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Abstract

This thesis is concerned with the numerical simulation of both compressible and 

incompressible viscoelastic/viscous flows. This is a pioneering study in computations of 

compressible viscoelastic flows. The study retains novelty in analysing the impact of 

compressibility within the performance properties of numerical methods (stability, 

accuracy, convergence and consistency), along with flow characteristics such as vortex 

activities and stress boundary layers. The developed algorithm leads to classification of a 

unified scheme for both compressible and incompressible viscoelastic flows.

In this work, we first present a brief introduction to flow at low Mach numbers, followed 

by rheological constitutive equation and equations of state for dense materials. 

Subsequently, we provide the background theory over several difficult issues encountered 

by compressible schemes, at low Mach numbers (singular limit of compressible flows). 

This would include key modifications employed to rectify density-based schemes and 

extending pressure-based incompressible algorithms for dealing with compressible flows.

To accommodate weakly-compressible viscoelastic/viscous flows at low Mach numbers, 

a high-order time-marching pressure-correction algorithm has been adopted, in semi- 

implicit form. For discretisation of velocity and pressure equations, over the fractional 

stages of this pressure correction scheme, a Galerkin finite element was employed. To 

accommodate stress equations (considered here in Oldroyd-B form) two spatial 

discretisation alternatives are adopted. This encompasses a mixed finite element 

formulation in SUPG form, with a quadratic stress and velocity interpolations. The second 

scheme involves a sub-cell finite volume implementation, a hybrid fe/Jv scheme for the full 

system. For both scheme variants, enhanced velocity gradients are acquired, via a recovery 

technique.

Two discrete representations are proposed to interpolate density: a piecewise-constant 

form with gradient recovery and a linear interpolation form, akin to that on pressure. 

Validation on a number of classical benchmark problems bears out the high quality of 

performance of both compressible flow implementations, at low to vanishing Mach



number. Neither linear, nor constant density interpolation schemes degrade the second- 

order accuracy of the original incompressible fractional-staged pressure-correction scheme. 

The piecewise-constant interpolation scheme, efficient in implementation, is advocated as a 

viable method of choice, with its advantages of order retention.

In the viscous context, we conduct several tests on cavity and contraction flows (both 

Cartesian and cylindrical coordinates) for both compressible and incompressible flow 

settings. To validate results of our original incompressible scheme, for the cavity test 

problem, we compare and contrast predicted velocity fields with those in the literature. For 

this test problem, the effect of singularity in boundary conditions is investigated on spatial 

accuracy for both incompressible and compressible flows with the two density 

interpolations. On contraction flows, consistency is confirmed according to the two 

different forms of density interpolation. Capability of the scheme in dealing with very low 

Mach number flows is demonstrated, via adjusting Tait parameters. The scheme responses 

well as Mach number approaches zero (incompressible limit), and there is no obvious 

minimum threshold on Mach number for this scheme. We have conducted several tests, 

under the compressible settings on the effect of system eigenvalues on convergence 

patterns.

In the viscoelastic context with the mixed finite element method, the scheme is applied 

to contraction flows for Oldroyd-B model fluids. Stability and performance characteristic of 

the new algorithm implementation are highlighted. Solutions are provided for a range of 

compressible settings approaching incompressible limit at vanishing Mach number. The 

stabilisation effect of time-step scaling is also addressed.

Similar studies are conducted for the alternative spatial approximation, with the hybrid 

fe/Jv schemes, where we present stress approximations over sub-cell finite volume 

implementation. Critical attainable Weissenberg numbers are addressed, with both stress 

discretisation alternatives for compressible and incompressible flows. In addition, close 

examination is conducted on flow patterns, particularly around the contraction point and in 

vortex activity.



Finally, we present stabilised solutions in the settings discussed above. This is conducted 

through extensive studies upon the hybrid fe/Jv scheme variant. The key issues involved 

deal with: i) minimising splitting-errors in the application of fractional-staged pressure- 

correction schemes for the couple system of pressure-velocity-stress, ii) improving 

satisfaction of the inf-sup conditions through enhancing spatial representations of velocity 

gradients, iii) incorporating ellipticity into the equation system, appending elliptic 

dissipation into the momentum equation, iv) some miscellaneous considerations relating the 

treatment of capturing discontinuities and steep stress gradients. We conduct several tests to 

embark on various aspects of stabilisation within the flow field and upon vortex activity. 

Employing stabilised schemes enables us to achieve solutions at higher Weissenberg 

numbers and consequently presenting vortex activity on highly elastic flows, illuminating 

the significant influence that stabilisation has on this context.
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CHAPTER 1 

Introduction

In this thesis, one is concerned with the compressible flow of highly 

viscous/viscoelastic materials. This type of flow generally arises in low Reynolds 

number (Re) situations corresponding to high pressure-drops. The question immediately 

arises as to where and when compressibility in such flow has significance. The 

circumstances under which this is the case are discussed below.

1.1 Molecular theory of compressibility
Consider a system of a cylinder and a piston as shown in Figure 1.1. The confined 

volume is filled with fluid, either a gas or liquid. To elucidate the mechanisms of 

compressibility, first, we introduce some concepts within kinetic theory. The fluid is 

considered to be a composition of self-similar rigid molecules held within a state of 

continuous random motion. Usually there are significant distances between the rigid 

molecules, so that molecules travel in straight lines between abrupt collisions at the 

walls and between each other. These collisions randomise the motion. The mean-free- 

path is defined as the average distance travelled by a molecule between successive 

collisions. The mean free-path is assumed to be far larger than the diameter of the 

molecules. Density for a heterogeneous system is directly proportional to the number of 

molecules in a particular volume. Accordingly, the pressure exerted by a fluid on the 

wall is attributed to the impact of the fluid molecules upon it. Therefore, pressure is not 

only a function of impact frequency (density), but also of the energy within such 

impacts (described through temperature change). It must be noted that, temperature is a 

macroscopic thermodynamic property defined upon the “zeroth-law” of
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thermodynamics [7]. The microscopic representation of temperature may be attributed 

to the kinetic energy of  molecules.

The cylinder-piston system is initially taken into consideration in the thermodynamic 

equilibrium state. There is a balance between the weight of the piston and the force 

exerted by the pressure inside the cylinder. If this system deviates from the initial state, 

by loading an extremely small weight upon the piston, the system will undergo a 

transition to eventually reach an equilibrium state. During this process, the piston will 

start to descend, which will reduce the average distance between the molecules (density 

increases). Hence, intermolecular forces will rise (causing pressure increase). The 

pressure rise will continue until an equilibrium state is reached. This process can be 

analysed from both a thermodynamic (steady-state) and a fluid mechanical (time- 

dependent) viewpoint. In a thermodynamic sense, both the density and temperature are 

subject to increase. From a fluid mechanical point o f  view, the thermodynamic 

description gives way to a local and time-dependent alternative. This is an essential

Figure 1.1: System of cylinder and piston

2
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basis upon which to describe phenomena in fluid mechanics. In addition, molecular 

kinetic theoryt provides facilities to analyse this process throughout time, appealing to 

simple physical laws. When the piston starts to move, the mean distance among the 

molecules adjacent to the piston decreases, and hence, local pressure will rise. Since any 

external force is finite and molecules have some mass, it will take a specific period of 

time for molecules to move and interact. The macroscopic representation of the 

propagation of pressure waves is termed the speed of sound (c). As such, any effect of 

pressure change will be transmitted at the speed of sound. In liquids, the mean distance 

between molecules is miniscule. Therefore, any change in pressure can be transmitted 

through much smaller movements, and hence, at a speed much faster than th^t 

experienced within gases. The propagation speeds of travelling waves are characteristic 

of the media in which they travel, and in general are not dependent upon other wave 

characteristics, such as frequency, period, and amplitude. The speed of sound in air and 

other gases, liquids, and solids may be estimated from the density and elastic properties 

of the media (bulk modulus). In a volume medium, the wave speed takes the general 

form:

^ _ elastic property _ . „  
y inertial property

where, B represents the bulk modulus and p  the density of the material occupying the 

volume. This relationship predicts the speed of sound for air as 334 m/s (at 25 °C), for 

water as 1483 m/s (at 20 °C) and for structural steel as 4512 m/s (at 20 °C). The bulk 

elastic properties of a material determine how much that material will compress under a 

given amount of external pressure. The ratio of change in pressure to the fractional 

volume compression is termed the bulk modulus of the material, where

B = (1.2)
AV/V

* Molecular kinetic theory is an important tool for interpreting physical and chemical phenomena. The 
aim of molecular kinetic theory is to account for the thermodynamic and kinetic behaviour of matter. That 
is in terms of the concept of the chemical composition of matter in consisting of molecules and atoms, 
using mechanical laws derived from a study of the equilibrium and motion of large bodies. Nevertheless, 
the scope of molecular kinetic theory is broader than that of thermodynamics, as kinetic theory may 
extend to interpret phenomena involving time, such as diffusion, the rate of chemical reaction, and the 
dynamics of fluid flow. Although density is a macroscopic property of a thermodynamic system, to 
analyse the effects of compressibility, it is essential to adopt a molecular viewpoint.

3
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In the above expression, p  and V equate to the pressure and fluid volume, respectively. 

The reciprocal of the bulk modulus is termed the compressibility of the substance. The 

amount of compression supported by solids and liquids is normally observed to be 

miniscule.

In analysing a particular physical phenomenon, if the time-scale of that process is 

sufficiently large compared to the time-scale of propagation of pressure-waves (1/c), 

one may neglect the effect of pressure waves in the transient analysis. The time-scale 

for flow of a fluid is proportional to 1 /m, where u is the fluid particle velocity. The Mach 

u
number ( Ma = —) is employed to characterise compressibility effects within a flow, 

c

When the Mach number is low, the effects of compressibility will be minimal. When 

the time-scale of a phenomenon is comparable to the time-scale of pressure-wave 

propagation, compressibility should be taken into account. For example, consider fuel 

ignition within an enclosed cylinder, the time-scale of reaction is miniscule, and 

therefore, compressibility is an important factor. Note, the rate of reaction, especially in 

a gaseous phase, is a function of density (concentration). Then, if the time-scale is 

sufficiently small, propagation of pressure-waves will play a more significant role. This 

is the case for combustion processes, for example, where density fluctuations arise due 

to thermal gas expansion upon the conversion of chemical energy. In the presence of 

flame fronts, that are thin in comparison with a characteristic length of the flow, density 

fluctuations may reflect steep gradients [129]. With respect to bubble dynamics and 

cavitation, an important aspect relevant in many industrial applications, we quote from 

the study of Brujan [21]:

’’...the assumption o f liquid incompressibility has been made based on the idea 

that only a small fraction o f the energy o f the bubble motion is radiated away as 

sound. However, for conditions similar to cavitation, the later stages o f bubble 

collapse proceeded so quickly that the velocity o f the bubble interface can be 

compared to the speed o f sound in the liquid and the compressibility o f the liquid 

can no longer be ignored.”

In essence, compressibility should be considered based upon the conditions a system 

is exposed to (fluid mechanical viewpoint), rather than simply its physical properties 

alone (a thermodynamic stance).

4
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1.2 Low Mach limit
Numerical computation of compressible flows in low Mach number situations (say 

Ma <0.3), is a difficult setting to resolve. This is a singular limit for compressible flow, 

at which compressible flow solvers begin to lose their efficiency and accuracy. In low 

Mach number (LMN) regimes, compressible fluids reflect similar patterns of response 

as those under incompressible flow. Panton [110] quoted:

‘T h e layman is usually surprised to learn that the pattern o f the flow o f air can 

be similar to that o f water. From a thermodynamic standpoint, gases and liquids 

have quite different characteristics. As we know, liquids are often modelled as 

incompressible fluids. However, ‘incompressible fluid’ is a thermodynamic term 

whereas ‘incompressible flow ’ is a fluid-mechanical term. W e can have 

incompressible flow o f a compressible fluid.”

One may regard flow at LMN as being at the centre of fluid dynamics, by virtue of 

its fundamental nature and its vast practical importance. In quantitative terms for LMN 

flows, the speed of sound for air at 25°C and sea level is about 334 m/s. Therefore, the 

speed of a fluid particle at Ma=0.3 will be around 100 m/s (360 km/h). Thus, from 

general observation, one notes that the majority of fluid phenomena arising within 

nature occur at low Mach numbers. The speed of tornadoes rarely reaches this level. 

Likewise, everyday phenomena, such as talking, breathing and flow of air around 

vehicles, may be considered as examples of LMN regimes.

Even the fluids we classify as incompressible may in fact display some compressible 

response. The density of liquids is a weak function of pressure, temperature and 

concentration. The incompressible assumption taken for a liquid is valid within a 

specific range of these variables. Free convection takes place as a result of variation of 

density due to temperature gradients, and general circulation within the oceans is mainly 

driven by salinity and temperature gradients. In many industrial processes, flow may 

encounter regions of high pressure-difference. This is the case for most flows in 

polymer processing. In such scenarios, density discrepancies arise due to large 

pressure-differences and variations in temperature. In some special types of flow, such 

as jet-cutting, the speed of fluid particles (say 400 m/s) is comparable to the speed of 

sound (for water, 1423 m/s). Compressibility should be taken into account when the 

Mach number for this process is around 0.3. This is an interesting example for a

5
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material such as water, commonly considered as incompressible, which indicates some 

compressible and elastic effects within the jet-cutting process.

Injection moulding involves two distinct phases. The first involves melt generation, 

mixing, and pressurisation, conducted within the injection unit of the moulding 

machine. The second phase is that of product shaping, which takes place within the 

mould cavity. In the second filling stage, the polymer melt is injected into the cavity 

through the sprue, runner and gate. In the packing stage, additional polymer melt must 

be pushed into the cavity, in order to compensate for shrinkage caused by material 

cooling. During these phases, residual stress is produced due to the high pressures 

generated, temperature changes, and there is relaxation of the polymer chains. This 

results in shrinkage and warpage of the moulded part. In the filling stage, molten 

polymers of high viscosity are pressed through narrow channels in very short times. 

Consequently, pressures increase dramatically which affect density changes. Therefore, 

the Mach number for flow in this stage may reach a level at which compressibility 

becomes significant. Density adjusts within the packing and cooling stages due to the 

large variations in temperature and pressure. This has a crucial influence upon the 

quality and mechanical properties of the moulded parts, especially where optical 

properties are important. If the density is sensitive to the variation in pressure, then, the 

amount of melt injected should be increased within the filling stage. This will 

compensate to some degree for shrinkage, due to variations in density caused through 

that in temperature. Accordingly for realism, simulations for injection moulding should 

take compressibility into account.

In this thesis, one is concerned particularly with the development of algorithms for 

the computation of compressible viscoelastic flows under LMN regimes. As such, 

discussion is presented for the numerical difficulties that are introduced.

6



CHAPTER 2 

Rheology and basic equations

2.1 Overview
Rheology is a fundamental interdisciplinary science, concerned with the study of the 

internal response of physical materials to stress. A definition of rheology is provided by 

Professor Bingham (Lafayette college, Indiana) as “The study o f the deformation and 

flow o f matter”, who inaugurated its name in 1929, when the American Society of 

Rheology was founded. In literal terms, rheology means the study of flow (from the 

Greek words pe'cb- to flow, and Xo'yotf, science). The scope of modem rheology, 

however, is much broader than it would appear from its name. It is concerned with 

almost all aspects of deformation of physical bodies under the influence of external 

stress.

In view of the definition of rheology, the question arises as to what is the relationship 

between rheology and the traditional branches of mechanics, such as the theory of 

elasticity or flow of ideal viscous fluids. In fact, rheology is concerned with the 

description of the flow behaviour of all types of matter. Nonetheless, these disciplines 

(ideal elastic and viscous) are concerned with idealised bodies, which obey particular 

physical laws exactly. From a practical point of view, these two approaches would 

appear to be fully justified. Often, for a given class of materials and a considered range 

of variables, some flow/material properties are dominant and can be approximated by 

one of these classical extremes. However, every real material, whose properties may be 

approximated under specific conditions by one of the classical models, may exhibit 

alternative behaviour under other conditions. In addition, there are many materials
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which cannot adequately be described by any of classical models, even under normal 

conditions. Rheology is especially concerned with these materials and by convention, 

the primary interest of rheologists is restricted to phenomena where materials exhibit 

intermediate properties, lying between those of ideal solids and liquids. Therefore, the 

word “rheology” normally refers to the flow and deformation of “non-classical” 

materials such as rubber, molten plastics, polymer solutions, slurries and pastes, 

electrorheological fluids, blood, muscle, composites, soils and paints. These materials 

can exhibit varied and distinct rheological properties that classical fluid mechanics and 

elasticity fail to describe.

The most spectacular examples of rheological complex materials occur in the case of 

solutions and melts of macromolecules, that is, polymeric materials and biological 

systems. These complex materials play an important role in nature and modem life. 

Production of Theologically complex materials reaches many millions of tones per year. 

A thriving trade is involved in the production and processing of such materials. The 

need for rheological research is evident from the modernisation of technological 

processes and the improvement of product standards.

2.2 Elastic, viscous and viscoelastic responses
In solid materials, the intermolecular bond forces are strong enough to hold 

molecules in their lattice state positions. The response of such a structure to a (small) 

external stress is deformation, and returning to into the original state upon removal of 

the stress. In solid materials, under the influence of deformation resulting from external 

forces, the stretching of intermolecular bonds occurs and the resulting internal stress 

balances that imposed externally. Because the deformation is extremely fast and the 

bonds can be stretched rapidly by an imposed stress, hence, little motion from lattice 

points is involved. Consequently, equilibrium deformation is established in an infinitely 

short time. This response of solids is termed “Elasticity”.

In contrast, molecules of fluids in an ideal state move in a random motion with high 

mobility. When external (anisotropic) stress is imposed, a fluid will deform and 

continues to do so as long as the stress is applied. In addition, removal of the stress will 

not result in a return of the fluid to into the original undeformed state. The Brownian 

motion of fluid molecules is rapid and the internal frictional forces retard the rate-of-

8
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deformation. This leads to an equilibrium state. Consequently, the work done during 

deformation will be dissipated. The ideal viscous limit for liquids is reached when all of 

the work has been dissipated.

Rheological behaviour may be characterised by a dimensionless number, named the 

‘Deborah number’, introduced by Professor Reiner to measure the elasticity of 

materials. The Deborah number De represents a ratio of a characteristic time of the 

material, t, to a characteristic time of the deformation, T. The natural time of materials 

varies throughout a broad range (say, from 1013s to 1013s) [44]. For a Newtonian fluid, 

time t vanishes, whilst it tends to infinity for an ideal elastic solid. Typically, t=lO'l2s 

for water, 10~5s for lubricating oils; it can be of the order of a few seconds for polymer 

melts, and for glass is 105s [137]. Consequently, a purely viscous fluid expressing a 

phenomenon with a small characteristic time, for example skimming, will display the 

response of a solid. In contrast, a material such as glass in a long time can demonstrate 

flowing effects.

These elastic and viscous responses to the external stress represent two extremes. In 

between, there can be an infinite number of intermediate responses. Rheology is 

especially concerned with more complex materials, which exhibit some elastic and 

some viscous effects simultaneously. These are termed viscoelastic substances.

It is important to express a terminology for the definition of the above responses. In 

principle, when external forces perform a certain amount of work (W), some part of the 

work can be stored as elastic energy (E), whilst the remainder can be dissipated 

irreversibly (D). Introduction of the quantities E  and D allows one to classify the 

various materials as follow; if on deformation, E  * 0 and D=0, the response is ideally 

elastic. If E=0 andD * 0 , the response is ideally viscous. Finally, if E  * 0 and D * 0 , 

the response is viscoelastic.

From a historical perspective, the first quantitative explanation for rheological 

phenomena emerged through the introduction of elasticity theory, which essentially 

states: “if you double the tension, you double the extension” [66]. Nine years after the 

publication of Hooke’s paper, Issac Newton addressed the problem of steady shear flow 

in a fluid and ‘The Principia” contains the famous hypothesis: “the resistance which 

arises from the lack of slipperiness of the parts of the liquid, other things being equal, is

9
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proportional to the velocity with which the parts of the liquid are separated from one 

another”. This ‘lack of slipperiness’ is what we now term viscosity.

These two relationships formed the basis of the development and foundation of 

mechanics. In time, rheologists encountered many phenomena which could not be 

described through the above relationships. Weber (1835) noticed that the elasticity of 

silk fibres in tension was not perfect. The materials displayed some viscous and some 

elastic effects, simultaneously. Initial study into viscoelasticity was primarily targeted 

towards creep and relaxation response of metals, prior to the explosive growth of the 

polymer industry and the application of macromolecules.

Table 2.1. Significant rheological works prior to formal inception o f rheology in 1929

LUIDS/MODELS CLASS KEY TIME REPRESENTATIVE WORKS

Ideal
materials

a) Perfect, rigid bodies Antiquity Archimedes (-250 BCE), Newton (1687)

b) Ideal elastic solids 1600’s Boyle (1660), Hooke (1678), Young (1807), Cauchy (1827)

c) Inviscid fluids 1700’s Pascal (1663), Bernoulli (1738), Euler (1755)

d) Newtonian Liquids Early 1800’s Newton (1678), Navier (1823), Stokes (1845), Hagen (1839), 
Poiseuille (1841), Weidemann (1856)

Linear Visvoelasticity Mid 1800s Weber (1835), Kohlrausch (1863), Wiechert (1893), Maxwell 
(1867), Boltzmann (1878), Poynting & Thomson (1902)

Generalised Newtonian 
(viscous) liquids

Late 1800s 
Early 1900s

Schwedoff (1890), Trouton & Andrews (1904), Hatchek (1867), 
Bingham (1922), Ostwald (1925), de Waele (1923), Herschel & 
Bulkley (1926)

Non-linear viscoelasticity Early 1900s Poynting (1913), Zaremba (1903), Jaumann (1905), Hencky (1992)

Key material 
descriptions

a) Suspensions

Early 1900s

Einstein (1906), Jeffrey (1992)

b) Polymers Schonbein (1847), Baekeland (1909), Staudinger (1920), Carothers 
(1929)

c) Extensional 
viscosity

Banus (1893), Trouton (1906), Fano (1908), Tamman & Jenckel 
(1930)

The genesis of Rheology 1929 Bingham, Reiner and others

Rheology is a multidisciplinary science. From the chemical or mechanical 

engineering point of view, one may split it into three main research areas: theory, 

experiment and simulation. Theoretical aspects involve the study of the physics 

governing fluid behaviour and constitutive equations. Experimentation may be 

categorised under viscometry (measurement of viscosity) and rheometry (measurement 

of other rheological properties). Computer simulation is concerned with computation 

through mathematical modelling and visualisation. The lists in Tables 2.1 and 2.2 (taken

10
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from [39]), represent the catalogue of such work from the earliest times to the present 

day.

Table 2.2. Rheology since its inception in 1929

# AREA OF ACTIVITY REPRESENTATIVE WORKS

1 Constitutive
equations

a) Differential models Oldroyd (1950), Truesdell (1952), Rivlin and Ericksen (1955), Giesekus (1962), 
White-Metzner (1961)

b)Integral models Green & Rivlin (1957), Coleman and Noll (1961)

c)Network models Green and Tobolsky (1946), Lodge (1956), Yamamoto (1956), Kaye (1962), 
Bernstein et al. (1963)

d) Reptation models Edwards (1967), De Gemmes (1971), Doi & Edwards (1978,1986)

e) Molecular models Kuhn (1934), Rouse (1953), Zimm (1956), Kirkwood (1967), Bird et al. (1987)

2 Experimental 
advances and 
rheological 
descriptions

a) Shear flows and the 
no-slip boundary 
condition

Eisenschitz et al. (1929), Mooney (1931, 1936), Schofield & Blair (1930), 
Pearson & Petrie (1968), Grassley (1977), Ramamurthy (1986).

b) Normal stresses and 
rod-climbing effects

Lander (1945), Weissenberg (1947), Markowitz (1957), Philippoff (1957), Ginn 
& Metzner (1969), Binnington & Boger (1985)

c) Dynamic studies Eisenschitz & Philippoff (1933), Schofield & Scott Blair (1932), Leaderman 
(1943), Cox-Merz (1958), Doraiswamy et al. (1991)

d) Thixotropy Freudrich & Bircumshaw (1926), Cheng & Evens (1965), Mewis (1979), Barnes 
(1997)

e) Flow instabilities Nason (1945), Tordella (1958), Petrie & Denn (1976), Bousfield et al. (1986)

0  Turbulent drag 
reduction

Toms (1949), Agoston et al. (1954), Herahey & Zakin (1967), Seyer & Metzner 
(1967)

g) Optical studies/ 
birefringence

Adams et al. (1965), Carothers & Hill (1932), Hermans & Platzek (1939), 
Janeschitz-Kriegl (1983), Fuller (1985)

h)Time-temp.
superposition

Williams et al. (1955), Ferry (1970)

i) Extensional 
behaviour

Merrington (1943), Treolar (1944), Ballman (1965), Cogswell (1969), Metzner 
(1968), Meissner (1969), Dealy et al. (1976), Spearot & Metzner (1972), Laun 
& Mundstedt (1978), Sridar & Gupta (1985)

3 Advanced
materials

a) LCPs Leslie (1968)-Ericksen (1961), Doi (1981), Wissbun (1985), Doraiswamy & 
Metzner (1986), Marucci & Greco (1992)

b) Composites and 
two-phase systems

Taylor (1934), Krieger-Dougherty (1959), Rumscheidt & Mason (1961), Leal 
(1975), Batchelor (1977), Folgar & Tucker (1984), Heller & Kuntamukkula 
(1987), Khan & Armstrong (1986), Acrivos & Shaqfeh (1988), Mewis et al. 
(1989), Dennis et al. (2001)

c) ER/MR fluids Winslow (1949), Parthasarthy & Klingenberg (1996)

4 Computational
Rheology

a) Continuum 
simulations

Turner et al. (1956), Gottlieb & Orzag (1977), Cruise & Risso (1968), Yoo & 
Joseph (1985), Beris et al. (1987), Walters & Tanner (1992), Crochet & Walters 
(1993)

b) Molecular dynamic 
simulations

Adler & Wainright (1957), Ashrust & Hoover (1975), Evans & Morriss (1988), 
Davis & Todd (1998)
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2.3 Basic equations
Rheology is concerned with the study of the deformation and flow of matter. The 

principal theoretical concepts are kinematics, dealing with geometrical aspects of 

deformation and flow; conservation laws, dealing with force, stress, and energy 

interchange, and constitutive relations. The constitutive relations serve to link motion 

and force to complete the description of the flow process.

All real materials possess a microstructure at the molecular, crystal or higher level. In 

mechanics, one is often not interested in specifying the material in such detail, as the 

large-scale phenomena of interest usually involve the amalgamated behaviour of a large 

number of units of the microstructure. Thus, it is convenient to work with an ideal 

continuum model for the material, whose microstructure is unspecified. This means that 

any small volume fluid element is always taken to be sufficiently large that it contains a 

huge number of molecules. Accordingly, when one speaks of the infinitely small, that 

implies miniscule when compared with the volume of the body under consideration, but 

large compared to the distance between molecules. The expressions fluid particle and 

fluid point are to be understood in a similar sense. The governing equations of fluid 

motion are expressed through the conservation of mass, transport of momentum (second 

law of Newton) and energy (first law of thermodynamics)*. These equations in 

differential form can be expressed as:

^  + V-(p«) = 0, (2.1)
at

'j
p ^  + p w V u  = V- 7r +f ,  (2.2)

ot

where the notation p , u, n  and /  represent density, velocity, total stress and external 

body force, respectively. These quantities are, in general, functions of spatial 

coordinates (x, y, z), and time, t. u (x ,y ,z,t)  represents the velocity of the fluid at a

given point, (x, y, z), in space, and at a given time, t. The total stress, n , is split into an 

isotropic pressure, p, and stress tensor, a ,

71 = a -  p i , I is the unit tensor. (2.3)

* For the phenomena of interest here, the energy equation can be decoupled from mass and momentum 
balances and solved separately, without disturbing the generality of the algorithm. As such, in this study, 
the effect of temperature in neglected.
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It is necessary to introduce equations to describe the link between pressure, stress, 

density and velocity. By convention the equations describing such a relationship for 

pressure and stress are termed the constitutive equations (section 2.5) and the equation 

o f state (section 2.4), respectively.

2.4 Equation of state
The state of a sample of a homogeneous substance is defined by its physical 

properties, and two thermodynamic quantities. The state of a pure gas, for example, is 

specified by giving the values of its specific volume, V, pressure, p, and temperature, T. 

It has been established as an experimental fact that any substance is described by an 

equation o f state, an equation that interrelates these three variables. Here, it is sufficient 

to specify only two such variables, as then, the third is fixed. For a prefect gas, the 

equation of state may be expressed as pV  = R T , where R is a universal constant. Real 

gases display deviation from the prefect gas law due to inter-molecular interaction. 

Repulsion forces between molecules assist expansion and attraction forces assist 

compression. Repulsion forces are significant only when molecules are almost in 

contact: they are short-range interactions, even on a scale measured in molecular 

diameters. As these forces are short-range interactions, repulsion can be expected to be 

important when the molecules are sufficiently close together on average. This is the case 

for condensed matter (gases under high pressure and for liquids) when a large number 

of molecules occupy a small volume. On the other hand, attraction intermolecular forces 

have a relatively long range and are effective over several molecular diameters. 

Intermolecular forces are important when molecules are fairly close together but not 

necessary touching. Attraction forces are ineffective when the molecules are far apart. 

When the molecules are on average close together (liquids or gases at high pressure 

and/or low temperature) the repulsion forces dominate and the fluid can be expected to

* A homogeneous system is one with uniform properties throughout in space; that is, a property such as 
density has the same value from one location to another, in a macroscopic sense. For a homogenous phase 
with fixed composition, the ‘phase-rule’ defines the number of degrees of freedom as two [116]. 
Therefore, to define the intensive-state of such a system, one must specify two additional thermodynamic 
quantities. These are commonly taken as temperature and pressure, whose control and measurement are 
simpler than is the case for other variables, such as entropy.

13



Chapter 2 Rheology and Basic Equations

be less compressible. Then, the forces assist in driving the molecules apart. For more 

details see [116].

The pressure-volume-temperature (pVT) relationships for polymeric materials have 

been treated as a subject of some importance to polymer scientists and engineers, 

particularly from a process design standpoint. It has been necessary to establish an 

equation of state that adequately describe this behaviour over a wide range of 

temperature and pressure. The equation of state is important in rheology in linking 

density to the computed variables. In addition, this law is significant in fluid phase 

equilibria to predict the properties of blends and solutions. The equation of state for 

polymeric materials can be categorised as empirical and theoretically based. Numerous 

theoretical equations of state for polymeric liquids have been developed (see [122] and 

relevant references there). These fall into three main groups: a cubic equation of state 

(for example, Peng-Robinson) with an excess free energy-based mixing rule [109], hard 

sphere chain-based theories, and lattice fluid-based models [75]. It would appear that 

practically all equations of state for polymeric liquids provide a reasonably good fit to 

the pVT  data, especially under low pressure conditions [122]. However, there is a major 

difference between the various equations in their abilities to fit pVT  data over a wide 

range of pressure, and to predict thermodynamic properties of polymer blends and 

solutions, particularly concerning phase separation behaviour. The parameters of the 

equation of state are related to intermolecular forces. Describing these interactions for 

different molecules is essential to develop mixing rules for parameters and this is the 

main subject in the theoretical methods. In material processing, the study of phases is 

not the principal interest. As such, the well-known empirical Tait equation of state 

[136], has been employed widely in this area (see for example [40]). The Tait equation 

may be expressed in the following form [136]:

Po + B

where, m and B are parameters and p 0, p Q represent reference values for pressure and

density, respectively. This empirical equation of state is suitable for dense materials, 

such as polymer melts and solutions, water and other liquids ([49,67] under linear 

approximation (m=l), see also,[120]). Generally, m and B are dependent on temperature 

and are independent of entropy [21]. Rodgers [122] catalogued the parameters for the

—  , with the augmented pressure p  = - —trace{n), (2.4)
3
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Tait equation of state as a function of temperature for more than fifty six polymers. Han 

and Im [60] did likewise for PP in for different arrangements of the Tait equation.

2.5 Constitutive equations
One of the main objectives of rheology is to establish the relationships between the 

state of stress, strain, and rate-of-strain ( f(c r ,y ,y )  = 0 )  experienced by a body. 

Equations that give such relations are termed the rheological equations of state or 

constitutive laws. Rheological equations of state are a mathematical reflection, or 

mathematical model, of the actual properties of the material. For constitutive equations 

it is necessity to adhere to certain general axioms. In this section, the major 

requirements are outlined which are expected to be satisfied by these constitutive laws.

First, the function f(criy ,y)  = 0 is taken to represent a physical law, and to reflect 

the properties of the material. These properties are independent of the manner in which 

the law is formally expressed. This gives rise to the first principle, the requirement of 

the invariance of the physical law with respect to change in coordinate system. Tensor 

component values may adjust with rotation of axes, yet this does not entail change in 

material properties, nor in the physical relations that reflect these properties. As such, 

the physical features of strain must be expressed through the invariants of the respective 

tensors, and these must be independent of choice of coordinate system. For this reason, 

the constitutive equation must accommodate invariance under coordinate 

transformation. The converse is also true: if the constitutive equation is expressed in an 

invariant form, then, this may be represented through the relationships between the 

components of the corresponding tensors. From this relationship, it follows that the 

scalar quantities that enter the constitutive equations cannot be arbitrary functions of the 

components of strain or stress (tensors). Instead, there must be dependence on the 

invariants of such tensors; otherwise the requirement of coordinate invariance of the 

physical law would be violated [148]. These scalar quantities are coefficients 

characterising the particular properties of the material.

The second requirement is the principle of kinematic invariance. This principle 

implies that when relationships are established amongst various quantities, they must be 

referenced to the same point in the body, or in space. As such, if the time derivative of 

any quantity is encountered in the rheological equations of state, it should be calculated
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taking into account the displacements of the body in space. This implies that account 

must be taken of the body motion as a whole, and the rotation of the elements of the 

body in the neighbourhood of the point in question. This requires not only the inclusion 

of partial time derivatives in the constitutive equations, but also those derivatives taken 

with respect to coordinate transformations in time. Examples of such derivatives are the 

Oldroyd and Jaumann operators.

The third principle, introduced by Oldroyd, is that only the neighbouring particles in 

a material should be involved in determining the stress at a particular location. This is 

consistent with the notion of short-range forces amongst the molecules of a physical 

material. At the same time, this excludes long-range forces, such as those of an 

electrostatic origin, included as body forces [137]. The assumption made here, that the 

stress in a given fluid particle depends on the kinematic history of that particle alone 

(and not on the kinematic history of the neighbouring particles) appears to have found 

universal acceptance, without requirement of appealing to a higher level of complexity 

[16]. With these principles, and some simplifying mathematical approximations and 

assumptions, one can establish reasonably general continuum mechanical constitutive 

equations, without appealing further to deeper molecular theory.

2.6 Constitutive models

2.6.1 Newtonian model

For an inelastic fluid, the constitutive equation may be expressed in the form 

of f( (J ,y ) .  The Newtonian constitutive equation is the most common form of this type 

of equation and is expressed viz.

(V-mU , (2.5)

where, D and S  represent the rate-of-deformation and Kronecker delta (tensors), 

respectively. Here, 2Z)(> =(Lij +L j)  andLr =V «.  The material parameters of k and 

fi represent bulk viscosity and shear viscosity, respectively. Bulk viscosity arises as a 

consequence of active rotational and vibrational modes at the polyatomic molecular 

level, relevant in compressible gas or granular matter flow.
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2.6.2 Maxwell models

An early rheological model for viscoelastic fluids emerged from the proposals of 

Maxwell, who speculated that gases may be viscoelastic. This seminal notion was never 

actually adopted for gases, yet it did become the central basis for the development of 

viscoelastic models applicable for liquids and solids. Maxwell proposed the linear 

equation,

<j + A ^ -  = GAy, (2.6)
Ot

which has an elastic limit, a  = G y , for rapid deformation and a viscous limit, 

o  = GAy, for slow deformation. In the above equation, Gand GA are the elastic 

modulus and viscosity, respectively. Oldroyd realised that this linear model did not 

obey the mathematical principle of objectivity. He established in this landmark paper 

[107], that for large strains, the rate-of-change of stress as well as deformation rate, 

must be objective, and hence, non-linear. Oldroyd proposed that frame invariance could 

be recovered by expressing the constitutive equation in a frame of reference convected 

or deformed with the material elements (second principle). To do so, one must 

reinterpret the time derivative in the Maxwell equation as a time derivative in a 

convected coordinate system:

o  + A ^ -  = 2fjD . (2.7)
S t

There are two common convected coordinate systems. First, the base coordinate vectors, 

which are parallel to the material lines, are stretched and rotated with the material lines 

[88]. This gives rise to the set of contravariant base-vectors, and the convected time 

derivative

—  = er = —  + v V c r - V v r t r - c r  Vv, (2.8)
St d t

termed the upper-convected derivative. The second is a set of base-vectors that are 

normal to material planes. With this set of covariant base-vectors, the convected time 

derivative is,
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A t  a  dfT
—  = a  = —  + v-V<7 + Vvr - j  + tT-Vv (2.9)
St dt

termed the lower-convected time derivative. The associated terminology, upper- 

convected and lower-convected, originally attributed as superscripts, was used for 

contravaraint base-vectors and subscript for covariant base-vectors [88]. These two 

choices, when imposed upon the Maxwell equation in frame-invariant form, lead to:

(T + A a  = 2pD  (UCM) (2.10)

cr + Acr = 2juD (LCM) (2.11)

The equations (2.10) and (2.11) represent the upper-convected Maxwell (UCM) and the 

lower-convected Maxwell (LCM) equations, respectively. The UCM enjoys a molecular 

basis, whilst the LCM does not [88].

