fibre 

reinforced polyester composites: longitudinal elastic modulus, transverse elastic 

modulus, the two Poisson’s ratios vn  and V21, and in-plane shear modulus. The 

longitudinal elastic modulus remained essentially constant with increase in the number 

of cycles. The Poisson’s ratio V12 showed slight increase. The in-plane shear modulus 

and the Poisson’s ratio V21 showed significant changes which were attributed to matrix 

damage. It was concluded that fatigue damage characterisation of composites can not be 

based on the measured changes in longitudinal modulus alone because they do not 

reflect all damage events in fatigue of composites.

2.6.5 Fatigue Life Prediction Models

Various models have been developed to predict the fatigue life of composite materials. 

They fall into four main categories: empirical, residual strength degradation, stiffness 

degradation and actual damage state based theories [259].

Empirical fatigue theories are used to characterise the S-N curves of the materials. The 

equations mostly used to characterise the S-N data are given below.

<W — N** ,(2.23)

oa = Cult -  b log N ,(2.24)

aa/ Ouit = 1 - b  log N, .(2.25)

G range — Cl fe/N , (2.26)

Grange = Ct + b!NX -  clAy ,(2.27)

gJ  ciuit = a + b! (log N)x ,(2.28)
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where A= (1-R)/(1+R) = Orange / tfmean,a  and b are experimentally determined material 

constants, ouit represents static strength, oa is the maximum or minimum applied stress, 

and Orange is the stress range.

Equation (2.23) represents a straight line S-N curve on a log-log plot of the fatigue data. 

Equation (2.24) represents the straight line fatigue data on a stress-log N plot. This 

equation has been used to characterise a large class of glass fibre reinforced composite 

materials [265]. Equation (2.25) has been shown to apply to fatigue behaviour of most 

composite systems. For tension-tension fatigue, b typically has values between 0.06 and 

0.12 for laminates of common engineering interest [237]. Even unidirectional 

composites have values of b usually in the 0.08-0.1 range. Equation (2.26) has been 

shown to be mostly applicable to metals [266]. Equation (2.27) has been used to 

characterise glass-epoxy fatigue data [267]. Equation (2.28) has been used to 

characterise a number of composite materials [268].

2.6.6 Fatigue Properties of Natural Fibre Composites

Like other mechanical properties, the fatigue behaviour of natural fibre composites is 

still not fully studied. Studies into their behaviour were carried out by Gassan et al. with 

thermoplastics and thermosets [269]. The composites were made with flax and jute used 

for epoxy, polyester and polypropylene and were tested in tension-tension fatigue. They 

investigated the influence of type of fibre, textile architecture, fibre-matrix adhesion, 

fibre mechanical properties and amount of fibre on tension-tension fatigue behaviour. 

Due to differences in fibre fine structure and surface morphology, significant 

differences in composite damping were measured between unidirectional flax and jute 

epoxy composites, with an approximately, two-fold increase in damping for the flax- 

epoxy composites. Damage propagation was quite similar for both types of composites.

The influence of textile architecture was investigated by use of unidirectional and 

woven reinforced jute-epoxy composites. Critical load for damage initiation and load at 

failure was lower and damage propagation was more rapid for the composites based on 

woven reinforcements. The quality of fibre-matrix adhesion was shown to have a 

significant effect on the fatigue behaviour of both reinforced brittle polyesters and 

ductile polypropylene matrices. For both, the critical load for damage initiation was
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lower and damage propagation was more rapid for composites with untreated jute 

wovens.

Fibre strength and modulus were found to influence the critical load for damage 

initiation, the rate of damage propagation and the load at failure in unidirectional flax- 

epoxy composites. Increasing mechanical fibre properties increases the critical load and 

the failure load, while damage propagation was reduced. Composite damping was 

reduced with increasing fibre fraction below and above the critical load for damage 

initiation, with comparable rates for damage propagation.

An improved fibre-matrix adhesion due to a coupling agent such as MAH grafted PP 

leads, for these modified jute-polypropylene composites at comparable fibre contents, 

to a distinctly higher dynamic strength, i.e. stress at fracture measured in the load 

increasing test, as for the composites with untreated jute-fibres. Progress of damage for 

unmodified jute-polypropylene composites is nearly independent of the fibre content, 

which results in independent maximal stresses, due to the improved fibre-matrix 

adhesion, caused by the MAH grafted PP coupling agent and the thereby improved 

force transfer. In contrast to untreated jute-polypropylene composites, a 40% increase 

of dynamic strength, at comparable fibre contents (ca. 40 vol.%), is attained through the 

usage of the coupling agent. The damage of the jute polypropylene composites 

(modified as well as unmodified) does not occur spontaneously, but occurs continuously 

with the increasing stress.

Thwe and Liao [105] reported remarkable fatigue properties of bamboo fibre reinforced 

polypropylene composites. For composites tested in tension-tension fatigue (R=0.1, f=5 

Hz), they reported that all samples tested at load levels of less than 80% of UTS 

survived one million cycles. Even the composites tested at 80% of UTS were able to 

survive 50000-500000 cycles. They also reported gradual decline in residual stiffness of 

bamboo fibre reinforced polypropylene composites tested in tension-tension fatigue at 

80%, 65%, 50% and 35% of UTS. Three stages of stiffness reduction, commonly found 

in synthetic fibre composites, were reported for these composites. For hybrid 

composites in which 5% of bamboo fibres were replaced by glass fibres, the reduction 

in stiffness was lower, indicating superior fatigue resistance of hybrid composites.

Yuanjian [262] studied the fatigue properties of hemp fibre reinforced polyester 

composites with 44% fibre weight fraction. It was found that at the same relative stress
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levels, the fatigue lives of glass fibre composites were better than hemp fibre 

composites.

2.7 ENVIRONMENTAL PROPERTIES

In order to compete with other materials, composite materials should have good 

environmental properties. Ambient moisture, water, chemicals, sunlight, heat, and 

radiation all cause changes in the microstructure and the chemical composition of 

composite materials. These changes in turn cause changes in properties such as strength, 

modulus, impact and fatigue.

Many composite materials are seen as being quite resistant to external environments, 

especially when compared to corrosion properties of ferrous metals. However many 

chemical and physical processes can combine to result in accelerated failure in 

composite materials.

Some examples of composite material encountering different environmental conditions 

are: fibreglass boats exposed to sea water, ultraviolet radiation, sunlight and repetitive 

wave forces; aircraft parts exposed to fuels, paint strippers, hydraulic fluids, brake fluids 

and runway de-icers; storage tanks; sewage pipes; and chemical plants’ components.

Reactive environments include all reactive substances, whether synthetic or natural, 

such as water, oxygen, bleach, petrol, lubricants, detergents, cleaning solvents, acids, 

alkalis, etching and oxidizing agents, and even gases. High or fluctuating temperatures 

also cause deterioration of properties of composite materials. The whole spectrum of 

radiation should also be considered, like ultraviolet, infrared, X-rays, and gamma rays. 

However ultraviolet and visible light are considered to be more harmful to composite 

materials [270]. For this research the effect of ultraviolet light and moisture on 

composite materials will be studied.

2.7.1 Ultraviolet Light

Although UV light makes up only about 5% of sunlight, it is responsible for most of the 

sunlight damage to the materials, especially polymers, exposed outdoors. This is 

because photochemical effectiveness of light increases with decreasing wavelength. 

Since polymer matrix forms the outside surface of the composite material, it is 

important to consider the performance of the polymer matrix to UV light. The energy of
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photons of UV light is sufficient to rupture the bonds within polymer molecules. This 

rupture causes changes in molecular weight, formation of cross-links, and reaction with 

oxygen. These structural changes lead to gross physical changes such as chalking, 

cracking, surface embrittlement, discolouring and loss of tensile and impact strength 

[271]. The solar ultraviolet radiation spectrum is divided into three ranges: UV-A, UV- 

B and UV-C. UV-A is the energy in wavelength between 400 nm and 315 nm, the 

former being the boundary between visible light and ultraviolet light. The energy at the 

315 nm boundary begins to cause adverse effects on polymers. UV-B is the 315 nm to 

290 nm range. It includes the shortest wavelengths found on the earth’s surface and is 

responsible for severe polymer damage. UV-C includes the solar radiation below 290 

nm. Due to complete absorption by ozone layer, it is found only in outer space.

The primary degradation processes in a polymer matrix, such as the formation of 

excited states, radicals, and chain scission, are largely the result of UV radiation. UV 

radiation is irrelevant to the heating of an irradiated sample [272]. The heating is caused 

solely by the absorption of visible and infrared radiation. Thus the primary degradation 

processes are essentially unrelated to temperature. However many secondary 

degradation processes do depend on temperature. The photochemical effect of sunlight 

on a plastic material depends on the absorption properties and bond energies of the 

material. The range of dissociation energies between atoms in polymer molecules is 70- 

100 Kcal/mol [271]. UV light in the range 290-320 nm has an energy range of 89-98 

Kcal/mol, but, fortunately, it accounts for only 0.5% of sunlight. Light in the range 300- 

360 nm has energy range of 79-89 Kcal/mol and it thus falls within the range of 

dissociation energies between atoms in polymer molecules. The energy wavelength of 

UV-A is thus the major contributor to the degradation in polymers.

Polyesters contain chromopores, which are atom grouping in the molecule that react 

with sunlight [271]. For polyester, the wavelength that has the greatest photochemical 

effect is 325 nm [273] which falls within the wavelength range of UV-A. Hence 

polyesters are more susceptible than other polymers to degradation because of 

interaction with the sunlight. In one study on the effect of weathering on polyester resin, 

the resin was exposed to actinic rays in a twin arc Fadeometer [25]. An exposure of 

400-700 hours was considered equivalent to one year of outdoor exposure. Initially 

there was no visible change after several hundred hours of exposure. Then the yellowing 

of the samples suddenly became noticeable. The tensile strength of the resin
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deteriorated from 66 MPa to 47 MPa after 2400 hours of exposure. Similarly the 

flexural strength deteriorated from 90 MPa to 82 MPa after same exposure period.

To simulate the physical damage caused by sunlight it is not necessary to reproduce the 

entire spectrum of sunlight. In many cases it is only necessary to simulate the short 

wavelength. UV light causes degradation in polymers through a breakdown of 

molecular weight [273]. To overcome this problem, ultraviolet absorbers, such as 

carbon black or aromatic ketones, are added to plastics.

It has also been shown [16] that in composite materials, exposure to sunlight is confined 

to surface layers down to about 10 pm depth, this being the typical thickness of resin at 

which the intensity of ultraviolet light is reduced to one half its incident value. Shkorieh 

and Bayat [274] studied the properties of glass-polyester composites exposed to UV 

radiation for different intervals of time. The composites showed reduction of 30% in 

tensile strength, 18% in tensile modulus and 15% in strain to failure following exposure 

to 100 hours. The composites made with UV absorber showed little degradation 

following exposure for the same time interval.

2.7.2 Moisture

The amount of moisture absorbed by the polymer matrix composite depends on the 

matrix type, exposure time, component geometry, relative humidity, temperature, and 

exposure conditions. Typical consequences of exposure of composite materials to these 

environments are: matrix swelling, fibre-resin debonding, matrix cracking, and chain 

scission [270]. In case of natural fibre reinforced composites, additional problems are 

encountered because of hydrophilic nature of natural fibres.

Diffusion is the major mechanism for moisture penetration into composite material. 

This involves direct diffusion of water molecules into the matrix and fibres. The other 

common mechanisms of moisture penetration are capillary flow along the fibre/matrix 

interface, followed by diffusion from the interface into the bulk resin, and transport by 

microcracks [275]. Capillary flow is mostly active only after debonding between fibre 

and matrix has occurred and transport of moisture by microcracks involves both flow 

and storage of water in micro-damage. A composite material exposed to moisture will 

absorb moisture at higher rate initially that will slow down with time and eventually 

reach an equilibrium (saturation) level. The rate at which a composite laminate of a
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given thickness attains the equilibrium moisture concentration depends on the 

temperature and relative humidity of the environment. In general, thermoset matrix 

composites have saturation limits ranging from 1 to 2%, while thermoplastic matrix 

composites have lower range of saturation limit, i.e. 0.1-0.3% [218].

The absorption of liquid molecules into polymer matrix or fibre results in significant 

swelling. The degree of swelling is linked to the solubility and molecular volume of the 

absorbed liquid, and the stiffness of material also plays a part. Swelling is found most 

commonly in the polymer matrix, but also for some polymer fibres. The swelling of 

natural fibres is a well known phenomenon. Swelling interacts with any internal residual 

stresses formed during processing, for example because of shrinkage of polymer matrix 

during curing. Unsaturated polyester resin is well known for its shrinkage during curing. 

If the fibres do not shrink, this leads to compressive stress on the fibres and a tensile 

stress in the matrix. Swelling of fibres tends to increase the tension in the matrix and put 

the fibres into tension. Aramid fibres swell with weight gains of as much as 4%.

The possible effects of absorbed moisture on polymeric composites have been 

summarised as [276]: Plasticisation of matrix, resulting in reduction in glass transition 

temperature and usable range, changes in dimensions due to matrix swelling, enhanced 

creep and stress relaxation, resulting in increased ductility, change in coefficient of 

expansion, reduction in ultimate strength and stiffness, fibre-dominated properties are 

generally not affected.

2.7.3 Constituents’ Influence on Environmental Properties

The matrix, the fibre and the interface all contribute differently to the environmental 

properties of the composites.

2.7.3.1 Matrix

All organic matrices are permeable to moisture. Most organic matrices are permeable to 

a whole range of organic liquids with a consequent reduction in matrix modulus. They 

are also poor at withstanding high temperatures. Most resins withstand dilute acids and 

alkalis better than light alloys or stainless steels. This is the major reason for the 

excellent corrosion resistance of composite materials compared to solids. Anions and 

cations do not diffuse easily through un-cracked resins [270].
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The most important type of chemical degradation in matrix materials is hydrolysis, 

where water, or OH\ H+, or H30+ ions attack chemical groups within the matrix. The 

hyrolysis reaction are more pronounced in acidic or alkaline environments. The more 

polar groups within polymers are most susceptible to hydrolysis, notably the ester, 

amide, carbonate, and amide groups. Unsaturated polyester resin, used in this study, is 

most susceptible to hydrolysis reaction with the eater groups being broken primarily by 

OIT ions.

The other important type of chemical degradation in the matrix material is chemical 

oxidation with oxidizing acids such as nitric and sulphuric, or other oxidizing agents 

such as peroxides and hypochlorites. Attack occurs via active free radicals, like H2O 

and HO radicals, which attack main chain bonds in the polymer. Polyesters have a 

higher concentration of ester groups than other resins, and so are most susceptible to 

hydrolysis, especially with alkaline environments. Apicella et al [277] studied the 

ageing characteristics of commercial grade polyester resins and the composites made 

from them. The polyester resins studied were: vinyl ester, bisphenol, and isophthalic. 

The equilibrium uptake of water at 20 °C was lowest at 0.35% for isophthalic resin and 

highest at 65% for vinylester resin. The corresponding water uptake for E-glass fibre 

reinforced resins was slightly higher which was attributed to debonding of fibres. The 

lowest hydrolytic stability was observed for isophthalic resins, which possessed the 

highest ester content. After 50 days of immersion in water at 20 °C, isophthalic resin 

lost 32% of its tensile strength, 11% of tensile modulus, and 18% of elongation to 

break. The E-glass fibre reinforced isophthalic resin composites lost 19% of tensile 

strength, 4% of tensile modulus, and 14% of elongation to break after same conditions.

As with all chemical reactions, an increase in temperature leads to an increase in 

degradation rate in the matrix. As the key degradation reaction is main chain scission in 

most polymers, the activation energies for degradation in a certain environment are 

strongly dependent on the bond strength of the weakest bond in a polymer, with simple 

carbon chain polymers having fairly high activation energies. Polyesters that have 

oxygen bridges in the main chain have lower activation energies.

An increased tensile stress on polymer chains results in increase in rate of degradation. 

This is either because the stressed chains are more susceptible to scisson reactions or 

that once broken, chains are less likely to recombine if they are under stress.
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It has been shown [22] that the moisture content does not have a significant effect on 

fibre-dominated properties but may reduce matrix-dominated properties. The matrix 

strength falls with increasing moisture content, although its failing strain may be 

increased. It was shown for unidirectional carbon/epoxy laminates that their elastic 

moduli and strengths in transverse tensile and shear loading were reduced by the 

presence of moisture while the axial properties were unaffected [278].

In one study, the moisture absorption of glass mat reinforced polyester laminates was 

found to be 0.28% and the ultimate tensile strength of these laminates was 89.7 MPa in 

dry conditions and 81.4 MPa in wet conditions [276]. Special grade polyester laminates 

are excellent at resistance to acids, bases and distilled water for long times at 

temperatures as high as 210° F. Glass filled polyester laminates are also used for their 

excellent resistance to ionising radiation exposure.

Dyer [242] reported moisture saturation level of 0.67% for polyester resin immersed in 

distilled water and sea water. The polyurethane vinylester resin had saturation level of 

0.55% in distilled water and 0.54% in sea water, suggesting greater solubility of water 

in polyester. The tensile strength and tensile modulus of both resins was found to 

decrease following immersion in both media.

Another important effect of moisture absorption on the polymer matrix is plasticization. 

Plasticization occurs because of absorption of liquid molecules into a polymeric matrix 

or fibre. The small solute molecules disrupt the intermolecular bonding between 

polymer chains, allowing easier chain movement. This leads to a reduction in glass 

transition temperature (Tg) of the polymer. The lowering of Tg can have serious effect 

on the properties of the composite [275]. This mechanism primarily occurs in 

amorphous regions, so it is more important for glassy polymers.

Generally the higher the equilibrium solubility, the greater the degree of plasticization. 

Plasticization can lead to a significant decrease in stiffness, increase in creep rate, 

increase in diffusion coefficient, and the potential for environmental stress cracking of 

the polymer. In the polymer composites it results in reduction in matrix dominated 

properties such as shear, transverse tension and longitudinal compression [279].
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2.7.3.2 Fibre

Glass fibres are resistant to most chemicals but they do not withstand strong alkalis and 

acids indefinitely [270]. They suffer from corrosion in aqueous environments, 

especially under acidic conditions. Even hot water causes glass fibres to lose their 

strength. Carbon fibres are resistant to almost all chemical agents, but they are 

vulnerable to oxidation and intercalation. Aramid and other thermoplastic fibres absorb 

moisture, unlike glass and carbon, undergo chemical degradation under certain 

circumstances, and are affected by ultraviolet light. Natural fibres also absorb moisture 

because of their hydrophilic nature, and also suffer chemical degradation as discussed in 

section.

The use of glass fibres does not improve the excellent corrosion resistance of polyester 

resins; in fact, in strong caustic environments, the use of glass fibres actually reduces 

the performance of polyester resin. In such cases carbon fibres are preferred over glass 

fibres.

2.7.3.3 Interface

The interface between fibres and resin can

be damaged by liquids and thermal cycling. It is reflected in reduced transverse tensile 

strength and short beam strength of the composite [270]. Fibre surface treatment is the 

best method of protecting the interface from environmental damage.

Degradation of either the matrix or the fibre leads to weakening of the interface. Other 

factors that are important for degradation of the interface are:

• Degradation of fibres always occurs first on fibre surfaces, thereby weakening 

the interface.

• The level of cure or crystallinity may be lower at the interface leading to easier 

degradation.

• Water accumulates at the interface, partly due to greater free volume, more 

hydrophilic nature of the fibres, and location of voids, debonds, and 

microcracks.
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• Elastic or thermal strain mismatch between the matrix and the fibres can cause 

the matrix to experience the greatest local stress at the interface.

Kawagoe et al [280] studied the effect of water absorption on interfacial strength 

between glass fibre/polyester. They found that absorbed water collected preferentially at 

the interface and resulted in reduction of up to 70% in bond strength at elevated 

temperatures.

In their studies on the effect of moisture on interfacial strength of carbon fibre 

reinforced epoxy composites, Pratt and Bradley [281] found that the absorption of 1.4% 

moisture resulted in a reduction of less than 20% in the interfacial shear strength. This 

reduction was associated with a reduction in the residual compressive stresses at the 

interface associated with the cool-down from the curing temperature.

2.7.4 Modelling the Moisture Absorption Behaviour

Various researchers have tried to model the moisture absorption behaviour in 

composites materials. Amongst the first to do so were Shen and Springer [282] who 

derived expressions for moisture absorption and moisture content as function of time for 

one dimensional homogeneous and composite materials exposed either on one side or 

on both sides to humid air or water. They found that when a) the material is exposed to 

the environment on one side only or on two sides with both sides being parallel, b) 

initially the temperature and moisture distribution inside the material are uniform, and 

c) the moisture content and the temperature of the environment are constant, the 

moisture content of the material during both adsorption and desorption is:

where Mi is the initial moisture content of the material, Mm is the maximum moisture 

content which can be attained under the given environmental conditions, and G is a time 

dependent parameter whose value is given by:

M = G (Mm-M j) + M

R CO exp[-(2j+l)27t2(5 |l)]  
8 v ___________s

(2j + l)2

This equation may be approximated by the expression:
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G = l - e x p [ - 7 . 3 ( 5 i i ) 0'75]
s

For a material exposed on both sides to the same environment, s is equal to sample 

thickness, and Dx is the diffusivity of the material in the direction normal to the surface. 

For fibre reinforced composites in which the orientations of all the fibres with respect to 

x, y, and z axes are a, p, and y, the values of Dx is given by:

Dx = Du cos2 a + D22 sin2 a

where Du and D22 are the diffusivities in the directions parallel and normal to the fibres. 

The value of Dx can also be estimated from the diffusivity of the matrix Dr and the 

volume fraction of the fibres Vf by using:

Dx= Dr [(1-Vf) cos2a + (1-2 Vvf In) sin2a]

This expression is valid for unidirectional and laminated composites. For laminated 

composites the fibres must be in a plane parallel to the surface.

The time required for a material to attain at least 99.9% of its maximum possible 

moisture content is given by:

_ 0.6786s2

They applied the equations to moisture absorption in 45° and unidirectional graphite T- 

300 Fiberite 1034 composites. The test data was found to support the analytical results.

2.7.5 Effect of Moisture on Mechanical Properties

The effect of moisture on the mechanical properties of composite materials can be 

determined in two ways: by measuring the percentage retention of mechanical 

properties, such as tensile, shear, or flexural strength; and by examination the sample 

before and after exposure using optical and scanning electron microscopy (SEM). For 

carbon fibre-epoxy composites, the consequent losses in mechanical properties can be 

of the order of 50% for interlaminar shear strength, 50% for compressive strength and 

10% for tensile strength. Various studies on composite materials have found them to 

maintain their mechanical properties in moist conditions.
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Choqueuse et al [283] studied the effect of moisture absorption on five composites: E- 

glass fibres reinforced polyester, vinyl ester, epoxy, and prepreg epoxy, and carbon fibre 

reinforced PEEK composites. The glass fibres were woven with 90% of fibres in 0° 

(longitudinal) direction and 10% fibres in 90° (transverse) direction. The fibre weight 

fraction of the composites ranged from 50-60%. The composites were immersed in 

distilled water at 5, 20, 40 and 60 °C at pressures of 0.1 MPa and 10 MPa. It was found 

that even after immersion in water for two years, saturation level was generally not 

reached. For glass fibre-polyester composites, the values of mass of water absorbed 

were about 0.7% at 5 °C, 1.2% at 20 °C, 1.5% at 40 °C, and 1.7% at 60 °C at 0.1 MPa 

(atmospheric) pressure. The same values at 10 MPa pressure were 1.4% at 5 °C, 1.5% at 

20 °C, 2.3% at 40 °C, and 2.1% at 60 °C. The effect of increasing temperature on water 

absorption was noticeable but the effect of pressure was negligible. It was found that 

epoxy composites absorbed more water than other composites (up to 5% after two years 

at 60°C) and after drying residual weight gain was noted. The epoxy composites were 

also more sensitive to pressure than other composites, the weight gain being accelerated 

at 10 MPa. Except for carbon-PEEK composites, for which there was no significant 

change of mechanical properties, a degradation of mechanical properties of up to 50% 

was noted for thermoset composites. The degradation was anisotropic and affected both 

strengths and moduli. However no simple correlation between the loss of mechanical 

properties and absorption parameters could be made. In general the hydrostatic pressure 

did not affect the loss in properties.

This was also confirmed by Dewmille and Bunsell [284] in their studies on 

unidirectional glass fibre reinforced epoxy composites made in the shape of round bars. 

For the composites immersed in water at temperatures less than 50°C, there was little 

effect on mechanical properties although the saturation water content was 0.66-0.71% at 

fibre volume fraction of 48%. The saturation water content was found to increase with 

increase in temperature. At 100°C the saturation water content was 1.35-1.45. The 

mechanical properties also started to degrade at immersion water temperatures of 80°C 

and above.

In their studies on CSM glass fibre reinforced polyester composites, Han and Koutsky 

[285] found the water saturation level to be 0.6 weight percent of the specimen at fibre 

weight fraction of 44%. The value of diffusion coefficient was 5.4 x 10'6 mm2/s which 

is close to the value reported by other researchers. The fracture energy of samples
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soaked in water for 22 days was 950 J/m2 which was higher than that for dry specimens, 

800 J/m2. The smaller elastic modulus of the soaked specimens induced a greater 

viscoealstic response and hence more energy was absorbed. The critical load for crack 

propagation was approximately the same before and after soaking (470 N). The crack 

propagation mode and the fracture surface appeared to be unaffected by the presence of 

water. This again pointed towards superior performance of composites in water.

Philips [286] undertook environmental stress-rupture (EST) tests on glass fibre 

reinforced polyester composites in air and in aqueous environments. For composites 

tested in water at 40°C, the stress-rupture behaviour was unaffected by specific 

variations in immersion conditions such as distilled water or seawater, and unsealed or 

sealed edges of the samples.

Jones et al [287] studied the environmental fatigue properties of cross plied 0/90° epoxy 

based laminates reinforced with glass, carbon and Kevlar fibres. The environments 

studied were dry, 65% RH, and boiling water. The CFRP laminates were largely 

insensitive to the effect of moisture. The GFRP were also unaffected by moisture 

content unless the fibres were damaged by an extreme environment of boiling water. 

The KFRP laminates showed lower fatigue strength in boiling water but beyond 105 

cycles the S-N curve for boiling water coincided with those at other conditions. The 

laminates were also tested in flexural fatigue. The boiling water as observed to have less 

deleterious effect on flexural fatigue of GFRP than on its axial fatigue. The same was 

true for KFRP. The CFRP appeared to be marginally strengthened by boiling water in 

flexural fatigue, which was attributed to the beneficial effect of resin plasticization on 

interlaminar shear strength.

Loos and Springer [288] also exposed CSM glass fibre-polyester composites to various 

environmental conditions. Composites with fibre weight fraction of 65% immersed in 

distilled water at 23°C showed equilibrium moisture gain of 3.5%. Increasing the 

temperature of water to 50°C did not affect the equilibrium moisture level. The 

equilibrium moisture level of same composites in saturated salt solution at 23°C was 

lower at 1.5%. In call cases the moisture absorption followed the Fickian behaviour up 

to the saturation point. The diffusion coefficient was calculated at 1.1x10s mm2/s for 

composites immersed in distilled water at 23 °C.
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Ellyin and Rohrbacher [289] immersed glass fibre-epoxy composites with various fibre 

configurations in distilled water at room temperature and at 90°C. Composites with 

cross-ply [±02, 903]s configuration showed a moisture saturation level of 1.8% at room 

temperature, while those at 90°C did not reach their saturation limit after 40 days of 

immersion.

Sindhu et al [290] studied the properties of CSM glass fibre reinforced polyester 

composites in different aqueous media. The composites immersed in water for 3 months 

showed 20% reduction in their tensile strength but 1% increase in tensile modulus. 

Composites immersed in 10% salt solution again showed 20% reduction in tensile 

strength and 9% reduction in tensile modulus. Composites immersed in 10% alkali 

solution showed 40% reduction in tensile strength and 1% reduction in tensile modulus. 

Dyer [242] also reported a moisture saturation level of 0.7% for [±45]4 glass fibre 

reinforced polyester laminates immersed in distilled water and sea water. For laminates 

with same lay-up but in polyurethane matrix, the saturation level was 0.5%.

Pritchard and Speake [291] immersed neat polyester resins and glass reinforced 

polyester laminates in water for up to three years at temperatures in the range 30-100 

°C. The residual mechanical properties were found to be functions of true absorbed 

water content, both for resins and laminates. Empirical relations describing the 

relationships were obtained for each property, most of which were of the form

P = a (l-e bexp(-cMt)) + d

where P is the residual property, Mt is the true water absorption, and a, b, c, and d are 

empirical constants. Using these equations it was possible to predict residual 

mechanical properties at 15°C and at temperatures outside the experimental range for a 

period of 25 years. Experimental data obtained over three years at the lower end of the 

temperature range appeared to fit the predicted data well.

2.7.6 Environmental Properties of Natural Fibre Composites

Natural fibres are susceptible to environmental degradation because of their structure. 

Biodegradation by microorganisms occurs because they hydrolyse the carbohydrate 

polymers, especially hemicelluloses, into digestible units [292]. Photochemical 

degradation by UV light occurs primarily in lignin which is also responsible for colour
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change. Cellulose is less susceptible to UV degradation. Hemicellulose and cellulose are 

degraded by heat much before the lignin. Lignin also contributes to char formation.

2.7.6.1 Moisture Absorption

Cellulosic fibres are hydrophilic and absorb moisture. The moisture content of fibres 

can vary between 5 to 10%. This can lead to dimensional variations in composites and 

also affects mechanical properties of composites. It can also lead to poor processibility 

and porous products. It can cause fibres to swell and ultimately rot through attack by 

fungi. A possible solution is to improve fibre-matrix interface by using compatibilizers 

and adhesion promoters. With better adhesion, the moisture sensitivity is usually 

reduced [9]. Also surface treatments of fibres with silanes can make the fibres more 

hydrophobic.
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Fig. 2.18: Absorption of moisture in natural fibres [117]

As soon as the natural fibres are exposed to moisture, hydrogen bonds are formed 

between the hydroxyl groups (-CH2OH) of the cellulose molecules and water as shown 

in Fig. 2.18. The first water molecules are absorbed directly into the hydrophilic groups 

of the fibres and form a relatively strong hydrogen bond. Following this, other water 

molecules are attracted either to other hydrophilic groups or they form further layers on 

top of the water molecules already absorbed by weaker hydrogen bonding. Thus the
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natural fibres absorb and desorb moisture from atmosphere until they reach the 

equilibrium stage.

Water uptake in the cell walls causes fibres to swell until the forces of water absorption 

are counterbalanced by the cohesive forces of the cell walls. The swelling of fibres is 

found to be directional with the maximum swelling occurring in the lateral direction and 

minimum in the longitudinal direction. The amorphous part of native cellulose, with all 

hydroxyl groups accessible to water, contributes more to swelling than the crystalline 

part, where only the surfaces are available for water sorption [70]. Therefore increasing 

the crystallinity of the fibre reduces the swelling capacity. The hydrophilic 

hemicellulose also contributes greatly to fibre swelling. Reducing the amount of 

hemicelluloses also reduces the swelling capacity of fibres. Thus the swelling of fibres 

as a result of moisture absorption can affect the dimensional stability and weaken the 

interfacial bonding of the composite. These can have adverse effects on the mechanical 

properties of these composites.

Ho and Ngo [293] studied the water sorption characteristics of hemp and coir fibres. 

Both fibres displayed two-stage water sorption curves: the first stage obeyed Fick’s law, 

whereas the second stage represented non-Fickian diffusion. Hemp fibre displayed 

saturation water uptake of 66% at 23 °C which increased to 80% at 80 °C. At 23 °C the 

following sorption parameters for hemp fibres were determined: Diffusion coefficient 

0.56x1 O'9 m2/s, sorption coefficient 0.66, permeability coefficient 3.7x1 O'10 m2/s.

Jimenez and Bismarck [71] exposed different natural fibre to 100% relative humidity 

and determined the equilibrium moisture uptake. Comhusk, hemp and sisal fibres had 

uptake values of 33% whereas abaca, flax, luffa, henequen, lechuguilla and lyocell 

fibres had equilibrium moisture uptake of 23-30%.

The moisture absorption in natural fibre reinforced composites is found to increase with 

increase in fibre content. This was found to be true for the following composites: jute- 

epoxy [62]; jute-polyester [294]; hemp-polyester [295], pineapple-polyester [296], 

banana-polyester [297], woodflour-polyester [298], ramie/cotton-polyester [299], sisal- 

epoxy [300], sisal-polypropylene [301], rice husk-polypropylene [302], pineapple- 

polyethylene [303], cellulose-polypropylene [304], and rice hull-HDPE [305].

130



Increasing the water temperature accelerates the water sorption but does not affect the 

saturation uptake. This has been shown to be true for sisal-PP composites for water 

temperatures of 50°C and 70°C [301].

In their studies on water absorption behaviour of hemp fibre reinforced polypropylene 

composites, Hargitai et al [108] found the saturation water uptake to be strongly 

dependent on fibre weight fraction. Whereas the saturation water uptake for composites 

with 30% fibre weight fraction was only 7%, the value for composites with fibre weight 

fraction of 70% was as high as 53%.

Sgriccia et al [181] reported that hemp fibre reinforced epoxy composites had a 

saturation weight gain of 18.4% following immersion in water for 1500 hours. This is a 

considerably high value considering that the composites had a fibre weight fraction of 

15%. At the same fibre weight fraction, henequen-epoxy composites had the highest 

weight gain of 28% while flax-epoxy and kenaf-epoxy composites had similar weight 

gain as hemp-epoxy composites.

In another study, Aghedo and Baillie [306] reported a saturation mass gain of 10% for 

hemp fibre reinforced recycled linear low-density polyethylene composites following 

2000 hours of immersion in water.

In their studies on water absorption properties of banana fibre reinforced polyester 

composites, Mariatti et al [144] reported a water saturation level of 8.1% at fibre 

volume fraction of 20%. At same fibre volume fraction, they reported the value for 

pandanus fibre reinforced polyester composites to be 11%.

Sreekumar et al [138] have shown for sisal fibre reinforced polyester composites that 

equilibrium water uptake also depends on manufacturing method. Composites made by 

compression moulding had equilibrium water uptake was 1.2 mole percent for 50% 

fibre volume fraction whereas for composites with same fibre volume fraction but made 

by resin transfer moulding, it was 0.75 mole percent.

Mehta et al [307] reported saturation moisture uptake of 0.7% for hemp fibre reinforced 

polyester composites placed in humidity chamber having 90% RH. For acrylonitrile 

treated hemp fibre composites, the equilibrium moisture uptake was 0.3%.
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Mishra et al [308] reported water uptake of 19.5% after 30 hours of immersion for hemp 

fibre reinforced novolac composites having fibre weight fraction of 40%. For fibres 

treated with maleic anhydride, the composites’ water uptake was reduced to 14.5% for 

the same time of immersion.

Thwe and Liao [105] reported a moisture saturation level of 1.2% for bamboo fibre 

reinforced polypropylene composites at 20% fibre weight fraction. The same authors 

reported a moisture intake level of 13% for the same composites but at fibre weight 

fraction of 30% in another paper [106]. No reason was given for the large difference in 

moisture intake levels, but the latter figure seems more sensible. Singh et al [309] 

reported a saturation water intake of 45% for jute cloth reinforced phenolic composites 

containing fibre volume fraction of 70%.

A study [7] showed that composites reinforced with 30% hemp fibres in polypropylene 

matrix immersed in water absorbed approximately 7% of their weight. On the other 

hand, under standard hygroscopicity and temperature conditions, after saturation the 

part released all the water adsorbed, and no hysteresis was observed in the sorption/ 

desorption curves. The mechanical properties of the composites decreased slightly 

following the absorption of water, although the original properties were recovered as 

soon as the water was desorbed.

2.1,6,2 Effects of Surface Treatments on Moisture Absorption

Two processes have been generally used to reduce moisture sensitivity in natural fibres: 

acetylation and hydrothermal treatment. Experiments have confirmed that equilibrium 

moisture content decreases with increasing acetyl content in all natural fibre materials 

which proves the effectiveness of the process.

Hydrothermal treatment increases the crystallinity of cellulose and hence contributes to 

reduced moisture uptake. Furthermore, part of hemi-cellulose is extracted, further 

decreasing the moisture uptake. However at higher temperatures, this process leads to 

deterioration of mechanical properties of the fibres.

Various coupling agents have also been used in to reduce the moisture absorption of 

natural fibres. The improved moisture resistance of natural fibre composites because of 

coupling agents can be explained by an improved fibre-matrix adhesion. The coupling
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agent builds chemical bonds (silanol) bonds and hydrogen bonds which reduces the 

moisture caused by fibre-matrix debonding.

Gassan et al. [67] used epoxyfunctional-y-glycidoxypropyltrimethoxy-silane as coupling 

agent in jute fibre reinforced epoxy composites. The introduction of coupling agent not 

only improved the mechanical properties but the moisture uptake was also reduced by 

about 10-20%.

The investigations on silanised jute-epoxy composites regarding their moisture 

absorption (in distilled water at 23 °C) showed about 20% lowered moisture at 

equilibrium. However the tensile strength of the silanized composites was found to be 

independent of the moisture content of the composites [62]. Unmodified jute-epoxy 

composites reached about 65% of the value of the dry tensile strength at maximum 

moisture content of 5.2 wt. %.

Singh et al. [309] studied the physical and mechanical properties of jute fibre reinforced 

phenolic composites under various humidity, hydrothermal and weathering conditions. 

The results indicated that the loss in properties was considerable and the surface was 

heavily defaced under high humid/ wet environment.

Wang et al. [305] introduced a new theory for studying the moisture absorption in 

natural fibre composites. They found that at higher fibre loading when accessible fibre 

was high, the diffusion process was the dominant mechanism, while at low fibre 

loading, percolation was the dominant mechanism.

Mishra et al. [308] studied the swelling properties of natural and maleic anhydride 

esterified fibres of banana, hemp, and sisal reinforced in novolac resin. Amongst all the 

fibres tested, the maximum absorption of water was found in hemp fibre composite and 

the minimum in surface treated sisal fibre composite. The surface treatment reduced the 

water absorption in all the composites. Steam absorption was also found to be 

maximum for hemp fibre composites. The surface treatment of fibres again reduced the 

steam absorption in all composites.

The tension-tension fatigue testing of silanized jute-epoxy composites at moisture 

content of 4.5 wt. % by Gassan and Bledzki [62] showed nearly the same S-N curve as 

for the unmodified composites at standard humidity. This was again attributed to 

improved fibre-matrix interfacial bonding.
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Rouison et al. [295] studied the water absorption of hemp/ unsaturated polyester 

composites. The water absorption increased with increasing fibre content. The moisture 

absorption process was shown to follow the diffusion mechanism and was more 

prominent in longitudinal than transverse direction. Composite samples immersed in 

water reached saturation levels after about eight months and showed no signs of 

cracking due to swelling. Various fibre treatments were tested (sizing, alkali, silane), but 

none resulted in substantial increase in resistance to water absorption. The most 

effective technique to increase moisture resistance was to properly enclose all the fibres 

within the matrix. The samples were immersed in water for one month and then tested 

for flexural properties. The flexural strength was found to decrease by 11% while 

flexural modulus was found to decrease by 34%.

2.8 MICROSTRUCTURAL CHARACTERISATION

Microstructural characterisation techniques have been widely used to understand the 

microscopic and macroscopic behaviour of composite materials. The most common 

advanced techniques used [310] are optical coherence tomography (OCT), laser Raman 

spectroscopy (LRS), scanning acoustic microscopy (SAM), X-ray diffraction scanning 

microscopy, nuclear magnetic resonance (NMR), confocal laser scanning microscopy 

(CLSM), and electron microscopy. Scanning electron microscopy (SEM) is the most 

widely used technique for fractography of composite failure analysis and this technique 

will be used extensively in this research. This technique has proved so successful that 

there are now books [311] wholly devoted to showing the fracture surfaces of composite 

materials.
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3. EXPERIMENTAL WORK

3.1 MATERIALS

The main materials used in this research were hemp fibre, glass fibre in 

chopped strand mat (CSM) form, unsaturated polyester resin, and chemicals 

for fibre surface treatment (acetic anhydride, sodium hydroxide).

3.1.1 Hemp Fibre

In this research, non-woven randomly oriented hemp fibre mat was used. It was 

provided in the shape of a mat roll by JB Plant Fibres Ltd., UK. The average width of 

the mat was 1.2 m. Fig. 3.1 shows a close-up of the hemp fibre mat used. Short hemp 

fibres were randomly dispersed in two dimensions. No technical data was provided by 

the supplier and tests were undertaken to determine various physical and mechanical 

properties of fibres, the details of which can be seen in Chapter 4.

