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Summary

The traditional method of analysing biological cells mounted on glass slides is well 
documented. However, more modem techniques have been developed to allow the automated 
sorting and isolation of single cells for biological investigation using Lab-On-a-Chip (LOAC) 
technology. LOAC technology utilises the power of the integrated circuit to allow high cell 
count sorting and positioning. A disadvantage of the current generation of LOAC devices is 
that when the cell sorting procedure has been completed the isolated cells then have to be 
removed to allow more detailed biological analysis.

This thesis concentrates on the research and development of an optical transparent window 
and corresponding via which extends from the top surface to bottom surface of a silicon 
wafer. The optical structure would then be integrated onto a LOAC cell positioning platform 
that would then allow the in situ analysis of the cells using optical techniques through the 
substrate. The top surface would then be available to be used in conjunction with other 
analytical techniques such as atomic force microscopy (AFM).

The method of selection of suitable silicon compounds and a range of thicknesses, to form an 
optical window, and the required fabrication techniques to deposit the compounds onto 
silicon wafer is illustrated. Additionally a dry etch method is identified to enable the 
construction of an optical via to be etched completely through the silicon wafer. The 
transmission priorities of the optical widow is characterised and the analysis of a biological 
cell line using epi-fluorescence microscopy utilising both brightfield and fluorescence 
transmission techniques is demonstrated.



Nigel Davies MPhil. Electronic and Electrical Engineering

Declarations and Statements

This work has not previously been accepted in substance for any degree and is not being 

concurrently submitted in candidature for any degree.

This thesis is the result of my own investigations, except where otherwise stated. Other 

sources are acknowledged by footnotes giving explicit references. A bibliography is 

appended.

I hereby give consent for my thesis, if accepted, to be available for photocopying and for 

inter-library loans after expiry of a bar on access approved by Swansea University.

Signed (candidate)

Date



Nigel Davies MPhil. Electronic and Electrical Engineering

A cknowledgem en ts

I  wish to thank Dr. Paul Holland, my supervisor fo r  his help, guidance and support 
during the preparation o f  this thesis.

I  would also like to thank D r Huw Summers, D r Mark Holton and Karthik 
Rajasundaram from College o f  Engineering at Swansea University fo r  the help and 
guidance on optical analysis.

Thanks are also due to my employer SPTS Ltd fo r  their support throughout this 
project.



Nigel Davies MPhil. Electronic and Electrical Engineering

Contents
A cknow ledgem ents.............................................................................................................................................. iv

List of Figures....................................................................................................................................................... viii

List of T ab les...........................................................................................................................................................xi

Definitions or Abbreviations..............................................................................................................................xii

1. Introduction.................................................................................................................................................... 1

2. M ethodology for the M anufacture of th e  S tructure...........................................................................8

2.1. O bjectives..............................................................................................................................................8

2.2. M anufacturing Process flow of th e  S tru c tu re .......................................................................... 11

2.2.1. Substrate Selection.......................................................................................................................11

2.2.2. Step 1- The application of the  silicon based layer to  form the Optical W indow 12

2.2.3. Step 2 - The Application of Photoresist to  protect the  Optical W indow ..................... 20

2.2.4. Step 3- Applying th e  Photoresist for th e  Mask.....................................................................23

2.2.5. Step 4 - Plasma Etching th e  Optical W indow ....................................................................... 25

2.2.6. Step 5 - Stripping th e  Photo resist and etch residue.......................................................... 30

3. The M anufacture of the  Optical W indow............................................................................................ 31

3.1. M easurem ent Theory...................................................................................................................... 31

3.1.1. Refractive Index M easurem ent Theory.................................................................................. 31

3.1.2. Stress M easurem ent T heory .....................................................................................................32

3.1.3. Non Uniformity (NU) M easurem ent T heory .........................................................................35



Nigel Davies MPhil. Electronic and Electrical Engineering

3.1.4. Extinction (absorption) coefficient (k) M easurem ent Theory........................................ 35

3.2. Results obtained of Silicon films for the Optical W indow...................................................... 36

3.2.1. Silicon Dioxide (Si02) a t 350°C.................................................................................................36

3.2.2. T etraethylorthosilicate (TEOS) a t 175°C............................................................................... 39

3.2.3. Tetraethylorthosilicate (TEOS) a t 350°C............................................................................... 42

