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Summary
The optimization o f a system is the quest for its best performance. Thus physical sys
tems tend to reach minimum  energy states, while biological systems optimize their own 
genetic code and behaviour to better cope with the environment. If an artificial system 
or the model o f a natural system can be parameterized, its optimization consists o f  seek
ing the best combination o f feasible values o f those parameters which results in its best 
performance. This thesis deals with the ‘particle swarm optim ization’ method, which 
differs from traditional methods in that it poses no restriction to the functions involved. 
The method was inspired by social behaviour observed in nature, and hence its robust
ness lies in that it is not deterministically implemented to optimize so that there is no 
problem-specific implementation that may be inadequate for a different problem.

An extensive study o f the coefficients at the core o f the method is carried out partly 
theoretically, partly heuristically, and partly visualizing trajectories. The influence o f 
their settings on the form and speed o f convergence is analyzed, and guidelines as to 
how to obtain the desired behaviour are provided. Different structures o f the social net
work and additional heuristics are studied and tested on unconstrained benchm ark prob
lems. Finally, a robust pseudo adaptive constraint-handling mechanism is proposed. The 
fully working algorithm is tested on a classical benchmark suite o f constrained prob
lems and successfully applied to well known engineering problems. Results reported by 
other authors are also provided for reference.

The ‘particle swarm optim izer’ developed in this thesis is a global, single-solution, sin
gle-objective, gradient-free, population-based method, which is able to handle continu
ous -exceptionally, discrete variables by rounding-off-, constrained and unconstrained, 
single-objective problems regardless o f whether the functions involved are or are not 
linear, convex, unimodal, differentiable, smooth, continuous, or even explicit.
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Chapter 1 

INTRODUCTION

1.1. Introduction

The optimization o f a system -either specifically intended or simply occurring without 

purpose or awareness- consists of the attainment or pursuit o f its best performance in 

some sense. The system can be ‘natural and inanimate’; ‘natural and biological’; ‘artifi

cial and tangible’; or ‘artificial and abstract’. Thus, ‘natural and inanimate systems’ op

timize themselves as they tend to reach minimum energy states1; ‘biological systems’
9 Toptimize their own genetic code and behaviour in their quest for best performance as 

they strive to survive within the environment; ‘artificial and tangible systems’ may be 

optimized, for instance, by seeking the optimum shape o f an engineering structure so as 

to maximize stiffness, minimize weight, and/or minimize cost; ‘artificial and abstract 

systems’ are optimized either by solving the optimization of the model o f ‘artificial and 

tangible systems’ or by optimizing abstract systems ‘per se’ such as analytical func

tions, scheduling problems, the design o f working plans or control systems, etc.

If the model o f the system can be parameterized, an optimization process consists of 

searching for the best combination of feasible values o f those parameters which results 

in its best performance. Deciding upon the meaning o f ‘best performance’ is not always 

trivial. Some classical meanings o f ‘best’ may be minimum energy; maximum fitness; 

minimum weight; minimum cost; maximum benefit; minimum error; minimum time; 

minimum conflict; etc. More than one objective may be required to be optimized. Dif

ferent objectives are often conflicting, making the definition of ‘best’ more ambiguous. 

Multi-objective optimization problems are beyond the scope o f this thesis.

1 e.g. crystallization in nature (optimising inner structures to minimize energy)

2 e.g. biological evolution (maximising fitness o f natural organisms)

3 e.g. colonies o f ants finding the shortest path from the nest to a food source
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1.2. Motivation

While the concept o f optimization is precise and specific, optimization problems and 

processes can be observed everywhere in both natural and artificial systems. In natural 

systems, they occur without sense of purpose, central control, or even awareness. In ar

tificial systems -including models o f natural systems- optimization is intended, al

though the solving technique may use concepts o f natural systems where the link be

tween the procedures being carried out and the resulting optimization process is far 

from obvious. Such is the case o f the Particle Swarm Optimization (PSO) method.

Some o f these artificial systems are directly optimization problems, such as ‘finding the 

shape o f a submarine to minimize friction’ or ‘finding the shape of a channel to maxi

mize its hydraulic radius’. Others can be indirectly viewed as optimization problems by 

generating an error function that is to be minimized, such as ‘root finding’; ‘pattern rec

ognition’; ‘solving systems of equations’, ‘approximations’, ‘training neural networks’, 

etc. Therefore optimization problems arise in different disciplines such as mathematics; 

physics; chemistry; general engineering; systems engineering; computer science; eco

nomics; genetics; biology; etc. Hence specializing on optimization -as opposed to most 

scientific specializations- does not lead to a narrow range of applications. On the con

trary, it is probably the most ‘general specialization’, as almost any problem can be 

posed as an optimization problem.

Traditional optimization methods are limited by restrictions that the functions involved 

must comply with for the method to be applicable. A problem may be significantly al

tered to meet those restrictions, drifting away from the original problem. This thesis is 

concerned with the Particle swarm Optimization method, which differs from traditional 

methods in that it poses no restriction to the functions involved. The method was in

spired by the behaviour observed in social animals in nature. The idea is that the 

achievements o f a population overcome the sum of their individual achievements. Use

ful, individually acquired information is spread throughout the population by means of  

local interactions. Individuals converge as they imitate their most successful peers. 

Thus, cooperation overcomes competition. A typical example is a bird flock searching 

for food: by sharing individually acquired information, birds are able to find a food 

source without prior knowledge regarding its location. The robustness o f the method

2
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lies in that it is not deterministically implemented to optimize, and therefore there is no 

problem-specific implementation that may be inadequate for a different problem. The 

optimizing behaviour is an emergent property that is not specifically programmed. All 

that is needed is a means o f evaluating positions in an environment so as to differentiate 

better from worse. This feature makes the method especially suitable for optimizers to 

be applied to a wide range o f different problems with reasonably good performance 

without modifications, and with very limited tuning or none at all. In addition, they are 

able to deal with complex problems where traditional methods fail.

The Particle Swarm Optimization method is suitable for unconstrained problems only, 

whose performance depends critically on the settings o f the coefficients in the velocity 

update equation, as well as on the structure o f the social network by means o f which the 

individuals share the acquired information. This thesis intends to carry out a thorough 

study o f the influence o f the coefficients on the dynamics of the swarm, and to obtain 

some range o f settings that can be exploited according to the type o f behaviour desired. 

The latter includes robust, general-purpose settings. The same is true for the social net

work, and therefore this thesis aims to investigate some classical neighbourhood to

pologies as well as to develop new ones. Their strengths and weaknesses are to be iden

tified so as to allow making the appropriate choice when required. Finding or develop

ing general-purpose neighbourhood structures is also o f interest. Finally, the develop

ment o f successful constraint-handling mechanisms to be incorporated to the algorithm 

is critical for the applicability o f the method to real-life problems, which tend to arise 

subject to a number o f constraints.

The particle swarm optimizer to be developed in this thesis is a global, single-solution, 

single-objective, gradient-free, population-based method, which is to be able to handle 

continuous -exceptionally, discrete variables by rounding-off-, constrained and uncon

strained, single-objective problems regardless o f whether the functions involved are or 

are not linear, convex, unimodal, differentiable, smooth, continuous, or even explicit. 

Only a means o f measuring the goodness and feasibility o f a solution should be re-

1.3. Objectives

3
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quired. The developed optimizer and some o f its different features are to be tested on a 

set o f benchmark problems, and applied to a set o f well known engineering problems.

1.4. Methodology

The influence o f the settings of the basic coefficients in the velocity update equation on 

the trajectory o f the particles is first analyzed within some mathematical framework on 

an isolated, deterministic particle pulled by stationary attractors. The form and speed of  

convergence as well as the divergence of this isolated deterministic particle are studied. 

As complexity is gradually added to the system towards the full particle swarm para

digm, the studies become more heuristic and visual-based. Once the full system is oper

ating, the type o f behaviour and the performance are evaluated numerically by testing it 

on benchmark problems. Sets o f coefficients leading to different forms o f convergent 

behaviour are identified. Modifications to the core of the canonical PSO algorithm are 

proposed, aiming to control both the average behaviour and the strength awarded to 

randomness on the erratic and swarming trajectory of the particles. Some coefficients’ 

settings and a combination of them are numerically tested on benchmark problems for 

the global and a local neighbourhood topology. Guidelines as to how to choose the set

tings o f the coefficients in order to obtain the desired behaviour for a given particular 

problem and available resources are developed.

The structure o f the social network is studied, and different classical and proposed 

neighbourhood topologies -as well as some related heuristics- are numerically tested on 

unconstrained benchmark problems combined with different coefficients’ settings. Their 

strengths and weaknesses are identified.

Finally, a pseudo adaptive constraint-handling mechanism unrelated to the social behav

iour metaphor that inspired the method is proposed and coupled to the algorithm. The 

fully working method is tested on a classical benchmark suite of constrained problems 

and compared with results reported by other authors. Successful applications to well 

known engineering problems are also provided, together with results obtained by other 

authors in the literature for reference and comparison purposes.

4
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1.5. Achievements

A fully in-house particle swarm optimizer for real-valued -exceptionally discrete or 

mixed-discrete- constrained and unconstrained problems was developed, implemented, 

and tested, showing good and robust performance on a wide range o f different problems 

with few or no adaptations and no problem-specific tuning.

An extensive study of the influence o f the settings of the coefficients in the velocity up

date equation -as well as those of the velocity constraint- on the behaviour and per

formance o f the method was carried out partly theoretically, partly heuristically, partly 

visualizing trajectories, and partly by means o f numerical experiments. Convergence 

conditions were developed and the impact of the coefficients’ settings on the speed and 

form o f convergence was analyzed. In turn, the impact of the speed and form o f conver

gence on the performance of the optimizer was discussed.

A reformulation of the basic update equations was proposed, which allows for better 

control o f the strength o f randomness and average behaviour desired. Mappings be

tween the proposed and classical formulations were offered, and guidelines were pro

vided for the settings o f the coefficients and o f the velocity constraint.

Two dynamic neighbourhood topologies were proposed, namely the ring and the fo r

ward topologies with time-increasing number o f  neighbours. A nearest neighbourhood 

heuristics and the sub-neighbourhood option were proposed and investigated. Different 

combinations o f neighbourhood topologies and coefficients’ settings were considered 

and tested on a set o f unconstrained problems. Conclusions were derived with regards to 

the behaviour that results from the different combinations. The dynamic forward topol

ogy appeared to be robust, while the convenience of activating the nearest neighbour

hood heuristics and/or the sub-neighbourhood option remains unclear.

A robust pseudo adaptive constraint-handling technique was proposed, implemented, 

coupled, and successfully tested on a benchmark suite of constrained problems. Results 

were compared to those obtained using classical techniques and to results reported by 

other authors in the literature.

Several well known engineering problems were successfully tackled with the in-house 

particle swarm optimizer developed within this thesis.
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1.6. Layout of the thesis

The summary; declaration and statements; table o f contents; acknowledgements; list o f  

tables and figures; main acronyms; and main glossary precede the first chapter of this 

thesis. Chapter 1 presents the motivation and objectives driving the research carried out 

hereafter, as well as the methodology used and the main achievements. The layout o f  

the thesis is offered at the end o f Chapter 1.

The main body o f this thesis is structured into four broad sections:

SECTION I comprises three chapters. Chapter 2 is devoted to a review o f the formula

tion o f the constrained optimization problem; Chapter 3 offers an overview of the Evo

lutionary Computation field and its main paradigms; while Chapter 4 presents the Parti

cle Swarm Optimization method, its roots, and its developments.

SECTION II is composed of four chapters. A mathematically relatively formal and sys

tematic study o f a simplified system -as undertaken by other authors in the literature- is 

carried out in Chapter 5; complexity is gradually incremented until the full system is 

restored in Chapter 6, where three approaches are proposed modifying the core of the 

PSO algorithm by controlling the range of randomness and by choosing the desired av

erage behaviour; the social network in the population is studied and developed in Chap

ter 7, proposing a dynamic number o f neighbours, a forward topology, and some addi

tional neighbourhood-related heuristics; a pseudo adaptive constraint-handling mecha

nism is incorporated in Chapter 8, which is tested on a set o f constrained benchmark 

problems, and applied to a set o f well-known engineering optimization problems.

SECTION III is exclusively composed of Chapter 9, where conclusions are offered and 

lines for future research are suggested.

SECTION IV contains three Appendices. Some additional, tedious, burdensome arith

metic work supporting the coefficients’ studies are offered in Appendix I; the formula

tions o f two suites o f benchmark problems -one unconstrained and one constrained- are 

included in Appendix II; and finally a digital appendix is provided. The latter contains a 

digital copy of the thesis; a number o f files supporting the research including a number 

o f images; and the outputs o f the experimental studies and tests.

The list o f References and Bibliography is offered between SECTIONS III and IV.
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Chapter 2

CONSTRAINED OPTIMIZATION

This chapter consists of a brief review of the optimization field. Some basic concepts are presented, and 
the continuous constrained optimization problem is posed in a way that is convenient to be tackled with a 
particle swarm optimizer. A quick overview of different families of optimization problems and methods is 
offered, without extending the review to discussions on, or descriptions of specific methods. In addition, a 
few notes with regards to tackling constrained optimization problems with particle swarm optimizers are 
interlaced with the constrained optimization review.

2.1. Introduction

For problems where the quality o f a solution can be quantified in a numerical value, op

timization is the process o f seeking the permitted combination of variables that opti

mizes that value. Different combinations of variables allow trying different candidate 

solutions, the constraints limit the valid combinations, and the optimality criteria allow 

differentiating better from worse.

When solving mathematical problems such as equations, systems of equations or root- 

finding, there might be one or more solutions, but all o f them share the same quality. 

The equivalent in optimization problems would be to find the very best solution(s) pos

sible (i.e. the exact global optima), which is not always possible in real-world problems. 

Besides, when comparing solutions in many real-world problems, the classification o f a 

solution being better than another is not always unambiguous. Thus, optimization prob

lems allow for a number o f solutions which differ in their degree o f goodness. In gen

eral, it is not even certain whether the best solution possible has been found -or how 

good the solution found is -  by the time the search is terminated.

The process of identifying objective, variables, and constraints for a given problem is known as 
modeling. (...) If the model is too simplistic, it will not give useful insights into the practical prob
lem. If it is too complex, it may be too difficult to solve. (Nocedal & Wright, 2006)

Loosely speaking, two main approaches can be considered here. First, a very simplified 

model can be developed so that available, traditional, methods are able to solve it. Al-
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tematively, more sophisticated models can be designed, and approximate the solving 

techniques rather than the model. Traditional solving methods require specific features 

of the functions involved, so that the model may be forced to adopt assumptions and 

simplifications required to suit the solver. This results in the exact solution o f an ap

proximate model (e.g. analytical solutions to structural engineering problems; linear 

programming; analytical solutions to convex optimization problems). The types o f prob

lems that can be tackled by this approach are typically rather limited. The approximate 

solution o f a more precise model is commonly preferred for complex real-world prob

lems. Thus, more precise models are designed, which are to be solved by more modem, 

approximate methods such as ‘modem heuristics’ and ‘finite element methods’. The 

latter approach results in an approximate solution of a more sophisticated model.

A meaningful model o f the problem is vital. The formulation of the problem involving 

the design o f a cost function that successfully measures the optimality and the definition 

of the constraint functions are critical to obtain useful solutions. The complete analysis 

of an optimization problem is performed in four broad stages:

1. Analysis and definition o f the problem.

2. Formulation o f the problem (development of the model).

3. Solution of the model.

4. Validation o f the model.

Only the solution of a well-posed mathematical model is dealt with here, while the other 

stages are beyond the scope of this thesis. Thus, the problem of optimization is typically 

posed as a function o f some object variables, often in the presence of constraints. The

validation of the problem-solving technique -namely a particle swarm optimizer- is

performed by testing it on benchmarking problems. The stages o f modelling and vali

dating the model are not considered.

Only single-objective optimization problems are handled within this thesis. While the 

objective o f the problem is given in plain words, its formulation is called the objective 

function, whose output consists of information about the problem as a function o f the 

object variables. Thus, the objective function relates the real problem to the model. In 

turn, the cost function -also evaluation, fitness, or conflict function- is the scalar func

tion to be optimized, whose output is a scalar measure o f the fulfilment of the objective.
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Therefore, the cost function allows evaluating how good a given solution is when com

pared to others. The objective and cost functions might coincide, or there might be some 

mapping between them. For simplicity, the names objective, cost, and conflict function 

will be used indistinctly within this thesis to refer to the function to be optimized. The 

problem variables are also called unknowns, object variables, design variables, or sim

ply variables. Since parameters might stand for either variables or coefficients, the use 

o f the term is avoided.

The most appropriate technique to handle a constraint usually depends on the type o f  

constraint. Some common types are as follows:

• Inequality constraint: Function o f the variables that must be smaller than or equal 

to a constant.

• Equality constraint: Function of the variables that must be equal to a constant.

• Boundary constraint'. Instance o f inequality constraints, consisting o f functions that

define boundaries that contain the feasible space; if  the boundary constraints are

given by a hyper-rectangle, they are also called interval or side constraints.

While a constrained optimization problem is defined as the problem of finding the com

bination o f variables that minimizes the cost function while satisfying all constraints, 

real-world problems sometimes do not lend themselves to such strict conditions. Fre

quently, all constraints cannot be strictly satisfied simultaneously, and the problem turns 

into finding a trade-off between minimizing the cost function and minimizing the con

straints’ violations. Thus, another important classification o f the types of constraints is:

o Hard constraint: It does not admit any degree o f violation.

o Soft constraint: There is some given tolerance for the constraint violation.

Since a tolerance is required for particle swarm optimization algorithms to cope with 

such constraints, only soft equality constraints are considered within this thesis. In other 

words, hard equality constraints cannot be handled.

2.2. Types of constraints
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2.3. Optimization problems

Different types o f optimization problems require different approaches to be coped with. 

The first important difference is in the type of solution sought. Problems whose opti

mum solution is a scalar or vector of scalars are called parameter optimization problems 

(also mathematical programming). Problems whose optimum solution is a function or 

vector o f functions are called variational problems. For instance, consider a drainage 

pipe. A variational problem would be to find its optimum cross section. That is, the 

function (cross-section) that optimizes a functional (e.g. minimum hydraulic radius). 

Branches o f the optimization field dealing with the latter types o f problems are shape 

optimization and topology optimization. In mathematics, similar concepts would be to 

solve an equation or system of equations (solution is a scalar or vector), as opposed to 

solving differential equations or systems o f differential equations (solutions are func

tions or vectors o f functions). In this thesis, only parameter1 optimization problems are 

dealt with. That is, optimization problems whose solutions can be represented by n- 

dimensional vectors. They will be referred to simple as optimization problems from here 

forth. Thus, optimization problems can be classified according to the kind o f model that 

can represent them. Considering the characteristics of the variables, they can be classi

fied into continuous -i.e. real-valued-, discrete, mixed-discrete, binary, or combinato

rial. Taking into account the characteristics of the cost and constraint functions, they 

can be classified into linear or nonlinear.; convex or nonconvex; unimodal or multimo

dal, differentiable or nondifferentiable; smooth or nonsmooth; constrained or uncon

strained; single-objective or multiobjective; stationary or dynamic; explicit or implicit; 

constraint-satisfaction; etc.

• Continuous optimization problem. Its variables are real-valued, so that they can 

be represented by position vectors in an ^-dimensional space. Note that the feasible 

space and/or the cost and constraint functions need not be continuous. Since there 

are infinite possible solutions, exhaustive search is not an option. For a review of  

continuous optimization, refer to any standard text such as (Nocedal & Wright, 

2006), (Pedregal, 2004) or (Novo Sanjuijo, 1999).

1 In this context, the term ‘parameters’ clearly refers to the variables, whereas in the context o f ‘parameter 
tuning’ it refers to coefficients. To prevent misunderstandings, the use o f the term is avoided in this thesis.
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• Discrete optimization problem. Its variables can only take a set of discrete values, 

which is typically finite. Nonetheless, exhaustive search is -in  general- not feasible 

because the number o f possible solutions tends to be overwhelming in real-world 

problems. If the variables are constrained to integer values, it is called integer opti

mization (or integer programming) problem. If the discrete structure that represents 

a solution is other than a vector (e.g. lists, graphs, matroids, etc.), it is called combi

natorial optimization problem. If some variables are real-valued and some are dis

crete (or integers), the problem is said to be mixed-discrete (or mixed-integer). For 

a review o f discrete optimization, refer to standard texts on discrete mathematics -  

e.g. (Johnsonbaugh, 1999)-, integer optimization-e.g. (Wolsey, 1998)- and com

binatorial optimization -e.g. (Korte & Vygen, 2006)-.

• Binary optimization problem. It is a type o f discrete optimization problem where 

the variables can only take one o f two values (true/false, on/off, negative/positive, 

cold/hot, etc.). Therefore they are usually decision problems. However, almost any 

problem can be posed as a binary problem (almost anything can be represented to 

any degree o f precision by a binary alphabet) and hence be tackled with a binary 

algorithm. An example is the use o f binary genetic algorithms to handle continuous 

optimization problems. Even though the search-space consists o f a hyper-cube 

whose finite number o f vertices comprises all possible solutions, such a number is 

typically insurmountable. Hence exhaustive search is not -in  general- plausible.

• Combinatorial optimization problem. It is a type of discrete problem where the 

aim is to find the optimal arrangement o f elements so as to optimize a result. They 

are typically formulated in terms o f graphs (or other discrete structures) rather than 

vectors o f variables, and the search is permutation-driven. Therefore these problems 

present a finite number of possible solutions, although this number tends to be in

tractable for real-world problems. The field o f combinatorial optimization is closely 

linked to graph theory and combinatorics. For a review o f combinatorial optimiza

tion, refer to (Korte & Vygen, 2006). Some combinatorial problems can be formu

lated as integer optimization problems (e.g. shortest-path problems).

• Linear/Nonlinear optimization problem. A linear problem is that whose cost and 

constraint functions are all linear. Therefore, the global solution lies on a vertex o f a

11
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polyhedron. If the variables are constrained to take integer values, the problem is 

often referred to as an integer programming problem, as short for integer linear 

programming problem.

• Convex optimization problem. A problem is said to be convex if  both the cost 

function and the feasible space are convex. This is a desirable feature, which makes 

the problem much easier to be solved. If a local minimum exists in a convex prob

lem, it is also a global minimum. A linear optimization problem is a particular case 

of convex optimization problems. For a review o f convex optimization, refer to any 

standard text on continuous optimization such as (Nocedal & Wright, 2006).

• Unimodal/Multimodal optimization problem. A problem is said to be unimodal if  

there is only one optimum and multimodal otherwise.

• Differentiable/Nondifferentiable optimization problem. A problem is said to be 

differentiable if  the cost and the constraint functions are continuously differentiable 

in the domain. Thus, the solving techniques are based on differential calculus.

• Smooth/Nonsmooth optimization problem. A problem is said to be smooth if  the 

second derivatives o f the cost and constraint functions exist and are continuous.

• Constrained/Unconstrained optimization problem. A problem is unconstrained if  

there are no restrictions to the values that the object variables can take. In other 

words, the whole o f the search-space is feasible. There is some inconsistency in the 

nomenclature in the literature when only interval constraints are present. In this 

case, it is not rare to find the problem referred to as constrained or unconstrained.

• Single-objective/Multiobjective optimization problem. If the problem presents 

only one objective function to be optimized, it is said to be single-objective. If there 

is more than one objective to be optimized simultaneously, the problem is said to be 

multiobjective. Different objectives are often in conflict, such as the case o f design

ing an engineering structure with the lightest weight, the greatest stiffness, and the 

lowest cost. All objectives cannot -in  general- be optimized, and the problem con

sists o f finding a trade-off between the objectives. A single solution is not sought in 

these problems but a set of solutions. The aim is to optimize each objective only up 

to the point when further optimization o f that objective degrades some of the others.

12
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These compromising solutions are called Pareto-optimal set, while the plot o f the 

corresponding objectives in the objectives space is called the Pareto front.

•  Dynamic optimization problem. It is a problem whose output is a function o f time,

accurately defined as optimization problems with dynamic environments. Refer to 

(Morrison, 2004) for tackling these problems using Evolutionary Algorithms. Note 

that dynamic programming might also refer to the strategy of solving a complex op

timization problem by breaking it down into smaller, easier sub-problems.

• Explicit/Implicit optimization problem. The cost function is explicitly written as a 

mathematical function of the object variables. This is not always possible, and 

sometimes some procedure needs to be carried out to obtain the cost value corre

sponding to a given vector o f object variables (e.g. a finite element model; an artifi

cial neural network; lab tests; etc.).

• Constraint-satisfaction optimization problem. Its objective function is constant, 

and hence the optimization process consists o f minimizing the constraint violations. 

A common case is when all constraints cannot be satisfied simultaneously.

This thesis deals with continuous (real-valued) -exceptionally, discrete variables are 

handled by rounding-off-, constrained and unconstrained, single-objective, stationary 

problems, regardless o f whether the functions involved are or are not linear, convex, 

unimodal, differentiable, smooth, continuous, or even explicit. For simplicity, these 

types o f problems are referred to simply as optimization problems from here forth.

so that optima change in value and position as a function of it. They would be more

2.4. Optimization problem formulation

Let S ^ R ” be an ^-dimensional search-space, and F c S  its feasible part. A global 

minimization problem consists o f finding x* e F such that:

/ (x * )<  / ( x )  Vx g  F (2 .1)

where / ( x * )  is a global minimum and x* its location. The feasible space F may be 

defined as in Eq. (2.2), while the problem can be formulated as in Eq. (2.3):
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F = {x<=S|gy(x )< 0  V y e a  g ,(x ) = 0 Vye{? + l , - , 0  + r}} ( 2 . 2 )

g j ( * ) ^  0
Minimize / (x), subject to < gj  (x) = 0

I- < x. <u

where x g S c R ” is the vector of variables; / ( • ) : S —» R is the cost function; and

and maximization problems are conveniently reformulated. Similarly, the less than or 

equal to constraints are not restrictive, as gj (x)  > 0 implies -  g } (x) < 0.

The canonical particle swarm optimization algorithm cannot comply with hard equality 

constraints unless the problem is reformulated to embed them into the cost function (e.g. 

problems G3 and G11 in (Hu & Eberhart, 2002)), which is problem-dependent and not 

always possible (e.g. problem G5 in (Hu & Eberhart, 2002)). Therefore, equality con

straints need to be relaxed by setting an acceptable tolerance below which the solution is 

considered feasible. Given that g y(x) = 0 is equivalent to abs(gy(x))< 0  and

is equivalent to (max(0, xt —t/,-) + max(0,-x; + /.))<  0 , the problem in Eq.

(2.3) can be reformulated into three groups o f inequality constraints as shown in Eq.

(2.4), where the tolerances are also incorporated.

Minimize / ( x )

gj  (•): S —» R is th e /h (inequality or equality) constraint function, and n is the number o f  

dimensions o f the search-space (i.e. the number o f object variables).

Since m ax(/(x)) = -m in (-  / ( x ) ) ,  optimization stands for minimization from here on,

g j {x)<Tol ineq ; j  -  f  ••• >q
; j  = q + l, ... ,q + r

(2.4)
subject to < abs(gy (x))< Toleq 

max(0,x;. - « , ) + n)+m ax(0,-xI. + /,)< () ; i =

The amount of constraint violations (cv) is calculated as shown in Eq. (2.5):

cv = ^  max(o, g j (x))+ abs(gy (x))+ ̂  [max(0, x. - w j  + m ax^-x,. +/.)] (2.5)
j= q +1
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Local o p tim u m

It is said that x *B is the location o f a local minimum of the function /(• )  if:

3 e  g R > 0  | / ( x * B)<  / ( x )  Vx e [B(x*B,£-)nF] (2.6)

where the region B c S c R "  is a hyper-sphere (or ball) as defined in Eq. (2.7):

where | • | is the Euclidean norm.

Most traditional methods to deal with nonlinear problems are iterative and, starting from 

an initial point x0 e B , are able to find the local optimum within that region.

In binary search-spaces, a region B is defined as all the points that are separated from 

x *B by a hamming-distance equal to one -rather than the Euclidean norm-, where the 

hamming-distance between two points is the number o f bits that need to be flipped to 

move from one to the other. Binary spaces are not considered within this thesis.

Optimization methods can be classified according to the type of problems they are able 

to handle: continuous, discrete, mixed-discrete, binary, or combinatorial; linear or 

nonlinear.; convex or non-convex; unimodal or multimodal; differentiable or non- 

differentiable; smooth or non-smooth; constrained or unconstrained; single-objective or 

multiobjective; stationary or dynamic; explicit or implicit; constraint-satisfaction; etc. 

Or they can be classified according to the features of the algorithms: global or local; 

single-solution or multi-solution (also niching); constrained or unconstrained; single

objective or multiobjective; stationary or dynamic; gradient-based or gradient-free; de- 

terministic or probabilistic (also stochastic); analytical, numerical, or heuristic ; single

based or population-based; robust; etc.

2 Heuristics in this context refers to techniques that do not guarantee to find anything, and are usually based on 
common sense, natural metaphors, or even methods whose behaviour is not fully understood.

(2.7)

2.5. Optimization methods
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• Global/Local methods. In practice, no method can guarantee finding a global op-

able to escape poor local optima (e.g. Genetic Algorithms; Particle Swarm Optimi

zation; etc.). Conversely, a local method is that which cannot -in  a general sense- 

escape local optima, typically getting stuck in the nearest local optimum when deal

ing with multimodal problems (e.g. Newton’s method; Steepest Descent method; 

Conjugate Gradient methods; etc.). For some particular cases like convex problems, 

there are methods such as the Simplex method or Gradient-based methods which 

may guarantee fining the actual global optimum. The same is true for brute force 

methods (e.g. exhaustive search) in discrete problems.

• Multi-solution (niching) methods. These methods are designed to return a number 

of optimal solutions rather than only one.

• Constrained/Unconstrained methods. Constrained methods are able to deal with 

the optimization o f a cost function when only a part o f the search-space is feasible, 

whereas unconstrained methods can only handle problems whose whole search- 

space is feasible. As previously mentioned, a method which is able to deal with 

side-constrained problems might be referred to as an unconstrained method.

• Single-objective/Multiobjective methods. Single-objective methods can only deal 

with problems whose formulation involves the optimization o f only one scalar cost 

function. Multiobjective methods are designed to handle multiobjective problems, 

thus returning a Pareto-optimal set o f solutions rather than a solution vector.

• Dynamic methods. These methods are designed to find and track non-stationary 

optima in dynamic environments.

• Gradient-based/Gradient-free methods. Gradient-based methods use differential 

calculus as the main tool throughout the optimization process (e.g. Newton’s 

method; Steepest Descent; Conjugate Gradient methods; Sequential Quadratic Pro

gramming; etc.). Hence the problems must typically be smooth, so that gradients 

and Hessians can be calculated. Gradient-free methods usually use the cost function 

information only, so that there are no requirements with regards to continuity and

3 However, refer, for instance, to (Cui & Zeng, 2004) for a so-called ‘globally convergent’ method.

timum in non-convex, continuous problems3. By global method it is meant that it is
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differentiability o f the cost and constraint functions (e.g. Simulated Annealing; Ge

netic Algorithms; Differential Evolution; Particle Swarm Optimization; etc.).

• Deterministic/Probabilistic (or Stochastic) methods. Deterministic methods are 

techniques designed based on a precise, deterministic theory. Probabilistic methods 

incorporate some randomness to the optimization process, without turning it into 

random. Randomness may be incorporated by adding stochastic elements in the 

problem functions or in the algorithm itself. An example o f the latter case is the 

random weights in the Particle Swarm Optimization algorithm.

• Analytical/Numerical/Heuristic methods. Within a limited field o f application, 

analytical methods can solve optimization problems in an exact manner (e.g. the 

Simplex Method). Numerical methods usually consist of techniques to approximate 

the solution to a problem deterministically (e.g. Conjugate Gradient Method). Heu

ristic methods -which are typically also numerical- do not solve the problem de

terministically but by means o f some procedures not related to the optimization 

process in an obvious manner (e.g. Particle Swarm Optimization). Both numerical 

and heuristic methods find approximate solutions, the former being more precise.

• Single-based/Population-based methods. An individual search is carried out in 

single-based methods, so that a single solution per time-step is returned (e.g. Sim

plex method; Conjugate Gradient methods; Simulated Annealing, Tabu Search; 

etc.). Conversely, population-based methods perform a population o f simultaneous, 

interactive, parallel searches, returning a population o f solutions per time-step (e.g. 

Evolution Strategies; Genetic Algorithms; Particle Swarm Optimization; Ant Col

ony Optimization; etc.).

• Robust optimization methods. These methods are designed to take uncertainties 

in the input data into account, as well as high sensitivity in some variables. Thus, 

the robust optimal solution is usually not optimal in a traditional sense (i.e. the 

highest feasible peak; lowest feasible valley; etc.) but the solution is more robust to 

small changes in the values o f the solution coordinates.

As can be seen, the classes defined above are not mutually exclusive, so that a given

method typically belongs to more than one class. Thus, different classifications can be
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proposed by emphasizing different characteristics o f the algorithms. A diagram o f one 

possible classification is offered in Fig. 2.1.

OPTIMIZATION METHODS

TRADITIONAL METHODS 
Deterministic

(Based on precise mathematical theories)

MODERN HEURISTICS 
Stochastic and approximate

(Make use of techniques that are not directly related to 
optimization processes)

Analytical and Exact Numerical

Based on differential calculus 

Simplex method 

Exhaustive search 

Branch and Bound (exact)

- Gradient-based methods: 
Steepest descent 
Newton's method 
Quasi-Newton methods 
Seq. Quadratic Programming 
Conjugate Gradients methods 
Trust Region methods

- Branch and Bound

- Cutting-plane methods

- Hill-Climber

- Tabu Search

Single solution

- Random search

- Greedy search

- Simulated annealing

- Stochastic Hill-Climber

- Probabilistic Tabu Search

Population-based
(global m ethods)

- Evolutionary Algorithms: 
Genetic Algorithms 
Genetic Programming 
Evolutionary Programming 
Evolution Strategies 
Differential Evolution

- Swarm-intelligence-based:
Ant Colony Optimization 
Particle Swarm Optimization

Fig. 2.1. A tentative -a m o n g  many p oss ib le - c lassification o f optim ization m ethods. Note that the Branch and Bound 
method may be exact or approxim ate, and that the plain Tabu Search is viewed as traditional ra ther than heuristics 
because there are no stochastic e lem ents involved. W hen stochastic e lem ents are incorporated to m ethods such as 
the H ill-C lim ber and Tabu Search, they are classed as heuristics. A given method usually belongs to m ore than one 
class, som e of which are not included in this figure (e.g. the sim plex method is analytical, exact, convex, global, etc.)

2.6. Constraint-handling

A formal discussion on the classical theory o f constrained optimization is beyond the 

scope o f this thesis, as its applicability to the particle swarm optimization (PSO) method 

is limited. In traditional methods, the constraint-handling technique may be embedded 

in the algorithm as, for instance, in the simplex methods or in some interior point meth

ods. This gives birth to families o f  methods that are specific for constrained problems. 

Thus, in addition to the necessary conditions for the different traditional unconstrained 

methods to be applicable -i.e . continuity, differentiability, linearity, convexity, etc.-, 

there are new conditions for the constraints. That is, the number o f constraints, whether 

they are inequality or equality constraints, linear or nonlinear, continuous, differenti-
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able, etc. Other constraint-handling techniques are external to the search engine, such as 

some Penalty and some Augmented Lagrangian Methods, which replace the constrained 

problem by a surrogate, unconstrained one. The constraints are somehow included 

within the modified objective function. It may be possible to find a local solution by 

optimizing a single surrogate unconstrained problem, or by optimizing a sequence o f  

unconstrained sub-problems. For a review on the theory o f constrained optimization as 

well as traditional constrained optimization algorithms, refer to a standard text on nu

merical optimization, such as (Nocedal & Wright, 2006).

In Particle Swarm Optimization (PSO), the constraint-handling techniques are external 

to the method, which is inherently an unconstrained optimization algorithm. The same 

as for the objective function, no continuity, linearity, or differentiability condition needs 

to be met by the constraint functions. In addition, dealing with inequality constraints is 

rather straightforward while it represents one o f the main challenges in traditional 

nonlinear constrained optimization. Conversely, it is harder for the PSO algorithm to 

cope with equality constraints, and setting a tolerance for their violations is a must. Dif

ferent families o f constraint-handling techniques that can be coupled with the PSO 

method to cope with constrained problems are briefly discussed in chapter 4.

2.7. No free lunch theorems for optimization

First o f all, it must be noted that a formal study and analysis o f the No Free Lunch 

Theorems (NFL) for optimization and its implications -including whether or when the 

theorems hold- are beyond the scope o f this thesis. However, given the considerable 

impact o f the first theorem on optimization research -especially on Evolutionary Com

putation and the development o f general-purpose optimizers-, their formulation must be 

acknowledged and referenced. From here forth, the no free lunch theorem will refer to 

the first theorem in (Wolpert & Macready, 1997), as the second theorem applies to time- 

dependent cost functions, which are not considered in this thesis.

In short, the no free lunch theorem for optimization suggests that, if  an algorithm exhib

its better performance on a set o f problems, it would pay the price o f inferior perform

ance on others. So far, the statement is almost self-evident and leaves little room for
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disagreement or controversy, but the theorem goes further by asseverating that the aver

age performances o f different algorithms on all possible problems are exactly the same.

for real-valued problems that are represented and dealt with on digital computers. Refer 

to (Wolpert & Macready, 1995) and (Wolpert & Macready, 1997) for an in-depth re

view of the theorem and its demonstrations and implications.

One might expect that there are pairs of search algorithms A and B such that A performs better 
than B on average, even if B sometimes outperforms A. As an example, one might expect that hill 
climbing usually outperforms hill descending if one’s goal is to find a maximum of the cost func
tion. One might also expect it would outperform a random search in such a context.

(...) such expectations are incorrect. (...) Roughly speaking, we show that (...) the average per
formance of any pair of algorithms across all possible problems is identical. This means in par
ticular that if some algorithm aTs performance is superior to that of another algorithm a2 over 
some set of optimization problems, then the reverse must be true over the set of all other optimi
zation problems. (Wolpert & Macready, 1997)

Mathematically, the (first) no free lunch theorem states:

where a,- stands for algorithm i; m is the number o f iterations; /  is the function at issue; 

P (•) stands for the probability; and d ym is a measure of performance after m iterations.

It follows that, to improve the average performance, knowledge on the problem and on 

the optimization method should be taken into account to match problems to solvers.

Perhaps one of the major controversies o f this theorem is in what it is meant by all 

problems (/). It has been argued, for instance, that it is not all but only practical prob

lems that researchers are interested in, whereas it has been replied that the problems that 

are o f no interest today may be in the future, and so on. Notice that while Wolpert & 

Macready (1997) specifically include continuous problems that become discrete due to 

their representation in digital computers, it could be argued back that not all problems 

can be represented in a computer. In addition, if  a general-purpose digital algorithm for 

continuous problems is being sought, the set of all problems is reduced to the set o f all

While the theorem is restricted to discrete functions, it is specifically stated that it holds

Z  P {dm I / ’M’ )=  Z  P (d» I /> m' ) (2 .8)
/ /
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digitalized continuous problems, and the theorem would not be proven to hold. How

ever, this thesis does not concern itself with the implications o f the theorem, including 

whether and/or when it holds.

The argument here is simply that continuous optimization problems do in fact make use 

o f information regarding the problem at hand. To start with, since they are not discrete 

in nature but only due to their digitalization, it can be expected that if  a good solution is 

found, it is very likely that there is a better one nearby, either following the gradient or 

the direction towards a better known solution with a sufficiently small step. This would 

not be a valid informed guess in discrete combinatorial problems. But the most impor

tant aspect in computational intelligence would be that the aim of the field is precisely 

to use information regarding the problem at hand, while ideally such information would 

be gathered and extracted by the algorithm itself.

Let us disregard for the time being the ideal computational-intelligent algorithm, which 

would self-acquire and exploit information specific to the problem. For more traditional, 

non-adaptive algorithms, the more they take advantage of a priori knowledge o f the fea

tures o f the problem at hand -i.e. linearity, convexity, differentiability, and so on- the 

less suitable they are for other problems. In other words, the more problem-specific they 

become. For instance, a gradient-descent algorithm can tackle a linear problem, but un

doubtedly in a less efficient manner than the simplex method. Thus, it is argued that the 

steepest descent method is more general-purpose than the simplex method because it can 

tackle both linear and convex-nonlinear problems to some reasonable degree o f accu

racy. Following the same train o f thought, PSO is more general-purpose than both.

Hence, an optimizer is considered general-purpose here if  it does perform reasonably 

well -within tolerance- on a wide-range of different problems at a reasonable amount of 

time. Even if  -due to the NFL compensation- another solver performs notably better in 

some problems and notably worse in some others, a general-purpose algorithm would 

return acceptable solutions on the whole range o f validity o f its ‘general-purposeness’. 

In practice, it is frequently the case that relying on some extra computational cost is 

cheaper and faster than hiring an expert to develop a specific, more efficient solution. 

Expert, knowledgeable manpower is commonly more expensive than additional compu

tational equipment.
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2.8. Closure

A brief overview and discussion on the stages o f a full optimization problem analysis 

was offered, focusing on the solution and validation o f the solver while assuming an 

accurate model is provided. The definition o f the different types o f constraints was pre

sented, as well as a general review o f the main classes of optimization problems.

The type of problems that this thesis is concerned with was discussed, and their initial 

formulation and convenient re-formulation to be handled by a particle swarm optimizer 

was proposed. The nomenclature and definition o f the main elements involved in the 

formulation were introduced, a discussion o f the families o f optimization methods was 

presented, and a possible classification was offered in Fig. 2.1.

The topic of constraint-handling techniques was only marginally addressed, and it will 

be discussed further in chapter 4, focusing on those techniques that are relevant to parti

cle swarm optimizers.

Finally, the no free lunch theorem was merely acknowledged and just a few relevant 

comments were made. Since the formal study o f this theorem is beyond the scope of 

this work, the reader is simply referred to the appropriate work for further information.

The canonical particle swarm optimizer is suitable for real-valued variables and uncon

strained problems. While discrete or mixed-integer problems can be handled to some 

extent with some modifications to the basic algorithm -or by its binary version-, con

straint-handling techniques need to be incorporated to deal with constrained problems. 

Multi-objective, dynamic, and multi-solution problems could also be coped with by ap

propriately modifying the basic algorithm. The particle swarm optimizer developed in 

this thesis is a global, single-solution, constrained and unconstrained, single-objective, 

stationary (i.e. non-dynamic), gradient-free, probabilistic, heuristic, population-based 

method, which is able to handle continuous -exceptionally, discrete variables by round

ing-off-, constrained and unconstrained, single-objective, stationary problems, regard

less o f whether the functions involved are or are not linear, convex, unimodal, differen

tiable, smooth, continuous, or even explicit.
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Chapter 3

EVOLUTIONARY ALGORITHMS

A brief review of the Evolutionary Computation field is offered. Basic relevant concepts of natural evolution 
are presented together with its interpretation as an optimization process. The origins and the history of the 
development of the initially three mainstream Evolutionary Algorithms is presented -namely Genetic Algo
rithms, Evolution Strategies and Evolutionary Programming-, and the creation of the Evolutionary Compu
tation field in order to encompass them all is discussed. Some of the posterior paradigms inspired on and 
derived from them are also mentioned. The main common features and the general procedure for all Evo
lutionary Algorithms are outlined, followed by a concise description of some of the main current para
digms: Genetic Algorithms; Genetic Programming; Evolution Strategies; Evolutionary Programming; and 
Differential Evolution. Some minor comments are interlaced in the closure so as to present the link be
tween this about half-century old field and the relatively new Particle Swarm Optimization paradigm.

3.1. Introduction

Evolution is a natural process that organisms undergo to adapt their behaviour in order 

to survive within a dynamic, competitive environment. Since adaptation is carried out 

by seeking the best response to the challenges they face, the process o f adaptation may 

be described as the optimization o f their performance. In the Evolutionary Algorithms’ 

jargon, this is referred to as the process offitness maximization.

Biological evolution takes place at different scales in nature (e.g. chromosomes; cells; 

individuals; species; populations o f species, etc.). Scientists observed that the kinds o f  

problems that these biological organisms are able to cope with are, when posed as opti

mization problems, the same kinds o f problems that traditional algorithms are typically 

unable to handle (see (Fogel D. B., 2008)). That is, for instance, problems exhibiting 

nonlinearities; discontinuities; uncertainties; etc. Hence, optimal biological structures 

observed in nature led scientists to the idea o f mimicking biological evolution mecha

nisms to solve optimization problems. A family o f population-based optimization meth

ods inspired by natural evolution is referred to as Evolutionary Algorithms (EAs). They 

exhibit some intelligent behaviour, which originates from mimicking natural processes 

that biological organisms undergo. EAs are also used as models of evolution by evolu-
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tionary biologists as well as by researchers in Artificial Life (AL) aiming to experiment 

on new artificial evolutionary worlds. AL is a branch of Artificial Intelligence (AI), 

which deals with the development of artificial beings exhibiting some degree o f alive- 

ness in addition to some degree o f intelligence.

EAs are like the big brother for the particle swarm optimization (PSO) paradigm. They 

share some major common features, despite being inspired by different metaphors. 

Namely, both EAs and PSO evolve a population o f individuals which profit from previ

ously acquired knowledge, while making use o f stochastic operators to introduce new 

responses. Therefore, the field o f Evolutionary Computation (EC) is introduced, and a 

few o f the most popular paradigms -especially those relevant to optimization problems- 

are loosely overviewed within this chapter.

Keeping in mind that this topic is far beyond the field o f expertise o f the author of this 

thesis, a brief review of some basic natural evolution concepts is offered hereafter.

Darwin (1859) claimed that all organisms descend from a common ancestor, and that 

the adaptive changes o f species occur by means o f apparently random mutations, where 

smaller mutations are observed more often than larger ones. If mutations are beneficial, 

they are preserved by a natural selection mechanism that relies on the ability o f some 

individuals to outlast others, thus increasing the probability of passing their genetic in

formation to the next generation.

Evolution is driven by both reproduction and the challenges posed by the environment. 

For instance, a population tends to increase in size without environmental restriction 

until resources become insufficient. Then, the survival o f the fittest selection mechanism 

favours the fittest species with higher probability of survival and hence o f reproduction. 

An individual is fitter if  it is better adapted to the current state o f the environment.

Darwin (1859) developed his theory o f evolution in a macroscopic fashion, without any 

knowledge on genetics. The neo-Darwinian theory o f  evolution views living organisms 

as a duality o f genetic information present in every cell o f an individual, and external 

observable features (behaviour, physiology, morphology, etc.). The genetic information

3.2. Natural evolution
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is encoded in a macromolecule known as deoxyribonucleic acid (DNA), where the gene 

is the unit o f heredity. The aggregation of all genetic information in an organism is re

ferred to as its genotype, whereas all its observable features are referred to as its pheno

type. The theory thinks o f natural selection as alterations in the frequency o f genes in a 

population. A new field called the modern synthesis o f  genetics and evolution also takes 

into account other mechanisms o f evolution in addition to natural selection such as the 

genetic drift, which is beyond the scope o f this review.

Thus, the unit o f selection is the individual, who possesses a certain genotype that is in

dependent from the environment and from other individuals. The aggregation o f all 

genotypes in the population is known as the genetic pool. The interaction between the 

genotype o f an individual and the environment gives shape to its phenotype. Finally, the 

unit undergoing evolution is a population o f individuals. Since evolution takes place 

during reproduction, the genotype o f an individual cannot change except for some in

frequent small mutations and some kinds o f recombination in unicellular organisms. 

However, the phenotype might change due to the interaction with the environment.

As quoted by Fogel (1995), Lewontin schematized the evolution process as a genotypic 

state space, a phenotypic state space and four mapping functions, as shown in Fig. 3.1:

PHENOTYPIC 
STATE SPACE

GENOTYPIC 
STATE SPACE

Fig. 3.1. Schematic evolution process of a population within a single generational step. It can be viewed as a succes
sion of four mapping functions (epigenesis; selection; genotypic survival; and alteration) relating the genotypic infor
mation state space and the phenotypic observable state space (from (Innocente, 2006), after (Fogel D. B., 1995)).
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• fi {epigenesis G «=> P): It maps the population encoded as gi in the genotypic space 

G to the phenotypic space P as a particular set of traits represented by the set of 

phenotypes pi (observable features, which depend on the genetic code and on the 

environment). The mapping G ■=> P is pleiotropic, which means that a given genic 

change may affect more than one phenotypic trait.

• f2 {selection P «=> P): Since natural selection works on phenotypes, f2 maps the sets 

o f phenotypes pi to p2 . That is, it maps the phenotypes o f all individuals to the phe

notypes o f the selected ones. Thus, the process of natural selection is performed 

without any knowledge o f the information encoded in gi.

• f3 (genotypic survival P ■=> G): It maps the selected set of phenotypes P2 to the geno

typic space G, thus encoding back the phenotypes o f the selected individuals as g2 . 

The mapping P <=> G is polygenic, which means that the modification of a pheno

typic trait may be due to the alterations o f several genes.

• f4 {alteration G ■=> G): It maps the genotypes g2 into g’i, comprising all the genetic 

changes of the process of evolution corresponding to the current generation. Hence, 

function f4 contains all the rules for the genetic changes. Once the new population 

g’ i is encoded in G, the single generation is complete.

Although there are still aspects and mechanisms in the theory of evolution that are not

fully understood or unanimously agreed upon, there is -to  the best of my knowledge-

general consensus on that:

o There must be competition for limited resources between individuals in one or more

populations. Populations tend to increase in size while resources are plentiful, so 

that there is no competition and hence no evolutionary pressure.

o There must be dynamic populations where individuals live, reproduce, and die.

o Evolution occurs during reproduction by means of recombination and mutation.

o Recombination is a process o f creating chromosomes by combining genetic mate

rial from two or more parents, so that the children’s chromosomes are different 

from those o f their parents, although there must be some resemblance.
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o Evolution takes place in the chromosomes that encode living beings; hence it takes 

place in the genotypic state space.

o Natural selection is the mechanism by which the genes within the chromosomes

that encode more successful living beings are more likely to survive, since such be

ings live longer and therefore tend to reproduce more.

o Since the success o f individuals depend on their performance in the environment, 

natural selection takes place in the phenotypic state space.

Refer to (Innocente, 2006) for a brief overview of genetics (appendix 2) and natural

evolution (chapter 4). For further reading, also refer to (Davis & Mitchell, 1991), (Fogel

EAs are all those methods inspired on natural metaphors, which rely on the concepts of  

natural selection and survival o f the fittest. Although they are most widely used as an 

optimization tool, they are often claimed to perform adaptation rather than optimization. 

Since this thesis is concerned with optimization problems, EAs are viewed hereafter as 

problem solvers rather than models o f evolution or artificial evolution implementations.

Considering that the mapping (genotype *=> phenotype) is pleiotropic and the mapping 

(phenotype ■=> genotype) is polygenic, the formulation and implementation o f such 

mappings may be very complex. Thus, while selection occurs within the phenotypic 

space and genetic alterations do within the genotypic space, different paradigms within 

the EAs family focus on either one space or the other. Loosely speaking, there are two 

main classes o f EAs: the genetic-based approach, and the phenotypic-based approach.

3.3.1. Origins and summarized history

De Jong (2006) argues that the origins of evolutionary computation can be traced back 

to some influential ideas of Wright (1932). Ini 950s, biologists attempted to develop 

computer simulations o f natural genetic systems, even though they apparently did not 

foresee the possibilities o f applying their methodologies to solve optimization problems.

D. B., 1995), (Back, 1996), (Haupt & Haupt, 2004, pp. 19-22), and (De Jong, 2006).

3.3. Evolutionary algorithms
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Another early application such as evolving computer programs -i.e. a program that 

writes programs- can be traced back to (Friedberg, 1959). Three different methods in

spired by biological evolution were developed independently, pursuing different objec

tives: Genetic Algorithms’, Evolutionary Programming; and Evolution Strategies.

Genetic A lgorithm s (GAs)

It is unanimously accepted that the father o f Genetic Algorithms (GAs) is John Holland, 

who studied adaptation in nature and its implementation and simulation in computer 

systems (refer to Holland (1962), (1967), (1975)). Therefore, his original goal was not 

at problem-solving, which is its main application nowadays. Despite the remarkable 

simplifications with respect to biological evolution, the method works by performing 

fitness-based selection on the phenotypes, and genetic modifications in the genotypes. 

Therefore, it works on the encoding o f the variables rather than on the variables them

selves, thus comprising a genetic-based approach. The genotype was originally encoded 

in binary code, which presented the problem that small changes in the genotype could 

lead to great leaps in the phenotypes. Thus, a later improvement to sort out this problem 

led to the Gray code to represent genotypes. Another problem was that o f the precision 

when dealing with real-valued problems, which resulted in the development of real- 

coded GAs (refer to section 3.3.3).

Evolution S trategies (ESs)

Unlike GAs, Evolution Strategies (ESs) do not intend to model genetic mechanisms but 

to carry out the evolutionary processes within the phenotypic space. Therefore it is a 

phenotypic-based approach, where the link between parents and children rests in the 

observable features. The paradigm was first introduced by Ingo Rechenberg (1965), 

(1973) as a means to deal with experimental hydrodynamic optimization problems with 

real-valued variables. Later, Hans-Paul Schwefel (1975) developed the paradigm further 

in his Ph.D. thesis. Originally, a population o f just one individual was considered, and 

exploration relied on a mutation operator only. It soon became a family o f population- 

based optimization methods, which nowadays share many features with GAs including 

the use o f recombination in some strategies. For a short overview of the method, refer to 

(Back, Hoffmeister, & Schwefel, 1991).
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Evolutionary Program m ing (EP)

In the same fashion as ESs, Evolutionary Programming (EP) do not intend to model ge

netic mechanisms. Instead, it is a phenotypic-based approach in the sense that the de

scendants are different from -but resemble- their parents in the observable features 

rather than in the genetic code. That is to say, all modifications are carried out within 

the phenotypic space. The origins o f EP are linked to the attempt to create AI through 

the simulation o f evolutionary processes, where individuals were thought o f as finite 

state machines (FSMs) undergoing evolution. The original work was undertaken by 

Fogel, Owens, & Walsh (1966), and the aim was at performing predictions. Thus, while 

traditional AI paradigms concerned themselves with mimicking either human behaviour 

or the structure o f the human brain, Fogel, Owens, & Walsh (1966) viewed evolution as 

a process o f evolving increasingly intelligent organisms, which were represented by 

FSMs (refer to section 3.3.6). The method was reinvented for real-valued optimization 

problems by David B. Fogel (1992) in his Ph.D. thesis. The new paradigm resembles 

the ESs in aspects such as the individuals’ representation and the design o f the mutation 

operator. One o f the differences is that there is no recombination operator, but this could 

be viewed as a strategy within the ESs family (refer to section 3.3.6). David B. Fogel 

(1995) also ventured a useful definition o f intelligence as the ability of a (biological or 

artificial) being to adapt its behaviour to meet its goals in a range o f environments, dis

cussing how to achieve this by simulating evolution (Back & Schwefel, 1996).

Evolutionary Computation (EC)

In the 1990s, different groups o f scientists concerned with these mainstream evolution- 

based methods started gathering together to share ideas and insights. Thus, the broader 

field o f Evolutionary Computation (EC) was bom to encompass all these families of 

algorithms. Therefore, the general name adopted to refer to any method somehow in

spired by biological evolution is now Evolutionary Algorithm (EA). From then forth, 

crossbreeding o f ideas and development o f hybrids and new paradigms has been of 

common practice. Examples o f successful EAs developed in the 1990s within the EC 

framework are Genetic Programming (GP) and Differential Evolution (DE). There are 

also other well-established paradigms whose development was strongly influenced by 

the EAs, even though they are not based on evolution per se. Well known examples are
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Memetic Algorithms; Cultural Algorithms'.; Artificial Immune Systems; vto  Colony Op

timization; Particle Swarm Optimization; etc. Most of these methods will not be dis

cussed further in this thesis due to space and time constraints.

Genetic Program m ing (GP)

Friedberg (1959)’s earlier work and the GAs approach inspired Koza (1990) to develop 

the Genetic Programming (GP) paradigm. The main objective was to design programs 

that would evolve themselves. In other words, the method is a procedure for the auto

matic generation o f computer programs. Therefore, the goal is to solve the problem of 

solving problems by designing programs that write programs.

Differential Evolution (DE)

Inspired on the ESs paradigm, a new increasingly popular method called Differential 

Evolution (DE) was proposed by Stom and Price (1995), (1996) to handle real-valued 

problems. Unlike ESs, there is a differential mutation operator instead of performing the 

mutation from a predefined probability distribution. Hence the scheme is claimed to be 

completely self-organizing. However, the mutation is performed so that the mutated in

dividual (imutant vector) is unrelated to the individual being mutated {target vector). 

Therefore, the name mutation for that operator seems arguable. Later, different mutation 

strategies were proposed, some o f which do consider the target vector (refer to section 

3.3.7). Originally, each target vector would undergo a fitness-based competition for 

survival with its corresponding mutant vector. That is, there would be as many pairs of  

vectors competing for survival at each generation as individuals in the population. 

Later, a supposed crossover operator was introduced, which consisted o f a probability 

threshold that needs to be passed component-wise for that component o f the so-called 

trial vector to take the value o f the corresponding component of the mutant vector (also 

donor vector). The crossover operator resembles a discrete crossover between the target 

vector and the mutant vector rather than between two different vectors in the population. 

It appears that the DE method is highly sensitive to the scheme chosen for the mutation 

process, to the mutation weight (F), and to the crossover rate (CR). Nevertheless, it is 

one of the stochastic optimization methods for real-valued problems which is becoming
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more popular due to the good performance reported. Refer to section 3.3.7 for a more 

detailed description o f the paradigm.

Particle Swarm  O ptim ization (PSO)

The Particle Swarm Optimization (PSO) method was invented by Kennedy & Eberhart 

(1995), inspired by earlier bird flock simulations framed within the field o f social psy

chology. Hence, the origin of the paradigm is more or less contemporary to that o f DE. 

The method is included here in order to highlight its links and similarities to EAs, even 

though it does not mimic natural evolution processes. Nonetheless, the method was in

vented in the 1990s while all the different paradigms inspired by biological evolution 

were being encompassed by the newly created EC field, and new paradigms and hybrids 

were being developed. It seems clear that the EAs played a critical role in the concep

tion o f the PSO paradigm. In the same fashion as all EAs, PSO is a population-based, 

stochastic, global optimization method whose ability to optimize is an emergent prop

erty. Since the remainder o f the thesis, from Chapter 4 forth, is devoted to the PSO 

method, the latter will not be discussed any further within this chapter.

For further details on the history o f the evolution o f the Evolutionary Computation field, 

refer to (Fogel D . , 1998) and (De Jong, 2006, pp. 23-31).

3.3.2. General Evolutionary Algorithm

A high level flow chart for a general Evolutionary Algorithm is offered in Fig. 3.2. The 

shadowed boxes are the stages where evolution actually takes place.

3.3.2.I. Initialization

Just like any other population-based method, nearly all EAs start with the initialization 

of a population o f candidate solutions. The simplest procedure consists of a purely ran

dom initialization. Any other Design o f Experiments (DoE)-based procedure would do 

the job. If some prior knowledge on the environment is available, it should always be 

exploited. A data structure must be defined to represent candidate solutions in a com

puter, for which no best choice can be generalized for all problems and for all EAs.
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Fig. 3.2. Flow chart fo r a general Evolutionary A lgorithm . The shadowed boxes are the stages where evolution takes 
place. Som e EAs present only one selection stage, so that the o ther is as if all individuals were selected.

3.3.2.2. Fitness evaluation

Next, the performance o f each individual in the population must be computed somehow. 

The simplest case consists o f a cost function in a well-posed optimization problem. In 

the EAs jargon, the function to be maximized is referred to as thef itn e ss  fu n ction  due to 

the metaphor that inspired these methods. Even though it is not strictly correct, it is not 

uncommon to find in the literature EAs aimed at minimizing a so-called f itn e ss  fu n ction . 

Technically, the fitn ess fu n ction  should always be maximized. Thus, for minimization 

problems, th e f itn ess fu n ction  should be computed, for instance, as in Eq. (3.1):

f i t n e s ^ x )  = - / ( x )  (3.1)

Alternatively, if  the problem does not allow for an explicit fitness fu n ction , some means 

to evaluate the individuals’ performances must be available (e.g. neural network; lab 

experiments; numerical model o f the problem being optimized; etc.). Ultimately, since 

these methods do not rely on differential calculus, all that is needed is a means to tell
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whether one candidate solution is better than another. That is, the fitness assigned to 

each individual allows for the comparative evaluation o f their performances.

3.3.2.3. Selection

Two types o f selection stages can be defined in EAs. The first one is called the parents ’ 

selection stage, which selects the individuals that are to undergo genetic alterations. The 

other is the survivors' selection stage, where the individuals that are to survive for the 

next generation are selected. The latter takes place after all genetic alterations. At least 

one o f the selection stages must be fitness-based (i.e. survival o f the fittest). Some EAs 

present one, some the other, and some both stages. Note that individuals are not modi

fied during any selection stage, so that the search-space is not further explored.

Parents’ selection and matching

Paren ts' selection

According to the paradigm, either all individuals or only those who are probabilistically 

fitter within the current population are selected for reproduction. Different paradigms, 

and even different versions of the same paradigm, perform this stage differently. In 

GAs, the fittest individuals within the population are probabilistically selected. Each 

individual is allowed to be selected more than once, and all selected individuals are 

guaranteed to breed. In EP, ESs and DE, the whole population (p individuals) is selected 

at this stage, where all individuals are allowed, but not necessarily guaranteed, to breed.

Parents' m atching

The number o f parents per child, p , is set a priori. Once the individuals that are allowed 

to become parents (p) are selected, p out o f the p individuals are randomly chosen to 

mate and thus produce a child. In canonical GAs, there are two parents per reproduction 

-which can breed either one or two children-, and the pairing (i.e. matching) is random. 

In other EAs such as ESs, p parents are successively selected out o f the p  individuals at 

random, who breed one child. All individuals are typically as likely to be selected. The 

selection is >l-fold, hence X mating groups composed o f p parents are generated, which 

will breed one descendant each per recombination.
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Survivors’ selection

This stage takes place after all genetic alterations. In canonical GAs, every descendant 

is selected, whereas only the fittest individuals are deterministically selected in EP, ESs 

and DE. Notice that compliance with constraint functions is embedded in the concept of 

fitness when applicable. In the simplest EAs, selection is performed so that the size o f 

the population is kept constant. In algorithms like canonical GAs, which replace the 

whole population at every generation, an additional survivors’ selection strategy called 

elitism can be incorporated to avoid the loss of good solutions during reproduction. Elit

ism consists of ensuring that the fittest individual at every generation is awarded a 100% 

probability o f survival. The strategy may be extended to any number o f fittest individu

als, so that only a fraction o f the population is replaced at each generation.

Popular selection procedures

Roulette-w heel selection

This is one of the most popular procedures for the parents’ selection in GAs. It consists 

of a probabilistic proportional fitness-based selection, where the number of times that an 

individual is selected is probabilistically proportional to its current fitness with respect 

to the aggregated fitness of the whole population. The procedure is as follows:

1. The probability that each individual has of being selected is calculated.

2. Individuals are listed, and their cumulative probabilities are computed. Hence the 

cumulative probability o f the first individual equals its actual probability o f being 

selected, whereas the cumulative probability o f the last individual equals ‘1’.

3. A random number between ‘0’ and ‘ 1 ’ is generated from a uniform distribution, and 

the first individual whose cumulative probability is higher than the random number 

generated is selected.

The cumulative probabilities can be thought of as a wheel, the probability that each in

dividual has o f being selected as a portion o f it, and the random number generated as a 

spin o f the wheel. Thus, each spin selects one individual. For different reasons, it might 

happen that several or all individuals present similar fitness values. In cases like the lat

ter, the plain roulette wheel selection does not work properly because individuals are
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more or less equally likely to be selected, so that improvement o f the population’s aver

age fitness becomes more difficult. The procedure can be modified so that the selection 

o f the fittest individuals is guaranteed. In this case the wheel does not have a single 

pointer but as many pointers as individuals are to be selected, equally separated. Thus, 

the complete selection is performed in a single spin of the wheel.

Ranked-based rou lette  wheel selection

Individuals are ranked according to their fitness, from worst to best. The probability that 

each individual has of being selected is computed as its position in the rank divided by 

the summation o f all ranks. Thus, the probabilities o f selection are still fitness-based, 

but not proportional to the fitness.

Tournam ent selection

This is a probabilistic fitness-based selection scheme. Since all individuals are selected 

in the parents’ selection stage and the survivors’ selection is deterministic in ESs, EP 

and DE, this selection scheme is mostly used for the parents’ selection in GAs. The pro

cedure is as follows:

1. Iteratively, two individuals are selected at random from the whole population.

2. Their performance is compared in term of their fitness. Note that the constraint vio

lations are assumed to be considered in their fitness values.

3. The fitter individual survives.

4. Since only the winner o f the tournament is selected, the procedure is repeated as 

many times as individuals are to be selected.

This procedure can be generalized to any number of competitors per tournament. In this 

case, the fitness o f each individual is compared to those of all the other competitors, and 

the number o f times each individual defeats the others in the tournament is computed. 

The winner o f the tournament is the individual with the most winnings.

Other selection schem es

Several other selection schemes can be found in the literature, such as the Boltzmann 

selection; Disruptive selection; non-fitness-based ranking selections etc. A complete
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survey of the different selection schemes in EAs is beyond the scope o f this thesis. For 

further reading, refer to (Herrera, Lozano, & Verdegay, 1998); (Back, Fogel, & 

Michalewicz, 2000) (papers 22 to 27); (Gen & Cheng, 2000); (De Jong, 2006); and 

(Alves Da Silva & Falcao, 2008); among others.

3.3.2.4. Genetic alterations

Genetic operators alter the individuals so as to explore new regions in the search-space. 

There are two main families: mutation and crossover (also called recombination). While 

crossover is just one type o f recombination in natural biology, the terms are used indis

tinctly within this thesis because no other type o f recombination is used in EAs. Never

theless, other types of genetic operators may be thought of, and many variations within 

the existing types may -and have been- developed.

M utation opera tor

In some EAs, mutation is applied to every individual in the population. In others, it is 

only applied to the selected parents, and with some probability called the mutation rate 

(MR). In any case, once an individual is selected to undergo mutation, the operator per

forms some small perturbations to some or all o f its coordinates. Usually, such perturba

tions are obtained from some probability distributions -typically uniform or normal-, 

and they are independent from one another for each gene. There are exceptions such as 

the correlated mutations in ESs and EP or the differential mutation in DE, which is not 

obtained from a probability distribution (refer to section 3.3.7). Not only does mutation 

allow exploration but it also adds new information to the genetic pool. It mimics nature 

in the sense that smaller changes occur more often than greater ones, and hence can be 

viewed as an individual’s random walk in the vicinity o f its current location (Sastry, 

Goldberg, & Kendall, 2005). However, small changes made by mutation in the geno

types o f genetic-based algorithms may take any size in the phenotype. Appropriate cor

rections need to be made to sort out this problem. The role o f mutation in EAs such as 

canonical ESs and EP is to drive the search. In contrast, it is a background operator in 

paradigms like GAs and GP, which is performed with some low MR aiming to explore 

lost and unexplored regions o f the search-space. It ensures that the probability of reaching 
any point in the search-space is never zero (Herrera, Lozano, & Verdegay, 1998).
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Recom bination (crossover) opera tor

The crossover operator creates new individuals by combining parts from two or more 

other individuals. It comprises a means o f sharing information between different chro

mosomes. Thus, it allows exploration without adding genetic information that was not 

included in the previous population. The hope is that the combination o f two good indi

viduals results in a better one. Crossover is not commonly applied to all selected parents 

in the mating pool, as a probability threshold called the crossover rate (CR) must be 

passed. Many different crossover types can be found in the literature, which depend 

greatly on the representation o f the individual adopted. Some paradigms like EP do not 

perform crossover, and therefore the search is driven by mutation only. It is sometimes 

claimed that this is because an individual in EP stands for a species rather than an indi

vidual, and different species do not mate. Other paradigms like DE may perform a mis

leadingly called crossover, but in fact it is another mechanism as no recombination be

tween different individuals in the population in the same generation is performed.

For an overview o f different individuals ’ representation; selection mechanisms; and ge

netic operators for the general EA, refer to (De Jong, 2006, pp. 115-209).

3.3.2.5. Termination conditions

Different conditions and combinations o f conditions can be thought of for the search to 

be terminated. Those associated to the convergence o f the search in terms o f the loca

tion o f the solution are not as straightforward as in point-to-point searches, since the so

lutions found in consecutive time-steps may belong to different individuals in the popu

lation. The most immediate termination conditions used in EAs involve the maximum 

computational cost permitted for the search, which is commonly measured in terms o f a 

maximum number o f fitness function evaluations. Other conditions to terminate the 

search may involve a maximum number o f generations; a lower limit for a measure o f  

diversity in the population both in terms o f the fitness function and of the coordinates o f  

the individuals (further improvement is unlikely); the objective fulfilled (e.g. a feasible 

solution found in a constraint-satisfaction problem; or finding a zero-error in an error- 

minimizing problem); etc.
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3.3.3. Genetic Algorithms

(...) with GAs we are not optimizing; we are creating conditions in which optimization occurs, as 
it may have occurred in the natural world... (Davis & Mitchell, 1991)

3.3.3.I. Representation, initialization and fitness evaluation

The individuals’ representation is a key issue in GAs because they directly (...) manipu
late a coded representation of the problem and because the representation schema can severely 
limit the window by which a system obsen/es its world. (Koza, 1992)

The original, canonical GA presents a fixed-length binary representation o f individuals; 

generational replacement (i.e. individuals’ life-span limited to a generation); one-point 

crossover with high crossover rate (CR); mutation with low mutation rate (MR); and 

probabilistic proportional parents’ selection scheme with random pairing (matching). 

Examples o f two individuals encoded in binary strings are offered in Fig. 3.3.

1 1 0 1 0 0 0 1 1 0 1 1

Fig. 3.3. Example of binary representation of two individuals for a problem with two variables. Since each vari
able is represented by six binary bits, only 26 = 64 discrete values can be generated for each variable. For a 
real-valued problem, the first and last values among the 64 possible are the lower and upper limits of the 
search-space, and linear interpolation is typically used between the uniformly distributed discrete values.

The binary string representation stands for a highly simplified genotype composed o f a 

single chromosome. Since GAs is a genetic-based approach, the genetic operations are 

performed on this representation while selection is performed on the phenotypes. The 

individual’s binary string is decoded to a real-valued representation, which stands for its 

phenotype. Its performance is evaluated in terms o f the fitness function, which is to be 

considered in the survival o f the fittest scheme. The binary search is carried out within a 

binary hypercube, where each vertex represents one possible solution. The hypercube 

and its mappings to a discrete (Z”) and a continuous (R") space are shown in Eq. (3.2).

where ng is the dimension o f the binary hypercube -i.e. the number o f genes in the 

chromosome-, and n is the dimension of the (phenotypic) search-space. Of course, no

(3.2)
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mapping is necessary for binary problems. The fitness function is typically defined as 

shown in Eq. (3.3) for discrete and real-valued problems.

/ :  {0,1}"* -> S c= Z " -» R  or / :  {0,l}”8 - > S c R ' - > R  (3.3)

One important problem for the binary encoding is that the flip of a single bit in the 

string typically results in important variations in the phenotype. For instance, the two 

individuals represented in Fig. 3.3 differ only in the last gene corresponding to the sec

ond variable. In this case, they also happen to be close in the phenotypic space, as they 

are consecutive integers once decoded. However, there is also only one bit difference 

between the two individuals in Fig. 3.4, while they are far away in the phenotypic space 

after decoding. This is called a Hamming cliff.

1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0

Fig. 3.4. Example of binary representation of two individuals for a problem with two variables, where a single bit 
difference in the genotype leads to distant positions in the phenotype.

One solution is the use o f the Gray code (also reflected binary code), which is such that 

two consecutive numbers in the phenotype always differ in one bit in the genotype. That 

is, they are separated by a Hamming distance equal to ‘ 1’ in the Gray binary hypercube. 

Refer to Fig. 3.5 for a small comparative example o f plain and Gray binary codes.

Base 10 Binary code Gray code

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101

Fig. 3.5. Numerical, comparative example of base 10, binary, and Gray codes. As can be seen, consecutive numbers 
in base 10 always differ in only one bit in Gray code (Hamming distance equal to one).

It is clear that the GA paradigm is discrete in nature, and hence works very well on dis

crete problems, where the search consist o f seeking the best combination o f discrete 

values or the best feasible permutation. In spite o f the fact that it can be adapted well to 

cope with real-valued problems, it has been widely proved that real-number encodings
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work better for real-valued and/or constrained optimization problems (Gen & Cheng, 

2000). Besides, real-valued chromosomes for problems with real-valued variables allow 

the use of larger domains without sacrificing precision -thus obtaining the solution to 

the full machine-precision- as well as the fine-tuning of the search. They are also faster, 

as they do not need to successively encode and decode solutions. For a summary o f the 

advantages o f real-coded GAs with respect to the binary versions, refer to (Herrera, 

Lozano, & Verdegay, 1998, pp. 285-287). For real-valued encoding, individuals are rep

resented by ^-dimensional floating point vectors as in Eq. (3.4), where each gene repre

sents an object variable. In this case, the genotype and the phenotype coincide. Other 

problem-dependent data structure to represent individuals may be, for instance, vectors 

o f integers, order lists, or the syntax trees used in GP (see section 3.3.4).

Refer to (Gen & Cheng, 2000) for a discussion on the properties that the genotype-to- 

phenotype encoding must exhibit.

A population o f a few hundred individuals is typical in GAs. If the computational cost is 

flexible, unnecessarily large populations imply unnecessarily high computational cost, 

whereas populations smaller than necessary compromise the quality o f the solution 

evolved. Given a fixed permitted computational cost, a trade-off must be found: the lar

ger the population size the more parallel the search becomes; while the longer the 

search-length the longer evolution has to do its work.

(3.4)

where:

xf e F c S c R "  : Position vector of the 2th individual at gth generation.

: / h coordinate of the ith individual at gth generation.

F, S, R Feasible space, Search Space, and Real numbers. 

Dimensionality (i.e. number of object variables). 

Number o f individuals in the population.

n

m

J

g Index to identify the generation. 

Index to identify the individual. 

Index to identify the dimension.
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Typically, initialization consists o f randomly spreading the individuals throughout the 

search-space. If available, domain specific or problem knowledge should be exploited.

3.3.3.2. Parents’ selection

For other selection schemes, refer to (Back, 1996); (Gen & Cheng, 2000); (Sastry, 

Goldberg, & Kendall, 2005); (De Jong, 2006); among others.

3.3.3.3. Genetic alterations

Crossover

The predefined number o f parents that are to be involved in each breeding process is p 

out o f the p  selected parents. Therefore the crossover operator acts on p  individuals at a 

time by recombining their existing genetic material without widening the genetic pool. 

Typically, in GAs, p  = 2 and either one or two descendants are bred per crossover.

In other words, once the parents’ selection is through, a mating pool of p  individuals has 

been generated. Only some o f them will actually perform crossover, as a probabilistic 

threshold must be passed. For each breeding process, p  parents from the mating pool are 

randomly paired. The process is repeated until all individuals in the mating pool have 

been matched and the complete offspring population has been generated. The number of 

parents in the mating pool and the number o f times this process is repeated depend on 

the characteristics o f the crossover operator. For instance, say that two parents (p = 2) 

are involved in each mating process. The exchange of genetic material during crossover 

naturally leads to the breeding o f two descendants. In this case, the number o f parents in 

the mating pool equals the number of individuals in the population (p = m), and the 

number o f times crossover is performed per generation equals half the population-size.

The most widespread parents’ selection scheme in GAs is the roulette-wheel discussed 

in section 3.3.2.3, where the probability that the zth individual has o f being selected 

among all m individuals to breed is as shown in Eq. (3.5).

(3.5)
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There are schemes where only the fitter child is kept, so that only one child is bred per 

crossover. Then, the number o f parents is doubled, and so is the number o f applications 

o f the crossover operator per generation, which now equals the population-size.

The way crossover is performed gives rise to different techniques, which may depend 

on the data structure o f the individual. The original operator is the 1-point crossover, 

where a position between two bits is randomly chosen from a uniform distribution, and 

the chromosomes o f  both parents are split in two parts. One o f these parts is exchanged 

to give birth to two new children o f the same size. An extension o f this is the k-point 

crossover. A graphical example o f the 1-point crossover is offered in Fig. 3.6, and an 

example o f a two-point crossover is shown in Fig. 3.7.

PARENTS O FFSPRING

1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0

0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0

Fig. 3.6. Exam ple o f one-point crossover.

PARENTS O FFSPRING

1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0

0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0

Fig. 3.7. Exam ple o f tw o-poin t crossover.

Another common operator is the uniform crossover, where each gene o f the descendant 

is randomly taken from any one o f  the parental chromosomes. If two parents are to 

breed two descendants per crossover, the procedure consists o f  randomly swapping 

analogous genes between the two parental chromosomes. In the so-called h a lf uniform  

crossover, half o f  the non-matching homologous genes are swapped.

The position-based crossover is an adaptation o f the uniform crossover for individuals 

encoded as an ordered list. It consists o f randomly choosing a number o f genes from 

one parent, and passing it on to the corresponding gene in the descendant. The blanks 

are filled in from the other parent, from left to right. Hence the genes passed on from the

42



EVOLU TIO N A RY  A LG O R ITH M S Swansea University
Prifysgol Abertawe

second parent will not be stored, in general, in the homologous genes o f the child (i.e. in 

the genes o f the same index). Refer to (Gen & Cheng, 2000, p. 349) for further reading. 

Sastry, Goldberg, & Kendall (2005) discuss a similar operator called cycle crossover.

Different crossover operators can be defined for real-coded GAs. For instance, the fla t 

crossover is as follows: given two parents, each gene o f the descendant is generated at 

random from a uniform distribution, using the homologous genes o f two randomly 

paired parents as upper and lower bounds. In turn, the discrete crossover is equivalent 

to the uniform crossover discussed for binary GAs, where each gene o f the descendant 

is directly taken from one o f its parents at random. Another common operator for real

valued GAs is the arithmetical crossover, where two descendants xo1 and x°2 are bred 

from two parents x^1 and \ pl as shown in Eq. (3.6):

where X is constant or dependant on the generations. In the first case, the operator is 

uniform, while in the second it is non-uniform. For other recombination operators for 

real-coded GAs, refer to (Herrera, Lozano, & Verdegay, 1998) and (Haupt & Haupt, 

2004, pp. 57-60). For further reading on crossover operators for binary GAs, also refer 

to (Back, 1996); (Sastry, Goldberg, & Kendall, 2005); and (Gen & Cheng, 2000).

Mutation

Mutation was introduced by Holland (quoted in (Mitchell, 1999)) as a background op

erator to be applied after crossover, whose main purpose was to introduce variety when 

facing loss o f diversity and exploration by crossover only is no longer possible. It is 

typically given a low probability o f occurrence. Usually 0.001 < MR < 0.005 .

The mutation operator acts on a single individual, and is expected to perform a sort o f  

explorative local search in the neighbouring area thus generating new genetic material. 

The way to implement this greatly depends on the data structure o f the individuals. In 

canonical, binary GA, the mutation operator consists o f flipping every gene in the 

chromosome, whereas its design is not so straightforward in real-coded GAs. Numerous 

alternatives can be found in the literature, the simplest o f which is the random mutation,

x0' = l - xp' +(l-X)-xpl 
x °2 = \ ‘Xp2 + ( l— A)* xpl

(3.6)
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where the value o f each gene is randomly generated from a uniform distribution within 

the feasible interval o f the variable. Hence it is not really a mutation but a re-generation 

operator. For a good overview of different mutation operators for real-valued GAs, refer 

to (Herrera, Lozano, & Verdegay, 1998, pp. 292-294).

3.3.3.4. Fitness evaluation and survivors’ selection

Once all the genetic alterations have been carried out, the fitness of the newly created 

individuals has to be computed somehow, typically by means o f a fitness function. The 

survivors’ selection is not performed in canonical GAs, or it can be viewed as selecting 

the whole offspring population for the next generation. The complete replacement o f the 

current population by its progeny is referred to as generational replacement. Other al

ternative GAs perform some sort o f elitism, or some other replacement strategy.

Discussing the hard theory behind GAs (e.g. the building blocks hypothesis, the schema 

theorem, etc.) is beyond the scope o f this overview. Refer to (Davis & Mitchell, 1991); 

(Back, 1996); (Herrera, Lozano, & Verdegay, 1998); (Sastry, Goldberg, & Kendall, 

2005); (De Jong, 2006, pp. 115-209); (Fogel D. B., 2008); among others.

3.3.4. Genetic Programming

GP can be thought o f as the application of GAs to write computer programs. Hence it is 

a computer program that writes other computer programs. Naturally, appropriate data 

structures and genetic operators are required. Computer programs are traditionally writ

ten in a deterministic manner, profiting from previously acquired knowledge on the spe

cific targeted problem. Conversely, GP writes computer programs without such knowl

edge. Genetic Programming is a systematic method for getting computers to automatically solve 
a problem starting from a high-level statement of what needs to be done. It (...) iteratively trans
forms a population of computer programs into a new generation of computer programs by apply
ing analogs of naturally occurring genetic operations. (Koza & Poli, 2005)

3.3.4.1. Representation

Although any standard programming language such as Fortran, C or Matlab could be 

used to implement a GP algorithm, the LISP (short for LISt Processing) programming
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language commonly used in AI is better suited for the task. Koza (1990) offers a few 

reasons for choosing such a language. Therefore, (...) the search space is the hyperspace o f 

LISP “symbolic expressions" (called S-expressions) composed o f functions and terminals appro

priate to the problem domain (Koza, 1994).

Thus, individuals are represented by tree-like structures called syntax trees (also parse  

trees), and the evolutionary search is carried out over the hyperspace o f valid trees. A 

syntax tree is stored in LISP in the fonn o f an ordered list o f elements (functions, num 

bers, names, sub-lists, etc.), where the number and type o f elements need not be set in 

advance (Haupt & Haupt, 2004, p. 196). Every individual comprises a potential solution 

to the problem in hand, standing for a whole syntactically valid executable computer 

program. The syntax tree is composed o f genes -a lso  referred to as nodes or points-  and 

links. There are two types o f  genes in GP:

Terminal genes : They are the ending nodes, which represent constants and variables, 

standing for the leaves o f the trees (no branches coming out).

Function genes: They are intermediate nodes in the trees, which represent functions 

such as arithmetic operations (+, - ,  %), mathematical functions (sin, cos, log, sqrt, max, 

min), Boolean (logical) operations (and, or, not), conditional operations (if-then-else), 

etc. The so-called links coming out o f the function genes connect the latter to terminal 

genes or to sub-trees standing for the arguments o f the function.

Illustrative examples o f three individuals represented by syntax trees are offered in Fig. 

3.8, where the represented functions are shown above each tree.

jc, + (5 • x , ) T r - s in ^ ,) cos(/r • x , )

Fig. 3.8. Exam ples o f the tree-like  graphica l representation o f three individuals standing for d ifferent functions. The 
standard expression is shown above each tree, while the storage in LISP language is in the form  of an ordered list.
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The nodes o f the trees stand for the genes, and the connections between nodes are the 

links. The shaded nodes are function genes, whereas the non-shaded ones are terminal 

genes. The uppermost node is called the root, and the lower level sub-trees are called 

branches. These trees can be represented in prefix notation such as LISP S-expressions, 

where functions always precede their arguments (Koza & Poli, 2005). For instance, the 

prefix notation for the first individual in Fig. 3.8 would be (+ x\ (• 5 x2)).

Prior to the initialization o f the population, the sets o f available terminal and function 

genes for the individuals must be specified. This could limit the algorithm to the extent 

o f being unable to evolve a good solution. It is always preferable to include more rather 

than fewer genes than necessary, as useless genes would simply die out throughout evo

lution. Following a path in a tree, the depth of a node is the minimal number of nodes 

from the root to the node in hand. The maximum and minimum depth o f the syntax trees 

must also be specified in advance.

3.3.4.2. Initialization and fitness evaluation

Loosely speaking, each individual in the initial population is a list of random functions 

and terminals shaping a computer program. Once the sets o f genes have been specified, 

the population o f individuals needs to be initialized. Two traditional procedures are the 

grow  method and the full method. The former generates trees o f diverse shapes with no 

minimum depth guaranteed; while the latter results in all trees having the maximum 

depth, but this also implies some loss o f diversity. The so-called ramped half-and-half 

method comprises a convenient combination o f both. Refer to (Koza, 1992, pp. 92-93).

• Grow method. The maximum depth (md) permitted for the individuals must be 

specified. One individual is created at a time, beginning from the root o f every tree. 

Every node is first decided to be either a function or a terminal gene, and the ap

propriate type o f gene is randomly selected from the corresponding set. If it is a
%

function gene, it is given as many children (terminals or rooted sub-trees) as the ar- 

ity o f the function (number o f arguments it requires). The initialization process 

starts again for each child unless the md level has been reached, in which case a 

terminal gene is randomly selected. This method provides a variety o f structures in 

the population, but does not guarantee individuals o f at least a certain depth.
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•  Full method. The terminal genes are guaranteed to be at a specified depth (d). Every 

gene at a depth lower than d  is randomly selected from the set o f function genes 

only. If the depth equals d, the gene is selected form the set o f terminal ones. There

fore every tree has a depth equal to d.

•  Ramped half-and-half. The maximum depth must be specified. The population is 

uniformly divided into (md -  1) groups. Half of each group is initialized by the 

grow method and half by the full method. For the first group, the depths md and d  

are set to two, increased to three for the second, and so on. Thus, diversity in the 

population is guaranteed, and individuals o f only one level cannot be generated.

The evaluation o f an individual’s fitness is not straightforward. It can be evaluated in 

terms o f the mean squared error o f the outputs o f the generated program with respect to 

a set o f preselected benchmarking problems, or in terms of the accuracy in approximat

ing a set o f points in a polynomial interpolation. It usually comes at a very high compu

tational cost. Although it depends on the problem in hand, it is common practice to use 

big populations; in general, from 500 to a few thousand individuals.

3.3.4.3. Parents’ selection

The parents’ selection procedure is the same as in GAs. Hence any o f the selections 

schemes previously discussed are applicable. The most common ones are the roulette 

wheel and its variations, and the tournament selection. The important issue is that the 

selection scheme is probabilistically fitness-based, as the GP paradigm is not greedy.

3.3.4.4. Genetic alterations

The most important -and frequently the only- genetic operator in GP is crossover. This 

is because it is more or less straightforward, and it does not present much difficulty in 

generating valid tree structures. There are a few alternatives for the mutation operator, 

which may be applied after or instead o f crossover. There are versions o f GP that allow 

an individual to be subject to both genetic alterations, while others only allow one at a 

time. In the latter case, the probability thresholds are set so that the individual selected 

in the parents’ selection scheme has a chance to be cloned and passed unmodified to the 

next generation, OR undergo crossover, OR undergo mutation. Note that perform re-



c 2 e c

o nap ie r o 

EVO LU TIO N A R Y  A LG O R ITH M S S w an sea  University
Prifysgol A bertaw e

production  in GP merely refers to cloning the individual. Other genetic operators may 

be designed, such as the architecture altering operations discussed in (Koza & Poli, 

2005), which modifies the architecture o f  the selected individual program.

Crossover

It is similar to crossover in binary GAs and to discrete crossover in real-coded GAs. A 

child is generated with part o f the genetic code o f one parent and part o f the other, with 

no new genetic material created. That is, a crossover point is chosen at random on a link 

o f  each parent, and the sub-trees rooted are interchanged. An example o f  a possible 

crossover between the first two individuals in Fig. 3.8 is shown in Fig. 3.9, where two 

children were bred. Note that the depth o f individuals might change during crossover. 

Similar to binary GAs, the CR is typically set between 0.6 and 0.9, the size o f the popu

lation is kept constant, and there is generational replacement.

x, + (5 -x 2) K -s in (x ,)

Crossover
point

sin

\  Crossover 
} point

Crossover

sin

Parent 1 Parent 2 Child 1 Child 2

Fig. 3.9. Exam ple o f crossover in GP. The genetic  material o f both children is contained in the paren ts ’ genome, while 
the depth o f the children bred m ight d iffer from  tha t o f their parents.

Mutation

It is a secondary operator. Therefore, it is typically awarded a low MR to maintain di

versity in the population. The same as for the crossover operator, the definition o f a mu

tation operator is not straightforward in GP. Some o f the most common mutation opera

tors are as follows (Innocente, 2006):
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• Point mutation. A single gene is replaced by a randomly generated single gene o f 

the same type. That is to say, a terminal gene must be replaced by another terminal 

gene, and a function gene must be replaced by a function gene o f  the same arity. An 

example is offered in Fig. 3.10.

• Expansion mutation. A terminal gene is replaced by a randomly generated sub-tree.

• Collapse mutation. A sub-tree is replaced by a randomly generated terminal gene.

• Sub-tree mutation. A sub-tree is replaced by a new, randomly generated sub-tree.

• Per-mutation. Two genes o f the same type within the individual are permutated.

Note that the expansion , collapse and sub-tree mutations can be viewed as a crossover

between the individual at issue and a new randomly generated one.

; r - s in (5 -x ,) jc, -s in (5  + x ,)

Point Mutation

Fig. 3.10. Exam ple o f point mutation in GP. A lthough it is unlikely tha t two genes o f the sam e individual at mutated at 
once, the mutation o f one function gene and o f one term inal gene is perform ed for illustra tive purposes.

Fitness evaluation and survivors’ selection

Once the genetic alterations have been performed, the fitness o f the new population is 

evaluated. Since there is generational replacement, the survivors’ selection simply con

sists o f all individuals in the offspring population being selected for the next generation.

For a concise tutorial on GP, refer to (Koza & Poli, 2005). For an extensive review, re

fer to (Koza, 1993) and its sequels (four volumes altogether), and to (Ferreira, 2006).
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3.3.5. Evolution Strategies

They comprise a family o f phenotypic EAs aimed at real-valued optimization problems.

3.3.5.1. Representation, initialization and fitness evaluation 

The (1+1)-ES

The original ES was composed of a single individual and is now referred to as the 

(1+1)-ES. The method consists o f randomly generating an initial solution represented 

by an ^-dimensional vector, each o f whose components stands for an object variable. 

The individual is cloned at every generation, and the clone is subject to a mutation op

erator. The latter consists o f introducing variation in the variables by adding a vector of 

small random numbers from a zero-mean normal distribution. This is in line with obser

vations in nature: children are similar to their parents, while smaller changes occur more 

often than larger ones. The fitness o f the new individual is evaluated, and the best be

tween father and child survives. One of the innovative features was the incorporation of  

the mutation parameters within the individual, so that they would also be subject to evo

lution. Initially, the vector of standard deviations was constant over time. Later, Re- 

chenberg (1973) postulated the 1/5-success-rule (refer to Eq. (3.9) in section 3.3.5.3) to 

update the standard deviations, based on results obtained in the study o f the optimum 

standard deviations combined with the probabilities of a successful mutation (Back, 

Hofffneister, & Schwefel, 1991, pp. 2-3). The individual is represented as in Eq. (3.7).

o f breeding one child from two parents selected with the same probability among all / 1 

individuals, and then choosing the best n among the (ju+1) individuals in the extended

(3.7)

The (a+l)-ES

This is the first population-based ES, therefore allowing sexual reproduction. It consists

population for survival. The representation o f the zth individual is shown in Eq. (3.8).

(3.8)

50



C*EC EVOLUTIONARY ALGORITHMS Sw.n se a urn™ *,
Prlfysgol Abertawe

The (a+i)-ES and the (n^)-ES

These strategies were derived from the (a+l)-ES, but here X descendants are bred from 

p  parents randomly selected with the same probability among all p  individuals. Thus, p  

among the aggregated (p+X) individuals are selected in the (m+A)-ES, whereas p  among 

the X > p descendants are selected in the (ii^)-ES to survive for the next generation. 

The representation o f each individual is the same as in Eq. (3.8).

3.3.5.2. Parents’ selection 

The (1+1)-ES

There is no parents’ selection in this strategy, as there is only one single individual.

The (ju+1)-ES

Two parents are randomly selected among all p  individuals in the population. Every in

dividual has the same probability of being chosen regardless o f its fitness.

The (a+i)-ES and the (//^)-ES

In these strategies, p out of the p  individuals in the population are randomly selected to 

breed one single descendant, where every individual has the same probability o f being 

selected. Typically, p = 2 or p = p. This is a ^-fold operator, as these strategies require X 

descendants while only one is generated from every set o f p parents selected.

3.3.5.3. Genetic alterations

The (1+1)-ES

M utation

The standard deviations are updated first by the 1/5-success-rule, and then the mutated 

standard deviations are used to mutate the current solution. The 1/5-success-rule is as 

shown in Eq. (3.9).
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c d - o {t) i f / ^ c  1/5

ci-o® if/? /) >1/5 (3.9)

a {t) if  pl t] =1/5

where /?/) is the frequency o f successful mutations measured over a certain interval o f

trials, and usually cd <1 and c i>  1. Schwefel (1981) suggests using the values cd = 0.82 

and ci = \lcd  for the adjustment, which should take place every n mutations (Back, 

Hoffmeister, & Schwefel, 1991). Thus, the clone is mutated as in Eq. (3.10).

x'(') = x (') + N (oy„) (3.10)

where Nj0fft(()j stands for a vector whose components are independent random numbers

generated from zero-mean normal distributions with standard deviations equal to the 

corresponding components o f the vector obtained from Eq. (3.9).

The (//+1)-ES

Crossover

The crossover between the two selected parents breeds a child by randomly choosing 

each component from either one or the other parent (discrete crossover), and is applied 

both to the object variables and to the standard deviations. Thus,

=P p + \ , j

p %  if  U((u) <0.5 

p^ lj otherwise
(3.11) 

y = i,...,2-w
/ r» (0  )  c -  ID 2  n

P/y+1- 1X +̂1 0 M+\) E K

where n is the dimension o f the search-space, p \  and p2  are the indices identifying the 

parents, j  is the index identifying the component o f the individual (including coordinates

and corresponding standard deviations), p ’//, is the descendant generated, and is

a random number generated from a uniform distribution between ‘0 ’ and ‘ 1 ’.
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M utation

In the same fashion as in the (l+l)-strategy, the mutation is applied only to the object 

variables o f the descendant, whereas the update o f the standard deviations follows the 

1/5-success rule in Eq. (3.9). Thus, the child generated by recombination in Eq. (3.11) is

After all the genetic alterations have been performed, the descendant is as in Eq. (3.13).

The (a+i)-ES and the (n^)-ES

Crossover

This is a 2-fold operator. It is performed 2 times, breeding a single descendant per appli

cation. Typically, the crossover operators used for the object variables and for the strat

egy parameters are not the same. A discrete crossover is usually preferred for the object 

variables whereas an intermediate crossover is preferred for the strategy parameters. 

The discrete crossover consists o f choosing the components o f the child from the p se

lected parents at random, while the intermediate crossover consists o f the arithmetic 

average o f the parents’ corresponding strategy parameters1. Hence the higher the num

ber o f parents involved in breeding the higher the mixing o f the genetic information. 

Consider two individuals to be crossed-over, and the hyper-space spanned between 

them. By means o f discrete crossover, a child can only be placed in one o f the vertices 

o f the hyper-polyhedron enclosing the hyper-space, while intermediate crossover places 

the child in the middle o f the line that links the parents’ positions. Therefore intermedi

ate crossover is better at exploiting the space inside the hyper-polyhedron at the ex

pense o f the loss o f diversity, which happens to be one o f the main features EAs rely on. 

Conversely, discrete crossover is more robust in that it maintains higher diversity.

1 Notice the resemblance to the arithmetical crossover in real-valued GAs. If the number o f parents is p  — 2 here, 
and X = 0.5 in the arithmetical crossover in GAs, the latter and the intermediate crossover here coincide.

mutated as in Eq. (3.12), where Nj0ff„(f)j is as explained before.

Y » t ( 0  _  y » ( 0  i t v t ̂ J / J - I  U J.1 "* -1- Ift+1 (3.12)

(3.13)
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Other crossover operators can be found in (Back, 1996), where the child is placed in 

different areas o f  the aforementioned hyper-space spanned between the parents. Since a 

child cannot be placed outside such hyper-space by means o f traditional crossover op

erators, they result in volume reduction. In contrast, the mutation operator widens the 

genetic pool. Thus, for the case o f two parents, discrete crossover for the object vari

ables, and intermediate crossover for the strategy parameters, the temporary population 

o f X descendants is obtained as shown in Eq. (3.14).

if  t / (o l) < 0.5 

otherwise

+ j  (3.14)

<1=1
\ x (t)

[ C ,

< ! = ■
<1,

p f = l
2 n

Mutation

It is typically applied to the object variables and to the standard deviations following 

different rules, as shown in Eq. (3.15). Thus, each object variable is mutated by adding 

a random number obtained from a zero-mean normal distribution, whereas the standard 

deviations undergo multiplicative logarithmic normal mutations. Bear in mind that the 

standard deviations are mutated before mutating the object variables.

p,"('> = m(p['<'>)=(x"S') ; p ("(,)e /  =  R " x  R"

rftif) -  rfi?) r-tf(o.i)+r'-A'«U) 
i j  U  i j  L

y " ( t )  _  Y f ( t )  . y y j r i t )  X T

A i j  ~ X  i j  + ( T  i j  7V (0.1)

i = 1,...,X 

j  = \9...,n

N(o.\) = constant Vy

(3.15)

where:

7V(0I) : Random real number obtained from a zero-mean normal distribution with
standard deviation equal to “ 1”, resampled anew for each coordinate, for
each individual and for each generation (i.e. every time it is referenced).

7V(0,) : Random real number obtained from a zero-mean normal distribution with
standard deviation equal to “ 1”, resampled anew for each individual and for 
each generation but constant for all dimension within an individual.
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r, t ' : Coefficients that rule the adaptive mutation step-sizes. Some recommended

Given that the standard deviations for different variables are independent from one an

other, improvement by mutation (plus selection) resembles a hill-climbing process zig

zagging along the gradient (Back, Hoffmeister, & Schwefel, 1991). In order to improve 

the rate o f progress, (Scwefel, 1981) extended the mutation operator to deal with corre-

The vectors a and or represent the complete covariance matrix of the n-dimensional normal distri
bution, where the covariances are given by rotation angles describing the coordinate rotations 
necessary to transform an uncorrelated mutation vector into a correlated one. (Back & 

Schwefel, 1996)

The new vector is also subject to evolution, although it undergoes a different mutation 

process. For a visualization o f the implications o f searching with independent and corre

lated mutations, refer to Fig. 3.11. Refer to (Schwefel, 1981); (Back, 1996); (Back, 

Hoffmeister, & Schwefel, 1991); (Fogel, Angeline, & Fogel, 1995); (Back & Schwefel, 

1996) for details on the implementation of correlated mutations and the theory behind.

3.3.5.4. Fitness evaluation and survivors’ selection

Once the offspring population has been bred, their fitness is evaluated. For the most fre

quent case o f ^-dimensional real-valued vectors and an analytically posed objective 

function, it simply consists of evaluating such a function for each individual. For other 

representations, the computation o f the fitness value is problem-dependent.

In the canonical (ji, i)-ES, the survivors’ selection operator deterministically selects the 

best p out o f the X children for the next generation. Note that this strategy is not elitist, 

which helps escape local optima by temporal deterioration. Thus, the life-span of an in

dividual is limited to one generation. In the canonical (p+X)-ES instead, the survivors’

values are r -
1

and t '= .-----  (see (Back & Schwefel, 1996)).
V2 •»

lated mutations by incorporating a new vector of strategy parameters (also referred 

to as 0^ ). In this case, the representation o f the individual consists now of the concate

nation o f three distinct vectors, as shown in Eq. (3.16).

(3.16)
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selection is deterministic too, hut it selects the best /x out o f the (/x+/l) individuals, thus 

guaranteeing constant improvement (elitism). Hence the life-span o f an individual is not 

limited. This imply that good solutions are not lost, but also that an individual who has 

reached a local optimum becomes an attractor difficult to escape from.

Fig. 3.11. Exam ple o f sim ple (left) and corre lated (right) m utations. Source: (Back, Hoffm eister, & Schwefel, 1991).

3.3 .6 . E volutionary P rogram m ing

It comprises one o f the most popular phenotypic EAs. Although it was originally aimed 

at AI, its main current application lies on the real-valued optimization field.

3.3.6.1. Representation, initialization and fitness evaluation 

Finite State Machine representation

The original objective was to generate AI through simulated evolution. The initial rep

resentation o f  the individuals -a s  envisioned in (Fogel, Owens, & W alsh, 1966)- con

sisted o f  finite state machines (FSM) aimed at performing predictions. Typically, the 

prediction depends on both the input and the current state o f the machine. In order to 

validate or assess the performance o f a given FSM -and  hence allow its optim ization-, 

some small part o f the environment that is to be presented to the machine needs to have 

been already observed. That is, a set o f  the correct outputs corresponding to a set o f in

puts must be available. Thus, the given machine is presented a sequence o f  symbols (in

puts), and returns another sequence (outputs). The performance is evaluated as a meas-

line o f  equal probab ility  d en sity  to p lace an o ffsp r in g
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ure o f  the accuracy o f each prediction (e.g. aggregation o f mean squared errors on all 

sequences in the test set). An example o f a FSM aimed at predictions is offered in Fig. 

3.12. The table presents the outputs corresponding to each pair (state, input). Notice that 

the machine also changes states (A, B, C). The new state is the one shown in the next 

column. The graph is rather self-explanatory, where the inputs (0, 1) are shown to the 

left and the outputs (I, II, III, IV) to the right o f  the slash. The machine is in state A 

when it is presented the sequence (1, 0, 0, 1, 0, 1, 1, 1, 0), to which it returns the se

quence (II, II, IV, I, II, I, III, II, II)

S T A T E A A B B C B C A A
I N P U T 1 0 0 1 0 1 1 1 0
O U T P U T II II IV I II I III II II

0 /  IV

Fig. 3.12. Exam ple o f a fin ite state m achine with three states (A, B, C), two inputs (1, 2) and four outputs (I, II, III, IV). 
The table above shows that, for an initial state A, if the sequence o f inputs (1, 0, 0 ,1 ,  0 , 1 , 1 , 1 ,  0) is presented to this 
m achine, it returns the sequence (II, II, IV, I, II, I, III, II, II). This type of m achine is typically used for predictions.

This representation is not as straightforward as a binary or real-valued vector, and hence 

the object variables are not so obvious. There are five modes o f varying an individual finite 

state machine: (1) add a state, (2) delete a state, (3) change the start state, (4) change an output 

symbol, (5) change a next-state transition (Michalewicz & Fogel, 2004, p. 176).

Thus, the size o f the individual might not be fixed as in most EAs, as the size and archi

tecture o f the machine may be allowed to vary.

In this context, optimizing a finite state machine means finding the design that returns 

the best predictions. If the predictions are straightforward and hence their accuracy is 

not an issue, optimizing might mean finding the design that does the job with the fewer
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number o f states. In any case, the meaning o f an optimum FSM needs to be reflected in 

the fitness function. Thus, the architecture o f each FSM is randomly initialized, and the 

experienced environment is presented to it. Its fitness is computed as a function o f the 

accuracy of its performance.

Vector of real-valued object variables

David B. Fogel (1992) reformulated the method for real-valued optimization problems. 

This modem version o f EP resembles the ESs paradigm is several aspects, namely the 

representation o f the individuals, the mutation operator, the selection schemes, and 

more importantly, the improvement o f the self-adaptation o f the strategy parameters. 

Hence the strategy parameters evolve as the algorithm self-adapts to the environment. It 

is fair to note that the evolution o f the strategy parameters was incorporated to the ESs 

approximately 20 years earlier. Thus, individuals are encoded in ^-dimensional floating 

point vectors as shown in Eq. (3.8). In the same fashion as in ESs, the individual might 

incorporate in its representation an additional vector of strategy parameters in case of 

correlated mutations, in which the representation o f the individual is as in Eq. (3.16).

Thus, a population o f \i individuals is randomly initialized, and their fitness values are 

evaluated. Beware that only the part o f the individual which comprises a candidate solu

tion is involved in the fitness evaluation.

3.3.6.2. Parents’ selection

Every individual in the population is selected to undergo mutation. This is one o f the 

few differences with ESs.

3.3.6.3. Genetic alterations 

Mutation

This is the only genetic alteration in EP. Therefore individuals do not really reproduce 

by are cloned, and these clones are later mutated. The object variables and the strategy 

parameters also undergo mutation following different rules. The former are mutated by 

adding a random number obtained from a zero-mean normal distribution whereas the 

latter are mutated by a similar additive but self adaptive rule, as shown in Eq. (3.17).
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(3 . 17)

where:

N (0I) : Random real number obtained from a zero-mean normal distribution with
standard deviation equal to “ 1”, resampled anew every time it is referenced.

Alternatively, the update o f the standard deviations is performed by the multiplicative 

logarithmic normal mutation shown in Eq. (3.15) for ESs instead o f  the additive self-

The strategy o f  correlated mutations is also viable in EP, so that the individual may also 

be represented by three concatenated vectors. Refer to (Scwefel, 1981); (Back, 1996); 

(Back, Hoffmeister, & Schwefel, 1991); (Fogel, Angeline, & Fogel, 1995); (Back & 

Schwefel, 1996) for details on the correlated mutations and the theory behind.

3.3.6.4. Fitness evaluation and survivors’ selection

Once the fi cloned individuals are mutated, their fitness is somehow evaluated according 

to the problem at issue. An intermediate population is created by the aggregation o f the 

original and the cloned-mutated populations. For the survivors’ selection, out o f the 

(fi+fi) individuals in the intennediate population are selected for the next generation. A 

probabilistic fitness-based selection scheme was originally implemented, although the 

tournament selection scheme is more popular nowadays. Nevertheless, any o f the previ

ously discussed selection schemes is a valid alternative. This is another difference with 

ESs, whose survivors’ selection is deterministic (and might or might not be elitist).

k Scaling factor: k «0.2 (Back & Schwefel, 1996, p. 22).

adaptation shown in Eq. (3.17). This is reproduced and modified for EP in Eq. (3.18).

r f i ' )  _  a (')  . ^  ,)+r' A/(o.i) / = l,...,/i

j  =

jV(o.i) -  constant V/

(3.18)
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3.3.7. Differential Evolution

3.3.7.I. Representation, initialization and fitness evaluation

DE is a population-based method for ^-dimensional real-valued search-spaces. Hence 

individuals are encoded in ^-dimensional floating point vectors as shown in Eq. (3.19).

* = ( < , xi,j *5.) (3.19)

where:

xf e F c S c R ' 1 ' Position vector o f the /th individual at gth generation.

x sij

F, S, R

n

m

g
i

/ h coordinate o f the zin individual at gm generation.

Feasible space, Search Space, and Real numbers. 

Dimensionality (i.e. number of object variables). 

Number o f individuals in the population.

Index to identify the generation.

Index to identify the individual.

Index to identify the dimension.

•th th

The population size is recommended to be ten times the number o f object variables as a 

first approximation. The typical initialization is random with uniform distribution. Once 

the initial positions are defined, their fitness is evaluated.

3.3.7.2. Parents’ selection

All individuals in the population are selected to undergo genetic alterations.

3.3.7.3. Genetic alterations 

Mutation

There is a mutation operator and a crossover operator, where the former is typically ap

plied first. The mutation operator here is differential instead of the alteration by noise 

generated from a predefined probability distribution in traditional EAs. All individuals
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in the population undergo mutation, and a temporary mutant population is generated.