Fig. 3.1: A close-up of hemp fibre mat
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3.1.2 Glass Fibre

Glass fibres in chopped strand mat form were supplied by East Coast Fibreglass 

Supplies, South Shields, UK. Chopped glass strands were bonded in mat form with an 

emulsion binder. The mat was made of Advantex® glass fibres which combined the 

electrical and mechanical properties of traditional E-glass with the acid corrosion 

resistance of E-CR glass. The mat was designed as a reinforcement medium for 

polyester resins used in contact moulding processes. The properties of the fibres, as 

given by the supplier, are shown in Table 3.1.

Table 3.1: Properties of chopped strand mat glass fibres

Weight 450 g/m

Nominal length of strands 50 mm

Density 2.56 g/cm3

Tensile strength 2000 MPa

Tensile modulus 76 GPa

Strain to failure 2.6%

3.1.3 Unsaturated Polyester Resin

Unsaturated polyester resin, designated as Resin A by the manufacturers Scott Bader 

Company Ltd., UK, was used as the matrix. Resin A is a pre-accelerated and low 

viscosity resin with rapid hardening characteristics. It combines rapid impregnation of 

reinforcements with very short mould release time, and is ideal for hand lay-up 

applications. Its properties, as given by the manufacturer, are detailed in Table 3.2.

Resin A required only the addition of a catalyst to start the curing reaction. In this 

research, the catalyst used was Methyl Ethyl Ketone Peroxide (MEKP), designated as 

Catalyst M by the manufacturers Scott Bader Ltd, UK. The recommended dosage level 

of catalyst is 1-2% for laminating resins, and this dosage was used throughout this
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research. The typical gel time of catalyst M was 8 minutes with resin A, so it was 

important to complete the hand lay-up process before this time elapsed.

Table 3.2: Properties of unsaturated Polyester Resin A

Specific gravity at 25 °C 1.11

Viscosity @ 25°C, 37.35 sec'1 3.8 poise

Volatile content 42%

Gel time @ 25°C using 2% catalyst M 8 minutes

Barcol Hardness* 47

Water absorption*, 24 hours @ 23°C 18 mg

Tensile strength* 68 MPa

Tensile Modulus* 3.7 GPa

Elongation at break* 2.5%

* Properties for fully cured resin

3.1.4 Chemicals for Surface Treatment of Fibres

Two chemicals were used for surface treatment of hemp fibres. Acetic anhydride (>98% 

laboratory grade reagent), supplied by Sigma-Aldrich, was used for acetylation 

treatment. Sodium hydroxide (laboratory reagent grade), supplied by Sigma-Aldrich in 

the form of pellets, was used in alkalisation treatment.

3.2 SURFACE TREATMENTS OF HEMP FIBRES

3.2.1 Heat Treatment

In order to observe the effect of heat treatment and removal of moisture on mechanical 

properties of hemp fibre composites, fibres mats of size 250 mm x 200 mm were heat 

treated in an oven for 30 minutes. Three different temperatures were used: 100°C, 

150°C and 200°C. A treatment time of 30 minutes was selected because it was sufficient 

to remove most of the moisture from the fibres. Also keeping the fibres in an oven for
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longer periods of time would not be economically viable in a commercial operation. The 

fibres heat treated were then used in making laminates immediately after taking out of 

the oven to prevent any absorption of moisture.

3.2.2 Acetylation

The fibres were treated with acetylation treatment using acetic anhydride. First the fibre 

mats of size 250 mm x 200 mm were washed and soaked in distilled water for 48 hours 

at room temperature to remove surface impurities. The fibres were the dried in the oven 

at 100°C for 4 hours. Then the fibres were soaked in acetic anhydride so that the entire 

fibre mat was covered in the reagent. The fibres immersed in acetic anhydride were kept 

in a pre-heated oven at 120°C for 3 hours. However the excessively corrosive nature of 

acetic anhydride made it difficult to work with this reagent in ordinary laboratory 

conditions. Nevertheless one laminate was made using this treatment.

3.2.3 Alkalisation

For this research, laboratory reagent grade sodium hydroxide in the form of pellets was 

used. The fibre mats, of size 250 mm x 200 mm, were soaked in 1%, 5% and 10% 

NaOH aqueous solution for 24 hours at 23°C. After the treatment, the fibre mats were 

thoroughly rinsed in cold tap water until the removal of NaOH and then dried in the 

oven at 100°C for 4 hours. Some mats were also treated with acetic acid following 

alkalisation to completely remove any traces of NaOH in fibres. The alkalised mats 

were then used in the fabrication of laminates.

3.2.4 Plasma Treatment

The plasma treatment of hemp fibres was carried out by using Diener Electronic LFG- 

40 plasma treatment machine as shown in Fig. 3.2. The machine used a high frequency 

generator of 40 kHz connected to an electrode inside the chamber for providing the 

energy required to split the neutral process gas atoms, oxygen in this case, into ions and 

electrons.
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First the hemp fibre mat, of size 250 mm 

x 200 mm, was placed horizontally 

inside the chamber. A vacuum was 

generated inside the chamber with the 

help of a vacuum pump. At a pressure of 

about 0.4 mbar, the process gas oxygen 

was introduced into the chamber. The 

high frequency generator was switched 

on and the oxygen gas was ionised, 

producing the plasma. The hemp fibre 

mat was exposed to the plasma for ten 

minutes, the recommended time by the 

manufacturer for surface activation. 

Fresh oxygen gas was supplied 

continuously to the chamber.

After ten minutes of exposure, the hemp fibre mat was inverted to expose the other side 

of the mat to plasma for 10 minutes. After 10 minutes of treatment to each side of the 

mat, the chamber was vented and the mat removed from the chamber and immediately 

used in the fabrication of laminates.

In order to utilise the maximum activation of the fibre mat, the mat was used for making 

the composite laminate within 5 minutes of exposure to plasma. Unfortunately no 

method of measuring the activation of hemp mat surface was available. However it was 

noted that during the compression moulding of the laminate, considerably less amount 

of polyester resin spilled out, indicating good wetting between fibre and the resin.

3.3 PROPERTIES OF HEMP FIBRES

3.3.1 Surface Energy

For determining the surface properties (surface energy and dynamic contact angle) of 

untreated and surface treated hemp fibres a KSV Sigma 700 Tensiometer was used as 

shown in Fig. 3.3. It is a modular high performance computer-controlled tensiometer 

which can be used for the measurement of various surface properties. Wilhelmy plate

Fig. 3.2: Plasma treatment machine
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technique was used for determining surface properties in this research. The machine 

used Win Sigma software for recording and analysing the data.

For measuring the contact angle two liquids, one polar 

and one non-polar, with known surface tension have to be 

used. For this experiment Hexane and water were used. A 

sample of hemp fibre approximately 20mm long was cut 

and hung on the balance hook of the machine by using a 

tape such that the fibre was perpendicular to the surface of 

the liquid. The vessel containing the test liquid was placed 

on the stage. The fibre was immersed in the liquid for a 

depth of up to 10 mm and taken out. As the fibre was 

immersed the software recorded the force during 

advancing and the receding parts of the cycle. The fibre 

movement speed was 5 mm/min. The data for the first 1 

mm of immersion was ignored. As the test progressed the 

software measured the force per wetted length (F/L) and 

force per unit wetted length minus buoyancy correction 

(F/L-B) where buoyancy B was calculated by using 

volume of the fibre immersed and the liquid density. The 

equation for measuring contact angle 0 is given by:

Fig. 3.3: KSV Sigma 

700 Tensiometer

0 = cos'1 (—L — ). 
yP

.(3.1)

where y is the surface tension of the liquid and P is the perimeter of the fibre. The test 

was repeated for both hexane and water.

Since hexane is a non-polar liquid, its contact angle gave the dispersive component of 

the surface energy of the hemp fibre by the following equation:

Ysd = (1+c o s 0)2/4.................................................. (3.2)

where ysd is the dispersive component of hemp fibre surface energy and is the 

surface energy of hexane, given by 18.4 mJ/m. Immersion of hemp fibre in water then 

helped to find the polar component of the surface energy of hemp fibre by using the 

equation:



Vl  (1+cos0)= 2[(rs<1 YLd) 1/2 + (Tsp Yl1*)1'2] .......................................... (3.3)

where yl is the surface energy of water and 0 is the contact angle of water. Every term 

in this equation is known except polar component of surface energy of hemp fibre, ysp, 

which can then be calculated. The total surface energy of hemp fibre is then the sum of 

dispersive and polar components of surface energy.

There are a number of possible sources of error in this experiment. For measuring the 

wetting force, the exact perimeter of the fibre surface must be known. The diameter of 

the fibre was determined by using optical microscope incorporating a graduated 

eyepiece. This value was then used to determine the perimeter of the fibre. As the 

diameter of the fibre is not constant, the value of perimeter is also not constant. The 

irregular shape of hemp fibre thus introduces a major source of error in these 

calculations. The surface of the fibre has to be perpendicular to the surface of water to 

give an accurate value of the wetting force. Although every effort was made to make the 

two surfaces perpendicular some fibres were inclined by small angle to the surface of 

water. The handling of fibres with hands during preparation of the test can also 

introduce some contaminations on the surface of the fibres which can affect the wetting 

force and hence the contact angle.

3.3.2 Thermal Characterisation

Thermal characterisation of hemp fibres was carried out by using a PerkinElmer 

Simultaneous Thermal Analyser 6000 as shown in Fig. 3.4. The machine gave 

simultaneous measurement and analysis of weight change and heat flow with the 

increase in temperature. The machine used “Pyris” software for recording and analysing 

the data. The machine could be used with both oxygen and nitrogen gases. For these 

experiments nitrogen gas was used.

Hemp fibres of approximate weight 12 mg were placed in the sample holder and the 

machine was started. The temperature was increased at a rate of 10°C per minute. The 

flow of nitrogen gas was 20 ml per minute. As the temperature increased the software 

recorded the changes in weight and heat flow in hemp fibres. The test was stopped at a 

temperature of 450°C.
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Fig. 3.4: PerkinElmer Simultaneous Thermal Analyser

3.3.3 Tensile Properties

The tensile testing of single hemp fibres was carried out as per ASTM D3379-75, 

standard tensile test method for tensile properties for high modulus single filament 

materials. Tensile testing was done for both untreated and alkalised hemp fibres. Hemp 

strands were taken from different parts of the mat and elementary hemp fibres were 

separated from the strand by hand. The fibres were mounted on paper cards of 

dimensions 45 mm x 20 mm. Holes of diameter 11 mm were punched in the centre of 

the cards and the fibres were mounted on the cards by gluing with epoxy adhesive. Care 

was taken to mount the fibres in the exact centre of the holes. It was also made sure that 

each card contained only one fibre. Mounted fibres were inspected in a Reichert Jung 

MeF3 optical microscope with an Olympus E330 camera attached. Average widths of 

the fibres were measured by means of a calibrated eyepiece. Five different readings of 

fibre width were taken along the length of the fibre and their mean value was used in the 

calculation of tensile properties.

Mounted fibres were placed in the grips of an Instron 1162 tensile testing machine. A 

load cell of 50 N was used to measure the force. The supporting sides of the cards were 

cut by a scissor just before the start of the test and the test was performed at a rate of 0.5 

mm/min. Since it was not possible to use an extensometer for measuring the strain in 

the fibres, the fibre extension was measured from the displacement of testing machine

142



crosshead. Average tensile properties were calculated using the results of at least 20 

fibres of each kind.

3.3.4 Interfacial shear strength of hemp/polyester

Interfacial shear strength testing of untreated and alkalised hemp fibres in polyester 

resin was evaluated by single fibre pull-out test using an Instron 1162 testing machine. 

The method was similar to that for determining the tensile properties, except that for 

mounting the fibres on cards, one side of the fibres was fixed by using epoxy and a blob 

of polyester resin was dropped on the other side of the fibre. After fibre pulled out of 

the polyester resin, the embedded length was measured by using the travelling 

microscope. The interfacial shear strength was then determined by using the equation:

FT= -----
....................................................(3.4)

where x is the interfacial shear strength, F is the force at pull-out, D is the mean width of 

fibres, and / is the embedded length of fibres. The failure rate of the fibres by breaking 

rather than pulling out of the resin was high. At least 10 fibres of each kind were tested 

and their mean values determined. Czigdiny et al [312] have pointed out the inherent 

drawback of using this method for natural fibres. Since the resin drop is placed on the 

fibre without any pressure, the resin enters the voids in the elementary fibres to a 

smaller extent than when the resin impregnates the fibres in compression moulding 

pressure. The irregular cross section of the fibres is also expected to affect the 

calculation of shear strength.

3.4 FABRICATION OF LAMINATES

A combination of hand lay-up method, followed by compression moulding, was used in 

the fabrication of laminates. For the fabrication of a laminate, approximately 150 ml of 

Resin A was mixed with 3.0 ml of catalyst M in a glass flask. The mixture was stirred to 

aid the start of the chemical reaction. A steel frame mould of size 300 mm x 210 mm 

was used in making laminates. The steel frame mould was covered with acetate film for 

easy removal and smooth surface finish of the laminate.

Hemp fibre mats of nominal size 250 mm x 200 mm were cut from the roll conditioned 

at 23°C and 50% RH. First coat of the resin was applied on the acetate film with a
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brush. The first hemp fibre mat was laid and another coat of the resin was applied and 

spread with a brush. Then the second hemp fibre mat was laid and the third coat of the 

resin was applied and spread with a brush. A roller was then applied to help release the 

trapped air. Then a second acetate film was put on top of the moulding. The second steel 

frame plate was placed on top and the mould was placed in the compression moulder. 

The required pressure was applied in the compression moulder as the excess resin 

squeezed out of the mould. The laminate was then left in the compression moulder to 

cure at room temperature for 24 hours. After 24 hours, the laminate was taken out of the 

mould and the laminate was kept in the oven for post-curing for 3 hours at 80°C. Post­

curing was required to obtain optimum properties of the resin, as recommended by the 

manufacturer.

The laminates were then given to the workshop for cutting up into parallel-sided 

samples of dimensions 125 mm x 20 mm. The edges of the samples were polished using 

300-grit paper to remove any stress concentrating defects. Samples were checked by 

naked eye for obvious defects. Samples with severe defects, such as air bubbles and 

resin-rich and resin-dry areas, were rejected. The dimensions of the samples were then 

accurately measured using a vernier calliper and micrometer. Samples deviating too 

much from the average thickness of the laminate were rejected. The samples were then 

weighed in a balance to an accuracy of 0.1 mg.

Glass fibre composite laminates were made by the same method but the pressure was 

applied by using weights of 400 N. The number of fibre layers used in each laminate 

was six. Hemp/glass fibre hybrid laminates were also made by the same method. Two 

mats of hemp and glass fibres each were used in laminate.

3.5 EVALUATION OF FIBRE CONTENT

Since it was not possible to evaluate the fibre weight fraction of hemp fibre composites 

by calcinations method, the fibre content was evaluated indirectly. The values of 

weights and dimensions of each sample were used in the calculation of the fibre weight 

fraction of the sample according to the formula:



where Wfh is the fibre weight fraction of the sample, n is the number of hemp fibre mats 

used which is 2 in this case, Wh is the average weight per unit area of the hemp fibre 

mat which was calculated to be 847 g/m2 and Wc is the average weight per unit area of 

the sample. So for these samples, the formula simplified to:

W‘ .................................................. (3.6)

The values of fibre weight fraction of samples from each laminate were averaged to get 

the average value of fibre weight fraction of that laminate.

The value of fibre volume fraction was calculated by the standard formula:

Vfh = 1 + wmPf -1
Wfpm .(3.7)

where Wm is the matrix weight fraction, Wf is the fibre weight fraction, pm is the 

polyester matrix density (1.22 g/cm3), and pf is the hemp fibre density (1.48 g/cm3).

The fibre content of CSM glass fibre reinforced polyester composites was evaluated by 

using the calcinations method as prescribed by BS EN ISO 1172:1999 (Textile glass- 

reinforced plastics- prepregs, moulding compounds and laminates- determination of the 

textile-glass and mineral-filler content- calcinations methods).

The samples were weighed and subsequently calcinated at a defined temperature until 

all the resin evaporated. The samples were then reweighed and the glass fibre content 

was obtained by determining the difference in mass of the test specimen before and after 

calcination. At least four samples from each laminate were used for this purpose. The 

samples were cut up from the laminates in sizes such that their weight fell in the 

recommended range of 2-10 grams. A dry crucible was weighed to the nearest 0.1 mg 

and was designated as mi. The sample was placed in the crucible, reweighed to the 

nearest 0.1 mg and designated as m2. The crucible containing the sample was then 

placed in a muffle furnace, preheated to a temperature of 625°C and heated to constant 

mass. The crucible, together with the residue, was allowed to cool to ambient 

temperature and reweighed, designates as m3.

The glass fibre content Wf for each specimen was calculated by using the equation:
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Wf = ( m?   ) xlOO %
m2 -itij

(3.8)

The average of the measurements was calculated for all the specimens from the same 

laminate.

The use of calcinations method was not possible for glass/hemp fibre hybrid composites 

because of the presence of hemp fibres. The fibre content of glass/hemp hybrid 

laminates was evaluated by using the following equations:

Total fibre weight fraction Wf= Wfh +Wfg............................. (3.9)

where Wa is the fibre weight faction of hemp fibres and has been defined above, and 

Wfg is the fibre weight fraction of glass fibres and is given by:

nW
Wfg=i rw« ..........................................(3.10)

where n is the number of glass fibre mats used (two in this case), Wg is the weight per 

unit area of glass fibre mat (450 g/m2), and Wc is the weight per unit area of the hybrid 

sample.

Fibre volume fraction is then given by the following equation:

Vf= £ i
Pf ........................................(3.11)

3.6 MECHANICAL TESTING OF COMPOSITES

3.6.1 Tensile Testing

Tensile properties of the composite samples were determined by using Hounsfield 

testing machine as shown in Fig. 3.5. Parallel-sided samples with length 125 mm and 

width 20 mm were used. Parallel sided samples is now almost universally the preferred 

form of test sample for composite materials [313]. For tensile testing, the samples 

needed tabs on both ends for proper grip and to avoid the failure of samples at the grips. 

For this purpose, tabs of the size of 20mm x 20mm were cut up from used hemp fibre 

composite samples, and were glued on to the pre-roughened ends of the samples using
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Scotch-Weld 7838 B/A Structural Adhesive, manufactured by 3M. This is a two-part 

(base/accelerator) epoxy based adhesive which cures at room temperature. However the 

curing process can be accelerated by heating at 65°C for 2 hours. The base is modified 

epoxy resin and accelerator is modified amine, and both are mixed in ratio of 1:1 by 

weight.

Figure 3.5: Hounsfield testing machine

Samples were placed in the bottom set of grips which were then tightened. A set square 

was used to ensure that the specimens were aligned along the stress direction. The load 

cell reading was then zeroed before tightening the top set of grips. A mechanical 

extensometer PS25C-0118 with gauge length of 25mm was used to measure the strain 

in the samples during tensile tests. The extensometer was attached in the middle of the 

sample. The test was then conducted with the cross head moving at the rate of 

2mm/min. All tensile tests were performed as per BS EN ISO 527: 1996, Plastics- 

determination of tensile properties, parts 1 and 4. The load and strain data from each test 

were recorded on a computer. At least five samples were tested for each composite type. 

Tensile strength was calculated using the following equation:

A
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where Fmax is the maximum force recorded for each sample and A is the cross section 

area which equals the average width of the tested specimen multiplied by the average 

thickness. The modulus of the materials, according to BS527, was determined by the 

slope of the stress-strain curve in the strain range of 0.05% to 0.25%, which was 

recorded by the extensometer. The strain to failure value was also recorded by the 

extensometer.

3.6.2 Impact Testing

Low velocity impact tests were performed in the purpose-designed and assembled 

falling weight impact rig as shown in Fig. 3.6. The impact test rig was adjusted before 

conducting impact tests by using a plumb line device to ensure that the dropping 

impactor hit at the centre of each sample. Samples with off-centre impact points were 

rejected. All the testing was carried out as per EN ISO 6603-1: 2000 (Plastics -  

Determination of puncture impact behaviour of rigid plastics; Parti: Non-instrumented 

impact testing).

After setting-up the impact rig, the sample was tightly clamped between two steel rings 

of internal diameter 18mm by four nuts. By adding steel weights on the impactor, the 

weight of the impactor was adjusted to obtain the required levels of impact energy. The 

impact energy is given by E= mgh, where m is the mass of the impactor plus any mass 

added on, g is acceleration due to gravity, and h is the height of the impactor nose from 

the sample. For most of the tests the height of the impactor was kept constant at 0.1 m 

and value of the weight was changed according to required impact energy.

The head of the impactor was a hemispherical steel nose with a diameter of 12.7mm. 

This is the standard shape and size of impactor used in most low velocity impact tests. 

The impactor was held and released using an electromagnet. The impactor was captured 

after impact to prevent secondary strikes.
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Fig. 3.6: Low velocity impact testing rig

Izod Impact Testing:

For Izod impact testing, Ray-Ran Universal Pendulum Impact Testing Machine, shown 

in Fig. 3.7, was used. The machine used the kinetic energy of a falling pendulum 

hammer to break a test sample and determined the amount of energy required to do so. 

The pendulum hammer was first calibrated to take into account the windage and friction 

losses. This was done by releasing the pendulum hammer form a known height and 

recording the free swing height it reached opposite the release point. Thus when a test 

sample was broken, the swing height of the pendulum hammer was subtracted from the



calibrated swing height and the resultant height was used to calculate the kinetic energy 

required to break the sample.

Both notched and un-notched samples were used in this testing. The test sample was 

placed vertically into a vice fixed to the bed of the machine and with notch positioned 

central to the top face of the vice and facing the swing path of the pendulum hammer. 

The pendulum hammer having a known weight and velocity, hence known kinetic 

energy, was released and the striking point of the pendulum hammer hit the test sample 

at a pre-determined height 

above the vice (normally 22 

mm). The swing height of the 

pendulum hammer after 

breaking the test sample gave 

the energy absorbed to break 

the test sample. The test results 

were expressed as energy per 

unit area of the sample. All 

Izod impact tests were 

performed as per BS EN ISO 

180:1997, Plastics-

Determination of Izod impact 

strength. The specimen 

dimensions used were:

Lengths 80 ± 2 mm

Width = 10 ±0.2 mm

Notch base radius = 0.25 ± 0.05 mm

Remaining width at notch base = 8 ± 0.2 mm

As recommend in the Standards, notch type A was used. At least ten specimens from 

each laminate were tested and their average values were used for determining Izod 

impact strength of each type of composite.

Fig. 3.7: Ray-Ran Pendulum Impact Tester



3.6.3 FATIGUE TESTING

Fatigue testing was carried out as per BS ISO 13003:2003 (Fibre-reinforced plastics -  

Determination of fatigue properties under cyclic loading conditions). Fatigue tests were 

performed using the pneumatic fatigue machines at a frequency of 1Hz and a stress ratio 

(R value) of 0.1 for tension-tension fatigue and -1 for tension-compression fatigue. The 

choice of frequency ensured that the heating effect due to hysteresis was minimal. The 

R value of 0.1 in tension-tension was chosen to maximise the cyclic effects without 

invoking the complications of compressive stresses and the likely variations in failure 

mechanisms. The maximum stresses during cyclic loading were recorded as stress level 

of fatigue. Tests were carried out until either complete failure of the specimen occurred 

or until 106 cycles, the latter being designated the upper boundary of the low cycle 

fatigue regime. The number of cycles to failure was recorded for each specimen and 

these data were plotted in the form of S-N (Wohler) curves.

Parallel-sided samples were set up in the pneumatic fatigue machine as shown in Fig. 

3.8. Initially, the maximum load was taken as 60% of the ultimate tensile strength, and 

adjusted according to the specimen’s dimensions. Further tests then took place at a 

maximum load of lower or higher percentages of the ultimate tensile strength. The grips 

were serrated to ensure a good grip on the sample.

The machine, being pneumatic, worked by the pressure of compressed air on a piston. 

After loading the sample in the machine and tightening the grips, air was allowed into 

the chamber above the piston, which forced the piston downward and thus loaded the 

sample in tension. The pressure was set corresponding to the maximum load required on 

the sample. The pressure determined the amount of air available to push the piston 

downwards and load the sample. The machine was started. Once the voltage from the 

load cell on the machine reached the set maximum value, which corresponded to the 

maximum loading, the solenoid valve was switched off automatically so that no more 

air could enter the piston chamber, an air outlet valve opened, the piston moved 

upwards, and the stress was reduced. On reaching the minimum loading, the solenoid 

valve was again switched on allowing compressed air back into the pressure cylinder, 

forcing the piston downwards. By using this method, the machine only switched on 

after the pre set load had been reached and so any drop in pressure in the compressed air
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supply had no effect on cycle load. The loading was monitored, and adjusted if 

necessary, during the entire fatigue process. This machine used a trapezoidal waveform.

Fig. 3.8: Fatigue testing machine

Environmental fatigue tests were carried out on the same machines but the samples 

were immersed in distilled water by using a specially designed Perspex water chamber.
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Fig. 3.9: Schematic of fatigue testing set-up in water (not to scale)

The schematic of the environmental fatigue testing rig is shown in Fig. 3.9. The samples 

were tested in the same manner as for dry samples except that they were now vertically 

aligned rather than horizontally as in the normal testing. For tension-compression 

loading, a specially designed anti-buckling device was clamped onto the sample 

throughout the testing.

3.7 ENVIRONMENTAL TESTING OF COMPOSITES

In order to investigate the environmental properties of hemp fibre reinforced polyester 

composites, they were subjected to various environmental tests.

3.7.1 Properties in water

The properties of the composites after immersion in water were determined as per BS 

EN ISO 62:1999, Plastics-Determination of water absorption. Samples of nominal 

dimensions of 125 mm x 20 mm were immersed in container of either distilled water or 

5% salt solution. Before immersion, the samples were first conditioned to a constant 

mass at 23°C and 50% RH. For determining water absorption, samples were taken out 

of the container after pre-determined intervals of time, wiped with a clean cloth and 

weighed in a balance having an accuracy of 0.1 mg. The samples were weighed within 

one minute of taking out of the container. The samples were tested for their mechanical 

properties by using the standard methods.
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3.7.2 Accelerated Weathering Testing

The samples were exposed to accelerated weathering conditions by using QUV 

Accelerated Weathering Tester as shown in Fig. 3.10.

Fig. 3.10: QUV Accelerated Weathering Tester

The machine had the facility to simulate the outdoor weathering conditions like 

sunlight, rain, and dew. It exposed materials to alternating cycles of light and moisture 

at controlled, elevated temperatures. It simulated the effects of sunlight with fluorescent 

ultraviolet lamps which are the best way to simulate the damaging effect of sunlight on 

physical properties. It simulated rain and dew with condensing humidity and water 

spray. It thus could reproduce the damage to the materials in few days or weeks that 

actually occurred over months or years of outdoor exposure.

The testing was conducted as per BS EN ISO 4892-1:2001, Plastics-methods of 

exposure to laboratory light sources-Partligeneral guidance, and BS EN ISO 4892-3: 

2006, methods of exposure to laboratory light sources-Part 3:flourescent UV lamps. The 

materials exposed to outdoor conditions are exposed to alternating cycles of UV light
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(daytime) and wetness because of dew (night time). The tester had the facility of using 

both conditions in the cycle and both conditions occurred separately in the machine just 

as they do in natural weathering. The tester was also used to expose the material to 

constant UV light.

The tester used UVA 340 lamps for generating UV radiation which is the recommended 

florescent UV lamp in the British Standards to simulate the UV part of daylight. This 

lamp is the best available simulation of sunlight in the critical short wavelength UV 

region between 365 nm and the solar cut off of 295 nm. These lamps have a radiant 

emission below 300 nm of less than 2% of the total light output, have an emission peak 

at 343 nm, and are most commonly used for simulation of daylight from 300 nm to 340 

nm. The tester had irradiance control system that allowed the selection of exact level of 

the rate at which light energy fell on a unit area of the sample. For both testing 

conditions, the irradiance was set at 0.76 W/m2/nm at 340 nm as recommended by the 

standards. The temperature was measured by black panel thermometer. This 

temperature was set at 45°C.

It must be emphasised that it is theoretically impossible to convert the weathering tester 

exposure hours into months or years of outdoor exposure. The reason is the inherent 

variability and complexity of outdoor exposure conditions. The amount of sunlight, rain 

and moisture in one year in London will be different to that in Lahore or Los Angeles. 

These variables are: the geographical latitude of exposure site (closer to equator means 

more sunlight); altitude (higher means more UV); local geographical features, such as 

proximity to a body of water to promote dew formation; random year-to-year variations 

in the weather in the same city; seasonal variations (winter exposure may only be one 

seventh as severe as summer exposure); sample insulation (outdoor samples with 

insulated backing often degrade 50% faster than un-insulated samples); and operating 

cycle and temperature of the tester.

Thus it is meaningless to talk about a conversion factor between hours of accelerated 

weathering and months of outdoor exposure. So the data obtained from accelerated 

weathering testing is relative, not absolute. It gives a reliable indication of the relative 

ranking of a material’s durability compared to other materials.
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3.8 SCANNING ELECTRON MICROSCOPY

The scanning electron microscopy of samples was carried out by using Philips XL30CP 

SEM as shown in Fig. 3.11. This microscope uses controlled pressure which is very 

useful for non-conducting samples like hemp fibre composites. The microscope uses a 

tungsten filament for generating the electron beam. For examining the fracture surfaces 

of tested samples, samples of width of about 5 mm were cut from the fracture surface. 

They were taped onto the samples holder which was then placed inside the chamber. 

Vacuum inside the chamber was created. The tungsten electron gun generated an 

electron beam which was focused into a fine spot less than 4 nm in diameter on the 

specimen. The beam was scanned over the surface of the sample and the image was 

seen on the monitor. Magnification was varied to get a clearer image of the sample.

Fig. 3.11: Philips XL30CP Scanning Electron Microscope
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4. PHYSICAL AND MECHANICAL 

PROPERTIES OF HEMP FIBRES

This chapter presents the results of the experiments undertaken to determine 

various physical and mechanical properties of hemp fibres used in this 

research. The study of these properties is vital for comparison with similar 

properties of synthetic fibres and for assessing hemp fibres’ suitability for use as 

reinforcement in composite materials.

4.1 THERMAL PROPERTIES

4.1.1 Moisture loss in a desiccator

Hemp fibres, like all natural fibres, contain moisture because one of their primary 

functions is to transport moisture and nutrients to different parts of the plant. The 

purpose of this part of the study was to determine the moisture loss behaviour of hemp 

fibres when kept in a desiccator and when exposed to elevated temperature, and thus to 

determine the equilibrium moisture content of the fibres.

The moisture loss behaviour of hemp fibres in a desiccator was observed by keeping a 

sample of hemp fibres, cut out from hemp fibre mat conditioned at 23°C and 50% 

relative humidity (RH), in the desiccator containing the desiccant Copper Sulphate and 

recording weight changes with the passage of time. The results are shown in Fig. 4.1. 

The moisture loss is quite rapid initially as the moisture in the fibres is absorbed by the 

desiccant but starts to stabilise after about 1500 minutes as the amount of moisture in 

the fibres starts to decrease. The fibres have lost almost 4% of their original weight after 

being kept for 7200 minute (approximately five days) in the desiccator. From the graph, 

the fibres do not seem to have lost all of their moisture and they can be exposed to 

elevated temperatures to determine the weight loss behaviour and equilibrium moisture 

content in the fibres.
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Fig. 4.1: Moisture loss of hemp fibres kept in a desiccator 

4.1.2 Elevated temperature weight loss

The elevated temperature weight loss behaviour of hemp fibres was observed by 

keeping them in an oven at constant temperatures and recording their weight loss at 

different intervals of time. Four different samples of hemp fibre, each conditioned at 

23 °C and 50% RH, were kept in the oven at constant temperatures of 50°C, 100°C, 

150°C and 200°C, and their weight loss behaviour against time was recorded. The 

results are shown in Figs. 4.2-4.4.

For the fibres kept at 50°C the moisture loss is much more rapid than that in a 

desiccator. As shown in Fig. 4.2, the moisture loss at 50°C starts to stabilise after about 

200 minutes, when the fibres have lost almost 4% of the moisture, as the amount of 

moisture in the fibres starts to decrease. After about 1500 minutes of exposure 

(approximately one day), the fibres have lost almost 4.5% of their original weight. The 

graph shows that exposing hemp fibres to 50°C does not seem to result in complete 

removal of moisture after 1500 minutes of exposure. So the next stage was to expose 

the fibres to higher temperatures to determine the equilibrium moisture content in them.
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Fig. 4.2: Weight loss of hemp fibres at 50°C

The comparison of weight retention behaviour of hemp fibres exposed to 100°C and 

150°C is shown in Fig. 4.3. Exposing the hemp fibres to higher temperatures results in 

increase in the amount and rate of weight loss. It is clear that the fibres have lost almost 

all of their equilibrium moisture content within 30 minutes of exposure at 100°C and 

150°C. The amount of moisture lost stabilised to an equilibrium value that was different 

for both temperatures. The fibres exposed to 100°C lost about 8.3% of their initial 

weight after 300 minutes of exposure, whereas the fibres exposed to 150°C lost about 

10.2% of their initial weight after 300 minutes of exposure.

A similar loss in moisture was reported by Gassan and Bledzki [67] for jute fibres dried 

in a vacuum furnace. The fibres lost about 8% of moisture within the first 45 minutes of 

exposure at 100°C. The loss of moisture stabilised thereafter and remained constant at 

around 9% for exposure of up to 240 minutes.
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Fig. 4.3: Comparison of weight loss of hemp fibres at 100°C and 150°C 

The weight loss behaviour of hemp fibres exposed to 200°C is shown in Fig. 4.4.
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Fig. 4.4: Weight loss of hemp fibres at 200°C
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The behaviour of hemp fibres exposed to 200°C is significantly different because 

between 150°C and 200°C thermal degradation of hemp fibres starts which involves 

physical and chemical changes within the fibres. It has been shown [314] that heating 

hemp fibres above 160°C results in softening of lignin, the binding material in the 

fibres. Therefore the weight loss at this temperature is a combination of the weight loss 

of moisture plus weight loss due to thermal degradation. The thermal degradation of 

fibres was evidenced in release of soot and blackening of the colour of hemp fibres due 

to oxidation. The fibres lost almost 13% of their initial weight after 180 minutes of 

exposure at 200°C. The continued decrease in weight retention shows that although the 

fibres have lost almost all of their moisture, they continue losing weight due to thermal 

degradation of the fibres.

Then a new experiment was set up whereby a hemp fibre sample, conditioned at 23 °C 

and 50% RH, was kept in the furnace at increasing temperatures, starting at 40°C up to 

140°C (in 10°C intervals) for a dwell time of one hour and the weight change in the 

sample was recorded. The dwell time of one hour was chosen because, as shown in 

Figs. 4.2-3, the fibres were close to their equilibrium weight after heat treatment of 

about one hour at a particular temperature. The resulting graph is shown in Fig. 4.5.
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Fig 4.5: Weight loss of hemp fibres, for one hour at increasing temperatures
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The graph shows that keeping the hemp fibres at increased temperatures for one hour 

results in gradual moisture loss of fibres. At 140°C the fibres have lost almost all (9%) 

of their initial moisture which is consistent with the previous results.

These studies showed that the hemp fibres used in this research had equilibrium 

moisture content of about 10% when kept at standard conditions of 23 °C and 50% RH. 

This is consistent with the amount of equilibrium moisture content in hemp fibres 

reported by other authors ([315], [57]). Hemp fibres begin to degrade thermally between 

temperature range of 150-200°C. Therefore any heat treatment of these fibres should be 

restricted to about 150°C.

4.1.3 Thermal degradation at elevated temperatures

Natural fibres are heterogeneous mixtures of organic materials and heat treatment at 

elevated temperatures can result in a variety of physical and chemical changes. The 

physical changes are related to enthalpy, weight, colour, strength, crystallinity and 

orientation [316]. The chemical changes relate to the decomposition of various chemical 

constituents. The decomposition onset temperature is different for different natural 

fibres. Themogravimetric Analysis (TGA) of jute fibres shows that they start degrading 

at 240°C [116]. For flax fibres it has been shown [317] that degradation starts at just 

above 160°C. It has been shown [116] that thermal degradation of natural fibres 

generally occurs in two stages: one at 220-280°C temperature range, and the other at 

280-300°C range. The first range is associated with degradation of hemicellulose 

whereas the second range is associated with degradation of cellulose and lignin. The cell 

walls of the fibres undergo pyrolysis with increasing temperature and contribute to char 

formation. These charred layers help to insulate the lignocellulosic from further thermal 

degradation. For hemp fibres, Prasad et al [314] have shown that heating the fibres 

between 160°C and 260°C results in softening of lignin leading to opening of fibre 

bundles into individual fibres. The effect was more pronounced for fibres heated in air 

than in inert (nitrogen) environment.

Differential Scanning Calorimetric (DSC) analysis of cellulose by Weilage et al [317] 

showed a distinct endothermic peak to exist in the temperature range of 303-345°C. 

This endothermic reaction of cellulose was explained to take place in two competing 

processes. The first was a depolymerisation process which led to an intermediate
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product levoglucosan which further decomposed to various volatile products like 

aldehydes, ketones, furans and pyrans. The second process was the dehydration process 

which mainly produced char residue, water and carbon dioxide.

They also showed that in air, the mass of hemp and flax fibres decreased slightly up to 

220°C above which irreversible degradation of fibres took place. Flax fibres lost 45% of 

their original weight following exposure to 260°C for two hours. This correlated well 

with the decrease in their tensile strength following exposure to these high temperatures.

DSC analysis of hemp fibres by Ouajai and Shanks [179] showed an initial peak to 

occur between 50 and 160°C which corresponded to mass loss of absorbed moisture of 

approximately 5%. After that the DTG curve showed three decomposition steps: the 

first at 250-320°C was attributed to thermal depolymerisation of hemicellulose or pectin 

(mass loss of 10%); the second at 390-400°C was attributed to cellulose decomposition 

(mass loss of 55%); and the third at 420°C (mass loss of 30%) was attributed to 

oxidative degradation of charred residue. The main decomposition temperature (the 

temperature corresponding to the maximum weight loss) was found to be 397°C.

The thermal degradation of natural fibres results in change in odour and colour and 

deterioration in mechanical properties of natural fibres. Sridhar et al [318] reported 60% 

reduction in tensile strength of jute fibres heated under vacuum at 300°C for two hours. 

Gonzalez and Myers [319] reported deterioration in mechanical properties of wood 

flour exposed to temperature range of 220 to 260°C for up to 68 hours. In another study, 

the strengths of flax and ramie fibres were found to decrease by up to 41% and 26% 

respectively following heat treatment, depending on the temperature applied [45]. 

Weilage et al [317] reported the tensile strength of flax fibres to decrease gradually 

following exposure to high temperatures for one hour. From 700 MPa for no heat 

treatment, the strength was reported to decrease to 530 MPa at 180°C, 380 MPa at 

200°C, and 270 MPa at 220°C.

Attempts have been made to improve the thermal stability of natural fibres by grafting 

the fibres with monomers. Acrylonitrile has been successfully used in improving the 

thermal stability of jute [320] and sisal [321] fibres.
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4.1.3.1 Thermogravimetric Analysis (TGA)

Thermogravimetric analysis is being increasingly used to understand thermal behaviour 

of natural fibres because it gives an accurate measure of thermal stability of natural 

fibres. Thermogravimetric analysis of hemp fibres was carried out by using 

PerkinElmer Simultaneous Thermal Analyser. Hemp fibres were exposed to gradually 

increasing temperature at the rate of 10°C per minute in the presence of nitrogen gas. 

The machine software ‘Pyris’ recorded the changes in temperature and heat flow with 

increase in temperature. The test was stopped at 450°C.

100 ieo 200 300 350 400 448.7

Fig. 4.6: Weight loss curves of hemp fibres with increase in temperature

Fig. 4.6 shows the weight loss and differential weight loss curves for hemp fibres with 

the increase in temperature. It shows that thermal degradation of hemp fibres starts at 

around 200°C and becomes rapid at around 300°C. In their studies on thermal 

degradation of hemp fibres, Beckermann and Pickering [185] reported the degradation 

onset temperature to be 205°C. On the derivative weight loss curve, the main peak 

occurred at around 360°C which can be associated with the degradation of cellulose. 

This was also confirmed in the heat flow curves shown in Fig. 4.7.
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Fig. 4.7: Heat flow curves of hemp fibres with increase in temperature

Fig. 4.7 shows heat flow and derivative heat flow curves of hemp fibres with increase in 

temperature. The heat flow curve shows gradual increase in heat flow with increase in 

temperature which stabilises at about 250°C. There is a surge in heat flow at around 

270°C and again at around 360°C. The derivative heat flow curve shows an initial peak 

at about 50 °C which corresponds to mass loss of moisture. The second peak at about 

270°C may be attributed to the decomposition of hemicellulose or pectin. The third peak 

at about 370°C may be attributed to cellulose decomposition and it again corresponds 

well with the peak in derivative weight loss curve in Fig. 4.5. The small peak at around 

400°C may be attributed to oxidative degradation of charred residue.