3.2.4. Silicon Oxide Nitride (SiOxNy) a t 175°C..................................................................................45

3.2.5. Silicon Nitride (Si3N4) a t 300°C.................................................................................................48

3.3. Conclusion of which Silicon com pound to  use as th e  optical w indow .................................51

4. The M anufacture of Optical V ia ............................................................................................................ 54

4.1. Characterisation of th e  Optical V ia.............................................................................................. 54

4.1.1. Selectivity- M easurem ent Theory and re su lts ..........................................................................54

4.1.2. Etch Rate - M easurem ent Theory and resu lts ........................................................................... 56

4.1.3. Etch Profile- M easurem ent Theory and re su lts ........................................................................58

Positive P rofile ............................................................................................................................................. 58

Vertical P ro file ............................................................................................................................................. 58

Negative P rofile...........................................................................................................................................59

Actual Etch Profile obtained on te s t w afer.........................................................................................60

4.1.4. Etch Rate Uniformity- M easurem ent Theory and re su lts ..................................................... 60

4.2. Results of Etching th e  Silicon Dioxide 5pm Film .......................................................................61

4.3. S um m ary ............................................................................................................................................. 64

5 5pm  Thick Si02 Film Optical Analysis...................................................................................................65

5.1 Optical M icroscope................................................................................................................................65

vi



Nigel Davies MPhil. Electronic and Electrical Engineering

5.2 Optical transm ission m easurem ent of th e  Si02 W indow .............................................................. 67

5.2.1 Sample p re p a ra tio n .........................................................................................................................67

5.2.2 T ransm ittance M easu rem en t....................................................................................................... 69

5.3 Testing th e  Silicon Dioxide 5pm Structure using Biological Cell l in e s ........................................73

6 Conclusions and fu rther W ork.......................................................................................................................76

6.1 Conclusions.................................................................................................................................................76

6.2 Further W o rk ............................................................................................................................................. 82

R eferences..............................................................................................................................................................85

Appendix 1 AFM Analysis of 5pm  thick Si02 Film ........................................................................................ 89

Appendix 2 SEM images of 5pm  thick Si02 Film .......................................................................................... 92

viij



Nigel Davies MPhil. Electronic and Electrical Engineering

List of Figures
Figure 1 Schematic o f a fluorescence m icroscope.................................................................................. 5

Figure 2 Optical Via and W indow .............................................................................................................8

Figure 3 Advanced Plasma Module Process Chamber......................................................................... 17

Figure 4 Photoresist on the Optical W indow .........................................................................................21

Figure 5 No Photoresist on the Optical Window.................................................................................. 22

Figure 6 Wafer die plan and die shape and dimensions....................................................................... 24

Figure 7 Isotropic and Anisotropic Etching........................................................................................... 25

Figure 8 Pegasus® Etch Source...............................................................................................................26

Figure 9 Polymer Deposition to Protect Sidewall form the Etch Step...............................................27

Figure 10 Removal o f Polymer Deposition on bottom of the trench by Ion bombardment............28

Figure 11 Removal o f material on bottom o f the trench by Ion bombardment.................................28

Figure 12 Unstressed film .........................................................................................................................32

Figure 13 Film with tensile stress (+ve)..................................................................................................32

Figure 14 Film with compressive stress (-ve)........................................................................................33

Figure 15 Wafer bow measurement schem atic..................................................................................... 34

Figure 16 Silicon Dioxide (Si02) at 350°C 5pm RI and k measurements ....................................... 38

Figure 17 Silicon Dioxide (SiC>2 ) at 350°C 5pm thickness across wafer.......................................... 38

Figure 18 Tetraethylorthosilicate (TEOS) at 175°C 5pm RI and k measurements..........................41

Figure 19 Tetraethylorthosilicate (TEOS) at 175°C 5pm and thickness across wafer.................... 41

Figure 20 Tetraethylorthosilicate (TEOS) at 350°C 5pm RI and k measurements..........................44

Figure 21 Tetraethylorthosilicate (TEOS) at 350°C 5pm thickness across w afer...........................44

Figure 22 Silicon Oxide Nitride (SiOxNy) at 175°C 5pm RI and k measurements..........................47

Figure 23 Silicon Oxide Nitride (SiOxNy) at 175°C 5pm thickness across wafer............................ 47