The Ith mutant vector -also donor vector- at the gth generation is shown in Eq. (3.20).

vf= (vM -  V?J -  V5.) (3-2°)

The original differential mutation is as in Eq. (3.21).

vf = xf+F-(xf; - x f )  (3.21)

where r\ and r2 are random, mutually different integers generated in the range [1 ,m] 

(also different from /), and F  is the mutation weighting factor (advice: F  = 0.8; typically 

between 0.5 and 1). The mutant vector (or donor vector) is independent from the indi

vidual i undergoing mutation {target vector). In addition, a third vector is considered in 

Eq. (3.21), which is referred to as the base vector. Some other popular strategies to per

form the differential mutation are outlined in Eqs. (3.22) to (3.25).

v? = XL , + M < - X?J (3.22)

vf = xf + F  ■ (x^, -  x f )+ F ■ (xf -  X * ) (3.23)

vf = xL , + F ■ (** - :K )+■F ■ (xf, -  K ) (3.24)

vf = x *  +F-(xf  -x f )+ F - (x f t - x f ) (3.25)

Note that the target vector xf is considered for the generation o f the mutant vector vf 

in the strategy described by Eq. (3.23), whereas the best individual in the current gen

eration xf^ is considered in the strategies described by Eqs. (3.22) to (3.24).

Although every individual undergoes mutation, whether some component o f the mutant 

individual participates in the survivors’ selection is decided by the crossover operator.

Crossover

It is a discrete recombination between a target vector and its corresponding mutant vec

tor to generate a trial vector. The /th trial vector at the gth generation is as in Eq. (3.26).
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(3.26)

One o f the most common operators is the binomial crossover shown in Eq. (3.27),

mutant vector i f  the CR is passed, and equal to that o f the target vector otherwise. In 

order to ensure that the trial vector differs from the target vector, a random integeryrand 

is generated to apply Eq. (3.27). Advice: CR = 0.90; typically between 0.50 and 1.00.

Refer to (Price, Stom, & Lampinen, 2005) for a comprehensive study of the paradigm.

3.3.7.4. Fitness evaluation and survivors’ selection

For the survivors’ selection, each trial vector is compared to the corresponding target 

vector, and the best one survives for the next generation. In general, the comparison is 

fitness-based -especially for unconstrained problems-, but there might be variations 

depending on the constraint-handling technique implemented. For instance, see (Huang, 

Qin, & Suganthan, 2006). For other state-of-the-art DE algorithms, refer to (Takahama 

& Sakai, 2006) and in (Mezura-Montes, Velazquez-Reyes, & Coello Coello, 2006).

Nomenclature was kept as uniform as possible, although certain different names are 

standard in different paradigms to refer to the same variables. For instance, the number 

of individuals in a population is referred to as m whenever possible. However, [jl is a 

widespread, standard denomination in EP and ESs.

Some o f the more relevant concepts underlying natural evolution and its simulation 

were discussed, highlighting how they are related to optimization processes. The differ

ent origins and objectives of the three mainstreams -GAs, ESs, and EP- were outlined, 

and the creation of the broader Evolutionary Computation field to encompass all EAs

(3.27)
xfj otherwise

where the / h component o f the trial vector equals the corresponding component o f the

3.4. Final remarks and closure
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was pointed out. Thus, a high-level flowchart for a general EA was offered. Since there 

has been noticeable crossbreeding o f techniques between these paradigms for several 

decades, they became more alike. At present, the main applications for all o f them are 

related to optimization. Therefore the common features o f all EAs were first presented, 

and all three paradigms were later discussed in some detail. References to their similari

ties and differences were made throughout the discussions. In turn, the GP is viewed as 

a particular case o f a GA with a specific individual representation and appropriately re

developed genetic operators. This and the finite state machines in the original EP para

digm are examples o f how EAs can be adapted to cope with problems other than n- 

dimensional real-valued optimization problems. Finally, the newer DE paradigm was 

presented and discussed. It is claimed to innovate with a novel mutation operator fol

lowed by a crossover which does not involve recombination between two parents. In my 

opinion, the tandem mutation-crossover in DE resembles a peculiar type of crossover.

To summarize their strengths and weaknesses, it could be argued that the binary GA is 

better in dealing with discrete problems, whereas the real-valued GAs, ESs, and DE are 

direct competitors for real-valued problems. They all involve ^-dimensional real-valued 

vectors, crossover, mutation, and at least one o f the selection schemes is fitness-based. 

EP only performs mutation, which makes convergence slower. However, the advantage 

of driving the search only by mutation is that the individual representation is more 

flexible, and even the string-lengths may vary. Finally, GP is a special case which deals 

with evolving computer programs by developing appropriate representations and ge

netic operators. There have been endless discussions among researchers regarding the 

convenience o f performing only mutation, only crossover, or both, in tandem or in par

allel so that no individual undergoes both at the same time-step. To the best o f my 

knowledge, no final conclusion in this regard has been reached.

The main EC paradigms were discussed in some details because they have been and still 

are a strong influence for the conception and development o f the PSO paradigm. There 

are clearly many common features, they compete for many problems, and there is a re

markable crossbreeding o f ideas. Note that newer differential mutation operators in DE 

involve the best solution found so that the latter becomes a sort o f attractor resembling 

PSO, whereas mutation operators are used in PSO to maintain diversity (resembling 

EAs). In addition, practically the same constraint-handling techniques may be used.
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Chapter 4

PARTICLE SWARM OPTIMIZATION

Swarm intelligence is the branch of artificial intelligence that studies the collective behaviour that emerges 
from decentralized and self-organized systems. The basic concepts underlying swarm intelligence are 
discussed; some examples of social behaviour in the animal kingdom are presented; and a few, relevant 
concepts in social psychology are included, which guide the dissertation towards a thorough understand
ing of the basic concepts underlying the particle swarm optimization paradigm. The Ant Colony Optimiza
tion method is briefly reviewed as one of the successful applications of swarm intelligence to optimization. 
Finally, the Particle Swarm Optimization paradigm is discussed in some details, emphasizing the study of 
the influence of the coefficients in the velocity update equation on the dynamics of the system; the 
neighbourhood topologies; and the incorporation of constraint-handling techniques.

4.1. Introduction

Evolutionary Algorithms (EAs) and Particle Swarm Optimization (PSO) are both popu

lation-based methods that rely on the interaction amongst relatively simple individuals. 

However, they lean on very different interacting mechanisms: while EAs rely on com

petition amongst individuals in a population, PSO does on cooperation between them in 

order to achieve goals that are not possible individually. Thus, populations o f simple 

individuals are able to perform tasks far beyond their individual capabilities.

As unflattering as it may be to refer to ourselves as relatively non-intelligent individu

als,, human beings also belong to a system of that sort. Humanity achievements greatly 

exceed those of the most brilliant, intelligent, prominent human individuals. Although 

we may have individual purposes, all o f them as well as our actions interact with each 

other and with the environment in such a way that the outcome is unpredictable, and the 

behaviour o f the system as a whole emerges purposelessly, without central control. Per

haps the main concept is that o f emergence, where the behaviour o f a system can be

come astonishingly complex and unpredictable from very simple rules at the level of  

each interacting component. The concept is present in many scientific areas, some of  

them seemingly unrelated. Namely, chaos theory; complexity theory in physics; self

organized criticality in statistical physics; emergent behaviour in physical and biologi-
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cal systems; genetics and evolution; collective behaviour and spread o f culture in social 

psychology; swarm intelligence (SI) in artificial intelligence (AI); connectionism in AI, 

in cognitive psychology, in cognitive science, and in neuroscience; etc.

PSO is a Si-based paradigm originally developed as a simulation o f social behaviour, in

optimization problems. The ability o f the paradigm to optimize is an emergent property 

rather than a deterministically implemented one. As an optimization tool, the method 

has proven itself robust and general-purpose in the sense that it can cope with numerous 

problems of notably different characteristics with few or even no adaptation. Its strength 

derives from the fact that the method is not specifically implemented to optimize, and 

therefore no a priori problem-specific knowledge is deterministically exploited in its 

implementation. Instead, simple rules o f social behaviour are implemented, seemingly 

unrelated to optimization tasks. As an optimization algorithm, it is extremely difficult to 

set the mathematical foundations o f the method due to the complexity added by multiple 

randomly weighted interactions between individuals in a population. Some interesting 

attempts have been made to study simplified versions o f the algorithm, which allowed a 

better understanding o f the dynamics o f the system, and in particular of the influence o f  

the settings o f the parameters involved. The initial (published) attempts to build a theo

retical framework were presented by Ozcan and Mohan (1998), (1999), while the most 

prominent and extensive contributions in this regard are probably those undertaken by 

French mathematician Maurice Clerc (Clerc, 1999), (Clerc & Kennedy, 2002), (Clerc, 

2004), (Clerc, 2006a), (Clerc, 2006b), (Clerc, 2008a), (Clerc, 2008b), etc. Some other 

relevant contributions to the theoretical studies of PSO were presented in (van den

(Mendes, Kennedy, & Neves, 2004), (Kennedy, 2008), and (Poli, 2008).

The other main aspect o f the PSO algorithm that strongly influences its performance is 

the behavioural links between the individuals in the population, which are commonly 

referred to as the topology or structure of the neighbourhood. This affects the speed o f  

spread o f information, which in turn governs the speed of convergence o f the algorithm 

as a whole together with the coefficients’ settings. Some o f the most relevant works on 

the neighbourhoods topologies are (Kennedy, 1998), (Kennedy, 1999), (Suganthan, 

1999), (Richards & Ventura, 2003), (Mendes, 2004), (Li, 2004), (Kennedy & Mendes,

spite o f being currently applied almost exclusively to deal with complex mathematical

Bergh, 2001), (Trelea, 2003), (Jiang, Luo, & Yang, 2007), (Helwig & Wanka, 2008),
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2006), (Clerc, 2006a, pp. 87-101), (Mohais, 2007), (Abraham, Liu, & Chang, 2006),

(Miranda, Keko, & Duque, 2008), (Akat & Gazi, 2008), among others.

In order to deal with constrained problems, some external technique needs to be incor

porated into the algorithm. Given the similarities, most o f the constraint-handling tech

niques (CHTs) used in EAs are easily adaptable. Refer, for instance, to (Coello Coello, 

1999), (Coello Coello, 2000), (Hu & Eberhart, 2002), (Farmani & Wright, 2003), (Xie, 

Zhang, & Bi, 2004), (Takahama & Sakai, 2005), (Takahama, Sakai, & Iwane, 2006), 

(Fuentes Cabrera & Coello Coello, 2007), (Helwig & Wanka, 2007), (Innocente & 

Sienz, 2008), and (Venter & Haftka, 2008).

Other aspects to be considered are the size of the population (see (Carlisle & Dozier, 

2001), (Trelea, 2003), (Auger, et al., 2007), (van den Bergh & Engelbrecht, 2001), 

(DeBao & ChunXia, 2009), and (DeBao & ChunXia, 2009)); the form o f initialization 

(see (Clerc, 2008c), (Helwig & Wanka, 2008)); the number o f sociality terms (see 

(Forys & Bochenek, 2004), (Mendes, Kennedy, & Neves, 2004)); the synchrony o f the 

updates (parallel or sequential); the search length; etc.

4.2. Swarm Intelligence

The first mainstream in AI was the symbolic paradigm, where the units o f knowledge 

are represented by symbols which are then combined and handled directly by rules o f  

binary logic. While the advent o f fuzzy logic allowed introducing uncertainty, the con- 

nectionist paradigm -mainly consisting of the artificial neural network (ANN) approach 

to intelligence- already incorporated the concept o f emergence in the field. However, 

intelligence was still viewed as an individual trait, as the interacting components were 

artificial neurons within an individual. Although the intelligent behaviour was emer

gent, it was developed by mimicking the structure o f the individual human brain.

The term ‘Swarm Intelligence’ (SI) was coined in (Beni & Wang, 1989) to denote a 

class o f ‘cellular robotic systems’ (Beni, 2005). (...) Later, the term moved on to cover a 
wide range of studies from optimization to social insect studies, tosing its robotics context in the 
meantime. (Sahin, Girgin, Bayindir, & Turgut, 2008)
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Today, SI is a relatively modem discipline, which may be defined as the branch o f AI 

that deals with the collective behaviour that emerges from decentralized and self

organized systems, where self-organization occurs without a sense o f purpose. It is the 

property of a system as a whole, whose individual parts interact locally with one another 

and with their environment, inducing the emergence of coherent global patterns that in

dividuals are not aware of. Thus, instead o f a traditional sophisticated central controller 

that regulates the global behaviour, the latter emerges from cooperative interactions o f  

unsophisticated entities. The main applications are associated to optimization and robot

ics. In fact, the use o f SI in multi-robots system is known as swarm robotics, which 

deals with large numbers o f cheap and dispensable robots that intercommunicate locally 

with no central control. Thus, if  some individuals are lost or malfunctioning, the task 

can still be performed provided the number of swarm robots that remain operative stay 

above a critical threshold necessary for emergence to occur.

The analysis of an emergent system becomes more complex if  the individual compo

nents exhibit some intelligence o f their own. In addition, if  the analyzer is part of the 

system, perspective and objectivity are lost. Conversely, it is easy to observe that indi

vidual lives in colonies of social insects are not essential for the functioning o f the sys

tem. Furthermore, emergence is far more evident in these types o f organisms where in

dividual intelligence is negligible in relation to the emergent intelligence o f the system, 

which is known as Social Intelligence, Collective Intelligence, or Swarm Intelligence.

However, it is fair to note that despite describing the collective behaviour o f decentral

ized and self-organized systems o f both biological and artificial beings, the term SI is 

mainly used within the frame o f optimization and AI. SI commonly refers to (...) any 
attempt to design algorithms and distributed problem-solving devices inspired by the collective 
behaviour of social insect colonies and other animal societies (Bonabeau, Dorigo, & 

Theraulaz, 1999). Thus, it comprises a relatively new mainstream in AI -in  addition to 

the symbolic paradigm and ANNs-, where intelligence is viewed as a collective trait.

The same as intelligence, life can be viewed as a collective rather than an individual at

tribute. In addition, both intelligence and life can be thought of as having degrees rather 

than in absolute terms. Thus, an individual worker ant possesses a rather negligible de

gree of intelligence while also not being fully alive, since it is sterile, and the ability to
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reproduce is one o f the critical properties o f a living organism. Instead, the colony as a 

whole has the ability to produce offspring so as to perpetuate itself, and can therefore be 

thought o f as fully alive. It also exhibits a highly adaptive behaviour, which is a trait of 

intelligence1. These types of life forms are typically known as super-organisms, and 

their intelligence is emergent and superior to the aggregation o f those o f its components.

Arguably, the most successful Si-based optimization methods are Ant Colony Optimi

zation (ACO) and PSO.

4.2.1. Emergence

Emergence is a key concept in many somewhat related research fields such complexity, 

chaos, cellular automaton, and SI. Strangely enough, there is no general agreement on a 

concise definition o f the concept. Roughly speaking, a property o f a system is said to be 

emergent if  it rises from lower level interactions o f numerous simple elements of the 

system in a non-obvious manner. In artificial systems, the property is emergent if  it is 

not specifically implemented in a deterministic fashion. The resulting emergent property 

or behaviour o f the system is o f considerably higher complexity than those whose inter

actions generated it. Thus, the collective behaviour o f fish schools and bird flocks, as 

well as the self-organizing patterns in cellular automata, are emergent properties o f the 

systems, but not o f their individual components. An emergent property is a characteris

tic o f a group o f interacting elements that cannot be inferred by analyzing an individual 

in isolation. In artificial systems, they cannot be specifically implemented.

4.2.2. Self-organization

Bonabeau et al. (1999) argue that self-organization (SO) is a set of dynamical mecha

nisms in a system whereby structures appear at the global level from local interactions 

o f its components at a lower level. In other words, SO is the set of mechanisms that lead 

to the emergent pattern. In self-organizing systems, the internal organization increases 

automatically without the influence o f external elements.

1 David B. Fogel (1995) defined intelligence as the ability o f a (biological or artificial) being to adapt its behav
iour to meet its goals in a range o f environments.
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Kennedy & Eberhart (2001) offer a list of attributes commonly associated with SO:

o Self-organizing systems usually exhibit what appears to be spontaneous order.

o SO can be viewed as a system’s incessant attempts to organize itself into ever more

complex structures, even in the face of the incessant forces o f dissolution described 

by the second law o f thermodynamics.

o The overall system state o f a self-organizing system is an emergent property.

o Interconnected system components become organized in a productive or meaning

ful way based on local information.

3 Complex systems can self-organize.

3 The SO process works near the edge o f chaos.

In turn, Bonabeau et al. (1999) state that SO relies on four basic ingredients:

• Positive feedback. It is the response o f a system when an action that affects it in

duces it to respond in the same direction of change. For example, the case o f the 

pheromone-laying and pheromone-following behaviour observed in colonies of 

ants. A positive feedback that is not controlled by a negative feedback may run out 

of control, leading to the collapse o f the system.

• Negative feedback. It is the response o f the system when the action that acts on it 

induces it to respond in a reverse direction of change. This is a process that tends to 

keep things constant, helping to stabilize the emergent collective patterns and to 

prevent a system from crashing. The exhaustion o f food sources, the saturation of 

available workers, and the pheromone evaporation in ant colonies are good exam

ples o f stabilizing negative feedback in biological systems.

• Fluctuations. They comprise stochastic processes that introduce innovation, thus 

enabling a system to explore for new solutions.

• Multiple interactions’. Like emergence, SO can only be generated among a number 

o f individuals. There is usually a minimum number required for SO to take place.
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4.2.3. Division of labour

The Division o f Labour (DoL) is a decentralized process by which different individuals 

take over different tasks in parallel, without any central leader assigning the jobs. This 

cooperative, self-organizing phenomenon typically occurs in highly structured insect 

societies such as ant, bee, wasp, or termite colonies. In such developed social structures, 

different tasks such as guarding the nest, breeding, brood-care, and foraging need to be 

performed in parallel. This also results in individuals becoming more efficient as they 

gain experience by repetitively performing the same tasks.

In groups o f social animals composed o f only one type o f individuals, DoL is not a 

common phenomenon. Conversely, in more structured societies where individuals are 

not all anatomically equivalent, DoL usually takes place by means of genetic pressures. 

It is common to find different genetic groups -say queen, foragers, breeders, guardians- 

which exhibit predisposition to perform the task they are genetically more suitable for. 

However, the DoL process presents plasticity to the environmental challenges. If some 

external force changes the situation, and more individuals are required for a given task 

than there are suitable individuals available, individuals genetically less prepared for the 

task step up, and adapt their behaviour to the needs o f the colony. Thus, the number o f  

individuals required is matched even when some o f them are stretching their capabili

ties. And the most striking part o f this is that it all happens without central control.

4.2.4. Stigmergy

This is a mechanism of indirect communication by means o f individual alterations to the 

environment. The modification introduced by an individual stimulates the next action, 

either by the same or by a different individual. Thus, the environment stands for a work- 

state memory, so that the work can be continued by any member o f the group. The indi

vidual work is a behavioural response to the state o f the environment, which is in turn 

modified by such a work. Trail-laying and trail-following in insect colonies is a typical 

example of this kind o f communication.
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4.2.5. Biological foundations

The SI discipline found its inspiration on the observation o f the cooperative behaviour

individuals, in particular -but not exclusively- social insects.

In nature there is always a trade-off between the advantages o f gathering together and 

cooperate to achieve greater results, and the competition for the available resources 

when they are not plentiful. While EAs rely on competition and survival o f the fittest to 

improve the average performance o f the population, PSO relies on cooperation between 

the so-called particles. Therefore, in order to illustrate the advantages o f cooperation in 

social organisms in nature, the behaviour o f a few social biological organisms that in

fluenced the development of the SI field is briefly presented hereafter.

It is important to remark that the behaviour o f social animals, whether consciously or 

not, is not necessarily individualistic. One example is that o f a specialist ant taking on a 

different job it is not genetically prepared for, seeking the benefits o f the colony rather 

than its own. Another example is that o f noisy group vocalizations to inform the mem

bers o f a group about the size o f its population so as to regulate the rate o f reproduction 

and avoid overpopulation and shortness o f resources, which goes against the individual

istic animal instinct compelling them to pass their genes to the next generation. Another 

example widespread in the animal kingdom is parents ready to risk their lives for their 

offspring, against the survival instinct. Yet another illustrative example is that o f several 

prays that move in herds giving a warning call in the presence o f a predator, thus be

coming more vulnerable. Or during reproduction, when the mother becomes an easier 

pray or a handicapped predator during pregnancy. These and other examples of natural 

social behaviour show that social beings may renounce to some extent, consciously or 

not, to their individual convenience to seek the benefit of the group.

4.2.5.I. Amoebas

Perhaps the simplest social behaviour observed in the animal kingdom is that o f a group 

o f amoebas that self-organize to optimize their individual probability o f survival, as dis

cussed in (Kennedy & Eberhart, 2001). The amoeba is a single-celled organism that 

moves by alternating softening and hardening o f the protoplasm, feeds on bacteria, and

and resulting achievements o f animal societies composed of relatively non-intelligent
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reproduces by cell-division. When food becomes scarce, the amoebas that cannot find 

nutrients start emitting a chemical substance. In turn, the amoebas that detect the pres

ence o f this substance start emitting the substance themselves, while moving towards 

the areas where the concentration o f the substance is higher. When they meet other 

amoebas, they merge with them, eventually forming an aggregate single organism that 

can crawl around. This organism produces reproductive spores, which are released 

when a more favourable location is found. Some spores eventually become amoebas, 

which would then be situated in a more suitable environment. Thus, amoebas communi

cate through stigmergy, and switch their behaviour from individual to social and vice 

versa according to the challenges posed by the environment.

4.2.5.2. Social insects

The case o f the amoebas is probably the simplest kind o f Si-based behaviour, where SO 

o f individuals o f the same type takes place under environmental pressure. There are also 

cases o f insects in nature that are typically solitary insects until the environment occa

sionally forces them together, and trigger a gregarious phase that leads to group forma

tions and drastic change o f behaviour. Such is the case of the locusts, which under those 

conditions aggregate to produce massive collective migrations. The phenomenon is not 

easy to predict, but it is associated to the environment pushing together these insects 

that, if  possible, tend to avoid each other.

SO and SI are more frequent and most impressive in highly structured social groups 

such as bee, ant, wasp, or termite colonies. In these cases, there are groups o f anatomi

cally different individuals, which are genetically predisposed to perform certain tasks. 

Thus, the DoL is influenced by both the needs o f the colony and the genetic structure of 

the insects. Typical tasks within a colony that are performed by genetically different in

dividuals involve breeding, protecting the nest, and searching for food. If external fac

tors make it necessary, the DoL adapts to the needs to the swarm.

Despite the only few hundred brain cells that an ant is equipped with, and the individual 

rather random behaviour it exhibits, when interacting with other ants by means o f a set 

o f simple rules, their self-organizing emergent behaviour somehow enables them to 

build complex nest structures and near-optimal networks o f highways connecting food

73



VM.napiei

PARTICLE SWARM OPTIMIZATION Swansea University 
Prifysgol Abertawe

sources to the nest. Some termites in the north-east o f Argentina are able to build domed 

structures simply by following a small and simple set of rules that may be as follows:

1. Take some dirt in your mouth and moisten it.

2. Follow the strongest pheromone trail while depositing pheromone as you move.

3. Deposit the moistened dirt where the smell is strongest.

Since termites, like ants, individually display almost random behaviour, the first move

ments would seem random until a number o f pillars are initiated. This process presents 

positive feedback effect, since the pillars are placed where the pheromone concentration 

is higher, thus becoming more powerful attractors as the pillars grow. Since the termites 

are attracted by several pillars, they frequently end up in a critical point where the at

traction to either one or the other o f two opposing pillars is equally strong, making a 

random choice. Thus, the termites tend to approach both pillars from the sides that face 

one another, resulting in more dirt being deposited on those opposite sides o f the pillars. 

As the pillars ascend, they tend to get closer to one another, eventually meeting and 

forming an arch. When several pillars meet, the dome is formed. Since the pheromone 

trails evaporates, a certain minimum number of termites involved in laying a trail is re

quired for the positive feedback effect to take place. This prevents the formation o f a 

great number o f pillars, as well as the work on abandoned trails.

Like termites building a dome, foraging ants communicate through stigmergy. They ini

tially leave the nest in a random search for food, depositing pheromones as they move. 

If they find pheromone trails, they follow the one with the highest concentration while 

laying their own pheromones. Thus, this trail-laying and trail-following behaviour al

lows finding the shortest path from the nest to a food source, as the concentration of 

pheromones would be higher for shorter paths. There is always a small probability that 

an ant loses a trail, which allows for further exploration.

The other type o f communication displayed by social insects is a direct, individual-to- 

individual communication, such as the dancing o f a worker bee when it finds a food 

source. The complexity o f the dance is such that it encodes the abundance, the distance, 

and the direction o f the food source so as to induce potential recruits to leave the colony 

and exploit the food source advertised. The whole recruitment system self-tunes to con

trol the degrees o f exploration and exploitation o f known foraging sites.
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Notice the important difference between SO in bee and ant colonies, and those in amoe

bas and locusts. The former are highly structured, and individuals need to self-organize 

as they would not survive otherwise. Individuals in the group are not all genetically the 

same, and there typically exists a DoL. Amoeba and locusts are rather solitary beings 

which self-organize into social structures under environmental pressure only, and indi

viduals are all o f the same type. For further reading, refer to (Bonabeau, Dorigo, & 

Theraulaz, 1999) and (Beekman, Sword, & Simpson, 2008).

4.2.5.3. Fish schools and bird flocks

Some kinds o f fish schools and bird flocks orderly move about in a rather majestic fash

ion, as opposed to the swarming behaviour observed in insects. For instance, if  a preda

tor approaches a fish school, those who first notice the threat change direction. Sud

denly, every fish in the school changes direction almost at the same time, so as to match 

their neighbours’ new velocities. Some models of this behaviour have been proposed, 

suggesting that a single fish is attracted to a school, and that the attraction increases 

(while the rate o f increase decreases) with the size of the school.

Bird flocks behave in a similar fashion, for which many different models have been 

proposed. A well-known simulation of bird flocks was developed by Reynolds (1987), 

who proposed three basic rules for each so-called boid (artificial bird) to follow:

• Pull away before crashing into another bird (<collision avoidance).

• Try to match your neighbours’ velocities {velocity matching).

• Try to move towards the centre o f the flock {flock centering).

The implementation o f these rules resulted in realistic flock-like behaviour. Although 

the rules are entirely artificial, it is evident that natural animals try to avoid collision, 

while it is believed that a bird within a flock tries to keep the same distance to all its 

neighbours. Furthermore, it has been noticed that this kind of behaviour is more fre

quent in preys than in predators, and since a fish at the edge o f the school is more likely 

to be caught, it is only natural that it would try to move towards the centre o f the group.

Another influential simulation o f bird flocks is that o f Heppner & Grenander (1990), 

who observed that natural bird flocks do not have a leader, and therefore there is no cen-
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tral control. They implemented a simulation similar to that o f Reynolds, but now the 

birds are also attracted to a roost, and an occasional random force was implemented sel

dom deflecting the birds’ direction, just like a gust o f wind would do. The intensity of  

the attraction was programmed to increase with the decrease o f the distance to the roost. 

The result was a realistic flock-like choreography. To summarize, the artificial birds in 

(Heppner & Grenander, 1990):

• are attracted towards one another unless they get too close;

• if  they are too close, they repel;

• have the tendency to keep a target velocity;

• are occasionally knocked off by a random force resembling a gust o f wind;

• are attracted to a roost, whose position is known, where the closer they get to the

roost the stronger the attraction.

It is important to note that these simulations o f bird flocks were especially influential in 

the development o f the PSO basic algorithm in (Kennedy & Eberhart, 1995).

4.2.5.4. Human beings

We humans are the most social of animals: we live together in families, tribes, cities, nations, be
having and thinking according to the rules and norms of our communities, adopting the customs 
of our fellows, including the facts they believe and the explanations they use to tie those facts 
together. Even when we are alone, we think about other people, and even when we think about 
inanimate things, we think using language—the medium of interpersonal communication. 
(Kennedy & Eberhart, 2001, p. xiii)

Despite possessing a very powerful brain, a single human being that is bom and left 

alone in the world cannot leam much o f it in his whole lifetime. The achievements of 

humanity by far exceed those of even the greatest human minds. There are, neverthe

less, important differences with respect to the other social animals. The higher complex

ity and capabilities of the human mind result in the existence o f individual objectives 

that distort the systems discussed before. In addition, humans leam from experience and 

observation, and change their behaviour accordingly. Finally, there are different levels 

of social influence in addition to the direct contact with their peers. Namely, the behav-
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iour o f a human being is also affected by social rules and by culture, which is a kind o f

storage o f previous successful experiences o f other individuals with whom there has 

never been any kind o f direct interaction. Nevertheless, although individual intelligence 

may not be fully disregarded in human beings, it is still in a different scale when com

pared to the emergent capabilities o f social groups, societies, and humanity.

4.2.5.5. Swarm robots

In the early days o f robotics, the symbolic paradigm dominated the approaches to AI, so 

that the robot minds were typically implemented in a central executive processor. Hence 

the systems required inference engines to respond to the inputs received by the robot’s 

sensors. The problem was that, for increasingly complex environments the system re

quired more symbols and the inference engine more and more complex chains o f logic. 

As a result, the robot would need a long time to decide upon a response to the stimuli.

The advent o f multi-robot systems allowed working on robotics without a central con

troller. Brooks (quoted in (Kennedy & Eberhart, 2001)) proposed simple, independent, 

specialized robots, each of which would perform the tasks it was specifically pro

grammed to. While this eliminates the central control, each robot is still an autonomous 

agent whose behaviour is exactly as deterministically programmed to be. The behaviour 

of a so-called multi-agent system is more or less the sum of each agent’s contribution. 

Conversely, the application o f SI to multi-robot systems gives birth to Swarm Robotics, 

where every robot is the same, and the achievements o f the system go way beyond the 

aggregation o f the contributions o f its simple parts.

The numerous terms arising from the different approaches in multi-robot systems makes 

a concise definition o f swarm robotics necessary, so as to differentiate it from other 

multi-robot approaches such as distributed robotics, collective robotics, or cellular ro

botics. Merely having multiple interacting robots does not necessarily imply SO, emer

gence, or SI.

Swarm Robotics is the study of how a large number of relatively simple physically embodied 
agents can be designed such that a desired collective behaviour emerges from the local interac
tions among the agents and between the agents and the environment. (Sahin E ., 2005)

Broadly speaking, swarm robotic systems should exhibit three properties:

77



C 2 EC P A R T IC L E  SW A RM  OPTIM IZATION SwanseaUnlverelty
Prifysgol Abertawe

Robustness. The system should maintain its operability even in the case o f disturbances 

from the environment or malfunction (or loss) of some individuals. Of course, some 

minimum number o f units must remain operative.

Flexibility. The individuals o f the swarm must be able to coordinate their behaviours to 

cope with different tasks. The cooperative behaviour should be adaptive.

Scalability. The system must be able to operate for a wide range o f increasing swarm- 

sizes without excessive impact on its performance.

Note that these are also properties o f biological swarms and of self-organizing and SI- 

based systems. For a concise review, refer to (Sahin, Girgin, Bayindir, & Turgut, 2008).

4.2.6. Social learning

It has been argued before that the social behaviour o f human beings is more complex 

than those observed in the other social beings discussed earlier in this chapter. Some of  

the studies and experiments in social psychology that somehow influenced the devel

opment o f the PSO paradigm are discussed hereafter in this section.

In 1936, Sherif2 reported experiments demonstrating the convergence of people’s per

ceptions. He placed subjects in a dark room with a stationary spot o f light projected on a 

wall. When asked in isolation, the individuals tended to report that the spot had been 

moving3, although the range o f the movement reported varied from person to person. 

However, when they were asked to make the report in public, the reports tended to con

verge. In 1956, Asch4 reported that when subjects in an experiment were faced with the 

dilemma of giving the obvious true answer versus agreeing with the group, about a third 

of them chose to agree with the group in spite of knowing that the answer was plainly 

wrong. In 1965, Bandura5 announced the discovery of the ‘no-trial learning’, arguing 

that humans can leam a task without even trying it, by observing somebody else doing it 

with successful results. Note that the tendency to seek agreement manifested in Sherif s 

experiments, the conformism observed in Asch’s experiments, and Bandura’s social

2 Quoted in (Kennedy & Eberhart, Swarm Intelligence, 2001).

3 This is due to the ‘autokinetic effect’. Refer to (Kennedy & Eberhart, 2001, p. 202).

4 Quoted in (Kennedy & Eberhart, Swarm Intelligence, 2001).

5 Quoted in (Kennedy & Eberhart, Swarm Intelligence, 2001).
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learning, all support the belief that whenever people interact, they become more similar 

to one another. This is the key concept underlying some models o f social behaviour 

such us ‘Axelrod’s Culture Model’ and the PSO paradigm.

Latane6 suggested in his ‘social impact theory’ that the influence o f a group o f people 

over an individual is a function o f the strength, the immediacy, and the number o f peo

ple in the group. The strength is just a kind of social persuasiveness, and the immediacy 

is inversely proportional to the distance. The influence increases -although the rate of 

increase decreases- with the number o f individuals in the group.

For further reading on the aspects of, and studies in social psychology that influenced 

the development o f the PSO paradigm, refer to (Kennedy & Eberhart, 2001). For further 

reading on SI, refer, for instance, to (Bonabeau, Dorigo, & Theraulaz, 1999), (Kennedy 

& Eberhart, 2001), (Blum & Li, 2008), (Sahin, Girgin, Bayindir, & Turgut, 2008), and 

(Trianni, Nolfi, & Dorigo, 2008).

4.3. Ant Colony Optimization

The Ant Colony Optimization (ACO) method was proposed by Marco Dorigo (1992) in 

his Ph.D. thesis. The original algorithm was inspired by the foraging behaviour ob

served in some colonies o f Argentinian ants, which were able to find the nearly closest 

path from their nest to a food source without any previous knowledge. The basic forag

ing mechanism -already introduced in section 4.2.5.2- may be summarized as follows:

• Without relying on previous knowledge, each ant leaves the nest and starts an inde

pendent random walk, while depositing a trail o f pheromones.

• If an ant detects a pheromone trail, it follows the smell.

• If more than one trail is detected, the probabilistic choice to follow the one with the 

higher concentration is made. The stronger the scent the higher the probability.

• While no pheromone is found, the choice is random.

• Since choices are probabilistic, it is always possible that an ant loses a trail, in 

which case it explores for new alternative paths.

6 Quoted in (Kennedy & Eberhart, Swarm Intelligence, 2001).
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• Once an ant finds a food source, it returns to the nest, also laying a trail o f phero

mones on the journey back. The richer the food source the higher the concentration 

o f pheromones deposited.

• The shorter the path between the nest and the source, the higher the amount o f  

pheromones that accumulates in a given period of time. Thus, the paths followed by 

every ant tend to converge to the shortest path.

•  Since pheromones evaporate, paths which are not popular are lost.

The ant behaviour is governed by the needs o f the colony rather than by the goals o f the 

individual. Thus, the emergent global behaviour o f the colony allows the latter to find 

the shortest path between the nest and the food source, while a single isolated ant fol

lowing these simple mechanisms would simply die off.

The Travelling Salesman Problem (TSP) consists of finding the shortest tour visiting 

every other city only once, and returning to the initial city. It can be represented by a 

completely connected undirected graph o f nodes (cities) and edge weights (distances 

between cities). Considering that the problem can be viewed as a finite set o f paths, it 

can be handled directly by mimicking the ants foraging behaviour. Hence the original 

ACO algorithm -the ‘Ant System’-  was developed to solve the TSP and any other 

problem that can be formulated as the search for shortest paths through graphs.

A graph representing a four-city symmetric TSP is offered in Fig. 4.1. Since the prob

lem represented is symmetric, the distance between cities i and j  is the same as the one 

between j  and z. That is, 5iy = <5y7. The total cost or distance of the tour is the aggregation

o f all the partial distances. Variations of the problem include asymmetries. In order to 

solve this problem using an Ant System (AS) algorithm, there must be some concentra

tion o f pheromones associated to every edge throughout the whole search. The phero

mone concentration between two edges i and j  is also symmetric: Ttj = ry7. The basic

algorithm works by randomly initializing a colony o f ants, followed by every ant com

pleting a tour by choosing the cities according to a ‘state transition rule’. Once all tours 

are completed, the pheromone trails are updated according to a ‘global updating rule’.

4.3.1. The Ant System
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Fig. 4.1. G raph representing a four-city sym m etric TSP to be solved by an ant algorithm .

4.3.1.1. The state transition rule

As mentioned before, an ant in one city chooses the next one in its tour by making a 

choice that probabilistically favours the edges with higher concentrations o f  phero

mones. Note that pheromones are updated after the tour is completed, so that higher 

pheromones in one edge are associated with the edge being part o f some o f  the shortest 

tours, but not necessarily the shortest distance to the next city.

Given that cities can only be visited once, there is a list o f  feasible (or o f banned) cities 

for the next move. The calculation o f the probability with which the ant k  in city i 

chooses to move to city j  at time t is given by the state transition rule in Eq. (4.1).

(4.1)
p ^ = \  Z 7!'1 •I'/*]'seWki

0 otherwise

where:

Pheromone concentration in the edge linking cities i and j  at time step t.

fhi ~ ^ : Inverse o f  distance between cities i and j .

(3> 0 : Parameter setting importance o f pheromone in relation to distance.
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N ki : Set of feasible cities that remain to be visited by ant k located at city i.

A small amount o f pheromone is assigned to every edge at the beginning. As can be ob

served, Eq. (4.1) favours both shorter paths and higher concentrations o f pheromone.

4.3.1.2. The global updating rule

Once every ant in the swarm has built up its own tour, the concentration o f pheromone 

is updated on all edges according to the global updating rule shown in Eq. (4.2):

k=\

1
(4.2)

Tor *  ^ 4 °
k

0 otherwise

where:

0 < of < 1 : Pheromone decay parameter (evaporation).

L^] : Length o f the complete tour performed by ant k.

ly : Length o f the edge that joins the cities i and j .

m : Number of ants in the colony.

Thus, Eq. (4.2) updates the concentration o f pheromone taking into account both the 

pheromone-laying and the pheromone evaporation phenomena.

4.3.2. The Ant Colony System

Dorigo & Gambardella (1997) reported that the AS becomes too slow for more than 30 

cities. Therefore they proposed a modified version called the ant colony system (ACS). 

The latter differs from the AS in the implementations o f the ‘state transition rule’ and of 

the ‘global updating rule’, and in that it incorporates a ‘local updating rule’ as well.

4.3.2.1. The state transition rule

The probabilities for the next move in the ACS are calculated as in Eq. (4.3), which of

fers a balance between exploitation and a biased exploration of new solutions.
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if  £f(o,i) ^ ?o: 7 = arg m ftf i;1 • [>/,, f }
v ’  u e W L . ,  v '

otherwise:

f - U e (4-3>p(') =  iJ lliji  if  / e W
kil h

ieJft

= 0 otherwise

where:

U(Q,) : Pseudo-random number generated from a uniform distribution within
[0,1], resampled anew each time it is referenced

0 < q0 < 1 ' Parameter o f the system that regulates the relative importance o f exploita
tion ( q < q Q) versus a biased exploration (q > q 0).

: Pheromone concentration in the edge linking cities i and j  at time-step t.

(3>0  : Parameter setting importance o f pheromone in relation to distance.

_ 1
Vy ~ : Inverse o f the distance between cities i and j .

ij

N ki : Set o f feasible cities that remain to be visited by ant k located in city i.

If q0 = 1, the very best valid edge is chosen deterministically. If q0 = 0, the state transi

tion rule becomes the same as for the AS in Eq. (4.1).

This new ‘state transition rule’ allows a better exploitation o f the promising areas o f the 

graph, speeding up convergence -o f  course, at the cost o f lower exploration-.

4.3.2.2. The global updating rule

As opposed to the AS, the global updating rule in the ACS only updates the concentra

tion o f pheromone on the edges corresponding to the best tour found so far by any ant. 

That is, from the first up to the current time-step. Making use o f the evolutionary com

putation jargon, a ‘non-elitisf alternative consists o f updating the level o f pheromone 

on the best tour within the current iteration rather than on the best tour found so far. The 

latter would release the ‘convergence pressure’ thus enhancing exploration. Still, this 

update takes place once every ant has completed its tour.

Notice that this ‘global updating rule’ may increase the pheromone concentration of a 

tour at a given time-step even when no ant walked that path. The modified ‘state transi-
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tion rule’ and ‘global updating rule’ increase the convergence pressure, which guide the 

search towards the neighbourhood o f the best tour found so far faster.

r!<+1̂ = ( l -  a \ r f  +a- Ax\‘(0

1 (4.4)
- r -  if

gb
0 otherwise

where:

0 < a  < 1 : Pheromone regulation parameter (no longer just for the decay).

Lgb : Length o f the complete globally best tour found so far by any ant.

: Length o f the edge that joins the cities i and j .

4.3.2.3. The local updating rule

(...) The effect of local updating is to make the desirability of the edges change dynamically (...) 
without local-updating all ants would search in a narrow neighbourhood of the best previous tour. 
(Dorigo & Gambardella, 1997)

The local updating rule presents some more resemblance to what actually happens with 

real ants: the pheromone trail is updated every time an ant passes through. Thus each ant 

influences the ants that walk the same edge ‘later on’ within the same time-step. The 

local updating rule o f the ACS is as given in Eq. (4.5):

r f  = ^ - p ) - T f + p - A T  

A t  =  t„

where:

0 < p < 1 : Pheromone regulation parameter. 

t 0 : Initial pheromone level.

Two other alternative settings for Ax were also considered in (Dorigo & Gambardella, 

1997) for their experiments. The one in Eq. (4.5) returned one o f the two best results.
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Today, the family o f ACO algorithms includes numerous variants, some seeking per

formance improvement -which differ mainly in the pheromone updating rules-, and 

some aiming for different types o f combinatorial problems. In fact, there is some recent 

work on ACO algorithms applied to continuous problems (refer to (Blum & Li, 2008)).

The names given to the different ACO algorithms vary considerably in the literature. 

They can be referred to as ‘ant algorithms’; ‘ant colony algorithms’; ‘ant-system’; ‘ant 

colony system’; ‘ACO meta-heuristic’; etc. Some o f these names refer to the same type 

of algorithms, and some refer to different variants and adaptations. For further reading, 

see (Dorigo, 1992), (Bonabeau, Dorigo, & Theraulaz, 1999), (Dorigo & Gambardella, 

1997), (Dorigo & Stutzle, 2004), (Engelbrecht, 2005), (Blum & Li, 2008).

The PSO method was invented by social-psychologist James Kennedy and electrical- 

engineer Russell C. Eberhart (1995), inspired by earlier bird flock simulations framed 

within the field o f social psychology. In particular, Reynolds’ boids (1987) and Heppner 

and Grenander’s artificial birds (1990) strongly influenced their early developments. 

Therefore, the method is closely related to other simulations of social processes and ex

perimental studies in social psychology, while also having strong roots in optimization 

and AI. In the same fashion as ANNs can be viewed as models o f the human brain or as 

general mapping devices; and GAs can be viewed as models of genetic evolution or as 

optimization algorithms; the PSO paradigm can be thought o f either as a model o f social 

behaviour or as a problem-solving technique. Its applications, nevertheless, are mainly 

as an optimization method.

From the ‘social psychology’ point o f view, the method performs some simulation of  

social behaviour within some social network. The most successful individuals become 

dynamic leaders, while the less successful ones become followers. Nonetheless, roles 

may switch at any time so that the system is not centralized.

4.4. Particle Swarm Optimization

4.4.1. Social psychology viewpoint
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As briefly discussed in section 4.2.6, some o f the experimental studies in social psy

chology that influenced the development o f the method are Lewin’s field theory; Gestalt 

theory; Sherif s and Asch’s experiments; Latane’s social impact theory; Bandura’s no

trial learning; simulations of the spread o f culture in a population; and simulations of 

the behaviour o f social animals such as bird flocks and social insects. For further read

ing, refer to (Kennedy & Eberhart, 2001, pp. 187-284).

From the ‘optimization’ perspective, PSO is a gradient-free search method suitable for 

optimization problems whose solutions can be represented as points in an ^-dimensional 

space. While variables need to be real-valued in its original version, binary and other 

discrete versions o f the method have also been proposed. Refer, for instance, to 

(Kennedy & Eberhart, 1997), (Kennedy & Eberhart, 2001, pp. 289-299), (Mohan & Al- 

Kazemi, 2001), and (Clerc, 2004).

Since the method is not designed to optimize but to carry out procedures that are not 

directly related to the optimization problem, it is frequently referred to as a ‘modem 

heuristics’. Optimization occurs, nevertheless, without obvious links between the im

plemented technique and the resulting optimization process. It seems clear that the in

spiration o f the method was also strongly influenced by the earlier EAs, with which this 

method -and many others- shares numerous characteristics.

Gradient information is not required, which enables the method to deal with non- 

differentiable and even discontinuous problems. Therefore there is no restriction to the 

characteristics o f the objective function for the approach to be applicable. In fact, the 

function does not even need to be explicit.

From the AI point o f view, the PSO paradigm belongs to different branches such as Ar

tificial Life (AL), Computational Intelligence (Cl), and Swarm Intelligence (SI). The 

latter is concerned with the study o f the collective behaviour that emerges from decen

tralized and self-organized systems. Thus, PSO is a bottom-up Si-based approach be-

4.4.2. Optimization viewpoint

4.4.3. Artificial Intelligence viewpoint
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cause its ability to optimize is not specifically implemented in the code but emerges 

from local interactions among its individual parts and with the environment, which oc

curs without a sense o f purpose or central control. The system’s intelligent behaviour 

emerges in a higher level than the individuals’, evolving solutions without using the 

programmers’ expertise on the subject matter. Hence the problem per se is not solved 

but AI entities are programmed, which are expected to find a solution themselves.

4.4.4. General viewpoint

Either a ‘modem heuristics’ or a ‘Si-based optimizer’, the PSO algorithm is not de

signed to optimize but to perform a sort o f simulation o f a social milieu, where the abil

ity o f the population {swarm) to optimize its performance emerges from the cooperation 

among individuals {particles). While this makes it difficult to understand how optimiza

tion is actually performed7, it shows astonishing robustness in handling many kinds of 

complex problems that it was not specifically designed for. It has the disadvantage that 

its theoretical bases are very difficult to be understood deterministically. Nevertheless, 

considerable theoretical work has been carried out on simplified versions o f the algo

rithm, extrapolated to the full version, and supported by experimental results. Refer, for 

instance, to (Ozcan & Mohan, 1998);(Ozcan & Mohan, 1999); (Clerc, 1999); (van den 

Bergh, 2001); (Clerc & Kennedy, 2002); (Trelea, 2003); (Clerc, 2004); (Mendes, 

Kennedy, & Neves, 2004); (Clerc, 2006a); (Clerc, 2006b); (Jiang, Luo, & Yang,

2007);(Clerc, 2008a); (Clerc, 2008b); (Helwig & Wanka, 2008); (Kennedy, 2008); 

(Poli, 2008); and chapters 5 and 6 o f this thesis. For a comprehensive review of the 

method, the reader may refer to (Kennedy & Eberhart, 2001), (Engelbrecht, 2005), 

(Clerc, 2006a), and (Bratton & Kennedy, 2007).

The function to be minimized is commonly called ‘fitness function’ because o f the in

fluence o f the EAs. It is more appropriately referred to as the ‘conflict function’ from 

here forth due to the social-psychology metaphor that inspired the method. That is, each 

individual searches the space o f beliefs, seeking the minimization o f the conflicts 

among the beliefs it holds by using the information gathered by both its own experience 

and those o f others. Individuals seek agreement by clustering in the space o f beliefs,

7 Refer to (Kennedy, 2008) and (Clerc, 2008) for advanced reading on the subject.

Swansea University
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which is -broadly speaking- the result o f individuals imitating their most successful 

peers, thus becoming more similar to one another as the search progresses. The cluster

ing is delayed by their own previous successful experiences, which each individual is 

reluctant to disregard.

While the emergent optimization properties o f the PSO algorithm result from local in

teractions among particles in a swarm, the behaviour of a single particle can be summa

rized in three sequential processes:

Evaluation. A particle evaluates its position in the environment, given by the associated 

value o f the conflict function. Following the social psychology metaphor, this stands for 

the conflict among its current set o f beliefs.

Comparison. Once the particle’s position in the environment is evaluated, it is not 

straightforward to tell how good it is. Experiments and theories in social psychology 

suggest that humans judge themselves by comparing to others, thus telling better from 

worse rather than good from bad. Thus, the particle compares the conflict among its cur

rent set o f beliefs to those o f its neighbours.

Imitation. The particle imitates those whose performances are desirable or superior in 

some sense. In the basic PSO algorithm, only the most successful neighbour is imitated.

These three processes are implemented within PSO, where the only sign o f individual 

intelligence is a small memory. The basic update equations are as follows:

4.4.5. Basic algorithm

(4.6)

where:

v(') : / h coordinate o f the velocity o f particle i at time-step t.

x(f) : / h coordinate o f the position o f particle i at time-step t.

U(o,i) : Random number from a uniform distribution in the range [0,1] resampled
anew every time it is referenced.
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w, /w, sw  : Inertia, individuality, and sociality weights, respectively.

pbest  ̂  • / h coordinate o f the best position found by particle i by time-step t.

lbest;‘ : / th coordinate o f the best position found by any particle in the neighbour
hood o f  particle i by time-step t.

Thus, the performance o f  a particle in its current position is evaluated in terms o f the 

conflict function. In order to decide upon its next position, the particle compares its cur

rent conflict to those associated with its own and with its neighbours’ best experiences. 

Finally, the particle imitates its own best experience and the best experience in its 

neighbourhood to some extent. The general flow-chart is shown in Fig. 4.2.

Stopping criteria attained?

Yes

END

START

Initialize particles’ individual experience

Initialize particles’ positions and velocities

Find best social experience

Evaluate particles’ conflicts

Update particles’ velocities and positions, and evaluate their conflicts

Update each particle’s individual experience

Update best experience of each particle’s neighbourhood and/or of the swarm

Fig. 4.2. General flow chart for the canonical PSO algorithm .

As shown in Eq. (4.6), there are three coefficients that rule the dynamics o f the swarm: 

the inertia (w), the individuality (iw), and the sociality (sw) weights, where iw  and sw  

are also referred to as learning weights and their aggregation the acceleration weight 

(aw). The relative importance given to iw  and sw  leads to more self-confident or more 

conformist behaviour, while the random weights introduce creativity: since they are re

sampled anew for every time-step, particle, dimension, and tenn in Eq. (4.6), the parti

cles display uneven trajectories that allow for better exploration. In addition, resampling
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them anew for the individuality and the sociality terms (together with iw = sw) leads to 

the particles alternating self-confident and conformist behaviour. Every particle also 

tends to keep its current velocity, where the strength of this tendency is governed by w. 

The relative importance between w and aw results -broadly speaking- in more explor

ative or more exploitative behaviour o f the swarm. Different settings of the coefficients 

in Eq. (4.6) notably affect the behaviour of the swarm.

Regarding the name chosen for the paradigm, Kennedy & Eberhart (1995) argue that, 

although each member o f the population is mass-less and volume-less -typical charac

teristics o f a point-, the velocity and its acceleration are more appropriately applied to a 

particle. As to the term swarm, the emergent behaviour resembles a swarm rather than 

the original bird flock inspiration. In addition, they claim that the method adheres to the 

five principles of swarm intelligence (SI) articulated by Millonas :

1. The population should be able to carry out simple space and time computations.
2. The population should be able to respond to quality factors in the environment.
3. The population should not commit its activities along excessively narrow channels.
4. The population shouid not change its mode of behaviour every time the environment changes.
5. The population must be able to change behaviour mode when it’s worth the computational 

price.

4.4.6. Coefficients’ settings

In the original algorithm, Kennedy & Eberhart (1995) did not include the inertia weight, 

and suggested setting iw = sw = 2. However, the particles tended to diverge rather than 

cluster, performing the so-called explosion. It was found that if  the components o f the 

particles’ velocities were bounded as in Eq. (4.7), the explosion could be controlled.

if abs(v!f*)> ;. > 0 => v<° =sign(v<'))-vnlax/ (4.7)

Later, Shi & Eberhart (1998a) proposed the incorporation of the inertia weight (w) to 

control the explosion, while Clerc & Kennedy (2002) studied the trajectory of a simpli

fied one-particle system with stationary attractors and no random weights, developing a 

constriction factor (x) to both control the explosion and ensure convergence.

8 Quoted in (Kennedy & Eberhart, Particle Swarm Optimization, 1995)
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4.4.6.I. Surfing the waves

Ozcan & Mohan (1998), (1999) carried out the first attempt to theoretically formalize 

the dynamic behaviour o f the original PSO system (w = 1), although James Kennedy 

may have informally presented a similar analysis previously, in 1998. They simplified 

the algorithm by considering a single deterministic particle on a one-dimensional space, 

pulled by a stationary attractor p. Hence the attractor is as in Eq. (4.8):

p  = pbest = gbest (4.8)

Notice that there are no sub-indices and the font is italic because there is only one parti

cle and one dimension. Thus, calling the acceleration coefficient

+ $ 2 > (4.9)

the velocity and position update equations become as in Eq. (4.10):

(4.10)

Ozcan & Mohan (1998) assumed that p  and (f> were constants, and the initial conditions 

shown in Eq. (4.11).

v('=0>=v(0)

x('=0) =.x(0)
(4.11)

Thus, the recurrence relation in Eq. (4.12) was obtained, which they solved using gener

ating functions to yield the closed form of the particle’s position shown in Eq. (4.13).

jc(/) = ( 2  — (f)' jc(< 1} — x(t 2) +</>-p (4.12)

xU) = a 2 - 4  + 8 2 - 4 - 8
+ P (4.13)

where
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S = ^ 2 - 4-0

p  ~ p \ {$ + </>) v(0)
2-5  S

a  = x (0) - p - p

(4.14)

Ozcan & Mohan (1998) studied the trajectory o f the particle governed by Eqs. (4.13) 

and (4.14) for the particular case where:

That is, the particle has already visited the attractor. Under those assumptions, they ana

lyzed the trajectory for a few particular values of (f> that comprise boundary cases.

8 is real for (j) = 0 and for (j> >4 (of course,  ̂< 0 is irrelevant). The case o f $ = 0 is also 

of no interest, as the particle is not pulled by the attractor and hence moves in a straight 

line with the initial velocity. For $  ̂4, the trajectory o f the particle is oscillatory with 

increasing amplitudes, bounded by exponential functions, as described by Eq. (4.13).

C om plex b

8 is a complex number for 0 < <j> < 4 . Again, for the particular case o f Eq. (4.15), Ozcan 

& Mohan (1998) presented the trajectory equation for complex 8 as in Eq.(4.16):

This equation implies that the trajectory of a simple particle in complex 8 zone is a sinusoidal 
wave and our choice of parameters determines the amplitude and the frequency of the wave. 
(Ozcan & Mohan, 1998)

The domain of $ was divided in four regions and five cases of interest:

(4.15)

R eal b

(4.16)

Case 1: 0 <(/>< (2 -V 3  . M  < 1 , and the amplitude o f the sine wave increases as (f> de

creases.
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Case 2: (2 - V 3 j < ^ < 2 . ||<?| increases from ‘1’ to ‘2 ’ as (j> increases, and hence the 

amplitude o f the sine wave decreases with <j>.

Case 3: ( j) -2 . |<?j| = 2 , and the trajectory equation becomes x(/) = v(0) • sin

amplitude o f the sine wave increases with 0 .

Case 5: (2 + V 3 )< ^ < 4 . ||£ | > 1, and the amplitude o f the sine wave increases with

analysis was extended in (Ozcan & Mohan, 1999) to consider the individual and the so

cial attractors separate in the expressions; sub-indices in the equations to account for 

multi-dimensional spaces; the study o f the step sizes; and the trajectory closed form ex

pression for complex 8 in polar coordinates -including the cosine term (dropped off un

der the assumption x(0) = p ) - .  Thus, they argue that the particle does not really fly over 

the search-space but rather surfs it on sine waves. The particle is then attracted by the 

weighted average o f the two best experiences, moving in step sizes randomly obtained 

from a sinusoidal wave. According to the different cases analyzed, the type o f wave 

caught would be determined by the random weights used in the random averaging. They 

also claim that the vmax constraint seems to help the particle jump onto another wave.

4.4.6.2. Constriction factor

In a similar fashion as Ozcan & Mohan (1998), (1999), Clerc & Kennedy (2002) ana

lyzed the trajectory o f the deterministic particle for the original PSO algorithm. That is, 

without the inertia weight. In addition, they developed constriction factors aiming to 

control the explosion and ensure convergence. They built a system of two recurrence 

relations of first order that describes the simplified system by using the change o f vari

ables in Eq. (4.17):

Case 4: 2 < $ < (2 + V3 j. ||<?j| decreases from ‘2’ to ‘1* as  ̂ increases, and hence the

Note that their analyses and conclusions are valid under the assumption of x (0) = p  . The

(4.17)

Thus, the system o f recurrence relations is as shown in Eq. (4.18):
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0 - 1)vw = v (l- l)+<f>-y 
y ) = _v(M) + ( (4.18)

The system can be expressed in matrix notation as in Eqs. (4.19) and (4.20):

pU) _ ,0 )

y ( 0
= = M ’ -Pm (4.19)

M  =
l 4> ' 

- l  ( l - ^
(4.20)

The eigenvalues of the system matrix Mare offered in Eq. (4.21).

} $ | t/^2- 4 <t> <!> f r
2 2 2 2

_ j  <t> $ Y
2 2 2 2

(4.21)

By diagonalizing the matrix o f the system M, Clerc & Kennedy (2002) showed that the 

position o f a particle at any time-step would depend only on the initial conditions and 

on its eigenvalues raised to the power of the corresponding time-step.

In a similar fashion as Ozcan & Mohan (1998) solved the recurrence relation, Clerc & 

Kennedy (2002) considered continuous9 rather than discrete10 time, and solved the cor

responding second order differential equations. The roots of the characteristic polyno

mial are the same as the eigenvalues of the system matrix M  in Eq. (4.21). Hence the 

analytic representation of the system is as follows:

(0  1 , 1 vw = Cj• e, + c2 • e2

y (t) \ e x ~ \ ) + c 2 ' e 2 ' ie i  ~  O)
9

(4.22)

9 The ‘analytic point o f view’
10 The ‘algebraic point o f view’



' V  ’ V®
C *E C  PA R TIC LE SW A RM  OPTIM IZATION

Prifysgol Abertawe

where c\ and C2 are calculated according to the initial conditions. Since time is continu

ous here, if  at least one root is negative, the two variables o f the system become com

plex for non-integer values o f time t.

Going back to discrete time, if  at least one o f the eigenvalues is not smaller than ‘1’, 

Clerc & Kennedy (2002) proposed to build a surrogate system whose eigenvalues (e \  

and e’2) do comply with the convergence condition. For that purpose, they proposed the 

incorporation o f five coefficients to the system, whose values could be chosen so as to 

ensure convergence. Such a system is shown in Eq. (4.23):

f v(/+1) = a  • v(/) + P  • (j) - y {t)

[y (/+1) = - y - v {t)+ (d -r j- ( f ) ’y {t)

Hence the system matrix is as in Eq. (4.24):

(
M  =

a  ^

-r  (* -,* ) (4"4)

Then, if  the system in Eq. (4.18) does not comply with the convergence condition, then 

constriction coefficients (also factors) are applied as in Eq. (4.25):

e\ = X \’ e\, (4.25)
e 2 — %2 ’e2

where the eigenvalues o f the surrogate system are forced to have a magnitude smaller 

than ‘1’. Thus the constriction factors are calculated as the ratio between the eigenval

ues o f the new system and those o f the original system. Refer to (Clerc & Kennedy,

2 0 0 2 ) for the details o f the calculations.

According to how the added coefficients (a, fi, 7 , 6 , rj) are correlated, Clerc & Kennedy 

(2 0 0 2 ) studied different classes (also types) o f constriction; namely, class 1 and its deri

vations class 1 ’ and class 1 ”, and class 2. For details on these classes, refer to their 

original work (Clerc & Kennedy, 2002). The only constriction type considered in this 

thesis is the type 1 ” constriction because it is the only one that maintains the original, 

intuitive concept o f the velocity as the difference between two consecutive positions.
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Constriction type 1 ”

For this constriction type, the added coefficients are correlated as in Eq. (4.26):

a  = P  = y  = rj 

For simplicity, Clerc & Kennedy (2002) also suggest

5  = 1

Therefore, with /  instead o f a, the system matrix is as in Eq. (4.28):

M  = x x-<!> 
r x

(4.26)

(4.27)

(4.28)

From Eq. (4.25),

X < mm
ie'I \enj

(4.29)

Thus, if  (j) > 4 in the original system, the constriction factor in Eq. (4.30) is applied.

X =
2'K

0 < K < 1

Translating this into the original PSO equation yields Eq. (4.31):

vf  =  X ■ +  i w ' ^ ( O J ) '  [p b e s t^  - x t ' ]) +  • U (0J) ■ (lbest%-') -

4 ) = 4 ‘° + ̂ )

(4.30)

(4.31)

Since  ̂ is a random variable, it is typically replaced in practice by the acceleration 

weight11, which comprises its upper bound (safe side). Thus the constriction factor to be 

applied in Eq. (4.31) is commonly calculated as shown in Eq. (4.32):

11 Note that the term ‘acceleration coefficient’ may refer in the literature to either one o f the individuality and 
sociality weights, whereas ‘acceleration weight’ in this thesis stands for their aggregation.
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x =

2 K

2 -  (iw+ sw) -  ̂ (iw + sw)2 -  4 • (iw+ sw)

K

0  < AT < 1

if  (/w + sw )> 4

otherwise
(4.32)

4.4.6.3. Inertia weight

Shi & Eberhart (1998a) theorized that the inertia o f the particles with respect to the ac

celeration terms should be adapted to the different problems. Therefore a new parameter 

called ‘inertia weight’ (w) was introduced into the original PSO algorithm. Today, the 

most widespread formulation includes the inertia weight in the velocity update. Such a 

formulation is referred to as the classical or canonical PSO method.

This w plays the role of balancing the global search and local search. It can be a positive constant 
or even a positive linear or nonlinear function of time. (Shi & Eberhart, 1998a)

Shi & Eberhart (1998a) ran experiments with the canonical PSO algorithm optimizing 

the 2-dimensional Schaffer f6  function (refer to Appendix 2) within a feasible space de

limitated by [-100,1 OO]2 . They used a swarm of 20 particles; vmax = 2; iw = sw = 2; and 

the maximum number o f time-steps tmax = 4000. Keeping these settings fixed, different

values o f the inertia weights were evaluated. The conclusions were that it is a good idea 

to choose w from the range [0.9,1.2]. To reach this conclusion, they took into account 

the number o f iterations required to find the global optimum, and the number of failures 

in finding it. It was also reported that a linearly decreasing inertia weight from 1.4 at the 

beginning to 0 at the 4000th iteration produced no failure, and the average number of 

iterations required to find the optimum was smaller than when using a fixed inertia 

weight in the range [0.9,1.2]. Therefore, not only does w allow balancing the relative 

importance between the particles’ inertia and acceleration for different problems, but it 

also enables the system to perform a wider search at the beginning, while gradually nar

rowing the search as time progresses.

However, the limitation o f the maximum velocity acts as a constraint for the exploration 

abilities o f the algorithm: if  vmax is set too low, the algorithm behaves as a local search
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method no matter which w is chosen. Conversely, if  vmax is set larger, the exploration 

ability is mainly ruled by the inertia weight.

Note that the terms ‘exploration’ and ‘exploitation’ are frequently used here in their 

general semantic rather than in their technical meaning, as it is also widely used in the 

literature. For instance, Ben Ghalia (2008) states that (...) Exploration is the ability of the 
search algorithm to explore various regions of the search space in order to locate promising good 
solutions. Exploitation is the ability to conduct a thorough search within a smaller area recognized 
as promising in finding the optimal solution. For a formal definition o f exploration and ex

ploitation, the reader may refer to (Naudts & Schippers, 1999), although the applicabil

ity o f those definitions is limited to a specific search algorithm, non-population-based, 

and with no memory. Differently, Clerc (2008a) proposes a means o f quantifying ex

ploitation in PSO as the ratio between the number of particles inside a given local ex

ploitation area (defined in terms o f the particles’ individual best experiences) and the 

total number of particles in the swarm.

Since both vmax and w control the exploration ability -as well as the explosion- o f the 

algorithm, Shi & Eberhart (1998b) suggest the removal o f vmax, passing all the control

o f the global exploration ability to w. Since a larger w leads to better exploration and a 

smaller w leads to better exploitation, a decreasing w  seems to be a reasonable choice.

Thus, Shi & Eberhart (1998b) ran experiments to analyze the performance o f the algo

rithm for different combinations o f w and vmax. For each setting, the algorithm was run 

30 times, optimizing the Schaffer f6  benchmark function. The results showed that for 

increasing values of vmax, decreasing values o f w were required to find the global opti

mum without any failure, and faster. However, the decrease stopped at w = 0.80, to the 

extent that the best w did not change when vmax was virtually removed (vmax = xmax).

Hence Shi & Eberhart (1998b) suggest that w = 1 is a good choice for a small vmax, 

while w = 0.80 is appropriate for a large vmax. If a convenient setting for vmax is not 

evident, they suggest setting vmax = xmax and w = 0.80 as a starting point. Note that the 

suggestion of vmax = xmax assumes symmetric interval constraints. Generalizing, vmax

should be set to half the feasible interval in each dimension. Shi & Eberhart (1998b)
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also tested a time-decreasing inertia weight, from 1 to 0.40 in the first 1500 time steps,

performance with regards to robustness, convergence rate and variance. This last setting 

is more in line with the current trend to keep the inertia weight smaller than one.

It must be noted, however, that the conclusions in (Shi & Eberhart, 1998a) and in (Shi 

& Eberhart, 1998b) were derived from the test on a single, 2-dimensional problem.

Shi & Eberhart (1999) continued to experiment with linearly decreasing inertia weights, 

and compared their results to those previously obtained in (Angeline, 1998), where a 

comparison between the original PSO and a well-developed EP algorithm was offered. 

The conclusions were that the results obtained by the PSO algorithm with a linearly de

creasing inertia weight from 0.90 to 0.40 were noticeably better than those obtained by 

the original PSO and by the EP algorithm in (Angeline, 1998). Surprisingly, the algo

rithm did not appear to be sensitive to the population size. However, although the algo

rithm displays fast convergence, the linearly time-decreasing inertia weight results in 

the lack of exploration at the last stages of the search.

4.4.6.4. Other influential work on coefficients settings

Other influential work on the study o f the influence o f the coefficients in the dynamics 

o f the particle swarm optimization algorithm are those in (van den Bergh, 2001) and in 

(Trelea, 2003). Both works are highly recommended to the reader.

van den Bergh (2001) took an approach similar to that in (Ozcan & Mohan, 1998), solv

ing the recurrence relation including the inertia weight. They demarcated a convergence 

region, and carried out a series o f experiments to map the values of the roots o f the 

characteristic polynomial with the maximum magnitude.

In turn, Trelea (2003) took an approach more similar to that in (Clerc & Kennedy, 2002) 

in the sense that he solved a system of two first order linear recurrence relations rather 

than one second order linear recurrence relation, although the variables involved are not 

the same. He also added coefficients to every term o f the two basic PSO update equa

tions (velocity and position), although the redundant ones were nicely removed after

wards, returning to the canonical PSO equations. These equations maintain the original 

concept o f two consecutive positions differing in the velocity, as opposed to constriction

keeping it constant for the remainder of the search. This last setting resulted in the best
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other than Type 1 ” in (Clerc & Kennedy, 2002). Trelea (2003) thought o f the PSO sys

tem in terms o f the ‘dynamic system theory’, and argued that the necessary and suffi-

system matrix have a magnitude smaller than ‘1’. Thus, he obtained a ‘convergent do

main’; a ‘harmonic oscillatory domain’; and a ‘zigzagging domain’.

Although derived from different analyses, using different solving techniques, and ob

taining different expressions, the convergence regions obtained in (Trelea, 2003) and in 

the next chapter of this thesis coincide. In turn, the convergent area reported in (van den 

Bergh, 2001) is included in the former two, only missing a triangle where the inertia 

weight take on negative values (no practical use after all).

A few authors dared take the next step and incorporate randomness in the theoretical 

analyses o f PSO. While this is beyond the scope o f this thesis, the reader is encouraged 

to refer to (Clerc, 2006b), (Jiang, Luo, & Yang, 2007), and (Poli, 2008).

Adaptive coefficients are not considered in this thesis, and the subject is left for future 

work. A popular, fully adaptive PSO is the so-called TRIBES in (Clerc, 2006a) and in 

(Cooren, Clerc, & Siarry, 2009)13, while Chen et al. (2007) considered an adaptive con

striction factor. For additional theoretical work on PSO, refer to (Cui & Zeng, 2004), 

(Clerc, 2006b), (Kennedy, 2008), (Clerc, 2008b), and (Helwig & Wanka, 2008).

4.4.7. Neighbourhood topology

Kennedy & Eberhart (1995) developed the original PSO considering that each particle 

is able to interact with any other particle in the swarm, thus forming a fully connected 

social network. This type o f neighbourhood -commonly known as ‘global’, ‘fully con

nected’, or ‘star’ topology- offers a fast convergence rate at the expense o f exploration. 

All particles are pulled by the same social attractor, so that there is a risk o f premature 

convergence, unless it is frequently updated in scattered regions o f the search-space.

Eberhart & Kennedy (1995) proposed the first local topology, where each particle is 

able to interact with only k other socially connected particles. This topology may be re

12 Position coinciding with the attractor and velocity equal to zero
13 Also in: http://clerc.maunce.free.fr/pso/

cient condition for the equilibrium point12 to be stable is that both eigenvalues of the
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ferred to as the ‘A;-best topology’ or as the ‘ring topology’ with k neighbours. Some au

thors call ‘ring topology’ to the particular case o f ‘A>best topology’ where k = 2. When a 

neighbourhood topology is referred to plainly as ‘local topology’, it typically refers to 

the ring structure. This neighbourhood takes the form of the fully connected topology 

when k = m - 1 ,  with m being the number of particles in the swarm. Each neighbour

hood is then composed o f k + 1 particles, k o f which overlap with the next neighbour

hood thus producing the transfer o f information between them. Therefore every particle 

is - i f  not directly- at least indirectly connected to every other. The last neighbourhood 

overlaps with the first. Note that the neighbourhoods are typically defined topologically, 

so that neighbouring particles are not necessarily near one another in the search-space.

Eberhart & Kennedy (1995) ran experiments with the original PSO (w = 1) for one 

global and two local ring topologies. The first local one with two neighbours (k = 2) and 

the other with 6  neighbours (k = 6 ). They claimed that the local versions are more reluc

tant to getting trapped in local optima because a number o f groups o f particles sponta

neously separate and explore different regions, although this comes at the cost o f a 

higher number o f iterations, on average, to meet a given error level.

Carlisle & Dozier (2001) also experimented on different neighbourhood sizes, and ar

guably claimed that the global neighbourhood should be preferred as it requires less 

work to achieve the same results.

While countless topologies can be designed, three typical ones are shown in Fig. 4.3. 

The topology labelled ‘a)’ is the original fully connected topology, where every particle 

is connected to every other. Thus the neighbourhood-size equals the swarm-size (m), 

and every particle is informed by m -1  neighbours. The topology labelled ‘b)’ is the so- 

called wheel topology, where only one particle -the centre o f the wheel- is connected 

with all others, so that the size o f its neighbourhood equals the swarm-size (m). In con

trast, all other particles in the swarm are connected with this particle only, so that their 

neighbourhoods are composed o f two particles: the particle itself, and the centre of the 

wheel. The topology labelled “c)” is the ring topology with two neighbours, where 

every particle is connected to two topologically immediate particles, and every 

neighbourhood overlaps with the previous and with the next ones in two particles (i.e. 

neighbourhood-size = 3). The ring topology can be extended to any number of
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neighbours, where the overlapping is always given by (neighbourhood-size -  1) parti

cles. Therefore, there are as many neighbourhoods as there are particles.

It is self-evident that the local versions are better suited to avoid premature convergence 

and escape poor local optima, but convergence might be so slow that either a fine-grain 

search does not take place and compliance with constraints is more likely to fail or a 

higher computational cost is required. A global neighbourhood speeds up convergence, 

and helps ensure that feasible solutions are found and the search is fine-grained, but it is 

more likely to get trapped in suboptimal solutions. Compared to the latter, the wheel 

topology has the speed o f spread o f  information reduced by the centre o f the wheel, 

which acts as a sort o f buffer.

Fig. 4.3. a) fu lly connected topology, where ne ighbourhood-size equals swarm -size; b) wheel topology, where 
ne ighbourhood-size equals swarm -size for one particle and two fo r the rest; c) ring topology with neighbourhood-size 
equal to three.

Some o f the experiments and studies in social psychology that influenced the develop

ment o f the PSO paradigm -originally  intended as a simulation o f  social behaviour- 

have been acknowledged and summarized in sections 4.2.6 and 4.4.1. James Kennedy 

(1999) carried out a systematic, experimental and statistical study o f the influence o f  the 

social networks in the performance o f the algorithm. Such a study was also inspired by 

theories and studies in social psychology; namely, Milgram (1967)’s experiment on the 

number o f links required to connect two people selected at random; Granovetter 

(1973)’s weak ties theory arguing that information travelling distant acquaintances is 

very important because it may bring innovation to the ( ‘strongly-tied’) group; and Hut

chins (1995)’ mega-minds study showing that groups o f networks converge on optima 

when there are a moderate number o f  connections among them whilst they converge on 

poor solutions when the cognitive structures are highly connected; plus Watts and Stro-
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getz (1998)’s sm all world effect arguing that randomizing a small proportion o f connec

tions in a regular ring lattice maintains a high level o f clustering14 but greatly reduces 

average distance. All these works are cited in (Kennedy, 1999).

Therefore, Kennedy (1999) investigated and experimented on the global, ring (k  = 2), 

wheel, and random topologies. Several degrees o f small-world shortcuts were studied 

for the ring and wheel topologies (meaningless on the others). It was found that the 

neighbourhood topology has a critical effect on the performance o f the algorithm, and 

that the effect was problem-dependent.

Kennedy & Eberhart(2001) also carried out experiments in order to compare the ring 

and the wheel topologies. The results suggested that the appropriateness o f  a neighbour

hood topology is problem-dependent, in agreement with (Kennedy, 1999).

Other neighbourhood topologies which are also becoming somewhat classical are the 

‘von N eum ann’ or ‘Square’ topology in (Engelbrecht, 2005, p. 109) and in (Kennedy & 

Mendes, 2006) formed by arranging the population in a grid and connecting neighbours 

above, below, to the right, and to the left; and the ‘Stochastic Star’ topology in 

(Miranda, Keko, & Duque, 2008). The ‘von Neum ann’ topology is shown in Fig. 4.4 

whereas the ‘Stochastic S tar’ topology is a sort o f generalization o f the ‘global topol

ogy’: in each iteration and for each dimension o f  the search-space, there is a probability 

7?’ that a particle will not access the gbest information and therefore would move only 

under the effects o f  the inertia and the individual memory (pbest).

-o -

Fig. 4.4. ‘von N eum ann ’ or ‘Square ’ topo logy (from  (Kennedy & Mendes, 2006)).

W hile the optimal neighbourhood topology is problem-dependent, Suganthan (1999) 

proposed dynamic neighbourhoods where the social attractor varied from the local to

Clustering is defined  by the average num ber o f  neighbours that any tw o conn ected  nodes have in co m m on .
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the swarm’s best experience. Thus, the social best experience to be considered in the 

velocity update o f a given particle i at a given iteration it is the global best if  the ine

quality in Eq. (4.33) is true. Otherwise, a neighbourhood is defined for each particle i as 

all particles j  which comply with the inequalities shown in Eq. (4.34).

where dist(\j,X i) is the distance between the particle i and its potential neighbour j .  Other 

dynamic neighbourhood topologies in the literature are those in (Richards & Ventura,

2003), (Abraham, Liu, & Chang, 2006), (Mohais, 2007), and (Akat & Gazi, 2008).

Maurice Clerc (2006a, pp. 87-101) offers an innovative view of the sociometry in PSO, 

as the swarm and the storage o f the particles’ best experiences are thought of as two dif

ferent swarms: the ‘explorer swarm’, and the ‘memory swarm’. (...) This more compli
cated representation offers more freedom of configuration, for example by modifying the number 
of memories or by making them communicate directly with each other. (Clerc, 2006a)

Numberless neighbourhood topologies are possible, and the optimal design is problem- 

dependent. For a comprehensive review of neighbourhood topologies, refer to 

(Kennedy, 1998), (Kennedy, 1999), (Suganthan, 1999), (Richards & Ventura, 2003), 

(Mendes, 2004), (Li, 2004), (Kennedy & Mendes, 2006), (Clerc, 2006a, pp. 87-101), 

(Mohais, 2007), (Abraham, Liu, & Chang, 2006), (Miranda, Keko, & Duque, 2008), 

(Akat & Gazi, 2008), among others.

4.4.8. Constraint-handling

The PSO method requires a constraint-handling technique (CHT) incorporated to be 

able to deal with constrained problems. These CHTs can be classified according to the 

way constraints are treated (refer to (Koziel & Michalewicz, 1999), (Engelbrecht, 2005, 

pp. 29-30), (Takahama, Sakai, & Iwane, 2006), (Innocente & Sienz, 2008), and 

(Worasucheep, 2008)). The following 6  groups are considered here:

3 • it + 0.6 • m axit > 

m axit
(4.33)

ma:
3 -it + 0.6 • maxit

— ----------- <0.9
maxit

(4.34)
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4.4.8.1. Methods that use constraints only to evaluate feasibility

These methods allow infeasible solutions, although they are ignored. The search is 

started with one or more feasible solutions, and all infeasible solutions generated are 

plainly disregarded. An example of this is the preserving feasibility strategy (PF) ini

tially proposed by (Hu & Eberhart, 2002) -also used by (Hu, Eberhart, & Shi, 2003)-, 

which was the first method to be applied to the PSO algorithm, to the best o f my knowl

edge. This technique requires the feasibility o f the initial swarm, and the search is not 

guided through infeasible space. While particles can fly over infeasible regions, they are 

pulled back to feasible space as infeasible positions are not stored in memory. Its advan

tages are that a feasible solution is guaranteed, and that it only requires two small modi

fications to the unconstrained algorithm: successive random initialization until a feasi

ble swarm is generated, and the feasibility condition for the update o f the best experi

ences. Its drawbacks are that the random initialization might be extremely time- 

consuming or impossible for low feasibility ratios o f the search-space, and the lack of 

exploration o f infeasible space. It may not be possible to explore feasible islands.

4.4.8.2. Methods that consider f ix )  and cv(x) separately

These methods coincide with the previous group except when comparing two infeasible 

solutions, whose comparison is based on their constraint violations (cv). Therefore, in

feasible space is also explored, without additional objective function evaluations (FEs). 

Thus, comparisons between feasible solutions are based on the objective function; a fea

sible solution is always preferred over an infeasible one; and infeasible solutions are 

compared based on constraint violations (cv). As a safety mechanism, if  the latter are 

the same, comparisons are based on the objective function. The problem is viewed as a 

bi-objective problem, where the objective o f finding feasible solutions is given absolute 

priority over the objective of minimizing the objective function.

Toscano Pulido & Coello Coello (2004) proposed a mechanism to handle constraints in 

PSO that can be viewed as a PF with the addition of comparisons between infeasible 

particles carried out based on their aggregated normalized constraint violations. The 

normalization is performed by dividing each individual constraint violation o f a particle 

by the highest corresponding constraint violation in the population. Thus, the overall
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violation is the aggregation of all the normalized ones. Some o f several similar mecha

nisms are the feasibility-based rule in (He & Wang, 2007); the e Constrained Method 

implemented in (Takahama & Sakai, 2006) and in (Takahama, Sakai, & Iwane, 2006) -  

where the e Constrained Method already includes a tolerance for the constraint viola

tions-; and the CHTs in (Munoz Zavala, Hernandez Aguirre, & Villa Diharce, 2005) 

and in (Munoz Zavala, Hernandez Aguirre, Villa Diharce, & Botello Rionda, 2006). 

Likewise, Wang & Yin (2008) implemented a related mechanism that also considers the 

objective function values and constraint violations separately, but ranking and selection 

operations are performed and objective function information may also be used to guide 

the search through infeasible space15.

The main drawbacks of these methods are that the objective function information is 

mainly ignored in highly constrained problems, and that a very poor feasible solution 

would be given priority over a good, near-feasible solution.

4.4.8.3. Methods that combine/(x) and cv(x)

These methods can also be viewed as optimizing two objectives, but now minimizing 

constraint violations is not given absolute priority but the two objectives are combined 

into a single value. Popular techniques are the ‘penalization methods’ (PMs), which 

transform the original constrained problem into an unconstrained one by penalizing the 

objective function associated with infeasible solutions. Thus, the relative priority given 

to the objectives is somewhat weighted. Many different kinds o f PMs can be found in 

the literature according to the way the penalization is calculated.

The advantage o f these methods is that they use both objective and constraint functions 

information within the infeasible space to smoothly guide the search towards more 

promising areas. Since constrained problems are treated as unconstrained once infeasi

ble solutions are penalized, they work well on highly constrained problems. The draw

back is that they are sensitive to the tuning of at least a couple o f problem-dependent 

penalization coefficients, performing badly when the solution lies on the boundaries. 

High penalizations might lead to infeasible regions not being explored converging to

15 Feasible solutions are ranked first according to their objective function values, followed by infeasible solu
tions according to their nondomination levels. If the latter are the same, priority is given to either smaller 
constraint violation or to the smaller objective function value (two ranking operations are implemented).
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non-optimal but feasible solutions, whereas low penalizations might lead to the system 

evolving solutions that are violating constraints but present themselves as better than 

feasible solutions. However, research on adaptive coefficients is extensive in the litera

ture (e.g. (Parsopoulos & Vrahatis, 2002) and (Coello Coello, 2000)). A classical addi

tive, constant penalization scheme -linked to the amount o f infeasibility- is shown in 

Eqs. (4.35) and (4.36),

f p (*) = / ( * )  + X  [kj ■ i f j  ] (4-35)
7=1

(max{0 ,g .(x )}  ; 1 < j < q
/ ( * )  = u ( ,  \ \  - s  (4.36)[abs(gy(x)j ; q < j < m

where / ( x )  is the conflict function; / p(x) is the penalized conflict function; / .  (x) is

the amount o f violation o f / h constraint; and kj and a . are penalization coefficients.

The latter may be constant, time-varying, or adaptive, and they can be the same or dif

ferent for different constraints. Typically, kj is set to high and a to small values.

4.4.8.4. Repair algorithms

Some procedures are applied so that an infeasible candidate solution is repaired by relo

cating it to a nearby feasible position. Simple instances o f these techniques are the ‘re

flection method’ (Forys & Bochenek, 2004), and ‘the cut-off at the boundary’ technique 

to handle interval constraints only, and the ‘bisection’ method for interval and inequal

ity constraints ((Innocente, 2006) and (Innocente & Sienz, 2008)). The repairing o f a 

particle flying out o f bounds by two different ‘cut-off at the boundary’ techniques and 

by the ‘bisection’ method is illustrated in Fig. 4.5.

The effect o f the ‘cut-off at the boundary’ technique (with velocity reset to zero) can be 

observed in Fig. 4.6 (below), while that o f the ‘bisection’ method is shown in Fig. 4.7. 

In Fig. 4.6 (above), the plain PF technique handles the interval constraints for compara

tive purposes. The ‘cut-off at the boundary’ technique works very well if  the solution is 

on the boundary, but particles get stuck on the boundaries when the solution is near but 

not on them.
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Feasible

Infeasible

Feasible Feasible

(/ + !)

Infeasible

Fig. 4.5. C u t-o ff at the boundary techniques (left and centre) and bisection method (right). On the left, the solution is 
re located on the boundary the nearest possib le to the attem pted infeasible location. In the centre, the vector o f d is
p lacem ent is cut o ff so that its direction rem ains unchanged. On the right, the vector o f d isp lacem ent is successively 
d ivided by two until the new solution is feasible.

Some techniques like the ‘cut-off at the boundary’ reset the particle’s velocity to zero 

when the trajectory is altered by the confinement technique. Clerc (2007) studied differ

ent methods to confine the particles to the feasible intervals. Since they are biased, the 

idea is two combine two methods to obtain a less biased one.

It is fair to note that Helwig and W anka (2007), (2008) proved that for a standard PSO, 

the particles tend to move outside the boundaries with overwhelming probability in the 

first iteration. Hence a method o f confinement would be highly beneficial. Note, how

ever, that the PF method does not evaluate the objective function for infeasible particles. 

And sometimes it is not entirely undesirable to allow the particles to move outside the 

boundaries so as to repeatedly overtly the solution when the latter is near the boundary.

4.4.8.5. Multiobjective-based methods

Constraint violations are viewed as additional objectives to be minimized. Thus, con

strained single-objective problems can be tackled using multiobjective (MO) tech

niques. Venter & Haftka (2008) proposed a PSO algorithm combined with a bi

objective formulation o f the problem, where the additional objective is the minimization 

o f a measure o f constraint violation. The problem is solved and a Pareto front is ob

tained. The solution is the point on the front with the best true objective and zero con

straint violation, de Freitas Vaz et al. (2006) also proposed a PSO algorithm combined 

with a M O-based CHT.
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PARTICLES POSITIONS IN THE SEARCH-SPACE (Colour-map: Benchmark te s t conflict function)
1.5

INITIAL Particles Positions (minimizer,i

INTERMEDIATE Particles Positions (minimizer)

FINAL Particles Positions (mmHnizer)

INTERMEDIATE Particles Positions (maximizer)

FINAL Particles Positions i.maximizer)

PARTICLES POSITIONS IN THE SEARCH-SPACE (Colour map: Benchmark te s t conflict function)
1.5

INITIAL Particles Positions (mintmizer)

INTERMEDIATE Particles Positions (mtmmizer)

FINAL Particles Positions (mmimfzer)

NTERMEDIATE Particles Positions (maximizer)

FINAL Particles Positions (maximizer)
- V

600 700

Fig. 4.6. A PSO algorithm  optim izing a constra ined problem, where interval constra in ts are -0 .5 0  <  x i <  0.50 and 
-0 .5 0  <  X2 ^  1.00. The constra in t-handling techniques are the plain ‘p reserving feas ib ility ’ technique (above) and the 
‘preserving feasib ility  w ith cu t-o ff at the boundary and ve locity ze roed -in ’ technique (below). There is a m in im izer 
(ye llow  in term ed ia te  positions) and a m axim izer (green interm ediate positions). The search is carried out along 4000 
tim e-steps in both cases.
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PARTICLES POSITIONS IN THE SEARCH SPACE (Colour map: Benchmark te s t conflict function)

INITIAL Particles Positions (m inim uer)

■  INTERMEDIATE Particles Positions (minimizer)

FINAL Particles Positions (minimizer)

INTERMEDIATE Particles Positions im axim izer)

FINAL Particles Positions (m aiim izen

200 300

Fig. 4.7. A PSO algorithm  optim izing a constra ined problem, where interval constra ints are -0 .5 0  < x i <  0.50 and 
-0 .5 0  <  X2 ^  1.00. The constra in t-handling technique is the ‘b isection ’ method. There is a m inim izer (yellow interm e
diate positions) and a m axim izer (green interm ediate positions). The search is carried out along 4000 time-steps.

4.4.9. Other features

Another feature that needs to be defined in order to run a PSO algorithm is the size o f 

the swarm. Kennedy & Eberhart (2001) suggest from 10 to 50 particles, while Carlisle 

& Dozier (2001) argue that a swarm o f 30 particles appears to be a good choice.

The Standard PSO (Auger, et al., 2007) calculates the swarm-size as a function o f the 

dimensionality o f the problem, as shown in Eq. (4.37),

m = 10 + 2-V2^7 (4.37)

where m is the number o f particles in the swarm, and d  is the number o f  dimensions o f 

the search-space.

However, the swarm-size should also depend on the FEs available, on the coefficients’ 

settings, and on the neighbourhood structure. That is, if  the latter two are such that fast 

convergence is favoured, then a bigger swarm would be advisable. Also on the decision
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of the user as to whether it is better to have a longer search or a more parallel search for 

the problem at issue. Further research on the size o f the swarm in PSO can be found in 

(van den Bergh & Engelbrecht, 2001) and (DeBao & ChunXia, 2009)). The latter pro

posed an adaptive population size.

In the simplest PSO algorithm, the particles are randomly scattered over the search- 

space at the initial time-step, while their velocities are randomly initialized within the 

intervals [- vmax, vmax] or set to zero. Any technique for the design o f experiments (DoE)

can be used to improve the initialization o f the particles’ positions. One would expect 

that these techniques, e.g. Latin Hypercube Sampling (LHS), would improve the per

formance o f the algorithm at least for unconstrained or boundary constrained problems. 

Alternatively, two initial populations may be generated: p and pbest, instead o f one 

population and its velocities. This thesis is not concerned with initializations in PSO. 

For reading on the subject, refer to (Clerc, 2008c) and (Helwig & Wanka, 2008).

The social best experiences may be updated only once per time-step, after all individual 

best experiences have been updated (parallel/synchronous update); or every time a par

ticle’s best experience is updated (sequential/asynchronous update). In general, the sec

ond approach results in marginally faster convergence, while the vast majority o f re

searchers choose the first approach.

Canonical PSO has only one sociality term: the best experience in the neighbourhood. A 

second sociality term may be added so that the particle is attracted to both the best ex

perience in the neighbourhood and the best in the whole swarm. Mendes, Kennedy, & 

Neves (2004) go further with their Fully-Informed PSO , where every particle is influ

enced to some extent by all its neighbours.

The method was originally proposed in (Kennedy & Eberhart, 1997) as a variation of 

the original PSO. That is, no inertia weight or constriction factor considered.

The search-space is now a binary ^-dimensional hyper-cube S = {0,l}”; the individuals 

are represented by binary, fixed-length bit-strings; and the conflict function is defined as 

c '■ {o.i}” —» ^  . While the metaphor o f bird flocks no longer applies, it appears that the

4.4.10. Binary PSO
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metaphor o f cognitive processes is still valid. The update equations are as shown in Eqs. 

(4.38) to (4.40):

v f  = w  v<M) +iw -U M ■{pbestp'1-x<'_l))+ .sw t/(01)\ g b e s t p ] (4.38)

P f =  ^ e [ 0 , l ] c « .  (4.39)
l + e~ *

4 >=I' ^  U m <P l1  (4.40)
0  otherwise

where p {p  stands for the probability of a bit adopting the state ‘1’. In other words, p {p

is the probability that the individual i has of holding the feature j  at time-step t. All the 

others parameters in Eq. (4.38) remain the same as in classical PSO.

Although the position is restricted to the vertices o f a binary hypercube, the velocity 

equation remains unchanged. It does not make any sense to think o f v\p as a velocity 

but rather as a measure o f the likelihood for individual i to hold the belief j .  Notice that 

if  v\0 < 0  => p P  < 0.5, whereas if  > 0  => p\0 > 0.5.

To summarize, an individual seeks consistency among its beliefs, which is attained by 

minimizing the conflicts among them. Thus, the conflict function receives the beliefs as 

inputs and returns a scalar that stands for the level o f conflict among those beliefs that 

are held together.

Although an individual that holds a certain belief does not change its mind immediately 

when it notices that someone else’s beliefs are more consistent, it is influenced by that 

observation. This is consistent with Eq. (4.38), whose first term stands for the tendency 

to keep the belief the individual has, while the second and third terms tend to move the 

probability threshold upwards or downwards if  the belief is or is not, respectively, held 

by the best previous individual and social experiences.

If the current probability is either too high or too low, it might take a long time to 

change the activation status o f the feature. For values of vmax = ±10 and greater in abso

lute value, the sigmoid function in Eq. (4.39) saturates. Hence Kennedy & Eberhart
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(2001) suggested setting w = 1, (iw+sw) = 4 , and vmax = ±4. Thus there is always a

chance o f at least p {t) =0.018 that a bit will change state. While the constraint vmax pre

vents the explosion in classical PSO, it prevents the complete loss o f diversity in this 

binary PSO in a similar fashion as the mutation does in binary GAs. Higher values re

duce the probability o f new vectors. Hence the higher the vmax the lower the exploration.

Kennedy & Eberhart (2001) reported a general better performance o f their binary PSO 

in comparison to a standard GA, a mutation-only GA, and a crossover-only GA, when 

dealing with multimodal problems. Kennedy (1998) implemented a binary PSO to op

timize a directed S-digraph inference problem, where the aim is to find the optimal state 

o f the binary nodes in a recurrent inference network. The network in (Kennedy, 1998) 

was composed o f 9 nodes and a complex pattern of connections. His binary PSO was 

able to optimize such a problem with a population of only 20 so-called ‘EleMentals’ 

(particles), where some member of the population could always find the optimum 

within the first 20 time steps. The final ‘states of minds’ o f the ‘EleMentals’ showed the 

formation o f cultures. No binary PSO is dealt with in this thesis.

4.5. Final remarks and closure

A fairly extensive review o f the PSO method was presented, including its foundations 

and the links to the three broad fields with which the method is associated: Swarm Intel

ligence, Social Psychology and Mathematical Optimization.

In order to better understand how the paradigm works, a brief discussion on Swarm In

telligence was offered, and a few important phenomena in the field such as emergence, 

self-organization, division o f  labour and stigmergy were discussed.

While the simulation o f social behaviour was initially the aim of the PSO paradigm, the 

emergent behaviour observed in animal societies is clearly the link between Swarm In

telligence and Social Psychology from the PSO point o f view. Thus, the social behav

iour that occurs in a number of animal societies -including human beings- was also 

presented, in addition to the collective behaviour that is imposed on swarm robots. 

Given that human beings present remarkably higher complexity than say ant colonies or 

bird flocks, some influential experiments and theories in social psychology were also
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included in the review. All this helps understand how the method works, and brings 

multidisciplinary new ideas into PSO research as to how to improve its performance. 

Good examples o f this are the EleMentals in (Kennedy, 1998) and the small world and 

mega-minds concepts brought into the sociometry in PSO by Kennedy (1999). Bear in 

mind that the neighbourhood topology in PSO is still a social network despite being ap

plied almost exclusively to mathematical optimization, and much insight and new ideas 

can be imported from the Social Psychology discipline.

A couple o f simple Ant Colony Optimization algorithms were introduced simply to pre

sent the other popular Swarm-Intelligence-based paradigm which has also achieved 

great success as an optimization tool.

With regards to the PSO algorithm per se, some attempts to formalize the dynamics of 

the swarm via the study o f the influence o f the coefficients’ settings in the trajectory of 

a single, isolated, deterministic particle were described. This allows gaining insight into 

the system itself, as well as some understanding as to how the coefficients may be con

veniently set, and what to expect from different settings. In particular, it is o f evident 

interest to understand how the so-called explosion may be controlled without giving up 

on the explorative power o f the PSO algorithm.

In addition, the neighbourhood topology has a strong impact on the performance o f the 

method. By controlling the speed o f spread of information in the swarm, the neighbour

hood structure is critical in controlling the speed o f convergence of the optimizer as a 

whole, as well as the type of trajectory the particles undergo. Therefore, a review of 

some studies on neighbourhood topologies from the literature was also offered.

Finally, due to the fact that the aim o f this work is to develop a fully working PSO algo

rithm for Constrained Optimization Problems, different groups of constraint-handling 

techniques from the literature were discussed in some details.

Chapter 5 and Chapter 6  present my own studies on the influence of the coefficients’ 

settings on the behaviour and performance o f the PSO method. Chapter 7 deals with the 

study o f some neighbourhood topologies, and Chapter 8  with constraint-handling.
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Chapter 5

SYSTEMATIC COEFFICIENTS STUDY WITH 

STATIONARY ATTRACTORS

This chapter is concerned with the influence of the settings of the velocity constraint and of the coefficients 
involved in the particles’ velocity update equation on the dynamics of a single particle pulled by stationary 
attractors. The individuality and sociality weights are kept the same, so that only the settings of the accel
eration weight are analyzed. The equation of the particle’s position is obtained as a function of the coeffi
cients and of two initial conditions. There are three cases according to whether the roots of the character
istic polynomial of the recurrence relation of the particle's position are two and real-valued; only one and 
real-valued; or complex conjugates. Hence three equations are obtained, and the convergence/divergence 
conditions are stated. The deterministic explosion and the cyclic behaviour of the original PSO are dis
cussed, and the concept of stochastic explosion is proposed by visualizing divergent trajectories due to 
randomness. The conditions of convergence are then studied in more detail, and a region of convergence 
in the plane l< f>-W  is offered. A short discussion on the concepts of ’exploration’ and ‘exploitation’ and their 
meanings within this thesis is provided. The effectiveness of the velocity constraint in controlling the ex
plosion without improving convergence is discussed and visualized. Different settings of the inertia weight 
for a number of settings of the acceleration weight are studied, showing its ability to both control the ex
plosion and improve convergence. First, the random weights are replaced by their expected value so as to 
remove randomness from the effect of the inertia weight. Then the random weights are reincorporated and 
the trajectories corresponding to the same coefficients’ settings are compared. A visual study of the com
bined effect of the inertia weight and the velocity constraint follows. A brief discussion on the constriction 
factor Type 1 ” is offered and a few settings are tested and compared. The combined effect of constriction 
and velocity constraint is also visually analyzed. Finally, a l< j> -W  relationship is presented, which is ex
pected to favour convergence. Visual analyses of the trajectory of the particle are carried out. The overall 
objective of this study is to identify a range of usable coefficients’ settings, and the type of behaviour to be 
expected in terms of the particle’s trajectory and convergence towards the stationary attractor. Further 
complexity is incorporated in the next chapter.

5.1. Introduction

The settings o f the coefficients in the velocity update equation o f the particle swarm al

gorithm have a critical effect on the behaviour exhibited by the swarm. Thus, a particle 

might converge or diverge; exhibit oscillations with different frequencies and damping 

steepness; converge from one side without much oscillation; converge smoothly by a 

sustained decrease in the oscillations amplitude; exhibit local explosions followed by 

convergence; etc. Even if  convergence is ensured, different behaviours lead to different 

capabilities o f the algorithm. In this chapter, the dynamics o f a single particle pulled by
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stationary attractors is studied. The individuality and sociality weights are kept equal to 

one another so as to analyze the settings of the acceleration weight instead.

The closed-form for the particle’s position is obtained as a function o f the coefficients 

and o f two initial conditions: either the positions in the first two time-steps, or the posi

tion and the velocity in the first time-step. There can be three different cases according 

to whether the roots o f the characteristic polynomial o f the second-order linear recur

rence relation are 1) two and real-valued; 2) only one and real-valued; or 3) complex 

conjugates. Thus, three closed-forms o f the particle’s position are offered -one for each 

case- and the conditions for convergence and divergence are stated.

The so-called ‘deterministic explosion’ and the ‘cyclic behaviour’ of the original PSO 

are discussed, and then the concept o f ‘stochastic explosion’ is proposed by visualizing 

divergent trajectories o f a particle whose coefficients do not lead to a deterministic ex

plosion. The conditions o f convergence are then studied in more detail, and a region o f  

convergence is presented bounded by inequalities in the plane ‘^-w’. The convergence 

region obtained coincides with the one in (van den Bergh, 2001), although further ex

plained and bounded, in agreement with (Trelea, 2003). It is proved here that the mod

ule o f the complex conjugate roots is simply the square root o f the inertia weight, which 

therefore must be smaller than one to ensure convergence for complex conjugate roots.

The meanings o f the terms ‘exploration’ and ‘exploitation’ in the literature as well as 

those assigned to them within this thesis are briefly discussed.

The effect o f the velocity constraint is analyzed and visualized, showing its effective

ness in controlling the explosion by narrowing the part of the search-space being ex

plored without improving the particle’s convergence capabilities.

Different settings o f the inertia weight for a number of settings o f the acceleration 

weight are visually studied. Its ability to control the explosion and also improve conver

gence is visualized in terms o f the particle’s trajectory, thus confirming the convergence 

region in the plane ‘^-w’ previously obtained. First, the random weights are replaced by 

their expected value so as to remove randomness from the ‘pure’ effect of the inertia 

weight. Later, the random weights are reincorporated and the trajectories corresponding 

to the same settings -with and without randomness- are compared. The next step is to 

study the combined effect of the inertia weight and the velocity constraint.
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A brief discussion o f the constriction factor Type 1 ” proposed in (Clerc & Kennedy, 

2002) is offered, and a few settings are tested and compared. The other constriction 

types developed in (Clerc & Kennedy, 2002) are beyond the scope o f this study because 

they modify the classical PSO (intuitive) equations. The combined effect of the con

striction factor Type 1 ” and the velocity constraint is also visually analyzed.

Finally, a proposed relationship between the inertia and the acceleration weights is pre

sented, which was developed without considering the convergence per se. Nevertheless, 

it is still expected to favour convergence. Visual analyses o f the trajectory o f the particle 

are carried out so as to confirm the expectations.

The main objective o f this study is to obtain a range o f coefficients’ settings that are us

able, and the type o f behaviour to be expected in terms o f the particle’s trajectory and 

convergence towards the stationary attractor. Further complexity, namely updating at

tractors and particles’ interactions, are incorporated in the next chapter. Note that the 

studies here are extensive and visual to a great extent.

5.2. Position equation

Ozcan and Mohan (1998), (1999) attempted the first formal analysis o f the particles’ 

trajectories, although James Kennedy may have informally presented related work pre

viously in Vancouver, 1998. Despite acknowledging the inertia weight proposed by Shi 

and Eberhart (1998b), they only concerned themselves with the original algorithm (i.e. 

w = 1 ), and studied different settings o f the acceleration coefficient where:

<l> = </>,+& = 'w -£7(0,1)+ w '^(o.o (5.1)

Thus, Ozcan & Mohan (1998) studied a simplified system o f one particle flying over a 

one-dimensional space, where the individual and social best experiences coincide and 

the coefficient <f> is kept constant. First, a recurrence relation was formulated, which was 

solved obtaining a closed-form for the particle’s position using the initial conditions x(0) 

and v(0). They studied the trajectory o f the particle in the ‘real’ and in the ‘complex’ 

domains, analyzing special cases according to the value o f (j>. The equations and the cor

responding analyses were further simplified by assuming the initial position x(0) coincid-
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ing with the attractor p, which in turn coincided with the individual and with the social 

best experiences. More general expressions for the particle’s position incorporating the

The resulting equations are analyzed and compared to the conclusions offered in (Ozcan 

& Mohan, 1998); (Ozcan & Mohan, 1999); and (van den Bergh, 2001). The latter al

ready included the inertia weight in his studies.

5.2.1. Recurrence relation

For convenience, the general expression o f the particles’ velocity update equation is re

produced in Eq. (5.2).

pbest  and Ibest stand for the best individual and social experiences, respectively; and 

U{0 ]) is a random number from a uniform distribution between ‘0 ’ and ‘1 ’ resampled 

anew every time it is referenced.

For future reference, the relation between the acceleration weight (aw) and the accelera

tion coefficient ($) is shown in Eq. (5.3):

Thus, (j> = aw if  the random weights are removed (or equal to their maximum value ‘ 1 ’), 

whereas (f> = 0.5 • aw if  they are replaced by their expected value ‘0.5’. Notice that, if  the 

algorithm incorporates randomness, then (j> is random whereas aw is not.

While Ozcan & Mohan (1999) extended their previous studies by considering multi

dimensional space and the two attractors separately, it is preferred here to maintain a 

single attractor and a uni-dimensional space to keep the expressions simpler, since:

inertia weight and considering the more general case of p  ̂  x(0) are developed hereafter.

(5.2)

where w, iw, sw are the inertia, individuality and sociality weights, respectively; 

and a r e /h component of the position and the velocity o f particle i, respectively;

0 < 0  =  ($  + A  ) =  iiw ' ̂ ( 0,1) + ^ (0,1) P  (aw  = i w + s w ) (5.3)
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•  The two attractors are stationary and (j) is constant, so that the particle is in fact at

tracted towards a single stationary point (weighted average of the attractors).

•  The relative values o f the individuality and sociality weights are not under study.

• The PSO algorithm maintains different dimensions independent from one another.

As opposed to (Ozcan & Mohan, 1998), it is not considered here that pbest = Ibest but 

that the actual attractor is given by a weighted average of both best experiences:

5.2.2. Closed-form expression

The characteristic polynomial for the homogeneous recurrence relation associated to Eq.

(5.6) is given by Eq. (5.7), whose roots are shown in Eqs. (5.8) to (5.10):

$  • pbest+(j)s Ibest
(5.4)

Thus, the system can be simplified as shown in Eq. (5.5).

(5.5)

Replacing v( 0  in x(t) in Eq. (5.5), and given that v(/ ]) = x ('c — x(t 2), the second order 

non-homogeneous linear recurrence relation in Eq. (5.6) is obtained.

JC( 0  +  ( $  — W - l ) ' X {t ! )  + w - j c ( '  2 )  p (5.6)

r 2 + ( ^ - w - l ) - r  + w = 0 (5.7)

(5.8)
2  2 2

(5.9)
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(l + w) (b yr = ±------ - ——+ —
2  2  2

=
_ (l + w) (j) y  

~ 2  2 ~ 2
r]~r2 =r (5.10)

Two solutions of the homogeneous recurrence relation are shown in Eq. (5.11).

x {t)= r l i Ai x2° = r2 (5.11)

If rx* r 2, the solutions in Eq. (5.11) are linearly independent, and hence the general so

lution is given by the linear combination in Eq. (5.12).

4>  = C, ■ r/ + C2 • r2' = C, • | ^ j  +C;
2  2

(5.12)

The general solution o f the non-homogeneous recurrence relation in Eq. (5.6) is given 

by the general solution o f the associated homogeneous recurrence relation plus a par

ticular solution. From Eq. (5.6), it can be observed that a particular solution o f the recur

rence relation is of the form x {p = C  (constant). Therefore,

C + { ( f ) - w - \ ) - C + w -  C  = (j)-p C = p (5.13)

Thus, the general solution o f the non-homogeneous recurrence relation is, in general, as 

in Eq. (5.14).

(5.14)x ^  — C + C| • Y + C2 • — p  ■+■ Cj •
r i+ w

t

+ C2 •
( \  + w

I 2 2 2 ; I 2 2 2 ,

There are three cases for the general solution o f the recurrence relation in Eq. (5.6), de

pending on the value o f y in Eq. (5.9):

1. y 2 > 0: The roots o f the characteristic polynomial are real and different.

2. y 2 < 0: The roots o f the characteristic polynomial are complex conjugate numbers.

3. y 2 = 0: The roots o f the characteristic polynomial are real and the same.
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5.2.2.1. Two real-valued roots

The general solution for the recurrence relation in Eq. (5.6) is as in Eq. (5.14), where 

two initial conditions are required for the definition o f the constants. Those conditions 

may be given by the first two positions x(()) and x(] \  Thus, for t = 0:

x (0) =  /? +  C, +  C 2 c 2 =x(0)- P- q (5.15)

In turn, for t = 1:

x (l) = p  + C, -r, + C2 -r2 

p  + C{ -r{ + (x{[)) - / ? - C ,) * r 2 - x (l) = 0  

C, -(rx - r 2) + x (ll) •r2 - p - r 2 + p - x 0) = C p /  + r2 • (x(0) - /? ) +  p - x (]) =0

C ,=
7

(5.16)

(5.17)

(5.18)

(5.19)

Introducing Eq. (5.19) into (5.15) yields:

C2 =
^ y \ x w - p )  r2 \ p - x ("]) | (p - x (l))

7 7 7
(5.20)

C2 = (5.21)

C ,  =
=  - r x ■ ( p - x ,(n) + ( p - x <n) 

7
(5.22)

Thus, solving Eq. (5.14) for the two initial conditions x<0) and x(l) yields the closed-form 

equation for the particle’s position shown in Eq. (5.23):

(5.23)

where the roots r\ and rj are as in Eqs. (5.9) and (5.10).
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Alternatively, the initial conditions may he given as x(<1) and v(0), where x (l) = x (0) + v (l) 

and v(1) =  w-v((l) + 0 - ( p - x ({))). Thereforex( 1 * and v(()) are related as shown in Eq. (5.24).

v(0) =
x(l) - ( l - ^ ) * x <l)) -(f)-p

(5.24)
w

van den Bergh (2001, pp. 267-269) developed a similar closed-form, but his expressions 

involve three initial conditions x(<)), x ( 1), x(2) rather than the two essential ones x(()), x( 1' (or 

x(0), v<0)). It is evident that the particle converges towards the attractor p  if  the absolute 

values o f both roots are smaller than one, whereas it diverges if  at least one is greater.