From their studies on thermal degradation of hemp fibres , Ouajai and Shanks [179] 

reported the similar four peaks to exist in differential heat flow curves. The temperature 

corresponding to these four peaks were: 50-160, 250-320, 390-400, and 420°C. From 

their studies on thermal properties of hemp fibres, Troedec et al [322] reported the 

temperature corresponding to degradation of hemicellulose and pectin to be 320-370 °C 

and for degradation of cellulose to be 390-420°C. Aziz and Ansell [323] reported three 

exothermic peaks for hemp fibres to occur at 255, 352 and 431°C. Mwaikambo and 

Ansell [324] reported two exothermic peaks for hemp fibres to occur at 357 and 410°C.
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These studies have shown that thermal degradation of hemp fibres starts at just above 

160°C and becomes rapid at around 250°C. Thermal degradation of hemicelluloses and 

pectin occurs at around 270°C and thermal degradation of cellulose occurs at around 

360°C.

4.2 TENSILE PROPERTIES

The determination of tensile properties of hemp fibres is vital because it gives a measure 

of how much improvement in mechanical properties can be expected when the fibres 

are incorporated in a polymer matrix. The sensitivity of hemp fibres to moisture content 

has been outlined in the previous experiments. The variation in moisture content can 

affect the tensile properties of fibres. Therefore the fibres tested for tensile properties 

were equilibrated at 23 °C and 50% RH before the testing.

Tensile properties of most of the natural fibres are now well documented. Perhaps the 

most extensive study on tensile properties of hemp fibres has been undertaken by Prasad 

and Sain [325] who used hemp fibres of varying diameters, starting from 4 pm up to 

800 pm, for tensile testing. The tensile properties were found to be clearly dependent on 

the diameters of the fibres, decreasing gradually with increase in fibre diameter. This is 

consistent with the general observation, also applicable to synthetic fibres, that as the 

fibre diameter decreases, the amount of flaws in the fibres also decreases, thus resulting 

in increase in tensile properties of fibres. Fibres of diameter 4pm had mean tensile 

strength and modulus values of 4200 MPa and 180 GPa respectively. These values 

decreased to 250 MPa and 11 GPa respectively for fibres of diameter 66 pm. For the 

fibres of diameter 800 pm, the values were as low as 10 MPa for tensile strength and 2 

GPa for tensile modulus.

Evaluation of tensile properties of natural fibres is not straightforward because of the 

variable cross-section of the fibres. The cross-section of one such fibre used in this 

research is shown in Fig. 4.8 (a). From the figure, it is clear that what appears as a 

single fibre to the naked eye is in fact a bundle of fibres, consisting of a number of 

ultimate fibres or cells, five or six in this case. This arrangement of cells makes the 

cross-section of fibre bundle more polygonal than circular, also shown in Fig. 4.8 (b). 

For this particular fibre bundle, the average cross section was found to be 20 pm by 80 

pm. The bundles of fibres, shown in Fig. 4.8 (c) and (d), also make it clear that the
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cross-section of almost all the fibres is polygonal. A similar polygonal cross section has 

been shown to exist for flax fibres [326], which are also bast fibres like hemp. Therefore 

taking the average width of the fibres and using it as average diameter can give 

erroneous results for tensile properties of the fibres.

(c) (d)

Fig. 4.8: SEM micrographs of a hemp fibre bundle, (a) and (b), and fibre bundles,

(c) and (d)

Therefore two different kinds of dimension measurements were used for calculation of 

tensile properties. In the first, five different measurements of width were taken along the 

length of fibre bundle and their average was used, assuming it approximated the average 

diameter of the fibre bundle. In the second, the maximum and the minimum values of 

the width were used, assuming they approximated the breadth and width of the 

polygonal cross-section of the fibre bundle. Table 4.1 shows the results for tensile 

properties for both kinds of cross-sections considered. The mean width of the fibres 

(circular dimension) was calculated to be 67±26 /an.



The tensile properties of hemp fibres were evaluated according to ASTM D3379-75 as 

described in Section 3.J3- A total of 20 fibres were used for evaluation of tensile 

properties. The results of tensile testing are shown in Table 4.1. The figures in 

parentheses are standard deviations. These values are lower than those of glass fibres 

but still good enough to be used as reinforcement in composite materials. Any section of 

hemp fibre mat will contain fibre of varying cross section and hence different tensile 

properties. Some of the lower width fibres are expected to approach the tensile 

properties of glass fibres, as shown by Prasad and Sain [325]. These values are in good 

agreement with the values for hemp fibres reported by other authors, as shown in Table 

4.2. In particular the values reported by Prasad and Sain [325] at a fibre diameter of 66 

fim were 250 MPa and 11 GPa for tensile strength and tensile modulus respectively, 

which are very close to the values calculated in this research.

Table 4.1: Tensile properties of hemp fibres

Fibre Cross-section Strength Modulus Strain to Failure

(MPa) (GPa) (%)

Circular 277 (191) 9.5 (5.7) 2.3 (0.8)

Polygonal 244 (196) 8.6 (5.9) 2.3 (0.8)

The calculations showed that, fortunately, the difference in properties for both types of 

calculations is only about 10%. There is no way to tell which method is more accurate 

than the other. The variability in tensile properties is evident from the large values of 

standard deviation, again something to be expected for natural fibres. For future 

reference, the values for circular cross-section will be used because most of the authors 

cite properties of natural fibres assuming a circular cross-section.

The calculation of strain did not take into account the compliance within the machine 

which tends to over-calculate the strain and hence under-calculate the modulus of the 

fibres. Silva et al [327] showed in their studies on tensile testing of sisal fibres that
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taking machine compliance into consideration results in higher values of tensile 

modulus than the values calculated without taking machine compliance into account.

Despite the dependence of tensile properties on the width of the fibres, most of the 

authors fail to mention the width at which the fibre tensile properties were calculated, as 

is evident from Table 4.2. Also, most of the authors cite fibre diameter as the principal 

dimension, although what they actually mean is fibre width.

Table 4.2: Tensile properties of hemp fibres as evaluated by different researchers

Fibre width 

(pm)

Strength

(MPa)

Modulus

(GPa)

Strain

(%)

Reference

10.86(1.6) 2140 (504) 143.2 (26.7) 1.8 (0.7) [328]

26.5 (6.7) 514 (274) 24.8 (16.3) - [185]

68 593 (105) 37.5 (3.4) 1.6 (1.1) [178]

- 584 (126) - - [56]

- 396 (202) - - [312]

- 619 (373) - - [109]

- 690 - - [329]

- 960 (220) 23(5) - [65]

- 670 - - [330]

- 607 (210) - - [82]

205+65 1178 (231) 68.5 (23.5) 6.4 (0.9) [331]

The dependence of strength and modulus on fibre width was observed for fibres used 

for tensile testing in this research, as shown in Fig. 4.9. Both fibre strength and modulus 

are seen to decrease with increase in fibre width.
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Fig. 4.10: Stress-strain curve of hemp fibre in tensile testing

The typical stress-strain curve of hemp fibre in tensile testing is shown in Fig. 4.10. The 

curve was found to be almost linear during the whole test. There are a few kinks which 

can be attributed to compliance in the system because they were found to exist on most 

of the curves. Pickering et al [82] have reported considerable variation in stress-strain 

curves for hemp fibres in tensile testing, with some of the fibres showing strain 

hardening and plastic flow as well as linear elastic behaviour. In this research all the 

fibres tested showed approximately linear elastic behaviour.

The studies on tensile properties of hemp fibres have shown them to be significantly 

variable and dependent on the fibre width. A mat consisting of such fibres will have 

fibres of various dimensions and hence variable tensile properties. The mean tensile 

properties of the mat will be dependent on the mean tensile properties of the fibres.

4.3 SURFACE ENERGY

The importance of surface energy of fibres in the fibre/matrix interfacial bonding has 

been discussed in Section 2.2.3.3. It is important to know the surface energy of hemp 

fibres that will give a good indication of interfacial bonding to be expected between the 

matrix and the fibre. Surface energy of hemp fibres was determined by using KSV 

Sigma 700 Tensiometer as described in Section 3.4.4. A total of five fibres were tested.
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For comparison, surface energy of CSM glass fibres was also determined. Table 4.3 

gives the surface energy of fibres in terms of their polar and dispersive components. The 

figures in parentheses are standard deviations.

Table 4.3: Surface Energy (mj/m2) of hemp and glass fibres

Polar Dispersive Total

Hemp 20.58 (4.83) 12.25 (6.57) 32.82 (4.38)

Glass 18.44 (6.45) 3.05 (1.88) 21.49 (7.63)

The surface energy of hemp fibres is quite similar to that of unsaturated polyester resin 

(35 mJ/m2) [21]. This value of surface energy of hemp fibres is similar to the one 

determined by other researchers. Baltazar-y-Jiminez and Bismarck [71] determined 

surface tension of hemp fibre to be 31 mJ/m2. Gulati and Sain [180] determined 

dispersive component of the surface energy of hemp fibres at 40°C to be 38 mJ/m2 by 

using inverse gas chromatography. For unsaturated polyester resin this value was 40 

mJ/m2. Park et al [328] determined surface energies of hemp fibre by using Wilhelmy 

plate technique similar to the one used in this research. The polar and dispersive 

components were determined to be 15.2 and 20.0 mJ/m2 respectively for total surface 

energy of 35.2 mJ/m2. For jute fibres, these values were found to be 8.8, 20.7, and 29.5 

mJ/m2 respectively. Van de Velde and Kiekens [332] used the same technique to 

determine surface energy of flax and glass fibres. The maximum surface energy for flax 

fibre was found to be 36 mJ/m2. The maximum value of surface energy for glass fibres 

was found to be 41.64 mJ/m2.

These studies showed that the surface energy of hemp fibres is not significantly 

different from that of glass fibres. Good fibre/matrix interfacial bonding is favoured 

when the fibre surface energy greatly exceeds the matrix surface energy [21]. The 

similar values of surface energies of hemp fibre and unsaturated polyester resin imply 

that a relatively poor interfacial bonding between them can be expected. The polar 

component of surface energy is greater than the dispersive component, which is
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consistent with the polar nature of hemp fibres. This polar nature will also be an 

impediment in good interfacial bonding with a non-polar polymer matrix. The 

quantitative measure of fibre/matrix interfacial bonding is the interfacial shear strength 

which was evaluated next.

4.4 INTERFACIAL SHEAR STRENGTH OF HEMP-POLYESTER

Interfacial shear strength (IFSS) is another important measure of the fibre/matrix 

interfacial bonding. The interfacial shear strength of hemp fibres in unsaturated 

polyester resin was evaluated in single fibre pull-out test and the results are shown in 

Table 4.4. At least 20 fibres were used for testing and the numbers in parentheses are 

standard deviations.

Table 4.4: Single Fibre Pull-Out Testing Result of Hemp Fibre in Polyester Resin

Interfacial shear strength (MPa) 1.9 (1.3)

Force at pull-out (N) 0.12 (0.07)

Width of fibres (H m) 33 (7.5)

Fibre embedded length (mm) 0.68 (0.24)

It has been pointed out [333] that the non-uniform diameter of natural fibres may yield 

unreliable results for IFSS by using this method, as is evidenced by the large scatter in 

results (high standard deviations). Therefore any values obtained by using this method 

should be seen as an approximate measure of the interfacial shear strength rather than 

highly accurate values.

This value of interfacial shear strength is consistent with the value reported by other 

authors for natural fibres in a polymer matrix. Czigany et al [312] determined the 

interfacial shear strength of hemp fibre (mean diameter 113 fim) in polypropylene to be

5.1 ±1.4 MPa, in biodegradable MaterBi polymer to be 2.9±0.9 MPa and in 

biodegradable PuraSorb polymer to be 11.3±3.4 MPa. Baltazar-y-Jimenez et al [331] 

reported interfacial shear strength of 8.4±1.8 MPa for hemp fibres in cellulose-acetate-
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butyrate matrix. Hill and Khalil [134] reported interfacial shear strength of 1.39±0.37 

for oil palm fibres in polyester resin, and 1.48±0.32 for coir fibres in polyester resin. 

Sanadi et al [118] reported interfacial shear strength of sunhemp/polyester to be 4.34 

MPa.

There is a range of interfacial shear strength values for glass fibres in polyester resin 

reported in the literature. One study [29] reports IFSS values of 10 and 12 MPa for 

coated glass fibres in polyester resin. Considering these values, the IFSS of hemp fibres 

in polyester resin is considerably lower, which is not surprising taking into account their 

incompatibility with the polymer resins.

174



5. MECHANICAL PROPERTIES OF 

UNTREATED HEMP FIBRE AND GLASS 

FIBRE COMPOSITES

This chapter presents the results of mechanical properties of untreated hemp 

fibre/polyester, CSM glass fibre/polyester, and hemp-glass/polyester hybrid 

composites. The properties of hemp fibre composites are compared with those 

of CSM glass fibre composites. The effect of hybridisation of hemp fibres with glass 

fibres on the composites’ properties is also presented.

5.1 FIBRE CONTENT

There is an inherent problem in calculating fibre weight fraction of natural fibre 

composites because, unlike glass fibre composites, the resin in natural fibre composite 

samples can not be burnt off to get an accurate value for the weight of fibre in the 

sample, the natural fibres having a lower decomposition temperature than the resin. For 

this reason the fibre weight fraction of the hemp fibre composites was calculated 

indirectly as explained in Section and converted into fibre volume fraction. The fibre 

weight fraction of glass fibre composites was calculated by the standard calcination 

method.

5.1.1 Hemp fibre reinforced polyester composites

5.1.1.1 Weight per unit area of hemp fibre mat

In order to calculate fibre weight fraction of hemp fibre reinforced polyester 

composites, weight per unit area of hemp fibre mat should be known. No such data was 

provided by the suppliers of the hemp fibre mat and, therefore, tests were undertaken to 

calculate the weight per unit area of hemp fibre mat. To do this, patches of different 

dimensions were cut up from different parts of the mat and were weighed in a balance 

having the accuracy of 0.1 mg. Since all the laminates were made by using hemp fibre 

mats of approximately 500 cm2 area, most of the weight measurements were taken at
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this area. The resulting values were plotted on a weight versus area graph as shown in 

Fig. 5.1. From the graph and from calculating the mean value of the measurements, the 

value of weight per unit area was found to be 847 ± 66 g/ m2. Considerably large value 

of standard deviation is not unexpected because of the variation in fibre concentration in 

different parts of the mat. This value was used in calculating fibre weight fraction of all 

the composites made from untreated hemp fibres in this research.
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R2= 0.9733
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Fig. 5.1: Weight vs. area of hemp fibre mat 

5.1.1.2 Fibre weight/volume fraction

Laminates of hemp fibre reinforced polyester composites were made at three different 

moulding pressures: 1, 2, and 3 MPa. The effect of increasing the moulding pressure on 

fibre weight fraction and the tensile properties of the composites was evaluated. The 

results of fibre weight and volume fraction of all composites made at these moulding 

pressures are summarised in Table 5.1. The calculations for fibre weight and volume 

fractions have been done as described in Section 3.5. Each value is the mean of all the 

samples made at a particular moulding pressure (at least 20), and the values in 

parentheses are standard deviations.
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Table 5.1: Fibre weight and volume fraction of composites at different

moulding pressures

Moulding Pressure Fibre Weight Fraction Fibre Volume Fraction

(MPa) (%) (%)

1 47.6 (4.7) 42.8

2 51.3 (3.4) 46.5

3 56.2(2.8) 51.4

It can be seen that fibre weight fraction of the composites increases approximately 

linearly with increase in moulding pressure. The composites made at moulding pressure 

of 3 MPa had the highest fibre weight fraction. It will be shown later in Section 5.3.1 

that optimum tensile properties of composites were also obtained for laminates made at 

moulding pressure of 3 MPa. The considerable variation in fibre weight fraction, 

represented by standard deviation, can be attributed to variation in hemp fibre 

concentration in different parts of the hemp fibre mat used. Although all the laminates 

were made from the same hemp fibre mat, there was appreciable variation in thickness 

in different parts of the fibre mat because fibres were densely packed at some places and 

loosely packed at other places. As shown in Section 5.1.1.1, the average weight per unit 

area of hemp fibre mat was 847 ± 66 g/m2 which represented a considerable variation in 

weight per unit area. It is not unexpected, therefore, to observe considerable variation in 

fibre weight fraction in the laminates made from these fibres. However, the variation in 

fibre weight fraction decreased, represented by decreasing values of standard deviation, 

with increase in moulding pressure as the increasing pressure resulted in a more 

compact laminate. A trial laminate was also made at a moulding pressure of 4 MPa to 

observe the effect of elevated moulding pressure on fibre weight fraction and 

mechanical properties of the composites. Although a high average fibre weight fraction 

of 66% was obtained for this laminate, it did not result in substantial increase in tensile 

properties of these composites as explained in Section 5.3. |.7- Therefore it was decided 

to use moulding pressure of 3MPa in making all the hemp fibre reinforced polyester 

laminates in this research.
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The values for fibre volume fraction obtained in this research are considerably higher 

than the values reported by other researchers who have worked with hemp fibre 

reinforced polyester composites. Rouison et al [123] reported a 20% fibre volume 

fraction for composites made by resin transfer moulding. Mehta et al [145] reported 

fibre volume fraction of up to 30% in their composites made by hand lay-up plus 

compression moulding process similar to the one used in this research. Sebe et al [124] 

reported fibre weight fraction of up to 36% for their composites made by resin transfer 

moulding.

5.1.2 CSM Glass fibre reinforced polyester composites

In order to compare properties of hemp fibre composites with glass fibre composites, 

laminates of glass fibre reinforced polyester composites were made by using glass fibres 

in chopped strand mat (CSM) form. CSM glass fibres were used because they have 

similar geometry (randomly oriented short fibre strands in 2D) as the hemp fibre mat. 

Laminates of CSM glass fibre reinforced polyester composites with different fibre 

content were made by using different number of glass fibre layers and different amount 

of polyester resin, and their fibre weight and volume fractions were evaluated by using 

the calcination method as described in Section 3.5. The results are shown in Table 5.2. 

The values in parentheses are standard deviations.

Table 5.2: Fibre fraction of CSM glass fibre reinforced polyester composites

No. of glass fibre layers Fibre weight fraction 

(%)

Fibre volume fraction

(%)

4 50.8 (1.5) 32

4 45.5 (2.3) 28

6 55.0(1.9) 37

6 52.8 (1.7) 32

Glass fibre laminates made with six glass fibre layers had similar fibre weight fraction 

as hemp fibre laminates although the fibre volume fraction was relatively lower than 

hemp fibre composites because of higher density of glass fibres (2.55 g/cm3) than hemp
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fibres. Therefore all glass fibre laminates were made by using six glass fibre layers. The 

scatter in the fibre weight fraction is relatively lower than that for hemp fibre composite 

because of the more regular arrangement of glass fibre mat.

5.1.3 Hemp-CSM glass fibre reinforced polyester hybrid composites

Because of the presence of hemp fibres, it was not possible to use calcination method 

for evaluation of fibre weight fraction. Instead the indirect method of calculation of 

fibre weight fraction described in Section 3.5 was used. Because of differences in 

densities of glass and hemp fibres, it is more meaningful to compare the fibre volume 

fractions. Therefore the fibre volume fraction for both hemp fibres and glass fibres and 

total volume fraction have been calculated. The total volume fraction for both 

configurations is very close to that of hemp fibre composites. Therefore these laminates 

represent the replacement of about 11% of hemp fibres with glass fibres. The results are 

shown in Table 5.3. The values in parentheses are standard deviations.

Table 5.3: Fibre fraction of hemp-glass fibre hybrid composites

Fibre

Configuration

Fibre weight 

fraction (%)
Fibre volume fraction (%) 

Hemp Glass Total

Hemp skin, 

glass core 61.0 (3.1) 35.8 11.1 46.9 (2.7)

Glass skin, 

hemp core 62.1 (3.1) 36.6 11.3 47.8 (2.8)

5.2 POSSIBLE SOURCES OF IMPERFECTIONS IN HEMP- 

POLYESTER COMPOSITES

Hemp fibre reinforced polyester composites are expected to contain a number of 

possible sources of imperfections that may impede the composites from attaining their 

optimum mechanical properties. These sources of imperfections are induced during the 

manufacturing stage or may arise because of the characteristics of hemp fibres. Before
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evaluating the mechanical properties, it is important to identify these sources and 

evaluate their potential effects on the mechanical properties of the composites.

For glass fibre reinforced polymer composites, Johnson and Ghosh [334] have come up 

with the following list of such possible sources: incomplete impregnation of fibres; 

incomplete cure of resin; poor wetting and subsequent poor adhesion of fibre to the 

matrix; the presence of bubbles, voids, delaminations, broken strands, loose ends of 

fibres, knotted strands, wrinkled strands and crevices; crazing cracks; and local resin 

rich areas. For natural fibre reinforced polymers composites also, all of these factors 

may be present and may affect the mechanical properties with varying degrees. 

However, for hemp fibre reinforced polyester composites, the more significant sources 

are expected to be incomplete impregnation and poor fibre-matrix adhesion, voids and 

residual stresses. These imperfections arise from the residual stresses caused by the 

shrinkage of the polyester resin, porosity and voids induced because of the hand lay-up 

process used and because of the moisture in the fibres, and poor interfacial bonding 

between polar hemp fibre and non-polar polyester resin because of their inherent 

incompatibility.

5.2.1 Porosity and Voids
Porosity and voids in an isotropic solid can have significant effect on its mechanical 

properties. It has been shown theoretically [16] that the reduction factors for the 

effective bulk modulus and effective shear modulus introduced into an isotropic elastic 

solid by a volume fraction V of spherical voids are given by:

E =(1-3 V)..................................... (5.1)

% = ( 1 -2 V ) .....................................(5.2)
G

where E and G represent bulk modulus and shear modulus respectively. Hence a 10% 

volume fraction of spherical voids can result in as much as 30% reduction in bulk 

modulus and 20% reduction in shear modulus of the solid.

Porosity, defined as air-filled cavities inside an otherwise continuous material, is often 

an unavoidable component in almost all composite materials. These voids can have 

significant effect on mechanical properties of composites. For example, it has been
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shown that for GRP composites, 10% void content by volume can reduce their 

compressive strength by about 40% and their interlaminar shear strength by about 50% 

[15].

Composite materials contain several types of voids. Depending on the fabrication 

method and matrix type, almost all composite materials contain voids. Most common 

voids are large cavities formed during the manufacture of the composite as a result of 

gross defects. Small voids are formed adjacent to the fibres either because of incomplete 

infiltration during processing or cavitation during deformation. Voids are also formed in 

resin-rich or fibre-free regions between laminate [21].

Natural fibre composites are expected to have larger void volume fraction than synthetic 

fibre composites because of the peculiar structure of natural fibres. The factors 

contributing to voids in natural fibre composites are [335]: existence of luminal cavities 

of natural fibres, the complex surface chemistry of natural fibres which complicates 

fibre-matrix compatibility, the heterogeneous shapes and dimensions of natural fibres 

which restrict matrix impregnation, and low packing ability of natural fibre assemblies 

which also limits the maximum obtainable fibre volume fraction.

Madsen et al [335] have suggested that the absolute volume of porosity in natural fibre 

composites can be separated into three main components: Fibre related porosity, which 

increases linearly with fibre volume fraction and consists of fibre porosity, fibre/matrix 

interface porosity, and impregnation porosity; matrix related porosity, which again 

increases linearly with fibre volume fraction and consists of matrix porosity; and 

structural porosity, which occurs because of insufficient wetting of fibre by matrix. 

Additionally, the use of thermoset matrices can also be a major cause of porosities in 

composites.

Mwaikambo and Ansell [336] have determined the inherent porosity content of natural 

fibres by measuring absolute and bulk densities of fibres. The porosity content of hemp 

fibres was found to be 2.5% while for sisal and jute fibres, it was as high as 10.9% and 

11.4% respectively. This inherent porosity of hemp fibres can contribute to overall 

porosity content in the laminates.

It was shown in Section 4.1.2 that the hemp fibres used in this research had an 

equilibrium moisture content of approximately 10%. The curing process of polyester
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resin is exothermic, and for unsaturated polyester laminate cured at room temperature, 

the temperature may rise to 70-100°C [337]. This high temperature can result in the 

vaporisation of moisture leading to porosity in the laminate.

Madsen et al [335] studied porosity content of four natural fibre composites and 

suggested a model to predict the volumetric composition and density as a function of 

fibre weight fraction. It was found that at low fibre weight fractions, the porosity 

content was low. At regions of high fibre weight fraction, the porosity content started to 

increase linearly. The transition between these two regions of fibre weight fraction 

determined the optimal combination of high fibre content and low porosity content. The 

model predictions were in good agreement with the experimental data. For the 

unidirectional hemp-PET composites, the transition region was found to exist at about 

57% fibre weight fraction with maximum fibre volume fraction of 50.8% and porosity 

content of 4.6%. For randomly oriented flax fibre reinforced polypropylene composites, 

the transition fibre weight fraction was found to be 58% with maximum fibre volume 

fraction of 40.8% and maximum porosity content of 9.1%. For randomly oriented jute 

fibre reinforced polypropylene composites, the transition fibre weight fraction was 

found to be 49.3% with maximum fibre volume fraction of 33.7% and porosity content 

of 8.4%. Their research showed that although high fibre weight fraction is an essential 

requirement to obtain optimum mechanical properties of natural fibre composites, this 

would also be accompanied by a high void volume content, thus affecting the 

mechanical properties.

One of the inherent disadvantages of the hand lay-up process used in this research is the 

entrapment of air between laminae during manufacturing of the laminates. Although 

every effort was made to release the air from the laminates, the presence of some voids 

because of entrapment of air cannot be ruled out.

The percentage void content of the composites made in this research was calculated 

using the following formula, as given in BS EN ISO 7822:1999 (Textile glass 

reinforced plastics-Determination of void content):

y  _ 100(Pc~Pm)
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where pc is the theoretical composite density and pac is the measured composite density. 

The measured composite density was calculated by dividing the weight of each sample 

by its volume. The theoretical density was calculated by using the formula:

100

P c - ^ L + W L
pf P' ............................... (5.4)

where Wf is the fibre percentage weight fraction, Wr is the resin percentage weight 

fraction, pf is the density of hemp fibre and pm is the density of polyester resin. For these 

calculations, the value of hemp fibre density of 1.48 g/cm3 was used which has been 

used by most of the researchers. The density of the polyester resin was given by the 

manufacturer as 1.22 g/cm3 but was found to be 1.17±0.01 g/cm3 in actual testing and 

this value was used in the calculations. The void content in composites made at three 

different fibre volume fractions was calculated and the results are shown in Table 5.4. 

These are the mean values of at least 20 samples made at each moulding pressure. The 

values in parentheses are standard deviations.

Table 5.4 shows quite high values of void volume content in these composites. There 

are possible sources of error in these calculations which should be appreciated. As the 

British Standard BS EN ISO 7822:1999 used for these calculations also acknowledges, 

differences in curing, heating, pressure and molecular forces arising from the 

reinforcement surface all make the density of the resin in the composite different from 

the bulk resin density. The value of density of hemp fibre used was taken from literature 

and it can vary for the fibres used in this research. The indirect method of calculating 

the fibre weight fraction can also introduce some possible sources of errors.

Table 5.4: Void content in hemp-poly ester composites

Moulding pressure (MPa) Fibre volume fraction (%) Void content (%)

1 42.8 11.2(1.5)
2 46.5 11.1 (4.1)

3 51.4 10.2 (3.0)
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The void content is more or less similar at all values of fibre volume fraction. It is about 

1% lower for composites made at 3 MPa pressure which can be attributed to more 

compact assembly at higher moulding pressure. However the scatter in the data suggests 

that differences in void content are not significant.

These void fraction values are similar to the ones reported by Madsen et al [335] and 

discussed above. Other researchers have also reported similar values for void content 

for natural fibre composites. Sreekumar et al [138] studied void content of sisal leaf 

fibre reinforced polyester composites made by resin transfer moulding (RTM) and 

compression moulding. The void content was found to increase linearly with increase in 

fibre volume fraction in both methods. In composites made by RTM, the maximum void 

content was found to be 7% at fibre volume fraction of 50%. Whereas in composites 

made by compression moulding, a maximum void content of 10% was found at fibre 

volume fraction of 48%. Their study suggested that compression moulding resulted in 

higher values of void content in composites compared with those made by RTM. The 

decrease in void content in RTM composites was attributed to resin flow front. As the 

resin flow front advanced through the fibres, the size of the entrapped air decreased due

to hydrostatic pressure. The tensile properties of the composites made by RTM were 

also found to be greater than those made by compression moulding. This improvement 

in tensile properties was attributed to lower amount of voids present in these 

composites.

Dhakal et al [338] reported void content in hemp fibre reinforced polyester composites 

to be dependent on fibre volume fraction. The maximum void content was reported to 

be 18.6% at fibre volume fraction of 26%.

Madsen and Lilholt [339] reported the porosity volume fraction to increase linearly with 

increase in fibre volume fraction for unidirectional flax yam reinforced polypropylene 

composites. It increased from 3.8% for fibre volume fraction of 42.6% to 7.1% for fibre 

volume fraction of 54.8%.

From their studies on hemp fibre reinforced cashew nut shell liquid (CNSL) composites 

made by compression moulding, Mwaikambo and Ansell [147] reported the void 

content to be dependent on moulding pressure. For unidirectional hemp-CNSL 

composites, the void content increased with increase in moulding pressure, attributed to
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delamination due to processing conditions, and the maximum void content of 26% was 

recorded at a moulding pressure of 9 MPa. For non-woven hemp-CNSL composites, the 

void content was found to decrease with increase in moulding pressure. For these 

composites, the void content decreased from 17.5% at 5 MPa pressure to 11% at 9 MPa 

pressure.

Carpenter [64] reported void volume fraction of 16.7% at fibre volume fraction of 

68.5% for woven flax fibre reinforced polyester composites. The woven flax 

reinforcement were pre-pressed prior to fabrication. A lower void volume fraction was 

reported for composites made of reinforcement that were not pre-pressed.

It is thus concluded that natural fibre reinforced composites, especially made by 

compression moulding, can have considerably high volume fraction of voids, 

sometimes reaching double figures, which can result in considerable degradation in their 

mechanical properties. It is, of course, difficult to quantify the degradation in properties 

because of these voids. Therefore while selecting the manufacturing methods for natural 

fibre reinforced composites this factor should be taken into account.

5.2.2 Poor interfacial adhesion

Poor interfacial adhesion between polar natural fibres and non-polar polymers resin is 

well documented and may be a significant contributor to reducing the mechanical 

properties of these composites. As described in Sections 4.3 and 4.4, the lower 

difference in surface energies of hemp fibres and polyester resin and their relatively 

poor interfacial shear strength can result in poor mechanical properties of the 

composites.

However the impact strength of a composite can be increased by poor interfacial 

bonding because, although less energy is required to initiate a crack, the composite 

absorbs more energy during propagation of crack through the poorly bonded interface. 

This has been found to be particularly true for polyester laminates, but not for epoxy 

laminates which can establish a strong bond with the fibre even in the absence of a 

coupling agent [22].
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5.2.3 Residual stresses

Some laminates made in this research were found to be slightly warped after curing 

which indicated the presence of residual stresses because of the thermal gradient and 

shrinkage of polyester resin during the curing stage. These residual stresses can also 

result in considerable degradation of mechanical properties of the composites.

Residual stresses in composites develop when temperature gradients exist during the 

curing of thermoset resin and therefore they are sometimes called curing stresses. The 

shrinkage of polyester resin is about 4-8% after curing. Since this shrinkage is greater 

than that of hemp fibre, it exerts a stress normal to the surface of the fibre which 

increases the frictional force against pull-out during fracture and may enhance the 

toughness. Generally, the residual stresses are detrimental to mechanical properties and 

the durability of the composites.

5.3 TENSILE PROPERTIES

5.3.1 Hemp fibre reinforced polyester composites

Tensile testing of composites was carried out by using samples from laminates made at 

moulding pressures of 1, 2 and 3 MPa. The number of samples used for tensile testing at 

these moulding pressures was 31, 30, and 24 respectively. The results of tensile testing 

are shown in Table 5.5. These are mean values of the samples tested at each moulding 

pressure and the values in parentheses are standard deviations. For comparison the 

tensile properties of un-reinforced polyester resin are also shown.
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Table 5.5: Tensile properties of hemp fibre reinforced polyester composites

Fibre Weight 

Fraction (%)

Tensile 

Strength (MPa)

Tensile 

Modulus (GPa)

Strain to 

Failure (%)

Neat Polyester Resin 44.8 (7.1) 3.7 (0.4) 1.35 (0.21)

47.6 (4.7) 35.8 (4.2) 5.6 (0.7) 0.94 (0.19)

51.3 (3.4) 40.2(5.6) 6.2 (1.2) 1.07 (0.2)

56.2 (2.8) 46.4(4.6) 7.2 (0.9) 1.03 (0.19)

5.3.1.1 Tensile Strength

The tensile strength of these composites increases approximately linearly with increase 

in fibre weight fraction over this region shown in Fig. 5.2. The error bars represent 

standard deviation. At lower values of fibre weight fraction (up to 51%), the tensile 

strength of the composites is actually lower than that of un-reinforced polyester resin, 

suggesting the fibres act as impurities rather than reinforcement at these values. It is 

only at fibre weight fraction of 56% that these composites have higher tensile strength 

than un-reinforced polyester resin. The maximum mean value of tensile strength of 46.4 

MPa was obtained at a fibre weight fraction of 56% which corresponds to fibre volume 

fraction of 51%. This strength value is higher than the values reported in the literature 

for hemp fibre reinforced polyester composites because of higher fibre volume fraction 

of composites. The reported values are: 33 MPa at a fibre volume fraction of 20% [146], 

40 MPa at a fibre volume fraction of 30% [145], and 38 MPa at fibre volume fraction of 

20% [130].
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Fig. 5.2: Effect of increasing fibre weight fraction on tensile strength of 

hemp/polyester composites
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Fig 5.3: Effect of increasing fibre weight fraction on tensile modulus of 

hemp/polyester composites
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5.3.1.2 Tensile Modulus

The effect of increasing the fibre weight fraction on tensile modulus of the composites 

is shown in Fig. 5.3. Again the tensile modulus of the composites increases 

approximately linearly with increase in fibre weight fraction. The advantage of using 

hemp fibres is realised in their much superior tensile modulus values compared to that 

of un-reinforced polyester resin. Composites with even lower values of fibre weight 

fraction have resulted in considerable increase in tensile modulus of un-reinforced 

polyester resin. The value of tensile modulus increased by almost 100% at fibre weight 

fraction of 56% compared to that of un-reinforced polyester resin. The maximum value 

of tensile modulus of 7.2 GPa was again attained at fibre weight fraction of 56% 

corresponding to fibre volume fraction of 51%. This modulus value is higher than the 

values reported in the literature for hemp fibre reinforced polyester composites. The 

reported values are: 1.4 GPa at 20% fibre volume fraction [146], 6 GPa at 30% fibre 

volume fraction [145], and 6.7 GPa at 20% fibre volume fraction [130].

5.3.1.3 Strain to Failure

The effect of increasing fibre weight fraction on strain to failure of the composites is 

shown in Fig 5.4. Increasing fibre weight fraction does not seem to have any significant 

effect on strain to failure and these values stay close to the average strain to failure 

value of about 1%. This value is lower than the strain to failure value of 1.35% for un- 

reinforced polyester resin which shows that incorporation of hemp fibres in polyester 

resin results in stiffer and more brittle composites than the polyester resin.
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Fig 5.4: Effect of increasing fibre weight fraction on strain to failure of 

hemp/polyester composites

5.3.1.4 Analysis of tensile properties

The tensile testing of hemp fibre reinforced polyester composites showed that the 

incorporation of hemp fibres in polyester resin resulted in negligible increase in tensile 

strength of polyester resin but almost 100% increase in tensile modulus of polyester 

resin at fibre weight fraction of 56%. This points at the good potential of hemp fibres to 

be used as reinforcement for polymer composites because the main function of the 

fibres is to increase the stiffness of the polymer resin. However the real litmus test of 

hemp fibre composites is their performance in comparison to glass fibre composites.

In one study on non-woven [± 45°]4 glass fibre reinforced polyester composites [262], 

the values of tensile strength and tensile modulus were found to be 43 MPa and 5.9 GPa 

respectively at fibre weight fraction of 42%. The same values for woven [± 45°]4 glass 

fibre reinforced polyester composites were found to be 64.2 MPa and 6.21 GPa 

respectively at fibre weight fraction of 52%. These tensile properties are comparable to 

the tensile properties of hemp fibre reinforced polyester composites at similar fibre 

weight fractions. This seems to suggest that hemp fibres have the potential of replacing
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glass fibres of particular configurations in terms of their tensile properties. The higher 

tensile modulus of hemp fibre composites as compared to glass fibre composites at 

similar fibre weight fractions is noticeable. The comparison of tensile properties of 

hemp fibre composites with CSM glass fibre composites is undertaken later in Section 

5.3.4.

Almost all the samples of hemp-polyester composites used in tensile testing fractured in 

a completely brittle manner. The crack ran right through the samples almost normal to 

the loading direction of the samples. This indicated that normal stresses resulting from 

the tensile forces were the dominant cause for fracture of the samples. Some cracking 

sound was normally heard just before the eventual fracture of the samples. This sound 

was most probably due to matrix cracking, which preceded the eventual fracture of the 

samples, and the fibre/matrix interfacial debonding. The samples fractured mostly in the 

middle, but some fractures nearer the grips were also observed. A typical fractured 

sample is shown in Fig. 5.5.

Fig. 5.5: Fracture surface of a hemp-polyester sample in tensile testing

The stress versus strain curves of a typical tensile tested composite sample compared 

with an unreinforced polyester sample is shown in Fig. 5.6. It is clear that reinforcing 

the polyester resin with hemp fibres does not result in any appreciable increase in tensile 

strength but the increase in tensile modulus is quite significant. This increase in 

modulus means that the strain to failure of the composite is lower than polyester resin. 

The curve has a noticeable ‘knee’ which has also been reported to exist for chopped 

strand mat (CSM) glass fibre- polyester composites [15] and for Sheet Moulding
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Compounds (SMC) composites containing E-glass fibres in a polyester resin [340], 

indicating that mechanical behaviour of short fibre composites is quite similar. The 

initial slope of the curve is relatively linear and in this phase both matrix and the fibres 

are expected to carry the load. The curve starts to deviate in strain range of about 0.2- 

0.5% which may be explained by fracture within fibre strands oriented transverse to 

load direction and the onset of fibre/matrix debonding because of poor interfacial 

bonding. A sample was tested at a stress of up to 24 MPa and strain of up to 0.5% and 

its surface was examined. As shown in Fig. 5.7, the surface of the tested sample showed 

no signs of matrix cracking and its appearance was quite similar to an untested sample. 

Therefore the “knee” is most probably due to the damage mechanisms occurring within 

the material as explained above. The high fibre volume may also inhibit any initiation of 

matrix cracking at this stage.

— Neat Polyester 
 Hemp-Polyester Composite

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80
Strain (%)

Fig. 5.6: Comparison of stress-strain curves of neat polyester resin with hemp- 

polyester composites in tensile testing
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( a ) ( b )

Fig. 5.7: Surfaces of hemp composite sample before testing (a), and after tensile 

testing (b), at stress=24 MPa, strain=0.5%

(a) (b)

Fig. 5.8: Surface of hemp composite sample before testing (a), and after tensile 

testing (b), at stress=37 MPa, strain=0.8%

On increased loading, the debonding is expected to initiate more cracks and as these 

cracks spread, more of the load is transferred to the fibres. These damage mechanisms 

result in further change in slope of the curve as the stress is transferred to fibres. 

Further application of load is expected to result in further debonding and fracture of 

fibre bundles oriented at other angles to the load. A sample was tested at a stress of up 

to 37 MPa (about 80% of UTS) and strain of up to of 0.8%. As Fig. 5.8 shows, even at 

this high stress when the sample is close to fracture, no signs of matrix cracking were 

visible on the surface and most of the damage is still expected to take place within the 

sample. The last part of the curve represents when fibres, oriented parallel to the load 

direction, are expected to carry almost the whole load. The fracture of these fibres 

results in eventual fracture of the samples in a brittle manner at a strain of about 1%.

In order to ascertain the damage mechanisms of the composites, SEM micrography of 

fracture surfaces of tensile tested samples was carried out. Fig. 5.9 shows micrographs 

of fractured surfaces from tensile testing. The figure show that four processes contribute 

to the fracture of the samples: matrix fracture, fibre-matrix debonding, fibre pull-out and 

fibre fracture. The poor fibre/matrix interfacial bonding encourages debonding and fibre 

pull-out, the evidence of which can be seen in the fracture surface.
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Fig 5.9: SEM micrographs of fracture surfaces of tensile tested hemp fibre

reinforced polyester samples



The matrix fracture, which normally occurs in the last phase, and fibre fracture, which 

normally starts in the initial phase of the fracture, are also evident from the micrographs. 