Figure 24 Silicon Nitride (Si3N 4) at 300°C Wafer thickness across wafer........................................ 50

Figure 25 Silicon Nitride (Si3N4) at 300°C 5pm RI and k measurements......................................... 50



Nigel Davies MPhil. Electronic and Electrical Engineering

Figure 26 Cross section o f Via at centre o f substrate using SEM ..................................................... 55

Figure 27 SEM o f remaining mask on test wafer.................................................................................. 56

Figure 28 Cross section o f Via at edge o f substrate using SE M .........................................................57

Figure 29 SEM o f a Positive Etch Profile............................................................................................. 58

Figure 30 A SEM o f a Vertical Profile....................................................................................................59

Figure 31 A  SEM of Negative Profile..................................................................................................... 59

Figure 32 Tilted SEM image o f 5pm film showing square and round v ia ..........................................61

Figure 33 SEM o f 5 pm S i02 film with square v ia ................................................................................ 62

Figure 34 SEM o f 5|im S i02 film with round v ia ................................................................................. 62

Figure 35 SEM of cross section o f square via on cleaved substrate................................................... 63

Figure 36 SEM of 5pm S i02 Window..................................................................................................... 63

Figure 37 Optical Microscope image o f a Square via focussing on the optical Window................ 65

Figure 38 Optical Microscope image o f a Square via focussing on 0.15mm dot............................. 65

Figure 39 Optical Microscope image o f a round via focussing on the optical window.................. 66

Figure 40 Optical Microscope image o f a round via focussing on 0.15mm d o t.............................. 66

Figure 41 New mask used for spectroscopy analysis............................................................................67

Figure 42 Attenuation o f Natural Sunlight caused by 7.5pm & 10pm S i02 film ............................ 69

Figure 43 Percentage Transmittance....................................................................................................... 70

Figure 44 Modelled (red trace) and measured (blue trace) reflection spectrum from the 5 pm

Silicon dioxide film..................................................................................................................................... 71

Figure 45 Atomic Force M icroscopy...................................................................................................... 72

Figure 46 Pseudo Brightfield image o f the substrate showing the cells adhered to the Surface....74

Figure 47 Revealing the fluorescence response from the quantum d o ts ............................................75

Figure 48 Figure 46 and 47 images superimposed................................................................................ 75

Figure 49 Conceptual Schematic o f New LOAC Technology Platform ............................................82

Figure 50 SPTS Multi Chamber Cluster T ool........................................................................................83



Nigel Davies MPhil. Electronic and Electrical Engineering

Figure 51 Optical Window Via bottom surface.................................................................................... 90

Figure 52 Optical Window backside o f substrate.................................................................................. 91

Figure 53 Polished Glass Slide................................................................................................................. 91

Figure 54 5pm S i02 Film measured at bottom of optical Via showing film thickness................... 93

Figure 55 5pm S i0 2 Film shown at bottom o f optical via....................................................................93

X



Nigel Davies MPhil. Electronic and Electrical Engineering

List of Tables
Table 1 Silicon films deposited to form the optical w indow................................................................16

Table 2 Pre-deposition thickness..............................................................................................................19

Table 3 Results o f Silicon Dioxide (S i02) at 350°C..............................................................................36

Table 4 Results o f Tetraethylorthosilicate (TEOS) at 175°C.............................................................. 39

Table 5 Tetraethylorthosilicate (TEOS) at 350°C ................................................................................. 42

Table 6 Silicon Oxide Nitride (SiOxNy) at 175°C.................................................................................. 45

Table 7 Silicon Nitride (Si3N4) at 300°C................................................................................................ 48

Table 8 Silicon Dioxide, Silicon Nitride and Silicon Oxide Nitride runs at 10pm Thickness 51

Table 9 Initial Sequence o f films sent for mask processing.................................................................53



Nigel Davies MPhil. Electronic and Electrical Engineering

Definitions or Abbreviations

AFM Atomic Force Microscopy

CMOS Complimentary Metal Oxide Semiconductor

CMP Chemical Mechanical Polish

DSE Deep Silicon Etch

DNA Deoxyribonucleic acid
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1. Introduction

One of the most rapidly expanding technologies today is the development o f micrometer and 

sub micrometer mechanical and electronic structures. These structures are already widely 

used in everyday life, for example air bag sensors used in the automotive industry and the 

gyroscopic sensors used in mobile phones. Advances in the fabrication techniques of 