5.2.2.2. Two complex conjugate roots

The general solution for the recurrence relation in Eq. (5.6) can be given by Eq. (5.23), 

but it can be more conveniently written in terms o f real values. If Y < 0 , let us call:

y' — -yj— Y~ — yj — (f)~ + (2 • W + 2)' (f) — (w — l)

(l + w) ^  f
~ 2  +

a; =
' (\ + w) </>) ( / )

2 2 ) J j

(5.25)

(5.26)

These roots can be written in polar coordinates (/;,$) in the complex plane, where:

P  = +

J + 2 -w  — 2 • (f) -\- w  — 2 • w • (f) T- (f) )+ ̂ — (j) + 2 -  vv-^ + 2 - ^  — w +  2 • w — 1̂ 

P ~ 2

P =
7(2- w) + (2- w)

p  = V w (5.27)

r
0  = atan r \

1 + W~(f)
(5.28)

12 2



c 2 e c SY STE M A T IC  C O E F F IC IE N T S  STUD Y WITH STA TIO N A RY  A T T R A C T O R S Swansea University
Prifysgol Abertawe

/ 1  f 1 + W—̂
C O S ( 0  )  =  - ; = ■  - - - - - - - - - - - - - - -

Vw \  I  J
(5.29)

Note that if  (l + w -  (f) = 0 , the complex roots only have imaginary components. Hence:

6 = — co sin($) = 1 (5.30)

Therefore the roots o f the polynomial can be written as in Eq. (5.31):

rx =y9-(co^0)+z- s i^ )) r2 = P '  (co i p ) - i  • sin(#)) (5.31)

By Euler’s formula, cos(#)+ / • sin($) = edl and cos(#)- z • sin ^ ) = e~9'1, so that:

r[ = p l •et6'1 = p l •(cos(r-#)+/-sin(r-#)) (5.32)

r[ — p l • e~1'9'1 = p l • (cos(r •# ) - /•  sin(f • #)) (5.33)

If r[ and r[ are two linearly independent solutions o f the homogeneous recurrence rela

tion associated to the non-homogeneous one in Eq. (5.6), then so are

f  n + r p  

2  ,
= p l • cos(*• 0) and

f t  t \  
r\ ~ r2

2 ’i
= p <-sin(/-0) (5.34)

Thus, the general solution for Eq. (5.6) is written in terms of real values as follows:

jc(0=C +C 1
f t  t \  

+r2
v 2 ,

+ I] _2_
2 - i  j

= P + p f \ C l •cos^*#)+Cf2 -sin(/- e)) (5.35)

= p + i p w j  • (C, ■ cos(/ • 6 )+ C \ • sin(< • 6)) (5.36)

The initial conditions are given by the first two positions jc(0) and x(1). Thus, for t = 0:

jc(0)= p  + C, => C ] = x w  - p (0) (5.37)

In turn, for t = 1:
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C' •  ̂ 2

jc(1) = p  + ̂ fw^([x{0) - /^ -c o s^ + C ^ -s in ^ ))  

-  (x(0) -  p )• cos($) = C 2 • sin($)

a/ w  ^

xm = p  + 

xm - p

Jw

1 ( y ]
4 w < 2  j Vw

C  =

(5.38)

(5.39)

(5.40)

(5.41)

Thus, the equation for the particle’s position when y 2 < 0 is as shown in Eq. (5.42):

(5.42)

where y' is as in Eq. (5.25) and 6 is as in Eqs. (5.28) or (5.30). As can be observed, the

particle converges towards the attractorp  for w < 1 regardless o f (f) when y 2 < 0  (i.e. the 

roots o f the characteristic polynomial are complex conjugates). Again, the initial condi

tions may be given as x(0) and v(0) rather than x(0) and x(1), where v(0) is as in Eq. (5.24).

5 .2 .23 . Only one root

From Eqs. (5.9) and (5.10), this condition implies that y2 =  0. Therefore the only root is 

real-valued, as shown in Eq. (5.43).

r  = r{ =r2 = (5.43)

Hence the general solution for Eq. (5.6) cannot be as in Eq. (5.23) because another solu

tion for the homogeneous recurrence relation is required. It can be proved that if  r l is a 

solution, so is [t • r l ).
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x (,) = C +C ,-r' +C2-t-r‘ = p + ( C t +C2 -t)-
' l+ w - ^ Y (5.44)

The initial conditions are given by the first two positions xm> and x(l). Thus, for t = 0 :

xm = p + C , Q  = A p ~ xW) (5.45)

In turn, for t = 1:

x ^ = p + (- (p - x^ ) + c 2) . ^ l ^  

=> c ! = ( p - / » ) - 2 f c ^
2 v ' \ + w-<j>

(5.46)

(5.47)

Thus, the equation for the particle’s position when j  = 0  is as shown in Eq. (5.48).

- 4
(5.48)

Thus, the particle still diverges if  the absolute value o f the root equals ‘1’. This phe

nomenon was explained differently in (Clerc & Kennedy, 2002, p. 61) for w = 1, (j) = 4.

5.2.3. Discussion

Once obtained the closed-form expressions of the particle’s position for the three cases 

of y, the analysis o f such expressions, some special cases, and references to similar work 

in the literature are provided in this section.

5.2.3.I. Two real-valued roots

If y 2 > 0 ,  there are two, different, real-valued roots for the characteristic polynomial. 

The trajectory o f the particle is then determined by Eq. (5.23), rewritten in Eq. (5.49) for 

convenience. The roots r\ and r2 are as in Eq. (5.10), while y is as in Eq. (5.9).
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r r

Clearly, the particle converges exponentially if  max ĵrj,! 1 , where | * | is the abso

lute value. Conversely, it diverges exponentially if max(|^|,| ̂ l)>  1 , which is in agree

ment with findings by Ozcan and Mohan (1998), (1999) for w = 1 and  ̂> 4 . Note that 

the original PSO system does not allow convergence, since max(|rj|,|r2|)< 1 is not possi

ble for w = 1 regardless of (j). In contrast, the incorporation o f the inertia weight allows 

for exponential convergence. The steepness of the divergence or convergence depends 

on the initial conditions, the location o f the attractor p,  and the settings o f (j) and w.

5.2.3.2. Two complex conjugate roots

If y 2 < 0 , the roots o f the characteristic polynomial are complex conjugates. The trajec

tory o f the particle is then determined by Eq. (5.42) -rewritten in Eq. (5.50) for conven

ience-, where y'= - \ - y 2 and 6 is as in Eq. (5.28).

In the same fashion as for real-valued roots, convergence occurs when the magnitudes 

of the roots are smaller than one. Recall that Eq. (5.23) is also valid here. If the roots are 

represented in polar coordinates as in Eq. (5.31), the module p o f the complex roots has 

to be smaller than one to ensure convergence. Therefore, from Eq. (5.27), w <  1 ensures 

convergence when the roots o f the characteristic polynomial are complex conjugates. 

This can be observed at once in Eq. (5.42), which is reproduced in Eq. (5.50).

The region o f the plane ‘0 -w ’ where the roots are complex conjugates can be bounded 

by the two curves plotted in Fig. 5.1, which are obtained by setting y = 0 in Eq. (5.9). 

Thus, the complex region is defined as in Eq. (5.51), where the signs o f the inequalities 

are obtained by setting y < 0 . Refer to Appendix I for further details.

,1 (5.50)

/
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(i(f) + l) — 2 -i jr f ) < W  < {(f) + I ) “F 2 * -yfrf) (5.51)

= 2 ■(<!>)'*

Fig. 5.1. Delim itation o f the region in the '<f>-w space where the roots o f the characteris tic  polynom ial are 
com plex. Any com bination '<f>-w' tha t fa lls between the two curves results in two com plex con jugate  roots.

Since only the sub-region where there is convergence is o f practical interest, the part o f 

the complex region where w  < 1 is plotted in Fig. 5.2. Thus, the pairs which lead

to both complex roots and convergent behaviour are those enclosed by the red lines.

Since Ozcan and Mohan (1998), (1999) studied the algorithm without w, their analyses 

were limited to the horizontal line upper-bounding the complex region in Fig. 5.2. In 

that context, the real-valued roots would lead to divergence and should be discouraged

or controlled. Therefore their studies were focused on 0 < (f> < 4 . By assuming A '<0) = p  , 

they identified different search types according to the amplitude o f the sine waves. 

Thus, for 0 < (f> < 2 , y'  increases with increasing (f). Therefore the amplitude o f  the sine 

wave decreases as <f> increases, as can be seen in Eq. (5.50). Recall that the cosine term 

is dropped from their equation. Conversely, for 2 < (j) < 4 , y'  decreases with increasing 

0, so that the amplitude o f  the sine wave increases as (f> increases. In turn, y'< 1 for

(2 - V 3 ) and (2 + V 3)< ^ < 4 , so that the amplitudes are magnified. Notice that

the more general case o f  x (()) ^  p  affects this behaviour. While the theoretical studies 

by Ozcan and Mohan (1998), (1999) comprise a milestone in the formal study o f the 

particles’ trajectories in PSO, it is undesirable for the particles to surf the waves. In

stead, an inertia weight w < 1 or constriction factor (Clerc & Kennedy, 2002) should be 

incorporated. More on the cyclic behaviour is discussed in section 5.3.
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Fig. 5.2. Complex region in the 'fl-w  space where the roots are com plex conjugates and convergence is ensured.

5.2.3.3. Only one root

If y~ = 0 ,  there is a single root for the characteristic polynomial. The trajectory o f the 

particle is then determined by Eq. (5.48), rewritten in Eq. (5.52).

x U) = p  +
 ̂ 1 + W-(p

l + w -^ Y
(5.52)

Therefore there is convergence for
1 + W~(f)

< 1. Furthermore, if  — t- < o , the par

ticle moves in opposite directions in consecutive time-steps.

While Ozcan and Mohan (1998), (1999) discussed the case o f  (f) = 0 as a special case, it 

has no practical interest as the particle would not be pulled by the attractor. The other 

special case with one single root they analyzed is the original PSO: w = 1 and ^ = 4 . In 

the latter case, Eq. (5.52) becomes Eq. (5.53).

x>n = p + [- [p ~x"")+ i(p -̂"|))+{p ))■ 4(-•)' (5.53)

Thus, the particle moves in opposite directions in consecutive time-steps, diverging with 

linearly-increasing amplitudes. This is a boundary case, as smaller values o f ^ lead to 

cyclic behaviour while greater values lead to exponential explosion (for w = 1).
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The set o f pairs that result in one single root o f the characteristic polynomial are 

those plotted in Fig. 5.1. Those which also result in convergent behaviour comprise the

5.3. Deterministic explosion and cyclic behaviour

In a similar fashion as Ozcan and Mohan (1998), (1999), Clerc and Kennedy (2002) 

analyzed the trajectory o f the deterministic particle for the algorithm without inertia 

weight. However, their studies aimed further, and a constriction factor was proposed to 

control the explosion. Their approach consisted o f building a system of two recurrence 

relations o f first order rather than one single recurrence relation o f second order. Fol

lowing their same train o f thought, the equations are derived hereafter with the inclusion 

of the inertia weight. The following auxiliary variable is used:

lower bound o f the complex region in Fig. 5.2. Notice that the particular cases of (j) = 0 

and (/> = 4 comprise the two uppermost points in the parabola, where w = 1.

(5.54)

Thus, the system o f recurrence relations is as shown in Eq. (5.55):

(5.55)

The system can be expressed in matrix notation as in Eqs. (5.56) and (5.57):

P m = v - M '  -Pm (5.56)

(5.57)

Given that

(5.58)
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the eigenvalues of M  are the same as the roots o f the characteristic polynomial o f the 

linear second order recurrence relation in Eq. (5.6), where y is as in Eq. (5.9).

- _  0 + w) u
2

■yjift2 - ( 2 - w + 2 )-^ + ( w - 1 ) 2 (l + w)
- U

2
r

1 2 2  2 2

r _ 0  + w) * - ( 2  • w + 2)'<f) + ( w - l ) 2 (l + w) <!> r
2 2 2 2  2 2 2

(5.59)

Clerc and Kennedy (2002) derived the same equations for the particular case of w = 1: 

x_ t +4 H ± l =x _ l +r (5.60)
2  2 2  2

By diagonalizing the matrix o f the system (M), Clerc and Kennedy (2002) showed that 

the position o f a particle at any time-step would depend only on the initial conditions 

and on its eigenvalues raised to the power of the corresponding time-step. This is in 

agreement with the equations derived in section 5.2.2 (refer, in particular, to Eq. (5.23)).

Thus, including the inertia weight and following the same train o f thought as in (Clerc 

& Kennedy, 2002), there exists a matrix A such that

A 'M - A = D =
U  o |̂
 ̂0  e2;

(5.61)

provided there are two linearly independent eigenvectors associated to the eigenvalues 

in Eq. (5.59) (i.e. y  * 0), where

A =
(l - w - ( j > - y )  (l -w - ( / )  + Yy

2  • w 2 ■ w
(5.62)

Clearly, A 1 does not exist if  y = 0 , as there would be only one family o f eigenvectors:

e = ---------— (for y = 0 ) (5.63)

Refer to Appendix I for further details on Eqs. (5.61) and (5.62). Thus, from Eq. (5.61),
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M  = A - D A (5.64)

Including Eq. (5.64) into Eq. (5.56),

-Pm =D-A~' -P{‘-n (5.65)

Therefore, calling Q"' = A 1 ■P<l>,

Q"' = D Q (/-1) Q{t) = D ‘ -Q{0) (5.66)

Eq. (5.66) implies that the position o f the particle at any time-step depends on the initial 

conditions and settings (x(0), v(0), w and </> within g (0)) -which are constants in t-, and on 

the eigenvalues raised to the power o f the corresponding time-step: e[ and e2. Hence 

there is convergence if  both eigenvalues are smaller than one and divergence if  at least 

one o f them is greater than one. The question is what happens if  |e,| =\e2\= 1 •

Case 1: e] =e2

Then y = 0 and A is singular so that A~] does not exist and Eqs. (5.61) to (5.66) do not 

apply. Eq. (5.48) shows that, in general, the particle diverges linearly. If el = e 2 = - 1  as 

in the particular case o f w = 1 and <j> = 4, the particle diverges by moving in opposite 

directions in consecutive time-steps. Clerc and Kennedy (2002) showed that if  is an 

eigenvector, the particle oscillates between two positions (no explosion): P {t+l) = - P {t). 

The same is true in Eq. (5.48) if  the two terms multiplying t cancel each other out.

Case 2: e, = - e 2

From Eq. (5.59),

e, = +V(l- « 0 (5.67)

If (j> > 1, ^ =~e2 is imaginary. If, in addition, e, = e2 = 1, then <f) = 2 and e] = —e2 = i.

C ase3: e, = \e2\ with e] ^e2 and e, ^ —e2

The eigenvalues are complex conjugates. If, in addition, |e,| = |e2| = 1,
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= 1 (5.68)

which is the horizontal line upper-bounding the complex region o f interest in Fig. 5.2. 

That is, the original PSO ( w = 1 and 0 < ^ < 4):

Therefore the second case (e] = —e2) comprises an instance o f the third case.

If the eigenvalues are complex, they can be represented in polar coordinates, in the same 

fashion as the roots in Eqs. (5.32) and (5.33)). For p  = 1,

Thus, following the studies in (Clerc & Kennedy, 2002), the original PSO ( w = 1) ex

hibits a cyclic or pseudo-cyclic behaviour for 0 < (j> < 4.

To summarize, if  at least one of the eigenvalues has a module greater than one, there is 

a deterministic divergence (explosion); if  both modules are smaller than one, there is

convergence; if  \ex \ = |e2| = 1 and e, = e2, there is a deterministic explosion (exceptional

initial conditions may lead to unlikely cyclic behaviour); and finally, if  |^| = |e2| = 1 and

ex^e2, the eigenvalues are complex conjugates and the trajectory is (pseudo) cyclic.

This thesis is not concerned with the particle’s cyclic behaviour per se, as it is in fact 

argued that it should be discouraged. Instead, convergence should be ensured by means 

of inertia weights and/or constriction factors. However, given that the cyclic behaviour 

is a boundary case between convergent and divergent behaviour, some analyses and 

empirical studies on the subject are offered hereafter.

The (pseudo) cyclic behaviour takes place only for w = 1 and 0 < (f> < 4 , where the roots 

of the characteristic polynomial are complex conjugates with p  = 1. In turn, <j> = 4

el = etQl = cos (/ • 6 )+ i ■ sin(  ̂• 6) 

e2 = e~1'9'1 = cos(/ •0)—i • sin(? • 0)
(5.70)
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leads - in  general- to linear explosion, and ^ > 4 results in exponential explosion. In 

order to illustrate this and to visually analyze the influence o f </> on the divergent and 

cyclic behaviours, a sequential series o f plots o f the trajectory o f the deterministic parti

cle for w = 1 and 0.2 < (f) < 4.1 is offered in Fig. 5.3 to Fig. 5.7. The particle is initial

ized at x ((>> = 100 , v(0) = 0 ,  and p  = 0. Thus, the exponential explosion can be observed 

in Fig. 5.3 A); the linear explosion in Fig. 5.3 B); and different cyclic and pseudo-cyclic 

behaviours in the remaining figures. Recall that <f) = aw if  the random weights are re

moved whereas = aw 12 if  they are replaced by their expected value (see Eq. (5.3)).

Clerc and Kennedy (2002) identified the values o f (f) which result in cyclic behaviour, 

stating that every other value leads to pseudo-cyclic behaviour. Some o f those values 

are shown in Table 5.1, where the associated values o f  the smallest period, cycle, 0 , and 

y'  are also provided. The rows highlighted are those which were also identified by Oz

can and Mohan (1998), (1999) as limits for different search types. Thus, for (/)< 2 - 4 1  

and (/> > 2 + a/3 it happens that y'< 1, and the opposite is true in between. For the par

ticular case they studied -w here x {()) = p  and therefore the cosine term in Eq. (5.42) 

drops-, values o f  y'< 1 result in the magnification o f the amplitude o f the sine waves. A 

precise study o f  the characteristics o f the sine waves for varying values o f (f) is o f  no in

terest in this study, as the cyclic behaviour is to be discouraged.

The trajectories in Fig. 5.3 to Fig. 5.7 which happen to be exactly cyclic are framed 

within red lines, and the values o f the period, cycle, and 0 are provided.

Table 5.1. Values o f <f> < 4 tha t lead to exact cyclic behaviour (fo r w  =1), identified in (C lerc & Kennedy, 
2002). The values h igh lighted are those delim iting the reg ions o f d iffe ren t search type identified in (Ozcan 
& Mohan, 1998) and (O zcan & Mohan, 1999) for the particu lar case of jc(0) = p (the cosine term drops off).

2 - y ^ 12 2 tt 1 /6  7T 1
i 6 27r 1/3 7r 1 .7 3 2 0 5

(5  -  5 I/2) /  2 5 27T 2 /5  7r 1 .90211
2 4 27T 1 /2  7T 2
3 3 2tt 2 /3  7r 1 .7 3 20 5

(5  +  5 1/2) /  2 5 47r 4 /5  7r 1 .1 7 5 5 7
2 +  3 ,/2 12 10 7T 5 /6  7T 1
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Fig. 5.3. T ra jectory  o f a particle in itia lized at x = 100 over a 1-dimensional space with stationary a ttractors a t *  = 0 
and random  w eights L/<o,i) removed for w  = 1.00 and 4.10 >  aw > 3.00. Cyclic tra jectories are h ighlighted by a red 
fram e. F igures A) and B) feature the exponentia l and linear explosions, respectively, whereas the remaining figures 
dep ict cyclic  o r pseudo-cyclic  behaviour.
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Fig. 5.4. T ra jectory o f a partic le  in itia lized at x  = 100 over a 1-d im ensional space with stationary a ttracto rs at x  = 0 
and random  weights U(0,1) rem oved for w  = 1.00 and 2.80 > aw > 1.80. Cyclic tra jectories are h igh lighted by a red 
fram e.

m = 1, ini * sm •  1 9 (bid * 38 ) 

11(0,1) replaced by '0  5”U(0,1) REMOVED
UI= 1, iw = 5UI = I 8 (aui = 3.6) 
U(0,1) replaced by '0  5"

iu= 1, iui = jui = 0.9 (aui = 1.8) 

U(0,1) REMOVED

■200  ■ * * *-------
0  10 20  30 40 50

T im e-steps
20 30
Tim e-steps

-100

135



c 2 e c SYSTEMATIC COEFFICIENTS STUDY WITH STATIONARY ATTRACTORS S w a n se a  U niversity
Prifysgol A bertaw e

A)

200 0 85 (aw = 17}
11(0,1) replaced by '0  5"

£ 100o

o
* -100 

CL

-200

Tim e-steps B)

200 w = 1, iuu = sw = 0 8 (aw = 1 6) 

U(0,1) REMOVED
w = 1, iw * 5W = 1.6 (aw = 3.2} 

U(0,1) replaced by "OS'

<s>d
o

100

CO
o“■ 0COqj
o
« -100 

CL

-200

Tim e-steps

C)

200 w * 1;iui * 5u> * 1.5 (aw = 3) 

0(0,1) replaced by'fl.5"
uj -  1, iw = sui = 0 75 (aw = 1.5) 

U{0,1) REMOVED

co
c.
o

100

CO
o

0CO<D
o

™ -100 
CL

-200

Tim e-steps D)

200 ui = 1; iw = sw = 1.4(aw = 2.( 

U(0,1) replaced by ’0.5"U(0,1) REMOVED

co
c :
o

100

CO
o

0CO
JI>
o

* -100 
CL

-200

T im e-steps

100

w= I, a«/ = ( 5 - * |r t ( 5 ) ) /2 -  1.3820 

U(0,1) REMOVED

-50

Theta - 2/5 plPeriod = 6 ; Cycle = 2 pi
a . -100

-150

Time s tep sE) F)

200

ICO

0

-100

-200

w * 1; iw s  sw * 0.65 (aw = 1.3) 
U(0,1) REMOVED

ui = 1; iw = sw = 1.3 (aw * 2.6) 
13(0,1) replaced by ’0.5"

m m

0 10 20  30
Tim e-steps

40 50

G)

200 «  ■ ), w  * = 0.6 (aw = 1.2)
UfO.f) REMOVED

w = I, iw = sw = \2  (aw = 2.4) 

0(0. i ) nepla<tied by *0.5"

100

Vt
o o<ft 

JX>
o
« -100 

CL

T im e-steps H)

200 w = 1; iw = sui = 1 1 (aw * 2 2) 

U(0,11 replaced by ’D 5"
0 55 (aw = 11)

U(0,1) REMOVED

co
C.O 100

CO
o

0CO
.55?o
« -100 

CL

-200

T im e-steps

Fig. 5.5. T ra jectory o f a particle in itialized a t x  = 100 over a 1-dimensional space with stationary a ttractors at x  = 0 
and random  w e ights U(o,ij removed fo r w = 1.00 and 1.70 > a w >  1.10. Cyclic tra jectories are h ighlighted by a red 
frame.
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Fig. 5.6. T ra jectory o f a particle in itia lized at x = 100 over a 1-d im ensional space with stationary a ttracto rs at x  = 0 
and random  weights l/(o,i) rem oved fo r w  = 1.00 and 1.00 >  aw  >  0.30. Cyclic tra jectories are h igh lighted by a red 
frame.
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Fig. 5.7. T ra jectory o f a particle in itialized at x  = 100 over a 1-d im ensional space with stationary a ttractors at jc = 0

and random weights U(o.i) removed for w = 1.00, a w =  2 - 4 z  in figure A), and a w  = 0.2 in figure B). The cyclic 
behaviour on the left is h ighlighted by a red frame.

Table 5.1 is extended in Table 5.2 to include greater multiple periods and cycles for 

which the values o f (f) also lead to cyclic behaviour. Given (j), from Eq. (5.29) and for

w = 1 : 0 = acos and period =
cycle 2 • n  ■ k

, where k is an integer. In turn, / '
0 6

is as in Eq. (5.25). The curves "(f) -  period’ are plotted in Fig. 5.8 for five values o f k. O f 

course, integer periods imply cyclic behaviour. Note, for instance, the value (f) = 2 , 

which results in cyclic trajectory for all five cycles, with the smallest period  being 4 

time-steps for a cycle o f  27r. This can also be observed in Fig. 5.4 F), where the whole 

cycle is completed in 4 time-steps. Notice that y '= 2  in this particular case, which 

means that the root is imaginary ( 0 — n  / 2).

Table 5.2. Values o f <j> < 4 that lead to exact cyclic behaviour (for w  =1) and re lated data, identified in 
(C lerc & Kennedy, 2002).

2  -  3 1/2 1 2 , 2 4 ,  ... 27T. 47r , . . . 1 /6  x 1

1 6 , 1 2 , 1 8 , 2 4 , 3 0 , . . . 27T, 47r, 67r, 87T, 1 0 7 T ,... 1 /3  x 1 .7 3 2 0 5

(5  -  5 I/2)  /  2 5 , 1 0 , 1 5 , 2 0 , 2 5 , . . . 27r, 47T, 67T, 87T, 107T, ... 2 /5  x 1 .9 0 2 1 1

2 4 ,  8 , 1 2 , 1 6 , 2 0 ,  ... 27r, 47T, 67T, 87T, 1 0 7 T ,... 1 /2  x 2

3 3 , 6 , 9 ,  1 2 , 1 5 , . . . 27T, 47t, 67r, 87T, 1 0 7 T ,... 2 /3  x 1 .7 3 2 0 5

(5  +  5 I/2)  /  2 5 , 1 0 , . . . 4 x ,  8 7 r , ... 4 /5  x 1 .1 7 5 5 7

2  +  3 1/2 1 2 , . . . 107T, ... 5 /6  x 1

From here on, deterministic explosion will refer to the divergence observed in Fig. 5.3 

A) and B). That is, when the divergence is due to at least one o f  the roots o f  the charac

teristic polynomial - th e  eigenvalues o f  system m atrix- being greater than one.
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k = 4

1 8 k = 5

1 6

1 3
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0 .2 5 3 7 50 .5 0 .7 5 1 .2 5 1 .7 5 2 .2 5 3 .2 5 3 .52 .5 2 .7 5

Fig. 5.8. Periods associa ted to 0 < <j> < 4. The d iffe ren t values o f k  identify the num ber o f ‘2 t t ’ involved in the cycle. 
For instance, for </> = 2, the period equals 4 tim e-steps in a 2 n cycle and 20 tim e-steps in a 10rr cycle.

As to the (pseudo) cyclic behaviour, it can be observed that even when the trajectory is 

perfectly cyclic such us the cases in Fig. 5.3 D), E), and H), the particle explores regions 

o f  the search-space that are far from the attractor. In other words, although the determi

nistic explosion does not take place, the pulling influence o f the attractor alone (i.e. dis

regarding the inertia weight) over the particle ends up taking it farther rather than closer 

to itself, as illustrated in Fig. 5.9. Common sense throws doubt on the usage o f  (j) > 2 

(bear in mind the difference between (j) and aw, as posed in Eq. (5.3)).

,(i) .(2 )
X

P

<f> = 2 ,(2 )

il) <f> = 3
J 2 )

P

Fig. 5.9. Influence of the coeffic ien ts ^  = 1, <j> = 2, and tf> -  3 on the partic le ’s tra jectory between two consecutive 
tim e-steps, d isregard ing the inertia  weight.
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5.4. Stochastic explosion

If once the random weights are re-incorporated into the algorithm an explosion occurs 

despite the magnitude o f both roots/eigenvalues being smaller than one, such diver

gence is referred to here as a ‘stochastic explosion’.

In the original PSO as proposed in (Kennedy & Eberhart, 1995), the settings are w = 1 

and iw = sw = 2. This leads to the explosion of the system. Since (j) e [0,4], this cannot 

be the ‘deterministic explosion’ discussed in section 5.3 but a ‘stochastic explosion’. 

Given that the system is unstable for cyclic behaviour, it is not too surprising that a per

turbation like the introduction of randomness results in the collapse o f the system. 

However, this ‘stochastic explosion’ can still be observed for w < 1 and (j) fully within 

the convergence region. In either case, it is not proved that the divergence would con

tinue indefinitely. The stochastic explosions that are clearly temporary, with the particle 

being pulled back towards the attractor, will be referred to as ‘local explosions’.

Theoretical studies o f the PSO algorithm’s behaviour in the presence o f randomness are 

beyond the scope o f this thesis. Only few authors, to the best of my knowledge, dare 

take this challenge. Jiang et al. (2007) studied the convergence o f an isolated particle 

using stochastic process theory, viewing the particles’ position as a stochastic vector. 

By studying the convergence o f the expectation and of the variance o f the particle’s po

sition, they claim to have derived the ‘stochastic convergent condition’ o f the particle 

swarm system. Clerc (2006b) studied the stagnation phenomenon in PSO (no improve

ment observed over several time-steps). In that extensive formal study, he analyzed the 

distribution o f velocities of a particle with stochastic forces. In turn, Poli (2008) pre

sented a method to determine the characteristics o f the sampling distribution o f a PSO 

algorithm, and its changes as particles search for better individual best experiences.

Six trajectories of the particle with w = 1; aw = 4;  random weights re-incorporated; 

and stationary attractors are shown in Fig. 5.10. The first one is obtained by setting the 

pseudo-random number generator in Matlab to its original state, and the others comprise 

consecutive runs. As can be observed, there is a stochastic explosion rather than a cyclic 

average trajectory as could be expected given that $ e [0,4] (cyclic range). It can also be 

seen that the steepness and size of the stochastic explosion varies from run to run.
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Due to the reasons illustrated in Fig. 5.9, this thesis does only exceptionally concern it

self with values o f  ^mcan > 2 . That is, in general, 0 < ^mean^2 ( 0 < « W < 4 ) .

The main objective in this section is to illustrate how the random weights may lead to a 

stochastic explosion as the trajectories o f the particle with the random weights replaced 

by their expected value ‘0.5’ are (pseudo) cyclic. Thus, Fig. 5.11 to Fig. 5.15 offer di

rect comparisons o f  the trajectories with the random weights included on the right col

umns and with their expected values on the left ones. Two graphs in the same row share 

the same acceleration weight.
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Fig. 5.10. Six possib le tra jectories o f a particle in itia lized a tx  = 100 over a 1-d im ensional space with stationary a ttrac
tors a t jc = 0 and random  weights U(o,i) included for w = 1.00 and aw -  4.00. The first one corresponds to the firs t run 
once the pseudo-random  num ber generator is set to its initial state, while the others correspond to consecutive runs.
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Fig. 5.11. T ra jectory  of a particle in itialized a t *  = 100 over a 1-d im ensional space with sta tionary attractors a t *  = 0 
fo r w = 1.00 and 4.20 >  aw > 3.60. The random  weights U(o,i) are replaced by the ir expected value (i.e. ‘0 .5 ’) in the 
firs t colum n, and included in the second one. The equ iva lent values o f the coeffic ients if the random  weights were 
rem oved instead are presented in the left text box on the left colum n.
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Fig. 5.12. T ra jectory o f a partic le  initialized at jc = 100 over a 1-d im ensional space with stationary a ttracto rs  a t *  = 0 
for w  = 1.00 and 3.40 > a w >  2.80. The random  weights l/<o,i) are replaced by the ir expected value (i.e. ‘0 .5 ’) in the 
firs t co lum n, and included in the second one. The equiva lent values o f the coeffic ients if the random w eights were 
rem oved instead are presented in the left text box on the left colum n.
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Fig. 5.13. T ra jectory o f a particle in itia lized a t x  = 100 over a 1-d im ensional space with stationary attractors a t *  = 0 
for w  = 1.00 and 2.60 >  aw > 2.00. The random w eights U(o,i) are replaced by the ir expected value (i.e. ‘0 .5 ’) in the 
firs t colum n, and included in the second one. The equ iva lent values of the coeffic ien ts  if the random  weights were 
removed instead are presented in the left text box on the left colum n.
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Fig. 5.14. T ra jectory o f a partic le in itialized at *  = 100 over a 1-d im ensional space with sta tionary attractors at jc = 0 
for w  = 1.00 and 1.80 >  aw  ^  1.20. The random  weights U(o,d are replaced by the ir expected value (i.e. ‘0 .5 ’) in the 
firs t co lum n, and included in the second one. The equiva lent values o f the coeffic ients if the random weights were 
rem oved instead are presented in the left text box on the left colum n.
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Fig. 5.15. T ra jectory o f a particle initialized a t *  = 100 over a 1-dimensional space with stationary a ttractors a t *  = 0 
for w  = 1.00 and 1.00 > a w >  0.40. The random  weights U(o.i) are replaced by the ir expected va lue (i.e. ‘0 .5 ’) in the 
firs t colum n, and included in the second one. The equ iva lent values o f the coeffic ients if the random  weights were 
rem oved instead are presented in the left text box on the left column.
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Fig. 5.11 to Fig. 5.15 show that the stochastic explosion occurs for the whole range o f $ 

studied, although its size tends to decrease as (j) decreases. This is to be expected, as 

smaller values o f (j) reduce the influence o f randomness. The figures with random 

weights included were chosen to be representative o f the most common behaviour, as 

different runs return different trajectories. Six runs are performed for every trajectory 

involving random weights presented in this chapter, and some others. All those images 

are gathered in a digital appendix. Fig. 5.16 shows six trajectories o f the particle with 

w = 1 ; aw = 3 .4 ; random weights re-incorporated; and stationary attractors.
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Fig. 5.16. Six possib le tra jecto ries of a particle in itia lized at x  = 100 over a 1-d im ensional space with sta tionary a ttrac
tors a t x  = 0 and random  w eights U(o,i) included for w  = 1.00 and aw = 3.40. The firs t one corresponds to the firs t run 
once the pseudo-random  num ber generator is set to its initial state, while the o thers correspond to consecutive  runs.

147



C*EC SYSTEM ATIC C O E FFIC IE N T S STUDY WITH STATIONARY A TT R A C T O R S Swansea University
Prifysgol Abertawe

5.5. Convergence graph

As discussed throughout section 5.2, convergence occurs when the magnitude of both 

roots o f the characteristic polynomial (eigenvalues o f the system matrix M) are smaller 

than one. Refer, in particular, to Eqs. (5.23), (5.42), and (5.48). Therefore, for real

valued roots, convergence is ensured if:

(5.71)j  <  1  +  W ~ ( f ) ±  V ^ 2 - ( 2 - w + 2 ) - ^  +  ( w - l ) 2

Thus, from the rightmost inequality,

l + W-0±yl<f>2 -(2-w+2)-</> + ( w - \ f  <2 (5.72)

—  1 +  w -<f> ± ' \ ]< j>2 - ( 2 - w + 2 ) ’ (/) +  ( w — l ) 2  < 0 (5.73)

The worst case scenario in Eq. (5.73) is for the positive square root. That is to say that if  

the positive square root satisfies Eq. (5.73), so does the negative one. Therefore,

(-1  + W— </>)<—yl02 - ( 2 -  W +2)-^ + (w — l)2 

(-1 + W — <f>)2 > ^— -y/̂ 2 -  (2 • W + 2\(f) + (w— l)2 J

(5.74)

(5.75)

<j)>0 (5.76)

Note that for Eq. (5.74) to hold, it must be true that (-1  + w -  (f) < 0 . Hence,

w  < 6  + 1 (5.77)

It follows that satisfying Eqs. (5.76) and (5.77) guarantees that the two (real-valued) 

roots o f the characteristic polynomial satisfy the rightmost inequality in Eq. (5.71).

From the leftmost inequality in Eq. (5.71),
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\ + w — ( j ) ± -(2* w+2)-(j) + ( w - \ f  > -2 (5.78)

3 + w-<f>±yj<f>2 - ( 2 - w +2)-^  + (w - l )2 > 0 (5.79)

The worst case scenario in Eq. (5.79) is for the negative square root. That is to say that 

if  the negative square root satisfies Eq. (5.79), so does the positive one. Therefore,

(3 + w -  > tJ$2 -(2-w+2)-<f> + ( w - l f

(3 + w — <f>f > \̂ l<f>2 - ( 2 - w + 2)-^ + (w - l )2

(5.80)

(5.81)

(5.82)

Note that for Eq. (5.80) to hold, it must be true that (3 + w -( f )  > 0. Hence,

w > </> — 3 (5.83)

It follows that satisfying Eqs. (5.82) and (5.83) guarantees that the two (real-valued) 

roots o f the characteristic polynomial satisfy the leftmost inequality in Eq. (5.71).

If the roots o f the characteristic polynomial are complex conjugates rather than real

valued, the convergence condition is that their module is smaller than one. As shown in

Eq. (5.27), the module equals p  = y fw , which translates into the convergence condition 

shown in Eq. (5.84) for complex conjugate roots:

w<  1 (5.84)

Therefore, the set o f inequality conditions bounding a region in the plane o f en

sured convergence o f the isolated, deterministic particle is offered in Eq. (5.85), while 

the boundaries o f those inequalities are plotted in Fig. 5.17.

Considering the redundancies and that only Eq. (5.84) is valid within the complex re

gion (inside the red parabola in Fig. 5.17), the conditions can be reduced to those shown 

in Eq. (5.86).
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( f ) >  0 

w < (j) + 1

w > — -  1 
2

w > ( f)  -  3 

w < 1

(5.85)

= o

w= (<}»+1) + 2*SQRT(<|>) 
w= (<|>+1) -  2*SQRT(<$>)

w = <t>/2 -  1

w= 0

Fig. 5.17. Relevant curves bounding the convergence region in the '<f>-w plane.

(5.86)

T h u s ,  th e  c o n v e rg e n c e  r e g io n  is  g iv e n  b y  th e  b lu e -s h a d e d  t r ia n g le  in  F ig .  5 .1 8 .
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Convergence Region

w = (4h 1) + 2 * SQRT(<t>) 

w = (<t>+l) -  2*SQRT(<J>) 

w = 4> + 1

Fig. 5.18. Convergence region in the 't/h-w' plane (blue shaded triangle).

In general, w <  1 is o f  no practical interest as it does not make much sense to speak o f 

negative inertia. However, it is interesting to observe the how the particle converges 

nonetheless, as shown in Fig. 5.19 for ‘w = -0 .50 , (j) = 0.25’ and ‘w = -0 .50 , (j) = 0.75’.

100
w = -0 .5 0  
phi = 0 .75  
No vmax

(Oc

-50

B) Tim e-steps

100
w = - 0  50  
phi = 0  25 
No vmax.■tr

</>
o
CL
Q)
U
tr
<T5

Q .

-50

A) Tim e-steps

Fig. 5.19. T ra jectory o f a determ in istic  particle in itia lized a t *  = 100 over a 1-d im ensional space with s ta tionary a ttrac
tors a t . r  = 0 for w = -0 .5 0 , ^  = 0 .25 ’ and V  = -0 .5 0 , (j> -  0 .75 ’. The particle converges despite the negative inertia.

Disregarding the region o f the convergence triangle in Fig. 5.18 where w < 1, the con

vergence region o f the plane is reduced to the gray shaded area in Fig. 5.20.
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Fig. 5.20. Region in the '<f>-W p lane where convergence is ensured (gray shade). The region inside the dotted parab
ola com prises the com plex roots o f the characteris tic  polynom ial which lead to convergence. Determ in istic explosion 
is guaranteed within the black triangle. The top horizontal line with <f>< 4 leads to (pseudo) cyclic  behaviour.

In summary, the convergence region o f practical interest is given by the gray area in 

Fig. 5.20, which is delimitated by the inequalities offered in Eq. (5.87).

<t>> 0

w > — -  1 
2

0 < w < 1

(5.87)

Ensured convergence is not the only important aspect o f  the particle’s trajectory. The 

speed and form o f convergence define the manner in which the search is carried out, and 

therefore have a critical impact on the final performance o f the optimizer. Different 

combinations o f w  and (f) within the convergence region result in different amplitudes, 

frequencies, and speed o f  damping o f  the oscillations in the particle’s trajectories.

Twenty pairs ‘^ -w ’ resulting from all combinations o f five values o f  w and four values 

o f  (f) are considered to illustrate the speed and form o f convergence/divergence o f the 

(deterministic) particle’s trajectory associated to the different regions o f  the ‘^ -w ’ 

plane. These selected values are shown in Table 5.3 and Fig. 5.21.
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Table 5.3. Tw enty selected pairs ‘<j)-w to be considered to illustrate the 
speed and form  of convergence/d ivergence o f the partic le ’s tra jectory asso
c iated to the d ifferent regions o f the ‘<f>-w plane.

<P
0 .5 2 3 .5 4

1 A 1 A 2 A 3 A 4

0 .8 B 1 B2 B3 B 4

w 0 .5 C l C2 C 3 C 4

0 .2 D 1 D 2 D 3 D 4

0 E l E2 E3 E 4

0.9

0 .7

0.6

C1 o
0 .4

0 .3

0.2

2.5 3.50 .5 1.5

Fig. 5.21. Twenty se lected pairs ‘<f>-w to be considered to illustrate the speed and form  of convergence/d ivergence of 
the partic le 's  tra jectory associa ted  to the d iffe ren t regions o f the plane. Note that only 8 of these pairs are w ithin 
convergence region. The o the r 12 pairs lead to e ither (pseudo) cyclic or d ivergent trajectories.

The trajectories o f the particle resulting from the twenty selected pairs shown in

Table 5.3 and Fig. 5.21 are offered in Fig. 5.22 and Fig. 5.23, where both attractors are 

fixed at jc = 0. Notice that Fig. 5.22 shows the trajectories corresponding to the first two 

columns o f  points in Fig. 5.21 whereas Fig. 5.23 shows the trajectories corresponding to 

the other two columns. Hence, if  these figures are assembled next to each other, a grid 

o f trajectories is obtained corresponding to their homologous pairs in Fig. 5.21.
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Fig. 5.22. T ra jectories o f the determ in istic partic le fo r the pairs A1 to E2 (first two colum ns) in Fig. 5.21
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Fig. 5.23. T ra jectories o f the determ in istic particle for the pairs A3 to E4 (last two co lum ns) in Fig. 5.21.
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Fig. 5.22 and Fig. 5.23 show that the points within the convergence region (B l, B2, B3, 

C l, C2, D l, D2, and El) effectively lead to convergence towards the attractor. Con

versely, the points within the divergence region (B4, C3, C4, D3, D4, E3, E4) lead to 

the particle diverging from the attractor, where the lower the inertia weight (w) for a 

given acceleration coefficient (</>) -and the greater the $ for a given w -  the greater the 

explosion. The points on the boundary -namely A l, A2, A3, A4, and E 2- do not lead to 

convergence. According to the magnitudes o f the roots of the characteristic polynomial 

associated to the recurrence relation o f the particle’s position, they may lead to cyclic, 

pseudo-cyclic, or divergent trajectories. Loosely speaking, points A l, A2 and A3 lead to 

(pseudo) cyclic trajectories because the roots are complex conjugates with a module 

equal to one; point A4 leads to a linearly divergent trajectory because both roots are 

real-valued and equal to ‘-1 and point E2 leads to a cyclic trajectory because one root 

equals ‘0’ and the other equals ‘- 1 ’ which results in the particle moving in opposite di

rections in consecutive time-steps always keeping the same distance from the attractor.

With regards to the different speeds o f convergence, it can be observed that the closer to 

the boundaries of the convergence region the slower the convergence. Regarding the 

form o f convergence, the greater the inertia weight (w) in relation to the acceleration 

coefficient {(j)) the lower the frequency o f the oscillations in the trajectory. In other 

words, low w with high (j) leads to high frequencies (i.e. the attractor being overflown a 

higher number o f times) whereas high w with low <f> results in low frequencies. Setting 

them both to small values is not advisable, as exploration is affected, while setting them 

both to great values (approaching point A4 in Fig. 5.21) leads to slow convergence.

5.6. On exploitation and exploration

The terms ‘exploitation’ and ‘exploration’ are frequently used in the search algorithms’ 

literature. They are typically loosely defined, and mostly used in a semantic rather than 

in a technical fashion. Although Naudts and Schippers (1999) attempted to provide an 

unambiguous definition o f these terms, they only apply to algorithms that are not popu

lation-based and do not possess any sort o f memory. Nonetheless, it seems fair to dis

cuss some o f their definitions. They consider two types of exploitation and two types of 

exploration, providing some hints as to how they may be quantified.
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Representational exploitation: The representation of the current solution is used to gen

erate neighbouring candidate successors (resembling mutation in EAs). As to its quanti

fication, (...) there is more representational exploitation when the neighbourhood plays a more 
restrictive role. (Naudts & Schippers, 1999)

Neighbourhood exploration: Potential successors are selected from the neighbourhood 

and evaluated (resembling mutation in EAs). Its quantification may be given by the 

number o f distinct candidate solutions that are evaluated.

Objective exploitation: The actual successor is selected based on the information ob

tained from the neighbourhood exploration (resembling fitness-based survivors’ selec

tion in EAs). The quantification o f the objective exploitation may be given by the selec

tion pressure o f the algorithm.

Generational exploration: The successor is accepted.

According to these definitions, there is a kind o f representational exploitation in PSO: 

the next position o f a particle is generated from the current one. However, the actual 

solution is not the current position o f a particle but the global best. In addition, the new 

position may be located far from the current one. The neighbourhood exploration is a bit 

more complex in PSO, since the neighbourhoods are typically topological and involving 

the ‘memory swarm’ as well. The objective exploitation is indirect, as the new position 

replaces the current one regardless o f their conflicts (i.e. fitness). However, the new po

sitions o f the ‘memory swarm’ are indeed conflict-based. The quantification o f this ex

ploitation would be given by the (randomly weighed) coefficients in the velocity update 

equations: a set o f coefficients that drives the particle closer to the attractor would imply 

a higher objective exploitation.

Thus, the definitions in (Naudts & Schippers, 1999) may be adapted to PSO to some 

extent. However, they do not stand for what those terms mean within this thesis. In 

population-based methods, the terms ‘exploration’ and ‘exploitation’ are typically used 

to qualitatively describe the type o f search: ‘exploration’ would mean that the individu

als are looking for potentially good areas in the search-space, whereas ‘exploitation’ 

would mean that the individuals are performing a fine-grain search within any one of  

these identified promising areas. Hence, however loosely defined, ‘exploitation’ refers 

to the exploration o f a small neighbourhood surrounding a given (usually good) solu
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tion. The question is, o f course, how to define this small neighbourhood1. It is important 

to note that there is no attempt here to quantify exploration or exploitation; in fact, there 

is not even a crisp limit defined between them. That is to say, a low exploitation implies 

a high exploration and vice versa. Thus exploration is associated to the concept o f di

versity: the higher the diversity the more explorative the behaviour. The diversity is 

measured according to some proposed measures of the degree o f clustering late in 

Chapter 6. Therefore, the lower the value o f those measures the lower the exploration 

(i.e. the higher the exploitation) and the higher the value o f those measures the higher 

the exploration (i.e. the lower the exploitation). This implies that an algorithm which 

returns a higher number of distinct solutions for a given search-length is more explor

ative. Hence a set o f coefficients in PSO which lead to faster convergence is more ex

ploitative, as the particles implode to a solution sooner. As a consequence, exploitative 

behaviour will be, in general, unable to escape local attractors.

A definition o f exploitation/exploration somewhat similar to the meaning these terms 

have in this thesis is given by Beyer (1998), who views exploitation as the ability to step 

into the local gradient direction and exploration as the ability to leave the gradient path.

While increasing degrees of clustering of the particles mean increasing exploitation in 

this thesis, Clerc (2008a) interestingly proposes measuring the exploitation by defining 

local exploitation areas (LEAs) around the particles’ best experiences, and then comput

ing the so-called ‘exploitation rate’. The latter is the ratio between the number o f parti

cles located within a LEA and the total number o f particles in the swarm. It is not clear 

to me, however, how these LEAs are defined: to the best of my understanding, these ar

eas would be decreasing as the particles’ best experiences cluster closer except for those 

whose LEAs involve the boundaries o f the search-space in their definitions.

5.7. Velocity constraint

For (j) > 0 , the explosion does not take place by means o f consecutive small steps mov

ing away from the attractor but by means o f increasing amplitudes o f the oscillations. In 

fact, in the case o f a deterministic explosion with at least one o f the roots smaller ‘-1  ’,

1 Note that ‘neighbourhood’ refers to a region o f the search-space, and not to the ‘social network’ in PSO.
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the particle moves in opposite directions in consecutive time-steps with increasing am 

plitudes. Therefore, an external constraint to control the explosion consists o f restricting 

the maximum displacement permitted for a particle between consecutive time-steps. 

More precisely, given that different dimensions are treated independently in PSO, the 

restriction is actually on the components o f the displacements. The effect o f this so- 

called ‘vmax constraint’ (also ‘velocity clamping’) on a ‘deterministic explosion’ o f  a 

determ ini stic particle is shown in Fig. 5.24.
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Fig. 5.24. Com parison o f the tra jecto ry o f a particle in itia lized a t x  = 100 over a 1-d im ensional space with stationary 
attractors a t x  = 0 for the determ in istic  linear explosion (w  = 1.00; aw = 4.00; L/(o.i) rem oved) with and w ithout con
straining the velocity. The tra jecto ry becom es cyclic if the velocity is constra ined to the feasib le in terval f i n t .

It is o f  more practical relevance to analyze the effect o f the ‘vmax constraint’ on the ‘sto

chastic explosions’. From Fig. 5.20 and Fig. 5.9, it is advisable that 0max < 4 and

0mean ^  2 . In the original PSO algorithm, w = 1 and aw  = 4 , so that 0 < ( f) < 4 and

^mean = 2 . For these settings, a stochastic explosion occurs, as shown in Fig. 5.10 and

Fig. 5.25 I). In order to observe the influence o f the vmax constraint on the trajectory o f 

the particle, the latter is plotted in Fig. 5.25 and Fig. 5.26 for different settings o f vmax. 

Figures sharing the same row share the same acceleration weight. Furthermore, in order 

to assess the deviation caused by the random weights, every experiment is carried out 

for the particle with the random weights on the right, and with their expected values on

the left. The particle is initialized at x  = 100 with v(0) = 0  and p -  0 in every case, and 

the feasible interval is set to fint = 200 . Typically, the size o f the constraint is linked to 

the size o f the feasible interval.

Clearly, the restriction o f  the step-sizes is successful in preventing the explosion. How

ever, it does nothing with regards to convergence, and the restriction simply narrows

1 5 9
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down the region o f the search-space around the attractor where the search is focused. 

The trajectory is still (pseudo) cyclic, with the amplitudes o f the cycles limited by vmax. 

In fact, the peak-to-peak amplitude is approximately equal to 2-vmax.

If the settings are such that convergence is ensured, the vmax constraint is optional, and it 

just helps prevent function evaluations (FEs) too far from the region o f interest. If the 

roots o f  the characteristic polynomial are not both smaller than ‘ 1’, the restriction to the 

step-sizes or an alternative method to control the deterministic explosion is compulsory.
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Fig. 5.25. T ra jectory o f a particle in itia lized a t x  = 100 over a 1-d im ensional space with stationary a ttractors a t *  = 0 
for w  = 1.00 and aw  = 4.00. Random weights L/(o.i) are included in the second colum n, and replaced by the ir ex
pected value (i.e. ‘0.50 j  in the first. D ifferent rows correspond to d ifferent values o f the v max constra in t, the firs t one 
being unconstrained.
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Fig. 5.26. T ra jectory o f a partic le in itialized at jc = 100 over a 1-dim ensional space with stationary a ttracto rs at jc = 0 
for w = 1.00 and aw  = 4.00. Random  weights L/(o,i> are included in the second colum n, and replaced by the ir ex
pected value (i.e. ‘0 .5 0 ’) in the first. D ifferent rows correspond to d ifferent values o f the v max constraint.

Notice that the majority o f realistic problems, even when referred to as unconstrained, 

involve at least interval constraints (also ‘boundary constraints’ or ‘side constraints’). 

That is to say, there is a feasible interval in each dimension o f the search-space. In these 

cases, handling the boundary constraints is o f course another means o f controlling the 

explosion o f the system without ensuring convergence or high degrees o f exploitation. 

Beware that interval constraints can be handled by specific techniques (e.g. the ‘cut-off 

at the boundary’ or the ‘bisection’ methods discussed in chapter 4), or by any general 

constraint-handling technique (e.g. the ‘penalization m ethod’). Helwig and Wanka 

(2008) showed that, for some classical coefficients’ settings, neighbourhood topologies, 

particles’ and velocities’ initializations, particles whose initial position (also initial best 

individual experience) do not coincide with their neighbourhood best experiences would 

leave the search-space at the first iteration with overwhelming probability. The prob

ability increases with the dimensionality o f the problem. Handling the boundary con

straints helps avoid this initial local explosion. However, they found that different 

boundary constraint-handling techniques result in significant performance differences.
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5.8. Inertia weight

As previously discussed, an inertia weight w < 1 can be used to ensure convergence. 

However, different combinations of w and $ settings result in notably different dynamic 

behaviour and capabilities. Namely, convergence speed, reluctance to getting trapped in 

sub-optimal solutions, ability to perform fine-grain search, etc.

5.8.1. Random weight replaced

Fig. 5.20 allows choosing coefficients that would ensure convergence, but the type of  

resulting dynamic behaviour is not immediately obvious. The aim here is to visually 

analyze the characteristics of the convergent trajectory for different values o f w < 1 and 

0 < aw <  4 . The random weights are replaced by their expected value {$  = aw I2) so as 

to study the convergent trajectories without the disruption introduced by randomness.

It is a common mistake to assume that the smaller the inertia weight (w) the fastest the

convergence, as the search would become more like a local search. This is not necessar

ily true, and the setting o f w that results in the fastest convergence depends on the set

ting o f 0. The trajectories of the deterministic particle for aw — 4  (i.e. (f> = 2), as in the 

original PSO, and 1 .10>w >0  is offered in Fig. 5.27 and Fig. 5.28. Clearly, conver

gence takes place for w < 1 at different rates. Initially, convergence speed increases as w 

decreases until w = 0.30. From then on, the amplitude of the oscillations increase again 

until the trajectory becomes cyclic when w = 0 . Thus, the trajectory is cyclic in both 

extremes, although the attractor is overflown twice as many times for w = 0 than for 

w = 1. The period is 2 time-steps in the former case and 4 time-steps in the latter.

For a series o f decreasing acceleration weights from aw = 4.00 to aw = 0.80, Fig. 5.27 

to Fig. 5.48 show the trajectory o f the particle for various settings o f the inertia weight 

(w). Thus, the effect of different settings of w for a given aw can be observed.

For 4.00 > aw >2.00, the value of w that leads to the fastest convergence decreases as 

aw decreases. Thus, it is approximately equal to ‘0.30’ for aw = 4.00 (see Fig. 5.28 C)); 

‘0.20’ for aw = 3.40 (see Fig. 5.34 B)); ‘0.10’ for aw= 2.80 (see Fig. 5.40 G)); and 

‘0.00’ for aw  = 2.00 (see Fig. 5.44 H)). In the latter case, the particle reaches the attrac
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tor in one time-step. For aw<  2.00, the w  that leads to the fastest convergence increases 

as aw  decreases. It is approximately equal to ‘0.20’ for aw  = 0.80 (Fig. 5.48 G)).

5.8.1.1. Acceleration weight aw = 4.00
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Fig. 5.27. T ra jectory o f a partic le in itialized at jc = 100 over a 1-dim ensional space with stationary a ttracto rs a t *  = 0 
for 1.10 >  w  > 0.60 and aw = 4.00. Random  weights U{o,i) are replaced by the average of the uniform  distribution 
used to generate  them  (i.e. the ir expected value: ‘0 .50 ’).
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Fig. 5.28. T ra jectory o f a particle initialized at jc = 100 over a 1-dim ensional space with stationary a ttractors at jc = 0 
fo r 0.50 >  w  >  0.00 and aw  = 4.00. Random weights U(o,i) are replaced by the average o f the uniform  distribution 
used to generate  them (i.e. their expected value: ‘0 .50 ’).

1 6 4



c 2 e c SYSTEMATIC COEFFICIENTS STUDY WITH STATIONARY ATTRACTORS
V ® '

S w an sea  U niversity
Prifysgol A bertaw e

5.8.1.2. Acceleration weight aw = 3.80
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Fig. 5.29. T ra jectory o f a particle in itia lized at jc = 100 over a 1-dim ensional space with stationary a ttracto rs at jc = 0 
for 1.10 >  w  ^  0.60 and aw  = 3.80. Random weights l/(o,i) are replaced by the average o f the uniform  distribution 
used to generate  them (i.e. the ir expected value: ‘0 .50 ’).
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Fig. 5.30. Trajectory of a particle initialized a t *  = 100 over a 1-dimensional space with stationary attractors at jc = 0
for 0.50 > w  > 0.00 and aw  = 3.80. Random weights L/(o.i) are replaced by the average of the uniform distribution
used to generate them (i.e. their expected value: ‘0.50’).
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5.8.1.3. Acceleration weight aw = 3.60
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Fig. 5.31. T ra jectory o f a partic le  initialized at x  = 100 over a 1-dim ensional space with stationary a ttracto rs at a  = 0 
for 1.10 >  w  >  0.60 and aw = 3.60. Random  weights L/<0,1) are replaced by the average o f the uniform  d istribution 
used to generate  them  (i.e. the ir expected value: ‘0 .50 ’).
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Fig. 5.32. Trajectory of a particle initialized at x  = 100 over a 1-dimensional space with stationary attractors at x  = 0
for 0.50 > w  > 0.00 and aw  = 3.60. Random weights L/(o.i) are replaced by the average of the uniform distribution
used to generate them (i.e. their expected value: ‘0.50’).
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5.8.1.4. Acceleration weight aw = 3.40
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Fig. 5.33. T ra jectory o f a partic le  in itia lized a t *  = 100 over a 1-d im ensional space with stationary a ttracto rs a t *  = 0 
for 1,10 >  w  >  0.40 and aw = 3 .40. Random  w eights l/(o.i) are replaced by the average of the uniform  distribution 
used to generate  them (i.e. the ir expected value: ‘0 .50 ’).
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Fig. 5.34. T ra jectory o f a particle initialized a t j c  = 100 over a 1-d im ensional space with s tationary a ttractors at j c  = 0 
for 0.30 ^  w  >  0.00 and aw = 3.40. Random weights L/(o,i) are replaced by the average of the uniform  distribution 
used to generate  them  (i.e. their expected value: ‘0 .50 ’).

5.8.1.5. Acceleration weight aw = 3.20
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Fig. 5.35. Trajectory of a particle initialized at j c  = 100 over a 1-dimensional space with stationary attractors at j c  = 0
for 1.10 > w > 0.80 and aw  = 3.20. Random weights L/(o.i) are replaced by the average of the uniform distribution
used to generate them (i.e. their expected value: ‘0.50’).
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Fig. 5.36. T ra jectory o f a partic le in itia lized a t *  = 100 over a 1-d im ensional space with stationary attractors a t *  = 0 
for 0.70 >  w  >  0.00 and a w  = 3.20. Random weights L/(o,i) are replaced by the average of the uniform  distribution 
used to generate  them  (i.e. the ir expected value: ‘0 .50 ’).
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5^8.1.6. Acceleration weight aw = 3*00
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Fig. 5.37. Trajectory of a particle initialized at j c  = 100 over a 1-dimensional space with stationary attractors at j c  = 0
for 1.10 > w > 0.40 and aw -  3.00. Random weights l/(o,i> are replaced by the average of the uniform distribution
used to generate them (i.e. their expected value: ‘0.50’).
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Fig. 5.38. T ra jectory o f a partic le  in itia lized at a- = 100 over a 1-d im ensional space with stationary a ttractors at x -  0 for 
0.30 >  w  >  0.00 and aw = 3.00. Random  weights U(o,i) are replaced by the average of the uniform distribution used to 
generate  them  (i.e. the ir expected  value: '0.50').

5.8.1.7. Acceleration weight aw = 2.80
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Fig. 5.39. T ra jectory o f a partic le in itialized at a  = 100 over a 1-d im ensional space with stationary a ttracto rs a t a  = 0 
for 1.10 ^  w  >  0.80 and aw = 2.80. Random  weights L/(o.i) are replaced by the average o f the uniform  distribution 
used to generate  them (i.e. their expected value: ‘0 .50 ’).

173



C 2EC SYSTEMATIC COEFFICIENTS STUDY WITH STATIONARY ATTRACTORS SwanseaUniverSity
Prifysgol A bertaw e

A)

100
w * 0.7; iui = sui = 1 4  (aui = 2.8) 

U(0,11 replaced by t).5"
c.
o

-100

T im e-steps

100
ui = 0.6, iui = suj = 1 4  (aui = 2 8) 

U(0,1) replaced by'T).5"

if)O 0if)
_Q)U
¥  -50Q_

-100

B) Tim e-steps

c)

100
w = 0.5; iw = sw = 1.4 (aw = 2.8) 
U(0,1) replaced by T0.5"

ts>
o

“• 0if)
g>

|  .50

-100

Tim e-steps D>

100
w = 0 4; iw = sui = 1 4  (aw = 2.8) 

11(0,11 replaced by T3.5"
co
CO
CO
o
Q_
<0
<D

-50

Tim e-steps

E)

100
w * 0.3, m * v* ■ 1 4{m  * 2.8)

U(0, 1) replaced by D-5"co
c
o

CO
o
CL
CO
<D
O
€
05

Q_

-50

Tim e-steps F)

100
w ■ 0.2; iw * sw * 1.4 (aui * 2 8) 

U(0,1) replaced by D.5"

co
o
Cl

if)
_<Do
t r
05

Q_

-50

T im e-steps

G)

100
m « 0 1; m * sw * 1 4  (aw * 28 ) 

U(0,1) replaced by ’US"
«/>co
CO
o
CL
CO

JX;O ^OOCOCCjOOOGCOOCOOOGOOOOOGOGGOOOOOOOCOOGOQOOOCOj )t r
05a

-50

T im e-steps H)

100
ui* 0; rju = sw = 1 4  (aw = 2.8) 

U(0,1) replaced by T3.5“

-50

Tim e-steps

Fig. 5.40. Trajectory of a particle initialized at j c  = 100 over a 1-dimensional space with stationary attractors at j c  = 0
for 0.70 > w > 0.00 and aw = 2.80. Random weights l/<o,i) are replaced by the average of the uniform distribution
used to generate them (i.e. their expected value: ‘0.50’).
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5.8.1.8. Acceleration weight aw = 2.60
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Fig. 5.41. T ra jectory o f a particle in itia lized a t x  = 100 over a 1-d im ensional space with stationary a ttractors at x  = 0 
for 1.00 >  w  >  0.00 and a w  = 2.60. Random  weights L/(o,i) are replaced by the average of the uniform  distribution 
used to generate  them  (i.e. the ir expected value: ‘0 .50 ’).
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5.8.1.9. Acceleration weight aw = 2.40
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Fig. 5.42. Trajectory of a particle initialized a tx  = 100 over a 1-dimensional space with stationary attractors a tx  = 0
for 1.00 > w > 0.00 and aw = 2.40. Random weights U(0 ,1) are replaced by the average of the uniform distribution
used to generate them (i.e. their expected value: ‘0.50’).

176



C 2 EC SYSTEMATIC COEFFICIENTS STUDY WITH STATIONARY ATTRACTORS swanseaUniversity
Prifysgol A bertaw e

5.8.1.10. Acceleration weight aw = 2.20
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Fig. 5.43. T ra jectory o f a partic le  initialized at x -  100 over a 1-dim ensional space with stationary a ttracto rs at jc = 0 
fo r 1.00 £  w  >  0.00 and aw  = 2.20. Random w eights L/<o,i) are replaced by the average o f the uniform  d istribution 
used to generate them  (i.e. the ir expected value: ‘0 .50 ’).
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5.8.1.11. Acceleration weight aw = 2.00
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Fig. 5.44. T ra jectory o f a particle in itia lized at x  = 100 over a 1-d im ensional space with stationary a ttractors at x  = 0 
for 1.00 >  w  ^  0.00 and aw - 2.00. Random weights L/(o.i) are replaced by the average of the uniform  distribution 
used to generate  them (i.e. their expected value: ‘0 .50 ’).
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5.8.1.12. Acceleration weight aw = 1.80
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Fig. 5.45. Tra jectory o f a partic le in itialized at x  = 100 over a 1-d im ensional space with stationary attractors a t jc  = 0
for 1.00 > w >  0 .00  a n d  aw = 1.80. R a n d o m  w e igh ts  U(o,i) a r e  re p la c e d  by the  a v e r a g e  of th e  uniform distribution
u s e d  to g e n e r a t e  th em  (i.e. their e x p e c t e d  value: '0.50').
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5.8.1.13. Acceleration weight aw -  1=60
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Fig. 5 .46. Tra jec tory  of a  particle initialized a t  j c  = 100 over  a  1 -dimensional  s p a c e  with sta t ionary  a t t rac to rs  a t  x = 0
for 1.00 >  w >  0 .00  an d  aw = 1.60. R a n d o m  w eigh ts  L/(o,i) a re  re p la c e d  by the  a v e r a g e  of th e  uniform distribution
u s e d  to g e n e r a t e  th em  (i.e. their e x p e c te d  value: ‘0 .5 0 ’).
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5.8.1.14. Acceleration weight aw = 1.20
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coc
o

if)
O

0if)
CD
O

¥ -5°CL

-100

T im e-steps D)

100
ui = 0 6; iui * sw s  0.6 (aui = 1.2) 

U(0,1) replaced by '0 .5"

o
■tr

Q-

-50

Tim e-steps

E)

100
ui = 0.5; iw = sw 3 0 6 (am = 1.2) 
11(0,1) replaced by U.3"

if)
cz
o

if)
o
CL

-50

T im e-steps F)

100
u> = 0 4; iw = sui = 0 6 (aui = 1.2) 

U(0,1) replaced by '0  5"
if)
cz
o

too
CL
if)

_o_'On
<T>

CL

-50

Tim e-steps

G)

100
ui = 0 2 ; = sw = 0 6  (aw = 1.2)
IJ(0,11 replaced by ’O S"

if)
CZ
o

if)o
CL
99too
t r
05

CL

-50

T im e-steps H)

100 If
eu = 0; iw = sut= 0 6 (aui = 12) 

U(0,1) replaced by '0  5"
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Fig. 5.47. T ra jectory  o f a particle in itialized at jc = 100 over a 1-d im ensional space with stationary attractors at jc = 0 
for 1.00 > w >  0.00 and aw = 1.20. Random weights L/(o,i) are replaced by the average of the uniform  distribution 
used to generate  them  (i.e. the ir expected value: ‘0 .50 ’).

id = 0  8; iiu * sui = 0,6  (aw * f .2) 

U(0,1) replaced by '0 .5"

■ 1; iui -  s«i * 0 3 (bid -  0 6) 

U(0,1) REMOVED

id = I; ivu = sui = 0 .6  (bid = 1.2) 

11(0,1) replaced by "0.5"

20 30
Tim e-steps

10 20 30 40 50
Tim e-steps

1 8 1



c 2e c SYSTEM ATIC C O E F F IC IE N TS  STUDY WITH STATIONARY A T T R A C T O R S S w ansea  University
Prifysgol A bertaw e

5.8.1.15. Acceleration weight aw = 0,80
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Fig. 5 .48 .  Trajectory of a  particle initialized a t *  = 100 o v e r  a  1 -d imensional  s p a c e  with s ta t ionary  a t t r ac to rs  a t *  = 0
for 1 .00 >  w  >  0 .00  a n d  aw  = 0.80 .  R a n d o m  w e ig h ts  U(0,1) a r e  re p la c e d  by the  a v e r a g e  of th e  uniform distribution
u s e d  to g e n e r a t e  th e m  (i.e. their e x p e c te d  value: ‘0 .5 0 ’).
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It is important to note that the incorporation of randomness would be expected to widen 

the search area, and that the attractors are not stationary in the full algorithm. Therefore, 

a deterministic particle that is not able to converge in the 50 time-steps analyzed here 

would arguably take too long to fine-cluster in a full PSO system with random weights 

and moving attractors. It appears that, for the whole range of aw analyzed, the inertia 

weight should not be kept above ‘0.80’ unless it decreases over time. Of course this is 

subjective, and depends on the available resources and acceptable computational cost. 

Two trajectories of the deterministic particle with w = 0.90 are shown in Fig. 5.49, for 

a high aw = 4.00 on the left, and for a low aw  = 0.80 on the right. In turn, too low a w 

would dampen the momentum too quickly hence discouraging exploration.

100

if)c
o

CO
o
Q-
V)
<D
O
t r
<75

CL

-100

B) T im e-steps

100

CO
cz
o

CO
o
CL
CO
Q>
OC
COa

-100

A) Tim e-steps

Fig. 5.49 . Tra jectory o f a particle in itialized at jc  = 100 over a 1-d im ensional space with stationary a ttractors at jc  = 0, 

random  weights l/<o.i) replaced by their expected value ‘0 .5 0 ’, and w  = 0 .90 . For the figure on the left, aw = 4 .00 . For 
the figure on the right, aw -  0 .80 .

If either w or aw  are set to a small value, the other should not be small as well, so that at 

least one of them keeps some momentum. It is important to note, however, that they 

keep momentum in a very different manner. A trajectory for a low w and a high aw, and 

another for a high w and a low aw, are shown in Fig. 5.50.

It does not seem advisable to set aw < 2.00 because the attractor would be approached 

mainly from one side rather than repeatedly overflown, especially if w is also small. If w 

is set to a high value to compensate, the particle will approach the attractor from both 

sides but with a low frequency, as in Fig. 5.49 B) and Fig. 5.50 B). Notice that the parti

cle in Fig. 5.50 overflies the attractor 10 times in the first 10 time-steps for w = 0.10 

and aw = 4 .00, whereas it does only 4 times for w = 0.60 and aw = 2.00 . Furthermore, 

for a unimodal function and a non-stationary attractor, the current position would also 

be the attractor, as there would be constant improvement, and only the inertia weight
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times the previous velocity would keep the movement. Therefore if w<  1.00, the step- 

sizes would decrease exponentially and it might even be impossible for the particle to 

reach the attractor. A practical example of this can be found in (Clerc, 2006a, pp. 212- 

214). Of course, in a multi-particle system, only one particle per time-step - i f  any- 

would undergo this situation. Nevertheless, the problem of the quick loss of momentum 

would still persist, and it is therefore advisable to keep aw > 2.00.

100

<f)c
o

100

A) Tim e-steps

100
w = 0.6; iw = sw = 1 (aw = 2) 

U(0,1) replaced by '0  5"co
cz
o

CO
o“■ 0CO
CD
0
1  -50CL

100

B) T im e-steps

Fig. 5.50. Tra jectory o f a particle in itialized a t *  = 100 over a 1-dimensional space with stationary attractors a t x  = 0 
and random weights L/(o.i) replaced by their expected value ‘0 .50 ’, for w  = 0.10 and aw = 4 .00 (left), and for w = 0.60 
and aw = 2.00 (right).

5.8.2. Random weight incorporated

Complexity has to be gradually re-incorporated to the simplified model of a single, de

terministic particle with stationary attractors. The first step is to re-incorporate the ran

dom weight so as to visually study how similar or different from the analyses in section 

5.8.1 the behaviour o f the particle is. Only some selected coefficients taken from the 

previous section are analyzed for obvious reasons.

The first column in Fig. 5.51 shows a series of trajectories o f the particle with stationary 

attractors and the random weights replaced by their expected value, for aw=  4.00 and 

various settings of the inertia weight. The second column shows the trajectories for the 

same settings except that the random weights are re-incorporated. Thus, two figures in 

the same row share the same inertia and acceleration weights. As usual, six runs were 

performed for the cases with the random weights included, whose images can be found 

in the digital appendix. Fig. 5.52 shows six trajectories for w = 0.75 and aw  = 4.00, 

while Fig. 5.53 shows six trajectories for w = 0.50 and aw -  4.00 .
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5.8.2.1. Acceleration weight aw = 4.00
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o
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oCl
if)
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T im e-steps IV)

100
01 = 0.15, m  = sui = 2 (aui» 4) 

U(0,1) INCLUDED

-50

Q- -100

-150

Tim e-steps

Fig. 5.51. T ra jectory o f a partic le  in itialized a t x  = 100 over a 1-dim ensional space with stationary a ttractors a t x  = 0 
for 0.75 > w > 0.15 and aw = 4 .00. Random weights U(o.i) are included in the second colum n, and replaced by the 
average of the uniform  distribution used to generate  them (i.e. the ir expected value ‘0 .50 ’) in the first one.
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100
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Q- -200

-300

B) Tim e-steps

400

U(0,1) INCLUDED” 200

-400

A) Tim e-steps

200 w = 0.75; iw * sw = 2 (aw = 4) 

U(0,)) INCLUDED
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-200

c) Tim e-steps

300

200

100 »

Q- -100

-200

D) T im e-steps

2000

“ 1000

« -1000

-2000

F) T im e-steps

500

C.
o

-1000

E) Tim e-steps

Fig. 5.52. Six possib le tra jectories o f a particle in itia lized at jc = 100 over a 1-d im ensiona l space with stationary a ttrac
tors a t . r  = 0 and random weights L/(o,o included fo r tv = 0.75 and aw -  4.00.

It would be a mistake to assume that the greater the percentage of the <f) interval that 

falls within the convergent region the faster the convergence. Recall that the different 

points within the convergent area in Fig. 5.20 lead to different values of the roots o f the 

characteristic polynomial, and therefore to different convergence speed. The horizontal 

line for w =1.00 and the top o f the black triangle are points with the module of the 

roots equal to ‘1’. An experimentally obtained map representing the magnitude o f the 

root with the maximum magnitude can be found in (van den Bergh, 2001, p. 84).

Consider, for instance, the setting w = 0.75 and aw  =4.00 for which (j> will be within 

the convergent area 87.5% of the time. Compare that to the setting w = 0.50 and
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aw  = 4.00 for which 0 will be within the convergent area 75% of the time. However, as 

can be observed in Fig. 5.51 A), B), I) and II), the convergence speed is notably higher 

for w=  0.50 both with the random weights and with their expected value. This is even 

more notorious when comparing all six runs in Fig. 5.52 to those in Fig. 5.53. A sense 

o f why this happens can be obtained by noting that the module o f the roots for w = 0.75 

is approximately equal to 0.8660 whereas the module for w = 0.50 is approximately 

equal to 0.7071 (the smaller the module the faster the convergence). A more accurate 

measure would be given by integrating the modules for the whole range of <j>.
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Fig. 5.53. Six possib le tra jecto ries of a particle in itia lized a t.v  = 100 over a 1-d im ensional space with s ta tionary a ttrac
tors at jc = 0 and random  w eights l/(o.i) included for w = 0.50 and aw = 4.00.
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As can be observed in Fig. 5.52 E), the stochastic explosion can still occur with an iner

tia weight as small as 0.75. For w< 0.60 (not included here), all six runs end up cluster

ing by 50th time-step. Even for inertia weights as low as 0.30 and 0.15, some explosion 

might still occur due to the embedded randomness, although the particle is eventually 

pulled back to the attractor. Refer to the digital appendix for the images.

Six trajectories for w = 0.75 and aw = 3.60 are shown in Fig. 5.54. Comparing the lat

ter with Fig. 5.52 ( w = 0.75 and aw = 4.00), it can be observed that convergence is no

ticeably improved by a small decrease in the acceleration weight.
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Fig. 5.54. Six possib le tra jectories o f a particle in itialized a tx  = 100 over a 1-d im ensional space with stationary a ttrac
tors at x  = 0 and random weights l/(o,i> included fo r w = 0.75 and aw = 3.60.
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For aw  = 3.60, (f) will be within the convergent area 97.22% of the time, against the 

87.5% of the time for aw  = 4.00 . In addition, since w = 0.75 in both cases, the interval 

o f (f) for aw = 3.60 is entirely contained within the one for aw  = 4.00, only disregarding 

the worst, rightmost bit (‘0.4-long’ segment within the black triangle in Fig. 5.20).

As w is decreased for the same aw  = 3.60, the percentage of the (j) interval that is within 

the divergent black triangle increases. This leads to a less uniform trajectory of the par

ticle with random weights. Fig. 5.55 shows two quite different trajectories for the same 

settings: w = 0 .3 0 , aw  = 3.60 (random weights included). The same is true in Fig. 5.56 

for w = 0 .15. Note, nevertheless, that the convergence is still faster than for w = 0.75 

despite having coefficients <j> within the divergent area more often. Refer to the digital 

appendix for the other four runs carried out for the cases in Fig. 5.55 and Fig. 5.56.

Fig. 5.57 to Fig. 5.59 show trajectories of the particle with random weights included on 

the right columns and replaced by their expected value (i.e. ‘0.5’) on the left columns, 

for aw = 3.60, a w - 3.20, and aw = 3.00, respectively, and various settings o f w.
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A) T im e-steps
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Fig. 5.55. Two quite  d iffe ren t possib le  tra jectories o f a particle in itia lized at j t  = 100 over a 1-d im ensional space with 
stationary a ttracto rs  at jc  = 0 and random weights L/(o.i> included fo r w  = 0.30 and aw  = 3.60.
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Fig. 5.56. Two quite  d iffe ren t possib le tra jectories o f a particle in itia lized at jc = 100 over a 1-d im ensional space with 
stationary a ttracto rs at jc  = 0 and random weights L/(o.i) included for w  = 0.15 and aw  -  3.60.
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5.8.2.2. Acceleration weight aw = 3,60
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Fig. 5.57. Tra jec tory  of a particle initialized a t *  = 100 ov e r  a  1-d imensional  s p a c e  with s ta t ionary  a t t r ac to rs  at  j c  = 0
for 0 .75  >  w  >  0 .1 5  an d  aw = 3.60. R a n d o m  w e ig h ts  l/(o,i) a re  included in the  s e c o n d  co lum n, a n d  re p la c e d  by the
a v e r a g e  of th e  uniform distribution u se d  to g e n e r a t e  th e m  (i.e. their e x p e c te d  value ‘0 .5 0 ’) in th e  first o ne .
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5.8.2.3. Acceleration weight aw = 3.20
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Fig. 5.58. T ra jectory o f a partic le in itialized a t *  = 100 over a 1-d im ensional space with stationary a ttracto rs at jc = 0 
for 0.75 >  w >  0.15 and aw  = 3.20. Random  weights L/(o,i) are included in the second colum n, and replaced by the 
average of the uniform  distribution used to generate  them (i.e. the ir expected value ‘0 .50 ’) in the firs t one.
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5.8.2.4. Acceleration weight aw = 3,00
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Fig. 5.59. T ra jec to ry  of a  particle initialized a t  j c  = 100 over  a 1-d im ensiona l  s p a c e  with sta t ionary  a t t rac to rs  a t  j c  = 0
for 0 .75  >  u ’ >  0 .1 5  an d  aw = 3.00. R a n d o m  w e igh ts  L/(o,i> a r e  included in the  s e c o n d  co lum n, an d  rep laced  by the
a v e r a g e  of th e  uniform distribution u se d  to g e n e r a t e  them  (i.e. their e x p e c te d  va lue  ‘0 .5 0 ’) in the  first one .
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As argued for the trajectories without randomness in section 5.8.1, the particle loses 

momentum too quickly for low inertia weights as the acceleration weight decreases. If 

extremely fast convergence is sought, settings like in Fig. 5.59 IV) are a good choice, 

but they are not robust and premature convergence is to be expected. Six trajectories for 

w = 0.75 and aw  = 3.00 are shown in Fig. 5.60 (the particle converges every time).
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Fig. 5.60. Six possib le tra jecto ries o f a particle in itia lized at jc = 100 over a 1-d im ensional space with sta tionary a ttrac
tors at jc  = 0 and random  w eights U(o,i) included for w  = 0.75 and aw = 3.00.

Fig. 5.61 and Fig. 5.62 show trajectories of the particle with random weights included 

on the right columns and replaced by their expected value (i.e. ‘0.5’) on the left ones, 

for <3vv=2.80 and aw=  2.40, respectively, and various settings of w.
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5,8.2.5. Acceleration weight aw = 2,80
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Fig. 5.61. T ra jectory o f a particle in itialized a t x  = 100 over a 1-dim ensional space with stationary attractors a t x  = 0 
for 0.75 ^  w > 0.20 and aw  = 2.80. Random weights l/(o,i) are included in the second colum n, and replaced by the 
average o f the uniform  distribution used to generate  them (i.e. the ir expected value ‘0 .50 ’) in the first one.
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5.8.2.6. Acceleration weight aw = 2.40
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Fig. 5.62. T ra jectory o f a partic le initialized at x  = 100 over a 1-d im ensional space with stationary a ttracto rs at jc  = 0 
for 0.75 > w  >  0.30 and aw = 2.40. Random weights L/(o,i) are included in the second colum n, and replaced by the 
average of the uniform  d istribution used to generate  them (i.e. their expected value ‘0 .50 ’) in the firs t one.

These are around the smallest values advisable for the acceleration weight. For medium 

to small inertia weights, there is always fast convergence. However, for w = 0.75 there 

is still a reasonable trade-off between exploration and exploitation, with a final good 

convergence despite the randomness re-introduced. This can be observed in Fig. 5.63, 

which shows six trajectories of the particle for w = 0.15 and a w -  2.40 with the random 

weights included, corresponding to consecutive runs.
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Fig. 5.63. Six possible tra jectories o f a particle in itia lized at jc = 100 over a 1-d im ensional space with stationary a ttrac
tors at jc = 0 and random weights l/(o,i) included for w = 0.75 and aw = 2.40.

Note that the settings in Fig. 5.59 I) and Fig. 5.61 I) are very similar to those suggested 

in (Clerc, 2006a, p. 49) (w  = 0.70; aw=  2.86), and to a popular setting derived from 

the constriction factor type 1 ” in (Clerc & Kennedy, 2002) ( w = 0.73; aw = 2.99).

Just for the sake of illustration, the trajectories of the particle for lower acceleration 

weights are offered in Fig. 5.64 to Fig. 5.66. Only two inertia weights are considered, as 

smaller values are already out of the question. Again, the trajectories corresponding to 

the random weights included are on the right columns, and those corresponding to their 

expected values are on the left ones.
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5.8.2.7. Acceleration weight aw = 2,00
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Fig. 5.64. Tra jectory o f a particle in itialized at x  = 100 over a 1-d im ensional space with stationary a ttractors at x  = 0 
for tv  = 0.75; w = 0.50; and aw = 2.00. Random weights L/(o.i) are included in the second colum n, and replaced by the 
average of the uniform  d istribution used to generate them (i.e. the ir expected value ‘0 .50 ’) in the first one.
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Fig. 5.65. Tra jectory o f a particle initialized a t x  = 100 over a 1-d im ensional space with stationary a ttractors a t x  = 0 
for w = 0.75; w = 0.50; and aw = 1.60. Random weights U(o.ij are included in the second column, and replaced by the 
average of the uniform distribution used to generate them (i.e. the ir expected value ‘0 .50 ’) in the first one.
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5.S.2.9. Acceleration weight aw = 1.20
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Fig. 5 .66 . Tra jectory o f a particle in itia lized at a- = 100 over a 1-dimensional space with stationary a ttractors at a  = 0 

fo r w  = 0 .75 ; w  = 0 .50; and a w  = 1.20. Random weights l/(o.i) are included in the second colum n, and replaced by the 
average of the uniform  distribution used to generate  them (i.e. the ir expected value ‘0 .5 0 ’) in the firs t one.

For very small values of the acceleration weight, the influence of the randomness de

creases, and the trajectories for the random weights included and those for them re

placed by their expected values are more alike.

5.8.3. Velocity constraint incorporated

For w < l and aw<  4, the implementation o f the velocity constraint is not essential. 

Nonetheless, it may help avoid evaluations o f the particle’s position far from the region 

of interest by preventing local explosions. However, if the size of the displacement in 

each dimension is over-restricted, the explorative capabilities of the algorithm may be 

compromised, and the normal dynamics of the swarm over-affected. Think, for instance, 

o f a particle that is far from its attractor, and therefore the calculated displacement is 

big. Suppose the velocity constraint is set to a small value. Then, the displacement in 

that dimension will have the same value in a number of consecutive time-steps, disre-
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garding the randomness on which the PSO algorithm relies. In addition, a small value 

may also prevent a particle from jumping from a feasible island to another in a con

strained problem, or from one peak/valley to another in multimodal problems.

In order to avoid the problem-dependent setting o f vmax, it is o f common practice to link 

it to the interval constraints o f the search-space. As shown in Fig. 5.25 III) in section

5.7, setting vmax as in Eq. (5.88) narrows the explored search-space approximately to the 

area bounded by the interval constraints, thus preventing local explosions without ex

cessively interfering with the normal dynamics of the system. Therefore Eq. (5.88) 

comprises a good setting, especially when the constraint is not essential ( w < 1 ).

where j  identifies the dimension and fint stands for ‘feasible interval’. Note that the 

value may be set differently for different dimensions in multidimensional problems.

5.8.3.I. Acceleration weight aw  = 4.00

For w = 0 .75 and aw  = 4 .00, the trajectories o f the particle without vmax, and with vmax 

set to half and to a quarter of the feasible interval (fint) is offered in Fig. 5.67. The ran

dom weights are included in the right column, and replaced by their expected value in 

the left one. Note that for vmax = 0.25 'fint ,  the first two time-steps are the same size. As

can be observed, vmax =0.50-f int  keeps the particle within the region o f interest with

out over-constraining its trajectory, whereas vmax = 0 2 5 - fin t  further narrows the region

of the search-space explored. An even smaller setting for vmax would appear unnecessar

ily over-restrictive.

Aiming for a more comprehensive visualization o f the trajectory with random weights 

included, six consecutive runs were performed for w = 0.75 and aw  = 4.00 with vmax 

set to half the feasible interval on the one hand, and without the constraint on the other. 

The trajectories are shown in Fig. 5.68 and Fig. 5.69, where consecutive rows imply 

consecutive runs. The trajectories on the left column do not have the velocity con

strained, whereas the ones on the right column have it restricted as in Eq. (5.88). Same 

row indicates same initial state o f the pseudo-random number generator.

(5.88)

199
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Fig. 5.67. Tra jectory o f a particle in itialized a t x  = 100 over a 1-dimensional space with stationary attractors a t x  = 0 
for w  = 0.75 and aw = 4.00. Random weights U(o,i) are included in the second colum n, and replaced by their ex
pected values in the first one. D ifferent rows stand for d ifferent vmax constraints, the firs t one being unrestricted.

Fig. 5.69 A) and I) clearly show how constraining the size of the displacement helps 

prevent the explosion without having any direct effect on the convergence capabilities.

The effect o f further constraining the displacement to a quarter of the feasible interval is 

shown in Fig. 5.70, where the trajectories corresponding to six consecutive runs are dis

played. By comparing Fig. 5.70 E) to Fig. 5.69 I) -corresponding to the same initial 

state of the pseudo-random number generator-, it can be clearly observed again that a 

smaller vmax further narrows the region of the search-space being explored but does not 

improve the convergence capabilities.
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Fig. 5.68. T ra jectory o f a particle initialized a tx  = 100 over a 1-dim ensional space with stationary a ttractors a t x  = 0 
fo r w = 0.75, aw  = 4.00, and random  weights U(o.i) included. The tra jectories on the left colum n have no restriction to 
the velocity, whereas those on the right one have it constra ined to half the feasib le interval {fint). Consecutive rows 
correspond to consecutive runs, so that the figures in the same row have the same initial state o f the pseudo-random  
num ber generator.
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Fig. 5 69. T ra jectory o f a particle initialized at x = 100 over a 1-d im ensional space with stationary attractors at x  = 0 
for w = 0.75, aw = 4.00, and random weights U(o.i) included. The tra jectories on the left colum n have no restriction to 
the velocity, w hereas those on the right one have it constra ined to half the feasib le interval (fint). Consecutive rows 
correspond to consecutive runs, so that the figures in the sam e row have the same initial state o f the pseudo-random  
num ber generator. The two runs here are consecutive to those in Fig. 5.68.

It is interesting to observe the effect of vmax on the trajectory of a particle whose settings 

lead to faster convergence. Thus, for the same aw = 4.00 and w = 0.50, the trajectories 

of the particle without vmax, and with vmax set to half and to a quarter o f the feasible in

terval is offered in Fig. 5.71. The random weights are included in the right column, and

replaced by their expected value in the left one. As can be observed, vmax = 0 .5 0 • f in t  is

already more than enough a constraint to keep the particle within the region of interest. 

The better the convergence ability o f the coefficients’ settings the less necessary it is to 

restrict the velocity. In any case, constraining it to half the feasible interval appears 

harmless at worst.

For a more accurate visual analysis, six consecutive runs were performed for w = 0.50, 

a w -  4.00, random weights included, and vmax set to half the feasible interval on the 

one hand, and without the vmax constraint on the other. The trajectories are shown in Fig. 

5.72 and Fig. 5.73, where consecutive rows stand for consecutive runs. The trajectories
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on the left column do not have the velocity constrained, whereas the ones on the right 

column have it restricted as in Eq. (5.88). Figures in the same row correspond to the 

same initial state o f the pseudo-random number generator. Clearly, local explosion is 

contained every time, without a quick loss o f momentum as a result o f the constraint.
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Fig. 5.70 . Six possib le  tra jecto ries o f a particle in itia lized a tx  = 100 over a 1-d im ensional space with stationary a ttrac
tors at x  = 0 fo r w  = 0 .7 5 , aw = 4 .0 0 , and random weights U(o.i) included. The m axim um  d isp lacem ent perm itted is 
restricted to a quarte r o f the feasib le interval (i.e. v max -  fint 14). The first one corresponds to the firs t run once the 
pseudo-random  num ber generator is set to its initial state, while the o thers correspond to consecutive  runs.

The effect o f further constraining the displacement to a quarter of the feasible interval is 

shown in Fig. 5.74, where the trajectories corresponding to six consecutive runs are dis

played. As it can be observed, there might be some quick loss of momentum, leaving an
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important part of the search-space unexplored. Loosely speaking, this is an undesirable 

behaviour, especially for a global version of the optimizer. Nevertheless, it might still 

be considered for some local topologies or special applications (e.g. swarm robots).

Further decreasing the size o f the maximum displacement permitted does not seem ad

visable. Numerical testing is required for better assessment of the influence of the size 

o f vmax on full, multi-particle PSO systems, and different neighbourhood topologies.
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Fig. 5 .71 . Tra jectory o f a particle initialized a t jc  = 100 over a 1-dim ensional space with stationary a ttractors at jc  = 0 

fo r w  = 0 .50  and aw -  4 .0 0 . Different rows stand fo r d iffe ren t values o f the vmax constra int. Random w eights l/(o.i) are 
included in the second colum n, and replaced by the ir expected value ‘0 .5 0 ’ in the firs t one.
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Fig. 5.72. T ra jectory o f a particle in itialized a t x  = 100 over a 1-d im ensional space with stationary attractors a t x  = 0 
fo r w  = 0.50, aw  = 4.00, and random weights U{o,i) included. The tra jectories on the left colum n have no restriction to 
the velocity, whereas those on the right one have it constra ined to half the feasib le  interval {fint). Consecutive rows 
correspond to consecutive runs, so that the figures in the same row have the same initial state o f the pseudo-random  
num ber generator.
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Fig. 5.73. Trajectory o f a particle in itia lized a t x  = 100 over a 1-d im ensional space with stationary attractors a t x  = 0 
for w = 0.50, aw  = 4.00, and random  weights L/<o,i) included. The tra jectories on the left colum n have no restriction to 
the velocity, w hereas those on the right one have it constra ined to half the feasib le interval (fint). Consecutive rows 
correspond to consecutive runs, so that the figures in the same row have the same initial state o f the pseudo-random  
num ber generator. The two runs here are consecutive to those in Fig. 5.72.

5.8.3.2. Acceleration weight aw = 3.00

In the cases with aw — 4.00, (f) was only part of the time within the convergence region 

in Fig. 5.20 (87.5% of the time for w = 0.75 and 75% for w = 0.50). It is interesting to 

observe that local explosions are still possible even if <j> is all the time within the con

vergence region. It is easy to see that for aw  > 2 , there is always a chance that a se

quence of (j> > 1 is generated (i.e. random weights greater than ‘0.50’). This would tem

porarily send the particle farther from rather than closer to the attractor. This was illus

trated in Fig. 5.9, and an example is offered in Fig. 5.75 for w = 0.75 and aw = 3.00. 

The trajectories o f the particle without vmax, and with vmax set to half, and to a quarter of 

the feasible interval are shown. The random weights are included in the right column, 

and replaced by their expected value in the left one. A local explosion is shown in Fig. 

5.75 I), which is controlled by the vmax constraints in Fig. 5.75 II) and Fig. 5.75 III). Re

call that six runs were performed for every trajectory that involves randomness. It is fair
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to note that the other five runs did not show any local explosion. Those images are not 

included here but can be found in the digital appendix.

With regards to the size of the constraint, again vmax = 0 .5 0 - f in t  restricts the explored 

search-space to approximately the feasible space, whereas vmax = 0 .2 5 -f in t  restricts it to 

approximately half the feasible space. Thus, the maximum peak-to-peak amplitude is 

approximately bounded by 2*vmax.
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Fig. 5.74. Six possib le tra jectories o f a particle in itialized a tx  = 100 over a 1-d im ensional space with stationary a ttrac
tors at x  = 0 for w  = 0.50, aw = 4.00, and random weights U(o,i) included. The m axim um  d isplacem ent perm itted is 
restricted to a quarter o f the feasib le interval (i.e. vmax -  fint 14). The firs t one corresponds to the firs t run once the 
pseudo-random  num ber generator is set to its initial state, while the o thers correspond to consecutive runs.
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Fig. 5.75. Trajec tory  of a  particle initialized a t  x = 100 over  a  1 -d imensional  s p a c e  with s ta t ionary  a t t rac to rs  at  x  = 0 

for w  = 0 .7 5  and  aw = 3.00 . R a n d o m  w eigh ts  L/jo.i) a re  included in th e  s e c o n d  co lum n, a n d  rep laced  by their e x 
p e c te d  v a lu e s  in the  first one .  Different rows s ta n d  for different vmax cons tra in ts ,  th e  first o n e  be ing  unrestr ic ted.

5.8.3.3. Acceleration weight aw = 2.00

For acceleration weights this small or smaller, it is unlikely that a particle is driven out

side the feasible space. Six runs were performed for w = 0.75 and aw  = 2.00, five of 

which showed the particle never leaving the feasible space. The one that barely did is 

shown in Fig. 5.76 I). Notice that for that to happen, the random weight t / (01) =1 just 

when the particle was at one extreme of the feasible space (7th time-step) thus pulling it

to almost the other extreme. In addition, the next U(0 ]) was smaller in the 8th time-step,

208
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which, combined with a high w = 0.75 took the particle outside the feasible space. As 

can be observed, that is not likely to occur very often, and when it does, the particle is 

not driven too far and it is pulled back by the following time-step. For the other six runs 

with and without vmax constraint, refer to the digital appendix.
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Fig. 5 .76 . Trajectory of a  particle initialized a t x  = 100 o v er  a 1 -d imensional  s p a c e  with s ta t ionary  a t t r a c to rs  a t x  = 0 

for w = 0 .7 5  and  aw -  2.00 . R a n d o m  w eigh ts  L/(o.i) a re  included in the  s e c o n d  column, a n d  re p la c e d  by their e x 
p e c t e d  v a lu e s  in the  first one .  Different rows s ta nd  for different vmax cons tra in ts ,  the  first o n e  being un res tr ic ted .

It is self-evident that the vmax constraint should not be too restrictive for such small val

ues o f  the acceleration weight. O f course, even less if  the inertia weight is small as well, 

although it has been previously stated that keeping them both small is not advisable in 

the first place.
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5.9. Constriction factor

Only the simplest constriction factor is analyzed here, which is referred to Type I "  by 

Clerc and Kennedy (2002). This is because it comprises a minor variation of the classi

cal -and also o f the original- PSO algorithm. In the original one, explosion was not 

controlled ( w = 1). Shi and Eberhart (1998a) simply included an inertia weight multi

plying the first term in the original velocity update equation, keeping the two terms in

volving the attractors unchanged. This is the most widespread version today, and it is 

therefore referred to as ‘classical’ here. The Type 1 " constriction factor proposed by 

Clerc and Kennedy (2002) -whose formulation is shown in Eqs. (5.89) and (5.90)- in

corporates a coefficient multiplying all three terms in the original velocity update equa

tion. Note that the constricted version can easily be reduced to the classical one.

c f  =
K if  (iw+sw)>  4

(iw + sw) - 2  + y] (iw + 5w)2 — 4 • (iw + sw) (5.89)

k  otherwise

v,y) = cf  • ( + iw • ̂ (o.i) • [pbest\j~x ’ -  4 '” )+ sw • U{01} • (ibestjj " -  xj'-0))

^ vij
(5.90)

where 0 < k  < 1. For the single particle with stationary attractors,

2'K

c f  =
if  aw> 4

a w -2  + ylaw2 - 4 -aw (5.91)
k  otherwise

v(/) = c f  • +</)• (/? - x (/ u))
JC(0 = J C ( ,- 1 ) + V (0

(5.92)

While the constriction factor is typically referred to as ‘ x \  it is called ‘c f  in this thesis 

for ease of notation. Thus, ‘c f  refers to the Type 1 ” constriction factor only. Note that 

the random variable (f) is replaced by 0max = aw — (iw + sw) in the calculation of the con

striction factor in Eq. (5.89). The values of c f  associated with the range 0.00<tfw <8.00 

for three values of the constant k  are shown in Fig. 5.77.
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<t> — aw — m̂ax

Fig. 5 .77 .  V alues  of the  constriction factor  ( c f  type 1" for a  r a n g e  of v a lu e s  of a w  a n d  th r e e  v a lu e s  of k . If a w  is s e t  
m uch  g r e a t e r  than  ‘4 .0 0 ’ for this type  of constriction, th e re  is a  quick loss  of m o m e n tu m  tha t  le a d s  to p r e m a tu re  c o n 
v e rg e n c e .  On the  o th e r  hand ,  if a w  < 4 .00  and  k  is too c lo se  to ‘1 .0 0 ’, c o n v e r g e n c e  is ex t rem e ly  slow.

For the type 1 " constriction, the matrix of the system is given by Eq. (5.93):

(5.93)M =
f c f  c f  -(j) ^

- c f  ( l -c f-(p )

Notice the similarity to the matrix of the system derived for the algorithm with the iner

tia weight in Eq. (5.57). If the value of <f) is set so as to include c f  then the c f  in the left 

column would be the inertia weight. Also compare Eqs. (5.90) and (5.2) to observe the 

minor differences between the two formulations. For the other types of constriction, re

fer to (Clerc & Kennedy, 2002).

It is important to note that following the extensive -and impressive- analyses in (Clerc 

& Kennedy, 2002) is not straightforward, and mistakes (or typos) can be found in the 

literature when using their constriction formulae. For instance, the type 1 ” constriction 

factor is said to be calculated as the square root of the expression in Eq. (5.91) in (van 

den Bergh, 2001, p. 63), (Engelbrecht, 2005, p. 147), and even in (Clerc & Kennedy, 

2002, p. 70). It is also stated that k  could take on the value ‘1’ in (Clerc & Kennedy, 

2002, p. 70) and in (Kennedy & Eberhart, 2001, p. 339), when that would imply that 

there is no convergence for <f) <4  but the (pseudo) cyclic behaviour discussed in section 

5.3. Thus, according to Eq. (5.91), c f -  k  < 1 for a w <  4. Translating these settings into 

the classical PSO formulation, w = K  and the ‘constricted aw' = k  - aw .
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The pairs ‘constricted aw -w ’ for /ce(0 ,l) and for ‘unconstricted aw’ = 4 (blue, dotted 

line) and ‘unconstricted aw’ = 3 (red, dotted line) are shown in Fig. 5.78. Therefore, 

will vary between ‘O’ and the corresponding dotted line. As can be observed, (f) will be 

within the convergent region 100% of the time, and mostly within the complex region. 

Recall that the gray area represents the convergent region, and the sub-set within the 

parabola the region where the roots of the characteristic polynomial are complex. Also 

note that k  should not be set to a very small value to avoid premature convergence.

V a lu e s o f  w  =  c f=  k and  o f  “constricted aw' 
foT“unconstricted a w ” = 4

V a lu e s o f  w = c f=  k and o f  “constricted aw ” 
io r ”unconstricted aw ” =  3

Fig. 5 .78. T ransla t ion  of the  t y p e  1" constriction fac to r  into th e  classical  P S O  formulation for a w  <  4. T hus ,  w  = c f =  k  

a n d  the  ‘c o n s t r i c t e d  a w  -  k  ■ ' u n c o n s t r ic te d  a w .  T h e  pairs  of va lu es  ' c o n s t r ic te d  a w - w  a re  sh o w n  for the  whole 
r a n g e  of k  for the  particular  c a s e s  of 'u n c o n s t r ic te d  a w  = 4 (blue, do tted  line) a n d  ‘u n c o n s t r i c t e d  a w  = 3 (red, dotted  
line). T hus ,  <f> var ies  from ‘0 ’ to th e  c o r re sp o n d in g  do tted  line, com plete ly  within th e  c o n v e r g e n c e  region (gray  a r e a  in 
the  g raph) ,  a n d  mostly within the  com plex  region (inside th e  parabo la) .

For ‘unconstricted aw ’ > 4, the constriction is too strong, as shown in Fig. 5.77. Hence 

aw  only marginally greater than ‘4 ’ is advisable in practice for this constriction type.

5.9.1. Constriction factor c f  =  0.7298 {aw = 4 . 10, k = 0 .99994)

A very popular setting for the type 1 ” constriction factor is given by k  = 0.99994 and 

iw = sw =  2.05 (aw  = 4.10) resulting in c f  = 0.7298 . Translating these settings into the 

classical PSO yields w = 0.7298 and iw = sw  = 1.49609 (aw  =2.99218). That is to say, 

the ‘constricted aw ’ = 2.99218, while the ‘unconstricted a w ’ = 4.10.
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Trajectories o f the particle with stationary attractors are shown in Fig. 5.79 for these 

settings with the random weights removed in figure A); replaced by their expected value 

‘0.5’ in figure B); and included in the remaining six figures. The upper text-boxes show 

the settings in terms o f the constriction factor, while the lower text-boxes show the 

translation into the classical formulation with inertia weight. Fig. 5.79 A) shows the tra

jectory o f the deterministic particle for $ = 0max, whereas Fig. 5.79 B) shows the trajec

tory for (j) = ^mean. As expected, the trajectories converge. Note the similarity o f the tra

jectories with random weights included in Fig. 5.79 C) to H) to those in Fig. 5.60.

5.9.2. Constriction factor cf = 0.547383 {aw = 4.10, k  = 0.75)

Setting k  = 0.75 and aw =  4.10 results in c f  = 0.547383. Translating these settings 

into the classical PSO yields w = 0.547383 and aw =2.24427. That is to say, the 'con

stricted aw ’ = 2.24427, while the ‘unconstricted aw ’ =4.10.

Trajectories o f the particle with stationary attractors are shown in Fig. 5.80 for these 

settings with the random weights removed in figure A); replaced by their expected value 

‘0.5’ in figure B); and included in the remaining six figures. The upper text-boxes show 

the settings in terms of the constriction factor, while the lower text-boxes show the 

translation into the classical formulation with inertia weight. Fig. 5.80 A) shows the tra

jectory o f the deterministic particle for (j) = </>m!lx, whereas Fig. 5.80 B) shows the trajec

tory for ^ = ^mean. As expected, the trajectories converge much faster than in Fig. 5.79.

5.9.3. Constriction factor cf  = 0.364922 {aw = 4.10, k  = 0.50)

Setting /c = 0.50 and aw =4.10 results in cf  = 0.364922. Translating these settings 

into the classical PSO yields w = 0.364922 and aw  = 1.49618.

Trajectories o f the particle with stationary attractors are shown in Fig. 5.81 for these 

settings with the random weights removed in figure A); replaced by their expected value 

in figure B); and included in the remaining figures. The loss o f momentum is too fast 

for these settings, risking premature convergence. The particle does not exhibit explor

ative capabilities. Clearly, such small values o f k are not recommendable.
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Fig, 5 .79. T ra jec to ry  of a  particle initialized a t x  = 100 ov e r  a 1 -dimensional  s p a c e  with s ta t ionary  a t t rac to rs  a t  x  = 0 
for c f  = 0 .7 2 9 8  a n d  a w  = 4 .10 .  R a n d o m  w e igh ts  U(o,i) a r e  rem o v e d  in A); re p la c e d  by their  e x p e c t e d  value  in B); and  
included in th e  rem ain ing  figures. T h e  u p p e r  text box in e a c h  figure offers th e  se t t ings  for the  constriction factor, and  
th e  lower o n e  th e  e q u iv a le n c e  in te rm s  of th e  inertia weight formulation.
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Fig. 5 .80. Tra jec to ry  of a particle initialized a t x  = 100 o ve r  a  1 -d im ensiona l  s p a c e  with s ta t ionary  a t t r ac to rs  a t  x  = 0 
for c f  -  0 .5 4 7 3 8 3  a n d  aw = 4 .10 .  R a n d o m  w eigh ts  l/(o,i) a re  r e m o v e d  in A); re p la c e d  by their e x p e c te d  va lue  in B); 
a n d  inc luded in th e  rem aining figures. T he  u p p e r  text  box in e a c h  figure offers the  se t t in g s  for th e  constriction factor, 
an d  th e  lower o n e  th e  e q u iv a le n c e  in te rm s  of the  inertia w eigh t formulation.
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Fig. 5.81. T ra jec to ry  of a  particle initialized a t x  = 100 o v e r  a  1 -d imensional  s p a c e  with s ta t ionary  a t t rac to rs  a t x  = 0 
for c f  -  0 .3 6 4 9 2 2  a n d  a w  = 4 .10 .  R a n d o m  w e igh ts  L/(o,i) a re  r em o v ed  in A); rep laced  by their e x p e c t e d  value in B); 
a n d  included in th e  rem ain ing  f igures. T he  u p p e r  text  box in e a c h  figure offers th e  se t t ings  for the  constriction factor, 
a n d  th e  lower o n e  th e  e q u iv a le n c e  in te rm s  of th e  inertia weight formulation.
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5,9.4. Constriction factor plus velocity constraint

As can be observed in Fig. 5.79, the particle may occasionally be driven outside the fea

sible space for a few time-steps for high values o f k (and aw  not too much greater than 

‘4 ’). Therefore, as argued in section 5.8.3, the incorporation o f a vmax constraint that is 

not too restrictive is still convenient.

For the same settings used in section 5.9.1, namely k  = 0.99994 and a w = 4.10 result

ing in c f -  0.7298 , the trajectories o f the particle with stationary attractors are shown 

in Fig. 5.82 with the random weights removed in figure A); replaced by their expected 

value in figure B); and included in the remaining six figures. In every case, the maxi

mum displacement is restricted to half the feasible interval: vmax = 0 .5 0 -fin t. The upper

text-boxes show the settings in terms of the constriction factor, while the lower text

boxes show the translation into the classical formulation. Fig. 5.82 A) shows the trajec

tory o f the deterministic particle for <j> = <̂max, whereas Fig. 5.82 B) shows the trajectory

for (j) — (f)mean*

Comparing Fig. 5.82 to Fig. 5.79, it can be observed that the few positions o f the parti

cle outside the feasible space were prevented in every case by setting vmax = 0.50- fin t.