2.6.3 Oldroyd models

Oldroyd proposed employing the frame invariant form of the Jeffrey equation, a 

more generalised version than the Maxwell equation,

1 5 °  r.<j + A —  = 2 u
S t

f  rD \
D + A2—  . (2.12)

o t\  J

The last term can be regarded as arising from stress in the solvent. As above, the two

invariant forms of the Oldroyd equation become:

V (
cr + Acr = 2fi D + A2D (Oldroyd-B) (2.13)

v )

A (  A \

<7 + A c t  = 2fi D + A2D (Oldroyd-A). (2.14)
v

With the Oldroyd-B model, the stress tensor a  can be split into polymeric stress and 

solvent stress. This avoids additional numerical discretisation error encountered under 

the approximation of higher-order derivatives. Such a stress-splitting can be expressed 

through an extra-stress, r  , in the following form:

a  = t  + 2jusD  , (2.15)

from which the Oldroyd-B equation yields:
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V

t + A t = 2jueD . (2.16)

Here, jus , / ip represent the polymeric and solvent viscosity contributions, respectively.

The total viscosity, jn , and retardation time, A2, may be recovered through the following 

relationships:

the constraint A >A2 > 0. In order to reproduce the dependency of shear stress on shear 

rate in steady simple shear experiments, Crochet and Keunings, in a finite element

provides a constant shear viscosity, which is suitable for the study of (realistic) Boger 

fluids at moderate shear-rates. To a good approximation, in steady simple shear flow, 

these fluids (highly dilute solutions of a high molecular weight polymer in a highly 

viscous solvent) reflect a constant viscosity and a quadratic first normal stress difference 

over a reasonable range of shear rates. As such, these fluids, were used in experiments 

to separate shear-thinning from elastic effects. Over many years, the Oldroyd-B model 

has been thought of as a useful first approximation for such fluids, since the 

vsicometric functions for this model are broadly consistent with experimental 

observations [138].

In contrast, the extensional viscosity /ie, of the Oldroyd-B model is not constant. For

a uniaxial extensional flow, the extensional viscosity can be expressed as a function of 

extensional rate, € , viz,

M = Ms+M( (2.17)

(2.18)

Here, to satisfy the “second law of thermodynamics”, the above equations must satisfy

u
context, proposed a viscosity ratio of Newtonian solvent to polymeric solute —  of

and a retardation to relaxation time ratio The Oldroyd-B model
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/ . \  ( l ~ 2A2£) (l + A2£) i r .x

< 219 ,

A drawback to the Oldroyd model is that at a finite extension rate, £ -  , the
2/t

extensional viscosity becomes infinite, which is unphysical. Nonetheless, the property 

of constant shear viscosity makes the Oldroyd-B an attractive model in investigating the 

performance of numerical algorithms and shall be used in this thesis study throughout.
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CHAPTER 3

Numerical Algorithm and 
Finite Element Method

This chapter addresses the need to predict solutions for weakly-compressible highly- 

viscous/viscoelastic polymeric liquid flows, with attention to both accuracy and 

efficiency. The approach commences from a framework adopted for incompressible 

flow and viscoelastic fluids, upon which compressibility is imposed. Here, 

viscous/viscoelastic dominant fluids are considered, so that inertial effects are low to 

moderate, yet viscosities/viscoelasticities may be high. In such a context, the level of 

corresponding Reynolds number is low (typically, Re ~ O (l)), diffusion dominates and 

convection terms may be resolved without difficulty. This lies in contrast to the 

aerodynamic high-convection regime (inertial, low-viscosity, high-speed), which gives 

rise to shocks and where characteristic-based methods are relevant. Here, such issues do 

not emerge. To address viscoelastic flows, where convection of stress (fluid-memory) is 

important, a suitable form of upwinding is demanded. To this end two different forms of 

upwinding based on Petrov-Galerkin [98] and fluctuation distribution [151,152] are 

adopted.

3.1 Governing equations
The governing equations for viscoelastic flows are represented by the conservation 

laws for mass and momentum, in conjunction with equations of state for stress and
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density (compressible flow). The non-dimensional form of continuity and momentum 

balance equations for isothermal compressible flows respectively may be expressed, viz.

^  + v ( p « )  = 0 ,  (3.1)
at

Re p-~-  = V • (rs + r ) -  Reu • Vm -  V p , (3.2)
at

where, p , w, p  and r  represent density, velocity vector, hydrodynamic pressure and 

extra-stress tensor respectively. The viscous stress rs is defined based on Eq.(2.5). The 

relationship between the solvent and polymeric viscosity implies p  -  p e + p s . 

When p s = 0 , the system describes the Maxwell model. Henceforth, we refer to 

ft. = M./ M = 8/9 and fi] =/us/M = 1/9 •

The Oldroyd-B constitutive equation is given by

r  + We—  = -Weu ■ V r  + Weft • r  + t  • i l )+ 2 u ’D . (3.3)
dt

The Reynolds (Re) and Weissenberg (We) non-dimensional group numbers are defined 

according to convention as,

_ pUl AURe = —— , We = —  , (3.4)
p  I

where, p ,  p  and A denote selected reference density, total viscosity and relaxation
A

time; U , I are characteristic velocity and length scales (channel exit half-width) of the 

flow. By convention, for the 4:1 contraction flow problem (see chapter four), a 

characteristic velocity for incompressible flow may be assumed as based on the 

maximum velocity at the channel outlet. Generally, this is calculated via the continuity 

equation from fully-developed outlet flow considerations. For incompressible flow, 

density is constant and only inlet mass flow-rate is calculated, via imposed boundary 

conditions on velocity. In contrast, for compressible flow, density at the inlet is a 

dependent variable. Consequently, the characteristic velocity remains a dependent 

variable. Therefore, within our study for compressible flow, the characteristic velocity is 

adopted of its incompressible counterpart.
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To close the set of equations it is necessary to introduce an equation of state to link 

density to pressure. In this regard, the Tait equation of state (see chapter two) has been 

extensively employed in polymer processing to describe the relationship between 

density, pressure and temperature. The equation can be expressed in a simplified form,

P + B = B p m where augmented pressure, P -  P -  i trace ( t s + t )  . (3.5)

Here, B represents a non-dimensional shift for pressure and m a dimensionless exponent 

(a function of temperature).

For clarity, the (*) notation on viscosity fractions is implied, yet discarded.

3.2 Background theory
Compressibility effects occur in both liquids and gases through the variation of 

density. Density itself depends on temperature, pressure and concentration levels. Flows 

of liquid materials, at moderate pressure levels, can be considered as incompressible. 

Nevertheless, at large pressure-differences, such flows may display some mild 

compressibility effects. The Mach number, the ratio of fluid velocity to the speed of 

sound ( Ma = u / c ), characterises the influence of compressibility on a flow field. Flows 

at low Mach number (LMN) may be described as incompressible, whilst for those at 

moderate to high Mach number, compressibility effects will be prominent. The 

incompressible limit of a compressible flow is approached, under suitable constraints, as 

the Mach number vanishes [103]. Under such circumstances, the speed of sound is 

much larger than the velocity of the liquid, resulting in fast pressure waves, where rapid 

pressure equalization takes place.

LMN flows play an important role, occurring widely in nature and industrial 

processes. Circulation within the oceans is driven mainly by density gradients, which 

arise via variation of salinity and temperature. Common human bodily functions, such 

as, singing, whistling, breathing and talking, all represent examples of LMN flow 

regimes. In addition, some industrial gas flow configurations take place at LMN. Free 

convection and combustion are yet further examples, where flow occurs driven under 

the variation of density with temperature. Compressibility has some impact upon 

applications such as in: liquid impact, jet cutting and liquid impact erosion, in steam 

turbine for example [45,78]; polymer extrusion [49]; injection molding with polymer
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melts [60]; recovery and exploration of petroleum [160]. Compressibility should be 

incorporated in order to rigorously investigate such phenomena as cavitation [21], 

instabilities [49], and shrinkage and warpage [60], liquid impact erosion [72,78]. 

Moreover, in capillary rheometry, compressibility may have a significant influence on 

features such as the time-dependent pressure changes within a system (see piston-driven 

flows, [120].

Much attention has been devoted towards the computational solution of flows that 

manifest compressibility effects. Today, sophisticated numerical solvers can handle 

high Reynolds number compressible flow computations. To solve such scenarios, 

different methodologies have emerged under finite element and finite volume 

approaches. Within finite elements, this gives rise to various Streamline- 

Upwind/Petrov-Galerkin (SUPG) algorithms, with stabilization techniques such as 

Galerkin Least-Square (GLS) [70]. Equivalently, in the finite volume context, some 

high-performance counterpart algorithms have emerged [76,77,102]. Nonetheless, 

Wong et al. [159], state that some SUPG compressible-based algorithms may fail to 

yield adequate numerical solutions for flows that approach the incompressible limit. 

Degradation in the solution has been observed in several studies [143,159]. Here, the 

key difficulties are addressed associated with the computation of weakly-compressible 

liquid flows.

3.2.1 Switch of equation type

One of the key difficulties arises from the fact that the governing equations switch in 

type. The equations for viscous compressible flow form a hyperbolic-parabolic system 

with finite waves-speed (inviscid case, hyperbolic), whilst those for incompressible 

viscous flow assume an elliptic-parabolic system with infinite propagation rates. In 

addition, for viscoelastic flows, a sub-system of hyperbolic form may augment the 

whole. Switch in type of the governing equations may render ill-posedness in flow 

computation, due to boundary conditions and solution strategy.

3.2.2 Pressure decoupling

In the LMN situation, where density becomes almost constant, the role of pressure is 

to act on velocity through continuity, so that conservation of mass is satisfied. In these 

situations, when density changes are small, density-pressure coupling becomes weak 

[77], As a result, the continuity equation is decoupled from the momentum equations
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and can no longer be considered as the equation for density [102]. Rather, continuity 

acts as a constraint on the velocity field. Thus, for sequential solution of equations, it is 

necessary to devise a mechanism to couple the continuity and momentum equations 

through the pressure field. In compressible flow situations, the pressure takes on a dual 

role to act on both density and velocity through the equation of state and momentum 

conservation, respectively, so that mass conservation is satisfied. The choice of whether 

pressure has a major effect on density or velocity depends upon the flow regime, Mach 

and Reynolds numbers. This will be discussed in detail later for the case of present 

interest, where Mach and Reynolds numbers are generally low. The above reveals that 

for any numerical method to be capable of predicting both incompressible and 

compressible fluid flow, the pressure should always be allowed to play its dual role, to 

act on both velocity and density to satisfy continuity.

3.2.3 Large disparity in waves speed and efficiency

The main difficulty in solving the compressible equations for LMN is associated 

with large disparity of the waves-speed which are present in the system [143,159]. 

Acoustic waves travel much faster than entropy waves, which are convected at the fluid 

velocity. In LMN flows, the largest eigenvalues of the system (Anm) tend toward the 

speed of sound and the smallest (Amin) provides the speed of the fluid. Thus, the 

condition number of the system (*), the ratio of largest to smallest eigenvalues, goes 

larger, as the Mach number tends to zero.

A  U +  C 1 / o  z:\K = _n^_ = ------  = 1 + ----- . (3.6)
A - u Marrun

This effect increases the stiffness in the system [125,141]. Consequently, for 

compressible implicit schemes, iterative solution of the algebraic equation system is 

slow and expensive. On the other hand, the explicit time-marching schemes for 

numerical stability considerations are restricted to obey the CFL (Courant-Friedrichs- 

Lewy) condition. This states simply that the numerical domain of dependence must be 

at least as large as the physical domain of dependence (see [65]). In other words, the 

CFL condition states that the numerical scheme must be such that the solution at some 

point i at time level t + At must depend on all points at time level t whose characteristic 

variables affect point i. This places a limit on the size of time-stepA/, which may be 

taken. Therefore, explicit time-marching schemes suffer from the lack of efficiency due
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to excessively small time-steps to satisfy CFL conditions, which impose, the following 

restriction on time-step selection:

Af < a - ^ ~  (3.7)com  —  v  7u + c

where, a is a constant of order unity, Ax the mesh length-scale, and (u+c) the speed of 

the acoustic mode. For the incompressible counterpart, the stability restriction is less 

severe:

Mac -  a ~~  (3-8)u

where, the time-step is in balance with the physical time-scale. One can obtain 

At  Macom  ___ -»0 for Ma —»0.  (3.9)
Af(„c Ma + l

Thus, for LMN and explicit schemes, the acoustic waves impose a time-step much 

smaller than the physical time-step. Therefore, conventional compressible solvers for 

LMN flows, either in explicit or implicit form, become inefficient and impractical 

without modification for Mach numbers lower than about 0.3 [58,123]. The problem 

can be quantified on the following grounds: The speed of sound for air at room 

temperature is around 333 m/s [94]. Therefore at Ma=03, the speed of the fluid will be 

approximately 100 m/s. Nevertheless, the speed of sound for compressible liquids is 

much larger than the speed of sound in air (say five times). In applications such as 

polymer processing, velocity levels are generally low (order of unity). Therefore, 

condition numbers in compressible liquid flows are normally smaller, by order of 

magnitudes, compare to those for compressible low-Mach gas dynamic applications. 

This is why computation of compressible liquid flows generally is associated with much 

more severe conditions than gas flows. Therefore, the accurate solution of nearly 

incompressible flows is difficult to obtain [159].

3.2.4 Consistency and error cancellation

Stiffness of the equations is not the only problem that besets standard compressible 

flow computing methods at low speed. Actually, in addition to convergence and round­

off error difficulties, the approximation of compressible fluid flow equations suffers 

from accuracy and consistency problems in the LMN limit [58]. There is experimental
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evidence to show that on a fixed mesh, the discretised solution of the compressible fluid 

flow equations is not an accurate approximation of the incompressible equations 

[58,143]. Viozat analysed the Roe scheme in the LMN regime and quoted “when the 

mesh size h and the Mach number Ma tend to zero, the truncation error of the first-order
/  » \

Roe scheme applicable to the momentum equations, is only O h Therefore, this
M aj

scheme in the LMN limit is inconsistent. Sesterhenn et. al. [129] have shown that 

cancellation errors play a significant role in calculating LMN flows. They have shown 

precisely the role of computer accuracy and numerical cancellation for this problem. 

When a stiff system is solved by carrying out the required large number of small time- 

steps, often incorrect results are obtained for LMN problems [158].

3.3 Numerical methods
The need for algorithmic developments to handle the LMN flow regime may be 

justified on a number of grounds. For example, there are many natural phenomena, 

where accurate simulation in this scenario is demanded. In some instances, flow 

problems may exhibit mixed-type (compressible/incompressible), where some sections 

of the flow are incompressible with locally LMN, whilst other zones are significantly 

compressible. Under such circumstances, if the incompressible region is sufficiently 

small, compared to the compressible section, there is little loss of accuracy when 

incompressibility is neglected. However, there are flow regimes, such as in 

aerodynamics (high-speed/low-viscosity), where large regions of LMN coexist 

alongside supersonic flow regions. This arises in aerofoil high angle-of-attack 

configurations, where the solution will degrade if based solely on a compressible 

description. Moreover, acoustics in gases and liquids is not only a daily experience, but 

also has great scientific and technological significances. Aerodynamic noise regulations 

become more restrictive due to public demands caused by increased transport of persons 

and goods and by increased environmental sensitivity. Thus, aerodynamics has become 

a key issue in the design of airplanes, cars, engines and in general, everything that can 

produce acoustic waves. In addition, in some material processing instances, such as for 

polymers during the filling stage of injection moulding and in extrusion, there are some 

locally compressible regions, whilst most of the flow remains incompressible.
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Therefore, it is both desirable and necessary to develop algorithms that can handle both 

regimes, concurrently.

Computational methods to solve flow problems fall into two main categories: (a) 

methods for compressible flows and (b) methods for incompressible flows [77,100,102]. 

These two classes of methods are quite different from each other with respect to the 

choice of variables, issues related to numerical stability and choice of solvers and 

boundary conditions [100]. Compressible schemes are characterised by employing 

density as the primary dependent variable, extractable from the continuity equation, and 

hence, pressure being determined from solution variables via an equation of state. These 

schemes are called density-based methods. For incompressible schemes (pressure- 

based) continuity is utilized as a constraint on velocity and is combined with momentum 

to form a Poisson-like equation for pressure. Each of these methods is appropriate for a 

specific range of Mach number values.

Density-based methods have been employed as a natural choice for computation of 

compressible flows. Turkel et al. [143] and Guillard and Viozat [58] have identified 

that, in the LMN limit, the discretised solution of the compressible flow equations may 

fail to provide an accurate approximation to the incompressible equations (quoting 

Guillard and Viozat [58] in particular). As a ‘rule-of-thumb’, compressible schemes 

without modification become impractical for Mach numbers lower than around 0.3 

[123]. In contrast, pressure-based methods were originally conceived to solve 

incompressible flows, adopting pressure as a primary variable. With this approach, 

pressure variation remains finite, irrespective of Mach number, rendering computation 

tractable throughout the entire spectrum of Mach number [77], hence circumventing the 

shortcomings of density-based methods.

Therefore, from a numerical perspective, conventional approaches to handle LMN 

flows can be subjugated into two main categories: density-based schemes and pressure- 

based schemes [77,102].

3.3.1 Density-based methods

Density-based methods represent a large class of schemes adopted for compressible 

flows. Time-marching density-based schemes are employed widely in computational 

fluid dynamics for computation of steady and transient transonic, supersonic and 

hypersonic flows, where switch of type occurs here, as Ma passes through unity. In the
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subsonic regime, when the magnitude of the flow velocity is small, in comparison with 

the acoustic wave-speed, computation of weakly-compressible flow in a standard 

density-based compressible formulation gives rise to loss of accuracy and consistency 

due to weak coupling between pressure and density and loss of efficiency due to the 

stiffness of the system of equations, when the Mach number is below 0.3 [144].

Two distinct techniques have been proposed to capture solution convergence for 

LMN regimes, preconditioning and asymptotic. Both techniques achieve rescaling of 

system condition numbers. The first technique is to pre-multiply time-derivatives by a 

suitable preconditioning matrix. Effectively, this scales the eigenvalues of the system to 

similar orders of magnitude and removes the disparity in wave-speeds, leading to a 

well-conditioned system [143]. The second technique introduces a perturbed form of the 

equations. This is known as the asymptotic method. Here, specific terms are discarded, 

so that the physical acoustic waves are replaced by pseudo-acoustic modes.

3.3.1.1 Preconditioning schemes

Chorin [27] proposed the method of artificial compressibility to solve the 

incompressible Navier-Stokes equations when a steady-state solution is sought. This 

led to attempts to solve the compressible equations over a large range of Mach numbers. 

This method consists of adding an artificial density time derivative term to the 

continuity equation in order to restore the hyperbolic type in this equation and thus to 

convert a system of mixed elliptic/parabolic type to a totally hyperbolic system. With 

this artificial term the resultant scheme is a symmetric hyperbolic system for the 

inviscid terms. Thus, the system is well-posed and a numerical method for hyperbolic 

systems can be used to advance this system in time [142]. The temporal derivative of 

density is replaced by an artificial state equation in form p  = /3 p , where the adjustable 

parameter is called the artificial compressibility. Therefore, the continuity equation 

reduces to the following form

0 & -+ V -(u ) = 0 . (3.10)
Ot

This method is not consistent in time, yet this has no consequences when one is 

interested in steady-state solutions only. The modified equations have only steady-state 

solutions in common with the original system (hence, are devoid of true transients). The 

equation is advanced in time until a steady limiting solution of the incompressible
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equation is reached. When the steady-state is reached the above artificial form of 

continuity, is equivalent with the original continuity equation, but the time dependence 

of the solution is falsified.

This seminal idea of artificial compressibility can be generalised by pre-multiplying 

temporal terms of the system of equations with a preconditioning matrix. Turkel [141] 

extended artificial compressibility method by adding pressure time-derivatives to the 

momentum equations and not just the continuity equation. The preconditioner can be 

derived by using different sets of variables and different methods. Therefore, there can 

be a family of preconditioners to improve the conditioning of fluid flow equations in 

different circumstances. For a review on preconditioning schemes, one can refer to 

[142].

The preconditioning can be utilised for either compressible or incompressible flows, 

to accelerate convergence towards a steady-state. Indeed, the system of incompressible 

Euler equations, in which terms have been introduced as factors of the time derivatives, 

form a totally hyperbolic system, i.e. it is of the same type as the system of the 

compressible equations. Thus, the problem of solving the incompressible equations and 

the one of solving the compressible equations at LMN meet and can be solved with the 

same method when a steady-state solution is sought. Turkel [141] has introduced a 

family of preconditioners for low Mach-number flows. Similarly, Van Leer et al. [146] 

derived a symmetric preconditioner for the two-dimensional Euler equations. The main 

drawback of preconditioning methods is the lack of robustness near stagnation points 

(where the velocity field is slow). This may be due to artificial dissipation, where 

solution eigenvectors become almost parallel [33,159]. For the application of these 

methods to time-dependent problems, the ‘dual-time-stepping’ technique has emerged, 

where the physical time-derivative terms are treated as source terms. During each 

physical time-step, the system of pseudo-temporal equations is advanced in artificial 

time to reach a pseudo-steady-state, so that ultimately, a divergence-free constraint on 

the velocity field is satisfied [92].

Efficiency in preconditioner performance is known to be highly affected by the 

eigenvalue spectrum of the system, which must be taken into account within the design 

of the preconditioner. This arises for example, when simulating combustion problems at 

low Mach numbers. However, finding suitable preconditioners with optimised
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properties for complex problems is far from straightforward. Darmofal and Schmid [33] 

analysed the influence of eigenvector properties on the effectiveness of some 

preconditioners. Both theoretically and numerically, Darmofal and Schmid have 

demonstrated, that due to the lack of eigenvector orthogonality, small perturbations in 

the linearised evolution problem could be significantly amplified over short time-scales. 

The long-time or asymptotic behaviour of the linearised system is governed by the 

eigenvalue spectrum. However, for practical applications to nonlinear problems, this 

short-time non-normal growth may completely alter the mean-state, to the extent that 

the predicted long-time asymptotic behaviour may be lost. Darmofal and Schmid have 

demonstrated, through nonlinear preconditioned Euler predictions, that non-normal 

amplification does arise, and in practice, generates a significant lack of robustness, 

particularly near stagnation points.

3.3.1.2 Asymptotic schemes

With the second technique, the asymptotic or perturbation approach, a perturbed 

form of the equations is employed to eliminate system stiffness. Here, a Taylor series 

expansion of variables in powers of the Mach number is introduced. This decouples the 

physical acoustic waves from the equations, replacing them by a set of pseudo-acoustic 

forms, whose speeds are comparable to the fluid velocity [26,140]. Application of 

perturbation methods to extend compressible flow solvers to slightly compressible 

instances is straightforward, particularly for reactive flows. One may consider, for 

example the combustion setting where, due to the transient reactive terms, 

preconditioning schemes require a complex analysis. Although perturbation procedures 

are highly robust and applicable for both viscous and inviscid flows, the nature of the 

perturbation limits their usage, particularly with respect to mixed compressible- 

incompressible flows.

A LMN asymptotic scheme is used by Klainerman and Majda [86] for the Euler 

equations and by Kreiss et a l [87] for the Navier-Stokes equations to prove the 

convergence of the compressible flow solutions for zero Mach number limiting 

solutions under certain conditions. The basic philosophy behind asymptotic methods is 

to decrease the numerical representation of the speed of sound artificially, by 

subtracting a constant pressure pa across the entire domain. In modifying away from 

the true speed of sound, the numerical scheme may enjoy larger time steps (for more
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details see [74]). From a theoretical point of view, the situation is now well-understood 

in the inviscid limit: if the initial pressure field p  scales with the square of the Mach 

number Ma, p(x,0)= p0 + M a2 p 2(x). Additionally, if the initial velocity field 

(aU = 0) is almost solenoidal: u(x,Q)= u0 + M a u ^x )  withdiv(u0) = 0 ; then, the 

compressible flow solution remains uniformly bounded as the Mach number tends to 

zero. In the (Ma —> 0) limit, the solution satisfies the 'reduced' equation system for the 

incompressible state [123].

A significant source of error at LMN arises due to the fact that the pressure term is of 

order 1/Ma2, which introduces considerable inaccuracy as the Mach number approaches 

zero. In this regime, compressibility effects have little influence on momentum transfer, 

since, pressure becomes only a weak function of density. To prevent inaccuracy in the 

computation of pressure-gradients within the momentum equation, the pressure can be 

decomposed into two contributions [26,140]: p(x,t ) = Po(t) + P'(x,t), with pQ(t)/p0 =0(1)

and p ' (x , t ) /p Q = o(Ma2). Here, p Q{t) and p'(x, t)  are termed the ‘thermodynamic 

pressure’ and the ‘hydrodynamic pressure’, respectively and p a is simply a reference 

pressure. The thermodynamic pressure is defined as

p „ ( 0 = A  J p f o O ^ -  <3 1 1 )
* v

where, V is the volume of the solution domain. With this variable decomposition, only 

the thermodynamic pressure appears in the equations of energy and state. In the 

momentum equation, the gradient of the thermodynamic pressure vanishes, leaving only 

the gradient of hydrodynamic pressure.

3.3.2 Pressure-based Methods

The first implementation of pressure-based schemes for compressible flow is widely 

attributed to the early contribution of Harlow and Amsden [61], based on a semi- 

implicit finite difference algorithm.

Pressure-correction, or projection methods, are pressure-based fractional-staged 

schemes with correction for velocity and pressure (see [113]), introduced through the 

pioneering work of Chorin [28] and Temam [139]. Such methods have been employed 

effectively within several finite volume implementations, say through the SIMPLE
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(Semi-Implicit Pressure Linked Equations) family of schemes [111]. Karki and Patankar 

[77] developed the SIMPLER method for compressible flows, applicable for a wide 

range of problem-speeds. These SIMPLE methods are first-order in time. Munz et al. 

[103] extended the SIMPLE scheme for low Mach number flow employing multiple 

pressure variables, each being associated with different physical response. Similar 

procedures have been adopted by others [15,96,123]. Pressure-correction was taken 

forward within finite differences to a second-order by Van Kan [145]. Alternatively, 

within finite elements, Donea et al. [38] introduced a pressure-correction fractional-step 

method, designed to significantly reduce computational overheads in transient 

incompressible viscous flow situations. Similarly, Zienkiewicz et al. [165,166] have 

introduced the characteristic-based-split procedure (CBS). This implementation is a 

Taylor-Galerkin/Pressure-Correction scheme, suitable for both incompressible and 

compressible flow regimes. The crux here, is to split the equation system into two parts: 

a part of convection-diffusion type (discretised via a characteristic-Galerkin procedure) 

and one of self-adjoint type. With the characteristic-based-split scheme, one may solve 

both parts of the system in an explicit manner. Alternatively, one may use a semi- 

implicit scheme for the first part, allowing for much larger time-steps, and solve the 

second part implicitly, with its advantage of unconditional stability. The characteristic- 

based-split procedure has been tested successfully on a number of scenarios, for 

example, transonic and supersonic flows, LMN flows with low and high viscosity, and 

in addition, on shallow-water wave problems.

In the incompressible viscoelastic regime, computational methods have matured 

significantly over the last two decades or so [10,56,126,150]. Here, it is desirable to 

extend the methodology into the weakly-compressible regime, and particularly so for 

viscous/viscoelastic polymeric liquid flows. In this regard, density-based 

preconditioning or asymptotic methods often demand significant recoding. On the other 

hand, extending an existing incompressible flow code to accommodate compressibility 

would appear somewhat more straightforward. Precisely, here the aim is to modify a 

pressure-correction technique for incompressible polymeric flows to accommodate 

weakly-compressible, yet highly-viscous/viscoelastic, flows under LMN configurations. 

This presents a natural extension to earlier incompressible flow studies of Webster and 

co-workers for viscous [62], inelastic [36, three-dimensional] and viscoelastic [98,150] 

fluids, where we have developed a hybrid schema to attain second-order accuracy.
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3.4 Pressure-Correction scheme for compressible flows
Taylor-Galerkin (TG) schemes have emerged, via Taylor-series expansions, to 

provide high-order time-stepping schemes of various forms, see Donea [37] and Lohner 

et al. [93]. The principal constructive methodology is to discretise advection-based 

equations first, in time, and second, in space (Galerkin). Time derivatives may be 

replaced by spatial equivalents, from the original differential equation (Lax-Wendroff 

[89]). This introduces explicit or implicit-type schemes, of various orders of accuracy, 

and of one-step or two-step implementations (see Lohner et al. [93]). Such schemes 

have been used widely to solve model problems to more complex flows 

[2,31,36,104,165,166]. Recently, Webster and co-workers have advocated various 

advances in the application of our incompressible second-order, fractional-staged, time- 

marching pressure-correction procedures. This has accommodated model to complex 

flows exemplified through free-surface flows [104], wire-coating [105] and dough 

mixing applications [12]. The present goal is to elaborate the constructive steps to 

incorporate weak-compressibility upon such a formulation, where we have polymeric 

viscous/viscoelastic liquid flow applications in mind.

The base formulation-framework is that of a pressure-correction scheme, split into 

three distinct, fractional-stages. Briefly, at a first stage, which is divided into two sub­

stages, the momentum equation is employed to predict the velocity field at a half-stage. 

Subsequently, the momentum equation is employed to compute the velocity (w ) at a 

full-step (two-step Lax-Wendroff style, Taylor-Galerkin phase, [93]. The second stage 

(pressure-correction) utilises the continuity equation to evaluate a temporal pressure- 

difference, inserting the approximate velocity field (auxiliary variable, u*, computed at 

stage one). Crank-Nicolson averaged treatment for diffusion/source term introduces 

semi-implicitness to the stages and overcomes restrictive diffusive stability limitations. 

At a third stage, the end-of-step velocity field (u n+l) is corrected, based upon the 

pressure-difference on the time-step, derived at the second stage. One may draw 

distinction to the characteristic-based-split procedure of Zienkiewicz et al. [165,166], in 

the retention of pressure gradients, within the representation of the momentum equation 

over stage one. This ensures the solution at stage two for temporal pressure increments, 

delivering second-order accuracy to the system and aiding the appropriate setting of 

boundary conditions throughout. The characteristic-based-split approach, alternatively,
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conveys the pressure gradient term to the third fractional-staged equation for velocity- 

correction. A comparison between the employed scheme in this study and the CBS 

scheme structure is provided in appendix 3.A.

To extend the incompressible algorithm to deal with compressible flows, one must 

first appreciate the key role that pressure plays in a compressible flow. In the LMN 

limit, where density is almost constant, the role of pressure is to influence velocity 

through the continuity equation, so that conservation of mass is satisfied [102]. In this 

instance, density and pressure are only weakly-linked variables. To recast the above 

incompressible scheme into one appropriate for weakly-compressible highly-viscous 

flows, we follow the ideas of Karki and Patankar [77] and Zienkiewicz et al. [165,166]. 

Here, the temporal derivative of density from the continuity equation is replaced by its 

equivalent in pressure, appealing to an equation of state. To observe this, we take the 

equation that defines the auxiliary variable (w*):

taken as 0.5 for second-order accuracy, as below. By taking the divergence of this 

equation, one gathers:

from which, by appealing to the compressible form of the continuity equation, one may 

insert the discrete temporal derivative of density:

In addition, in pressure-based methods density increments may be replaced by 

pressure increments [77]. After rearranging and differentiating the equation of state, we 

gather:

with constant scheme factor 0<0<1 and operator A (•)" = (•)” -(•)'*. Here, 0  is normally

V . ( p u n + l )=  V . ( p u * ) ~  2 ( A p n + l ) , (3.13)

(3.14)

(Po + B) m (p  + B ) _ 2
_m „  (■» (3.15)

35



Chapter 3 Numerical Algorithm and Finite Element Method

where c,x 0 represents the speed of sound. Employing the chain rule upon —  = ———
ot op at

and taking difference operations over the time-step Ar =(tn+l -*„)» we may re âte 

density increment to pressure increment at time instant tn+l through,

^  = (3.16)
A? 4 , () A/

Finally, we substitute Eq.(3.16) into Eq.(3.14) to realise a compressible form of the 

temporal evolutionary expression for pressure:

 A l 0 V 2( Ap"  + 1) = -V  , ( p u ' )  . (3.17)
C { X , t )

This is the new Stage-2 equation, introduced to provide the compressible pressure- 

correction formulation (see below). Note, Eq.(3.17) is obtained under isentropic 

condition similar to [77,165,166]. Other alternative assumptions may be adopted, such 

as isenthalpic [91] or homenthalpic [103]. Note, under steady-state conditions, temporal 

pressure change will vanish and the steady solution will be independent of the above 

stated assumptions. However, this may affect transient results and convergence 

properties of the associated schemes.

Briefly, the general framework of the Taylor-Galerkin/pressure-correction (TGPC) 

scheme is based on a time-stepping procedure, involving two distinct phases within 

each time step. The first phase involves a Taylor-Galerkin scheme, expressed through a 

two-step, Lax-Wendroff time stepping procedure. This represents a predictor-corrector

doublet for velocity and stress, which initially calculates predicted fields (w,r)"+1/2, prior

to computing a non-divergence-free velocity field «*and an updated stress field r ”+1. 

The second phase is a pressure-correction scheme that ensures second-order accuracy in 

time. This generates an equation for temporal pressure-difference and a Poisson 

equation in incompressible flow. A third and final phase is a correction stage that 

recaptures the velocity field un+lat the end-of-time step loop. By implementing a semi- 

implicit Crack-Nicolson treatment for diffusion terms, a semi-discrete incremental form 

of the TGPC scheme may be derived, without heavy stability restriction imposed 

through diffusion operators. This scheme may be presented in a three-fractional stage 

form, viz.,
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Stage-la: 

2Re (3.18)

— {rn+1,2- r )  = 
Arv '

Stage-lb:

■M-Vr+—  
We

D - t + T-L+L -T

j? p "{u  -« " )~ V -( r ;  - * ;)= V-(< + r +l,2) - /5”(« -V « r '2 -v(2p" -p " 1)

(3.19)

(3.20)
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Stage-2:
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Stage-3:

Re
Ar

(3.21)

(3.22)

(3.23)

Note, the momentum equations for compressible and incompressible flows are 

practically identical, bar variation in density. Differences emerge due to the various 

alternative forms of the continuity equation. Hence, Eq.(3.22) displays some notable 

features (see [82] for detailed derivation): the first term on the left-hand-side is a first- 

order time derivative representation, whilst the second term is governed by a Laplacian 

operator (elliptic properties). In addition, on the right-hand-side, density is a direct 

function of pressure, that is to be interpreted via the Tait equation of state. When the 

flow is incompressible, the speed of sound asymptotes to infinity. In this context, the 

first term on the left-hand-side vanishes along with the second term on the right-hand- 

side, and elliptic character dominates Eq.(3.22). Alternatively, switching to 

compressible flows, the balance of equation-type-domination adjusts between elliptic 

and hyperbolic, the extent of type-mix depending upon the Mach number level (local 

compressibility).
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3.5 Spatial discretisation
In order to analyse the finite element method, it helps to have an understanding of 

function spaces. These are not only sets of functions, but they typically have a norm 

associated with them.

A norm II. II on X, where X is a vector space, is a function from X  to R+ such that

A vector space, equipped with a norm, is termed a normed-vector space. A metric 

space is a pair (X, h), where X is a set of elements and h a distance (or metric 

function)h: X 2 —» R* such that for all x ,y ,z  e  X:

A sequence xk is a Cauchy sequence if for every e > 0 there is an N such that 

k ,l>  N  implies |jtt -  xt || < e .

A metric space (X, h) is called complete, if every Cauchy sequence in X converges. 

Every complete metric space is called a Banach space.

The first example of a complete function space is the space of continuous functions 

on [a,b], denoted C[a,b]y with norm ||/|L  = maxJ/(jc)|.

Let Ck(D) denote the set of functions which together with all derivatives up to and 

including the k-th derivative are continuous. Let us denote the notation LP{Q) as the set 

of all functions for which

||jc|| > 0 and ||x|| = 0 if and only if x=0, 

HH«IH Vjcg X  and scalar a e  (/?,C),

(3.24)

(3.25)

(3.26)

/i(x,y)<0=> /i(jt,y) = 0 =>x = y 

h(x,y) = h (y ,x \  

h(x,z)< h(x,y)+ h(y,z) (3.29)

(3.28)

(3.27)

Every normed-space is a metric space, where h(x, y) = |jc -  y||.

(3.30)

38



Chapter 3 Numerical Algorithm and Finite Element Method

All Sobolev space

GFEM

All Hilbert space

All Banach space

Figure 3.1: GFEM lies in a Banach space that is also in the intersection of two subspaces of it: a 
Sobolev and a Hilbert space

One of the most important function spaces is the set L2(Q), termed a Hilbert space. A 

Hilbert space is an inner product space, which is complete with respect to the norm 

defined by the inner product. Let us denote L2(£2)as the space of square-integrable

functions over(Q), and let ( , )  be the scalar product defined as

(v,w) = jvwc/£2 for v,we l}(Q.) (3.31)
£2

where the L2-norm is given by |h |o = (w, w)^2 (3.32)

One of the more important aspects of L2(q ) is that the norm comes from an inner 

product.

Sobolev spaces are Banach spaces where the norm involves derivatives. A Sobolev 

space can be defined as a subspace / / ‘(Q je L2(q ), for which the H1-norm is finite and 

defined by
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H L  = ((w, w) + (V»v,VH')) . (3.33)

Similarly, a Sobolov space H 2 (£2) is a space for which the H2-norm, given by

H|2 0 =((w,w) + (vw,Vw) + (v 2w,VV))' , (3.34)

is also finite.

The Galerkin-weighted residual approach applied to each element residual yields

N
£  $0(x)R(u)du = 0 , (3.35)
*=1 Q,

where (f) represents a weighting/test function belonging to a space of test functions, 

which may or may not be the space of trial functions, Ne, the total number of elements

in the domain, £2 = ^^,£2* • In order to be able to find a solution to problem Eq.(3.35),

it is necessary for the solution we H 2(q ), to comply with the second-order differential

diffusion terms. The problem can be stated as follows,

find u e  H 2{Q) \ (#(x),R(u)) = 0,V<*(x)e L2(q ). (3.36)

If however, Eq.(3.35) is integrated by parts, via the Green-Gauss or Divergence 

theorem, the second order derivative of the velocity will be transformed to obtain a 

weak formulation of the problem, as

find u e  H'(Cl) | (V</>(x)yR(u)) = 0y<p(x)e L2(0.). (3.37)

This means that the weak solution exists in I I 1 (Q ), since H 2(q)  is densely embedded 

in The solution is then u G I I ' (£2)0 H ' ■

3.6 Choice of element
The finite element interpolations are characterised by the shape of the finite element 

and order of approximations. In general, the choice of a finite element depends on the 

geometry of the global domain, the degree of accuracy desired in the solution, the case 

of integration over domain etc. The choice of element is one of the most difficult trails 

in finite element. This consist of the element geometrical shape and interpolation
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functions. The most crucial step in the finite element analysis of a given problem is the 

choice of adequate interpolation functions. They must meet certain criteria such that 

convergence to the true solution of the governing differential equation may be attained.