Fig. 5.9 (a) shows considerable matrix cracking and some fibre pull-out while Fig. 5.9 

(b) shows fibre-resin debonding and fibre fracture.

5.3.1.5 Variability in tensile properties

Due to the inhomogeneous and anisotropic nature of fibre reinforced polymer 

composites, considerable variation in mechanical properties has been observed for the 

composites made with the same constituents. For example, coefficient of variation 

values of 0.079, 0.080, 0.083 and 0.1 were reported by Johnson [341] for tensile 

modulus measurements for polyester resin reinforced with four different volume 

fractions of glass fibre. For CSM E-glass polyester composites, Mallick [340] showed 

that it is not uncommon to observe ±10%  variation in mechanical properties for 

samples from the same laminate. Owen et al [342] have reported even higher values of 

variability for sheet moulding compounds. Turner [343] was thus quite justified in 

commenting, “It seems likely that relatively high coefficients of variation are an 

inherent characteristic of composite materials in general, probably caused by local 

variations of fibre volume faction, fibre alignment and void content”.

The variability in physical and mechanical properties of natural fibres is an inherent 

drawback of their use as reinforcement in composite materials. The reasons for this 

variability have been discussed in detail in Section 2 .^2  Therefore the use of natural 

fibres as reinforcement is expected to increase the variability in mechanical properties 

of composites. This variability is represented by the error bars in the Figs. 5.2-5.4. The 

composites made at fibre weight fraction of 56% showed a variation of about 10% in 

tensile strength, about 12% in tensile modulus, and about 18% in strain to failure.

The variation in mechanical properties of hemp fibre composites is well documented. 

Previous research on hemp-polyester composites in this laboratory by Yuanjian [262] 

had found that tensile strength of composites decreased from a maximum value of 53.0 

MPa at moulding pressure of 2 MPa to 35.8 MPa at moulding pressure of 3MPa, 

although the fibre weight fraction was reported to be 44% in both cases. It was proposed 

that this could be due to crushing of fibres at 3 MPa moulding pressure. However, as 

shown in the present research, it is possible to attain tensile strength for these
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composites of up to 50 MPa at moulding pressure of 3 MPa. So this variation can be 

attributed to variability of properties of natural fibres.

The research undertaken with hemp-polyester composites by Rouison et al. [123] also 

found considerable variation in mechanical properties for samples containing the same 

fibre volume fraction. For example, the tensile strength of samples containing 18% fibre 

volume fraction ranged from 30 MPa to 45 MPa. They also reported tensile modulus 

values ranged from 1.2 GPa to 2 GPa at 18% fibre volume fraction which again 

represented considerable variation. So this variation in mechanical properties is not 

unexpected in natural fibre composites.

Variability in properties of hemp fibres may be the dominant cause of variability in 

properties of the composites but it is not the only reason. Other reasons such as non- 

uniform fibre dispersion, local variations in fibre distribution, resin-rich areas, voids, 

etc. may also contribute, with varying degrees, to the variability in properties.

5.3.1.6 Comparison of theoretical and experimental tensile properties

Over the years a number of models have been developed to predict the theoretical 

mechanical properties of composites from the constituents’ properties. These include 

the well-known rule of mixtures, the Series model [344], Hirsch model [345], and 

Halpin-Tsai model [346]. The variability in properties of natural fibres makes it very 

problematic to apply these models to natural fibre composites because these models 

assume uniform properties of fibres. Previous attempts at applying these models to 

predict the properties of natural fibre composites have generally not been very 

successful. Peponi et al [347] used the Halpin-Tsai model to predict the tensile 

properties of polypropylene composites reinforced with flax, jute, abaca and sisal fibres. 

In all four composites, the theoretical values were much higher than experimental 

values which were attributed to poor fibre/matrix interface which reduced the 

mechanical properties. In what follows, a model known as modified rule of mixtures has 

been applied to see if it can predict the tensile properties of hemp-polyester composites 

accurately.

The hemp fibres used in this research were discontinuous and randomly oriented in the 

plane of the mat. The composites made from such fibres have the inherent disadvantage 

of having lower mechanical properties than the properties of composites made from
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long, continuous, and aligned fibres in the direction of the fibres. However aligned 

composites are inherently anisotropic, having maximum stiffness and strength in the 

direction of alignment and minimum strength in transverse direction to the fibres.

Composites made with randomly oriented fibres, on the other hand, are isotropic. They 

may have lower mechanical properties but their properties are the same in every 

direction of the composite. This property may have useful implications in various 

applications.

The tensile strength of unidirectional composites in the direction of the reinforcement is 

given by the well-known ‘rule of mixtures’ as:

Oc = Vf<jf + Vm CTm................................(5.5)

where Vf is the fibre volume fraction, Of is the tensile strength of the fibre, Vm is the 

matrix volume fraction, and om is the tensile strength of the matrix.

However equation (5.5) represents an idealistic case and does not take into account 

imperfections originating in the fabrication stage. For fibres which have greater strain to 

failure than the matrix, like the one used in this research, the matrix is expected to break 

before the fibre and the whole load will be transferred to the fibres. Hence the ultimate 

strength of the composite will be determined by the strength of the fibres. In this case 

the rule of mixtures is modified to give the composite strength as:

CJc = VfCTf...................................(5.6)

Similarly tensile modulus of unidirectional composites in the direction of reinforcement 

is given by:

Ec = VfEf + VmEm.................... (5.7)

where Ef is tensile modulus of the fibre and Em is the tensile modulus of the matrix.

The tensile strength and tensile modulus values of polyester resin and hemp fibre were 

evaluated during this research. For polyester resin, these values were 44 MPa and 3.7 

GPa respectively, whereas for hemp fibres, these values were 270 MPa and 9 GPa 

respectively.
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For a typical fibre volume fraction of 50%, the tensile strength of hemp fibre reinforced 

polyester composites is given by:

Cc =VfCjf = (0.5 x 270) = 135 MPa

This result assumes that the average tensile strength of hemp fibres used in a laminate is 

also 270 MPa. This is the theoretical maximum value of tensile strength of 

unidirectional composites in the direction of fibres. When the reinforcing fibres are 

discontinuous and randomly distributed, the strength and stiffness of the composite are 

considerably reduced. To represent this reduction, a factor K, called ‘reinforcement 

efficiency’, is used (sometimes also called Krenchel factor). The value of 

reinforcement efficiency is taken to be unity for an oriented fibre composite in the fibre 

direction, and zero perpendicular to it. For randomly oriented composites tested in the 

plane of the fibres, this value is approximately 3/8 the value for unidirectional 

composites [348].

The modified equation for tensile strength of the composite [15] will then be:

ac = KVfCf................................(5.8)

Using the value of 3/8 for reinforcement efficiency for randomly oriented hemp fibre 

reinforced polyester composites their tensile strength will be reduced to about 50 MPa, 

which is quite close to the experimental values. The modified rule of mixtures thus 

gives a reasonable estimate of the tensile strength of hemp-polyester composites.

The modified form of the equation for calculating the tensile modulus of randomly 

oriented composites is [348]:

Ec = KVfEf + (l-Vf)Em...............(5.9)

where K is the Krenchel factor. For a typical fibre volume fraction of 50% and using the 

value of 3/8 for K, the tensile modulus of the composites is given by:

Ec= 3/8 (0.5 x 9) + (0.5 x 3.7) ~ 3.5 GPa

The theoretical value is considerably less than the experimental value of 7.2 GPa. The 

most probable reason for this is the considerably underestimated value of tensile 

modulus of hemp fibre because of compliance in the system during tensile testing of the
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fibres. A value of hemp fibre modulus of 28.5 GPa will give a composites modulus 

value close to the experimental value. This value of hemp fibre modulus is closer to the 

values evaluated by other researchers as shown in Table 4.2. Considering this factor, the 

rule of mixtures seems to give a reasonable estimate of tensile modulus as well.

Crawford [349] has suggested another modified form of rule of mixtures for estimating 

the tensile modulus of composite containing randomly oriented short fibres as:

Ec = 3/8 El + 5/8 Et ........................................ (5.10)

where El and Et are the longitudinal and transverse moduli for aligned fibre 

composites. Since it was not possible to calculate these moduli experimentally for the 

composites used in this research, they were estimated by using the equations [349] 

below,

El  = Vf Ef + Vm Em ....................................... (5.11)

andE r=  -----
V fE m + V mE f ............................................... ( 5 . 1 2 )

Using Vf value of 0.5 and hemp fibre modulus value of 9 GPa, the values of El and Br 

come out to be 6.4 GPa and 5.2 GPa respectively. Using these values in equation (5.10), 

the value of tensile modulus comes out to be 5.7 GPa which is lower than the 

experimental value. Using a hemp fibre modulus value of 28.5 GPa, equation (5.10) 

gives an overestimated value of 10 GPa. In either case, equation (5.10) gives an 

incorrect estimate of tensile modulus of the composite.

It has been shown that application of modified rule of mixtures is not straightforward 

for natural fibre composites but it still gives a reasonable estimate of the tensile 

properties of the composites. There are number of sources of imperfections in natural 

fibre composites which also contribute to their mechanical properties being different 

form those predicted by the models.

5.3.1.7 Evaluating optimum fibre content

Section 5.3.1 has shown that increasing the fibre weight fraction results in a 

proportional increase in the tensile properties of these composites. However for any 

matrix/ fibre system, there is an optimum value of fibre content beyond which proper
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wetting of fibres starts to suffer and it is difficult to get any further increase in the 

mechanical properties. In fact it is even possible to see some reduction in mechanical 

properties with the increase in fibre content beyond this optimum value. In order to 

evaluate the optimum hemp fibre content in these composites, composites were made at 

higher fibre weight fraction and its effect on their tensile properties was observed.

Various authors have reported a decrease in tensile properties of composites with 

increase in fibre fraction above a certain threshold value for synthetic fibre composites. 

In their studies on brittle matrix composites reinforced with glass fibres, Gaggar and 

Broutman [350] found that the maximum tensile strength occurred at a fibre volume 

fraction of approximately 50% beyond which there was slight decrease in strength.

Similar optimum fibre content has also been found to exist for natural fibre composites. 

For jute fibre reinforced polyester composites, Roe and Ansell [127] reported increase 

in tensile strength and modulus for fibre volume fraction of up to 60%. Further increase 

in volume fraction resulted in decrease in these properties which was attributed to 

insufficient wetting of fibres.

A recent study [351] has attributed fibre-fibre interactions as the major cause for 

decreasing composite strength at high levels of fibre loadings for natural fibre- 

thermoplastic composites. These fibre-fibre interactions decrease the available fibre 

stress transfer surface area. The effect was represented by a clustering parameter and a 

model developed to evaluate the parameter was found to be in general agreement with 

the experimental results.

In order to observe the effect of increasing fibre content on the tensile properties of 

hemp fibre composites, three different trial laminates were made and tested for tensile 

properties. First laminate was made by using four layers of hemp fibre mat rather than 

the two normally used. It was found that fibre weight fraction in this case was 64%. 

Second laminate was made at higher moulding pressure of 4 MPa. The fibre weight 

fraction of the composites thus made was 66%. Third laminate was made by using 

lower amount of the resin than normally used. The composites thus made had a fibre 

weight fraction of 66%.

A comparison of tensile properties of standard composites, made at moulding pressure 

of 3 MPa, with higher fibre content composites is shown in Fig. 5.10. The figure shows
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that no improvement in tensile properties was gained by increasing the fibre content 

beyond that used in standard method of 3MPa pressure. The samples with low resin 

were found to have poor adhesion even by looking with a naked eye. They are also 

shown in SEM micrographs in Fig. 5.11 which show relatively lower amount of resin 

sticking to the fibres, indicating poor interfacial adhesion. These studies have thus 

shown that increasing fibre weight fraction beyond a certain limit does not necessarily 

result in increase in tensile properties of the composites. Instead it can sometimes result 

in degradation in these properties. For hemp fibre composites, the optimum fibre weight 

fraction was found to be in the range of 50-55% and all the laminates were made with 

this fibre weight fraction.

■ Standard (56%)
■ 4 Hemp Layers (64%)
■ 4 MPa Pressure (66%)
"  Low Resin Content (66%)

Strength (MPa) Modulus (GPa) Strain (%)

Fig. 5.10: Comparison of tensile properties of standard composites with higher 

fibre content composites (fibre weight fraction values in parentheses)
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Fig. 5.11: Fracture surfaces of tensile tested samples with low resin content

5.3.2 CSM Glass Fibre Reinforced Polyester Composites

The tensile properties of CSM glass fibre reinforced polyester composite, made at 

various fibre weight fractions as described in Section, are shown in Table 5.6. These are 

the mean values of at least five samples tested from each laminate. The values in the 

brackets are standard deviations.

Table 5.6: Tensile properties of glass fibre reinforced polyester composites

Fibre weight fraction Tensile Strength Tensile Modulus Strain to Failure

(%) (MPa) (GPa) (%)

46 165. 0 (12.9) 11.2 (2.0) 2.04 (0.28)

53 200.9 (6.3) 11.3 (0.6) 2.39 (0.30)

55 230.5 (1.3) 12.3 (0.9) 2.50 (0.30)

The tensile strength is seen to increase approximately linearly with increase in fibre 

weight fraction. The tensile strength is thus seen to be a predominantly fibre dependent 

property. Unlike hemp fibre composite however, there is only slight increase in tensile 

modulus with increase in fibre weight fraction. Only 10% increase in tensile modulus 

was observed for almost 20% increase in fibre weight fraction. Tensile modulus is thus 

much less dependent on the fibre content.
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The strain to failure also increased approximately linearly with increase in fibre volume 

fraction. The low strain to failure at low fibre fraction for CSM composites are 

attributed to local strains near weak regions which are higher than the average specimen 

strain [352]. The composites with 55% fibre weight fraction had the highest strain to 

failure value of 2.5% which is very close to strain to failure value of 2.6% for glass 

fibres. This is consistent with the observation of Mandell [352] that the tensile strain to 

failure for chopped strand materials approaches the strain necessary for fibre-reinforced 

behaviour (fibre failure). The consistent failure strain in the range 2-2.5% seems to 

indicate that ultimate failure occurs when fibres fail.

The tensile properties of these composites have been found to be comparable to that of 

0/90° glass fibre reinforced polyester composites. At fibre weight fraction of 45.5%, the 

values reported were [262]: tensile strength: 200.0 MPa, tensile modulus 11.3 GPa, 

strain to failure: 2%. This seems to suggest that the properties of randomly oriented 

short fibre composites are similar to cross-ply long fibre laminates with half of the 

fibres in the loading direction and half of them perpendicular to loading direction.

200

 Neat Polyester

CSM Glass-Polyester Composite

Hem p-Polvester Composite

o 0.5 1 1.5 2 2.5 3

Strain (%)

Fig. 5.12: Comparison of stress-strain curves of CSM glass fibre composites with 

neat polyester resin and hemp-polyester composite
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The tensile stress-strain curve of CSM glass fibre composite compared with those of 

neat polyester resin and hemp-polyester composite is shown in Fig. 5.12. The tensile 

stress-strain curve of glass-polyester composites has less a discemable “knee” compared 

to hemp-polyester composites, indicating a more efficient transfer of stress from matrix 

to fibres. Significantly greater area under the stress-strain curve for glass fibre 

composites compared to hemp fibre composites also suggests greater impact resistance 

of the former, a fact verified in actual testing as shown later in Section 5.4.2.

(a) (b) (c)

Fig. 5.13: Comparison of glass fibre/polyester samples surfaces in tensile testing; 

(a) no stress (b) stress=113 MPa, strain=1.3% (c) stress=165 MPa, strain=2%

In almost all the glass-polyester samples, there was an audible sound at a stress level of 

about half of the ultimate tensile strength. The testing of a sample was stopped at this 

point and its surface was examined. As shown in Fig. 5.13 (b), there was some evidence 

of matrix cracking and debonding, which resulted in the sample becoming whiter than 

untested sample, which were responsible for this sound. Further application of stress 

resulted in further debonding, matrix cracking and fibre fracture as shown in Fig. 5.13 

(c) which shows the surface of sample tested at a stress of up to 80% of UTS and strain 

of up to 2%. The eventual fracture of the samples was brittle and catastrophic.
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Fig. 5.14 shows the fracture surface of a tensile tested sample. Compared to the fracture 

surface of hemp/polyester sample in tensile testing (Fig. 5.5), this fracture surface 

shows a more violent fracture of glass/polyester samples with considerable evidence of 

matrix and fibre fracture. The whitening of the sample in and around the fracture zone 

also indicates considerable delamination/debonding to have taken place before the 

eventual fracture.

Fig. 5.14: Fracture surface of tensile tested CSM glass-polyester sample

5.3.3 Hemp-CSM Glass Fibre Reinforced Polyester Hybrid Composites

The tensile properties of hemp-CSM glass hybrid fibre reinforced polyester composites 

are shown in Table 5.7. Two different kinds of fibre configurations were used: hemp 

skin and glass core, and glass skin and hemp core. Both kinds of configurations 

represented replacement of about 11% of hemp fibres with glass fibres. Both kinds of 

configurations showed considerable improvement in the tensile properties of the 

composites. The tensile properties were seen to be dominated by the fibres which 

formed the skin of hybrid. The greater strain to failure of glass fibres is more dominant 

in glass skin composites, hence resulting in more increase in strain to failure and less 

increase in tensile modulus than hemp skin composites. The hybridisation of a low 

strain-to-failure fibre with a high strain-to-failure fibres results in enhanced failure 

strain of the composites. This phenomenon is called the hybrid effect and has been 

observed for many hybrid composites [37]. The increase in strain to failure of hemp- 

glass composites can also be attributed to this effect.
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Table 5.7: Tensile properties of hemp-CSM glass fibre hybrid composites

Fibre

Configuration

Hemp vol. 

fraction

(%)

Glass vol. 

fraction

m

Tensile

strength

(MPa)

Tensile

modulus

(GPa)

Strain to 

failure

(%)

Hemp only 51.4 - 46.4 (4.6) 7.2 (0.9) 1.03 (0.19)

Hemp skin, 

glass core

35.4 10.9 70.1 (10.2) 8.3 (0.4) 1.31 (0.25)

Glass skin, 

hemp core

36.5 11.3 81.6(3.7) 7.7 (0.3) 1.73 (0.08)

The hybrid effect is quantified as being the percentage increase in the primary failure 

strain [37]. The hybrid effect has been calculated for many composite systems and its 

values range from 0% to 100%. The values for hybrid effect in this research were found 

to be 27% for hemp skin-glass core configuration and 68% for glass skin-hemp core 

configuration. Hence glass skin-hemp core configuration has been found to be more 

efficient way of hybridisation in this research.

For hemp skin-glass core composites, the tensile strength is increased by almost 70%, 

and tensile modulus is increased by about 15%. For glass skin, hemp core composites, 

the tensile strength is increased by about 75% and tensile modulus is increased by about 

7%. Hence in both cases, greater increase in tensile strength was observed than tensile 

modulus. This is not unexpected considering that the greater strain to failure of glass 

fibre compared to hemp fibres increased the strain to failure of the composites, thus 

resulting in negligible increase in tensile modulus. This is also shown in the comparison 

of stress-strain curves in Fig. 5.15. It is also seen that the ‘knee’ of the curve for hybrid 

composites is less prominent than for hemp composites, indicating an improved shifting 

of stress to fibres because of the presence of glass fibres. The increase in area under the 

stress-strain curve for hybrid composites compared to hemp fibre composites also 

suggests that improvement in impact resistance of the former can be expected. This was 

verified in actual impact testing as shown later in Section 5.4.3.
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Fig. 5.15: Comparison of stress-strain graphs of composites

Considerable research has shown the positive effects of hybridisation on mechanical 

properties of natural fibre composites. Examples are coir-glass/polyester [165], sisal- 

glass/polyester [353], hemp-glass/polypropylene [164], and bamboo- 

glass/polypropylene [105] composites.

Similar to the fracture of hemp fibre composites, the hybrid samples fractured in a plane 

perpendicular to the load direction in a brittle manner, as shown in Fig. 5.16. There was 

no complete separation of the samples as for hemp composites. The hemp fibres were 

seen to break but the glass fibres were still not separated and it was visible for the 

samples that had hemp fibres as skin. For samples that had glass fibres as skin, although 

it was less apparent, it was possible to see separated hemp fibres.
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Fig. 5.16: Fracture samples of tensile tested hybrid composites: glass skin-hemp 

core (top), and hemp skin-glass core (bottom)

5.3.4 Comparison of Specific Tensile Properties

The tensile testing so far has shown that hemp fibre composites do not have comparable 

strength and stiffness to glass fibre composites at similar fibre weight fraction. However 

a more realistic comparison can be done by comparing the specific strength and specific 

stiffness properties of composites. These properties were obtained by dividing the actual 

strength and stiffness of composites by their densities. The mean density of hemp fibre 

composites was found to be 1.18±0.03 g/cm3 at a fibre volume fraction of 50%. Glass 

fibre composites at a fibre volume fraction of 40% had mean density of 1.61 ±0.05 

g/cm3. Thus the lower density of hemp fibre composites can counterbalance their lower 

tensile properties. Table 5.8 shows the comparison of specific tensile properties of 

hemp, glass and hybrid composites.

Glass fibre composites at 30% fibre volume fraction have greater specific strength and 

stiffness than hemp fibre composites at 50% fibre volume fraction. Increasing the fibre 

content up to 40% increases the specific strength but no appreciable increase in specific 

modulus is observed. Similarly, for glass-hemp hybrid composites, replacing 11 % of 

hemp fibre by glass fibres results in up to 50% increase in specific strength but only 

marginal increase in specific modulus. Therefore in terms of specific tensile properties, 

hemp fibre composites do not have comparable properties to glass fibre composites. At 

low glass fibre content, only the specific modulus of hybrid composites is comparable 

to hemp fibre composites.
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Table 5.8: Comparison of specific tensile properties of composites

Fibre FVF Specific Strength Specific Modulus

(%) [MPa/(Mg/m3)] [GPa/(Mg/m3)]

Hemp 50 38.1 (4.9) 5.8 (0.6)

Glass 30 108.1 (6.8) 7.4 (1.4)

33 131.1 (3.8) 7.4 (0.4)

40 141.2 (2.2) 7.7 (0.4)

Hemp skin- 46.3 (35.4:10.9) 51.8 (6.8) 6.2 (0.3)

Glass core

Glass skin- 47.8 (36.5:11.3) 61.3(3.1) 5.8 (0.2)

Hemp core

5.4 LOW VELOCITY IMPACT PROPERTIES

5.4.1 Hemp Fibre Reinforced Polyester Composites

The next phase of this research was focused on investigating the low velocity impact 

properties of the composites. The non-instrumented impact testing rig used had some 

obvious limitations. For example, it was not possible to evaluate the energy absorbed by 

the samples during impact testing. However the testing was still useful in determining 

the damage tolerance of the materials by evaluating residual tensile and fatigue 

properties of the composites after impact testing. The data thus obtained is very useful 

for design and service life requirements of the composites.

5.4.1.1 Izod impact strength

Izod impact strength of un-notched and notched hemp-polyester composites is given in 

Table 5.9. The samples used in these tests had mean fibre weight fraction of 56% (fibre 

volume fraction ~ 50%). At least 20 samples were used for each test. The values in 

brackets are standard deviation figures.
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Table 5.9: Izod impact strength of hemp-polyester composites

Mean impact strength of un-notched samples (kj/m2) 17.1 (7.9)

Mean impact strength of notched samples (kj/m2) 12.7 (2.8)

Izod impact strength of un-notched samples is higher than that for notched samples 

since testing with un-notched samples gives an overestimated value of the impact 

strength. It takes into account the energies required for both initiation and propagation 

of cracks. Still the values of notched samples are within the standard deviation of the 

values for un-notched composites. The scatter in the values for notched samples is 

considerably reduced which can be attributed to the fact that the notch provides a path 

for the crack to propagate and no energy is required for initiation of the crack.

Comparing with the results available for hemp fibre reinforced polyester composites in 

the literature, the unnotched impact strength is similar to the value reported by Sebe et 

al. [124] which is 14 kJ/m2 at 36% fibre weight fraction. For notched composites, the 

value is considerably higher than that reported by Rouison et al. [146] of 4.8 kJ/m2. 

Their figure is probably lower because of lower fibre volume fraction of 20% of the 

samples tested. The typical impact strength of neat polyester resin is 2 kJ/m2 [349]. For 

CSM glass fibre/ polyester composites, the impact strength is in the range of 100-150 

kJ/m2, the same as for woven roving laminates [349]. Although reinforcing polyester 

resin with hemp fibres increase their impact strength considerably, the hemp fibre 

composites have significantly lower impact strength than glass fibre composites.

The impact strength of most natural fibre reinforced polyester composites is quite low 

compared to glass fibre-polyester composites. A quick glance at Table 2.18 shows that 

most natural fibre/polyester composites have impact strength in the range 10-30 kJ/m2.

5.4.1.2 Residual tensile properties

The low velocity impact testing of hemp fibre composites was carried out by using the 

purpose-built impact testing rig. In this testing it was vitally important to get the impact 

in the middle of the samples. Problems were encountered in initial stages in getting the
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impact point in the middle of the samples. The problem was resolved by using a plumb 

line device to make the impactor centre coincident with the centre of the samples. All 

the samples were impacted from a height of about 100 mm so that the impact velocity 

of all the samples was constant at about 1.4 m/s, well within the range of low velocity 

impact. Keeping the height constant, the weight of the impactor was varied to get the 

required impact energy level.

The lowest impact energy level used was 1J and it was gradually increased in 

increments of 0.5J up to 4J at which point the impactor almost penetrated the samples. 

All the samples used in low velocity impact testing had an average fibre weight fraction 

of 55% (fibre volume fraction~50%). The results of tensile tests following the low 

velocity impact of composites are given in Table 5.10. For comparison the tensile 

properties of non-impacted composites are also given. The standard deviation figures 

are in parentheses.

Table 5.10: Residual tensile properties of impact tested composites

Energy Level

(J)
Tensile Strength 

(MPa)

Tensile Stiffness 

(GPa)

Strain to Failure

(%)

0 46.4 (4.6) 7.2 (0.9) 1.03 (0.19)

1 46.0 (5.3) 6.0 (0.9) 1.34(0.10)

1.5 35.0 (6.1) 4.7 (0.6) 1.23 (0.23)

2 26.2 (5.4) 4.0 (1.4) 1.09 (0.26)

2.5 26.6(11.5) 4.1 (1.5) 1.24 (0.62)

3 22.7(1.8) 3.2 (0.5) 0.96 (0.10)

3.5 21.2 (3.6) 3.3 (0.4) 0.93 (0.26)

4 15.2 (2.9) 2.1 (0.3) 1.08 (0.20)

The effect of low velocity impact on the tensile strength of the composites is shown in 

Fig 5.17. The error bars represent standard deviation results. The figure shows gradual 

decline in tensile strength of hemp fibre composites with increase in energy level of 

impact. The effect is negligible up to impact energy of 1 J. However the decline is
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much rapid from 1 J up to impact energy of 4. The composites have lost almost 70% of 

their intrinsic tensile strength after an impact energy of 4 J.

Agarwal and Broutman [22] have shown that there is a threshold impact energy for 

most composite materials below which they do not show any appreciable reduction in 

mechanical properties. The value of this energy depends on laminate thickness and 

matrix and fibre materials. For hemp fibre reinforced polyester composites the value of 

this threshold energy is seen to be 1J at which they do not show any deterioration in 

tensile strength. At impact energies higher than 1 J, these composites show rapid decline 

in their tensile strength.

«  40

£ 2 0

2.51 2 3 as 4.50 0.5 1.5 4

Impact Energy (J)

Fig 5.17: Residual tensile strength of composites following low velocity impact

The impact damage tolerance of hemp-polyester composites can be best understood by 

decline in normalised tensile strength with increasing impact energy as shown in Fig. 

5.18. The normalised strength was obtained by dividing actual mean value of strength at 

particular impact energy by intrinsic tensile strength of the composites. The dashed lines 

in the figure represent 95% confidence limits of the linear regression line. The figure 

shows that the composites have lost almost half of their intrinsic strength following 

impact energy of 3J. Following impact energy of 4J, the composites have lost almost 

70% of their intrinsic strength.
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Fig. 5.18: Normalised residual tensile strength of composites following low velocity

impact

The effect of low velocity impact on tensile stiffness of hemp fibre composites is shown 

in Fig 5.19. The term stiffness rather than modulus is used here because what is being 

measured is the average value of modulus across the impact area. Again the tensile 

stiffness declines gradually with increase in impact energy level. Following impact 

energy of 4 J, hemp fibre composites have lost almost 70% of their intrinsic tensile 

modulus. The damage tolerance of hemp-polyester composites in terms of normalised 

residual tensile stiffness is shown in Fig. 5.20. The normalised residual tensile stiffness 

was obtained by dividing actual mean value of residual stiffness at particular impact 

energy with the intrinsic tensile stiffness of the composites. The dashed lines in the 

figure represent 95% confidence limits of the linear regression line. The figure shows 

that composites lose almost 20% of their intrinsic stiffness even at an impact energy of 

1J. Further application of impact energy results in a gradual decline of tensile stiffness 

and at impact energy of 4J, the composites have lost almost 70% of their intrinsic 

stiffness.
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Fig 5.19: Residual tensile stiffness of composites following low velocity impact
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Fig. 5.20: Normalised residual tensile stiffness of the composites following low

velocity impact

The effect of increasing impact energy on strain to failure is shown in Fig 5.21. The 

strain to failure first appears to increase following impact energy of 1J. However
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increasing the impact energy does not affect the strain to failure which remains 

consistent at a value of about 1%. This implies that the impact did not change the 

fracture behaviour of composites which continued to be brittle.
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Fig. 5.21: Effect of low-velocity impact on strain to failure of composites 

5.4.1.3 Analysis of impact properties

Figs. 5.22-23 show macrographs of the fracture surfaces of impact tested samples. It is 

evident that impact damage is localised. At an impact energy of 1 J, the indentation point 

is barely visible. At this impact energy level, the coupons have lost only about 1% of 

their intrinsic tensile strength and almost 17% of their tensile stiffness. However from 

impact level of 2 J upwards, the indentation point and the damage it creates are clearly 

visible. At an impact energy of 2J, a crack is seen to be running across the sample as 

shown by the arrowhead which implies that considerable matrix cracking, interfacial 

debonding and fibre fracture has occurred. At this energy level, the coupons have lost 

almost 50% of their intrinsic strength and stiffness. Closer examination by SEM showed 

considerable evidence of matrix fracture, interfacial debonding and fibre fracture at this 

energy level as shown in Fig. 5.24. The fibre fracture at this low energy level seems to 

be the main reason for the poor impact damage tolerance of these composites.
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Fig 5.22: The effect of increasing impact energy level, from left to right, on the

impacted faces of the samples

Fig 5.23: The effect of increasing impact energy, from left to right, on the distal

faces of the samples
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Fig. 5.24: SEM micrographs of fracture surface of 2J impacted sample showing 

evidence of fibre fracture (a) and (b), and matrix fracture and interfacial

debonding (c)

The penetration of the impactor into the sample increases with increase in impact 

energy. At impact energy of 3J, the impactor starts to perforate some coupons, shown 

by the arrowhead in Fig. 5.23. For impact energy of 4J and above, the samples are in a 

state of almost complete perforation, again shown by the arrowhead. At this stage, 

coupons have lost almost 70% of their intrinsic strength and stiffness.
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Fig. 5.25: Out of plane deformation of hemp/polyester impact tested samples

Fig. 5.25 shows the out-of-plane deformation of impact tested samples with increasing 

impact energy. It can be seen that the damage increases through the thickness away 

from the impacted face towards the distal face with increase in the diameter of the crater 

produced by the damage. The diameter of impact crater was 12.5 mm on the front face, 

the same as the diameter of the impactor. However on the distal side of coupons, the 

easily visible damage was about 15 mm for non-perforated coupons and about 18 mm 

for perforated coupons. An impact energy of 2J is enough to induce cracks in the 

sample, while at 4J impact, the samples is in the state of almost complete perforation.

Comparison of stress-strain curves of impact tested samples is shown in Fig. 5.26. A 

relatively similar shape of impact tested samples as that for non-impacted samples 

shows that the damage development mechanisms during tensile loading are the same for 

both kinds of samples. The ‘knee’ of the curves for 3J and 4J impacted sample has 

become smoother, suggesting a less efficient transfer of stress from matrix to fibres 

because of the damage to fibres.
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Fig. 5.26: Comparison of stress-strain curves of impact-tested samples

The impact properties of hemp-polyester composites can be understood in terms of the 

properties of the constituents and various energy absorbing mechanisms.

Brittle nature o f hemp and polyester resin:

Perhaps the most important factor in low impact properties of these composites is the 

brittle nature of both hemp fibres and polyester resin. The strain energy absorbing 

capacity of the fibres is one of the most important parameters in determining the impact 

resistance of composites [197]. Thus the composites made from them are also brittle 

and have low strain to failure of about 1%. This means that they have little capacity to 

absorb any impact energy through ductile deformation. Even the composites impacted 

at 4J showed completely brittle fracture in tensile testing. Hence the only mechanism 

through which these materials can absorb energy is by initiation and propagation of 

cracks which depends on the toughness of the material. Hughes et al [130] evaluated the 

fracture toughness of hemp fibre reinforced polyester composites to be 3.51 MNm'372 at 

fibre volume fraction of 20%. This was almost three times lower than that of CSM 

glass fibre-polyester composites (9.01 MNm'372) at the same fibre volume fraction. The 

critical strain energy release rate and the crack tip plastic zone radii of hemp fibre 

composites were also significantly lower than those of CSM glass fibre composites,
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implying lower toughness properties of these composites. It was suggested that energy 

dissipative processes are not stimulated in the crack tip region to the same extent as in 

glass fibre composites. As shown in Figs. 5.19-21, an impact of 2J energy is enough to 

initiate and propagate cracks through the materials.

Poor interfacial bonding:

It has been shown for polyester laminates [22] that their total impact resistance can be 

increased by reducing the fibre/matrix interfacial bonding. The interfacial shear strength 

of hemp-polyester was found to be 1.9±1.3 MPa in this research. This relatively low 

value of IFSS would seem to contribute to increased impact resistance. However any 

positive contribution of low interfacial strength on increased impact resistance seems to 

have been overridden by low toughness properties of these materials.

Imperfections in laminates:

The contribution of various imperfections introduced during the manufacture of 

laminates to low impact properties can not be underestimated. It has been shown in 

Section 5.2 that the laminates contained as much as 11% of voids by weight. Like other 

mechanical properties, this high void content is expected to have deleterious effect on 

impact properties as they can act as initiators of cracks, thus reducing the impact 

resistance of composites.

Energy absorbing mechanisms:

Having determined the low energy absorbing capacity of the composites, the various 

mechanisms responsible for this energy absorption are now analysed. Various 

mechanisms involved during crack propagation account for the total energy absorbed in 

the fracture process. For hemp-polyester composites, the fracture processes are a 

combination of matrix failure, fibre-matrix debonding, fibre pull-out and fibre fracture, 

as shown in Fig. 5.9. The effect of these mechanisms on energy absorption is now 

evaluated.

The contribution of fracture of brittle polyester resin towards total energy absorption 

will be minimal as explained earlier. The energy required for matrix fracture per unit 

area of composites is proportional to the work done in deforming the matrix to rupture 

per unit volume [22]. Since the value of the latter is very small for brittle polyester
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matrix, the energy required for matrix fracture is expected to be only a small fraction of 

total impact energy of these composites.

Fibre/matrix debonding occurs by cracks running parallel to fibres. The relatively poor 

fibre/matrix interfacial bonding of the composites in this research suggests that most of 

the impact energy absorbed will be through this mechanism although it is difficult to 

quantify the proportion of it to the total impact energy. Closely related to debonding 

cracks are the delamination cracks. These cracks occur due to bending stiffness 

mismatch in a laminate containing plies of different fibre orientation. Since the 

composites made in this research contained plies of fibres in same random orientation, 

the contribution of delamination cracks to total energy absorbed is expected to be 

minimal, if at all.

Fibre pull-out is another mechanism that occurs because of poor interfacial bonding 

and contributes considerably to total energy absorption in short fibre composites and 

their existence has been shown in Fig. 5.9. The fibre pull-out has been found to be 

extensive for fibres whose length is less than half of the critical fibre length [22] which 

encourages fibre pull-out rather than fibre fracture to occur. The hemp fibre mat used in 

these composites is expected to contain a fair share of short fibres of length less than the 

critical length and hence they can also contribute to total energy absorption.

Fibre fracture contributes to the energy absorption depending on tensile strength and 

failure strain of the fibres. Hemp fibres were found to have a failure strain of 2.3% in 

this research, including the compliance in the machine which overestimated the strain. 

As shown in Fig. 5.24, an impact energy level of as low as 2J was enough to cause fibre 

fracture which resulted in almost half the reduction in tensile strength of composites. 

Fibre fracture occurs much later in the fracture process on the non-impacted face due to 

high bending stresses. Although it has been suggested that fracture of natural fibres 

involves considerable plastic deformation, hence making significant contribution to 

total fracture energy, no such evidence of plastic deformation was found in the tensile 

testing of hemp fibres in the present research.

Another possible reason for poor impact properties of hemp fibre composites is the non­

woven random orientation of hemp fibres used in this research. Santulli [131] studied 

post-impact tensile and flexural properties of woven 0/90 jute fibre reinforced polyester 

composites with fibre volume fraction of 63%. The laminates impacted at an impact
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energy of 5J suffered a loss of 40% in tensile strength but no reduction in tensile 

modulus was seen. Increasing the impact energy to 15J, no further degradation of tensile 

properties was observed. Acoustic emission monitoring of impact tested samples was 

not found to be helpful in quantifying the level of damage. Thus use of woven natural 

fibres as reinforcement can result in much improved impact properties of composites.

The composites tested for low-velocity impact in this research showed low impact 

damage tolerance. This seems to suggest that these composites are not suitable for 

applications where high impact strength of the material is required. In this respect the 

contention of Hughes et al [130] seems to carry weight in their observation that poor 

impact properties of natural fibre composites are a significant impediment that will 

hinder the commercial exploitation of theses composites.

5.4.2 CSM Glass Fibre Reinforced Polyester Composites

Low velocity impact properties of chopped strand mat glass fibre reinforced polyester 

composites were studied by using the same testing parameters as for hemp fibre 

composites. Low velocity impact tests were carried out for impact energy of up to 25J.

5.4.2.1 Residual tensile properties

The effect of low velocity impact on the tensile strength of the composites is shown in 

Fig. 5.27. The graph shows that the decline in tensile strength is gradual with increasing 

impact energy. After an impact energy of 20J, the graph shows a plateau which suggests 

that most of the impact damage has occurred by this stage. The graph shows that the 

composites lost almost half of their intrinsic tensile strength at impact energy of 15 J and 

almost 75% of their intrinsic strength at impact energy of 25J. In similar studies of glass 

fibre-polyester composites [262], the reduction in intrinsic tensile strength at impact 

energy of 25J was 90% for ±45° configuration and 55% for 0/90° configuration. Thus 

although 0/90° glass-polyester composites have similar intrinsic tensile strength as CSM 

glass-polyester composites, they exhibit superior impact damage tolerance.
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Fig. 5.28: Residual tensile stiffness of composites at increasing impact energy

The effect of low velocity impact on the tensile stiffness of the composites is shown in 

Fig. 5.28. The impact energy of up to 10J does not seem to have much effect on
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intrinsic tensile stiffness. For impact energies of greater than 10J, the decline in tensile 

stiffness is steady. This behaviour of CSM glass fibre-polyester composites is again 

similar to that of 0/90° glass-polyester composites [262] which show small reduction in 

tensile stiffness up to impact energy of 10J but much greater reduction at impact 

energies of greater than 10J.

The composites lost only 10% of their intrinsic stiffness following impact of up to 10J. 

The composites lost almost 80% of their intrinsic stiffness at impact energy of 25J. 

Compared to this the 0/90° glass-polyester composites also lost almost 80% of their 

intrinsic stiffness at impact energy of 25J.

The macrographs of impacted and distal surfaces of the samples following impact tests 

are shown in Figs. 5.29-30. The impact testing produced a circular whitened zone on the 

impacted and the distal sides of the samples. The diameter of the whitened zone was 18 

mm on both sides and was independent of the impact energy. The whitened zone has 

also been reported for other glass fibre configurations like ±45° and 0/90° [262]. The 

presence of the whitened zone has been attributed to a combination of factors like 

matrix cracking and debonding/delamination. At impact energy of 5J, cracks formed on 

the surface of samples due to matrix cracking. The whitening of samples also showed 

existence of fibre/matrix debonding. This resulted in almost 30% decrease in tensile 

strength but had little effect on residual modulus. An impact of 10J energy resulted in 

more matrix cracking and debonding. The strength was reduced by about 40% but it still 

had little effect on residual modulus. For impact energies of 15J and above, 

considerable evidence of fibre fracture on the distal side of the sample was observed, 

shown by arrowhead, which resulted in sudden decrease in tensile stiffness of up to 

40%. Further application of impact energy of 20 and 25J resulted in more matrix 

cracking, debonding and fibre fracture which reduced the properties further.