Complementary Metal Oxide Semiconductor (CMOS) devices have allowed the progressive 

miniaturisation of these Micro Electro Mechanical Systems (MEMS) These advances have 

been adapted by and contributed to ‘on-chip’ tools used in the biotechnology area and, as a 

consequence of these advancements, miniaturised and self contained systems known as Micro 

Total Analysis Systems (pTASs) have been developed. The ability to fabricate micron scale 

two dimensional arrays of sensors on silicon or glass substrates became possible in 1990's

1
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and led to the invention of the deoxyribonucleic acid (DNA) microarray. This approach was 

translated across many biomedical applications including protein, cellular, tissue and 

antibody arrays. However, microarrays are passive in nature and information is normally 

collected by external analytical equipment. The term Lab-On-a-Chip (LOAC) evolved to 

describe systems where increased functionality was integrated onto a chip. LOAC devices 

can integrate one or more laboratory functions onto plastic, glass or a silicon chip and are 

already commonly used in chemical analysis, environmental monitoring and biomedical 

diagnostics [2].

However, it is the biomedical application of these LOAC devices that may yield unsurpassed 

results when used in the analysis and manipulation of biological material. The development 

of such devices could greatly reduce the skill levels required to obtain complicated bio 

analysis and reduce the cost of such analysis by reducing the amount of chemicals that tend to 

be required in any biomedical test. Micro-fabrication will also allow the reproduction of the 

exact specification of a particular LOAC type and hence increase the accuracy and 

repeatability of any one specific diagnostic test.

It is worth noting that the recent development of electronic media devices, especially the 

variants in cell phone technology, lends itself extremely well to the LOAC utilisation. It is 

feasible that the new generation of portable devices would be capable of running application 

software that would drive a LOAC to analyse the required biological material. The resulting 

analytical data could then be transmitted to a medical database or to a medical expert for 

further analysis. This would then allow valuable resources, doctors and nurses for example, to 

be used far more effectively in that a simple analysis would filter out cases that do not need 

immediate medical attention or at least allow the correct prioritisation.
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Examples of this are that most cell phones are already capable of taking pulse readings, by 

using either the camera or microphone components of the phone itself, and have the 

application software to record and plot blood sugar levels but unfortunately lack the

integrated tests that a LOAC device would provide to make the test genuinely self contained

m

Traditional chemical and biological analysis requires highly skilled technicians working in 

centralised laboratories. These laboratories contain expensive specialised equipment that is 

large and expensive in nature. The modem trend is to simplify this analysis so that an 

untrained person can effectively perform the required analysis; some examples of this are 

blood glucose tests used for diabetic patients and pregnancy tests that can be purchased in 

any high street chemist. The LOAC can expand this trend of simplification by offering a 

simple, reliable and portable laboratory with the potential of working with battery operated 

analytical equipment [4]. This not only offers modem convenience but can be essential when 

working in remote field conditions. This is particularly important in countries with poor 

healthcare resources where the rapid diagnosis of infectious diseases is extremely important, 

as these countries may well have the drugs to cure an illness but not the diagnostic expertise 

to identify the cause and then administer the applicable drugs [5\

However, it is important to remember that a LOAC working as part of a much larger static 

integrated analysis system, offering reliable and consistent results, is also an important LOAC 

characteristic.

LOAC’s also have important applications in the environmental sector where real time 

monitoring is much more effective than traditional sampling; for example the monitoring of 

treated waste water that is fed back into a fresh water stream is much more effective than 

measuring on a periodic basis as severe damage can be inflicted on this type of eniviroment

3
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in a very short time period. The LOAC device does not necessarily require direct human 

interaction and therefore is even more useful in harsher climates.

Additionally, the points of measurement in environmental applications can be remote and 

may require solar or wind generation to power the system, the low power requirement of 

CMOS devices then lends itself perfectly to the LOAC application. There are another two 

important advantages in using CMOS technology for LOAC applications. Firstly, the signal 

in a CMOS device is conditioned by means of dedicated circuitry increasing the signal 

quality. The second advantage is that large numbers of electrodes and transducers can be 

integrated onto the chip. The use of CMOS therefore yields large numbers of electrodes on a 

signal chip with excellent signal quality giving good signal-to-noise ratios [6]. The 

functionality of these LOAC devices can be divided into three categories: sensors, actuators 

and readout circuits t7]. As a sensor a LOAC can be used to examine the optical, magnetic, 

electrical or thermal properties of the target sample [8]. The actuator application is used to 

apply electrical, electromagnetic or mechanical forces on a sample. The readout circuit 

application is used to interpret and manipulate the output signal of the sample and then 

interface to a computer or piece of test equipment.