Triangles and quadrilateral are the most popular choice in finite elements for 2-D 

domain decomposition. They have been employed in various problems successfully. 

The subdivision of the domain must satisfy the following properties,

N

1) The number of elements is finite (£2 = Z a < , where N is finite).
i=i

2) For any two elements, £2, and £22, they must either have a common vertex or 

edge, or £2, n  £22 = 0 .

3) The sets {£2,, i = 1,. JV} are a partitioning of the total domain £2.

The interpolation function may suffer some specific criteria, which called inf-sup 

conditions, which is also known as LBB (Ladyzhenskaya-Babuska-Brezzi) condition. In 

contrast to the scalar transport equation, the choice of interpolations for Navier-Stokes 

equations is far from simple. For this reason, Gresho [55] quoted:

“we emphasize that most of this deep and trouble and muddy water came to 

be because of the single simplification (!) of the mass conservation 

equation; i.e., the fluid will be treated as, or assumed to be, incompressible.

We also note this alleged simplification has also taken its toll in the finite 

difference world;... many in this world are also quite confused even 

today.”

It is obvious that viscous flow equations are obtained in the absence of elastic stress 

terms in the momentum equation. Therefore, these equations should satisfy the inf-sup 

conditions for viscous flow equations. Moreover, coupling between velocity-stress- 

pressure, may impose extra constraints for inf-sup conditions. For more details refer to 

[10]. Here, piecewise linear interpolation is applied for pressure and quadratic 

interpolation for velocity and stresses (see Figure 3.2).
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O Velocity

Q  Pressure

O Velocity and Stress nodes 

Q  Pressure nodes

Figure 3.2: Triangular element, quadratic for velocity and stress and linear for pressure

3.7 Shape functions and integration
For triangular element shapes, one may appeal to canonical coordinates to generalize 

element reference, through area coordinates (also known as natural or barycenteric

coordinates) denoted by £j-(i= 1, ,3). This coordinate system permits exact evaluation

of integrals arising from finite element discretisation. As in Figure 3.2, each 

£  coordinate varies linearly, taking a value zero on one of the sides and varying to a 

value of unity at the opposite vertex.

Thus, the shape functions for a linear triangular element can be defined as

For a quadratic triangular element (as shown in Figure 3.2 for velocity and stress), the 

shape functions adopt the form,

V, = £ . (3.38)

with the following consistency relation

(3.39)

^ (2̂ , -1), ^=£(2^-1), *,=f,(2f3-l).
& = 4£> £ . fa = 4£ £  • & = 4£ &

(3.40)
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Figure 33: Barycentric coordinate systems

A useful feature of the barycentric coordinate system is that exact integration 

formula apply. These may be generalised for n-dimensional simplex regions, viz

rt+1
f l m , !

f i r . - C r ^  = n! ' w| |Q|, (3.41)

» + Z > i !
\  i /

where the m, are non-negative integers and |£2| denotes the volume of the n-simplex 

regional element.

Since higher-order interpolation functions, for example quadratic, cubic, etc, may be 

defined hierarchically upon linear-forms, all orders of function may be accommodated 

in this fashion. Nevertheless, matrix integrals may be evaluated numerically using 

quadrature rules, appealing to the inverse coordinate-transformation Jacobian matrix 

(see below). This is particularly relevant for non-linear integrals, that defy 

characterisation through polynomial reference to base interpolation functions. Solving 

two-dimensional problems generates double spatial integrals; equivalently, triple for 

three-dimensional forms. Mapping a typical 2D-element region onto the canonical unit 

square, Gauss-Legendre quadrature rules are appropriate of the form:
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+1+1 n
I  J /(* . = Z lZ l wlwJf(x „ y l), (3.42)

- 1 -1  <=1 2=1

where Nq implies the number of quadrature points to the rule, {w( , the selected set of

weights over the quadrature points. For evaluating element matrices integrals, Eq.(3.42), 

is employed in the local coordinate system as the following form:

+ 1 + 1

\ f { x ,  y)dxdy = J j f (^r j )de t ( j )d^dTj  , (3.43)
£2 - 1 -1

where, det(J) is the determinant of the coordinate transformation.

4 = o

n=0
X

Figure 3.4: (a) Local triangle and (b) global triangle

3.8 Numerical method
For an incompressible viscoelastic fluid, the momentum and continuity equations 

compose an elliptic saddle point problem for the velocity and pressure fields, while the 

constitutive equation is a set of first-order hyperbolic equations for the stress tensor. For 

the elliptic problem the Galerkin discretisation is an optimal choice, in contrast to 

hyperbolic problems. It is well known that the difficulty in the viscoelastic flow 

computation mainly comes from the hyperbolic nature of the constitutive equations. 

Actually, with increasing value of the Weissenberg number, the elastic contribution of 

the stress component may dramatically increase (in comparison with the viscous part). 

Hence the importance of convection term u • V t  grows and Galerkin discretisation is 

not optimal for this term. Therefore, inaccuracy in evaluating this term may cause 

inconsistency and deteriorate dramatically the stability and accuracy of the methods. To 

preclude this situation, mixed finite element methods have found popularity in the 

evolution of numerical methods for highly elastic flows. This involves Galerkin
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discretisation of the equations of motion and appropriate special discretisation suited for 

hyperbolic type equations. There are two main principles associated with these methods, 

stress splitting and recovery o f velocity gradients [98]. In recent years, several mixed 

finite element methods have been developed for the solution of these problems; these 

include the mixed method of Marchal and Crochet [95], the explicitly elliptic 

momentum equation (EEME) method of King et al. [85], and the elastic-viscous split- 

stress (EVSS) method of Rajagopalan et al. [118]. Several variants of these methods 

have been published. Each method is based on a different formulation of the original 

equations set, and on different finite element approximations and weighted residual 

techniques. A review on these methods may be found in [10].

The selection of the approximation spaces for the field variables hinges on the issue 

of compatibility conditions between the spaces for velocity and pressure and velocity 

gradients and stress. Marchal and Crochet [95] emphasized the need for the 

approximations to satisfy compatibility conditions that are known to exist in the 

Newtonian fluid limit, where fluid elasticity vanishes. They devised a special mixed 

element to satisfy this condition. A major question in finite element analysis of 

viscoelastic flows is whether other compatibility conditions are needed between the 

velocity and stress approximations because of the introduction of the constitutive 

equation for the elastic stress. The analysis of the mixed method of Marchal and 

Crochet [95] by Fortin and Pierre [48] for Newtonian flow, and a similar analysis by 

Yang and Atluri [162] showed that such conditions are need when the stress is defined 

by an algebraic equation in terms of the velocity gradients. Constitutive equations in the 

steady-state reduce to algebraic in near solid boundaries with no-slip conditions for 

velocity. Qualitatively, the approximations for the stress and the velocity gradients need 

to be in the same approximating spaces to ensure compatibility of these representations, 

because the algebraic equation provides no mechanism to smooth the stress 

approximation [135]. However, when velocity gradients are directly evaluated via 

differentiation of the velocity over each element, the order of velocity gradients will be 

one order lower than the velocity field. Therefore, to rectify this position for equal order 

velocity and stress approximation (the case in this study) it is necessary to recover the 

order of velocity gradients. For more information about inf-sup conditions for mixed 

methods, see also [10].
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Mixed methods have two main features. First, they use recovery of velocity 

gradients (or rate of deformation) to improve both inf-sup condition and accuracy for 

constitutive equations. Second, via operator splitting, they add some artificial numerical 

ellipticity to the constitutive equations, which are first-order hyperbolic equations 

without any dissipation term. Within the finite element context, Matallah [98] analysed 

both aspects of stress-splitting and recovery independently, via a semi-implicit time- 

stepping fractional-staged finite element method. The framework was a Taylor- 

Galerkin/pressure-correction procedure, with a choice of Petrov-Galerkin weighting 

(SUPG) for the constitutive equations. Matallah concluded that, this scheme with 

recovery is more accurate and stable than without recovery or EVSS alternatives. Here, 

the same framework is considered as in [98] and extended towards compressible flows.

3.8.1 Recovery scheme

Velocity and velocity gradients appear in the constitutive equations for elastic stress. 

Consequently, poor quality of these terms may pollute inf-sup condition and accuracy in 

finite element discretisation, and hence disturb consistency in higher Weissenberg 

values. Note, near solid boundaries, the velocity is low, whilst, velocity gradients and 

elastic stress can be large. Moreover, stabilization techniques like SUPG, due to 

vanishing velocity, cannot affect this region. Therefore, to capture accurate features, it is 

necessary to evaluate velocity gradients precisely.

Recovery formulation technique is an embellishment upon the conventional scheme, 

necessitating a technique to recover velocity gradients to furnish the coefficient of the 

constitutive equation at whatever time stage is necessary. This implies recovering 

gradient fields prior to a stress equation solution stage. There are a number of 

techniques that can be employed to provide an accurate discrete representation of these 

fields from the underlying finite element solution ( m a c  H l(fl)), that itself facilitates 

piece-wise discontinuous gradients at the element level. This generates velocity gradient 

approximations that lie in finite dimensional spaces compatible with the choices 

selected for the primary variables of the finite element solution, namely velocity, 

pressure and stress. Two techniques are commonly employed, local and global methods, 

see for example Hawken et al. [63], Gresho et al. [54]. In Hawken et al. [63], the two 

such methods were compared, a direct local form and a Galerkin global weighted- 

residual technique. The direct method is based on averaging of the nodal finite element
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gradient contributions from the associated triangular elements and takes advantage of 

the inherent superconvergent properties [164] of the meshes and elements employed. 

Averaging of gradient values at a mid-side node over the pair of elements in which it 

lies provides superconvergent values (see for example Hawken et al. [63]). Quadratic 

interpolation on the six recovered nodal quantities per triangle then provides the desired 

continuous velocity gradient representation. The global approach alternatively fits an 

appropriate set of nodal gradient values to complete the system. This satisfied an 

associated weighted residual formulation based on (2Z)-(v« + Vwr ) = o), with a 

quadratic interpolation assumed and source function derived from the finite element 

solution. Localised approaches have the advantage of bias towards the solution 

properties in the close vicinity of the sample points in question. So that typically in an 

iterated formulation, intermediate solution fields that are distant from the converged 

solution in parts of the spatial domain, do not adversely distort the state of recovered 

gradients elsewhere in the flow. Such an argument may well not apply to a global 

approach. The local method, being the more robust, is our preferred choice in the 

present circumstance, where there is coupling within the equation system and 

dependency on solution evolution [98].

3.8.2 Streamline upwinding

Over the years, basic methods have exhibited shortcomings in particular areas of 

applications. Particularly, regular (Galerkin) finite elements were unable to provide 

stable, accurate results for some fluid mechanics problems. This is the case for 

applications to advection-diffusion types of problems where, mixed results have been 

produced. Solution often exhibited “spurious” node-to-node oscillations, particularly 

when convection dominates the flow. Indeed, the source of the problem was that the 

convection operators are non-symmetric, causing the loss of accurate approximation 

property. This problem has been observed for space centred (central difference) within 

the finite difference and finite volume contexts. In finite difference treatments, it was 

discovered that non-oscillatory solutions can be obtain by employing “upwind” 

differencing on the convection terms. In essence, upwinding approaches, through the 

consideration of flow direction, render a non-symmetrical approximation for the 

convective terms. This rectifies the scheme and precludes oscillation in the solution of 

convection-dominated flows. Nevertheless, upwinding disturbs second-order accuracy
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of space-centred discretisations. However, it has been emphasized that an “optimal” 

combination of central differencing and upwinding, can improve accuracy. 

Consequently, some higher order schemes have been proposed to enhance the accuracy 

of the approximation [90].

The upwinding concept within the finite element context was employed for one 

dimensional advection-diffusion equation by Christie et al. [29]. This was subsequently 

generalised to the two-dimensional case by Henrich et al. [64], and by Brooke and 

Hughes [19] to convection-dominated flows. The Petrov-Galerkin finite elements 

formulation describes a wide class of approximations in which mixed function spaces 

are employed to construct the approximate trial solutions. This feature provides 

considerable freedom in choosing a pair of spaces in order to improve the computational 

efficiency of the standard Bubnov-Galerkin method, whilst preserving the order of 

convergence. This approach has been implemented on the streamline upwinding (SU) 

method, as a modification of the weighting functions for the convection term. However, 

implementation of SU for convective terms only disturbs consistency of the method. In 

contrast, application of this modified weighting function to all terms in the equation 

gives the desired streamline upwind effect and defines a consistent Petrov-Galerkin 

formulation. This techniques was first introduced by Brooks and Hughes, with the name 

of “streamline upwind/Petrov-Galerkin” (SUPG).

For viscoelastic flows, as mentioned earlier, due to the non-symmetric nature of the 

convective term in the stress equation and large values of stress components (in highly 

elastic flows), one must consider not only upwinding to overcome instabilities on this 

severe condition, but also accuracy, which has crucial effect on overall scheme 

performance.

An expression for SUPG parameters was derived by Shakib [130]. This was 

implemented by Baaijens [11] and Carew [23] in the viscoelastic context with some 

additional constraints. The weighting function used for SUPG is defined as:

$  ~ + a hu -V  ft (3.44)

where ft represents the standard Galerkin shape function, and u is the velocity vector.

The arbitrary elementwise parameter a h depends on the size of the mesh and the 

direction of the velocity.
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As in [23,130], the parameter a h is defined by

a h = <
&t2yfg if  0 < g < l

77 if 8>~l < 3 ' 4 5 )

where g is given by

* = T L ¥ LvJv* (3.46)OXj oxk

Here, represents the local coordinates for triangular elements, and y,, v* are the 

velocity components.

The SUPG method has provided a qualitative jump in the ability of finite element 

methods to model a wider class of problems. Despite the success of SUPG it has proved 

to be no panacea; there is still room for improvement. It has been emphasized that, in 

steep boundary layers or near singularities, the SUPG method may produce oscillatory 

stress fields [10,95,124]. To circumvent this, Marchal and Crochet [95] proposed a 

streamline-upwind formulation (SU), where the upwind term is only applied to the 

convective term of constitutive equation. This formulation may elevate numerical 

convergence up to high values of Weissenberg number. However, this practice is 

inconsistent and only first-order accurate with respect to extra stress, as demonstrated 

by Crochet and Legat [32].

3.9 Finite element discretisation
The momentum and mass conservations equations are discretised via the Galerkin fe  

method, whilst stress equations are approximated via a SUPG method. Galerkin finite 

element (GFEM) spatial discretisation is adopted, based on triangular elements in two 

dimensions. This employs a piecewise continuous quadratic interpolation (p{x) for

velocity and stress, and linear interpolation ys(x) for pressure, of the form:

u(x,t) = Uj (t)</>j (x), T(x,t) = Tj(t)0j(x), j= l,6  (3.47)

p (x ,t)  = Pk(t )y/k( x ) y k=l,3. (3.48)
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Time-dependent velocity, stress and pressure nodal-vectors are represented as U(t), T(t) 

and P(t), respectively. For density interpolation, two types of interpolation are 

considered: piecewise-constant over an element, with recovery for the gradient of 

density, and piecewise-linear interpolation (as for the pressure field).

The discretised equation for compressible viscoelastic flow may be expressed in 

fully-discrete matrix form, viaTGPC-Stagesl-3, viz.

Stage-la:

(  i A
n -\—

u  2 - u n
V

= {-[//A  + R e N J U ) \u - B T } n +LtP", (3.49)

We
2 M
At

f  i >n+— f  2  'J'n 2VeM[L+lj)-{M+WeN(U)}T+W<{Nt (T)L+{N'(r)l)T} ]

(3.50)

Stage-lb:

R e M " ■ *+ ̂ - S ,
At 2

( l / '* -« /" )= { - [ « A  + R eN „ ( U ) ] U -  B T  } 4  + LtP ‘\  (3.51)

We~- (t "h -  T n )=[2//, m (l  + Lt ) -  {M + We N(U)]T + We {w, (T) L + (Ne (T) L f  }]” *

(3.52)

Stage-2:

M
A t

+ O A t K _  p n  )  =  _ L PV (3.53)

Stage-3:

Re ~ ~ ~  (p "*l ~ U " )  = 9 LT (p " '  ~ P " ) (3.54)

where

(Mp\  = j p M j t t o , (3.55)
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(3.56)

( M c ), = J ^ O
a  c ( x , t )

{n p\  = f a q a  - v ^ d a ,
£

( U V < p j ) d Q ,
a

{N,),j = f a ( T - V t t )dQ  (22),
£

(B% = ^ v ^ d a ,
n

(jr), = / v r ,  do.
£

(*»)<, = \y / ,{v-<Pi )t d a .

i^U \  = ),y * ~ 1,2

( S 22 \ j  ~  / + 2

a # 1 2  3 $  3<*>y !j
3 y  3 y | 3  dx dx  |

3 0  M | 2 3 < 2 >  3 ^ | )
3 y dy j 3  3 v  d y  j,

d a

d a

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

These matrices, with their corresponding integrals, may be evaluated analytically or 

via quadrature on each triangular control element (say with a seven points Gauss 

quadrature rule).
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3.9.1 Density interpolations

Here, the desire is to elucidate the effects of the choice of interpolation employed 

upon density. For the compressible algorithm, the density term appears inside some

increases the computational overhead. Moreover, in the r-z coordinate system due to the 

r-term in the element integrals, the order of element integrals is one order higher than 

for the planar case. Therefore, for terms, (like the convection term) one may need to 

employ higher order of numerical integrations. Here, we considered a piecewise- 

constant form over an element, and a piecewise-linear form. These are zero and first- 

order, respectively. The piecewise-constant version looks more attractive, as element 

integrals are obtained at minimum effort. This is due to the fact, that the density is 

constant over the integration domain and can be carried out the integration, analytically. 

This is an important issue in extending incompressible pressure-correction algorithms 

towards compressible flows. These element integrals for the compressible case can be 

obtained by scaling incompressible corresponding integrals with density, without extra 

computational or re-coding effort. Experience has shown that results for the 

compressible case in implementation of the piecewise-constant form for density are 

almost identical to those for the incompressible case. By investigating the accuracy of 

element matrices for both variants of density interpolations, this may be attributed to

expression (3.64) and the ( L pk ) matrix. When a compressible approach is employed

based on a piecewise-constant density interpolation, the element interior contribution of 

the first term forming the density-gradient representation will vanish. Whilst, on 

element boundaries and due to discontinuity, the contribution of density-gradients will 

remain undetermined. Missing this term will cause some loss of information through the 

continuity equation, due to the variation of density. To expose this issue, one may

consider the right hand side of Stage-2, and hence, the (£ *  ) matrix which may be 

expressed viz.

element integrals and this elevates the order of the integrals for density. Hence, this

(3.69)

(3.70)
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When density is represented as piecewise-constant, the density on interior of elements is 

constant. Indeed, this assumption corresponds to considering flow as incompressible 

over of each element, yet density may vary from one element to another. Consider a 

Poiseuille 2-D channel flow where, w =u(y),  v=0, p=p(x). For LMN flows, little 

deviation in flow pattern from the incompressible case is expected. In addition, if 

density is considered as only a function of pressure, then p  -  p (x) . In such

circumstances, the term V m* in Eq.(3.69) will be small. However, density gradients for 

piecewise-constant interpolation will vanish. Consequently, effect of density variation 

across the domain will not appear in the discrete form of the equations.

To remedy this position, during matrix evaluation at Stage-2, a vertex comer nodal 

density value is assigned, so a representation that equivalent to linear interpolation may 

be recovered, leading to piecewise-constant gradients. An element averaging (recovery) 

technique [98] is adequate for this purpose (also see next chapter for more details).

From a computational point of view, matrix evaluation is three-times quicker with p- 

constant than linear, with most work being required for the convection matrix of 

expression (3.58). Note also, that the solution of each fractional-staged equation is 

attained via an iterative preconditioned Jacobi solver (see below). That is, with the 

exception of the temporal pressure-difference equation, which is solved through a direct 

Choleski procedure [12]. The major difference between the forms of the incompressible 

and compressible algorithm lies in Stage-2. For compressible instances, density 

becomes a distributed variable. The incompressible variant emerges, when density is a 

constant throughout the solution domain and the speed of sound approaches infinity.

3.10 Solution of the algebraic system
The resulting system from a finite discretisation can be linear or nonlinear. Solution 

of this algebraic system of equations can be expensive both in memory space and 

computation time. The eigenvalues of the algebraic system can impose some criteria on 

the selection of an appropriate solver. For the linear system, both direct and iterative 

method can be employed. However, for the nonlinear system, only iterative solvers are 

applicable.

Implementation of direct schemes does not imposed any additional criteria upon the 

system. In contrast, iterative schemes depend on the system condition number, which is
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the ratio of the largest to smallest eigenvalue, and this can reduce computation 

overheads significantly. However, convergence and rate of convergence can suffer from 

lack of diagonally dominant condition and the condition number of the system, 

respectively. A general system of the following form emerges

where, Af, jc and b represent the mass matrix, unknown solution vector over a time step 

[n,n+l], and the right hand side vector, respectively. For Stage-1 and 3, for velocity and 

stress, a Jacobi iterative method is employed. In contrast, in stage two for pressure, a 

direct method (Cholesky decomposition) is adopted. The Jacobi iterative method can be 

written viz.

of the Jacobi iteration, and w represents an acceleration parameter, w>0. When w=l, the 

conventional Jacobi scheme emerges. In contrast, for w>l, the scheme is termed the 

extrapolated Jacobi iteration. Throughout this thesis, w= 1 is selected. For other choices 

of w and background theory, refer to [35,62]. The diagonal matrix Md is defined as 

follow

U=i

the diagonals are taken as the absolute row sum. This avoids the singular case and 

improves the convergence rate over the diagonal choice [53]. For the direct Cholesky 

decomposition scheme refer to [52].

Af jc = b , (3.71)

M dx k*‘ = (Md -  wM )xk + w b. (3.72)

Here, M d is a diagonal matrix of the mass matrix, x  is the unknown vector at iteration k

i f  i * j

i f  i = j

(3.73)

(3.74)

3.11 Monitoring the solution
To monitor the solution process and in order to emphasize stability and convergence, 

relative increment norms L2 and L» are employed. These norms are defined viz.
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where, represent the solution vector at time-step n. For r=2, the L2 error norm, i.e., a 

root mean square measure of the relative differences between numerical solutions at 

successive time-steps, is recovered. L ^ r  = °°) gives the maximum relative difference in 

the numerical solution between successive time-step cycles.

3.12 Stream function
Two-dimensional flows (both compressible and incompressible) can be conventionally 

characterised by introducing a mathematical artifice known as a stream function 

lF(jt,y,f). The stream function relates the concept of streamlines to the principle of 

mass conservation. For a two dimensional incompressible flow, the continuity equation 

may be expressed as :

f i  + | I  = 0 or V • (V) = 0 , (3.76)ox ay

where, V = (w,v) represents the velocity vector with u and v components in the (jt,y) 

directions. This equation is identically satisfied of

d'F d'F
and v = - V - .  (3.77)

dy dx

In the flow field, lines of constant *P and streamlines are identical and the flow rate 

between two streamlines is proportional to the numerical difference between the two 

stream functions corresponding to the two streamlines. In the axisymmetric frame of 

reference (r, z ) , the stream function is defined as

r u = — , and rv = —— , (3.78)
or dz

where, u,v are velocity vector components in the (r,z) directions respectively. For a 

steady-state two-dimensional compressible flow, we have the analogous definitions,

m d  a m
p  oy p  ox

where, p a is a reference density, and p  is the density.
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Clearly, the flow problem reduces to finding the solution 'F(;c,y,f) for any particular 

case. For both Cartesian and cylindrical axisymmetric coordinates, the stream function 

satisfies a Poisson equation,

= - - —  = /  for Cartesian reference, (3.80)
d2x d y dx dy

d2W d2W d ( s. d ( x . . . . .„ 2 = - ( -  r v ) - — {- ru) = f  for axisymmetnc reference. (3.81)
dr dy dr dz

For the elliptic equation, at least one essential boundary condition on the stream

function is required to specify the problem. A Galerkin weighted residual finite element

method with quadratic shape function is employed to compute the stream function.
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3.13 Appendix 3.A: A short note on pressure-correction 

schemes: TGPC and CBS

Most numerical methods for solving transient incompressible Navier-Stokes 

equations, in primitive variable form, apply fractional-step methods. These methods 

were originally proposed as semi-discrete temporal approximations to the Navier-Stokes 

equations. The. semi-discrete approach discretises equations in time, leaving spatial 

derivatives as continuous operators. Nevertheless, it has been realised that through 

discrete representation, some properties of the continuous form may be lost. One 

prominent advance in the study of pressure-correction schemes has been to realise that 

these methods should be analysed from a fully discrete point of view [55,112].

Mathematical analysis of the Stokes problem demonstrates that the approximation 

spaces for velocity and pressure must, a priori, satisfy a compatibility condition, known 

as the inf-sup or LBB condition. The numerical consequence of the lack of satisfaction 

of this condition often appears as severe node-to-node spatial oscillation across the 

solution field, particularly arising within the pressure component. The common way to 

avoid this situation is to employ different spatial approximations for velocity and 

pressure. To this end, usually the order of approximation for pressure has been 

considered one order lower than for velocity. Here, we have employed a P2P1 element 

(quadratic for velocity and linear for pressure) and we refer to [55] for more details of 

different elements type, employed in the computation of incompressible flows.

In recent years, the suggestion has emerged that the need for LBB conditions stems 

largely from two different orders of spatial differential operator arising on velocity and 

pressure, simultaneously. By removing the pressure term from the velocity prediction in 

the projection procedure, via the momentum equation, and redistributing the same onto 

the pressure update and velocity correction, one may circumvent the LBB conditions.

One such scheme (characteristic-based splitting scheme, CBS) was introduced by 

Zienkiewicz and co-workers [165,166], who successfully employed this algorithm for 

various flow problems. The motivation for developing this scheme has been to employ 

equal order interpolation for pressure and velocity, particularly in gas dynamical 

applications, where a huge number of linear elements (P1P1) have been used.

In commencing this study, the philosophy behind CBS was perceived as being 

attractive for devising numerical algorithm within the viscoelastic context. This was
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mainly due to the claim of Zienkiewicz and co-workers [165,166] for unconditional 

stability overcoming the inf-sup conditions. Nevertheless, it has been noted by ourselves 

and others [57] that deviation from satisfying the LBB condition is a strong source of 

instability, particularly in the presence of discontinuity. In these circumstances, 

capturing sharp discontinuities accurately within the discrete equations, is difficult and 

violation of continuity provides a source of instability. Our prime interest in studying 

CBS is to seek robustness and to appreciate how the distribution of pressure and 

removal of LBB satisfaction from the velocity-pressure coupling may bring this about. 

This would be taken further in the viscoelastic context to satisfaction of extended inf- 

sup conditions. In addition, for viscoelastic flows, employing second-order pressure 

interpolation would appear attractive to elevate spatial accuracy. Though the authors 

advocated the CBS algorithm, as universal for accommodating various flow problems, 

Guermond and Quartapelle [57] have demonstrated that CBS-form pressure- 

redistributing strategies are only conditionally stable. The lack of LBB satisfaction 

restricts the time-step to a minimum threshold, and for smaller time-steps stability 

degrades, giving rise to spurious oscillations across the solution field.

3.13.1 Practical implementation

We have constructed the CBS algorithm within the skeleton of our original scheme 

(TGPC), that in full form realises quadratic P2P1 element interpolation. Here, we have 

compared and contrasted the two schemes, CBS and TGPC, in the sense of coding and 

implementation. To this end, we have considered a pure shear flow (inertialess) that 

does not require a stabilisation treatment to model convection. These schemes can be

represented notationally in semi-discrete form, with variables of (u ,p ,z)n at time-level

n, an auxiliary variableu \  time-step At and adaptive parameters O<02 <1 (usually

1/2):
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CBS TGPC

Stage-1: At/ =At[V'zf At/ = lf - I f  =A{V-T-Vtf

Stage-2: V2(<?2AP + Pn) = ~ V U '  V2(02AP) = ~ V - U ’

Stage-3: U"*' =U' - Atv(02AP + P") U"*' =U" -  AtV(02AP)

Here, all terms are identical to those of chapter three, where U may be taken to 

represent p u . The variational weighted equivalent to the above, on domain Q, with 

boundary T , is derived through weighted functions for velocity (0 )  and pressure (tp), 

viz.

Stage-1

CBS: At'1 jV({/"- U n)dQ = -\v<t> TndQ + <S<trrn ndV
a n r

TGPC: At'1 JV({/‘ - U n)dSl = -  fV0-(r" + pVjrfft + ^ r "  + p ‘j)-ndT
ft ft r

Stage-2

CBS: Jv  (pV {o2AP + P n )dQ. = —  j>V U *dQ +<j<pv(e2AP + P n ) n d T
a  A t  a  r

TGPC: fV p V (0 2AP)iQ  = —  j>V  U ' d£l + j<pV(02 AP)- ndT
a or r

Stage-3

CBS: At'1 "+1 -U')iQ . = -  \W0(02AP + Pn)dCl + j^ 0 2AP + P")-ndT
ft ft r

TGPC: At'1 jV (c"*'-U')iQ = - < t > ( 0 2AP)d£l + <$0(02&P)-ndT
ft q r

3.13.2 Test problems

The selected test problems are steady-simple shear-flows, with (a): Couette flow, of 

linear velocity and vanishing pressure profiles; and (b): Poiseuille flow, of quadratic 

velocity and linear pressure profiles. Both algorithms (TGPC and CBS) are capable of 

deriving accurate steady-state solutions commencing from a quiescent state for both test 

problems. Here, we demonstrate some aspects relating to corresponding spatial 

discretisation and velocity profiles. We consider analytical steady-state initial 

conditions, and over a single time-step, we interrogate intermediate stage solutions for 

both TGPC and CBS algorithms. First, we consider Couette flow, where due to
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vanishing pressure, both algorithms reflect identical rhs through the stages, vanishing 

across the domain. To observe the different nature of these algorithms in discrete form, 

we consider Poiseuille flow (case b), where we have the following analytical solution 

expressed in rectangular spatial coordinates (jc, y): 

u = 4y(l -  y), v = 0.0 p = pQ- S x ,  

where, (w,v) represents the velocity vector; p  and p 0 are pressure and pressure

reference, respectively. For this test problem, the y-component of momentum vanishes 

and the x-momentum component, yields 

(Vp), = - 8 ,  (V -r ) , = -8 ,

where subscript x denotes the x-direction component.

u = v = 0 w=1, v=0

u=*Ai-y)
v=0

u = v = 0

u = 4y(l->») u=y

Poiseuille

u = v = 0

Couette

Figure 3.A.1: Steady-simple shear-flows: Poiseuille flow, quadratic velocity and linear 
pressure profiles (left); Couette flow, linear velocity and vanishing 
pressure (right)

In Figure 1, we observe rhs of stage-1 field plots for both schemes, with and without 

boundary integral terms. These plots demonstrate the necessity of boundary integral 

inclusion for consistent equation evaluation. For CBS, given the nature of U* and the 

equation-stage 1 type, it becomes essential to employ boundary integrals. Alternatively, 

TGPC with or without inclusion of boundary integral terms, is able to derive accurate 

steady-state solutions. This is due to, firsty the incremental form of pressure updates 

within the pressure terms at Stage-2 and Stage-3, which vanish at steady-state. 

Unfortunately within CBS, absolute pressure references arises, rather than to pressure 

increments. The effect of inaccurate representation for boundary integrals, with possibly 

large values of pressure, may stimulate instability, and hence inaccuracy within the 

solution. Second, Stage 1 solution, C/*for TGPC is close to the incompressible velocity 

field (to a first order in time). So, on stationary boundaries, with strong conditions, one
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m ay im pose true end-of-step velocity boundary conditions, hence avoiding the 

calculation o f U at the boundary. How ever, for CBS, U* does not possess physical 

m eaning and m ust be calculated on boundaries. H ence, this necessitates the inclusion of 

boundary integrals.

CBS without 
Boundary Integral

TGPC with 
Boundary Integral

TGPC without 
Boundary Integral

Figure 3.A.2: Field plots o f rhs S tage-1 for CBS and TG PC , w ith/w ithout boundary 
integral inclusion

The rhs term  for TG PC  is alm ost zero, when com m encing from the analytical 

solution as initial conditions. A ltem ativ ely, for CBS, we observe a bizarre pattern. 

From  the sam e initial conditions, CBS m im ics TG PC  at vertex nodes, w hilst the m id­

side nodes reflect the absence o f the pressure term. Here, the rhs-term s over the TGPC 

stages are m uch sm aller than within the C B S-algorithm , and vanish at steady-state. 

H ow ever, under the C B S-form ulation, these term s are often large. The numerical 

consequence o f this fact is observed in solving the corresponding algebraic equations, 

where for TG PC  with a Jacobi-iterative solver, three m ass-m atrix iterations are found to 

be sufficient. In contrast, with CBS and under equivalent settings, one m ust set the

CBS with 
Boundary Integral
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iteration num ber to O (102). The reason for this is clear. W ith CBS at S tage-1, one forces 

the rem oval o f any pressure influence upon s tage-1 solution (augm ented variables). This 

leaves Stage-3, to enforce the effect of pressure upon the solution. Correspondingly, 

TG PC  achieves the sam e goal in a superior m anner. In Figure 2, we present the effect of 

the m ass-m atrix iteration within the solution phase of Stage-1. The analytical solution at 

this stage adopts the form:

A l f  = l T - i r = [V .r ]» 8.0
At A t

CBS
Mass Iteration =3

Max = -0.3883 
Min =-1.2890

CBS
Mass Iteration =10

Max = -2.1715 
Min = -3.1950

Figure 3: Field plots for (u* -  U n )/Ar solutions (Stage 1), with different m ass-m atrix 
iteration num bers

Figure 2 presents the CBS discrete solution ( A U * / A t ) after S tag e-1, with respect to 

m ass-m atrix iteration num bers of 3 (top left), 10 (top right), 50 (bottom  left) and 200 

(bottom  right). Such field plots dem onstrate that by increasing the m ass-m atrix  iteration

CBS
Mass Iteration =50

Max = -6.9088 
Min = -7.1454

CBS
Mass Iteration =200

Max = -7.99794 
Min = -7.99867
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number, the solution eventually converges toward the true solution. In contrast, with the 

TGPC scheme, 3 mass-matrix iterations delivers accurate results, practically directly.

3.13.3 Concluding remarks

This short study on comparison of pressure-correction schemes illustrates the true 

incremental character and superior numerical properties of the TGPC-formulation in 

comparison to its CBS-counterpart. This has become apparent through comparison of 

discrete form solutions, considering velocity/pressure solution pairings at both 

linear/linear and quadratic/linear levels. The CBS scheme encountered large numerical 

discretisation error on quadratic interpolation elements (P2), when employed to 

represent a flow with a quadratic velocity structure. Nonetheless, in the literature, the 

CBS scheme has been employed successfully on several flow problems based on linear 

element representation. In addition, inclusion and accurate representation of boundary 

integrals is essential for the CBS scheme. In contrast, the TGPC formulation is found to 

be more flexible and can better accommodate solutions of both linear and quadratic 

form. Moreover, the inclusion of the pressure term within the velocity prediction 

structure, enables one to accurately employ Lax-Wendroff type splitting of nonlinear 

terms, which is particularly useful in the viscoelastic context. On this basis, one seeks to 

harness the advantageous properties of the TGPC scheme within the extended 

viscoelastic setting.
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CHAPTER 4

Compressible and Incompressible 
Viscous Flows (fe)t

In this chapter under algorithmic development, there is restriction to Newtonian 

viscous polymeric liquid flows under isothermal conditions and where Reynolds and 

Mach numbers are generally low (viscoelastic alternatives to follow). Within the 

considered fractional-staged incompressible pressure-correction algorithm, the main 

modifications in order to deal with weakly-compressible flows are related primarily to 

the finite element representation of density. Two types of interpolation are adopted: 

first, a piecewise-constant form (incompressible per element), with a nodal recovery for 

density gradients (second-stage); second, a linear interpolation form, similar to that 

employed for the pressure field. These modifications are confirmed not to degrade 

second-order accuracy of the original pressure-correction scheme. It is illustrated how 

the algorithm can tackle weakly-compressible highly-viscous flow at low Mach number, 

as well as incompressible flows (hence, zero Mach number configurations).

4.1 Numerical examples
To calibrate the algorithm, a number of numerical examples are taken into 

consideration, regarded as benchmarks in the viscous/viscoelastic regime of interest. 

Here time-marching procedures are employed to extract steady-state solutions. The first 

example is a driven cavity problem, considered here to assess the accuracy of the

t Material of this chapter has been shaped in a paper “Computation of Weakly-Compressible Highly- 
Viscous Liquid Flows” by M. F. Webster, I. J. Keshtiban and F. Belblidia, Engineering Computations 
Journal 21 (2004) 777-804.
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algorithms in a complex re-circulating flow. A second example is a contraction flow 

problem, employed in both planar and axisymmetric configuration. Here, consistency is 

investigated for compressible algorithms in dealing with various Mach number flows 

via adjusting Tait equation of state parameters. For density interpolation, both 

piecewise-constant and linear forms are considered. In all instances, the fluid is assumed 

to be Newtonian with the laminar flow. Convergence to a steady-state is monitored, via
o

a relative temporal increment L2 norm on the solution, taken to a tolerance of O(10‘ ) 

(see [62]).