Recall that translating these settings into the classical PSO yields w = 0.7298 and 

iw  = 5 W = 1.49609 (aw  = 2.99218). That is to say, the ‘constricted aw ’ = 2.99218, while 

the ‘unconstricted aw ’ = 4.10.

In the original PSO (w = 1 and aw  = 4), the average trajectory o f the particle should be 

cyclic, with period  = 4, as shown in Fig. 5.4 F). It has already been discussed that the 

incorporation o f the random weight leads to a stochastic explosion. However, if  the ex

plosion is controlled by vmax =0.50 'fin t, the particle is still rather reluctant to converge

because its behaviour tends to be cyclic. This average cyclic behaviour is illustrated in 

vector form on a 2-dimensional space in Fig. 5.83, where the four positions o f the fall 

cycle are shown. The small red dot between gbest and pbest is the weighted average 

stationary attractor p.

5.10. Correlated coefficients
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Fig. 5.82. Tra jec tory  of a  particle initialized a t x  = 100 ov e r  a 1 -d imensional  s p a c e  with s ta t ionary  a t t rac to rs  at jc = 0 
f o r c /  = 0 .7298; a w  = 4.10; a n d  vmax equa l  to half the  feas ib le  interval (fint 12). R a n d o m  w eigh ts  U(o,ij a r e  rem oved  in 
A); rep laced  by their  e x p e c te d  va lue  in B); an d  included in the  rem aining f igures. T h e  u p p e r  text b o x e s  offer the  s e t 
tings for th e  constriction factor, a n d  th e  lower o n e s  th e  e q u iv a le n c e  in te rm s  of the  inertia w eigh t  formulation.
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While it was initially assumed that the smaller the inertia weight the faster the conver

gence, w =  0 would again lead to average cyclic behaviour with p e r io d  =  2 (see Fig. 

5.28 H)). The average cyclic behaviour for w =  0 and a w  =  4 is illustrated in Fig. 5.84, 

where the two positions of the cycle are shown.

0

PBEST

GBEST

J

PBEST PBEST

Fig. 5 .83 .  Four  posit ions of the  w hole  cycle  of the  particle for th e  se t t in g s  of the  original P S O  (w  = 1 a n d  a w  = 4 .00) ,  
with the  r a n d o m  w eigh ts  r e p la c e d  by their e x p e c te d  value  ‘0 .5 0 ’. Initial velocity is s e t  to ‘O’, and  d ’ is th e  d i s ta n c e  from 
the  position a t  t im e-s tep  t to th e  w eigh ted  a v e r a g e  of the  two a t trac to rs .

0 0

x(t+2)

Fig. 5 .84. Two posit ions of t h e  cycle  of the  particle for w  = 0 a n d  a w  -  4.00,  with th e  r a n d o m  w eigh ts  r e p la c e d  by their  
e x p e c t e d  va lue  ‘0 .5 0 ’. Initial velocity is s e t  to ‘O’, a n d  ‘d ’ is the  d i s ta n c e  from the  position a t  t im e-s tep  t to the  w eigh ted  
a v e r a g e  of th e  two a ttractors .
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Prifysgol A bertaw e

It is self-evident, though, that w = 1 would make convergence more difficult than 

w = 0 once the random weights are incorporated.

Aiming to keep the original aw -  4.00 so as to maintain the tendency of the particle to 

continuously overfly the attractor, but at the same time improve its ability to converge 

towards it, Innocente (2006) performed a rudimentary geometrical analysis of the trajec

tory with aw = 4.00 similar to the one in Fig. 5.83, but looking for an inertia weight 

that would drive the particle to the attractor in two time-steps. The analysis resulted in 

w = 0.50 (for aw = 4.00). The trajectory of the particle is illustrated in vector form on 

a 2-dimensional space in Fig. 5.85, where the attractor is reached in two time-steps. Six 

positions of the particle are depicted, which still has some momentum left.

□ GBEST

a  •
L_— d J

PBEST

[7] |T] ODEb I 

*

(tW
A  *

PBEST PBEST

Fig. 5.85. Six c o n se c u t iv e  posit ions  of th e  particle for w  = 0 .50  an d  aw -  4 .00 ,  with the  ran d o m  w eigh ts  rep laced  by 
their  e x p e c te d  value  ‘0 .5 0 ’. Initial velocity is s e t  to ‘0 ’ an d  ‘d ’ is th e  d i s ta n c e  from the  position a t  t im e-s tep  t to the  
w eigh ted  a v e r a g e  of th e  two a ttrac to rs .  T h e  latter is r e a c h e d  in two t im e-s teps .
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Even for settings that result in convergent trajectories, the greater the inertia and the ac

celeration weights the slower the convergence. Thus, aiming to find different settings 

that would lead to convergence but at different speeds, similar geometrical analyses 

were performed in (Innocente, 2006) for different values of aw. Some of them are illus

trated in Fig. 5.86 to Fig. 5.88, where the attractor is again reached in two time-steps.

tn

«<ti

c
PBEST

Fig. 5 .86. T h re e  c o n se c u t iv e  posit ions of the  particle for w = 1/6 a n d  aw = 3 .00, with the  ran d o m  w eigh ts  r e p la c e d  by 
‘0 .5 0 ’. Initial velocity is s e t  to ‘0 ’ a n d  ‘d ’ is the d i s ta n c e  from th e  position a t  t im e-s tep  t to th e  w eigh ted  a v e r a g e  of the  
two a t t r ac to rs  T h e  latter is r e a c h e d  in two t im e-s teps .  Note tha t  t h e  first two posit ions a re  in the  figure on th e  left.

m  GBEST tn

 J' L _ d -------1

Fig. 5 .87. T h re e  c o n s e c u t iv e  posit ions  of the  particle for w  = 0 a n d  aw = 2.00, with th e  r an d o m  w eigh ts  re p la c e d  by 
‘0 .5 0 ’. Initial velocity is s e t  to ‘0 ’ a n d  ‘d ’ is the  d i s ta n c e  from th e  position a t  t im e-s tep  t to the  w eigh ted  a v e r a g e  of the  
two a t trac to rs ,  T h e  latter is r e a c h e d  in o n e  time-s tep .  S u c c e s s iv e  posi t ions  co incide  b e c a u s e  th e re  is no  inertia.

tn

Fig. 5 .88. F o u r  c o n s e c u t iv e  posit ions of the  particle for w = 0 .50  a n d  aw -  1.00, with th e  r an d o m  w eigh ts  r e p la c e d  by 
‘0 .5 0 ’. Initial velocity is s e t  to ‘0 ’ a n d  d ’ is the  d i s ta n c e  from the  position a t  t im e-s tep  t to the  w eigh ted  a v e r a g e  of th e  
two a t t rac to rs .  T h e  latter is r e a c h e d  in two t im e-s teps .  Note tha t  th e r e  a r e  two posit ions p e r  figure.
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Innocente (2006) carried out five geometrical analyses (all for aw>  2), and obtained 

five pairs <‘a w -w \  By direct interpolation, a (fourth degree) polynomial relationship be

tween them was set, which was expected to favour convergence. Although the analyses 

were not mathematically rigorous, and nothing was said about convergence per se, the 

approach ensured that the settings o f the inertia and acceleration weights were balanced. 

In fact, for inertia weights w < 1 and assuming -like in the geometrical analyses above- 

that ciw = ^max = 2  -^mean, the average behaviour of the pairs ‘ciw-w’ obtained are within 

the convergent region in Fig. 5.20.

The analysis is generalized hereafter so as to obtain an analytical relationship rather 

than a polynomial interpolation of a discrete number of geometrical analyses. Recall 

that the aim is to reach the attractor p -weighted average of pbest and gbest- in two 

time-steps, where the distance from x(/) to p is called d. That is to say,

p —x = d

x(/+2) - x (,)= d

Given that the initial velocity (i.e. at time-step t) is set to zero,

xu+1) = x(/) + ^ -(p -x <n)
X('+l) _  x <0 +(j) .cj

(5.94)

(5.95)

Thus, the position of the particle at the next time-step (t+2) is as shown in Eq. (5.96):

x(/+2) = x(/+i) + w.(X</+D _ x</>)+ ^ . (p -  x<'+1>) (5.96)

From Eqs. (5.95) and (5.96),

x c+2) _ x (/) + + ^ - d - x (' )) + ^ - ( p - x (' ) -  0 - d )

x (' +2) = x(/) + ^ - d  + w - ^ - d  + ^ - ( p - x (0 - 0 - d )
(5.97)

Therefore:

x('+2) - x (/) = (/)-d + w-^-d + ^ - (p -x (0  -  ̂ -d) (5.98)

From Eqs. (5.98) and (5.94),
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d = 0-d + w-0-d + 0-(d — 0-d) 
1 = 0 + W-0 + 0-(l -</)) (5.99)

Hence,

(5.100)

Finally,

w =  2  + 0
<t>

(5.101)

Eq. (5.101) stands for the desired behaviour for a given 0. However 0 <(/>< aw. There

fore, for this to be the average behaviour, 0 is in fact 0mea„ with aw =2  -0mean. Thus,

2 ~ aww = — - 2  + —
aw 2

Trajectories of the particle with stationary attractors, random weights replaced by their 

expected value, no vmax, aw varying from ‘5’ to ‘1’, and w as in Eq. (5.102) are shown 

in Fig. 5.89 and Fig. 5.90. Notice that even the trajectories involving aw  > 4  end up 

converging. It can be observed that w decreases as aw decreases up until aw = 2 . From 

then on, w increases again because aw is not big enough to reach the attractor on its own 

in two time-steps (see Fig. 5.88).

If Eq. (5.101) is not thought of as the average behaviour but the one corresponding to 

0 = 0max = aw, Eq. (5.103) is obtained instead of Eq. (5.102). That is,

This means that the behaviour imposed in Eq. (5.94) is not the average behaviour but 

the one corresponding to 0max. Therefore the average behaviour would exhibit oscilla

tions with lower frequencies.

w = -------2 +aw
aw

(5.103)
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Fig. 5 .89 . Trajectory  of  a  particle initialized a t *  = 100 ov er  a  1 -d imensional  s p a c e  with s ta t ionary  a t t rac to rs  at  jc = 0 

for 5 .00  >  a w  >  3 .40 , w  a s  in Eq. (5 .101), a n d  n o  vmax. R a n d o m  w e igh ts  L/(o,i) a re  rep laced  by their e x p e c te d  value.
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Fig. 5 .90 . Trajectory  of a  particle initialized a t x -  100 o ver  a  1-d im ensiona l  s p a c e  with sta t ionary  a t t r ac to rs  a t x  = 0 for 
3 .2 0  > aw>  1.00, w a s  in Eq. (5 .101), a n d  no vmax. R a n d o m  w eigh ts  L/(o.i) a r e  r e p la c e d  by their e x p e c te d  value.

Fig. 5.89 and Fig. 5.90 show how the deterministic particle converges for the whole 

range of aw  tested. Note that this is true even for aw  > 4 ( <̂mean > 2 ), in which cases aw 

drives the particle farther from the attractor and it is w which brings it back. Oscillations 

are damped too quickly for small values of aw (e.g. aw<  3). In order to observe the in

fluence of randomness, trajectories of the particle with stationary attractors, no vmax, 

4 .8 > tfw > 3 , and w as in Eq. (5.102) are shown in Fig. 5.91 to Fig. 5.93. The random 

weights C/jo.i) are included in the second column, and replaced by their expected value in 

the first one. The other five trajectories corresponding to the experiments performed for 

each of the cases involving random weights can be found in the digital appendix.

225



C^EC SYSTEMATIC COEFFICIENTS STUDY WITH STATIONARY ATTRACTORS Swansealmiversity
Prifysgol A bertaw e

A)

200
w = 0.816667; iw =sui = 2.4 (au« = 4.8) 

U(0,1) replaced by T>.5"

co
o

 ̂ 0 CO 
CD 
O

«  -100 
CL

-200

Tim e-steps

2000
10 = 0 816667; iuj =sw = 2 4  (sw = 48 ) 

11(0,1) INCLUDED

1000

« -1000

-2000

Tim e-steps

B)

100
w = 0734783; ho =su> = 2.3 (am = 46 ) 
U(0,1) replaced by H  5“

-50

CL -100

-150

T im e-steps

400
u» = 0 734783, i«u =sw = 2.3 (aou = 4.6) 

U(0,1) INCLUDED

C 200

« -200

-400

Tim e-steps

C)

100
m -  0.654545; iw -w s  -  2 2  (aw = 4.4) 

U(0,1) replaced by 5"

2  o
Q .
V)
|  -50 

a  -100

150

Tim e-steps

400
w = 0 654545, iw =sw = 2.2 (aw = 44 ) 
U(0,1) INCLUDED

</)
c
o 200

<_)

« -200 
CL

-400

Tim e-steps

D)

w <= 0.576190, i» = w  = 2 l  (au) = 4.2) 
U(0,1) replaced by •0.5"

-150

Tim e-steps IV)

200
w = 0576190, iw -iw  -  2.1 (aw = 4 2) 

U(0,1) INCLUDED

C 100 
o

V)
o

0
if)

_Q)
O

« -100 
CL

-200

Tim e-steps

Fig. 5.91. Trajectory of a  particle initialized a t  jc = 100 ov er  a  1-d im ensional  s p a c e  with s ta t ionary  a t t rac to rs  a t x  = 0 
for 4.80 >  aw > 4.20, w a s  in Eq. (5.101), a n d  no vmax. R a n d o m  w eigh ts  L/<o,i) a re  included in th e  s e c o n d  column, 
an d  re p la c e d  by their e x p e c te d  va lue  in th e  first on e .  O th e r  five t ra jec to ries  for e a c h  of the  c a s e s  with U(o,i> included 
ca n  b e  found in th e  digital appendix .
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Fig. 5 .92. Trajectory of a  particle initialized a t *  = 100 ov e r  a  1 -dimensional  s p a c e  with sta t ionary  a t t rac to rs  a t *  = 0 
for 4 .0 0  >  aw > 3.40, w a s  in Eq. (5.101), a n d  no vmax. R a n d o m  w e igh ts  l/(o,i) a r e  included in th e  s e c o n d  column, 
a n d  re p la c e d  by their e x p e c t e d  value  in th e  first o ne .  O the r  five tra jec tories  for e a c h  of the  c a s e s  with l/(o.i) included 
c a n  b e  found in the  digital ap pend ix .
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Fig. 5.93. T rajectory  of a  particle initialized a t  jc = 100 over  a  1-d imensional  s p a c e  with sta t ionary  a t t rac to rs  at x  = 0 
for aw  = 3.20, aw = 3 .00, w  a s  in Eq. (5.101), a n d  no  v max. R a n d o m  w eigh ts  U(o,i) a r e  included in th e  s e c o n d  column, 
a n d  re p la c e d  by their e x p e c te d  va lue  in the  first o ne .  O ther  five t ra jec to ries  for e a c h  of th e  c a s e s  with l/(o.i) included 
c a n  b e  found  in the  digital append ix .

As can be observed in Fig. 5.91, the random weights lead to a stochastic explosion for 

the highest values of aw tested. Nonetheless, quite surprisingly, there are still values of 

4<tfvv<4.5 that result in convergent trajectories, even with the random weights re

incorporated, for w’ calculated as in Eq. (5.102). For the cases with aw< 4 , the oscilla

tions show higher amplitudes and somewhat more erratic behaviour for the particle with 

random weights incorporated compared to its deterministic counterpart. This is not nec

essarily undesirable, as PSO relies in this sort of behaviour. Besides, the particle rarely 

leaves the feasible space and is quickly pulled back in. Small values of aw like those in 

Fig. 5.93 may be useful when extremely fast convergence is required, but are not desir

able for a stand-alone, general optimizer.

To prevent the particle from being driven too far from the attractor, the loose velocity 

constraint vmax =0.50 - fint is implemented. The trajectories are shown in Fig. 5.94 to

Fig. 5.96, in the right columns. The trajectories corresponding to the same settings but 

without the vmax constraint are shown in the left column for comparison.
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Fig. 5.94. Trajectory of a particle initialized a t  x  = 100 ov e r  a  1 -dimensional  s p a c e  with s ta t ionary  a t t r a c to rs  at jc = 0 
for 4 .8 0  >  aw  >  4 .20, w  a s  in Eq. (5 .101), an d  ran d o m  w eigh ts  l/<o,i) included. T h e re  is no  vmax in th e  left co lumn, 
while it is s e t  to half the  feas ib le  interval in th e  right column. Six tra jec to ries  co r re sp o n d in g  to c o n s e c u t iv e  ru n s  for 
e a c h  c a s e  c a n  be  found in the  digital appendix .
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Fig. 5.95. T ra jec to ry  of a  particle initialized a t x  = 100 over  a  1 -d imensional  s p a c e  with sta t ionary  a t t rac to rs  at jc = 0 
for 4 .0 0  > aw > 3 .40 ,  w  a s  in Eq. (5.101), a n d  ran d o m  w eigh ts  L/(o,i) included. T h e re  is no  v max in the  left column, 
while it is s e t  to half the  fea s ib le  interval in th e  right column. Six tra jec tories  c o r re sp o n d in g  to c o n s e c u t iv e  runs for 
e a c h  c a s e  c a n  b e  found in th e  digital append ix .
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Fig. 5.96. T rajec to ry  of a  particle initialized a t *  = 100 ov er  a  1-d im ensiona l  s p a c e  with sta t ionary  a t t r ac to rs  a t *  = 0 for 
aw = 3.20, aw = 3.00, vv a s  in Eq. (5.101), a n d  ran d o m  w eigh ts  U(0 ,1) included. T h e re  is no vmax in th e  left column, 
while it is s e t  to half the  feas ib le  interval in the  right column. Six t ra jec to ries  co r re sp o n d in g  to c o n s e c u t iv e  runs  for 
e a c h  c a s e  c a n  b e  found in th e  digital appendix .

The vmax constraint prevents the explosion, as it can be clearly seen in Fig. 5.94. It may 

also prevent some few evaluations of the particle’s position a bit far from the attractor 

(e.g. see Fig. 5.95 A) and I)). In the range analyzed here, convergence consistently takes 

place for aw<  4.40, and the amplitude of the oscillations -and hence the size of the 

space explored- decreases as aw decreases. These results can be observed in all six runs 

performed for each case. Four additional ones for some selected aw values are offered 

in Fig. 5.97 to Fig. 5.101.

The convergence area in the plane showed in Fig. 5.20 is offered again in a light 

gray shadow in Fig. 5.102. The deterministic divergence area is shadowed in dark gray, 

and the parabola delimitating the complex region is showed in a black dotted line. Note 

that the inequalities bound the convergence area. The blue dotted line comprises the plot 

of Eq. (5.102) for aw=(f>max, where 0 <<f)<aw. Thus 0mean is within the convergence 

region, and so is (j) most of the time. The red solid line may be either Eq. (5.103) for 

aw = </>max or the average behaviour of Eq. (5.102) for aw = 2 • .
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Fig. 5.97. Four  p oss ib le  t ra jec to ries  of a  particle initialized a t .v  = 100 ov e r  a  1-d im ensiona l  s p a c e  with s ta tionary  a t t r ac 
tors  a t x  = 0 for a w  = 4 .40 ,  w  a s  in Eq. (5 .101), ran d o m  w eigh ts  U(o,i) included, an d  vmax s e t  to half the  feasib le  inter
val. T hey  c o r re sp o n d  to runs  c o n s e c u t iv e  io th a t  in Fig. 5 .94  III). A 6 th run c a n  b e  found in the  digital appendix .
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Fig. 5.98. Four possible trajectories of a particle initialized a tx  = 100 over a 1-dimensional space with stationary attrac
tors at jc = 0 for aw = 4.20, w as in Eq. (5.101), random weights L/(o,i) included, and vmax set to half the feasible inter
val. They correspond to runs consecutive to that in Fig. 5.94 IV). A 6th run can be found in the digital appendix.
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Fig. 5.99. F o u r  p o ss ib le  t ra jec to ries  of a  particle initialized a t  a- = 100  ov e r  a 1-d im ensiona l  s p a c e  with s ta t ionary  a t t r a c 
tors  a t  a  = 0 for aw -  4 .00 ,  w a s  in Eq. (5.101), ran d o m  w eigh ts  L/(o,i> included,  an d  vmax s e t  to half  the  f eas ib le  inter
val. T h ey  c o r re sp o n d  to runs  c o n s e c u t iv e  to tha t  in Fig. 5 .95  I). A 6 th run ca n  b e  found in the  digital append ix .
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Fig. 5.100. Four possible trajectories of a particle initialized at a  = 100 over a 1-dimensional space with stationary at
tractors at a  = 0 for aw = 3.80, w as in Eq. (5.101), random weights l / < o , i )  included, and v m a x  set to half the feasible
interval. They correspond to runs consecutive to that in Fig. 5.95 II). A 6th run can be found in the digital appendix.
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Fig. 5 .101. F o u r  p oss ib le  t ra jec to ries  of a  particle initialized at jc = 100 ov e r  a  1 -d imensional  s p a c e  with s ta tionary  
a t t rac to rs  a t  jc = 0 for aw = 3.60, w a s  in Eq. (5 .101), ran d o m  w eigh ts  U(o,i) included, and  v max s e t  to half the  feasib le  
interval. T h e y  c o r re s p o n d  to runs  co n s e c u t iv e  to tha t  in Fig. 5 .95  111). A 6 th run can  b e  found in the  digital appendix .

complex region 
w = 2/<j> -  2 + 4>/2 
w =  l/<j) — 2 + (j> ,

Fig. 5 .102. R e g io n s  in the  '</>-w plane .  T h e  light g ray  a r e a  c o m p r i s e s  the c o n v e r g e n c e  region, and  th e  dark  gray  a r e a  
the  d iv e rg e n c e  region. T h e  p a ra b o la  in black do t ted  line b o u n d s  the  com plex  region. T h e  blue do t ted  line co m p r ise s  
the  plot of Eq. (5 .102) for aw = <f>max s o  tha t  ^  is within the  c o n v e r g e n c e  region m o s t  of th e  time. T he  red solid line m ay  
b e  e i ther  Eq. (5 .103) for aw  = <̂ max or the  a v e r a g e  b e h av io u r  of Eq. (5 .102) for aw = 2 •
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5.11. Final remarks and closure

An extensive study o f the influence o f the settings o f the coefficients in the velocity up

date equation as well as those of the velocity constraint on the behaviour o f the isolated 

particle with stationary attractors have been carried out, partly theoretically, partly heu- 

ristically, and partly by simply visualizing trajectories.

Setting the velocity constraint as half the feasible interval is, at worst, harmless, and it is 

therefore advisable. For some special cases, a quarter of the feasible interval could be 

considered. Smaller values appear unnecessarily over-restrictive unless convergence is 

not controlled by the settings of the coefficients but fully driven by progressively de

creasing the size o f the maximum displacement permitted.

Controlling the explosion only by means of the velocity constraint is not convenient, as 

it does nothing or little to improve convergence . Therefore, coefficients that lead to di

vergence or even cyclic behaviour should be discouraged. Although cyclic behaviour is 

not all that bad in itself, it is not stable, and the random weights tend to turn it into some 

stochastic explosion. In addition, the search does not concentrate on the most promising 

areas. Therefore, it is highly advisable to keep at least the average coefficients within 

the convergence region in Fig. 5.20 (also in Fig. 5.78 and Fig. 5.102).

The region in the plane that leads to convergence was obtained from the closed- 

form of the particle’s position, ensuring that the latter tends to that o f the attractor. 

However, the speed and form of convergence directly depends on the values o f the roots 

of the characteristic polynomial. Thus, according to the form and speed o f convergence 

sought for the particular problem, coefficients from different regions in the convergence 

map should be selected. Although some authors recommend the use of w > 1 -e.g. (Shi 

& Eberhart, 1998a) and (Ozcan & Mohan, 1999) suggest 0.9 < w <  1 .2-, it is highly ad

visable to keep 0 < w  < 1. A negative w does not make much sense despite convergence 

because the idea is to maintain some of the velocity from the last movement. In turn, by 

common sense, w  > 1 would not stand for an inertia term but for a third acceleration 

one, as new energy would be introduced. Since this coefficient is applied on the previ

ous velocity, it would go against the convergence criteria for which the velocity has to

2 This is so unless the size o f the velocity constraint progressively decreases, thus forcing convergence. D e
creasing the velocity to zero is a condition o f convergence, as the particle ceases to move.
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tend to zero as the particle’s position tends to the attractor. From a more analytical point 

of view, values o f w > l  lead to the deterministic explosion regardless of the accelera

tion coefficient $ and of the acceleration weight aw. Thus, it is strongly recommended 

to keep w  < 1. Even in the latter case, the higher the inertia weight the greater the mag

nitude o f  the roots and therefore the slower the convergence and the lower the frequency 

of the oscillations. This helps prevent premature convergence in detriment of the ability 

to perform a fme-grain search. In turn, too low an inertia weight (w) should be discour

aged, as the particle loses momentum too fast unless aw is also small. In the latter case, 

the particle approaches the attractor mainly from one side, which is obviously undesir

able. Loosely speaking, it would be arguably recommendable to choose 0.3 < w <  0 .9, 

according to the behaviour desired.

A similar common sense analysis would suggest that the acceleration weight should be 

kept a w < 4, so that <f)mean < 2 . This means that the ‘average acceleration’ would not

take the particle farther from the attractor but, at most, the same distance on the other 

side. The variation introduced by the random weights would allow the particle to move 

closer and farther. Therefore, it is recommended here that 2 < aw < 4  even when some 

of them may fall within the black triangle in Fig. 5.20 (divergence region). As long as 

m̂ean is comfortably within the convergence region, the particle is expected to converge. 

Besides, the velocity constraint prevents possible local explosions. Consider, for in

stance, the setting w = 0.5 and aw  = 4 , which results in fast convergence and fine-grain 

search. In contrast, settings like w = 0.9 and aw  = 3.8 lead to much slower convergence 

even when the whole range of <j) is within the convergence area (but the magnitudes o f  

the roots are close to ‘1’). In turn, a value o f aw < 2  would imply that the particle, on 

average, would not be able to reach -let alone overfly- the attractor due to the accelera

tion, and a high inertia weight should be used to compensate. Nevertheless, the fre

quency o f the oscillations would be low.

To summarize, within the suggested convergence ranges 0.3 < w <  0.9 and 2 < a w < 4 ,  

loosely speaking, the lower the aw  for a given w -and the lower the w for a given aw - 

the faster the convergence. That is, the more exploitative the behaviour. Conversely, the 

higher the aw  for a given w -and the higher the w for a given aw -  the stronger the reluc

tance to premature convergence. That is, the more explorative the behaviour. In turn,
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low w  plus high aw lead to high frequencies in the oscillations, and the opposite is true 

for high w  and low aw . In general, higher frequencies are preferred for exploitation.

The acceleration weight calculated as in Eq. (5.102) favours fast convergence and high 

frequencies -especially for aw  < 4 - ,  so that it is recommended when exploitation is be

ing sought. Be aware that only the right branch o f the blue dotted parabola in Fig. 5.102 

should be used, as values o f a w < 2  are advised against. In general, aw  is not recom

mended to be greater than ‘4 ’. However, it could be said that for 4.0 < aw  < 4 .4 , w as in 

Eq. (5.102), and vmax = 0.50- f in t , the particle still converges more or less in a neatly.

If Eq. (5.103) is used instead of (5.102) so that the dynamics imposed in section 5.10 

takes place for </)mSLX rather than ^mean (red solid parabola in Fig. 5.102), the speed o f  

convergence notably increases, the frequency o f the oscillations decreases, and the 

space explored is narrowed to the vicinity o f the attractor. Therefore this is not recom

mended unless extremely fast convergence and exploitation is desired.

The constriction factor is effective in controlling the explosion and ensuring conver

gence. It is important to note that, while the constriction factor was developed in terms 

o f 0, aw is typically used instead in its calculation, as shown in Eq. (5.89). This means 

that the strength o f the constriction of the random variable $ is the one corresponding to 

its maximum possible value regardless o f its actual value. A few words on a type of 

adaptive constriction are offered in the next chapter. The strength of the constriction 

also depends directly on the value of k, which is typically set close to ‘ 1 ’ for aw > 4 . 

The acceleration weight is commonly set marginally greater than ‘4 ’ because the con

striction is too strong otherwise, as can be observed in Fig. 5.77. If aw<  4, then k 

should be decreased, as it comprises the constriction factor itself (see Fig. 5.78).

Further discussions on the coefficients settings are offered in the next chapter, as com

plexity is gradually added to the algorithm.
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Chapter 6

COEFFICIENTS SETTINGS

The possibility of a form of adaptive constriction factor more in line with its theoretical development is con
sidered. Then, still studying the isolated particle with stationary attractors, some restrictions to the limits of 
the random weights are investigated so as to obtain a desired average behaviour without abandoning the 
convergence region. Two average behaviours -and three restrictions to the random weights associated- 
are proposed. In order to study the trajectory of the isolated particle with a dynamic attractor, its individual 
best experience is made dynamic. Therefore the weighted attractor becomes dynamic without introducing 
particles' interactions, and the influence of a moving attractor on the trajectory of the particle is analyzed. 
The effect of varying the individuality and sociality weights is studied by visualizing the trajectories of an 
isolated particle with dynamic individual best and stationary social best experiences. Some coefficients 
settings are preselected, and their influence on a small swarm of four interacting particles in 1-dimensional 
space is analyzed. The full PSO system with three coefficients’ settings (together with a multi-swarm com
bination of them) and two neighbourhood topologies -one global and one local- are tested on a bench
mark suite of multidimensional problems. Finally, some guidelines are provided as to how to set the coeffi
cients to obtain a given desired behaviour of the system.

6.1. Introduction

An extensive analysis on the influence o f the inertia and acceleration weight -and a few 

words about the constriction factor- as well as the velocity constraint on the behaviour 

of the isolated particle pulled by stationary attractors was offered in the previous chap

ter. Initially the particle was deterministic, and then random weights were reinstated as a 

first step to re-incorporate the complexity of the full PSO algorithm. The region of the 

plane ‘^-w ’ that leads to convergence, as well coefficients leading to different types o f  

trajectories and speeds o f convergence, were identified.

The first part o f this chapter is still concerned with the isolated particle, but complexity 

is progressively added. First, a brief discussion about the random weights is offered, 

which was not considered in the previous chapter. This leads to the discussion o f the 

possibility o f using a form of adaptive constriction factor which would seem to be more 

in line with its theoretical development, since the constriction was developed in terms o f  

the variable (f) rather than o f the constant aw , commonly used in its computation.
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Then, a modified version o f the PSO algorithm is proposed, where the limits o f the ran

dom weights are restricted so as to obtain a desired average behaviour without ever 

leaving the convergence region in the plane. Two alternative average behaviours 

and three associated restrictions to the random weights are proposed.

Succeeding that, the weighted attractor is made dynamic by incorporating a non- 

stationary individual best experience. Thus, the stationary global experience can be 

viewed as the best experience in the neighbourhood, and the effect o f an updating at

tractor in the still isolated particle can be observed. Finally, some empirical studies of 

setting different individuality and sociality weights are presented.

The second part of this chapter is concerned with the full, multi-particle PSO system. 

First, the effect o f some preselected coefficients’ settings on the dynamics of a small 

swarm o f interacting particles flying over 1-dimensional space is visually studied. Then, 

selected settings profiting from the previous studies are tested and compared on multi

dimensional benchmark problems. Since the neighbourhood topology and the coeffi

cients settings work together to provide the exploration/exploitation balance, the global 

and one local topologies are considered in the experiments. This chapter ends with some 

guidelines as to how to set the coefficients to obtain the desired behaviour o f the system.

The studies o f the effect that the coefficients settings have on the behaviour of the parti

cle are simplified by considering it isolated, even if  the studies are not theoretical. Since 

there is still some more complexity that can be incorporated and studied before moving 

on to the full multi-particle system, the isolated particle is studied further in this section.

6.2.1. PSO with a form of adaptive constriction

The constricted PSO was proposed in (Clerc & Kennedy, 2002) so that, when the mag

nitudes o f the eigenvalues o f the system matrix are not both less than one (convergence 

condition), a constriction factor is applied. Such constriction modifies the system matrix 

so that the new eigenvalues comply with the convergence condition. However, the con

striction factor is proposed as a function of $, which is a random variable. Typically, $

6.2. Single particle
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is simply replaced by aw  = 0max in the fonnula so as to ensure that the eigenvalues com

ply with the convergence condition in the whole 0 interval. However, this is over- 

restrictive. As shown in the graph ‘({)-cf in section Fig. 5.77, the strength o f  the con

striction increases remarkably as 0 grows greater than ‘4 ’ (for a given k ). Therefore all 

the values o f 0  smaller than the 0 m ax used in the computation o f c f  are over-constricted 

(for unconstricted 0max > 4). It is reasonable to think o f a constriction factor specific for 

each random 0 (i.e. for each particle, for each dimension, for each time-step). However, 

this would alter the uniform distribution o f the constricted  0 in the range [0,4] (favour

ing greater values) due to the discontinuity in Fig. 5.77, as can be inferred from Fig. 6.1.

Constricted <|> (k = 0 .99994) 

Constricted $  (k = 0.75) 

Constricted (|> (k = 0.5)

3.5

0.5

t
2.50.5 1.5 5.5 6.5 7.53.5 4.5

U n c o n s t r i c te d

Fig. 6 .1 .  C o n s t r ic te d  0  a s  a  func t ion  of t h e  original, u n c o n s t r i c t e d  <f> for t h r e e  d if fe ren t  v a lu e s  of k .

Note that the adaptiveness o f c/ here is with respect to 0, in line with its theoretical de

velopments. The idea was to calculate the constriction corresponding to the actual 0 

rather than to 0max. This thesis does not deal with more traditional adaptive coefficients 

schemes such as that in (Chen, Lee, Liao, & Dai, 2007). Thus, it appears more reason

able to maintain a fixed value o f c f  calculated for 0 = aw  = 0max, making sure that nei

ther k is much smaller than ‘1 ’ nor the unconstricted 0 much greater than ‘4 ’. Smaller 

values o f k and greater values o f 0 result in too strong a constriction (i.e. small cf).

6.2.2. Randomness

W hile the previous chapter was concerned with the influence o f the inertia and the ac

celeration weights on the dynamics o f the particle, nothing has been said so far with re

gards to the random weights. Classical PSO typically multiply the individuality and so-
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ciality weights by a random number between ‘O’ and ‘1 ’ generated from a uniform dis

tribution, referred to as f/(0 ]) e  [0,l]. This means that (j> e [0, aw\ in classical PSO, and

(j) e [0,</ -aw\ in constricted PSO. Thus, it has always been assumed that the variable $

is bounded by ‘O’ and ‘^max\  and that the probability distribution is rectangular.

In several sections in the previous chapter, the average behaviour o f the isolated particle 

was studied, identifying some desirable ranges of w and 0mean (seeking different forms 

of convergence). When the random weights C/(o,i) were reincorporated, deviations o f the

the greater the ^mean studied the greater the aw , hence the greater the range o f (f) and the 

greater the deviation from the average behaviour. This need not be like that, and the 

randomness can be bounded. An alternative that was not extensively investigated -and 

therefore not included in this thesis- is to view the randomness as a sort o f noise to the 

desired average behaviour. Thus, the individuality and sociality weights would be cho

sen according to the average behaviour sought, and a random number from a zero-mean 

normal distribution and standard deviation according to the degree o f noise desired 

could be implemented. This approach would allow the general behaviour to be more 

controlled, while randomness is still relied on to avoid getting stuck in some particular 

pattern throughout the search. Similarly, the rectangular distribution is maintained for 

the studies in this thesis, but different limits for the acceleration coefficient <j) are pro

posed. The idea is to decide upon the average behaviour desired associated to a given 

(/>mean, and then introduce the random weights so that

and <!> is never outside the convergence region.

By seeking two different kinds o f average behaviours, three approaches are proposed 

hereafter. Notice that this allows removing one variable to be set by the user, as w and 

aw  are correlated. Thus the user has to set only one of them and the other is automati

cally calculated. This also provides the user with a simple range o f the only variable to 

be manually set, where the higher the setting the higher the exploration and the lower 

the setting the higher the exploitation.

expected behaviour were observed, sometimes quite noticeable ones. Since (j) e [0,aw],

  t max rmin (6.1)meanmean
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6.2.2.1. PSO with reduced 0 max (PSO-RRM)

The idea here was to find a relationship between the inertia and the acceleration weight 

that would ‘kill the mom entum’ once the particle has overflown the attractor. In other 

words, if  the particle overflies the attractor from time-step t to time-step t+1, then the 

velocity v u+2) = 0 so that the particle does not tend to keep flying away from the attrac-

a deterministic algorithm to re-evaluate the same position, the randomness would make

(6.2), while the resulting relationship between w and ^ mean is shown in Eq. (6.5).

where it is assumed that v(n = 0 , as in section 5.10. Thus, imposing v('+2) = 0 yields

Eq. (6.5) is the middle line between the left and right boundaries o f the convergence re

gion in Fig. 5.20 (also in Fig. 5.78 and in Fig. 5.102). Thus, if  the range o f the random 

weights is sought to be maximized without ever leaving the convergence region and 

maintaining the ^ mean as in Eq. (6.5), then </>mjn = 0 and 0max coincides with the hypote

nuse o f the black triangle in Fig. 5.20. This results in the equation o f  the velocity update

tor in the following time-step. This implies that x(,+2) = x('+l). W hile it is not desirable in

x (t+2 ) ^  xu+n Thus, conditions imposed for the average behaviour are offered in Eq.

(6.2)

(6.3)

Replacing x"+1) in Eq. (6.3) from Eq. (6.2),

-(p -  x(/l) = -^-(p —xm -  ^ - (p -x (,)))

(6.4)

W • (f) =  -(f) +  (f)1

Finally, the relationship sought is given by Eq. (6.5):

w  =  (f) - 1 (6.5)
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virtually unmodified with respect to that o f the classical PSO: by relating the inertia and 

acceleration weights as in Eq. (6.6) -see  also Eq. 5.82 in section 5 .5 - and (j>mean is as in 

Eq. (6.5), the PSO velocity update equation remains the same.

(6.6)

Fig. 6.2 shows the average behaviour given by Eq. (6.5), and the maximum and m ini

mum values o f (f) for each w  given by <f>mjn = 0 and </)max as in Eq. (6.6). The blue dotted 

horizontal lines show the region o f  the plane from where (f) is sampled in this ap

proach. The limits wniax =0 .8  and wmin =0.1 are arbitrary, as the condition is w e (0 ,l) .

mean

max

Parabola bounding 
the complex region

Fig. 6 .2 .  R e g io n  in t h e  p l a n e  '</>-w from w h e r e  (j> is s a m p l e d  in P S O - R R M  (b lue  d o t t e d  hor izon ta l  l ines).  T h e  m idd le  
line ru le s  t h e  a v e r a g e  b e h a v io u r ,  while  t h e  w h o le  r a n g e  o f  (f> is within th e  c o n v e r g e n c e  reg ion .  T h e  u p p e r  a n d  low er 
limits o f  w  a r e  arb i t rary :  g r e a t e r  v a lu e s  le a d  to e x t r e m e ly  s lo w  c o n v e r g e n c e  a n d  s m a l l e r  v a lu e s  to e x t r e m e ly  f a s t  c o n 
v e r g e n c e .  T h u s ,  th e  a p p r o a c h  c o n s i s t s  of t h e  u s e r  s imply  c h o o s i n g  2 .2 0  <  a w  <  3 .60 ,  w h e r e  th e  low er  th e  a w  t h e  
m o r e  exploitative th e  b e h a v io u r ,  a n d  th e  h ig h e r  th e  a w  t h e  m o r e  explorative t h e  b e h a v io u r .  T h is  is e q u i v a le n t  to  th e  
u s e r  c h o o s i n g  0 .1 0  ^  w  <  0 .80 ,  w h e r e  h ig h e r  iner t ia  w e ig h t s  le a d  to  m o r e  e x te n s i v e  e x p lo ra t ion .

Thus, the procedure for the PSO-RRM consists o f the user simply choosing either the 

acceleration weight a w e [ 2.20,3.60] or the inertia weight w e  [0.10,0.80], where the 

higher the value selected the more explorative the behaviour, and the lower the value 

the more exploitative the behaviour. Therefore only one coefficient needs to be set.
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6.2.2.2. PSO with reduced randomness range 1 (PSO-RRR1)

The PSO-RRM approach proposed in the previous section was developed seeking the 

average behaviour given by Eq. (6.5). However, since that happened to be the middle 

line between ^ = 0 and w = 0.5-<f>-\ (hypotenuse o f black triangle in Fig. 5.20) and the 

range o f  (j) was the maximum possible without leaving the convergence region, the ap

proach can be viewed as classical PSO with a relationship between w  and aw.

If the same average behaviour is sought but the randomness is viewed as a noise to the 

desired average behaviour, the range o f (f> can be reduced. The range is arbitrarily set 

here to half the maximum range, and the approach is called PSO-RRR1. The region in 

the plane from where the variable (j> is sampled -fo r  a given w -  in this approach is 

shown in blue, dotted, horizontal lines in Fig. 6.3.

max mean max

Parabola bounding 
the complex region

l
0 .9  

0.8 
0 .7  

0.6 
£  0 .5

0 .4  

0 .3  

0.2 

0.1 
0

Fig. 6 .3 .  R e g io n  in t h e  p l a n e  ‘<f>-w from w h e r e  <j) is s a m p l e d  in P S 0 - R R R 1  (b lue  d o t t e d  hor izon ta l  l ines) .  T h e  m id d le  
line ru le s  th e  a v e r a g e  b e h a v io u r ,  while  th e  w h o le  r a n g e  o f  <j> is within th e  c o n v e r g e n c e  reg ion .  T h e  u p p e r  a n d  low er  
limits o f  w  a r e  arb i t rary :  g r e a t e r  v a l u e s  le a d  to e x t r e m e ly  s low  c o n v e r g e n c e  a n d  s m a l l e r  v a lu e s  to  e x t r e m e l y  f a s t  c o n 
v e r g e n c e .  T h u s ,  t h e  a p p r o a c h  c o n s i s t s  of th e  u s e r  s im p ly  c h o o s i n g  1 .10  <  «̂ mean <  1 .80 ,  w h e r e  t h e  lo w e r  th e  ^ mean 
t h e  m o r e  exploitative th e  b e h a v io u r ,  a n d  th e  h ig h e r  th e  ^ mean th e  m o r e  explorative th e  b e h a v io u r .  T h is  is e q u i v a le n t  to 
t h e  u s e r  c h o o s i n g  0 .1 0  £  w  <  0 .8 0 ,  w h e r e  h ig h e r  inertia  w e ig h t s  le a d  to  m o r e  e x te n s i v e  exp lo ra t ion .

Fig. 6.3 shows the equations for (f)min, </>mcan, and ^ max, where the random variable <j> is 

always sampled within the complex and convergent region in the plane i(jh-w\ The same 

as for the PSO-RRM, the upper and lower limits for w are arbitrary. Higher values lead 

to extremely slow convergence, and the opposite is true for lower values.
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Given that the PSO-RRR1 does not allow the probability o f (/) = 0 , the equation for the 

velocity update presents a marginal modification with respect to that o f the classical 

PSO in Eq. (5.2). Thus, the updates o f the velocity and position in PSO-RRR1 are per

formed as shown in Eq. (6.7).

Recall that the average behaviour o f both the PSO-RRM and the PSO-RRR1 are given 

by Eq. (6.5). Eq. (6.7) shows that it is not iw and sw but their relative values which mat

ter. Therefore, the user simply needs to weigh the acceleration, stressing either the self- 

confidence (individuality) or the conformism (sociality) of each particle, as shown in Eq.

(6.8). Setting equal strength to both terms results in ip = sp = 0.50.

and (j)max = aw. Thus, the procedure for the PSO-RRR1 approach consists o f the user 

simply choosing either ^mean =[1.10,1.80] or w = [0.10,0.80] and zpe[0 ,l), where the

higher the values selected the more explorative the behaviour. Conversely, the lower the 

values selected the more exploitative the behaviour. Therefore, two coefficients need to 

be set, which meanings are straightforward.

w  = -1/m ean

[̂ min + (̂ max m̂in )' (̂0,1) ]

max

(6.7)

iw + swiw + sw

h  = * P ' k , i n  + ( f L *

A = SP' k,m + ) • u (W) ]

(6.8)

Notice that the formulation in Eq. (6.7) also applies to classical PSO except that t n  = 0
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The trajectories o f the deterministic isolated particle for decreasing values o f  ̂ mean -and  

therefore decreasing values o f w -  are offered in Fig. 6.4 and Fig. 6.5. Recall that 

<f) = 0.50 • aw  for the PSO-RRM.
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Fig. 6 .4 .  T r a je c to ry  c o r r e s p o n d i n g  to  t h e  a v e r a g e  b e h a v i o u r  of a  d e te rm in is t i c  pa r t ic le  initialized a t *  = 100, flying o v e r  
a  1 - d im e n s i o n a l  s p a c e ,  with s t a t i o n a r y  a t t r a c to r s  a t x  = 0, for 1 .00  >  w  >  0 .3 0 .  T h is  a v e r a g e  b e h a v i o u r  is e x h ib i ted  by  
b o th  t h e  P S O - R R M  a n d  t h e  P S 0 - R R R 1 .
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if)
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CO

CL

-50

B) Tim e-steps

100

CO
o
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03
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PSO-RRR 1

phi * 1.20 (Hence w = 0 20)

-50

A) Tim e-steps

Fig. 6 .5 .  T r a je c to ry  c o r r e s p o n d i n g  to th e  a v e r a g e  b e h a v i o u r  of a  d e te rm in is t i c  par t ic le  initialized a t *  = 100, flying o v e r  
a  1 - d im e n s io n a l  s p a c e ,  with s t a t i o n a r y  a t t r a c to r s  a t *  = 0, for w  = 0 .2 0  (left) a n d  w  = 0 .1 0  (r ight). T h is  a v e r a g e  b e h a v 
iour is ex h ib i te d  by  bo th  th e  P S O - R R M  a n d  t h e  P S O - R R R 1 .

Notice that Fig. 6.4 A) is the average behaviour o f the original PSO algorithm (w  = l 

and aw = 4 ). As can be observed in all the average trajectories offered in Fig. 6.4 and 

Fig. 6.5, the position o f the particle when it has just overflown the attractor is repeated 

in the following time-step, while it overflies the attractor again in the time-step after 

that. This was the condition imposed in Eq. (6.2), yielding Eq. (6.5). Thus, the average 

behaviour o f both the PSO-RRM and the PSO-RRR 1 is the same as that o f the original 

PSO, except that the amplitudes o f the oscillations are time-decreasing. As mentioned 

before, the smaller the (aw  for the PSO-RRM) -and  therefore the smaller the w -  

the steeper the decrease o f the amplitudes. That is, the faster the convergence.

100
«  80  
c
0

1  60
Q_
cn

I  40

0
0 10 20 30 40 50

Tim e-steps

Fig. 6 .6 .  T r a je c to ry  c o r r e s p o n d i n g  to  th e  a v e r a g e  b e h a v i o u r  of a  d e te rm in is t i c  pa r t ic le  initialized a t *  = 100, flying o v e r  
a  1 - d im e n s io n a l  s p a c e  with s t a t i o n a r y  a t t r a c to r s  a t *  = 0, for w  = 0 .00 .  T h is  a v e r a g e  b e h a v i o u r  is ex h ib i ted  by  both  
t h e  P S O - R R M  [aw  = 2) a n d  t h e  P S O - R R R 1  (<f> = 1), a s  well a s  t h e  P S O - R R R 2  p r o p o s e d  in th e  n e x t  se c t ion .

Six trajectories corresponding to consecutive runs once randomness is reincorporated 

are offered in Fig. 6.7 and Fig. 6.8 for w = 0 .80, for the PSO-RRM (hence a w -  3.60) 

on the left column, and for the PSO-RRR 1 (hence </>mean = 1 .8 0 ) on the right column.

T ' PSO-RRM

w * 0; w  s  5W * 1 (aui = 2) 
U(0,1 j replaced by t).5"

PSO-RRR 1

phi = 1 (hence w = 0)

PSO-RRR2
phi = 1 (hence w = 0)
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Trajectories in the same row correspond to the same initial state o f the pseudo random 

number generator.
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Fig. 6 .7 .  T r a je c to ry  of a  par t ic le  initialized a t  jc = 100, o v e r  a  1-d im e n s io n a l  s p a c e  with s t a t i o n a ry  a t t r a c to r s  a t x  = 0, 
for w = 0 .80 ,  c o r r e s p o n d i n g  to four  c o n s e c u t i v e  runs .  T h e  t r a je c to r ie s  o n  t h e  left c o lu m n  c o r r e s p o n d  to  th e  P S O - R R M  
a n d  th e  o n e s  on  t h e  r ight to th e  P S 0 - R R R 1 .  T r a j e c to r i e s  in th e  s a m e  row  c o r r e s p o n d  to th e  s a m e  initial s t a t e  of th e  
p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .
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Fig. 6 .8 .  T r a je c to ry  of a  p ar t ic le  initialized a t x  = 100 ,  o v e r  a  1 - d im e n s io n a l  s p a c e  with s t a t i o n a r y  a t t r a c to r s  a t . v  = 0, 
for w  = 0 .8 0 ,  c o r r e s p o n d i n g  to two c o n s e c u t i v e  ru ns .  T h e  t r a j e c to r i e s  on  t h e  left c o lu m n  c o r r e s p o n d  to t h e  P S O - R R M  
a n d  t h e  o n e s  o n  th e  right to  th e  P S O - R R R 1 .  T r a j e c to r i e s  in t h e  s a m e  row  c o r r e s p o n d  to t h e  s a m e  initial s t a t e  of t h e  
p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .  T h e  r u n s  c o n s i d e r e d  h e r e  a r e  c o n s e c u t i v e  to t h o s e  in Fig. 6 .7 .

As can be observed, despite having the same average behaviour (i.e. the same ^ mean), the 

PSO-RRR 1 exhibit a more desirable and consistent behaviour, where the trajectories 

deviate much less from the deterministic counterpart without giving up on randomness. 

Notice that convergence takes place every time -a s  opposed to Fig. 6.7 C )-, there is no 

local explosion -a s  opposed to Fig. 6.7 A) and Fig. 6.8 B)-, and the form and speed o f 

convergence are more similar to one another for all six runs o f the PSO-RRR 1. It is im

portant to note that no velocity constraint is implemented here, and yet explosion and 

convergence are conveniently controlled for an inertia weight as high as ‘0.80’ and a 

^mean as high as ‘1.80’. Recall that w = 2.00 and ^mcan = 2.00 for the original PSO.

Six trajectories corresponding to consecutive runs once randomness is reincorporated 

are offered in Fig. 6.9 and Fig. 6.10 for w = 0.50 , for the PSO-RRM (hence #w = 3.00) 

on the left column, and for the PSO-RRR 1 (hence ^mean = 1 .50 ) on the right column.

Trajectories in the same row correspond to the same initial state o f the pseudo random 

number generator.
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Fig. 6.9.  T r a j e c to ry  of a  pa r t i c le  initialized a t  x  = 100, o v e r  a  1 -d im e n s io n a l  s p a c e  with s t a t io n a ry  a t t r a c t o r s  a t  jc = 0, 
for w  = 0 .5 0 ,  c o r r e s p o n d i n g  to fo u r  c o n s e c u t i v e  runs .  T h e  t r a j e c to r i e s  on  t h e  left c o lu m n  c o r r e s p o n d  to  t h e  P S O - R R M  
a n d  th e  o n e s  on  th e  right to  t h e  P S 0 - R R R 1 .  T r a j e c to r i e s  in th e  s a m e  row  c o r r e s p o n d  to th e  s a m e  initial s t a t e  o f  th e  
p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .
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Fig. 6 .10 .  T r a je c to ry  of a  p ar t ic le  initialized a t  x -  100 , o v e r  a  1- d im e n s io n a l  s p a c e  with s ta t io n a ry  a t t r a c to r s  a t  jc = 0, 
for w = 0 .5 0 ,  c o r r e s p o n d i n g  to  tw o  c o n s e c u t i v e  r u n s .  T h e  t r a j e c to r i e s  on  th e  left c o lu m n  c o r r e s p o n d  to th e  P S O - R R M  
a n d  th e  o n e s  on  th e  r ight to t h e  P S O - R R R 1 .  T r a j e c to r i e s  in th e  s a m e  row  c o r r e s p o n d  to t h e  s a m e  initial s t a t e  of th e  
p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .  T h e  r u n s  c o n s i d e r e d  h e r e  a r e  c o n s e c u t i v e  to  t h o s e  in Fig. 6.9.

As mentioned before, if  ̂ mean is as in Eq. (6.5), the lower the </>mean -and  hence the lower 

the w -  the faster the convergence. Thus convergence is noticeably faster in Fig. 6.9 and 

Fig. 6.10 in comparison to that in Fig. 6.7 and Fig. 6.8. In addition, the form and speed 

o f convergence are more similar for different runs because the interval [^min,^ max] de

creases as (f)mean and w  decrease, and no local explosion is observed. Thus trajectories 

deviate less from their deterministic counterparts. Nevertheless, the trend is the same as 

in Fig. 6.7 and Fig. 6.8, and trajectories are more consistent for the PSO-RRR 1. For in

stance, compare figures A) to B), and figures I) to II) in Fig. 6.10.

In order to compare both approaches for extremely fast convergent settings, six trajecto

ries corresponding to consecutive runs with randomness reincorporated are offered in 

Fig. 6.11 and Fig. 6.12 for w = 0 .20 , for the PSO-RRM (hence aw  = 2 .40) on the left 

column, and for the PSO-RRR 1 (hence ^mean = 1.20 ) on the right one. Trajectories in the 

same row correspond to the same initial state o f the pseudo random number generator.
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Fig. 6 .1 1 .  T r a j e c to ry  o f  a  pa r t ic le  initialized a t x  = 100 ,  o v e r  a  1- d im e n s io n a l  s p a c e  with s t a t i o n a r y  a t t r a c t o r s  a t *  = 0, 
for  w  = 0 .2 0 ,  c o r r e s p o n d i n g  to  fo u r  c o n s e c u t i v e  ru ns .  T h e  t r a je c to r ie s  on  t h e  left c o lu m n  c o r r e s p o n d  to t h e  P S O - R R M  
a n d  t h e  o n e s  on  t h e  r ight to t h e  P S 0 - R R R 1 .  T r a j e c to r i e s  in t h e  s a m e  row  c o r r e s p o n d  to  th e  s a m e  initial s t a t e  o f  th e  
p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .
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Fig. 6 .12 .  T r a je c to ry  of a  par t ic le  initialized a t *  = 100 ,  o v e r  a  1- d im e n s io n a l  s p a c e  with s t a t i o n a r y  a t t r a c to r s  a t *  = 0, 
for w  = 0 .20 ,  c o r r e s p o n d i n g  to tw o  c o n s e c u t i v e  ru n s .  T h e  t r a j e c to r i e s  on  th e  left c o lu m n  c o r r e s p o n d  to  th e  P S O - R R M  
a n d  th e  o n e s  on  t h e  right to t h e  P S 0 - R R R 1 .  T r a j e c to r i e s  in t h e  s a m e  row  c o r r e s p o n d  to  th e  s a m e  initial s t a t e  of t h e  
p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .  T h e  r u n s  c o n s i d e r e d  h e r e  a r e  c o n s e c u t i v e  to t h o s e  in Fig. 6 .11 .

As expected, the difference in the trajectories for the approaches decreases as the inter

val [^min,^ max] decreases, although the PSO-RRR1 still remains more consistent. Recall 

that these small settings are not advised for stand-alone optimizers.

6.2.2.3. PSO with reduced randomness range 2 (PSO-RRR2)

The average behaviour imposed by Eq. (6.5) in the PSO-RRM and the PSO-RRR 1 was 

developed so that the inertia and the acceleration cancelled each other out in the time- 

step following the overflying o f the attractor (see Eq. (6.2)). This was a way to conven

iently balance the strength o f the inertia and that o f the acceleration. Another way to 

balance them but which results in higher frequencies o f the trajectory is the relationship 

between <j> and w  proposed in Eq. (5.101) in section 5.10. This leads to higher accelera

tions for a given w  than for the PSO-RRM and PSO-RRR 1 because the acceleration is 

such that not only cancels the inertia but also drives the particle to the attractor’s loca

tion. O f course, once randomness is reincorporated, this behaviour is altered.
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In section 5.10, this average behaviour was considered with </> e  [0,avr], which resulted 

in (f) being sampled from vast regions o f the plane some o f which were within the

divergence region.

The PSO-RRR2 approach proposed here combines the average behaviour in Eq. (5.101) 

with a reduced randomness range criterion. Thus, the variable </) is randomly sampled 

from an interval that has Eq. (5.101) as its midpoint, and the hypotenuse o f the diver

gence triangle as its rightmost point. This is the greatest interval fully within the con

vergence region with the average behaviour sought. The region o f the plane from

where (j) is randomly sampled -fo r  a given w - is shown in Fig. 6.13. The upper and 

lower limits for w  are arbitrary. While it is advised not to violate those limits, some 

greater and smaller values are considered when visually studying the average behaviour.

mean

mean

mean

max

Parabola bounding 
the complex region

Fig. 6 .1 3 .  R e g io n  in th e  p l a n e  f rom  w h e r e  <t> is s a m p l e d  in P S O - R R R 2  (red  d o t t e d  hor izo n ta l  l ines).  T h e  m id d le  
line r u l e s  t h e  a v e r a g e  b e h a v i o u r ,  while  t h e  w h o le  r a n g e  of (f> is within th e  c o n v e r g e n c e  reg ion .  T h e  u p p e r  a n d  low er  
limits o f  w  a r e  arb itrary :  g r e a t e r  v a lu e s  l e a d  to  e x t r e m e ly  s low  c o n v e r g e n c e  a n d  s m a l l e r  v a lu e s  to  e x t r e m e ly  f a s t  c o n 
v e r g e n c e .  T h u s ,  t h e  a p p r o a c h  c o n s i s t s  o f  th e  u s e r  s im ply  c h o o s i n g  1 .40  <  ^ mean <  2 .40 ,  w h e r e  th e  low er  th e  <t>mean 
t h e  m o r e  exploitative th e  b e h a v i o u r ,  a n d  th e  h ig h e r  th e  <f>mean th e  m o r e  explorative th e  b e h a v io u r .

In the same fashion as the PSO-RRR 1, the PSO-RRR2 does not allow the probability o f 

0  = 0 . Therefore the equation for the velocity update presents a marginal modification 

with respect to that o f the classical PSO in Eq. (5.2). Thus, the updates o f the velocity 

and position in PSO-RRR2 are carried out as shown in Eq. (6.9).
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v\j] = W-vj/_i) + $  -[pbest-j~]) - xj' '’) + ^  • (/besty 1 ]- x ^ ])) 

1
w =

<t>r  it

- 2  + 66 
t i t

(b —  —  \(f> +(0 ~(b )' U, n n 1t i . L /m in  \ r  m a x  Y n u n /  (0 ,1 ) JIW + sw  
sw

(j)s
iw + sw  
= 2 -(w + l)  

d) —2-d) — d)r m in  r m e a n  r m a x

Id) ■ + U  -<b ■ ) - U m u IL r m in  V rm a x  Y m m  /  (0 ,1) J

+ ’ = 4 '- " + v''>

(6.9)

Since it is not iw and sw but their relative values which matter, the user simply needs to 

weigh the acceleration stressing either the self-confidence (individuality term) or the 

conformism  (sociality term) o f each particle, as shown in Eq. (6.10). Setting the same 

strength to both terms results in ip = sp  = 0.50.

iw
lP = T

I W  +  S W
[0 ,1) sp = \ —ip

in  +  f a » x  - ^ m i n ) - ^ ( O . I ) ]

fi s ~  S P  ' m in  +  ( ^ m a x  ~  ^ m in  )  ’ ^ ( 0 . 1 )  ]

(6.10)

Thus, the procedure for the PSO-RRR2 approach consists o f the user simply choosing 

(f)mean = [l.40,2.40] and ip e [0,l), where the higher the values selected the more explor

ative the behaviour, and the lower the values selected the more exploitative the behav

iour. Therefore, two coefficients need to be set, whose meanings are straightforward.

The trajectories o f the deterministic isolated particle for decreasing values o f (f -and  

hence decreasing values o f w - are offered in Fig. 6.14 and Fig. 6.15. The trajectories 

once randomness is reincorporated are offered in Fig. 6.16 for w = 0.80 , in Fig. 6.17 for 

w = 0.50, and in Fig. 6.18 for w = 0.20 to allow comparisons with the PSO-RRM and 

the PSO-RRR1.
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Fig. 6 .14 .  T r a j e c to r y  c o r r e s p o n d i n g  to  t h e  a v e r a g e  b e h a v i o u r  of a  d e te rm in is t i c  par t ic le  initialized a t  x  = 100, flying 
o v e r  a  1 - d im e n s i o n a l  s p a c e ,  with s t a t i o n a r y  a t t r a c to r s  a t  x  = 0, fo r  1 .0 0  ^  w > 0 .3 0 ,  for t h e  P S 0 - R R R 2 .

Fig. 6.14 A) shows that the PSO-RRR2 also leads to a perfectly cyclic behaviour for 

w = 1, whose amplitude is higher than that in Fig. 6.4 A). Although the period  is greater 

(10 time-steps), the pseudo frequency is higher. That is to say, the attractor is overflown 

a higher number o f  times.
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Fig. 6 .1 5 .  T r a je c to ry  c o r r e s p o n d i n g  to  t h e  a v e r a g e  b e h a v i o u r  of a  d e te rm in is t i c  part ic le  initialized a t  x  = 100 , flying 
o v e r  a  1 - d im e n s io n a l  s p a c e ,  with s t a t i o n a r y  a t t r a c to r s  a t *  = 0, for w  = 0 .2 0  (left) a n d  w  = 0 .1 0  (right), for  t h e  P S O -  
R R R 2 .
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Fig. 6 .1 6 .  T r a je c to ry  of a  pa r t ic le  initialized a t *  = 100, flying o v e r  a  1 -d im e n s io n a l  s p a c e ,  with s t a t i o n a r y  a t t r a c to r s  at  
x  = 0, for w = 0 .80 ,  c o r r e s p o n d i n g  to  six c o n s e c u t i v e  ru ns ,  for t h e  P S 0 - R R R 2 .
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Fig. 6 .17 .  T r a je c to ry  of a  p ar t ic le  initialized a t x  = 100, flying o v e r  a  1 - d im e n s io n a l  s p a c e ,  with s t a t i o n a r y  a t t r a c to r s  a t  
x  = 0, for w  = 0 .50 ,  c o r r e s p o n d i n g  to  six c o n s e c u t i v e  ru ns ,  for th e  P S O - R R R 2 .

Notice that the deterministic particle reaches the attractor at the third time-step, as it was 

imposed in Eq. (5.94), while the momentum keeps the oscillations going. Also note that 

the three approaches, namely the PSO-RRM, the PSO-RRR 1, and the PSO-RRR2 con

verge for w = 0 , for which ^mean = 1 (see Fig. 6.6).

The same as for the PSO-RRR 1, here convergence occurs in every one o f  the six runs, 

even for an inertia weight as high as ‘0.80’ (see Fig. 6.16). Trajectories from different 

runs o f the PSO-RRR2 are however more dissimilar from one another than those o f the 

PSO-RRR 1, but more similar to each other than those o f the PSO-RRM. This is consis

tent with the fact that the range o f (j) and 0mean are greater for the PSO-RRR2 than for the
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PSO-RRR 1; while the range o f ^ is smaller for the PSO-RRR2 than for the PSO-RRM. 

The same trend is observed for w  = 0.50 in Fig. 6.17, and for w = 0.20 in Fig. 6.18.
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Fig. 6 .18 .  T r a j e c to ry  of a  pa r t ic le  initialized a t x  = 100 ,  flying o v e r  a  1 -d im e n s io n a l  s p a c e ,  with s t a t i o n a r y  a t t r a c t o r s  a t  
x  = 0, for w  = 0 .2 0 ,  c o r r e s p o n d i n g  to  six c o n s e c u t i v e  ru ns ,  for th e  P S 0 - R R R 2 .

Thus, the main differences between the PSO-RRR 1 and the PSO-RRR2 are that the lat

ter shows trajectories with marginally higher amplitudes and pseudo frequencies1, as 

well as higher deviations between trajectories corresponding to different runs. They 

both lead to convergence even for high values o f the inertia weight. Trajectories corre

sponding to numerous other coefficients’ settings and randomness included for the 

PSO-RRM, the PSO-RRR 1, and the PSO-RRR2 can be found in the digital appendix.

1 Recall that by higher pseudo frequencies it is sim ply m eant that the attractor is overflow n m ore frequently.
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6.2.3. Updating attractor

The influence of the coefficients’ settings on the trajectory o f the isolated particle with 

stationary attractors with and without randomness has been extensively studied in chap

ter 5 and in the previous sections of this chapter. The next step towards the complexity 

o f the full algorithm consists o f making the attractor non-stationary.

In order to disregard the particles’ interactions, the social attractor (lbest) is still kept 

stationary thus allowing the analysis o f the trajectory of an individual particle. In turn, 

the individual attractor (pbest) is dynamic, therefore making the overall attractor also 

dynamic. Recall that each particle can be thought o f as pulled by a single attractor con

sisting o f a randomly weighted average o f lbest and pbest, where the strength o f the 

attraction is also randomly weighted.

It would seem reasonable to expect that making pbest the actual individual best experi

ence o f the particle instead o f forcing it to take its ultimate location from the beginning 

would delay convergence as pbest gradually approaches lbest. However, if  pbest and 

the particle’s position are located at the same side from lbest -i.e. lbest is not located 

between them- then the momentum generated is actually smaller than it would be in the 

case o f both attractors fixed to the actual solution. This is not far from what happens in 

the full system, as each particle tends to be most o f the time closer to its pbest than to 

its lbest. Hence making pbest dynamic does not necessarily delay convergence.

Some o f the variations to the basic PSO algorithm discussed before are the classical 

PSO (PSO), the constricted PSO (C-PSO), the PSO with reduced randomness maximum 

(PSO-RRM), the PSO with reduced randomness range 1 (PSO-RRR1), and the PSO 

with reduced randomness range 2 (PSO-RRR2). A couple o f coefficients’ settings for 

each o f these variations are used in the experiments that follow, one favouring explora

tion and the other favouring non-extreme exploitation. The trajectories corresponding to 

six consecutive runs of an isolated particle optimizing the one-dimensional sphere func

tion, attracted towards a stationary lbest and a dynamic pbest, with random weights in

cluded, for a couple of coefficients’ settings for each o f the five aforementioned varia

tions of the PSO algorithm, are shown in Fig. 6.19 to Fig. 6.28. In these figures, differ

ent rows show different consecutive runs for the same settings, while different columns
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correspond to different settings. Two trajectories sharing the same row share the sam e 

initial state o f the pseudo random number generator.
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Fig. 6 .1 9 .  T r a je c to ry  o f  a  pa r t ic le  initialized a t *  = 100 ,  op timizing  th e  1 -d im e n s io n a l  S p h e r e  func t ion ,  with s t a t i o n a ry  
s o c ia l  a t t r a c to r  a t  *  = 0 a n d  d y n a m i c  individual a t t r a c to r  initialized a t  *  = 90 ,  for w  = 0 .7 0  (left c o lu m n )  a n d  w  = 0 .5 0  
(r ight c o lu m n ) ,  a w  = 4 .0 0 ,  for t h e  c la s s ic a l  P S O ,  c o r r e s p o n d i n g  to fo u r  c o n s e c u t i v e  runs .  S a m e  ro w  in d ic a te s  s a m e  
initial s t a t e  of th e  p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .
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Fig. 6 .20 .  T r a j e c to r y  of a  par t ic le  initialized a t *  = 100, op t im iz ing  t h e  1 -d im e n s io n a l  S p h e r e  func t io n ,  with s t a t i o n a r y  
soc ia l  a t t r a c to r  a t  x -  0 a n d  d y n a m i c  individual a t t r a c to r  initialized a t  j c  = 90, for  w  = 0 .7 0  (left c o lu m n )  a n d  w  = 0 .5 0  
(r ight c o lu m n ) ,  aw  = 4 .00 ,  for t h e  c la s s ic a l  P S O ,  c o r r e s p o n d i n g  to  two  ru n s  c o n s e c u t i v e  to t h o s e  in Fig. 6 .1 9 .  S a m e  
row  i n d ic a t e s  s a m e  initial s t a t e  o f  t h e  p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .
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Fig. 6 .21 .  T r a je c to ry  of a  par t ic le  initialized a t  j c  = 100, op t im izing  th e  1-d im e n s io n a l  S p h e r e  fu nc t io n ,  with s t a t i o n a r y  
soc ia l  a t t r a c to r  a t  j c  = 0 a n d  d y n a m ic  individual a t t r a c to r  initialized a t  j c  = 90,  for w = 0 . 7 2 9 8  a n d  aw -  2 . 9 9 2 2  (left 
so lum n),  a n d  for  w = 0 .6 2 0 4  a n d  aw = 2 .5 4 3 5  (r ight c o lu m n ) ,  for t h e  C - P S O ,  c o r r e s p o n d i n g  to tw o  c o n s e c u t i v e  ru ns .  
S a m e  row  in d ic a t e s  s a m e  initial s t a t e  of t h e  p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .
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Fig. 6 .22 .  T r a je c to ry  o f  a  par t ic le  initialized a t  x -  100 ,  opt im izing  th e  1 -d im e n s io n a l  S p h e r e  func t ion ,  with s t a t i o n a r y  
soc ia l  a t t r a c to r  a t  x -  0  a n d  d y n a m ic  individual  a t t r a c to r  initialized a t  x = 90 ,  for w  = 0 . 7 2 9 8  a n d  aw = 2 .9 9 2 2  (left 
c o lu m n ) ,  a n d  for w = 0 . 6 2 0 4  a n d  aw -  2 . 5 4 3 5  (r ight c o lu m n ) ,  for t h e  C - P S O ,  c o r r e s p o n d i n g  to fo u r  r u n s  c o n s e c u t i v e  
to  t h o s e  in Fig. 6 .21 .  S a m e  row  i n d ic a t e s  s a m e  initial s t a t e  o f  th e  p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .
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Fig. 6 .2 3 .  T r a j e c to ry  o f  a  pa r t ic le  init ial ized a t x  = 100, opt im iz ing  t h e  1 - d im e n s io n a l  S p h e r e  func t ion ,  with s t a t i o n a r y  
s oc ia l  a t t r a c to r  a t  jc = 0 a n d  d y n a m i c  individual a t t r a c t o r  initialized a t  x  = 90 ,  for w  = 0 .8 0  a n d  h e n c e  aw = 3 .6 0  (left 
co lu m n ) ,  a n d  for w  = 0 .5 0  a n d  h e n c e  aw = 3 .0 0  (r ight c o lu m n ) ,  for t h e  P S O - R R M ,  c o r r e s p o n d i n g  to four  c o n s e c u t i v e  
ru ns .  S a m e  row  in d ic a t e s  s a m e  initial s t a t e  o f  t h e  p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .
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Fig. 6 .24 .  T r a j e c to ry  o f  a  pa r t ic le  initialized a t *  = 100 ,  opt im izing  th e  1 -d im e n s io n a l  S p h e r e  funct ion ,  with s t a t i o n a r y  
so c ia l  a t t r a c to r  a t  jc = 0 a n d  d y n a m i c  individual a t t r a c to r  initialized a t  a  = 90 ,  for w  = 0 .8 0  a n d  h e n c e  aw -  3 .6 0  (left 
c o lu m n ) ,  a n d  for w  = 0 .5 0  a n d  h e n c e  aw  = 3 .0 0  (right co lu m n ) ,  for th e  P S O - R R M ,  c o r r e s p o n d i n g  to  two r u n s  c o n 
s e c u t i v e  to t h o s e  in Fig. 6 .23 .  S a m e  row  in d ic a t e s  s a m e  initial s t a t e  o f  th e  p s e u d o  r a n d o m  n u m b e r  g e n e r a to r .
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Fig. 6 .25 .  T r a j e c to ry  of a  par t ic le  initialized a t *  = 100, opt im izing  t h e  1 -d im e n s io n a l  S p h e r e  func t ion ,  with s t a t i o n a r y  
soc ia l  a t t r a c to r  a t  a  = 0 a n d  d y n a m i c  individual a t t r a c to r  initialized a t  a- = 90,  for <f>mem -  1 .80  a n d  h e n c e  w = 0 .8 0  (left 
c o lu m n ) ,  a n d  for  <f>mem = 1 .50  a n d  h e n c e  w -  0 .5 0  (right c o lu m n ) ,  for th e  P S 0 - R R R 1 ,  c o r r e s p o n d i n g  to two  c o n s e c u 
tive ru ns .  S a m e  row  i n d ic a t e s  s a m e  initial s t a t e  of th e  p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .

PSO-RRM

w = 0.80 (hence aw = 3 60) 

(JfOJ) INCLUDED 

Non-stationary PBEST

20 30 40 50
Tim e-steps

PSO-RRRI
phi mean = 1.50 (hence w = 0 50) 

□(0,1) INCLUDED 
Non-stationary PBEST

0  10 20 30 40 50
T im e-steps

- i u u  ■
0 10 20 30 40 50

Tim e-steps

PSO-RRRI

ph> n a n  * I DO (h*nc* *  * 0 80)

u(<U) in c lu d ed

Non-stotionary PBEST

2 6 6



c 2 e c

v n u p iv ^ i \J

COEFFICIENTS SETTINGS
#  

Swansea University 
Prifysgol Abertawe

03 -50

-100

A)

PSO-RRRI

phi mean = 1.80 (hence w = 0.80) 
U(0,1) INCLUDED 

Non-stationary PBEST

10 20 30
Tim e-steps

40 50

100

50

-50

-100

PSO-RRR1

phi mean = 1.50 (hente  m -  0.50) 
U(O.I) INCLUDED 

Non-stationary PBEST

10 20 33 40
T im e-steps

50

B)

100

CO
o
CL
'/><D
O
t r
ro

OL

PSO-RRRI

phi mean = 1.80 (hence w = 0.1 

U(0,1) WCLUDED 
Non-stationary PBEST

-100

Tim e-steps

100

50

0

-50

-100

k

PSO-RRRI

phi mean = 1.50 (hence m = 0.50) 
11(0,1) INCLUDED 

Non-stationary PBEST

0 10 20 30
Tim e-steps

40 50

C)

100

CO
o“■ 0CO
Q)
O

%  -50
CL phi mean = 1.80 (hence w = 0.80) 

U(0,1) WCLUDED 
Non-stationary PBEST

-100

Tim e-steps

100

pht mean = 1.50 (hence w = 0.50) 
U(0,1) INCLUDED 
Non stationary PBEST

co
IZ
o

-50

Tim e-steps

D)

100

CO
c
o

CO
o“• 0CO
<D
0

1  -50CL phi mean = 1.80 (hence w -  0.80) 

U(0,1 INCLUDED 
Non stationary PBEST

-100

Tim e-steps IV)

100

phi mean * 1.50 (hence w * 0.50) 
U{0,1) INCLUDED 
Non-stationary PBEST

co
o
Q .
CO
CD
O
'tr
co

CL

-50

T im e-steps

Fig. 6 .2 6 .  T r a j e c to r y  o f  a  par t ic le  initialized a t  jc = 100 , o p t im iz ing  th e  1 -d im e n s io n a l  S p h e r e  func t ion ,  with s t a t io n a r y  
soc ia l  a t t r a c to r  a t . v  = 0 a n d  d y n a m i c  individual a t t r a c to r  initialized a t x  = 90, for ^ mean = 1 .80  a n d  h e n c e  w  = 0 .8 0  (left 
c o lu m n ) ,  a n d  for  ^ mean = 1 .50  a n d  h e n c e  w = 0 .5 0  (r ight c o lu m n ) ,  for th e  P S 0 - R R R 1 ,  c o r r e s p o n d i n g  to  fo u r  r u n s  c o n 
s e c u t i v e  to  t h o s e  in Fig. 6 .25 .  S a m e  row  i n d ic a t e s  s a m e  initial s t a t e  o f  t h e  p s e u d o  r a n d o m  n u m b e r  g e n e r a t o r .
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Fig. 6.27. T ra jectory o f a particle in itialized a t x  = 100, optim izing the 1-d im ensional Sphere function, with stationary 
social a ttracto r a t jc = 0 and dynam ic individual a ttracto r in itia lized a t x  = 90, for <f>mew -  2.38 and hence w  = 0.80 (left 
co lum n), and fo r </>mean = 2.00 and hence w  = 0.50 (right colum n), for the P S 0-R R R 2, corresponding to four consecu
tive runs. Sam e row indicates sam e initial state o f the pseudo random num ber generator.
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Fig. 6.28. T ra jectory o f a particle initialized a t jc = 100, optim iz ing the 1-dim ensional Sphere function, with stationary 
social a ttracto r a t x  = 0 and dynam ic individual a ttractor in itia lized at x  = 90, for <f>mean = 2.38 and hence w  = 0.80 (left 
co lum n), and for = 2.00 and hence w = 0.50 (right colum n), for the PSO-RRR2, corresponding to two runs con
secutive to those in Fig. 6.27. Sam e row indicates same initia l state o f the pseudo random  num ber generator.

Fig. 6.19 to Fig. 6.28 show that making pbest dynamic does not change the general 

trend o f the trajectories that result from the coefficients’ settings.

The first aspect to consider is the regularity o f  the trajectories. In general, there is a 

higher deviation between different runs corresponding to the same settings when com

pared to the trajectories with both attractors stationary. This is most noticeable for the 

classic PSO (e.g. compare Fig. 6.19 and Fig. 6.20 -righ t colum n- to Fig. 5.53). Thus, 

the order from most to least regular approaches would be as follows: PSO-RRRI; PSO- 

RRR2 and C-PSO; PSO-RRM; classic PSO. Within the same family, the lower the aw  

the higher the regularity -a s  expected-, since the influence o f  randomness decreases.

Another aspect is the am plitude  o f the oscillations. Given that pbest is initialized near 

the initial position o f the particle, the initial oscillations show smaller amplitudes, al

though the general speed o f convergence does not change noticeably. For the same both 

w  and (f)mean, PSO-RRM exhibit higher amplitudes than the PSO-RRRI; while for the 

same w, the amplitudes showed by the PSO-RRR2 are in between.
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Except for the completely flexible classical PSO, the lower the w  the lower the a w . 

Thus, within the same family, the lower the w  (or the k )  -and hence the lower the a w -  

the smaller the amplitudes and the faster the convergence.

Another important aspect of the oscillatory behaviour is the frequency with which the 

particle overflies lbest. Thus, for instance, even though the amplitudes exhibited by the 

PSO-RRR2 are greater than those shown by the PSO-RRRI, the (pseudo) frequency 

exhibited by the former is greater. The order o f the approaches from greatest to smallest 

frequencies would be as follows: PSO-RRR2; classic PSO with a w  beyond the conver

gence area2; PSO-RRM and PSO-RRRI; C-PSO. Notice that the pair ‘^mean-w’ associ

ated to the C-PSO { ty p e  1 ”) with popular settings (a w  marginally greater than ‘4 ’ and k  

marginally smaller than ‘1’) are located to the left of the line o f the average behaviour 

of the PSO-RRM and the PSO-RRRI (refer to Fig. 6.2 and Fig. 6.3), which in turn are 

to the left o f the line o f the average behaviour o f the PSO-RRR2 (see Fig. 6.13). This 

implies a lower a w  for a given w ,  which results in lower (pseudo) frequencies.

Fig. 6.19 to Fig. 6.28 show the trajectories o f a particle optimizing the Sphere function, 

where pbest is updated according to the particles’ experiences. Exactly the same ex

periments, with the same settings and initial states of the pseudo random number gen

erator, were carried out optimizing the Rastrigin and the Schaffer f6 functions. The 

aim was to observe whether the behaviour identified for the settings studied is main

tained when the objective function is multimodal. In the case of the Rastrigin function, 

there exist many local optima but the trend line is the same as the Sphere function. The 

trajectories obtained were almost identical. The images can be found in the digital ap

pendix. Conversely, the Schaffer f6 function presents both better and worst values as the 

particle gradually approaches gbest, making the jump from one local optimum to a bet

ter one more difficult. It is fair to remark that the difficulty increases with the dimen

sionality o f the function, as the valley-like local optima turn into (hyper) ring-like de

pressions (i.e. the local optima are iso lin e s  rather than points). The trajectories corre

sponding to the PSO-RRRI and the PSO-RRR2 optimizing the Schaffer f6 function are 

offered in Fig. 6.29 to Fig. 6.32 for the same settings used to optimize the Sphere func

tion in Fig. 6.25 to Fig. 6.28.

2 Recall that the classical PSO is completely flexible, and any behaviour can be exhibited depending on the 
settings o f  the coefficients.
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Fig. 6.29. T ra jectory o f a particle initialized a t x  = 100, optim izing the 1-d im ensional Schaffer f6 function, with s ta tion
ary social a ttracto r a t x  = 0 and dynam ic individual a ttractor in itia lized a t x  = 90, for <j)mean = 1.80 and hence w = 0.80 
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secutive runs. Sam e row indicates same initial state of the pseudo random num ber generator.
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Fig. 6.32. Tra jectory o f a particle in itia lized at jc = 100, optim izing the 1-d im ensional S chaffer f6 function, with station
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As can be observed, the regularity is affected when optimizing this peculiar function, 

and trajectories show higher deviations for different runs using the same settings. Nev

ertheless, the trend is still the same and, broadly speaking, the higher the coefficients the 

more explorative the behaviour, while every run ends up converging. It is interesting to 

note that the PSO-RRRI -which exhibit lower pseudo frequencies than the PSO-RRR2- 

is unable to successively overfly gbest is some runs. In that sense, the PSO-RRR2 

shows more desirable behaviour. The trajectories obtained by the classical PSO, the C- 

PSO, and the PSO-RRM -with the same settings as in Fig. 6.19 to Fig. 6.24- optimizing 

the Schaffer f6 function can be found in the digital appendix.

6 . 2 . 4 .  I n d i v i d u a l i t y  a n d  s o c i a l i t y

In all the previous studies, as well as in those that -to  the best of my knowledge- can be 

found in the literature, the analyses o f the acceleration weight is performed as a whole, 

without getting into the relative settings o f the individuality and the sociality weights. 

Even when they are separated in some formulations -e.g. (Ozcan & Mohan, 1999); (van 

den Bergh, 2001)-, their relative settings are not studied.

In this thesis, the variables ip and sp as defined in Eqs. (6.8) and (6.10) -together with 

aw - will be used instead of iw and sw, since their meaning is more straightforward. 

Thus ip + sp = 1, where ip states the percentage of aw that is awarded to the individual

ity and sp the percentage awarded to the sociality o f the particle. Therefore a particle 

with i p - 1 disregards the social experiences (completely self-confident) while a particle 

with sp  = 1 disregards its own experiences, thus becoming completely conformist.

It was argued in chapter 5 that it is frequent to simply assume that the smaller the inertia 

weight the faster the convergence, under the argument that the search becomes more 

like a local search as the inertia is decreased. It has been shown in chapter 5 that the ar- 

gument is not accurate, and the behaviour depends on the pair ‘^-w ’ .

Likewise, it was argued that one might expect that making pbest dynamic would delay 

convergence with respect to the same settings and both attractors stationary, thus result-

3 Besides, the speed o f convergence is not the only aspect that affects the performance o f the algorithm. The 
same speed can be obtained for different amplitudes and (pseudo) frequencies.
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ing in a more extensive exploration. This was shown not to be true in the previous sec

tion, as pbest tends to be closer to the particles’ position and hence decreases the mo

mentum, which seems to counterbalance the delay of convergence that would result 

from a dynamic individual attractor.

Similarly, it would be reasonable to expect that strengthening individuality would result 

in a more explorative behaviour o f a more self-confident particle, as convergence would 

be delayed by its reluctance to conform to the social experience in detriment o f its own. 

Again, such an intuitive statement would be wrong.

Consider, for instance, the trajectories in Fig. 6.19 and Fig. 6.20 (left columns), where 

w = 0.70, aw = 4 .00, and ip = sp = 0.50. Recall that these settings lead to slow con

vergence. To analyze the extremal cases, the trajectories corresponding to the same set

tings except that ip = 1 (hence sp = 0 ) in the left column and ip = 0 (hence sp = 1) in 

the right column are offered in Fig. 6.33 and Fig. 6.34. Surprisingly, the exploration ca

pabilities are harmed rather than improved by awarding the particle absolute self- 

confidence ( ip = 1), whilst awarding it absolute conformism ( sp = 1) results in a sto

chastic explosion of its trajectory. In fact, the trajectory shows premature convergence 

in Fig. 6.33 B), Fig. 6.33 D), and Fig. 6.34 A) despite being optimizing a very simple, 

unimodal function. The runs that do not show premature convergence -namely Fig. 6.33 

A), Fig. 6.33 C), and Fig. 6.34 B )- are merely because the coefficients settings favour 

slow convergence. Therefore the same experiments are carried out for the PSO-RRRI 

with ^mean = 1.50 (w  = 0.50), whose settings favour fast convergence. In this case, the

loss o f exploration for ip — 1 is even more notorious, as all six runs exhibit poor explo

ration and premature convergence (refer to Fig. 6.35 and Fig. 6.36, left columns). This 

is an example o f how convergence in PSO does not imply optimality in any sense but 

simply the complete loss o f momentum. In turn, given that the PSO-RRRI possesses 

fast convergence capabilities, setting s p - 1 does not result in any stochastic explosion. 

Instead, the particle behaves as it did when both attractors were stationary. In fact, the 

only reason why the trajectories in Fig. 6.35 and Fig. 6.36 (right columns) are not ex

actly the same as those in Fig. 6.9 and Fig. 6.10 (right columns) is that, although the 

pseudo-random number generator is set to the same initial state for the first run, the se

quences o f numbers generated differ. Nevertheless, the general behaviour is the same.
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If instead o f comparing the trajectories in Fig. 6.35 and Fig. 6.36 (right columns) to the 

corresponding ones with stationary attractors they are compared to those in Fig. 6.25 

and Fig. 6.26 (right columns), it can be observed that setting sp  = 1 for the PSO-RRRI 

leads to slower rather than faster convergence. Thus, the intuition that increasing the 

individuality o f  the particle would lead to more extensive exploration whilst increasing 

the sociality would lead to faster convergence is incorrect.

It may be a bit puzzling to see that the trajectories o f the classical PSO with w = 0 .70, 

aw = 4 ,  and sp  = 1 in Fig. 6.33 and Fig. 6.34 (right columns) show consistent explo

sion while the same settings for both attractors kept stationary -an d  ip = sp  = 0 .5 0 -  

show either convergence or much smaller explosions, as shown in Fig. 6.37.
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Fig. 6.37. T ra jectory o f a particle in itialized at jc = 100, with stationary a ttractors at jc = 0 and i p -  sp -  0.50, for the 
classical PSO with w  = 0.70 and aw = 4.00, random ness included, for six consecutive runs.
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The reason for this may be that there is only one random weight involved in the velocity 

update in Fig. 6.33 and Fig. 6.34 (right columns) whereas there are two in Fig. 6.37. 

Therefore, even when they have the same w  and aw  = (f)m.n -and  randomness is included 

in both cases-, the probability o f (j) taking on extremal values is smaller in the second 

case. For instance, p(<f) > 2) = 0.50 in Fig. 6.33 and Fig. 6.34 whereas p(<j) >2 ) =  0.25 

in Fig. 6.37.

In order to observe the pure influence o f the relative values o f the individuality and so

ciality, randomness is disregarded and the trajectory o f the detenninistic particle with 

(f) = (f>mean for the PSO-RRRI is offered in Fig. 6.38 for increasing individuality.
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Fig. 6.38. Tra jectory o f a determ in istic  particle in itia lized at jc = 100, optim izing the 1-dimensional Sphere function, 
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Fig. 6.38 C) shows the trajectory o f the deterministic particle with strength o f the indi

viduality and the sociality equally weighted. The other trajectories in Fig. 6.38 clearly 

show that increasing sociality does not speed up convergence, and increasing individu

ality does not delay it (which would favour exploration).

The trajectories corresponding to six consecutive runs o f  the same optimizer -tha t is the 

PSO-RRRI with ^mcan = 1 .5 0 -  for ip = 0.70 (hence sp = 0 .30) are shown in Fig. 6.39.
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Fig. 6.39. T ra jectory o f a particle in itia lized a t *  = 100, optim izing the 1-d im ensional Sphere function, with stationary 
social a ttracto r at a* = 0 and dynam ic individual a ttractor in itia lized at a  = 90, fo r <̂ mean = 1.50 and hence w  = 0.50, for 
ip = 0.70 and hence sp = 0.30, fo r the P S 0 -R R R 1 , corresponding to six consecutive  runs.

Comparing the trajectories in Fig. 6.39 to the corresponding ones in Fig. 6.25 and Fig. 

6.26 (right columns), it can be observed that the exploration is only marginally nar-
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rowed by setting ip = 0.70 instead o f ip = 0 .50 , confirming what is observed in the de

terministic particle in Fig. 6.38. Therefore, while it is suggested here that the individual

ity and sociality be equally weighed - in  the absence o f additional problem-dependent 

inform ation- to be on the safe side, setting different weights is not necessarily ruled out. 

Nonetheless, it does not appear convenient to set substantially different individuality 

and sociality strengths. There might be problems -probably multi-modal ones- for 

which an increase in the individuality appears convenient, or even unimodal problems 

for which a marginal increase in the individuality improves performance. But as a gen

eral setting, it would seem advisable to set them the same. A numerical study o f  the im

provement/detriment in performance due to different settings o f the individuality and 

sociality is beyond the scope o f this thesis due to time and space constraints. Therefore 

such study is left for future work, and the informed guess here is to keep them equal to 

one another and leave the random weights in charge o f altering the particle’s self- 

confidence throughout the search.

It is to be expected that, if  the social attractor is updated, the particle will take longer to 

approach the new attractor for higher individuality. However this is due to a momentum 

decrease in comparison to a particle with higher sociality. Therefore, it would seem a 

better choice to control the speed o f  convergence and the exploration by means o f the 

‘w -^ mean’ setting and/or the neighbourhood topology.

6.2.5. Preselected sets of settings

Considering the preceding studies, a set o f coefficients settings are selected in this sec

tion for the experiments to follow in this thesis. The individuality and sociality are equal 

to one another in all o f  them. Recall that the constricted PSO and the PSO-RRM can be 

viewed as particular cases o f the classical PSO, while the acceleration weight in the 

PSO-RRRI and the PSO-RRR2 stand for </)mean rather than ^ max, as in classical PSO.

6.2.5.1. Classical PSO (aw = 0 max)

o PSO-1: w = 0.8000; aw  = 4.0000

o PSO-2: w = 0.7000; aw = 4.0000
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o PSO-3: w = 0.5000; aw = 4.0000 (correlated as in Eq. (5.102))

o PSO-4: w = 0.3000; aw = 4.0000

o PSO-5: w = 0.2882; aw  = 3.4000 (correlated as in Eq. (5.102))

6.2.5.2. Constricted PSO (aw = (/>max) (Type 1”)

o C -PSO -1: w = 0.7298; aw  = 2.9922 (k -  0.99994; unconstricted aw  = 4.1)

a C-PSO-2: w = 0.6204; aw = 2.5435 {k = 0.85000; unconstricted aw  = 4.1)

6.2.5.3. PSO-RRM (aw = 0 max)

o PSO-RRM-1: w = 0.8000;

o PSO-RRM-2: w = 0.7000;

o PSO-RRM-3: w = 0.5000;

o PSO-RRM-4: w = 0.3000;

o PSO-RRM-5: w — U( 0 .5 ,0 .8)?

hence aw  = 3.6000

hence aw  = 3.4000

hence aw  = 3.0000

hence aw  = 2.6000

aw — 2 • (w + 1)

6.2.5.4. PSO-RRRI (aw = 0 mean)

o PSO-RRR1-1: aw =  1.8000; hence w = 0.8000

o PSO -R R R I-2: aw =  1.7000; hence w = 0.7000

o PSO -R R R I-3: aw  =1.5000; hence w = 0.5000

o PSO -R R R I-4: aw  = 1.3000; hence w = 0.3000

o PSO-RRR1-5: aw = U( 1.5 ,1.8); w — aw -  1

6.2.5.5. PSO-RRR2 (aw = (/>mean)

0  PSO-RRR2-1: aw  = 2.4000; hence w = 0.8167

o PSO-RRR2-2: aw = 2.2500; hence w = 0.6944
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o PSO-RRR2-3: aw  = 2.0000; hence w = 0.5000

o PSO-RRR2-4: aw  =1.7000; hence w = 0.2882

a PSO-RRR2-5: aw=U(2$2A)\ w = 1 law  -  2 + aw

6.2.5.6. Other authors’ settings (aw = (/>msix)

o Trelea (2003): w = 0.60; aw = 3.40

o Hu et al. (2003): w = U (0 .5 ,1.o; aw = 2.9889

The inertia weight involves randomness in the PSO-RRM-5, the PSO -RRRI-5, the 

PSO-RRR2-5, and in (Hu, Eberhart, & Shi, 2003). However in the latter case w  and aw  

are unrelated whereas in the other approaches aw is calculated as a function o f the com

puted w or vice versa. Although not specifically stated here, recall that the C-PSO is a 

work o f Clerc and Kennedy (2002). The qualitative exploration/exploitation trade-offs 

that are to be expected from the settings proposed in this section are shown in Table 6.1.

Table 6.1. Q ualita tive  exploration/explo ita tion trade-offs to be expected from  a num ber of optim izers proposed in 
section 6.2.5.

Extreme exploration Exploration Balanced Exploitation Extreme exploitation

PSO-1 PSO-2 P S O -3 PSO-4 PSO-5

PSO-RRM-1 C-PSO-1 C-PSO -2 PSO -RRM -4

PSO-RRM -2 PSO-RRM-3 PSO -RRR1-3 PSO -RRR1-4

P S0-R RR1-1 PSO-RRM-5 PSO -RRR2-3 P SO -RRR2-4

P S0-R RR2-1 P S0-R R R 1-2  

P S0-R R R 1-5  
PSO-RRR2-2 

PSO-RRR2-5 

Trelea (2003) 

H u e t al. (2003)

The next and final step towards the complexity o f the full PSO algorithm consists o f 

reincorporating the particles’ interactions. The remainder o f  this thesis deals with the 

full algorithm. That is, a swarm o f interacting particles whose pbest and lbest are non- 

stationary, and with random coefficients weighing the strength o f the attractions.
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6.3. Swarm of particles

Before conducting the experiments on a set o f multidimensional benchmark problems, a 

small swarm o f four particles optimizing the one-dimensional Sphere function is used to 

visualize the behaviour o f interacting particles with the settings selected in section 6.2.5. 

Thus, by means o f a visual, qualitative analyses o f the trajectories, the number o f se

lected settings is reduced for the experiments on benchmark multidimensional problems 

to follow in section 6.3.2.

6.3.1. Four particles and one dimension

The experiments in this section are performed using a small swarm o f four particles and 

a global topology. The positions o f the four particles and the corresponding pbest’s are 

initialized at jc  = 100, jc  = 50, x = -50 , x = -100. That is to say, the initial positions and 

the initial individual best experiences coincide. The velocities are initialized to zero, so 

that there is one particle that does not move from the first to the second time-steps. As 

previously mentioned, the individuality and sociality are awarded equal importance in 

all experiments from here forth within this thesis. Hence ip = sp = 0.50.

It is important to note that only the simple, unimodal sphere function is optimized in 

these experiments. Slower and more uneven convergence is to be expected for more dif

ficult problems, especially multimodal ones. Four consecutive runs are performed for 

each experiment. All the trajectories are presented in Fig. 6.40 to Fig. 6.72.

6.3.1.1. Classical PSO

Five settings within the family of the classical PSO algorithms were selected in section

6.2.5.1. Their expected explorative/exploitative trade-offs were offered in Table 6.1. 

The results are gathered in Fig. 6.40 to Fig. 6.46.

Fig. 6.40 shows that some particle(s) in the PSO-1 may perform stochastic explosions of 

considerable size, while the overall convergence is slow, uneven, and differs notably for 

different runs. It is evident that the PSO-1 needs the aid of the velocity constraint, and 

its behaviour is extremely explorative, as predicted in Table 6.1. Thus, the experiments 

are repeated constraining the velocities to half the feasible interval (refer to Fig. 6.41).

vj®/
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Fig. 6.40. Tra jectories o f four particles in itia lized at jc = 100, jc = 50, jc = -5 0 , and jc = -1 0 0 , for the PSO-1 a lgorithm  
with ip -  sp -  0.50, optim izing the 1-d im ensional Sphere function, corresponding to fou r consecutive runs. The initial 
individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.41. Trajectories of four particles initialized at jc = 100, jc = 50, jc = -50, and jc = -100, for the PSO-1 algorithm
with i p - s p -  0.50 and vmax - f in t  12 = 100, optimizing the 1-dimensional Sphere function, corresponding to four
consecutive runs. The initial individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.42. T ra jectories o f four particles in itialized at *  = 100, jc = 50, x  = -5 0 , and x  = -1 0 0 , for the PSO-2 a lgorithm  
with ip = sp -  0.50, optim izing the 1-d im ensional Sphere function, corresponding to fou r consecutive runs. The initial 
individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.43. Tra jectories o f four particles in itia lized at jc = 100, x  = 50, jc = -5 0 , and x  = -1 0 0 , for the PSO-2 algorithm  
with ip -  sp -  0.50 and v max -f in t I 2 = 100, optim izing the 1-d im ensional Sphere function, corresponding to four 
consecutive runs. The initial individual best experiences (pbest’s) coincide with the in itia l positions.
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Fig. 6.44. T ra jectories o f four particles in itia lized at x = 100, x = 50, x = -5 0 , and x = -1 0 0 , for the PSO-3 algorithm  
with ip -  sp = 0.50, optim izing the 1-d im ensional Sphere function, corresponding to four consecutive runs. The initial 
individual best experiences (pbest’s) co incide with the initial positions.
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Fig. 6.45. Trajectories of four particles initialized at x  = 100, x  = 50, x  = -50, and x  = -100, for the PSO-4 algorithm
with ip = sp  = 0.50, optimizing the 1-dimensional Sphere function, corresponding to four consecutive runs. The initial
individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.46. Tra jectories o f four partic les in itia lized at jc = 100, jc = 50, jc = -5 0 , and x  = -1 0 0 , fo r the PSO-5 algorithm  
with ip -  sp -  0.50, optim izing the 1-dim ensional Sphere function, corresponding to fou r consecutive runs. The initial 
individual best experiences (pbest’s) coincide with the initial positions.

It can be observed in Fig. 6.41 that the velocity constraint is successful in controlling 

the local, stochastic explosions. However the convergence is not consistent for all runs.

Fig. 6.42 shows the trajectories for the PSO-2. Local, stochastic explosions are still ob

served, although their sizes are much smaller than for the PSO-1. Nevertheless, it would 

seem that the implementation o f the velocity constraint is also rather a must here. The 

trajectories with the velocity constrained to half the feasible interval [-100,100] are of

fered in Fig. 6.43. The constraint controls the local explosions, and there is, in general, 

convergence. However, the trajectories are still uneven and differ notably for different 

runs. The behaviour is clearly ‘explorative’ -a s  predicted in Table 6 .1-, although it may 

be borderline ‘extremely explorative’.

Fig. 6.44 shows that the PSO-3 exhibits more balanced exploration/exploitation behav

iour. This would make it more appropriate for a general, stand-alone optimizer than the 

PSO-1 and PSO-2. Trajectories are still, nevertheless, rather uneven.

PSO-4 and PSO-5 were expected to exhibit highly exploitative trajectories, which can 

be confirmed by observing Fig. 6.45 and Fig. 6.46. The PSO-5 shows trajectories more
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consistent for different runs, and practically no local stochastic explosions, as opposed 

to the PSO-4. Therefore the former exhibits a more desirable exploitative behaviour.

6.3.1.2. Constricted PSO

Only two settings within the family o f the C-PSO algorithms were selected in section

6.2.5.2. Their expected explorative/exploitative trade-offs were offered in Table 6.1, 

while the resulting trajectories are shown in Fig. 6.47 and Fig. 6.48.

The C-PSO-1 in Fig. 6.47 confirms the expected balanced explorative/exploitative be

haviour. Although the trajectories show -as expected- lower pseudo frequencies than 

those of the PSO-3 in Fig. 6.44, their balances o f exploration and exploitation are simi

lar, with the C-PSO-1 exhibiting slightly slower convergence. In both cases, some small 

local explosions can be observed, as well as some irregularity from one run to another.

The trajectories in Fig. 6.47 and Fig. 6.48 are without the vmax constraint. Despite the 

constriction factor helping prevent explosions, it still allows the particles to wander off 

far from their local social attractor, thus mixing up with other particles in different 

neighbourhoods. While this may still lead to good results, the user loses the notion and 

hence control o f what is happening in the dynamics o f the swarm. In order to show 

more clearly the similarly balanced exploration/exploitation trade-off of the C-PSO-1 

and the PSO-3, the experiments are run again for both settings with the addition of the 

vmax constraint. The trajectories are offered in Fig. 6.49 and Fig. 6.50, where it can be 

clearly observed that they both present a balanced explorative/exploitative behaviour, 

with the PSO-3 showing somewhat faster convergence.

The C-PSO-2 in Fig. 6.48 shows -as predicted in Table 6 .1- more exploitative behav

iour than the C-PSO-1 and the PSO-3, with fewer and smaller local explosions. Thus, 

the search is narrow and convergence is fast, although not as fast as that of the PSO-5 in 

Fig. 6.46. Therefore the C-PSO-2 does not seem convenient as a general setting, al

though it might be useful to combine with some others, or when very fast convergence 

is sought in detriment o f accuracy in the results. Consider, for instance, the case where 

the objective function is too expensive, and the PSO algorithm is only used to obtain the 

initial point for a more cost-effective local search. The same is true for the PSO-5, while 

the PSO-4 loses the selection against the PSO-5 for regular, fast convergence.
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Fig. 6.47. Tra jectories of four partic les in itia lized at a- = 100, a  = 50, a- = -5 0 , and x -  -1 0 0 , for the C -P S O -1 a lgorithm  
with ip -  sp = 0.50, optim izing the 1-d im ensional Sphere function, corresponding to fou r consecutive runs. The initial 
individual best experiences (pbest's) coincide with the initial positions.
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Fig. 6.48. T ra jectories of four partic les in itia lized at a  = 100, a  = 50, x -  -5 0 , and x -  -1 0 0 , for the C-PSO -2 a lgorithm  
with ip = sp -  0.50, optim izing the 1-d im ensional Sphere function, corresponding to four consecutive runs. The initial 
individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.49. T ra jectories o f four particles in itia lized a tx  = 100, x  = 50, x  = -5 0 , and x  = -1 0 0 , for the C-PSO -1 algorithm  
with ip = sp -  0.50 and \ ’max = fint I 2 = 100, optim izing the 1-d im ensional Sphere function, corresponding to four 
consecutive  runs. The initial individual best experiences (pbest's) coincide with the initial positions.
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with ip -  sp -  0.50 and vmax = fint 12 = 100, optimizing the 1-dimensional Sphere function, corresponding to four
consecutive runs. The initial individual best experiences (pbest’s) coincide with the initial positions.
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Bear in mind that convergence would be slowed down in problems harder than the sim

ple, unimodal sphere function.

6.3.I.3. PSO-RRM

Five settings within the family of the PSO-RRM algorithms proposed in section 6.2.2.1 

were selected in section 6.2.5.3. The fifth one is actually a variation, where w (or aw) is 

every time selected randomly within the arbitrary interval [0.50,0.80] (or [3.00,3.60]). 

Once w (or aw) is obtained, aw  (or w) is calculated as in Eq. (6.6). To observe the sub- 

region within the convergence region from where the pair is therefore randomly 

chosen every time, refer to Fig. 6.2, where the lower limit should be raised to w = 0.50. 

The balance o f explorative/exploitative behaviour to be expected for the five PSO-RRM 

settings was offered in Table 6.1, while the resulting trajectories are shown in Fig. 6.51 

to Fig. 6.56.

The PSO-RRM-1 in Fig. 6.51 show very explorative behaviour, exhibiting local explo

sions and difficulties in the fine-clustering of the particles. However the local explo

sions are notably smaller than those of the PSO-1 in Fig. 6.40. Therefore, it would seem 

more convenient to select the PSO-RRM-1 instead of the PSO-1 if  extensive exploration 

is desired, still with the addition o f the vmax constraint. Thus, the PSO-1 and the PSO-4 

(in the previous section) are already ruled out from the selected settings.

The PSO-RRM-2 in Fig. 6.52 still shows a reasonably explorative, borderline balanced, 

behaviour, practically without exhibiting local explosions. The trajectories are seem

ingly slightly more explorative than those o f the C-PSO-1 and the PSO-3 in Fig. 6.49 

and Fig. 6.44. Compared to the PSO-2 in Fig. 6.42 and Fig. 6.43 (same w), the PSO- 

RRM-2 shows a more balanced, less explorative behaviour and better fine-clustering 

abilities, even without the aid o f the vmax constraint.

The PSO-RRM-3 in Fig. 6.53 exhibits an exploitative behaviour, with slightly faster 

convergence than the C-PSO-2 in Fig. 6.48. Practically no local explosion is observed, 

and convergence occurs in 10 to 20 time-steps. While favouring exploitation, the PSO- 

RRM-3 still performs some exploration. In contrast, the PSO-RRM-4 in Fig. 6.54 is al

most exclusively exploitative -even more than the PSO-5 in Fig. 6.46-, consistently ex

hibiting a very poor exploration o f the search-space and very fast convergence.
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Fig. 6.51. T ra jectories o f four partic les in itia lized a tx  = 100, x  = 50, x  = -5 0 , and x  = -1 0 0 , fo r the PSO-RRM-1 a lgo
rithm  with ip -  sp -  0.50, optim izing the 1-d im ensional Sphere function, corresponding to fou r consecutive runs. The 
initia l individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.52. T ra jectories o f fou r particles in itia lized a tx  = 100, x  = 50, x  = -5 0 , a n d x  = -1 0 0 , for the PSO -RRM -2 a lgo
rithm  with ip -  sp -  0.50, optim izing the 1-d im ensional Sphere function, corresponding to fou r consecutive runs. The 
initial individual best experiences (pbest’s) co incide with the initial positions.
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Fig. 6.53. Tra jectories of four particles initialized a tx  = 100, x  = 50, x  = -5 0 , and x  = -1 0 0 , for the PSO -RRM -3 a lgo 
rithm with ip -  sp -  0.50, optim izing the 1-dimensional Sphere function, corresponding to four consecutive  runs. The 
initial individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.54. Tra jectories of four particles initialized a tx  = 100, x  = 50, x  = -5 0 , and x  = -1 0 0 , for the PSO -R RM -4 a lgo 
rithm with ip = sp = 0.50, optim izing the 1-d im ensional Sphere function, corresponding  to four consecutive  runs. The 
initial individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.55. T ra jectories o f fou r particles in itia lized a t x  = 100, x  = 50, *  = -5 0 , and x  = -1 0 0 , for the PSO -RRM -5 a lgo
rithm  with ip -  sp -  0.50, optim izing the 1-d im ensional Sphere function, corresponding to fou r consecutive runs. The 
initial individual best experiences (pbest’s) coincide with the initial positions.
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The PSO-RRM-5 in Fig. 6.55 exhibits more exploitative behaviour than anticipated. 

Nevertheless, the general behaviour is quite balanced, similar to that o f the PSO-3 in 

Fig. 6.44 in terms of the exploration/exploitation trade-off.