This thesis will concentrate on the sensor functionality of a LOAC and in particular optical 

imaging, which is one of the most powerful, non intrusive method of detection used in 

biomedical and medical applications. The optical structure to be researched in this program is 

intended to be integrated onto a cell positioning structure of a LOAC platform capable of cell 

separation and manipulation. The optical structure will extend from the top to bottom surface 

of the LOAC and will be compatible with CMOS Integrated Circuit (IC) technologies. The 

CMOS technology provides the potential of high cell count sorting and positioning whilst the 

new structure will allow the ability to analyse the cells in situ using optical techniques
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through the substrate leaving the top surface available for other techniques such as Atomic 

Force Microscopy (AFM). The dilemma with optical imaging is that it does not offer itself 

easily to the type of miniaturisation that is typically involved in MEMS devices due to the 

fact that optical measurement equipment is made up of bulky components such as light 

sources and microscopes. The typical LOAC device will rely on charge-coupled devices 

(CCD) which will always require the information to be interfaced to another piece of 

diagnostic equipment. However, if the target specimen could be tested by the use of an 

adapted LOAC device that uses optically transparent windows throughout the structure in 

conjunction with the new Biotechnology analytical techniques, such as Epi-fluorescence 

microscopy[9], there would be huge advantages in cost, robustness and accuracy. Epi- 

fluorescence microscopy is a method of fluorescence microscopy that is used in the analysis 

of biological samples. An excitation light is passed through the microscope objective lens and 

then onto the specimen as shown in Figure 1|M].

D e t e c t o r

E mis s io n  f i l ter

Dichroi cJVIi r ror

Light  S o u r c e

Exc i t a t i on  Fi l ter

O c u l a r

O b je c t i v e

S p e c i m e n

Figure 1 Schematic of a fluorescence microscope
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A fluorescence microscope is an excellent example of a larger more expensive piece of 

equipment that could be integrated on a cheaper LOAC device that would give consistent 

reliable results with a large throughput. The effect of CMOS devices providing complex low 

cost digital devices is very apparent in modem electronic equipment. Almost any function 

can be implemented into an integrated circuit if the potential economic award justifies the 

investment for the circuit design, the consequent manufacturing process development and the 

purchase of the required capital equipment[10]. However, it is highly likely that such a LOAC 

device would be used in third world countries where there is little available money for 

expensive analytical programs. Therefore keeping manufacturing costs to a minimum would 

be a fundamental contributor to the uptake of such a device, not to mention the margins and 

the subsequent profitability of any LOAC used in non-medical applications would be greatly 

improved. So there are obvious advantages in designing a LOAC device that can be 

manufactured using existing processing technologies, in other words trying to ensure that the 

only development costs would be the LOAC layout, control circuitry design and device 

simulation. The cost of manufacture can be further improved by keeping the number of 

manufacturing process steps that are used to a minimum, ensuring where possible that the 

materials used are cheap and uncomplicated to deposit and manipulate into the desired 

structure. Clearly there is a balance to be determined between the device functionality and 

performance versus the cost of the device fabrication.

Finally the power consumption levels of such a device would need to be kept as low as 

possible as it is likely that device would be used in remote locations that do not have reliable 

nor abundant sources of energy and as a consequence the device would need to be capable of 

running of low power battery packs[11].
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The contents of this thesis are as follows:-

• Chapter 2 describes design objectives the methodology and the fabrication steps that 

was used in creating the optical structure.

• Chapter 3 shows the design of experiments and corresponding analytical techniques 

that was used to determine the optimum material and dimensions of the optical 

window component to be used in the new structure.

• Chapter 4 shows the design of experiments and corresponding analytical techniques 

that was used to determine the optimum dimensions of the optical via component to 

be used in the new structure.

• Chapter 5 shows the results of the optical transmission tests of the completed optical 

structure.