4.1.1 Cavity flow

Commonly, this problem is employed as a standard incompressible flow benchmark 

for evaluating stability and accuracy of numerical schemes [51,62,113]. The Flow is 

enclosed (closed streamlines) and specified within a unit square cavity, where the fluid 

is driven by the upper-plate (lid) at a given velocity. The problem is characterised by the 

Reynolds number (Re), with velocity-scale, U, the lid-velocity, and length-scale, h, the 

height of the cavity. Two cases, with different driving lid-velocity profiles, are 

considered: case (a) with a variable profile of type U =16jt2( l- j t )2, leading to a 

continuous solution. This case is well-documented in Hawken et al. [62] and Peyret and 

Taylor [113] references. Case (b) is one of conventional constant profile form, widely 

reported in the literature, which possesses singularity in the solution at the cavity top- 

comers.

First, appeal is made to the incompressible form of the pressure-correction algorithm 

to provide a cross-reference, with flow settings of /te=100 and Re=400. In Figure 4.1, 

pressure and stream function profiles are plotted based on case (b) with a regular mesh 

of 40*40 square sub-divisions, each split into two triangular elements. The contour 

patterns reflect those shown in Zienkiewicz et al. [165], Ghia et al. [51], Peyret and 

Taylor [113] and Hawken et al. [62]. Pressure level contours illustrate, maxima (P a) are 

at the downstream lid-comer and minima (Pb) at the upstream comer. The stream 

function contours display the recirculating nature of the flow, with distortion near the 

singular comers, and a secondary Moffatt-type vortex in the lower right-comer. 

Streamlines are twisted and distorted with increase of convection (Re) towards the 

downstream comer, and the primary vortex-centre drops within the cavity. Stream 

function values at the vortex-centre (S+, primary cell) and (S*, secondary cell) are also
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indicated. The primary vortex intensity is 0.101 under /te=100, for which Ghia et al. 

[51] observed a value of 0.103 employing a fine mesh of 129x129 elements (likewise, 

Kim and Moin [84] on 65x65 mesh), representing a discrepancy of 2% from the 

estimated here. For R e-400, the primary vortex intensity rises to 0.107, following the 

trend established by Ghia et al. [51] on a very fine mesh of 257x257 elements (their 

result being 0.114, a 6% departure from the result here). Kim and Moin [84] provide a 

value of 0.112 on a 65x65 mesh, again reaffirming general findings with mesh 

refinement. Figure 4.2 presents the computed incompressible velocity components 

along the vertical and horizontal centerlines for Re- 100 and /te=400. The results are 

contrasted against those of Ghia et al. [51], revealing close agreement and providing 

confidence in the level of accuracy achieved for incompressible solutions. This position 

is also reflected in solutions at Re=1, see Hawken et al. [62].

A

L e v e l  P  

1 0  3 0 0 . 0

9  2 0 0 . 0

8  1 6 2 . 0

7  1 6 1 . 5

6  1 6 0 . 0

5  1 5 8 . 0

4  1 5 3 . 4

3  1 5 0 . 0

2  1 3 5 . 5

1 1 2 5 . 6

Pa=610.7

L e v e l  S  

1 0  2 . 0 x 1  O '04
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2  - 9 . 0 x 1 0 “

1 - 1 . 0 x 1  O ’01

S+=-0.107 
S*=0.472xl0'3

Figure 4.1: Pressure (top) and streamlines (bottom) contours for cavity flow: 
incompressible, singular case (b), /te=100 (left) and Re- 400 (right)

For compressible flow under case (b) condition and /te=100, Tait state equation 

parameters are fixed to (m,B)=(2,300). This setting, leads to Ma~0.03 and 21% density 

increase above the incompressible counterpart. In Figure 4.3, Mach number contours are

fo=100 Ke=<\m
B
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210.0
200.0
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B

L e v e l s
1 0 7 . 6 x 1 0 “

9 1 . 2 x 1 0 “

6 - 1 . 0 x 1 0 “

7 - 2 . 0 x 1 0 “

6 - 1 . 0 x 1 0 “

5 - 3 . 0 x 1 0 “

4 - 5 . 0 x 1 0 “

3 - 7 . 0 x 1 0 “
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presented for piecewise-constant density interpolation (with recovery of the gradients). 

The figure exhibits the singularity in the solution through the distortion in the Mach 

number contours near the cavity top comers. In addition, for the compressible case, 

pressure and streamline contour patterns practically replicate those observed under the 

incompressible regime, and hence are discarded.
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G h t a e t a L ( u c o n p o n e n t )  
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G N a  a t  a L  ( v  c o m p o n e n t )
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G N a  a t  a L  ( v  c o n p o n e n t )
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0 . 5

X  0 . 4

0 . 3

0.1

0 . 2 5

Velocity
0 . 5

Figure 4.2: (w,v) on vertical or horizontal cavity centrelines, incompressible, singular case 
(b), Re= 100 and Re- 400

Level Ma
8 0.0250
7 0.0150
6 0.0120
5 0.0090
4 0.0075
3 0.0050
2 0.0015
1 0.0001

0 0.5 1
X

Figure 43: Mach number contours for cavity flow: piecewise-constant density interpolation, 
singular case (b), /te=100, 2,300)

Accuracy is assessed via the infinity norm, ( p s ^ ) ,  on the longitudinal velocity, a

maximum norm of the difference from a fine mesh solution (see below), scaled by the 

maximum of all normed values. This is conducted, under /te=100 and based on both
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density interpolations and lid-velocity profiles alternatives. Due to the lack of an 

analytical solution, a fine mesh solution on 40x40 is taken as a reference, against which 

three further mesh solutions are compared (5x5, 10x10 and 20x20). Nodal values on 

both cavity centrelines (X=0.5 and Y=0.5) are sampled for the computation of \Eh

For /te=100, trends of infinite velocity error norm, with respect to mesh-size are 

presented in Figure 4.4(i) for case (a), variable lid-profile, and for case (b), constant lid- 

profile, in Figure 4.4(ii). For the smooth solution (case (a)), the order of accuracy for the 

three different implementations is above 2.8, approaching a third-order. This order of 

accuracy has been achieved in some of earlier works Webster and co-workers for 

incompressible viscoelastic flows [151]. For case (b), where the solution presents 

singularities, the order is clearly lowered by about one unit. This is in keeping with 

expectation, being well known that the presence of singularities in a problem will result 

in a decline in accuracy if the solution space is not extended to embrace the singularity, 

see Strang and Fix [132] and Georgiou [50]. Note, the same behaviour in error norm is 

detected in both case (a) and (b), and for the three algorithmic implementations. This 

confirms that modifications incorporated within the initial incompressible algorithm, to 

accommodate weakly-compressible flows, do not degrade the accuracy of the pressure- 

correction method itself.

10

case (a)

p-linear (h ) 
p-constant (h2'80) 

incomp, (h306)

0.1 0.2 0.3 0.4 0.5

i)

0.1

0.08

0.06

case (b)
,0.04

0.02
p-linear (h1'55) 
p-constant (h1-38) 

incomp, (h1'53)
-G-

0.3 0.4 0.50.1 0.2

ii)
Figure 4.4: Infinity error norm \\Eh ^ on velocity, various algorithms for cavity flow, (i) 

case (a), /?e=100; (ii) case (b), /te=100, (m,Z?)=(2,300)

68



Chapter 4 Compressible and Incompressible Viscous Flows (fe)

Assessment of time-convergence to steady-state has been performed on case (b), 

based on a 40x40 mesh and a time-step of At=0.01, with initial conditions assigned as 

quiescent (see Webster and Townsend [155] for tracking of true transient solutions).

— incomp.
■ - p-constant
— p-linear

u

_J
4 0 0

10*
4 0 03 0 0100 200

Time-Steps
200

Time-Steps
3 0 0 100

Figure 4.5: Temporal convergence history trends for velocity, E'(U) (left) and pressure, 
E*(P) (right): cavity problem based on /te=100 and At=0.01, case (b), 
(m,£)=(2,300)

There is a need to define a temporal relative-increment L2-norm to govern time- 

stepping convergence history, taken here with a standard denominator shift to avoid 

inappropriate scaling for ||X”+11| <1, (see Shampine [131]):

E' (X)  =
Ix"*1- * " !112

i+ l x „+i
1 12

(4.1)

For the three algorithmic variants Figure 4.5, illustrates histories of the relative error 

norms in velocity (El(U)) and pressure (El(P)). The results reflect a superior rate of 

convergence for the both compressible implementations, as compared to that for the 

incompressible algorithm: 30% fewer time-steps are required for the compressible 

implementation to reach an equitable level of tolerance. Here, for compressible settings 

temporal convergence rate is 0(At26), as compared to 0(At24) for the incompressible 

counterpart. This is associated with the improvement in system matrix condition 

number, brought about via introduction of the mass-matrix, Mc and right-hand-side

adjustment via L pk at stage 2 (see Eq.(3.53)). As a consequence, larger time-steps may
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be permitted within the compressible regime, as opposed to the incompressible 

alternative. Note, in both compressible algorithmic implementations, the same rate of 

time-stepping convergence is observed.

4.1.2 Contraction flows

In the second benchmark, one may introduce a more complex test problem typical of 

the industrial setting and with a view to viscoelastic computations to follow. This 

consists of a contraction flow under both planar and axisymmetric reference, see Figure 

4.6a. Here, large pressure-drops are observable, with the significant effects of 

compressibility.

76.5 v=0

b)

u free,

Figure 4.6: Contraction flow:
a) schema, b-d) Mesh refinement around the contraction, M l-M3; 
d) sample point locations on mesh M2 for axisymmetric and planar 

cases (mesh characteristics in Table 4.2)
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First, a straight channel (entry/exit) section is considered, two units long by one unit 

wide, providing a viscous shear flow and analytical solution for incompressible flow. 

The compressible low Mach number equivalent provides quantitative reference data to 

be compared against its incompressible counterpart. For velocity, no-slip boundary 

conditions are imposed on solid boundaries with a parabolic inlet flow profile and at 

outlet, conditions are treated as natural with a pressure reference at exit. The Tait 

equation of state parameters (m,B) are assigned as (2,100), to manifest influence of 

compressibility (Ma~0.08 and 8% density elevated above the incompressible state). 

Again, a time-step of At=0.01 is found appropriate and the Reynolds number is 

considered as unity. Based on three levels of regular mesh refinement (10x10, 20x20 

and 40x40 rectangular sub-divisions split into triangles), and across each flow regime, 

the difference between the flow rate entering and leaving the channel is 0(0.1%) and 

less on the finer mesh, demonstrating conservation of mass overall. There is flattening 

of the parabolic incompressible velocity profile with either piecewise-constant or linear 

density interpolation.

Table 4.1 presents the values of the pressure, density and Mach number along the 

centreline of the channel at different X-locations for the various implementations and 

mesh size. For incompressible flow and with a mesh size 10*10, the exact solution is 

recovered reflecting a nondimensional inlet-outlet pressure-drop of 16 units. For 

compressible flow, with either piecewise-constant or linear density interpolation, the 

pressure-drop is slightly elevated over incompressible flow and increases with mesh- 

density (5% increase on the finest mesh). Compressibility effects are apparent, with the 

density of the fluid entering the channel being larger (by about 8% for both density 

representations) than that departing. As with pressure, density contours degrade slightly 

from the linear structure span-wise across the flow. Since density at the inlet is larger, 

the flow-rate is greater in the compressible settings as compared to the incompressible 

case. This explains the reported corresponding elevation in pressure-drop above. Note 

that, the speed of sound is infinite for an incompressible liquid, resulting in a vanishing 

Mach number. Since density is related to pressure through the equation of state, linked 

via the speed of sound, the Mach number reflects the relationship between velocity and 

pressure. Thus, for piecewise-constant and linear density interpolation, the differences 

observed in Mach number may be attributed to variation in pressure and velocity. In 

addition, these results demonstrate the capability of the compressible implementations
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to deal with low Mach number situations (Ma<8*10'2 ). Here, one observes yet again, a 

reasonable correspondence between results for either density interpolation option (2% 

difference on the finest mesh).

Table 4.1: Pressure and density values for channel flow under three regimes; centreline 
various X-locations with mesh-size variation, (m,fl)=(2,100)

X-
centreline
positions

Mesh
10*10

Mesh
20*20

Mesh
40*40

Pr
es

su
re

Incompressible

0.0 16.000 16.000 16.000
0.5 12.000 12.000 12.000
1.0 8.000 8.000 8.000
1.5 4.000 4.000 4.000

Piecewise-constant

0.0 16.623 16.656 16.665
0.5 12.613 12.639 12.647
1.0 8.506 8.525 8.531
1.5 4.320 4.331 4.335

Linear

0.0 16.795 16.812 16.822
0.5 12.754 12.763 12.774
1.0 8.627 8.644 8.654
1.5 4.424 4.444 4.454

D
en

si
ty

Piecewise-constant

0.0 1.075 1.075 1.075
0.5 1.056 1.056 1.057
1.0 1.036 1.037 1.037
1.5 1.016 1.016 1.016
2.0 0.995 0.995 0.995

Linear

0.0 1.075 1.075 1.076
0.5 1.057 1.057 1.057
1.0 1.037 1.037 1.037
1.5 1.017 1.017 1.017
2.0 0.996 0.996 0.996

M
ac

h 
nu

m
be

r 
*1

02

Piecewise-constant
0.0 6.772 6.779 6.783
1.0 7.186 7.211 7.221
2.0 7.694 7.729 7.748

Linear
0.0 6.785 6.785 6.785
1.0 7.163 7.162 7.162
2.0 7.580 7.579 7.584

4.1.2.1 Planar contraction flow

For the full problem, the total length of the channel is assumed to be 76.5 units with 

the contraction ratio of four to one. For this test problem, similar boundary conditions to 

the channel flow problem above are applied (see Figure 4.6a). The Reynolds number is
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set to unity. One must note here, the characteristic velocity scale is the maximum taken 

over the channel exit where length scale is taken likewise, equating to half-channel 

width.

a) Mesh refinement: First, mesh refinement is conducted, based on a multi-block 

meshing strategy to discretised the half-contraction channel-geometry, with conformal 

mapping in each sub-block and matching of boundary nodes at interfaces. In this 

manner, three different meshes M l, M2 and M3 with different levels of refinement have 

been constructed, see Figures 4.6b-d with characteristics quantified in Table 4.2, where 

details are recorded for total number of elements, nodes, degree of freedom, comer 

mesh density and minimum element size defined as the radius of the circle inscribed in 

the smallest triangle element of the mesh considered (see Matallah et al. [98]).

Table 4.2: Characteristic mesh parameters for contraction flow

M l M2 M3

Elements 980 1140 2987

Nodes 2105 2427 6220

Vertex Nodes 563 644 1617

d.o.f. 8983 9708 14057

Rmin 0.024 0.023 0.011

Comer mesh density 28 63 201

Figure 4.7 presents plots for temporal convergence history to steady-state on pressure 

(El(P)) and velocity (El(U)) under the planar coordinate system. This covers the three 

different meshes and algorithmic variants, with Tait parameters set to (m,B)=(5,3000), 

resulting in Ma~0.04 and 4% density variation above the incompressible state, and a 

time-step of At=0.05. One may observe that both compressible implementations follow 

practically identical trends, and that once more, as in the channel flow problem, 

convergence rates are improved by approximately 30% over the incompressible form. 

As one suppresses oscillations in temporal velocity increments through mesh 

refinement, one also controls the oscillatory evolutionary patterns for time-increments in 

pressure. This is anticipated, since convergence history in pressure is constrained in a 

Lyapunov-norm, see Van Kan (1986). On pressure, for the three meshes considered, one
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observes high-frequency/low-amplitude oscillations for the incompressible 

implementation compared to the compressible counterpart (low-frequency/large- 

amplitude).

E‘(P) E‘(U)

10"

incomp.
p-constant
p -linear

10''

M1

w

10"

incomp.
p-constant
p-linear M1

incomp.
p-constant
p -linear

10'1

M2

&UJ

10-

10°

incomp.
p-constant
p-linear M2

10 "

incomp.
p-constant
p-linear M3

S
UJ

1 0 “

incomp.
p-constant
p-linear

10'’

M3

Figure 4.7: Temporal convergence history trends for planar contraction flow, various 
algorithms: for pressure E‘(P) (left) and velocity El(U) (right);
(m,Z?)=(5,3000), mesh refinement M l-M3

Figure 4.8 illustrates pressure and stream function fields, with their relevant contour 

levels, for the three meshes. Here, only piecewise-constant density interpolation results 

are illustrated (being representative in these variables of linear density interpolation 

also). In Table 4.3, values of pressure, velocity components (w,v) and vortex information
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are given at the contraction plane (sample location highlighted by a cross V  in Figure 

4.6a). Note, for the same compressibility setting, the piecewise-constant and the linear 

density interpolations deliver identical results (differing by less than 0.025%) for a 

particular mesh size (linear form suppressed). The associated contour plots are observed 

to smooth with refinement. The incompressible vortex size (0.985) is in close agreement 

with results from [108] (0.988). Furthermore, independent of mesh employed, 

compressibility effect suppresses the vortex size and elevates its intensity in contrast to 

incompressible conditions.

Table 43. Sample pressure and velocity component values at contraction plane, vortex 
information; various meshes and /^-interpolations, planar contraction flow, 
(m,B)=(5,3000)

Ml M2 M3

Pressure

Incompressible 393.6 393.5 393.5

/^Constant 400.4 400.4 400.3

p-Linear 400.4 400.4 400.4

u

Incompressible 2.957 2.956 2.969

/>Constant 2.953 2.954 2.971

p-Linear 2.953 2.954 2.971

V

Incompressible 0.520 0.516 0.518

p-Constant 0.533 0.526 0.523

p-Linear 0.533 0.526 0.523

Smin at vortex (-10*3)
Incompressible 0.292 0.437 0.390

p-Constant 0.311 0.439 0.391

Salient Vortex size
Incompressible 0.806 0.976 0.985

p-Constant 0.856 0.954 0.962

b) Solutions at (m,B)=(5,200): Increasing compressible effects, via (m,B)=(5,200), 

leads to Ma~0.16. Here, there is variation in density above incompressible by about 

27%, to highlight the difference between density representations. Figure 4.9, on mesh 

M2, illustrates the adjustment across the density field for linear density interpolation, 

and those in Mach number between piecewise-constant and linear density interpolations 

around the contraction zone. Solutions point values for velocity, pressure, density and
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Mach number are extracted at the sampled spatial locations (a,b,c,d) of Figure 4.6d. In 

the pressure field, for instance, one observes about 0.04% disparity between both 

compressible representations.

Pressure Stream function

Level P
7 410.96
6 410.84
5 410.74
4 410.38
3 408.97
2 396.48
1 388.75

Level P
7 410.93
6 410.83
5 410.73
4 410.32
3 408.98
2 396.09
1 387.05

Level S
1.8x10*'
8.5x10*
2.5x10*
4.0x10*

-1.0x10*
-2.0x10*

Level

a

1.6x10*'
7.0x10*
1.8x10*
4.0x10*

-1.0x10*
-2.0x10*

Level
410.93
410.83
410.73
410.32
408.98
396.09
387.05

Level S
1.6x10***
7.0x10*'
1.8x10*'
4.0xl0*3
l.OxlO*4
2.0xl0*4

Figure 4.8: Pressure (left) and streamlines fields (right) for planar contraction flow, 
piecewise-constant density interpolation scheme, (/n,Z?)=(5,3000), mesh 
refinement M1-M3 (values in Table 4.3)

In Mach number, contour field plots (Figure 4.9) reflect hardly any difference, 

according to the choice of density interpolation employed. The Mach number is related 

to the speed of sound, which itself is linked directly to density, via the Tait equation.

Figure 4.10 presents solution profiles for different variables (u-velocity, pressure, 

density and Mach number) at the contraction channel centreline for both compressible 

interpolation variants. The results provide clear evidence that low-order density 

interpolation with gradient recovery, is capable of reproducing results comparable to 

those with linear density interpolation.
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Density (p-linear interpolation) Mach number (p-constant interpolation)

\ \ \I ' \ \
8 7 6

1 I / /
a)

3

6, \V

1.26540
1.26537
1.26533
1.26530
1.26500
1.26000
1.25300
1.24800

b)

M ach num ber (p-linear interpolation)

0.080
0.050
0.025
0.020
0.015
0.010
0.005
0.001

c)

0.0800.050
0.025
0.020
0.015
0.010
0.005
0.001

Figure 4.9: Density and Mach number for planar contraction flow, (m,B)=(5,200);
a) density (linear interpolation); Mach number under
b) piecewise density interpolation and c) linear density interpolation
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Figure 4.10: Solution profiles at channel centreline (planar case), piecewise-constant and 
linear density interpolation, (m,B)=(5,200). Top left: velocity, top right: 
pressure, bottom left: density, bottom right: Mach num ber
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4.1.2.2 Circular contraction flow

Under an axisymmetric frame of reference, pressure-differences exceed those for the 

planar equivalent. Here, Tait parameters are set to (m,B)=(5,3000), leading to similar 

compressible influences (Ma=0.16) as in the planar configuration, and where density is 

elevated by 17% above the incompressible state. First, as above for planar flow, one 

confirms that similar trends are observed in field variables based on both forms of 

density interpolation. Profiles over the contraction channel centreline follow the planar 

case (as in Figure 4.10). Sampled solutions values for the different variables are 

extracted at the selected spatial locations of Figure 4.6d. Oncemore, similar results are 

observed for both compressible representations (/7-constant or /7-linear) around this 

contraction zone (less than 0.1% in pressure). There is about 8% pressure elevation in 

the compressible regime compared to the incompressible instance (elevation reduced 

from the planar case by 3%).

Uz
-----------------------  I n c o m p .

----------------------- B = 3 x 1 0 4 m = 1 0

----------------------- B s 3 x 1  O ’  m = 1 0

-----------------------  B = 3 x 1 0 s  m = 5

>0 30  40 50

Z  ( C e n t e r l i n e )

1.2
-  B = 3 x 1 0 4 m = 1 0

-  B = 3 x 1 0 3 m = 1 0  

• -  B = 3 x 1 0 *  m = 5

1.15

1.1

O
1.05

1

Z  ( C e n t e r l i n e )

  I n c o m p .

-  -  B = 3 x 1 0 4 m = 1 0

 B = 3 x 1 0 5 m * 1 0
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Ma
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  B = 3 x 1 0 s  m = 1 0

  B = 3 x 1 0 s  m = 5

2 o . o e

eo
Z  ( C e n t e r l i n e )

Figure 4.11: Variation in compressibility settings, mildly compressible towards 
incompressible, trends in solution profiles on channel centreline (circular 
case), piecewise-constant density interpolation. Top left: Uz-velocity, top 
right: pressure, bottom left: density, bottom right: Mach number
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a) Tait parameter variation A Tait parameter sensitivity analysis is performed

to assess variation with the compressibility parameter set (m,B). First, the capability is 

highlighted of the compressible algorithm to deal with a range of low Mach number 

(0<Ma<0.2), approaching the asymptotic limit Ma~0. Figure 4.11 illustrates trends in 

solution profiles for different variables at the contraction channel centreline, based on 

variation in compressibility settings, adjusting Tait parameters accordingly. These 

trends reflect adjustment from the incompressible towards the mildly compressible 

setting (Ma<0.2). In the compressible regime, only piecewise-constant density 

interpolation has been employed, as both constant and linear representations lead to 

practically identical results. Centreline solution profiles indicate that the compressibility 

setting has little influence on the velocity field before the contraction. As the flow 

becomes more compressible, some effects begin to emerge beyond the contraction zone, 

once the liquid accelerates (17% faster for (m,B)=(5,3000)) above the incompressible 

instance. At flow-entry, pressure and density are larger for compressible above 

incompressible flow (8% for pressure and 17% for density for (m,#)=(5,3000)). This 

highlights how much ‘compressibility’ impacts upon the flow kinematics.

Second, in Figure 4.12, compressible flow history numerical convergence trends are 

presented to steady-state for variation in the (m,B) parameter set, based upon increasing 

(Ma,p). Experience shows that this is the important paring to extract corresponding 

convergence behaviour in time. This covers 0.003<A/tf<0.12 and 1.0001^x1.13. All 

solutions are pursued to a limiting tolerance of 10'8, though presentation in Figure 4.12 

is restricted for comparison purposes, to the first 1000 time-steps at a common time-step 

value of 5*10'2. One may comment that where convergence trends are replicated, across 

(m,B) setting providing similar (Ma,p), say (m-variable,£=104) and (m=l,5-variable), 

almost identical field solutions are obtained at steady-state.

At low Ma, Mtf<0.005: high-frequency/low-amplitude oscillations are a characteristic 

in the pressure norm El(P) at early time (within the first 100 time-steps). The velocity 

norm Et(U) remains smooth. The rate of convergence is higher in pressure (0(At3)) than 

in velocity (0(At29)) up to around 250 time-steps, after which time both norms 

converge at the same rate (that of velocity, with sustained gap between norms and 

monotonic linear trends).
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a) b)
B=104, m =2.5*103 - B=3*107, m=1.0

Pressure
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Pressure
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Ma= 0.003
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d) e) f)
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Figure 4.12: Effect of Tait param eter (m,B) variation on convergence history of pressure 
E‘(P) and velocity E‘(U), piecewise-constant density interpolation, increasing 
com pressibility effect, circular contraction flow

At m oderate Ma (applicable for liquids), 0.01<M a<0.08: there is elongation in 

pressure norm  oscillations, decreasing in frequency with increasing Ma. Trends are 

characterised by low er frequency but larger am plitude pressure norm  oscillations than 

for the low M a-range. V elocity norm  oscillations begin to appear at and above 

M a -0.03, spreading in tim e with increasing Ma. The pressure norm  oscillations rem ain 

in phase with and some three-tim es larger than those in velocity, though clearly one 

drives the other. Equitable convergence rates throughout tim e now begin to arise in both 

norms. A veraged rates are linear and m onotonic in pattern, being o f order E l= 0 (A t2 ').
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Oscillatory El(P) patterns in m=5 sub-figures (e-g) are typical of convergence in a 

Lyapnov norm, as the theory would predict (see Van Kan [145]).

For Ma>0.1: oscillations in pressure and velocity norms disappear, so that 

convergence trends are smooth, with monotonic linear convergence-pattems of 

equitable order, El~0(At13). The marked difference here is the unification of 

convergence norm values through time between the two variables of velocity and 

pressure. Clearly, the overall time to achieve the limiting convergence tolerance of 10'8 

will imply an increase in the number of time-steps required. In the larger A/<z*0.12 

instance, this leads to 1690 time-steps. This adjusts to 865 for Ma~0.04 and 750 for 

M a ^ .005.

One concludes that such trends in numerical convergence behaviour may be used to 

gather the most preferable form for the instance in hand; speed in steady-state extraction 

or matching both norms, El(P) and El(U). Note that, it is the particular level of (Ma,p) 

that dictates the numerical convergence response. Nevertheless, one may be able to take 

advantage of superior convergence properties in adjusting (m,B) to arrive at a final 

steady-state for the target pairing. One attributes the linearisation of the El(P) norms 

with increasing Ma to the increased influence of the Mr-matrix in stage 2 (see 

Eq.(3.53)), an addition which vanishes at steady-state. When only steady-state is sought, 

convergence behaviour could be enhanced by choosing a large local time-step for stage 

2. One notes that by design, the present approach is lacking to describe highly- 

compressible flow (M a » 0 (  1)), as amongst other things, this would necessitate 

consideration of a kinetic equation (which is neglected here). Experience shows that 

numerical scaling on the pressure time-step at stage 2, (Atp=(3At) may be a useful 

strategy that effectively switches the prevailing numerical value of the speed of sound in 

the denominator of Mc, thus capturing the temporal convergence trend of an alternative 

physical (A/a,p)-pairing. To demonstrate this for At=0.05, (Ma=0.12, p -  1.13, (3=1) are 

taken and rescaled with (3=10 to mimic (ATa=0.03, p=1.01, (3=10), for which one gathers 

corresponding history norm convergence plots of Figures 4.12 (i) and (e). This may be 

repeated with [3=103 to mimic (Ma-0.003, p=1.0001, (3=103) to recover Figure 4.12 (a) 

convergence pattern. There is a strong similarity here to pseudo-compressible and 

artificial compressible implementations, employed for incompressible flows, in the 

sense of stage 2 conditioning on the left-hand-side of the equation.
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Figure 4.13: Convergence history trends for (left) velocity E‘(U) and (right) pressure E‘(p), 
circular contraction flow problem, incompressible versus piecewise-constant 
density interpolation tending to the incompressible limit

b) Tending towards the incompressible limit (Ma—̂ 0): Here, the effectiveness o f the 

com pressible im plem entation is addressed to deal with very low M ach num ber

situations (Ma~0), via adjustm ent o f the Tait param eter pairing (m, B), to represent such
2 3a state. In Figure 4.13, the Tait param eters are elevated to high levels (m= 10 or 10 and 

Z?=105), and one observes im provem ent in stability and convergence-rate o f the 

com pressible versus the incom pressible im plem entations. At this level o f Tait 

param eters one observes high-frequency/low -am plitude pressure oscillations for 

incom pressible convergence trends that are practically suppressed in the com pressible 

instance. This is attributed to im provem ent in system  condition num ber, via inclusion of 

the stage 2 m ass-m atrix and right-hand-side term s. Sam ple solution values for this 

particular case highlight the match betw een incom pressible and com pressible (with 

Ma~0) algorithm ic im plem entations, in all variables and over different regions. Results 

dem onstrate that, in the zero M ach num ber lim iting regim e, p iecew ise-constant density 

interpolation, with recovery o f gradients during the second stage, is equitable to linear 

density interpolation. On the other hand, there is less than 0.5%  overall difference 

between incom pressible and com pressible representations. Based on these findings, one
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may establish that the compressible algorithmic implementations may be employed 

effectively to simulate weakly-compressible, as well as incompressible flow scenarios.

4.2 Conclusion
Based on a second order fe  approximation with a pressure-correction method split 

into three distinguish fractional stages, two algorithmic representations have been 

introduced to simulate weakly-compressible highly-viscous liquid flow. The first uses a 

piecewise-constant density interpolation on the fe , with nodal-recovery to compute the 

gradient of density. The second variant is based on a linear interpolation for the density 

(hence, piecewise-constant density gradient).

These compressible algorithmic variants have been shown capable of simulating flow 

with low to zero Mach number. Hence, a zero Mach number limit may be reached by 

adjusting Tait parameter pairings, where compressibility effects within the liquid flow 

may be controlled whilst approaching the incompressible limit. Under such 

circumstances, results match well with those for the compressible algorithm and those 

for the ‘purely’ incompressible algorithm. These findings allow the user to apply the 

compressible algorithm for both compressible and incompressible regimes.

The programming effort required to implement these compressible algorithms within 

an incompressible software framework has been manageable. The implementation is 

considerably easier for the piecewise-constant density interpolation (incompressible at 

the element-level). One may refer to Hawken et al., [62], for operation count analysis 

indicating linear time complexity on node (or element) counts per time-step, and linear 

space complexity overall. The piecewise-constant implementation necessitates a 

recovery technique for density gradients at stage two, with density scaling of all 

elemental matrices. In addition, low-order density interpolation with gradient recovery, 

has been found to perform equally as well as a linear density interpolation. Next, 

attention will be devoted to analysing viscoelastic counterpart flows, seeking to 

investigate the numerical and physical impact of this methodology there also.
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CHAPTER 5

Compressible and Incompressible 
Viscoelastic Flows (fe): 

Contraction Flowst

In the previous chapter, results have been presented for viscous flows in weakly- 

compressible and incompressible settings, where the scheme was applied successfully to 

several benchmark test problems. In the compressible scenario, spatial convergence- 

rates reach a third-order for continuous problems. At low to vanishing Mach number the 

algorithm performs well. This leads one to classify a unified scheme for both 

compressible and incompressible viscous flows. The purpose of the present chapter is to 

provide extension into the viscoelastic regime. This deals with compressible and 

incompressible liquid flows, based upon the Oldroyd-B model fluid. For the 

compressible viscoelastic algorithm, stability, accuracy and performance properties are 

investigated for low to zero Mach number situations (approaching the incompressible 

limit). In addition, a parameter sensitivity analysis is conducted to assess convergence 

history for Weissenberg number levels of order unity and for flows starting from 

quiescent initial conditions.

5.1 Scheme implementation and numerical solutions
The flow through an abrupt 4:1 contraction for an Oldroyd-B fluid is recognised as 

an outstanding benchmark test problem. This is, in terms of stability at high 

Weissenberg number for viscoelastic incompressible flow, well-documented in the 

literature (see for example [114,150]). Here, this test problem is chosen to validate the

t Material of this chapter has been shaped in a paper “Numerical Simulation of Compressible Viscoelastic 
Liquids” by I. J. Keshtiban, F. Belblidia and M. F. Webster, Journal o f Non-Newtonian Fluid Mechanics 
122(2004) 131-146.
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asymptotic ‘zero’ Mach number solutions against published incompressible results. In 

addition, at high levels of Weissenberg number, consistency, accuracy and behaviour of 

the more compressible solutions are monitored. The contraction geometry, the meshes 

employed and no-slip boundary conditions on solid boundaries (see Figure 5.1) are 

identical to those in chapter four (see Figure 4.6). One notes that in chapter four, fully 

developed steady-state profiles were consider on open boundaries. Here at the inlet, 

transient boundary conditions are imposed, reflecting build-up through flow-rate 

(Waters and King, (W&K) [153]), generating set transient profiles for normal velocity 

(h) and stress (txx> xxy), displaying vanishing cross-sectional components in velocity (v) 

and stress (xyy). The mathematical formulation for these profiles as a function of 

Weissenberg number is presented in Carew et a.l [23]. These settings provide smooth 

growth of boundary conditions at any particular We, and hence improve numerical 

stability in convergence towards steady-state. In this manner, true transients may be 

accessed from suitable start-up fields. If incremental continuation through Wle-solutions 

are employed, step increments would apply correspondingly. In contrast, at the outlet, 

natural boundary conditions are established, via boundary integrals (B.I.) within weak- 

form representation of the momentum equations, assuming that v vanishes and a zero 

pressure reference level is set at the outlet. The Reynolds number is set to unity 

throughout the system, allowing some inertia to enter the problem. In order to 

accommodate different flow regimes, here the strategy has been based on adjusting the 

values of the Tait parameter-set (m,B). These have been adjusted between those 

representing weakly-compressible flow conditions, say (4,10 ), representative of 

maximum Ma=0( 10'1), to a highly incompressible state, typically (104,104) 

representative of maximum M a-0(  10‘4). Then, corresponding solutions may be 

compared unambiguously to those for incompressible prevailing assumptions.

5.2 Trends in temporal convergence history
The unified framework may be assessed with respect to time-stepping convergence 

history to steady-state and spatial accuracy properties. To this end, so that as in chapter 

four, the three different meshes, M l, M2 and M3, are employed. See Figure 4.6 for the 

multi-block structure of the meshes with increasing levels of refinement around the 

contraction zone and Table 4.1 for mesh characteristics.
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Figure 5.1: Contraction flow schema
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5.2.1 Numerical parameter sensitivity analysis (compressible flow)

First, within the compressible context with the Tait parameter pairing of 

(m,B)=(4,10 ), a numerical parameter sensitivity analysis on time-step (A t)  and mass 

iteration number (m,m) is conducted. Here, computations are based on mesh M l, with 

Weissenberg number set to unity and commencing from initial conditions of a quiescent 

state. History tolerance results for pressure (ET(P)), velocity (ET(U)) and stress (Et (T))
A <5

are illustrated in Figure 5.2. The relevant parameter values are those of: At = 10 , 1 0 ', 

10'4; and 1, 3 and 5. For the compressible flow setting, results demonstrate that 

history convergence norm increments are relatively insensitive to adjustment in time- 

step beyond 10' and mass iteration number greater than 3. As stability is maintained, it 

is apparent that by increasing the time-step value, fewer time-steps and computational 

effort are required to achieve a specified relative tolerance level (10'7) equating to 

steady-state. A monotonic pattern in history tolerance is observed, with an important 

observation at the start-up phase. There, some oscillation is apparent in history 

tolerance, as anticipated for the Waters and King kinematic start-up conditions 

(representative for straight channels). These oscillations are damped away rapidly, 

whilst the flow evolves to a steady-state, independent of the parameter settings 

employed.

5.2.2 Incremental continuation in Weissenberg number (incompressible flow)

Next, attention is turned to incompressible viscoelastic computations. Employing 

incremental continuation in Weissenberg number has been recognised as a successful 

strategy to obtain a stable steady-state solution at higher Weissenberg number levels 

(current target, W e-1.0). In this manner, and commencing at the outset from a quiescent 

state, first a solution at We-0.1 is obtained. Subsequently, the We=0.1 steady-state 

solution is taken up as the initial starting phase, to derive a solution for We=l.0. This 

procedure is illustrated through sample results in Figure 5.3 with numerical parameters 

set throughout of (At= 10'3, «/#,=3, mesh M2). For constitutive models such as the 

Oldroyd-B, a limiting level of Weissenberg number (Wecrit) is commonly encountered in 

such complex flows (see [10,5,46]). Here, in order to draw out and contrast algorithmic 

properties of the various alternative implementations, there is restriction to the 

attainable Weissenberg level of unity. Attempting a direct solution procedure 

(mimicking true time evolution) and starting from a quiescent state, reveals a persistent
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periodic non-convergence pattern in convergence history, even at the level o f W e - 1.0, 

as dem onstrated in Figure 5.3b. This is a com m on oscillatory feature at peak VFe-levels 

w ith many stable algorithm s, where m onotonic convergence lies on a stability threshold, 

dependent upon the size o f initial perturbation placed upon the system  (given fixed 

discrete param eters of mesh size and tim e-step). In like m anner, divergence at larger 

We-Malues would result.
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Figure 5.3: Incompressible flow error norm convergence history for velocity, E r(U), 
pressure, ET(P), and stress E r(T), mesh M2; a): Top left: We=0.1, W&K, 
quiescent ic. b) Top right: We=l.O ic. from We=0.1. Bottom left b): W e-1.0, 
from quiescent ic. Bottom right c): output of d), introducing under-relaxation

5.2.3 Under-relaxation procedure (incompressible flow)

Num erical instability, exposed through tem poral convergence history  tolerances, may 

be attributed to spatial or tem poral discretisation error [56]. Here, stabilisation m ethods,
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adequate for a steady equation systems, may prove ineffective for transient systems. 