The local explosions make it difficult to perform a more accurate comparison. There

fore, the PSO-RRM-5 is tested again with the vmax constraint incorporated, and the tra

jectories are shown in Fig. 6.56. Comparing those trajectories to those o f the PSO-3 in 

Fig. 6.50 and to those o f the C-PSO-1 in Fig. 6.49 (both with vmax constraint) it can be 

stated that the PSO-RRM-5 exhibits a balanced exploration/exploitation trade-off, 

showing marginally higher exploration than the PSO-3, yet lower exploration than the 

C-PSO-1. In addition, the trajectories are more regular for different runs than those of 

the PSO-3. Hence the capabilities of the PSO-RRM-5 and the PSO-3 are similar, with 

the former showing more desirable general behaviour. This would rule out the PSO-3 

from the selected settings in favour o f the PSO-RRM-5.

Five settings within the family o f the PSO-RRR1 algorithms proposed in section 62.2.2  

were selected in section 6.2.5.4. The fifth one is a variation, where aw is chosen ran

domly within the arbitrarily chosen interval [1.50,1.80], and then the inertia weight is 

calculated as w = a w - 1. Hence w belongs to the interval [0.50,0.80]. To observe the 

sub-region within the convergence region from where the pairs are therefore ran

domly chosen every time, refer to Fig. 6.3, where the lower limit should be raised to 

w = 0.50 and aw = <f>mcan. The balance of explorative/exploitative behaviour to be ex

pected for the five PSO-RRR1 settings was offered in Table 6.1, while the resulting tra

jectories are presented in Fig. 6.57 to Fig. 6.61.

The PSO-RRR1-1 in Fig. 6.57 exhibits a behaviour that can be seen as explorative or 

balanced, with either few and small or no local explosion, while also displaying the abil

ity to converge consistently, even without the aid o f the vmax constraint. The explora

tion/exploitation trade-off is similar to those of the PSO-2 (see Fig. 6.42 and Fig. 6.43) 

and o f the PSO-RRM-2 (see Fig. 6.52), while showing remarkably better and more con

sistent convergence than both, and higher regularity o f the trajectories for different runs. 

It appears to comprise a good stand-alone optimizer.

6.3.1.4. PSO-RRR1
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Fig. 6.57. T ra jectories o f four particles in itia lized a tx  = 100, x  = 50, x  = -5 0 , and x  = -1 0 0 , for the PS0-RRR1-1 a lgo 
rithm  with i p -  s p -  0.50, optim izing the 1-dim ensional Sphere function, corresponding to four consecutive runs. The 
initial individua l best experiences (pbest's) coincide with the initial positions.

A)

100
PSO-RRR1-2 

aw = 1.70; w s  0.70 
ip * sp a 0.50</>

c
o

8 o
CL

% -50
t r
<0

CL -100

-150

Time-steps B)

ICO

a® = 1.70,® = 0.70 

ip -  sp = 0 SO

V)
o

0cn a> 
u

« -50
CL

SPHERE function

-100

Time-steps

C)

203
PSO-RRRi-2 

aw * 1 .7 0 ,» »  0.70 
ip = sp  = 0 50100

V)

O

«  -100
Q_

-200

Time-steps D )

150

a® = 1.70, w - 0.70 

ip = sp = 0.50100

o
CL
V)
O)
O
t r
03
Q- -50

-100

Time-steps
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Fig. 6.59. T ra jectories of four partic les in itia lized a tx  = 100, x  = 50, x  = -5 0 , and x  = -1 0 0 , fo r the P S 0-R R R 1-3  a lgo 
rithm  with ip -  sp = 0.50, optim izing the 1-dim ensional Sphere function, corresponding to four consecutive runs. The 
initial individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.60. Tra jectories o f four particles in itia lized a tx  = 100, x  = 50, x  = -5 0 , a n d x  = -1 0 0 , fo r the P S 0-R R R 1-4  a lgo 
rithm  with ip = sp -  0.50, optim izing the 1-d im ensional Sphere function, corresponding to fou r consecutive runs. The 
initial individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.61. T ra jectories o f four particles in itia lized a t *  = 100, jc = 50, jc = -5 0 , and jc = -1 0 0 , for the P S0-R R R 1-5  a lgo
rithm with ip = sp = 0.50, optim izing the 1-dim ensional Sphere function, corresponding to four consecutive runs. The 
initial individual best experiences (p b es t's ) co incide with the initial positions.

The PSO-RRR1-2 in Fig. 6.58 shows very similar behaviour to that o f the PSO-RRR1-1 

in Fig. 6.57 but exhibiting lower exploration and faster convergence, as expected. It also 

shows lower exploration, fewer and smaller local explosions, faster convergence, and 

more similar trajectories between different runs than the PSO-RRM-2 in Fig. 6.52 and 

the C-PSO-1 in Fig. 6.47 and Fig. 6.49. The exploration/exploitation trade-off is also 

similar to that o f the PSO-RRM-5 in Fig. 6.55 and Fig. 6.56, except that local explo

sions are less important and the trajectories are more regular for different runs.

The PSO-RRR1-3 in Fig. 6.59 exhibits exploitative behaviour, showing lower explora

tion, fewer and smaller local explosions, faster convergence, and more similar trajecto

ries between different runs than other exploitative settings such as the C-PSO-2 in Fig. 

6.48 and the PSO-RRM-3 in Fig. 6.53. In turn, it displays similar exploitation to those 

o f the PSO-5 in Fig. 6.46 and the PSO-RRM-4 in Fig. 6.54, but showing more regular

ity in the trajectories for different runs. Therefore, if  settings favouring very fast con

vergence are sought, the PSO-RRR1-3 would appear a better choice than the PSO-5 and 

the PSO-RRM-4 thus ruling them out from the selected settings.
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The convergence for the PSO-RRR1-4 in Fig. 6.60 is so fast that not even exploitation 

takes place. Thus it is practically useless, and it is therefore ruled out from the selection.

The PSO-RRR1-5 in Fig. 6.61 displays clearly more exploitative behaviour than the 

PSO-RRM-5 in Fig. 6.56 (same ranges o f w and o f <j)mean), and marginally more ex

ploitative that the C-PSO-2 in Fig. 6.48. The exploitation/exploration trade-off is similar 

to that o f the PSO-RRM-3 in Fig. 6.53, with the PSO-RRR1-5 in Fig. 6.61 perhaps 

showing trajectories corresponding to different runs more similar to one another. All in 

all, the PSO-RRR1-5 comprises an exploitative algorithm with consistent and fast con

vergence, yet not as fast as the PSO-RRR1-3 in Fig. 6.59.

Five settings within the family o f the PSO-RRR2 algorithms proposed in section 6.2.2.3 

were selected in section 6.2.5.5. The fifth one is a variation, where aw is chosen ran

domly within the arbitrarily chosen interval [2.00,2.40], and then the inertia weight is

calculated as w = aw~] -  2 + aw. Hence w belongs to the interval [0.50,0.8167]. To ob

serve the sub-region within the convergence region from where the pairs ‘0—w’ are 

therefore randomly chosen every time, refer to Fig. 6.13, where the lower limit should 

be raised to w = 0.50 and aw = ^mean. The explorative/exploitative trade-offs to be ex

pected for the five PSO-RRR2 settings were offered in Table 6.1, while the resulting 

trajectories are presented in Fig. 6.62 to Fig. 6.69.

The PSO-RRR2-1 in Fig. 6.62 displays explorative behaviour, with occasional local ex

plosions. It performs higher exploration than the PSO-RRR1-1 in Fig. 6.57, and similar 

to the PSO-RRM-1 in Fig. 6.51, while showing better convergence than the latter. Since 

the local explosions change the scale o f the plot, the trajectories for the PSO-RRR2-1 

with vmax constraint are offered in Fig. 6.63 for better observation of its explorative be

haviour. Thus, the PSO-RRR2-1 is explorative, suitable for a stand-alone, general opti

mizer. The Vmax constraint should be implemented to control the local explosions.

The PSO-RRR2-2 in Fig. 6.64 behaves very similarly to the PSO-RRR2-1 in Fig. 6.62 

but performing a narrower search and faster convergence. Its exploration/exploitation 

trade-off is more balanced, although it also presents local explosions. The trajectories 

with the Vmax constraint are offered in Fig. 6.65, where local explosions are controlled.

6.3.I.5. PSO-RRR2
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Fig. 6.62. T ra jectories o f fou r particles in itia lized at x  = 100, x  = 50, x  = -5 0 , and x  = -1 0 0 , for the P S0-R R R 2-1  a l
gorithm  with ip -  sp -  0.50, optim izing the 1-dim ensional Sphere function, corresponding to four consecutive runs. 
The initia l individual best experiences (pbest’s) coincide with the initial positions.
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Fig. 6.64. Tra jectories o f four partic les in itia lized a t *  = 100, *  = 50, *  = -5 0 , a n d *  = -1 0 0 , for the P SO -R R R 2-2  a lgo 
rithm with ip = sp = 0.50, optim izing the 1-d im ensional Sphere function, corresponding to four consecutive  runs. The 
initial individual best experiences (pbest’s) coincide with the initial positions.
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four consecutive runs. The initial individual best experiences (pbest’s) coincide with the initial positions.
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rithm with ip - sp -  0.50, optim izing the 1-d im ensional Sphere function, corresponding to four consecutive runs. The 
initial ind iv idua l best experiences (pbest’s) coincide with the initial positions.
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rithm  with ip = sp = 0.50, optim izing the 1-d im ensional Sphere function, corresponding to four consecutive  runs. The 
initial individual best experiences (p b e s t’s) coincide with the initial positions.
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Comparing the exploration/exploitation trade-off of the PSO-RRR2-2 to those of other 

balanced settings, it can be observed that it is similar to those o f the PSO-RRM-2 in Fig. 

6.52 and the C-PSO-1 in Fig. 6.47 and Fig. 6.49, although showing more regularity for 

different runs, slightly less explorative behaviour, and better convergence. Conversely, 

it is marginally more explorative than the PSO-RRR1-2 in Fig. 6.58 and the PSO-RRM- 

5 in Fig. 6.55 and Fig. 6.56. Therefore it comprises a good choice if a balanced explora

tion/exploitation trade-off is desired. The vmax constraint is recommended.

The PSO-RRR2-3 in Fig. 6.66 displays exploitative behaviour. The degree o f exploita

tion is higher than that o f the C-PSO-2 in Fig. 6.48, similar to those o f the PSO-RRM-3 

in Fig. 6.53 and the PSO-RRR1-5 in Fig. 6.61, and lower than that o f the PSO-RRR1-3 

in Fig. 6.59. Therefore it comprises an exploitative optimizer, suitable for cases where 

fast convergence is sought while still carrying out some exploration.

The PSO-RRR2-4 in Fig. 6.67 performs too fast a convergence. Its use would be there

fore limited, as almost no exploration is carried out, and even exploitation is doubtful. 

Hence it is discarded from the list o f selected settings for the experiments to follow.

The PSO-RRR2-5 in Fig. 6.68 and Fig. 6.69 exhibits a balanced explorative/exploitative 

behaviour, borderline exploitative, similar to those of the PSO-RRM-5 in Fig. 6.55 and 

Fig. 6.56 and the PSO-RRR1-2 in Fig. 6.58. Therefore it is suitable for problems which 

require exploration and but at the same time fast convergence.

6.3.1.6. Other authors9 settings

The settings in section 6.2.5.6 from (Trelea, 2003) -set ‘1’-  result in a balanced explor

ative/exploitative behaviour -borderline exploitative- as shown in Fig. 6.70. The behav

iour is similar to those o f the PSO-RRM-5 in Fig. 6.55 and Fig. 6.56, the PSO-RRR1-2 

in Fig. 6.58, and the PSO-RRR2-5 in Fig. 6.68 and Fig. 6.69.

The settings in section 6.2.5.6 from (Hu, Eberhart, & Shi, 2003) lead to a rather erratic 

explorative behaviour, which presents local explosions. The trajectories are offered in 

Fig. 6.71 and Fig. 6.72. The behaviour is more explorative than the PSO-RRR1-1 in 

Fig. 6.57, and clearly less explorative than the PSO-RRM-1 in Fig. 6.51 and the PSO- 

RRR2-1 in Fig. 6.62 and Fig. 6.63. Even with the aid of the vmax constraint, the shapes 

o f the trajectories vary considerable for different runs.
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Fig. 6.70. Tra jectories o f fou r particles in itia lized at x  = 100, x  -  50, x  = -5 0 , and x  = -1 0 0 , for (Trelea, 2003)’s se t
tings with ip = sp = 0.50, optim izing the 1-d im ensional Sphere function, corresponding to four consecutive runs. The 
initial individual best experiences (p b e s t's ) coincide with the initial positions.

A)

200
«i = 11(0 50,1.00), aw = 2 
ip * sp = 0 SO2 100

-200

Time-steps B)

100
H u eta l.'j
w = 11(0.50,1 001; aw = 2 9889 
ip = sp = 0 50cnc

o

if)
o
Cl.
if)

_QD
O

« -50
CL

-100

Time-steps

C)

200

2 100

«  -100
uj = IJ(0 50,1.00). aw = 2 9839 

ip * sp * 0 50
-200

Time-steps D )

400

2 200

»  -200

SPHERE fundi on
-400

Time-steps

Fig. 6.71. T ra jectories o f four particles in itia lized a t x  = 100, x  = 50, x  = -5 0 , and x  = -1 0 0 , for (Hu, Eberhart, & Shi, 
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Fig. 6.72. T ra jectories o f four particles in itialized a t x  = 100, x  = 50, x  = -5 0 , and x  = -1 0 0 , for (Hu, Eberhart, & Shi, 
2003)’s settings with ip -  sp = 0.50 and vmax -  fint I 2 = 100, optim izing the 1-d im ensional Sphere function, co rre 
sponding to four consecutive runs. The initial individual best experiences (p b es t's ) co incide with the initial positions.

6.3.1.7. Discussion and selected sets of settings

It is important to remark that the concepts o f exploration and exploitation, as discussed 

in section 5.6 in the previous chapter, are subjective. However, the divergent and the 

boundary cyclic behaviours are not. From the boundary behaviour towards convergence, 

it is simply stated here that the higher the speed o f  convergence and the narrower the 

part o f the search-space being explored, the less explorative the behaviour. A means to 

quantify exploitation is proposed by Clerc (2008a), while some formal definitions o f 

different types o f  exploration and exploitation with limited practical applicability are 

offered in (Naudts & Schippers, 1999).

Some o f the preselected settings in Table 6.1 have been systematically ruled out for fu

ture experiments, as they presented similar yet somewhat less desirable behaviour than 

other(s) in some general sense. Thus, 8  out o f the original 24 preselected settings were 

discarded, leaving the 16 settings in Table 6.2. Bear in mind that some o f  them comprise 

not only settings but variations to the velocity update equation. For instance, refer to the
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formulations proposed here in Eqs. (6.7) to (6.10), or to that o f the constricted PSO in 

Eqs. (5.89) and (5.90). The latter and other types o f  constricted PSO algorithms that 

vary even further from the classical PSO algorithm were proposed, studied and tested in 

(Clerc & Kennedy, 2002). Types other than type 1 ” invalid the notion o f a position and 

a velocity adding up to it when moving to the next location.

Table 6.2. Q ualita tive exploration/exploita tion trade-offs to be expected from a 
num ber o f optim izers proposed in section 6.2.5. The approaches/settings are 
presented in a top-down fashion from m ore to less explora tive perform ance.

Exploration Balanced Exploitation
PSO-RRM-1 

PS0-R RR2-1 
Hu et al. (2003)

PSO-RRR1-1 
PSO -RRM -2 

C-PSO-1 
PSO -RRR2-2 
PSO -RRM -5 
PSO -RRR2-5 
PSO -RRR1-2 
Trelea (2003)

C-PSO-2
PSO -RRM -3

PSO -RRR2-3
PSO -RRR1-5
PSO -RRR1-3

Given that the {type I ”) constricted PSO can be thought o f as a classical PSO by trans

lating the coefficients’ values, and that the classical PSO can be viewed as an instance 

o f the formulations in Eqs. (6.7) to (6.10), formulations encompassing all the variations 

considered in Table 6.2 are presented hereafter in Eqs. (6.11) to (6.16). The user must 

choose the desired values for ip and a w .  In the case o f the C-PSO, the value o f k  must 

also be selected by the user.

Joint formulation

User selects ip e [0,l).

vl!' = - v r  +<t>r (pbestl‘~') -- x ! '-” )

h  = 'P ■ k in  + (A,ax -  rti.il. )• ̂ (0.1) ]

rt = SP\fa,i„ +(rtn„ -rtnJ-t-V lll
z/?e[0,l) ; sp = \ - i p

( 6 . 1 1 )

x«) = x r + ^ )
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C-PSO

User selects aw and k  g  (0,l), preferably aw  > 4 (slightly) and k

2 K
if  aw> 4

c f -  \ a w - 2  + yJaw2 - 4 -aw
k  otherwise

w = c f

0max = c f - a W

(b . =  0rrmn

o C-PSO-1: K =  0.99994; aw  = 4.10; ip  = 0.50.

o C-PSO-2: k  = 0.85000; a w  = 4.10; ip  = 0.50.

PSO-RRM

User selects aw  g  (2.00,4.00), preferably 2.60 < a w  <3.60.

aw .
w  = --------1

2

^max =  ^

6  • = 0  t  min

a PSO-RRM-1: aw = 3.60; = 0.50.

a PSO-RRM-2: aw-= 3.40; ip = 0.50.

a PSO-RRM-3: aw  = 3.00; ip = 0.50.

a PSO-RRM-5: aw=U( 3 .0 0 ,3 .6 0); 1/7 = 0.50.

Therefore the PSO-RRM-5 is a variation o f the general PSO-RRM, 

by the user but randomly generated within an arbitrary interval.

Swansea University 
Prifysgol Abertawe

1.

( 6 . 1 2 )

(6.13)

(6.14)

as aw  is not selected
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PSO-RRR1

User selects a w e  ( l.00,2.00), preferably 1.30 <aw  <1.80.

w = a w —1

a PSO-RRR1-1: aw  = 1 .80 ; (> = 0.50.

3  PSO-RRR1-2: aw  = 1.70; ;> = 0.50.

o PSO-RRR1-3: <2w=1.50; ip = 0.50.

o PSO-RRR1-5: aw=C/(i.5o,i.80)i ip = 0.50.

Therefore the PSO-RRR1-5 is a variation o f the general PSO-RRR1, as aw  is not se

lected by the user but randomly generated within an arbitrary interval.

PSO-RRR2

User selects aw e  (l .000,2.618), preferably 1.70 <aw <2.40.

1 „
w = --------2 + aw

aw
= 2 - ( w + l )  <6 ‘ 16>

3 PSO-RRR2-1: aw  = 2.40; (> = 0.50.

o PSO-RRR2-2: aw = 2.25; ip = 0.50.

□ PSO-RRR2-3: aw = 2.00; ip = 0.50.

o PSO-RRR2-5: aw=U(2 .0 0 ,2 .4 0); i p = 0.50.

Therefore the PSO-RRR2-5 is a variation o f the general PSO-RRR2, as aw  is not se

lected by the user but randomly generated within an arbitrary interval.
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6.3.2. Full swarm and multidimensional space

Of course, the settings in Table 6.2 are discrete and to some extent arbitrary. The re

gions o f the ‘(/h-w’ plane from where they can be chosen -and the behaviour to be ex

pected from the different regions- for the formulations proposed in this chapter were 

discussed in sections 6.2.2.1 for the PSO-RRM, 6.2.2.2 for the PSO-RRR1, and 6.2.2.3 

for the PSO-RRR2. Refer to Fig. 6.2, Fig. 6.3, and Fig. 6.13 for visualization.

Since the overall speed o f convergence not only depends on the rapidness o f the spread 

of information within the swarm but also on the coefficients’ settings, different combi

nations o f neighbourhood topologies and coefficients’ settings should be studied. For 

instance, some settings may speed up convergence while local neighbourhoods delay it. 

Hence raises the following question: even if  a given speed of convergence could be 

somehow chosen and different combinations of coefficients and neighbourhoods lead

ing to it were available, is it preferable to:

o use rather exploitative coefficients and more local neighbourhoods,

o or more explorative coefficients and more global neighbourhoods?

In the first case, the exploration is achieved due to a lower number o f interconnections 

between particles. However, the local best experiences are exploited. That is, explora

tion consists o f exploitation of numerous best experiences. In the second case, explora

tion is performed in a more general sense.

Therefore, to analyze the results obtained from different coefficients’ settings, at least 

one rather local and one rather global neighbourhood topologies should be considered in 

the same way that explorative, balanced and exploitative coefficients are considered in 

Table 6.2. Thus, some of those settings are tested on a set o f benchmark problems, both 

for the original global topology and for the classical ring topology with two neighbours 

(i.e. three-particle neighbourhoods). Due to time and space constraints, only three set

tings from Table 6.2 are tested hereafter: PSO-RRR2-1; PSO-RRR1-1; and C-PSO-1.

6.3.2.1. Measures of clustering and evolution

Due to the population-based nature o f the PSO method, keeping track o f what is hap

pening throughout the search is not as straightforward as it may be for single-solution
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algorithms. Seven so-called measures of error are proposed hereafter so as to gather use

ful information throughout the search. Even though they are not measures of error in a 

strict sense, they are given that name because they are also to be used for the develop

ment o f termination conditions. They are divided in two main groups: 3 measures are 

computed within the same time-step whereas 4 measures are computed considering con

secutive time-steps. In turn, there are also two sub-groups in each group: one involves 

information about the particles’ positions; and the other involves information with re

gards to the particles’ conflicts. The 3 measures within the same time-step are shown in 

Eqs. (6.17) to (6.19), and the 4 measures between consecutive time-steps are shown in 

Eqs. (6.20) to (6.23). The variable tref is a number o f time-steps to be set by the user, 

over which the measures of error are averaged so as to smoothen the oscillations o f their 

curves. The oscillations are due to the population-based nature and swarming behaviour 

of the paradigm. A trend line would probably be more elegant, but also considerably 

more expensive. Besides, a trend line would require continuous recalculations as the 

search progresses. Therefore the proposed measures are averaged in tref

Note that if  tref > 1, the measures are not really within the same time-step or between 

consecutive time-steps. Nevertheless, those headings are maintained because they give 

an idea o f their meaning. That is to say, measures within the same time-step are only 

possible for population-based methods, whereas measures between consecutive time- 

steps are more traditional.

In this optimizer, the user has the option to choose whether these measures are absolute 

or relative. The ‘position-based’ measures can always be either one, whereas the ‘con

flict-based’ measures can only be relative if  a small sub-swarm is activated to search for 

the maximum rather than the minimum (i.e. cgworst). Thus, the concept o f relativeness 

is not the standard one -where an error is related to an approximation o f the correct 

value- but rather a sort o f normalization. The expressions in Eqs. (6.17) to (6.23) are

mizer also allows the user to choose whether to compute these measures using the ‘posi

tions swarm’ (i.e. p) or the ‘memory swarm’ (i.e. pbest). Obviously, there are typically 

fewer oscillations in the latter case.

relative. For their absolute counterpart, remove

flict-based’ measures, and/or (xymax - x y.mjn) from the ‘position-based’ ones. The opti-
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Within a single time-step

cb_m e (conflict-based mean error): average in the last tre f  time-steps o f  the difference 

between the current average conflict (among all particles’) and the best conflict found 

so far, related to the difference between the worst and the best conflicts found so far:

Z abs
i= t- tre f+1

cb me1' 1 =

1 4 °

m
-  cgbest (0

^ a b s ( c (/) -  cgbest(l))
(6.17)

i= t- tre f+1

tr e f '(cgworst{,) —cgbestU)) tr e f  •(cgworstU) -  cgbest(,))

pb me (position-based mean error): average in tre f  o f the square root o f the average 

(among all particles) o f the squared normalized (with respect to the feasible intervals 

and to the number o f dimensions) distance between each particle and the best solution:

p b m e  = £l) i= t-tref +1 ■

zz
7= 1  A=1

f  x {y  -  g b e s t  {‘ * ^

x  — X\  j  max ymin

m  • n
z

i= t-tre j +1

„  Y i ^ - g b e s t f f

5^  ̂ - 7  vr- (618)k=\

7=1 m

tre f tre f • yjn

cge (position-based centre o f gravity error): average in tre f o f  the square root o f the 

squared nonnalized (with respect to the feasible intervals and to the number o f dimen

sions) distance between the centre o f gravity o f the swarm and the best solution:

z
i (/) i= l- tre f+1 ■p b c g e  =   ----

( cg\l] ~ gbest{']^
I
j =i x  — X\  j  max j  mm J z Jz

i= t-tre f+ \ y 7=1

( cg (' ] -  gbest]1 ] ]

x  — X  ymax ymin f

(6.19)

tre f tre f ■ y[n

Between consecutive time-steps

cb av (conflict-based average evolution error): average in the last tre f  time-steps o f the 

difference between the current average conflict (among all particles’) and the preceding 

one, related to the difference between the worst and the best conflicts found so far:
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Z abs
i= t- tre f+1

cb av(n =

2c? Zc
7=1 7=1

( / - I )

m m
abs(c(,) - c u u )

( 6 . 2 0 )

i= t- tre f+1

tr e f \c g w o rs tu )- c g b e s t" )  ire/ . ( Cg w o r t (,)- c g W ' 1)

c b b e s t  (conflict-based solution evolution error): average in the last tr e f  time-steps o f 

the difference between the previous best conflict and the current one, related to the dif

ference between the worst and the best conflicts found so far:

cb best„, = iff, |  = { c g b e s t ' - c g b e s t ' 0 ) (6 .21)
tr e f • (cgworst{,) -  cgbest0]) tr e f  •(cgworst(,) -  cgbest )

eg (position-based centre o f gravity evolution error): average in tr e f o f  the square 

root o f the squared normalized (with respect to the feasible intervals and to the number 

o f dimensions) distance between the current centre o f gravity and the preceding one:

s
i (/)  i= l- lre f+1 «pb eg ' =   ----

I
J=1

r c g f - c g lJ~X)̂
x  — X\  j  max j  min y Z ii

i= l- lr e j+ 1 I
z
j =1

( cg l!] ( / - i )  V
C g j

x  — X\  j  max j  mm y

(6 .22)

tre f tr e f  •yfn

pb_gbest (position-based solution evolution error): average in tr e f  o f the square root o f 

the squared normalized (with respect to the feasible intervals and to the number o f  di

mensions) distance between the location o f the current and the preceding best solutions:

t) i= t- tre f+ \pb gbest1' =

g b e s t f  -  g b e s tf  M N

V ^  j  max ^  j  min

tre f (6.23)

pb_gbest(/) =
i= t—tref+1

z
j = 1

g b e s t f  - g b e s t{‘ u N
X — X\  j  max j  mm y

tre f •‘yfn
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As can be observed, the idea is to try to make the measures comparable regardless o f 

dimensionality and sizes o f the feasible intervals, both between and within problems.

6.3.2.2. Experimental results

The PSO-RRR2-1, PSO-RRR1-1, C-PSO-1, and a Multi-Swarm algorithm combining 

the three o f them are tested on the suite o f side-constrained benchmark problems shown 

in Appendix II, for 2-, 10-, and 30-dimensional spaces. A global topology and a ring 

topology with two neighbours are tested for each case.

Every run is performed with a swarm of 50 particles for a length of 10000 time-steps. 

Intermediate results at 1000th time-step are also provided.

The particles’ positions are initialized by generating 1000 independent Latin Hypercube 

Samplings (LHSs), and selecting the one with the maximum minimum distance between 

particles. Velocities are initialized to zero, and the individual best experiences are ini

tialized instead. Every best experience is initialized at exactly the same distance from its 

corresponding particle. Each component of this distance is calculated as the correspond

ing feasible interval divided by twice the number of particles in the swarm. The sign of 

the component, and hence the direction of the distance vector, are randomly generated. 

For each pair ‘p-pbest’, a comparison is performed so that the best one becomes (or 

stays) pbest and the other becomes (or stays) p before the search begins. Thus, every 

particle starts the search with the same, moderate acceleration towards its pbest (the ac

celeration towards its lbest will depend on the neighbourhood structure). Therefore, in 

the end, the particles’ initialization will most likely not be a LHS. For the Multi-Swarm 

algorithm, each sub-swarm is initialized independently.

This optimizer allows the user to choose whether to activate the cut-off at the boundary 

technique or the bisection method to handle interval constraints (see section 4.4.8.4.). 

Although a proper numerical analysis has not been performed, preliminary tests did not 

yield very good results on the use o f these techniques because of the bias (in agreement 

with (Clerc, 2007)). Hence interval constraints are simply treated as any other inequality 

constraint, and infeasible particles are not evaluated (therefore those experiences are not 

stored in memory). This way, the normal dynamics of the swarm is least disrupted, and 

the particles could approach the solution from every direction without losing momen-
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turn too quickly when the solution lies near the boundaries. In addition, the fact that in

feasible particles are not evaluated allows tracking the number o f times a particle leaves 

the feasible space, as the algorithm stores the number of function evaluations (FEs). The 

results in these experiments (refer to digital appendix) show that this number greatly 

depends on the coefficients’ settings, neighbourhood topology, and objective function. 

The number o f times that a particle crossed the boundaries varies from around 150 to 

10000 (for 50 particles and 10000 times-steps).

The position-based measures o f error are relative, whereas the conflict-based measures 

are absolute; tref = 10; the measures of error are computed on the individual best ex

periences (rather than on the current ones), and only ‘pb me’ is provided in the tables.

A run is considered successful if  the error is no greater than 0.0001, and the statistics are 

calculated out o f 25 runs. The random number generator is reset to its initial state only 

before the first run o f every experiment. The results are gathered in Table 6.3 to Table 

6.17 and Fig. 6.74 to Fig. 6.88. In addition, the evolution o f ‘pb me’ and ‘pb cge’ for 

the ‘PSO-RRR1-1 Global’ optimizing the 30D Sphere function is shown in Fig. 6.73. 

The full output files are provided in *.xlsx and *.mat formats in the digital appendix, 

where a great amount o f information with regards to the search can be obtained.

Position-based Clustering Measures
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I M M  
M i l l  

■ft- l-M - 
M  M  I 
M  M  I 
I M M  
M i l l  
M  M  I 

+- i -H - l  
M i l l  
M i l l  

ll I M  I 
T i l l  
\ l  M  I
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I M  M  M  M  
M  M  I M  M  
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M  I !  I M  M
I M  M  M  M
I I  M  I I  I I  I 
I I  I t  I I I  I I
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M  I I  I I  I I  I
I I  M  I I ( I  I
M  I I  I I I I  I
M  I I  I I I I  I
t - H - t  + M - l- t- t  
M  I I  I I  I M  
I !  M  M  M  I 
M  I I I  M  I I  
I t  I I  M  I M  
M  I I  t l  I I  I 

M -H -M -4 -H -M  
I M  M  I I I I 
I M  I I  M  M  
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I M  I I  I I M  
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i i T r r m T T  r n i T  r r n i T r r n i T T r
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i i i i i i t i i
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i i i i i i

i i i 
I -H -+  I I I 

I I 1 I I I I I I I I I
501  1001  1501  2001  2501  3001  3501  4001  4501  5001  5501  6001  6501  7001  7501  8001  8501  9001  9501

T im e-steps

Fig. 6.73. Evolution of the mean measures of clustering ‘pb_cge’ and ‘pb_me’ for the ‘PS0-RRR1-1 Global’ optimiz
ing the 30-dimensional Sphere function. It can be seen that particles imploded in less than 500 time-steps. Improve
ment is still possible (see Fig. 6.76) because of the simplicity of the function, but the swarm moves ‘as one'.
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Table 6.3. S tatistical results out o f 25 runs for the P S 0-R R R 2-1 , the P S 0-R R R 1-1 , the C-PSO-1, and a M ulti-Swarm  
algorithm  optim izing the 2-d im ensional Sphere function. The neighbourhoods tested are the GLO BAL and the RING 
w ith 2 neighbours. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
m H iH li W SEBBBt

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

GLOBAL
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

PSO-RRR2-1
1000 1.74E-57 3.42E-54 4.65E-53 5.96E-52 4.79E-18 -

RING nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

1000 2.61E-53 8.64E-49 7.07E-46 1.26E-44 1.55E-18 -

GLOBAL
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

PSO-RRR1-1
1000 5.19E-88 2.30E-85 3.33E-84 4.17E-83 3.43E-37 -

RING nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

1000 1.09E-82 2.99E-80 2.13E-78 2.27E-77 1.52E-37 -

GLOBAL
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

C-PSO-1
1000 2.74E-91 5.15E-88 2.06E-84 5.14E-83 9.16E-30 -

RING nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

1000 5.58E-82 3.44E-78 5.67E-76 6.45E-75 3.58E-32 -

GLOBAL
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

Multi-Swarm
1000 2.38E-90 4.67E-86 1.06E-83 2.16E-82 1.70E-20 -

RING nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

1000 3.39E-85 4.26E-78 9.85E-77 1.83E-75 2.68E-20 -

M e a n  B e s t  C o n f lic t -  2D  S p h e r e  f u n c t io n

■ PSO-RRR2-1 GLOBAL

■ PSO-RRR1-1 GLOBAL

■ C-PSO-1 GLOBAL 

» MS GLOBAL

 PSO-RRR2-1 RING 2 NEIGH

 PSO-RRR1-1 RING2 NEIGH
 C-PSO-1 RING 2 NEIGH

'= ' MS RING2NEIGH

501 1001 1501 2001 2501 3001 3501  4001  4501 5001 5501 6001 65 0 1  7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 6.74. Convergence curves of the mean best conflict for the 2D Sphere function, associated to Table 6.3. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 6.4. S tatistica l results out o f 25 runs for the P S 0-R R R 2-1 , the PSO -RRR1-1, the C-PSO-1, and a M ulti-Swarm  
algorithm  optim izing the 10-dim ensional Sphere function. The neighbourhoods tested are the GLO BAL and the RING 
with 2 neighbours. A run with an erro r no g reater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps ■
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u c cess

GLOBAL
10000 2.04E-256 3.90E-250 3.93E-247 8.75E-246 2.28E-126 100

PSO-RRR2-1
1000 4.97E-24 5.49E-23 1.25E-22 1.06E-21 8.08E-14 -

RING nn = 2
10000 1.29E-145 2.82E-143 3.37E-141 5.90E-140 1.13E-73 100

1000 1.78E-13 3.67E-12 5.33E-12 2.02E-11 8.77E-09 -

GLOBAL
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

PSO-RRR1-1
1000 4.75E-67 1.61E-65 5.10E-65 3.50E-64 5.98E-35 -

RING nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

1000 4.86E-35 2.94E-33 4.46E-33 1.53E-32 1.01E-19 -

GLOBAL
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

C-PSO-1
1000 1.30E-51 6.84E-50 3.49E-49 5.15E-48 7.98E-27 -

RING nn = 2
10000 1.13E-280 2.23E-277 4.17E-274 5.97E-273 2.11E-140 100

1000 7.36E-27 3.12E-25 4.91E-25 2.77E-24 1.50E-15 -

GLOBAL
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

Multi-Swarm
1000 3.21 E-58 2.00E-56 2.03E-55 1.42E-54 2.17E-18 -

RING nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.20E-153 100

1000 1.41E-32 1.17E-30 1.06E-29 9.91 E-29 2.68E-11 -

M e a n  B e s t  C o n f lic t -  1 0 D  S p h e r e  f u n c t io n

 PSO-RRR2-1 GLOBAL

 PSO-RRR1-1 GLOBAL

 C-PSO-1 GLOBAL

«--------> MS GLOBAL

-PSO-RRR2-1 RING 2 NEIGH 

■ PSO-RRR1-1 RING 2NEIGH 

■C-PSO-1 RING 2 NEIGH.

» MS RING 2 NEIGH

4.00E-06 C

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Fig. 6.75. Convergence curves o f the mean best conflict for the 10D Sphere function, associated to Table 6.4. The 
co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associated.
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Table 6.5. S tatistical results out o f 25 runs fo r the P S0-R R R 2-1 , the PS0-R R R 1-1 , the C-PSO-1, and a M ulti-Swarm  
algorithm  optim izing the 30-dim ensional Sphere function. The neighbourhoods tested are the GLO BAL and the RING 
with 2 neighbours. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
^K*T37T?TT77E

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

GLOBAL
10000 1.22E-87 3.29E-84 3.07E-82 6.31 E-81 2.12E-45 100

PSO-RRR2-1
1000 3.49E-06 1.85E-05 4.08E-05 2.77E-04 1.84E-06 -

RING nn = 2
10000 3.77E-43 1.90E-42 7.86E-42 6.78E-41 9.24E-25 100

1000 1.23E-01 2.84E-01 3.12E-01 6.69E-01 2.14E-04 -

GLOBAL
10000 4.06E-07 3.79E-04 9.89E-02 2.39E+00 4.69E-17 32

1000 5.57E-06 1.64E-03 2.70E-01 4.03E+00 5.93E-11 -
roU-KKK 1-1

RING nn = 2
10000 8.13E-144 7.26E-142 5.86E-141 6.69E-140 1.20E-74 100

1000 1.73E-11 7.83E-11 8.50E-11 2.40E-10 2.05E-09 -

GLOBAL
10000 3.05E-220 2.21 E-212 1.42E-207 3.49E-206 1.57E-108 100

C-PSO-1
1000 8.53E-20 1.09E-17 1.04E-16 9.10E-16 1.33E-12 -

RING nn = 2
10000 5.68E-96 1.67E-94 1.65E-93 3.57E-92 7.60E-51 100

1000 7.53E-07 3.07E-06 3.62E-06 1.35E-05 5.46E-07 -

GLOBAL
10000 1.10E-181 4.68E-172 1.95E-166 4.21E-165 7.90E-88 100

Multi-Swarm
1000 4.53E-17 1.52E-14 4.02E-11 1.00E-09 3.63E-10 -

RING nn = 2
10000 3.13E-113 7.02E-109 2.72E-107 5.96E-106 6.93E-57 100

1000 2.83E-08 9.73E-08 2.55E-07 3.82E-06 1.75E-06 ;

M e a n  B e s t  C o n flic t -  3 0 D  S p h e r e  f u n c t io n

-  PSO-RRR2-1 RING 2 NEIGH
PSO-RRR1-1 RING 2 NEIGH
C-PSO-1 RING 2 NEIGHC-PSO-1 GLOBAL

MS GLOBAL MSRING2NEIGH

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

5.00E-01 ^

Fig. 6.76. Convergence curves of the mean best conflict for the 30D Sphere function, associated to Table 6.5. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 6.6. S tatistica l resu lts out o f 25 runs for the PSO-RRR2-1, the PSO-RRR1-1, the C-PSO-1, and a M u lti-S w arm  
algorithm  optim izing the 2-d im ensional Rosenbrock function. The neighbourhoods tested are the G LO BAL and the 
RING with 2 neighbours. A run with an error no g reater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps iiiiii
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u c c e ss

GLOBAL
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

PS0-RRR2-1
1000 1.54E-30 3.01 E-28 4.82E-26 3.96E-25 3.72E-08 -

RING

0
4IICc 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

1000 3.11E-20 3.03E-16 3.31E-15 3.09E-14 6.95E-06 -

GLOBAL
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

PS0-RRR1-1
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.70E-20 -

RING nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

1000 4.93E-32 4.78E-27 6.69E-25 7.34E-24 1.27E-11 -

GLOBAL
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

C-PSO-1
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.29E-11 -

RING nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

1000 5.77E-21 1.65E-15 6.19E-14 1.30E-12 2.76E-06 -

GLOBAL
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

Multi-Swarm
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.05E-09 -

RING nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

1000 O.OOE+OO 9.00E-24 2.19E-18 3.50E-17 1.78E-06 -

M e a n  B e s t  C o n flic t -  2D  R o s e n b r o c k  fu n c t io n

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH

-----------PS0-RRR1-1 GLOBAL ----------- PS0-RRR1-1 RING2NEIGH.

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 Rl NG 2 NEIGH.

=  MS GLOBAL < = =  MS RING 2 NEIGH

6.00E-11

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 6.77. Convergence curves o f the mean best conflic t for the 2D Rosenbrock function, associated to Table  6.6. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 6.7. S tatistica l results out o f 25 runs fo r the P S0-R R R 2-1 , the P S 0-R R R 1-1 , the C-PSO-1, and a M ulti-Swarm  
algorithm  optim izing the 10-dim ensional Rosenbrock function. The neighbourhoods tested are the GLOBAL and the 
RING  with 2 neighbours. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

GLOBAL
10000 1.09E-06 2.72E-04 6.38E-01 3.99E+00 6.79E-03 32

PS0-RRR2-1
1000 2.22E-02 2.47E+00 5.31 E-i-00 6.85E+01 2.34E-03 -

RING nn = 2
10000 6.79E-05 1.64E-02 1.82E-02 7.14E-02 7.64E-03 4

1000 9.88E-03 1.64E+00 2.03E+00 5.50E+00 1.63E-02 -

GLOBAL
10000 1.13E-28 8.73E-01 1.64E+00 3.99E+00 1.08E-03 44

PS0-RRR1-1
1000 6.53E-06 1.46E-KJ0 1,90E-K)0 4.99E+00 2.85E-03 -

RING nn = 2
10000 2.20E-10 3.45E-09 3.21E-08 5.63E-07 2.39E-03 100

1000 5.10E-04 1.17E-KJ0 1.30E+00 4.19E+00 1.11E-02 -

GLOBAL
10000 1.18E-10 4.49E-06 4.79E-01 3.99E+00 8.56E-03 76

C-PSO-1
1000 2.73E-03 5.03E-01 7.26E-K)0 8.06E+01 6.76E-03 -

RING nn = 2
10000 1.23E-08 1.29E-03 1.61E-01 3.99E+00 7.32E-03 8

1000 1.18E-02 3.08E+00 2.69E+00 5.08E+00 1.90E-02 -

GLOBAL
10000 5.91 E-12 2.94E-02 1.02E+00 5.59E+00 7.53E-03 16

Multi-Swarm
1000 9.37E-05 6.67E-01 1.47E+00 6.46E+00 7.93E-03 -

RING

04IIec 10000 4.01E-09 8.03E-07 1.61E-01 3.99E+00 8.87E-03 80

1000 2.63E-03 1.62E+00 1.82E-KJ0 5.11E+00 1.79E-02 -

M e a n  B e s t  C o n f lic t -  10 D  R o s e n b ro c k  fu n c t io n

- PSO-RRR2-1 RING2NEIGH—  PSO-RRR2-1 GLOBAL

 PSO-RRR1-1 GLOBAL  PSO-RRR1-1 RING2NEIGH

 C-PSO-1 RING 2 NEIGH. C-PSO-1 GLOBAL

MS RING 2 NEIGH

0.

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Fig. 6.78. Convergence curves of the mean best conflict for the 10D Rosenbrock function, associated to Table 6.7.
The colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 6.8. S ta tistica l results out o f 25 runs for the PSO -RRR2-1, the PSO -RRR1-1, the C-PSO-1, and a M ulti-Swarm  
a lgorithm  optim izing the 30-dim ensional Rosenbrock function. The neighbourhoods tested are the G LO BAL and the 
R ING with 2 neighbours. A run w ith an error no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

GLOBAL
10000 1.41 E-04 1.27E+01 1.03E+01 1.88E+01 1.45E-03 0

PS0-RRR2-1
1000 8.48E+00 2.80E-K)1 5.20E+01 1.24E+02 2.95E-04 -

RING nn = 2
10000 1.14E-01 1.00E+01 1.06E+01 2.31 E+01 1.13E-02 0

1000 4.82E+01 1.40E+O2 1.48E+02 3.09E+02 1.57E-02 -

GLOBAL
10000 2.27E+01 9.15E+01 1.06E+02 3.67E+02 3.98E-11 0

PS0-RRR1-1
1000 2.43E-*01 9.38E+01 1.10E+02 3.69E+02 2.84E-08 -

RING nn = 2
10000 8.78E-03 7.24E+00 7.16E+00 1.91 E+01 2.15E-03 0

1000 8.28E+00 2.61E+01 4.28E+01 1.77E+02 4.38E-03 -

GLOBAL
10000 1.17E-05 3.90E-02 1.05E+00 4.02E+00 5.58E-03 8

C-PSO-1
1000 1.55E+00 2.22E+01 3.58E+01 1.79E+02 9.02E-04 -

RING nn = 2
10000 2.89E-03 6.94E-01 3.39E+00 1.79E+01 7.42E-03 0

1000 1.32E+01 2.89E+01 5.04E-HD1 1.45E+02 1.30E-02 -

GLOBAL
10000 4.21 E-08 1.67E+01 2.70E+01 7.68E+01 3.90E-03 4

Multi-Swarm
1000 2.33E-02 2.30E+01 4.38E+01 1.36E+02 2.59E-03 -

RING nn = 2
10000 9.14E-03 7.09E+00 6.59E+00 1.46E+01 3.01 E-03 0

1000 6.26E+00 7.08E+01 5.33E+01 8.71E+01 5.27E-03 -

----------- PSO-RRR2-1 GLOBAL ----------- PSO-RRR2-1 RING 2 NEIGH

----------- PSO-RRR1-1 GLOBAL ----------- PSO-RRR1-1 RING 2 NEIGH

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH.

« =  MS GLOBAL =  MS RING 2 NEIGH

M e a n  B e s t  C o n flic t -  3 0 D  R o s e n b ro c k  fu n c t io n

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001  6501 7001 7501 8001 8501 9001 9501

T im e-steps

Fig. 6.79. C onvergence curves o f the mean best conflict for the 30D Rosenbrock function, associated to Table  6.8. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 6.9. S tatistica l results out o f 25 runs for the PSO-RRR2-1, the PSO-RRR1-1, the C-PSO-1, and a M ulti-Swarm  
algorithm  optim izing the 2-d im ensional Rastrig in function. The neighbourhoods tested are the GLOBAL and the 
RING with 2 neighbours. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
§ H 3 3 E 2 E E E

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

GLOBAL
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.07E-10 100

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.42E-11 -
roU-KKKZ- 1

RING nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 100

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 -

GLOBAL
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.09E-11 100

PSO-RRR1-1
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.09E-11 -

RING nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.05E-11 100

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.05E-11 -

GLOBAL
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 7.79E-11 100

C-PSO-1
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 7.79E-11 -

RING

egiicc 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.52E-11 100

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.52E-11 -

GLOBAL
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 100

Multi-Swarm
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 -

RING nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.73E-11 100

1000 2.98E+00 5.97E+00 5.72E+O0 1.00E+01 3.74E-02 -

M e a n  B e s t  C o n flic t -  2D  R a s tr ig in  fu n c t io n

1

-----------PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH.

-----------PS0-RRR1-1 GLOBAL ----------- PS0-RRR1-1 RING2NE1GH

-----------C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 6.80. Convergence curves of the mean best conflict for the 2D Rastrigin function, associated to Table 6.9. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 6.10. S tatistica l results out o f 25 runs for the PSO -RRR2-1, the PSO -R RR1-1, the C -PSO -1, and a Multi- 
Swarm a lgorithm  optim iz ing the 10-dim ensional Rastrigin function. The ne ighbourhoods tested are the GLO BAL and 
the RING with 2 neighbours. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps IIHSfe
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

GLOBAL
10000 9.95E-01 2.98E+00 2.95E+00 6.96E+00 3.48E-04 0

PS0-RRR2-1
1000 9.95E-01 2.98E+00 3.02E-HDO 6.96E+00 2.20E-03 -

RING nn = 2
10000 O.OOE+OO 1.99E+00 2.15E+00 4.97E+00 2.71 E-02 20

1000 1.99E+00 4.22E+O0 4.43E+00 7.96E+00 3.54E-02 -

GLOBAL
10000 5.97E+00 1.19E+01 1.35E+01 2.49E+01 1.21E-11 0

1000 5.97E+00 1.19E+01 1.35E+01 2.49E+01 1.47E-11 -

RING nn = 2
10000 9.95E-01 4.97E+00 5.18E+00 1.09E+01 3.82E-02 0

1000 2.98E+00 7.96E+00 7.94E+00 1.37E+01 4.30E-02 -

GLOBAL
10000 1.99E+00 3.98E+00 4.93E+00 1.09E+01 1.92E-11 0

C-PSO-1
1000 1.99E+00 4.97E+O0 5.17E+00 1.19E+01 8.71E-04 j

RING nn = 2
10000 O.OOE+OO 2.98E+00 2.79E+00 4.97E+00 2.93E-02 12

1000 1.99E+00 3.98E+00 4.55E+00 7.96E+00 3.79E-02 -

GLOBAL
10000 1.99E+00 3.98E+00 4.78E+00 1.49E+01 1.84E-11 0

Multi-Swarm
1000 1.99E+00 3.98E+O0 5.13E+00 1.49E+01 5.46E-04 -

RING nn = 2
10000 O.OOE+OO 2.98E+00 2.75E+00 6.96E+00 2.90E-02 4

1000 2.98E+00 5.97E+00 5.72E+00 1.00E+01 3.74E-02 -

M e a n  B e s t  C o n flic t -  1 0 D  R a s tr ig in  f u n c t io n

—  PSO-RRR2-1 GLOBAL PSO-RRR2-1 RING 2 NEIGH

 PSO-RRR1-1 GLOBAL  PSO-RRR1-1 RING2NEI3H

 C-PSO-1 GLOBAL  C-PSO-1 RING 2 NEIGH

MS GLOBAL

0.

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001  8501 9001 95011

Fig. 6.81. Convergence curves of the mean best conflict for the 10D Rastrigin function, associated to Table 6.10. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 6.11. S tatistical results out o f 25 runs for the P S0-R R R 2-1 , the PS0-R R R 1-1 , the C-PSO-1, and a Multi- 
Swarm algorithm  optim izing the 30-dim ensional Rastrigin function. The neighbourhoods tested are the G LO BAL and 
the RING with 2 neighbours. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps v i l l i '
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S uccess

GLOBAL
10000 2.69E+01 4.28E+01 4.13E+01 5.57E+01 2.64E-11 0

PSO-RRR2-1
1000 2.69E+01 4.28E+01 4.14E+01 5.57E+-01 3.99E-05 -

RING nn = 2
10000 2.98E+01 4.40E+01 4.29E+01 5.29E+01 2.61 E-02 0

1000 3.46E+01 5.32E+01 5.24E+01 7.23E+01 3.00E-02 -

GLOBAL
10000 2.49E+01 7.16E+01 7.41 E+01 1.28E+02 6.68E-16 0

PSO-RRR1-1
1000 2.49E+01 7.16E+01 7.41 E-+01 1.28E+02 1.47E-15 -

RING

CMIICe 10000 2.19E+01 4.68E+01 4.65E+01 6.17E+01 3.00E-02 0

1000 2.20E+01 5.01E+01 5.03E+01 6 .7 1 E 0 1 3.12E-02 -

GLOBAL
10000 2.69E+01 4.88E+01 5.37E+01 9.65E+01 1.93E-11 0

C-PSO-1
1000 2.69E+01 4.88E+01 5.37E+01 9.65E-K)1 1.09E-10 -

RING nn = 2
10000 2.89E+01 5.37E+01 5.05E+01 6.87E+01 3.31 E-02 0

1000 2.89E-K)1 5.88E+01 5.59E+01 7.79E+01 3.43E-02 -

GLOBAL
10000 2.59E+01 5.27E+01 5.33E+01 8.16E+01 1.89E-11 0

Multi-Swarm
1000 2.59E+01 5.27E+01 5.33E+01 8.16E-+01 5.36E-08 -

RING nn = 2
10000 3.28E+01 4.48E+01 4.56E+01 6.37E+01 3.03E-02 0

1000 3.32E+01 5.21E+01 4.97E-K31 6.57E+01 3.09E-02 -

M e a n  B e s t  C o n flic t -  3 0 D  R a s tr ig in  f u n c t io n

PSO-RRR2-1 GLOBAL PSO-RRR2-1 RING 2 NEIGH

PSO-RRR1-1 GLOBAL PSO-RRR1-1 RING 2 NEIGH

C-PSO-1 GLOBAL C-PSO-1 RING2 NEIGH

MS GLOBAL MSRING2NEIGH

T im e-steps

Fig. 6.82. Convergence curves of the mean best conflict for the 30D Rastrigin function, associated to Table 6.11. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 6.12. S tatistica l results out of 25 runs for the P S 0-R R R 2-1 , the P S0-R R R 1-1 , the C-PSO -1, and a Multi- 
Swarm  algorithm  optim izing the 2-dim ensional G riewank function. The neighbourhoods tested are the G LO BAL and 
the RING with 2 neighbours. A run with an erro r no g reater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
I m i i

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

GLOBAL
10000 0.00E+00 O.OOE+OO 2.96E-04 7.40E-03 7.41E-12 96

PSO-RRR2-1
1000 O.OOE+OO O.OOE+OO 5.92E-04 7.40E-03 1.10E-03 -

RING

C
sl
IICc 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 3.65E-04 100

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.10E-03 -

GLOBAL
10000 0.00E+00 O.OOE+OO 5.92E-04 7.40E-03 5.76E-12 92

PSO-RRR1-1
1000 O.OOE+OO O.OOE+OO 1.18E-03 9.08E-04 9.08E-04 -

RING nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 4.15E-04 100

1000 O.OOE+OO O.OOE+OO 3.02E-13 7.54E-12 2.05E-03 -

GLOBAL
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.40E-12 100

C-PSO-1
1000 O.OOE+OO O.OOE+OO 1.18E-03 7.40E-03 9.46E-04 -

RING

C
MIICc 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.57E-04 100

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.96E-03 -

GLOBAL
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.56E-12 100

Multi-Swanm
1000 O.OOE+OO O.OOE+OO 5.95E-16 1.49E-14 8.92E-04 -

RING nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.51 E-04 100

1000 O.OOE+OO O.OOE+OO 2.39E-05 5.88E-04 2.05E-O3 -

Mean Best Conflict - 2D Griewank function

- - P S O - R R R 2 - 1  RING 2  NEIGH•—  PSO-RRR2-1 GLOBAL

 P S O -R R R 1 -1  RING 2  NEIGH P S O - R R R M  GLOBALL _
 C -P S O -1  R IN G  2  NEIGH C -P S O -1  GLOBAL

;.00E-04M S  R IN G 2  N EIG HM S GLOBAL

6.00E-04

4.00E-04

2.00E-04

O.OOE+OO

5 01 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001  95011

Time-steps

Fig. 6.83. Convergence curves of the mean best conflict for the 2D Griewank function, associated to Table 6.12. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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T a b l e  6 .13 .  S ta t i s t ica l  r e s u l t s  o u t  of 2 5  r u n s  for  t h e  P S O - R R R 2 - 1 ,  th e  P S 0 - R R R 1 - 1 ,  th e  C - P S O - 1 ,  a n d  a  Multi- 
S w a r m  a lgo r i th m  op t im iz ing  th e  1 0 - d im e n s io n a l  G r i e w a n k  func t ion .  T h e  n e ig h b o u r h o o d s  t e s t e d  a r e  th e  G L O B A L  a n d  
th e  R IN G  with 2 n e ig h b o u r s .  A run  with a n  e r r o r  n o  g r e a t e r  t h a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-steps
g | 4':.4

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

GLOBAL
10000 1.97E-02 5.66E-02 6.81 E-02 1.43E-01 4.94E-07 0

PSO-RRR2-1
1000 1.97E-02 6.16E-02 7.14E-02 1.43E-01 1.18E-04 -

RING nn = 2
10000 0.00E+00 2.46E-02 2.66E-02 6.15E-02 1.81E-03 4
1000 2.96E-07 2.95E-02 3.41 E-02 6.88E-02 2.01 E-03 -

GLOBAL
10000 2.96E-02 9.11 E-02 9.27E-02 1.82E-01 1.81E-12 0

PSO-RRR1-1
1000 2.96E-02 9.11 E-02 9.27E-02 1.82E-01 1.48E-05 -

RING nn = 2
10000 0.00E+00 3.19E-02 3.05E-02 7.38E-02 1.58E-03 8
1000 O.OOE+OO 3.94E-02 3.64E-02 7.62E-02 1.66E-03 -

GLOBAL
10000 1.97E-02 6.64E-02 6.68E-02 1.38E-01 1.65E-06 0

C-PSO-1
1000 2.71 E-02 6.89E-02 7.21 E-02 1.38E-01 1.22E-04 -

RING nn = 2
10000 0.00E+00 2.46E-02 2.36E-02 4.68E-02 1.55E-03 4
1000 O.OOE+OO 2.71 E-02 2.85E-02 8.87E-02 1.66E-03 -

GLOBAL
10000 1.48E-02 6.64E-02 6.64E-02 1.38E-01 1.48E-05 0

Multi-Swarm
1000 2.95E-02 7.13E-02 7.85E-02 1.85E-01 1.40E-04 -

RING nn = 2
10000 0.00E+00 1.97E-02 2.15E-02 5.90E-02 1.60E-03 8
1000 7.40E-03 2.22E-02 2.71 E-02 5.90E-02 1.75E-03 -

Mean Best Conflict -  10D Griewank function

PSO-RRR2-1 GLOBAL PSO-RRR2-1 RING 2 NEIGH

 PSO-RRR1-1 GLOBAL  PSO-RRRt-1 RING2NEIGH

 C-PSO-1 GLOBAL  C-PSO-1 RING 2 NEIGH

MS GLOBAL MS RING 2NEIGH.

Tim e-steps

Fig. 6 .84 .  C o n v e r g e n c e  c u r v e s  o f  th e  m e a n  b e s t  conflict  for th e  10D  G r ie w a n k  funct ion ,  a s s o c i a t e d  to T a b le  6 .13 .
T h e  c o lo u r - c o d e s  u s e d  to identify t h e  n e ig h b o u r h o o d  s t r u c tu r e s  a r e  th e  s a m e  in th e  t a b le  a n d  f igure  a s s o c i a t e d .
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T a b l e  6 .1 4 .  S ta t i s t ica l  r e s u l t s  o u t  of 25  r u n s  for th e  P S 0 - R R R 2 - 1 ,  t h e  P S 0 - R R R 1 - 1 ,  th e  C - P S O - 1 ,  a n d  a  Multi- 
S w a r m  a lgo r i th m  o p t im iz ing  t h e  3 0 - d i m e n s io n a l  G r ie w a n k  func t ion .  T h e  n e ig h b o u r h o o d s  t e s t e d  a r e  t h e  G L O B A L  a n d  
t h e  R IN G  with 2 n e ig h b o u r s .  A run  with a n  e r r o r  n o  g r e a t e r  th a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-steps
.: T- 'k M U

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

GLOBAL
10000 O.OOE+OO 7.40E-03 9.35E-03 2.96E-02 4.23E-12 44

PSO-RRR2-1
1000 7.95E-06 7.44E-03 9.40E-03 2.96E-02 2.93E-06 -

RING nn = 2
10000 0.00E+00 0.00E+00 2.96E-04 7.40E-03 1.22E-06 96
1000 2.54E-01 4.15E-01 4.23E-01 6.79E-01 2.52E-04 -

GLOBAL
10000 3.29E-08 6.46E-02 1.02E-01 7.40E-01 3.91 E-13 4

PSO-RRR1-1
1000 3.29E-08 7.11 E-02 1.12E-01 7.40E-01 4.04E-14 -

RING nn = 2
10000 0.00E+00 0.00E+00 6.90E-04 9.86E-03 6.40E-08 92
1000 4.02E-11 7.73E-10 6.91E-04 9.86E-03 1.38E-06 -

GLOBAL
10000 0.00E+00 1.23E-02 1.79E-02 7.09E-02 2.56E-12 36

C-PSO-1
1000 0.00E+00 1.23E-02 1.79E-02 7.09E-02 2.93E-12 -

RING nn = 2
10000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.14E-07 100
1000 4.55E-06 3.98E-05 2.60E-03 2.22E-02 1.52E-05 -

GLOBAL
10000 O.OOE+OO 4.67E-02 5.18E-02 1.41E-01 2.42E-12 4

Multi-Swarm
1000 6.66E-16 4.67E-02 5.18E-02 1.41E-01 4.06E-08 -

RING nn = 2
10000 0.00E+00 0.00E+00 2.17E-03 1.23E-02 1.10E-06 76
1000 6.02E-08 7.40E-03 6.97E-03 3.92E-02 3.08E-05 -

Mean Best Conflict -  30D Griewank function

PSO-RRR1-1 GLOBAL  PSO-RRR1-1 RING2 NEIGF

 C-PSO-1 GLOBAL  C-PSO-1 RING 2 NEIGH.

MSGL08AL MS RING 2 NEIGH.

Tim e-steps

Fig. 6 .85 .  C o n v e r g e n c e  c u r v e s  o f  th e  m e a n  b e s t  conflict  for t h e  3 0D  G r ie w a n k  func t ion ,  a s s o c i a t e d  to T a b l e  6 .14 .  
T h e  c o l o u r - c o d e s  u s e d  to identify  t h e  n e ig h b o u r h o o d  s t r u c tu r e s  a r e  th e  s a m e  in th e  t a b l e  a n d  f igure  a s s o c i a t e d .

3 2 9



c 2 e c C O E FFIC IE N TS S ET TIN G S S w an sea  U niversity
Prifysgol A bertaw e

T a b le  6 .1 5 .  S ta t is t ica l  r e s u l t s  o u t  of 2 5  ru n s  for  th e  P S 0 - R R R 2 - 1 ,  th e  P S 0 - R R R 1 - 1 ,  th e  C - P S O - 1 ,  a n d  a  Multi- 
S w a r m  a lgo r i th m  opt imizing  t h e  2 - d im e n s io n a l  S c h a f f e r  f6 func t ion .  T h e  n e ig h b o u r h o o d s  t e s t e d  a r e  t h e  G L O B A L  a n d  
th e  R IN G  with 2 n e ig h b o u r s .  A run  with a n  e r r o r  n o  g r e a t e r  t h a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-steps p#*li (E2B33ES
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

GLOBAL
10000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 2.58E-05 96

PSO-RRR2-1
1000 O.OOE+OO O.OOE+OO 7.77E-04 9.72E-03 2.79E-03 -

RING

CMIICc 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.60E-04 100
1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 6.82E-03 -

GLOBAL
10000 0.00E+00 O.OOE+OO 1.17E-03 9.72E-03 1.13E-04 88

PSO-RRR1-1
1000 O.OOE+OO O.OOE+OO 1.17E-03 9.72E-03 1.61E-03 -

RING nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.29E-03 100
1000 O.OOE+OO O.OOE+OO 1.96E-03 9.72E-03 7.78E-03 -

GLOBAL
10000 0.00E+00 O.OOE+OO 1.17E-03 9.72E-03 2.01 E-04 88

C-PSO-1
1000 O.OOE+OO O.OOE+OO 1.95E-03 9.72E-03 2.42E-03 -

RING nn = 2
10000 0.00E+00 O.OOE+OO 3.89E-04 9.72E-03 1.38E-03 96
1000 O.OOE+OO O.OOE+OO 2.07E-03 9.72E-03 7.76E-03 -

GLOBAL
10000 0.00E+00 O.OOE+OO 2.33E-03 9.72E-03 1.05E-04 76

Multi-Swarm
1000 O.OOE+OO O.OOE+OO 3.11E-03 9.72E-03 2.58E-03 -

RING nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 7.13E-04 100
1000 O.OOE+OO O.OOE+OO 7.84E-04 9.72E-03 7.34E-03 -

Mean Best Conflict -  2D Schaffer f6 function

—  PSO-RRR2-1 RING 2 NEIGH

 PSO-RRR1-1 GLOBAL  PSO-RRR1-1 RING 2NEIGH

 C-PSO-1 GLOBAL  C-PSO-1 RING 2 NEIGH.

MS RING2NEIGH.

i_;;

Tim e-steps

Fig. 6 .86 .  C o n v e rg e n c e  c u rv e s  of the  m e a n  b e s t  conflict for the  2D Schaf fe r  f6 function, a s s o c i a t e d  to Tab le  6.15.
T he  co lo u r -c o d e s  u se d  to identify the  n e ig h b o u rh o o d  s t ru c tu res  a r e  the  s a m e  in the  tab le  and  f igure a s so c ia te d .
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T a b l e  6 .16 .  S ta t i s t ica l  r e s u l t s  o u t  of 25  r u n s  for t h e  P S 0 - R R R 2 - 1 ,  t h e  P S 0 - R R R 1 - 1 ,  t h e  C - P S O - 1 ,  a n d  a  Multi- 
S w a r m  a lgo r i th m  o p t im iz ing  th e  1 0 -d im e n s io n a l  S c h a f f e r  f6 func t ion .  T h e  n e i g h b o u r h o o d s  t e s t e d  a r e  t h e  G L O B A L  
a n d  t h e  R IN G  with 2 n e ig h b o u r s .  A run with a n  e r r o r  n o  g r e a t e r  t h a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-steps iH si H333EME
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

GLOBAL
10000 9.72E-03 9.72E-03 1.85E-02 3.72E-02 5.10E-04 0

PSO-RRR2-1
1000 9.72E-03 9.72E-03 2.18E-02 3.72E-02 1.21E-03 -

RING nn = 2
10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.94E-03 0
1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 3.24E-03 -

GLOBAL
10000 9.72E-03 3.72E-02 3.45E-02 7.82E-02 1.29E-04 0

PSO-RRR1-1
1000 9.72E-03 3.72E-02 3.45E-02 7.82E-02 1.29E-04 -

RING nn = 2
10000 9.72E-03 9.72E-03 2.18E-02 3.72E-02 2.43E-03 0
1000 9.72E-03 3.72E-02 3.17E-02 3.72E-02 3.38E-03 -

GLOBAL
10000 9.72E-03 9.72E-03 1.96E-02 3.72E-02 3.01 E-04 0

C-PSO-1
1000 9.72E-03 9.72E-03 2.18E-02 3.72E-02 7.06E-04 -

RING nn = 2
10000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 2.21 E-03 0
1000 9.72E-03 9.72E-03 1.85E-02 3.72E-02 3.19E-03 -

GLOBAL
10000 9.72E-03 3.72E-02 2.95E-02 3.72E-02 3.18E-04 0

Multi-Swarm
1000 9.72E-03 3.72E-02 3.06E-02 3.72E-02 6.67E-04 -

RING nn = 2
10000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 2.03E-03 0
1000 9.72E-03 9.72E-03 1.74E-02 3.72E-02 3.03E-03 -

Mean Best Conflict -  10D Schaffer f6 function

PSO-RRR2-1 GLOBAL

 PSO-RRR1-1 GLOBAL  PSO-RRR1-1 RING2 NEIGH

 C-PSO-1 GLOBAL  C-PSO-1 RING 2 NEIGH.

MS GLOBAL

T im e-steps

Fig. 6 .87 .  C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  10D S ch a f fe r  f6 function, a s s o c i a t e d  to T ab le  6.16.
T h e  co lo u r -c o d e s  u s e d  to identify th e  ne ig h b o u rh o o d  s t ru c tu re s  a re  the  s a m e  in th e  tab le  a n d  figure a s so c ia te d .
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T a b le  6 .1 7 .  S ta t i s t ica l  r e s u l t s  o u t  o f  2 5  r u n s  for th e  P S 0 - R R R 2 - 1 ,  th e  P S 0 - R R R 1 - 1 ,  th e  C - P S O - 1 ,  a n d  a  Multi- 
S w a r m  a lgo r i th m  o p tim iz ing  th e  3 0 - d i m e n s io n a l  S c h a f f e r  f6 func t ion .  T h e  n e i g h b o u r h o o d s  t e s t e d  a r e  t h e  G L O B A L 
a n d  th e  R IN G  with 2 n e ig h b o u r s .  A run  with a n  e r r o r  n o  g r e a t e r  t h a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-steps i i i i i
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

GLOBAL
10000 3.72E-02 7.82E-02 9.22E-02 1.27E-01 3.12E-04 0

PSO-RRR2-1
1000 7.82E-02 1.27E-01 1.08E-01 1.78E-01 8.50E-04 -

RING

<NIICC 10000 3.72E-02 7.82E-02 6.18E-02 7.82E-02 1.77E-03 0
1000 1.27E-01 1.96E-01 2.01E-01 2.29E-01 4.40E-03 -

GLOBAL
10000 3.12E-01 4.30E-01 4.25E-01 4.85E-01 4.76E-05 0

PSO-RRR1-1
1000 3.12E-01 4.30E-01 4.26E-01 4.87E-01 2.01E-04 -

RING nn = 2
10000 7.82E-02 1.78E-01 1.67E-01 2.73E-01 1.72E-03 0
1000 1.27E-01 2.28E-01 2.14E-01 3.12E-01 2.38E-03 -

GLOBAL
10000 7.82E-02 1.27E-01 1.31E-01 2.73E-01 1.67E-04 0

C-PSO-1
1000 7.82E-02 1.27E-01 1.40E-01 2.73E-01 4.94E-04 -

RING nn = 2
10000 3.72E-02 3.72E-02 5.52E-02 7.82E-02 1.59E-03 0
1000 1.27E-01 1.27E-01 1.52E-01 1.78E-01 3.23E-03 -

GLOBAL
10000 7.82E-02 1.78E-01 1.86E-01 2.73E-01 2.30E-04 0
1000 1.27E-01 1.78E-01 1.93E-01 2.73E-01 5.26E-04 -

M u Iti-Swa nn
RING nn = 2

10000 3.72E-02 7.82E-02 7.45E-02 1.27E-01 1.58E-03 0
1000 1.27E-01 1.78E-01 1.68E-01 2.28E-01 3.42E-03 -

Mean Best Conflict -  30D Schafferf6 function

—  PSO-RRR2-1 GLOBAL — PSO-RRR2-1 RING 2 NEIGH

 PSO-RRR1-1 RING 2 NEIGH

 C-PSO-1 GLOBAL  C-PSO-1 RING2 NEIGH

MS GLOBAL MSRING2NEIGH

Tim e-steps

Fig. 6 .88 .  C o n v e r g e n c e  c u r v e s  o f  t h e  m e a n  b e s t  conflict  for th e  3 0 D  S c h a f f e r  f6 func t ion ,  a s s o c i a t e d  to  T a b le  6 .17 .  
T h e  c o lo u r - c o d e s  u s e d  to identify  th e  n e ig h b o u r h o o d  s t r u c tu r e s  a r e  t h e  s a m e  in th e  ta b le  a n d  f ig u re  a s s o c i a t e d .
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6.3.2.3. Discussion 

Sphere

The results are offered in Table 6.3 to Table 6.5, and in Fig. 6.74 to Fig. 6.76. All algo

rithms with both neighbourhoods perform well for all dimensions, although the accu

racy o f the solution decreases with the dimensionality. The only exception is the ‘PSO- 

RRR1-1 Global’, which displays premature convergence in 30D space. For all the other 

cases, the global versions found better results than their local counterparts both by the 

10000th and by the 1000th time-steps. Except for the 2D case, they also reached a higher 

degree o f clustering. In the 2D problem, the local versions reach a marginally higher 

clustering than their global counterparts because the particles move in smaller steps.

Comparing the different coefficients’ settings, it appears that the PSO-RRR1-1 exhibits 

faster clustering than expected. Thus, the PSO-RRR1-1 is the fastest, while the PSO- 

RRR2-1 is the most robust. Considering the neighbourhoods as well, the ‘PSO-RRR1-1 

Global’ is the fastest, whereas the ‘PSO-RRR2-1 Ring’ is the slowest. In fact, it is inter

esting to observe that the mean conflicts o f the latter two are the only ones which do not 

meet the success criterion by the 1000 time-step for the 30D problem (see Table 6.5) 

but for two different reasons: the ‘PSO-RRR1-1 Global’ because o f premature conver

gence, and the ‘PSO-RRR2-1 Ring’ because o f slow convergence (see Fig. 6.76).

As to the premature convergence o f the ‘PSO-RRR1-1 Global’ in 30D space, it seems 

that the particles practically imploded so quickly that there is premature convergence. 

Improvement is still possible because o f the simplicity of the problem, but the swarm of 

particles move ‘as one’, resembling a hill-descending algorithm. Given that the global 

best keeps moving, the degree of clustering4 reached by the 10000th time-step is the 

lowest despite being the algorithm with fastest clustering ability. This can be observed 

by comparing Fig. 6.76 and Fig. 6.73. The swarm practically imploded in less than 500 

time-steps, while improvement of the mean best conflict can still be observed up until 

around 3500 time-steps. Also notice that the time-steps at which the mean gbest is up

dated in Fig. 6.76 coincide with the sudden (and tiny) increase o f diversity in Fig. 6.73. 

This makes sense, as new momentum is introduced into the system.

4 N o t e  t h a t  a  h i g h  d e g r e e  o f  c l u s t e r i n g  i m p l i e s  a  l o w  p b _ m e ,  a n d  v i c e  v e r s a .
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Rosenbrock

The 2D Rosenbrock function is unimodal, and its global minimum is within a long, nar

row, flat valley. Although it is common in the literature to simply assume that it remains 

unimodal when generalized for any number o f dimensions, Shang and Qiu (2006) 

showed that it becomes multimodal for more than 3 dimensions. The results are offered 

in Table 6.6 to Table 6.8, and in Fig. 6.77 to Fig. 6.79.

For the 2D problem, all combinations of coefficients’ settings and neighbourhood to

pologies tested achieve 100% success. Fig. 6.77 shows that the local topologies effec

tively converge more slowly than their global counterparts.

For the 10D problem, the local versions outperform their global counterparts in terms of 

the mean best solution. However, the ‘PSO-RRR2-1 Global’ and the ‘C-PSO-1 Global’ 

outperform their local counterparts in terms o f the percentage o f success. Note that the 

solution ‘3.99’ in Table 6.7 is a local minimum of the 10D problem (refer to (Shang & 

Qiu, 2006)). The ‘PSO-RRR1-1 Global’ displays again premature convergence, while 

the ‘PSO-RRR1-1 Ring’ obtained the best results in terms of the mean and median solu

tions, and the percentage o f success. The ‘Multi-Swarm Ring’ also obtained very good 

results in terms of the median solution and the percentage o f success, although it gets 

stuck in a local optimum for some runs. Despite the low percentage o f success, the re

sults obtained by the ‘PSO-RRR2-1 Ring’ are also good. It is fair to remark that in the 

latter case, convergence has not been achieved by the end of the search (see Fig. 6.78).

For the 30D problem, the ‘PSO-RRR1-1 Global’ exhibits premature convergence once 

again, while the best performance is displayed by the ‘C-PSO-1 Global’ by a consider

able margin, followed by the ‘C-PSO-1 Ring’, the ‘Multi-Swarm Ring’, and the ‘PSO- 

RRRl-1 Ring’. It must be noted, however, that convergence has not been reached (refer 

to Fig. 6.79). Also notice that a high degree o f clustering is achieved only by the ‘PSO- 

RRR1-1 Global’, which suffered from premature convergence (see pb me in Table 6.8).

The percentage o f success decreases considerable with the dimensionality o f the prob

lem. Some strange degrees o f clustering might be found for the Rosenbrock function, as 

diversity typically decreases consistently until the particles reach the flat region. At that 

moment, they tend to scatter again as the global best changes location constantly.
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Rastrigin

The results are offered in Table 6.9 to Table 6.11, and in Fig. 6.80 to Fig. 6.82.
xl_

Every algorithm finds the solution for the 2D problem by the 10000 time-step. In fact, 

they already do by the 1000th time-step, except for the ‘Multi-Swarm Ring’.

For the 10D problem, the local versions outperform their global counterparts, as it 

would be expected when dealing with highly multimodal problems. The ‘PSO-RRR1-1 

Global’ exhibits again premature convergence. The best performance in terms of the 

best, median and mean solutions, and percentage o f success, is displayed by the ‘PSO- 

RRR2-1 Ring’ (coefficients’ settings favouring exploration, and neighbourhood struc

ture leading to slow spread of information). The ‘Multi-Swarm Ring’ and the ‘C-PSO-1 

Ring’ also find good results. Note that the degree o f clustering o f the local neighbour

hoods is notably lower than that o f their global counterparts (i.e. higher pb me in Table 

6.10). Also notice that, while the ‘PSO-RRR2-1 Global’ exhibits the best performance 

among the global neighbourhoods -as expected-, it is also the one with the lowest de

gree o f clustering achieved among them (greatest pb me).

For the 30D problem, the ‘PSO-RRR1-1 Global’ also converges too quickly, while the 

best mean solution is found by the ‘PSO-RRR2-1 Global’. The second best mean solu

tion is found by the ‘PSO-RRR2-1 Ring’, and the third by the ‘Multi-Swarm Ring’. 

However, while the global neighbourhoods completely stagnate (pb_me in the range of 

10-11), the local neighbourhoods do not fully converge by the time the search is termi

nated. Notice that their degree of clustering is much lower (pb me in the range o f 1CT2). 

That is to say that, for an extended search, further improvement would be expected. 

With regards to the coefficients’ settings only, it is evident that the more robust setting 

of the PSO-RRR2-1 is more convenient for highly multimodal problems like this.

Griewank

The results are presented in Table 6.12 to Table 6.14, and in Fig. 6.83 to Fig. 6.85.

The 2D problem is highly multimodal, and therefore it is not surprising that the local 

neighbourhoods outperform their global counterparts, or that the ‘PSO-RRR1-1 Global’ 

finds the worst mean solution and lowest success rate, also exhibiting premature con

vergence. The ‘PSO-RRR2-1 Global’ fails to find the solution in 1 of the 25 runs.
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For the 10D problem, the success rates decrease dramatically. The ‘PSO-RRR1-1 

Global’ converges prematurely once again, while the best mean solution is found by the

is not long enough), the local neighbourhoods clearly outperform their local counter

parts. Note that full convergence has not been achieved in 10000 time-steps.

For the 30D problem, the ‘PSO-RRR1-1 Global’ converges early finding the worst re

sults, while the best mean solution is found by the ‘C-PSO-1 Ring’ and the ‘PSO- 

RRR2-1 ring’. In general, the local neighbourhoods outperform their local counterparts, 

as it is to be expected for a long enough search and a multimodal problem. Note, how

ever, that this function does not necessarily increases its difficulty with dimensionality, 

as increasing dimensions decrease its multimodality. In fact, the success rates are nota

bly higher for the 30D problem than for the 10D problem.

Schaffer f6

The results are presented in Table 6.12 to Table 6.14, and in Fig. 6.83 to Fig. 6.85.

For the 2D problem, the local neighbourhoods outperform their global counterparts. The 

best performances are those o f the ‘PSO-RRR2-1 Ring’, the ‘PSO-RRR1-1 Ring’, and 

the ‘Multi-Swarm Ring’, which achieved a 100% success rate.

For the 10D problem, all success rates decrease to zero. The ‘PSO-RRR1-1 Global’ suf

fers from premature convergence, while the ‘PSO-RRR2-1 Ring’ shows the best per

formance. Local neighbourhoods outperform their global counterpart, as expected.

For the 30D problem, the same trends observed for the 10D problem apply, although the 

best performance here is displayed by the ‘C-PSO-1 Ring’. Full convergence does not 

seem to take place either for the 10D or the 30D problems.

Overall analysis

The combined effect o f a global neighbourhood with coefficients that favour fast con

vergence results in extremely fast convergence o f the algorithm as a whole. This is very 

bad to cope with multimodal problems, and even with high-dimensional unimodal prob

lems, due to the tendency of the algorithm to premature convergence. However, it might 

be useful for problems that require convergence in just a few time-steps, say 50 to 500.

‘Multi-Swarm Ring’. As it is to be expected in multimodal problems (unless the search
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One interesting observation from these experiments, however, is that the PSO-RRR1-1 

results in fast convergence, even faster than the C-PSO-1, despite having an inertia 

weight as high as 0.80. Therefore, the speed o f convergence may be increased simply by 

reducing the range o f randomness (i.e. the interval o f <j>\ maintaining the same average 

behaviour. Notice that remarkably faster convergence is to be expected for lower inertia 

weights in the PSO-RRR1 formulation.

Local neighbourhoods balance fast-convergent coefficients, whereas more robust coef

ficients balance global neighbourhoods. Thus, premature convergence may be dealt with 

by both means. In general, it would seem that using local neighbourhoods with fast- 

convergent coefficients (e.g. ‘PSO-RRR1-1 Ring’) works better for unimodal and m od

erately multimodal problems (e.g. Sphere, Rosenbrock, Griewank) whereas using global 

neighbourhoods with robust coefficients (e.g. ‘PSO-RRR2-1 G lobal’) works better for 

highly multimodal problems (e.g. Rastrigin, Schaffer f6). Nonetheless, the actual global 

topology is not desirable except for specific cases. Local neighbourhoods are preferable, 

as long as the search-length allows for convergence. For highly multimodal problems, 

the combination o f  robust coefficients and local neighbourhoods is desirable. The prob

lem is that the speed o f  convergence remarkably decreases. Results might not be satis

factory if  the search is not long enough.

It is advisable that the settings lead to convergence without external mechanisms enforc

ing it. Thus, at least Vmean-w” should be within the convergence region.

General PSO form ulation (proposed in this thesis)

6.4. Coefficients’ settings guidelines

A = ip ■ k ,i„  + («Lx -  Ann )■ tV ,) ]

<t>,=SP-Wmin  + (A*x - A j ' t V l ) ]  
/pe [0 , l )  ; sp — \ — ip

(6.24)

3 3 7
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Choose 0.30 < w < 0.90. Preferably,

0.50 < w <  0.90 (6.25)

Higher values increase the ability to avoid premature convergence whilst lower values 

speed up convergence and improve the fine-grain search (see Fig. 6.89).

Choose <b- > 0 and 2.00 < < 4.00. Advice:
» If  1111 i ITldX

0.00 < ^ in< 1.00 
2 .0 0 < ^ < 2 -(h > + 1)

(6.26)

If (f)mm —> 0, the stochastic acceleration coefficient ((f)) may approach zero. Hence a high 

inertia weight (w) with </>min —> 0 may lead to greater local explosions for a sequence o f 

low values o f <f> generated. If (f>mm -A 0 , the local explosions are more controlled.

Fig. 6 .8 9 .  S u g g e s t e d  reg ion  in t h e  ‘</>-w p l a n e  from w h e r e  <j> is to b e  r a n d o m ly  s a m p l e d  (b lue  d o t t e d  l ines).  T h e  r e 
g io n s  o f  s u g g e s t e d  u p p e r  (<^max) a n d  low er  (</>mm) limits of <f> a r e  s h o w n  in g r e e n  a n d  re d  d o t te d  l ines ,  re sp ec t ive ly .

Note that <f)min and <f)max define the average behaviour ( </)mean) as well as the strength

awarded to randomness. For the same average behaviour, a greater interval o f (f) results 

in higher exploration, more erratic behaviour, and slower convergence. Advice:

1 . 0 0 < < /L a „  = 0 . 5 0 - ( ? L x + ^ mm) <  2 . 0 0  ( 6 . 2 7 )

3 3 8
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Note that lower accelerations lead to higher amplitudes and lower frequencies o f the 

oscillatory trajectories around the attractors. Higher amplitudes widen the exploration 

region while higher frequencies result in the particles overflying their attractors a higher 

number o f times, and approaching them from both sides in each dimension (advisable).

Choose ip, sp, and vmax. Advice:

ip = s p -  0.50

V m axy  = 0 - 5 0 - ( ^ m a x - ^ m i n .

(6.28)

(6.29)

Guidelines for the settings corresponding to five particular instances o f this general PSO 

formulation are offered hereafter.

1. Classical PSO fo rm u la tion

To translate the proposed formulation into the classical one, replace (f)mm in Eq. (6.26) 

by Eq. (6.30). Other relations between the two formulations are offered in Eq. (6.31).

iw = ip -(/>ma 
sw  = sp • (f)n

(f)x — — U(QJW)

(f)s = sw -U (0X) = U(0sw)

(6.30)

(6.31)

Given Eq. (6.30), higher values o f ^max also have the indirect effect o f increasing the 

effect o f randomness (widen the range o f (f)). That is, the lower the <f>max the more similar 

the actual behaviour is to the average behaviour. And therefore, higher values o f </>max 

indirectly decrease the speed o f convergence and result in more erratic behaviour.

2. Constricted PSO form ula tion

Choose aw and 0 < k  < 1. Advice:

aw > 4 (slightly) 

1
(6.32)

Replace Eqs. (6.25) and (6.26) by Eq. (6.33):

3 3 9
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2 -k
------------ . =  if tfvv>4

w =  ̂ aw  - 2  + V«w2 -  4 • aw
x* otherwise

m̂in = 0  

^ max = W - f l W

(6.33)

3. PSO -RRM form ulation

Choose 1.30 < <bmem < 1.90. Advice:
t mean

1.50 < ^ < 1.90 (6.34)

Higher values favour exploration whilst lower values favour fast convergence. This av

erage behaviour exhibits relatively low frequencies in the oscillations (see Fig. 6.90).

Replace Eqs. (6.25) and (6.26) by Eq. (6.35):

W = ^m=an-1 

0min = 0
= 2 ( h > + 1 )

(6.35)

max

Fig. 6 .90 .  S u g g e s t e d  reg ion  in t h e  ‘̂ - w ’ p l a n e  from w h e r e  <\> is to  b e  r a n d o m ly  s a m p l e d  in t h e  P S O - R R M .  N o te  th a t  
<f)mm a n d  <f)mM a r e  n o  lo n g e r  a r e a s  b u t  l ines .  T h e  u s e r  only  c h o o s e s  <j>mean.

Note that w, 0mm, ^mean, and 0max comply with Eqs. (6.25) to (6.27) and with Fig. 6.89.
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4. PS0-RRR1

Choose 1.30 < n < 1.90. Advice:
t  mean

1.50 < 0mean <1.90 (6.36)

Higher values favour exploration whilst lower values favour fast convergence. This av

erage behaviour exhibits relatively low frequencies in the oscillations (see Fig. 6.91).

Replace Eqs. (6.25) and (6.26) by Eq. (6.37):

w =
t m e a n

-1

^ m i n

_ 1
~ 2

(w + l)

^ n a x

_ 3 
~ 2

•(w + l)

(6.37)

Because o f the fact that (f> is always within convergence region, (f)mm > 0 , and the range 

o f randomness is reduced, this approach results in fewer and smaller local explosions, 

and in the actual behaviour similar to the average behaviour. Therefore convergence is 

fast even for high values o f the inertia weight (extremely fast for low values o f w).

Fig. 6 .9 1 .  S u g g e s t e d  reg ion  in t h e  '<f>-w p l a n e  f rom  w h e r e  <f> is to b e  r a n d o m ly  s a m p l e d  in th e  P S 0 - R R R 1 .  T h e  u s e r  
only  c h o o s e s  j)mean.

Note that w, (f)min ,  0 m e a n ,  and (f)max comply with Eqs. (6.25) to (6.27) and with Fig. 6.89.
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The influence o f randomness can be increased, if  desired, by enlarging the (/) interval.

5. PS0-RRR2

Choose 1.70 < <j> < 2.50. Advice:

2.00 < <j> < 2.50 (6.38)

Higher values favour exploration whilst lower values favour fast convergence. This av

erage behaviour presents high frequencies in the oscillations (see Fig. 6.92).

Replace Eqs. (6.25) and (6.26) by Eq. (6.39):

w = “ 2 + A

= 2 - ( w + 0  
(b = 2 • d) — d)T  min rmean t v l

(6.39)

Fig. 6 .9 2 .  S u g g e s t e d  reg ion  in th e  ‘̂ - w ’ p l a n e  f r o m  w h e r e  <f> is to b e  r a n d o m ly  s a m p l e d  in th e  P S O - R R R 2 .  T h e  u s e r  
only  c h o o s e s  ^ mean.

Given that 0 is always within convergence region, <f)mm > 0 , and the range o f random

ness is reduced, this approach results in fewer and smaller local explosions than classi

cal PSO (for high values o f  w  and <̂ max)- However, since both 0mean and the (f) interval 

are always greater than for the PSO-RRR1 formulation, randomness is important and
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the trajectories are more erratic for the PSO-RRR2. Note that while w  and </>max do, </>min 

and <j>mean do not comply with Fig. 6.89. In fact, ^mean > 2 takes the particle farther from 

rather than closer to the attractor. This approach is typically more robust.

Additional comments

These guidelines are meant to be used mainly for mathematical optimization problems, 

where the search-space is abstract. In applications such as ‘swarm robotics’, there are 

other aspects to take into account. For instance, high amplitudes in the oscillations and 

big step sizes are not desirable in these cases, even if  they result in a better exploration 

of the search-space. Therefore much smaller values o f (j> are probably advisable.

6.5. Closure

It was shown in this chapter that it does not make sense to make the constriction factor 

‘adaptive with respect to f t  -which would be more in line with its theoretical develop

ment- because o f the discontinuity in the curve ‘^-constricted f t  for <p< 4 (refer to Fig. 

6.1). Therefore, it is advisable to calculate it replacing <f) by its upper-bound ^max (aw), 

as it is o f common practice in the literature. Note that other adaptive schemes (e.g. 

(Chen, Lee, Liao, & Dai, 2007)) are not explored in this thesis.

It was also shown that -rather counter-intuitively- setting the individuality weight to a 

value perceptively higher than that o f the sociality weight may not be effective in delay

ing convergence and improving exploration. In fact, it might turn out to be harmful for 

the exploration abilities o f the algorithm. Conversely, handling the settings o f the coef

ficients in the velocity update equation comprises an effective means to control the form 

and speed o f convergence.

In addition to the study of popular, successful settings imported from the literature, 

three approaches were developed in this chapter by reducing randomness in the classical 

PSO aiming to obtain a desired average behaviour while never allowing  ̂ to leave the 

convergence region: the PSO-RRM, PSO-RRR1, and the PSO-RRR2. This resulted in 

convergent trajectories at different speeds according to the setting, which show the ten

dency to produce remarkably fewer local explosions than traditional PSO. Thus, trajec-
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tones are more consistent for different runs. In addition, the resulting speed of conver

gence can be controlled by a single coefficient, since w and ^mean are correlated so as to 

produce the desired average behaviour.

The effect o f some preselected coefficients’ settings on the dynamics of a small swarm 

o f four interacting particles flying over 1-dimensional space was visually studied. Only 

three settings -two o f which are in fact variations o f the classical PSO algorithm rather 

than only settings- were selected to undergo a full test on a set of multidimensional 

benchmark problems (see Appendix II).

The results o f the full algorithm on the set o f benchmark multidimensional problems 

confirmed the expected behaviour associated with the selected settings, except that the 

PSO-RRR1 exhibited remarkably faster convergence than anticipated, even for high 

values o f w. This means that the speed o f convergence can also be controlled by means 

o f the (j) interval without affecting the average behaviour. These experiments were per

formed on a global neighbourhood and on a local ring topology with only two 

neighbours. Results showed that the combined effect o f the coefficients’ settings and the 

neighbourhood topology controls the balance between exploration and exploitation. The 

coefficients control the speed o f convergence o f each particle to its attractor, whereas 

the neighbourhood topology controls the spread o f information in the social network.

Finally, guidelines as to how to set the coefficients to obtain a desired behaviour of the 

system are provided. They apply to the classical PSO; to a more general PSO; and to the 

PSO-RRR1 and PSO-RRR2 formulations proposed in this chapter.
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Chapter 7

NEIGHBOURHOODS

A dynamic neighbourhood combining the global topology and the ring topology (with two neighbours) from 
the previous chapter is proposed, where the number of neighbours increases linearly as the search pro
gresses. This neighbourhood structure is implemented for the same three coefficients' settings, and for the 
multi-swarm approach combining them, tested at the end of the previous chapter. Thus the four coeffi
cients’ settings with the proposed dynamic neighbourhood are tested on the same benchmark suite of 
side-constrained problems. The classical wheel topology and a random topology are also tested for refer
ence and comparison purposes, while the results corresponding to the global and the ring topology with 
two neighbours are imported from the previous chapter. A so-called ‘forward topology’ is proposed, and 
experiments are carried out for two neighbours and for a dynamic number of neighbours in the same fash
ion as previously performed for the ‘ring topology’. Additional neighbourhood-related techniques are pro
posed, namely a ‘nearest neighbourhood’ heuristics suitable for the ring and for the forward topologies, 
and a sub-neighbourhood option suitable for any neighbourhood structure. The nearest neighbourhood 
heuristics and the sub-neighbourhood option are tested on the multi-swarm coefficients’ settings only, due 
to time and space constraints.

7.1. Introduction

As discussed and shown in previous chapters, different settings o f the coefficients in the 

velocity update equation notably affect the behaviour of the swarm, as they govern the 

form and speed o f convergence of each particle towards a randomly weighted average 

of its individual and social attractors. In turn, the neighbourhoods’ structure governs the 

form and speed o f spread of individually acquired information throughout the popula

tion, thus governing the update of every particle’s social attractor. Therefore, the coeffi

cients’ settings and the neighbourhood topology together control the speed and form of  

convergence o f the algorithm as a whole.

The global topology and a ring topology with two neighbours were considered in the 

experiments at the end of the previous chapter. Aiming to combine ‘the robustness as

sociated with the high degree o f locality o f the ring topology (with 2 neighbours)’ with 

‘the speed o f convergence and ability to perform fine-grain search of the global topol

ogy’, a dynamic neighbourhood is proposed and tested in this chapter, for the four 

aforementioned coefficients’ settings, on the side-constrained benchmark suite.
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A so-called ‘forward topology’ is proposed, which shares some important characteris

tics with the ring topology. Namely, it allows any number of neighbours and guarantees 

full overlapping, so that the information acquired by any particle is guaranteed to even

tually reach any other particle in the swarm, given enough time. The difference is in that 

the interconnections are not bidirectional in the forward topology. Experiments are car

ried out for the same four coefficients’ settings and on the same benchmark suite as pre

viously performed for the ring topology, thus allowing a direct numerical comparison.

A possible strategy is proposed, which is aimed at taking advantage of proximity in the 

physical space, without renouncing the overlapping of the ring and forward topologies. 

This strategy is tested on the full benchmark suite, but for the multi-swarm coefficients’ 

settings only, due to time and space restrictions.

Finally, aiming to better exploit the strengths o f different coefficients’ settings without 

interfering with one another, the strategy o f dividing the swarm in sub-neighbourhoods, 

each with its own coefficients’ settings and topology, is proposed. Two alternative in

terconnections to pass information through sub-neighbourhoods are investigated. The 

multi-swarm coefficients’ setting is used to test this technique. Experiments are carried 

out using three sub-neighbourhoods, each with different coefficients’ settings.

7.2. Dynamic neighbourhood

If a given problem space is to be searched, for which there is no information available 

with regards to its landscape, it makes sense to scout the space first to identify potential 

good areas before spending too much effort in exploiting. This way the resources are 

expected to be better spent. With this in mind, and considering the previous experimen

tal results, it is immediate to think o f starting the search with a very local topology to 

identify good areas, gradually increasing the ‘globality’ of the social network so as to 

improve convergence and exploitation as the search progresses. The original idea was to 

start with the neighbourhoods composed by each particle itself only (i.e. number of 

neighbours equal to zero) and linearly increase the number o f neighbours so that the 

neighbourhood topology becomes global (i.e. full cooperation) at the end o f the search. 

Given that the experiments in the previous chapter were performed for the global topol
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ogy and the ring topology with two neighbours, the dynamic neighbourhood tested here 

linearly varies the number o f neighbours from two to the swarm-size, so as to visualize 

the results obtained by a linear variation between them.

This neighbourhood structure is implemented for the same three coefficients’ settings 

(PSO-RRR2-1, PSO-RRR1-1, and C-PSO-1), and for the multi-swarm (MS) approach 

combining them, which were tested at the end o f the previous chapter. For comparison, 

and as a frame o f reference, the experiments are also carried out for the classical wheel 

and a random topology, while the results obtained for the global topology and the ring 

topology with two neighbours are imported from the previous chapter. For the random 

topology, the number of neighbours for each particle at each time-step is randomly gen

erated (««), and then nn particles from the swarm are randomly chosen. The results are 

presented in Table 7.1 to Table 7.15, and in Fig. 7.1 to Fig. 7.27.

It is fair to note that the first dynamic topology in PSO -to the best of my knowledge- 

was proposed by Suganthan (1999), where the social attractor varied from the local to 

the swarm’s best experience. An empirical formula to calculate a threshold is proposed. 

If the threshold is passed, the neighbourhood is global. Otherwise the neighbourhood is 

composed o f the particles within a given normalized distance.

Another dynamic topology is the ‘Stochastic Star’ topology proposed in (Miranda, 

Keko, & Duque, 2008), which is a sort o f generalization o f the ‘global topology’. At 

each time-step, and for each dimension of the search-space, there is a probability that a 

particle will not access the global best information, and therefore would move only un

der the influence o f the inertia and the attraction towards its individual best experience.

A similar approach to the dynamic neighbourhood proposed here is that in (Richards & 

Ventura, 2003), where each particle starts accessing only one other particles’ best ex

perience, and the number o f neighbours is increased at regular intervals until it becomes 

global by the time 80% o f the search length has elapsed.

Other classical topologies that have not been tested in this thesis are the ‘von Neumann’ 

and the ‘Pyramid’ topologies (see (Engelbrecht, 2005, pp. 107-109) and (Kennedy & 

Mendes, 2006)). For further studies on neighbourhood topologies, refer to (Kennedy, 

1998), (Kennedy, 1999), (Mendes, 2004), (Li, 2004), (Clerc, 2006a, pp. 87-101), 

(Abraham, Liu, & Chang, 2006), (Mohais, 2007), and (Akat & Gazi, 2008).
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T a b le  7 .1 .  S ta t i s t ica l  r e s u l t s  o u t  o f  2 5  r u n s  for  t h e  P S O - R R R 2 - 1 ,  t h e  P S O - R R R 1 - 1 ,  t h e  C - P S O - 1 ,  a n d  a  M ul t i -S w arm  
a lgo r i th m  o p tim iz ing  t h e  2 -d im e n s io n a l  S p h e r e  func t ion .  T h e  n e ig h b o u r h o o d s  t e s t e d  a r e  th e  GLOBAL; t h e  RIN G  with 
2 n e ig h b o u r s ;  t h e  R IN G  with linearly  in c r e a s in g  n u m b e r  o f  n e ig h b o u r s  (from 2 to ‘s w a r m - s i z e  -  T); t h e  W H E E L ;  a n d  
a  R A N D O M  top o lo gy .  A run with a n  e r r o r  n o  g r e a t e r  t h a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-steps i f c i S S
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
jULUDML

1000 1.74E-57 3.42E-54 4.65E-53 5.96E-52 4.79E-18 -

an = 2
10000 0.00E+00 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100

RING
1000 2.61 E-53 8.64E-49 7.07E-46 1.26E-44 1.55E-18 I

PSO-RRR2-1 nni = 2 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.76E-54 1.58E-50 1.80E-48 2.05E-47 5.87E-19 -

10000 0.00E+00 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100
wnccL

1000 2.96E-54 7.33E-48 1.69E-39 4.23E-38 5.71E-19 -
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

iKMrauum
1000 1.74E-51 3.89E-49 2.60E-48 1.45E-47 2.63E-19 -
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

OLUDML
1000 5.19E-88 2.30E-85 3.33E-84 4.17E-83 3.43E-37 -

nn = 2
10000 O.OOE+OO 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100

RING
1000 1.09E-82 2.99E-80 2.13E-78 2.27E-77 1.52E-37 -

PSO-RRR1-1 nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf=(m-1) 1000 1.65E-84 8.87E-82 6.58E-81 8.62E-80 3.99E-38 -

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nncEL

1000 4.81E-86 3.57E-80 1.30E-76 3.14E-75 1.59E-37 -

... 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
IWIUUM

1000 2.01 E-86 4.41E-83 1.33E-82 7.29E-82 6.36E-37 -

, 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
OLUDML

1000 2.74E-91 5.15E-88 2.06E-84 5.14E-83 9.16E-30 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 5.58E-82 3.44E-78 5.67E-76 6.45E-75 3.58E-32 -

C-PSO-1 nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 7.89E-85 1.89E-81 2.99E-79 4.49E-78 4.59E-33 -

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnccL

1000 2.41E-87 2.54E-79 1.85E-67 4.63E-66 3.51 E-33 -
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

rvMnuum
1000 1.41E-87 2.03E-84 1.54E-82 2.99E-81 3.73E-34 -

, 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
OLUDML

1000 2.38E-90 4.67E-86 1.06E-83 2.16E-82 1.70E-20 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 3.39E-85 4.26E-78 9.85E-77 1.83E-75 2.68E-20 -

Multi-Swarm nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 2.99E-86 1.12E-80 2.13E-79 2.33E-78 4.47E-20 -

mi ir-r-i 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
1000 2.69E-64 2.13E48 8.29E 44 2.07E-42 1.92E-19 -

nAkinr I 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
pMRUUm

1000 1.59E-85 2.47E-82 2.84E-80 5.68E-79 2.37E-20 -
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T a b l e  7 .2 .  S ta t is t ica l  r e s u l t s  o u t  o f  25  r u n s  for th e  P S 0 - R R R 2 - 1 ,  t h e  P S O - R R R 1 - 1 ,  th e  C - P S O - 1 ,  a n d  a  M ul t i -S w arm  
a lgo r i th m  optimizing  t h e  1 0 -d im e n s io n a l  S p h e r e  func t ion .  T h e  n e i g h b o u r h o o d s  t e s t e d  a r e  th e  GLOBAL; t h e  RING 
with 2  n e ig h b o u r s ;  t h e  R IN G  with l inearly  in c r e a s in g  n u m b e r  of n e ig h b o u r s  (from 2 to ‘s w a r m - s i z e  -  T); t h e  W H E E L ; 
a n d  a  R A N D O M  topo logy .  A run with a n  e r r o r  n o  g r e a t e r  t h a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-steps
■ ■ |  - v

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success
10000 2.04E-256 3.90E-250 3.93E-247 8.75E-246 2.28E-126 100

[ULUDAL
1000 4.97E-24 5.49E-23 1.25E-22 1.06E-21 8.08E-14 -

nn = 2
10000 1.29E-145 2.82E-143 3.37E-141 5.90E-140 1.13E-73 100

RING
1000 1.78E-13 3.67E-12 5.33E-12 2.02E-11 8.77E-09 -

PSO-RRR2-1 nni = 2 10000 1.46E-226 5.19E-223 5.65E-221 6.34E-220 1.32E-113 100
nnf = (m-1) 1000 2.26E-16 7.12E-15 1.30E-14 6.38E-14 2.46E-10 -

10000 9.84E-173 5.18E-161 2.52E-154 5.85E-153 4.05E-81 100
w h e e l

1000 1.44E-15 2.61E-14 1.09E-12 1.14E-11 6.59E-10 -

10000 1.31E-72 2.36E-67 6.47E-65 1.05E-63 6.16E-36 100
KAnUUIR

1000 2.31E-06 6.63E-05 3.40E-04 4.98E-03 1.98E-05 -
10000 0.00E+00 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100

ULUDAL
1000 4.75E-67 1.61E-65 5.10E-65 3.50E-64 5.98E-35 -

nn = 2
10000 O.OOE+OO 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100

RING
1000 4.86E-35 2.94E-33 4.46E-33 1.53E-32 1.01E-19 -

PSO-RRR1-1 nni = 2 10000 O.OOE+OO 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 4.00E-44 7.30E-43 2.52E-42 1.96E-41 1.93E-24 -

10000 0.00E+00 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100
WHEEL

1000 3.62E-48 1.39E-43 1.02E-41 1.74E40 9.63E-25 -

. . . 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
KANUUNI

1000 3.74E-54 8.67E-53 2.50E-52 1.48E-51 2.26E-29 -

, 10000 0.00E+00 0.00E+00 0.00E+00 O.OOE+OO 0.00E+O0 100
ULUDAL

1000 1.30E-51 6.84E-50 3.49E-49 5.15E-48 7.98E-27 -

nn = 2
10000 1.13E-280 2.23E-277 4.17E-274 5.97E-273 2.11E-140 100

RING
1000 7.36E-27 3.12E-25 4.91 E-25 2.77E-24 1.50E-15 -

C-PSO-1 nni = 2 10000 O.OOE+OO O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 7.32E-33 1.59E-31 3.09E-31 2.69E-30 1.18E-18 -

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
WHEEL

1000 6.57E-35 2.83E-30 2.16E-29 3.11E-28 3.41E-18 -

. . . 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
KANUUm

1000 1.27E-36 3.86E-34 9.19E-33 1.87E-31 1.24E-19 -

. 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
ULUDAL

1000 3.21 E-58 2.00E-56 2.03E-55 1.42E-54 2.17E-18 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 1.20E-153 100

RING
1000 1.41E-32 1.17E-30 1.06E-29 9.91 E-29 2.68E-11 -

Multi-Swarm nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 4.18E-43 2.00E-39 5.49E-38 1.09E-36 1.35E-14 -

10000 2.19E-202 5.77E-193 1.51E-186 2.67E-185 5.31 E-97 100
|WHEEL

1000 6.55E-22 4.21E-17 2.35E-15 3.32E-14 2.55E-11 -

I 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
HAHUUW1

1000 3.71 E 4 4 2.13E-42 4.52E-41 4.89E-40 4.41E-17 -
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T a b le  7 .3 .  S ta t i s t ic a l  r e s u l t s  o u t  o f  2 5  r u n s  for t h e  P S O - R R R 2 - 1 ,  t h e  P S O - R R R 1 - 1 ,  th e  C - P S O - 1 ,  a n d  a  M ul t i -S w arm  
a lgo r i th m  o p t im iz ing  t h e  3 0 - d im e n s io n a l  S p h e r e  funct ion .  T h e  n e ig h b o u r h o o d s  t e s t e d  a r e  th e  GLOBAL; th e  RIN G  
with 2 n e ig h b o u r s ;  t h e  R IN G  with l inearly  in c r e a s in g  n u m b e r  of n e ig h b o u r s  (from 2 to  ‘s w a r m - s i z e  -  T) ;  t h e  W H E E L ; 
a n d  a  R A N D O M  to p o lo gy .  A run  with a n  e r r o r  n o  g r e a t e r  t h a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-steps
■ ■ ■ H i K i B W S W W l f f f t

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success
10000 1.22E-87 3.29E-84 3.07E-82 6.31E-81 2.12E-45 100

U i-U D M L
1000 3.49E-06 1.85E-05 4.08E-05 2.77E-04 1.84E-06 -

nn = 2
10000 3.77E-43 1.90E-42 7.86E-42 6.78E-41 9.24E-25 100

RING
1000 1.23E-01 2.84E-01 3.12E-01 6.69E-01 2.14E-04 -

PSO-RRR2-1 nni = 2 10000 2.21 E-74 8.42E-73 6.49E-72 6.44E-71 3.87E-40 100
nnf = (m-1) 1000 9.91E-03 2.85E-02 2.98E-02 7.82E-02 4.65E-05 -

10000 9.29E-50 8.45E-47 7.72E-45 1.17E-43 4.78E-27 100
n n c c L

1000 3.04E-02 9.25E-02 1.34E-01 3.69E-01 5.88E-05 -
10000 6.28E-07 5.97E-04 2.90E-03 2.00E-02 1.56E-05 20

r\M N LH JN I
1000 2.75E-KJ2 1.02E-KJ3 1.25E-HD3 3.38E-K)3 1.01E-02 -
10000 4.06E-07 3.79E-04 9.89E-02 2.39E+00 4.69E-17 32

U L U D M L
1000 5.57E-06 1.64E-03 2.70E-01 4.03E+00 5.93E-11 -

nn = 2
10000 8.13E-144 7.26E-142 5.86E-141 6.69E-140 1.20E-74 100

DiMPKINb
1000 1.73E-11 7.83E-11 8.50E-11 2.40E-10 2.05E-09 -

PSO-RRR1-1 nni = 2 10000 2.04E-268 4.97E-257 6.23E-249 8.26E-248 1.16E-134 100
nnf = (m-1) 1000 5.25E-17 2.48E-16 3.07E-16 1.05E-15 3.12E-12 -

WHEEL
10000 4.05E-48 3.99E-40 3.64E-29 9.08E-28 1.20E-22 100
1000 2.86E-05 1.73E-03 1.91E-02 2.02E-01 2.62E-06 -

. . . 10000 1.19E-286 7.00E-282 1.74E-276 4.28E-275 7.38E-143 100
rwnuum

1000 7.92E-27 7.54E-25 1.36E-23 2.88E-22 2.67E-16 -
10000 3.05E-220 2.21 E-212 1.42E-207 3.49E-206 1.57E-108 100

OLUDML
1000 8.53E-20 1.09E-17 1.04E-16 9.10E-16 1.33E-12 -

CNIICc 10000 5.68E-96 1.67E-94 1.65E-93 3.57E-92 7.60E-51 100

RING
1000 7.53E-07 3.07E-06 3.62E-06 1.35E-05 5.46E-07 -

C-PSO-1 nni = 2 10000 3.06E-182 6.62E-179 1.98E-177 3.84E-176 3.81 E-93 100
nnf = (m-1) 1000 7.02E-10 4.53E-09 4.77E-09 1.48E-08 1.77E-08 -

10000 4.49E-100 1.31 E-95 8.45E-91 2.09E-89 2.29E-50 100
nnccL

1000 1.74E-08 9.80E-07 4.16E-06 2.23E-05 1.49E-07 -

.. . 10000 4.50E-109 1.09E-103 7.90E-102 5.27E-101 4.94E-55 100
rvMnuum

1000 1.49E-08 1.67E-07 3.64E-07 3.06E-06 1.30E-07 -

, 10000 1.10E-181 4.68E-172 1.95E-166 4.21E-165 7.90E-88 100
OLUDML

1000 4.53E-17 1.52E-14 4.02E-11 1.00E-09 3.63E-10 -

nn = 2
10000 3.13E-113 7.02E-109 2.72E-107 5.96E-106 6.93E-57 100

RING
1000 2.83E-08 9.73E-08 2.55E-07 3.82E-06 1.75E-06 -

Multi-Swann nni = 2 10000 1.28E-185 6.46E-180 6.80E-173 1.68E-171 2.58E-91 100
nnf = (m-1) 1000 7.07E-12 1.43E-10 3.51E-10 3.97E-09 1.57E-08 -

uiurri 1 0 0 0 0 4.31E-56 1.21E-53 6.22E-52 6.12E-51 1.42E-30 100nnccL
1000 8.25E-04 1.66E-02 3.24E-02 2.36E-01 2.49E-05 -

... 10000 9.07E-180 1.28E-175 2.08E-172 3.32E-171 1.66E-90 100
1000 1.80E-16 1.41E-14 1.28E-13 2.27E-12 1.40E-10 -
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Mean Best Conflict -  2D Sphere function

-------- PS0-RRR2-1 GLOBAL

-------- PS0-RRR1-1 GLOBAL

-------- PS0-RRR2-1 RING 2 NEIGH.