• Finally in Chapter 6 conclusions are drawn and a produced scope of a future program 

of work is presented.
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2. Methodology for the Manufacture of the Structure

2.1. Objectives
The objective is to develop an optical window that can be used in a LOAC structure that will 

allow the use of suitable analytical equipment, such as Epi-fluorescence. The optical window 

must possess the optical characteristics to enable any excitation light to pass without any 

serious attenuation, that could prevent the microscope objective allowing the analysis of the 

biological specimen, and possess the mechanical strength required to keep the LOAC integral 

structure intact. This would consist of an Optical Via and an Optical Window as shown in 

Figure 2.

Biological Sample

Analytical Equipment

Liquid medium in
micro-fluidic
chamber

Cross Section 
through Silicon 
Wafer

Range of 
Cross Sections

Silicon Substrate

Optical Via

Figure 2 Optical Via and Window
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It would be advantageous if any biological sample could be applied directly to the optical 

window and therefore negating the need for another protective layer, this would not only 

improve the transmission properties of optical window but also save on manufacturing costs.

Since any biological sample would be extremely prone to any form of contamination then the 

window will need to be sterile. The sterilisation could form part of the manufacturing process 

of the device but realistically any such sterilisation would need to be protected by a form of 

vacuum packaging again adding to costs. The best method of sterilisation would be at the 

time when the LOAC is about to be used, by soaking the window in a solution, for example 

Ethanol or Hydrogen Peroxide, for a period of time immediately prior to use. Also if  the 

surface of the optical film is reasonably uniform then the transmission properties will be 

improved and this may prevent the need of any anti reflecting coating to be applied.

The optical structure will consist of two parts, the optical window and the optical via in 

which the window is seated, as shown in 2. The optical window will consist of a silicon based 

film. The via will be formed by etching through a silicon substrate that is 100mm in diameter, 

this type of substrate is referred to in the semi-conductor industry simply as a wafer. The 

standard thickness of a 100mm silicon wafer is 525pm. To perform a TSV etch on a 525pm 

wafer may be difficult as the profile of the etch may degrade severely past a depth of 400pm. 

However, the thinner wafers that are 400pm in thickness are expensive, difficult for the 

automation robots used in the semiconductor industry to handle and by their nature of their 

thickness inherently brittle. It is for this reason that the experiments will be divided into 

etching wafers of a thickness of 400pm and 525pm, in the hope that the thicker 525pm wafer 

can be etched successfully.

The Optical Window must possess the optical properties that will allow the operation of the 

transmission spectrum of optical analytical equipment for example Epi-fluorescence
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microscopy uses a spectrum which is typically in the range of 400nm to lOOOnm. If it is 

assumed that excitation light emitted from the microscope is collimated, i.e. light whose rays 

are nearly parallel, then the excitation light will lose intensity as it is reflected, absorbed or 

scattered by the optical window. Additionally the window should have a reasonable level of 

self planarization and the mechanical strength to form part of the structure of the LOAC 

device.

The mechanical strength of the film will be influenced by the thickness of the film but the 

thicker the film the more likely that the inherent stress will start to bow the wafer and cause 

integration issues e.g. the alignment of dual masks becomes extremely difficult on an over 

stressed wafer.

Additionally there is a requirement to be able to assess the optical transmission properties of 

the optical window to try and determine the suitability for a range of applications as well as 

trying to test the suitability of biomedical optical applications which is typically in the range 

of 400nm to lOOOnm. In other words two structures will need to be manufactured the first a 

smaller and therefore stronger structure to be able to hold and analyse the biomedical matter 

and a larger structure which will large enough to allow the fibre optics of the emission 

spectroscopy analytical equipment to be inserted into the window and thus stop any 

interference caused be the walls of a smaller optical via.
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2.2. Manufacturing Process flow of the Structure

2.2.1. Substrate Selection

Since the beginning of the semiconductor industry, silicon has been the most widely used 

substrate material. Silicon is very low cost, exhibits much lower leakage currents than other 

substrates, such as germanium, and is easily doped with n-type or p-type, essential for IC 

devices. Mechanically, silicon has a Young’s Modulus of 190GPa which is similar to that of 

steel (210GPa). Since silicon is a light material with a density of 2330Kg/m which is lower 

than that of aluminium (2700kg/m3) it has a very high strength to weight ratio. It is for these 

reasons that silicon is also used for MEMS, optoelectronic subsystems and micro fluid 

applications [12l  Interestingly our application will encompass all three applications and 

therefore makes silicon the material of choice. The substrate size of 100mm was selected for 

cost reasons more than scientific ones in that they are cheaper. This is the smallest size in 

mainstream MEMS manufacture and it is a simple matter to mount the 100mm wafers to a 

larger size substrate. Indeed the substrates were run on tools set at 100mm, 150mm, 200mm 

and 300mm.