Moreover, for fractional-staged procedure, splitting-error may itself be a source of 

instability. Fietier and Deville [46] have investigated numerical stability and presented 

time-dependent algorithms for viscoelastic flows, employing spectral element methods. 

In their study, some stabilisation strategies are proposed for flow in simple geometrical 

configurations. One such proposal is a filtering technique, applied after each time-step 

in an element-by-element fashion on both velocity and stress fields. Still further 

suggestions for stabilisation procedures may be found in the literature [10,98].

Through the current implementation, by appealing to solution under-relaxation, 

numerical stability can be sustained to larger Wie-levels. This may alter the transient 

representation, to yield the steady-state solution (see pseudo time-stepping, [23]). This 

is demonstrated starkly in Figure 5.3c, where an under-relaxation procedure is employed 

equally to all variables (ru, rT, rP), at the end of a complete time-step loop. Oscillations 

within convergence history tolerance are dramatically suppressed and monotonic 

convergence is essentially recovered. It can be realised that such relaxation may be 

applied on each fractional-stage equation within the time-step loop, so that, solution 

relaxation may be represented via time-step scaling upon each equation-stage time-step 

(local time-step, per equation). The reader is referred to Appendix 5.A for more details. 

Hence, one arrives at the justification for adjustable internal time-steps [106], to be 

judged as acting on each fractional-stage solution variable and indeed, expressing 

dependency upon the mesh selected (fraction of the Courant number).

For viscoelastic incompressible counterparts, the consequences of application of 

under-relaxation are investigated in some greater detail. To this end, again mesh M2 is 

adopted, and target W e-1.0 solutions from quiescent initial conditions are sought. 

Figure 5.4a illustrates the convergence history scenario without relaxation, for ease of 

comparison. End-of-3-stages relaxation factors (r„ per variable i) are applied to the 

solution field X  of the form:

X : l = r i Z "  + ( l - r ,  k " +'- (5-D
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Figure 5.4: Incompressible flow error norm convergence history for velocity, ET(U), 
pressure, ET(P), and stress E ‘(T), mesh M2; W e -1.0, W&K, quiescent ic., 
(At= 10'3, mitn=5) with relaxation parameters (rUt rT, rP) as a): (0.0,0.0,0.0), b): 
(0.3,0.3,0.3), c): (0.7,0.7,0.7), d): (0.7,0.7,0.0), e); (0.0,0.7,0.0) and f): 
(0.7,0.0,0.0)

Convergence histories for constant param eter-setting with (ru, rT, rp) =(0.3,0.3,0.3) 

are presented in Figure 5.4b. This level o f under-relaxation is not sufficient to dam p the 

persistent oscillatory pattern that has em erged. An optim al level is observed at 

(0.7,0.7,0.7) in Figure 5.4c, which has the desired suppression and sm oothing effect 

over the prior oscillatory pattern. O ne m ay isolate the influence o f relaxation to each 

individual variable (and stage thereby). So, for exam ple, the setting o f (0.7,0.7,0.0) of 

Figure 5.4d exposes insensitivity according to rp (hence, on Atp scaling). As 

dem onstrated in A ppendix 5.A, under-relaxing the local tim e-step (on velocity) at 

S tage-1 is conveyed to the Stage-2 local tim e-step, even w ithout under-relaxing the 

pressure variable. In contrast, rem oving velocity under-relaxation, with (0.0,0.7,0.0)-
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choice, dem onstrates in Figure 5.4e, the crucial role of this factor alone: optim al ru=0.1. 

suppressing stress under-relaxation with (0.7,0.0,0.0)-setting (as in Figure 5.4f) 

accelerates tem poral convergence rates by fifty percent, achieving the tolerance target in 

half the time. One concludes that, prim arily, only velocity relaxation should be applied. 

Finally, em ploying velocity under-relaxation at end-of-first-stage or at end-of-third- 

stage (end-of-com plete-stage cycle) with optim al factors for m esh M2: (0.7,0.0,0.0) 

delivers identical history tolerance behaviour, as dem onstrated in F igure 5.5. This 

confirm s the crucial im pact and im portance o f under-relaxation upon S tage-1 equations, 

prior to the rem aining fractional-stages within the tim e-step loop.

2D10o

CL106

0 5 10 15 2D
Trne Trne

a) b)
Figure 5.5: Incompressible flow error norm convergence history for velocity, ET(U), 

pressure, E [(P), and stress Ed(T), mesh M2; W e-1.0, W&K, quiescent ic. 
(At=10‘\  mitn=5) with relaxation parameters (rUt rT, rP) =(0.7,0.0,0.0), a): 
relaxation at 1st TGPC stage, b): relaxation at 3rd TGPC stage
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Figure 5.6: Error norm convergence history for velocity, E r(U), pressure, E r(P), and stress 
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with (m,Z?)=(104,104). Different flow scenarios, based on mesh M3 illustrated 
in d: incompressible, e: weakly-compressible and f: compressible with 
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5.2.4 Under-relaxation: incompressible, weakly-compressible, and compressible

Based upon the above rem arks, one illustrates, in Figure 5.6a-c, the different history 

tolerance results across the series o f three m eshes em ployed for w eakly-com pressib le 

((m,Z?)=(104,104)) flow. The history convergence tolerances across m eshes for 

incom pressible flow s are sim ilar in form to those o f w eakly-com pressib le and are 

discarded. M esh (h) refinem ent has no noticeable effect on h istory  tolerances for
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compressible ((m,B)-(4,102)) flows, following the form shown for mesh M3 in Figure 

5.6f. Results are also illustrated across flow scenarios in Figure 5.6d-f (incompressible, 

weakly-compressible and compressible flows). For all cases a We= 1.0 is targeted from a 

quiescent initial state. The first observation is that, independent of mesh employed or 

flow type, convergence history tolerance always commences with an oscillatory pattern, 

typical of transient start-up conditions. About ten to fifteen time units are necessary to 

dampen these oscillations and recover a smooth convergence pattern. For weakly- 

compressible and incompressible flows, based on meshes M2 and M3, under-relaxation 

is necessary to reach the specified tolerance level. As anticipated by reducing mesh size 

from M2 to M3, optimum levels of the relaxation factors imply lesser need for 

relaxation. Note that for these flows, a time-step of 10'3 is employed, leading to steady- 

state solutions within thirty to fifty time units. Here, now that the choice of time-step is 

not only governed by the Courant number restriction, but also by the level of 

Weissenberg number. For compressible flow  conditions, relaxation is unnecessary at 

this level of Weissenberg number, to reach the specific tolerance and enhanced 

smoothness in convergence is apparent beyond that of the incompressible case, upon the 

three test meshes (not shown here). This is due mainly to improved equation 

conditioning at Stage-2, through the modifications to accommodate for compressibility 

considerations (see Eq.(3.64), Mc and Lf), so that, a larger time-step is allowed 

(Ar = 10-2). Independent of the spatial discretisation employed, a tight window of 

temporal convergence is observed, displaying a uniform and smooth trend. For 

compressible flow, independent of meshing, less computational time is demanded to 

reach a steady-state solution when compared to counterpart incompressible flow settings 

(30% more rapid). Finally, mesh refinement does not necessarily demand stringent 

reduction in time-step to reach the desired tolerance level (as is the case in the 

incompressible/weakly-compressible context). This gives confidence in numerical 

continuation between the different levels of compressibility.

5.3 Mesh (h) refinement
Through mesh refinement on the series of employed meshes, convergence in all 

solution component variables has been confirmed. Finally, consistency of the scheme is 

highlighted by the capability of the scheme to accommodate weakly-compressible flow
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scenarios. There similar results are derived for incompressible and weakly-compressible 

representations.

Having established satisfactory convergence trends, independent of flow type or 

mesh employed, one interrogates field solution quality through pressure, principal stress 

Ni (first normal stress-difference) and shear stress contour plots. All the results thus far 

have been for We=l.O and R e -1.0. Each figure represents nine contour plots. 

Incompressible flow results are displayed on the left, weakly-compressible in the middle 

and compressible to the right. Solutions based on mesh M l are illustrated at figure-top, 

M2 at centre, and M3 over figure-bottom. For each variable, it is practical to contrast 

scheme accuracy, based on mesh refinement, and scheme consistency whilst increasing 

Mach number (from the incompressible toward the compressible flow regime). In 

Figure 5.7, around the contraction zone, similar pressure contour patterns at equitable 

levels are observed for incompressible and weakly-compressible representations. 

Pressure-drop increases with mesh-density in all instances, being slightly higher for 

weakly-compressible as compared to the incompressible flow setting. For the more 

compressible regime, it is apparent that pressure-drop is higher (about ten percent) than 

with other flow settings, relating directly to compressibility effects. Similar conclusions 

may be drawn on principal stress contour plots presented in Figure 5.8. Here, the 

maximum level of stress is considerably larger upon mesh M3, when compared with M2 

or M l, independent of flow representation. This increase is about ninety to ninety-five 

percent, indicating the strong presence of a singularity located at the re-entrant comer. 

Field distributions show little disparity between flow settings upon the remainder of the 

domain, away from the downstream-wall, increasing thereupon. In shear stress, there is 

a doubling in maximum stress level between mesh M l and M3 solutions (typical values 

0(18 units) on M3 compare to 0(9 units) on M l), indicating again the significant 

presence of a singularity. Note, that for each variable, the contour plots display similar 

patterns through mesh refinement or flow-type under consideration. Incompressible 

stress fields are corroborated by their close agreement with those in the published 

literature (see [46,151]).
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Based on the finest mesh M 3, stream lines contours plots for incom pressible and 

com pressible flow s are illustrated in Figure 5.9. Sim ilar incom pressible stream lines 

contours at W e - 1.0 are presented in reference [151]. C ontour profiles dem onstrate little 

disparity betw een flow settings, except at the centre o f the vortex zone, where the 

stream  function peaks (*10 4) increase from  -1 .8 6  (com pressible) to -2 .0 6  

(incom pressible), and stream  function m axim a increase from  1.00 (incom pressible) to 

1.28 (com pressible). Finally, for com pressible flow based on m esh M 3, density and 

M ach num ber contours are plotted in Figure 5.10. Note, density  contours are non­

parallel in the upstream  or dow nstream  channel sections (as with pressure). This is due 

to the fact that under viscoelastic consideration, density is a function o f the augm ented

pressure P  , which takes into account the trace o f stress (see Tait equation Eq.(3.5)). An 

increase o f 28%  in density  arises between the inlet and outlet. O utlet M ach num bers of 

A/r;=0.093 are approached under such com pressible flow conditions.

Level S 
9 0.75000
8 0.50000
7 0.25000
6 0.10000
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Figure 5.9: Streamline contours, incompressible (left) and com pressible flow (right), mesh 
M3. We= 1.0, Re= 1.0
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Figure 5.10: Density (left) and Mach number (right) contours for com pressible flow 
setting, mesh M3. We= 1.0, Re= 1.0
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5.4 Stress development
To highlight the nature o f flow around the re-entrant com er, for VT^=1.0, stress 

profiles (r^ , Tx y , zyy) at y=0.3 units (see Figure 5.1) are illustrated  in F igure 5.11, across 

the three m eshes and flow scenarios. For clarity in plotting, a shift in the position o f the 

re-entrant com er for the different m eshes has been applied. As anticipated there are no 

noticeable differences in stress plot results for incom pressible and w eakly-com pressible 

representations, and also across all regim es for zyy; hence these are discarded 

accordingly. All plots reflect a prom inent stress peak at the re-entry com er. The level of 

this peak increases with m esh refinem ent, and also, with greater levels of 

com pressibility.
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Figure 5.11: Stress profiles (i**: top, zxy: bottom) along y=0.3, different meshes (M l, M2, 
M3) and flow scenarios (incompressible: left, compressible: right). W e-1.0, 
Re= 1.0

A m ajor feature for the com pressible flow lies in the grow th o f stress, r**, near the 

boundary along the dow nstream  wall (m onotonic grow th at an angle 8.5°). A 

corresponding feature arises to a lesser degree in the shear stress com ponent, zxy. Such 

an expansion/grow th o f boundary stress is not present in incom pressib le or weakly-

98



Chapter 5 C om pressible and Incom pressible V iscoelastic  flow s (fe)

com pressible flow settings. Finally, note that com pressibility  does not lessen the 

strength o f the com er solution singularity in stress.

x=30 x=50 x=60 x=65

Figure 5.12a: Profile sampling jc-positions for principal stress N| along downstream channel
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Figure 5.12b-c: Principal stress N r profiles across downstream channel section, sampling re­
positions, mesh M3, b: incompressible, c: compressible. 1.0, Re~ 1.0

Careful analysis o f the boundary stress and stress profile developm ent is conducted 

upon the principal first norm al stress-difference, N j. To this end, variation in stress 

across the channel, cross-section y=3 to y=4 units, is plotted at different dow nstream  

positions (see Figure 5.12). For the incom pressible and com pressib le flow settings, 

results are illustrated in Figure 5.12b-c based on m esh M 3. For the incom pressib le 

flows, beyond a dow nstream  position of x=30 units there is hardly any apparent 

variation in the stress field through the channel cross-section. In contrast, there is more 

w idening and sustain grow th o f stress-profiles along the wall for the m ore com pressib le 

flow conditions. In Figure 5.13, where for plotting clarity the cross-section dim ension
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has been zoom ed som e forty tim es, three-stress levels (contour values, 1, 5 and 15 units 

for i xx, and 0.5, 1.8 and 2.6 units for rA:y) are plotted along the dow nstream  channel wall. 

O ne observes the rapid  onset of the boundary layer structure ju st beyond the contraction 

zone (contraction at x=22 units) for all flows. The sustained growth o f stress along the 

dow nstream  direction is detected o ff the channel wall into the flow.

------------ Incompressible -----------  Incompressible
f X X  -----------  Weakly compressible T X V    Weakly compressible

Compressible

o

2.6

(X*1)

Compressible

oTt

(X*1)

Figure 5.13: Stress profiles: (right) and rxy (left) along downstream channel. Boundary
layer growth for incompressible, weakly-com pressible and com pressible flow 
conditions, mesh M3. Vfe=1.0, Re= 1.0 (scaling indicated)

5.5 Conclusions
This study has provided new insight into the finite elem ent m odelling o f viscoelastic 

com pressible flow s, w here there is conscious focus upon the O ldroyd m odel, the Tait 

equation o f state, and planar contraction flows. A fresh look is proposed at pressure- 

correction type form ulations to tackle such a setting, so utilising pressure as a prim ary 

variable em anating from  conventional incom pressible flow representation. In this 

m anner, both evolutionary and steady-state flows have been accurately and consistently 

resolved, covering the low M ach num ber regim e. A unified (single) finite elem ent 

schem e is advocated, with flexibility to cover com pressible, w eakly-com pressible, and 

incom pressible flow  situations. Various aspects o f study have revealed: (/) the role and 

im portance o f relaxation across fractional-staged equations; (ii) sensitivity o f the 

schem e to selection o f (At, h, m,7„)-param eters, w ithin the different flow settings; (iii) 

convergence trends and contrast o f flow field response.
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Pressure-drops rise when greater levels of compressibility are incorporated (here by 

order 10%). One observes the fact that the solution singularity (stress at re-entrant 

comer) may actually increase in a more compressible setting, whilst downstream-wall 

stress profiles broaden along the wall, away from initial inception of the boundary layer, 

just beyond the re-entrant comer. This is in stark contrast to the incompressible 

scenario, where wall-stress profiles sustain their initial width far downstream. Stress 

boundary layers are provoked almost directly beyond the re-entrant comer in all flows 

studied. Extensions to the current study shall be oriented towards seeking solutions up 

to critical levels of Weissenberg number, and considering temporal adjustment of the 

compressible parameter set.
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5.6 Appendix 5.A: Fractional staged equations and relaxation 

procedure
The relaxation procedure may be applied at different TGPC stages and has a direct 

effect on the local time-step-stage value. To clarify this point, let us consider the first 

and second stages of TGPC scheme for incompressible fluid in compact matrix form:

divergence-free velocity, velocity and pressure, respectively, bu the right-hand-side of 

Stage-lb. Ay and K  are velocity and pressure governing matrices (mass and stiffness).

In order to relax velocity by a v at the end of Stage-1, one may introduce a relaxed

Note, for convenience of representation one may interpret the relaxation parameter rv 

of the text via a v = (1 -  rv ). Taking advantage of Stage-lb equation (Eq.(A.l)), and re­

arranging Eq.(A.3), yields:

an under-relaxed representation for equation Stage-lb, casting velocity solution 

relaxation onto the local time-step, via scaling with factor .

To enforce relaxation upon Stage-2 alone, a relaxed pressure solution-component is 

introduced:

Revisiting Stage-2 equation (Eq.(5.A.2)) with relaxation, and taking into account 

Eq.(5.A.5), a relaxed Stage-2 equation is gathered:

(5.A.1)

K lp n+l - p A = J — i u \  
V 1 0At

(5.A.2)

Here, n denotes the time level, At the local time-step, U*, U, P, nodal vectors of non-

non-divergence-free velocity U *, viz.:

(5.A.3)

(5.A.4)

P n+l = a PP n+' + ( \ - a p)Pn = P n + a P(pn+l - P n). (5.A.5)

K lpn+l _ p n \ = f?P_L U *
V 1 OAt

(5.A.6)
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Thus, at this fractional-equation stage, relaxing Stage-2 is equivalent to scaling the local 

pressure equation time-step b y l/a p .

Finally, one may appreciate that relaxing velocity alone (and not pressure), conveys 

some relaxation into the local time-step at Stage-2, through U* in the rhs-vector.

Reconsidering the relaxed non-divergence-free velocity (U *) of Eq(5.A.3) and applying 

the discrete matrix equivalent to the divergence operator, L , yields:

L U ’ = ( l - a u)L U n + auL U ' (5.A.7)

which will impact upon the system through the Stage-2 equation accordingly,

k (p " * '-P " )  = —  LU ’ = ^ - L U ’ + L U " . (5.A.8)
v '  0A t 0At 0At

Here, one may appeals to the continuity equation to neglect the term L U n « 0 on the 

right-hand-side of Eq.(5.A.8), giving:

k (p " * '-P n) = ^ - L U ’ . (5.A.9)
'  '  0At

Therefore, one appreciates that by relaxing velocity at Stage-1, scaling is imparted on 

local time-steps at both Stage-1 and Stage-2. Similar arguments hold for the 

compressible flow context.
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CHAPTER 6

Viscoelastic Liquids Flow: 
Hybrid Finite Element/Volume Schema

In the previous chapters (see also [14,79,80,154]), a numerical scheme has been 

developed for Newtonian and viscoelastic weakly-compressible liquid flows based on a 

pure fe  methodology. There, the capability of this method has been demonstrated to deal 

with complex flows. In this chapter, a hybrid finite element/finite volume (fe/Jv) 

algorithm is introduced to handle such flows at low Mach number and Reynolds 

number. The finite volume (Jv) sub-cell scheme is incorporated for the hyperbolic 

constitutive equation, considered here of Oldroyd-B form. The continuity/momentum 

balance is accommodated through a semi-implicit fractional-staged/pressure-correction 

/e-formulation.

The fundamental idea behind this scheme lies in the fact that the equations of motion 

(continuity and momentum) in low Reynolds regimes (main interest in the Rheology 

community) display elliptic-dominated character. Whilst, for the stress constitutive 

equation the type is hyperbolic. Standard Galerkin /^-approximations are optimal for 

self-adjoint (elliptic) problems in the sense that the discretisation error is bounded by 

the error in the best approximation of the solution via functions in the trial space (see

[3]). Therefore, standard Galerkin /^-methods are ideal for the discretisation of

t Material of this chapter has been shaped in a paper “Computation of Incompressible and Weakly- 
Compressible Viscoelastic Liquids Flow: finite element/volume schemes” by I. J. Keshtiban, F. Belblidia 
and M. F. Webster, and accepted for publication in Journal o f Non-Newtonian Fluid Mechanics (2004).
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diffusion-based problems. However, in circumstances where Peclet numbers are high, 

non-symmetric convective terms introduce some hyperbolic solution character into the 

system; this deteriorates the optimal properties of a standard Galerkin/^-approximation. 

Similarly space-centred schemes display spurious oscillations for high mesh Peclet 

numbers. For example, GLS schemes have been proposed to stabilise the Galerkin 

formulation for convection-dominated flows. The SUPG-variant has been successfully 

employed in the approximation of these constitutive equations (see chapter five and also 

[23]). In addition, some strategies have emerged via stress-splitting formulation, in 

order to artificially include some ellipticity into the system of equations, wherever these 

equations physically express hyperbolic character, lacking any diffusion term (see [10]). 

Furthermore, it has been observed that/v-schemes display reasonably good performance 

characteristics in approximating hyperbolic equations; offering significantly less 

computational overheads, compared to their /^-counterparts.

Wapperom and Webster [151,152] employed a Galerkin /^-formulation for the 

equations of motion (mass and momentum) and a jv -form for the constitutive equation 

alone. One may find close similarity between this scheme and the so-called 4x4 stress 

sub-elements, introduced by Marchal and Crochet [95] in the mid-1980’s. For the 

choice of element, a six-node (P2P1) (see [55]) element was considered, with quadratic 

interpolation for velocity and stress, and linear for pressure based on vertex nodes. The 

fe -grid is used as a platform for the Jv-grid, from which control volumes are constructed. 

Each /v-cell is one of four sub-triangles formed by connecting the mid-side nodes of the 

parent element (see Figure 6.1a). Stress variables are located at the vertices of the fv- 

cells, and may be used directly without interpolation, as /<?-nodal values. Selecting this 

type of element, supports some important features. For the calculation of velocity under 

low Reynolds number regimes, employing a quadratic element is well-suited in 

capturing the flow pattern near solid boundaries. This enhances the quality of velocity- 

gradient representation, which has a major impact upon the performance of the 

numerical scheme within boundary layers. The parent /e-element structure has 

advocated a recovery-type technique (see Matallah et al. [98]) and has enhanced the 

quality of velocity gradients to second-order. In comparison, Aboubacar and Webster

[4] have observed that linear-form elements (sub-cell) for stress are more suitable in 

damping numerical noise, and hence, prove more successful in attaining higher Re­

solutions (recall Basombno et al. [13] likewise, for quadratic to linear stress
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interpolation results). Subsequently, the hybrid/e/jfv-scheme enjoys improved quality of 

velocity gradients, obtained via recovery applied over the parent /^-element, with linear- 

form elements for stress over sub-cells.

6.1 Numerical Discretisation
Over the last ten years a family of cell vertex finite volume methods for the solution 

of the two-dimensional scalar advection equation has evolved, collectively known as 

multidimensional upwind fluctuation distribution schemes, see for example [68,69]. For 

the approximation of steady state flows on unstructured triangular grids, these have 

reached a degree of maturity whereby the multidimensional schemes reproduce most of 

the advantages of upwind schemes in one dimension: second-order approximation of 

smooth solutions, monoticity in the presence of discontinuities, and rapid necessity for 

additional artificial viscosity. A distinctive and attractive feature of these schemes is 

that they are computationally compact. They can be written as loops over elements and 

when processing an element no reference is made to data outside that element. This 

makes for efficient parallelisation. A theoretical attraction is that the update schemes 

can incorporate insights derived from the nature of the multidimensional physics.

(a) (b)

Figure 6.1: (a) fe  with 4 fv  sub-cells, (b) MDC area for node I

6.1.1 Advection scheme

Before attempting to model the stress equations one should consider the numerical 

solution of the linear advection equation, which is expressed as follows:
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(6 . 1)
dt

where a e  R 2 is a constant vector. This is to be solved num erically  over an arbitrary 

triangulation of a region £2, with appropriate conditions being im posed on the boundary 

o f the dom ain, d Q . The fluctuation associated with this equation is a cell-based 

quantity, which is given by

R* = \LT̂ dxdy=- \L T‘iV<fdxdy=i»aT (6-2)

where d Q r is the boundary and Q r the area o f triangle T (Figure 6.2a), and dh is the 

inward normal to the boundary o f the elem ent. The num erical schem e is constructed 

from a discretisation of the integrated form  of Eq.(6.2) by evaluating the quantity 

defined in within each cell and then distributing it to the nodes o f the grid, for exam ple, 

a distribution o f the fluctuation is carried out.

(a) (b)

Figure 6.2: (a) A jv  sub-cell with vertices Vi, (b) MDC area for node V2

MDC for node V2 
on triangle T

The discrete form for Rr is evaluated by em ploying appropriate linearisation. Here 

we consider <j> varies linearly along each side, so the fluctuation can be easily evaluated 

viz.

2 RT -  ((f)[ + (p2 )a ■ n3 + (</)2 + (f)̂  )a • n] + (<f>3 + <j>x )d • ii2 (6.3)

= ~(J){d • nx -  (f)2d • n2 -  (p̂ a • « 3,

107



Chapter 6 Viscoelastic Liquid Flows Hybrid fe/jv  Scheme

where rips the inward normal to edge / scaled by the length of edge i. Thus, the 

fluctuation can be expressed simply as:

The kt are important because they can be adapted to determine the direction of flow 

through an edge: if kt > 0 then flow enters the triangle through edge i but if ki < 0 , edge 

i is an outflow edge. It is clear that one has

The temporal term in Eq.(6.2) may be discretised via the forward Euler scheme as 

follow:

(one third of the total area of the triangle T).

Within the FD scheme, the flux RT is calculated over the individual finite volume 

cell T and then distribution to the nodes of that cell. The update form of triangle T  to 

vertex I on that triangle is:

I of triangle T  (see below).

Properties of FD schemes are closely related to how the fluctuation within each 

triangle should be distributed to its vertices. For a suitable choice of a j , the theory

associated with variants of FD schemes possess some criteria such as conservation, 

positivity and linear preservation.

Conservation yields the requirement that the sum of the coefficient a j  over the each 

triangle T should satisfy:

Rt -  ~ y k i(f)i , where k, = —a • ni.
i=i 2i=i

(6.4)

3
(6.5)

1=1

(6.6)

A -

where Q l is the area of the median dual cell (see Figure 6.2b) corresponding to node /

(6.7)

the coefficients a ]  are weights which determine the distribution of the flux RT to vertex
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X o f  = 1. (6.8)
/=i

Positivity means that each is a convex combination of nodal values at the 

previous time-step, :

where the coefficients Cj are positive. Positivity guarantees a maximum principle for the

discrete steady solution of the linear advection equation, thus prohibiting the occurrence 

of new extrema and imposing stability on the explicit scheme [133]. A stronger, but 

more easily verifiable condition, is local positivity, which requires that the contribution 

of each triangle, taken separately, is positive. A linear positive scheme is TVD [151]. 

For non-linear schemes, the positivity criterion is less stringent than TVD, whilst still 

maintaining the favourable properties of suppression of new extrema in the solution and 

guaranteeing stability of the explicit time-stepping scheme. Ensuring positivity of the 

flux distribution has been only an issue for the flux terms and may not be an appropriate 

criterium for source term treatment; the presence of sources may produce new, 

physically meaningful extrema that should not be suppressed.

Linear preservation requires that the scheme preserves the exact steady state solution 

whenever this is a linear function in space for an arbitrary triangulation of the domain. 

This is closely related to the notion of second-order accuracy, commonly discussed 

under finite difference schemes, although it is an accuracy on the spatial discretisation 

only.

A linear scheme does not have to be linearity preserving. For a linear scheme, 0"+1 is 

a linear combination of solution values at the previous time-step n, so that the 

coefficients c} in Eq.(6.9) are constant. When written in the form Eq.(6.7), the two

possibilities of having a linear scheme, are either for the coefficient a ]  to be 

independent of </>, in which case it is linearly preserving, or for

< r ‘ = L ^ n (6.9)

(6.10)
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where the coefficient depends linearly on <j> summing to RT. This fact can be used

to prove that linear schemes cannot be both positive and linearly preserving [151]. For 

certain flux distribution schemes, notably linear positive schemes, it is more convenient 

to express the distribution of the coefficients f i j .

At this point, it is convenient to divide linear schemes into two class, those that 

satisfy positivity and the remainder that satisfy linear preservation. Only a non-linear 

scheme can satisfy both these properties simultaneously.

6.1.2 Fluctuation distribution schemes

In this section, some choices are discussed for the coefficient a ]  and /3 j .i

Henceforth, superscript T  is dropped in the a  and coefficients, for the reason of 

clarity.

For flux distribution schemes, it is important to distinguish between instances of 

triangles with one (Figure 6.3a) and two inflow (Figure 6.3b) sides. The inflow sides are 

determined by the sign of the coefficient k , which has been defined in Eq.(6.4). A 

positive ^indicates that the advection speed a is inflowing across the side opposite

vertex /. Due to Eq.(6.5), it is ensured that each triangle has a maximum of two inflow 

or two outflow sides.

By sending the flux of the /v-cell to the downstream node, triangular cells with only 

one inflow side can satisfy both the positivity and linearity preservation properties 

simultaneously. For example with k( > 0, kj <0, kk < 0 , (see Figure 6.3a), we would

have:

or, = 1, a j - 0, a k = 0. (6.11)

The various flux distribution schemes only differ for the case of two inflow sides, as 

illustrated in Figure 6.3, for which the flux is distributed over the nodes i and j  

(a k = 0). One deliberates here to discuss briefly two specific flux distribution schemes

that we shall consider. A linear LDB-scheme, that satisfies linearity preservation, and 

the PSI-scheme, a non-linear scheme that is both positive and linearity preserving.
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(a) (b)

Figure 63. Triangular cells: (a) with one, (b) two inflow sides

6.13 The LDB-scheme

The Low Diffusion B (LDB) scheme is a linear a-schem e that is linearity 

preserving, which demonstrates a relatively small amount of numerical diffusion in 

comparison with a linear positive scheme. Based on our previous experience for model 

problems, this LDB-scheme is based on the angles in the triangle on both sides of the 

advection speed vector a. The alternative LDA-scheme is based on the corresponding 

area split of the triangle. With the angles yx and y2, defined in Figure 6.4, the a  - 

coefficients are expressed viz.

a , = (sin Y\ cos y2) /sin(f, + y 2),

a j = (sin y2 cos y , ) / sin(^, + y2), (6.12)

a k = 0 .

The closer the advection speed a is to being parallel to one of the boundary sides, the 

larger is the contribution to the downstream node at that boundary.
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Figure 6.4: Graphical representation of LDB-parameters; constant advection speed, a

6.1.4 PSI-scheme

The PSI-scheme is a non-linear scheme that is both positive and linearity preserving. 

With definitions

Pi =-*,(<*,- < 0

P j = ~kM i  -& ) •

we have for /?, + /?; > 0,

a, = /(ft+ 4  ),«*,= £ / ( f l+ £ ) .

and for /?, + /3} < 0,

a, = 1, a , = 0  for |/9 , |> |^ | ,

a, = 0, a , = l  for |# |< |/5 , | .

For /?■ = ~Pj (zero flux), the default setting of a i -  a j  = 1 /2  prevails.

6.1.5 Employing FD-schemes for discretisation of stress equations

In the hybrid fe/fv approach of Wapperom and Webster [151], momentum and 

continuity equations are discretised via the Galerkin finite element method whilst stress 

constitutive equations are discretised via a finite volume FD-scheme. The Galerkin 

discretisation has been presented in chapter 3. Here, discretisation of the stress 

equations is discussed. To this end, Eq.(3.3) may be expressed in the following form
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(6.14)

1 u  \
Q  = —  2 - d - T  + L - T  + T - L T

We{ ft J
(6.15)

where R and Q are the flux and the source terms, respectively. It is common practice to 

refer to a single scalar component t of the stress tensor, in correspondence with the flux 

and the source terms. With the aid of the Gauss divergence theorem on the flux term, 

integration of Eq.(6.13) over a control volume Q for each stress component r  yields:

The flux and temporal terms may be evaluated as discussed in section 6.2.1. 

Correspondingly, the source term integral is evaluated from the linear velocity and 

stress representation per /v-cell. Velocity gradients may be approximated via linear 

consideration of velocity on a /v-cell or quadratic representation of velocity per parent 

/^-element or furthermore via recovery schemes to obtain higher order approximations 

for this term. When source terms are involved, the standard treatment advocated widely 

in the literature consists in dealing separately with the flux and the source terms 

(inconsistent approach). As the source terms are of a similar form to temporal terms, 

likewise, the appropriate choice of control volume for these terms would be the median 

dual cell (MDC) as explained in the previous section. However, this approach is 

inconsistent: there is incompatibility due to the selection of different areas for the source 

and flux terms. This is particularly important for stress equations where source terms 

can be large in comparison to the convection term. A remedy for this is to treat source 

terms as for the flux terms. Therefore two different alternatives for evaluating source 

terms may be considered as follows:

Henceforth, we will express evaluated integral terms over £2r and £lMDC with 

subscripts of T and MDC respectively.

The in c o n s is te n t  variant of the discrete form of Eq.(6.16) may be written as follow:

(6.16)

where Q
MDC

(6.17)
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MDC  ’
(6.18)

here Q f is the MDC of the triangle T around node /. This standard provides inaccurate

results, even for simple model problems (steady sink flow [24] and channel flow [152] 

for Oldroyd-B model). As a consequence, a consistent approach has been proposed by 

Wapperom and Webster [152]. With this formulation, both flux and source terms are 

calculated over the same control volume, and distributed together, via factors a  .The 

consistent form formulation may be expressed as follow:

The difference between Eq.(6.18) and Eq.(6.19) lies in the control volume area of 

reference for a source term Q. The consistent form based on Eq.(6.19) performed well. 

It has provided second-order accurate results for particular steady-state problems: sink 

flow [24] and Cartesian test problems [152]. Unfortunately, such schemes lack stability. 

For example, the consistent approach was unable to reach a convergence steady-state 

solution beyond We- 1 for the channel flow [152], a pure shear flow. This is may due to 

the non-consistency in discretisation of the temporal term. For a time-marching 

algorithm, consistency in the transient state is crucial for reaching higher We-solutions. 

Aboubacar and Webster [4] proposed CT2-scheme variant, to include consistent area- 

weighting for fluctuation-distribution and MDC-term. This, in turn enhanced stability 

significantly in complex flows (attaining levels We ~ 0(3) on highly refined meshes for 

the benchmark 4:1 contraction flow of an Oldroyd-B model fluid [4]).

Webster and co-workers [156] have generalised these formulations to resolve 

transient problems. The starting point is to consider separately the FD and MDC 

contributions to the nodal update. For a single /v-subcell T, and a given node I in 7, the 

segregated contributions read:

= a f (R T +QT). (6.19)

(6.20)

and

^  )  —  i ^ M D C  Q m d c  )/ on MDC (6 .21)
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Blending equations Eq.(6.20) and Eq.(6.21) with adjustable parameters ST and SMDC, 

and summing over all /v-subcells surrounding node / yields the present CT3-scheme

where bj — {Rj bMDC — (RMDC+QMDC) , QFD — ^ S Tcxf Q.T and Q.MDC — ^ JSMDCQ>1 .

Theoretically, ST and SMDC are mutually linked and complementary. One notes, 

Eq.(6.22) is reorganised as

The CT3-scheme is obtained by setting £2j = £22 = Q FD + Q MDC. The CT2-scheme 

variant is obtained with the combination of £2, = £2roand £22 = £2MDC, whilst the CTO-
A

scheme of [152] would correspond to £2j = £22 = £2, .Wapperom and Webster [152] 

defined ST = £ / 3  if |<f|< 3 and 1 otherwise, and SMDC = !•  Here one may consider,

square-root of the/v-subcell in question.

With the above parameter combinations, both CTO and CT2 variants have proved 

inadequate in tracking transient solution evolution in a start-up Poiseuille flow [157]. 

There, significant improvement in transient accuracy was achieved with the CT2- 

scheme by appealing to a dynamic SMDC factor, in the form SMDC = 1 — ST. This simply 

recognises the complementary nature of the relative strength between flux (better 

discretised through FD, ST -weight) and source terms (optimally represented via MDC, 

8m d c  -weight). The dependence of ST upon local averaged-velocity provides an estimate 

of the local flux-magnitude. In contrast, the CT3-scheme is relatively insensitive to the 

dynamic setting of SMDC for this shear flow problem, being well-reproduced with the

full inclusion of the MDC contribution ( SMDC =1). This is a clear indication of the 

superior consistency in the formal derivation of the CT3-scheme. Indeed, the CT3-

_ n + l  __

(£2 FD + Q mdc ) — = ^  STccl bT + ^  SKiDCbh
At vr, VMDC,.VMDC,t

MDC  ’
(6.22)

VMDC,

T
' Z ST<XI bT Z ^ dX
vr, VMDC,.

MDC

(6.23)

£ = We(a/ h), with a the magnitude of the advection velocity per jv-cell and h the
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scheme includes consistent control-volumes for flux and source terms on the rhs, and 

consistent area-weighting for the time-terms on the lhs of the equations.

6.2 Discussion of results
Flow through an abrupt contraction for an Oldroyd-B fluid is well-documented in the 

literature, where it is recognised as a valuable benchmark problem, useful to qualify 

numerical stability of schemes at high Wie-levels. Here, a literature review is presented 

for this problem.

6.2.1 Literature review

A challenging feature of the abrupt contraction (non-smooth) flow problem is the 

presence of a stress singularity at the re-entrant comer, which impacts upon stability 

properties of numerical schemes. Many fluid models suffer a limiting Weissenberg 

number (We), beyond which numerical solutions fail. This issue has become known as 

‘the high We problem-HWNP’, drawing considerable attention over the last two decades 

or so. In the incompressible context, one may cite those based on the ‘pure’ fe- 

framework, from Carew et al. [23] and Matallah et al. [98], providing literature reviews 

and common findings on vortex behaviour. Subsequently, Wapperom and Webster 

[151,152] introduced a hybrid /^//v-methodology. This was developed further in 

Aboubacar and Webster [4]. There, mesh refinement was conducted for an Oldroyd-B 

model. Extension of this work in Aboubacar et al. [1,2], focused on alternative 

geometries (planar and axisymmetric, sharp- and rounded-comers) and several 

viscoelastic models (Oldroyd-B and PTT-variants). An overview of experimental and 

numerical studies was also documented there.