-------- PSO-RRRM RING2NEIGH

--------PS0-RRR2-1 RING DYNAMIC

--------PS0-RRR1-1 RING DYNAMIC

-------- PS0-RRR2-1 WHEEL

--------PS0-RRR1-1 WHEEL

-------- PSO-RRRM RANDOM

-------- PS0-RRR1-1 RANDOM

■-------> MS GLOBAL =  MS RING 2 NEIGH. « =  MS RING DYNAMIC =  MS WHEEL

JL
1 501  1001  1501  2001  2501  3001  3501  4001  4501  5001  5501  6001  6501  7001  7501  8001  8501  9001  9501

Tim e-steps

Fig. 7 .1 .  C o n v e r g e n c e  c u r v e s  o f  th e  m e a n  b e s t  conflict  for t h e  2D  S p h e r e  func t ion ,  a s s o c i a t e d  to  T a b l e  7 .1 .  T h e  
c o l o u r - c o d e s  u s e d  to  identify  t h e  n e ig h b o u r h o o d  s t r u c tu r e s  a r e  t h e  s a m e  in th e  ta b l e  a n d  f igure  a s s o c i a t e d .

Mean Best Conflict -  10D Sphere function

-------- PS0-RRR2-1 GLOBAL -------- PSO-RRRM RING 2 NEIGH -------- PS0-RRR2-1 RING DYNAMIC -------- PS0-RRR2-1 WHEEL -------- PS0-RRR2-1 RANDOM

-------- PSO-RRR1-1 GLOBAL -------- PS0-RRR1-1 RING 2 NEIGH. -------- PS0-RRR1-1 RING DYNAMIC --------PS0-RRR1-1 WHEEL -------- PSO-RRR 1-1 RANDOM
-------- C-PSO-1 GLOBAL --------C-PSO-1 RING 2 NEIGH -------- C-PSO-1 RING DYNAMIC --------C-PSO-1 WHEEL --------C-PSO-1 RANDOM

■» MS GLOBAL « = = »  MS RING2 NEIGH « = =  MS RING DYNAMIC ■------- » MS WHEEL =  MS RANDOM

:

i i
i Hii

i
* *
V  
* »1»

1
I

1 501  1001  1501  2001  2501  3001  3501  4001  4501  5001  5501  6001  6501  7001  7501  8001  8501  9001  9501

Fig. 7 .2 .  C o n v e r g e n c e  c u r v e s  o f  t h e  m e a n  b e s t  conflict  for t h e  1 0 D  S p h e r e  func t ion ,  a s s o c i a t e d  to  T a b l e  7 .2 .  T h e  
c o l o u r - c o d e s  u s e d  to  identify th e  n e ig h b o u r h o o d  s t r u c tu r e s  a r e  t h e  s a m e  in t h e  t a b l e  a n d  f igure  a s s o c i a t e d .
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Mean Best Conflict -  BOD Sphere function

PS0-RRR2-1 RANDOMPS0-RRR2-1 GLOBAL —  PSO-RRR2-1 RING 2 NEIGH PS0-RRR2-1 RING DYNAMIC
PS0-RRR1-1 WHEELPSO-RRR1-1 GLOBAL  PSO-RRR1-1 RING2NEIGH PSO-RRR1-1 RING DYNAMIC

 C-PSO-1 WHEEL  C-PSO-1 RANDOMC-PSO-1 GLOBAL C-PSO-1 RING 2 NEIGH  C-PSO-1 RING DYNAMIC
MS RANDOMMS GLOBAL MS RING 2 NEIGH.

501  1001  1501  2001  2501  3001  3501  4001  4501  5001  5501  6001  6501  7001  7501  8001  8501  9001  9501

Fig. 7 .3 .  C o n v e r g e n c e  c u r v e s  of t h e  m e a n  b e s t  conflict  for th e  30D  S p h e r e  func t ion ,  a s s o c i a t e d  to  T a b l e  7 .3 .  T h e  
c o l o u r - c o d e s  u s e d  to identify t h e  n e ig h b o u r h o o d  s t r u c tu r e s  a r e  th e  s a m e  in th e  ta b l e  a n d  f igure  a s s o c i a t e d .

Mean Best Conflict -  30D Sphere function

■ PSO-RRR2-1 GLOBAL
■ PS0-RRR1-1 GLOBAL
■ C-PSO-1 GLOBAL
■ MS GLOBAL

• PSO-RRR2-1 RING 2 NEIGH  PSO-RRR2-1 RING DYNAMIC —
• PSO-RRR1-1 RING 2 N E IG H  PSO-RRR 1-1 RING DYNAMIC —
• C-PSO-1 RING 2 NEIGH  C-PSO-1 RING DYNAMIC —

> MS RING 2 NEIGH. =  MS RING DYNAMIC «=

■-■PSO-RRR2-1 WHEEL 
—  PSO-RRR1-1 WHEEL
 C-PSO-1 WHEEL
= >  MSWHEEL

 PSO-RRR2-1 RANDOM
 PSO-RRRM RANDOM
 C-PSO-1 RANDOM

■MS RANDOM

Ik L -l
501  1001  1501  2001  2501  3001  3501  4001  4501  5001  5501  6001  6501  7001  7501  8001  8501  9001  9501

Fig. 7.4. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for th e  30D S p h e r e  function, a s s o c ia te d  to T ab le  7.3. The
c o lo u r -c o d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ru c tu r e s  a r e  the  s a m e  in the  tab le  a n d  figure a s so c ia te d .
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T a b l e  7.4.  S ta t is t ica l  r e s u l t s  o u t  o f  25  r u n s  for t h e  P S O - R R R 2 - 1 ,  th e  P S O - R R R 1 - 1 ,  th e  C - P S O - 1 ,  a n d  a  M ul t i -S w arm  
a lgo r i th m  optimizing  th e  2 -d im e n s io n a l  R o s e n b r o c k  funct ion .  T h e  n e i g h b o u r h o o d s  t e s t e d  a r e  th e  GLOBAL; th e  RIN G  
with 2  n e ig h b o u r s ;  th e  RIN G  with l inearly  in c r e a s in g  n u m b e r  o f  n e i g h b o u r s  (from 2 to  ‘s w a r m - s i z e  -  T); t h e  W H E E L ;  
a n d  a  R A N D O M  topo logy .  A run with a n  e r r o r  n o  g r e a t e r  th a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

U L U D M L
1000 1.54E-30 3.01E-28 4.82E-26 3.96E-25 3.72E-08 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 3.11E-20 3.03E-16 3.31 E-15 3.09E-14 6.95E-06 -

PSO-RRR2-1 nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

L _  .
nnf = (m-1) 1000 3.71 E-23 1.08E-18 2.30E-17 4.07E-16 4.46E-06 -

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
v v n c c L

1000 6.68E-25 1.00E-19 1.96E-15 4.47E-14 8.76E-07 -
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

r v M n u u m
1000 4.13E-20 5.56E-17 2.58E-15 5.86E-14 7.67E-07 -

GLOBAL
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
1000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 3.70E-20 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 4.93E-32 4.78E-27 6.69E-25 7.34E-24 1.27E-11 -

PSO-RRR1-1 nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 0.00E+C0 O.OOE+OO 7.89E-33 1.97E-31 6.36E-15 -

WHEEL
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
1000 O.OOE+OO O.OOE+OO 3.20E-32 7.89E-31 3.08E-16 -

... 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
rv M rc u u m

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.39E-18 -
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

O L U D M L
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.29E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 5.77E-21 1.65E-15 6.19E-14 1.30E-12 2.76E-06 -

C-PSO-1 nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 6.36E-24 2.02E-20 4.32E-19 5.48E-18 1.46E-07 ;

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
w v n c c L

1000 4.44E-31 7.89E-26 2.30E-18 3.61 E-17 6.35E-09 -
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

(VMiiuum
1000 O.OOE+OO 1.11E-29 8.77E-28 1.56E-26 3.12E-09 -

. 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
O L U D M L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.05E-09 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 O.OOE+OO 9.00E-24 2.19E-18 3.50E-17 1.78E-06 -

Multi-Swarm nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 O.OOE+OO 1.77E-30 1.67E-26 3.95E-25 1.36E-06 -

uiucn 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
fw n c c L .

1000 2.61E-29 7.67E-24 1.99E-16 4.89E-15 4.17E-07 -

In Akinr... 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
j rv M n u u m

1000 O.OOE+OO O.OOE+OO 1.41E-28 3.49E-27 5.78E-09 -

3 5 3
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T a b l e  7 .5 .  S ta t i s t ica l  r e s u l t s  o u t  o f  2 5  r u n s  for  t h e  P S 0 - R R R 2 - 1 ,  t h e  P S O - R R R 1 - 1 ,  th e  C - P S O - 1 ,  a n d  a  M ul t i -S w arm  
a lgo r i th m  o p tim iz ing  th e  1 0 - d im e n s io n a l  R o s e n b r o c k  funct ion .  T h e  n e ig h b o u r h o o d s  t e s t e d  a r e  t h e  GLO BA L; th e  
R IN G  with 2 n e ig h b o u r s ;  t h e  R IN G  with l inearly  in c r e a s in g  n u m b e r  o f  n e ig h b o u r s  (from 2 to ‘s w a r m - s i z e  -  T);  th e  
W H E E L ;  a n d  a  R A N D O M  to p o lo gy .  A run with a n  e r r o r  n o  g r e a t e r  th a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-steps
, |  . . J H Q Q 2 3 3 X E S E

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success
10000 1.09E-06 2.72E-04 6.38E-01 3.99E+00 6.79E-03 32

U L U D M L
1000 2.22E-02 2.47E-+O0 5.31 E-+O0 6.85E+01 2.34E-03 -

04IIcc 10000 6.79E-05 1.64E-02 1.82E-02 7.14E-02 7.64E-03 4

RING
1000 9.88E-03 1.64E+00 2.03E+00 5.50E-KX) 1.63E-02 -

PSO-RRR2-1 nni = 2 10000 1.74E-06 3.60E-04 3.93E-04 1.15E-03 1.20E-02 24
nnf = (m-1) 1000 1.72E-02 4.02E+00 3.24E-K10 5.10E+00 1.71E-02 -

10000 7.23E-04 1.57E-03 3.21E-01 3.99E+00 4.79E-03 0
w w n c c L

1000 3.35E+00 4.59E-K)0 4.70E-K)0 7.49E-K)0 6.32E-04 -

RANDOM
10000 1.14E-01 1.57E+00 1.95E+00 5.93E+00 1.03E-03 0
1000 6.91E-01 1.06E-K)1 3.96E+01 2.06E+02 8.98E-03 -

10000 1.13E-28 8.73E-01 1.64E+00 3.99E+00 1.08E-03 44
U L U D M L

1000 6.53E-06 1.46E+O0 1.90E+00 4.99E-KJ0 2.85E-03 -

nn = 2
10000 2.20E-10 3.45E-09 3.21 E-08 5.63E-07 2.39E-03 100

RING
1000 5.10E-04 1.17E-+O0 1.30E+00 4.19E+00 1.11E-02 -

PSO-RRR1-1 nni = 2 10000 5.92E-29 1.37E-28 1.59E-01 3.99E+00 1.36E-03 96
nnf = (m-1) 1000 1.51E-04 1.16E-01 4.36E-01 4.17E+00 7.96E-03 -

10000 5.31 E-22 1.26E-17 7.97E-01 3.99E+00 2.60E-04 80
v v n c c L

1000 9.02E-03 3.45E-01 1.11E+00 4.46E-KX) 6.77E-04 -

10000 1.44E-26 1.74E-22 3.19E-01 3.S9E+00 2.59E-03 92
n n n u u m

1000 3.29E-03 9.70E-03 5.37E-01 4.98E-+00 4.31E-03 -

10000 1.18E-10 4.49E-06 4.79E-01 3.99E+00 8.56E-03 76
U L U D M L

1000 2.73E-03 5.03E-01 7.26E-K30 8.06E-K51 6.76E-03 -

nn = 2
10000 1.23E-08 1.29E-03 1.61E-01 3.99E+00 7.32E-03 8

RING
1000 1.18E-02 3.08E+00 2.69E-H30 5.08E-K)0 1.90E-02 -

C-PSO-1 nni = 2 10000 3.97E-08 8.83E-07 6.94E-06 1.28E-04 8.35E-03 96
nnf = (m-1) 1000 1.33E-03 2.28E+00 2.11E+00 3.79E-H00 1.63E-02 -

10000 6.82E-07 1.55E-05 7.97E-01 3.99E+00 5.04E-03 72
v v n c c L

1000 4.74E-02 2.79E+00 8.92E-KD0 7.60E-K)1 1.54E-03 -

. . . 10000 2.90E-05 6.25E-04 4.79E-01 3.99E+00 8.31 E-03 16
1000 2.01E-01 2.51E+00 2.75E-HD0 6.57E+00 3.84E-03 -

. 10000 5.91E-12 2.94E-02 1.02E+00 5.59E+00 7.53E-03 16
u L U D M L

1000 9.37E-05 6.67E-01 1.47E-HD0 6.46E+00 7.93E-03 -

nn = 2
10000 4.01E-09 8.03E-07 1.61E-01 3.99E+00 8.87E-03 80

RING
1000 2.63E-03 1.62EOO 1 82E-K30 5.11E+00 1.79E-02 -

Multi-Swarm nni = 2 10000 1.88E-15 1.16E-09 1.42E-05 3.49E-04 1.08E-02 96
nnf = (m-1) 1000 5.39E-04 6.18E-01 8.49E-01 4.07E+00 1.45E-02 -

l i i u r r i 10000 8.63E-07 1.79E-04 9.58E-01 4.00E+00 5.16E-03 32
j w n c c L

1000 2.41E-02 4.69E-K50 5.62E-K)0 1.35E-MD1 3.19E-03 -

nA binr s 10000 6.03E-16 6.41 E-15 6.38E-01 3.99E+00 5.68E-03 84
T iM n u u m

1000 3.40E-02 2.42E-01 8.58E-01 4.27E-K50 4.87E-03 -

3 5 4
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T a b l e  7 .6 .  S ta t i s t ica l  r e s u l t s  o u t  o f  25  r u n s  for t h e  P S 0 - R R R 2 - 1 ,  t h e  P S 0 - R R R 1 - 1 ,  t h e  C - P S O - 1 ,  a n d  a  M u l t i -S w a rm  
a lgo r i th m  op t im iz ing  th e  3 0 -d i m e n s i o n a l  R o s e n b r o c k  func t ion .  T h e  n e i g h b o u r h o o d s  t e s t e d  a r e  t h e  G L O B A L; t h e  
R IN G  with 2 n e ig h b o u r s ;  t h e  R IN G  with linearly  in c r e a s in g  n u m b e r  of n e ig h b o u r s  (f rom 2 to ‘s w a r m - s i z e  -  1'); th e  
W H E E L ;  a n d  a  R A N D O M  top o lo g y .  A run  with a n  e r r o r  n o  g r e a t e r  th a n  0 .00 01  is r e g a r d e d  a s  s u c c e s s f u l .

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success
10000 1.41E-04 1.27E+01 1.03E+01 1.88E+01 1.45E-03 0

VJLUDHL
1000 8.48E+00 2.80E+01 5.20E+01 1.24E+02 2.95E-04 i

nn = 2
10000 1.14E-01 1.00E+01 1.06E+01 2.31 E+01 1.13E-02 0

RING
1000 4.82E+01 1.40E+02 1.48E+02 3.09E+02 1.57E-02 -

PSO-RRR2-1 nni = 2 10000 2.91 E-07 1.46E+01 1.29E+01 2.28E+01 7.38E-03 4
nnf = (m -1) 1000 2.84E+01 6.81 E-*-01 7.44E+01 1.43E-K32 1.16E-02 -

10000 3.17E+00 1.89E+01 2.63E+01 7.94E+01 6.73E-04 0
w n c c L

1000 3.52E+01 1.11E+02 1.60E+02 5.59E-MD2 3.21E-04 -

10000 1.33E+01 9.97E+01 1.63E+02 5.42E+02 1.54E-03 0
r tM rcu u m

1000 8.75E+04 2.48E+05 3.90E-*-05 1.94E+06 2.56E-02 -
10000 2.27E+01 9.15E+01 1.06E+02 3.67E+02 3.98E-11 0

uL U D M L
1000 2.43E+01 9.38E+01 1.10E+02 3.69E+02 2.84E-08 -

nn = 2
10000 8.78E-03 7.24E+00 7.16E+00 1.91 E+01 2.15E-03 0

RING
1000 8.28E+00 2.61E+01 4.28E+01 1.77E+02 4.38E-03 -

PSO-RRR1-1 nni = 2 10000 2.56E-17 9.97E-13 1.35E+00 9.73E+00 2.25E-03 72
nnf = (m -1) 1000 2.21E+01 2.48E+01 3.96E-+01 8.33E+01 2.28E-03 -

10000 5.13E-04 2.33E+00 8.76E+00 8.10E+01 4.75E-06 0
n n c c L

1000 2.84E+01 9.14E+01 1.16E-K32 2.21 E-+02 1.97E-04 -

. . . 10000 2.12E-14 7.86E-10 1.12E+00 3.99E+00 6.76E-04 72
K ttN U U m

1000 4.23E+00 2 .0 8 E -h01 3.14E+01 1.22E+02 1.54E-04 -
10000 1.17E-05 3.90E-02 1.05E+00 4.02E+00 5.58E-03 8

u L U D M L
1000 1.55E+00 2.22E+01 3.58E+01 1.79E+02 9.02E-04 -

CMIIee 10000 2.89E-03 6.94E-01 3.39E+00 1.79E+01 7.42E-03 0

RING
1000 1.32E+01 2.89E+01 5.04E+01 1.45E+02 1.30E-02 -

C-PSO-1 nni = 2 10000 3.41E-06 3.73E+00 3.16E+00 1.00E+01 6.55E-03 4
nnf = (m -1) 1000 1.13E+01 2.63E+01 3.40E+01 8.12E+01 8.11E-03 -

10000 1.02E-03 4.82E+00 4.80E+00 1.07E+01 1.33E-03 0
vvriccL

1000 2.04E+01 7.57E-HD1 6.24E-+01 1.77E+02 2.16E-05 -

l 10000 3.07E-03 1.32E+01 1.09E+01 7.22E+01 1.63E-03 0
i w n u u n

1000 1.68E+01 6.96E+01 6.14E-KJ1 2.16E-H32 1.10E-04 -

, 10000 4.21 E-08 1.67E+01 2.70E+01 7.68E+01 3.90E-03 4
ULUDM L

1000 2.33E-02 2.30E-K31 4.38E+01 1.36E-K)2 2.59E-03 -

nn = 2
10000 9.14E-03 7.09E+00 6.59E+00 1.46E+01 3.01 E-03 0

RING
1000 6.26E+00 7.08E+01 5.33E-K51 8.71E-K51 5.27E-03 -

Multi-Swarm nni = 2 10000 1.56E-05 5.30E+00 6.36E+00 1.98E+01 2.76E-03 4

nnf = (m -1) 1000 4.72E+00 2.73E+01 4.05E+01 1.34E+02 3.79E-03 -

urn if-i-i 10000 2.16E-02 1.33E+01 1.98E+01 7.13E+01 6.47E-04 0
|v * n c c L

1000 2.67E+01 1.29E+02 1.30E-K52 2.98E+02 1.17E-04 -

. . . 10000 2.60E-04 1.16E+00 2.11E+00 1.15E+01 5.07E-03 0
rw N U U iw

1000 7.09E-MD0 2.55E+01 4.35E+01 1.14E+02 2.25E-03 -

355
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Mean Best Conflict - 2D Rosenbrock function

PS0-RRR2-1 RING DYNAMIC —  PS0-RRR2-1 WHEEL PS0-RRR2-1 RANDOM

PSO-RRRM RINGDYNAMIC PSO-RRR1-1 WHEEL  PSO-RRRM RANDOMPSO-RRRM GLOBAL  PSO-RRRM RING 2NEIGH

 C-PSO-1 RANDOM C-PSO-1 GLOBAL  C-PSO-1 RING2 NEIGH.  C-PSO-1 RINGDYNAMIC

MS GLOBAL MS RANDOMMSRING2NEIGH. MS RING DYNAMIC

Time-steps

Fig. 7 .5.  C o n v e r g e n c e  c u r v e s  of th e  m e a n  b e s t  conflict  for t h e  2D  R o s e n b r o c k  funct ion ,  a s s o c i a t e d  to  T a b l e  7 .4 .  T h e  
c o lo u r - c o d e s  u s e d  to  identify  th e  n e ig h b o u r h o o d  s t r u c tu r e s  a r e  th e  s a m e  in th e  t a b l e  a n d  f igure  a s s o c i a t e d .

Mean Best Conflict -  10D Rosenbrock function

-------- PS0-RRR2-1 GLOBAL -------- PS0-RRR2-1 RING 2 NEIGH -------- PSO-RRR2-1 RINGDYNAMIC -------- PSO-RRRM WHEEL -------- PSO-RRR2-1 RANDOM

-------- PSO-RRRM GLOBAL -------- PSO-RRRM RING2 NEIGH -------- PSO-RRRM RINGDYNAMIC -------- PSO-RRRM WHEEL -------- PSO-RRRM RANDOM

-------- C-PSO-1 GLOBAL -------- C-PSO-1 RING 2 NEIGH. -------- C-PSO-1 RING DYNAMIC -------- C-PSO-1 WHEEL -------- C-PSO-1 RANDOM

«------- » MS GLOBAL « = =  MS RING 2 NEIGH = =  MS RINGDYNAMIC =  MS WHEEL « — * MS RANDOM

0.
1 501 1001  1501  2001  2501  3001  3501  4001  4501  5001  5501  6001  6501  7001  7501  8001  8501  9001  9501

Fig. 7.6. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for th e  10D R o s e n b ro c k  function, a s s o c ia te d  to T a b le  7.5. T h e
c o lo u r -co d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ru c tu res  a r e  the  s a m e  in the  tab le  and  figure a s s o c ia te d .



C * E C  N E IG H B O U R H O O D S  S w „ , « ^ v . , s , „
Prifysgol A bertaw e

Mean Best Conflict -  10D Rosenbrockfunction

-------- PS0-RRR2-1 GLOBAL -------- PS0-RRR2-1 RING 2 NEIGH -------- PS0-RRR2-1 RING DYNAMIC -------- PS0-RRR2-1 WHEEL -------- PS0-RRR2-1 RANDOM

-------- PSO-RRR 1-1 GLOBAL -------- PSO-RRRM RING2NEIGH -------- PSO-RRRM RINGDYNAMIC -------- PSO-RRRM WHEEL -------- PSO-RRRM RANDOM

-------- C-PSO-1 GLOBAL -------- C-PSO-1 RING 2 NEIGH -------- C-PSO-1 RING DYNAMIC -------- C-PSO-1 WHEEL -------- C-PSO-1 RANDOM

■MS GLOBAL ■MS RING 2 NEIGH. ■MS RING DYNAMIC <—  --»MS WHEEL ■ ' ‘MS RANDOM

1 501  1001  1501  2001  2501  3001  3501  4001  4501  5001  5501  6001  6501  7001  7501  8001  8501  9001  9501

Tim e-steps

Fig. 7 .7 .  C o n v e r g e n c e  c u r v e s  of t h e  m e a n  b e s t  conflic t  for t h e  10D  R o s e n b r o c k  func t ion ,  a s s o c i a t e d  to  T a b l e  7 .5 .  T h e  
c o l o u r - c o d e s  u s e d  to identify  t h e  n e ig h b o u r h o o d  s t r u c tu r e s  a r e  t h e  s a m e  in t h e  t a b l e  a n d  f igure  a s s o c i a t e d .

Mean Best Conflict -  30D Rosenbrockfunction

-------- PS0-RRR2-1 GLOBAL -------- PSO-RRRM RING 2 NEIGH --------PS0-RRR2-1 RINGDYNAMIC -------- PS0-RRR2-1 WHEEL -------- PS0-RRR2-1 RANDOM

-------- PSO-RRR 1-1 GLOBAL -------- PS0-RRR1-1 RING 2 NEIGH --------PS0-RRR1-1 RINGDYNAMIC -------- PS0-RRR1-1 WHEEL -------- PS0-RRR1-1 RANDOM

-------- C-PSO-1 GLOBAL -------- C-PSO-1 RING 2 NEIGH --------C-PSO-1 RINGDYNAMIC -------- C-PSO-1 WHEEL -------- C-PSO-1 RANDOM

■MS GLOBAL « =  MS RING2 NEIGH « =  MS RING DYNAMIC <---------MS WHEEL ■MS RANDOM

0.
501 1001  1501  2001  2501  3001  3501  4001  4501  5001  5501  6001  6501  7001  7501 8001  8501  9001  95011

Fig. 7 .8 .  C o n v e r g e n c e  c u r v e s  of t h e  m e a n  b e s t  conflict  for t h e  3 0 D  R o s e n b r o c k  func t ion ,  a s s o c i a t e d  to  T a b l e  7 .6.  T h e  
c o l o u r - c o d e s  u s e d  to  identify  th e  n e ig h b o u r h o o d  s t r u c tu r e s  a r e  t h e  s a m e  in t h e  ta b l e  a n d  f igure  a s s o c i a t e d .

3 5 7
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-------- PS0-RRR2-1 GLOBAL -------- PS0-RRR2-1 RING 2 NEIGH. --------PS0-RRR2-1 RINGDYNAMIC -------- PS0-RRR2-1 WHEEL -------- PS0-RRR2-1 RANDOM

-------- PS0-RRR1-1 GLOBAL -------- PS0-RRR1-1 RING 2 NEIGH. --------PS0-RRR1-1 RINGDYNAMIC -------- PSO-RRR 1-1 WHEEL -------- PS0-RRR1-1 RANDOM

-------- C-PSO-1 GLOBAL -------- C-PSO-1 RING 2 NEIGH. --------C-PSO-1 RING DYNAMIC -------- C-PSO-1 WHEEL -------- C-PSO-1 RANDOM

« =  MS GLOBAL «------- »MS RING 2 NEIGH * =  MS RING DYNAMIC ■------- »MS WHEEL •— »MS RAN DOM

Mean Best Conflict -  30D Rosenbrockfunction

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.9. C onvergence curves o f the mean best conflic t fo r the 30D Rosenbrock function, associated to Table 7.6. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

-------- PS0-RRR2-1 GLOBAL -------- PS0-RRR2-1 RING 2 NEIGH --------PS0-RRR2-1 RINGDYNAMIC -------- PS0-RRR2-1 WHEEL -------- PS0-RRR2-1 RANDOM

-------- PS0-RRR1-1 GLOBAL -------- PS0-RRR1-1 RING 2 NEIGH --------PS0-RRR1-1 RINGDYNAMIC -------- PSO-RRR 1-1 WHEEL -------- PS0-RRR1-1 RANDOM

-------- C-PSO-1 GLOBAL -------- C-PSO-1 RING2 NEIGH. --------C-PSO-1 RINGDYNAMIC -------- C-PSO-1 WHEEL -------- C-PSO-1 RANDOM

« > MS GLOBAL ■ = >  MS RING 2 NEIGH. « = =  MS RING DYNAMIC > MS WHEEL «-■ »MS RANDOM

Mean Best Conflict -  30D Rosenbrockfunction

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.10. Convergence curves of the mean best conflict for the 30D Rosenbrock function, associated to Table 7.6.
The colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.7. S tatistica l resu lts out o f 25 runs for the PSO-RRR2-1, the PSO-RRR1-1, the C-PSO-1, and a M ulti-Swarm  
algorithm  optim izing the 2-d im ensional Rastrigin function. The neighbourhoods tested are the GLOBAL, the RING 
with 2 neighbours; the RING with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T); the W HEEL; 
and a RANDOM  topology. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps
• >:

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.07E-10 100

U L U D M L
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.42E-11 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 9.93E-11 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 -

PSO-RRR2-1 nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.96E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.96E-11 -

10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.01 E-11 100
w r i c c L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.01 E-11 -

. . . 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.33E-11 100
K M N U U m

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.33E-11 -

, 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.09E-11 100
U L U D M L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.09E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.05E-11 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.05E-11 -

PSO-RRR1-1 nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.60E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.60E-11 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.45E-11 100
n n c c L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.45E-11 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.35E-11 100
r t n n u u m

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.35E-11 -

, 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 7.79E-11 100
O L U D M L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 7.79E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.52E-11 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.52E-11 -

C-PSO-1 nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.26E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.26E-11 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.03E-11 100
n n c d

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.03E-11 -

10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.07E-11 100
r t M n u u m

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.07E-11 -

, 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 100
O L U D M L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 I

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.73E-11 100

RING
1000 2.98E+00 5.97E+00 5.72E+O0 1.00E+01 3.74E-02 -

Multi-Swarm nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.16E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.16E-11 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.81 E-11 100
|V ¥ riE C L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.81 E-11 -

Irt a n n / 1 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.49E-11 100
jr tM P iu u m

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.49E-11 -

3 5 9
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Table 7.8. S tatistica l results out o f 25 runs for the P S 0-R R R 2-1 , the P S0-R R R 1-1, the C-PSO-1, and a M ulti-Swarm  
algorithm  optim izing the 10-dim ensional Rastrigin function. The neighbourhoods tested are the GLOBAL; the RING 
with 2 neighbours; the RING with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T ); the W HEEL; 
and a RANDOM  topology. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success
10000 9.95E-01 2.98E+00 2.95E+00 6.96E+00 3.48E-04 0

| vjlvj dhl-
1000 9.95E-01 2.98E+00 3.02E+00 6.96E+00 2.20E-03 -

nn = 2
10000 O.OOE+OO 1.99E+00 2.15E+00 4.97E+00 2.71 E-02 20

ring
1000 1.99E+00 4.22E+00 4.43E+00 7.96E+00 3.54E-02 -

PSO-RRR2-1 nni = 2 10000 0.00E+00 0.00E+00 7.16E-01 3.98E+00 1.65E-02 60
nnf = (m-1) 1000 9.95E-01 3.98E+00 4.04E+00 1.09E+01 3.51 E-02 -

10000 9.95E-01 1.99E+00 2.47E+00 5.97E+00 8.48E-04 0
wrncEL

1000 9.97E-01 2.99E+00 3.09E+00 5.97E+00 7.73E-03 -

10000 0.00E+00 1.19E+01 1.18E+01 2.87E+01 3.01 E-02 12
rtHNUum

1000 7.30E+00 2.51E+01 2.45E+01 3.65E+01 5.00E-02 -

10000 5.97E+00 1.19E+01 1.35E+01 2.49E+01 1.21 E-11 0
ULUDML

1000 5.97E+00 1.19E+01 1.35E+01 2.49E+01 1.47E-11 -

nn = 2
10000 9.95E-01 4.97E+00 5.18E+00 1.09E+01 3.82E-02 0

RING
1000 2.98E-HD0 7.96E+00 7.94E+00 1.37E+01 4.30E-02 -

PSO-RRR1-1 nni = 2 10000 0.00E+00 2.98E+00 3.02E+00 5.97E+00 2.79E-02 8
nnf = (m-1) 1000 2.98E+00 5.97E+00 7.44 E+O0 1.59E+01 4.40E-02 -

10000 4.97E+00 8.95E+00 9.47E+00 1.99E+01 1.80E-04 0
wncct.

1000 4.97E+00 8.95E+00 9.83E+00 1.99E+01 1.91E-03 -

1000C 9.95E-01 4.97E+00 5.21 E+D0 8.95E+00 2.78E-11 0
1000 9.95E-01 6.96E+O0 7.01E+00 2.63E+01 4.96E-03 -

10000 1.99E+00 3.98E+00 4.93E+00 1.09E+01 1.92E-11 0
ULUDML

1000 1.99E+00 4.97E+O0 5.17E+00 1.19E+01 8.71 E-04 -

nn = 2
10000 O.OOE+OO 2.98E+00 2.79E+00 4.97E+00 2.93E-02 12

RING
1000 1.99E+00 3.98E+00 4.55E+00 7.96E+00 3.79E-02 -

C-PSO-1 nni = 2 10000 O.OOE+OO 9.95E-01 1.23E+00 5.97E+00 1.98E-02 48
nnf = (m-1) 1000 1.99E+00 3.98E+00 4.66E+O0 7.96E+O0 3.65E-02 -

10000 0.00E+00 2.98E+00 3.26E+00 7.96E+00 4.96E-04 4
nnccL

1000 O.OOE+OO 2.99E+00 3.54E+O0 7.96E+00 2.41E-03 -

... 10000 O.OOE+OO 1.99E+00 2.71 E+00 2.21 E+01 2.64E-03 12
rvMrauum

1000 9.95E-01 5.97E+00 1.12E+01 3.50E+01 2.43E-02 -

, 10000 1.99E+00 3.98E+00 4.78E+00 1.49E+01 1.84E-11 0
VJLUDML

1000 1.99E+00 3.98E+00 5.13E+O0 1.49E+01 5.46E-04 -

nn = 2
10000 O.OOE+OO 2.98E+00 2.75E+00 6.96E+00 2.90E-02 4

RING
1000 2.98E+00 5.97E+00 5.72E+00 1.00E+01 3.74E-02 -

Multi-Swarm nni = 2 10000 0.00E+00 9.95E-01 1.68E+00 5.97E+00 1.94E-02 32
nnf = (m-1) 1000 2.18E+O0 4.97E+00 5.26E+00 1.09E+01 3.66E-02 -

MiUCCI 10000 0.00E+00 3.98E+00 4.42E+00 8.95E+00 7.48E-04 4
WhtfcL

1000 2.42E-12 4.97E+00 4.82E+00 8.95E+00 4.10E-03 -

n a imrhli 10000 9.95E-01 2.98E+00 2.91 E+00 4.97E+00 1.93E-03 0
iKMrauvm

1000 9.95E-01 4.98E+00 9.76E+00 3.80E+O1 2.37E-02 -
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Table 7.9. S tatistica l resu lts out o f 25 runs for the PSO -RRR2-1, the PSO -RRR1-1, the C-PSO-1, and a M ulti-Swarm  
algorithm  optim izing the 30-dim ensional Rastrigin function. The neighbourhoods tested are the GLOBAL; the RING 
with 2 neighbours; the RING with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T); the W HEEL; 
and a RANDO M  topology. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success
10000 2.69E+01 4.28E+01 4.13E+01 5.57E+01 2.64E-11 0

ULUDAL
1000 2.69E+01 4.28E+01 4.14E-K51 5.57E-K51 3.99E-05 -

nn = 2
10000 2.98E+01 4.40E+01 4.29E+01 5.29E+01 2.61 E-02 0

RING
1000 3.46E+01 5.32E-+01 5.24E-+01 7.23E-K)1 3.00E-02 -

PSO-RRR2-1 nni = 2 10000 2.69E+01 4.28E+01 4.31 E+01 6.96E+01 2.97E-02 0
nnf = (m -1) 1000 3.84E+01 4.88E-K)1 5.19E-+01 7.99E-+01 2.99E-02 -

10000 2.09E+01 3.68E+01 3.77E+01 6.77E+01 2.23E-04 0
w n c c L

1000 2.82E+01 4.41 E-K)1 4.54E+01 6.98E-K31 5.67E-03 -
10000 2.50E+01 1.77E+02 1.42E+02 2.19E+02 2.81 E-02 0

IKMNUUIff
1000 1.23E+02 2.01 E-K52 1.99E+02 2.48E-K52 3.14E-02 -
10000 2.49E+01 7.16E+01 7.41E+01 1.28E+02 6.68E-16 0

ULUDAL
1000 2.49E+01 7.16E+01 7.41E+01 1.28E-+02 1.47E-15 -

nn = 2
10000 2.19E+01 4.68E+01 4.65E+01 6.17E+01 3.00E-02 0

RING
1000 2.20E+01 5.01 E-+01 5.03E-+01 6.71E-K)1 3.12E-02 -

PSO-RRR1-1 nni = 2 10000 2.29E+01 4.88E+01 4.91 E+01 7.46E+01 3.15E-02 0
nnf = (m -1) 1000 3.48E-KJ1 4.88E-K)1 5.13E+01 7.98E-*01 3.27E-02 -

10000 4.58E+01 7.36E+01 6.90E+01 9.35E+01 4.60E-12 0
vw nccL

1000 4.58E-K)1 7.36E+01 6.90E-K)1 9.35E+01 6.62E-04 -

. . . 10000 2.49E+01 4.78E+01 4.94E+01 7.46E+01 2.99E-11 0
rwnuum

1000 2.49E+01 4.88E+01 5.98E-KJ1 2.10E+02 1.58E-03 -
10000 2.69E+01 4.88E+01 5.37E+01 9.65E+01 1.93E-11 0

ULUDAL
1000 2.69E+01 4.88E+01 5.37E+01 9.65E-KJ1 1.09E-10 -

nn = 2
10000 2.89E+01 5.37E+01 5.05E+01 6.87E+01 3.31 E-02 0

RING
1000 2.89E-M01 5.88E+01 5.59E+01 7.79E-+01 3.43E-02 -

C-PSO-1 nni = 2 10000 2.19E+01 5.27E+01 5.11 E+01 7.36E+01 3.15E-02 0
nnf = (m-1) 1000 2.69E+01 5.77E-KJ1 5.59E-MD1 8.28E+01 3.36E-02 -

10000 2.98E+01 4.88E+01 5.13E+01 8.36E+01 3.01 E-04 0
n n c c L

1000 2.98E+01 4.88E+01 5.27E+01 8.36E+01 6.88E-04 -

10000 2.29E+01 3.48E+01 3.73E+01 6.57E+01 1.07E-04 0
RAnUUIH

1000 2.30E+01 1.36E+02 1.28E+02 2.25E-K52 1.91 E-02

10000 2.59E+01 5.27E+01 5.33E+01 8.16E+01 1.89E-11 0
ULUDAL

1000 2.59E+01 5.27E-K51 5.33E-K51 8.16E-KJ1 5.36E-08 -

nn = 2
10000 3.28E+01 4.48E+01 4.56E+01 6.37E+01 3.03E-02 0

RING
1000 3.32E-K)1 5.21E+01 4.97E-K11 6.57E+01 3.09E-02 -

Muti-Swarm nni = 2 10000 2.59E+01 3.98E+01 4.32E+01 6.67E+01 2.77E-02 0
nnf = (m -1) 1000 2.72E-K51 4.48E-+01 4.77E-HD1 6.83E+01 2.96E-02 -

10000 1.69E+01 4.48E+01 4.61 E+01 6.96E+01 1.04E-04 0
jvvnccL

1000 1.71E+01 4.68E+01 4.77E-K11 7.77E-KD1 2.40E-03 -

In Akirvr i 10000 1.99E+01 3.78E+01 3.86E+01 6.67E+01 3.08E-11 0
r w n u u m

1000 2.19E+01 4.18E-K)1 6.60E-K51 2.00E+02 5.51E-03
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Mean Best Conflict -  2D Rastrigin function

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH. -----------PS0-RRR2-1 RINGDYNAMIC -----------PS0-RRR2-1 WHEEL -----------PS0-RRR2-1 RANDOM

----------- PS0-RRR1-1 GLOBAL ----------- PSO-RRRM RING2NEIGH. -----------PSO-RRRM RINGDYNAMIC -----------PSO-RRRM WHEEL -----------PS0-RRR1-1 RANDOM

, --------- »MS RING 2 NEIGH. ■- — ■ MS RING DYNAMIC

C-PSO-1 RANDOM

1.00E-10

8.00E-11

6 .00  E-11

2.00E-11

—  — ■ ■ ■ ■■■ — —  0.00E+00

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7.11. Convergence curves o f the mean best conflict for the 2D Rastrigin function, associated to Table 7.7. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

----------- PSO-RRRM GLOBAL

----------- PSO-RRRM GLOBAL

----------- PS0-RRR2-1 RING 2 NEIGH

----------- PSO-RRRM RING2 NEIGH.

-----------PS0-RRR2-1 RINGDYNAMIC

-----------PSO-RRRM RINGDYNAMIC

-----------PSO-RRRM WHEEL

-----------PSO-RRRM WHEEL

----------- PS0-RRR2-1 RANDOM

-----------PSO-RRRM RANDOM

■ MS GLOBAL < MS RING DYNAMIC

Mean Best Conflict -  10D Rastrigin function

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.12. Convergence curves of the mean best conflict for the 10D Rastrigin function, associated to Table 7.8. Tfe
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH -----------PS0-RRR2-1 RING DYNAMIC ----------- PS0-RRR2-1 WHEEL ----------- PS0-RRR2-1 RANOOM

----------- PS0-RRR1-1 GLOBAL ----------- PS0-RRR1-1 RING 2NEIGH. -----------PS0-RRR1-1 RINGDYNAMIC -----------PS0-RRR1-1 WHEEL -----------PS0-RRR1-1 RANDOM

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH. -----------C-PSO-1 RINGDYNAMIC -----------C-PSO-1 WHEEL ----------- C-PSO-1 RANDOM

.M S GLOBAL « =  MS RING 2 NEIGH « =  MS RING DYNAMIC « =  MS WHEEL «---------- »MS RANDOM

Mean Best Conflict -  10D Rastrigin function

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7.13. C onvergence curves o f the mean best conflict for the 10D Rastrigin function, associated to Table 7.8. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

Mean Best Conflict -  30D Rastrigin function

■ PS0-RRR2-1 GLOBAL

■ PS0-RRR1-1 GLOBAL

■ C-PSO-1 GLOBAL 

> MS GLOBAL

• PS0-RRR2-1 RING 2 NEIGH

• PS0-RRR1-1 RING 2 NEIGH 

-C-PSO-1 RING 2 NEIGH

> MS RING 2 NEIGH.

 PS0-RRR2-1 RING DYNAMIC

 PS0-RRR1-1 RING DYNAMIC

 C-PSO-1 RING DYNAMIC

= » M S  RING DYNAMIC

 PS0-RRR2-1 WHEEL

 PS0-RRR1-1 WHEEL

 C-PSO-1 WHEEL

=  MS WHEEL

■ PSO-RRRM RANDOM

■ PS0-RRR1-1 RANDOM

■ C-PSO-1 RANDOM 

» MS RANDOM

3.

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 90 0 1  95011

9 OOE+Ol =

Fig. 7.14. Convergence curves o f the mean best conflict for the 30D Rastrig in function, associated to Table 7.9. The 
co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure  associated.

3 6 3
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Mean Best Conflict -  30D Rastrigin function

PS0-RRR2-1 WHEEL PS0-RRR2-1 RANDOMPS0-RRR2-1 RINGDYNAMICPS0-RRR2-1 RING 2 NEIGH.PS0-RRR2-1 GLOBAL

 PS0-RRR1-1 RING D Y N A M IC  PS0-RRR1-1 WHEEL  PS0-RRR1-1 RANDOM—  PSO-RRR1-1 GLOBAL

 C-PSO-1 RANDOMC-PSO-1 WHEEL C-PSO-1 RINGDYNAMICC-PSO-1 RING 2 NEIGHC-PSO-1 GLOBAL

MS RANDOMMS WHEEL'MS RING DYNAMICMS GLOBAL MS RING 2 NEIGH

Tim e-steps

Fig. 7.15. Convergence curves o f the mean best conflict for the 30D Rastrigin function, associated to Table 7.9. The 
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

Mean Best Conflict -  30D Rastrigin function

PSO-RRR2-1 RANDOM-  PSO-RRR2-1 RINGDYNAMIC PSO-RRR2-1 WHEEL— PSO-RRR2-1 RING2NEIGH.PSO-RRR2-1 GLOBAL

PSO-RRR1-1 RINGDYNAM IC PSO-RRR1-1 WHEELPSO-RRR1-1 RING 2 NEIGH

 C-PSO-1 WHEEL  C-PSO-1 RANDOM C-PSO-1 RINGDYNAMICC-PSO-1 RING 2 NEIGH.

MS RING DYNAMIC MS WHEELMS GLOBAL

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.16. Convergence curves of the mean best conflict for the 30D Rastrigin function, associated to Table 7.9. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.10. S tatistical results out o f 25 runs for the PSO -RRR2-1, the PSO-RRR1-1, the C -PSO -1, and a M ulti- 
Swarm algorithm  optim izing the 2-dim ensional G riewank function. The neighbourhoods tested are the GLO BAL; the 
RING with 2 neighbours; the RING with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  1’); the 
W HEEL; and a RANDO M  topology. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps liisi m
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 0.00E+00 0.00E+00 2.96E-04 7.40E-03 7.41 E-12 96
U L U D A L

1000 O.OOE+OO O.OOE+OO 5.92E-04 7.40E-03 1.10EO3 -

CMiicc 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 3.65E-04 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.10EO3 -

PSO-RRR2-1 nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.57E-12 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.64E-03 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 3.57E-05 100
w n c c L

1000 O.OOE+OO O.OOE+OO 2.10EO4 4.65E03 1.56E03 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 7.05E-122 100
KANUUIV!

1000 O.OOE+OO O.OOE+OO 1.70E-08 3.18E07 1.84E03 -

10000 0.00E+00 0.00E+00 5.92E-04 7.40E-03 5.76E-12 92
O L U D A L

1000 0.00E+00 O.OOE+OO 1.18E03 9.08EO4 9.08E-04 -

CMIICc 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 4.15E-04 100

RING
1000 O.OOE+OO O.OOE+OO 3.02E-13 7.54E-12 2.05EO3 -

PSO-RRR1-1 nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 6.45E-12 100
nnf = (m-1) 1000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.67E03 -

10000 0.00E+00 0.00E+00 8.88E-04 7.40E-03 2.96E-05 88
i v n c c L

1000 0.00E-K)0 O.OOE+OO 9.21 E04 7.96E03 9.56E04 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 7.32E-12 100
IW N U U B I

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.54E04 -

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 6.40E-12 100
O L U D A L

1000 0.00E+00 O.OOE+OO 1.18E03 7.40EO3 9.46E-04 -

nn =  2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 1.57E-04 100

RING
1000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.96E03 -

C-PSO-1 nni = 2 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 6.81 E-12 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.67E03 -

10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.55E-09 100
v r n c c L

1000 O.OOE+OO O.OOE+OO 3.99E04 7.40EO3 1.37E03 -

. . . 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 6.50E-12 100
R M M U U m

1000 0.00E+00 O.OOE+OO 3.60E-12 9.00E-11 1.01EO3

, 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 6.56E-12 100
O L U D A L

1000 O.OOE+OO O.OOE+OO 5.95E-16 1.49E-14 8.92E04 -

CMIIee 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 2.51 E-04 100

RING
1000 O.OOE+OO O.OOE+OO 2.39E05 5.88E04 2.05EO3 -

Multi-Swann nni =  2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.74E-12 100
nnf =  (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.59E03 -

lA i t ir r - i 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.51 E-12 100
w w n c c L

1000 O.OOE+OO O.OOE+OO 2.99E-04 7.40E-03 1.25E03 -

In  a i m r . . . 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.64E-12 100
r \A N U u m

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.16E-03 -
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Table 7.11. S tatistica l results out o f 25 runs fo r the P S0-R R R 2-1 , the PS0-R R R 1-1 , the C-PSO-1, and a Multi- 
Swarm algorithm  optim izing the 10-dim ensional G riewank function. The neighbourhoods tested are the GLO BAL; the 
RING with 2 neighbours; the RING with linearly increasing num ber o f neighbours (from 2 to ‘sw arm -size -  T); the 
W HEEL; and a RANDO M  topology. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
■ B B S

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME (%] S u ccess

10000 1.97E-02 5.66E-02 6.81 E-02 1.43E-01 4.94E-07 0
jU L U D M L

1000 1.97E-02 6.16E-02 7.14E-02 1.43E-01 1.18E-04 -

nn = 2
10000 0.00E+00 2.46E-02 2.66E-02 6.15E-02 1.81 E-03 4

RING
1000 2.96E-07 2.95E-02 3.41 E-02 6.88E-02 2.01E-03 -

PSO-RRR2-1
nni = 2 10000 7.40E-03 2.96E-02 3.02E-02 5.65E-02 1.35E-03 0
nnf = ( m - 1 ) 1000 9.86E-03 3.94E-02 3.68E-02 5.66E-02 1.54E-03 -

10000 7.40E-03 5.66E-02 5.98E-02 1.48E-01 6.64E-05 0
j w n c c L

1000 7.40E-03 6.64E-02 7.03E-02 1.52E-01 4.81 E-04 :

10000 3.20E-02 4.48E-01 3.97E-01 7.91 E-01 2.89E-03 0
|K M n u u m

1000 1.23E-01 6.21E-01 6.02E-01 2.99E-03 2.99E-03 -

10000 2.96E-02 9.11E-02 9.27E-02 1.82E-01 1.81 E-12 0
| VJ LL/DH L

1000 2.96E-02 9.11E-02 9.27E-02 1.82E-01 1.48E-05 -

nn = 2
10000 0.00E+00 3.19E-02 3.05E-02 7.38E-02 1.58E-03 8

RING
1000 O.OOE+OO 3.94E-02 3.64E-02 7.62E-02 1.66E-03 -

PSO-RRR1-1
nni = 2 10000 0.00E+00 2.22E-02 2.95E-02 6.64E-02 1.27E-03 12
nnf = ( m - 1 ) 1000 9.86E-03 4.18E-02 4.26E-02 1.11 E-01 1.61 E-03 -

10000 1.97E-02 9.11E-02 1.24E-01 3.84E-01 1.24E-12 0
YVriCCL

1000 1.97E-02 9.11E-02 1.27E-01 3.84E-01 6.60E-05 -

. . . 10000 1.72E-02 5.66E-02 5.60E-02 9.35E-02 1.07E-04 0
r w n u u m

1000 2.95E-02 6.89E-02 1.09E-01 5.28E-01 4.53E-04 -

10000 1.97E-02 6.64E-02 6.68E-02 1.38E-01 1.65E-06 0
V3LUDM L

1000 2.71E-02 6.89E-02 7.21 E-02 1.38E-01 1.22E-04 -

nn = 2
10000 0.00E+00 2.46E-02 2.36E-02 4.68E-02 1.55E-03 4

RING
1000 O.OOE+OO 2.71E-02 2.85E-02 8.87E-02 1.66E-03 -

C-PSO-1
nni = 2 10000 0.00E+00 2.71 E-02 2.49E-02 5.91 E-02 1.19E-03 4
nnf = ( m - 1 ) 1000 7.40EO3 3.69E-02 3.52E-02 7.38E-02 1.52E-03 -

10000 0.00E+00 6.65E-02 6.65E-02 1.30E-01 2.23E-05 4
n n c c t

1000 1.97E02 7.13E-02 7.34E-02 1.30E-01 4.00E-04 -

. . 10000 9.86E-03 7.13E-02 1.58E-01 4.75E-01 6.70E-04 0
r w n u v w

1000 2.21 E 02 4.25E-01 3.69E-01 7.91 E-01 1.47E-03 -

10000 1.48E-02 6.64E-02 6.64E-02 1.38E-01 1.48E-05 0
U L U D H L

1000 2.95E02 7.13E-02 7.85E-02 1.85E-01 1.40E-04 -

nn = 2
10000 0.00E+00 1.97E-02 2.15E-02 5.90E-02 1.60E-03 8

RING
1000 7.40EO3 2.22E-02 2.71 E-02 5.90E-02 1.75E-03 -

Multi-Swarm
nni = 2 10000 0.00E+00 2.46E-02 2.77E-02 6.89E-02 1.47E-03 8
nnf = ( m - 1 ) 1000 O.OOE+OO 3.45E-02 3.59E-02 7.38E-02 1.74E-03 -

i i i u r n 10000 1.97E-02 6.15E-02 6.50E-02 1.45E-01 1.70E-05 0
| w n c c L

1000 4.55E-02 7.38E-02 8.35E-02 1.45E-01 3.40E-04 -

n  A u n r . . . 10000 1.72E-02 3.94E-02 5.85E-02 2.49E-01 7.33E-05 0
p n n u u i w

1000 1.72E-02 6.90E-02 1.28E-01 6.89E-01 6.48E-04 -
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Table 7.12. S tatistica l results out o f 25 runs for the PSO -RRR2-1, the PSO-RRR1-1, the C-PSO -1, and a Multi- 
Swarm algorithm  optim izing the 30-dim ensional G riewank function. The neighbourhoods tested are the GLOBAL; the 
RING with 2 neighbours; the RING  with linearly increasing num ber o f neighbours (from  2 to ‘swarm -size -  T ); the 
W HEEL; and a RANDO M  topology. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps m s s m s s e
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 0.00E+00 7.40E-03 9.35E-03 2.96E-02 4.23E-12 44
ULUOHL

1000 7.95E-06 7.44E-03 9.40E-03 2.96E-02 2.93E-06 -

nn = 2
10000 O.OOE+OO 0.00E+00 2.96E-04 7.40E-03 1.22E-06 96

RING
1000 2.54E-01 4.15E-01 4.23E-01 6.79E-01 2.52E-04 ; - i

PSO-RRR2-1 nni = 2 10000 0.00E+00 O.OOE+OO 4.05E-03 1.72E-02 3.77E-06 64
nnf = (m-1) 1000 3.65E-02 7.18E-02 8.05E-02 1.70E-01 1.13E-04 -

10000 0.00E+00 7.40E-03 1.03E-02 3.94E-02 2.15E-12 40
vvnccL

1000 6.00E-02 2.26E-01 2.86E-01 7.71 E-01 9.81E-05 -
10000 6.05E-04 3.52E-02 1.63E-01 1.02E+00 1.38E-04 0

IKMNUUm
1000 3.47E+00 1.02E+01 1.23E+01 3.14E+01 1.01 E-02 -

10000 3.29E-08 6.46E-02 1.02E-01 7.40E-01 3.91E-13 4
\JLwDML

1000 3.29E-08 7.11 E-02 1.12E-01 7.40E-01 4.04E-14 -

nn = 2
10000 O.OOE+OO 0.00E+00 6.90E-04 9.86E-03 6.40E-08 92

RING
1000 4.02E-11 7.73E-10 6.91E-04 9.86E-03 1.38E-06 -

PSO-RRR1-1 nni = 2 10000 0.00E+00 O.OOE+OO 1.58E-03 9.86E-03 8.49E-09 80
nnf = (m-1) 1000 O.OOE+OO 4.76E-08 3.15E-03 1.48E-02 1.11E-06 -

10000 4.58E-13 8.57E-02 1.46E-01 8.89E-01 2.96E-13 4
wnccL

1000 7.63E-03 9.45E-02 1.77E-01 9.38E-01 1.72E-06 -
10000 0.00E+00 9.86E-03 1.47E-02 7.36E-02 4.13E-12 28

iwnuum
1000 O.OOE+OO 9.86E-03 1.47E-02 7.36E-02 3.71E-12 -

10000 0.00E+00 1.23E-02 1.79E-02 7.09E-02 2.56E-12 36
ULUDML

1000 O.OOE+OO 1.23E-02 1.79E-02 7.09E-02 2.93E-12 -

nn = 2
10000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.14E-07 100

RING
1000 4.55E06 3.98E-05 2.60E-03 2.22E-02 1.52E-05 -

C-PSO-1 nni = 2 10000 0.00E+00 O.OOE+OO 1.97E-03 1.72E-02 4.73E-07 84
nnf = (m-1) 1000 3.22E09 3.49E-08 2.37E-03 1.72E-02 8.37E-06 -

10000 0.00E+00 9.86E-03 3.55E-02 2.37E-01 1.68E-12 24
vvnccL

1000 7.76E-08 9.87E-03 3.55E-02 2.37E-01 1.62E-07 -
10000 O.OOE+OO 7.40E-03 9.15E-03 5.15E-02 5.03E-12 44

rwpiuum
1000 3.95E08 7.40E-03 9.15E-03 5.16E-02 4.29E-07 -

. 10000 O.OOE+OO 4.67E-02 5.18E-02 1.41 E-01 2.42E-12 4
OLUDML

1000 6.66E-16 4.67E-02 5.18E-02 1.41 E-01 4.06E-08 -

nn = 2
10000 0.00E+00 0.00E+00 2.17E-03 1.23E-02 1.10E-06 76

RING
1000 6.02E-08 7.40E-03 6.97E-03 3.92E-02 3.08E-05 -

Multi-Swarm nni = 2 10000 0.00E+00 0.00E+00 6.39E-03 3.92E-02 4.12E-12 64
nnf=(m-1) 1000 9.47E-11 7.40E-03 9.54 E-03 3.92E-02 1.26E-05 -

tin irn 10000 O.OOE+OO 1.23E-02 1.75E-02 1.30E-01 1.66E-12 44
|¥¥nCCL

1000 4.12E-03 5.41 E-02 1.10E-01 4.16E-01 3.36E-05 -

I n  a u n r ... 10000 0.00E+00 7.40E-03 1.43E-02 7.09E-02 5.23E-12 44
1000 2.66E-15 7.40E-03 1.43E-02 7.09E-O2 2.14E-07 -



C Z EC NEIGHBOURHOODS
#
>a Uni

Prifysgol A bertaw e

Mean Best Conflict -  2D Griewank function

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING2NEIGH. ----------- PS0-RRR2-1 RING DYNAMIC ----------- PS0-RRR2-1 WHEEL ----------- PS0-RRR2-1 RANDOM

----------- PS0-RRR1-1 GLOBAL ----------- PS0-RRR1-1 RING 2 NEIGH -----------PS0-RRR1-1 RINGDYNAMIC ----------- PS0-RRR1-1 WHEEL ----------- PS0-RRR1-1 RANDOM

-----------C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH -----------C-PSO-1 RINGDYNAMIC ----------- C-PSO-1 WHEEL ----------- C-PSO-1 RANDOM

= =  MS GLOBAL « ■ -MS RING 2 NEIGH <---------- »MS RING DYNAMIC « =  MS WHEEL = =  MS RANDOM

0.

1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501501

Fig. 7.17. C onvergence curves o f the mean best conflict for the 2D G riewank function, associated to Table 7.10. The 
co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associated.

Mean Best Conflict -  10D Griewank function

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH. ----------- PS0-RRR2-1 RINGDYNAMIC -----------PS0-RRR2-1 WHEEL -----------PSO-RRR2-1 RANDOM

----------- PS0-RRR1-1 GLOBAL ----------- PS0-RRR1-1 RING2NEIGH ----------- PS0-RRR1-1 RINGDYNAMIC -----------PSO-RRR1-1 WHEEL ----------- PS0-RRR1-1 RANDOM

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH ----------- C-PSO-1 RINGDYNAMIC -----------C-PSO-1 WHEEL -----------C-PSO-1 RANDOM

<---------- » MS GLOBAL =  MS RING 2 NEIGH. < =  MS RINGDYNAMIC « =  MSWHEEL * = >  MS RANDOM

0.

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

2.50E-01 ^

Fig. 7.18. Convergence curves of the mean best conflict for the 10D Griewank function, associated to Table 7.11. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

368
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M e a n  B e s t  C o n flic t -  1 0 D  G r ie w a n k f u n c t io n

----------- PS0-RRR2-1 GLOBAL ----------- PSO-RRR2-1 RING 2 NEIGH. ----------- PSO-RRR2-1 RING DYNAMIC -----------PSO-RRR2-1 WHEEL ----------- PSO-RRR2-1 RANDOM

----------- PSO-RRR1-1 GLOBAL ----------- PSO-RRR1-1 RING 2 NEIGH -----------PSO-RRR1-1 RINGDYNAMIC -----------PSO-RRR1-1 WHEEL ----------- PSO-RRR1-1 RANDOM

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 Rl NG 2 N EIGH. ----------- C-PSO-1 RINGDYNAMIC -----------C-PSO-1 WHEEL ----------- C-PSO-1 RANDOM

■MS GLOBAL =  MSRING2NEIGH. = = >  MS RING DYNAMIC ■MS WHEEL ■---------- »MS RANDOM

2 .

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.19. C onvergence curves o f the mean best conflict for the 10D G riewank function, associated to Table  7 .11 .The 
co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associa ted.

M e a n  B e s t  C o n flic t -  10D  G r ie w a n k  f u n c t io n

—  PSO-RRR2-1 GLOBAL PSO-RRR2-1 RING 2 NEIGH —  PSO-RRR2-1 RINGDYNAMIC PSO-RRR2-1 WHEEL

PSO-RRR1-1 GLOBAL —  PSO-RRR1-1 RING 2 N E I G H  PSO-RRR1-1 RINGDYNAMIC —  PSO-RRR1-1 WHEEL

 C-PSO-1 GLOBAL  C-PSO-1 RINGDYNAMIC  C-PSO-1 RANDOM

MS GLOBAL MS RING 2 NEIGH. MS RING DYNAMIC MS WHEEL

Time-steps

Fig. 7.20. Convergence curves of the mean best conflict for the 10D Griewank function, associated to Table 7.11. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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M e a n  B e s t  C o n flic t -  3 0 D  G r ie w a n k  f u n c t io n

PS0-RRR2-1 WHEEL PS0-RRR2-1 RANDOM

 PS0-RRR1-1 RANDOMPS0-RRR1-1 RING 2 NEIGH

 C-PSO-1 WHEEL C-PSO-1 RANDOM

MS RANDOMMS GLOBAL MS RING 2 NEIGH. MS RING DYNAMIC MS WHEEL

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.21. Convergence curves of the mean best conflict fo r the 30D G riewank function, associated to Table 7.12. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

M e a n  B e s t  C o n flic t -  3 0 D  G r ie w a n k  fu n c t io n

—  PS0-RRR2-1 GLOBAL PSO-RRR2-1 RING2NEIGH PS0-RRR2-1 RING DYNAMIC PSO-RRR2-1 WHEEL PSO-RRR2-1 RANDOM

 PSO-RRRM GLOBAL  PSO-RRRM R IN G 2 N E IG H  PSO-RRR1-1 RINGDYNAMIC

 C-PSO-1 GLOBAL  C-PSO-1 RING 2 NEIGH C-PSO-1 RING DYNAMIC C-PSO-1 WHEEL C-PSO-1 RANDOM

MS GLOBAL MS RING 2 NEIGH MS WHEEL

1 501  1001 1501 2001 2501 3001 3501 4001 4501  5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

T im e-steps

Fig. 7.22. Convergence curves of the mean best conflict for the 30D Griewank function, associated to Table 7.12. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.13. S tatistical results out o f 25 runs for the PSO -RRR2-1, the PSO -RRR1-1, the C-PSO-1, and a Multi- 
Swarm algorithm  optim izing the 2-d im ensional Schaffer f6 function. The neighbourhoods tested are the GLO BAL; the 
RING with 2 neighbours; the RING with linearly increasing num ber o f neighbours (from 2 to ‘sw arm -size -  T ); the 
W HEEL; and a RANDO M  topology. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps IMS? MSESEEE2
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 0.00E+00 0.00E+00 3.89E-04 9.72E-03 2.58E-05 96
ULUDHL

1000 O.OOE+OO O.OOE+OO 7.77E-04 9.72E-03 2.79E-03 -

nn = 2
10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 3.60E-04 100

RING
1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 6.82E-03 -

PSO-RRR2-1 nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 1.25E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 5.43E-04 9.72E-03 5.57E-03 -

10000 0.00E+00 0.00E+00 7.77E-04 9.72E-03 7.57E-04 92
w n c c L

1000 O.OOE+OO O.OOE+OO 3.11 E-03 9.72E-03 5.30E-03 -

10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.18E-11 100
KMNUUm

1000 O.OOE+OO O.OOE+OO 2.75E-16 5.88E-15 5.00E-03 -

10000 0.00E+00 0.00E+00 1.17E-03 9.72E-03 1.13E-04 88
ULUDHL

1000 O.OOE+OO O.OOE+OO 1.17E-03 9.72E-03 1.61 E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.29E-03 100

RING
1000 O.OOE+OO O.OOE+OO 1.96E-03 9.72E-03 7.78E-03 -

PSO-RRR1-1 nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.26E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 7.03E-07 1.76E-05 5.62E-03 -

10000 0.00E+00 O.OOE+OO 2.72E-03 9.72E-03 9.53E-04 72
v vnccu

1000 O.OOE+OO O.OOE+OO 3.50E-03 9.72E-03 3.96E-03 -

. . . 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.14E-11 100
KMNUUm

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.79E-03

. 10000 0.00E+00 O.OOE+OO 1.17E-03 9.72E-03 2.01 E-04 88
ULUDHL

1000 O.OOE+OO O.OOE+OO 1.95E-03 9.72E-03 2.42E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO 3.89E-04 9.72E-03 1.38E-03 96

RING
1000 O.OOE+OO O.OOE+OO 2.07E-03 9.72E-03 7.76E-03 -

C-PSO-1 nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.23E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 7.58E-06 1.21E-04 6.07E-03 -

10000 0.00E+00 O.OOE+OO 7.77E-04 9.72E-03 3.75E-04 92
w n c c L

1000 O.OOE+OO O.OOE+OO 2.76E-03 9.72E-03 4.62E-03 -

. . . 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.19E-11 100
rtMNUUM

1000 O.OOE+OO O.OOE+OO 6.26E-04 9.72E-03 3.26E-03 -

10000 0.00E+00 O.OOE+OO 2.33E-03 9.72E-03 1.05E-04 76
ULUDHL

1000 O.OOE+OO O.OOE+OO 3.11 E-03 9.72E-03 2.58E-03

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 7.13E-04 100

RING
1000 O.OOE+OO O.OOE+OO 7.84E-04 9.72E-03 7.34E-03 -

Multi-Swarm nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.36E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 6.25E-03 -

u i u r r i 10000 0.00E+00 O.OOE+OO 7.77E-04 9.72E-03 3.08E-04 92
|V¥nCCL

1000 O.OOE+OO O.OOE+OO 1.24E-03 9.72E-03 4.38E-03 -

!ro a ... 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.13E-11 100
jrvnriuum

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.56E-03 -



▼  ~r“ M ,
C ^ C  NEIGHBOURHOODS

Prifysgol A bertaw e

Table 7.14. S tatistica l results out o f 25 runs for the PSO-RRR2-1, the PSO-RRR1-1, the C-PSO-1, and a Multi- 
Swarm  algorithm  optim izing the 10-dim ensional Schaffer f6 function. The neighbourhoods tested are the GLOBAL; 
the RING with 2 neighbours; the RING with linearly increasing num ber of neighbours (from 2 to ‘sw arm -size -  T); the 
W HEEL; and a RANDO M  topology. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps s i i s i
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S uccess

10000 9.72E-03 9.72E-03 1.85E-02 3.72E-02 5.10E-04 0
U L U D M L

1000 9.72E-03 9.72E-03 2.18E-02 3.72E-02 1.21 E-03 -

nn = 2
10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.94E-03 0

RING
1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 3.24E-03 -

PSO-RRR2-1
nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.65E-03 0
nnf = ( m - 1 ) 1000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 2.13E-03 -

10000 9.72E-03 9.72E-03 1.52E-02 3.72E-02 1.40E-03 0
Y V nC C L

1000 9.72E-03 9.72E-03 1.85E-02 3.72E-02 1.94E-03 -

10000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 2.57E-03 0
K H N U U M

1000 3.72E-02 7.82E-02 7.24E-02 2.28E-01 8.20E-03 -

10000 9.72E-03 3.72E-02 3.45E-02 7.82E-02 1.29E-04 0
U L U D H L

1000 9.72E-03 3.72E-02 3.45E-02 7.82E-02 1.29E-04 -

nn = 2
10000 9.72E-03 9.72E-03 2.18E-02 3.72E-02 2.43E-03 0

RING
1000 9.72E-03 3.72E-02 3.17E-02 3.72E-02 3.38E-03 -

PSO-RRR1-1
nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.39E-03 0
nnf = ( m - 1 ) 1000 9.72E-03 9.72E-03 1.74E-02 3.72E-02 2.35E-03 -

10000 3.72E-02 1.27E-01 1.22E-01 2.73E-01 1.04E-03 0
n n c c L

1000 3.72E-02 1.27E-01 1.26E-01 2.73E-01 1.23E-03 -

100CC 9.72E-03 8.72E-03 9.72E-03 9.72E-03 1.29E-03 0
r i H r i u u m

1000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.44E-03 -

10000 9.72E-03 9.72E-03 1.96E-02 3.72E-02 3.01 E-04 0
U L U D H L

1000 9.72E-03 9.72E-03 2.18E-02 3.72E-02 7.06E-04 -

nn = 2
10000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 2.21 E-03 0

RING
1000 9.72E-03 9.72E-03 1.85E-02 3.72E-02 3.19E-03 -

C-PSO-1
nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.92E-03 0
nnf = ( m - 1 ) 1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 2.11 E-03 -

10000 9.72E-03 3.72E-02 2.79E-02 7.82E-02 1.09E-03 0
v v n c c L

1000 9.72E-03 3.72E-02 3.01 E-02 7.82E-02 1.36E-03 -

. . 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.68E-03 0
r w n u u m

1000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.90E-03 -

10000 9.72E-03 3.72E-02 2.95E-02 3.72E-02 3.18E-04 0
U L U D H L

1000 9.72E-03 3.72E-02 3.06E-02 3.72E-02 6.67E-04 -

nn = 2
10000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 2.03E-03 0

RING
1000 9.72E-03 9.72E-03 1.74E-02 3.72E-02 3.03E-03 -

Multi-Swarm
nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.76E-03 0
nnf = ( m - 1 ) 1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 1.95E-03 -

uinrri 10000 9.72E-03 9.72E-03 1.96E-02 3.72E-02 8.S2E-04 0
v v n c c L

1000 9.72E-03 9.72E-03 2.18E-02 3.72E-02 1.17E-03 -

In a i m r ! 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.63E-03 0
| f \ H n u u m

1000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.81 E-03 -

3 7 2
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Table 7.15. S tatistical results out o f 25 runs for the PSO -RRR2-1, the PSO -RRR1-1, the C-PSO -1, and a Multi- 
Swarm algorithm  optim izing the 30-dim ensionai Schaffer f6 function. The neighbourhoods tested are the GLOBAL; 
the RING with 2 neighbours; the RING with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T ); the 
W HEEL; and a RANDO M  topology. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps m m i S
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 3.72E-02 7.82E-02 9.22E-02 1.27E-01 3.12E-04 0
ULUDHL

1000 7.82E-02 1.27E-01 1.08E-01 1.78E-01 8.50E-04 -

CMIICc 10000 3.72E-02 7.82E-02 6.18E-02 7.82E-02 1.77E-03 0

RING
1000 1.27E-01 1.96E-01 2.01 E-01 2.29E-01 4.40E-03 -

PSO-RRR2-1 nni = 2 10000 3.72E-02 3.72E-02 3.72E-02 3.72E-02 7.48E-04 0
nnf = (m-1) 1000 7.82E-02 1.27E-01 1.26E-01 2.04E-01 2.76E-03 i

10000 7.82E-02 1.27E-01 1.24E-01 2.28E-01 7.45E-04 0
n n c c L

1000 1.27E-01 1.78E-01 1.90E-01 3.46E-01 1.40E-03 -

10000 2.73E-01 3.96E-01 3.74E-01 4.42E-01 8.30E-03 0
r w i u u m

1000 4.72E-01 4.90E-01 4.88E-01 4.97E-01 1.95E-02 -

10000 3.12E-01 4.30E-01 4.25E-01 4.85E-01 4.76E-05 0
OLUDML

1000 3.12E-01 4.30E-01 4.26E-01 4.87E-01 2.01E-04 -

nn = 2
10000 7.82E-02 1.78E-01 1.67E-01 2.73E-01 1.72E-03 0

RING
1000 1.27E-01 2.28E-01 2.14E-01 3.12E-01 2.38E-03 -

PSO-RRR1-1 nni = 2 10000 3.72E-02 1.27E-01 1.12E-01 2.28E-01 6.68E-04 0
nnf = (m-1) 1000 7.82E-02 1.27E-01 1.49E-01 2.73E-01 1.23E-03 -

10000 4.52E-01 4.89E-01 4.87E-01 4.96E-01 4.22E-04 0
vvnccL

1000 4.52E-01 4.89E-01 4.87E-01 4.96E-01 3.34E-04 -

. . . 10000 3.72E-02 3.72E-02 5.63E-02 1.78E-01 6.69E-04 0
iw r iu u m

1000 3.72E-02 7.82E-02 8.58E-02 1.78E-01 9.84E-04 -

10000 7.82E-02 1.27E-01 1.31E-01 2.73E-01 1.67E-04 0
OLUDML

1000 7.82E-02 1.27E-01 1.40E-01 2.73E-01 4.94E-04 -

nn = 2
10000 3.72E-02 3.72E-02 5.52E-02 7.82E-02 1.59E-03 0

RING
1000 1.27E-01 1.27E-01 1.52E-01 1.78E-01 3.23E-03 -

C-PSO-1 nni = 2 10000 3.72E-02 3.72E-02 3.72E-02 3.72E-02 6.49E-04 0
nnf = (m-1) 1000 7.82E-02 7.82E-02 9.19E-02 1.27E-01 2.00E-03 -

10000 1.27E-01 2.73E-01 2.63E-01 4.30E-01 8.05E-04 0
w n c c L

1000 1.78E-01 2.73E-01 2.76E-01 4.30E-01 9.49E-04 -

10000 3.72E-02 3.72E-02 5.36E-02 7.82E-02 1.32E-03 0
KANUUm

1000 1.78E-01 2.29E-01 2.54E-01 3.73E-01 4.54E-03 -
10000 7.82E-02 1.78E-01 1.86E-01 2.73E-01 2.30E-04 0

VJLUDHL
1000 1.27E-01 1.78E-01 1.93E-01 2.73E-01 5.26E-04 -

nn = 2
10000 3.72E-02 7.82E-02 7.45E-02 1.27E-01 1.58E-03 0

RING
1000 1.27E-01 1.78E-01 1.68E-01 2.28E-01 3.42E-03 -

Multi-Swarm nni =  2 10000 3.72E-02 3.72E-02 4.38E-02 7.82E-02 5.48E-04 0
nnf =  (m-1) 1000 3.74E-02 1.27E-01 1.08E-01 1.78E-01 1.89E-03 -

tan  11— a— i 10000 7.82E-02 2.28E-01 2.13E-01 3.46E-01 6.95E-04 0
|¥*nCCL

1000 7.82E-02 2.73E-01 2.46E-01 3.46E-01 1.07E-03 -

! 10000 3.72E-02 3.72E-02 4.05E-02 7.82E-02 1.12E-03 0
p H N U U W

1000 7.82E-02 1.27E-01 1.10E-01 1.78E-01 2.18E-03 -
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M e a n  B e s t  C o n flic t -  2D  S c h a f fe r  f6  f u n c t io n

-----------PS0-RRR2-1 GLOBAL ----------- PSO-RRRM RING 2 NEIGH ----------- PS0-RRR2-1 RINGDYNAMIC -----------PS0-RRR2-1 WHEEL ----------- PS0-RRR2-1 RANDOM

-----------PS0-RRR1-1 GLOBAL ----------- PSO-RRRM RING2 NEIGH. -----------PSO-RRRM RINGDYNAMIC -----------PSO-RRRM WHEEL ----------- PSO-RRRM RANDOM

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH -----------C-PSO-1 RING DYNAMIC -----------C-PSO-1 WHEEL -----------C-PSO-1 RANDOM

< ----- » MS GLOBAL • =  MS RING 2 NEIGH. =  MS RING DYNAMIC «--------- =» MS WHEEL « = » M S  RANDOM

O.OOE+OO

501 1001 1501 2001 2501 3001 3501 4001 4501 5001  5501 6001 6501 7001 7501 8001 8501 9001  9501

Fig. 7.23. Convergence curves o f the mean best conflic t fo r the 2D Schaffer f6 function, associated to Table 7.13. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

M e a n  B e s t  C o n flic t -  10 D  S c h a f fe r  f6  f u n c t io n

—  PS0-RRR2-1 RANDOM—  PS0-RRR2-1 RINGDYNAMIC—  PS0-RRR2-1 GLOBAL

—  PS0-RRR1-1 RINGDYNAM IC PSO-RRRM WHEELPSO-RRRM RING2NEIGH

C-PSO-1 RINGDYNAMIC  C-PSO-1 WHEELC-PSO-1 GLOBAL C-PSO-1 RING2 NEIGH.

MS RANDOMMS RING 2 NEIGH

Tim e-steps

Fig. 7.24. Convergence curves of the mean best conflict for the 10D Schaffer f6 function, associated to Table 7.14.
The colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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M e a n  B e s t  C o n flic t -  1 0 D  S c h a f fe r  f6  f u n c t io n

PSO-RRR2-1 WHEEL PS0-RRR2-1 RANDOMPS0-RRR2-1 GLOBAL PSO-RRR2-1 RING 2 NEIGH PSO-RRR2-1 RINGDYNAMIC

—  PSO-RRR1-1 WHEEL  PSO-RRRM  RANDOM PSO-RRRM GLOBAL  PSO-RRRM RING2 N E I G H  PSO-RRRM RINGDYNAMIC

C-PSO-1 WHEEL C-PSO-1 RANDOM C-PSO-1 GLOBAL  C-PSO-1 RING 2 NEIGH  C-PSO-1 RINGDYNAMIC

MS WHEEL MS RANDOMMSRING2NEIGH.MS GLOBAL

---- 1

1___
L. I _

1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.25. Convergence curves o f the mean best conflict for the 10D Schaffer f6 function, associated to Table 7.14. 
The co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associated.

M e a n  B e s t  C o n flic t -  3 0 D  S c h a f f e r  f6  f u n c t io n

-  PSO-RRR2-1 GLOBAL PSO-RRR2-1 RING 2 NEIGH PSO-RRR2-1 RANDOMPSO-RRR2-1 RINGDYNAMIC

—  PSO-RRRM WHEEL PSO-RRRM  RANDOMPSO-RRRM GLOBAL  PSO-RRRM RING2 NEIGH PSO-RRRM RINGDYNAMIC

C-PSO-1 WHEELC-PSO-1 GLOBAL C-PSO-1 RING 2 NEIGH C-PSO-1 RINGDYNAMIC C-PSO-1 RANDOM

MSWHEEL MS RANDOMMS GLOBAL MS RING2 NEIGH. MS RINGDYNAMIC

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.26. Convergence curves of the mean best conflict for the 30D Schaffer f6 function, associated to Table 7.15.
The colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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M e a n  B e s t  C o n flic t -  3 0 D  S c h a f fe r  f6  f u n c t io n

----------- PSO-RRR2-1 GLOBAL -----------PSO-RRR2-1 RING 2 NEIGH. ----------- PSO-RRRM RINGDYNAMIC ----------- PS0-RRR2-1 WHEEL -----------PS0-RRR2-1 RANDOM

----------- PSO-RRR1-1 GLOBAL -----------PSO-RRRM RING2NEIGH. ----------- PS0-RRR1-1 RINGDYNAMIC ----------- PSO-RRRM WHEEL -----------PSO-RRRM RANDOM

----------- C-PSO-1 GLOBAL -----------C-PSO-1 RING 2 NEIGH, -----------C-PSO-1 RING DYNAMIC -----------C-PSO-1 WHEEL -----------C-PSO-1 RANDOM

»MS GLOBAL =  MS RING 2 NEIGH. ■---------- »MS RING DYNAMIC > =  MS WHEEL « =  MS RANDOM

2 .

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7.27. Convergence curves o f the mean best conflict for the 30D Schaffer f6 function, associated to Table 7.15. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

D iscu ssion

The settings o f the experiments are the same as those described in the previous chapter 

(see section 6.3.2.2.) unless specifically stated otherwise.

Sphere

In the 2D problem, every combination o f coefficients’ settings and neighbourhood to

pology finds the exact solution for every run. It can also be observed that the implosion 

o f the particles is virtually complete in every case by the end o f the search, while the 

PSO-RRR1 approach exhibits the highest degree o f clustering by the 1,000th time-step 

regardless o f the neighbourhood topology (see p b m e  in Table 7.1).

In the 10D problem, again every algorithm achieves a 100% success rate (SR) by the 

end o f the search (10,000th time-step). It can also be observed that the ‘PSO-RRR2-1 

Random’ is the only one whose mean solution does not meet the success criterion (i.e. 

error below 10 4) by the 1,000th time-step. It is also the one with the lowest degree o f 

clustering by the end o f the search. The values o f pb me in Table 7.2 show that the

3 7 6
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PSO-RRR1-1 reaches the highest degree o f clustering, the PSO-RRR2-1 the lowest, and 

the C-PSO-1 and the Multi-Swarm (MS) are in between.

In the 30D problem, the ‘PSO-RRR2-1 Random’ and the ‘PSO-RRR1-1 Global’ are the 

only ones which do not achieve a SR of 100% by the end o f the search, but for two very 

different reasons: the former because convergence is too slow, and the latter because o f  

premature convergence (Fig. 7.3). The proposed dynamic neighbourhood appears suc

cessful: the median and mean solutions found are either between those obtained by the 

global and the ring (nn=2) topologies (PSO-RRR2-1, C-PSO-1), or they are better than 

both (PSO-RRR1-1, MS). Making the neighbourhood dynamic avoids the premature 

convergence observed in the ‘PSO-RRR1-1 Global’, while achieving better solutions 

and higher degree o f clustering than the ‘PSO-RRR1-1 Ring nn=2’ (see Table 7.3).

Rosenbrock

In the 2D problem, every algorithm finds the exact solution for every run. It can also be 

observed that the implosion o f the particles is virtually complete in every case by the 

end o f the search, while the PSO-RRR1 approach presents the highest degree o f cluster

ing by the 1,000th time-step (refer to pb_me in Table 7.4).

In the 10D problem, the success rates (SRs) o f most algorithms fall dramatically. In the 

same fashion as when optimizing the 30D Sphere, the ‘PSO-RRR2-1 Random’ and the 

‘PSO-RRR1-1 Global’ obtained the worst results, the former due to slow convergence 

whereas the latter due to premature convergence (Fig. 7.6). Although the ‘PSO-RRR1-1 

Global’ achieved a SR of 44%, it converged to a local optimum (3.99) 36% of the times 

(refer to digital appendix). The best performance is exhibited by the ‘PSO-RRR1-1 Ring 

nn=2\ which is the only algorithm that achieved 100% success. As to the proposed dy

namic topology, results are very promising. For the PSO-RRR2-1, the SR and the me

dian solution are between those of the global and o f the ring (nn=2 ) topologies (closer to 

the better one), as expected, while the mean solution is better than both (never falling 

into the local optimum). For the PSO-RRR1-1, the mean solution and the SR are be

tween those o f the global and the ring (nn=2 ) topologies, while the median solution is 

better than both. The SR is 96%, falling into a local optimum only once in 25 runs. For 

the C-PSO-1, the median, the mean, and the SR are remarkably better than those ob

tained by the global and the ring (nn=2) topologies, achieving a SR of 96% and never
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falling into a local optimum (both the global and ring (nn=2) do). The same is true for 

the MS. As shown in Fig. 7.6 and Fig. 7.7, the best mean solutions are exhibited by the 

‘Ring Dynamic’ and the ‘Ring nn=2’ topologies (brown and blue curves, respectively).

In the 30D problem, achieving success becomes notably harder. The same as before, the 

‘PSO-RRR2-1 Random’ exhibits extremely slow convergence (never achieved) while 

the ‘PSO-RRR1-1 Global’ shows premature convergence (refer to Fig. 7.8). It is inter

esting to observe that, after 10,000 time-steps, only 4 algorithms reach convergence (see 

Fig. 7.8 to Fig. 7.10): ‘the PSO-RRR1-1 Global’, which shows premature convergence, 

the ‘PSO-RRR1-1 Ring Dynamic’, the ‘PSO-RRR1-1 Random’, and the ‘C-PSO-1 

Global’. The latter three obtain the best results. The ‘PSO-RRR2-1 Ring Dynamic’ 

shows marginally worse results than its global and ring (nn=2 ) counterparts (none of 

which converges). The ‘PSO-RRR1-1 Ring Dynamic’ converges and shows remarkably 

better performance than its global and ring (nn=2) counterparts. The ‘C-PSO-1 Ring 

Dynamic’ obtains a median solution worse than, and a mean solution in between, those 

of its global and ring {nn=2) counterparts. Note that this algorithm is still far from con

verging (brown solid line in Fig. 7.9 and Fig. 7.10). Finally, the ‘MS Ring Dynamic’ 

finds results in between those o f its global and ring (nn=2 ) counterparts.

Rastrigin

In the 2D problem, every algorithm finds the exact solution for every run by the end o f  

the search. In fact, they all do by the 1,000th time-step already, except for the ‘MS Ring 

nn=2 ’ (which also shows a remarkable lower degree o f clustering). It is not clear why 

convergence is so delayed in this case (see Table 7.7).

In the 10D problem, the ‘Ring Dynamic’ topologies result in a remarkable increase in 

the success rate (SR) when compared to their global and ring (nn=2) counterparts for 

every coefficients’ settings (see Table 7.8). Since this is a highly multimodal function, 

several cases o f (early) stagnation can be observed in Fig. 7.12 and Fig. 7.13. The best 

performance overall is exhibited by the ‘PSO-RRR2-1 Ring Dynamic’, while the ‘C- 

PSO-1 Ring Dynamic’ and the ‘MS Ring Dynamic’ also show very good performance.

In the 30D problem, no algorithm is able to meet the success criterion in any run. The 

best performance is exhibited by the ‘C-PSO-1 Random’ (see Table 7.9) although con
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vergence is very slow (see Fig. 7.14 to Fig. 7.16). The ‘PSO-RRR2-1 Wheel’ and ‘MS 

Random’ also find very good solutions, while exhibiting faster convergence and a much 

earlier stagnation. Notice that all the global topologies, the ‘PSO-RRR1-1 Wheel’, the 

‘PSO-RRR1-1 Random’, and the ‘MS Random’, show a complete loss o f  diversity (see 

the values o f pb me in Table 7.9) and stagnation (see convergence curves in Fig. 7.14 

to Fig. 7.16). All the ‘Ring nn=T and the ‘Ring Dynamic’ topologies still present some 

diversity by the end o f the search, so that improvement is to be expected for an extended 

search-length. Nonetheless, the ‘PSO-RRR2-1 Ring Dynamic’ and the ‘MS Ring Dy

namic’ exhibit some o f the best performances. For the ‘PSO-RRR1-1’ and the ‘C-PSO- 

1 ’, the ‘Ring Dynamic’ topology finds solutions in between their global and ring (nn=2) 

counterparts, while the ‘MS Ring Dynamic’ exhibits better performance than both. In

stead, the ‘PSO-RRR2-1 Ring Dynamic’ shows similar performance to that of the 

‘PSO-RRR2-1 Ring nn=2’, which, surprisingly, are worse than that o f the global topol

ogy (in a highly multimodal problem!). The only conclusion is that the combination o f  

PSO-RRR2-1 with local neighbours for a high-dimensional and highly multimodal 

problem might just result in too slow a convergence for a search this long.

Griewank

In the 2D problem, 3 algorithms exhibit premature convergence: the ‘PSO-RRR2 - 1  

Global’ (in 1 out o f 25 runs); the ‘PSO-RRR1-1 Global’ (in 2 out of 25 runs); and the 

‘PSO-RRR1-1 Wheel’ (in 3 out of 25 runs). In the 2 global cases, making them dynamic 

resolves the problem, while at the end of the search they end up showing similar de

grees o f clustering to those o f their global counterparts, and much higher degrees o f  

clustering than those o f their ring (nn=2) counterparts (see pb_me in Table 7.10). The 

other algorithms achieve a 100% success rate (SR).

In the 10D problem, the SRs decrease dramatically. By a large margin, the best per

formances are exhibited by all the ‘Ring nn=T and the ‘Ring Dynamic’ topologies, as 

can be clearly seen in Table 7.11, and in Fig. 7.18 to Fig. 7.20. For the PSO-RRR1 - 1 , 

the ‘Ring Dynamic’ topology obtains better results than both its global and ring (nn=2) 

counterparts, while in the other cases results are in between, as it would be expected. 

The best performance overall is exhibited by the ‘MS Ring nn=2’, followed by the ‘C- 

PSO-1 Ring ««=2’, and the ‘C-PSO-1 Ring Dynamic’.
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In the 30D problem, the SRs increase, as the difficulty o f this particular problem de

creases with dimensionality. By a large margin again, the best performances are exhib

ited by all the ‘Ring nn=2’ and by the ‘Ring Dynamic’ topologies, as can be clearly seen 

in Table 7.12, and in Fig. 7.21 and Fig. 7.22. The performances o f the ‘Ring Dynamic’ 

neighbourhoods fall between those o f their global and ring (nn=2 ) counterparts, as ex

pected, close to the better one (i.e. the ring topology). The best performance overall is 

exhibited by the ‘C-PSO-1 Ring nn=2’, followed by the ‘PSO-RRR2-1 Ring nn=2 ’.

Schaffer f6

In the 2D problem, 9 algorithms, namely all the global and wheel topologies plus the 

‘C-PSO-1 Ring nn=2 ’, present some few failures to achieve the success criterion. The 

remaining 11 algorithms find the solution in every run (see Table 7.13 and Fig. 7.23).

In the 10D problem, no algorithm is able to find the solution in any run (see Table

7.14). The best performances are exhibited by all the ‘Ring Dynamic’ neighbourhoods, 

the ‘PSO-RRR2-1 Ring nn=2’, the ‘PSO-RRR1-1 Random’, the ‘C-PSO-1 Random’, 

and the ‘MS Random’ (see Table 7.14, and Fig. 7.24 and Fig. 7.25).

In the 30D problem, no algorithm is able to find the solution in any run (see Table

7.15). The best performances are exhibited by the ‘PSO-RRR2-1 Ring Dynamic’ and 

the ‘C-PSO-1 Ring Dynamic’, followed by the ‘MS Random’ and the ‘MS Ring Dy

namic’ (refer to Table 7.15, Fig. 7.26, and Fig. 7.27).

Overall analysis

The ‘Ring Dynamic’ topology proposed is successful and appears desirable, as the ro

bustness gained by the reduced number o f neighbours at the early stages o f the search 

does not seem to affect the fine-grain search at the end. The performance exhibited is 

most o f the time either between that o f its global and ring (nn=2 ) counterparts -and 

closer to the better one- or better than both. Only a few times it happens to be worse 

than both, and only marginally. The global, wheel and random topologies are able to 

find very good results in some isolated problems, but the overall performance is inferior

and remarkably less robust. The ring topology with 2 neighbours is more stable, but its 

performance is also less robust than that o f the proposed dynamic ring topology.
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7.3. Forward topology

A so-called ‘forward topology’ is proposed, which shares some important characteris

tics with the ring topology. Namely, it allows any number o f neighbours, from ‘O’ to 

‘swarm-size -  1’, and guarantees full overlapping so that the information acquired by 

any particle is guaranteed to eventually spread throughout the whole swarm, given 

enough time. In both cases the overlapping is given by ‘neighbourhood-size -  1 ’ parti

cles. The only difference is in that the interconnections are not bidirectional, so that - in  

general- a particle is not informed by the same particles it informs. Experiments are car

ried out for the same four coefficients’ settings and on the same benchmark suite as pre

viously performed for the ring topology to allow numerical comparisons.

A graphical comparison between the ‘Ring topology’ and the ‘Forward topology’ is of

fered in Fig. 7.28. Notice that the number o f  particles that a given particle needs to go 

through to access the information gathered by the topologically farthest particle are the 

same. For instance, the farthest particle whose information to access for particle ‘ 1’ in 

Fig. 7.28 is particle ‘4 ’ for the ring topology (going through particles ‘2 ’ and ‘3 ’) and 

particle ‘6 ’ for the forward topology (going through particles ‘3 ’ and ‘5’). The reverse is 

only true for the ring topology: the farthest particle whose information to access for 

particle ‘4 ’ is particle ‘1’ for the ring topology, whereas the one for particle ‘6 ’ in the 

forward topology is not particle ‘ 1 ’ -w hich  is actually the closest- but particle ‘5 ’.

Fig. 7.28. a) Ring topo logy with neighbourhood-size equal to three; b) Forward topo logy with ne ighbourhood-size  
equal to three. The farthest partic le  for particle ‘1’ to extract information from  is particle ‘4 ’ fo r the ring topo logy (going 
through particles ‘2 ’ and ‘3 ’) and particle ‘6 ’ for the forward topology (going through particles ‘3 ’ and ‘5 ’).
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Table 7.16. S tatistical results out o f 25 runs for the P S 0-R R R 2-1 , the PSO -RRR1-1, the C-PSO-1, and a Multi- 
Swarm  algorithm  optim izing the 2-d im ensional Sphere function. The neighbourhoods tested are the FOW ARD topo l
ogy with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to ‘sw arm -size -  T). The results for 
the GLOBAL and RING topologies are im ported from the previous section for reference and comparison purposes. A 
run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

L „ 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
U L U D H L

1000 1.74E-57 3.42E-54 4.65E-53 5.96E-52 4.79E-18 -

nn = 2
10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 2.61 E-53 8.64E-49 7.07E-46 1.26E-44 1.55E-18 -

PSO-RRR2-1 nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.76E-54 1.58E-50 1.80E-48 2.05E-47 5.87E-19 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 5.38E-49 6.51 E 46 3.70E-44 5.22E-43 4.19E-19 -

nni = 2 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.51E-51 3.68E-49 1.90E-47 2.31E-46 1.93E-19 -

10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
U L U D H L

1000 5.19E-88 2.30E-85 3.33E-84 4.17E-83 3.43E-37 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 1.09E-82 2.99E-80 2.13E-78 2.27E-77 1.52E-37 -

PSO-RRRM nni = 2 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.65E-84 8.87E-82 6.58E-81 8.62E-80 3.99E-38 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 8.31 E-79 6.76E-77 2.38E-76 2.21E-75 2.83E-37 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 4.18E-83 1.16E-80 8.47E-80 1.04E-78 4.13E-38 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
U L U D H L

1000 2.74E-91 5.15E-88 2.06E-84 5.14E-83 9.16E-30 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 5.58E-82 3.44E-78 5.67E-76 6.45E-75 3.58E-32 -

C-PSO-1 nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 7.89E-85 1.89E-81 2.99E-79 4.49E-78 4.59E-33 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 6.17E-76 7.64E-73 2.57E-69 6.40E-68 1.66E-31 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 3.45E-80 8.77E-78 1.06E-76 1.18E-75 4.89E-31 -

r*  i A n  aL 1 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
jU LU D M L

1000 2.38E-90 4.67E-86 1.06E-83 2.16E-82 1.70E-20 -

nn =  2
1 0 0 0 0 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 3.39E-85 4.26E-78 9.85E-77 1.83E-75 2.68E-20 -

Multi-Swarm nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf =  (m-1) 1000 2.99E-86 1.12E-80 2.13E-79 2.33E-78 4.47E-20 -

nn =  2
1 0 0 0 0 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 1.24E-75 8.38E-73 4.72E-69 1.16E-67 9.31E-20 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf =  (m-1) 1000 2.17E-79 3.23E-74 3.17E-70 7.36E-69 8.94E-22 -
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Table 7.17. S tatistica l results out o f 25 runs for the PSO-RRR2-1, the PSO -RRR1-1, the C -PSO -1, and a Multi- 
Swarm  algorithm  optim iz ing the 10-dim ensional Sphere function. The neighbourhoods tested are the FO W ARD to
pology with 2 ne ighbours and with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T ). The results 
for the G LO BAL and RING  topo log ies are im ported from the previous section fo r reference and com parison  pur
poses. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps
m m

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

, 10000 2.04E-256 3.90E-250 3.93E-247 8.75E-246 2.28E-126 100
U L U D H L

1000 4.97E-24 5.49E-23 1.25E-22 1.06E-21 8.08E-14 -

nn = 2
10000 1.29E-145 2.82E-143 3.37E-141 5.90E-140 1.13E-73 100

RING
1000 1.78E-13 3.67E-12 5.33E-12 2.02E-11 8.77E-09 -

PSO-RRR2-1 nni = 2 10000 1.46E-226 5.19E-223 5.65E-221 6.34E-220 1.32E-113 100
nnf = (m -1) 1000 2.26E-16 7.12E-15 1.30E-14 6.38E-14 2.46E-10 -

nn = 2
10000 1.34E-134 1.93E-133 2.03E-132 3.80E-131 1.73E-69 100

FWD
1000 6.90E-12 1.96E-11 2.90E-11 1.08E-10 1.00E-08 -

nni = 2 10000 3.44E-221 1.41E-217 1.92E-211 4.79E-210 1.61E-109 100
nnf = (m -1) 1000 5.91E-15 4.03E-14 4.15E-14 1.14E-13 3.98E-10 -

10000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 O.OOE+OO 100
U L U D H L

1000 4.75E-67 1.61E-65 5.1 OE-65 3.50E-64 5.98E-35 -

nn = 2
10000 O.OOE+OO 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100

RING
1000 4.86E-35 2.94E-33 4.46E-33 1.53E-32 1.01E-19 -

PSO-RRR1-1 nni = 2 10000 O.OOE+OO O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 100
nnf = (m -1) 1000 4.00E-44 7.30E-43 2.52E-42 1.96E-41 1.93E-24 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 2.03E-35 3.52E-34 6.82E-34 5.66E-33 2.49E-20 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m -1) 1000 2.68E-44 2.91E-43 4.91E-43 2.18E-42 9 41 E-25 -

10000 0.00E+00 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100
U L U D H L

1000 1.30E-51 6.84E-50 3.49E-49 5.15E-48 7.98E-27 -

nn = 2
10000 1.13E-280 2.23E-277 4.17E-274 5.97E-273 2.11E-140 100

RING
1000 7.36E-27 3.12E-25 4.91 E-25 2.77E-24 1.50E-15 -

C-PSO-1 nni = 2 10000 O.OOE+OO O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 100
nnf = (m -1) 1000 7.32E-33 1.59E-31 3.09E-31 2.69E-30 1.18E-18 -

nn = 2
10000 1.49E-264 1.82E-260 1.53E-259 7.23E-259 4.92E-133 100

FWD
1000 1.13E-24 8.57E-24 1.71E-23 1.77E-22 7.11E-15 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m -1) 1000 3.53E-31 3.31E-30 5.88E-30 3.32E-29 4.34E-18 -

r* i An < 10000 O.OOE+OO 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100
jU L U D H L

1000 3.21E-58 2.00E-56 2.03E-55 1.42E-54 2.17E-18 -

nn = 2
10000 0.00E+00 0.00E+00 0.00E+00 O.OOE+OO 1.20E-153 100

RING
1000 1.41E-32 1.17E-30 1.06E-29 9.91E-29 2.68E-11 -

Multi-Swarm nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 4.18E-43 2.00E-39 5.49E-38 1.09E-36 1.35E-14 -

nn = 2
10000 6.03E-186 1.07E-182 4.73E-180 1.07E-178 2.39E-93 100

FWD
1000 4.92E-18 6.77E-17 1.20E-16 5.25E-16 7.03E-11 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m -1) 1000 1.97E-23 1.46E-22 3.15E-22 1.75E-21 1.37E-13 -
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Table 7.18. S tatistical results out o f 25 runs fo r the P S 0-R R R 2-1 , the P S O -R R R M , the C-PSO -1, and a Multi- 
Swarm  algorithm  optim izing the 30-dim ensional Sphere function. The neighbourhoods tested are the HOWARD to
pology with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to 'swarm -size -  T ). The results 
for the G LO BAL and RING topologies are im ported from the previous section for reference and com parison pur
poses. A run with an erro r no g reater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

L , „ „ 10000 1.22E-87 3.29E-84 3.07E-82 6.31E-81 2.12E-45 100
ULUDHL

1000 3.49E-06 1.85E-05 4.08E-05 2.77E-04 1.84E-06 -

nn = 2
10000 3.77E-43 1.90E-42 7.86E-42 6.78E-41 9.24E-25 100

RING
1000 1.23E-01 2.84E-01 3.12E-01 6.69E-01 2.14E-04 -

PSO-RRR2-1 nni = 2 10000 2.21 E-74 8.42E-73 6.49E-72 6.44E-71 3.87E-40 100
nnf = (m-1) 1000 9.91 E-03 2.85E-02 2.98E-02 7.82E-02 4.65E-05 -

nn = 2
10000 3.87E-42 4.68E-41 6.23E-41 1.97E-40 2.41 E-24 100

FWD
1000 1.45E-01 3.27E-01 3.22E-01 4.72E-01 1.60E-04 -

nni = 2 10000 7.23E-73 7.88E-71 4.68E-70 3.46E-69 3.16E-39 100
nnf = (m-1) 1000 1.05E-02 2.69E-02 3.38E-02 8.56E-02 5.21 E-05 -

10000 4.06E-07 3.79E-04 9.89E-02 2.39E+00 4.69E-17 32
VJLUDML

1000 5.57E-06 1.64E-03 2.70E-01 4.03E-K)0 5.93E-11 -

nn = 2
10000 8.13E-144 7.26E-142 5.86E-141 6.69E-140 1.20E-74 100

RING
1000 1.73E-11 7.83E-11 8.50E-11 2.40E-10 2.05E-09 -

PSO-RRR1-1
nni = 2 10000 2.04E-268 4.97E-257 6.23E-249 8.26E-248 1.16E-134 100
nnf = (m-1) 1000 5.25E-17 2.48E-16 3.07E-16 1.05E-15 3.12E-12 -

nn = 2
10000 3.36E-160 3.85E-158 2.90E-157 4.10E-156 8.61 E-83 100

FWD
1000 3.15E-13 1.10E-12 1.59E-12 1.06E-11 2.49E-10

nni = 2 10000 4.62E-266 1.69E-250 2.13E-239 5.33E-238 1.05E-127 100
nnf = (m-1) 1000 9.21E-19 6.91E-18 9.95E-18 3.43E-17 6.01E-13 -

10000 3.05E-220 2.21 E-212 1.42E-207 3.49E-206 1.57E-108 100
OLUOHL

1000 8.53E-20 1.09E-17 1.04E-16 9.10E-16 1.33E-12 -

nn = 2
10000 5.68E-96 1.67E-94 1.65E-93 3.57E-92 7.60E-51 100

RING
1000 7.53E-07 3.07E-06 3.62E-06 1.35E-05 5.46E-07 -

C-PSO-1 nni = 2 10000 3.06E-182 6.62E-179 1.98E-177 3.84E-176 3.81 E-93 100
nnf = (m-1) 1000 7.02E-10 4.53E-09 4.77E-09 1.48E-08 1.77E-08 -

nn = 2
10000 6.49E-95 2.99E-94 9.02E-94 9.82E-93 6.28E-51 100

FWD
1000 8.78E-07 2.88E-06 2.91 E-06 5.14E-06 4.55E-07 -

nni = 2 10000 3.56E-177 7.09E-174 3.38E-171 3.38E-171 1.74E-90 100
nnf = (m -1) 1000 1.89E-09 5.93E-09 6.95E-09 1.46E-08 2.20E-08 -

» A n  i 10000 1.10E-181 4.68E-172 1.95E-166 4.21 E-165 7.90E-88 100
jU LU D M L

1000 4.53E-17 1.52E-14 4.02E-11 1.00E-09 3.63E-10 -

nn =  2
10000 3.13E-113 7.02E-109 2.72E-107 5.96E-106 6.93E-57 100

RING
1000 2.83E-08 9.73E-08 2.55E-07 3.82E-06 1.75E-06 -

nni = 2 10000 1.28E-185 6.46E-180 6.80E-173 1.68E-171 2.58E-91 100
Multi-Swarm nnf =  (m-1) 1000 7.07E-12 1.43E-10 3.51 E-10 3.97E-09 1.57E-08 -

nn =  2
10000 9.63E-63 2.09E-61 1.04E-60 6.46E-60 3.03E-34 100

FWD
1000 4.04E-04 1.74E-03 1.79E-03 3.91 E-03 1.73E-05 -

nni = 2 10000 1.16E-174 4.86E-169 2.11E-165 2.09E-164 3.76E-87 100
nnf =  (m-1) 1000 1.09E-06 4.95E-06 5.29E-06 1.20E-05 7.73E-07 -
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M e a n  B e s t  C o n flic t -  2D  S p h e r e  f u n c t io n

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH -----------PS0-RRR2-1 RINGDYNAMIC -----------PSO-RRR2-1 FWD 2 NEIGH ----------- PSO-RRR2-1 FWD DYNAMIC

----------- PSO-RRRM GLOBAL ----------- PSO-RRRM RING2 NEIGH. -----------PS0-RRR1-1 RINGDYNAMIC -----------PSO-RRR1-1FWD2 NEIGH. ----------- PSO-RRRM FV® DYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH. -----------C-PSO-1 RINGDYNAMIC -----------C-PSO-1 FWD 2 NEIGH. ----------- C-PSO-1 FWD DYNAMIC

=  MS GLOBAL =  MS RING 2 NEIGH. «----------’ MS RING DYNAMIC * =  MS FWD 2 NEIGH. = =  MS FWD DYNAMIC

0.

1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 95015011

Fig. 7.29. Convergence curves o f the mean best conflict for the 2D Sphere function, associated to Table 7.16. The 
co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associated.