If 100mm processing systems were not available, as in the case of the etch processing, the 

substrate was bonded to the larger substrate using a mounting adhesive. This adhesive 

exhibits high bond strength and adheres readily to metals, glass and ceramics. When 

processing was complete, the adhesive was removed by reheating and cleaning the substrate 

with acetone. When the 100mm substrates were run through the chemical vapour deposition 

(CVD) systems they were simply placed on the larger 300mm substrates. The 

photolithography equipment used 100mm settings as extreme levels of accuracy are required 

and mounting on a larger substrate would have caused alignment issues.

11
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2.2.2. Step 1- The application of the silicon based layer to form 

the Optical Window.

To manufacture the optical window of the structure a silicon based film is required to be 

deposited on the backside of the wafer. The film was deposited on the backside of the wafer 

as the front side on the wafer tends to be highly polished and therefore more suitable for 

imprinting the pattern of the design of the structure using photolithography equipment.

The film was deposited using CVD equipment. CVD allows deposition to take place at 

relatively low temperatures and offers a wide range of accurately controllable composition 

and layer structures that are often difficult or impossible to obtain using other techniques. 

CVD can be defined as a material synthesis method in which the constituents of the vapour 

phase react to form a solid film at some surface [13].

There are three main methods of depositing silicon films within the semiconductor industry 

Atmospheric Pressure Chemical Vapour Deposition (APCVD), Low Pressure Chemical 

Vapour Deposition (LPCVD) and Plasma Enhanced Chemical Vapour Deposition (PECVD)

[14]

APCVD process chambers were the first to be used in the semiconductor industry. They 

operate at atmospheric pressures which allow the process chamber design to be relatively 

simple and also tend to give high film deposition rates. However, APCVD is susceptible to 

gas-phase reactions, and consequently unwanted particles and the films typically exhibit poor 

step coverage [14l

LPCVD reactors, although an improvement on the APCVD, still exhibit the same 

shortcomings and have the added disadvantage of requiring a high process temperature[14].

—I
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The advantage of a PECVD process is that lower deposition temperatures can be used. 

However, the lower temperature of the PECVD process can have a negative effect on the 

quality of the film being deposited [,5]. Oxides deposited at lower temperatures contain more 

Silanol and water impurities and tend to be more porous than those deposited at higher 

temperature. However by adjusting the process parameters of the PECVD the Silanol 

concentration and water contamination can be reduced and allow superior film qualities to be 

exhibited.

A Plasma can be defined as a partially ionised gas with equal numbers of positive and 

negative charges [16]. In the process chamber, the plasma is generated between two parallel 

plate electrodes with radio frequency (RE) power applied to them. The bottom electrode is 

what the substrate sits on and is commonly referred to as the platen, and the upper electrode 

through which the process gases are introduced, is known as a showerhead. When RF power 

is applied to the showerhead, the platen is set to earth potential, generating an electric field 

between the two electrodes. Three important processes will then take place known as 

ionisation, excitation-relaxation and dissociation [17].

Electrons are accelerated by the field and gain energy. The energetic electrons collide with 

the atoms and molecules inside the chamber and cause ionisation which generates more 

electrons. Very soon the whole chamber fills with electrons and ions and the plasma is 

generated and stabilised. Excitation-relaxation collisions in the plasma are what cause 

plasmas to have coloured glows. A species is excited by an electron and then upon relaxation, 

light of a particular wavelength is emitted. Oxygen glows are grey blue, nitrogen is pink and 

fluorine red. In addition to the excitation-relaxation collisions an electron can collide with a 

species and generate free radicals which are molecular fragments with unpaired electrons
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(this is called dissociation). These free radicals are chemically very reactive and therefore 

will dramatically increase the reaction rate for both CVD and for that matter Etch processes.