The comparison of normalised residual tensile properties of hemp and glass fibre 

composites is shown in Figs. 5.31-32. The residual tensile properties of CSM glass fibre 

composites were found to be vastly superior to those of hemp fibre composites. 

Although the fracture of CSM glass fibre composites is also brittle as hemp fibre 

composites, their superior tensile strength and greater strain to failure means that they 

have superior damage tolerance than hemp fibre composites. The fracture toughness of 

CSM glass fibre composites has been reported to be almost three times higher than
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hemp fibre composites [130]. This is also a major factor in their better impact 

properties.

5J 10J 15J 20J 25J

Fig. 5.29: Impacted surface of composites with increasing impact energy

5J 10J 15J 20J 25J

Fig. 5.30: Distal surfaces of impacted samples with increasing impact energy



♦ Glass 
a Hemp 

— Glass 
— Hemp

0.9

0.8

O) 0.7

CO 0.6

0.5

0.4

0C 0.3

=5 0.2

0.1

0 6 10 16 20 25

Impact Energy (J)

Fig. 5.31: Comparison of normalised residual tensile strength of hemp and glass 

fibre composites following low velocity impact
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Fig. 5.32: Comparison of normalised residual tensile stiffness of hemp and glass 

fibre composites following low velocity impact

226



5.4.3 Hemp-CSM Glass Fibre Reinforced Polyester Hybrid Composites

The previous Section has shown significantly lower impact properties of hemp fibre 

composites compared to glass fibre composites. However the low velocity impact 

properties of hemp fibre composites can be improved by incorporating stronger and 

tougher glass fibres in them. The superior tensile strength and relatively high strain to 

failure of glass fibres is expected to increase the impact damage tolerance of the hybrid 

composites. Although the inclusion of glass fibres compromises the biodegradability of 

the composites, this can compensate the increase in properties obtained by 

hybridisation.

Two different kinds of hybrid configurations were used for low velocity impact testing: 

one had glass fibres as core and hemp fibres as skin and the other had hemp fibres as 

core and glass fibres as skin. Since the distal side of the impacted composites is 

subjected to bending stresses, the superior tensile properties of glass fibres are expected 

to result in better impact resistance of composites having glass fibres as skin and hemp 

fibres as core. In one study the flax-glass fibre hybrid composites have been reported to 

be as much as four times more impact resistant when impacted on the glass side [224].

5.4.3.1 Residual tensile properties

Figures 5.33-34 show the effect of increasing impact energy level on the residual tensile 

properties of hybrid composites. Taking into account the scatter in data, the 

improvement in properties for both kids of hybrid configurations was quite similar.

5.4.3.2 Comparison with hemp fibre composites

In order to compare the effect of impact energy on the residual tensile properties of 

hybrid composites with hemp composites, normalised residual strength and stiffness 

were determined and are shown in Figs. 5.35-36. From Fig. 5.35 it is clear that 

replacement of only 11% by volume of hemp fibres by glass fibres results in 

considerable improvement in their residual strength. Whereas impact energy of 4J 

resulted in almost 70% loss of residual strength for hemp composites, the hybrid 

composites lost only 30% of residual strength at this energy level. The figure also shows 

that the hybrid composites performed quite similarly irrespective of the configuration 

and hemp fibres as skin performed as well as glass fibres as skin.
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Fig. 5.33: Effect of increasing impact energy on residual tensile strength of hybrid

composites

4 )5 Glass skin, hemp core

Hemp skin, glass core

o 1 2 3 4

Impact Energy (J)

Fig. 5.34: Residual tensile stiffness of hybrid composites with increasing impact

energy
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Fig. 5.36: Comparison of normalised residual stiffness of hybrid composites with

hemp composites
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Fig. 5.36 shows improved residual stiffness of hybrid composites compared to hemp 

composites. The hybrid composites only lost approximately 30% of their intrinsic 

modulus, compared to 70% for hemp composites at impact energy of 4J.

5.4.3.3 Comparison with CSM glass fibre composites

The improved impact tolerance of hemp-glass hybrid composites meant they could be 

subjected to higher impact energies and their impact resistance could be compared to 

that of CSM glass fibre composites. Therefore hybrid composites with both types of 

configurations were subjected to impact energies of up to 20J.

Fig. 5.37 shows the residual tensile strength of both hybrid composites at increasing 

impact energy levels of up to 20J. The advantage of having glass fibre as the skin fibre 

becomes more obvious at these high impact energy levels as they have higher residual 

strength than hemp skin composites.
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Fig. 5.37: Residual tensile strength of hybrid composites at increasing impact

energy

The normalised residual tensile strength of hybrid composites compared with that of 

CSM glass fibre composites is shown in Fig. 5.38. The decline in tensile strength of 

hybrid composites is gradual up to impact energy of 20J, by which stage the composites 

have lost almost 90% of their intrinsic strength. Compared to this the CSM glass
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composites have lost almost 70% of their intrinsic strength. Comparing with Fig. 5.30, it 

is also clear that whereas the hemp fibre composites lose 70% of their strength at impact 

energy of 4J, the hybrid composites can absorb 10J of impact energy before suffering 

the same reduction in strength. Hence by replacing just 11% of hemp fibres with glass 

fibres, the impact damage tolerance can be increased up to 150% in hybrid composites.
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Fig. 5.38: Comparison of normalised residual tensile strength of hybrid and glass

fibre composites

Fig. 5.39 shows the residual tensile stiffness of hybrid composites following impact 

energy of up to 20J. Similar to residual strength, glass skin composites seem to fare 

better than hemp skin composites. The residual stiffness of both composites is the same 

at impact energy of 15J at which stage they seem to have lost most of their stiffness. 

Further impact damage does not result in any increased reduction in stiffness.
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Fig. 5.41: Out-of-plane deformation of glass skin, hemp core (a), and hemp skin, 

glass core (b) hybrid composites in impact testing

Fig. 5.40 compares the normalised residual stiffness of hybrid composites with those of 

CSM glass fibre composites at increasing impact energy levels. The figure shows the 

reduction in tensile stiffness of the hybrid composites is almost 90% following impact 

energy of 15J for both types of composites. At this energy level CSM composites have 

lost only 40% of their stiffness. Compared with hemp fibre composites, they lost 70% 

of their stiffness at impact energy of 4J whereas hybrid composites required impact of 

up to 10J to suffer the same reduction in stiffness. This again shows improvement in



damage tolerance of hybrid composites. Hence the advantages of using glass fibres in 

hybrid composites have been underlined in this part of the research.

Fig. 5.41 (a) shows out-of-plane deformation of glass skin, hemp core composites and

(b) shows hemp skin, glass core composites following low velocity impact It is clear 

that an impact of even 5J can result in visible damage in composites which starts to 

increase with increase in impact energy. At an impact energy of 10J, there is evidence 

of considerable matrix and fibre fracture. This correlated well with the reduction in 

residual properties with increase in impact energy. At an impact energy of 15J, the 

samples are on the verge of perforation and apart from matrix and fibre fracture, there is 

some evidence of delamination in hemp skin, glass core composites as shown by the 

arrowhead. This could be caused by bending stiffness mismatch between hemp and 

glass fibres. At this stage, the composites had lost most of their strength and stiffness. 

At an impact energy of 20J, the samples were almost completely perforated.

These studies have shown that hybridisation of hemp fibres with glass fibres results in 

considerable improvement in their impact properties. The stronger and tougher glass 

fibres enhance the damage tolerance of the composites and the effect is more 

pronounced when glass fibres are used as skin.

5.5 FATIGUE PROPERTIES

Fatigue properties of the composites were mainly evaluated in tension-tension mode 

(R=0.1) at a frequency of 1 Hz. The fatigue stress on the samples was varied and the 

number of cycles to failure at each stress was recorded. The resulting data was used to 

draw up the Wohler (S-N) curves. The samples that did not fail after 106 cycles 

(approximately 11 days) of testing were shown on the S-N curve with arrows pointing 

to the right. The testing was carried out as per BS ISO 13003: 2003: Fibre-reinforced 

plastics -  Determination of fatigue properties under cyclic loading conditions.

5.5.1 S-N Curves
5.5.1.1 Hemp Fibre Reinforced Polyester Composites

The S-N curve of composites with average fibre weight fraction of 52% is shown in Fig. 

5.42. The dashed lines in the figure represent the 95% confidence interval of the linear
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regression line. The variability of properties of hemp fibres is expected to result in 

random accumulation of damage in the composites and, therefore, it is not unexpected 

to see some data points lying outside the 95% confidence limit. It has been reported for 

glass fibre composites as well that the normal scatter in static strength data is often 

increased by random damage during fatigue loading [236]. The static strength of the 

composites is plotted on the curve at 1 cycle (log 1=0). The British Standard BS ISO 

13003: 2003 recommends that the value of static strength to be used on S-N curve 

should be evaluated at the same strain rate as that of fatigue testing. In order to 

determine the effect of different strain rates on the tensile properties of composites, 

tensile testing was performed at three different testing speeds and the tensile properties 

of the composites were evaluated. The results are shown in Table 5.11 and Fig. 5.43.
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Fig 5.42: S-N curve of hemp fibre composites

The error bars show that the tensile properties were found to lie within the standard 

deviation at all testing rates and it is reasonable to conclude that these composites are 

not sensitive to strain rates within this range and it is reasonable to use their static 

tensile strength values, evaluated at testing rate of 2 mm/min, on the S-N curve.
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Table 5.11: Tensile properties of composites at different testing rates

Testing rate 

(mm/mln)

Strain rate 

(s*1)

Tensile strength 

(MPa)

Tensile modulus 

(GPa)

2 2.66x10-4 37.8 (5.2) 5.6 (0.1)

5 6.66X10"4 40.7 (5.5) 5.9 (1.0)

10 1.33xl0'3 42.0 (0.5) 5.3 (1.0)

Strength

Modulus

2 3 4 5 6 7 8 9  10

Testing Speed (mm/mln)

Fig. 5.43: Effect of different testing speeds on tensile properties of composites

The best-fit regression line in Fig. 5.42 shows gradual decline in fatigue strength with 

increase in the number of fatigue cycles. The regression line predicted endurance limit 

of about 20 MPa for the composites at 1 million cycles which corresponded well with 

the experimental data as shown by arrowheads. Hence a stress level of up to 20 MPa 

(approximately 40% of UTS) can be taken as a safe value for endurance limit for these 

composites. This correlates well with the stress-strain graph (Fig. 5.6) where the curve 

starts to deviate at 20 MPa, i.e. damage mechanisms start to become dominant at this 

stress. For sisal fibre reinforced polyester composites, Towo and Ansell [354] reported 

the endurance limit to be 35% of static strength in tension-tension fatigue loading.

236



Of the various fatigue life prediction theories discussed in Section 2. .6 .5 , the following 

equation can be used to represents the S-N curve for hemp fibre reinforced polyester 

composites:

<*a = tfuit -  b log N.................................... (5.13)

where aa is the maximum cyclic loading stress, ouit is the static tensile strength, N is the 

number of cycles to failure at a particular value of aa, and b is a constant depending on 

the material properties. It represents the gradient of the S-N curve which has a negative 

slope and hence can be related to the degradation in fatigue strength of the material with 

increase in number of N. For these materials the value of b was found to be about 4.5 

MPa.

In order to compare the fatigue sensitivity of these composites with other materials, it is 

more suitable to use the normalised stress versus cycles to failure curve. The normalised 

stress (maximum tensile stress divided by ultimate tensile strength) versus cycles to 

failure curve is shown in Fig. 5.44. The curve shows that the composites lost their static 

strength by almost 10% per decade of cycles. A similar value of reduction in static 

strength was reported by Mandell [243] for unidirectional E-glass fibre reinforced 

composites in the fibre direction. Thus hemp fibre composites are observed to show 

similar fatigue sensitivity to glass fibre composites.

For normalised S-N curves, equation (5.13) reduces to:

Oa/ Quit = 1- b* logN....................................... (5.14)

The constant b* which represents the slope of normalised S-N curve is called the fatigue 

sensitivity coefficient and has different value for different materials. The value of b* 

was found to be 0.097 for these hemp fibre composites. Mandell [352] collected S-N 

data for tension-tension fatigue for various chopped E-glass strand composites (both 

SMC and CSM) available in the literature (64 S-N data sets to be exact) and found that 

the value of b* for all the systems were remarkably equal or close to 0.1. This value of 

b* was the same for unidirectional continuous glass fibre composites fatigue tested 

parallel to fibres. A similar value of b* for hemp fibre composites seems to reinforce the 

fact that hemp fibres have comparable fatigue sensitivity to that of glass fibre 

composites.
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Fig. 5.44: Normalised S-N curve of hemp-polyester composites

Most composites fail in fatigue in the same mode and by the same mechanisms as under 

static loading [352]. A similar behaviour was observed for hemp fibre composites. As in 

static tensile testing, the samples tested in fatigue failed in a completely brittle and 

catastrophic manner, normal to the direction of applied stress. A typical sample 

fractured in fatigue testing is shown Fig. 5.45.

Fig. 5.45: Fracture surface of a hemp fibre composite sample in fatigue testing

The fatigue fractured sample has quite similar appearance to that fractured in tensile 

testing. Therefore it can be expected that damage development modes in fatigue were 

quite similar to those in tensile testing. This is also borne out by the SEM micrographs 

of the fracture surface as shown in Fig. 5.46. It is clear from the images that, as in
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tensile fracture, the principal modes of failure in tension-tension fatigue are matrix 

fracture, fibre fracture, fibre/matrix debonding, and fibre pull-out.

atrix fractun

'ibre fracture

Fig. 5.46: SEM micrographs of fracture surfaces of samples in fatigue testing



It has been established for randomly oriented fibrous composites that in fatigue the 

damage first initiates by the debonding of fibre strands, lying perpendicular to the 

loading direction, from the matrix in the fibre rich regions [22]. Owen and Dukes [355] 

concluded form fatigue testing of CSM glass/polyester composites that the first damage 

mechanism was debonding of fibres lying normal to tensile axis. A similar damage 

initiation and development mode can be expected from randomly oriented hemp fibre 

mat composites. The variability in the tensile strength of hemp fibres means that a few 

of the weakest fibres are also expected to fail during initial fatigue loading. This will 

give rise to locally high stresses in the matrix and the fibre-matrix interface. However 

weak fibre/matrix interface may encourage the growth of the crack along the interface 

rather than matrix fracture. This may relieve some of the stress concentration in the 

vicinity of the crack and the weak interfacial bond may even enhance the fatigue life of 

the composite [22].

The effect of residual stresses on fatigue should not be neglected. These stresses are in 

addition to the applied stresses in fatigue and can be as high as applied stresses 

depending on the matrix and fibre characteristics and cure conditions [352]. It has also 

been suggested that the residual stresses contribute to overestimated value of fatigue 

sensitivity coefficient because of an increase in applied stress and hence increase in the 

slope of S-N curve [352].

With the application of more cycles, additional debonding is expected to spread in fibre 

bundles located in other than normal directions, with the development of matrix 

cracking in resin-rich areas. These matrix cracks can grow along the weak interface by 

bypassing the fibre if the fibre is strong. If the fibre is weak and brittle, the matrix 

cracks can grow by fracturing the fibre. Because of high variability in tensile strength of 

hemp fibres, both kinds of mechanisms can be expected to exist in these composites. 

Further application of load is expected to result in interfacial debonding and fracture of 

fibres oriented in the longitudinal direction. The fibres lying in the loading direction 

will normally be the last to break. The sample finally breaks in a catastrophic manner 

when all these damage mechanisms weaken the sample so much that it can no longer 

sustain the applied load.
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5.5.1.2 CSM Glass Fibre Reinforced Polyester Composites

The S-N curve of CSM glass fibre reinforced polyester composites, compared to hemp 

fibre composites, is shown in Fig. 5.47. The dashed lines represent 95% confidence 

interval of linear regression lines.
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Fig. 5.47: Comparison of S-N curves of CSM glass and hemp fibre composites

CSM glass fibre composites have higher fatigue strength than hemp fibre composites as 

they require higher fatigue stress to fracture for same number of cycles. However their 

S-N curve is steeper than hemp fibre composites which can be shown more neatly in 

normalised S-N curves. The comparison of normalised S-N curves of CSM glass fibre 

composites with hemp fibre composites is shown in Fig. 5.48. The figure shows better 

fatigue sensitivity of hemp fibre composites compared with glass fibre composites, also 

indicated by fatigue sensitivity coefficient value of 0.097 compared to that of 0.127 for 

CSM glass fibre composites. This value is consistent with the values reported in 

literature for CSM glass fibre/polyester composites [352] and suggests superior fatigue 

sensitivity of hemp fibre composites compared to glass fibre composites.
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Fig. 5.48: Comparison of normalised S-N curves of hemp fibre and glass fibre

composites

5.5.1.3 Hemp-CSM Glass Fibre Reinforced Hybrid Composites

The S-N curve for hemp skin-glass core hybrid composites, compared to S-N curve of 

hemp composites, is shown in Fig. 5.49. The static tensile strength of hemp skin-glass 

core composites is about 50% higher than hemp fibre composites. This improvement in 

tensile strength is also reflected in improved fatigue strength of these composites 

compared to hemp fibre composites as their S-N curve is observed to lie higher than 

hemp fibre composites, implying that higher stress is required to fracture the samples at 

same number of fatigue cycles. The endurance limit of hemp skin-glass core composites 

also shows an increase to about 30 MPa, almost 50% increase compared to 20 MPa for 

hemp fibre composites. Thus replacement of about 11% hemp fibres with glass fibres 

results in significant increase in their fatigue strength.

242



70

60

SO

«2 40

30

a  Hemp

♦  Hemp skin-Glass core

—  Hemp

—  Hemp skin-Glass core

20

10

o
i 2 3 4 5 60

C ycles to Failure (log N)

Fig. 5.49: Comparison of S-N curves of hemp skin-glass core hybrid and hemp

fibre composites

90

80

70

60

50

</) 40

30

■ G lass skin-H em p core 
a  Hemp

— G lass skin-Hemp core 

— Hemp________________

20

10

0
0 1 2 3 4 5 6

C ycles to Failure (log N)

Fig. 5.50: Comparison of S-N curves of glass skin-hemp core hybrid and hemp

fibre composites

243



For glass skin-hemp core hybrid composites, the improvement in static strength 

compared to hemp fibre composites is about 75% and improvement in fatigue strength 

is again observed as shown in Fig. 5.50. However the slope of the curve is steeper than 

hemp skin-glass core composites, suggesting less improvement in fatigue strength. This 

is also reflected in lower improvement in endurance limit to about 25 MPa, compared to 

30 MPa for hemp skin-glass core composites. This suggests that having hemp fibres as 

skin and glass fibres as core may be a more efficient method of improving the fatigue 

strength of hybrid composites.

Fig. 5.51 shows the comparison of normalised S-N curves of hemp fibre and hybrid 

composites. Hemp skin, glass core composites have similar slope as hemp fibre 

composites whereas the slope of glass skin-hemp core composites is steeper, suggesting 

less fatigue sensitivity of these composites. The comparison of fatigue sensitivity 

coefficients of hybrid composites with hemp composites is shown in Table 5.12. There 

is no change in fatigue sensitivity coefficient of hemp skin-glass core composites. The 

fatigue sensitivity coefficient of glass skin-hemp core composites is lower than that of 

hemp fibre composites but the difference between the two does not appear to be 

significant.
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Fig. 5.51: Comparison of normalised S-N curves of hybrid and hemp composites
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Table 5.12: Comparison of fatigue sensitivity coefficients of hemp and hemp-glass

hybrid composites

Composite configuration Fatigue sensitivity coefficient

Hemp 0.097

Hemp skin-glass core hybrid 0.097

Glass skin-hemp core hybrid 0.115

Since fatigue strength of composites is primarily strain dependent, the fatigue 

performance of a hybrid composite is usually dominated by the lower strain phase, 

which is hemp fibre in this case. Therefore fatigue properties of hybrid composites are 

expected to be dominated by the fatigue properties of hemp fibres at low concentrations 

of glass fibres. Having hemp fibres as a core element seems to have resulted in 

deterioration in fatigue sensitivity as the lower strength and strain of hemp fibres seems 

to have resulted in greater damage development in fatigue loading than having glass 

fibres as core element. Overall no improvement in fatigue sensitivity of hybrid 

composites was observed compared to hemp fibre composites.

5.5.4.1 Overall comparison of S-N Curves

The comparison of S-N curves and normalised S-N curves of hemp fibre, CSM glass 

fibre and hemp-glass fibre hybrid composites are shown in Figs. 5.52-53. It is clear that 

although glass fibre composites have higher fatigue strength, they are more fatigue 

sensitive than hemp fibre composites as shown by the steeper slope of their normalised 

S-N curve. The endurance limit, which is 40% of the static strength of hemp fibre 

composites, is seen to be about 25% of static strength for CSM glass fibre composites. 

The hybridisation of hemp fibres with 11% glass fibres by volume increases their 

fatigue strength but does not increase their fatigue sensitivity.
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5.5.2 Damage Development

5.5.2.1 Hemp Fibre Composites

Stiffness degradation of the composites was monitored periodically during fatigue 

loading to try to understand the damage development and relate it to fatigue properties 

of glass and hemp fibre composites. Samples were periodically taken out of the fatigue 

testing machine following fixed number of cycles and their residual stiffness was 

determined by using the standard tensile testing method and their surfaces examined.

-♦ -S tress= 50% of UTS 

-* -S tress= 60% of UTS 
-± -S tress= 70% of UTS

2 4 5 61 3

Number of Cycles (log N)

Fig. 5.54: Stiffness degradation of hemp fibre composites at different stress levels

Stiffness degradation of hemp fibre composites at different stress levels is shown in Fig. 

5.54. The hemp fibre composites fatigue tested at stress level 50% of their static 

strength showed negligible reduction in their stiffness throughout the fatigue life. This 

showed the capability of hemp fibre composites to resist crack initiation and growth 

during fatigue loading. The sample was inspected after fatigue loading, and no crack 

was observed to be forming in its surface as shown in Fig. 5.55.
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Fig. 5.55: Comparison of sample fatigue tested at stress level 50% of UTS (top)

with untested sample (bottom)

(c) N=1000 (d) N=10000

(e) N=31,000 (f) N=45500

Fig. 5.56: Surface of hemp fibre sample fatigue tested at 60% of UTS



Composites fatigue tested at stress level of 60% of their UTS showed some initial 

improvement in residual stiffness and no change in the surface of the sample was 

observed as shown in Fig. 5.56. However between 10,000 and 31,000 cycles, a crack 

was seen to be forming along the edge of the sample, shown by arrowhead in Fig. 5.56 

(e), which correlated well with decline in residual stiffness by almost 20% between 

these two cycles. The sample eventually broke at the same crack site as shown in Fig. 

5.56(f).

(e) N=10000 (f) N=15500

(g) N=17686

Fig. 5.57: Surface of hemp fibre sample fatigue tested at 70% of UTS
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Composites fatigue tested at 70% of their static strength also showed little degradation 

in residual stiffness at low fatigue cycles. However close to failure, about 15% stiffness 

degradation was observed. No crack was seen to be forming on the surface, as shown in 

Fig. 5.57. The reduction in stiffness could be due to fibre/matrix debonding. The sample 

finally broke along the interface between the resin and fibres located at almost normal to 

load direction as shown in Fig. 5.57 (g).

Little degradation in residual stiffness even at very high stresses showed good fatigue 

resistance of these composites and it correlated well with their fatigue sensitivity 

coefficient

5.5.2.2 CSM Glass Fibre Composites

Stiffness degradation of CSM glass fibre reinforced polyester composites in fatigue 

loading is shown in Fig. 5.58. The degradation of stiffness at all stress levels is gradual, 

the amount of degradation increasing with increase in stress level. This is unlike three 

stage stiffness degradation that has been reported for continuous glass fibre composites. 

This is also unlike hemp fibre composites which showed little degradation at similar 

normalised stress levels.
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Fig. 5.58: Stiffness degradation of CSM glass fibre composites at different stress

levels
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The samples tested at 30% of UTS suffered a stiffness degradation of about 20% during 

its fatigue life. The sample endured 106 cycles and the surface of the sample was 

inspected and compared with an untested sample. As shown in Fig. 5.59, although there 

was no evidence of crack formation on the surface of the sample, the sample exhibited 

considerable whitening compared to untested sample. This was consistent with the fact 

that first damage mechanism in fatigue loading in CSM glass fibre composites is 

debonding [352] . The stress at this stage was not enough to initiate matrix cracking.

Fig. 5.59: Surfaces of glass fibre composites that endured 106 cycles at Fatigue 

Stress of 30% of UTS (bottom) and untested composite (top)

Samples fatigue tested at stress levels of 40% and 50% of UTS also showed about 20% 

reduction in modulus before fracturing. Sample fatigue tested at stress levels of 60% of 

UTS showed immediate decline in modulus. The surface of the sample was monitored 

and it was observed that a crack formed on the surface of the sample after only 1000 

cycles, as shown by arrowhead in Fig. 5.60. Thus the higher stress level induced matrix 

cracking at early stage of fatigue life. This was also accompanied by fibre/matrix 

debonding resulting in whitening of the sample. The sample eventually broke at crack 

site after 1768 cycles. At same normalised stress level, hemp fibre composites resisted 

formation of crack on the surface until after 10,000 cycles and they were able to endure 

fatigue cycles of 45,500. This reinforced the better fatigue sensitivity of hemp fibre 

composites compared to glass fibre composites.



(e) N=1768

Fig. 5.60: Surfaces of glass fibre composites after different fatigue cycles fatigue 

tested at stress level of 60% of UTS

Sample fatigue tested at stress level of 70% of UTS also showed sudden decline in 

stiffness after 100 cycles of loading, at which point a crack was seen to be forming on 

the surface as shown in Fig. 5.61 (b). Further application of fatigue stress resulted in 

rapid propagation of crack and debonding resulting in whitening of the sample. The 

sample broke after only 982 cycles. At similar normalised stress levels, hemp fibre 

sample was able to endure 17886 cycles and no crack was seen to be forming on the 

surface of the sample.

These studies have shown the correlation between fatigue sensitivity and stiffness 

degradation of hemp and glass fibre composites. At similar levels of normalised stress, 

hemp fibre composites are more successful at resisting propagation of cracks, thus 

exhibiting lower degradation in stiffness, compared to glass fibre composites. This 

results in improved fatigue sensitivity of hemp fibre composites.



(c) N=500 (d) N=982

Fig. 5.61: Surfaces of glass fibre composites after different fatigue cycles fatigue 

tested at stress level of 70% of UTS

5.5.2.3 CSM Glass-Hemp Hybrid Composites

Fig. 5.62 shows stiffness degradation with increase in the number of cycles at different 

stress levels for hemp skin-glass core hybrid composites. Similar to hemp fibre 

composites, the stiffness degradation in composites is minimal with increase in number 

of cycles. This is consistent with the fact that hemp skin-glass core composites have the 

same fatigue sensitivity coefficient as the hemp fibre composites.

The effect of cyclic loading on residual stiffness of glass skin-hemp core composites is 

shown in Fig. 5.63. It is clear that in this configuration also the stiffness degradation is 

minimal with the increase in number of cycles. The fibre configuration does not seem to 

have any effect on stiffness degradation of hybrid composites and both kinds of 

configurations result in similar behaviour as for hemp fibre composites. The 

replacement of 11% of hemp fibres has not affected their fatigue properties and it 

continues to be dominated by hemp fibre properties.
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Fig. 5.63: Stiffness degradation of glass skin-hemp core hybrid composites
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5.5.3 Fatigue properties following low velocity impact
5.5.3.1 Hemp Fibre Composites

The relatively poor low velocity impact properties of hemp fibre composites can also 

lead to degradation of their post-impact fatigue properties. It is therefore important to 

study the effect of low-velocity impact on their fatigue properties.

Samples of hemp fibre reinforced polyester composites that had been subjected to low 

velocity impact of energy levels of 1, 2, and 3J were subsequently fatigue tested in 

tension-tension mode at a frequency of 1 Hz (R=0.1). The S-N chart for samples impact 

tested following an impact energy of 1 J is shown in Fig. 5.64. The dashed lines 

represent 95% confidence interval of the linear regression line.
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Fig. 5.64: S-N chart of composites following low velocity impact of 1J

The impact of 1J results in gradual decrease in fatigue strength of the samples with 

increase in number of cycles. It was shown in Section 5.4.1.2 that impact of 1J results in 

negligible reduction in tensile strength but 17% reduction in tensile stiffness. The 

deterioration in stiffness seems to have affected the fatigue properties with increase in 

slope and decrease in endurance limit compared to non-impacted composites. The value 

of the endurance limit of the samples has gone down to about 17 MPa following impact 

as against 20 MPa for non-impacted samples as shown by the arrowheads. The scatter in
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data is also quite high following low-velocity impact shown by the points lying outside 

the 95% confidence interval which can be attributed to variation in structural integrity 

following low velocity impact.

The S-N chart for samples impact tested at 2J is shown in Fig. 5.65. As shown in 

Section 5.4.1.2, the tensile strength of composites had reduced by almost 45% and 

tensile stiffness by about 35% following low velocity impact at 2J. This corresponds 

well with the reduction in fatigue strength following 2J impact. The scatter in the data is 

again quite high. Fatigue testing of samples impact tested at 2J results in further 

reduction in fatigue strength, indicated by the reduction in endurance limit to about 11- 

12 MPa as shown by the arrowheads.
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Fig. 5.65: S-N chart of composites following low velocity impact at 2J

The S-N chart for samples impact tested at 3J is shown in Fig. 5.66. Following impact 

at 3J energy, the tensile strength of these composites had reduced by 50% and tensile 

stiffness by 55%. This correlated with their reduction in fatigue strength. Fatigue testing 

of samples impact tested at 3J results in further reduction in fatigue strength of the 

composites. The endurance limit in this case has gone down to about 11 MPa as shown 

by arrowheads.
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Fig. 5.66: S-N chart for samples impact tested at 3J

The fatigue sensitivity of the composites following low velocity impact can be best 

understood by comparing the normalised S-N curves and fatigue sensitivity coefficients 

of the composites following low velocity impact as shown in Fig. 5.67 and Table 5.13. 

Fig. 5.67 shows that the fatigue sensitivity of non impacted samples and the samples 

impact tested at 1 J is quite similar and their fatigue sensitivity coefficients are also 

quite similar. It is possible to draw same 95% confidence limit lines for both of these 

composites. This is consistent with the fact that an impact of 1J had negligible effect on 

residual tensile properties of composites.
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Fig. 5.67: Comparison of normalised S-N curves of impacted and non-impacted

composites

Table 5.13: Fatigue sensitivity coefficients at different impact energy levels

Impact Energy (J) Fatigue sensitivity coefficient

0 0.097

1 0.102

2 0.069

3 0.072

As shown in Section 5.4.1.2, these composites lost almost half of their intrinsic strength 

following impact at 2J and 3J. The normalised S-N curves of composites impacted at 2J 

and 3J are similar, resulting in similar values of fatigue sensitivity coefficients. This 

suggests that their fatigue sensitivity is similar once they have lost almost half of their 

tensile strength. It is again possible to draw same 95% confidence intervals for both 

kinds of composites.
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Thus fatigue properties of hemp fibre composites following impact can be correlated 

with their residual tensile properties after impact. When normalised by their respective 

residual strength, the effect of impact damage becomes more clear and similarities can 

be drawn between 1J impacted samples with non-impacted samples, and 2 and 3J 

impacted samples.

5.5.3.2 CSM Glass Fibre Composites

The S-N curve of CSM glass fibre reinforced polyester following impact of 5J is shown 

in Fig. 5.68. The static strength of 5J impacted samples is reduced by about 25%. The 

decline is also reflected in poor fatigue resistance following impact and decline in the 

fatigue limit to about 40 MPa, compared to about 50 MPa for non-impacted composites.
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Fig. 5.68: S-N curve of glass fibre composites following 5J impact

The S-N curve of glass fibre composites following impact of 10J is shown in Fig. 5.69. 

The impact of 10J results in almost 40% reduction in static strength of composites and 

this is also reflected in the S-N chart with the endurance limit now reduced to about 35 

MPa.
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Fig. 5.69: S-N curve of composites following 10J impact
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Fig. 5.70: Normalised S-N curve of CSM glass fibre reinforced polyester 

composites with impact damage

It has been shown [356] that for glass fibre reinforced polyester composites with [±45°]4 

and [ 0 / 9 0 ° ] 2 s  fibre configurations, the normalised S-N data following low velocity 

impact can be represented by a single best fit line, suggesting that the impact induced 

damage does not significantly affect the fatigue sensitivity. Hence it is possible to
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predict fatigue lifetimes of impact damaged composites by determining their residual 

tensile strength and the S-N curve of non-impacted composites. A similar result for 

CSM glass fibre reinforced polyester composites was observed in this research as 

shown in Fig. 5.70.

This seems to suggest that this is an intrinsic property of glass fibres and is independent 

of the fibre configuration. When normalised by their respective residual tensile strength, 

hardly any effect of impact damage on fatigue life can be found for glass fibre 

composites.

5.5.4 Fatigue in tension-compression loading

The compressive behaviour of composite materials has been called their ‘Achilles heel’ 

[15] and tension-compression loading is considered to be the worst fatigue loading 

condition for composite materials. The fatigue lives of synthetic fibre composites are 

shorter in tension-compression loading than in tension-tension and zero-tension loading. 

This has been attributed to laminate plies, without fibres in the test direction, developing 

inter-ply damage and causing local layer delimitation buckling [357]. Because of greater 

demand on the matrix and the interface in compressive loading, they have greater effect 

on compressive fatigue behaviour of composite materials than in tensile fatigue. In 

addition, local resin and interfacial damage lead to fibre instability in compressive 

loading that is more severe than the fibre fracture that occurs in tensile loading [218]. 

The tension-compression fatigue loading has been shown to decrease the fatigue 

strength and increase the slope of S-N curve compared to tension-tension loading for 

unidirectional and multidirectional graphite-epoxy laminates [218]. The only available 

example in literature for tension-compression fatigue studies of natural fibre composites 

is for sisal-epoxy laminates [354].

The comparison of S-N curves in tension-tension and tension-compression fatigue is 

shown in Fig. 5.71. The S-N curve in tension-tension fatigue is above that of tension- 

compression fatigue at all points, showing lower fatigue strength in tension- 

compression fatigue. This is also evidenced by reduction in endurance limit to about 12 

MPA in tension-compression as against 20 MPa in tension-tension loading. The fatigue 

sensitivity coefficient is much higher in tension-compression loading at 0.122 as against 

0.097 in tension-tension loading, indicating greater fatigue sensitivity in tension- 

compression.
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Fig. 5.71: S-N curve of hemp fibre composites in tension-compression fatigue

loading

Fig. 5.72: Fractured sample in tension-compression fatigue

The fracture of the samples was still normal to the applied load as shown in Fig. 5.72.

5.6 FLEXURAL PROPERTIES

In many applications, the composite materials are subjected to flexural stresses and it is 

important to know their flexural properties. The flexural properties of hemp fibre 

composites was determined by using three point bending tests as described in Chapter 3.
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The average fibre weight fraction of these composites was 53%. The results of flexural 

testing are given in Table 5.14.

Table 5.14: Flexural Properties of hemp fibre composites

Flexural Strength (MPa) 

Flexural Modulus (GPa) 

Strain to break (%)

These values are consistent with the values reported by other researchers for hemp 

fibre-polyester composites. Sebe et al [124] reported the flexural strength and modulus 

at 30% fibre weight fraction to be 115 MPa and 7.5 GPa respectively. Rouison et al 

[146] reported the values of flexural stress and modulus at 20% fibre volume fraction to 

be 55 MPa and 5 GPa respectively.

91.9 (8.6)

5.9 (0.6) 

2.7 (0.2)

Fig. 5.73: Fracture surfaces of flexural tested sample

The macrographs of flexural tested samples are shown in Fig. 5.73. From the 

macrographs of the samples, it is evident that the dominant mode of fracture in these 

samples is the tensile fracture of the outer surface, shown by the arrowhead. No 

interlaminar shear fracture was observed because of the same fibre geometry in the 

laminae, which precludes any bending stiffness mismatch which can initiate 

interlaminar shear fracture. Thus flexural strength of this material seems to be 

determined by the tensile strength of hemp fibres.
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Fig. 5.74: Flexural stress versus strain curve of a typical sample

The flexural stress-strain curve of a typical sample is shown in Fig. 5.74. The initial 

slope of the curve is relatively constant. At about half of the flexural strength, the slope 

starts to decrease indicating the onset of fracture in the outer surface. The polymers 

matrix, with lower strain to failure, is expected to fracture first, transferring the load to 

fibres. Further application of stress results in fibre/matrix debonding and fracture of the 

fibres. The slope goes on decreasing until the sample attains its maximum flexural 

strength at a strain value of about 2.7%.
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6 .  MECHANICAL PROPERTIES OF 

SURFACE TREATED HEMP FIBRE 

REINFORCED POLYESTER COMPOSITES

I n this part of the research, hemp fibres were subjected to various surface 

treatments to try to improve the fibre properties and fibre-matrix interfacial 

bonding and determine their effects on mechanical properties of hemp fibre 

reinforced polyester composites. Four different kinds of surface treatments were 

used: heat treatment, alkalisation, acetylation and plasma treatment.

6.1 HEAT TREATMENT

Hemp fibres were subjected to various heat treatments in order to study their effect on 

the mechanical properties of the composites made from these fibres. Exposing the fibres 

to elevated temperatures can result in changes in their physical and mechanical 

properties as discussed in Section 4.1.3. Rong et al [358] reported 37% increase in 

tensile strength but no change in tensile modulus of sisal fibres following heat treatment 

at 150°C for 4 hours. The composites made from heat treated fibres in epoxy matrix 

also showed improvement in tensile and flexural properties compared to non-treated 

fibre composites. From their studies on jute fibre reinforced epoxy composites, Gassan 

and Bledzki [67] reported that the tensile strength of composites with maximally pre­

dried fibres (moisture content approximately 1 wt. %) increased by about 10% 

compared to minimally dried fibres (moisture content approximately 10 wt %). The 

tensile modulus was found to increase by about 20%. The void content in the 

composites was also found to decrease from 7 volume% at no moisture loss to 0.5 

volume % at 10% moisture loss.

The heat treatment can result in three kinds of significant changes in the fibres: increase 

in surface energy, removal of moisture and changes in microstructure of the fibres. 

Studies done on hemp fibres by Prasad et al [57] have shown that the non-polar surface
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energies of fibres heat treated at 40, 60 and 80°C were higher than those of untreated 

ones. This indicated a decrease in hydroxyl groups on the fibre surface leading to 

increased hyrophobicity and less polarity. Higher non-polar surface energy of fibres 

should result in better interaction between the fibres and the non-polar polymer resin.

As shown in Section 4.1.2, hemp fibres used in this research contained approximately 

10% moisture. Removal of moisture can be very useful in improving the interfacial 

bonding between the fibres and the matrix because water on the fibre surface acts like a 

separating agent in the fibre-matrix interface [45]. Additionally because of the 

evaporation of water during the reaction process with thermoset resins (most of which 

have reaction temperature of over 100°C), voids can form in the composites. Both of 

these phenomena can result in decrease in mechanical properties of natural fibre 

reinforced composites. On the other hand removal of moisture can make natural fibres 

brittle which can decrease their effectiveness as a reinforcement For cellulose fibres, 

the tensile strength usually increases with increase in moisture and decreases with 

increase in temperature [10].

The changes in microstructure of the fibres can also have a significant effect on the 

mechanical properties of the fibres and hence of the composites made from them. Heat 

treatment at up to 200°C can result in increase in crystallinity index of fibres due to 

rearrangement of molecular structure at high temperatures. Natural fibres start to 

degrade at temperatures of above 150°C which may have an adverse effect on their 

properties. The oxidation of the fibre surface following heat treatment is another aspect 

that is crucial with respect to fibre/matrix interfacial bonding and hence the mechanical 

properties of the composites.

Three different temperatures were selected for heat treatment of hemp fibres: 100°C, 

150°C, and 200°C. The fibres were kept in the oven at these temperatures for 30 

minutes each. The heat treatment time of 30 minutes was chosen because, as shown in 

Section 4.1.2, this time was sufficient to remove most of the moisture from the fibres at 

a particular temperature.

The fibre weight fraction of heat treated fibre composites was lower than that of non­

treated fibre composites made at 3MPa pressure. This was expected since, as shown in
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Section 4.1.2, heating the fibres to 100°C resulted in almost 8.5% reduction in weight 

because of removal of moisture. The weight reduction was 9% for fibres heated at 

150°C and 10% for fibres heated at 200°C. It was also observed that the laminates made 

from heat treated fibres showed less spillage of resin following compression moulding 

than non-treated fibre composites. This indicated improved wetting of fibres by the 

resin which can be attributed to increase in non-polar surface energy of the fibres 

following heat treatment. This again may have contributed to reduced fibre weight 

fraction of composites following heat treatment.