M e a n  B e s t  C o n f lic t -  1 0 D  S p h e r e  f u n c t io n

----------- PSO-RRRM GLOBAL ----------- PSO-RRR2-1 RING2NEIGH ----------- PSO-RRR2-1 RINGDYNAMIC -----------PS0-RRR2-1 FWD 2 NEIGH -----------PSO-RRR2-1 FWD DYNAMIC

----------- PSO-RRRM GLOBAL ----------- PSO-RRRM RING 2 NEIGH -----------PSO-RRRM RINGDYNAMIC -----------PSO-RRRM FWD2 NEIGH -----------PSO-RRRM FWD DYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH. -----------C-PSO-1 RINGDYNAMIC -----------C-PSO-1 FWD 2 NEIGH. -----------C-PSO-1 FWD DYNAMIC

= =  MS GLOBAL • = = >  MS RING2 NEIGH. =  MS RING DYNAMIC < = »  MS FWD 2 NEIGH. « — > MS FWD DYNAMIC

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501

Tim e-steps

6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7.30. Convergence curves of the mean best conflict for the 10D Sphere function, associated to Table 7.17. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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M e a n  B e s t  C o n f lic t  -  3 0 D  S p h e r e  f u n c t io n

-----------PSO-RRRM GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH ----------- PS0-RRR2-1 RINGDYNAMIC -----------PS0-RRR2-1 FWD2NEIGH ----------- PS0-RRR2-1 FWDDYNAMIC

-----------PS0-RRR1-1 GLOBAL ----------- PS0-RRR1-1 RING2NEIGH. -----------PS0-RRR1-1 RINGDYNAMIC -----------PS0-RRR1-1 FWD2 NEIGH ----------- PSO-RRRM FWDDYNAMIC

-----------C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH. -----------C-PSO-1 RING DYNAMIC -----------C-PSO-1 FWD 2 NEIGH -----------C-PSO-1 FWD DYNAMIC

■MS GLOBAL =  MS RING2NEIGH. ■ -  — ■ MS RING DYNAMIC =  MS FWD 2 NEIGH >- MS FWD DYNAMIC

0.

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7.31. Convergence curves o f the mean best conflict fo r the 30D Sphere function, associated to Table  7.18. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

M e a n  B e s t  C o n f lic t -  3 0 D  S p h e r e  f u n c t io n

-----------PS0-RRR2-1 GLOBAL ----------- PSO-RRRM RING 2 NEIGH ----------- PS0-RRR2-1 RINGDYNAMIC -----------PSO-RRRM FVIO 2 NEIGH ----------- PSO-RRR2-1 FWDDYNAMIC

-----------PSO-RRRM GLOBAL ----------- PSO-RRRM RING2 NEIGH ----------- PSO-RRRM RINGDYNAMIC -----------PSO-RRRM FWD2NEIGH ----------- PSO-RRRM FWDDYNAMIC

-----------C-PSO-1 GLOBAL ----------- C-PSO-1 RING2NEIGH ----------- C-PSO-1 RINGDYNAMIC -----------C-PSO-1 FWD 2 NEIGH -----------C-PSO-1 FWD DYNAMIC

* =  MS GLOBAL < = =  MS RING 2 NEIGH « = .  MS RING DYNAMIC =  MS FWD 2 NEIGH. =  MS FWD DYNAMIC

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7.32. Convergence curves of the mean best conflict for the 30D Sphere function, associated to Table 7.18. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.19. S tatistical results out o f 25 runs for the PSO -RRR2-1, the PSO-RRR1-1, the C-PSO -1, and a 
Swarm algorithm  optim izing the 2-d im ensional Rosenbrock function. The neighbourhoods tested are the FOW ARD 
topology with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T ). The re
sults for the GLO BAL and RING topologies are im ported from  the previous section for reference and com parison 
purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps
;

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

...... 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
U L U D H L

1000 1.54E-30 3.01E-28 4.82E-26 3.96E-25 3.72E-08 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 3.11E-20 3.03E-16 3.31E-15 3.09E-14 6.95E-06 -

PSO-RRR2-1 nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 3.71 E-23 1.08E-18 2.30E-17 4.07E-16 4.46E-06 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 1.32E-15 9.58E-14 3.19E-12 5.72E-11 3.09E-04 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.20E-20 3.93E-17 3.75E-16 4.30E-15 7.13E-07 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
U L U D H L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.70E-20 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 4.93E-32 4.78E-27 6.69E-25 7.34E-24 1.27E-11 -

PSO-RRR1-1 nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 7.89E-33 1.97E-31 6.36E-15 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 2.81 E-27 1.61 E-23 1.37E-21 1.40E-20 9.64E-09 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 1.48E-29 3.28E-28 1.06E-13 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
U L U D M L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 4.29E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 5.77E-21 1.65E-15 6.19E-14 1.30E-12 2.76E-06 -

C-PSO-1 nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 6.36E-24 2.02E-20 4.32E-19 5.48E-18 1.46E-07 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 2.44E-17 2.44E-17 3.93E-12 6.53E-11 1.74E-05 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf =  (m-1) 1000 6.64E-25 1.69E-20 6.64E-19 1.13E-17 1.73E-07 -

i A n  «11 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
jU L U D M L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.05E-09 -

nn =  2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 O.OOE+OO 9.00E-24 2.19E-18 3.50E-17 1.78E-06 -

Multi-Swarm nni =  2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf =  (m-1) 1000 O.OOE+OO 1.77E-30 1.67E-26 3.95E-25 1.36E-06 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 2.90E-22 1.03E-16 4.09E-14 5.40E-13 7.85E-05 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 4.34E-26 1.05E-21 5.04E-19 1.24E-17 1.10E-07 -

3 8 7
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Table 7.20. S tatistica l results out o f 25 runs for the PSO-RRR2-1, the PSO-RRR1-1, the C-PSO -1, and a Multi- 
Swarm  a lgorithm  optim izing the 10-dim ensionai Rosenbrock function. The neighbourhoods tested are the FO W ARD 
topo logy with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to ‘sw arm -size -  T). The re 
sults fo r the G LO BAL and RING topologies are im ported from  the previous section for re ference and com parison 
purposes. A run with an erro r no g reater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
k b j h s h

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

L , „ „ 10000 1.09E-06 2.72E-04 6.38E-01 3.99E+00 6.79E-03 32
U L U D A L

1000 2.22E-02 2.47E+00 5.31E+00 6.85E-MD1 2.34E-03 -

nn = 2
10000 6.79E-05 1.64E-02 1.82E-02 7.14E-02 7.64E-03 4

RING
1000 9.88E-03 1.64E+00 2.03E-K30 5.50E+00 1.63E-02 -

PSO-RRR2-1
nni = 2 10000 1.74E-06 3.60E-04 3.93E-04 1.15E-03 1.20E-02 24

n n f = ( m - 1 ) 1000 1.72E-02 4.02E+00 3.24E-K10 5.10E-K)0 1.71E-02 -

nn = 2
10000 1.14E+00 4.14E+00 4.12E+00 8.35E+00 1.02E-02 0

FWD
1000 1.36E+00 5 34E-KD0 5.22E+00 9.58E-H30 1.74E-02 -

nni = 2 10000 5.98E-05 9.99E-04 4.82E-01 4.01 E+00 5.80E-03 4

nnf = (m - 1 ) 1000 4.87E-01 5.02E-KD0 4.72E+00 7.39E-HD0 1.03E-02 -

10000 1.13E-28 8.73E-01 1.64E+00 3.99E+00 1.08E-03 44
V JL U D M L

1000 6.53E-06 1.46E+00 1.90E+00 4.99E+00 2.85E-03 -

nn = 2
10000 2.20E-10 3.45E-09 3.21 E-08 5.63E-07 2.39E-03 100

RING
1000 5.10E-04 1.17E-K)0 1.30E+00 4.19E+00 1.11E-02 -

PSO-RRR1-1
nni = 2 10000 5.92E-29 1.37E-28 1.59E-01 3.99E+00 1.36E-03 96
nnf = ( m - 1 ) 1000 1.51E-04 1.16E-01 4.36E-01 4.17E-KK) 7.96E-03 -

nn = 2
10000 8.06E-08 1.87E-06 7.89E-01 7.26E+00 2.41 E-03 80

FWD
1000 8.48E-01 2.32E-KX) 2.90E+Q0 7.33E+00 3.54E-03 -

nni = 2 10000 9.70E-29 2.18E-28 1.43E-26 1.51E-25 1.53E-03 100
n n f = ( m - 1 ) 1000 4.62E-02 1.55E-01 7.58E-01 8.46E-K30 3.46E-03 -

10000 1.18E-10 4.49E-06 4.79E-01 3.99E+00 8.56E-03 76
V J L U D M L

1000 2.73E-03 5.03E-01 7.26E-K10 8.06E+01 6.76E-03 -

nn = 2
10000 1.23E-08 1.29E-03 1.61 E-01 3.99E+00 7.32E-03 8

RING
1000 1.18E-02 3.08E+00 2.69E+00 5.08E+00 1.90E-02 -

C-PSO-1
nni = 2 10000 3.97E-08 8.83E-07 6.94E-06 1.28E-04 8.35E-03 96
nnf = ( m - 1 ) 1000 1.33E-03 2.28E+00 2.11E-KJ0 3.79E-K)0 1.63E-02 -

nn = 2
10000 3.51 E-01 4.05E+00 3.83E+00 7.43E+00 7.11 E-03 0

FWD
1000 4.88E-01 5.50E+00 5.87E+00 1.82E-K51 1.13E-02 -

nni =  2 10000 4.49E-07 2.83E-06 6.57E-04 1.39E-02 6.88E-03 92
nnf =  ( m - 1 ) 1000 2.32E+00 4.72E-+O0 4.86E-+00 8.56E+00 9.37E-03 -

0 1 A n  D11 10000 5.91E-12 2.94E-02 1.02E+00 5.59E+00 7.53E-03 16
V JL U D M L

1000 9.37E-05 6.67E-01 1.47E-K30 6.46E+00 7.93E-03 -

nn = 2
10000 4.01 E-09 8.03E-07 1.61 E-01 3.99E+00 8.87E-03 80

RING
1000 2.63E-03 1.62E-K30 1.82E+00 5.11E+00 1.79E-02 -

Multi-Swarm
nni = 2 10000 1.88E-15 1.16E-09 1.42E-05 3.49E-04 1.08E-02 96
nnf =  ( m - 1 ) 1000 5.39E-04 6.18E-01 8.49E-01 4.07E+00 1.45E-02 -

nn = 2
10000 9.26E-03 3.47E+00 3.47E+00 7.03E+00 4.92E-03 0

FWD
1000 1.09E-02 5.46E-K)0 5.35E+00 9.55E+00 9.53E-03 -

nni = 2 10000 3.40E-12 4.82E-09 4.80E-01 4.01 E+00 4.57E-03 76
nnf = ( m - 1 ) 1000 8.74E-01 4.48E+00 4.63E+00 9.59E+00 6.54E-03 -

3 8 8
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Table 7.21. S tatistical resu lts out o f 25 runs for the PSO -RRR2-1, the P S 0-R R R 1-1 , the C -PSO -1, and a Multi- 
Swarm  aigorithm  optim izing the 30-dim ensional Rosenbrock function. The neighbourhoods tested are the FOW ARD 
topo logy with 2 ne ighbours and with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T ). The re
sults fo r the G LO BAL and RING  topologies are im ported from the previous section fo r reference and com parison 
purposes. A run w ith an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps O K tM i
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S uccess

10000 1.41E-04 1.27E+01 1.03E+01 1.88E+01 1.45E-03 0
ULUDnL

1000 8.48E-HD0 2.80E+01 5.20E+01 1.24E-H32 2.95E-04 -

nn = 2
10000 1.14E-01 1.00E+01 1.06E+01 2.31 E+01 1.13E-02 0

RING
1000 4.82E+01 1.40E-+O2 1.48E-KD2 3.09E-H32 1.57E-02 -

PSO-RRR2-1
nni = 2 10000 2.91 E-07 1.46E+01 1.29E+01 2.28E+01 7.38E-03 4

n n f = ( m - 1 ) 1000 2.84E+01 6.81E+01 7.44E-K31 1.43E+02 1.16E-02 -

nn = 2
10000 2.42E+01 2.95E+01 4.12E+01 9.17E+01 4.89E-03 0

FWD
1000 8.59E+01 1 64E+02 1.91E+02 6.58E+02 9.83E-03 -

nni = 2 10000 4.49E-02 1.66E+01 2.22E+01 7.25E+01 3.38E-03 0
nnf = ( m - 1 ) 1000 3.31E+01 9.89E+01 1.03E-h02 1.77E+02 5.95E-03 -

10000 2.27E+01 9.15E+01 1.06E+02 3.67E+02 3.98E-11 0
ULUOML

1000 2.43E+01 9.38E-K)1 1.10E+02 3.69E-+02 2.84E-08 -

nn = 2
10000 8.78E-03 7.24E+00 7.16E+00 1.91 E+01 2.15E-03 0

RING
1000 8.28E+00 2.61 E-KJ1 4.28E+01 1.77E+02 4.38E-03 -

PSO-RRR1-1
nni = 2 10000 2.56E-17 9.97E-13 1.35E+00 9.73E+00 2.25E-03 72
nnf = ( m - 1 ) 1000 2.21E-KJ1 2.48E+01 3.96E-+01 8.33E+01 2.28E-03 -

nn = 2
10000 4.36E-03 6.77E+00 1.36E+01 7.96E+01 8.13E-05 0

FWD
1000 1.40E+01 2.55E+01 3.74E-MD1 1.50E-+02 3.63E-05 -

nni = 2 10000 9.54E-16 2.05E-11 1.12E+00 3.99E+00 4.13E-04 72

nnf = ( m - 1 ) 1000 8.21E+00 2.42E+01 3.30E-O1 9.27E-K11 1.52E-05
10000 1.17E-05 3.90E-02 1.05E+00 4.02E+00 5.58E-03 8

VJLUDML
1000 1.55E+00 2.22E+01 3.58E-KJ1 1.79E-K52 9.02E-04 -

nn = 2
10000 2.89E-03 6.94E-01 3.39E+00 1.79E+01 7.42E-03 0

RING
1000 1.32E+01 2.89E+01 5.04E+01 1.45E+02 1.30E-02 -

C-PSO-1
nni = 2 10000 3.41 E-06 3.73E+00 3.16E+00 1.00E+01 6.55E-03 4
nnf = ( m - 1 ) 1000 1.13E+01 2.63E+01 3.40E+01 8.12E-MD1 8.11 E-03 -

nn = 2
10000 1.46E+01 2.99E+01 4.02E+01 1.02E+02 2.26E-03 0

FWD
1000 2.70E+01 4.75E+01 6.34E-K51 1,55E-K)2 4.32E-03 -

nni = 2 10000 3.68E-05 3.85E+00 3.23E+00 5.59E+00 2.15E-03 4

nnf = ( m - 1 ) 1000 2.00E+01 2.74E-K11 4.45E-+01 1.19E+02 3.65E-03
10000 4.21 E-08 1.67E+01 2.70E+01 7.68E+01 3.90E-03 4

|ULUDML
1000 2.33E-02 2.30E+01 4.38E+01 1.36E+02 2.59E-03 -

nn = 2
10000 9.14E-03 7.09E+00 6.59E+00 1.46E+01 3.01E-03 0

RING
1000 6.26E+00 7.08E+01 5.33E+01 8.71E+01 5.27E-03 -

Mutti-Swarm
nni = 2 10000 1.56E-05 5.30E+00 6.36E+00 1.98E+01 2.76E-03 4

nnf = ( m - 1 ) 1000 4.72E+00 2.73E+01 4.05E-HD1 1.34E+02 3.79E-03 -

nn = 2
10000 1.95E+01 3.25E+01 5.09E+01 1.77E+02 3.71 E-03 0

FWD
1000 3.27E+01 7.61E+01 9.11E+01 2.12E+02 5.89E-03 -

nni = 2 10000 2.04E-04 1.10E+00 4.08E+00 7.00E+01 2.35E-03 0
nnf = ( m - 1 ) 1000 2.25E+01 2.71E+01 5.27E-+01 2.17E+02 1.53E-03
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M e a n  B e s t  C o n f lic t -  2D  R o s e n b r o c k  f u n c t io n

 PS0-RRR2-1 GLOBAL

—  PS0-RRR1-1 GLOBAL

 C-PSO-1 GLOBAL

=  MS GLOBAL

-PS0-RRR2-1 RING2NEIGH 

■PS0-RRR1-1 RING 2 NEIGH 

-C-PSO-1 RING2NEIGH. 

»MS RING2NEIGH.

■ PSO-RRR2-1 RING DYNAMIC - -

- PSO-RRR1-1 RING DYNAMIC —

- C-PSO-1 RING DYNAMIC —

•M S RING DYNAMIC • =

—  PSO-RRR2-1 FWD2NEIGH 

■ —  PS0-RRR1-1 FWD 2 NEIGH.

 C-PSO-1 FWD 2 NEIGH.

=  MS FWD 2 NEIGH

■ PSO-RRR2-1 FWD DYNAMIC 

■PSO-RRR1-1 FWD DYNAMIC

■ C-PSO-1 FWD DYNAMIC 

• MS FWD DYNAMIC

SOI 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501  7001 7501 8001 8501 9001 9501

1.00E-10

Fig. 7.33. Convergence curves o f the mean best conflic t for the 2D Rosenbrock function, associa ted to Table 7.19. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

----------- PSO-RRR2-1 GLOBAL ----------- PSO-RRR2-1 RING 2 NEIGH ----------- PSO-RRR2-1 RING DYNAMIC ----------- PS0-RRR2-1FW02NEIGH ----------- PSO-RRR2-1 FWD DYNAMIC

----------- PSO-RRR1-1 GLOBAL ----------- PSO-RRR1-1 RING 2 NEIGH. ----------- PS0-RRR1-1 RING DYNAMIC ----------- PS0-RRR1-1 FWD2NEIGH ----------- PS0-RRR1-1 FWD DYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING2 NEIGH. ----------- C-PSO-1 RING DYNAMIC -----------C-PSO-1 FWD 2 NEIGH ----------- C-PSO-1 FWD DYNAMIC

.  — j  MS GLOBAL = =  MS RING 2 NEIGH. =  MS RING DYNAMIC * = = *  MS FWD 2 NEIGH ’  MS FWD DYNAMIC

M e a n  B e s t  C o n f lic t -  1 0 D  R o s e n b ro c k  fu n c t io n

1 501 1001 1501 2001 2501 3001 3501 4001  4501 5001 5501 6001 6501  7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.34. C o n v e rg e n c e  c u rv e s  of the  m e a n  b e s t  conflict for the  10D R o se n b ro c k  function, a s s o c i a t e d  to Tab le  7.20.
T h e  c o lo u r -co d e s  u se d  to identify th e  n e ig h b o u rh o o d  s t ru c tu re s  a r e  th e  s a m e  in the  tab le  a n d  f igure a s so c ia te d .

390
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M e a n  B e s t  C o n flic t -  1 0 D  R o s e n b r o c k  f u n c t io n

----------- PSO-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH. -----------PSO-RRR2-1 RING DYNAMIC ----------- PSO-RRR2-1 FWD2 NEIGH ----------- PSO-RRR2-1 FWD DYNAMIC

----------- PS0-RRR1-1 GLOBAL ----------- PSO-RRR1-1 RING 2 NEIGH -----------PS0-RRR1-1 RING DYNAMIC ----------- PS0-RRR1-1 FWD2NEIGH. ----------- PS0-RRR1-1 FWD DYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING2NEIGH. -----------C-PSO-1 RING DYNAMIC ----------- C-PSO-1 FWD 2 NEIGH. ----------- C-PSO-1 FWD DYNAMIC

=  MS GLOBAL =  MS RING 2 NEIGH ■---------- -MS RING DYNAMIC « »MS FWD 2 NEIGH ■------------MS FWD DYNAMIC

v

 f

0.

1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.35. C onvergence curves o f the mean best conflict for the 10D Rosenbrock function, associa ted to Table  7.20. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

M e a n  B e s t  C o n flic t -  3 0 D  R o s e n b ro c k  fu n c t io n

-  PS0-RRR2-1 RING DYNAMICPSO-RRR2-1 GLOBAL PSO-RRR2-1 RING 2 NEIGH

 PSO-RRR1-1 GLOBAL -------------PSO-RRR1-1 RING 2 N E I G H ------------ PSO-RRR1-1 RING D Y N A M IC ------------ PSO-RRR1-1 FWD 2 NEIGH

C-PSO-1 FWD 2 NEIGHC-PSO-1 GLOBAL  C-PSO-1 RING 2 NEIGH

MS RING 2 NEIGH MS RING DYNAMIC MS FWD 2 NEIGH. MS FWD DYNAMIC

"X

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7 .36. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  30D R o s e n b ro c k  function, a s s o c i a t e d  to T a b le  7.21.
T h e  c o lo u r -c o d e s  u s e d  to identify the  n e ig hbourhood  s t ru c tu res  a re  the  s a m e  in th e  tab le  an d  figure a s s o c i a t e d .
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5.00E+01

4.00E+01

3.00E+01

2.00E+01

1.00E+01

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING2 NEIGH. ----------- PS0-RRR2-1 RING DYNAMIC -----------PS0-RRR2-1 FWD2NEIGH -----------PS0-RRR2-1 FWD DYNAMIC

----------- PS0-RRR1-1 GLOBAL ----------- PS0-RRR1-1 RING2NEIGH ----------- PS0-RRR1-1 RING DYNAMIC -----------PS0-RRR1-1 FWD2 NEIGH. -----------PS0-RRR1-1 FWO DYNAMIC

» MS GLOBAL ■---------- »MS FWD 2 NEIGH.

M e a n  B e s t  C o n f lic t - 3 0 D  R o s e n b ro c k  fu n c t io n

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7.37. Convergence curves o f the mean best conflic t for the 30D Rosenbrock function, associated to Table 7.21. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH ----------- PS0-RRR2-1 RING DYNAMIC -----------PSO-RRR2-1FWD2NEIGH. -----------PSO-RRR2-1 FV® DYNAMIC

----------- PS0-RRR1-1 GLOBAL ----------- PS0-RRR1-1 RING 2 NEIGH ----------- PSO-RRR1-1 RING DYNAMIC -----------PS0-RRR1-1 FWD2NEIGH -----------PSO-RRR1-1 FV® DYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH. -----------C-PSO-1 RING DYNAMIC -----------C-PSO-1 FWD 2 NEIGH -----------C-PSO-1 FWD DYNAMO

«---------- > MS GLOBAL ■ MS Rl NG 2 N EIGH. =  MS RING DYNAMIC < =  MS FWD 2 NEIGH ■ -->  MS FWD DYNAMIC

M e a n  B e s t  C o n flic t -  3 0 D  R o s e n b ro c k  f u n c t io n

1.60E+01 

1.40E+01 

1.20E+01 

1.00E+01 

8.00E+00 

6.00E+00 

4.00E+00 

2.00E+00

-------------------------------------           0.00E+00

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.38. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  30D R o se n b ro c k  function, a s s o c ia te d  to Tab le  7.21
T h e  co lo u r -c o d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ru c tu re s  a r e  th e  s a m e  in th e  tab le  a n d  figure a s so c ia te d .
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Table 7.22. S tatistical results out o f 25 runs for the PSO -RRR2-1, the P S0-R R R 1-1 , the C -PSO -1, and a Multi- 
Swarm algorithm  optim izing the 2-d im ensional Rastrigin function. The neighbourhoods tested are the FO W ARD to
pology with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T ). The results 
fo r the G LO BAL and RING topologies are im ported from  the previous section for reference and com parison pur
poses. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.07E-10 100
ULU DnL

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.42E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 100

RING
1000 O.OOE-hOO O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 -

PSO-RRR2-1
nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.96E-11 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.96E-11 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.34E-11 100

FWD
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.34E-11 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.18E-11 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.18E-11 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.09E-11 100
OLUDML

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.09E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.05E-11 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.05E-11 -

PSO-RRR1-1
nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.60E-11 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.60E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.99E-11 100

FWD
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.99E-11 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.09E-11 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.09E-11 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 7.79E-11 100
ULUDML

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 7.79E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.52E-11 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.52E-11 -

C-PSO-1
nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.26E-11 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.26E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.24E-11 100

FWD
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.24E-11 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.95E-11 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.95E-11 -

10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 100
|ULUDAL

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.73E-11 100

RING
1000 2.98E+00 5.97E+00 5.72E+O0 1.00E+01 3.74E-02 -

Multi-Swarm
nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.16E-11 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.16E-11 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.07E-11 100

FWD
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.07E-11 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.95E-11 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.95E-11 -
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Table 7.23. S tatistical results out o f 25 runs fo r the PSO -RRR2-1, the PSO-RRR1-1, the C-PSO -1, and a Multi- 
Swarm algorithm  optim izing the 10-dim ensional Rastrigin function. The neighbourhoods tested are the FOW ARD 
topology with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to ‘sw arm -size -  T ). The re
sults for the GLO BAL and RING topologies are im ported from the previous section for re ference and com parison 
purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
m i

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

10000 9.95E-01 2.98E+00 2.95E+00 6.96E+00 3.48E-04 0
|U L U D A L

1000 9.95E-01 2.98E-+O0 3.02E-+00 6.96E+00 2.20E-03 -

nn = 2
10000 0.00E+00 1.99E+00 2.15E+00 4.97E+00 2.71 E-02 20

RING
1000 1.99E+00 4.22E+00 4.43E+00 7.96E+00 3.54E-02 -

PSO-RRR2-1
nni = 2 10000 0.00E+00 0.00E+00 7.16E-01 3.98E+00 1.65E-02 60

nnf = ( m - 1 ) 1000 9.95E-01 3.98E+00 4.04E+00 1.09E+01 3.51 E-02 -

nn = 2
10000 5.27E-03 2.06E+00 2.26E+00 4.58E+00 2.67E-02 0

FWD
1000 2.54E+00 5.30E+00 5.57E+00 8.53E-KX) 3.63E-02 -

nni = 2 10000 O.OOE+OO 0.00E+00 4.43E-01 2.98E+00 1.41 E-02 68
nnf = ( m - 1 ) 1000 6.01 E-01 4.00E+00 4.28E+00 7.88E-+00 3.33E-02 -

10000 5.97E+00 1.19E+01 1.35E+01 2.49E+01 1.21E-11 0
V3LUDML

1000 5.97E+00 1.19E+01 1.35E+01 2.49E-+01 1.47E-11 -

nn = 2
10000 9.95E-01 4.97E+00 5.18E+00 1.09E+01 3.82E-02 0

RING
1000 2.98E+00 7.96E+O0 7.94E+00 1.37E+01 4.30E-02 -

PSO-RRR1-1
nni = 2 10000 O.OOE+OO 2.98E+00 3.02E+00 5.97E+00 2.79E-02 8
nnf = ( m - 1 ) 1000 2.98E+O0 5.97E+00 7.44E+00 1.59E+01 4.40E-02 -

nn = 2
10000 4.36E-03 2.48E+00 3.02E+00 8.87E+00 2.80E-02 0

FWD
1000 3.53E+O0 6.57E+00 6.85E+00 1.19E+01 3.84E-02 -

nni = 2 10000 O.OOE+OO 9.95E-01 1.51 E+00 3.98E+00 1.48E-02 20
nnf = ( m - 1 ) 1000 1.50E+00 5.85E+00 5.92E-K50 1.17E+01 3.48E-02 -

10000 1.99E+00 3.98E+00 4.93E+00 1.09E+01 1.92E-11 0
U L U D H L

1000 1.99E+00 4.97E+00 5.17E+00 1.19E+01 8.71 E-04 -

nn = 2
10000 0.00E+00 2.98E+00 2.79E+00 4.97E+00 2.93E-02 12

RING
1000 1.99E+00 3.98E+O0 4.55E+00 7.96E+00 3.79E-02 -

C-PSO-1
nni = 2 10000 O.OOE+OO 9.95E-01 1.23E+00 5.97E+00 1.98E-02 48
nnf = ( m - 1 ) 1000 1.99E+00 3.98E-+00 4.66E-+00 7.96E-+00 3.65E-02 -

nn = 2
10000 3.80E-03 2.04E+00 2.38E+00 5.49E+00 2.44E-02 0

FWD
1000 1.57E+00 5.94E+00 5.99E+O0 9.35E+00 3.56E-02 -

nni = 2 10000 0.00E+00 O.OOE+OO 5.57E-01 1.99E+00 1.22E-02 52
nnf = ( m - 1 ) 1000 9.96E-01 3.84E+00 3.96E+00 6.88E+00 3.35E-02 -

/■'i A n m11 10000 1.99E+00 3.98E+00 4.78E+00 1.49E+01 1.84E-11 0
VJLUDML

1000 1.99E+00 3.98E-K)0 5.13E-+00 1.49E+01 5.46E-04 -

nn = 2
10000 0.00E+00 2.98E+00 2.75E+00 6.96E+00 2.90E-02 4

RING
1000 2.98E+O0 5.97E+O0 5.72E+00 1.00E+01 3.74E-02 -

Multi-Swarm
nni = 2 10000 O.OOE+OO 9.95E-01 1.68E+00 5.97E+00 1.94E-02 32
nnf = ( m - 1 ) 1000 2.18E-+00 4.97E+00 5.26E+00 1.09E+01 3.66E-02 -

nn = 2
10000 6.41 E-05 2.12E+00 2.34E+00 6.20E+00 2.45E-02 4

FWD
1000 2.80E+00 6.48E+00 6.42E+00 1.03E+O1 3.42E-02 -

nni = 2 10000 O.OOE+OO 9.95E-01 1.07E+00 2.98E+00 1.66E-02 28
nnf = ( m - 1 ) 1000 2.25E-HD0 5.07E+00 5.03E+00 9.50E+00 3.34E-02 -
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Table  7.24. S tatistica l results out o f 25 runs for the P S 0-R R R 2-1 , the PSO-RRR1-1, the C-PSO -1, and a Multi- 
Swarm  algorithm  optim izing the 30-dim ensiona l Rastrig in function. The neighbourhoods tested are the FOW ARD 
topo logy with 2 ne ighbours and with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T ). The re
sults for the G LO BAL and RING topologies are im ported from the previous section for reference and com parison 
purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

10000 2.69E+01 4.28E+01 4.13E+01 5.57E+01 2.64E-11 0
U L U D n L

1000 2.69E+01 4.28E+01 4.14E+01 5.57E+01 3.99E-05 -

nn = 2
10000 2.98E+01 4.40E+01 4.29E+01 5.29E+01 2.61 E-02 0

RING
1000 3.46E+01 5.32E-K31 5.24E+01 7.23E+01 3.00E-02 -

PSO-RRR2-1
nni = 2 10000 2.69E+01 4.28E+01 4.31 E+01 6.96E+01 2.97E-02 0

nnf = ( m - 1 ) 1000 3.84E+01 4.88E+01 5.19E+01 7.99E+01 2.99E-02 -

nn = 2
10000 4.09E+01 6.23E+01 6.35E+01 8.78E+01 2.87E-02 0

FWD
1000 5.77E+01 8.37E+01 8.38E+01 1.05E+02 3.23E-02 -

nni = 2 10000 1.29E+01 3.28E+01 3.25E+01 4.48E+01 2.29E-02 0
nnf = ( m - 1 ) 1000 5.06E+01 6.92E+01 6.97E+01 9.26E+01 3.13E-02 -

10000 2.49E+01 7.16E+01 7.41 E+01 1.28E+02 6.68E-16 0
U L U D M L

1000 2.49E+01 7.16E+01 7.41E+01 1.28E-+02 1.47E-15 -

nn = 2
10000 2.19E+01 4.68E+01 4.65E+01 6.17E+01 3.00E-02 0

RING
1000 2.20E+01 5.01 E+01 5.03E+01 6.71E+01 3.12E-02 -

PSO-RRR1-1
nni = 2 10000 2.29E+01 4.88E+01 4.91 E+01 7.46E+01 3.15E-02 0
nnf = ( m - 1 ) 1000 3.48E+01 4.88E+01 5.13E+01 7.98E+01 3.27E-02 -

nn = 2
10000 4.15E+01 7.21E+01 7.14E+01 1.03E+02 2.36E-02 0

FWD
1000 5.63E+01 8.37E-KD1 8.69E+01 1.16E+02 2.58E-02 -

nni = 2 10000 1.99E+01 3.98E+01 4.14E+01 6.57E+01 2.03E-02 0

nnf = ( m - 1 ) 1000 4.38E+01 7.73E-K51 7.87E+01 1.13E+02 2.57E-02

10000 2.69E+01 4.88E+01 5.37E+01 9.65E+01 1.93E-11 0
U L U D M L

1000 2.69E+01 4.88E+01 5.37E+01 9.65E+01 1.09E-10 -

nn = 2
10000 2.89E+01 5.37E+01 5.05E+01 6.87E+01 3.31 E-02 0

RING
1000 2.89E+01 5.88E+01 5.59E+01 7.79E+01 3.43E-02 -

C-PSO-1
nni = 2 10000 2.19E+01 5.27E+01 5.11E+01 7.36E+01 3.15E-02 0
nnf = ( m - 1 ) 1000 2.69E-HD1 5.77E+01 5.59E+01 8.28E+01 3.36E-02 -

nn = 2
10000 5.32E+01 7.29E+01 7.32E+01 9.73E+01 2.97E-02 0

FWD
1000 6.33E+01 9.06E+O1 9.20E+01 1.29E+02 2.99E-02 -

nni = 2 10000 1.69E+01 3.68E+01 3.81 E+01 5.57E+01 2.53E-02 0
nnf =  ( m - 1 ) 1000 5.01 E+01 8.45E-HD1 8.26E+01 1.11E+02 3.20E-02

A I r \ n  a 10000 2.59E+01 5.27E+01 5.33E+01 8.16E+01 1.89E-11 0
jU L U D M L

1000 2.59E+01 5.27E+01 5.33E+01 8.16E+01 5.36E-08 -

nn =  2
10000 3.28E+01 4.48E+01 4.56E+01 6.37E+01 3.03E-02 0

RING
1000 3.32E+01 5.21 E+01 4.97E+01 6.57E+01 3.09E-02 -

Multi-Swarm
nni =  2 10000 2.59E+01 3.98E+01 4.32E+01 6.67E+01 2.77E-02 0
n n f = ( m - 1 ) 1000 2.72E+01 4.48E+01 4.77E+01 6.83E+01 2.96E-02 -

<NIICC 10000 2.96E+01 6.81E+01 6.71E+01 8.76E+01 3.07E-02 0

FWD
1000 4.94E+01 8.76E+01 8.55E+01 1.21E+02 3.31 E-02 -

nni =  2 10000 1.69E+01 3.38E+01 3 .3 4 E + 9 1 5.67E+01 2.18E-02 0
nnf = ( m - 1 ) 1000 3.73E-KD1 7.11E+01 7.11E+01 9.42E+01 3.10E-02 -
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M e a n  B e s t  C o n f lic t -  2D  R a s tr ig in  f u n c t io n

-----------PS0-RRR2-1 GLOBAL -----------PS0-RRR2-1 RING 2 NEIGH, ----------- PS0-RRR2-1 RING DYNAMIC ----------- PS0-RRR2-1 FWD2 NEIGH. -----------PS0-RRR2-1 FWDDYNAMIC

-----------PS0-RRR1-1 GLOBAL -----------PS0-RRR1-1 RING 2 NEIGH ----------- PSO-RRR1-1 RING DYNAMIC ----------- PS0-RRR1-1 FWD2 NEIGH -----------PS0-RRR1-1 FWDDYNAMIC

-----------C-PSO-1 GLOBAL -----------C-PSO-1 RING 2 NEIGH. ----------- C-PSO-1 RING DYNAMIC ----------- C-PSO-1 FWD 2 NEIGH. -----------C-PSO-1 FWD DYNAMIC

<---------- »MS GLOBAL = =  MS RING 2 NEIGH «---------- »MS RING DYNAMIC ■MS FWD 2 NEIGH « =  MS FWD DYNAMIC

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7.39. C onvergence curves o f the mean best conflict fo r the 2D Rastrigin function, associated to Table 7.22. The 
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

M e a n  B e s t  C o n flic t -  10 D  R a s tr ig in  f u n c t io n

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING2NBGH -----------PS0-RRR2-1 RING DYNAMIC -----------PS0-RRR2-1 FWD 2 NEIGH ----------- PS0-RRR2-1 FVIO DYNAMIC

----------- PSO-RRR 1-1 GLOBAL ----------- PS0-RRR1-1 RING2NEIGH -----------PS0-RRR1-1 RINGDYNAMIC -----------PSO-RRR 1-1 FWD 2 NEIGH ----------- PSO-RRR 1-1 FWDDYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING2NEIGH -----------C-PSO-1 RINGDYNAMIC -----------C-PSO-1 FWD 2 NEIGH ----------- C-PSO-1 FWD DYNAMIC

•MS GLOBAL = =  MS RING 2 NEIGH. « =  MS RING DYNAMIC =  MS FWD 2 NEIGH. <- ~ ■ MS FWD DYNAMIC

1.60E+01

1.40E+01

1.20E+01

1.00E+01

8.00E+00

6.00E+00

4.00E+00

2.00E+00

------------------------------— ------------------------------------ — ----------------------------------------------------------------------  O.OOE+OO

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7 .40. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for th e  10D Rastrigin function, a s so c ia te d  to T ab le  7.23. T he
c o lo u r -co d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ru c tu res  a r e  th e  s a m e  in th e  tab le  a n d  figure a s s o c ia te d .
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M e a n  B e s t  C o n f lic t -  10D  R a s tr ig in  f u n c t io n

PS0-RRR2-1 FWD2 NEIGH PSO-RRR2-1 FWDDYNAMICPS0-RRR2-1 GLOBAL --PSO -RRR2-1 RING 2 NEIGH PS0-RRR2-1 RING DYNAMIC

 PSO-RRR 1-1 FWDDYNAMICPSO-RRR1-1 FWD2 NEIGH PS0-RRR1-1 GLOBAL  PS0-RRR1-1 RING 2 N E I G H  PS0-RRR1-1 RINGDYNAMIC

C-PSO-1 FWD 2 NEIGH  C-PSO-1 FWD DYNAMICC-PSO-1 GLOBAL  C-PSO-1 RINGDYNAMICC-PSO-1 RING 2 NEIGH

MS FWD 2 NEIGH,MS GLOBAL MSRING2NEIGH. MS RINGDYNAMIC

Tim e-steps

Fig. 7.41. C onvergence curves o f the mean best conflic t for the 10D Rastrigin function, associated to Table 7.23. The 
co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associated.

M e a n  B e s t  C o n flic t -  10D  R a s tr ig in  f u n c t io n

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH -----------PS0-RRR2-1 RING DYNAMIC -----------PS0-RRR2-1FW02NEIGH ----------- PSO-RRR2-1 FWDDYNAMIC

----------- PSO-RRR 1-1 GLOBAL ----------- PS0-RRR1-1RING2 NEIGH -----------PS0-RRR1-1 RINGDYNAMIC -----------PS0-RRR1-1FWD2 NEIGH ----------- PSO-RRR1-1 FWDDYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH -----------C-PSO-1 RINGDYNAMIC -----------C-PSO-1 FWD 2 NEIGH. ----------- C-PSO-1 FWD DYNAMIC

= »  MS GLOBAL =  MS RING2 NEIGH. «■ ■—  . MS RINGDYNAMIC « =  MS FWD 2 NEIGH. ■ - ->  MS FWD DYNAMIC

0.

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7 .42 .  C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the 10D Rastrigin function, a s s o c i a t e d  to T ab le  7 .23 .  T he
c o lo u r -c o d e s  u s e d  to identify the  ne ig h b o u rh o o d  s t ru c tu re s  a re  th e  s a m e  in th e  tab le  a n d  figure a s s o c ia te d .
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M e a n  B e s t  C o n flic t -  3 0 D  R a s tr ig in  fu n c t io n

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2 1 RING2NEIGH. ----------- PSO-RRRM RINGDYNAMIC ----------- PS0-RRR2-1 FWD2 NEIGH ----------- PS0-RRR2-1 FWDDYNAMIC

----------- PS0-RRR1-1 GLOBAL ----------- PSO-RRRM RING2 NEIGH -----------PS0-RRR1-1 RING DYNAMIC ----------- PS0-RRR1-1 FWD2 NEIGH ----------- PSO-RRRM FWDDYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING2 NEIGH. -----------C-PSO-1 RINGDYNAMIC -----------C-PSO-1 FWD 2 NEIGH. ----------- C-PSO-1 FWD DYNAMIC

> MS GLOBAL = =  MS RING 2 NEIGH. =  MS RING DYNAMIC * =  MS FWD 2 NEIGH. ■ MS FWD DYNAMIC

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001  8501 9001 95011

5.50E+01 ^

Fig. 7.43. Convergence curves o f the mean best conflict for the 30D Rastrigin function, associated to Table 7.24. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

----------- PS0-RRR2-1 GLOBAL ----------- PSO-RRR2-1 RING2NEIGH ----------- PSO-RRR2-1 RING DYNAMIC ----------- PS0-RRR2-1 FWD2 NEIGH. ----------- PSO-RRR2-1 FWDDYNAMIC

----------- PSO-RRRM GLOBAL ----------- PS0-RRR1-1 RING2NEIGH -----------PSO-RRR1-1 RINGDYNAMIC ----------- PSO-RRRM FWD2 NEIGH ----------- PSO-RRRM FWDDYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH. -----------C-PSO-1 RINGDYNAMIC ----------- C-PSO-1 FWD 2 NEIGH. ----------- C-PSO-1 FWD DYNAMIC

» MS GLOBAL * =  MS RING 2 NEIGH = >  MS RING DYNAMIC * = = >  MS FWD 2 NEIGH. ■- MS FWD DYNAMIC

M e a n  B e s t  C o n flic t -  3 0 D  R a s tr ig in  f u n c t io n

4501 5001 5501

Tim e-steps

Fig. 7 .44. C o n v e rg e n c e  c u rv e s  of the  m e a n  b e s t  conflict for th e  30D Rastrigin function, a s s o c i a t e d  to T ab le  7.24. T h e
c o lo u r -c o d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ru c tu res  a re  the  s a m e  in the  table  a n d  figure a s s o c ia te d .
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Table 7.25. S tatistica l results out o f 25 runs for the P S0-R R R 2-1 , the PSO-RRR1-1, the C-PSO -1, and a Multi- 
Swarm  algorithm  optim izing the 2-d im ensional G riewank function. The neighbourhoods tested are the FOW ARD 
topo logy with 2 ne ighbours and with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T). The re
sults fo r the G LO BAL and RING topologies are im ported from the previous section fo r reference and com parison 
purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
$ | g |  ,y :

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

10000 O.OOE+OO O.OOE+OO 2.96E-04 7.40E-03 7.41E-12 96
ULUDHL

1000 O.OOE+OO O.OOE+OO 5.92E-04 7.40E-03 1.10EO3 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 3.65E-04 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.10EO3 -

PSO-RRR2-1
nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.57E-12 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.64E03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.48E-04 100

FWD
1000 O.OOE+OO O.OOE+OO 8.90E-15 2.22E-13 2.02EO3 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.59E-12 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.67E03 -

10000 0.00E+00 O.OOE+OO 5.92E-04 7.40E-Q3 5.76E-12 92
VJLUDML

1000 O.OOE+OO O.OOE+OO 1.18E-03 9.08E-04 9.08EO4 -

CMIICc 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 4.15E-04 100

RING
1000 O.OOE+OO O.OOE+OO 3.02E-13 7.54E-12 2.05EO3 -

PSO-RRR1-1
nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.45E-12 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.67E03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.37E-04 100

FWD
1000 O.OOE+OO O.OOE+OO 3.58E-09 8.74E-08 2.03EO3 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.87E-12 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 2.18E-16 5.44E-15 1.54E-03 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.40E-12 100
VJLUDML

1000 O.OOE+OO O.OOE+OO 1.18E-03 7.40E-03 9.46E04 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.57E-04 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.96E03 i

C-PSO-1
nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.81 E-12 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.67E03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.13E-05 100

FWD
1000 O.OOE+OO O.OOE+OO 2.05E-10 4.60E-09 1.89E03 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.87E-12 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 6.39E-12 1.60E-10 1.58E03 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.56E-12 100
jULVJDHL

1000 O.OOE+OO O.OOE+OO 5.95E-16 1.49E-14 8.92E04 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 2.51 E-04 100

RING
1000 O.OOE+OO O.OOE+OO 2.39E-05 5.88E-04 2.05EO3 -

Multi-Swarm
nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.74E-12 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.59E03 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.67E-04 100

FWD
1000 O.OOE+OO O.OOE+OO 4.02E-08 8.51 E 07 1.92E03 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.88E-12 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.53E03 -
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Table 7.26. S tatistical results out o f 25 runs for the PSO-RRR2-1, the PSO-RRR1-1, the C-PSO -1, and a Multi- 
Swarm algorithm  optim izing the 10-dim ensional G riewank function. The neighbourhoods tested are the FO W ARD 
topology with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to ‘sw arm -size -  T). The re
sults fo r the G LO BAL and RING topologies are im ported from  the previous section for re ference and com parison 
purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
i B B i H H B 3 3 E E S I

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

L „ 10000 1.97E-02 5.66E-02 6.81E-02 1.43E-01 4.94E-07 0
U L U D H L

1000 1.97E-02 6.16E-02 7.14E-02 1.43E-01 1.18E-04 -

nn = 2
10000 0.00E+00 2.46E-02 2.66E-02 6.15E-02 1.81 E-03 4

RING
1000 2.96E-07 2.95E-02 3.41 E-02 6.88E-02 2.01 E-03 -

PSO-RRR2-1
nni = 2 10000 7.40E-03 2.96E-02 3.02E-02 5.65E-02 1.35E-03 0
nnf = ( m - 1 ) 1000 9.86E-03 3.94E-02 3.68E-02 5.66E-02 1.54E-03 -

nn = 2
10000 1.30E-02 3.15E-02 3.53E-02 8.10E-02 1.34E-03 0

FWD
1000 4.99E-02 8.36E-02 8.31 E-02 1.27E-01 1.65E-03 -

nni = 2 10000 0.00E+00 2.71 E-02 2.45E-02 5.90E-02 1.04E-03 16
nnf = ( m - 1 ) 1000 1.02E-02 5.65E-02 5.98E-02 1.21 E-01 1.54E-03 -

10000 2.96E-02 9.11E-02 9.27E-02 1.82E-01 1.81E-12 0
U L U B M L

1000 2.96E-02 9.11 E-02 9.27E-02 1.82E-01 1.48E-05 -

nn = 2
10000 O.OOE+OO 3.19E-02 3.05E-02 7.38E-02 1.58E-03 8

RING
1000 O.OOE+OO 3.94E-02 3.64 E-02 7.62E-02 1.66E-03 -

PSO-RRR1-1
nni = 2 10000 O.OOE+OO 2.22E-02 2.95E-02 6.64E-02 1J27E-03 12

nnf = ( m - 1 ) 1000 9.86E-03 4.18E-02 4.26E-02 1.11 E-01 1.61 E-03 -

nn = 2
10000 1.11E-08 1.96E-02 2.34E-02 6.66E-02 1.03E-03 4

FWD
1000 1.07E-03 5.21 E-02 4.87E-02 8.87E-02 1.26E-03 -

nni = 2 10000 O.OOE+OO 1.23E-02 1.75E-02 5.41 E-02 6.64E-04 4
nnf = ( m - 1 ) 1000 4.97E-03 3.35E-02 4.19E-02 9.49E-02 1.25E-03 -

10000 1.97E-02 6.64E-02 6.68E-02 1.38E-01 1.65E-06 0
VJLUDM L

1000 2.71 E-02 6.89E-02 7.21 E-02 1.38E-01 1.22E-04 -

nn = 2
10000 O.OOE+OO 2.46E-02 2.36E-02 4.68E-02 1.55E-03 4

RING
1000 0.00E-KX) 2.71 E-02 2.85E-02 8.87E-02 1.66E-03 -

C-PSO-1
nni = 2 10000 O.OOE+OO 2.71 E-02 2.49E-02 5.91 E-02 1.19E-03 4
nnf = ( m - 1 ) 1000 7.40E-03 3.69E-02 3.52E-02 7.38E-02 1.52E-03 -

nn = 2
10000 2.19E-05 1.59E-02 2.16E-02 5.97E-02 1.23E-03 4

FWD
1000 2.26E-02 6.27E-02 6.45E-02 2.06E-01 1.57E-03 -

nni = 2 10000 O.OOE+OO 1.72E-02 1.94E-02 5.66E-02 8.92E-04 12
nnf = ( m - 1 ) 1000 8.60E-03 4.60E-02 5.14E-02 9.34E-02 1.43E-03 -

r*i A n a I 10000 1.48E-02 6.64E-02 6.64E-02 1.38E-01 1.48E-05 0
VJLUDML

1000 2.95E-02 7.13E-02 7.85E-02 1.85E-01 1.40E-04 -

nn = 2
10000 0.00E+00 1.97E-02 2.15E-02 5.90E-02 1.60E-03 8

RING
1000 7.40E-03 2.22E-02 2.71 E-02 5.90E-02 1.75E-03 -

Multi-Swarm
nni = 2 1 0 0 0 0 0.00E+00 2.46E-02 2.77E-02 6.89E-02 1.47E-03 8

nnf = ( m - 1 ) 1000 0.0OE-H30 3.45E-02 3.59E-02 7.38E-02 1.74E-03 -

nn = 2
10000 4.64E-05 3.60E-02 3.64E-02 9.76E-02 1.30E-03 4

FWD
1000 2.16E-02 6.01 E-02 6.36E-02 1.49E-01 1.53E-03 -

nni = 2 10000 O.OOE+OO 1.72E-02 2.33E-02 5.90E-02 1.08E-03 12
nnf = ( m - 1 ) 1000 7.94E-03 5.59E-02 6.33E-02 1.25E-01 1.73E-03 -
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Table 7.27. S tatistica l results out o f 25 runs for the P S 0-R R R 2-1 , the PSO-RRR1-1, the C-PSO -1, and a Multi- 
Swarm  algorithm  optim izing the 30-dim ensional G riewank function. The neighbourhoods tested are the FOW ARD 
topo logy with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  1’). The re
sults fo r the G LO BAL and RING topologies are im ported from  the previous section for reference and com parison 
purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S uccess

10000 0.00E+00 7.40E-03 9.35E-03 2.96E-02 4.23E-12 44
OLUDML

1000 7.95E-06 7.44E-03 9.40E-03 2.96E-02 2.93E-06 -

nn = 2
10000 0.00E+00 0.00E+00 2.96E-04 7.40E-03 1.22E-06 96

RING
1000 2.54E-01 4.15E-01 4.23E-01 6.79E-01 2.52E-04 -

PSO-RRR2-1
nni = 2 10000 0.00E+00 0.00E+00 4.05E-03 1.72E-02 3.77E-06 64

nnf = ( m - 1 ) 1000 3.65E-02 7.18E-02 8.05E-02 1.70E-01 1.13E-04 -

nn = 2
10000 0.00E+00 0.00E+00 3.40E-06 8.14E-05 1.88E-06 100

FWD
1000 2.79E-01 4.89E-01 4.85E-01 7.33E-01 2.52E-04 -

nni = 2 10000 O.OOE+OO O.OOE+OO 1.19E-03 1.23E-02 1.25E-07 84

nnf = ( m - 1 ) 1000 2.30E-02 1.37E-01 1.42E-01 2.65E-01 1.44E-04 -

10000 3.29E-08 6.46E-02 1.02E-01 7.40E-01 3.91 E-13 4
ULUdML

1000 3.29E-08 7.11 E-02 1.12E-01 7.40E-01 4.04E-14 -

nn = 2
10000 0.00E+00 0.00E+00 6.90E-04 9.86E-03 6.40E-08 92

RING
1000 4.02E-11 7.73E-10 6.91E-04 9.86E-03 1.38E-06 -

PSO-RRR1-1
nni = 2 10000 0.00E+00 0.00E+00 1.58E-03 9.86E-03 8.49E-09 80
nnf = ( m - 1 ) 1000 O.OOE+OO 4.76E-08 3.15E-03 1.48E-02 1.11E-06 -

nn = 2
10000 0.00E+00 O.OOE+OO 8.17E-04 1.26E-02 2.62E-07 88

FWD
1000 3.02E-12 1.61 E-03 3.88E-03 2.08E-02 1.43E-05 -

nni = 2 10000 0.00E+00 0.00E+00 2.56E-03 1.72E-02 3.6SE-12 80
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 3.68E-03 1.73E-02 5.83E-06 -

10000 0.00E+00 1.23E-02 1.79E-02 7.09E-02 2.56E-12 36
ULUDHL

1000 O.OOE+OO 1.23E-02 1.79E-02 7.09E-02 2.93E-12 -

nn = 2
10000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.14E-07 100

RING
1000 4.55E-06 3.98E-05 2.60E-03 2.22E-02 1.52E-05 -

C-PSO-1
nni = 2 10000 O.OOE+OO 0.00E+00 1.97E-03 1.72E-02 4.73E-07 84

nnf = ( m - 1 ) 1000 3.22E-09 3.49E-08 2.37E-03 1.72E-02 8.37E-06 -

nn = 2
10000 0.00E+00 0.00E+00 2.96E-04 7.40E-03 1.72E-07 96

FWD
1000 1.75E-05 5.85E-03 1.41 E-02 7.88E-02 6.27E-05 -

nni = 2 10000 0.00E+00 0.00E+00 1.28E-03 9.86E-03 3.91 E-11 84

nnf = ( m - 1 ) 1000 1.16E-08 2.73E-07 6.22E-03 6.23E-02 1.84E-05 -

r* i A n a 10000 O.OOE+OO 4.67E-02 5.18E-02 1.41 E-01 2.42E-12 4
OLUDML

1000 6.66E-16 4.67E-02 5.18E-02 1.41 E-01 4.06E-08 -

nn = 2
10000 0.00E+00 0.00E+00 2.17E-03 1.23E-02 1.10E-06 76

RING
1000 6.02E-08 7.40E-03 6.97E-03 3.92E-02 3.08E-05 -

Multi-Swarm
nni = 2 10000 0.00E+00 0.00E+00 6.39E-03 3.92E-02 4.12E-12 64

nnf = ( m - 1 ) 1000 9.47E-11 7.40E-03 9.54E-03 3.92E-02 1.26E-05 -

nn = 2
10000 0.00E+00 0.00E+00 3.07E-04 7.40E-03 2.58E-06 92

FWD
1000 6.00E-03 4.20E-02 5.62E-02 2.12E-01 1.19E-04 -

nni = 2 10000 0.00E+00 0.00E+00 2.07E-03 2.71 E-02 3.36E-12 84

nnf = ( m - 1 ) 1000 9.39E-06 1.49E-03 7.82E-03 3.60E-02 2.34E-05 -
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M e a n  B e s t  C o n f lic t -  2D  G r ie w a n k f u n c t io n

----------- PSO-RRR2-1 GLOBAL

----------- PS0-RRR1-1 GLOBAL

----------- PSO-RRR2-1 RING 2 NEIGH

----------- PSO-RRR 1-1 RING 2 NEIGH

----------- PSO-RRRM RING DYNAMIC

----------- PSO-RRRM RINGDYNAMIC

----------- PS0-RRR2-1 FWD2 NEIGH

----------- PSO-RRRM FWD2NEIGH

----------- PS0-RRR2-1 FWD DYNAMIC

-----------PSO-RRR1-1 FWDDYNAMIC

«-■■■■ -= *  MS RING DYNAMIC <---------- »MS FWD 2 NEIGH.

L!_

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

8.00E-04

6.00E-04

4.00E-04

2.00E-04

Fig. 7.45. Convergence curves o f the mean best conflict for the 2D G riewank function, associated to Table  7.25. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

----------- PSO-RRR2-1 GLOBAL

----------- PSO-RRRM GLOBAL

----------- PSO-RRRM RING2 NEIGH

----------- PSO-RRRM RING2 NEIGH

----------- PSO-RRRM RINGDYNAMIC

----------- PSO-RRRM RINGDYNAMIC

----------- PSO-RRR 2-1 FAD 2 NEIGH

----------- PSO-RRRM FW )2 NEIGH

-----------PSO-RRRM FWDDYNAMIC

-----------PSO-RRRM FWDDYNAMIC

»MS GLOBAL =  MS FWD 2 NEIGH =  MS FWD DYNAMIC

M e a n  B e s t  C o n flic t -  1 0 D  G r ie w a n k  f u n c t io n

1 501 1001 1501 2001 2501  3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7 .46 .  C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for th e  10D G riew ank  function, a s so c ia te d  to T ab le  7.26. T h e
c o lo u r -c o d e s  u se d  to identify the  ne ig h b o u rh o o d  s t ru c tu re s  a re  the  s a m e  in the  tab le  an d  figure a s s o c ia te d .
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M e a n  B e s t  C o n flic t -  10D  G r ie w a n k  fu n c t io n

----------- PS0-RRR2-1 GLOBAL

----------- PS0-RRR1-1 GLOBAL

----------- PS0-RRR2-1 RING 2 NEIGH

----------- PSO-RRRM RING2NEIGH.

----------- PS0-RRR2-1 RINGDYNAMIC

-----------PSO-RRRM RINGDYNAMIC

----------- PS0-RRR2-1 FWD 2 NEIGH

----------- PSO-RRRM FWD2 NEIGH

----------- PS0-RRR2-1 FWDDYNAMIC

-----------PSO-RRRM FWDDYNAMIC

« - J MS GLOBAL • =  MS FWD 2 NEIGH.

— u

1.

1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501501

Fig. 7.47. C onvergence curves o f the mean best conflict for the 10D G riewank function, associated to Table 7.26. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

M e a n  B e s t  C o n flic t -  3 0 D  G r ie w a n k  f u n c t io n

------------PS0-RRR2-1 GLOBAL -----------PS0-RRR2-1 RING2NEIGH. -----------PS0-RRR2-1 RING DYNAMIC ----------- PSO-RRR2-1FWD2 NEIGH. ----------- PSO-RRR2-1 FWDDYNAMIC

----------- PSO-RRR 1-1 GLOBAL -----------PSO-RRRM RING2 NEIGH. -----------PSO-RRRM RINGDYNAMIC ----------- PSO-RRRM FWD2 NEIGH ----------- PSO-RRRM FWDDYNAMIC

----------- C-PSO-1 GLOBAL -----------C-PSO-1 RING 2 NEIGH -----------C-PSO-1 RINGDYNAMIC ----------- C-PSO-1 FWD 2 NEIGH ----------- C-PSO-1 FWD DYNAMIC

-> MS GLOBAL « = >  MSRING2NEIGH =  MS RING DYNAMIC « =  MS FWD 2 NEIGH. =  MS FWD DYNAMIC

0.

1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 95011 501

Fig. 7.48. Convergence curves o f the mean best conflic t for the 30D G riewank function, associated to Table  7.27. The 
co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associated.
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M e a n  B e s t  C o n f lic t -  3 0 D  G r ie w a n k  f u n c t io n

----------- PS0-RRR2-1 GLOBAL

----------- PS0-RRR1-1 GLOBAL

-----------PS0-RRR2-1 RING2NEIGH

-----------PSO-RRRM RING2 NEIGH.

-----------PS0-RRR2-1 RINGDYNAMIC

-----------PSO-RRRM RINGDYNAMIC

----------- PSO-RRRM FWD2NEIGH

-----------PSO-RRRM FWD2NEIGH

------------PSO-RRRM FWDDYNAMIC

----------- PSO-RRRM FWDDYNAMIC

« =  MS RING 2 NEIGH. « = =  MS FWD 2 NEIGH.

1 501 1001 1501 2001 2501 3001 3501 4001 4501  5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.49. Convergence curves o f the mean best conflict for the 30D G riewank function, associated to Table 7.27. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

M e a n  B e s t  C o n flic t -  3 0 D  G r ie w a n k  f u n c t io n

----------- PS0-RRR2-1 GLOBAL ----------- PS0-RRR2-1 RING 2 NEIGH -----------PS0-RRR2-1 RINGDYNAMIC ----------- PS0-RRR2-1 FWD2 NEIGH ------------PSO-RRR2-1 FWDDYNAMIC

----------- PSO-RRRM GLOBAL -----------PSO-RRRM RING2 NEIGH -----------PSO-RRRM RINGDYNAMIC ----------- PSO-RRRM FWD2NEIGH ----------- PSO-RRRM FWDDYNAMIC

----------- C-PSO-1 GLOBAL -----------C-PSO-1 RING 2 NEIGH -----------C-PSO-1 RINGDYNAMIC ----------- C-PSO-1 FWD 2 NEIGH. ------------C-PSO-1 FWD DYNAMIC

.M S GLOBAL .---------- » MS RING2NEIGH « = =  MS RING DYNAMIC ■-------=-> MS FWD 2 NEIGH. ■----------> MS FWD DYNAMIC

v _

0.

501 1001 1501 2001 2501 3001 3501 4001 4501  5001 5501 6001  6501 7001 7501 8001 8501 9001 95011

Fig. 7 .50. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  30D G riew ank  function, a s s o c i a t e d  to T ab le  7.27. T h e
c o lo u r -c o d e s  u se d  to identify the  n e ig h b o u rh o o d  s t ru c tu re s  a r e  the  s a m e  in th e  table  a n d  figure a s s o c ia te d .
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Table  7.28. S tatistica l results out o f 25 runs for the PSO -RRR2-1, the P S0-R R R 1-1 , the C -PSO -1, and a Multi- 
Swarm  algorithm  optim izing the 2-d im ensional Schaffer f6 function. The neighbourhoods tested are the FOW ARD 
topo logy with 2 ne ighbours and with linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  1’). The re
sults fo r the G LO BAL and RING topologies are im ported from the previous section for reference and com parison 
purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
M S S E E f f i f l E

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

10000 0.00E+00 O.OOE+OO 3.89E-04 9.72E-03 2.58E-05 96
VJLUDM L

1000 O.OOE+OO O.OOE+OO 7.77E04 9.72E-03 2.79E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 3.60E-04 100

RING
1000 O.OOE+OO O.OOE+OO 3.89E04 9.72E-03 6.82E-03 -

PSO-RRRM
nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.25E-11 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 5.43E-04 9.72E-03 5.57E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 2.45E-04 100

FWD
1000 O.OOE+OO 3.16E-15 3.96E-04 9.72E-03 6.84E-03 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.23E-11 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 3.98E-13 9.16E-12 5.53E-03 -

10000 O.OOE+OO O.OOE+OO 1.17E-03 9.72E-03 1.13E-04 88
VJLUDM L

1000 O.OOE+OO O.OOE+OO 1.17E-03 9.72E-03 1.61 E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.29E-03 100

RING
1000 O.OOE+OO O.OOE+OO 1.96E-03 9.72E-03 7.78E-03 -

PSO-RRR1-1
nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.26E-11 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 7.03E-07 1.76E-05 5.62E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 3.01 E-05 100

FWD
1000 O.OOE+OO 5.93E-14 6 42E-04 9.72E-03 6.97E-03 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.12E-11 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 7.53E-12 1.88E-10 5.19E-03

10000 0.00E+00 O.OOE+OO 1.17E-03 9.72E-03 2.01 E-04 88
VJLUDM L

1000 O.OOE+OO O.OOE+OO 1.95E-03 9.72E-03 2.42E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO 3.89E-04 9.72E-03 1.38E-03 96

RING
1000 O.OOE+OO O.OOE+OO 2.07E-03 9.72E-03 7.76E-03 -

C-PSO-1
nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.23E-11 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 7.58E-06 1.21E-04 6.07E-03 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.09E-04 100

FWD
1000 O.OOE+OO 1.45E-12 1.12E-03 9.72E-03 7.38E-03 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.28E-11 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 1.46E-05 3.63E-04 5.62E-03 -

10000 0.00E+00 O.OOE+OO 2.33E-03 9.72E-03 1.05E-04 76
| VJLUDML

1000 O.OOE+OO O.OOE+OO 3.11 E-03 9.72E-03 2.58E-03 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 7.13E-04 100

RING
1000 O.OOE+OO O.OOE+OO 7.84E-04 9.72E-03 7.34E-03 -

Multi-Swarm
nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.36E-11 100
nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 6.25E-03 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.80E-04 100

FWD
1000 O.OOE+OO 5.94E-14 8.08E-04 9.72E-03 6.89E-03 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.13E-11 100

nnf = ( m - 1 ) 1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 5.17E-03 -
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Table 7.29. S tatistical results out o f 25 runs fo r the P S0-R R R 2-1 , the P S0-R R R 1-1 , the C -PSO -1, and a Multi- 
Swarm algorithm  optim izing the 10-dim ensional Schaffer f6 function. The neighbourhoods tested are the FO W ARD 
topo logy with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to ‘sw arm -size -  T ). The re
sults for the GLO BAL and RING topology are im ported from the previous section for reference and com parison pur
poses. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u c cess

10000 9.72E-03 9.72E-03 1.85E-02 3.72E-02 5.10E-04 0
jO L U D M L

1000 9.72E-03 9.72E-03 2.18E-02 3.72E-02 1.21 E-03 -

nn = 2
10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.94E-03 0

RING
1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 3.24E-03 -

PSO-RRR M
nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.65E-03 0

nnf = ( m - 1 ) 1000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 2.13E-03 -

nn = 2
10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.78 E-03 0

FWD
1000 9.72E-03 9.72E-03 1.41 E-02 3.72E-02 2.87E-03 -

nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 2.01 E-03 0
nnf = ( m - 1 ) 1000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 2.16E-03 -

10000 9.72E-03 3.72E-02 3.45E-02 7.82E-02 1.29E-04 0
VJLUDML

1000 9.72E-03 3.72E-02 3.45E-02 7.82E-02 1.29E-04 -

nn = 2
10000 9.72E-03 9.72E-03 2.18E-02 3.72E-02 2.43E-03 0

RING
1000 9.72E-03 3.72E-02 3.17E-02 3.72E-02 3.38E-03 -

PSO-RRR1-1
nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.39E-03 0
nnf = ( m - 1 ) 1000 9.72E-03 9.72E-03 1.74E-02 3.72E-02 2.35E-03 -

CNIICe 10000 9.72E-03 9.72E-03 1.85E-02 3.72E-02 1.85E-03 0

FWD
1000 9.72E-03 3.72E-02 2.40E-02 3.72E-02 2.80E-03 -

nni = 2 10000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 1.05E-03 0
nnf = ( m - 1 ) 1000 9.72E-03 3.72E-02 2.40E-02 3.72E-02 2.14E-03 -

10000 9.72E-03 9.72E-03 1.96E-02 3.72E-02 3.01 E-04 0
VJLUDML.

1000 9.72E-03 9.72E-03 2.18E-02 3.72E-02 7.06E-04 -

nn = 2
10000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 2.21 E-03 0

RING
1000 9.72E-03 9.72E-03 1.85E-02 3.72E-02 3.19E-03 -

C-PSO-1
nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.92E-03 0
nnf = ( m - 1 ) 1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 2.11 E-03 -

nn = 2
10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.81 E-03 0

FWD
1000 9.72E-03 9.72E-03 1.30E-02 3.72E-02 2.81 E-03 -

nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.79E-03 0
nnf =  ( m - 1 ) 1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 2.02E-03 -

r *i A n * 10000 9.72E-03 3.72E-02 2.95E-02 3.72E-02 3.18E-04 0
| V JL U D M L

1000 9.72E-03 3.72E-02 3.06E-02 3.72E-02 6.67E-04 -

nn =  2
1 0 0 0 0 9.72E-03 9.72E-03 1.19E-02 3.72E-02 2.03E-03 0

RING
1000 9.72E-03 9.72E-03 1.74E-02 3.72E-02 3.03E-03 -

Multi-Swarm
nni =  2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.76E-03 0
nnf = ( m - 1 ) 1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 1.95E-03 -

nn =  2
10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.70E-03 0

FWD
1000 9.72E-03 9.72E-03 1.41 E-02 3.72E-02 2.41 E-03 -

nni =  2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.59E-03 0
nnf =  ( m - 1 ) 1000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 1.79E-03 -
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Table 7.30. S tatistica l results out o f 25 runs for the PSO -RRR2-1, the PSO -RRR1-1, the C -PSO -1, and a Multi- 
Swarm  algorithm  optim izing the 30-dim ensional Schaffer f6 function. The neighbourhoods tested are the FOW ARD 
topo logy with 2 ne ighbours and with linearly increasing num ber o f neighbours (from 2 to ‘sw arm -size -  T). The re
sults for the G LO BAL and RING topologies are im ported from the previous section for reference and com parison 
purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps H H i® SiSH I
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

10000 3.72E-02 7.82E-02 9.22E-02 1.27E-01 3.12E-04 0
U L U D H L

1000 7.82E-02 1.27E-01 1.08E-01 1.78E-01 8.50E-04 -

nn = 2
10000 3.72E-02 7.82E-02 6.18E-02 7.82E-02 1.77E-03 0

RING
1000 1.27E-01 1.96E-01 2.01 E-01 2.29E-01 4.40E-03 -

PSO -RR RM
nni = 2 10000 3.72E-02 3.72E-02 3.72E-02 3.72E-02 7.48E-04 0

nnf = ( m - 1 ) 1000 7.82E-02 1.27E-01 1.26E-01 2.04E-01 2.76E-03 -

nn = 2
10000 3.72E-02 7.82E-02 6.18E-02 7.82E-02 1.57E-03 0

FWD
1000 1.27E-01 1.78E-01 1.82E-01 2.28E-01 3.86E-03 -

nni = 2 10000 3.72E-02 3.72E-02 4.54E-02 7.82E-02 6.99E-04 0
nnf = ( m - 1 ) 1000 7.82E-02 1.27E-01 1.21 E-01 1.55E-01 2.86E-03 -

10000 3.12E-01 4.30E-01 4.25E-01 4.85E-01 4.76E-05 0
U L U D H L

1000 3.12E-01 4.30E-01 4.26E-01 4.87E-01 2.01E-04 -

nn = 2
10000 7.82E-02 1.78E-01 1.67E-01 2.73E-01 1.72E-03 0

RING
1000 1.27E-01 2.28E-01 2.14E-01 3.12E-01 2.38E-03 -

PSO-RRR1-1
nni = 2 10000 3.72E-02 1.27E-01 1.12E-01 2.28E-01 6.68E-04 0
nnf = ( m - 1 ) 1000 7.82E-02 1.27E-01 1.49E-01 2.73E-01 1.23E-03 -

nn = 2
10000 7.82E-02 1.78E-01 1.58E-01 2.28E-01 1.59E-03 0

FWD
1000 1.27E-01 1.78E-01 1.72E-01 2.73E-01 1.70E-03 -

nni = 2 10000 7.82E-02 1.27E-01 1.20E-01 2.28E-01 6.60E-04 0
nnf = ( m - 1 ) 1000 7.82E-02 1.27E-01 1.55E-01 2.73E-01 1.14E-03 -

10000 7.82E-02 1.27E-01 1.31 E-01 2.73E-01 1.67E-04 0
VJLUDML

1000 7.82E-02 1.27E-01 1.40E-01 2.73E-01 4.94E-04 -

nn = 2
10000 3.72E-02 3.72E-02 5.52E-02 7.82E-02 1.59E-03 0

RING
1000 1.27E-01 1.27E-01 1.52E-01 1.78E-01 3.23E-03 -

C-PSO-1
nni = 2 10000 3.72E-02 3.72E-02 3.72E-02 3.72E-02 6.49E-04 0
nnf = ( m - 1 ) 1000 7.82E-02 7.82E-02 9.19E-02 1.27E-01 2.00E-03 -

nn = 2
10000 3.72E-02 7.82E-02 5.85E-02 7.82E-02 1.55E-03 0

FWD
1000 7.82E-02 1.27E-01 1.22E-01 1.78E-01 2.59E-03 -

nni = 2 10000 9.72E-03 3.72E-02 4.10E-02 7.82E-02 1.06E-03 0

nnf = ( m - 1 ) 1000 4.78E-02 7.82E-02 8.09E-02 1.27E-01 1.87E-03 -

/v i s\r% a 10000 7.82E-02 1.78E-01 1.86E-01 2.73E-01 2.30E-04 0
| VJLUDML

1000 1.27E-01 1.78E-01 1.93E-01 2.73E-01 5.26E-04 -

nn = 2
10000 3.72E-02 7.82E-02 7.45E-02 1.27E-01 1.58E-03 0

RING
1000 1.27E-01 1.78E-01 1.68E-01 2.28E-01 3.42E-03 -

Multi-Swarm
nni = 2 10000 3.72E-02 3.72E-02 4.38E-02 7.82E-02 5.48E-04 0

nnf = ( m - 1 ) 1000 3.74E-02 1.27E-01 1.08E-01 1.78E-01 1.89E-03 -

nn = 2
10000 3.72E-02 7.82E-02 7.29E-02 1.27E-01 1.70E-03 0

FWD
1000 7.82E-02 1.27E-01 1.44E-01 1.78E-01 2.83E-03 -

nni = 2 10000 3.72E-02 3.72E-02 4.38E-02 7.82E-02 6.55E-04 0
nnf = ( m - 1 ) 1000 3.72E-02 7.82E-02 9.05E-02 1.27E-01 1.79E-03 -
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M e a n  B e s t  C o n flic t -  2D  S c h a f fe r  f6  f u n c t io n

• PS0-RRR2-1 GLOBAL

• PS0-RRR1-1 GLOBAL 

■ C-PSO-1 GLOBAL

>MS GLOBAL

• PS0-RRR2-1 RING 2 NEIGH

■ PS0-RRR1-1 RING 2 NEIGH

■ C-PSO-1 RING2NEIGH 

> MS RING 2 NEIGH.

- PS0-RRR2-1 RING DYNAMIC -  - 

■PSO-RRRM RINGDYNAMIC — 

-C-PSO-1 RING DYNAMIC —

» MS RING DYNAMIC «=

 PSO-RRRM FWD2NEIGH

■ —  PSO-RRR1-1EWD2 NEIGH.

 C-PSO-1 FWD 2 NEIGH

= = *  MS FWD 2 NEIGH.

•PSO-RRR2-1 FWDDYNAMIC 

•PSO-RRR1-1 FWDDYNAMIC

• C-PSO-1 FWD DYNAMIC

• MS FWD DYNAMIC

4 .00  E-03

2.00E-03 =

501 1001 1501 2001 2501  3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7.51. Convergence curves o f the mean best conflict fo r the 2D Schaffer f6 function, associated to Table  7.28. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

M e a n  B e s t  C o n flic t -  1 0 D  S c h a f fe r  f6  f u n c t io n

PSO-RRR2-1 FWD2NEIGH PSO-RRR2-1 FWDDYNAMICPSO-RRR2-1 GLOBAL - -  PSO-RRR2-1 RING2 NEIGH -  PSO-RRRM RINGDYNAMIC

 PSO-RRRt-1 RINGDYNAMIC PSO-RRR1-1 FWD 2 NEIGH  PSO-RRR1-1 FWDDYNAMIC

 C-PSO-1 FWD 2 NEIGH.  C-PSO-1 FWD DYNAMICC-PSO-1 RING 2 NEIGH. C-PSO-1 RINGDYNAMIC

MS FWD 2 NEIGH. MS FWD DYNAMICMSRING2NEIGH. MS RINGDYNAMIC

Time-steps

Fig. 7 .52 .  C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  10D Schaf fe r  f6 function, a s so c ia te d  to T ab le  7.29.
T h e  c o lo u r -c o d e s  u s e d  to identify th e  n e ig h b o u rh o o d  s t ru c tu res  a r e  the  s a m e  in th e  tab le  an d  figure a s so c ia te d .
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M e a n  B e s t  C o n flic t -  1 0 D  S c h a f f e r  f6  f u n c t io n

----------- PS0-RRR2-1 GLOBAL

----------- PS0-RRR1-1 GLOBAL

-----------PS0-RRR2-1 RING 2 NEIGH.

-----------PS0-RRR1-1 RING2NEIGH.

----------- PS0-RRR2-1 RING DYNAMIC

----------- PS0-RRR1-1 RING DYNAMIC

----------- PS0-RRR2-1 FWD2 NEIGH,

----------- PS0-RRR1-1 FWD2 NEIGH.

-----------PS0-RRR2-1 FWDDYNAMIC

-----------PS0-RRR1-1 FWDDYNAMIC

..'iL

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7.53. C onvergence curves o f the mean best conflict for the 10D Schaffer f6 function, associated to Table 7.29. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

M e a n  B e s t  C o n flic t -  3 0 D  S c h a f f e r  f6  f u n c t io n

----------- PS0-RRR2-1 GLOBAL ----------- PSO-RRR2-1 RING 2 NEIGH ----------- PSO-RRR2-1 RING DYNAMIC ----------- PSO-RRR2-1 FWD2 NEIGH -----------PSO-RRR2-1 FWDDYNAMIC

----------- PSO-RRRM GLOBAL ----------- PSO-RRRM RING2 NEIGH. ----------- PSO-RRRM RING DYNAMIC ----------- PSO-RRRM FWD2 NEIGH -----------PSO-RRRM FWDDYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING 2 NEIGH ----------- C-PSO-1 RINGDYNAMIC ----------- C-PSO-1 FWD 2 NEIGH. -----------C-PSO-1 FWD DYNAMIC

■ MS GLOBAL =  MS RING2 NEIGH. « =  MS RING DYNAMIC < =  MS FWD 2 NEIGH =  MS FWD DYNAMIC

0.

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001  6501 7001 7501 8001 8501 9001 95011

Fig. 7.54. Convergence curves o f the mean best conflic t for the 30D Schaffer f6 function, associated to Table 7.30. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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----------- PS0-RRR2-1 GLOBAL ----------- PSO-RRR2-1 RING 2 NEIGH. ----------- PSO-RRR2-1 RINGDYNAMIC ----------- PSO-RRR2-1 FWD2 NEIGH ----------- PSO-RRR2-1 FWDDYNAMIC

----------- PSO-RRR1-1 GLOBAL ----------- PSO-RRR1-1 RING 2 NEIGH ----------- PSO-RRR1-1 RINGDYNAMIC ----------- PSO-RRRM FWD2 NEIGH ----------- PSO-RRR1-1 FWDDYNAMIC

----------- C-PSO-1 GLOBAL ----------- C-PSO-1 RING2NEIGH. -----------C-PSO-1 RINGDYNAMIC ----------- C-PSO-1 FWD 2 NEIGH. ----------- C-PSO-1 FWD DYNAMIC

« — » MS GLOBAL > = = >  MS RING 2 NEIGH ■---------- ’ MS RING DYNAMIC * = M S  FWD 2 NEIGH. « =  MS FWD DYNAMIC

M e a n  B e s t  C o n flic t -  SOD S c h a f f e r  f6  f u n c t io n

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7.55. Convergence curves o f the mean best conflict for the 30D Schaffer f6 function, associa ted to Table 7.30. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

Discussion

The settings o f the experiments are the same as those described in the previous chapter 

(see section 6.3.2.2.) unless specifically stated otherwise. Note that although the global 

neighbourhood is included here, the analyses focus on the comparison between the ring 

and the forward topologies, especially their dynamic versions.

Sphere

In the 2D problem, every algorithm finds the exact solution for every run. It can also be 

observed that the implosion of the particles is virtually complete in every case by the 

end o f the search, while the PSO-RRR 1 approach exhibits the highest degree of cluster

ing by the 1,000th time-step (see p b m e  in Table 7.16).

In the 10D problem, every algorithm achieves a success rate (SR) o f 100%. In fact, they 

all meet the success criterion by the 1,000th time-step. The ‘Ring Dynamic’ and the 

‘Fwd Dynamic’ topologies find the exact solution and perform a complete implosion for 

all coefficients’ settings except for the more robust PSO-RRR2-1 (see Table 7.17).
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In the 30D problem, every algorithm meets the success criterion by the end o f the 

search. Considering only the ‘Ring Dynamic’ and the ‘Fwd Dynamic’ topologies, the
tVisuccess criterion is met by the 1 , 0 0 0  time-steps for all coefficients’ settings except for 

the more robust PSO-RRR2-1 (see Table 7.18).

Rosenbrock

In the 2D problem, every algorithm finds the exact solution for every run, already meet

ing the success criterion by the 1,000th time-step. The implosion is virtually complete in 

every case by the end o f the search, while the PSO-RRR1 approach exhibits the highest
tfidegree o f clustering by the 1,000 time-step (see pb me in Table 7.19).

In the 10D problem, it appears that the forward topology leads to slower convergence 

than the ring topology. The PSO-RRR2-1, C-PSO-1 and MS with ‘Fwd nn=2’ topology 

find poor results by the end o f the search. Better results are found by the PSO-RRR1-1, 

which favours faster convergence (see Fig. 7.34). As to the ‘Fwd Dynamic’ topology, it 

returns very good results if  coupled with the PSO-RRR1-1 and with the C-PSO-1. Cou

pling it with the robust PSO-RRR2-1 does not return good results because it leads to 

very slow a convergence. The mean solution of the ‘MS Fwd Dynamic’ is a bit mislead

ing, as it achieves a SR of 76% and a good median solution (see Table 7.20).

In the 30D problem, the trend is the same. The ‘Fwd nn=2’ topology coupled with any 

of the coefficients’ settings and the ‘PSO-RRR2-1 Fwd Dynamic’ return poor results. In 

contrast, the ‘PSO-RRR1-1 Fwd Dynamic’, the ‘C-PSO-1 Fwd Dynamic’, and the ‘MS 

Fwd Dynamic’ find some of the best results. Note that the latter two do not achieve 

convergence by the end o f the search, and further improvement is to be expected for an 

extended search-length (see Table 7.21, Fig. 7.37, and Fig. 7.38).

The performances o f the ‘Ring Dynamic’ and the ‘Fwd Dynamic’ topologies are very 

similar to each other for the PSO-RRR1-1, the C-PSO-1, and the MS coefficients.

Rastrigin

In the 2D problem, every algorithm finds the exact solution by the end o f the search. In 

fact, they do so by the 1,000th time-step, except for the ‘MS Ring nn=2’.
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In the 10D problem, the best performances are clearly exhibited by all the ‘Ring Dy

namic’ and the ‘Fwd Dynamic’ topologies, except for the ‘PSO-RRR1-1 Ring Dy

namic’ (see Fig. 7.41 and Fig. 7.42). Comparing the two dynamic topologies for the 

same coefficients’ settings, each ‘Fwd Dynamic’ algorithm outperforms its ‘Ring Dy

namic’ counterpart. The very best performance is exhibited by the ‘PSO-RRR2-1 Fwd 

Dynamic’, followed by the ‘C-PSO-1 Fwd Dynamic’, the ‘PSO-RRR2-1 Ring Dy

namic’, and the ‘MS Fwd Dynamic’ (see Table 7.23 and Fig. 7.40 to Fig. 7.42).

In the 30D problem, the best performances are exhibited by the ‘Fwd Dynamic’ topol- 

ogy by a considerable margin. This seems to confirm that the forward topology tends to 

maintain diversity for longer than the ring topology for the same neighbourhood-size. 

Thus, the very best results are again found by the ‘PSO-RRR2-1 Fwd Dynamic’, now 

followed by the ‘MS Fwd Dynamic’, the ‘C-PSO-1 Fwd Dynamic’, and the ‘PSO- 

RRR1-1 Fwd Dynamic’ (see Table 7.24, Fig. 7.43, and Fig. 7.44).

Griewank

In the 2D problem, all the non-global topologies find the exact solution in every run.

In the 10D problem, all the algorithms with ‘Fwd Dynamic’ topology outperform all 

those with ‘Ring Dynamic’ topology (see Table 7.26 and Fig. 7.47). The best perform

ance is shown by the ‘PSO-RRR1-1 Fwd Dynamic’, followed by the ‘C-PSO-1 Fwd 

Dynamic’, the ‘MS Ring nn=2’, the ‘C-PSO-1 Fwd nn=2, and the ‘MS Fwd Dynamic’.

In the 30D problem, the best performances are obtained by the ‘Ring nn=2’ and the 

‘Fwd nn=2 ’ topologies. Considering only the dynamic ones, the best performances are 

shown by the ‘PSO-RRR2-1 Fwd Dynamic’, followed by the ‘C-PSO-1 Fwd Dynamic’, 

the ‘PSO-RRR1-1 Ring Dynamic’, the ‘C-PSO-1 Ring Dynamic’, and the ‘MS Fwd 

Dynamic’. The results are in Table 7.27, Fig. 7.49, and Fig. 7.50. Note that although the 

fixed ring and forward topologies perform better in this particular problem, the afore

mentioned dynamic topologies obtained success rates o f 80% or more.

Schaffer f6

In the 2D problem, only the global topologies and the ‘C-PSO-1 Ring nn=T exhibit 

premature convergence. The other algorithms find the exact solution in every run.
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In the 10D problem, the best performances are exhibited by the ‘Ring Dynamic’ and the 

‘Fwd Dynamic’ topologies, except for the ‘PSO-RRR1-1 Fwd Dynamic’.

In the 30D problem, the best performances are exhibited by the ‘Ring Dynamic’ topolo

gies (except for the ‘PSO-RRR1-1 Ring Dynamic’), followed by the ‘Fwd Dynamic’ 

ones (except for the ‘PSO-RRR1-1 Fwd Dynamic’). Refer to Table 7.30 and Fig. 7.55.

Overall analyses

The proposed ‘Forward Dynamic’ topology seems promising according to the results 

from the experiments carried out in this section.

Broadly speaking, it is marginally outperformed by the ‘Ring Dynamic’ topology in the 

10D Rosenbrock function (Fig. 7.35) and in the 30D Schaffer f6  function (Fig. 7.55). 

Conversely, it outperforms the ‘Ring Dynamic’ topology in the 10D and 30D Rastrigin 

function (Fig. 7.42 and Fig. 7.44), and in the 10D and 30D Griewank function (Fig. 

7.47, Fig. 7.49, and Fig. 7.50). They are competitive in the remaining problems. Re

garding the coefficients’ settings, the Multi-Swarm approach (MS) appears to be the 

most stable, as it does reasonably well on all problems tested. It seems that the ‘MS 

Fwd Dynamic’ is the algorithm that performs the best as a general-purpose optimizer.

7.4. Nearest neighbour

The overlapping o f the ring topology allows the spread o f information throughout the 

whole swarm at every instance o f the neighbourhood-size. That is to say, every particle 

is connected to every other either directly or indirectly.

Aiming to keep this feature while also introducing information on the actual distance 

between particles in the ‘physical’ space so that nearer particles have more chances to 

become neighbours, a nearest neighbour procedure is proposed. The latter consists of 

reordering the list of particles: the first particle is kept, and the remaining particles are
tVi fhre-ordered so that the i particle is the one that is nearest to the (i -  1 ) amongst the re

maining (swarm-size -  i + 1) particles. That is, the well-known ‘nearest neighbour’ al

gorithm for approximately solving a travelling salesman problem (TSP). A strict nearest 

neighbour strategy would not guarantee an overlapping between neighbourhoods. The
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distances used for the nearest neighbour re-ordering are normalized to the correspond

ing feasible interval. The normalization is illustrated in Fig. 7.56.

Feasible interval .Vi

Fig. 7.56. Two-d im ensional search-space with feasib le intervals o f d ifferent size; three particles are a llocated to 
illustra te  the norm alization o f the d istances for the nearest neighbour algorithm : particles ‘2 ’ and ‘3 ’ are a t the sam e 
norm alized distance from  particle T .

This heuristics can be applied to the particles’ positions (NN), or to the particles’ best 

experiences (NNB). This optimizer allows the user to choose between the two.

In order to illustrate how this technique takes advantage of the proximity in the physical 

space while maintaining the neighbourhood topologies discussed before, the technique 

is applied to a swarm of particles, which is then simply split in three groups. Fig. 7.57 

shows that the particles in the group are reasonably close to each other.

T h re e  g ro u p s  o f p a r t ic le s  g e n e r a te d  u s in g  N e a r e s t  N e ig h b o u r  T e c h n iq u e
1

0 8  

0 6  

0 4  

0 2 

0 

-02 

-0 4 

-0 6  

-00
_________I_________l _ # _____ I_________ I________ I_________L— ______I_________I________ I____

-1 -0.8  -0.6  -0 4 -0.2  0  0.2  0  4 0  6 0 8  1

Fig. 7.57. Exam ple o f generating three groups o f particles by m eans of the Nearest Neighbour heuristics.

The NNB technique is applied to the Multi-Swarm algorithm with ring and forward to

pologies, each with nn=2 and dynamic. The results obtained without the technique are 

imported from previous sections for comparison. The experimental results are presented 

in Table 7.31 to Table 7.45, and Fig. 7.58 to Fig. 7.72.
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Table  7.31. S tatistical results out o f 25 runs for a M ulti-Swarm  algorithm  optim izing the 2-d im ensional Sphere func
tion. The neighbourhoods tested are the RING and the FO W ARD topologies, both with 2 neighbours and with linearly 
increasing num ber o f neighbours (from 2 to ‘swarm -size -  T ), com bined with a nearest ne ighbour heuristics (NNB). 
The results for the sam e neighbourhood topologies w ithout such heuristics are im ported from  previous sections for 
re ference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
g V v T v - ; ■ U K

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u c cess

nn =  2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 3.39E-85 4.26E-78 9.85E-77 1.83E-75 2.68E-20 -

nni =  2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

n n f = ( m - 1 ) 1000 2.99E-86 1.12E-80 2.13E-79 2.33E-78 4.47E-20 -

nn =  2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 1.24E-75 8.38E-73 4.72E-69 1.16E-67 9.31 E-20 -

nni =  2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

U i i H L Q u i o r m
nnf = ( m - 1 ) 1000 2.17E-79 3.23E-74 3.17E-70 7.36E-69 8.94E-22 -

m  U II i-O W fl 1 III

nn =  2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING 1000 7.16E-81 5.09E-75 4.18E-73 3.98E-72 2.55E-20 -

NNB nni =  2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = ( m - 1 ) 1000 7.65E-89 3.19E-84 1.06E-82 8.95E-82 4.66E-20 -

nn =  2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD 1000 1.11E-69 4.70E-65 6.80E-62 9.70E-61 2.27E-21 -

NNB nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = ( m - 1 ) 1000 6.75E-84 8.27E-80 1.30E-76 2.83E-75 3.80E-20 -

M e a n  B e s t  C o n flic t -  2D  S p h e r e  f u n c t io n

« =  MS RING 2 NEIGH. « MS RING DYNAMIC -  -MS FWD 2 NEIGH. . —  —.MS FWD DYNAMIC

---------- MS RING 2 NEIGH NNB ---------- MS RING DYNAMIC NNB ---------- MS FWD 2 NEIGH. NNB ------ — MS FWD DYNAMIC NNB

l.OOE-lO

8 OOE-11

6.00E-11

4.OOE-11

2. OOE-11

1111 1 n   ................. i * 1 ■ ■ O.OOE+OO

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001  9501

Tim e-steps

Fig. 7 .58 .  C o n v e rg e n c e  c u rv e s  of  the  m e a n  b e s t  conflict for the  2D S p h e r e  function, a s s o c i a t e d  to Tab le  7 .31 .  T h e
c o lo u r -c o d e s  u s e d  to identify the  ne ig h b o u rh o o d  s t ru c tu re s  a r e  the s a m e  in the  tab le  a n d  figure a s so c ia te d .
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Table 7.32. S tatistica l results out of 25 runs fo r a Multi-Swarm  algorithm  optim izing the 10-dim ensional Sphere func
tion. The neighbourhoods tested are the RING and the FO W ARD topologies, both with 2 neighbours and with linearly 
increasing num ber o f neighbours (from 2 to ‘swarm -size -  T), com bined with a nearest neighbour heuristics (NNB). 
The results fo r the same neighbourhood topo log ies w ithout such heuristics are imported from previous sections for 
reference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successfu l.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps K&Mi IMPS
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

nn = 2
10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 1.20E-153 100

RING
1000 1.41E-32 1.17E-30 1.06E-29 9.91 E-29 2.68E-11 -

nni = 2 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

nnf = ( m - 1 ) 1000 4.18E-43 2.00E-39 5.49E-38 1.09E-36 1.35E-14 -

nn = 2
10000 6.03E-186 1.07E-182 4.73E-180 1.07E-178 2.39E-93 100

FWD
1000 4.92E-18 6.77E-17 1.20E-16 5.25E-16 7.03E-11 -

nni = 2 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

U nto  Clilorm
nnf = ( m - 1 ) 1000 1.97E-23 1.46E-22 3.15E-22 1.75E-21 1.37E-13 -

mu fii-D w arm

<NIIec 10000 1.82E-260 4.77E-222 3.85E-212 9.58E-211 7.01 E-109 100

RING 1000 3.02E-24 2.16E-20 3.22E-19 2.68E-18 2.85E-12 -

NNB nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = ( m - 1 ) 1000 2.61E-36 3.81E-34 2.09E-32 4.39E-31 1.72E-10 -

nn = 2
10000 2.63E-233 4.12E-226 9.01E-215 1.45E-213 5.02E-111 100

FWD 1000 1.33E-21 1.42E-20 1.08E-19 1.88E-18 4.83E-13 -

NNB nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.44E-135 100
nnf = ( m - 1 ) 1000 1.10E-27 3.95E-17 3.09E-14 7.21 E-13 3.39E-07 -

M e a n  B e s t  C o n flic t -  10 D  S p h e r e  f u n c t io n

> MSRING2NEIGH. 

MSRING2NEIGH.NNB

> MS RING DYNAMIC 

MS RING DYNAMIC NNB

<---------- »MS FWD 2 NEIGH

   MS FWD 2 NEIGH NNB

> MS FWD DYNAMIC 

MS FWD DYNAMIC NNB

501 1001 1501 2001 2501 3001 3501 4001  4501 5001 5501 6001 6501 7001 7501

Tim e-steps

8001 8501 9001 9501

Fig. 7.59. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  10D S p h e r e  function, a s s o c i a t e d  to T ab le  7.32. T he
c o lo u r -co d e s  u s e d  to identify th e  n e ig h b o u rh o o d  s t ru c tu re s  a r e  the  s a m e  in the  tab le  a n d  figure a s s o c ia te d .
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Table 7.33. S tatistica l resu lts out o f 25 runs for a M ulti-Swarm  algorithm  optim izing the 30-dim ensiona l Sphere func
tion. The neighbourhoods tested are the RiNG and the FO W ARD topologies, both with 2 neighbours and with linearly 
increasing num ber o f ne ighbours (from 2 to ‘swarm -size -  T ), com bined with a nearest ne ighbour heuristics (NNB). 
The results fo r the sam e neighbourhood topologies w ithou t such heuristics are im ported from previous sections for 
re ference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successfu l.

OPTIMIZER
NEIGHBOURHOOD

Tim e-steps
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

CMIICc 10000 3.13E-113 7.02E-109 2.72E-107 5.96E-106 6.93E-57 100

RING
1000 2.83E-08 9.73E-08 2.55E-07 3.82E-06 1.75E-06 -

nni = 2 10000 1.28E-185 6.46E-180 6.80E-173 1.68E-171 2.58E-91 100

nnf = ( m - 1 ) 1000 7.07E-12 1.43E-10 3.51 E-10 3.97E-09 1.57E-08 -

nn = 2
10000 9.63E-63 2.09E-61 1.04E-60 6.46E-60 3.03E-34 100

FWD
1000 4.04E-04 1.74E-03 1.79E-03 3.91E-03 1.73E-05 -

nni = 2 10000 1.16E-174 4.86E-169 2.11E-165 2.09E-164 3.76E-87 100

M u lt i  C u /a r m
nnf = ( m - 1 ) 1000 1.09E-06 4.95E-06 5.29E-06 1.20E-05 7.73E-07 -

iff u m o  Wa rm

nn = 2
10000 6.03E-80 2.15E-74 4.07E-72 7.20E-71 2.44E-40 100

RING 1000 1.13E-05 2.86E-04 3.29E-04 8.99E-04 6.26E-06 -

NNB nni = 2 10000 2.51E-171 6.64E-166 2.04E-158 3.84E-157 5.35E-84 100

nnf = ( m - 1 ) 1000 1.07E-09 1.06E-08 7.90E-08 5.10E-07 1.41E-05 -

nn = 2
10000 8.69E-89 2.95E-85 8.20E-81 1.47E-79 8.38E-45 100

FWD 1000 4.22E-06 1.75E-05 2.60E-05 1.08E-04 1.38E-06 -

NNB nni = 2 10000 1.29E-133 7.59 E-128 2.06E-125 2.68E-124 4.66E-67 100

nnf = ( m - 1 ) 1000 2.73E-05 1.12E-03 1.78E-03 7.83E-03 1.75E-04 -

M e a n  B e s t  C o n flic t -  3 0 D  S p h e r e  f u n c t io n

MS RING 2 NEIGH MS RING DYNAMIC

 MS RING 2 NEIGH NNB - - -  MS RING DYNAMIC NNB  MS FWD 2 NEIGH. NNB - - -  MS FWD DYNAMIC NNB

Tim e-steps

Fig. 7 .60 .  C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for th e  30D S p h e r e  function, a s s o c i a t e d  to T ab le  7.33. T he
c o lo u r -c o d e s  u s e d  to identify the  ne ig h b o u rh o o d  s t ru c tu re s  a r e  th e  s a m e  in th e  tab le  and  figure a s s o c ia te d .
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Table 7.34. S tatistical results out o f 25 runs for a M ulti-Swarm  algorithm  optim izing the 2-d im ensional Rosenbrock 
function. The neighbourhoods tested are the RING and the FO W ARD topologies, both with 2 ne ighbours and with 
linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T ), combined with a nearest ne ighbour heuristics 
(NNB). The results for the sam e neighbourhood topologies w ithout such heuristics are im ported from  previous sec
tions fo r reference and com parison purposes. A run with an error no g reater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps
iiiii IIS®

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 O.OOE+OO 9.00E-24 2.19E-18 3.50E-17 1.78E-06 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
r»nf = (m-1) 1000 O.OOE+OO 1.77E-30 1.67E-26 3.95E-25 1.36E-06 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 2.90E-22 1.03E-16 4.09E-14 5.40E-13 7.85E-05 -

ini = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

Mufti-Swarm
nnf = (m -1) 1000 4.34E-26 1.05E-21 5.04E-19 1.24 E-17 1.10E-07 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING 1000 3.83E-24 3.41 E-19 2.47E-16 4.47E-15 4.01 E-06 -

NNB nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 O.OOE+OO 1.18E-28 6.54E-25 1.25E-23 1.66E-06 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD 1000 5.85E-21 4.05E-16 1.26E-15 8.21 E-15 1.12E-05 -
NNB nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

nnf = (m-1) 1000 2.94E-24 1.79E-14 1.59E-10 3.31 E-09 2.51 E-04 -

M e a n  B e s t  C o n flic t -  2D  R o s e n b r o c k  f u n c t io n

=  MS RING 2 NEIGH. « = =  MS RING DYNAMIC =  MS FWD 2 NEIGH. =  MS FWD DYNAMIC
--------MSRING2NEIGH NNB --------MS RINGDYNAMICNNB -------  MS FWD 2 NEIGH NNB -  —— MS FWD DYNAMIC NNB

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7.61. Convergence curves of the mean best conflict for the 2D Rosenbrock function, associated to Table 7.34.
The colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.35. S tatistica l results out o f 25 runs for a M ulti-Swarm  algorithm  optim izing the 10-dim ensional R osenbrock 
function. The neighbourhoods tested are the RING and the FO W ARD topologies, both w ith 2 ne ighbours and with 
linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T), com bined with a nearest ne ighbour heuristics 
(NNB). The results for the same neighbourhood topologies w ithout such heuristics are im ported from  previous sec
tions for re ference and com parison purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

nn = 2
10000 4.01 E-09 8.03E-07 1.61 E-01 3.99E+00 8.87E-03 80

RING
1000 2.63E-03 1.62E+00 1.82E+00 5.11E+00 1.79E-02 -

nni = 2 10000 1.88E-15 1.16E-09 1.42E-05 3.49E-04 1.08E-02 96
nnf = ( m - 1 ) 1000 5.39E-04 6.18E-01 8.49E-01 4.07E+00 1.45E-02 -

nn = 2
10000 9.26E-03 3.47E+00 3.47E+00 7.03E+00 4.92E-03 0

FWD
1000 1.09E-02 5.46E-KJ0 5.35E+00 9.55E-KX) 9.53E-03 -

nni = 2 10000 3.40E-12 4.82E-09 4.80E-01 4.01 E+00 4.57E-03 76

Mul+i Ctuorm
nnf = ( m - 1 ) 1000 8.74E-01 4.48E+00 4.63E+00 9.59E-*-00 6.54E-03 -

muni"OWaf in

nn = 2
10000 1.04E-04 1.13E-03 2.27E-03 1.06E-02 6.41 E-03 0

RING 1000 3.67E-02 1.41E+00 1.76E+00 4.70E-K10 1.70E-02 -
NNB nni = 2 10000 5.12E-12 5.25E-08 3.19E-01 3.99E+00 1.65E-02 84

nnf = ( m - 1 ) 1000 6.33E-03 3.31 E-01 7.48E-01 4.25E-KJ0 2.31E-02 -

nn = 2
10000 1.00E-01 2.48E+00 3.25E+00 7.84E+00 8.55E-03 0

FWD 1000 3.96E-01 5.81 E+00 5.52E-K)0 9.19E+00 1.62E-02 -
NNB nni = 2 10000 7.11 E-18 2.22E-07 6.60E-01 3.99E+00 1.94E-02 68

nnf = ( m - 1 ) 1000 1.13E-01 1.88E+O0 2.97E-»-00 7.32E+00 3.38E-02 -

Mean Best Conflict -  10D Rosenbrock function

c =  MS RING 2 NEIGH =  MS RING DYNAMIC =  MS FWD 2 NEIGH =  MS FWD DYNAMIC

 MS RING 2 NEIGH NNB  MS RING DYNAMIC NNB  MS FWD 2 NEIGH NNB ------- MS FWD DYNAMIC NNB

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.62. Convergence curves of the mean best conflict for the 10D Rosenbrock function, associated to Table 7.35.
The colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.36. S tatistica l resu lts out o f 25 runs fo r a M ulti-Swarm  algorithm  optim izing the 30-dim ensional Rosenbrock 
function. The ne ighbourhoods tested are the RING and the FO W ARD topologies, both w ith 2 ne ighbours and with 
linearly increasing num ber o f neighbours (from  2 to ‘swarm -size -  T), com bined with a nearest neighbour heuristics 
(NNB). The results fo r the sam e neighbourhood topologies w ithout such heuristics are im ported from  previous sec
tions fo r re ference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps I f c l l l i ■ m u s s
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

nn = 2
10000 9.14E-03 7.09E+00 6.59E+00 1.46E+01 3.01 E-03 0

RING
1000 6.26E+00 7.08E-+01 5.33E+01 8.71E+01 5.27E-03 -

nni = 2 10000 1.56E-05 5.30E+00 6.36E+00 1.98E+01 2.76E-03 4

nnf = (m-1) 1000 4.72E+00 2.73E+01 4.05E+01 1.34E-+02 3.79E-03 -

nn = 2
10000 1.95E+01 3.25E+01 5.09E+01 1.77E+02 3.71 E-03 0

FWD
1000 3.27E+01 7.61E+01 9.11E-*01 2.12E-KJ2 5.89E-03 -

nni = 2 10000 2.04E-04 1.10E+00 4.08E+00 7.00E+01 2.35E-03 0

C i n n r m
nnf = (m -1) 1000 2.25E+01 2.71 E-+01 5.27E-*-01 2.17E+02 1.53E-03 -

MUiu-dWami
nn = 2

10000 1.61E-02 4.03E+00 7.39E+00 1.96E+01 7.11 E-03 0

RING 1000 2.72E+01 6.94E+01 6.88E+01 1.60E-KD2 1.44E-02 -

NNB nni = 2 10000 3.35E-04 4.05E+00 1.31E+01 7.13E+01 6.09E-03 0
nnf = (m -1) 1000 1.41E-KJ1 7.62E+01 6.64E+01 1.36E-+02 7.35E-03 -

CMIICe 10000 8.32E+00 2.79E+01 4.95E+01 1.52E+02 3.28E-03 0

FWD 1000 2.62E+01 7.41E+01 7.47E-K)1 1.63E-H32 4.59E-03 -

NNB nni = 2 10000 6.69E-Q5 3.99E+00 1.05E+01 8.14E+01 1.61 E-02 4
nnf = (m-1) 1000 1.88E+01 7.94E+01 7.17E+01 1.28E-K)2 1.64E-02 -

M e a n  B e s t  C o n f lic t -  3 0 D  R o s e n b ro c k  f u n c t io n

« = =  MS RING 2 NEIGH =  MS RING DYNAMIC =  MS FWD 2 NEIGH =  MS FWD DYNAMIC

 MS RING 2 NEIGH NNB  MS RING DYNAMIC NNB  MS FWD 2 NEIGH. NNB    MS FWD DYNAMIC NNB

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001  5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.63. Convergence curves of the mean best conflict for the 30D Rosenbrock function, associated to Table 7.36.
The colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.37. S tatistica l resu lts out o f 25 runs for a M ulti-Swarm  algorithm  optim izing the 2-d im ensional Rastrig in func
tion. The neighbourhoods tested are the R iNG and the FO W ARD topologies, both with 2 ne ighbours and with linearly 
increasing num ber o f ne ighbours (from 2 to ‘swarm -size -  1’), com bined with a nearest ne ighbour heuristics (NNB). 
The results fo r the sam e neighbourhood topologies w ithout such heuristics are im ported from  previous sections for 
re ference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successfu l.

OPTIMIZER NEIGHBOURHOOD Time-steps M M I
STRUCTURE BEST MEDIAN MEAN WORST MEAN PBJME [%] Success

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.73E-11 100

RING
1000 2.98E+00 5.97E+00 5.72E+O0 1.00E+01 3.74E-02 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.16E-11 100
nnf = (m -1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.16E-11 -

CMIICc 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.07E-11 100

FWD
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.07E-11 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.95E-11 100

MnHi.Quiarm
nnf = (m -1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.95E-11 -

nftUilrOWdl III
nn = 2

10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.59E-11 100

RING 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.59E-11 -
NNB nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.16E-11 100

nnf = (m -1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.16E-11 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.07E-11 100

FWD 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.07E-11 -
NNB nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.78E-11 100

nnf = (m -1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.78E-11 -

M e a n  B e s t  C o n flic t -  2D  R a s tr ig in  f u n c t io n

■MS RING 2 NEIGH.