Plasma enhanced CVD requires the control and optimisation of RE power density and 

frequency in addition to those conditions important in an LPCVD process such as gas 

composition, flow rate, deposition temperature and total pressure. Like the LPCVD process, 

at low temperatures, the PECVD process is surface reaction limited so good substrate 

temperature control is necessary to ensure film thickness uniformity.

In order to explore the type and thickness of silicon films that could be deemed suitable for 

use as the optical window PECVD methods will be used to deposit the following range of 

films:

Silicon Dioxide (SiO?)

SiC>2 consists of flexible and adjustable Si-O-Si bridge bonds and used mainly as an inter­

layer dielectric to electrically isolated conductive layers of the integrated circuit from each 

other [18]. It is also used as a mask or capping layer, but more importantly can be used as a 

passivation layer. It is prudent to try and use this simple film from a cost and integration 

perspective. In this application it may be that strength is more important than hardness and 

its low stress levels may be able to make it suitable as it will not tend to crack and then peel 

away from the optical via when thicker layers are deposited.

However, Silicon Dioxide can display poor “Gap Fill” properties on smaller structures and is 

not very conformal and may require a Chemical Mechanical Polish (CMP) to make this film 

a practical solution [19]. CMP is a method of mechanical polishing the film surface by using 

a rotating abrasive pad. This causes the high spots on the surface of the film to be polished
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before the low spots. The chemical component is given by a slurry that acts as a lubricant and 

helps to break down the SiC>2 bonds at the surface of the film [20l

Silicon Nitride (SirNT)

Si3N4 , is a hard, dense, refractory material. Its structure is quite different from that of silicon 

dioxide: instead of flexible, adjustable Si-O-Si bridge bonds, the Si-N-Si structure is rigid and 

the material is much more constrained in structure than that of silicon dioxide [21]. As a 

consequence, silicon nitride is harder, has higher stress levels, and cracks more readily. This 

harder layer may be suitable but there is a possibility that it will crack and then peel away 

from the optical trench. Silicon nitride also has poor gap fill properties and is also not very 

conform al.

Silicon Oxynitride (SiOvNy)

SiOxNy films combine some of the useful physical characteristics of SiC>2 and Si3N4 and are 

consequently used extensively in the MEMS industry. Silicon oxynitride contains significant 

amounts of excess silicon and hence the mechanical stress in the Silicon Oxide Nitride is 

lower than that of other oxides [22]. It has excellent thickness uniformity and is very conformal 

[23]. For optical devices is it particularly attractive as it has high transparency levels over a 

wide wavelength range [24].

Tetraethvlorthosilicate (TEOS)

TEOS has excellent gap fill properties and is very conformal[25]. It also has the advantage of 

being deposited on substrate at much lower temperatures than other PECVD oxide films and 

as such will not tend to damage any metal layer in close proximity. It also has excellent 

mechanical strength which is essential for this application [26]. However, it can be a poor 

moisture barrier and may require further encapsulation to make the film practical for this
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application [27]. So this film will only be considered if the other films are not deemed 

suitable.

The thicknesses and types of films listed in table 1 were deposited as an initial design 

of experiments to determine a suitable film to be used for the optical window.

Wafer Number Target Thickness (pm) Film Type

1-5 1.5,2,3,4 & 5 Silicon Dioxide (SiC>2 ) at 350°C

6-10 1.5,2,3,4 & 5 Tetraethyl orthosilicate (TEOS) at 175°C

11-15 1.5,2,3,4 & 5 Tetraethylorthosilicate (TEOS) at 350°C

16-20 1.5,2,3,4 & 5 Silicon Oxide Nitride (SiOxNy) at 175°C

21-25 1.5,2,3,4 & 5 Silicon Nitride (Si3N4 ) at 300°C

Table 1 Silicon films deposited to form the optical window

These ranges of thicknesses were chosen as they were deemed the best compromise between 

optical properties, stress, non uniformity and mechanical strength. The basis of this question 

is a simple one - can a film be deposited thin enough to be of use with optical analytical 

equipment and be strong enough to remain intact? This question can be further extended in 

that could the film also have enough moisture barrier properties so that no further 

manufacturing steps are required to allow direct contact of the window with the bio material? 

Additionally, it was unknown whether the optical window needs to be protected so wafers 

were run with and without protection. The reason for this assumption is that the etch required 

is a TSV etch which would require the silicon film to placed face down onto the electrostatic
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