Elsewhere, Guenette and Fortin [56] proposed a stable and cost-effective mixed fe- 

method, a variant of the EVSS formulation. Numerical results were presented for the 

PTT fluid model. Yurun [163] compared two variants of EVSS /e-schemes on this 

benchmark problem (discontinuous Galerkin DG and continuous SUPG). The 

DG/EVSS scheme was observed to reflect significant improvement over the 

SUPG/EVSS variant at higher Wie-levels (smoothness in solutions and enhanced 

robustness, see on for /v-solutions). The above subject matter is covered in the 

comprehensive literature review of Baaijens [10].
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In the context o f fv-formulations, Phillips and Williams [114,115] investigated the 

differences in vortex structure and development, with and without inertia. This work 

covered planar and axisymmetrical configurations, and was based on a semi-Lagrangian 

/v-method. Similarly, Mompean [101] proposed an approximate algebraic-extra-stress 

fluid model, via a second-order fv-scheme, employing a staggered-grid technique. 

Likewise, Alves et al. [5] invoked an extremely refined mesh to chart in detail the 

development of both vortex-size and intensity for Oldroyd-B and PTT fluids. Similarly 

to Aboubacar et al. [1,2], their work* highlighted that suitable mesh refinement is 

necessary in the re-entrant comer zone to sharply capture the singularity there. This 

often reduces the critical level of We (WeCTa) attained, when compared to that gained on 

poorer quality meshes. Predominantly, the above cited studies are restricted to steady- 

state solutions and the incompressible flow domain.

Under compressible liquid flow considerations, Webster and co-workers 

[14,79,80,154] have extended an incompressible viscoelastic /^-scheme to handle 

weakly-compressible flows. The emerging new scheme has been validated on several 

benchmark problems, including that of present interest of an abrupt four-to-one 

contraction flow. Over its incompressible counterpart, no loss of accuracy was 

observed, and convergence properties were enhanced, in seeking steady-state solutions.

6.2.2 Problem specification

The compressible fe  and hybrid fe/jv-volume schemes are compared and contrasted, 

focusing on the sharp-comer 4:1 planar contraction flow. Employed meshes, imposed 

boundary conditions and Tait equation of state parameters are selected in a similar 

fashion that of chapter five. A suitable dimensionless time-step is adopted throughout 

(typically, <9(At=10'4)), satisfying local Courant number conditions [23]. Convergence 

to steady-state is monitored, via a relative L2 increment norm on the solution, taken to a 

time-stepping termination tolerance of (9(1 O'6).

Numerical simulations to steady-state are performed for both fe  and hybrid fe/fv- 

schemes under incompressible (Ma=0.0), limiting {Ma^G), and weakly-compressible 

(Ma=0.i) settings. To investigate numerical stability and accuracy properties through 

time-stepping of each variant, a continuation solution strategy is employed through 

increasing We, to extract steady-state solutions. This procedure is implemented as

t Ellipticity, via diffusion smoothing, was introduced into the stress equation in Alves et al. [6].
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follows: each simulation is commenced at We=0A from a quiescent state in all field 

variables. Next, the solution is sought incrementing directly to We=1.0, commencing 

from the solution at We-0.1. This is followed by successive computations, elevating the 

WIe-level incrementally in steps of 0.1, until the selected scheme fails to converge 

(encountering numerical divergence or oscillatory non-convergence to a unique state).

In presenting results through field data and profiles, one proceeds for each scheme 

variant through three sub-sections. The first compares scheme variants at a fixed and 

moderate We-level (here, W e-1.5). In the second sub-section, critical Wie-levels are 

sought, highlighting numerical stability properties for each individual flow/scheme 

setting. In the last sub-section, trends are analysed in vortex behaviour, through 

parameterisation in vortex-size and intensity. Comparison with the literature is given 

throughout. The convention for presentation across schemes is to display corresponding 

plots for the /e-scheme to the left and the hybrid /e//v-counterpart to the right of each 

figure.

With respect to detailed analysis on the accuracy of the various schemes proposed 

here, and for brevity, there is cross-reference with some related earlier work. In 

Matallah et al. [98], mesh refinement for the/e-scheme was dealt with; following this 

similarly in the fe/fv-context under Aboubacar and Webster [1,2,4], drawing out scheme 

construction and extending beyond Oldroyd considerations. Transient and higher-order 

aspects are covered within Webster et al. [157] and Aboubacar et al. [3], where the 

current fe/fv-CT3-schcme is discussed noting the impact of FD/MDC methodology. 

Pertinent to the present compressible context and extensions numerically, one may cite 

recent studies under Webster and co-workers [14,79,154], covering/^-discretisations, 

accuracy over various classical benchmark problems with mesh refinement, and 

introducing the under-relaxation technique. Notably in [79], mesh refinement was 

confirmed on a fixed Wie-level of unity across a series of meshes (M l-M3), both in field 

states and temporal convergence rates. The present study bears out such correspondence 

across fe  and fe/fv-schemes on the finest mesh (M3) as a starting point. Earlier findings 

are reaffirmed of Matallah et al. [98] and Keshtiban et al. [79], based on the /e-scheme. 

Likewise, for those of Aboubacar and Webster [18] with the fe/fv-scheme variant, 

looking at solution convergence in stress fields across these series of meshes, covering
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both incom pressible [2,98] and com pressible [79] flow settings. This evidence is 

provided in Figure 6.5 under inertial flow setting at W e -1.0.
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Figure 6.5: Principal stress Ni contours, h-refinement; a) f e , b) fe/fv  implementations;
We= 1.0, Re= 1.0

Com putations presented in this study were perform ed on a single-user/single job, 

Intel Pentium  4 (2.5GHz speed, 512M B m em ory) processor on a U N IX  platform . As an 

indication o f CPU time required for each analysis, only about 200 m inutes were 

required to extract a solution at W e -1.5, starting from  W e -\A .  A bout 110 CPU -hours 

were needed to reach the critical We o f 3.0, starting from  a quiescent state and based on 

the solution continuation strategy (steps o f 0 . 1  to Wecrit) for the fe/fv  incom pressible 

non-relaxed schem e. This takes into account the post-processing tim e for each We- 

solution step.

6.2.3 Numerical solutions at We=\.S - across scheme variants

First, one com m ences by investigating consistency and accuracy across num erical 

schem es (fe and fe/fv) under the three M ach num ber settings quoted above. For this part

a )fe  A) fe/fv

■ - 8-9- 
Level N1
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8 14.0
7 11.0
6 8.0
5 5.0
4 1.0
3 0.1
2 0.0
1 - 0.1
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of the investigation, one selects for com parison purposes the level o f W e -1.5 and 

creeping How. N um erical assessm ent o f schem e variants is m ade on field variable 

representation, stream line patterns and stress profiles. For incom pressible 

im plem entations (fe and fe/fv), under-relaxation (R) is called upon to enhance numerical 

stability. This relaxation procedure may be interpreted as tim e-step scaling upon each 

individual equation stage (see chapter five and also [79] for m ore details). Here, one 

finds it effective to retain a uniform  under-relaxation factor o f /? = 0 .7 .
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b) tx

C) X:■xy

Incompressible, We=1.5, Re=0.0
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Figure 6.6: Incompressible field contours, We= 1.5, Re=0.0: a) P, b) t xx, c) xxy, d) T; (left)fe, 
(right) fe/fv implementations

Incompressible liquid flow. Field solution plots are provided in Figure 6 .6 , 

concentrating on the contraction zone. This data includes pressure (top), stress 

com ponents Txx and xxy (m iddle), and stream -function (bottom ). N ote, in all stream line 

plots, a total o f fifteen levels are spread as: ten equal levels, from  1 . 0  to 0 . 1 , follow ed by 

two levels at 0 . 0 1  and 0 .0 0 1 ; plus four levels to illustrate the salient-com er-vortex 

(inclusive from a m inim um  level to the zero, separation-stream line). Sim ilar field

Level Txx 
8 8 000
7 2 500
6 1.850
5 1.500
4 0.150
3 0 0 2 5
2 0 0 0 3
1 -0.100
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contour patterns at equivalent levels are observed for both schem e variants, both with 

under-relaxation (R) and without relaxation (nR). Only m inor discrepancy is noted 

between schem es; about 0.7%  in pressure and 2.6%  in stream -function. Solutions are 

observed to faithfully  reproduce those presented elsew here [1,5,98,114].

Incompressible, We=1.5, Re=0.0

f e  f e / f v
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FEinR
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xxI-
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X X
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X

Figure 6.7: Incompressible (without relaxation, nR; with relaxation, R) stress profiles at 
horizontal line y=3.0, We= 1.5, Re=0.0: (top) t xx, (bottom) T xy; (left)fe, (right) 
fe/fv implementations

Figure 6.7 quantifies the above via stress profiles, for xxx (top) and xxy (bottom ), at 

y=3.0 along the dow nstream  boundary-w all (see F igure 5.1). For plotting  clarity, a shift 

in the position of the re-entrant com er is introduced in under-relaxed (R)-plots. There 

are practically no differences detected, with or w ithout under-relaxation. Levels in both 

stress com ponent (xxx,xxy)-peaks at the re-entrant com er, are larger for the hybrid fe/fv
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above the/<?-form (by about 1.4 tim es for xxx and tw ice for xxy). O ne m ay attribute this 

to the deeper interpolation quality o f the hybrid form (refinem ent in mesh through sub­

cells). Beyond the re-entrant com er and along the wall, there is no growth of stress, 

reaching equitable levels independently o f the schem e em ployed. Schem e com parison, 

provides a level o f confidence in the validity o f these incom pressible solutions.
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Figure 6.8: Compressible (Ma=0A) field contours, We= 1.5, Re=0.0: a) P, b) p, c) i x 
e) 'P; (left)fe, (right) fe/fv implementations

d) xxy*

Weakly-compressible liquid flow. Results are presented for both schem es in a sim ilar 

fashion to the foregoing, though field variable plots (Figure 6 . 8  as F igure 6 .6 ) and stress 

profiles (Figure 6.9 as Figure 6.7). A dditionally, field plots are now provided for density 

variation (Figure 6 .8 b). Note, no under-relaxation is necessary for com pressible
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im plem entations, as num erical stability is found to be satisfactory without such 

m easures. Once m ore, sim ilar contour patterns at equitable levels are observed for both 

schem es (discrepancy in pressure is 1%; in density, 0.2% ). C onspicuously, density 

representation, across the channel section (x=constant), declines from  the centreline to 

the w all, due to the relationship between density and pressure, upheld via the Tait 

equation o f state (Eq.(3.5)). In this instance, i xx (and hence trace x) is larger at the wall 

than the centreline. Note, under N ew tonian conditions, density  contours m im ic those of 

pressure.

Compressible, We=1.5, Re=0.0
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Figure 6.9: Compressible (Ma=0.1) stress profiles at horizontal line y=3.0, We= 1.5, Re=0.0: 
(top) t xx, (bottom) xxy; (left)fe, (right) fe/fv implementations

Figure 6.9 illustrates solution profiles in xxx (top) and xxy (bottom ), for both schem es 

at the boundary wall (y=3.0). The levels of stress-peak are com parable to those o f the 

incom pressible instance of F igure 6.7, when com paring both fe  to fe/fv-solutions. The
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m ain differences to observe against incom pressible counterparts lie in the sustained 

growth in both stress com ponents along the boundary wall. This grow th rate is constant, 

described by its angle. These angles are larger for t xx (12° for t xx com pared to 4° for 

i xy), and reflect independence o f the specific spatial discretisation em ployed. At 

W e -1.5, one notices oscillatory patterns, behind the singularity  com er, in the f e -stress 

plots, which disappear in the fe/fv-^xofiles. This is due to the ability o f the fe/fv to deal 

with sharp solution gradients and superior upw inding characteristics on num erical cross­

stream  diffusion. By design, this is not the case with the SU PG //e-im plem entation, as 

observed by others [163].

We=1.5, Re=0.0
a) Incompressible
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Figure 6.10: U-velocity profiles at centreline, W e-1.5, Re=0.0: (top) fe vs. fe/fv: a) 
incompressible, b) compressible; (bottom) incompressible vs. Mci~0 limit: c) 
fe , d) fe/fv implementations

Scheme and flow setting comparison: Q uantitative com parison o f U -profiles along 

the centreline (y=4, see Figure 5.1) is undertaken, in Figure 6.10. T his includes
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assessm ent o f fe  and /e/jfv-algorithmic im plem entations for both incom pressible 

(Ma=0.0, Figure 6.10a) and w eakly-com pressible (Ma=0A, F igure 6.10b) variants. In 

addition, we provide Ma~0 lim it and incom pressible (Ma=0) com parison (Figure 6.10c, 

fe;  F igure 6.10d, fe/f\>). At this VFe-level, close agreem ent is observed between 

im plem entations, under these alternative flow configurations. The U -profile rem ains flat 

beyond the re-entrant com er plane for incom pressible flow , w hilst it increases 

m onotonically  for com pressible flow. This m aintains a balance in m ass-flow  rate (pU, 

see Figure 6.10b) overall, as density at the inlet is som e 30%  larger than that at the exit*. 

Furtherm ore, as with stress above and for both schem es, Ma~0 solutions lie within less 

than 0 . 1 % of their incom pressible equivalents.
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Figure 6.11: Ni-profiles at horizontal line y=3.0 increasing We, Re=0.0. Incompressible: 
(left) fe and (right) fe/fv implementations; (top) without relaxation, (bottom) 
with relaxation

T This suggests that (pU) may be the more appropriate conserved variable with which to operate in the 
compressible context. One may accommodate for this presently via the p-constant interpolation offered.

125



Chapter 6 Viscoelastic Liquid Flows Hybrid fe/fv Scheme

6.2.4 Increasing We-solution strategy

Here, both fe  and /e#v-solutions are sought under the three Ma-flow settings for 

increasing We up to critical limiting levels. Initially, liquid inertia is omitted in these 

calculations.

6.2.4.1 Incompressible liquid flow

In Figure 6.11, solution profiles for principal stress Ni are plotted across each 

scheme. The effect of introducing under-relaxation (bottom) is also highlighted. We 

comment upon critical levels of We attained, in passing, recorded for immediate 

comparison in Table 6.1.

Table 6.1: Critical We level for different scheme variants and flow configurations

Re=0.(

Incompressible

)

Compressible

Re=1.0

Compressible

fe fe/fv fe fe/fv Fe

nR R nR R Ma==0 Ma=0.1 A/a=0 Ma=0.l A/a=0 Ma=0.1

Critical
We 2.2 2.8 3.0 3.5 1.5 1.7 3.3 3.1 1.5 2.0

Peak
Nt 73.7 79.1 105.9 85.1 53.3 54.4 194.0 200.8 51.1 68.6

a) Without relaxation: Stress-peaks are larger for the /e/yv-scheme (peak WeCTit=3.0) 

compared to their /^-counterpart (peak WeCTit=2.2). At the same We-level, say W e-2.0, 

there is about 30% increase in the stress-peak for the fe/fv above the /e-form. With the 

fe/fv-scheme, at W e-2.0 and above, in a small region beyond the comer, the principal 

stress-peak is followed by two short duration oscillations, that are rapidly damped away 

travelling further downstream. Similar oscillatory behaviour has been observed earlier 

by both Yurun [163] and Phillips and Williams [115].

b) With under-relaxation: At We=2.5, there is about 12% decrease in the stress-peak 

for the fe/fv below the/e-variant. In contrast to the non-relaxed results at We=2.0, there 

is hardly any difference in stress-peak level with the /^-scheme, whilst there is about 

30% reduction with the relaxed fe/fv result. Downstream oscillations are also reduced 

for the relaxed fe/fv-scheme compared to its non-relaxed form. Overall, under-relaxation 

enhances scheme stability, when compared to its non-relaxed counterpart. On Wecnr
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levels, w ith the /e-schem e, there is increase from 2 . 2  to 2 .8 ; a position m atched with the 

fe/fv-schem e, dem onstrating increase from 3.0 to 3.5.
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Figure 6.12: N r profiles at horizontal line y=3.0, increasing We, Re=0.0. Compressible: 
(left) fe  and (right) fe/fv implementations; (top) incompressible limit, Af«=0; 
(bottom) compressible Mci=0.1

6.2.4.2 Weakly-compressible flow

Figure 6.12 illustrates corresponding N i-profiles for both Ma~0 and Ma=0.1 settings 

(discarding relaxation). Independent o f flow scenario and across schem es, stress-peaks 

for the fe/fv-schem e may am ount to some four tim es larger than those of their fe- 

counterparts (at W e -1.5, the fe/fv-stress peak is about 40%  larger for Ma~0 and double 

that for M a -0.1 com pared to its /^-counterpart). This is m ainly due to sub-cell 

refinem ent and the particular reduced com er integration technique applied: a 

d iscontinuity-capturing treatm ent for the com er solution-singularity  unique to the 

hybrid schem e [4]. W hen evaluating unrelaxed com pressible Ma~ 0 solutions against 

their truly incom pressible counterparts {M a-0) for the /e-schem e, equitable stress-levels
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are observed at W e Cr i t = L 5 .  This is not the case for the corresponding /e/jfv-scheme, as 

stress-peak levels are somewhat elevated from around 1 0 5  units for Ma=0, to 1 8 0  units 

for Afa«0, see back to Figure 6 . 1 1 .  One may attribute these discrepancies to the 

alternative /e//v-discrete implementation in the comer neighbourhood (as above); and 

also, to the additional sharp velocity gradient contributions made there within the 

compressible formulation ( /^  S^/3).  Under the compressible configuration (Ma=0 . 1 ) ,

the ^crirlevel is about twice as large for the /^^-implementation (peak Wecnt=3.1), 

when compared to that for the /e-form (peak Wecxn=\.l). Nevertheless, when comparing 

compressible, Ma~0, Wecrit-levels against their incompressible counterparts, the 

compressible /e-scheme implementation reduces WeCTn (from W e-2.2 to 1.5). The 

reverse is true for the sub-cell fe/Jv-schemc, as here the WeCTit-level actually increases 

(from We=3.0 to 3.3). Overall, larger Wecrit-levels are achieved with the fe/fv-scheme 

throughout all the various flow scenarios investigated. This is a strong argument to 

advocate the fe/fv-scheme over the alternate /e-scheme. This elevated level of We 

(We=3.1) for fe/fv, in compressible implementations, gives rise, again, to post-comer 

oscillation, as noted above at earlier We-levels for incompressible flow.

6.2.4.3 Three-dimensional fie ld  plots

Surface plots presented in Figure 6.13 highlight the significant differences in 

solutions across the domain for the fe/fv-scheme at We=3.0. Viewing angles are 

displayed at the top of the figure. This covers incompressible (Afa=0, without 

relaxation, the extreme level) and compressible (Ma=0.1) flow configurations, along 

with variables of U-velocity (Figure 6.13a and c, viewing angle-1), stress Txx (Figure 

6.13b and d, viewing angle-2), Mach number (Figure 6.13e, viewing angle-1) and 

density (Figure 6.13f, viewing angle-1). In contrast to the incompressible flow 

configuration, for the weakly-compressible flow, there is a sustained increase in U- 

velocity along the exit-channel, corresponding to the reduction in density there (see 

Figure 6.13f and 6.10b). In stress-peaks, both flows settings manifest the presence of the 

re-entrant comer singularity, yet with larger peaks in the compressible (xxxPeak= 196.3) 

over the incompressible solutions (xxxPeak= 113.9). For the incompressible solution, 

beyond this position, along the exit-channel boundary wall, there is no growth in the 

stress-level. In the compressible solution, the stress sustains a monotonic growth along 

the wall, so that at the exit, the compressible-xxx doubles its incompressible counterpart
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(see Figure 6.12). This m ay be gathered from the m ore excessive cross-stream  exit-flow  

curvature in the com pressible i xx-surface plot.

. view angle- 1 fe /fv , We=3.0, Re=0.0

view angle-2

a) U-incompressible b) Txx-incompressible

c) U-compressible d) ixx-compressible

1.1251.25

e) Ma f)P

Figure 6.13: 3D contour plots, fe/fv scheme, ^ = 3 .0 ,  Re=0.0. Incompressible a) U-velocity,
b) stress i xx; Compressible c) U-velocity, d) stress Txx, e) Ma and f) p
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Mach number contour patterns mimic those in velocity, confirming the acceleration 

of the flow throughout the exit-channel. Density patterns expose the influence of stress, 

in relating pressure to density. The three-dimensional surface plot at exit of Figure 6.13f 

is not straight, but curves towards the centerline, see also Figure 6.8b. Correspondingly, 

contours are straight at channel-entry, where density variation is negligible.

6.2.5 Flow patterns and vortex activity

In the contraction flow problem, salient-comer vortex-size and strength are major 

characteristics used to quantify numerical solutions, often judged against experimental 

observations. First, we summarise the position in the literature. In their experimental 

work, Evans and Walters [42] reported on both lip and salient-comer vortex behaviour. 

They attributed the complex characteristics encountered under vortex enhancement to 

several factors: material properties, type of geometric contraction (sharp or rounded), 

contraction ratio, fluid inertia and breakdown of steady flow. Prunode and Crochet 

[117] performed a qualitative numerical comparison against these experimental results. 

Matallah et al. [98] presented a comprehensive literature review on vortex activity, 

indicating the difficulty of accurate prediction of lip-vortex activity. The Matallah et al. 

study was based on new features in the /e-scheme, with velocity-gradient recovery 

applied within the constitutive equation. There, for the creeping flow of an Oldroyd-B 

fluid, a lip-vortex appeared as early as W e-1.0, which grew in intensity with increasing 

We. This lip-vortex strength was found to be larger than the salient-comer counterpart, 

from a We-level of unity and beyond. Likewise, based on /v-discretisation, Aboubacar 

and Webster [4], Xue et al. [161], Oliveira and Pinho [108], also observed the 

appearance of a lip-vortex at We 2.0 in [4] and We=l.6 in [161]. Oliveira and Pinho 

[108] claimed to detect the appearance of a lip-vortex for an UCM model at We=\.0. 

Furthermore, the authors highlighted the need for a high degree of mesh refinement 

required for an accurate and reliable representation of vortex activity. The influence of 

inertia inclusion was also interrogated by Xue et al. [161], who concluded that although 

fluid inertia had some influence on the upstream flow field, no evidence linked the 

appearance (or absence) of lip-vortices with inertia. On the contrary, Phillips and 

Williams [115] found that the inclusion of inertia for an Oldroyd-B model, delayed the 

appearance of the lip-vortex till We=2.5 (appearing at We=2.0 for Re=0) and the salient- 

comer vortex-size and intensity shrank (falling by about 20% below that for Re=0).
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Subsequently, Phillips and Williams [114] observed that the size of the salient-comer 

vortex decayed slowly over a range, 0<We<1.5, where growth in vortex-intensity was 

independent of Re-level (0.0 or 1.0). Their results agreed closely with those of Sato and 

Richardson [127], Matallah et al. [98] and Xue et al. [161]. They also recognised the 

sensitivity of their results to the quality of mesh employed. Likewise, many authors 

have been aware of the impracticability to refine the mesh towards the comer beyond a 

certain threshold, due to the consequence of approximating the singularity. These 

findings demonstrate that trends in salient-comer vortex activity are better characterised 

and predicted than is the case for lip-vortex activity. In a more recent study, Alves et al. 

[5] have catalogued a set of benchmark solutions, for Oldroyd-B and PTT models, again 

under planar creeping flow conditions. Solutions were produced based upon mesh 

refinement strategy. On the finest mesh of 0(1O5) /v-cells, resulting in over one million 

degrees of freedom, their numerical scheme was able to reach We=2.5. Once more, 

these authors demonstrated that vortex characteristics (size and intensity) were sensitive 

to the particular mesh employed. Alves et al. also observed salient-comer vortex 

reduction with increasing We, and the appearance of a lip-vortex at around We= 1.0 

(Re=0). They found that, by extrapolating mesh refined data on lip-vortex intensity 

through diminishing mesh-size, for We-0.5 and 1.0, the lip-vortex would vanish. Yet, at 

W e-1.5, a finite lip-vortex intensity (0.02* 103) was predicted to survive, as mesh-size 

tended to zero. These findings are based on the assumption that extrapolation has some 

meaning, when applied to spatially shifting phenomena across meshes.

As above, in our current study, the focus has been on flow patterns as a function of 

increasing We, emphasising steady-state salient vortex behaviour. Trends in vortex-size 

and intensity for both fe  and/a^v-schemes are presented under incompressible (Ma=0, 

without and with relaxation) and compressible (Afa=0  and M a-0.1) flow configurations. 

In addition, creeping (Re=0.0) and inertial (Re=1.0) conditions are considered. Extrema 

(minima) in stream-function intensity may be located either in the salient-comer vortex 

or lip-vortex depending on the particular We-level. Comer-vortex cell-size, Xs, is 

defined by convention as the non-dimensional vortex-length from the salient-comer to 

the separation streamline along the upstream wall (see Figure 5.1).

One commences with scheme and flow setting comparison for creeping flow. Under 

incompressible liquid flow, one illustrates in Figure 6.14 (as elsewhere to follow),
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vortex reduction trends in salient-com er vortex-size (top) and vortex-intensity  (bottom, 

*10 ), under both schem es and increasing W^-level. Solutions are based on three 

alternative settings (incom pressible flow, both with relaxation (R) and w ithout (nR), and 

com pressible flow with Ma~0). Less than 1% difference is noted betw een the nR- and 

R -vortex-size data. This rises to one order m ore in vortex-intensity, due to the solution 

size 0 (1 0  3) and the nature o f this m easure. For the com pressib le im plem entation, 

Ma~0, and in contrast to its incom pressible counterpart (M a -0), d iscrepancies are 

uniform ly around 2 %.

Incompressible, We T, Re=0.0

fe  . fe/fv

nR eiax
Relax
Ma->0

nReiax
Relax
Ma->0

r- 1.2 
>*I

nReiax
Relax
Ma->0

1.2£? i

nReiax
Relax
Ma->0

Figure 6.14: Vortex size (top) and intensity (bottom, *10'3), increasing We: incompressible 
creeping flow; fe (left) and fe/fv (right) schemes; relaxed, non-relaxed and 
A/a= 0  variants

Sim ilarly, in Figure 6.15, one turns attention to observing trends w ith sw itch in flow 

setting, detecting differences under schem e variants (fe and fe/fv), for flow settings nR- 

incom pressible Ma- 0 (left) and M a=0A -com pressible (right). Again, vortex reduction is 

generally observed throughout all scenarios. U nder incom pressible considerations, there 

is hardly any difference in solutions between the two num erical schem es (differences of 

about 2% in intensity and less than 0.1%  in size). C lose agreem ent is found betw een the 

solutions and those o f Alves et al. [5] (included in plot) up to relatively  high levels o f
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We o f 2.5. For com pressible flow cond itions ,/e  and /b^v-so lu tions d iffer by about 3% in 

size. U nder any particular W e-\alue, com pressible conditions increase vortex 

characteristics com pared to those for equivalent incom pressible considerations (about 

15% increase in size and intensity triples). As the characteristic com pressib le velocity 

scale (defined at the outlet) is larger than its incom pressible counterpart (by about 30% , 

see Figure 6.10b), this will have an effect on the We-scale em ployed. T o  equilibrate 

com parison, a transform ed equivalent incom pressible We-scale (We*) is also included 

within the com pressible plots. Even on this basis, com pressibility  exaggerates vortex 

characteristics.

M a = 0

Incompressible

We T,Re=0.0

FE/FV 
A lves e t al.,

M a = 0 . 1

Compressible

FE
FE/FV

o

Ic
®
£

Wa
 r <

’ .5 w #  i

Figure 6.15: Vortex size (top) and intensity (bottom, *10'3), increasing We: incompressible 
(nR) (Ma=0, left) and compressible (Ma=0A, right); creeping flow, 
comparison of fe and fe/fv solutions

Stream line patterns with increasing JVe-level are plotted for each schem e, fe  and 

hybrid fe/Jv, and flow conditions, incom pressible and w eakly-com pressible. For 

incom pressible flow, relaxation is considered to reach elevated levels o f WeCTXf.

T Experience generally points to the fact that Wecril decreases upon mesh refinement for any scheme or 
setting, particularly in the context of non-smooth flows displaying sharp singularities, see [5]. Also, 
vortex trends are observed to be consistent with mesh refinement.
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fe/fv-scheme, We T, Re=0.0 

Incompressible (R) Compressible (nR)

We=0.1

- salient-vortex 
1.961.06

0.57
lip-vortex

0.82 1.94

0.10 1.31

0.49 1.56

0.95 1.67

0.33 1.28

1.63

0.32

1.72

1.26

Figure 6.16: Streamline contours, increasing We: (left) incom pressible (R) and (right) 
compressible (nR); creeping flows, fe/fv  scheme, vortex intensity* 1 0 3

In Figure 6.16, under the fe/fv-scheme and creeping flow , stream lines contours are 

illustrated in steps o f We (from  0.1 to Wecr\{) for incom pressib le (left) as well as 

com pressible W e-0.1 (right). W e note, as stated above, the larger salient-com er-vortex , 

as well as the lip-vortex, in the com pressible flow solutions above their incom pressible 

counterparts. For incom pressible flow solutions with the/<?-scheme (not presented here), 

the lip-vortex first appears beyond W e-2.5 (1.9* 10 ' 4 at W e-2.8). A lternatively , under
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the fe/fv- variant, the lip-vortex em erges earlier at W e-2.0. This was the case in [3], there 

attributed to the characteristics o f the hybrid schem e. In the com pressib le context, a lip- 

vortex first appears earlier (at W e -1.0). L ip-vortex intensity  becom es larger, in absolute 

value, for both flow configurations from the We=3.0-level onw ards. N ote, that for the 

com pressible fe -schem e, not illustrated here, the lip-vortex also appears at We=l.O, with 

intensity o f 3.7* 1 0 4, increasing to 4.3* 10 ' 4 at Wecrn= \ . l .  Salien t-com er vortex 

reduction is clearly apparent with increasing We under any flow  configuration; whilst 

once present, lip-vortex size grows. For com pressible flow , the shape o f the salient 

vortex changes from  its equivalent incom pressible shape at W e-0.1 (sam e in the 

N ew tonian case) to a m ore stretched, and convex form jo in ing  the lip-vortex at high We.

Compressible,/e-scheme, We T, Re=0.0, Re=1.0 

Ma=0 (nR) Ma=0.1 (nR)

Re=0.0
Re=1.0

2 5.-H-
We

,, ,1, ,

Re=0.0
Re=1.0

Re=0.0
Re=1.0

Re=0.0
Re=1.0

0.2 0|5 j 25*I , .
We

4 5 '

^5

Figure 6.17: Vortex size (top) and intensity (bottom, *10'3), increasing We, compressible fe- 
scheme: Ma^O (left) and Ma=0. 1 (right); creeping vs. inertial flow

Inertia inclusion: W ith restriction to /^-so lu tions henceforth, F igure 6.17 follows 

Figure 6.15, to dem onstrate the influence o f inclusion o f inertia against increasing We- 

level. Such data address Ma~0 (left) as well as M a -0.1 (right) com pressib le  flow 

configurations. As anticipated, introducing inertia reduces vortex-size and intensity, a
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consistent trend noted across configurations. This reduction in size for incom pressible 

flow (Ma~0) varies between 17% for W e-0.1, to 26% over the higher range at We o f 1.5 

(intensities follow ing in a sim ilar form). Such trends in vortex-size are am plified for the 

com pressible context (Ma=0.1) to 23% at low We o f 0.1, up to 36%  at W e -1.5.

fe/fv-scheme, We T, Re=0.0 

Incompressible (R) Compressible (nR)

We=0.1

salient-vortex

1.961.06

0.57
Up -vortex

0.82 1.94

We=2.0
0.10 1.31

0.49 1.56

0.95 1.67

0.33 1.28

1.63

0.32

1.72

1.26

Figure 6.18: Stream line contours, increasing We: (left) incom pressible and (right) 
com pressible; inertial flows, fe  schem e, vortex intensity* 1 0 ' 3
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Following Figure 6.17, Figure 6.18 charts the equivalent compressible stream- 

function field solutions for inertial flow, under increasing We. The shrinkage of vortices 

(salient and lip) is clearly apparent compared to those in creeping flow. For the more 

disputed lip-vortex activity, /^-solutions display no lip-vortex in the incompressible 

limit (Afa«0), whilst one does appear at W e-1.0 in the compressible (Afa=0.1) 

configuration, as was the case for compressible creeping flow. Again, at the relatively 

high limiting We of 2.0, lip-vortex intensity overtakes that of the salient-comer vortex. 

It has already been established [43,117], that in inertial flow there is delay in the onset 

of lip-vortex activity, compared to that under creeping flow. Its absence in the 

incompressible instance (Ma^O) is due to the low Wec„t (1.5) achieved by the Ma^O-fe- 

scheme (a lip-vortex appears at We=2.0 for creeping flow). Based on such observations, 

and specifically with respect to capture of comer solution characteristics, the sub-cell 

fe/fv-scheme is advocated over the parent-/*?-variant.

6.3 Conclusions
The abrupt four-to-one contraction benchmark problem has been investigated for an 

Oldroyd-B model, two numerical schemes (fe and hybrid fe/fv), and three flow settings 

(incompressible-A/a=0, weakly-compressible-Ma«0 and Ma=0.\). Solutions for both 

creeping and inertial flows conditions have been presented.

For each implementation, on WeCTn and corresponding vortex activity (size and 

intensity), the main differences one observes against incompressible counterparts lie in 

the sustained growth at constant rate, in both wall-stress components beyond the re­

entrant comer. This is independent of the specific spatial scheme employed. Under the 

incompressible context, relaxation elevates the Wecrit-levels for both scheme 

implementations, as numerical stability is enhanced. Larger Wecnt levels are reached 

under all three flow settings, for the/b^v-scheme compared to the /^-variant. This, may 

be attributed to the discretisation differences between schemes approaching the re­

entrant comer: sub-cells and use of discontinuity capturing in the hybrid case. One notes 

also the property of the fe/Jv-scheme to display some control on cross-stream solution 

variation, particularly in the presence of sharp solution gradients. On vortex behaviour, 

at equitable Wie-level and flow settings, both schemes produce comparable vortex 

characteristics. One has observed larger salient-comer and lip-vortices in compressible
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flow above its incompressible counterpart. Independently of flow setting, salient-comer 

vortex-size decays with increasing We (vortex reduction), whilst lip-vortex size is 

enhanced. For compressible flow, the shape of the salient vortex adopts a curved and 

stretched form (separation line becomes curved), uniting with the lip-vortex at high We. 

Upon introducing inertia into the problem, all aspects of vortex (salient and lip) 

activities are reduced.
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CHAPTER 7

Stabilised Computations for Weakly- 
Compressible and Incompressible 

Viscoelastic Flows (fe/py

The main propose of this chapter is to investigate stabilised computations for slightly 

compressible to incompressible viscoelastic flows. This is conducted through extensive 

studies upon an incremental pressure-correction (PC) fractional-staged hybrid fe/fv 

method. The particular interest in the present context is to draw together some of the 

established stabilisation methodologies, used to gain numerical convergence for highly- 

elastic steady-state viscoelastic solutions. That is, in achieving high Weissenberg 

number {We) solutions to classical benchmark problems. To illustrate this, Oldroyd-B 

model solutions have been considered in planar 4:1 abrupt contraction flows.

The key issues dealt with involve: (i) the stabilisation of PC-schemes in application 

to the coupled velocity-pressure-stress system via a fractional-staged procedure; (ii) the 

improved satisfaction of extended LBB compatibility conditions within the spatial 

representation, and (iii) some miscellaneous stabilisation aspects particular to the stress 

equation, such as capturing discontinuities and steep stress gradients. The second aspect 

involves the compatibility of function spaces, improving the quality of velocity 

gradients and appending an elliptic dissipation function. New theoretical findings in this 

area are appealed to associated within the coupled velocity-pressure system. 

Fortunately, the equivalence of various stabilisation mechanisms has already been

f Material of this chapter appears in paper “Stabilised computations for incompressible and mildly 
compressible viscoelastic flows” by F. Belblidia, I. J. Keshtiban, and M. F. Webster, and submitted for 
publication in Journal o f  Non-Newtonian Fluid Mechanics (2004).
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established theoretically. For example, in associating the stabilisation parameter of the 

Galerkin-Least-squares (GLS) method with the proper choice of time-step in a PC- 

approach [30]. Similarly in [57], the necessity of satisfying the inf-sup (LBB) 

conditions is confirmed, if superior temporal error bounds are to be realised. Admissible 

trial spaces result and specific incremental pressure-correction schemes (three time- 

levels) are advocated to realise these advantageous properties.

It is through these alternative stabilisation procedures, that one is able to access new 

levels of stable We-solutions. This presents novel solution features in terms of vortex 

activity, stress field structure around abrupt comers and in stress boundary layers 

(SBL), and cross-stream solution representation. Likewise, one may consider the 

specific effect that inclusion of compressibility may have, contrasting this against its 

incompressible counterpart, notably through vortex activity. The merits of coupled and 

fractional-staged problem statements are commented upon in Appendix 7.A.

7.1 Aspects of stabilisation
Computation of viscoelastic flow with PC-methods has been investigated by several 

authors. The overall numerical performance of such schemes may be influenced by 

three main issues. The first such stabilisation issue to consider upon the introduction of 

elasticity, is that pressure-correction methods not only inherit properties associated with 

the computation of Stokes flow, but go beyond this phase, with the increased 

complexity of the problem. As such, decoupling the calculation of stress (over each 

time-step) from the momentum and continuity equations may reduce convergence rates, 

affect stability, and hence, lower the maximum attainable We {WeCnd for steady-state 

solutions [9,10]. Generally, additional stabilisation procedures are required to improve 

numerical convergence, particularly in more complex non-smooth flows. To date, much 

work has been devoted to the study of Stokes flow and the properties of pressure- 

correction methods, in developing accurate and stable numerical schemes 

[8,20,25,57,83]. Codina and Zienkiewicz [30] have established a generalised PC- 

framework which demonstrates the unification of GLS-constructs with those of stable 

projection methods. This is achieved through stabilisation factors, introduced into the 

fractional-staged approach, which mimic time-step scaling (TSS) across individual 

equations. Laterly, these ideas have matured, see Zienkiewicz and co-workers 

[165,166]. Utilising such formalism in the viscoelastic context, for example by Carew et
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al. [23] and furthermore by Keshtiban et al. [79], have shown that under-relaxation over 

each equation time-step (or variable) reproduces identical structures to the generalised 

PC- framework of [30]. This effectively smoothes oscillations and improves stability 

towards higher Wie-level solutions.