6.1.1 Tensile Properties

The tensile properties of heat-treated fibre composites are shown in Table 6.1 and 

compared in Figs. 6.1-6.2. The numbers in parentheses are standard deviations.

Table 6.1: Tensile Properties of Heat Treated Fibre Composites

Heat Treatment 

Temperature

Room

Temperature

100°C 150°C 200°C

Fibre weight fraction (%) 47 47 46 34

Tensile Strength (MPa) 35.8 (4.2) 40.1 (6.0) 39.8 (5.7) 32.8 (5)

Tensile Modulus (GPa) 5.6 (0.7) 7.2 (0.3) 6.4 (0.9) 6.3 (0.8)

Strain to Failure (%) 0.94 (0.19) 0.80 (0.22) 0.93(0.15) 0.60 (0.13)

Since the fibre weight fraction of heat-treated fibre composites was considerably less 

than that for untreated fibre composites made at 3 MPa moulding pressure, it is not 

realistic to compare their properties. Therefore the properties of untreated fibre 

composites made at moulding pressure of IMPa, which had similar fibre weight fraction 

to heat treated fibre composites, have been used in Table 6.1 and Figs. 6.1-6.2.
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RT(47%) 100'C (47%) 150‘C(46%) 200*C(34%)

Fig. 6.1: Effects of different fibre heat treatments on tensile strength of composites 

(fibre weight fractions in parentheses)

Fig. 6.1 shows that tensile strength of composites made from heat treated fibres does 

show improvement in tensile strength. The increase in strength is approximately 15% 

compared to untreated fibre composites. However the increase in strength is similar for 

the fibres heat treated at 100°C and 150°C. This is not unexpected since the amount of 

moisture removed from fibres at these temperatures is quite similar. Although there was 

some evidence of oxidation of fibres heat treated at 150°C, this does not seem to have 

any effect on composites’ strength. The composites made from fibres heat-treated at 

200°C show considerable decline in tensile strength. The most probable reason for this 

is that above 150°C considerable changes in the structure of the fibres start to take 

place. Heat treatment at 200°C leads to increased oxidation, pyrolysis and degradation 

of fibres. Peters and Still [359] have contended that between 150 and 240°C, gradual 

degradation of natural fibres occurs which includes depolymerisation, hydrolysis, 

oxidation, dehydration and decarboxylation, which lead to the decomposition of fibres. 

The composites made from these fibres have significantly lower fibre weight fraction. 

This combined with the degradation of the fibres means that the composites made from 

these fibres have lower tensile strength. Heat treatment at this temperature also results in
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embrittlement of fibres which is evidenced in considerable reduction in strain to failure 

of composites (see Fig. 6.8).

8

RT (47%) 100’C(47%) 150’C(46%) 200’C(34%)

Fig. 6.2: Effects of different fibre heat treatments on tensile modulus of composites 

(fibre weight fractions in parentheses)

Fig. 6.2 shows the effect of different heat treatments of fibres on tensile modulus of 

composites made from them. The heat treatment of fibres results in improvement in 

tensile modulus of composites and the improvement is observed at all three treatment 

temperatures. The improvement in modulus is approximately 30% for 100°C treated 

fibre composites and approximately 15% for 150°C treated fibre composites compared 

to untreated fibre composites. The improved fibre/matrix interfacial bonding because of 

removal of moisture and increase in surface energy of fibres can be attributed to this 

increase in modulus. Even degradation of fibres heat treated at 200°C does not seem to 

have much deleterious effect on the modulus of composites made from these fibres. The 

probable reason for this is the increase in brittleness of fibres following this treatment 

which seems to have made the composites stiffer.

The heat treatment of fibres did not result in any changes in fracture behaviour of the 

samples in tensile testing and they failed in a completely brittle manner. A comparison
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of stress-strain curves of heat treated fibre composites with that of non heat treated fibre 

composites is shown in Fig. 6.3.
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Fig. 6.3: Comparison of stress-strain curves of heat treated fibre composites with

untreated fibre composites

This part of the research has shown that heat treatment of fibres does result in some 

improvement in tensile properties of the composites. However most of the increase in 

strength and stiffness can be gained by heating the fibres at 100°C. Heating the fibres at 

higher temperatures does not necessarily result in any further improvement in properties 

of composites. Heat treatment, therefore, may not be a very efficient method of 

improving the surface properties of the fibres, as it will also incur extra costs in power 

consumption. If the fibres are to be pre heat treated for a particular requirement, the heat 

treatment temperature should be limited to up to 100°C.
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6.1.2 Impact Properties

The heat treated fibre composites were tested in low velocity impact to study impact 

damage tolerance of these composites. The impact testing regime was the same as for 

untreated fibre composites.

Fig. 6.4 shows the comparison of residual tensile strength of heat-treated and untreated 

fibre composites following low velocity impact. It is clear from the graph that untreated 

fibre composites start off by having better tensile strength without impact and maintain 

their edge in residual strength following impact at all energy levels. The composites 

with 100°C treated fibres show a threshold impact energy of 1J like untreated fibre 

composites but then they show gradual decline in residual strength with increase in 

impact energy. The composites with fibres treated at 150°C and 200°C show decline in 

strength even at impact energy of 1J indicating their poor impact damage tolerance. The 

composites from fibres treated at 200°C have the lowest residual strength following 

impact at all energy levels.

In order to understand the impact damage tolerance of heat-treated fibre composites, 

their residual strength was normalised at each impact energy level by dividing by their 

un-impacted strength. The resulting graph is shown in Fig. 6.5. From the figure, it is 

clear that heat treatment does not result in any improvement in impact damage tolerance 

of heat treated fibre composites. The composites made from 200°C treated fibres show 

considerable degradation in their impact damage tolerance which can be related to 

degradation in the fibre properties following heat treatment at 200°C. The composites 

made from untreated fibre composites lost almost 70% of their strength following 

impact at 4J. For composites made from fibres heat treated at temperatures of 100°C 

and 150°C the loss in strength is about 80% at same energy level. The composites made 

from fibres treated at 200°C lose almost all of their strength at impact energy of 4J.

Fig. 6.6 shows the comparison of residual tensile stiffness of the heat-treated and 

untreated fibre composites following low velocity impact. All the heat treated fibre 

composites show gradual decline in stiffness with increase in impact energy level. The 

composites made from fibres heat treated at 200°C are again the least damage tolerant 

in terms of residual stiffness.
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Fig. 6.4: Comparison of residual tensile strength of heat-treated and untreated 

fibre composites following low velocity impact
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Fig. 6.5: Comparison of normalised residual strength of heat-treated and

untreated fibre composites
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Fig. 6.6: Comparison of residual tensile stiffness of heat-treated and untreated 

fibre composites following low velocity impact
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Fig. 6.7: Comparison of normalised residual stiffness of heat-treated and untreated

fibre composites
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The impact damage tolerance of composites in terms of normalised residual stiffness is 

shown in Fig. 6.7. Following impact at energy level of 4J, 100°C and 150°C treated 

fibre composites lost almost 80% of their original stiffness. The composites made from 

untreated fibres lost 70% of their original stiffness at impact energy of 4J. 200°C treated 

fibre composites lost almost all of their intrinsic stiffness following impact energy of 4J.

The comparison of strain to failure of heat-treated and untreated fibre composites 

following various impact energies is shown in Fig. 6.8.
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Fig. 6.8: Comparison of strain to failure of heat-treated and untreated fibre 

composites following low velocity impact

It is clear that at all energy levels the strain to failure of heat treated fibre composites is 

mostly reduced compared to non-treated fibre composites which points at increased 

brittleness of fibres following heat treatment. This also points at reduction in energy 

absorption capacity of composites following fibre heat treatment since it is proportional 

to area under the stress-strain curve. The decline in impact damage tolerance of 

composites impact can be mostly attributed to increase in brittleness of fibres, and 

hence decrease in strain to failure, as a result of heat treatment. The lower fibre weight 

fraction of the heat-treated fibre composites compared to non heat-treated fibre
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composites can also be a factor in their reduced impact properties. It is thus concluded 

that heat treatment of hemp fibres does not result in any appreciable improvement in 

impact damage tolerance of hemp fibre composites.

6.1.3 Fatigue Properties

Composites made with pre-heat treated hemp fibres at 100°C were tested in tension- 

tension fatigue (R=0.1) at 1 Hz frequency. The comparison of S-N curves of heat- 

treated and untreated fibre composites is shown in Fig. 6.9. From the curves it can be 

seen that heat treated fibre composites have similar slope of curve and similar 

endurance limit of about 20 MPa to untreated fibre composites. Thus the fatigue 

strength of heat-treated fibre composites does not seem to show any measurable 

improvement compared to untreated fibre composites. However it should be appreciated 

that these composites had lower fibre weight fraction (47%) compared to untreated fibre 

composites (52%).

In order to compare the fatigue sensitivity of these composites with untreated fibre 

composites, their S-N curves were normalised by dividing their peak stress by static 

strength and the comparison of the curves is shown in Fig. 6.10. This curve also took 

into account their lower static strength because of lower fibre weight fraction. The 

figure shows slightly improved fatigue properties of heat-treated fibre composites which 

is also reflected in higher fatigue sensitivity coefficient value of 0.090 compared to non 

heat treated fibre composites, 0.097. However this does not represent a significant 

improvement in fatigue sensitivity. The fracture of heat treated fibre composites 

continued to be brittle in fatigue with no cracks visible on the surface of the samples 

during testing. Thus no appreciable improvement in fatigue properties of composites 

was observed for 100°C fibre treated composites.
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Fig. 6.9: Comparison of S-N curves of heat-treated and untreated fibre composites

in tension-tension fatigue
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Fig. 6.10: Comparison of normalised S-N curves of heat-treated and untreated

fibre composites
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By comparing the tensile, impact, and fatigue properties of heat-treated fibre composites 

with those of untreated ones, it is clear that no appreciable improvement in mechanical 

properties can be gained by heat treatment of fibres. Some improvements in tensile and 

fatigue properties were observed for 100°C heat-treated fibre composites. The 

mechanical properties, especially post-impact residual properties, start to show 

deterioration for fibres heat treated at 150°C and above. The heat treatment will add up 

to the expense of making composites which does not seem to be justified when 

compared with the improvement gained in mechanical properties. So other methods of 

fibre surface treatment were explored to determine their effects on the mechanical 

properties of these composites.

6.2 ALKALISATION

Alkalisation is the most widely used process for the surface treatment of natural fibres 

because of its low cost, effectiveness, and convenience of use. A literature search 

reveals that it is the most common and efficient method of chemical modification and 

has been used to treat almost all natural fibres with successful results [46]. However the 

effect of this treatment on the impact and fatigue properties of hemp fibre composites 

has not been studied in detail.

There are two main parameters to be considered while carrying out the alkalisation 

process: NaOH concentration and treatment time. Unfortunately this process has not 

been standardised as yet and researchers have been using a range of concentration and 

treatment times in this process. In the initial stages of this research, 10% concentration 

of NaOH was used for 24 hours in this process. However, soon it became clear that this 

concentration was too high and was actually causing damage to the fibres and ultimately 

deterioration in properties of the composites made thereof. Therefore the concentration 

was reduced to 5% and 1% for making subsequent composites which resulted in 

considerable improvement in mechanical properties of these composites.
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6.2.1 Properties of alkalised fibres

6.2.1.1 Surface morphology

One important aspect of the alkalisation process is the change in the surface 

morphology of the fibres. There are two distinct kinds of changes in the surface 

morphology of the fibres following alkalisation. The first is the removal of the waxy 

layer and other contaminations from the fibres surface, resulting in cleaner and rougher 

fibre surface. This is expected to result in better fibre/matrix adhesion. The other change 

is the defibrillation of the fibres, i.e., separating the fibre bundles into single fibres 

(ultimate fibres or cells), thus increasing the surface area of the fibres available for 

bonding with the matrix, and hence improving the fibre/matrix interfacial bonding.

However, as shown in Fig. 6.11, alkalisation at all the three concentrations used in this 

research did not result in defibrillation of fibre bundles and the fibres can still be seen to 

consist of five or more ultimate fibres as for non-alkalised fibres shown in Fig. 4.8. 

Thus alkalisation may not be an efficient method for defibrillation of fibres.

Another important effect was the change of colour of alkalised fibres. The colour of 

10% alkalised fibres changed from light brown to dark brown. The change in colour 

was less noticeable for 1% and 5% alkalised fibres.

Perhaps the most important aspect of the 10% alkalisation process was the shrinkage of 

the hemp fibre mat. Following alkalisation the hemp fibre mat showed almost 30% 

reduction in surface area. An experiment was undertaken to study the effect of 10% 

alkalisation on individual hemp fibre bundles. The experiment confirmed that hemp 

fibre bundles experienced shrinkage from 10 to 50% following alkalisation. Alkalisation 

has a swelling effect on cellulose fibres, as discussed in Section 2.5.7.2, which may 

explain the shrinkage of these fibres. Hemp fibres treated to 1% and 5% solutions did 

not show any shrinkage of the mat following the treatment.
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Fig. 6.11: SEM micrographs of (a) 1%, (b) 5%, and (c) 10% alkalised hemp fibres

Gassan and Bledzki [360] have shown that alkalisation can lead to significant shrinkage 

of jute fibres which can have detrimental effect on the composites made with them. 

They showed that an alkalisation treatment of 25% NaOH for 20 minutes led to almost 

20% shrinkage in jute yams. At 10% NaOH treatment the shrinkage was 8%. This 

resulted in considerable reduction in tensile strength and tensile modulus of fibres after 

alkalisation.



Rahman and Khan [361] reported shrinkage in coir fibres following treatment with 

various alkali concentrations (5-50%) at different temperatures (0-100°C). The 

shrinkage was higher at low temperatures and became insignificant at higher 

temperatures. The highest shrinkage (5.9%) was observed for fibres treated with 20% 

alkali at 0°C.

In order to determine if the duration of the alkalisation treatment had any effect on the 

fibres, some fibres were treated to 10% concentration for one hour instead of the usual 

24 hours. It was observed that even after only one hour of exposure to NaOH, there was 

about 20% reduction in the surface area of the hemp mat. So the high concentration of 

NaOH started to have its effect as soon as the fibres were immersed in the solution and 

the chemical reaction of NaOH with the fibres was found to be quite rapid.

The hemp fibres used in this research were not woven but randomly oriented in the form 

of a mat. This meant that during washing up of fibres after alkalisation that already had 

been softened because of immersion in the solution, too vigorous rinsing and shaking 

was avoided since it would have led to loosening of the fabric of the fibres. In fact even 

with rinsing without too much shaking up, it was observed that some loosening of the 

mat fabric took place which led to further variation in the density of fibres across the 

mat. This introduced another possible source of variability in the properties of the 

composites.

6.2.1.2 Surface Energy

The surface energy of hemp fibres at the three alkali concentrations was evaluated and 

compared with that of non-alkalised fibres. The results are shown in Table 6.2. 

Following treatment at low concentration of 1% alkali solution, the surface energy does 

not seem to have changed much. This is consistent with the results reported by Park et 

al [328] who showed that 0.5% alkalisation of hemp fibres only resulted in a small 

increase in surface energy of hemp fibres from 35.3 mJ/m2 to 37.3 mJ/m2. At the higher 

concentrations of 5% and 10% alkali solution, the dispersive component seems to be 

decreasing which results in a decrease in total surface energy of fibres since the polar 

component of surface energy does not seem to change much. This makes the fibres 

more polar in nature following alkalisation at 5% and 10% solutions. This is consistent
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with the fact that the removal of hemicellulose and pectin following alkalisation reduces 

the dispersive component of surface energy. This reduction in dispersive energy due to 

dissolution of hemicelluloses has also been reported for flax fibres following steam 

explosion treatment [33]. Thus the alkalisation treatment does not seem to have any 

positive effect on surface energy of hemp fibres, except possibly at low concentrations.

Table 6.2: Surface energy of alkalised hemp fibres

Concentration

(%)

Polar

(mJ/m2)

Dispersive

(mJ/m2)

Total

(mJ/m2)

0 20.58 (4.83) 12.25 (6.57) 32.82 (4.38)

1 19.5(14.1) 12.5 (12.3) 32.0 (7.8)

5 16.7 (10.6) 4.5 (6.3) 21.3 (8.8)

10 18.2 (6.6) 2.1 (1.9) 20.3 (7.2)

6.2.1.3 Tensile Properties

Tensile testing of alkalised hemp fibres was carried out to determine any effect of 

alkalisation treatment on the tensile properties of hemp fibres. This testing is vital 

because it will help to determine if the alkalisation of hemp fibres might result in any 

improvement in tensile properties of composites made from these fibres.

The results of tensile properties of hemp fibres compared to those of non-alkalised 

fibres are shown in Table 6.3. As shown in Fig. 6.11, alkalisation of fibres did not affect 

the fibre shapes and most of them were found to have polygonal cross section after 

treatment like non-alkalised fibres. Therefore calculations for tensile properties were 

done considering both circular and polygonal cross sections. However in most cases the 

values were within 10% of each other.
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Table 6.3: Tensile properties of alkalised hemp fibres

Concent­ Mean Tensile Tensile modulus Strain to

ration width strength (MPa) (GPa) failure

(%) (mm) Circular Polygonal Circular Polygonal (%)

0 67 (25) 277(191) 244 (196) 9.5 (5.7) 8.6 (5.9) 2.3 (0.8)

1 72(19) 311 (108) 285(120) 13.5(5.3) 12.1(4.4) 2.8 (1.0)

5 62(15) 304(136) 256(109) 14.9(6.8) 12.3(5.6) 2.3 (0.5)

10 61 (15) 262(127) 220(114) 8.5(4.3) 7.1(3.8) 3.2 (0.6)
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Fig. 6.12: Effect of alkalisation on tensile strength of hemp fibres

As shown in Figs. 6.12-13, some improvements in tensile properties, especially in 

modulus, were observed for 1% and 5% alkalised fibres, whereas 10% alkalised fibres 

showed a deterioration in tensile properties. This is to be expected because alkalisation 

at high concentration of 10% breaks hydrogen bonds within the fibres. However 

because of the large scatter in data, it is difficult to draw any conclusions.
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The improvement in tensile properties at low alkali concentrations can be explained in 

terms of their increased crystallinity following the treatment. In the untreated fibres, 

cellulose chains are separated from each other by the inter-fibrillar region containing 

hemicellulose and lignin. Removal of hemicellulose and lignin following alkalisation 

means that fibrils can rearrange themselves in a more compact manner, leading to closer 

packing of cellulose chains. This results in increase in crystallinity of the fibres and its 

mechanical properties. At higher concentrations, the hydrogen bonds within the fibrils 

are broken, reducing their tensile properties.
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Fig. 6.13: Effect of alkalisation on tensile modulus of hemp fibres

A comparison of stress-strain curves of alkalised fibres and non-alkalised fibres is 

shown in Fig. 6.14. The graphs show no change in mechanical behaviour of fibres 

following treatment.

Deterioration of tensile properties of natural fibres following alkalisation at high 

concentrations is well documented. Mwaikambo and Ansell [147] reported that tensile 

strength of hemp fibres increased from 600 MPa to 1000 MPa following treatment with 

6% concentration of NaOH for 48 hours. However the tensile strength began to decrease 

at concentration of greater than 6%. The increase in strength was linked to the rupture of
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alkali sensitive bonds existing between different components in the fibre as a result of 

swelling and partial removal of hemicellulose. It was suggested the rupture of bonds 

made the fibres more homogeneous due to elimination of voids leading to improved 

stress transfer between ultimate fibre cells. Also new hydrogen bonds were formed as a 

result of removal of hemicellulose. At NaOH concentrations of greater than 6%, the 

molecular structure of the cellulose was disrupted and mechanical properties were 

reduced.
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Fig. 6.14: Comparison of stress-strain curves of alkalised fibres and non-alkalised

fibres

The tensile modulus of hemp fibres was found to drop slightly between 0.8% and 2% 

concentration of caustic soda. This was attributed to removal of inter-fibre binders 

which causes molecular relaxation. At higher concentration the modulus started to 

increase reaching the optimum value of about 60 GPa at 4-6% concentration. This was 

attributed to an increase in crystallite packing order along the fibre axis. At 

concentrations of greater than 6%, the modulus was again seen to be declining.
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Deterioration in tensile properties of hemp fibres following alkalisation at high 

concentrations has also been reported by Ouajai et al [177], Bledzki et al [186], 

Pickering et al [329] ,[82], and Kostic at al [73].

6.2.1.4 Hemp/Polyester Interfacial Shear Strength

The interfacial shear strength of alkalised fibres in polyester resin was determined in 

single fibre pull-out test and compared with non-alkalised fibres. The results are shown 

in Table 6.4 and Fig. 6.15. The error bars for alkalised fibres generally lie within the 

error bars for non-alkalised fibres and no appreciable improvement in interfacial shear 

strength was observed following alkalisation.

Table 6.4: Interfacial Shear Strength (IFSS) of Alkalised Hemp Fibres

NaOH

concentration (%)

Force

(N)

Fibre width

(jim)

Embedded 

length (mm)

IFSS

(MPa)

0 0.12(0.07) 33(7.5) 0.7(0.2) 1.9(1.3)

1 0.17(0.11) 46(13) 0.7(0.2) 2.1(1.7)

5 0.13(0.16) 29(8) 1.0(0.5) 1.4(2.1)

10 0.24(0.14) 45(13) 0.8(0.3) 2.4(1.6)
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Fig. 6.15: Comparison of interfacial shear strength of alkalised and non-alkalised

hemp fibres in polyester resin

6.2.1.5 Weight per unit area of alkalised fibre mat

As discussed in Section 6.2.1, alkalisation treatment resulted in shrinkage (particularly 

for 10% alkalised fibres) and rearrangement of the fibres within the mat. This meant 

that the weight per unit area of these fibres was different to that of non-alkalised fibres. 

So there was a need to determine the weight per unit area of alkalised fibre mats for use 

in calculations of fibre weight fraction of alkalised fibre composites. Samples of 

different dimensions were cut up from different parts of the 10%, 5%, and 1% alkalised 

hemp fibre mats. The weights of all samples were then measured. The comparison of 

weight per unit area of alkalised and non-alkalised hemp fibre mats is Fig. 6.16.

Alkalisation at 1% and 5% resulted in decrease of almost 20% weight per unit area 

compared to non-alkalised fibres, while that at 10% resulted in increase in almost 45% 

weight per unit area because of the increase in the thickness of the mat owing to 

shrinkage of the fibres. Two main reasons can be attributed to reduction in weight per 

unit area for 1% and 5% alkalised fibre mats. The first is the removal of moisture during
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drying of fibre mats following alkalisation, and the second was that during rinsing of 

fibre mats following alkalisation some fibres were lost which lead to decrease in the 

weight per unit area of fibres. No shrinkage of fibres following 1% and 5% alkalisation 

was observed. This reduction in weight per unit area of the fibres was also reflected in 

the relatively lower fibre weight fraction of the composites made from these fibres 

which was 46%.

1400
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Fig. 6.16: Comparison of weight per unit area of alkalised and non-alkalised hemp

fibre mats

6.2.2 Tensile Properties of Alkalised Fibre Composites

The tensile properties of alkalised hemp fibre reinforced polyester composites are 

shown in Table 6.5. The comparison of tensile properties of 10% alkalised and non- 

alkalised fibre composites is shown in Figs. 6.17-18.

Composites made with fibres treated for 24 hours in 10% alkalised solution had similar 

fibre weight fraction as the composites made with non-alkalised fibres. They had lower 

tensile strength but similar tensile modulus and strain to failure values. Reducing the 

treatment time to one hour at the same concentration did not result in any improvement 

in tensile properties. Treating the alkalised fibres with acetic acid to remove any 

residue of NaOH also did not result in any improvement in tensile properties. As shown
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in Figs. 6.17-18, no overall improvement in tensile strength or modulus was observed 

for 10% alkalised fibre composites.

Table 6.5: Tensile Properties of Alkalised Fibre Composites

NaOH concentration Fibre wt. Tensile Tensile Strain

& treatment duration fraction (%) strength(MPa) modulus(GPa) (%)

No treatment 56 46.4 (4.6) 7.2 (0.9) 1.03 (0.19)

47 35.8 (4.2) 5.6 (0.7) 0.94 (0.19)

10% @ 24 hours 54 41.7 (4.9) 7.0 (0.7) 1.06 (0.4)

10% @ 1 hour 52 42.7 (5.0) 6.6 (0.9) 1.00 (0.3)

10%@ 24 hours, 54 43.3 (2.9) 6.6 (0.3) 1.30 (0.22)

followed by acetic acid

5% @ 24 hours 46 46.4 (2.4) 7.5 (0.5) 0.93 (0.15)

1% @ 24 hours 47 51.5 (5.7) 7.3 (0.8) 1.19(0.18)
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Fig. 6.17: Comparison of tensile strength of 10% alkalised and non-alkalised fibre

composites
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Fig. 6.18: Comparison of tensile modulus of 10% alkalised and non-alkalised fibre

composites
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The 5% alkalised fibre composites, despite having lower fibre weight fraction, showed 

comparable tensile properties to composites made with non-alkalised fibres at 3 MPa 

moulding pressure. However, as shown in Figs. 6.19-20, when their properties are 

compared with the composites made at moulding pressure of 1 MPa which had similar 

fibre weight fraction, the improvements in tensile properties become clear. For 5% 

alkalised fibre composites, the increase in tensile strength and modulus was about 30% 

compared to non-alkalised fibre composites. This is to be expected considering the 

improvement in tensile properties of hemp fibres following this treatment. This suggests 

that alkalisation at 5% concentration did have some positive effect on the tensile 

properties of the composites.
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Fig. 6.19: Comparison of tensile strength of 1% and 5% alkalised and non-

alkalised fibre composites
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Fig. 6.20: Comparison of tensile modulus of 1% and 5% alkalized and non­

alkalized fibre composites

The 1% alkalised fibre composites showed the greatest improvement in tensile 

properties. The increase in tensile strength was about 40% and that in tensile modulus 

was about 30% compared to non-alkalised fibre composites at similar fibre weight 

fraction. This is again consistent with the fact that the tensile properties and interfacial 

shear strength of hemp fibres showed some improvement following this treatment.

All the alkalised fibre samples failed in a brittle manner in tensile testing just like non- 

alkalised fibre samples and the fracture plane was normal to the applied load. The 

comparison of stress-strain curves of alkalised fibre samples with that of non-alkalised 

fibre sample is shown in Fig. 6.21. The figure shows that the alkalisation does not cause 

any significant change in the mechanical behaviour of the alkalised fibre composites in 

tensile testing. The position of ‘knee’ on the curves is quite similar, indicating the 

transfer of stress from matrix to fibres at the similar stress levels.
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Fig. 6.21: Comparison of stress-strain curves of alkalised and non-alkalised fibre

composites

Fig. 6.22 shows the SEM micrographs of fracture surfaces of 1% and 10% alkalised 

fibre samples that failed in tension. The figures show much improved wetting of the 

fibres with the matrix compared to non-alkalised samples (Fig. 5.9), evidenced by 

greater amount of polyester resin present in the fracture surface and sticking to fibres. 

This improvement in the fibre/matrix bonding and the improvement in tensile properties 

of fibres seem to be the major reasons for the increase in tensile properties of 1% 

alkalised fibre composites. For 10% alkalised fibre composites, two conflicting 

processes are taking place. Alkalisation at this concentration results in improvement in 

fibre/matrix interfacial bonding, also evidenced in improved interfacial shear strength in 

single fibre pull-out test, but also reduces the tensile properties of the fibres. This 

improved wetting does not seem to have resulted in any improvement in the tensile 

properties of the composites because the reduction of tensile properties of the fibres 

following 10% alkalisation treatment seems to have overridden any improvements in 

interfacial bonding. The improved interfacial bonding is also evidenced in less fibre 

pull-out in the fracture surfaces.
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Fig. 6.22: SEM micrographs of fracture surfaces of (a) 1% alkalised and (b) 10% 

alkalised fibre composites after tensile testing



6.2.3 IMPACT PROPERTIES

6.2.3.1 Izod impact strength

Izod impact strength of 10% alkalised fibre composites was determined by using the 

standard testing procedure. A total of 17 samples with notches were used. The Izod 

impact strength was calculated to be 4.3 ± 0.9 kJ/m2. This is considerably less than that 

of non-alkalised fibre composites which is 12.7 ± 2.8 kJ/m2 for notched samples. Two 

factors can be attributed to this. One is the reduction in strength of fibres because of 

alkalisation. The second is the improved fibre/matrix interfacial bonding which results 

in less energy being absorbed through crack propagation and fibre pull-out from the 

matrix.

6.2.3.2. Low velocity impact properties

The alkalised fibre composites were subjected to low velocity impact testing and their 

residual tensile properties following impact were determined. The data for residual 

tensile strength of alkalised fibre composites is shown in Table 6.6. The comparison of 

residual tensile strength of 10% and 1% alkalised and non-alkalised fibre composites 

after low velocity impact is shown in Fig. 6.23.

Fig. 6.23 shows that alkalised fibre composites show no improvement in impact damage 

tolerance following the fibre treatment There is gradual decline in the strength of 

alkalised fibre composites following impact. Unlike untreated fibre composites, 

alkalised fibre composites show no threshold energy level and decline in the strength is 

occurring even following impact of 1J. Even 1% alkalised composites that showed 

improved tensile strength compared to non-alkalised composites have lower residual 

strength following impact. The alkalisation process is thus seen to have had no positive 

effect on the impact damage tolerance of these composites.
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Table 6.6: Residual tensile strength (MPa) of alkalised fibre composites following

low velocity impact

Concen­

tration (%) 0 1

Impact Energy (J)

2 3 4

0 46.4 (4.6) 46.0 (5.3) 26.2 (5.4) 22.7 (1.8) 15.2 (2.9)

1 51.5 (5.7) 36.5(11.1) 23.9 (3.9) 13.2(7.2) 9.9 (2.9)

10 41.7 (4.9) - 22.8 (6.8) 17.0 (7.4) 12.9 (7.5)
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Fig. 6.23: Comparison of residual strength of 10% and 1% alkalised fibre 

composites with non-alkalised fibre composites after low velocity impact
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Table 6.7: Residual tensile stiffness (GPa) of alkalised fibre composites following

low velocity impact

Concen­ Impact Energy (J)

tration (%) 0 1 2 3 4

0 7.2 (0.9) 6.0 (0.9) 4.0 (1.4) 3.2 (0.5) 2.1 (0.3)

1 7.3 (0.8) 6.1 (1.4) 3.9 (1.0) 2.6 (1.1) 1.9 (0.7)

10 7.0 (0.7) - 5.6 (0.6) 3.7 (0.9) 2.4 (1.2)
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Fig. 6.24: Comparison of residual stiffness of 10% and 1% alkalised fibre 

composites with non-alkalised fibre composites after low velocity impact

The data for residual tensile stiffness of alkalised fibre composites is shown in Table 

6.7. Fig. 6.24 compares the residual stiffness of alkalised fibre composited with non-
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alkalised fibre composites. The decline in stiffness is gradual with increase in impact 

energy. No improvement in residual stiffness was observed for alkalised fibre 

composites for impact energies of up to 4J.

The comparison of strain to failure following impact of alkalised fibre composites with 

non-alkalised fibres composites is shown in Fig. 6.25. The alkalised fibre composites 

generally have lower strain to failure than non-alkalised composites following low 

velocity impact which can be attributed to increase in brittleness of fibres following the 

treatment.

Impact Energy (J)

Fig. 6.25: Comparison of strain to failure of 10% and 1% alkalised fibre 

composites with non-alkalised fibre composites after low velocity impact

The impact damage tolerance of alkalised fibre composites can be best understood in 

terms of their normalised residual strength and stiffness curves following the impact. 

Fig. 6.26 shows the comparison of normalised residual strength following impact of 

alkalised and non-alkalised fibre composites. The figure shows the generally poor 

impact damage tolerance of alkalised fibre composites compared to non-alkalised fibre 

composites. Whereas non-alkalised fibre composites lost almost 70% of their original 

strength following impact at 4J, alkalised fibre composites lost almost 80% of their

■o%
■ 1%
■ 10%

0
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original strength. The decline in strength of 1% alkalised fibre composites is greater at 

low energy levels compared to 10% alkalised fibre composites which is more gradual.
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Fig. 6.26: Comparison of normalised residual strength of alkalised and non-

alkalised fibre composites

Fig. 6.27 shows the comparison of normalised residual stiffness of alkalised fibre 

composites following impact with non-alkalised fibre composites. At low impact energy 

of up to 2J, 1% alkalised fibre composites have similar residual stiffness as non- 

alkalised fibre composites. 10% alkalised fibre composites show improved residual 

stiffness following impact energy of up to 3J. Following impact of 4J, 1% alkalised 

fibre composites have lost almost 75% of their original stiffness and 10% alkalised fibre 

composites have lost almost 85% of their original stiffness.
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Fig. 6.27: Comparison of normalised residual stiffness of alkalised and non-

alkalised fibre composites

Figs. 6.28-30 show macrographs of the impacted and distal faces of the 1% alkalised 

fibre samples following low velocity impact. 1% alkalised fibre composites have been 

selected because they exhibited greatest improvement in tensile properties following 

alkalisation. For impact energy of 1 J, the impact is barely visible but it is still enough to 

cause damage to the sample resulting in 30% loss of residual strength and 17% of 

residual stiffness. As shown in Figs. 5.22-23, non-alkalised fibre composites were also 

able to resist an impact energy of 1J but without any loss in strength and the same loss 

of stiffness (17%) as 1% alkalised fibre composites. 1% alkalisation thus does not seem 

to result in any improvement in impact damage tolerance at this stage.

At impact energy level of 2J, the impact starts to become visible and considerable 

penetration, fibre/matrix debonding and matrix cracking is observed, shown by the 

arrowhead. This is also evidenced in the formation of the crater on the distal side of the 

samples because of the impact. At this stage the composites have lost almost 50% of 

their residual strength and stiffness. Non-alkalised fibre composites had also lost almost 

50% of their intrinsic strength and stiffness following impact of 2J and evidence of 

considerable fibre fracture was found as shown in Fig. 5.24. A similar loss in strength
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and stiffness shows that alkalisation does not seem to have any positive effect on impact 

damage tolerance at this stage as well.

Following impact at 3J, complete perforation of some samples was observed and 

considerable matrix cracking, debonding and fibre fracture was visible. The shape of the 

crater on the distal side was also more obvious with a characteristic triangular shaped 

cracks running across the crater. At this stage, the samples had lost almost 70% of their 

intrinsic strength and stiffness. Non-alkalised fibre composites had lost almost 50% of 

their intrinsic strength and stiffness at the same level of impact. Thus alkalisation seems 

to result in greater loss in impact damage tolerance at this level.

1J 2J 3J 4J

Fig. 6.28: Macrographs of impacted face of 1% alkalised fibre composite samples 

with increasing impact energy levels from left to right
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Fig. 6.29: Macrographs of distal face of 1% alkalised fibre composite samples with 

increasing impact energy levels from left to right

1J 2J 3J 4J

Fig. 6.30: Angled view of distal face of 1 % alkalised fibre composite samples with 

increasing impact energy levels from left to right



At impact energy level of 4J, complete perforation for almost all samples was observed. 

The coupons at this point had lost almost 80% of their intrinsic strength and stiffness, 

compared to 70% loss for non-alkalised fibre composites. It was observed that diameter 

of the impact crater on the impacted face was 12.5 mm which was the same as the 

impactor diameter. The diameter of impact crater on the distal face was about 15 mm 

for non-perforated samples and about 18 mm for perforated samples.

Generally the alkalised fibre composites have shown no improvement in impact damage 

tolerance following low velocity impact. The most plausible reason for this is their 

improved fibre matrix adhesion due to alkalisation which hinders the crack propagation 

through the interface and the fibre pull-out from the matrix. Hence the contribution of 

these two main energy absorption mechanisms to total energy absorption is reduced for 

alkalised fibre composites. Even 1% alkalised fibre composites that had shown 

improved tensile properties do not seem to show any improvement in residual properties 

following impact. Just like non-alkalised composites, any impact of 2J or higher impact 

energy resulted in significant reduction in the strength and stiffness of alkalised fibre 

composites.

The poor impact properties of alkalised natural fibre composites have been reported by 

other authors. Work done on kenaf fibre composites by Aziz and Ansell [121] showed 

the tendency for the untreated fibre composites to be tougher in impact than caustic soda 

treated fibre composites. This was attributed to the fact that poorly bonded interfaces 

allowed the cracks to grow, thus increasing the energy absorption capacity of the 

composite. Oever van den et al [362] also reported that Charpy impact strength of flax 

fibre reinforced polypropylene composites decreased with increasing fibre internal 

bonding and enhanced fibre/matrix adhesion. They suggested that a high level of 

fibre/matrix adhesion results in shorter average fibre pull out lengths and therefore 

results in lower impact strengths. Towo [363] reported a 27% decease in impact 

strength of 0.06 M alkali treated sisal fibre reinforced polyester composites following 

the treatment.

Thus, unlike tensile properties, the alkalisation process has not proven to be 

advantageous to improving the impact properties of hemp fibre composites.
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6.2.4 FATIGUE PROPERTIES

6.2.4.1S-N Curves

The fatigue properties of alkalised fibre composites were evaluated in tension-tension 

mode (R=0.1) at 1 Hz frequency. The resulting S-N curves are shown in Figs 6.31-33.

Fig. 6.31 shows the S-N curve of 10% alkalised fibre composites. The composites have 

lower static strength than non-alkalised fibre composites but their fatigue strength is 

comparable to that of non-alkalised fibres composites. Following fatigue cycles of 106, 

their endurance limit is about 20 MPa, shown by arrowheads, the same as for non- 

alkalised fibre composites. Despite lower static strength, the improved fibre/matrix 

interfacial adhesion because of alkalisation seems to have resulted in comparable 

fatigue strength to that of non-alkalised fibre composites.
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Fig. 6.31: S-N curve of 10% alkalised fibre composites
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Fig. 6.32: S-N curve of 5% alkalised fibre composites

The S-N curve of 5% alkalised fibre composites is shown in Fig. 6.32. The figure shows 

considerable improvement in fatigue strength of the composites, also evidenced by 

increase in endurance limit of the composites to about 28 MPa, as shown by 

arrowheads, as against 20 MPa for non-alkalised fibre composites. As shown in Section

6.2.2 \  these composites had higher tensile strength and stiffness than non-alkalised 

fibre composites at similar fibre weight fraction. This coupled with the increase in 

interfacial adhesion seems to have contributed to the increase in fatigue strength of the 

composites.

The S-N curve of 1% alkalised fibre composites is shown in Fig. 6.33. This process also 

seems to have resulted in improvement in fatigue strength of composites. This is 

evidenced by increase in endurance limit of the composites to about 30 MPa, as shown 

by arrowheads, as against 20 MPa for non-alkalised fibre composites. As shown in 

Section 6.2.2 , these composites also had higher tensile strength than non-alkalised 

fibre composites at similar lower fibre weight fraction. This coupled with the increase 

in interfacial adhesion seems to have contributed to the increase in fatigue strength of 

the composites.
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Fig. 6.33: S-N curve of 1% alkalised fibre composites

1% and 5% alkalisation processes seem to have had a positive effect on fatigue strength 

of composites as shown by the increase in the endurance limit of these composites. The 

endurance limit of these composites has increased to about 30 MPa for 1 % alkalised 

composites and to about 28 MPa for 5% alkalised composites. The mode of fracture for 

all alkalised fibre samples was still brittle.

6.2.4.2 Comparison of fatigue properties

The improvement in fatigue properties of alkalised fibre composites can be best 

understood in terms of their normalised S-N curves as shown in Fig. 6.34. The curves 

were obtained by dividing the peak stress with the static strength of the composites. The 

figure shows improvement in the fatigue sensitivity of all alkalised fibre composites, 

compared to non-alkalised fibre composites, by the improved slopes of the curves. The 

improvement in the slope of the curves is quantitatively represented by their fatigue 

sensitivity coefficients, as shown in Table 6.8.
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Fig. 6.34: Normalised S-N curves of alkalised fibre composites 

Table 6.8: Fatigue sensitivity coefficients of alkalised fibre composites

Alkali concentration (%) Fatigue sensitivity coefficient

0 0.097

1 0.070

5 0.063

10 0.087

Table 6.8 show that the biggest improvement in fatigue sensitivity was observed for 5% 

alkalised fibre composites, followed by 1% and 10% alkalised fibre composites. 

Alkalisation process resulted in improvement in fatigue sensitivity of composites at all 

three concentrations used in this research.
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(a) (b)

Fig. 6.35: SEM micrographs of fracture surfaces of (a) 10% alkalised fibre 

composite, N=382000 cycles, o=20 MPa, and (b) 1 % alkalised fibre composites,

N=890000 cycles, o=30 MPa.