A second aspect of stabilisation concerns the compatibility conditions on function 

(trial) spaces for spatial discretisation [18,56]. The mathematical analysis of Stokes flow 

indicates that the approximation spaces for velocity and pressure must a priori satisfy a 

compatibility condition known as the inf-sup or LBB condition (see [18]). In recent 

years, the stabilising influence of Poisson-based PC-methods has gained in appeal, 

questioning the need to satisfy such compatibility relationships within the spatial 

interpolation employed (see [166]). However, recent theoretical analysis has shown, that 

within either a fe , or spectral framework (Guermond and Quartapelle [57]), lack of 

satisfaction of LBB conditions may impose additional stability restrictions resulting in a 

lower bound on permissible time-step. Under such circumstances, when time-steps 

exceed this threshold, spurious oscillations may emerge that are most prominent in the 

pressure field. Furthermore for viscoelastic flows, the addition of a weak-form stress 

constitutive equation, imposes supplementary compatibility conditions on admissible 

interpolation spaces for velocity-gradients, (S(Vw)c S(r)) (see Fortin and Fortin [47], 

Baaijens [10], re DG-schemes). Nevertheless, extended inf-sup type conditions for such 

flows are less well-developed. The numerical consequence of deviation from such 

conditions appears in the form of numerical oscillations and poor stability response. The 

order of accuracy in representation for velocity gradients could appear to play a 

significant role in the satisfaction of LBB conditions. In addition, the presence of an 

elliptic operator, introduced via operator-splitting through the rate-of-deformation (see 

SRS below), has been found to considerably enhance LBB satisfaction for viscoelastic 

flows. This has been implemented in various forms of EVSS (stress-splitting) schemes. 

An alternative approach has been to employ recovery techniques [98] for velocity 

gradients, to accurately approximate the rate-of-deformation. Matallah et al. [97] 

concluded, that utilising recovery when applied to velocity gradients, may yield a more 

accurate and stable implementation than a conventional form (without recovery), 

proving competitive with other stress-splitting formulations (EVSS, DEVSS/SUPG and 

DEVSS/DG, see [10,98]). In [3], it was concluded that the single most important factor 

was the treatment of velocity gradients (weak or strong form), as opposed to the stress-
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splitting per se. Identical vortex trends (size and intensity) for the 4:1 contraction flow 

were gathered across these various implementations. As above within the SRS method, 

an elliptic smoothing function may be derived, based on the residue between the 

continuous and discontinuous spatial representations for solvent stress term. This is 

achieved by introducing a differed-correction term,a(2juJp)(D-Dc), within the weak-

form expression for momentum. The continuous representation, Dc, is derived from

recovery procedures, whilst the discontinuous form, D, emerges via the fe- 

approximation. Here, a  adopts the role of an adjustable scalar parameter, an optimal 

setting of which is gathered from empirical observation as extra-stress compatible: 

a= p j p s = 8. For this auxiliary viscosity and with the XPP-model, Verbeeten et al.

[147] adopted the form ar(//c! p)  = G,A;, where (G,^), represents the (plateau

modulus, relaxation time), per mode i, with M  the number of modes. Locally adaptive 

alternatives may also suggest themselves, see [97,134].

A third stabilisation issue, is related to the difficulties encountered within the 

computation of stress itself, via the constitutive equation. These equations display 

hyperbolic character, often reflecting large components in elastic extra-stress, which 

may support steep/discontinuous stress gradients in the vicinity of solution singularity. 

Under such circumstances, particular treatment is necessary for effective discretisation. 

Sharp discontinuity capturing procedures stabilise the solution locally about singular 

field locations, to suppress non-physical oscillations. In this respect, Aboubacar and 

Webster [4] employed discontinuity capturing, based on a reduced comer integration 

(RCI) technique applied in elements adjoining the re-entrant comer (six-point Newton- 

Cotes rule reduced to three-point rule). The rationale behind such a treatment lay in 

reflecting low-order local approximation, tightly capturing sharp gradients, whilst 

suppressing propagation of numerical noise away from singular solution zones. 

Resolving stress boundary layers (SBL) near singular locations is an important issue in 

gathering numerical stability and retaining accuracy in viscoelastic computations. As it 

described below, within such boundary layers the quality of velocity gradients has a 

major influence upon stability and accuracy (notably affecting shear stress, Txy). In 

addition, by including a system modifier (such as in the SRS-form), oscillations are 

smoothed, which provides better velocity description to assist the accurate computation 

of stress. Upwinding procedures suppress crosswind propagation, and thereby, avoid
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dispersion of the boundary layer throughout the solution domain. Note, the transverse 

boundary layer convection term is generally low, whilst cross-stream gradients may be 

large. The SRS-variant, via a Galerkin approximation, provides a handle on crosswind 

dispersion, thereby suppressing numerical oscillations near solid-wall boundaries. To 

achieve a similar objective within the SUPG-context, Matallah et al. [97] employed 

variational discontinuity capturing (DC) for the constitutive equation, and various 

alternative forms of strain-rate stabilisation, adaptive/local and global (see also, [134]). 

In the consistent DC-method, an additional term was appended to the streamline 

upwinding Petrov-Galerkin (SUPG) weighting function, to act in the direction of 

solution gradients (normal to the flow) and to introduce control upon crosswind solution 

propagation. Similar results were extracted for an inconsistent DC-implementation. 

Consistent discretisation of the constitutive equation is a major issue demanding 

upwinding procedures. In the present study, one appeals to a revised form of the fe/jv 

(CT3) scheme and derivations thereby (see [3]), which invoke a form of velocity- 

gradient recovery over each parent triangular finite element. One may advance to 

compressible algorithm representations throughout, with comparison across stabilised 

scheme variants and flow settings (Ma-0, Ma=0, Ma=0.1), commenting upon the 

respective stabilisation properties derived thereupon.

7.2 Numerical method
The numerical method employed within this study is discussed extensively in chapter 

six. For the sake of completeness, in this section key aspects involved are recalled. The 

stabilisation employed has emerged via modification of momentum equation (Stage la  

and Stage lb). The stabilised form of the momentum equation is revealed by appending 

the SRS differed-correction term (see above), as follows:

-«")-iv-(zfl/2-if)=V-(zf + i - v ( 2 p " -p 'H)+2a^V-(D-.D)\ (7.1)

The same stencil is employed for Stage lb. This fractional-staged procedure 

accommodates second-order accuracy in time, noting the new incremental FC-structure
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of Guermond and Quartapelle [57], which introduces a three-time level reference on 

pressured

7.3 Problem description and solution strategy
In the present study, the creeping flow of an Oldroyd-B fluid through a planar 4:1 

abrupt contraction is chosen as the test-problem. This is widely recognized as a valuable 

benchmark to assess stability, accuracy and convergence properties, particularly at 

elevated levels of We. Such a non-smooth flow, poses a stress singularity at the re­

entrant comer and a downstream-wall SBL to resolve, with provocative trends to cover 

in vortex behaviour and stress-field development. See chapter four for the meshing 

employed, and chapter five for imposed boundary conditions.

Pursuing steady-state solutions for both incompressible and compressible flows, 

optimal properties are sought in achieving unpoluted solutions at elevated critical levels 

of We (Weait) for each stabilisation scheme attempted: TSS, RCI and SRS. It has been 

demonstrated that a combination of such stabilisation techniques may significantly 

improve numerical convergence properties (see below). Stress profiles, stress and 

pressure Field plots are presented up to critical levels of We, around the contraction zone 

and along the downstream wall. The solutions are charted through the boundary layer, 

and structures in salient-comer and lip-vortices. Under compressible flow 

considerations, the generalised Tait equation of state is considered (see [154]), with a 

scalar parameter set of (m,B)=(4,102). At Ma-level of 0.1, this leads to an exaggerated 

rise in density, of about 30% above that experienced in an equivalent incompressible 

flow.

Two alternative solution continuation strategies have been considered. One, more 

stringent, of true-time evolution from rest at any appointed Wie-level (adjustment in 

time). The second follows the more conventional incrementation (continuation) in We 

itself (say in steps of 0.1), stepping through a series of We steady-state solutions (a 

perturbation approach). Through either solution approach, a steady-state is 

acknowledged by satisfying a terminating preset temporal-solution increment-tolerance 

(set typically as 10‘6 with a time-step size of 10'4).

* Multi-time level reference ties further implicitness into the system and stronger enforcement of 
continuity satisfaction through time.

144



Chapter 7 Stabilised Computations for Viscoelastic Flows (fe/jv)

7.4 Numerical results
To start, one may present a general overview and snapshot of the basic findings, as 

tabulated in Table 7.1 for incompressible flow (Ma=0.0) across each stabilisation 

scheme, based on Wecnt and first normal stress-peak (Ni-peak) levels. With the SRS- 

implementation, significant elevation is observed beyond WeCTit levels for CT3-scheme. 

Stress-peak (Tpeak) levels confirm agreement in solution at each Wie-stage reached, with 

rise as We increases for each scheme. The /?C/-scheme captures steep stress gradients 

sharply and has larger stress-peak values compared to alternative schemes. In contrast, 

the SftS-form reduces stress-peak levels significantly. Comparatives for combinations of 

various stabilisation strategies are also presented in Table 7.1. In Table 7.2 the 

comparable results are presented for compressible scenarios (Ma~0.0 and Ma=0A) with 

stabilisation schemes. Once more, significant elevation in Wecnt with SRS is observed. 

Introducing RCI to the CTi-structure shows some slight improvement in stability, 

marginally increasing Wecnt.

Table 7.1: Incompressible: WeCTit and principal Tpeak» various scheme

Ma= o ©

Alone combinations

CT3 TSS RCI SRS +TSS 
+ RCI

+ RCI 
+SRS

+TSS 
+ RCI 
+SRS

Critical We 2.8 2.8 3.0 5.9 3.5 6.1 6.4

Peak Ni 91.5 91.5 105.9 133.4 85.1 157.8 171.2

N, at We=2.0 81.3 81.3 67.2 77.5 58.2 72.9 72.9

N, at We=2.8 - - 103.1 86.7 81.4 85.8 85.8

Wecrit salient-vortex 1.05, 1.04, 1.02, 0.69, 0.97, 0.68, 0.67,
(size,intensity * 103) 0.325 0.324 0.299 0.114 0.270 0.114 0.115

WeCTil lip-vortex 
(intensity* 103) 0.107 0.107 0.855 - 2.634 - -

7.4.1 Incompressible-stabilised schemes results (CT3, TSS, RCI and SRS)

The neutral incompressible CT3-scheme is the basis for comparative evaluation 

across the stabilisation techniques explored. From Table 7.1, the CT3-scheme provides 

solutions up to the WeCTjt level of 2.8. Note that under the TSS-scheme (or any r e ­
combination) to cope with equitable comparison in time-step scaling or solution 

relaxation (factor r=0.3), the time-stepping tolerance is reduced from 10'6 by an
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equivalent factor (to say 3xl0"7), so that the ratio of time-step to tolerance remains 

constant. The application of the TSS-scheme alone has little influence on high-We 

stabilisation, as WeCT\t attained is identical to that observed with C73-scheme, reaching 

the same level of stress-peak. The incompressible RCI-scheme promotes WeCTit from 2.8 

(CT3) to 3.0. Clearly, introduction of the incompressible variant has promoted 

WeCrit significantly, doubling its value from 2.8 (base-C73) to 5.9. This finding lies in 

broad agreement with the observation of others who have employed similar strategies 

(see DEVSS/DG with GLS of Baaijens [9,10]). Referring to Table 7.1, the SRS-scheme 

offers the lowest stress-peak at W e-2.8, when compared to alternative scheme variants 

(CT3, TSS, RCI).

Table 7.2: Compressible (M a=0.0  and M a -0.1): WeCTil and principal T̂ ak, various scheme

M a -0.0 M a-Q . 1

Alone combination alone Comb.

CT3 RCI SRS +TSS
+RCI

+RCI
+SRS

(±TSS)
CT3 TSS RCI SRS +RCI

+SRS

Critical We 2.0 3.3 5.4 3.6 6.3 2.0 2.2 3.1 4.9 6.1

Peak Ni 102.2 194.0 103.1 171.1 154.0 99.1 82.9 200.8 107.6 183.5

N| at We=2.0 102.2 116.2 70.3 110.4 69.5 99.1 79.1 122.8 73.4 73.5

Wecnt sal.-vortex 
(size,intens.*103)

1.20,
0.496

0.98,
0.260

0.73,
0.119

0.94,
0.244

0.68,
0.116

1.49,
1.496

1.41,
1.384

1.28,
1.261

1.04,
0.841

0.87,
0.644

We„ i, lip-vortex 
(intensity* 103) 0.063 0.163 - 1.862 - 1.105 0.505 1.719 1.561 3.209

a)- Incompressible stress (Txx, Txy) profiles: These are illustrated in Figure 7.1 through 

increasing We and scheme-variants plotted along the horizontal line along the 

downstream wall (y=3.0) at the level of the re-entrant comer. Note, in the comparative 

in-place presentation for stress profiles, a lateral shift has been applied for each We- 

solution plot (all Tpeak actually occur at the re-entrant comer), that displays a rising trend 

in peak values as We increases. There is a sharp rise in stress at the re-entrant comer to 

Tpeak and decay to a trough in each We-solution. Beyond this state and in the t xx 

extensional stress, build-up is apparent to a We-dependent plateau level. TSS-stress 

profiles are identical to those of CT3 up to Wecnt=2.8. This indicates that temporal 

stabilisation with the 7XS-form does not affect the CT3 steady-state solution. For CT3 

and rSS-schemes, solution structure is practically oscillation-free, even at WeCT\u as
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shown in Figure 7.1a,b. Under the RCI-scheme in Figure 7.1c at We„it=3.0, there is a 

12% increase in xxx stress-peak compared to that for C73-scheme. Here, one observes 

large oscillations associated with the generation of a secondary vestigial stress-peak in 

both component profiles: an indicator of looming instability, largely absent at sub- 

critical We-levels. For CT3 and TiSS-profiles at Wecnt=2.8, there are also slight signs of 

this vestigial peak appearing. Stress (xxx,xxy) profiles with SRS of Figure 7.Id display 

smooth patterns up to W e-3.0, that revert to oscillatory form beyond W e-4.0. Note, this 

level of We has not been attained by CT3, TSS or RCI-schemes. Subsequently, these 

oscillatory patterns gather greater amplitude with increasing We, until ultimately the 

SRS-scheme fails to converge beyond the super-elevated level of We=5.9. At this We- 

level, the principal stress-peak value has risen to 133.4, representing an increase of 

some 46% above the corresponding value for CTJ-scheme at Wecrit=2.8 (value 91.5). At 

We=3.0, the vestigial peak of the /?C7-variant is removed with the S7?S'-form, where the 

solution is smooth and devoid of such features. One may relates this response to the 

dissipative nature of the strain-rate treatment.

b) Pressure and stress fields: Next, for each scheme-alternative, pressure and stress 

(TxxJxy) field contour plots are analysed within the contraction zone at sub-critical 

We=2.5 (in Figure 7.2) and WeCTn (in Figure 7.3). For W e-2.5 and C73-scheme, Figure 

7.2a illustrates sharp gradients in the vicinity of the singular solution point and the 

downstream boundary layer. A comparison between CT3 and TiSS-stress profiles and 

contours up to WeCTn=2.8 (see Figure 7.2b and 7.3b) shows no noticeable disparity; see 

also Figures 7.3a and 4a for CTi-scheme. With RCI, at W e-2.5 (Figure 7.2c) and for 

higher We (Figure 7.3c), oscillatory patterns begin to emerge in pressure and shear 

stress, close to and along the downstream wall. This is clear evidence of the We build-up 

of a SBL beyond the re-entrant comer, from which loss of stability results, concomitant 

with that reported in Renardy [121]. At We=2.Q, there are no oscillations apparent and 

solutions with RCI mimic those following the CTJ-scheme (not shown). Primary 

elongational stress (xxx) remains relatively smooth on the field for all schemes up to 

Wecrit (noting local profile behaviour as above). With respect to pressure and shear 

stress, trends are smoother for SRS compared to RC/-forms (see Figure 7.2c,d at 

We-2.5). The oscillatory response within the boundary layer is particularly prominent in 

shear stress. Compared against /?C/-solutions at WeCTn=3.0 (Figure 7.3c), relatively 

smooth xxy SRS-pattems are extracted and beyond in We (see on to Figure 7). This
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position adjusts in approaching the limit Wecrit= 5.9, when oscillations have reappeared 

in pressure and shear stress (Figure 7.3d).

'xy

b ) T S S

d ) S R S

200

150

x100

50

200 100
We=1.0 
We=2.0 
We=2.8

We=1.0 
We=2.0 
We=2.8150

\\I*100
a ) C T 3 /

50

30
XX

100200
We=1.0
We=2.0
We=2.8

We=1.0 
We=2.0 
We=2.8150

x100

40
XX

100200
We=1.0 
We=2.0 
We=3.0

We=1.0 
We=2.0 
We=3.0150

1
c ) f lC 7  S'00 /

40 4025 3520 3020 25 30 35

IlT“ \

100

75

S '50 I-

25

We=1.0
We=2.0
we=3.0
We=4.0
We=5.0
We=5.9

30
X

40
0 - 
20 25 30

X
35 40

Figure 7.1 : Incompressible ( ixx,Txx)-profile, downstream-wall, increasing We: (left) t xx and 
(right) xxy; under schemes a) CT3, b) TSS, c) RCI and d) SRS
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Figure 7.2: Incompressible variable fields, We=2.5: (left) pressure, (middle) Txx and (right) 
Txy; under schemes a) CT3, b) TSS, c) RCI and d) SRS

To identify the influence of SRS upon the flow field, Figure 7.4 contrasts solution 

fields extracted for the base CFi-schem e, both with S^S-inclusion and without. This 

corresponds to a relatively low level of W e-2.0, where oscillations are absent in either 

form (see Figure 7.2). Figure 7.4 demonstrates that one may extract similar behaviour 

across schemes (CT3 against SRS) at such a moderate level of We (problem-dependant), 

reflecting correspondence in vortex characteristics (see Figure 12 below). One can 

deduce that the influence of SRS is negligible when the solution is sufficiently smooth 

in the boundary layer (also confirmed on plane channel shear flow). One may gather 

from Figure 7.4, a connection to the use of dissipative terms in shock capturing, which 

are based on second and fourth-order gradients of pressure. These terms become active 

near sharp gradients, yet are suppressed in smooth flow zones (see Carew et al. [22] and 

Jameson [73]).
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under schemes a) CT3, b) TSS, c) RCI and d) SRS
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We=2.0, CT3
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Figure 7.5: Velocity gradient contour plots at We-2.0, (top) U-gradients, (bottom) ) V- 
gradients, (left) streamwise dU/dx, (right) cross-stream dU/dy, under CT3- 
incompressible schemes

c) Velocity-gradients and SBL: Boundary layer analysis plays a key role in the 

understanding o f  viscoelastic flows near walls and comers. In Newtonian flows, when 

inertial terms in the m omentum equation are dominant, viscous terms may be neglected, 

except within thin fluid layers along no-slip solid boundaries. Boundary layers in the 

viscoelastic context are discussed in Rallison and Hinch [119] and Hagen and Renardy 

[59], and relevant references therein. In numerical computations on flow about 

singularities (where the flow supports large stress levels with steep gradients), non­

physical oscillations may appear in the solution. Beyond such a singular location, the 

shear (velocity) boundary layer is also active. Within SBLs, convective derivatives 

vanish, forcing stress to be viscometric and determined completely by velocity gradients 

(both being large and balancing). The effect of numerical noise within the SBL often 

poses severe discretisation and convergence difficulties. The resolution of these 

boundary layers has proved a major obstacle to successful viscoelastic computations at 

high We, in for example, flows past a sphere and abrupt re-entrant com ers [57]. In these 

regions and in the boundary layer beyond, local levels o f  We can be excessively large 

(see [119]), as a consequence of large velocity gradients (We = /l|Vw|).

One may proceed to clarify the dynamics of the SBL by interrogating the nature of 

the solution in the vicinity o f  the re-entrant com er and beyond, with back-reference to 

the discussion above on pressure and shear stress fields. The distortion noted in the
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pressure field contours, beyond the re-entrant com er and across the SBL, vanishes as 

We reduces. This identifies that such distortion (away from level lines) is not due to a 

numerical pressure boundary layer, but rather to the consequence of the SB L itself. 

Correspondence amongst the results with fe/jv, and j v -results in references [5,41], 

confirms consistency in predicted solutions across different schemes. Close agreement 

in salient-comer vortex activity (see Figure 12 below) lends added confidence in the 

quality of  solutions generated. To extract the impact of the various terms on the SBL, in 

Figure 7.5 velocity-gradient contour plots at We=2.5 are presented for CT3-scheme. 

This illustrates the most active (largest) velocity gradient component du /dy, being 

present in both r vv and r  -equations. Also, the numerical noise observed in du/dx 

(streamwise gradient) is highlighted, while du/dy (transverse gradient) remains 

relatively smooth. Importantly, the accurate determination o f  this dominant (du /d y)  

component strongly influences both r u and r  -fields beyond the singular solution 

point, but more particularly t .
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Figure 7.6: Incompressible longitudinal velocity gradient fields, We-2.5: (top) streamwise 
dC/dx, (bottom) cross-stream dU/dy\ under schemes a) CT3, b) RCI and c) SRS

In Figure 7.6, velocity-gradient contour plots at the higher level of ^ = 2 . 5  are 

presented for CT3, RCI and S/?S-schemes. As with the CTJ-schem e (also TSS) in Figure 

7.6a, no oscillatory behaviour is observed and stress fields are smooth. Equivalently, for 

the RCI-scheme, one observes degradation in velocity-gradient contours, as clearly 

demonstrated in Figure 7.6b. Note that, at the lower level o f  W e-2.0, corresponding
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contours remain smooth. This may be a consequence of heavy oscillation within the Txy- 

field, noting that in comparison, the primary elongation stress Txx retains reasonable

smoothness. The removal of numerical noise in Figure 7.6c, indicates the enhanced 

stability of the S/?S-scheme at this level of We, in contrast to that inherent within the 

/?C/-implementation. The SRS-contour plots for the dom inant du/dy  -term retain 

smoothness up to W e-4.5, beyond which oscillatory t -profiles emerge through the

boundary layer. This is clearly demonstrated in Figure 7.7, where stress profiles with 

increasing We are illustrated for the SRS-scheme.
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Figure 7.7: Incompressible variable fields, increasing We: (left) t xx and (right) Txy; under 
S7?S-scheme

Boundary layer evolution with increasing We is illustrated in Figure 7.8 for the three 

variants, CT3, RCI and SV^S-schemes. Here, the SBL profile is characterised by the 

vanishing d r xx/d y  contour and build-up of boundary layer length is apparent with 

increasing We over all scheme variants, as annotated by arrow. The boundary layer
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profile for the CTJ-schem e (and TSS) is smooth up to WeCT\x=l.% (Figure 7.8a). At 

WeCrit=3.0 with the RCI-scheme, the boundary layer profile has clearly become 

numerically ‘pollu ted’ and disjoint, as shown in Figure 7.8b, reflecting once again 

oscillatory patterns in stress. Figure 7.8c, provides further evidence of the enhanced 

stability, enjoyed with the S&S-scheme, through the evolution o f  the boundary layer 

with increasing We up to Wecv\<=5.9. Hence, one observes the consequence of RCI- 

adjustment is the propagation of noise into the downstream-wall S B L ’, generating 

oscillatory field patterns thereby (see Renardy [121]). In addition, the SRS may be used 

as a mechanism to stabilise the RCI-strategy (see below). Conversely, one would 

attribute the considerable elevation of Wecrit under the SfiS-implementation as being 

mainly due to the tight capturing of the SBL, via the inclusion o f  weak-form dissipative 

terms in the formulation, 2a  /us (D -D c) . This has the dual effect o f  controlling cross­

stream solution prolongation, and at the same time, eases the compatibility relationship 

between function spaces adopted for velocity-gradients and stress (also pressure, as a 

result).

, a) CT3 , b) RCI , c) SRS
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Figure 7.8: Incompressible boundary layer growth, increasing We: under schemes a) CT3 , b) 
RCI and c) SRS

7.4.2 Temporal convergence rates

Here, CT3, RCI and S/?S-schemes are analysed under a true-transient setting at the 

sub-critical level W e - 1.5, to provide indications of scheme behaviour, and particularly 

for the SRS-variant. Temporal convergence plots on history tolerance through solution 

components (pressure, velocity and stress) are analysed via the three levels of mesh 

refinement (M l ,  M2 and M3 of Figure 4.6) and three levels of time-step (A/=5*10 4, 10' 

4, 5*10 5). T ime-stepping termination tolerance levels remain fixed at 10'6. Figure 7.9 

illustrates the associated temporal convergence tolerances for stress across scheme and

A link is established between lip-vortex activity stimulated and consequent degradation observed within 
the SBL, which may prove to be primarily responsible for subsequent failure in numerical convergence.
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mesh refinement for A?=104. Overall, the same temporal convergence trends are 

observed across mesh and scheme in stress (likewise in velocity and pressure). Under 

the finest mesh M3, testing across schemes reveals that the SRS-schem e gathers the 

most rapid ultimate convergence rate, followed by the /?C/-variant (see Figure 7.9d).
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Figure 7.9: Incompressible temporal convergence patterns for stress with mesh refinement;
We= 1.5, A t= 104: under schemes a) CT3, b) RCI and c) SRS; d) across 
schemes M3-mesh

Temporal rates of convergence for the 57?A-scheme for various solution components 

are illustrated in Figure 7.10, through different levels of time-step and the finest mesh 

M3. Under the smallest time-step, where spatial discretisation error is minimal, less 

time is required than with the other time-step settings to attain the specified tolerance 

level, with more rapid early convergence in stress. Large amplitude oscillatory 

convergence patterns are observed in pressure, being larger for the larger time-steps, yet 

frequencies are similar. This is indicative of the improved temporal stability response 

with incremental pressure-correction. Comparatively, oscillatory patterns are reduced in 

velocity and smoothed in stress. In Figure 7.10d, temporal evolution o f  the ‘differed- 

correction term ’, denoted as (D - D  ), is plotted indicating its reduction through time.

One may note that through this ‘differed-correction term ’, temporal convergence rates 

follow faithfully those in stress, independent of time-step selection. This mechanism
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acts as a temporal control-monitor to solution evolution, whilst achieving a steady-state 

under a specified tolerance.
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Figure 7.10: Incompressible temporal convergence patterns with temporal refinement;
W e -1.5, mesh M3 under SRS  scheme: for variables a) pressure, b) velocity, 
c ) ra n d  d) D-Dc
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Figure 7.11: Development of (D-D c)incomp under increasing We’, ,S7?S-scheme, mesh M3: a) 
whole domain, b) re-entrant com er zone

Steady-state three-dimensional plots o f  the ( d - D ( ) term are provided in Figure 7.11

for the refined mesh M3, at W e- 1.5, 2.0 and 2.5 and A r= 5*104. This figure starkly 

exposes the localised nature of the stabilisation term, which takes affect principally at 

the re-entrant com er  in the form of a singular-valued function (usefully characterising
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the singularity). By increasing the VFe-level, the contribution o f  this term is slightly 

reduced through dissipation (by 30% from W e- 1.5 through to We=2.5). This evidence 

identifies that SfrS-implementation does not disturb the solution field away from the 

localised re-entrant com er  neighbourhood.

7.4.3 Vortex behaviour

Vortex enhancem ent and reduction are important aspects in the study of  contraction 

flows, being associated with both salient-comer and lip-vortices, where both physically 

and through prediction, trends in vortex behaviour have been quantified via size, shape 

and strength. The literature base is broad, being evidenced by works: experimentally of 

Evans and Walters [42,43], M cKinley and co-workers [99] and Boger [11]; and from 

simulation/theory, Matallah et al. [98], Aboubacar and W ebster [4], Xue et al. [161], 

Oliveira and Pinho [108], Alves et al. [6], Renardy [121] and Keshtiban et al. [79]. 

Usefully, Alves et al. [5] and Aboubacar et al. [1,2] have catalogued many of the 

published results. A review on vortex activity is provided in Appendix 7.B.
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Figure 7.12: Incompressible vortex trends, increasing We: (top) M a=0.0, (bottom) Ma=0; 
salient-corner vortex a) size, b) intensity; and c) lip-vortex intensity

Figure 7.12 provides a summary o f  the incompressible vortex activity results, 

displaying salient-comer vortex size and intensity (Figure 7.12a,b), and lip-vortex 

intensity (Figure 7.12c). Close agreement is observed amongst the various stabilisation
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strategies adopted and comparatively against the results of Alves et al. [5]. There is 

reduction in salient-comer vortex intensity in a continuous form towards a threshold 

value. The C73-schem e displays a lip-vortex, and introducing RCI, promotes lip-vortex 

presence further. In contrast, SRS removes this flow feature completely. Hence, this 

feature is linked directly to the numerical scheme and its treatment of the singularity.

Critical WeWe=2.0

(N V,ip= 0.015ea) CT3 Vbp= 0 . 1 0 7 e

i)/ 0 .3 2 5 e

X=1.23 X = 1 .05

b) TSS £
5

iii F  0.51 Oe*

X = 1 .23

e) RCI

X = 1.21

d) SRS

X = 1.25

Figure 7.13: Incompressible streamlines: (left) We=2.0 and (right) WeCT;t; under schemes a) 
CT3, b) TSS, c) RCI and d) SRS

Here attempt is to enumerate the findings on vortex activity through finest mesh M3 

solutions, as a consequence of the additional stabilisation procedures outlined above. 

Note, in all streamline plots, a total of sixteen levels are dispatched covering core-flow: 

ten equitable levels, from 0.1 to 1.0, followed by two levels at 10’2 and 10 3; plus four 

levels to illustrate the salient-comer-vortex (inclusive from the m inim um  level to that of 

the separation-streamline). At the lower We-levels, a large salient-com er vortex is 

present, both in size and intensity'; vortex reduction is clearly apparent with increasing

+ No lip-vortex with CT3 for We < 2.0; ¥*,=-1.115 10"3 at We=0.1; ¥*,=-0.838 10' 3 at We= 1.0.

X = 1.04

X = 1 .02

X =0.69
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We. This trend of salient-comer vortex behaviour is observed for all stabilised schemes 

under consideration (identical size and intensity). In Figure 7.13, streamline contour 

plots for all scheme-variants are presented at W e-2.0 (left) and at VFecrit-levels for each 

scheme (right). A lip-vortex emerges at W e-2.0 and once present, the lip-vortex grows 

in size. With respect to the 77>S-scheme and vortex activity, a minute lip-vortex appears 

at W e-2.0: intensity o f  0.015*10 3, identical to its C77?-counterpart. This growth 

continues in intensity, to reach 0 .107*10° at W<?crjt=2.8 (comparable to CT3). At 

W e -1.5, there is no indication of lip-vortex presence with either CT3 or TSS. 

Considering RCI-vortex activity, lip-vortices display exaggerated increase in size and 

intensity, when com pared to their equivalent solutions with either CT3 or TSS. In 

addition, the RCI lip-vortex is stimulated somewhat earlier at W e -1.5: intensity 

0 .095*10 3. At W e-2.0, its intensity is about 1.5 times larger than its CTi-counterpart.
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Figure 7.14: Incompressible x-profiles, downstream -wall, scheme combinations: (left) xxx 
and (right) xxy; (top) W<?=3.0, (middle) We=3.5, and (bottom) We=4.5
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7.4.4 Stabilised scheme combination results (RCI/TSS/ SRS)

After investigating the effect of application of each individual stabilisation scheme 

when layered upon the incompressible CT3-variant, one is in a position to consider 

optimal scheme combinations. First, the /?C7-scheme, with results tabulated in Table 

7.1, has been found to produce heavy-side oscillation beyond W e-2.5 (W IeCr i t= 3 .0 ) .  Note, 

introducing TSS upon the RCI-form, reduces Tpeak levels (see Table 7.2), yet elevates lip- 

vortex intensity. Stability properties for RCI-scheme are improved by appealing to 

either the TISS-scheme, or the SRS-scheme, or both. This is demonstrated in stress 

profiles in Figure 7.14, where RC/-oscillations are completely removed at We=3.0. Note 

that no oscillations are observed up to W e-3.5 for any scheme combination with RCI. 

Oscillations appear once more at We-4.5 and beyond, for (RCI+SRS) and 

(RCI+TSS+SRS)-scheme combinations. Also, WeCni is progressively elevated from the 

level of 3.0 for RC7-scheme, to 3.5 under (RCI+TSS)-scheme, to 6.1 with (RCI+SRS)- 

scheme, and to an impressive level of 6.4 with (RCI+TSS+SRS)-scheme combinations. 

Up to We=6.1, both (RCI+SRS) and (RCI+TSS+SRS)-scheme solutions mimic one 

another. By combining all approaches under (RCI+TSS+SRS)-form, a remarkable level 

of We=6A may be reached. The benefit of the SRS-scheme is again highlighted, in 

stabilising the numerical algorithm and promoting the Weairlevel crafted: the 

introduction of the SRS-technique has doubled WeCTit over those forms without SRS. In 

Figure 7.15, velocity-gradient profiles (du/dx dxiddu/dy) are compared at W e-3.0 on 

the downstream-wall horizontal line (y=3.0) for RCI and (RCI+SRS)-\ahants. This 

figure illustrates the appearance of streamwise oscillations under the /?C/-scheme, 

particularly prominent in the transverse gradient du/dy, so vital to the accurate 

description of the SBL. Such oscillations are identified as being completely removed 

through combinations with SRS-inclusion.

Independent of stabilisation approach or scheme combination applied, similar 

salient-comer vortex response is preserved (see Figure 7.12). Regarding lip-vortex 

response, any combination where the SRS-scheme is employed, removes the lip-vortex 

completely for the incompressible setting. It is prominent that, the RC7-scheme (or 

combinations thereof) promotes lip-vortex activity when compared to other scheme 

combinations. One may comment, in passing, that at the less stringent time-stepping
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convergence tolerance/time-step pairing' of (10 6,10 4), the 7XS-scheme combined with 

RCI proved considerably more stable. Thereby, Wecrn o f  11.6 was extracted, bearing out 

the realisation o f  improved stability properties (see earlier to equivalence with GLS). 

Unfortunately, this proves to be at the expense of degradation in accuracy within this 

hyperbolic-parabolic context, which demands greater care in precision. One notes 

similar comm ents in Alves et al.[5].

au/3x du/dy
RCI
RCI+SRS4.04.0

RCI
RCI+SRS

3.03.0

2.0-o 2.0

0.00.0
26 25 2622 23 24

X X

Figure 7.15: Incompressible 17w-profiles, downstream-wall, /?C/-scheme ±SRS-inclusion, 
We=3.0: (left) streamwise dU/dx and (right) cross-stream dU/dy

7.4.5 Compressible algorithm results

The compressible version of the algorithm with /^ c o n s ta n t  (Ma>0) is the more 

general classification, collapsing to the incompressible form with p=constant (Ma=0). 

This may be emulated practically by setting the Tait parameter pairing (m,B) to high 

levels asymptoting to Ma~0. From a numerical perspective, introducing compressibility 

may convey residual from the continuity equation into the m om entum  equation (see 

Eq.(2.5)), whereupon residuals may be minimised simultaneously. Thereby, violation of 

local mass conservation may be reduced. In chapter four, the improved stabilisation 

characteristics of  the compressible above the incompressible algorithm, in terms of 

temporal convergence history (reducing the bandwidth between variables through time) 

has been demonstrated. Here, one may follow the above incompressible analysis, 

reporting results across the same three forms o f  stabilisation scheme.

Normally enforced as (3*10 7,10"4) for TSS-combinations.
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Figure 7.16: Compressible x-profiles, downstream-wall, increasing We, C73-scheme: (left) 
i xx and (right) Txy
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Figure 7.17: Compressible x-growth rate CL, downstream-wall, increasing We', under 
RCI+SRS-scheme; zoomed plot, (X at W e-4.0

a) Mildly compressible schemes under M a-OA

Here, the Mach num ber is set to 0.1 through the selection of Tait parameter pairing 

(m,B)=(4,10"), with Table 7.2 covering WeCTj, and principal stress level (Ni-peak) 

reached for each scheme. The neutral CT3comp-scheme achieved WeCTu=2.0. This level is 

promoted to Wecrn=2.2 under T SS ^p-schem e, and further to WeCT\{=3A under RCIcomp- 

scheme. The most effective stabilisation scheme (SRScomp) has elevated the Wecrit level
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above CT3comp by some 2.5 times, whilst the combination (RCI+SRS) comp has more than 

tripled Wecrit to 6.1. For each scheme, one may observe a lowering of critical Wecomp by 

about a unit below its incompressible correspondent (see below, due to V.u inclusion). 

That is, with the exception of RClcomp (and its combinations), where Wecnl levels are 

maintained. With regard to Tpeak at a selected We-level, SRScomp-scheme displays the 

lowest value, whilst RCIcomp claims the largest.
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Figure 7.18: Compressible Txx-profiles, downstream-wall, increasing We: (left) Txx and 
(right) Txy; under schemes a) TSS, b) RCI, c) SRS, and d) RCI+SRS

Compressible stress (xxx,xxy) profiles are illustrated along the downstream wall in 

Figure 7.16 through increasing We for CT3comp-scheme. Even at Wecrit=2.0, both stress 

component profiles are practically oscillation-free. After the re-entrant comer, one 

observes monotonic streamwise stress build-up along the solid wall, principally in xxx 

(much less so in xxy, which is practically W^-independent). The growth rate of xxx along 

the downstream wall increases as We increases (initial rate/angle in radians, empirically 

estimated as a function of Wek, k=0.36, see Figure 7.17). This feature is attributed to the 

velocity field, reflecting dependence upon density (see Eq.(3.5)), which impacts upon 

the stress field accordingly. Furthermore at W e-2.0, the TSScomp, SRSromp and
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(RCI+SRS)comp-schemes maintain their Xpeak level, within 5%, of their respective 

incompressible values. At the same W e-2.0 level, the Xpeak-comp rises by 20% for CT3COmp 

above CT3incomp, and doubles for RClcomp above RCImcomp (see Figures 7.1 and 7.18). 