Fig. 6.36: SEM micrographs of the surface of 5% alkalised fibre composite sample

that endured 106 cycles, <r= 34 MPa.

SEM micrographs of the fracture surface of alkalised fibre composites in fatigue testing 

are shown in Fig. 6.35. These micrographs show much improved interfacial adhesion of 

fibre/matrix, compared to non-alkalised fibre composites shown in Fig. 5.46, which 

could be the major reason of their improved fatigue strength and sensitivity. For 

comparison, the SEM micrograph of the ‘fracture’ surface of 5% alkalised sample that 

did not fail after 106 cycles of fatigue testing at tensile stress of 34 MPa (almost 70% of
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static strength) is shown in Fig. 6.36. The sample was chosen because of all the 

alkalised fibre samples fatigue tested, this sample exhibited the highest endurance limit. 

These micrographs also show improved interfacial bonding evidenced by good wetting 

of fibre by the matrix. Application of a peak fatigue stress of 70% of the static strength 

did not weaken the interfacial bonding and the material was strong enough to stop the 

propagation of sub-surface cracks emanating in the material.
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Fig. 6.37: Combined S-N curves of alkalised and non-alkalised fibre composites

The fatigue testing of the alkalised composites showed that the alkalisation process had 

the same positive effect on the dynamic tensile strength of the composites as for static 

tensile strength. The fatigue strength of alkalised fibre composites can be compared to 

their static strength. As shown in Fig. 6.37, 10% alkalised fibre composites showed no 

improvement in their fatigue strength compared to non-alkalised fibre composites which 

was consistent with the effect on their static tensile strength. 1% and 5% alkalised fibre 

composites showed considerable improvement in their fatigue strength, as was also 

observed in their static strength. This was reflected in about 35% increase in the 

endurance limit of 1% alkalised fibre composites and about 60% increase in the 

endurance limit of 5% alkalised fibre composites.
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The positive effect of improved interfacial strength on glass and carbon fibre 

composites on their fatigue properties is well documented [269]. It is expected therefore 

that the improved interfacial strength because of fibre surface treatment should improve 

the fatigue properties of natural fibre composites as well.

Studies done by Gassan and Bledzki [269] have shown that the dynamic strength of 

MAH-PP modified jute-PP composites was increased by approximately 40%. The use 

of silane coupling agent for jute-polyester composites also resulted in improvement in 

dynamic strength. For both treatments, the critical load for damage initiation was higher 

and damage propagation less rapid than for non-treated fibre composites.

The positive effect of alkalisation on fatigue properties has also been confirmed by 

Towo and Ansell [187] for sisal-polyester composites. Composites made from 0.06M 

alkalised fibres and tested in tension-tension fatigue showed improvement in fatigue 

strength, although the effect was more pronounced at higher applied stresses. However 

no noticeable improvement in fatigue strength was observed for alkalised sisal-epoxy 

composites.

Alkalisation process was used to improve fibre-matrix adhesion and hence improve the 

mechanical properties of the composites in this research and it resulted in mixture of 

results for properties of the composites. These studies showed that a high NaOH 

concentration of 10% can have a detrimental effect on the properties of hemp fibres and 

the composites made from these fibres. Low concentrations of 1% and 5% of NaOH 

solution was found to result in improvement in tensile and fatigue properties of the 

composites. No improvement in impact damage tolerance of composites was observed 

for all three alkalisation treatments. From the present studies, the upper limit to the 

concentration of NaOH for it to have any beneficial effect on the fibres can be 

suggested to be 5%.

6.3 ACETYLATION

Acetylation of natural fibres has been proposed as a good method of improving the 

interfacial bonding of natural fibres with polymer resins. Various studies undertaken on 

acetylation of natural fibres have been discussed in Section 2.^. 7  In this part of the 

study, hemp fibres were treated to acetylation process as described in Section 3.2.2.
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However due to highly corrosive nature of the acetic anhydride used in this process, 

only one laminate could be made. Therefore the results obtained form these treatments 

are limited in scope. Because of this reason this process has obvious limitations for 

application in normal laboratory conditions.

6.3.1 TENSILE PROPERTIES

The comparison of the tensile properties of acetylated fibre composites with those of 

un-treated fibre composites are shown in Table 6.9. The figures in brackets are standard 

deviations. From the table, it is clear that no appreciable improvement in tensile 

properties of the acetylated composites was observed and the properties of both kinds of 

composites are similar. Thus any improvement in fibre/matrix interfacial bonding 

because of acetylation is not reflected in their tensile properties.

Table 6.9: Tensile properties of acetylated fibre composites

Fibre weight Tensile strength Tensile modulus Strain to

fraction (%) (MPa) (GPa) failure (%)

Untreated 56 46.4 (4.6) 7.2 (0.9) 1.03 (0.19)

Acetylated 53 44.4 (6.0) 7.6 (0.8) 0.94 (0.20)

The acetylated fibre composites samples fractured in a brittle manner in tensile testing 

just like non-acetylated fibre samples. The comparison of stress-strain graphs of a 

typical acetylated sample in tensile testing with that of non-acetylated sample is shown 

in Fig. 6.38. The graph shows similarity in mechanical behaviour of the acetylated fibre 

composites with non-acetylated fibre composites in tensile testing. The shape of ‘knee’ 

portion of the curves is also quite similar suggesting the transfer of load from matrix to 

fibres at similar stress levels.
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Fig. 6.38: Comparison of stress-strain curves of acetylated and non-acetylated 

fibre composites in tensile testing

6.2.2 IMPACT PROPERTIES

The acetylated fibre composites were subjected to low velocity impact testing. The 

comparisons of the residual tensile properties of acetylated fibre composites with non- 

acetylated fibre composites following low velocity impact are shown in Figs. 6.39-40.

The residual strength of the acetylated composites appears to decrease with increasing 

impact energy in the same proportion as for the non-acetylated composites as shown in 

Fig. 6.39. The residual strength of the acetylated fibre composites following impact at 2 

and 3J is lower than the corresponding residual strength of the non-acetylated fibre 

composites. The acetylation process does not seem to have any positive effect on the 

impact damage tolerance of acetylated fibre composites.

The residual stiffness of the acetylated composites again has lower values than the 

corresponding values of non acetylated fibre composites following low velocity impact 

at 2 and 3 J, as shown in Fig. 6.40. This again shows the relatively poor impact damage 

tolerance of acetylated fibre composites.
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Fig 6.39: Comparison of residual strength of acetylated and non-acetylated fibre 
composites following low velocity impact
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Fig 6.40: Comparison of residual stiffness of acetylated and non-acetylated fibre 
composites following low velocity impact
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Fig. 6.41: Comparison of increasing impact energy level on the strain to failure of 

the acetylated and non-acetylated composites

The comparison of strain to failure of acetylated fibre composites with non acetylated 

fibre composites following low velocity impact is shown in Fig. 6.41. The strain to 

failure of acetylated composites is lower than the corresponding values of strain to 

failure of non-acetylated fibre composites following low velocity impact at 2J and 3 J 

but the differences are small when the error bars are taken into account. This however 

points at increase in brittleness of composites and decrease in energy absorption 

capacity in impact following the fibre treatment.

Generally no improvement in the tensile and impact properties of acetylated fibre 

composites were observed compared to non acetylated fibre composites. However, as 

stated earlier, the scope of these results is limited considering the low number of 

samples used in testing.

6.4 PLASMA TREATMENT

The fourth process used in the surface treatment of hemp fibres was plasma treatment. 

The plasma treatment of natural fibres has recently caught the attention of researchers as
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a promising method for surface treatment of the fibres. Various studies undertaken on 

the plasma treatment of natural fibres have been discussed in Section 2.4-7 I11 this part 

of the study, hemp fibres were subjected to plasma treatment as described in Section

3.2.4 and the composites made from these fibres were tested for their tensile properties. 

The tensile properties of the plasma treated composites, compared with untreated fibre 

composites at similar fibre weight fraction, are shown in Table 6.10.

Table 6.10: Tensile Properties of Plasma Treated Fibre Composites

Fibre weight Tensile Strength Tensile Modulus Strain to

fraction (%) (MPa) (GPa) failure (%)

Untreated 47 35.8 (4.2) 5.6 (0.7) 0.94 (0.19)

Plasma-treated 48 45.3 (5.7) 7.3 (1.2) 0.94(0.1)

Improved reactivity of the fibres following the treatment was observed by less spillage 

of the resin in compression moulding compared to untreated fibre composites at same 

moulding pressure. This was also confirmed by lower fibre weight fraction of plasma 

treated fibre composites than untreated fibre composites at same moulding pressure. As 

shown in Table 6.10, the plasma treatment does seem to have resulted in improvement 

in tensile properties of the composites. Compared to untreated fibre composites at 

similar fibre weight fraction, the tensile strength has increased by about 25% and tensile 

modulus has increased by about 30%. The matrix/fibre interfacial adhesion was 

observed to have improved in this treatment as shown in SEM micrograph of the 

fracture surface of a sample in Fig. 6.42.
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Fig. 6.42: SEM micrographs of fracture surface of tensile tested sample of plasma

treated fibre composites

Further studies into the effects of this treatment on impact and fatigue properties of the 

composites could not be carried about because of shortage of time. This treatment has 

proved to be quite promising in improving the tensile properties of the composites. One 

study [364] has shown the effectiveness of this treatment in increasing the tensile 

properties of flax fibres because of increased crystallinity of fibres following the 

treatment. Considering that plasma treatment is a very high energy-consuming process, 

any advantages gained from this process will also have to be weighed against the cost of 

consumption of power in this process.
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7. ENVIRONMENTAL PROPERTIES OF 

HEMP FIBRE REINFORCED POLYESTER 

COMPOSITES

One of the biggest advantages that composite materials made with synthetic 

fibres enjoy over other materials is their excellent environmental properties. 

Composites often find applications where they have to remain in water for 

long periods of time (e.g. boats, marine applications). Composites are also 

used extensively in outdoor applications (e.g. bridges, piping, building and automobile 

panels) where they are exposed to combinations of different environments like 

humidity, rain, and UV radiation. The composites are expected to have superior 

environmental properties for these applications.

The environmental properties of natural fibre reinforced composites have not been fully 

studied as yet. The hydrophilic nature of natural fibres means that these composites are 

susceptible to considerable water absorption which may lead to degradation of their 

mechanical properties. However it should also be noted that one of the main functions 

of these fibres is to transport moisture in the plant. The performance of these composites 

in various environments is vitally important from this point of view. Therefore this part 

of the research was devoted to studying the effects of different environments on 

mechanical properties of hemp fibre reinforced polyester composites.

Hemp fibre reinforced polyester composites were exposed to different types of 

environments for varying lengths of time and the effects of these environments on their 

mechanical properties were observed. These environments were: distilled water, salt 

water, and accelerated weathering conditions (UV radiation and a combination of UV 

radiation and condensation).
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7.1 COMPOSITES IMMERSED IN DISTILLED WATER

7.1.1 Untreated fibre composites

Composite samples made from untreated hemp fibre were immersed in distilled water at 

23°C, as described in Section 3.7-1, and their water absorption behaviour and the effect 

of water absorption on their mechanical properties was studied.

7.1.1.1 Water absorption

Water absorption behaviour of composites over 3700 hours immersion in water is 

shown in Fig 7.1. The average fibre weight fraction of these composites was 58% 

(equivalent to fibre volume fraction of 53%).

As anticipated the water absorption is quite rapid initially, reaching almost 15% after 

about 400 hours of immersion. Further immersion increases the weight gain to about 

16% after 3700 hours of immersion but the error bars lie within the error bars of weight 

gain after 400 hours of immersion. This implies that the samples have reached their 

equilibrium water intake after about 400 hours of immersion.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

Im m ersion Tim e (hou rs)

Fig. 7.1: Water absorption behaviour of hemp fibre reinforced polyester

composites
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The high value of equilibrium water uptake is consistent with that reported for other 

hemp fibre composites. In their studies on hemp fibre reinforced polyester composites, 

Dhakal et al [338] reported similar behaviour of water uptake for composites of fibre 

volume fraction of 26%. Their saturation water uptake value for these composites after 

888 hours of immersion in water was 11%. These saturation values are less than the 

saturation value obtained in this research probably because of the higher fibre volume 

fraction of the composites used in this research. The water uptake and water saturation 

values in natural fibre composites have been shown, in various studies, to be strongly 

dependent on the fibre volume fraction of these composites (see Section 2. /,£). Higher 

content of natural fibres results in higher absorption of water in these composites.

Compared to natural fibre composites, the saturation water intake for CSM glass fibre 

reinforced polyester composites has been reported to be 0.6% at fibre weight fraction of 

44% [285] and 3.5% at fibre weight fraction of 65% [288].

7.1.1.2 Analysis of water absorption behaviour

Hemp fibres are hydrophilic in nature and so they have a great tendency to absorb 

water. As soon as the natural fibres are exposed to moisture, hydrogen bonds are formed 

between the hydroxyl groups (-CH2OH) of the cellulose molecules and water as 

described in Section 2. 7* 6 . However in composites the surface layer of the resin 

provides protection against this tendency. On the other hand, natural fibres in the cut 

sides of samples have no resin protection so it is reasonable to expect that most of the 

water initially will be absorbed through them. Some water will also diffuse through the 

polyester resin and when this water reaches the natural fibres inside the sample it will 

lead to increase in the absorption rate of water. However after some time the material is 

expected to reach its saturation level and this is the point where the water absorption 

curve starts to level off.

The void content in the composite materials is also expected to contribute considerably 

to the water absorption where water can collect preferentially. In one study on carbon 

fibre reinforced epoxy composites, Hancox [365] reported that specimens containing 

more than 1 volume percent voids absorbed water more readily than those without any 

voids. The ratio of water taken up by the two types of specimen varied from 

approximately 2 at 40°C water to 2.5 at 95°C water. It was shown in Section 5.2.1 that 

the composites used in this research could contain voids up to 10% by weight. It is
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therefore expected that this large content of voids may be an important contributor to 

water uptake in these composites.

Another possible mechanism of water absorption is poor fibre/matrix adhesion. The low 

interfacial shear strength of hemp fibres in polyester resin is indicative of their poor 

adhesion and this mechanism is also expected to contribute to water absorption. 

However its contribution is not expected to be as high as that due to hemp fibres 

absorption or the voids in the composites.

The overall solubility of water in these composites is a function of the water solubility 

in polyester matrix, the solubility in hemp fibres, the solubility in the interface region, 

and the amount of water present as a separate phase in voids, cracks, and debonded 

regions. Initially the water molecules will diffuse through the outer layer of polyester 

resin. They will also diffuse through the cut edges of the samples where hemp fibres 

and the interface region will be directly exposed to water. However the surface area of 

cut edges is only about 12% of the total surface area of each sample and it can be 

reasonably assumed that most of the water diffusion is through the polyester resin. In 

later studies done by immersing the samples in water with cut edges sealed with silicone 

sealant (see Section 7.1.3), it was found that water absorption because of sealed edges 

was only 1% less than that for non-sealed composites for immersion time of about 400 

hours.

Water absorption in polyester resin

The solubility of liquid molecules in a polymer is generally expressed in terms of 

solubility parameter 8, which is defined as the square root of the cohesive energy 

density. Materials with similar solubility parameters have high solubility rates while 

those with different solubility parameters have low solubility. The values of 8 for water 

and polyesters are 47.9 and 17.9 MPa1/2 respectively [366]. This large difference in 

solubility parameters suggests that the solubility of water in polyesters is expected to be 

quite low.

This has been verified in various experimental studies. The moisture absorption and 

desorption behaviour of styrenated isophthalic unsaturated polyester resin, like the one 

used in this research, was studied by Jacobs and Jones [367] by using the model 

proposed by Shen and Springer [282]. They found that the resin had a two-phase
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structure: dense and less-dense. They found the percentage moisture content of the resin 

to be about 0.9% at 75% RH, 1.4% at 96% RH, and about 1.6% following immersion in 

water at 50°C. The absorption curves for the resin specimens immersed in water and 

exposed to relative humidities of 96 and 75% showed two regions indicative of two- 

phase structure of the resin.

They reported that no visible deterioration was observed in the polyester resin in optical 

microscopy even for specimens immersed in water in excess of 80 days. Also there was 

no evidence of leaching during immersion in water. It was also noted that no correction 

factor was necessary for the samples exposed to different relative humidities, and this 

crucially demonstrated that in polyester resin, the diffusion was independent of 

concentration. The diffusion coefficient for the resin appeared to be dominated by the 

desorption of moisture from the less dense phase. This suggested that the two-phase 

structure of polyester resin is comprised of particles of the dense phase embedded in the 

less dense phase.

In general the solubility of a liquid in polymers increases with smaller liquid molecular 

volume, lower elastic modulus of polymer, reduced enthalpy of mixing, and increased 

free volume in polymer [366]. The polymers with greater levels of hydrogen bonding 

tend to have higher levels of equilibrium water solubility. Therefore unsaturated 

polyesters, with very few hydroxyl groups, have low water solubility of 1-1.5 wt. % 

[366]. Dyer [242] has reported a moisture saturation level of 0.67% for polyester resin 

immersed in distilled water. This saturation level was the same for polyester resin 

immersed in sea water. Compared to this, the saturation water uptake of hemp fibres at 

23°C has been reported to be 66% [293].

Diffusion o f water in the composite

The diffusion of a liquid into another material is commonly described by the well- 

known Fick’s law [366],

dC =E)d^C 
dt dx2—  = D — .............................................................(7.D

where C is the concentration of the liquid, D is diffusion coefficient of the material 

absorbing the liquid, t is time, and x  is a distance term.
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For Fickian diffusion, mass uptake versus time is expressed as the following equation 

for thin plate samples like the one used in this research [366],

Mt =
M 16tDco

7Ch2

1/2
1/2

(7.2)

where Mt is the mass uptake at time t, Moo is the equilibrium mass uptake, and h is the 

sample thickness. The mass uptake is therefore proportional to square root of time, and 

this fact is used to determine whether Fickian behaviour is observed or not.

Fujita [368] has observed that for true Fickian diffusion the absorption curve should 

exhibit the following features:

a) The curve should be linear up to and exceeding 60% of the equilibrium moisture 

content Moo.

b) Above the linear portion the sorption curve should be concave to the abscissa, 

irrespective of any dependence of the diffusion coefficient on the moisture 

concentration.

The graph of weight uptake versus square root of time for these composites is shown in 

Fig 7.2 whereas Fig. 7.3 shows the normalised water uptake (instantaneous water uptake 

divided by equilibrium water uptake) against square root of time. The curves seem to 

obey the conditions set out by Fujita quite well. The diffusion of water in these 

composites is thus observed to be Fickian.

In order to correlate the experimental behaviour of water uptake of this material with the 

theoretical behaviour, computer modelling by 3D Finite Difference Method based on 

Fickian Diffusion [369] was used and compared with the experimental results. The 

results are shown in Figs.7.4-5. These figures show that absorption of water in this 

material is in excellent agreement with theoretical behaviour predicted by the model. So 

the water absorption behaviour is reaffirmed to be Fickian in this material.
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Fig. 7.5: Experimental and theoretical comparison of water uptake behaviour

The water diffusion in other natural fibre composites has been reported to be Fickian. 

Rao et. al. [370] reported the validity of the Fickian diffusion model for jute-epoxy
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composites. The equilibrium moisture level in the composites with fibre volume 

fraction of 70% was 9.5 %. Giridhar et al [371] reported an equilibrium moisture level 

of as high as 40% for sisal-epoxy composites at fibre volume fraction of 70%. The high 

moisture absorption of sisal-epoxy composites was attributed to relatively high cellulose 

content of sisal fibres. The diffusion in these composites was also reported to follow 

Fick’s law.

Absorption parameters:

Apart from determining whether the moisture absorption behaviour is Fickian or not, 

the moisture absorption graph is a very useful tool in determining various absorption 

parameters of the material. These are diffusion coefficient D, sorption coefficient S, and 

permeability coefficient P.

The value of diffusion coefficient D is obtained from the slope of weight gain versus 

square root of time curve, and is given by,

thickness, 2.5 mm in this case, and M* is the maximum weight gain due to water 

absorption. The slope of the linear portion of the curve was calculated to be 0.11 

g/hour172 from Fig. 7.2. The value of M» was 2.18g. Using these values in equation (7.3) 

above, the value of the diffusion coefficient was calculated to be 8.7 x 10'13 m2/s.

The sorption coefficient or solubility S is defined as

the sample. The values of S for individual samples were calculated and their average 

value was found to be 0.16.

Similarly permeability coefficient P, which represents the combined effects of sorption 

and diffusion, is defined as

2
(7.3)

where k is the slope of the linear portion of the Mt versus t172 curve, h is the sample

S = Moo/Mi (7.4)

where M® is the weight of water taken up at equilibrium and Mj is the initial weight of

P = DS (7.5)
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where D is diffusion coefficient and S is sorption coefficient. Using the values of D and 

S given in equation (7.5), the value of P was calculated to be 1.32 xlO'13 m2/s. The 

values of absorption parameters determined for hemp-polyester composites in this 

research are comparable to the ones reported in literature for natural fibre composites as 

shown in Table 7.1. The fibre weight/volume fraction values are in parentheses.

Table 7.1: Water absorption parameters of natural fibre composites as reported by

various researchers

Composite D (m2/s) S P(mVs) Reference

Pineapple/polyester (40%wt) 2.3xl0'13 0.18 3.6xl0'14 [296]

Jute/epoxy (70% vol) 4.5xl0'13 - - [371]

Sisal/epoxy (70% vol) 1.7xl0'12 - - [371]

Sisal-polyester (50% vol) 0.04x10'* - - [138]

Banana/polyester (20% vol) 7.7x10'* - - [144]

Pandanus/polyester (20%) 22.7x7x10'* - - [144]

Sisal/polypropylene (30% wt) 3.8xlO'13 - - [304]

Coir/polypropylene (30% wt) 10.9xl0'13 - - [304]

Hemp/polyester (21% vol) 3.8x10'" - - [295]

Hemp/polyester (26% vol) 4.4xl0‘3 [338]

7.1.1.3 Tensile properties

The hydrophilic nature of natural fibres can lead to considerable swelling in these fibres 

in water which in turn can have adverse effects on the mechanical properties of these 

composites. The swelling process is usually accompanied by a reduction in tensile 

modulus of composite through plasticisation. Swelling of fibres will also result in 

development of shear stress along the fibre-matrix interface which may lead to 

debonding. All these processes can result in degradation in mechanical properties of
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composites. So the next stage of the research was to evaluate the effect of water 

absorption on mechanical properties of these composites.

The composites that had been immersed in distilled water were subjected to tensile 

testing following immersion at different lengths of time and the results are shown in 

Figs. 7.6-8. The horizontal axis has been chosen as hours172 in these figures in order to 

highlight the properties at low immersion times. Fig. 7.6 shows that the strength of these 

composites increases slightly following immersion in water for 25 hours which can be 

attributed to the relaxation of residual stresses following immersion. However 

deterioration in tensile strength is quite rapid after that concurrent with rapid uptake of 

water. The composites have lost almost 15% of their intrinsic tensile strength after 100 

hours at immersion. However the deterioration in strength seems to levels off after 

about 100 hours of immersion. Although the water uptake rate keeps increasing rapidly 

up to about 400 hours this does not seem to have further adverse effect on tensile 

strength of the composites. Further immersion in water, however, does result in further 

reduction in tensile strength.

As shown in Fig. 7.7, the decline in tensile modulus is also quite rapid initially, falling 

to about 50% of intrinsic tensile modulus after about 100 hours of immersion. The 

decline in tensile modulus is faster compared to decline in tensile strength which is 

expected because of the weakening of the fibre/matrix interface and the plasticization of 

the matrix. It has been shown [372] that moisture absorption in natural fibres results in 

greater reduction in modulus than strength, and the composites made of these fibres will 

also be expected to show similar behaviour. However, as in the case of tensile strength, 

the decline in tensile modulus tends to level off at about 400 hours of immersion and the 

error bars of modulus values lie within the error bar of the modulus after 400 hours of 

immersion.

The strain to failure of these composites, which is about 1% without water immersion, 

increased initially up to 100 hours of immersion, resulting in corresponding decrease in 

stiffness, and then levelled off to the value of 2% at about 2000 hours of immersion. 

The increase in strain to failure is again a manifestation of plasticization of the matrix 

and the reduction in modulus of the fibres following immersion in water.
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Fig. 7.8: Effect of water absorption on strain to failure of composites 

7.1.1.4 Analysis of tensile properties

The effects of water immersion on the normalised tensile properties of the composites 

are shown in Fig. 7.9. The decline in tensile modulus is more pronounced than the 

decline in tensile strength following immersion in water. The loss in strength is only 

about 10% of the original strength following immersion for 800 hours whereas the loss 

in stiffness is almost 60% of the original stiffness following same time of immersion. 

However the loss in strength continues at further immersion times while the loss in 

stiffness stabilises and does not decline any further. The decline in tensile strength goes 

on increasing and only stabilises after about 2000 hours of immersion. Following 

immersion in water for 3700 hours, the loss in strength is about 35% of the original 

strength and the loss in stiffness is about 60% of the original stiffness. The loss in 

stiffness of fibres following immersion and the plasticisation of the matrix combine to 

result in greater loss in stiffness than strength for these composites.
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Fig. 7.9: Effects of water immersion on the normalised tensile properties of the

composites

One important effect of immersion in water was the discolouring of the composites 

from dark brown to whitish brown. This fading can have implications with regard to 

aesthetic value of these composites.

A similar reduction in tensile properties of natural fibre composites has been reported 

by other researchers. Dhakal et al [338] reported tensile strength of hemp fibre 

reinforced polyester composites to decrease by 15% at fibre volume fraction of 21% 

following 888 hours of immersion in water. Tensile modulus was found to decrease by 

almost 50% following same immersion time.

Marais et al [135] reported that for flax fibre reinforced polyester composites immersed 

in water for 96 hours at 60°C, the tensile strength decreased form 115 MPa to 81 MPa 

while tensile modulus decreased from 11.5 GPa to 6.4 GPa.

Sindhu et al [290] studied the effect of water absorption on mechanical properties of 

coir fibre reinforced polyester composites. The composites with 30% fibre weight 

fraction gradually decreased their tensile properties. Following immersion in water for 

2160 hours, the reduction in tensile strength was 18%, in tensile modulus of 2%, and in
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strain to failure of 28%. The corresponding changes in CSM glass fibre/polyester 

composites (same fibre weight fraction) after 2160 hours in water were 20% reduction 

in tensile strength, 1% increase in tensile modulus, and 30% reduction in strain to 

failure.

Aghedo and Baillie [306] reported that mechanical properties of hemp fibre reinforced 

recycled linear low density polyethylene composites were not significantly affected by 

water absorption after eight weeks of immersion in water.

Thwe and Liao [105] reported no reduction in tensile strength and 19% reduction in 

tensile modulus of bamboo fibre reinforced polypropylene composites following 

immersion in water for 6 months. Espert et al [304] reported considerable decrease in 

tensile properties of cellulose-PP, sisal-PP, coir-PP and luffa-PP composites following 

immersion in water.
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Fig. 7.10: Comparison of stress-strain graphs of a sample immersed in water with

that of non-immersed sample

One significant effect of immersion water was the change of mode of fracture of these 

composites from brittle to more ductile failure even after about 50 hours of immersion.
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For samples immersed in water for 100 hours and above, the mode of failure was almost 

entirely ductile.

The comparison of stress-strain graphs of one of the typical samples that failed in 

ductile mode after 3700 hours in water with that of non-immersed sample is shown in 

Fig. 7.10. The graph shows the increase in strain to failure and the corresponding 

decrease in stiffness of the composites following immersion in water. The ‘knee’ of the 

curve is also less prominent as the transfer of stress from matrix to the fibres becomes 

more uniform following immersion in water.

(a) (b)

Fig. 7.11: Transition from brittle (a) to more ductile (b) fracture in tensile tested 

composites following immersion in water for 3700 hours

(a) (b)

Fig. 7.12: Sectional views of the samples fractured in brittle (a) and more ductile 

(b) modes in tensile testing following immersion in water for 3700 hours



This transition from brittle to more ductile fracture is also shown in Figs. 7.11 and 7.12. 

It was observed that for, most samples that failed in ductile mode, the fracture plane was 

inclined at an angle of typically about ±45° to the tensile axis as shown by the arrow in 

Fig. 7.11 (b). The absorption of water results in plasticisation of polyester resin that 

makes it more ductile. This and the swelling of fibres and weakening of fibre/matrix 

interface seem to have contributed to this transition from brittle to ductile fracture. The 

shear stresses induced because of these seem to have resulted in debonding and sliding 

of matrix and fibres resulting in ductile failure. The shear stress in any material in 

uniaxial tension is maximum at 45° plane and this is the plane at which these samples 

tend to fail. This suggests that, as against the samples not immersed in water where 

normal stresses were the dominant cause of fracture, shear stresses also become 

dominant following immersion in water and contribute significantly to the fracture of 

samples.

SEM micrographs:

Fig. 7.13 (a) and (b) show SEM micrographs of fracture surfaces of the tensile tested 

samples after 3700 hours of immersion in water. These samples surfaces had to be dried 

before their SEMs could be taken. The dried surfaces still showed the damage that 

immersion in water had done to the composites. The figure shows the normal modes of 

failure like matrix fracture and fibre fracture are present and there is evidence of 

increased fibre/matrix debonding, shown by the arrowheads, because of the weakening 

of the interfacial bonding.
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(a) (b)

Fig. 7.13: SEM micrographs of fracture surfaces of the tensile tested sample after

3700 hours immersion in water



7.1.1.5 Impact Properties

The effect of water immersion on impact damage tolerance of hemp fibre composites 

was evaluated. Since it was not possible to do the impact testing with the samples 

immersed in water, the samples were first subjected to impact testing and then 

immersed in water for up to 400 hours which is the average time these composites took 

to reach their saturation level.

The residual tensile properties of the impact-tested composites following immersion in 

water are shown in Figs. 7.14-16. The comparison of residual tensile strength of 

impacted samples following immersion in water for up to 400 hours is shown in Fig. 

7.14. Immersion in water for non-impacted samples resulted in 10% reduction in tensile 

strength and 50% reduction in tensile modulus following immersion in water for 100 

hours. Immersion in water of samples following impact for the same time period results 

in further degradation of residual tensile properties. The residual strength of 2J impacted 

samples is reduced by 30% and that of 3J impacted samples is reduced by 60% 

compared to non-impacted samples, following the same immersion time of 100 hours. 

As shown in Fig. 7.1 and 7.9, these composites attain their saturation water uptake 

following immersion in water for 400 hours and most of the degradation in tensile 

properties takes place by this time. However Figs. 7.14 shows that further immersion in 

water for up to 400 hours does not result in further degradation in residual strength. 

More importantly the graph shows that the composites do not suffer any appreciable 

deterioration in strength following impact and immersion in water for the same impact 

energy level.

The comparison of residual tensile stiffness of impacted samples following immersion 

in water for up to 400 hours is shown in Fig. 7.15. The graph shows similar 

deterioration in residual stiffness of composites following immersion in water to 

strength. The residual stiffness of 2J impacted samples is reduced by 30% and that of 3J 

impacted samples is reduced by 60% compared to non-impacted samples following 

immersion in water for 100 hours. Just like strength, the stiffness does not show further 

degradation following immersion in water for up to 400 hours at same impact energy 

level.
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Fig. 7.14: Comparison of residual tensile strength of impacted samples following 

immersion in water for up to 400 hours
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Fig. 7.15: Comparison of residual tensile stiffness of impacted samples following 

immersion in water for up to 400 hours
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Fig. 7.16: Comparison of strain to failure of impacted samples following immersion

in water for up to 400 hours

Fig. 7.16 shows the strain to failure of impacted samples following immersion in water 

for up to 400 hours. The strain to failure of all the samples increase following 

immersion in water. However most of the increase occurs within fist 100 hours of 

immersion and any further immersion does not result in any difference in strain to 

failure at same impact energy level.

These studies have shown that poor impact damage tolerance of these materials is 

further degraded when they are immersed in water. However, at same impact energy 

level, most of the degradation occurs within first 100 hours of immersion in water and 

further immersion in water for up to 400 hours does not result in any further 

degradation. Compared to non-impacted and non-immersed composites, the composites 

lost almost 62% of their intrinsic strength and almost 77% of their intrinsic stiffness 

following impact at 3J and immersion in water for 400 hours.

7.1.1.5 Fatigue Properties

The fatigue properties of the composites immersed in water were also investigated. The 

study of these properties is important because of widespread use of composite materials
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in aqueous environments where they can be exposed to considerable fatigue loading. 

Generally the synthetic fibre composites have been found to show loss of fatigue 

strength when immersed in water ([373], [374], [375], [376], [377]). The reduction in 

strength has been attributed to ingress of moisture in cracks, and plasticisation of 

polymer matrix which reduces the stiffness of composites.

For fatigue testing in water, a specially designed water chamber was used as described 

in Section 3.6.3- The samples were almost completely immersed in water throughout the 

fatigue testing. The composites were tested in tension-tension mode (R=0.1) at a 

frequency of 1 Hz. Two different kinds of testing regimes were used. In the first, the 

composites were immersed in water straightaway without any pre-conditioning. In the 

second, the composite were first immersed in water for an average of 400 hours to allow 

the water to ingress the composites. As shown in Section 7.1, the water absorption in 

these composites is close to their equilibrium saturation level after about 400 hours of 

immersion in water. The mean fibre weight fraction of the samples used in these tests 

was 55%.

The S-N curve of the composites tested in water without pre-conditioning is shown in 

Fig. 7.17. The dashed lines represent 95% confidence interval of linear regression line. 

The curve shows very good fatigue properties of the composites in water because of the 

similar slope to S-N curve for composites fatigue tested in dry conditions. In particular 

there has been no change in the endurance limit of the composites which is about 20 

MPa, shown by the arrowheads, the same as for dry composites.

The S-N curve for the composites pre-conditioned in water for about 15 days and then 

subjected to fatigue testing in water is shown in Fig. 7.18. The tensile strength of the 

composites following immersion in water for 400 hours has been used as static strength 

on this curve.
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Fig. 7.17: S-N curve of composites in water without pre-conditioning
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Fig. 7.18: S-N chart of composites in water with pre-conditioning
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The S-N curve of the pre-conditioned composites again shows very good fatigue 

properties of the composites. The deterioration in tensile properties because of 

immersion in water does not seem to have any effect on their fatigue performance. 

Although these composites start with having lower tensile strength than dry composites 

because of immersion in water for 15 days, they seem to have the similar decline in 

fatigue strength with increase in fatigue cycles as those of dry composites or the 

composites immersed in water without pre-conditioning. The slope of the S-N curves is 

quite similar to the one for dry composites and composites immersed in water without 

pre-conditioning, as shown in Fig. 7.20. The endurance limit also remains unaffected at 

20 MPa as shown by the arrowheads. These results seem to suggest that the fatigue 

strength of these composites is not affected 

by immersion in water. It was also observed 

that fracture surfaces of some samples were 

slanted rather than square just as in static 

tensile testing in water, as shown in Fig.

7.19. As discussed in Section 7.1.1.4, this 

points at shear stresses becoming dominant 

in fatigue testing in water.
Fig. 7.19: Fracture surface of a
sample in fatigue testing in water
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Fig. 7.20: Combined S-N curves of dry and water immersed composites



7.1.1.6 Analysis of fatigue properties

The comparison of fatigue properties of various composites in water can be done in on 

the basis of their fatigue sensitivity based on normalised S-N curves. The comparison of 

normalised S-N curves of dry and immersed composites is shown in Fig. 7.21.

The curves show that these composites perform very well in water in terms of their 

fatigue sensitivity. The data for the three kinds of composites is uniformly scattered and 

it should be possible to draw a single regression line through all data points. The 

composites that were immersed in water, with and without pre-conditioning, have 

almost similar slope to that of dry composites. This is expressed quantitatively in terms 

of their fatigue sensitivity coefficients as shown in Table 7.2.

1.0

0.9

0.8

0.7

(0
g,0.6
</)
H  0.5
.2TO
P  0.4

■ Dry

♦ Pre-conditioned 

a Non-conditioned 

 Dry

 Pre-conditioned

 Non-conditioned

oz
0.3

0.2

0.1

0.0
632 4 50 1

C ycles to  Failure (log N)

Fig. 7.21: Comparison of normalised S-N curves of composites

The fatigue sensitivity coefficients are similar in water as for dry composites. 

Immersion in water does not seem to have any appreciable effect on fatigue sensitivity 

of these composites. However it must be pointed out that the nature of the fatigue 

testing meant that the non-conditioned composites could only be immersed in water for 

a maximum of up to 277 hours (the time required to complete 106 fatigue cycles).

These results are still significant since, as shown in Fig. 7.9, after about 277 hours of 

immersion in water, these composites had lost almost 10% of their tensile strength and

340



almost 50% of their tensile modulus. However this degradation in tensile properties 

seems to have had no adverse effect on the fatigue properties of these composites. 

Fatigue is a fibre stiffness sensitive property and, despite losing almost half of their 

stiffness following immersion in water, the unaffected fatigue properties of these 

composites points at very good properties of these fibres in water.

Table 7.2: Fatigue sensitivity coefficients of composites in water

Composites Fatigue sensitivity coefficient

Dry 0.097

Non-conditioned 0.096

Pre-conditioned 0.090

The pre-conditioning of the composites in water was considered to simulate the 

conditions of the composites more accurately since it is more likely that these 

composites would be immersed in water for some time before experiencing any fatigue 

conditions. The time period of 15 days was chosen because these composites were 

observed to have absorbed almost 90% of their saturation water absorption level after 

15 days of absorption. Also most of the degradation in tensile properties occurs within 

this time period.

One possible reason for good fatigue resistance of these composites in water could be 

the closure of microcracks due to swelling of fibres. Natural fibres can swell 

considerably more than synthetic fibres and can help to close various microcracks 

developing in different parts of the composite because of fatigue loading.

This behaviour of fatigue resistance of natural fibre composites is unlike that reported 

for synthetic fibre composites. Dyer [242] studied fatigue properties of [±45]4 glass 

fibre reinforced-polyester and -polyurethane-vinylester composites in various aqueous 

media. The composite immersed in distilled water showed reduction in fatigue life for 

both types of composites. For composite immersed in sea water, polyurethane-vinyester 

composites showed reduction in strength only at higher applied stresses. The polyester 

composites showed gradual reduction in strength. For composites immersed in 10%
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HC1 solution, both types of composites showed reduction in strength only at lower 

applied stresses.

From their studies on zero-tension fatigue properties of CSM glass fibre reinforced 

polyester composites immersed in water, Ellis and Found [377] reported that the soaked 

samples had lower fatigue lives than dry samples at high stresses, but at lower stress 

range (of the order of 60 MPa) and fatigue cycles of the order of 105, the S-N curves of 

soaked and dry samples seemed to converge, indicating a lower effect of absorbed water 

on fatigue properties at these conditions.

It has been shown for some polymer matrices that water absorption raises their 

toughness and strain to failure, resulting in improved fatigue performance of the 

composites. Harris [378] has shown that the fatigue resistance of glass fibre reinforced 

epoxy can be raised by prior boiling in water.

Ellyin and Rohrbacher [289] undertook extensive studies of tension-tension fatigue 

performance of glass fibre-epoxy composites with different fibre configurations in 

distilled water at room temperature and at 90°C. The composites with cross-ply [±02, 

903]s configuration showed nominal reduction in fatigue strength when immersed at 

room temperature. However the reduction in fatigue strength of composites immersed at 

90°C was significant. For the same number of cycles to failure, the room temperature 

specimens were able to bear a maximum stress which was 95% higher than that of the 

90°C ones. Multi-directional [±45, 903]s laminates also showed similar behaviour in the 

two environments, Angle ply [±452]s laminates showed a less steep slope of strength 

reduction than dry ones, but similar increased reduction in life at 90°C.

SEM micrographs:

An SEM micrograph of the fracture surface of a sample fractured after 861000 cycles at 

tensile stress of 18 MPa that was pre-immersed in water for 400 hours is shown in Fig. 

7.22. The figure shows that pre-immersion in water for 400 hours and subsequent 

fatigue loading in water for about 240 hours seems to have had little effect on fibre- 

matrix interfacial bonding. The fibres seem to be sticking to the matrix quite well. This 

structural integrity of the composites in water is also expected to be one of the reasons 

for their good fatigue performance in water.
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Fig. 7.22: SEM micrograph of fracture surface of fatigue tested samples pre­

immersed in water

These studies have shown good fatigue performance of hemp fibre composites in water 

despite the reduction in their tensile properties. The comparable fatigue properties of 

these composites to synthetic fibre composites in water can have useful implications for 

the use of these materials in aqueous media.

7.1.1.8 Flexural Properties

The flexural properties of the composites in water were determined by immersing them 

in water for varying lengths of time and evaluating their flexural properties using three 

point bending test. The average fibre weight fraction of these composites was 53%. The 

effect of water immersion on flexural strength is shown in Fig. 7.23. Similar to tensile 

behaviour, these composites lose some of their flexural strength after 50 hours 

immersion in water. However this reduction soon levels off and further immersion in 

water does not result in further reduction in flexural strength. After almost 2000 hours 

of exposure, the composites have lost about 30% of their intrinsic flexural strength.
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Fig. 7.24: Effect of water immersion on flexural modulus of the composites

The effect of water immersion on flexural modulus of the composites is shown in Fig. 

7.24. Similar to tensile modulus, immersion in water seems to have had more adverse 

effect on flexural modulus than flexural strength of these composites. The decline in
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flexural modulus is again quite rapid after 50 hours immersion in water and the 

composites have lost almost 70% of their intrinsic flexural modulus. However this loss 

in flexural modulus again levels off and no further appreciable decline in flexural 

modulus is observed after immersion for about 2000 hours in water.

Similar reduction in flexural properties has been reported by other researchers for 

natural fibre composites. Rouison et al [295] reported 11 % reduction in flexural strength 

and 34% reduction in flexural modulus of hemp/polyester composites containing 19% 

fibres by volume following immersion in water for one month. Dhakal et al [338] also 

reported considerable reduction in flexural strength and modulus for hemp-polyester 

composites following immersion in water for 888days.

The images of flexural tested samples after 300 hours of immersion, Fig. 7.25, show the 

fracture on the surface in tension. They also show the curvature of samples after testing. 

Fig. 7.26 shows that no fracture is visible on the surface in tension, showing the 

transition to ductile behaviour for composites immersed for 1900 hours in water.

Fig. 7.25: Images showing fracture on tensile surface of the composites (left) and 

curvature (right) of the flexural tested samples after 300 hours in water

Fig. 7.26: Images showing transition to ductile fracture of the composites (left) and 

curvature (right) of the flexural tested samples after 1900 hours in water
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7.1.2 ALKALISED FIBRE COMPOSITES

7.1.2.1 Water absorption

Hemicellulose in natural fibres is the primary source of water uptake and swelling in 

these fibres. Because of its open structure containing many hydroxyl and acetyl groups, 

hemicellulose is partly soluble in water and can absorb relatively large amounts of water 

[84]. One function of alkalisation of the fibres is the dissolution of hemicellulose, thus 

making them less hydrophilic. Reducing the amount of hemicellulose also reduces the 

swelling capacity of the fibre. However alkalisation also leads to transformation of 

cellulose I to cellulose II in fibre structure. Cellulose II has much greater water sorption 

and swelling capacity than cellulose I. This is because the average sorption energy for 

cellulose II is higher than that for cellulose I or amorphous cellulose. Therefore in 

cellulose II the water absorbs more readily and desorbs less readily than with other two 

forms of cellulose [84]. These two competing processes determine the moisture 

absorption behaviour of alkalised fibres depending on which of these processes is 

dominant. Another advantage of alkalisation process is that improved interfacial 

bonding between resin and the alkalised fibres is expected to prevent the ingress of 

water in the interface of the composites.

A mixture of results have been reported in literature for water absorption behaviour of 

alkalised hemp fibres. Pejic et al [379] studied the effect of 17.5% alkali solution and 

0.7% sodium chlorite solution on water uptake behaviour of hemp fibres. Alkali 

solution was used to remove hemicelluloses and sodium chlorite was used to remove 

lignin. The fibres lost almost 70% of their original hemicellulose and almost 50% of 

their original lignin following the treatments. The coefficient of capillary diffusion was 

significantly higher for treated fibres than those of untreated fibres. The increase was 

more pronounced in case of lignin removal than for hemicellulose removal, implying 

that hemicellulose removal causes smaller changes in fibre structure than lignin 

removal. On the other hand hemicellulose removal increased the moisture sorption of 

hemp fibres while lignin removal decreased the moisture sorption of hemp fibres.

Kostic et al [73] reported that alkalisation can reduce the water holding capacity of 

hemp fibres. Fibre treated to alkali solutions of 5% and 18% concentration showed
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lower water retention values compared to untreated fibres. Sgriccia [181] et al reported 

hemp fibre to be more hydrophobic following treatment with 5% alkali solution.

In order to study the behaviour of alkalised fibre composites in water, composites made 

from 1%, 5%, and 10% alkalised fibres were immersed in distilled water and their water 

uptake behaviour and its effect on their mechanical properties were investigated.

The water uptake behaviour of alkalised composites compared with non-alkalised 

composites is shown in Fig. 7.27.
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Fig. 7.27: Comparison of water uptake behaviour of non-alkalised and alkalised

fibre composites in distilled water

Alkalised fibre composites seem to show greater resistance to absorption of water as 

against non-alkalised composites for up to 400 hours of immersion in water. On 

average, alkalised composites have absorbed almost 2% less water than non-alkalised 

composites after 400 hours of immersion in water. This suggests that removal of 

hemicellulose seems to be the dominant cause of resistance to water absorption which 

tends to increase with increase in NaOH concentration. The improved interfacial 

bonding following fibre alkalisation, confirmed by increase in interfacial shear strength
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as shown in Section 6.2.1.4, is also expected to be the major reason for reduction in 

water absorption.

Rouison et al [295] reported some increase in water absorption of alkalised hemp fibre - 

polyester composites after immersion of 200 days. The fibres were treated to 2% 

solution. The increase was attributed to higher fibre volume fraction of 23% for treated 

fibre composites than untreated fibre composites at 20%. Sgriccia et al [181] found that 

for 5% alkalised hemp fibre reinforced epoxy composites immersed in water, the water 

absorption was greater than that for non-alkalised fibre composites.

7.1.2.2 Tensile Properties

The tensile strength of alkalised fibre composites compared to non-alkalised composites 

after immersion in water for up to 400 hours water is shown in Fig.7.28.
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Fig. 7.28: Comparison of tensile strength of non-alkalised and alkalised fibre 

composites immersed in distilled water

The improved resistance of alkalised fibre composites to water absorption seems have 

had no positive effect on the tensile strength of the composites. It was previously shown 

in Section 6.2.2 that 10% alkalisation of hemp fibres had led to significant decline in
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tensile strength of the composites made from them. A similar behaviour is seen here. 

The decline in tensile strength of 10% alkalised composites seems to have overridden 

any advantages gained by less absorption of water. On the other hand, 1% and 5% 

alkalised composites have almost similar decline in tensile strength as non-alkalised 

composites. Although 1% alkalised composites start off having higher tensile strength 

before immersion in water than non-alkalised and 5% alkalised composites, they end up 

with having lower tensile strength. Almost 25% reduction in tensile strength of 1% 

alkalised composites is observed compared to almost 7% for non-alkalised and 5% 

alkalised composites each for immersion of up to 400 hours. Overall reduction in water 

absorption does not necessarily mean greater resistance to decline in tensile strength in 

water.
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Fig. 7.29: Comparison of tensile modulus of non-alkalised and alkalised fibre 

composites immersed in distilled water

The effect of water absorption on tensile modulus of alkalised and non-alkalised fibre 

composites is shown in Fig. 7.29. Again the improved resistance of alkalised fibre 

composites to water absorption does not seem to have resulted in any improvement in 

modulus reduction following immersion in water. It is seen that decline in tensile 

modulus of 10% alkalised fibre composites is greater than other composites. These
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composites have lost almost 70% of their intrinsic modulus after 400 hours of 

immersion in water. On the other hand the decline in 1% and 5% alkalised fibre 

composites is quite similar to non-alkalised composites. Like non-alkalised fibre 

composites, they have lost almost 50% of their intrinsic modulus after 400 hours of 

immersion. Hence less absorption of water does not result in any improvement in 

resistance to decline in modulus.

The strain to failure of alkalised fibre composites compared to that of non-alkalised 

fibre composites is shown in Fig. 7.30.
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Fig. 7.30: Comparison of strain to failure of alkalised fibre composites compared 

to non-alkalised fibre composites after immersion in water

The strains to failure values of alkalised fibre composites are quite random and a non- 

uniform behaviour is observed. Strain to failure has increased for all alkalised fibre 

composites after immersion in water, but the increase is less compared to non-alkalised 

fibre composites. This can be attributed to increase in fibre/matrix interfacial strength 

following alkalisation of fibres.
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7.1.2.3 Analysis of tensile properties

The effect of water immersion on tensile properties of alkalised fibre composites can be 

best understood in terms of their normalised properties. Fig. 7.31 shows the effect of 

water immersion on normalised tensile strength of alkalised fibre composites.
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Fig. 7.31: Normalised strength of alkalised and non-alkalised fibre composites

following immersion in water

The decline in strength of non-alkalised and 5% alkalised fibre composites is similar. 

Both show a decline in strength of almost 10% following immersion in water for 400 

hours. 1% alkalised fibre composites show greater decline in strength and have lost 

almost 25% of their intrinsic strength following immersion in water for 400 hours. 

Despite having same level of water absorption as shown in Fig. 7.27, greater reduction 

in strength of 1% alkalised fibre composites suggests lower integrity of these 

composites following immersion in water. 10% alkalised fibre composites show the 

largest decrease in strength following immersion in water. The damage to the fibres 

following the treatments further deteriorates their properties in water, and despite 

showing good resistance to water absorption, their strength has declined by almost 60% 

following immersion in water.
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Fig. 732: Normalised modulus of alkalised and non-alkalised fibre composites
following immersion in water

The comparison of normalised modulus of alkalised and non-alkalised fibre composites 

following immersion in water is shown in Fig. 7.32. Both 1% and 5% alkalised fibre 

composites show similar reduction in modulus to non-alkalised fibre composites 

following immersion in water. For immersion time of up to 400 hours, both kinds of 

composites have lost almost 50% of their intrinsic stiffness. 10% alkalised fibre 

composites again show greater reduction in modulus. For immersion time of up to 400 

hours, these composites have lost almost 70% of their intrinsic stiffness.

As for non-alkalised fibre composites, the mode of fracture for alkalised fibre 

composites also started to change from brittle to ductile after about 100 hours of 

immersion. The comparison of stress-strain graphs of alkalised and non-alkalised fibre 

composites after immersion in water for 400 hours is shown in Fig. 7.33. The graphs 

show that alkalisation of fibres did not affect the mechanical behaviour of composites in 

water and the curves were found to be similar to those for non-alkalised fibre 

composites.
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Fig. 7.33: Comparison of stress-strain graphs of alkalised fibre composites with 

non-alkalised fibre composites after 400 hours in water

Fig. 7.34 shows SEM micrographs of fracture surfaces of tensile tested alkalised fibre 

composites following immersion in water. The samples had to be dried before their 

micrographs could be taken. These micrographs show improved wetting of fibre/matrix 

and the interface seems to have retained its bonding following immersion in water, 

shown in Fig. (a). Some interfacial debonding can still be expected to take place as 

shown by the arrowhead in Fig. (b). Fig. (a) shows that although 10% alkalisation 

results in considerable damage to the fibres, they are still able to maintain their good 

interfacial bonding in water. Fig. (c) also shows good interfacial bonding for 5% 

alkalised fibre composites following immersion in water.

These studies have shown that although water absorption of alkalised fibre composites 

is reduced, this does not result in any improvement in reduction in their tensile 

properties. Thus alkalisation is not recommended if any improvement in tensile 

properties are required in water.
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Fig. 7.34: SEM micrographs of fracture surface of 10% alkalised fibre sample 

after 340 hours (a), 1% alkalised fibre sample after 200 hours (b), and 5% 

alkalised fibre sample after 200 hours in water



7.1.3 Composites with Sealed Edges

The samples used in the study of water absorption behaviour had cut edges that resulted 

in direct exposure of fibres and the fibre/matrix interface to water. In order to determine 

the effect of preventing the ingress of water through cut edges, composite samples with 

their cut edges sealed with water-resistant silicone sealant were immersed in water and 

their water absorption and tensile properties were investigated. However, since silicone 

sealant is moderately permeable to water, this is not a real test of stopping water 

entering from the edges, but merely slowing it down.

7.1.3.1 Water absorption

The water absorption behaviour of the composites with sealed edges compared to 

samples with cut edges is shown in Fig. 7.35. There is only marginal difference in the 

absorption behaviour of composite with sealed edges with those of non-sealed edges.
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Fig. 7.35: Comparison of water absorption behaviour of composites with sealed

and non-sealed edges

The water absorption in composites with sealed edges is slightly lower but within the 

error bars for non-sealed edges which shows that the difference is not significant. This 

is not unexpected because the surface of area of cut edges is only about 12% of the total
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surface area of the samples. The maximum difference at any point in water absorption is 

only about 1.5%. However this difference is seen to be decreasing with increase in 

water immersion time.

7.1.3.2 Tensile properties

The effect of water immersion on tensile strength of composites with sealed edges 

compared with that of non-sealed edges is shown in Fig. 7.36. It is quite clear that the 

reduction in water absoiption immediately after immersion due to sealed edges has no 

appreciable positive effect on tensile strength of these composites. The composites with 

non-sealed edges have slightly higher tensile strength than those with sealed edges for 

same immersion time in water, but the difference is within error bars of the two, 

indicating that the difference is not significant
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Fig. 7.36: Comparison of effect of water absorption on tensile strength of 

composites with sealed edges and non-sealed edges

The comparison of the effect of water immersion on tensile modulus of composites with 

sealed- and non-sealed edges is shown in Fig. 7.37. Again composites with sealed edges 

are seen to have similar reduction in their tensile modulus to composites with non-
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sealed edges for same immersion time. The values of tensile modulus are within error 

bars at same water immersion times, indicating that the difference is not significant.
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Fig. 7.37: Comparison of effect of water absorption on tensile modulus of 

composites with sealed and non-sealed edges

This part of the research has shown that sealing the cut edges of the samples does not 

lead to any significant reduction in water absorption of these composites. Therefore the 

reduction in tensile properties of composites with sealed and non-sealed edges 

following immersion in water is quite similar. It has been shown by Ellis and Found 

[377] for CSM glass fibre/ polyester composites that sealing the sample edges does not 

have significant effect on water absorption or tensile properties of the laminates. Hemp 

fibre composites are shown to behave similar to glass fibre composites in this respect. 

Therefore immersing the hemp fibre composite samples with exposed cut edges in 

water can give a good indication of their overall properties in water.

7.2 COMPOSITES IMMERSED IN SALT SOLUTION

Hemp fibre reinforced polyester composite samples were immersed in 5% Sodium 

Chloride salt solution for varying lengths of time to observe the effect of corrosive 

nature of this water on water absorption and tensile properties of these composites.
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7.2.1 Water absorption

The water absorption behaviour of composites immersed in 5% salt water solution for 

up to 1900 hours compared with distilled water is shown in Fig. 7.38.
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Fig. 7.38: Comparison of water absorption behaviour of composites in 5% salt

solution and distilled water

From the graph, the water absorption pattern of composites in salt solution and distilled 

water is found to be similar at low immersion times. The aggressive nature of salt water 

does not seem to have resulted in any increase in water absorption and these composites 

seem to have coped fairly well in salt water. It is only at immersion times of greater 

than 600 hours that the water absorption seems to be slightly higher in salt water.

7.2.1. Tensile properties

The effect of immersion in salt solution on tensile strength of the composites is shown 

in Fig. 7.39. The decline in tensile strength of composites in salt water follows a similar 

pattern to the one in distilled water at low immersion times, consistent with similar 

water absorption behaviour. Increase in water absorption at high immersion times seems 

to have some effect in greater reduction in tensile properties salt solution. Following 

immersion in water for 1900 hours, the residual strength of composites in salt solution is 

slightly higher, although the effect is not significant. Again the aggressive nature of salt
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water does not seem to have any increased deleterious effect on tensile strength of these 

composites compared to non-salt water.
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Fig. 7.39: Effect of immersion in 5% salt solution on tensile strength of composites

The effect of immersion in salt water on tensile modulus of composites is shown in Fig. 

7.40. Once again similar patterns of decline in tensile modulus of the composites 

immersed in distilled water and salt solution are observed. The increased water uptake 

at higher immersion times in salt solution does not seem to have resulted in any 

increased reduction in tensile modulus and the values are within error bars at all 

immersion times. The aggressive nature of salt water has again had no additional 

deleterious effect on tensile modulus of these composites. This seems to suggest that 

interfacial bonding in these composites is strong enough to resist any corrosive attack 

from salt water.

The effect of immersion in salt solution on strain to failure of composites is shown in 

Fig. 7.41. The composites immersed in salt solution seem to have slightly higher strain 

to failure at higher immersion times which may be attributed to greater water absorption 

of these composites at these times but the differences are within statistical scatter.
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Fig. 7.40: Effect of immersion in 5% salt solution on tensile modulus of composites
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Fig. 7.41: Effect of immersion in salt solution on strain to failure of composites

This part of research has shown that the water absorption and reduction in tensile 

properties of these composites in salt solution is similar to that in distilled water. The 

deleterious effect of salt solution has been shown to have no significant effect on tensile
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properties of these composites. The tensile properties of these composites in distilled 

water can therefore give a good indication of their properties in salt solution.

7.3 ACCELERATED WEATHERING CONDITIONS

Hemp fibre reinforced polyester composite samples were exposed to accelerated 

weathering conditions (UV radiation and a combination of UV radiation and 

condensation) for varying lengths of time and the effect of these environments on their 

weight and tensile properties was investigated. These conditions were designed to 

simulate the conditions experienced by the composites that are used in outdoor 

applications. The composites exposed to UV radiation only were continuously exposed 

to these conditions which simulated the conditions of constant exposure to sunlight. The 

composites exposed to UV radiation plus condensations were exposed to these 

conditions in cycles. Each cycle consisted of exposure of eight hours of UV light 

followed by four hours of condensation. This simulated the conditions of the composites 

that are exposed to sunlight in daytime and to moisture condensation at night.

The effects of accelerated weathering conditions on natural fibre composites have not 

been fully studied yet. Singh et al [309] studied the effect of UV radiation in accelerated 

weathering tester on mechanical properties of jute fibre reinforced phenolic composites. 

For composites exposed to 750 hours of aging, the tensile properties deteriorated and 

the tensile strength fell by 47%. There was also considerable reduction in flexural 

properties.

7.3.1 Weight loss

The effect of UV radiation only and UV radiation plus condensation on residual weight 

of these composites is shown in Fig. 7.42. It was observed that the composites started to 

lose weight soon after exposure to these conditions.
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Fig. 7.42: Weight loss of composites exposed to UV light and condensation

The increase in weight loss for UV exposed composites was greater than for UV plus 

condensation exposed composites. It has been shown that when unsaturated polyester 

resins are heated, the polymer begins to dissociate chemically [273]. The temperatures 

at which this decomposition occurs and the fragments produced depend on the structure 

of the unsaturated polyester resin. It was shown that glass fibre reinforced isophthalic 

polyester resin composites, when exposed to 180° C, started to lose weight soon after 

exposure. The weight loss increased gradually with time, and after 720 hours of 

exposure the weight loss was 4.5% [273].

It has also been shown that polyesters have maximum photochemical sensitivity at 

wavelength of 325 nm. Since the UV radiation used in this study had a wavelength of 

340 nm, it is not unexpected that this resulted in degradation of the upper polyester 

layer of the composites resulting in loss of weight. This degradation is a manifestation 

of chain scission and breaking of bonds between polymer molecules following exposure 

to UV radiation. However at increased exposure times, as the UV radiation is expected 

to interact with the hemp fibres, the fibres were able to resist the UV radiation. This 

resulted in reduced degradation of the samples for exposure time of greater than 250
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hours. Further exposure of the sample to UV light did not result in any increased loss in 

weight which stabilised at about 3.2%.

However for composites exposed to UV plus condensation conditions, the loss in 

weight due to UV radiation was compensated by increase in weight due to moisture 

absorption during the condensation cycle. Therefore the loss in weight for composites 

exposed to UV plus condensation was considerably less than that for UV radiation only. 

The weight loss stabilised to a value of about 1.9% following exposure for 700 hours.

7.3.2 Tensile properties

The effect of UV radiation and condensation on tensile strength of the composites is 

shown in Fig. 7.43. The exposure to UV light and condensation leads to some loss in 

tensile strength initially but prolonged exposure to these conditions leads to some 

recovery in strength and does not lead to any further decline in tensile strength. The 

maximum reduction in strength is about 40% following exposure time of 500 hours. 

Following 1000 hours of exposure, the decline in strength is about 20% of intrinsic 

strength.

The decline in tensile strength is more gradual for composites exposed to UV radiation 

only but stabilises after about 450 hours of exposure. After 1000 hours of exposure to 

UV light, the composites have lost approximately 30% of their intrinsic tensile strength. 

Compared to this, the composites have lost only 10% of their strength following 

immersion in water for the same time period. Thus UV light results in greater 

degradation of tensile strength of composites than water. Chain scission and breaking of 

bonds in the upper resin layer, which can also expose the interface to radiation, appear 

to be the main cause of this reduction.
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composites

The effect of UV radiation and condensation on tensile modulus of the composites is 

shown in Fig. 7.44. For composites exposed to UV radiation plus condensation the 

decline in modulus seems to follow the same pattern as for decline in strength. The 

decline in modulus is non uniform and after initial decline seems to recover for longer 

exposure times. The maximum decline is modulus is about 40% following exposure of 

500 hours. After 1000 hours of exposure to UV radiation plus condensation, the 

composites have lost almost 30% of their intrinsic tensile modulus.

The reduction in tensile modulus is more gradual for composites exposed to UV 

radiation only. After 1000 hours of exposure to UV radiation, the composites have lost 

approximately 30% of their intrinsic modulus.

However the loss in modulus is less for composites exposed to UV and UV plus 

condensation conditions compared to immersion in water. This is to be expected since 

the diffusion of water into the composites affects the bulk properties of the material, 

plasticising the polyester matrix and fibres. UV and condensation mostly affect the
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surface properties of the material only, thus having less effect on bulk properties of the 

material. Hence the greater reduction in modulus for composites immersed in water.

The effect of UV radiation and condensation on strain to failure of the composites is 

shown in Fig. 7.45. The strain to failure does not seem to have been affected very much 

by exposure to these conditions and stays close to the non-exposed value of 1%.
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Fig. 7.44: Effect of UV light and condensation on tensile modulus of composites

However the strain to failure of composites immersed in water is considerably higher 

which can again be explained by the fact that the diffusion of water results in 

plasticisation of polyester resin and fibres, resulting in increase in strain to failure. UV 

and condensation affect the surface properties and hence the strain to failure is not 

affected.

365



4

UV
•UV+Condensation 
Water Immersion

3.5

2.623
3
2
c

£(O

0.5

600 700 800 900 1000100 200 300 400 5000
Exposure Time (hours)

Fig. 7.45: Effect of UV light and condensation on strain to failure of composites

Unexposed

- - U V

— UV+condensation

-  • Water Immersion

c 20

2 2.51 1.50 0.5

Strain (%)

Fig. 7.46: Comparison of stress-strain graphs of composites exposed to weathering
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The exposure of composites to UV and condensation did not affect their fracture mode 

which was still brittle. Fig.7.46 shows the comparison of stress-strain graphs of
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composites following exposure to both kinds of environments for 1000 hours with 

unexposed and water-immersed composites. The figure shows that the mechanical 

behaviour of the composites following exposure to weathering conditions did not 

change and the shape of the curve was found to be similar to that for unexposed 

composites.

One notable effect these conditions had was on the colour of these composites. The UV 

light can result in considerable yellowing of synthetic fibre composites also. The colour 

of these composites started to change from darkish brown to greyish brown. After 1000 

hours of immersion it had changed to whitish brown as shown in Fig. 7.47. In each case, 

the top figure shows the hemp fibre sample without exposure to weathering conditions. 

The reaction of water, oxygen and UV radiation within the organic matter in the 

composites promote the change of colour. Mehta et al [307] studied the effect of 

accelerated weathering (UV+condensation+water spray) on colour change of natural 

fibre reinforced polyester composites by using reflectometer. The composites changed 

colour from greenish brown to white and the change in colour was more pronounced for 

hemp fibre composites than flax and big blue stem grass composites. Hence the 

interaction of hemp fibres with UV light and water can be expected to be the main 

reason for change in colour.

(a) (b)

Fig. 7.47: Discolouring and yellowness of the surface of the composites exposed to 

(a) UV radiation and condensation, and (b) UV radiation for 1000 hours

It has been shown [380] that the exposure of polyester to accelerated outdoor 

weathering can result in change in its colour, measured by yellowness index. Thus both
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polyester resin and hemp fibres are expected to contribute to yellowness of the material. 

The discolouring and yellowness of the surface was more pronounced for composites 

exposed to UV radiation plus condensation because the moisture also contributed to the 

discolouring, also observed for composites immersed in distilled water. This fading of 

colour has important aesthetic implications when these composites are to be used in 

outdoor applications. Some kind of coating, paint or UV absorbing additives can be 

used on these composites to stop the fading effect.

This part of the research has shown that exposure to UV light and condensation leads to 

initial decline in the tensile properties of these composites, but the decline in properties 

does not seem to increase after prolonged exposure and these materials seem to have 

performed fairly well in these conditions. Also the reduction in strength and modulus is 

quite similar, contrary to immersion in water where the reduction in modulus was more 

pronounced than the reduction in strength.
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8. CONCLUSIONS

8.1 CONCLUDING REMARKS

T he use of natural fibres in composite materials has recently seen an increase in 

response to concerns about environmental pollution and recyclability of 

synthetic fibre composites. The mechanical properties of natural fibre 

composites have not yet been fully studied. This research focused on studying the 

impact and fatigue properties of natural fibre composites. Hemp fibres, one of the 

strongest natural fibres, were used with unsaturated polyester resin as matrix. For 

comparison with synthetic fibre composites, CSM glass fibre composites and 

glass/hemp fibre hybrid composites were also made using the same matrix. The impact 

properties were studied in terms of damage tolerance of composites following low 

velocity impact. Fatigue properties of composites were studied primarily in tension- 

tension fatigue. The effect of low velocity impact on fatigue properties was also studied.

The effects of various fibre surface treatments on the impact and fatigue properties of 

composites were studied. Alkalisation is the most widely used natural fibre surface 

treatment and this research also concentrated on this treatment. Finally the effects of 

some environments, primarily immersion in water, on the impact and fatigue properties 

of composites were studied.

8.1.1 Properties of Hemp Fibres

Various physical and mechanical properties of hemp fibres were evaluated to assess 

their suitability for use as reinforcement in composite materials. The moisture content of 

hemp fibres equilibrated at 23°C and 50%RH was found to be about 10%. This high 

moisture content was considered to be a major factor in relatively high void content of 

the composites made in this research. The thermal properties of hemp fibres at higher 

temperatures were consistent with the results reported in literature. Thermal degradation 

of hemp fibres started at just above 150C. The decomposition of hemicelluloses and 

pectin occurred at around 260°C and that of cellulose occurred at around 360°C.
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The cross-section of hemp fibres used in this research was found to be more polygonal 

than circular in shape. The tensile properties of hemp fibres with mean fibre width of 

67±26/xm were evaluated. The tensile strength was evaluated at 277±191 MPa, tensile 

modulus at 9.5±5.8 GPa and strain to failure at 2.3±0.8%. The large scatter in tensile 

properties underlined the variability in properties of hemp fibres which is one of their 

main weaknesses compared to synthetic fibres. The tensile properties of hemp fibres 

were found to be good enough to be used as reinforcement in composite materials.

The surface energy of hemp fibres was evaluated at 32.8 ml/m2, higher than that of 

glass fibres at 21.5 mJ/m2, but lower than that of unsaturated polyester resin reported in 

the literature. The similarity in surface energies between hemp and polyester was 

expected to result in relatively poor interfacial bonding between them. This was 

confirmed in single fibre interfacial shear strength testing between hemp and polyester 

which was lower than that reported for glass fibre and polyester in the literature.

8.1.2 Hemp and Glass Fibre Composites

The average fibre weight fraction of hemp and glass fibre composites made in this 

research was about 55%. Additionally, hybrid composites were also made with two 

configurations of hemp skin-glass core and glass skin-hemp core. Both kinds of 

configurations represented the replacement of 11% of hemp fibres by glass fibres by 

volume.

Voids were identified as the primary source of imperfections in hemp fibre composites 

and their fraction was evaluated at about 10% by weight of composites. Other major 

sources of imperfections were identified as poor interfacial strength and residual 

stresses in laminates.

The tensile properties of hemp fibre composites were found to be comparable to the 

properties of glass fibre composites with woven and non-woven ±45° fibre 

configuration reported in the literature [262]. However they were much lower than the 

tensile properties of CSM glass fibre composites made in this research. Hybrid glass- 

hemp fibre composites showed almost 50% increase in tensile strength but only 

marginal increase in tensile modulus. The specific tensile properties of composites also 

confirmed the superiority of CSM glass fibre composites compared to hemp fibre 

composites.
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The fracture properties of hemp and glass fibre composites in tensile testing were 

studied. The fracture of hemp fibre composites was brittle. The tensile stress-strain 

curve had a ‘knee’ which is a characteristic of short fibre composites. A closer 

examination of the fracture surface by SEM revealed the existence of matrix fracture, 

fibre/matrix debonding, fibre fracture and fibre pull-out as the major mechanisms of 

damage. No evidence of cracks on composite surfaces just before their fracture 

suggested most of damage processes taking place within the composites. Glass fibre 

composites, on the other hand, showed more evidence of cracks on the surface and 

considerable whitening of the samples before fracture showed the existence of damage 

processes taking place.

The impact damage tolerance of hemp fibre composites was very low. They lost almost 

half of their intrinsic strength and stiffness following an impact at 2J energy. 

Examination of impacted surface showed the existence of considerable matrix and fibre 

fracture having taken place at this impact level. An impact of 4J energy was enough to 

cause penetration of the impactor through the material. The brittle nature of hemp fibre 

and polyester resin, poor toughness of hemp fibre, combined with the imperfections in 

the laminates were considered to be the major reasons for poor impact properties of 

hemp fibre composites. Compared to this, CSM glass fibre composites showed vastly 

superior impact damage tolerance. They were able to endure an impact of up to 20J for 

70% reduction in intrinsic strength and stiffness while hemp fibre composite showed 

similar reduction in intrinsic strength and stiffness following an impact of only 4J. 

Replacement of 11% of hemp fibres with glass fibres in hybrid composites increased 

their impact damage tolerance considerably. Following impact at 4J energy, hybrid 

composites lost only about 30% of their intrinsic strength and stiffness. However at this 

concentration of glass fibres in hemp fibres, the improvement in impact damage 

tolerance was limited to up to 15J impact at which level the hybrid composites lost 

almost 90% of their intrinsic strength and stiffness.

Hemp fibre composites had lower fatigue strength than CSM glass fibre composites. 

However their fatigue sensitivity was better than CSM glass fibre composites, shown by 

their less steep normalised S-N curve than glass fibre composites. This was also shown 

quantitatively in their lower fatigue sensitivity coefficient of 0.097 than 0.127 for glass 

fibre composites. Hybrid hemp-glass fibre composites showed improvement in fatigue
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strength but no improvement in fatigue sensitivity was observed compared to hemp 

fibre composites.

Studies into stiffness degradation of composites during fatigue loading showed 

negligible reduction in stiffness for hemp fibre composites before sudden brittle 

fracture. This correlated well with little evidence of crack formation on the surface of 

these composites. Glass fibre composites showed gradual loss in stiffness with increase 

in fatigue cycles, which was accompanied with crack formation on the surface and 

whitening of the samples. This was consistent with lower fatigue sensitivity of hemp 

fibre composites than glass fibre composites.

Normalised S-N curves of hemp fibre composites following low velocity impact were 

divided into two different domains. S-N curve following impact at 1J had similar slope 

as non-impacted one, consistent with the fact that impact of 1J had negligible effect on 

their tensile properties. S-N curves following impact at 2J and 3J had similar slope, 

consistent with the fact that most of the damage had been done following impact at 2J. 

Normalised S-N curves of CSM glass fibre composites following impact at 5J and 10J 

had similar slopes. The fatigue strength and fatigue sensitivity of hemp fibre composites 

in tension-compression fatigue was poorer than in tension-tension.

8.1.3 Composites with Pre-treated Hemp Fibres

100°C and 150°C heat treated hemp fibre composites showed some improvement in 

tensile properties but no appreciable improvement was observed for 200°C heat treated 

hemp fibre composites. No improvement in impact damage tolerance was observed for 

all three heat treated fibre composites. 100°C heat treated fibre composites also showed 

no appreciable improvement in fatigue properties.

Alkalisation of hemp fibres with NaOH at concentrations of 1%, 5% and 10% showed 

no evidence of defibrillation. The surface energy of 1% alkalised fibres was similar to 

non-alkalised fibres but lower for 5% and 10% alkalised fibres. The tensile properties 

and interfacial shear strength of all alkalised fibres were found to lie within the range of 

non-alkalised fibres. The tensile properties of 1% and 5% alkalised fibre composites 

showed measurable improvement. For 1% alkalised fibre composites, about 40% 

improvement in tensile strength and about 30% in tensile modulus were observed. For 

5% alkalised fibre composites, the improvement in strength and modulus was about
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30% compared to untreated fibre composites. No overall improvement in tensile 

properties was observed for 10% alkalised fibres composites. Impact damage tolerance 

of all three alkalised fibre composites showed no improvement. Similarly fatigue 

strength and fatigue sensitivity of 1% and 5% alkalised fibre composites were improved 

but not for 10% alkalised fibre composites.

Acetylation of hemp fibres did not show measurable improvement in tensile properties 

or impact damage tolerance of composites made form these fibres. Plasma treatment of 

hemp fibres improved tensile properties of composites made from these fibres.

8.1.4 Environmental Properties of Hemp Fibre Composites

Hemp fibre composites showed a saturation water uptake of about 16% following 

immersion in water for 3700 hours. Most of the diffusion was found to be due to the 

presence of hemp fibres. The values of the diffusion coefficient, sorption coefficient and 

permeability coefficient were found to be 8.7xl013 m2/s, 0.16 and 1.32 xlO'13 m2/s 

respectively. Alkalisation of hemp fibres resulted in about 2% less water being absorbed 

by composites following immersion in water for 400 hours.

Tensile properties of hemp fibre composites showed immediate decline following 

immersion in distilled water, the loss in modulus being more pronounced than the loss 

in strength. However the loss in properties stabilised following prolonged immersion. 

Following immersion in water for 3700 hours, the composites lost almost 35% of 

intrinsic strength and 60% of intrinsic modulus. Plasticisation of polyester matrix and 

loss in stiffness of hemp fibres following immersion in water were considered to be the 

major factors. Despite the reduction in water absorption for alkalised fibre composites, 

this did not result in any improvement in decline in their tensile properties following 

immersion in water for 400 hours.

Immersion in distilled water resulted in further degradation of impact damage tolerance 

of hemp fibre composites. Compared to non-impacted and non-immersed composites, 

the composites lost almost 62% of their intrinsic strength and almost 77% of their 

intrinsic stiffness following impact at 3J and immersion in water for 400 hours.

Hemp fibre composites showed no deterioration in fatigue properties following 

immersion in water. Composites fatigue tested in water without conditioning and those
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pre-conditioned in water for 15 days and then fatigue tested showed similar fatigue 

strength and fatigue sensitivity as non-immersed composites.

Similar to the decline in tensile properties, hemp fibre composites showed immediate 

decline in flexural properties, the decline in modulus being more pronounced than 

decline in strength, following immersion in water which later stabilised for prolonged 

immersion times. The composites lost almost 30% of their intrinsic strength and 70% of 

their intrinsic modulus following immersion in water for 2000 hours.

Hemp fibre composites immersed in water with sealed edges showed similar water 

absorption behaviour and similar reduction in tensile properties to those with non-sealed 

edges.

Hemp fibre composites immersed in 5% sodium chloride salt solution showed similar 

water absorption behaviour and similar reduction in tensile properties to those immersed 

in distilled water.

Exposing hemp fibre composites to accelerated weathering conditions of UV light and 

UV light plus condensation resulted in immediate loss in weight which stabilised for 

prolonged exposure times. For composite exposed to these conditions for 1000 hours, 

the loss in weight was about 3.2% for composites exposed to UV light and about 1.9% 

for composites exposed to UV light plus condensation. Chemical dissociation of 

polyester resin due to exposure to UV light was considered to be the major reason for 

this loss in weight.

Exposure to UV light and UV light plus condensation led to initial decline in tensile 

properties of hemp fibre composites, but the decline in properties did not increase after 

prolonged exposure and these materials seemed to have performed fairly well in these 

conditions. Also the reduction in intrinsic strength and modulus was quite similar, 

unlike immersion in water where the reduction in modulus was more pronounced than 

the reduction in strength. Discolouring of composites following exposure to these 

conditions was also identified as an issue with these composites.
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8.2 FINAL CONCLUSIONS

1. The properties of hemp fibres were found to be good enough to be used as 

reinforcement in composite materials. However the issues of relatively high equilibrium 

moisture content of fibres, variability in fibre properties and relatively poor fibre/matrix 

interfacial strength were identified as factors that can reduce the efficiency with which 

these composites can be utilised.

2. The absolute and specific tensile properties of CSM glass fibre composites were 

found to be much superior to hemp fibre composites even at lower fibre volume 

fractions. The application of tensile stress produced no visible signs of cracking on the 

surface of hemp fibre composites before fracture which suggested that most of the 

damage processes took place within the composites. In contrast, CSM glass fibre 

composites showed evidence of considerable cracking and whitening before eventual 

fracture.

3. The impact damage tolerance of hemp fibre composites was very low compared to 

CSM glass fibre composites. They lost almost half of their intrinsic strength and 

stiffness following impact at 2J energy. Considerable evidence of matrix fracture, 

interfacial debonding and fibre fracture was found in the fracture surface. Following an 

impact at 4J energy, hemp fibre composites lost almost 70% of their intrinsic strength 

and stiffness. CSM glass fibre composites were able to endure an impact of 20J energy 

for 70% reduction in their intrinsic strength and stiffness. However hybridisation of 

hemp with glass fibres even at low concentration increased their impact damage 

tolerance considerably and hence can be considered as a viable method for increasing 

the impact damage tolerance of hemp fibre composites.

4. Despite having poor absolute fatigue strength, hemp fibre composites exhibited better 

fatigue sensitivity than CSM glass fibre composites in tension-tension fatigue. This 

correlated well with lower stiffness degradation in hemp fibre composites than glass 

fibre composites at the same normalised stress level. Images taken during fatigue 

loading showed the better ability of hemp fibre composites at resisting crack formation 

and growth than glass fibre composites.

5. Alkalisation of hemp fibres at low concentrations of 1% and 5% resulted in 

improvement in tensile and fatigue properties of composites made from these fibres but
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no such improvement was observed for 10% alkalised fibre composites. For 1% 

alkalised fibre composites, about 40% improvement in tensile strength and about 30% 

in tensile modulus were observed. For 5% alkalised fibre composites, the improvement 

in strength and modulus was about 30% compared to untreated fibre composite. This 

was mainly due to improvement in fibre/matrix bonding, also confirmed by SEM 

images. The fatigue strength and fatigue sensitivity of these composites were also 

improved considerably compared to untreated fibre composites. No improvement in 

impact damage tolerance was observed for all three alkalised fibre composites.

6. Environmental properties of hemp fibre composites following immersion in water 

were studied. Computer modelling of water absorption in these composites showed the 

diffusion to be Fickian in nature. The fracture of tensile tested hemp fibre composites 

following immersion in water was found to be more ductile which showed the evidence 

of shear stresses being more significant in these conditions. For impact damaged 

composites immersed in water, most of the degradation in tensile properties occurred 

within first 100 hours of immersion in water at same impact energy level and further 

immersion in water for up to 400 hours did not result in any further degradation. No 

deterioration in fatigue strength and fatigue sensitivity of hemp fibre composites 

following immersion in water reinforced good fatigue properties of these composites. 

Hemp fibre composites immersed in distilled water with sealed edges and those 

immersed in 5% sodium chloride salt solution did not show in any measurable 

difference in their water absorption behaviour and decline in tensile properties 

compared to those immersed in distilled water with non-sealed edges.

8.3 FUTURE WORK

Some of the issues regarding hemp fibre composites need more investigation. More 

research is required into ways of reducing the high void content in these composites. 

The improvement of fibre/matrix interfacial strength is also an issue that needs 

addressing. Using these fibres in woven form can also result in improvement in their 

properties and will make interesting comparison with woven synthetic fibre composites.

Hemp fibres, as a sustainable resource, are more environment friendly than glass fibres 

but the use of a fossil fuel derived thermoset resin makes composites less 

biodegradable. A lot of research is going on at the moment at developing biodegradable
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resins based on plant oils. Their high cost is the main impediment in their widespread 

use. It is hoped that increase in awareness will eventually result in increase in their use 

that will bring down their cost. Although some exploratory work was done on hemp 

fibre composites with a biodegradable resin in this research, the results were not very 

promising. Nevertheless the study of mechanical properties of hemp fibre composites 

using a biodegradable resin will be an interesting project that will shed more light on the 

behaviour and lead to greater understanding of properties of natural fibre composites.
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