Figure 7.18 illustrates compressible xxx-profiles with increasing We for schemes 

TSS comp, RClcomp, SRSCOmp and (RCI+SRS)comp. At W e-2.0, TSScomp xxx-profiles show the 

emergence of the telltale subsequent vestigial peak/trough followed by an oscillatory 

pattern. This pattern grows further up to Wecnt=2.2. RClcomp removes such oscillations 

below We=3.0, with rebirth thereafter. At We=3.0, RCIcomp has smoothed stress profiles 

and doubled Xp̂ k over RClinc0mp• With SRScomp, smaller oscillations are observed at 

We=3.0 and stronger stability is enjoyed up to Wecru = 4 -9 , though oscillations begin to 

amplify between these two We-levels. At Wiecri/=4.9, the SRSCOmp-ipeak is some 8% larger 

than that for CT3comp, at its WeCT\t=2.0. The response for both SRS and RCI is reflected in 

their combination, (RCI+SRS)COmp, delivering an impressive level of WeCnt=6A. As 

anticipated under this combined scheme, xpeak for any particular Wie-solution is bounded 

by the lower limit of the S/?S-solution and the upper limit of the RCI-solution. Note that 

r&S-combinations are excessive in computational expense requiring lower termination 

tolerance, and are avoided subsequently on practical grounds.

Following the presentation of above incompressible results, Figure 7.19 presents 

compressible xxy-contours considering schemes CT3comp, RCICOmp, SRScomp and 

(RCI+SRS)comp at We-2.0, 3.0, 4.5 and 5.5. This shows the lack of smoothness in 

(RCI+SRS)comp-solutions is delayed to beyond We-4.5. Around the contraction zone, a 

region of low Ma, one observes little difference in compressible pressure and stress 

fields, in comparison to their incompressible alternatives, recalling the irregularity in 

TXy-;n«wip-contours at large Wie-levels. One notes the smooth structure with RCICOmP- 

scheme in contrast to RCIincomp (see Figures 7.2 and 7.3). Under RCICOmp, velocity- 

gradient contours (not shown) are also smooth. Again, xxx-contours are smooth for all 

Ma=0.l-variants, as for M a-0.0. Along the downstream solid wall, the compressible 

SBL is a region subject to relatively low Ma-levels (typically, MacO.OOl). Therefore, 

compressibility has little impact upon the SBL, and hence, compressible-SBL 

development follows that of its incompressible counterpart. As the RCIcomp-scheme 

maintains solution smoothness up to Wecxu=3.1, the SBL for this We-level is also 

smooth (see RCIinc0mp at We=3.0).
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Figure 7.19: Compressible Txy-fields, We=2.0 to 5.5: under schemes a) CT3, b) RCI, c) SRS 
and d) RCI+SRS
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Figure 7.20: Compressible vortex trends, increasing We: salient-com er vortex a) size, b) 
intensity; and c) lip-vortex intensity

To our knowledge and in the style adopted here, the consideration of compressibility 

upon vortex activity in these viscoelastic flows is novel in this domain. Figure 7.20 

summarises trends in vortex behaviour, with increasing We for different stabilised 

compressible implementations. As under incompressible constraints and at equitable 

VF<?-levels, stabilised schemes produce comparable salient-comer vortex characteristics.
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One observes larger salient-comer and lip-vortices in compressible flow above their 

incompressible counterparts, following similar evolution characteristics: salient-comer 

vortex-size decays with increasing We (vortex reduction), whilst lip-vortex size is 

enhanced. A well-developed compressible lip-vortex emerges as early as W e -1.0 and 

continues in its growth as We rises. Now, the compressible SRScomp-scheme does not 

remove the lip-vortex as was the case under the incompressible setting (see on). Again, 

RClcomp or (RCI+SRS)comP-versions, promote the lip-vortex feature somewhat further in 

comparison to other scheme variants. Figure 7.21 illustrates C O ro,„p-streamline patterns 

with increasing VFe-levels. Here, one observes shape adjustment in salient-comer 

vortices from their equivalent incompressible form at We=0A (same in the Newtonian 

case) to a more stretched, and convex form (separation line becomes curved). At 

We=2.0, CT3comp-voitex characteristics are elevated compared to their incompressible 

forms by about 20% in size, tripling intensity in the salient-comer vortex. Similarly, lip- 

vortex intensity is about thirteen times larger. In Figure 7.22, streamline plots for 

CT3romp, RCIcomp, SRScomp and (RCI+SRS)comp- variants are presented at W e-2.0 (left) 

and at Wecrjt-levels for each scheme (right). At elevated VF^-levels the curved shape of 

the separation line is confirmed, which becomes more convex as We increases further. 

From M^=3.0-level onwards, one notes that lip-vortex intensity becomes larger in 

absolute value than that of its salient-comer partner. At large We-level, the emergence 

of a second trailing-edge vortex on the downstream-wall, just beyond the re-entrant 

comer, is a specific feature new to the compressible setting.

X=1.74 X=1.64

X=1.49

Figure 7.21: Compressible streamlines, increasing We\ under C73-scheme
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Figure 7.22: Compressible streamlines: (left) increasing We and ^ = 2 .0 ,  (right) Wecril\ 
under schemes a) CT3, b) RCI, c) SRS  and d) RCI+SRS

b) Limiting compressible schemes under MaM).0

In this limiting state, Tait parameters may be set to (w,Z?)=(105,105) with M a~o[ 1 0 5), 

to emulate incompressible conditions via the compressible algorithmic structure. In 

contrast to CT3M(1=q ( W^crit=2.0) and Table 7.2 results, RCI\ia=o elevates Wecrit to 3.3 and 

doubles equivalent T peak at respective Wecrit- Likewise, SRSmo ô promotes Wecrn from 2.0 

to 5.4, whilst maintaining the same CT3mo=o level o f  Tpeak. TSS brings modest 

stabilisation to RCIMa=c (WeCTn rises from 3.3 to 3.6 for (TSS+RCT)Ma=o); whilst SRS 

provides major impact upon RCImo-o (Wecvn increases from 3.3 to 6.3 for 

(RCI+SRS±TSS)mci=o), tripling the state for CT3mû o. Here, TSS inclusion has no effect;

167



Chapter 7 Stabilised Computations for Viscoelastic Flows (fe/fv)

SRS presence dom inates to m aintain the lowest levels o f Tpeak (observed say, at W e-2.0). 

RCI w ithout SRS attains the largest xpeak-levels, so that schem e com binations with RCI 

and SRS are lim ited between the bounds o f each, as observed in incom pressible and 

m ore com pressible settings. Vortex trends for Ma~0 and M a -0 are shown 

com paratively  in Figure 7.12 across schem es with increasing We, show ing identical 

salien t-com er vortex response.

a) TXx? W e-2.0

100 Incomp.
Ma =0 + (2/3 V.u) 
Ma =0 - (2/3 V.u)

l -  40

-20
X

22

b) Txy, We=2.0

T - - - /T T

24

Incomp.
Ma =0 + (2/3 V.u) 
Ma =0 - (2/3 V.u)

26
X

28 30

0 . 0 1 5 3 e0 . 0 6 4 3 e 3

X = 1 . 2 0_ _
V * r  0 . 4 9 6 e - 3 

X = 1 .2 0 __ X = 1 . 2 0 _ _

Figure 7.23: ‘ V.u term influence, We=2.0, CT3 scheme: on x-profiles, downstream-wall, a) 
Txx> b) Txy; on streamline patterns, c) Ma=0, no added term, d) Ma~0, added 
term, e) Mci^Q, no added term

Ma=3) versus M a-0:  Here, one m ay com pare com pressible results in Table 7.2 with 

conventional incom pressible values o f Table 7.1. O verall, at a fixed W e-2S) and under 

m ost schem es, one notes elevated xpeak that occur with the Ma~0-schem e, when 

com pared to their Ma=0.0-equivalents, as rationalised below. C orrespondingly  on Wecrit, 

CT3mq=o and SRS\ia=o provide lower values than CT3mu~o and SRSmo=o, respectively. 

A lternatively, RCIm^  im proves WeCTlt above RCIsja^o (3.3 above 3.0), which is also true 

for RCI-com binations. At W e-2.0, there is slight adjustm ent in xpeak for CT3 and SRS 

versions, with increase for CT3Ma=o above CT3mg=o, and decrease for SRSmq~o from 

SRSmô o; xPeak values double with RCI^a^o above RCI\ia=o- In general term s, one 

observes that low ering xpeak has the corresponding effect o f low ering Wecv\x. Overall, the
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com pressib le ‘ V.u’ extra-term inclusion  within the m om entum  equation (see  E q .(2 .5)) 

has caused  reduction in Wea it attained for CT3 and SRS, w h ilst it is  m aintained for RCI 

and its com binations, see below .

Ma=0 versus M a-0 .1 :  L ikew ise , one m ay contrast findings across settings with  

variation in M a  covered  in Table 7.2 . O verall at We=2.0, all sch em es maintain their 

allotted lev e ls  o f  Tpeak, when com paring Ma~0 .0  to Ma=0.1 setting (d iscussed  above). 

Wecnt lev e ls  are m aintained for CT3 (2 .0) and R C I (3 .3 ) and deteriorate for SRS  from  

Ma~0 .0  (5 .4 ) to M a= 0.l (4 .9). In particular, CriA/a=o-scheme reaches Wec„t o f  2 .0 , 

sim ilar to CT3mo=o.i case, with an identical Tpeak-

D iscarding ‘ V.u’ extra-term (Ma=0, /c=0): H ere the influence o f  the ‘2 /3*  V.u term  

in E q .(2 .5 ) is analysed in greater detail. This term vanishes under an incom pressib le  

(Ma=0 ) setting. A s suggested  by O liveira and Pinho [32], this tw o-third term inclusion  

can im prove num erical accuracy and steady-state convergence properties with We rise. 

T his feature w as observed in the chapter four for v iscou s and chapter fiv e  for  

viscoelastic , where the com pressible algorithm with Ma=0 d isp layed  better temporal 

convergence characteristics over its incom pressible alternative. N ote , the inclusion  o f  

this V.u term is  natural to the com pressible (Ma=0 .1 ) setting. T o interrogate dependency  

and response to term inclusion  under the com pressible C T i-sch em e, M a- 0  setting, three 

num erical tests have been conducted. In the first, test (a), the ‘conventional’ 

incom pressib le schem e is em ployed  for com parison. T he second , test (b), consists o f  

appending the extra-term to the m om entum  equation through E q.(2 .5). In the third, test 

(c), this term is discarded, w hilst the schem e rem ains com pressib le otherw ise  

(equivalent to setting ac=2^s/3=0.074). F indings are illustrated in F igure 7.23a,b  for 

W e-2.0 , through stress (Txx,TXy)-profiles and com parison against its true-incom pressible  

counterpart (nam ely, case (a), M a -0.0 ). A t W e-2.0 , the extra-term inclusion  has the 

effec t o f  increasing Tpeak-levels (particularly in txx) by about 20%  above the Ma=0 case. 

Identical M a- 0  solutions to the incom pressib le case  are retrieved w hen the extra-term is 

nullified , w ith Wecrit=2.8 solution reached for case (c), mirroring that for incom pressib le  

case (a). For case (b), We„it is low ered to 2 .0  (as w ith M a -0.1 case). H ence, in the 

present algorithm ic framework, one m ay conclude that this extra-term inclusion  for 

Ma=0, is actually responsible for the early loss o f  stability  beyond W e-2.0 . A  closer  

look  at stream line patterns for We=2.0 illustrated in Figure 7 .23  c-e , sh ow s that identical
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sa lien t-com er vortex characteristics are obtained for each variant. H ow ever, lip-vortex  

intensity is m agnified  som e fo u r  times above the incom pressib le form  under M a~0  

setting (case (b)). T he sam e level o f  lip-vortex intensity is  observed  for cases (a) and 

(c). O verall, this confirm s that differences are loca lised  to the re-entrant com er, 

affecting lip-vortex intensity and Tpeak-levels, w hich  have a direct influence on the level 

o f  WeCnt reached. The ev id en ce is unequivocal. The extra inclusion  o f  V.u (continuity  

residual) alone is responsible for these flow  features. A ny local d iscrepancy in 

continuity representation im m ediately im pacts on lip-vortex generation, w hich  in this 

respect and context m ust be taken as num erical and spurious.

7.5 Conclusions
This study has quantified the enhanced stabilisation characteristics o f  a tim e- 

m arching increm ental pressure-correction form ulation, in so lv in g  the abrupt four-to-one  

planar contraction benchmark for incom pressible (Ma- 0  and M a -0 ), and m ildly  

com pressible (M a -0 .1 ), O ldroyd-B v iscoelastic  flow s. T o  do this, three separate 

additional stabilisation strategies have been investigated, em bedded upon a hybrid fe /fv - 

im plem entation (base neutral schem e), reporting on lev e ls  o f  stable W eissenberg  

number solution; vortex activity, stress fie ld  structure about abrupt com ers and in 

boundary layers; and cross-stream  solution prolongation.

The temporal stabilisation schem e applied through tim e-step  relaxation (TSS), 

effective  in true transient scenarios [79], is observed to have little relative influence in 

prom oting high-We stability. In contrast, a second  stabilisation strategy o f  reduced  

com er integration (RCI), has prom oted considerable stabilisation, particularly under 

com pressible (Ma- 0  and M a -0 .1 ) considerations. Under RCI, large stress peaks have 

been extracted at the re-entrant com er, a longside large lip-vortex structures. 

N evertheless, greatest im provem ent has been encountered with the third stabilisation  

strategy, that o f  strain-rate stabilisation (SRS). W ith SRS, Wiecrit-levels for stable 

solutions have m ore than doubled above the neutral variant. T heoretically , the weak  

dissipative terms in the SftS-form ulation have the dual e ffec t of: (i) controlling cross­

stream solution propagation (absent in m ost currently favoured sch em es) and (ii) easing  

com patibility relationships betw een function spaces on stress and velocity  gradients 

(extended L B B -condition  satisfaction). In practice, stress peaks have been constrained, 

w hilst lip-vortices have been com pletely  rem oved under incom pressib le settings (Ma=0
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and M a-O). Com binations o f  these three stabilisation variants have recorded optimal 

stability properties. A n unexpected result w as that the SRS  ‘differed-correction term’, 

( D - D c), w as found to characterise temporal error-norm stress convergence patterns,

and thereby, the nature o f  the stress singularity at the re-entrant com er, yet w ithout 

solution  degradation elsew here. H ence, this m ay be appreciated as a derived  m echanism  

to incorporate singularity within the solution at the re-entrant com er. O ne m ay attribute 

the considerable elevation  o f  Wec under SRS  to the tight capturing o f  the stress 

boundary layer (SB L ).

O verall, with increasing We, for each schem e and independent o f  flo w  conditions, 

sa lien t-com er vortex reduction and lip-vortex growth has been  observed. A t a selected  

W e-level and under a specific flow  setting, all schem e variants have produced sim ilar 

sa lien t-com er vortex trends. In contrast, lip-vortex features are found to be significantly  

affected  by the particular re-entrant com er treatment. Surprisingly, at Ma=0 and M a~0  

lev e ls , it has been observed that continuity residual error m ay spark o f f  purely 

num erical (fa lse) lip-vortex response, assum ing uniqueness o f  solution  (non-bifurcation  

[121]). T his generates exaggerated re-entrant com er stress peaks that distinguish  

betw een Ma=0 and M a~ 0  solutions. The absence o f  lip-vortices under SR S-solutions  

has clearly identified  this erroneous position. N evertheless, this lip-vortex feature is 

certainly present under the com pressible M a -0 .1  setting, w ith or w ithout SRS. This 

leaves som e open questions o f  general algorithm s/codes and o f  the quality o f  their 

respective solutions about such singularities. Under certain num erical approxim ations, 

the experience here is that mere global satisfaction o f  continuity (com m on to many 

continuous pressure-interpolations, for exam ple), m ay stim ulate considerable continuity  

residual, w hich m ay itse lf  dictate the local nature o f  the solution  predicted. T his lays 

still greater dem ands upon localised  m esh resolution and iterative/tim e-stepping  

convergence states to m ore precisely approxim ate steady-state and transient dynam ics. 

N otin g  continuity satisfaction also raises the issue o f  bulk v isco sity  in com pressible  

com putations. Its role and num erical influence, are left as a subject open for future 

study.
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7.6 Appendix 7.A: Pressure-correction approach
A  coup led  statem ent o f  the problem  for transient incom pressib le v iscou s flo w , leads 

to elliptic-parabolic equations, becom ing hyperbolic-parabolic in the com pressible  

configuration. T he pressure acts as a Lagrange m ultiplier w ithin  the system . A s pressure 

is  absent in the continuity equation, pressure m ust be updated im plic itly  for  

incom pressib ility  to be satisfied. This aspect renders the num erical solution o f  such a 

problem  a severe challenge. In addition, the resulting discrete system  o f  equations for 

pressure and velocity  is norm ally large and generally d ifficu lt to so lv e  effic ien tly  [25]. 

Furthermore, the v iscoelastic  context, introduces a first-order space-tim e hyperbolic  

constitu tive equation in stress. The com putation costs soar dram atically in this context 

through additional unknowns and increasing com plexity .

Pressure-correction (also termed projection) m ethods w ere con ce ived  to overcom e  

the above d ifficu lties, reducing system  size  and breaking dow n com plexity . In this 

respect, pressure-correction m ethods were system  designed, based around fractional- 

staged procedures, so lv ing  the system  through a series o f  segregated equations for each  

variable, and armed with predictor-corrector schem es. Strictly, this idea m ay be related 

to a fundam ental theorem  o f  H elm holtz-H odge c lassify in g  the orthogonal 

decom position  o f  a vector over a fin ite dom ain (see [71])*. T he introduction o f  the PC- 

approach has proven to be a significant advance in the com putation o f  incom pressible  

(transient) flow s. S till, it is not a com plete panacea, and there is room  for im provem ent 

covering  aspects o f  treatment o f  num erical boundary layers, boundary conditions, 

‘splitting error', and change o f  m athem atical type o f  the system . For exam ple, it has 

been show n by W ebster et al. [154] that changing eigen valu es w ithin the present PC- 

schem e via artificial com pressibility , can affect convergence patterns in the com putation  

o f  S tokes flow . Splitting errors arise from  the fact that, solution  error per tim e-step  is 

m inim ised  in a sequential manner for each con secutive equation, as opposed  to the 

w h ole. O ne m ust guard against the loss o f  any benefit gained v ia  pressure-correction; 

ensuring that this is not outw eighed through degradation in temporal accuracy [25],

t The Helmholz decomposition theorem states that a smooth vector field is uniquely determined, in a 
bounded regular domain, when its divergence, curl and normal (or tangential) component on the 
boundary, are assigned. Consequently, it is implied that every smooth vector field decomposes into the 
sum of a gradient field component and one, which is divergence-free.
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con vergen ce rate and stability. For im plem entation w ithin the v iscoelastic  context, these  

aspects m ay be hidden within the representation o f  stress.

PC -schem es have been applied in the approxim ation o f  a large num ber o f  flow s, 

com prising incom pressib le, chem ically  reactive, v iscoelastic  and com pressib le flow s. 

For com pressib le flow , PC -schem es have show n superior m erits in the com putation o f  

zero-M ach num ber to large M ach num ber flow s, extending to flo w s w ith m ixed  M ach  

number. W ith M a~0 , singular regions m ust be resolved  for com pressib le solvers. For 

variable range M a-flow s, it m ay be the case that som e h igh ly  com pressib le regions 

co ex ist a longside alm ost incom pressible zones. C onsequently, significant effort has 

been devoted  to develop ing  efficien t and accurate variants o f  pressure-correction  

m ethods, particularly in the context o f  f v  (m ost com m on) and /^ -d iscretisation  (see, for 

exam ple [3]). The greater pow er, flex ib ility  and consistent analysis lies  w ithin the fe -  

context, w hich  subsum es all variational and strong form ulations.

7.6 Appendix 7.B: Review on vortex activity studies
E xperim entally in planar configurations, Evans and W alters [42 ,43] established the 

link betw een salient-com er vortex growth, and the onset and growth o f  a lip-vortex. 

L ikew ise , lip-vortex activity itse lf m ay be responsible for salien t-com er vortex 

enhancem ent [43]. In their experim ental study, the dom inant driving force behind  

vortex activity w as attributed to fluid properties and contraction geom etry ratio. For 

exam ple, w ith a shear-thinning polyacrylam ide solution , a lip-vortex w as apparent for a 

4:1 contraction ratio, w hilst for a constant v iscosity  B oger flu id, such a feature w as only  

beginning to em erge once the contraction ratio had reached 80:1. T he data o f  M cK inley  

and co-w orkers [99] in axisym etric configurations w ould  point to the fact that lip- 

vortices for B oger flu ids are present and dynam ically  stable for contraction ratios 

beyond 4:1 (critical ratio), below  which temporal instabilities and 3 D -effects  begin to 

have an influence, so  that stable steady-states are elu sive  to capture; see  the results o f  

B oger sim ilarly [17].

From  the num erical standpoint, many authors have h ighlighted the need  for a high  

degree o f  m esh refinem ent, required for an accurate and reliable representation o f  

vortex activity. O ne m ight note the im practicality to pursue m esh refinem ent towards 

the com er beyond a certain critical threshold, due to the con sequence o f  approxim ating
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the singularity too c losely . Under creeping flow  conditions, M atallah et al. [98] 

presented a com prehensive literature review  on vortex activity, indicating som e o f  the 

obstacles in accurately predicting lip-vortex activity. In their study for O ldroyd-B  fluids, 

based on a /e -sc h e m e  and an unstructured triangular tessellation , the authors introduced  

a SU PG /velocity-gradient-recovery technique to so lve  the constitutive equation. 

Findings reflected  the appearance o f  a lip-vortex as early as W e -1.0, which grew in 

intensity w ith increasing We. This lip-vortex strength w as found to be larger than that 

for its salient-com er counterpart. Sim ilarly, based on /v-d iscretisation , Aboubacar and 

W ebster [4], X ue et al. [161], O liveira and Pinho [108], a lso observed the appearance o f  

a lip-vortex: at W e-2.0  in [4] and W e -1.6 in [6 ]. O liveira and P inho [108] detected the 

appearance o f  a lip-vortex for an U C M  m odel at We=l.O. N otab ly , Aboubacar and 

W ebster [108] observed a reducing trend towards a practically vanishing lip-vortex with  

m esh refinem ent, for CT3 and RC I schem e-variants.

W e have investigated this scenario further in the present study, under even  more 

stringent steady-state tolerance settings and via additional stabilisation constructs. O nce 

more, the sensitiv ity  o f  lip-vortex response to the precise form o f  the discretisation  

em ployed  is  highlighted. A lves et al. [6 ] applied a differencing procedure (M IN M O D ) 

for their stress solver to im prove the accuracy o f  their /v-iim plem entation. Through a 

m esh refinem ent strategy and increasing We up to the critical level o f  We=5.0, they  

m anaged to observe a reduction in sa lient-com er vortex characteristic ce ll-size , with  

enhancem ent o f  the lip-vortex. In a m ore recent study, the sam e authors (A lv es et al. 

[5]) have catalogued many o f  these published results on vortex activity (s ize  and 

intensity), recogn izing som e clear discrepancies. T hey have dem onstrated c lose  

agreem ent w ith predictions from the hybrid fe /fv  algorithm  [4]. In their study, they have 

em ployed  a new  Jv-schem e for steady flo w s, term ed C U B IST A . T he schem e  

incorporates total-variation d im inishing (T V D ) constraints w ithin  an im plicit tim e- 

m arching m ethod. In this manner, they have been able to ach ieve an O ldroyd-B  solution  

for O ldroyd-B at W e-2.5  on their finest m esh. A lv es  et al. [5] a lso  observed salient- 

com er vortex reduction with increasing We. B y  extrapolating data on lip-vortex  

intensity through m esh refinem ent for We=0.5  and 1.0, they have established that the 

lip-vortex w ou ld  vanish. Y et, at W e -1.5, a fin ite lip-vortex w ou ld  survive with  

vanishing m esh-size (intensity: 0 .02*  10‘3 and size: 0 .0 6 2 ). B ased  on these findings, 

A lv es et al. [5] conclude that ‘although m inute, the lip-vortex is not an artefact o f  the
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com putation’. O ne m ay reflect on this position  in the light o f  the S/?S-stabilisation  

offered here.

A ll such findings demonstrate that trends in salient-com er vortex characteristics are 

better predicted than is the case for lip-vortices. It is now  w id ely  accepted  for planar 

contraction flo w s, both experim entally and num erically, that upon increasing We and 

for constant v iscosity  flu ids (such as those represented by O ldroyd m odels), one  

anticipates reduction in salient-com er vortex-size and intensity. In this case, the 

particularly intriguing question, concerning the ex istence and behaviour o f  a lip-vortex, 

remains unresolved. A s suggested  by Renardy [121], it is  p ossib le that the lip-vortex  

m ay appear as a result o f  bifurcation, and that solutions w ith and w ithout lip-vortices 

m ay exist. A ny lip-vortex m echanism  tends to vary w ith m esh refinem ent and the 

manner o f  handling convection  terms. In the present study and w ith increase o f  We, 

under certain im plem entations som e growth in lip-vortex activity have been observed. 

One can also point to the fact that this is influenced  particularly by  the type o f  treatment 

em ployed to deal with the stress singularity and any solution  d issipation  operator 

introduced.
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Concluding remarks
The objective o f  this thesis has been to establish accurate num erical m ethods for the 

sim ulation o f  com pressible flow  with com plex  fluids. A n ex ten sive  review  on flo w s has 

been provided at low  M ach numbers (L M N ), pointing to the severe d ifficu lties which  

com pressible flow  solvers encounter in dealing with such flo w s. T he literature has 

advocated extending pressure-based incom pressib le schem es to accom m odate  

com pressible flow s. T his is particularly so  at low  to vanishing M ach num bers, where 

these types o f  schem es demonstrate robustness and effic ien cy  in character. 

C onsequently, a high-order, tim e-m arching, fractional-staged, increm ental pressure- 

correction schem e has been adopted, to accom m odate v iscou s/v iscoelastic  flow s. For 

this propose, the pressure update equation (Stage-2) has been m odified , by appealing to 

the com pressible form o f  the continuity equation along with an equation o f  state to link  

density to pressure. T he com pressible form  o f  the pressure update equation, brings som e  

interesting n ew  features into the algorithm. This form  can adapt itse lf  w ith the changing  

nature o f  the flow , with respect to local M ach number. W ithin the incom pressible  

regim e, this equation has ellip tic character, consistent w ith the nature o f  the flow . 

N evertheless, upon increasing M ach number, the pressure update equation introduces 

hyperbolic character to the system  o f  equations, now  consistent w ith the changing flow - 

type. T his important feature, enables pressure-based sch em es to deal w ith flo w s over a 

range o f  M ach numbers, particularly tending toward the zero lim it. In addition, this 

local adaptation is important in dealing with flow s o f  m ixed  M ach number, where som e  

com pressible regions co ex ist a longside incom pressib le ones.
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For the d iscrete representation o f  density, tw o alternative form s o f  interpolations 

have been adopted, a p iecew ise-constant form  with nodal-recovery to com pute gradients 

o f  density, and a p iecew ise-linear form. O ne m ay notice that em ploy in g  p iecew ise-  

constant interpolation has provided less accurate results. T o  rectify  this position , a 

recovery technique is im plem ented to incorporate density gradients w ithin  the rhs o f  

Stage-2. W ith this treatment, both interpolation alternatives reflect practically identical 

num erical so lutions.

C onsistency, accuracy and convergence have been assessed  on a series o f  benchmark  

problem s to h igh light the perform ance o f  both interpolation variants. There is no  

apparent lo ss o f  accuracy incurred through these com pressib le interpolation variants, as 

com pared to  their incom pressib le counterpart. T his is anticipated to reach a third-order 

for continuous problem s. The convergence-rate to steady state o f  both interpolation- 

form s is im proved upon, as com pared to that o f  the incom pressib le flo w  algorithm. This 

finding is associated  with the im provem ent in system  condition  num ber, through the 

m ass-m atrix and right-hand-side contributions to the second-stage equation (for  

pressure).

Altering the temporal terms within the pressure-update equation has crucial influence  

upon the transient solution  path toward steady-state. H ow ever, theoretically  steady-state 

solutions are thought to be independent o f  the solution  path, as temporal terms vanish  

under steady-state conditions. This is sim ilar to the situation for pseudo-com pressib le  

algorithms, w here it is p ossib le to enhance num erical convergence properties by  

adjusting the eigen valu es o f  the system , via altering preconditioning-m atrix parameters. 

This scenario can be show n to be effec tive  in extracting steady-state solutions for 

viscous flow s. H ow ever, for v iscoelastic  flow s, accuracy during transient stages is 

crucial for extracting steady-state solutions, and em ployin g  such procedures m ay not be 

practical.

A  test has been conducted on schem e sensitiv ity  under the variation o f  Tait 

parameters, and hence, through the form  o f  the equation o f  state. For the schem e, the 

value o f  the Tait parameters (m,B) are unimportant: what matters is h ow  much the 

equation o f  state includes com pressibility  within the flo w  (values o f  Ma  and variation  

within density). In other words, for different settings o f  Tait parameters, w hich  deliver  

the sam e am ount o f  Ma  and p , the schem e reflects sim ilar temporal convergence
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patterns and steady-state solutions. H ence, this schem e can be em ployed  in the 

sim ulation o f  various material flow s with such adjustment in the equation o f  state.

C onsistency is an important aspect o f  the num erical schem e as M ach number 

approaches the zero lim it. T his has been dem onstrated through adjusting the Tait 

equation pairing parameters. A s M ach number approaches zero, the solution  converges 

toward the incom pressib le solution.

T he main n ovelty  o f  this study has been in the num erical sim ulation o f  com pressible  

viscoelastic  flo w s, being a pioneering study in this context. A  significant observation  

has been the heavy-side influence that the com pressible equation structure has on 

temporal convergence patterns, proving o f  m onotonic in-phase form  across the various 

variables. T his extends equally to the asym ptotic w eakly-com pressib le lim it, that 

m im ics (slightly) incom pressib le liquid flow  (M a -K f4). H ence the important outcom e  

that, the w eakly-com pressib le assum ption m ay be usefu lly  em ployed  to num erically  

im prove convergence properties for incom pressib le v iscoelastic  solutions.

A s an overall remark, the main disparity betw een incom pressib le and com pressible  

flow  representations is related to the level o f  stress-peak at the re-entrant com er and 

within the downstream  stress boundary layer. It has been observed that solution  

singularity (stress/velocity  gradient at re-entrant com ers) m ay actually increase in 

strength under a m ore com pressible setting, w hilst dow nstream -w all stress profiles 

broaden along the w all, aw ay from  the initial inception just beyond the re-entrant 

com er. This observation lies in marked contrast to the incom pressib le scenario, where 

w all-stress profiles sustain their initial width far downstream . For com pressib le flow  

settings, density elevates at flow  inlet and m ass flow -rate rises accordingly. 

Consequently, h igher pressure-drops can be observed (here by 0 (lO% )). T he im pact o f  

the link betw een density and trace o f  stress, in com bination with the continuity  

equation, arises through changing velocity  profiles, particularly around the contraction  

zone (area with large stress-peaks) and along the downstream  channel. Here, one 

observes sustained growth in velocity  stream w ise and deviation from parabolic fully- 

developed  form cross-stream . C onsequently, a boundary-integral form  has been adopted  

for com puting the solution at flow  outlet.

The structure o f  the com pressible algorithm  has better properties, in the sense o f  

splitting error, and hence, stability and convergence. A s a consequence, one is able to
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reach higher We true-transient solutions. This algorithm  variant, has kept m ost o f  these  

properties when the Tait parameters w ere adjusted to m im ic incom pressib le flow . 

H ow ever, as a consequence o f  higher stress-peaks level for com pressib le settings, the 

Wecrit is sm aller than for its. incom pressible counterpart. T his is b elieved  to be due to the 

shortcom ings o f  the SU PG  form ulation in capturing sharp stress-gradients and stress 

boundary layers beyond the contraction point. There for com pressib le flow , stress peaks 

are larger and the boundary layer is more active. T o rectify  this effect, a sub-cell fin ite  

volum e im plem entation has been em ployed , a hybrid fe /fv  sch em e acting upon the full 

system .

For vortex activity, steady-state salient and com er-vortex patterns have been studied  

through increasing We. R esults for both fe  and hybrid fe /fv  algorithm ic schem es have  

been presented under com pressible (M a=0.1) and incom pressib le (Ma~0 and Ma=0) 

flow  settings. In addition, the effect o f  inclusion  o f  inertia (R e= 1 .0 ) has been studied, 

contrasting this against creeping flow  (R e=0.0) results. F indings reveal that at equitable 

W e-level and flow  settings, both fe  and hybrid fe/fv-schem es  produce consistent and 

com parable vortex characteristics. C om pressible solutions provide larger vortices (in 

size and intensity, salient and lip) over their incom pressib le counterparts: important if  

vortex enhancem ent is sought. Inertia tends to suppress such phenom ena in all 

instances. Trends with increasing We and independent o f  flo w  setting, indicate that 

salient-com er vortex-size decays (vortex reduction), w hilst lip-vortex size  is enhanced. 

For com pressible flow , the shape o f  the sa lient-com er vortex separation-line becom es  

curved and stretched, uniting with the lip-vortex at high-W e. C om pressib le-flow  stress 

patterns are larger in the re-entrant com er zone, with sustained constant growth-rate in 

stress along the downstream  w all. There is c lo se  agreem ent betw een results w ith and 

without relaxation. The hybrid/e>^v-scheme is clearly m ore robust, in that it captures the 

stress singularity m ore tightly than the f e -form  at com parable W eissenberg num bers, 

reaching higher WeCTir levels. The sub-cell structure, the control o f  cross-stream  

numerical d iffusion  in the presence o f  sharp solution gradients, and com er discontinuity  

capturing features o f  the hybrid /e/jfv-schem e, are all perceived  as fresh, attractive and 

additional strengths.

Several stabilisation techniques have been considered based on the hybrid fe /fv  

schem e. For incom pressible (Ma=0  and M a~0), and m ild ly  com pressible (Ma=0.1 )
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viscoelastic  flow s, a m inor im provem ent is observed in stabilisation properties with the 

TSS schem e. Introducing TSS  does not alter the steady-state solution , and its 

stabilisation effect has been dem onstrated in true transient scenarios. In contrast, 

reduced com er integration {RCI), is related directly to spatial stress discretisation, 

em ployed  to suppress non-physical oscillations and to capture sharp gradients in the 

solution. T his strategy has prom oted considerable stabilisation, particularly under 

com pressib le (Ma- 0  and Afa=0.1) considerations. Under RCI, large stress peaks have 

been extracted at the re-entrant com er, a longside large lip-vortex structures.

Greatest im provem ent has been encountered w ith strain-rate stabilisation (SRS). W ith  

SRS , W e-levels for stable solutions have m ore than doubled above the neutral variant. 

This strategy is interpreted as aiding with: (i) easing com patib ility  relationships betw een  

functional spaces on stress and velocity  gradients (extended L B B  condition  

satisfaction); (ii) offering som e control upon cross-stream  solution  prolongation (absent 

in many currently favoured schem es). In this manner, stress peaks have been  m aintained  

at their low est levels , w hilst any lip-vortex is com pletely  rem oved under M a - 0  and 

M a- 0  settings. C om binations o f  these stabilisation variants have recorded optimal 

stability properties. The ‘differed-correction term ’ is found to characterise temporal 

stress convergence patterns and the nature o f  the stress singularity at the re-entrant 

com er. This is w ithout degradation o f  the solution fie ld  elsew here. T he considerable 

elevation o f  Wecnt under SRS  is  attributed to the tight capturing o f  the SBL .

O verall w ith increasing We, under response for each schem e and independent o f  flow  

conditions, salient-com er vortex reduction and lip-vortex growth have been observed. 

At a selected  W e-level and under a specific  flo w  setting, all schem e variants have 

produced sim ilar salient-com er vortex trends. In contrast, lip-vortex features have been  

found to be significantly  affected by the particular re-entrant com er treatment. A t M a -0  

and Ma^O  leve ls , lip-vortex response has been observed, w hich  van ishes under SR S- 

im plem entation. T he absence o f  lip-vortices under S R S-so lutions has clearly  identified  

the sm oothing character o f  this term. N evertheless, this lip-vortex feature is certainly  

present under the com pressible M a - 0.1 setting. T his leaves som e open questions o f  

general algorithm s/codes and o f  the quality o f  their respective solutions about such 

singularities. Under certain num erical approxim ations, our experience is  that mere 

global satisfaction o f  continuity (com m on to m any continuous pressure-interpolations,
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for exam ple), m ay stim ulate considerable continuity residual error, w h ich  m ay itse lf  

dictate the local nature o f  the num erical solution predicted. T his has raised the issue o f  

bulk v iscosity , its role and num erical influence, a subject open for future study.

W e have established a profound base for the com putation o f  com pressib le highly  

v iscoelastic  flo w s. Subsequently, this work m ay be extended  to deal w ith m ore com plex  

rheological m odels. T he superior num erical structure o f  these com pressib le algorithm s, 

offers sim ulation capability for truly com pressib le com plex  flo w s. T his is seen  as 

helpful particularly in rheom etry, where in m any circum stances, com pressib ility  should  

be taken into account. The structure o f  pressure-correction schem es and the im pact o f  

splitting-error, have been observed to have a significant influence upon the performance 

o f  num erical schem es. A s such and with the aid o f  recent advances w ithin the 

application o f  pressure-correction schem es, one m ay hope to d ev ise  robust and accurate 

schem es for effec tiv e  future use in this dom ain.
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