MS RING 2 NEIGH NNB

»MS RING DYNAMIC 

MS RING DYNAMIC NNB

« =  MS FWD 2 NEIGH 

 MS FWD 2 NEIGH NNB

» MS FWD DYNAMIC 

MS FWD DYNAMIC NNB

SOI 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001  9501

Tim e-steps

Fig. 7.64. Convergence curves of the mean best conflict for the 2D Rastrigin function, associated to Table 7.37. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table  7.38. S ta tistica l results out o f 25 runs for a M ulti-Swarm  algorithm  optim izing the 10-dim ensional Rastrigin 
function. The neighbourhoods tested are the RING and the FO W ARD topologies, both with 2 neighbours and with 
linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T), combined with a nearest ne ighbour heuristics 
(NNB). The resu lts for the sam e neighbourhood topologies w ithout such heuristics are im ported from  previous sec
tions fo r re ference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps i i l i f i i r i;  1 - ■ SH E
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

nn = 2
10000 O.OOE+OO 2.98E+00 2.75E+00 6.96E+00 2.90E-02 4

RING
1000 2.98E+O0 5.97E+00 5.72E+00 1.00E+01 3.74E-02 -

nni = 2 10000 O.OOE+OO 9.95E-01 1.68E+00 5.97E+00 1.94E-02 32
nnf = (m-1) 1000 2.18E+00 4.97E+00 5.26E-+00 1.09E+01 3.66E-02 -

nn = 2
10000 6.41 E-05 2.12E+00 2.34E+00 6.20E+00 2.45E-02 4

FWD
1000 2.80E+00 6.48E+00 6.42E+00 1.03E+01 3.42E-02 -

nni = 2 10000 O.OOE+OO 9.95E-01 1.07E+00 2.98E+00 1.66E-02 28

lliib! Claidrm
nnf = (m-1) 1000 2.25E+00 5.07E-HD0 5.03E+00 9.50E+00 3.34E-02 -

m u iti-owarm

CMIIec 10000 O.OOE+OO 2.98E+00 3.42E+00 7.96E+00 3.10E-02 8

RING 1000 2.98E-K)0 5.97E+O0 6.27E+00 1.49E+01 3.94E-02 -
NNB nni = 2 10000 O.OOE+OO 9.95E-01 1.43E+00 5.97E+00 1.81 E-02 40

nnf = (m-1) 1000 1.99E+00 4.97E+00 5.68E+00 1.29E+01 4.25E-02 -

nn = 2
10000 0.00E+00 2.26E+00 2.47E+00 5.41 E+00 2.58E-02 8

FWD 1000 2.45E+00 5.20E+00 5.42E+00 9.79E+00 3.63E-02 -
NNB nni = 2 10000 O.OOE+OO O.OOE+OO 6.37E-01 1.99E+00 1.37E-02 56

nnf = (m-1) 1000 1.99E+00 6.32E+O0 6.03E-KD0 9.52E+00 3.75E-02 -

Mean Best Conflict -  10D Rastrigin function

MS RING 2 NEIGH, MS FWD 2 NEIGH. ■MS FWD DYNAMIC
MS RING 2 NEIGH. NNB MS FWD 2 NEIGH NNB MS FWD DYNAMIC NNB

2.50E+00 =

1 501 1001 1501 2001 2501 3001 3501 4001 4501  5001 5501 6001 6501 7001 7501 8001 8501 9001  9501

Tim e-steps

Fig. 7.65. Convergence curves of the mean best conflict for the 10D Rastrigin function, associated to Table 7.38. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table  7.39. S tatistica l results out of 25 runs for a M ulti-Swarm  algorithm  optim izing the 30-dim ensional Rastrig in 
function. The neighbourhoods tested are the RING and the FO W ARD topologies, both with 2 neighbours and with 
linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T), com bined with a nearest ne ighbour heuristics 
(NNB). The results for the sam e neighbourhood topologies w ithout such heuristics are im ported from  previous sec
tions for re ference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps
m m

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

nn = 2
10000 3.28E+01 4.48E+01 4.56E+01 6.37E+01 3.03E-02 0

RING
1000 3.32E+01 5.21E+01 4.97E-K)1 6.57E+01 3.09E-02 -

nni = 2 10000 2.59E+01 3.98E+01 4.32E+01 6.67E+01 2.77E-02 0
nnf = (m-1) 1000 2.72E+01 4.48E+01 4.77E+01 6.83E-K)1 2.96E-02 -

nn = 2
10000 2.96E+01 6.81 E+01 6.71 E+01 8.76E+01 3.07E-02 0

FWD
1000 4.94E+01 8.76E+01 8.55E-KJ1 1.21E+02 3.31E-02 -

nni = 2 10000 1.69E+01 3.38E+01 3.34E+01 5.67E+01 2.18E-02 0

Uiiltu îiarm
nnf = (m-1) 1000 3.73E+01 7.11 E-+01 7.11E+01 9.42E+01 3.10E-02 -

nn = 2
10000 3.48E+01 5.27E+01 5.39E+01 7.36E+01 3.62E-02 0

RING 1000 4.66E+01 5.90E+01 6.11 E-+01 8.16E+01 3.67E-02 -
NNB nni = 2 10000 1.89E+01 4.28E+01 4.40E+01 6.87E+01 2.85E-02 0

nnf = (m-1) 1000 2.49E+01 4.88E+01 4.99E-K)1 7.60E+01 2.85E-02 -

nn = 2
10000 4.45E+01 6.32E+01 6.49E+01 9.70E+01 3.20E-02 0

FWD 1000 5.76E-K)1 8.46E+01 8.65E-K31 1.20E+02 3.30E-02 -
NNB nni = 2 10000 1.39E+01 2.98E+01 3.13E+01 5.47E+01 2.31 E-02 0

nnf = (m-1) 1000 3.38E+01 5.61E+01 5.65E+01 8.22E-K51 2.83E-02 -

M e a n  B e s t  C o n flic t -  3 0 D  R a s tr ig in  f u n c t io n

MS RING2NEIGH MS RING DYNAMIC MS FWD 2 NEIGH

MS RING 2 NEIGH NNB MS RING DYNAMIC NNB MS FWD 2 NEIGH NNB MS FWD DYNAMIC NNB

- -  6.50E+01

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7.66. Convergence curves of the mean best conflict for the 30D Rastrigin function, associated to Table 7.39. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.40. S tatistical results out o f 25 runs for a Multi-Swarm algorithm  optim izing the 2-d im ensional G riewank func
tion. The neighbourhoods tested are the RING and the FOW ARD topologies, both with 2 neighbours and with linearly 
increasing num ber o f neighbours (from 2 to ‘swarm -size -  T), com bined with a nearest ne ighbour heuristics (NNB). 
The resu lts for the sam e neighbourhood topologies w ithout such heuristics are im ported from  previous sections for 
reference and com parison purposes. A run with an error no g reater than 0.0001 is regarded as successfu l.

OPTIMIZER NEIGHBOURHOOD Time-steps lifell Silfei
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 2.51 E-04 100

RING
1000 0.00E+00 O.OOE+OO 2.39E-05 5.88E-04 2.05E-03 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.74E-12 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.59E-03 -

nn = 2
10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 1.67E-04 100

FWD
1000 0.00E+C0 O.OOE+OO 4.02E-08 8.51E-07 1.92E-03 -

nni = 2 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 6.88E-12 100

Multi-Swarm
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.53E-03 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 2.90E-04 100

RING 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.08E-03 -

NNB nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 7.69E-12 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 8.88E-04 7.40E-03 2.38E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.62E-05 100

FWD 1000 O.OOE+OO O.OOE+OO 1.89E-06 4.70E-05 1.94E-03 -

NNB nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.48E-05 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 2.23E-03 -

M e a n  B e s t  C o n f lic t -  2D  G r ie w a n k  f u n c t io n

Time-steps

Fig. 7.67. Convergence curves of the mean best conflict for the 2D Griewank function, associated to Table 7.40. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.41. S tatistical results out o f 25 runs for a M ulti-Swarm  algorithm  optim izing the 10-dim ensional G riewank 
function. The ne ighbourhoods tested are the RING and the FO W ARD topologies, both with 2 ne ighbours and with 
linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T), com bined with a nearest ne ighbour heuristics 
(NNB). The results for the sam e neighbourhood topologies w ithout such heuristics are im ported from previous sec
tions fo r reference and com parison purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

nn = 2
10000 0.00E+00 1.97E-02 2.15E-02 5.90E-02 1.60E-03 8

RING
1000 7.40E-03 2.22E-02 2.71E-02 5.90E-02 1.75E-03 -

nni = 2 10000 O.OOE+OO 2.46E-02 2.77E-02 6.89E-02 1.47E-03 8
nnf = (m -1) 1000 O.OOE+OO 3.45E-02 3.59E-02 7.38E-02 1.74E-03 -

nn = 2
10000 4.64E-05 3.60E-02 3.64E-02 9.76E-02 1.30E-03 4

FWD
1000 2.16E-02 6.01E-02 6.36E-02 1.49E-01 1.53E-03 -

nni = 2 10000 0.00E+00 1.72E-02 2.33E-02 5.90E-02 1.08E-03 12
nnf = (m -1) 1000 7.94E-03 5.59E-02 6.33E-02 1.25E-01 1.73E-03 -

muiii-owarm
nn = 2

10000 1.11E-16 3.20E-02 3.31 E-02 7.62E-02 1.67E-03 4

RING 1000 2.60E-08 3.69E-02 4.00E-02 7.65E-02 1.72E-03 -

NNB nni = 2 10000 0.00E+00 2.46E-02 2.94E-02 6.89E-02 9.51 E-04 16
nnf = (m -1) 1000 1.97E-02 4.43E-02 4.73E-02 9.10E-02 1.43E-03 -

nn = 2
10000 7.38E-05 3.44E-02 3.81 E-02 9.58E-02 1.21 E-03 4

FWD 1000 2.56E-02 7.46E-02 7.77E-02 1.23E-01 1.61 E-03 -

NNB nni = 2 10000 O.OOE+OO 1.48E-02 1.41 E-02 5.17E-02 7.92E-04 32
nnf = (m -1) 1000 2.59E-03 4.67E-02 4.77E-02 9.92E-02 1.64E-03 -

M e a n  B e s t  C o n flic t -  10 D  G r ie w a n k  f u n c t io n

= = »  MS RING 2 NEIGH. = =  MS RING DYNAMIC =  MS FWD 2 NEIGH. e =  MS FWD DYNAMIC

- - -  M SR IN G 2N E IG H  NNB - - -  MS RING DYNAMIC NNB   MS FWD 2 NEIGH. NNB - - -  MS FWD DYNAMIC NNB

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.68. Convergence curves o f the mean best conflict fo r the 10D G riewank function, associated to Table  7.41. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.42. S tatistical results out o f 25 runs for a M ulti-Swarm  algorithm  optim izing the 30-dim ensional G riewank 
function. The neighbourhoods tested are the RING and the FO W ARD topologies, both with 2 ne ighbours and with 
linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T), com bined with a nearest ne ighbour heuristics 
(NNB). The results fo r the sam e neighbourhood topologies w ithout such heuristics are im ported from  previous sec
tions fo r reference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

nn = 2
10000 O.OOE+OO O.OOE+OO 2.17E-03 1.23E-02 1.10E-06 76

RING
1000 6.02E-08 7.40E-03 6.97E-03 3.92E-02 3.08E-05 -

nni = 2 10000 0.00E+00 0.00E+00 6.39E-03 3.92E-02 4.12E-12 64
nnf = (m-1) 1000 9.47E-11 7.40E-03 9.54E-03 3.92E-02 1.26E-05 -

nn = 2
10000 O.OOE+OO O.OOE+OO 3.07E-04 7.40E-03 2.58E-06 92

FWD
1000 6.00E-03 4.20E-02 5.62E-02 2.12E-01 1.19E-04 -

nni = 2 10000 O.OOE+OO O.OOE+OO 2.07E-03 2.71 E-02 3.36E-12 84

Miilfi Qu/snn
nnf = (m-1) 1000 9.39E-06 1.49E-03 7.82E-03 3.60E-02 2.34E-05 -

m u iiia o Wa rrn
nn = 2

10000 O.OOE+OO O.OOE+OO 5.92E-04 7.40E-03 3.54E-07 92

RING 1000 4.41E-04 2.61 E-03 6.09E-03 6.06E-02 3.84E-05 -

NNB nni = 2 10000 O.OOE+OO 7.40E-03 1.10E-02 3.44E-02 7.28E-09 36
nnf = (m-1) 1000 1.53E-08 1.48E-02 1.46E-02 4.44E-02 7.13E-05 -

nn = 2
10000 O.OOE+OO O.OOE+OO 7.48E-04 1.04E-02 2.64E-06 88

FWD 1000 7.33E-05 1.31 E-02 1.74E-02 5.68E-02 6.44E-05 -

NNB nni = 2 10000 O.OOE+OO O.OOE+OO 6.40E-03 4.67E-02 3.10E-06 68
nnf = (m-1) 1000 1.82E-04 2.59E-02 3.12E-02 8.07E-02 2.24E-04 -

M e a n  B e s t  C o n flic t -  3 0 D  G r ie w a n k f u n c t io n

=  MS RING 2 NEIGH « =  MS RING DYNAMIC « = =  MS FWD 2 NEIGH =  MS FWD DYNAMIC

   MS RING 2 NEIGH NNB - - -  MS RING DYNAMIC NNB - - -  MS FWD 2 NEIGH NNB -  — — MS FWD DYNAMIC NNB

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.69. Convergence curves of the mean best conflict for the 30D Griewank function, associated to Table 7.42. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.43. S tatistica l results out o f 25 runs for a M ulti-Swarm  algorithm  optim izing the 2-d im ensional Schaffer f6 
function. The ne ighbourhoods tested are the RING and the FO W ARD topologies, both with 2 neighbours and with 
linearly increasing num ber o f neighbours (from 2 to ‘swarm -size -  T), com bined with a nearest ne ighbour heuristics 
(NNB). The results for the same neighbourhood topologies w ithout such heuristics are im ported from  previous sec
tions fo r re ference and com parison purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PBJWE [%] Success

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 7.13E-04 100

RING
1000 O.OOE+OO O.OOE+OO 7.84E-04 9.72E-03 7.34E-03 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.36E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 6.25E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 3.80E-04 100

FWD
1000 O.OOE+OO 5.94E-14 8.08E-04 9.72E-03 6.89E-03 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.13E-11 100

flJR * ■ |4S Ciu3 rm
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 5.17E-03 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 3.71 E-04 100

RING 1000 O.OOE+OO O.OOE+OO 1.28E-03 9.72E-03 7.36E-03 -

NNB nni = 2 10G00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.35E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 4.58E-03 9.72E-03 8.44E-03 -

nn = 2
10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.85E-05 100

FWD 1000 O.OOE+OO 2.22E-16 5.84E-08 1.45E-06 6.60E-03 -

NNB nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.25E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 7.97E-04 9.72E-03 7.46E-03 -

Mean Best Conflict -  2D Schaffer f6 function

2.00E-03 =

1001 1501 2001 2501 3001 3501 4501 5001 5501

Tim e-steps

6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7.70. C onvergence curves o f the mean best conflic t for the 2D Schaffer f6 function, associated to Table  7.43. 
The co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associated.
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Table 7.44. S tatistical results out o f 25 runs for a Multi-Swarm  algorithm  optim izing the 10-dim ensional Schaffer f6 
function. The neighbourhoods tested are the RING and the FO W ARD topologies, both w ith 2 neighbours and with 
linearly increasing num ber o f neighbours (from 2 to 'swarm -size -  1 ’), com bined with a nearest ne ighbour heuristics 
(NNB). The results for the same neighbourhood topologies w ithou t such heuristics are im ported from  previous sec
tions for reference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps
H i 4IS& I

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] S u ccess

nn = 2
10000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 2.03E-03 0

RING
1000 9.72E-03 9.72E-03 1.74E-02 3.72E-02 3.03E-03 !

nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.76E-03 0
nnf = (m-1) 1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 1.95E-03 -

CNI
IICc 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.70E-03 0

FWD
1000 9.72E-03 9.72E-03 1.41 E-02 3.72E-02 2.41 E-03 -

nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.59E-03 0

Multi-Swarm
nnf = (m-1) 1000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 1.79E-03 -

nn = 2
10000 9.72E-03 9.72E-03 1.30E-02 3.72E-02 2.01 E-03 0

RING 1000 9.72E-03 9.72E-03 2.07E-02 3.72E-02 3.18E-03 -

NNB nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.71 E-03 0
nnf = (m-1) 1000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.96E-03 -

nn = 2
10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.91 E-03 0

FWD 1000 9.72E-03 9.72E-03 1.41 E-02 3.72E-02 2.72E-03 -

NNB nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.42E-03 0
nnf = (m-1) 1000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 2.29E-03 -

Mean Best Conflict -  10D Schaffer f6 function

MS RING 2 NEIGH. MS RING DYNAMIC MS FWD 2 NEIGH. 'MS FWD DYNAMIC

MS RING 2 NEIGH NNB MS RING DYNAMIC NNB MS FWD 2 NEIGH NNB MS FWD DYNAMIC NNB

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001  6501 7001 7501 8001  8501 9001 9501

Fig. 7.71. Convergence curves of the mean best conflict for the 10D Schaffer f6 function, associated to Table 7.44.
The colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table  7.45. S tatistica l results out o f 25 runs for a M ulti-Swarm  algorithm  optim izing the 30-dim ensional Schaffer f6 
function. The neighbourhoods tested are the RING and the FO W ARD topologies, both with 2 ne ighbours and with 
linearly increasing num ber o f neighbours (from 2 to ‘sw arm -size -  T ), com bined with a nearest neighbour heuristics 
(NNB). The results for the sam e neighbourhood topo logies w ithout such heuristics are im ported from  previous sec
tions fo r re ference and com parison purposes. A run with an erro r no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

<MIICc 10000 3.72E-02 7.82E-02 7.45E-02 1.27E-01 1.58E-03 0

RING
1000 1.27E-01 1.78E-01 1.68E-01 2.28E-01 3.42E-03 -

nni = 2 10000 3.72E-02 3.72E-02 4.38E-02 7.82E-02 5.48E-04 0
nnf = (m -1) 1000 3.74E-02 1.27E-01 1.08E-01 1.78E-01 1.89E-03 -

nn = 2
10000 3.72E-02 7.82E-02 7.29E-02 1.27E-01 1.70E-03 0

FWD
1000 7.82E-02 1.27E-01 1.44 E-01 1.78E-01 2.83E-03 -

nni = 2 10000 3.72E-02 3.72E-02 4.38E-02 7.82E-02 6.55E-04 0

IfluHl CiAiarm
nnf = (m -1) 1000 3.72E-02 7.82E-02 9.05E-02 1.27E-01 1.79E-03 -

m  Li i i r o W d  r m

nn = 2
10000 3.72E-02 7.82E-02 7.19E-02 1.27E-01 1.85E-03 0

RING 1000 1.27E-01 1.78E-01 1.84E-01 2.28E-01 3.51 E-03 -

NNB nni = 2 10000 3.72E-02 3.72E-02 3.89E-02 7.82E-C2 4.33E-04 0
nnf = (m -1) 1000 6.66E-02 1.27E-01 1.09E-01 1.78E-01 4.33E-04 -

nn = 2
10000 3.72E-02 7.82E-02 7.59E-02 1.27E-01 1.71 E-03 0

FWD 1000 7.82E-02 1.27E-01 1.14E-01 1.78E-01 2.46E-03 -

NNB nni = 2 10000 9.72E-03 3.72E-02 3.56E-02 7.82E-02 7.96E-04 0
nnf = (m -1) 1000 7.82E-02 7.82E-02 1.02E-01 1.78E-01 3.44E-03 -

Mean Best Conflict -  30D Schaffer f6 function

« = = »  MS RING 2 NEIGH « =  MS RING DYNAMIC =  MS FWD 2 NEIGH. =  MS FWD DYNAMIC

   MS RING 2 NEIGH NNB -  -  -  MS RING DYNAMIC NNB  MS FWD 2 NEIGH. NNB - - -  MS FWD DYNAMIC NNB

4501 5001 5501

Tim e-steps

Fig. 7.72. C onvergence curves o f the mean best conflic t fo r the 30D Schaffer f6 function, associated to Table 7.45. 
The co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associated.
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Discussion

The settings o f the experiments are the same as those described in the previous chapter 

(see section 6.3.2.2.) unless specifically stated otherwise. Although the ‘Fwd nn=V and 

the ‘Ring nn=T topologies are included in the experiments, the analyses focus on the 

‘Fwd Dynamic’ and the ‘Ring Dynamic’ topologies.

All the algorithms, with and without NNB, find the exact solutions in 2D, 10D and 30D, 

so that the effect o f the NNB technique cannot be appreciated (Table 7.31 to Table 7.33, 

Fig. 7.58 to Fig. 7.60).

Rosenbrock

In the 2D problem, all algorithms, with and without NNB, find the exact solutions so 

that the effect o f the NNB technique cannot be appreciated (Table 7.34, Fig. 7.61). In 

the 10D problem, no clear trend can be observed in the forward topologies. However, 

the ‘Ring Dynamic’ topology marginally deteriorates whereas the ‘Ring nn=2’ topology 

improves (Table 7.35, Fig. 7.62). In the 30D problem, both the ‘Fwd Dynamic’ and the 

‘Ring Dynamic’ topologies deteriorate, whereas no clear trend is observed for the others 

(Table 7.36, Fig. 7.63).

In the 2D problem, all algorithms, with and without NNB, find the exact solutions so 

that the effect o f the NNB technique cannot be appreciated (Table 7.37, Fig. 7.64). In 

the 10D problem, both the ‘Fwd Dynamic’ and the ‘Ring Dynamic’ improve noticeably 

with the NNB technique, while the ‘Ring nn=2’ deteriorates (Table 7.38, Fig. 7.65). In 

the 30D problem, no noticeable effect can be observed except for the deterioration of 

the results obtained by the ‘Ring nn=2’ (Table 7.39, Fig. 7.66).

Griewank

In the 2D problem, all algorithms, with and without NNB, find the exact solutions so 

that the effect o f the NNB technique cannot be appreciated (Table 7.40, Fig. 7.67). In 

the 10D problem, the ‘Fwd Dynamic’ topology improves with the NNB whereas all the

Sphere

Rastrigin
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others deteriorate (Table 7.41, Fig. 7.68). In the 30D problem, both the ‘Fwd Dynamic’ 

and the ‘Ring Dynamic’ topologies deteriorate with the NNB whereas the ‘Ring nn=2’ 

improves (Table 7.42, Fig. 7.69).

Schaffer f 6

In the 2D problem, all algorithms, with and without NNB, find the exact solutions so 

that the effect o f the NNB technique cannot be appreciated (Table 7.43, Fig. 7.70). In 

the 10D problem, there is no noticeable effect of the NNB (Table 7.44, Fig. 7.71). In the 

30D problem, the NNB results again in improvement for both the ‘Fwd Dynamic’ and 

the ‘Ring Dynamic’ (Table 7.45, Fig. 7.72).

Overall analyses

The application o f the proposed Nearest Neighbour technique (based on the memory 

swarm) on the problems of this benchmark resulted sometimes in no noticeable effect, 

sometimes in deterioration, and sometimes in improvement. Given that the reasons and 

mechanisms for these either improvements or deteriorations were not identified, the 

technique is not really useful at this stage for mathematical optimization. It may be 

helpful for physical systems, where the neighbourhoods are generated using distance 

information. This technique would allow that while still keeping the full overlapping, 

thus guaranteeing the spread of information at any time throughout the search.

In order to clarify the nomenclature, let us call a sub-swarm to a subset o f the swarm 

composed o f all the particles sharing the same setting o f the coefficients in the velocity 

update equation. In turn, we call a sub-neighbourhood to a subset of the swarm com

posed o f a number o f particles subject to an independent neighbourhood structure. 

Hence there can be more than one sub-swarm in one neighbourhood, and different sub

neighbourhoods can share the same coefficients’ settings. The implemented PSO code 

allows one sub-swarm and multiple sub-neighbourhoods; one sub-neighbourhood and 

multiple sub-swarms; and if  there are more than one sub-neighbourhood and more than 

one sub-swarm, they are forced to coincide.

7.5. Sub-neighbourhoods

4 3 1
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In the algorithm with three sub-swarms in the previous sections, the particles equipped 

with different coefficients -i.e. comprising different sub-swarms- end up scrambled. 

Although the question o f whether this is beneficial or harmful has not been addressed 

yet, it was decided here to set three sub-neighbourhoods coinciding with the three sub

swarms in the previous section so that they do not mix and each sub-neighbourhood be

haves as dictated by one set o f coefficients. Thus, the forward dynamic neighbourhood 

from section 7.3 is implemented on each sub-neighbourhood independently. Since the 

update o f the number o f neighbours is linear, each particle spends a longer interval of 

time between updates of the number o f neighbours when the sub-neighbourhoods option 

is activated.

The question is how to pass information through between sub-neighbourhoods without 

excessively disrupting their independence. Two techniques to interconnect the sub

neighbourhoods are investigated. In the first one, aiming to keep them as independent 

from each other as possible, the neighbourhood o f the first particle in each sub

neighbourhood is extended by adding the individual best experience o f the first particles 

in the other sub-neighbourhoods. Thus, information can be passed through very mildly. 

This is called here ‘individual overlapping’. The other technique, called ‘local overlap

ping’, consists of extending the neighbourhood o f the first particle in each sub

neighbourhood with the neighbourhood (rather than the individual best) o f the first par

ticles o f the other sub-neighbourhoods. In other words, their neighbourhoods are aggre

gated and shared. If the sub-neighbourhoods’ topology is dynamic, the overlapping us

ing the second technique will be dynamic as well. The individual overlapping is illus

trated in Fig. 7.73, where the sub-neighbourhoods consist o f a forward topology with 

two neighbours. The local overlapping is illustrated in Fig. 7.74 for the same sub

neighbourhoods’ structure.

The sub-neighbourhood option is tested on the same suite of side-constrained problems 

used before. The Multi-Swarm coefficients’ settings is used, and five neighbourhood 

topologies are tested, namely the global, the forward dynamic, the forward (nn=2), the 

ring dynamic, and the ring (nn=2). Each one o f this is coupled with three options: no 

sub-neighbourhood; 3 Sub-Neighbourhoods with Individual overlapping (SNI); and 3 

Sub-Neighbourhoods with Local overlapping (SNL). The results are presented in Table 

7.46 to Table 7.60, and Fig. 7.75 to Fig. 7.101.
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Table 7.46. S tatistical results out o f 25 runs fo r a M ulti-Swarm  algorithm  with three sub-ne ighbourhoods (one per 
sub-swarm ) optim izing the 2-dim ensional Sphere function. The sub-ne ighbourhoods tested are the GLO BAL, the 
RING, and the FO W ARD structures with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to 
‘swarm -size -  T). Two types of in terconnections between sub-ne ighbourhoods are tested, the ‘ind iv idua l’ and the 
‘loca l’ overlapping. The results fo r the case w ithout sub-ne ighbourhoods are im ported from  previous sections for 
reference and com parison purposes. A run with an error no g reater than 0.0001 is regarded as successfu l.

OPTIMIZER NEIGHBOURHOOD Time-steps
. 1, HUH

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

II 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
O LV /D M L

1000 2.38E-90 4.67E-86 1.06E-83 2.16E-82 1.70E-20 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 3.39E-85 4.26E-78 9.85E-77 1.83E-75 2.68E-20 -

Multi-Swarm nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 2.99E-86 1.12E-80 2.13E-79 2.33E-78 4.47E-20 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 1.24E-75 8.38E-73 4.72E-69 1.16E-67 9.31E-20 -

nni = 2 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 2.17E-79 3.23E-74 3.17E-70 7.36E-69 8.94E-22 -

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
V3LUDM L

1000 4.69E-89 1.05E-83 9.99E-83 1.80E-81 2.11E-20 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

R IN f i
1000 3.39E-85 1.51E-79 3.18E-76 5.09E-75 5.04E-21 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 7.06E-82 3.59E-79 1.77E-76 2.80E-75 8.89E-21 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 2.26E-80 3.24E-76 6.26E-75 7.36E-74 7.51 E-21 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.30E-79 2.09E-77 2.47E-76 2.50E-75 5.46E-20 -

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
O L U D M L

1000 1.27E-87 8.43E-84 1.61E-81 3.74E-80 1.31 E-21 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 9.83E-82 1.20E-78 3.67E-76 7.10E-75 4.16E-21 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.25E-85 2.16E-79 2.48E-76 6.10E-75 2.84E-21 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 7.37E-79 7.28E-77 2.33E-74 4.64E-73 7.66E-21 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 3.78E-81 6.51E-78 7.10E-77 5.31E-76 1.00E-20 -
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Table 7.47. S tatistica l results ou t o f 25 runs for a M ulti-Swarm  algorithm  with three sub-ne ighbourhoods (one per 
sub-swarm ) optim izing the 10-dim ensional Sphere function. The sub-ne ighbourhoods tested are the GLOBAL, the 
RING, and the FO W ARD structures with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to 
‘swarm -size -  T). Two types of in terconnections between sub-ne ighbourhoods are tested, the ‘ind iv idua l’ and the 
lo c a l’ overlapping. The results fo r the case w ithout sub-ne ighbourhoods are im ported from  previous sections for 
reference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successfu l.

OPTIMIZER NEIGHBOURHOOD Time-steps BMH
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
V JL U D H L

1000 3.21E-58 2.00E-56 2.03E-55 1.42E-54 2.17E-18 -

nn = 2
10000 0.00E+00 0.00E+00 0.00E+00 O.OOE+OO 1.20E-153 100

RING
1000 1.41E-32 1.17E-30 1.06E-29 9.91 E-29 2.68E-11 -

Multi-Swarm nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 4.18E-43 2.00E-39 5.49E-38 1.09E-36 1.35E-14 -

O
JIIcc 10000 6.03E-186 1.07E-182 4.73E-180 1.07E-178 2.39E-93 100

FWD
1000 4.92E-18 6.77E-17 1.20E-16 5.25E-16 7.03E-11 -

nni = 2 10000 O.OOE+OO O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.97E-23 1.46E-22 3.15E-22 1.75E-21 1.37E-13 -

10000 0.00E+00 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 100
VJLW DML

1000 4 81E-55 3.16E-51 1.28E-48 2.42E-47 1.25E-15 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 3.40E-159 100

RING
1000 3.39E-35 3.35E-32 1.44E-31 1.09E-30 1.86E-11 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 3.13E-37 5.93E-36 4.45E-35 6.25E-34 1.46E-12 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 1.46E-160 100

FWD
1000 1.63E-35 9.93E-34 5.03E-33 3.98E-32 2.01 E-11 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.92E-38 5.64E-37 1.19E-35 1.40E-34 2.68E-13 -

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
V JLUD M L

1000 1.45E-55 5.60E-53 1.60E-49 2.50E-48 1.81 E-15 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 5.83E-158 100

RING
1000 2.12E-34 4.30E-33 1.02E-32 5.53E-32 1.56E-11 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 4.07E-38 2.95E-36 5.43E-35 9.58E-34 4.97E-13 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 1.68E-161 100

FWD
1000 9.70E-36 7.67E-34 8.62E-33 1.23E-31 4.24E-12 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.52E-39 1.64E-36 1.06E-35 1.49E-34 6.11 E-13 -
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Table 7.48. S tatistica l results out o f 25 runs for a M ulti-Swarm  algorithm  with three sub-ne ighbourhoods (one per 
sub-swarm ) optim izing the 30-dim ensional Sphere function. The sub-ne ighbourhoods tested are the GLOBAL, the 
RING, and the FO W ARD structures with 2 neighbours and with linearly increasing num ber o f ne ighbours (from 2 to 
‘swarm -size -  T ). Two types of in terconnections between sub-ne ighbourhoods are tested, the ‘ind iv idua l’ and the 
lo c a l’ overlapping. The results fo r the case w ithout sub-ne ighbourhoods are im ported from  previous sections for 
reference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successfu l.

OPTIMIZER NEIGHBOURHOOD Time-steps f t  f i f t
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 1.10E-181 4.68E-172 1.95E-166 4.21 E-165 7.90E-88 100
|UL.UDML

1000 4.53E-17 1.52E-14 4.02E-11 1.00E-09 3.63E-10 -

nn = 2
10000 3.13E-113 7.02E-109 2.72E-107 5.96E-106 6.93E-57 100

RING
1000 2.83E-08 9.73E-08 2.55E-07 3.82E-06 1.75E-06 -

Multi-Swarm nni = 2 10000 1.28E-185 6.46E-180 6.80E-173 1.68E-171 2.58E-91 100
nnf = (m-1) 1000 7.07E-12 1.43E-10 3.51 E-10 3.97E-09 1.57E-08 -

nn = 2
10000 9.63E-63 2.09E-61 1.04E-60 6.46E-60 3.03E-34 100

FWD
1000 4.04E-04 1.74E-03 1.79E-03 3.91 E-03 1.73E-05 -

nni = 2 10000 1.16E-174 4.86E-169 2.11E-165 2.09E-164 3.76E-87 100
nnf = (m-1) 1000 1.09E-06 4.95E-06 5.29E-06 1.20E-05 7.73E-07 -

10000 3.05E-173 6.28E-170 1.98E-165 4.84E-164 3.29E-87 100
uLUDML

1000 5.76E-15 9.75E-14 2.81 E-13 1.72E-12 3.29E-87 -

nn = 2
10000 1.26E-123 2.66E-120 2.71 E-118 5.65E-117 3.84E-62 100

RING
1000 5.76E-10 5.67E-09 1.11E-08 8.51E-08 6.80E-07 -

Multi-Swarm 
3 Sub-Neigh. 
Indrv. Overlap.

nni = 2 10000 1.42E-162 3.34E-157 4.42E-156 3.95E-155 1.34E-81 100
nnf = (m-1) 1000 1.34E-10 1.05E-09 1.49E-09 7.63E-09 1.19E-07 -

nn = 2
10000 4.21 E-120 4.99E-117 2.05E-115 3.97E-114 8.97E-61 100

FWD
1000 7.61 E-10 1.01E-08 1.80E-08 1.26E-07 4.70E-07 -

nni = 2 10000 1.02E-158 2.75E-154 2.95E-150 3.79E-149 6.89E-79 100
nnf = (m-1) 1000 7.57E-11 1.33E-09 2.51E-09 1.36E-08 1.07E-07 -

10000 1.36E-181 2.61E-176 1.66E-171 4.00E-170 1.29E-89 100
OLvDML

1000 6.80E-17 8.27E-15 3.59E-14 2.53E-13 1.03E-10 -

nn = 2
10000 2.30E-126 3.53E-124 3.24E-122 2.99E-121 8.01 E-64 100

RING
1000 3.32E-10 1.92E-09 3.60E-09 2.29E-08 6.13E-07 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 2.22E-170 2.66E-164 2.21 E-160 5.45E-159 4.63E-84 100
nnf = (m-1) 1000 3.58E-11 2.15E-10 8.94E-10 4.37E-09 8.74E-08 -

nn = 2
10000 3.22E-124 1.61E-120 4.42E-118 7.32E-117 5.58E-62 100

FWD
1000 7.20E-10 3.64E-09 9.23E-09 7.65E-08 5.05E-07 -

nni = 2 10000 1.15E-169 4.78E-162 8.43E-158 2.06E-156 4.78E-83 100
nnf = (m-1) 1000 3.46E-11 6.45E-10 9.43E-10 2.80E-09 1.27E-07 -
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Mean Best Conflict -  2D Sphere function

=  MS GLOBAL « =  MS RING 2 NEIGH. * = =  MS RING DYNAMIC ■------------‘ MS FWD 2 NEIGH. =  MS FWD DYNAMIC

------- ----  MSGL0BAL3SNI - - -  M SRING 2 NEIGH 3 SNI -----------MS RING DYNAMIC3 SNI ----------- MS FWD 2 NEIGH. 3 SNI ------------MS FWD DYNAMIC 3 SNI

...............MS RING2 NEIGH.3SNL
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Fig. 7.75. Convergence curves o f the mean best conflic t for the 2D Sphere function, associated to Table  7.46. The 
co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associa ted.

Mean Best Conflict -  10D Sphere function

< MS GLOBAL =  MS RING 2 NEIGH =  MS RING DYNAMIC ■ - »MS FWD 2 NEIGH »- — -» MS FWD DYNAMIC

------------MS GLOBAL 3 SNI ------------MS R IN G 2 NEIGH. 3 SNI ----------- MS RING DYNAMIC 3 SNI ----------- MS FWD 2 NEIGH. 3 SNI ------------MSFWD DYNAMIC3SNI

• • • • •  MS R ING2 NEIGH. 3SNL

1 501 1001 1501 2001 2501  3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.76. Convergence curves o f the mean best conflic t for the 10D Sphere function, associated to Table  7.47. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Mean Best Conflict -  30D Sphere function

=  MS GLOBAL =  MS RING 2 NEIGH. ■ MS RING DYNAMIC * =  MS FWD 2 NEIGH ■ - - - >  MS FWD DYNAMIC

----------- MSGLOBAL3 SNI -  — -  MS R IN G2 NEIGH. 3 SNI ------------MS RING DYNAMIC3 SNI ----------- M SFW D 2NEIGH .3SN I ----------- MS FWD DYNAMIC 3 SNI

...............MS RING 2 NEIGH 3 SNL

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7.77. Convergence curves o f the mean best conflic t for the 30D Sphere function, associated to Table 7.48. The 
co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

Mean Best Conflict -  30D Sphere function
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•  •  •  •  •  MS GLOBAL 3 SNL  MS RING 2 NEIGH 3 SNL  MS RING DYNAMIC 3 S N L .............MS FWD 2 NEIGH. 3SNL ....................MS FWD DYNAMIC 3 SNL

O.OOE+OO

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001  9501

T im e-steps

Fig. 7.78. Convergence curves of the mean best conflict for the 30D Sphere function, associated to Table 7.48. The
colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.49. S tatistica l results out o f 25 runs for a M ulti-Swarm  algorithm  with three sub-ne ighbourhoods (one per 
sub-swarm ) optim izing the 2-d im ensional Rosenbrock function. The sub-ne ighbourhoods tested are the GLO BAL, 
the RING, and the FO W ARD structures with 2 neighbours and with linearly increasing num ber o f neighbours (from  2 
to ‘sw arm -size  -  T). Two types o f in terconnections between sub-ne ighbourhoods are tested, the ‘ind iv idua l’ and the 
lo c a l’ overlapp ing. The results fo r the case w ithout sub-ne ighbourhoods are im ported from previous sections for 
re ference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successfu l.

OPTIMIZER NEIGHBOURHOOD Time-steps
ifgiu f e l l b q QQQE

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
OLIb/DML

1000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.05E-09 -

C
NIICc

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 0.00E+O0 9.00E-24 2.19E-18 3.50E-17 1.78E-06 -

Multi-Swarm nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 0.00E+O0 1.77E-30 1.67E-26 3.95E-25 1.36E-06 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 2.90E-22 1.03E-16 4.09E-14 5.40E-13 7.85E-05 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 4.34E-26 1.05E-21 5.04E-19 1.24E-17 1.10E-07 -

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
ULUDHL

1000 0.00E+O0 O.OOE+OO O.OOE+OO O.OOE+OO 2.33E-08 -

nn = 2
10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 0.00E+O0 100

RING
1000 0.00E+O0 3.45E-25 1.16E-22 2.04E-21 6.95E-07 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 O.OOE+OO 6.15E-28 1.01E-23 1.53E-22 1.87E-04 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 1.08E-27 8.07E-23 1.92E-20 2.02E-19 1.54E-06 -

nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 1.23E-30 1.31E-26 4.77E-24 8.59E-23 2.01 E-07 -

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
OLVsDHL

1000 O.OOE+OO O.OOE+OO 7.89E-33 1.97E-31 1.14E-08 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

RING
1000 1.97E-29 2.53E-25 7.47E-23 1.36E-21 2.26E-06 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 O.OOE+OO 6.88E-27 9.48E-26 1.05E-24 1.87E-04 -

C
MIICc 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 100

FWD
1000 4.79E-30 1.87E-23 5.45E-20 9.54E-19 4.92E-06 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 100
nnf = (m-1) 1000 2.42E-30 2.72E-27 3.91 E-23 6.78E-22 6.13E-07 -
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Table 7.50. S tatistica l results out o f 25 runs for a Multi-Swarm algorithm  with three sub-ne ighbourhoods (one per 
sub-swarm ) optim izing the 10-dim ensional Rosenbrock function. The sub-ne ighbourhoods tested are the GLOBAL, 
the RING, and the FO W ARD structures with 2 neighbours and with linearly increasing num ber o f ne ighbours (from 2 
to ‘swarm -size -  T ). Two types o f in terconnections between sub-ne ighbourhoods are tested, the ‘ind iv idua l’ and the 
lo c a l’ overlapp ing. The results fo r the case w ithout sub-ne ighbourhoods are im ported from previous sections for 
reference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successfu l.

OPTIMIZER NEIGHBOURHOOD Time-steps JU i
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 5.91E-12 2.94E-02 1.02E+00 5.59E+00 7.53E-03 16
U L U D M L

1000 9.37E-05 6.67E-01 1.47E+00 6.46E+00 7.93E-03 -

nn = 2
10000 4.01 E-09 8.03E-07 1.61E-01 3.99E+00 8.87E-03 80

RING
1000 2.63E-03 1.62E+00 1.82E-+O0 5.11 E-MD0 1.79E-02 -

Multi-Swarm nni = 2 10000 1.88E-15 1.16E-09 1.42E-05 3.49E-04 1.08E-02 96
nnf = (m-1) 1000 5.39E-04 6.18E-01 8.49E-01 4.07E-K)0 1.45E-02 -

OJIIce 10000 9.26E-03 3.47E+00 3.47E+00 7.03E+00 4.92E-03 0

FWD
1000 1.09E-02 5.46E-KD0 5.35E-K)0 9.55E-*O0 9.53E-03 -

nni = 2 10000 3.40E-12 4.82E-09 4.80E-01 4.01 E+00 4.57E-03 76
nnf = (m-1) 1000 8.74E-01 4.48E-K50 4.63E-M30 9.59E+00 6.54E-03 -

10000 1.29E-07 2.50E-04 2.32E-03 1.96E-02 4.79E-03 28
U L U D M L

1000 4.85E-02 1.54E+00 6.27E+00 7.17E+01 5.49E-03 -

nn = 2
10000 1.74E-08 1.58E-07 1.78E-06 3.58E-05 5.54E-03 100

RING
1000 5.35E-03 2.24E-+00 1.88E-K)0 4.24E+00 1.88E-KX) -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 3.24E-22 1.54E-17 6.16E-11 1.47E-09 5.86E-03 100
nnf = (m-1) 1000 5.00E-03 1.80E+00 1.86E+00 4.42E-+00 9.82E-03 -

nn = 2
10000 4.78E-09 5.90E-08 1.60E-01 3.99E+00 5.73E-03 92

FWD
1000 6.92E-02 2.10E+00 2.18E+00 7.01E+00 5.98E-03 -

nni = 2 10000 4.37E-20 1.28E-17 1.59E-01 3.99E+00 4.86E-03 96
nnf = (m-1) 1000 6.28E-02 1.18E-MD0 1.41E+00 4.07E+00 5.82E-03 -

10000 4.76E-08 1.50E-04 6.42E-01 3.99E+00 5.48E-03 44
U L U D M L

1000 2.34E-02 1.21 E-K)0 1.85E-K)0 6.36E+00 5.24E-03 -

nn = 2
10000 2.66E-10 1.81E-07 1.66E-01 3.99E+00 5.43E-03 80

RING
1000 3.36E-02 1.72E+00 1.74E+00 5.28E+00 1.05E-02 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 1.26E-20 2.03E-17 3.19E-01 3.99E+00 6.26E-03 88
nnf = (m-1) 1000 3.82E-02 1.51E+00 1.62E-+00 4.19E+00 1.00E-02 -

nn = 2
10000 7.73E-09 3.22E-08 3.19E-01 3.99E+00 4.11E-03 92

FWD
1000 9.07E-02 2.22E-H30 2.24E+00 6.76E-K)0 2.37E-03 -

nni = 2 10000 1.88E-21 4.15E-18 1.59E-01 3.99E+00 3.49E-03 96
nnf = (m-1) 1000 5.13E-02 1.43E+00 1.46E+00 4.13E-K)0 2.34E-03 -

4 4 0



viicprei . W

C1 EC NEIGHBOURHOODS s»a„ sj d e r *
Prifysgol A bertaw e

Table 7.51. S tatistica l results out o f 25 runs for a M ulti-Swarm  algorithm  with three sub-ne ighbourhoods (one per 
sub-swarm ) optim izing the 30-dim ensionai Rosenbrock function. The sub-ne ighbourhoods tested are the GLOBAL, 
the RING, and the FO W ARD structures with 2 neighbours and with linearly increasing num ber o f ne ighbours (from 2 
to ‘sw arm -size  -  T ). Two types o f in terconnections between sub-ne ighbourhoods are tested, the ‘ind iv idua l’ and the 
lo c a l’ overlapping. The results fo r the case w ithout sub-ne ighbourhoods are im ported from previous sections for 
re ference and com parison purposes. A run with an erro r no greater than 0.0001 is regarded as successfu l.

OPTIMIZER NEIGHBOURHOOD Time-steps iifeiSSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 4.21E-08 1.67E+01 2.70E+01 7.68E+01 3.90E-03 4
U L U D M L

1000 2.33E-02 2.30E+01 4.38E-KJ1 1.36E+02 2.59E-03 -

nn = 2
10000 9.14E-03 7.09E+00 6.59E+00 1.46E+01 3.01 E-03 0

RING
1000 6.26E+00 7.08E-K51 5.33E-+01 8.71E+01 5.27E-03 -

Multi-Swarm nni = 2 10000 1.56E-05 5.30E+00 6.36E+00 1.98E+01 2.76E-03 4
nnf = (m-1) 1000 4.72E+00 2.73E-KJ1 4.05E+01 1.34E-HD2 3.79E-03 -

nn = 2
10000 1.95E+01 3.25E+01 5.09E+01 1.77E+02 3.71 E-03 0

FWD
1000 3.27E+01 7.61E+01 9.11E+01 2.12E+02 5.89E-03 -

nni = 2 10000 2.04E-04 1.10E+00 4.08E+00 7.00E+01 2.35E-03 0
nnf = (m-1) 1000 2.25E+01 2.71E+01 5.27E-KJ1 2.17E-MD2 1.53E-03 -

10000 5.43E-05 4.55E+00 1.23E+01 7.94E+01 3.02E-03 4
U L U D M L

1000 1.29E-*01 7.13E+01 5.58E-KJ1 1 45E-+02 1.46E-03 -

nn = 2
10000 1.98E-04 4.13E+00 6.49E+00 1.45E+01 4.08E-03 0

RING
1000 1.71E-KJ0 7.79E+01 6.58E+01 1.37E-+02 3.53E-03 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 2.75E-06 3.28E+00 3.02E+00 1.31E+01 4.09E-03 8
nnf = (m-1) 1000 1.70E+00 7.46E+01 5.71E-K31 1.35E-KD2 1.96E-03 -

nn = 2
10000 2.16E-04 1.01E+01 1.67E+01 7.54E+01 2.51 E-03 0

FWD
1000 1.62E+01 7.90E-+01 7.78E-K51 1.51E-+02 1.79E-03 -

nni = 2 10000 2.52E-05 3.58E+00 3.16E+00 1.00E+01 4.32E-03 16
nnf = (m-1) 1000 8.72E-HD0 7.92E+01 7.24E+01 1 54E+02 1.58E-03 -

10000 5.92E-01 1.21E+01 1.48E+01 7.03E+01 2.94E-03 0
U L U D M L

1000 5.68E-K)0 2.59E+01 4.51 E-*01 1.07E-K)2 1.11 E-03 -

nn = 2
10000 1.96E-02 4.00E+00 7.56E+00 6.84E+01 4.63E-03 0

RING
1000 1.24E-KJ1 7.46E+01 6.69E+01 3.32E-K)2 3.00E-03 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 6.97E-05 3.14E+00 3.03E+00 1.11E+01 5.78E-03 4
nnf = (m-1) 1000 1.18E+01 7.24E+01 5.83E+01 1.34E+02 2.68E-03 -

nn = 2
10000 8.40E-03 9.38E+00 1.14E+01 7.81 E+01 1.32E-03 0

FWD
1000 4.19E-HD0 7.99E+01 7.68E+01 2.58E+02 1.62E-03 -

nni = 2 10000 1.58E-05 1.92E+00 5.05E+00 7.09E+01 2.90E-03 4
nnf = (m-1) 1000 3.76E+00 7.31E+01 6.69E+01 2.15E+02 1.16E-03 -
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Mean Best Conflict -  2D Rosenbrockfunction

MS GLOBAL MSRING2NEIGH. MS RING DYNAMIC MS FWD 2 NEIGH MS FWD DYNAMIC

MS FWD DYNAMIC 3 SNI

MS GLOBAL 3 SNL MS RING2NEIGH.3SNL MS RING DYNAMIC 3 SNL MS FWD 2 NEIGH. 3 SNL MS FWD DYNAMIC 3 SNL

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001  9501

Fig. 7.79. C onvergence curves o f the mean best conflict for the 2D Rosenbrock function, associated to Table 7.49. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure  associated.

Mean Best Conflict -  10D Rosenbrockfunction

MS GLOBAL MS RING 2 NEIGH. MS RING DYNAMIC MS FWD 2 NEIGH MS FWD DYNAMIC

MS RING 2 NEIGH. 3 SNI MS RING DYNAMIC 3 SNI MS FWD 2 NEIGH 3 SNI MS FWD DYNAMIC3SNI

MS FWD 2NEIGH.3SNL MS FWD DYNAMIC 3 SNL

.'•'.'.‘• V l O N t t H t t t t l t l t .

2.00E+00 C

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001  7501 8001 8501 9001  9501

Time-steps

Fig. 7.80. Convergence curves of the mean best conflict for the 10D Rosenbrock function, associated to Table 7.50.
The colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Mean Best Conflict -  10D Rosenbrockfunction

« =  MS GLOBAL « =  MS RING 2 NEIGH. « = =  MS RING DYNAMIC « =  MS FWD 2 NEIGH. « =  MS FWD DYNAMIC

 M SG L08A L3SNI  MS RING 2 NEIGH. 3 S N I ------------ MS RING DYNAMIC 3 S N I --------------MS FWD 2 NEIGH. 3 SNI - - -  MS FWD DYNAMIC3SNI

 MS GLOBAL 3 SNL  MS RING 2 NEIGH. 3 SNL  MS RING DYNAMIC3 S N L  MS FWD 2NEIGH.3SNL •  •  •  •  •  MS FWD DYNAMIC3 SNL

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.81. C onvergence curves o f the mean best conflict for the 10D Rosenbrock function, associated to Table  7.50. 
The co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associated.

Mean Best Conflict -  30D Rosenbrockfunction

■-----------» MS GLOBAL MS RING 2 NEIGH =  MS RING DYNAMIC <-----------> MS FWD 2 NEIGH. =  MS FWD DYNAMIC

   MS GLOBAL 3 SNI  MS RING 2 NEIGH. 3 S N I ------------ MS RING DYNAMIC 3 S N I --------------MSFW D 2 N E I G H . 3 S N I -------------- MS FWD DYNAMIC 3 SNI

 MS GLOBAL 3 SNL  MS RING 2 NEIGH 3 SNL ..............MS RING DYNAMIC 3 S N L ...................MS FWD 2 NEIGH. 3 SNL ...................MS FWD DYNAMIC 3 SNL

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.82. C onvergence curves o f the mean best conflict fo r the 30D Rosenbrock function, associated to Table  7.51. 
The co lour-codes used to identify the neighbourhood structures are the sam e in the table and figure associated.
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Mean Best Conflict -  30D Rosenbrock function

•MSGLOBAL • = >  MS RING 2 NEIGH =  MS RING DYNAMIC =  MSFW D2NEIGH. =  MS FWD DYNAMIC

MSGLOBAL3SNI  -  M SR IN G 2N EIG H .3SN I -  -  -  MS RING DYNAMIC3SNI - - -  MS FWD 2 NEIGH 3 SNI -  -  — MSFWD DYNAMIC3SNI

1 MS GLOBAL 3 SNL ...............MS RING 2 NEIGH. 3 SNL ................. M S R IN G D Y N A M IC 3 S N L  MS FWD 2 NEIGH. 3 SNL .................MSFW DDYNAMIC3SNL

1 501 1001 1501 2001 2501 3001 3501 4001  4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7.83. Convergence curves o f the mean best conflict for the 30D Rosenbrock function, associated to Table 7.51. 
The co lour-codes used to identify the neighbourhood structures are the same in the table and figure associated.

Mean Best Conflict -  30D Rosenbrock function

■ MSGLOBAL » MS RING 2 NEIGH. = = = = =  MS RING DYNAMIC « =  MS FWD 2 NEIGH »MS FWD DYNAMIC

— -------MSGL0BAL3SNI ----------- MS RING 2 NEIGH 3 SNI ----------- MS RING DYNAMIC3 SNI ----------- MS FWD 2 NEIGH 3 SNI ----------- M SFW DDYNAMIC3SNI

...............MS RING 2 N EIG H 3 SNL

0.
3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

5.00E+00 5=

Fig. 7.84. Convergence curves of the mean best conflict for the 30D Rosenbrock function, associated to Table 7.51.
The colour-codes used to identify the neighbourhood structures are the same in the table and figure associated.
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Table 7.52. S tatistica l results out o f 25 runs for a M ulti-Swarm  algorithm  with three sub-ne ighbourhoods (one per 
sub-swarm ) optim izing the 2-d im ensional Rastrigin function. The sub-ne ighbourhoods tested are the GLOBAL, the 
RING, and the FO W ARD structures with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to 
‘sw arm -size -  T ). Two types of in terconnections between sub-ne ighbourhoods are tested, the ‘ind iv idua l’ and the 
‘loca l’ overlapp ing. The results fo r the case w ithout sub-ne ighbourhoods are im ported from previous sections for 
re ference and com parison purposes. A run with an error no g rea te r than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-stepsSTRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 9.93E-11 100
U L U D M L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.93E-11 -

nn = 2
10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 8.73E-11 100

RING
1000 2.98E+00 5.97E+O0 5.72E+O0 1.00E+01 3.74E-02 -

Multi-Swarm nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.16E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.16E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.07E-11 100

FWD
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.07E-11 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.95E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.95E-11 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.91 E-11 100
U L U D M L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.91E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.15E-11 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.15E-11 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.95E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.95E-11 -

egIIcc 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.91 E-11 100

FWD
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.91E-11 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.85E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.85E-11 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.42E-11 100
U L U D M L

1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.42E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.58E-11 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.58E-11 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 8.30E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 8.30E-11 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.56E-11 100

FWD
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.56E-11 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 9.48E-11 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 9.48E-11 -
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Table 7.53. S tatistica l results out o f 25 runs for a M ulti-Swarm  algorithm  with three sub-ne ighbourhoods (one per 
sub-swarm ) optim izing the 10-dim ensional Rastrigin function. The sub-ne ighbourhoods tested are the GLOBAL, the 
RING, and the FO W ARD structures with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to 
‘swarm -size -  T). Two types of in terconnections between sub-ne ighbourhoods are tested, the ‘ind iv idua l’ and the 
lo c a l’ overlapping. The results fo r the case w ithout sub-ne ighbourhoods are im ported from previous sections for 
reference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps ' M M
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 1.99E+00 3.98E+00 4.78E+00 1.49E+01 1.84E-11 0
U L U D M L

1000 1.99E+00 3.98E-+00 5.13E+00 1.49E+01 5.46E-04 -

nn = 2
10000 0.00E+00 2.98E+00 2.75E+00 6.96E+00 2.90E-02 4

RING
1000 2.98E-+00 5.97E+00 5.72E+00 1.00E+01 3.74E-02 -

Multi-Swarm nni = 2 10000 O.OOE+OO 9.95E-01 1.68E+00 5.97E+00 1.94E-02 32
nnf = (m-1) 1000 2.18E+00 4.97E+00 5.26E+00 1.09E+01 3.66E-02 -

nn = 2
10000 6.41 E-05 2.12E+00 2.34E+00 6.20E+00 2.45E-02 4

FWD
1000 2.80E+00 6.48E+00 6.42E+00 1.03E+01 3.42E-02 -

nni = 2 10000 O.OOE+OO 9.95E-01 1.07E+00 2.98E+00 1.66E-02 28
nnf = (m-1) 1000 2.25E+00 5.07E+00 5.03E+00 9.50E+00 3.34E-02 -

10000 0.00E+00 2.98E+00 3.54E+00 8.95E+00 1.57E-02 4
U L U D M L

1000 9.95E-01 4.97E-K)0 4.71E+00 8.95E+00 2.85E-02 -

nn = 2
10000 0.00E+00 2.98E+00 2.71 E+00 5.97E+00 2.36E-02 12

RING
1000 2.04E+00 5.97E-KX) 5.65E+00 7.96E+00 3.25E-02 -

3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 O.OOE+OO 1.99E+00 2.02E+00 4.97E+00 2.42E-02 20
nnf = (m-1) 1000 2.98E-K50 4.99E+00 5.35E+00 8.95E+00 3.39E-02 -

CNIICc 10000 0.00E+00 1.09E+00 1.64E+00 4.09E+00 2.22E-02 4

FWD
1000 1.99E+00 4.86E-+00 4.89E+00 9.14E-+00 3.25E-02 -

nni = 2 10000 0.00E+00 9.95E-01 1.08E+00 2.98E+00 1.57E-02 28
nnf = (m-1) 1000 1.99E+00 4.86E-K)0 4.67E+00 8.03E+00 3.32E-02 -

10000 9.95E-01 2.98E+00 3.10E+00 7.96E+00 9.38E-03 0
VJLUD M L

1000 1.99E+00 3.98E+00 4.29E+00 7.96E+00 1.92E-02 -

nn = 2
10000 0.00E+00 1.99E+00 2.40E+00 7.96E+00 2.60E-02 12

RING
1000 9.95E-01 4.98E+00 5.17E+00 7.96E+00 3.63E-02 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 0.00E+00 1.99E+00 1.75E+00 3.98E+00 2.10E-02 20
nnf = (m-1) 1000 9.95E-01 4.97E+00 5.14E+00 8.95E+00 3.54E-02 -

nn = 2
10000 0.00E+00 2.21 E+00 2.37E+00 6.31E+00 2.40E-02 4

FWD
1000 3.05E-+00 4.83E+00 5.42E+00 1.05E+01 3.26E-02 -

nni = 2 10000 0.00E+00 9.95E-01 1.47E+00 4.97E+00 1.47E-02 28
nnf = (m-1) 1000 3.30E+00 5.01E+00 5.62E+C0 1.05E+01 3.17E-02 -

4 4 6
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Table 7.54. S tatistica l results ou t o f 25 runs for a M ulti-Swarm  algorithm  with three sub-ne ighbourhoods (one per 
sub-swarm ) optim izing the 30-dim ensional Rastrigin function. The sub-ne ighbourhoods tested are the GLO BAL, the 
RING, and the FO W ARD structures with 2 neighbours and with linearly increasing num ber o f neighbours (from 2 to 
‘sw arm -size -  T ). Two types of in terconnections between sub-ne ighbourhoods are tested, the ‘ind iv idua l’ and the 
lo c a l’ overlapping. The results fo r the case w ithout sub-ne ighbourhoods are im ported from previous sections for 
re ference and com parison purposes. A run with an error no greater than 0.0001 is regarded as successful.

OPTIMIZER NEIGHBOURHOOD Time-steps i f " ! m s s s s
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 2.59E+01 5.27E+01 5.33E+01 8.16E+01 1.89E-11 0
U L U D M L

1000 2.59E-K)1 5.27E-K)1 5.33E+01 8.16E-K51 5.36E-08 -

nn = 2
10000 3.28E+01 4.48E+01 4.56E+01 6.37E+01 3.03E-02 0

RING
1000 3.32E+01 5.21E-K31 4.97E-KD1 6.57E+01 3.09E-02 -

Multi-Swarm nni = 2 10000 2.59E+01 3.98E+01 4.32E+01 6.67E+01 2.77E-02 0
nnf = (m-1) 1000 2.72E+01 4.48E+01 4.77E-KJ1 6.83E+01 2.96E-02 -

nn = 2
10000 2.96E+01 6.81 E+01 6.71E+01 8.76E+01 3.07E-02 0

FWD
1000 4.94E-*01 8.76E+01 8.55E-K51 1.21E-KJ2 3.31E-02 -

nni = 2 10000 1.69E+01 3.38E+01 3.34E+01 5.67E+01 2.18E-02 0
nnf = (m-1) 1000 3.73E-+01 7.11E+01 7.11 E-K)1 9.42E+01 3.10E-02 -

10000 1.79E+01 4.38E+01 4.23E+01 6.37E+01 1.20E-02 0
U L U D M L

1000 1.99E+01 4.88E-KJ1 4.81E+01 7.16E+01 1.68E-02 -

CMIICc 10000 1.89E+01 4.28E+01 4.32E+01 6.27E+01 3.02E-02 0

RING
1000 2.46E+01 4.88E+01 4.93E+01 6.47E+01 3.09E-02 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 1.89E+01 3.98E+01 4.25E+01 6.17E+01 3.05E-02 0
nnf = (m-1) 1000 2.29E+01 4.54E+01 4.70E+O1 6.47E-KJ1 3.15E-02 -

nn = 2
10000 3.30E+01 5.91 E+01 6.07E+01 9.46E+01 2.77E-02 0

FWD
1000 3.48E+01 7.70E-*-01 7.36E 01 1.01E+02 3.18E-02 -

nni = 2 10000 1.89E+01 3.58E+01 3.65E+01 6.17E+01 2.42E-02 0
nnf = (m-1) 1000 3.36E+01 7.00E+01 6.54E-KJ1 9.64E+01 3.02E-02 -

10000 2.29E+01 3.88E+01 4.06E+01 6.67E+01 3.97E-03 0
U L U D M L

1000 2.39E+01 4.08E+01 4.44E+01 7.06E+01 5.67E-03 -

nn = 2
10000 2.19E+01 4.18E+01 4.38E+01 6.77E+01 2.90E-02 0

RING
1000 2.20E+01 4.74E-K11 4.75E+01 7.21 E+01 3.04E-02 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 1.79E+01 4.18E+01 4.14E+01 6.47E+01 2.88E-02 0
nnf = (m-1) 1000 1.97E+01 4.58E-+01 4.55E+01 7.36E+01 3.07E-02 -

nn = 2
10000 2.26E+01 4.87E+01 5.12E+01 9.34E+01 2.21 E-02 0

FWD
1000 3.02E+01 6.91E+01 6.58E-HD1 1.02E-MD2 2.56E-02 -

nni = 2 10000 1.79E+01 3.38E+01 3.47E+01 6.17E+01 1.92E-02 0
nnf = (m-1) 1000 2.49E+01 5.88E+01 6.00E+01 1.02E+02 2.43E-02 -
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M e a n  B e s t  C o n f l i c t  -  2 B  R a s t r i g in  f u n c t i o n

« =  MS GLOBAL ■MS RING 2 NEIGH. =  MS RING DYNAMIC =  MS FWD 2 NEIGH. ■MS FWD DYNAMIC

----------- MS GLOBAL3 SNI ----------- MS RING 2 NEIGH,3 SNI ----------- M SRINGDYNAMIC3SNI ------------MS FWD 2 NEIGH 3 SNI ----------- MS FWD DYNAMIC3SNI

...............MS RING 2 NEIGH.3 SNL

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501

Tim e-steps

6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7 .85 .  C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for th e  2D Rastrigin function, a s s o c ia te d  to T ab le  7.52. T h e  
c o lo u r -c o d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ru c tu re s  a re  the  s a m e  in the  tab le  an d  figure a s s o c ia te d .

« = >  MS RING 2 NEIGH 

_ _ _  MS RING 2 NEIGH 3 SNI

< MS RING DYNAMIC 

----------- MS RINGDYNAMIC3SNI------------MSGL0BAL3SNI -----------MS FWD 2 NEIGH 3SNI ------------MS FWD DYNAMIC3 SNI

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------O.OOE+OO

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501  7001 7501 8001 8501 9001 9501

Tim e-steps

M e a n  B e s t  C o n f l i c t  -  1 0 D  R a s t r i g in  f u n c t i o n

Fig. 7 .86 .  C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  10D Rastrigin function, a s s o c i a t e d  to T ab le  7.53. T h e
c o lo u r -c o d e s  u se d  to identify th e  n e ig h b o u rh o o d  s t ru c tu re s  a re  the  s a m e  in the  tab le  a n d  figure a s s o c ia te d .
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M e a n  B e s t  C o n f l i c t  -  1 0 D  R a s t r i g i n  f u n c t i o n

MS GLOBAL 3 SNL

MSGLOBAL

MS GLOBAL 3 SNI

MS RING 2NEIGH.

MS RING 2 NEIGH 3 SNI

MS RING 2 NEIGH 3 SNL

MS RING DYNAMIC

MS RING DYNAMIC3 SNI

MS RING DYNAMIC3 SNL

MS FWD 2 NEIGH.

MS FWD 2 NEIGH 3 SNI

MS FWD 2 NEIGH 3 SNL

MS FWD DYNAMIC

MS FWD DYNAMIC3SNI

MS FWD DYNAMIC 3 SNL

2.00E+00 =

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.87. C o n v e rg e n c e  cu rv e s  of the  m e a n  b e s t  conflict for the  10D Rastrigin function, a s s o c i a t e d  to T ab le  7 .53 .  T he  
c o lo u r -c o d e s  u s e d  to identify the  ne ig h b o u rh o o d  s t ru c tu re s  a r e  the  s a m e  in th e  tab le  a n d  figure a s so c ia te d .

M e a n  B e s t  C o n f l ic t  -  3 0 D  R a s t r i g in  f u n c t i o n

MS RING 2 NEIGH.MSGLOBAL MS FWD DYNAMIC

MS RING 2 NEIGH. 3 SNI MS RINGDYNAMIC3SNI MS FWD 2 NEIGH, 3 SNI MS FWD DYNAMIC 3 SNIMSGLOBAL3SNI

MS RING 2 NEIGH. 3 SNL MS RING D Y N A M O  SNL MS FWD 2 NEIGH. 3 SNLMS GLOBAL 3 SNL MS FWD DYNAMIC 3 SNL

-*• 3.20E+01

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.88. C o n v e rg e n c e  c u rv e s  of the  m e a n  b e s t  conflict for th e  30D Rastrigin function, a s s o c i a t e d  to T ab le  7 .54. T h e
c o lo u r -c o d e s  u s e d  to identify the  ne ig h b o u rh o o d  s t ru c tu res  a r e  the  s a m e  in the  tab le  a n d  figure a s so c ia te d .
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M e a n  B e s t  C o n f l ic t  -  3 0 D  R a s t r i g in  f u n c t i o n

MSGLOBAL MSRING2NEIGH. MS FWD DYNAMIC

MS RING DYNAMIC3 SNI MS FWD 2 NEIGH 3 SNI MS FWD DYNAMIC3 SNIMS GLOBAL 3 SNI MS RING 2 NEIGH 3 SNI

MSGLOBAL 3 SNL MS RING 2 NEIGH. 3 SNL MS RING DYNAMIC 3 SNL MS FWD 2 NEIGH 3 SNL

• • •

1 501  1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7 .89 .  C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  30D Rastrigin function, a s s o c i a t e d  to T ab le  7.54. T h e  
c o lo u r -c o d e s  u se d  to identify the  n e ig h b o u rh o o d  s t ru c tu res  a re  the  s a m e  in the  tab le  a n d  f igure a s so c ia te d .

M e a n  B e s t  C o n f l i c t  -  3 0 D  R a s t r i g in  f u n c t i o n

MS RING DYNAMIC MS FWD 2 NEIGH. MS FWD DYNAMIC

MS RING 2 NEIGH 3SNI MS FWD 2 NEIGH. 3SNI

MS FWD 2 NEIGH. 3 SNL MS FWD D Y N A M O  SNL

Tim e-steps

Fig. 7 .90. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  30D Rastrigin function, a s s o c i a t e d  to T ab le  7.54. T h e
c o lo u r -c o d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ru c tu res  a re  th e  s a m e  in the  tab le  an d  figure a s s o c ia te d .
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T ab le  7.55 .  Statistical re su l t s  ou t  of 25  runs  for a  Multi-Swarm algorithm with th ree  s u b -n e ig h b o u rh o o d s  (o n e  p e r  
su b - s w a rm )  optimizing th e  2 -d im ensiona l  G riew ank  function. T h e  s u b -n e ig h b o u rh o o d s  te s te d  a r e  th e  GLOBAL, th e  
RING, a n d  th e  FO W A R D  s t ru c tu r e s  with 2 n e ig h b o u rs  a n d  with linearly increas ing  n u m b e r  of n e ig h b o u r s  (from 2 to 
‘sw a rm -s iz e  -  T). Two ty p e s  of in te rconnec t ions  b e tw e e n  s u b -n e ig h b o u rh o o d s  a re  te s te d ,  th e  ‘individual’ an d  the  
l o c a l ’ over lapp ing .  T h e  resu l ts  for th e  c a s e  without s u b - n e ig h b o u rh o o d s  a r e  imported  from prev ious  se c t io n s  for 
r e fe re n c e  an d  c o m p a r i so n  p u rp o se s .  A run with an  erro r  no  g r e a te r  than  0 .0001 is r e g a rd e d  a s  su c cess fu l .

OPTIMIZER NEIGHBOURHOOD Time-steps
n . V

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 6.56E-12 100
U L U D M L

1000 O.OOE+OO O.OOE+OO 5.95E-16 1.49E-14 8.92E-04 -

CNIICe

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 2.51 E-04 100

RING
1000 O.OOE+OO O.OOE+OO 2.39E-05 5.88E-04 2.05E-03 -

Multi-Swarm nni = 2 10000 0.00E+00 0.00E+00 O.OOE+OO O.OOE+OO 6.74E-12 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.59E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.67E-04 100

FWD
1000 O.OOE+OO O.OOE+OO 4.02E-08 8.51E-07 1.92E-03 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.88E-12 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.53E-03 -

10000 O.OOE+OO O.OOE+OO 2.96E-04 7.40E-03 6.52E-12 96
U L U D M L

1000 O.OOE+OO O.OOE+OO 4.49E-04 7.40E-03 1.36E-03 -

CMIICc 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 5.52E-05 100

RING
1000 O.OOE+OO O.OOE+OO 5.86E-07 1.46E-05 1.83E-03 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 6.92E-12 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 4.18E-09 1.05E-07 1.70E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 4.44E-05 100

FWD
1000 O.OOE+OO O.OOE+OO 1.14E-14 2.71E-13 1.80E-03 -

nni =  2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 7.10E-12 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 5.81E-11 1.10E-09 1.71 E-03 -

10000 O.OOE+OO O.OOE+OO 2.96E-04 7.40E-03 6.17E-12 96
U L U D M L

1000 O.OOE+OO O.OOE+OO 2.96E-04 7.40E-03 1.20E-03 -

CNIICc 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 6.13E-05 100

RING
1000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.94E-03 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 7.15E-12 100
nnf =  (m-1) 1000 O.OOE+OO O.OOE+OO 2.91E-08 7.27E-07 1.78E-03 -

nn =  2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 5.05E-05 100

FWD
1 0 0 0 O.OOE+OO O.OOE+OO 3.45E-08 7.30E-07 1.81 E-03 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 7.37E-12 100
nnf = (m-1) 1000 O.OOE+OO O.OOE+OO 4.15E-09 1.04E-07 1.72E-03 -
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T ab le  7.56. Statistical resu l ts  ou t  of 25 ru n s  for a  Multi-Swarm algorithm with th ree  s u b -n e ig h b o u rh o o d s  (one  p e r  
su b -sw a rm )  optimizing the  10-d im ensiona l  G riew ank  function. T h e  su b -n e ig h b o u rh o o d s  te s te d  a r e  th e  GLOBAL, the  
RING, and  the  FO W A R D  s t ru c tu re s  with 2 n e ig h b o u rs  an d  with linearly increas ing  n u m b e r  of n e ig h b o u r s  (from 2 to 
‘sw a rm -s iz e  -  T). Two ty p e s  of in te rconnec t ions  b e tw e e n  su b -n e ig h b o u rh o o d s  a r e  tes ted ,  th e  ‘individual’ a n d  the  
‘local’ over lapping.  T h e  resu l ts  for the  c a s e  without su b -n e ig h b o u rh o o d s  a r e  imported from p rev ious  se c t io n s  for 
r e fe re n c e  a n d  co m p a r iso n  p u rp o se s .  A run with an  error  no  g r e a te r  than  0 .0001 is r e g a rd e d  a s  su c c e ss fu l .

OPTIMIZER NEIGHBOURHOOD Time-steps
m m

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 1.48E-02 6.64E-02 6.64E-02 1.38E-01 1.48E-05 0
ULUDML

1000 2.95E-02 7.13E-02 7.85E-02 1.85E-01 1.40E-04 -

nn = 2
10000 0.00E+00 1.97E-02 2.15E-02 5.90E-02 1.60E-03 8

RING
1000 7.40E-03 2.22E-02 2.71 E-02 5.90E-02 1.75E-03 -

Multi-Swarm nni = 2 10000 0.00E+00 2.46E-02 2.77E-02 6.89E-02 1.47E-03 8
nnf = (m-1) 1000 0.00E+00 3.45E-02 3.59E-02 7.38E-02 1.74E-03 -

nn = 2
10000 4.64E-05 3.60E-02 3.64E-02 9.76E-02 1.30E-03 4

FWD
1000 2.16E-02 6.01 E-02 6.36E-02 1.49E-01 1.53E-03 -

nni = 2 10000 O.OOE+OO 1.72E-02 2.33E-02 5.90E-02 1.08E-03 12
nnf = (m-1) 1000 7.94E-03 5.59E-02 6.33E-02 1.25E-01 1.73E-03 -

10000 7.40E-03 4.92E-02 4.83E-02 1.23E-01 7.45E-04 0
UL.UDHL

1000 9.86E-03 5.66E-02 5.90E-02 1.23E-01 9.86E-04 -

nn = 2
10000 0.00E+00 3.20E-02 2.98E-02 7.63E-02 1.66E-03 12

RING
1000 7.40E-03 3.69E-02 3.80E-02 7.87E-02 1.84E-03 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 O.OOE+OO 2.46E-02 2.84E-02 7.87E-02 1.54E-03 4
nnf = (m-1) 1000 7.40E-03 3.54E-02 3.90E-02 9.60E-02 1.82E-03 -

nn = 2
10000 7.73E-10 2.72E-02 3.12E-02 1.12E-01 1.28E-03 4

1000 7.43E-03 5.00E-02 6.08E-02 1.30E-01 1.50E-03 -

nni = 2 10000 0.00E+00 1.97E-02 2.59E-02 1.01E-01 1.05E-03 12
nnf = (m-1) 1000 4.03E-03 5.25E-02 5.21 E-02 1.30E-01 1.53E-03 -

10000 1.72E-02 4.43E-02 4.99E-02 9.59E-02 6.21 E-04 0
ULUDML

1000 3.20E-02 5.65E-02 6.13E-02 1.50E-01 9.17E-04 -

nn = 2
10000 O.OOE+OO 2.46E-02 2.40E-02 6.15E-02 1.23E-03 16

RING
1000 3.44E-15 2.46E-02 2.97E-02 7.36E-02 1.43E-03 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 0.00E+00 1.97E-02 2.38E-02 8.12E-02 1.13E-03 20
nnf = (m-1) 1000 7.77E-16 2.46E-02 3.04E-02 8.12E-02 1.39E-03 -

CMIICc 10000 1.78E-04 2.56E-02 2.78E-02 6.54E-02 1.34E-03 0

FWD
1000 1.91E-02 6.20E-02 5.89E-02 9.95E-02 1.69E-03 -

nni = 2 10000 O.OOE+OO 1.97E-02 1.80E-02 5.20E-02 9.81 E-04 20
nnf = (m-1) 1000 2.30E-02 6.02E-02 6.21 E-02 1.57E-01 1.61 E-03 -
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T ab le  7.57 .  Statistical resu l ts  o u t  of 25  runs  for a  Multi-Swarm algorithm with th re e  su b -n e ig h b o u rh o o d s  (o n e  per  
su b - s w a rm )  optimizing the  3 0 -d im e ns iona l  G riew ank  function. T h e  su b -n e ig h b o u rh o o d s  te s te d  a r e  the  GLOBAL, the 
RING, a n d  the  FO W A R D  s t ru c tu re s  with 2 n e ig h b o u rs  a n d  with linearly increas ing  n u m b e r  of n e ig h b o u rs  (from 2 to 
‘sw a rm -s iz e  -  T). Two ty p e s  of in te rconnec t ions  b e tw e e n  s u b -n e ig h b o u rh o o d s  a r e  t e s te d ,  th e  ‘individual’ a n d  the  
lo ca l '  over lapp ing .  T h e  resu l ts  for the  c a s e  without su b -n e ig h b o u rh o o d s  a re  imported  from prev ious  se c t io n s  for 
r e fe re n c e  a n d  c o m p a r i so n  p u rp o se s .  A run with an  error  no  g r e a te r  than  0.0001 is r e g a rd e d  a s  su c cess fu l .

OPTIMIZER NEIGHBOURHOOD Time-steps
i § g g g i M i

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

. . . . 10000 0.00E+00 4.67E-02 5.18E-02 1.41E-01 2.42E-12 4
U L U D M L

1000 6.66E-16 4.67E-02 5.18E-02 1.41E-01 4.06E-08 -

nn = 2
10000 0.00E+00 0.00E+00 2.17E-03 1.23E-02 1.10E-06 76

RING
1000 6.02E-08 7.40E-03 6.97E-03 3.92E-02 3.08E-05 -

Multi-Swarm nni = 2 10000 0.00E+00 0.00E+00 6.39E-03 3.92E-02 4.12E-12 64
nnf = (m-1) 1000 9.47E-11 7.40E-03 9.54E-03 3.92E-02 1.26E-05 ;

nn = 2
10000 0.00E+00 O.OOE+OO 3.07E-04 7.40E-03 2.58E-06 92

FWD
1000 6.00E-03 4.20E-02 5.62E-02 2.12E-01 1.19E-04 -

nni = 2 10000 O.OOE+OO O.OOE+OO 2.07E-03 2.71 E-02 3.36E-12 84
nnf = (m-1) 1000 9.39E-06 1.49E-03 7.82E-03 3.60E-02 2.34E-05 -

10000 0.00E+00 9.86E-03 1.37E-02 4.92E-02 5.43E-07 28
U L U D M L

1000 4.00E-15 9.86E-03 1.44E-02 4.92E-02 1.06E-06 -

nn = 2
10000 0.00E+00 4.44E-16 9.04E-03 4.17E-02 5.37E-07 52

RING
1000 4.78E-09 7.40E-03 9.93E-03 4.17E-02 1.41E-05 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 O.OOE+OO 7.40E-03 1.01E-02 4.17E-02 4.12E-12 44
nnf = (m-1) 1000 2.22E-10 7.40E-03 1.07E-02 4.17E-02 9.69E-06 -

nn = 2
10000 0.00E+00 0.00E+00 7.77E-03 5.65E-02 1.31E-09 56

FWD
1000 1.46E-09 1.23E-02 1.79E-02 7.09E-02 1.38E-05 -

nni = 2 10000 O.OOE+OO 7.40E-03 1.13E-02 6.34E-02 3.60E-12 48
nnf = (m-1) 1000 1.75E-10 1.23E-02 1.53E-02 6.82E-02 8.68E-06 -

10000 0.00E+00 1.72E-02 3.40E-02 2.12E-01 3.03E-12 24
U L U D M L

1000 4.44E-16 1.72E-02 3.62E-02 2.12E-01 2.84E-07 -

nn = 2
10000 0.00E+00 7.40E-03 1.13E-02 5.66E-02 8.88E-07 40

RING
1000 1.17E-09 9.86E-03 1.58E-02 6.40E-02 2.00E-05 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 O.OOE+OO 9.86E-03 1.26E-02 5.66E-02 5.95E-08 28
nnf = (m-1) 1000 8.58E-11 9.87E-03 1.51 E-02 5.66E-02 5.53E-06 -

nn = 2
10000 0.00E+00 0.00E+00 1.04E-02 6.34E-02 3.31 E-08 64

FWD
1000 1.62E-09 7.14E-05 1.40E-02 6.34E-02 1.78E-05 -

nni = 2 10000 O.OOE+OO 7.40E-03 1.43E-02 6.34E-02 3.93E-12 48
nnf = (m-1) 1000 1.23E-10 7.40E-03 1.43E-02 6.34E-02 9.04E-07 -
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Mean Best Conflict -  2D Griewankfunction

MS RING 2 NEIGH. -MSRINGDYNAMIC

MS RING DYNAMIC 3 SNI MS FW D2NEIGH.3SNIMSGL0BAL3SNI MS RING 2 NEIGH. 3SNI

MSRINGDYNAMIC3SNL MS FWD 2 N EIG H 3 SNLMSGL0BAL3SNL

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.91. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  2D Griew ank  function, a s s o c i a t e d  to T ab le  7.55. T he  
c o lo u r -c o d e s  u s e d  to identify th e  n e ig h b o u rh o o d  s t ru c tu re s  a re  th e  s a m e  in th e  tab le  an d  figure a s s o c ia te d .

4.00E-02

3.00E-02

=  MS GLOBAL « = =  MS RING 2 NEIGH. =  MS RING DYNAMIC < =  MS FWD 2 NEIGH <■ MS FWD DYNAMIC

------- ---- MS GLOBAL 3 SNI -----------  MS RING 2 NEIGH 3 SNI —  — — MS RING DYNAMIC 3 SNI -  -  -  MS FWD 2 NEIGH 3 SNI ----------- MS FWD DYNAMIC3SNI

...............MS RING 2 N EIG H 3 SNL

Mean Best Conflict -  10D Griewankfunction

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7.92. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for th e  10D Griew ank  function, a s s o c i a t e d  to T ab le  7.56. T h e
c o lo u r -c o d e s  u s e d  to identify th e  n e ig h b o u rh o o d  s t ru c tu re s  a r e  the  s a m e  in the  tab le  and  figure a s s o c ia te d .

454



- v r  ouauici / viv

C*EC N E IG H B O U R H O O D S  s . » „ s ^ , e r s « y
P rifysgo l A b e r ta w e

Mean Best Conflict -  10D Griewank function

'MS FWD 2 NEIGH. 'M S FWD DYNAMICMSRING2NEIGH. MSRINGDYNAMIC

MS FWD 2 NEIGH. 3 SNI MS FWD DYNAMIC 3 SNIMS RING2NEIGH.3SNI MS RING DYNAMIC 3 SNIMSGL0BAL3SNI

MS RING 2 NEIGH. 3 SNL MS RING DYNAMIC 3SNL MS FWD 2 NEIGH.3 SNL MS FWD DYNAMIC 3 SNLMS GLOBAL 3 SNL

1 501 1001 1501 2001 2501 B001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7.93. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  10D Griew ank  function, a s s o c i a t e d  to T ab le  7.56. T h e  
c o lo u r -c o d e s  u s e d  to identify th e  n e ig h b o u rh o o d  s t ru c tu res  a re  the  s a m e  in the  tab le  a n d  figure a s so c ia te d .

Mean Best Conflict -  30D Griewank function

MS GLOBAL ^ = »  MS RING 2 NEIGH =  MS RING DYNAMIC =  MS FWD 2N EIGH  = =  MS FWD DYNAMIC

 MS GLOBAL 3 SNI —  MS RING 2 NEIGH. 3 S N I  MS RING DYNAMIC3 S N I  MS FWD 2 NEIGH, 3 S N I  MS FWD DYNAMIC3SNI

 MS GLOBAL 3 SNL  MS RING 2 NEIGH. 3 SNL  MS RING DYNAMIC3 S N L ................MS FWD 2NEIGH.3SNL  MS FWD 0YNAMIC3SNL

O.OOE+OO

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7.94. C o n v e rg e n c e  c u rv e s  of  the  m e a n  b e s t  conflict for the  30D G riew ank  function, a s s o c i a t e d  to T ab le  7.57. T h e  
c o lo u r -c o d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ru c tu re s  a r e  the  s a m e  in the  tab le  a n d  figure a s so c ia te d .
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Mean Best Conflict -  300 Griewank function

MS FWD DYNAMICMSGLOBAL MS RING 2 NEIGH.

MS FWD DYNAMIC3SNIMS GLOBAL 3 SNI MS FWD 2 NEIGH. 3 SNIMS RING 2 NEIGH 3 SNI

MS FWD DYNAMIC 3 SNLMS FW D 2 NEIGH.3 SNLMS GLOBAL 3 SNL M SR IN G2N EIGH  3SNL

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

T im e-steps

Fig. 7.95. C o n v e rg e n c e  c u rv e s  of the  m e a n  b e s t  conflict for the  30D G riew ank  function, a s s o c ia te d  to T ab le  7.57. T he  
c o lo u r -c o d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ru c tu re s  a r e  the  s a m e  in the  table  a n d  figure a s s o c ia te d .

Mean Best Conflict -  30D Griewank function

MS FWD 2 NEIGH MS FWD DYNAMIC

MS GLOBAL 3 SNI MS FWD 2 NEIGH. 3SNI MS FWD DYNAMIC 3 SNI

MS GLOBAL 3 SNL MS FWD 2 NEIGH. 3 SNLMS RING 2 NEIGH. 3 SNL MS RING DYNAMIC 3SNL

Tim e-steps

Fig. 7.96. C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  30D G riew ank  function, a s s o c ia te d  to T ab le  7 .57 .  The
co lo u r -c o d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ru c tu res  a re  th e  s a m e  in th e  tab le  a n d  figure a s s o c i a t e d .



▼
CJ EC

w i  i a p i t / 1  i

N E IG H B O U R H O O D S S w a n s e a  U n iv e rs ity
P rify sg o l A b e r ta w e

Tab le  7.58 .  Statistical re su l t s  ou t  of 25 runs  for a Multi-Swarm algorithm with th ree  s u b - n e ig h b o u rh o o d s  (one  p e r  
su b - s w a rm )  optimizing th e  2 -d im ensional  Schaf fe r  f6 function. T h e  su b -n e ig h b o u rh o o d s  te s te d  a r e  th e  GLOBAL, th e  
RING, a n d  the  FO W A R D  s t ru c tu r e s  with 2 n e ig h b o u rs  a n d  with linearly increas ing  n u m b e r  of n e ig h b o u rs  (from 2 to 
‘sw a rm - s iz e  -  T). Two ty p e s  of in te rconnec t ions  b e tw e e n  s u b - n e ig h b o u rh o o d s  a r e  te s te d ,  the  ‘individual’ a n d  th e  
‘local’ over lapp ing .  T h e  re su l t s  for the  c a s e  without s u b -n e ig h b o u rh o o d s  a r e  im ported  from prev ious  se c t io n s  for 
r e fe re n c e  a n d  c o m p a r i so n  p u rp o se s .  A run with an  error  no  g r e a te r  than  0 .0001 is r e g a rd e d  a s  su c cess fu l .

OPTIMIZER NEIGHBOURHOOD Time-steps ImM1
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

L 10000 0.00E+00 0.00E+00 2.33E-03 9.72E-03 1.05E-04 76
ULUDML

1000 0.00E-KH) O.OOE+OO 3.11 E-03 9.72E-03 2.58E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 7.13E-04 100

RING
1000 O.OOE+OO O.OOE+OO 7.84E-04 9.72E-03 7.34E-03 -

Multi-Swarm nni = 2 10000 O.OOE+OO 0.00E+00 O.OOE+OO O.OOE+OO 1.36E-11 100
nnf = (m -1) 1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 6.25E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 3.80E-04 100

FWD
1000 O.OOE+OO 5.94E-14 8.08E-04 9.72E-03 6.89E-03 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.13E-11 100
nnf = (m -1) 1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 5.17E-03 -

10000 O.OOE+OO O.OOE+OO 7.77E-04 9.72E-03 1.12E-03 92
ULUDML

1000 O.OOE+OO O.OOE+OO 1.94E-03 9.72E-03 5.80E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.23E-11 100

RING
1000 O.OOE+OO O.OOE+OO 2.01 E-04 4.70E-03 6.79E-03 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.21 E-11 100
nnf = (m -1) 1000 O.OOE+OO O.OOE+OO 2.01 E-04 4.70E-03 6.44E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.56E-10 100

FWD
1000 O.OOE+OO 5.77E-15 7.79E-04 9.72E-03 6.67E-03 -

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.25E-11 100
nnf = (m -1) 1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 5.99E-03 -

10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.31 E-11 100
ULUDML

1000 O.OOE+OO O.OOE+OO 1.25E-03 9.72E-03 4.62E-03 -

nn = 2
10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 2.53E-05 100

RING
1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 6.97E-03 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO 1.29E-11 100
nnf = (m -1) 1000 O.OOE+OO O.OOE+OO 3.89E-04 9.72E-03 6.55E-03 -

CMIICe 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.30E-11 100

FWD
1000 O.OOE+OO O.OOE+OO 7.86E-04 9.72E-03 6.37E-03 -

nni = 2 10000 0.00E+00 O.OOE+OO O.OOE+OO O.OOE+OO 1.31 E-11 100
nnf = (m -1) 1000 O.OOE+OO O.OOE+OO 4.65E-04 9.72E-03 5.98E-03 -
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T ab le  7.59. S tatistical resu l ts  ou t  of 25  ru n s  for a  Multi-Swarm algorithm with th ree  su b -n e ig h b o u rh o o d s  (o n e  per  
su b - s w a rm )  optimizing the  10-d im ensional  S ch a f fe r  f6 function. T h e  su b -n e ig h b o u rh o o d s  te s te d  a r e  th e  GLOBAL, 
th e  RING, a n d  th e  FOW ARD s t ru c tu re s  with 2 n e ig h b o u rs  a n d  with linearly increas ing  n u m b e r  of n e ig h b o u rs  (from 2 
to ‘sw a rm -s iz e  -  T). Two ty p e s  of in te rco n n ec t io n s  b e tw e e n  s u b - n e ig h b o u rh o o d s  a re  tes ted ,  the  ‘individual' a n d  the  
l o c a l ’ over lapp ing .  T h e  resu l ts  for th e  c a s e  without s u b - n e ig h b o u rh o o d s  a r e  imported  from prev ious se c t io n s  for 
r e fe r e n c e  a n d  c o m p ar iso n  p u rp o se s .  A run with an  e rro r  no  g r e a te r  than  0 .0001 is r e g a rd e d  a s  suc c e ss fu l .

OPTIMIZER NEIGHBOURHOOD Time-steps
1̂ 1 1̂1#

STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

10000 9.72E-03 3.72E-02 2.95E-02 3.72E-02 3.18E-04 0
U L U D M L

1000 9.72E-03 3.72E-02 3.06E-02 3.72E-02 6.67E-04 -

nn = 2
10000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 2.03E-03 0

RING
1000 9.72E-03 9.72E-03 1.74E-02 3.72E-02 3.03E-03 -

Multi-Swarm nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.76E-03 0
nnf = (m-1) 1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 1.95E-03 -

nn = 2
10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.70E-03 0

FWD
1000 9.72E-03 9.72E-03 1.41 E-02 3.72E-02 2.41 E-03 -

nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.59E-03 0
nnf = (m-1) 1000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 1.79E-03 -

10000 9.72E-03 9.72E-03 1.52E-02 3.72E-02 1.73E-03 0
U L U D M L

1000 9.72E-03 9.72E-03 1.74E-02 3.72E-02 2.22E-03 -

nn = 2
10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.81 E-03 0

RING
1000 9.72E-03 9.72E-03 1.96E-02 3.72E-02 2.60E-03 -

Multi-Swarm nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.70E-03 0

3 Sub-Neigh. nnf = (m-1) 1000 9.72E-03 9.72E-03 1.30E-02 3.72E-02 2.21 E-03 -
Indiv. Overlap.

nn = 2
10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.69E-03 0

FWD
1000 9.72E-03 9.72E-03 1.30E-02 3.72E-02 2.30E-03 -

nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.82E-03 0
nnf = (m-1) 1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 1.85E-03 -

10000 9.72E-03 9.72E-03 1.30E-02 3.72E-02 1.35E-03 0
U L U D M L

1000 9.72E-03 9.72E-03 1.52E-02 3.72E-02 1.49E-03 -

nn = 2
10000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 1.81 E-03 0

RING
1000 9.72E-03 9.72E-03 1.52E-02 3.72E-02 2.52E-03 -

Multi-Swarm nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.62E-03 0

3 Sub-Neigh. nnf = (m-1) 1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 2.05E-03 -
Local Overlap.

0411ec 10000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 1.74E-03 0

FWD
1000 9.72E-03 9.72E-03 1.08E-02 3.72E-02 2.26E-03 -

nni = 2 10000 9.72E-03 9.72E-03 9.72E-03 9.72E-03 1.80 E-03 0
nnf = (m-1) 1000 9.72E-03 9.72E-03 1.19E-02 3.72E-02 2.13E-03 -
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Tab le  7.60. Statistical resu l ts  ou t  of 25  runs  for a  Multi-Swarm algori thm with th r e e  su b -n e ig h b o u rh o o d s  (o n e  per  
su b - s w a rm )  optimizing th e  30 -d im ens iona l  Schaf fe r  f6 function. T h e  s u b -n e ig h b o u rh o o d s  t e s te d  a r e  th e  GLOBAL, 
th e  RING, an d  the  FO W A R D  s t ru c tu re s  with 2 n e ig h b o u rs  and  with linearly increas ing  n u m b e r  of n e ig h b o u r s  (from 2 
to ‘sw a rm -s iz e  -  T). Two ty p e s  of in te rconnec t ions  b e tw e e n  s u b -n e ig h b o u rh o o d s  a r e  t e s te d ,  the  ‘individual’ a n d  the  
‘local’ over lapp ing .  T h e  results  for the  c a s e  without s u b -n e ig h b o u rh o o d s  a r e  imported  from p rev io u s  se c t io n s  for 
re fe re n c e  a n d  c o m p a r i so n  p u rp o s e s .  A run with an  e rro r  no  g r e a te r  th an  0 .0001 is r e g a rd e d  a s  su c c e ss fu l .

OPTIMIZER NEIGHBOURHOOD Time-steps w m
STRUCTURE BEST MEDIAN MEAN WORST MEAN PB_ME [%] Success

L , , 10000 7.82E-02 1.78E-01 1.86E-01 2.73E-01 2.30 E-04 0
ULUDML

1000 1.27E-01 1.78E-01 1.93E-01 2.73E-01 5.26E-04 -

nn = 2
10000 3.72E-02 7.82E-02 7.45E-02 1.27E-01 1.58E-03 0

RING
1000 1.27E-01 1.78E-01 1.68E-01 2.28E-01 3.42E-03 -

Multi-Swarm nni = 2 10000 3.72E-02 3.72E-02 4.38E-02 7.82E-02 5.48E-04 0
nnf = (m-1) 1000 3.74E-02 1.27E-01 1.08E-01 1.78E-01 1.89E-03 -

CNIICc 10000 3.72E-02 7.82E-02 7.29E-02 1.27E-01 1.70E-03 0

FWD
1000 7.82E-02 1.27E-01 1 44E-01 1.78E-01 2.83E-03 -

nni = 2 10000 3.72E-02 3.72E-02 4.38E-02 7.82E-02 6.55E-04 0
nnf = (m-1) 1000 3.72E-02 7.82E-02 9.05E-02 1.27E-01 1.79E-03 -

10000 7.82E-02 7.82E-02 9.98E-02 1.78E-01 1.21 E-03 0
U L U D M L

1000 7.82E-02 1.27E-01 1.22E-01 1.78E-01 1.56E-03 -

nn = 2
10000 3.72E-02 7.82E-02 6.87E-02 1.27E-01 1.40E-03 0

RING
1000 8.05E-02 1.27E-01 1.50E-01 2.28E-01 2.67E-03 -

Multi-Swarm 
3 Sub-Neigh. 
Indiv. Overlap.

nni = 2 10000 3.72E-02 3.72E-02 4.05E-02 7.82E-02 7.57E-04 0
nnf = (m-1) 1000 7.82E-02 1.27E-01 1.20E-01 1.78E-01 2.31 E-03 -

nn = 2
10000 3.72E-02 7.82E-02 6.54E-02 1.27E-01 1.58E-03 0

FWD
1000 7.82E-02 1.27E-01 1.23E-01 1.78E-01 1.99E-03 -

nni = 2 10000 3.72E-02 3.72E-02 5.52E-02 7.82E-02 7.79E-04 0
nnf = (m-1) 1000 7.82E-02 1.27E-01 1.10E-01 1.27E-01 1.71 E-03 -

10000 3.72E-02 7.82E-02 9.35E-02 1.78E-01 7.73E-04 0
U L U D M L

1000 7.82E-02 1.27E-01 1.11E-01 1.78E-01 1.17E-03 -

nn = 2
10000 3.72E-02 7.82E-02 6.67E-02 7.82E-02 1.25E-03 0

RING
1000 7.84E-02 1.78E-01 1.52E-01 1.78E-01 2.65E-03 -

Multi-Swarm 
3 Sub-Neigh. 
Local Overlap.

nni = 2 10000 3.72E-02 3.72E-02 4.21 E-02 7.82E-02 7.46E-04 0
nnf = (m-1) 1000 7.82E-02 1.27E-01 1.30E-01 1.78E-01 1.68E-03 -

CNIICc 10000 3.72E-02 3.72E-02 5.03E-02 7.82E-02 1.20E-03 0

FWD
1000 7.82E-02 1.27E-01 1.23E-01 1.78E-01 1.99E-03 -

nni = 2 10000 3.72E-02 3.72E-02 5.23E-02 1.27E-01 7.84E-04 0
nnf = (m-1) 1000 7.82E-02 1.27E-01 1.12E-01 1.78E-01 2.07E-03 -
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Mean Best Conflict -  2D Schaffer f5 function

MSGLOBAL MS RING 2 NEIGH MSRINGDYNAMIC MS FWD 2 NEIGH MS FWD DYNAMIC

MSGL0BAL3SNI MS FWD DYNAMIC 3 SNI

MS GLOBAL 3 SNL MS RING 2 NEIGH. 3 SNL MS FWD DYNAMIC3SNL

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 7 .97 .  C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  2D Schaf fe r  f6 function, a s s o c i a t e d  to T ab le  7.58. T h e  
c o lo u r -c o d e s  u se d  to identify the  n e ig h b o u rh o o d  s t ru c tu res  a re  th e  s a m e  in th e  tab le  a n d  figure a s so c ia te d .

Mean Best Conflict -  10D Schaffer f6 function

MSGLOBAL MS FWD 2 NEIGH ■MS FWD DYNAMIC

MS RING 2 NEIGH.3 SNI

MSGLOBAL3SNL MS RING 2 NEIGH.3 SNL MS FWD 2 NEIGH 3 SNL MS FWD DYNAMIC 3 SNL

Time-steps

Fig. 7 .98. C o n v e rg e n c e  c u rv e s  of the  m e a n  b e s t  conflict for the  10D Schaf fe r  f6 function, a s s o c i a t e d  to Tab le  7.59.
T he  c o lo u r -c o d e s  u s e d  to identify the  ne ig h b o u rh o o d  s t ru c tu re s  a r e  the  s a m e  in th e  table  a n d  f igure a s so c ia te d .
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Mean Best Conflict -  10D Schaffer f6 function

MSGLOBAL M SR IN G 2N EIG H MS FWD 2 NEIGH ■MS FWD DYNAMIC

MS GLOBAL 3 SNI MS RING 2 NEIGH 3 SNI MS RING DYNAMIC3SNI MS FWD 2 NEIGH 3 SNI MS FWD DYNAMIC 3 SNI

MS GLOBAL 3 SNL MS RING 2 NEIGH 3 SNL MS RINGDYNAMIC3SNL MS FWD 2 NEIGH. 3 SNL MS FWD DYNAMIC3 SNL

1.15 E-02 ^

^  9.00E-03

1501 2001 2501 3001 3501 4501 5001 5501

Time-steps

6001 6501 7001 7501 8001 8501 9001 9501

Fig. 7 .99 .  C o n v e rg e n c e  c u rv e s  of  the  m e a n  b e s t  conflict for the  10D S chaf fe r  f6 function, a s s o c i a t e d  to T ab le  7.59. 
T h e  c o lo u r -c o d e s  u s e d  to identify the  ne ig h b o u rh o o d  s t ruc tu res  a r e  the  s a m e  in th e  tab le  a n d  figure a s so c ia te d .

Mean Best Conflict -  30D Schaffer f6 function

MSGLOBAL MS RING 2 NEIGH MSRINGDYNAMIC MS FWD 2 NEIGH MS FWD DYNAMIC

MS RING 2 NEIGH 3SNI MS RING DYNAMIC 3 SNI M SFW DDYNAMIC3SNI

MS GLOBAL3 SNL MS RING 2 NEIGH 3 SNL MS RING DYNAMIC 3 SNL MS FWD 2 NEIGH 3 SNL M SFWDDYNAMIC3SNL

1 501 1001 1501 2001  2501  3001 3501 4001 4501 5001 5501 5001 6501 7001 7501  8001 8501 9001 9501

Tim e-steps

Fig. 7 .100 .  C o n v e rg e n c e  c u rv e s  of the  m e a n  b e s t  conflict for the  30D S chaf fe r  f6 function, a s s o c i a t e d  to T ab le  7.60.
T h e  c o lo u r -c o d e s  u s e d  to identify the  n e ig h b o u rh o o d  s t ruc tu res  a r e  the  s a m e  in the  tab le  a n d  figure a s s o c ia te d .
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Mean Best Conflict -  30D Schaffer f6 function

« -  » MS GLOBAL = >  MS RING 2 NEIGH =  MS RING DYNAMIC =  MS FWD 2 NEIGH =  MS FWD DYNAMIC

- - -  MS GLOBAL 3 SNI  MS RING 2 NEIGH. 3 SNI - - -  MS R IN G D Y N A M IC 3 S N I MS FWD 2 NEIGH. 3 SNI - - -  MS FWD DYNAMIC3SNI

 MS GLOBAL 3 SNL  MS RING 2 NEIGH. 3SNL .MS RING DYNAMIC3 S N L  MS FWD 2 NEIGH, 3 SNL  MS FWD DYNAMIC3 SNL

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Time-steps

Fig. 7 .101 .  C o n v e rg e n c e  c u rv e s  of th e  m e a n  b e s t  conflict for the  30D S chaf fe r  f6 function, a s s o c i a t e d  to Tab le  7.60. 
T h e  c o lo u r -c o d e s  u s e d  to identify th e  ne ig h b o u rh o o d  s t ruc tu res  a r e  the s a m e  in the  tab le  a n d  figure a s so c ia te d .

Discussion

The settings o f the experiments are the same as those described in the previous chapter 

(see section 6.3.2.2.) unless specifically stated otherwise.

Sphere

In the 2D problem, all the algorithms find the exact solution in every run, with or with

out sub-neighbourhoods. Hence their effect on the performance cannot be appreciated 

(refer to Table 7.46 and Fig. 7.75).

In the 10D problem, all the algorithms achieve a success rate (SR) of 100%. Only the 

‘MS Fwd (nn=2y does not obtain the exact solution in every run. The use of sub

neighbourhoods resolves this issue (Table 7.47, Fig. 7.76).

In the 30D problem, all the algorithms achieve a success rate (SR) of 100%. No notice

able effect of the sub-neighbourhoods can be appreciated here (Table 7.48, Fig. 7.78).
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Rosenbrock

In the 2D problem, all the algorithms find the exact solution in every run, already meet-
tliing the success criterion by the 1,000 time-step (see Table 7.49 and Fig. 7.79).

In the 10D problem, the implementation o f the SNI and SNL techniques are highly 

beneficial. For the SNI, all success rates (SRs) increase, and all median and mean values 

are improved for the five topologies tested. For the SNL, the performance o f both for

ward and the global topologies improve, while the performance o f the ‘Ring (w«=2)’ 

topology remains more or less the same. The SNL technique appears detrimental for the 

‘Ring Dynamic’ topology. The best performances are exhibited by the ‘Ring Dynamic 3 

SNI’, the ‘Ring Dynamic’, and the ‘Ring (nn=2) 3 SNI’. The ‘Global 3 SNI’ also exhib

its good performance. The experimental results and curves o f convergence can be found 

in Table 7.50, Fig. 7.80, and Fig. 7.81.

In the 30D problem, the sub-neighbourhoods are also beneficial. For the SNI, the ‘Fwd 

Dynamic’ topology maintains more or less the same performance, whereas the other 

four topologies improve theirs. The SNL appears to be slightly detrimental for the ‘Ring 

(nn=2y and for the ‘Fwd Dynamic’ topologies, while beneficial for the other three. The 

best performances are exhibited by the three ‘Fwd Dynamic’, and by the three ‘Ring 

Dynamic’ topologies. Refer to Table 7.51; and to Fig. 7.82 to Fig. 7.84.

Rastrigin

In the 2D problem, all algorithms find the exact solution by the end of the search. And 

only the ‘Ring (nn=2y does not meet the success criterion by the 1,000th time-step (see 

Table 7.52). Notice that both the SNI and the SNL resolve this minor issue.

In the 10D problem, the SNI is also beneficial, improving the performances o f the ‘MS 

Global’, the ‘MS Ring (nn=2)’, and the ‘MS Fwd (nn=2)’. The performance o f the ‘MS 

Fwd Dynamic’ is virtually the same with and without SNI, while the ‘MS Ring Dy

namic’ shows some minor deterioration in its performance. The SNL improves the per

formances of the ‘MS Global’ and of the ‘MS Ring (nn=2)’, while it deteriorates those 

o f the ‘Fwd Dynamic’ and o f the ‘Ring Dynamic’. The performance o f the ‘MS Fwd 

(nn=2y remains virtually unchanged. The best results are obtained by the ‘MS Fwd Dy
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namic’, followed by the ‘MS Fwd Dynamic 3 SNI’ and by the ‘MS Fwd Dynamic 3 

SNL’. Refer to Table 7.53 and to Fig. 7.87 for the experimental results.

In the 30D problem, both the SNI and SNL lead to improvement in every topology ex

cept for the ‘Fwd Dynamic’. There is a minor deterioration in the performance of the 

‘MS Fwd Dynamic’ if  the SNI or SNL are implemented. Nonetheless, the ‘MS Fwd 

Dynamic’, the ‘MS Fwd Dynamic 3 SNL’ and the ‘MS Fwd Dynamic 3 SNI’ are still 

the three best performers by a large margin (see Table 7.54; and Fig. 7.88 to Fig. 7.90).

Griewank

In the 2D problem, all algorithms find the exact solution in every run, except for the 

‘MS Global 3 SNI’ and the ‘MS Global 3 SNL’, which fail in 1 out o f 25 runs (refer to 

Table 7.55 and to Fig. 7.91).

In the 10D problem, both the SNI and SNL lead to improvement in the performance of 

the ‘MS Global’ and o f the ‘MS Fwd (nn=2)’. The SNL also improves considerably the 

performance o f the ‘MS Fwd Dynamic’ and o f the ‘MS Ring Dynamic’, whereas the 

SNI deteriorates them. Thus, the SNL remarkably improve performance o f the dynamic 

neighbourhoods for this problem. For visualization of the results, refer to Table 7.56, 

Fig. 7.92, and to Fig. 7.93.

In the 30D problem, the SNI and SNL techniques appear to be detrimental, as every to

pology decreases its performance except for the global ones (refer to Table 7.57, and 

Fig. 7.94 and Fig. 7.95).

Schaffer f 6

In the 2D problem, all algorithms find the exact solution in every run, except for the 

‘MS Global’ and the ‘MS Global 3 SNI’ (see Table 7.58 and Fig. 7.97). The implemen

tation o f the sub-neighbourhood strategies helps resolve this premature convergence.

In the 10D problem, the implementation o f the SNI improves the performance o f the 

‘Global’ and o f the ‘Ring (««=2)’ topologies (see Table 7.59). The performances of the 

remaining topologies stay the same. In turn, the SNL improves the performances o f the 

‘Global’ topology, marginally deteriorates the performance o f the ‘Fwd (««=2)’ topol

ogy, while the performances of the other topologies remain the same.
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In the 30D problem, the implementation o f either the SNI or the SNL is beneficial for 

all topologies except for the ‘Fwd Dynamic’ whose performance is slightly deteriorated.

Overall analyses

Although a global topology is hardly ever chosen, it might still be convenient when fast 

convergence is desired. The SNI and SNL techniques improve the performance o f the 

global topology in every problem and dimensionality tested. As to the other topologies, 

it appears that the convenience or not o f applying the techniques is problem-dependent. 

It seems that they are highly beneficial in unimodal and moderately multimodal prob

lems (e.g. Sphere and Rosenbrock functions), while detrimental in noisy problems such 

as the 30-dimensional Griewank1. While they seem to be, in general, beneficial for the 

forward topology with two neighbours, the techniques seem to be detrimental for the 

robust forward dynamic topology in highly multimodal problems (e.g. Rastrigin, 

Schaffer f6 , low-dimensional Griewank). A first glance at the results obtained seems to 

suggest that the most robust performers on this small test suite are the ‘Fwd Dynamic’ 

and the ‘Fwd Dynamic 3 SNI’ topologies.

It is important to note that the optimizer allows breaking and reconnecting the links be

tween different sub-neighbourhoods very easily. Therefore this sets the ground for first 

approaches on multi-solution PSO, as well as the use o f multi-solutions to improve re

luctance to sub-optimal attractors.

A dynamic neighbourhood was proposed, consisting of linearly increasing the number 

o f neighbours o f a local ring topology as the search progresses, until the topology be

comes global. The combined effect o f different neighbourhood topologies and coeffi

cients’ settings was observed through numerical testing on a benchmark suite o f side- 

constrained problems, showing that the use of the proposed dynamic topology together 

with different, complementary coefficients’ settings within the swarm result in a more 

robust, general-purpose optimizer.

1 Note that the Griewank function is highly multimodal in low dimensions, while it becomes more like a 
Sphere function with noise as dimensionality is increased.

7.6. Closure
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A so-called ‘forward topology’ was proposed and tested on the same benchmark suite o f  

problems. The combination o f this topology with a linearly time-increasing number of  

neighbours, and a multi-swarm approach using complementary coefficients’ settings 

appear to comprise a robust optimizer. Experimental results are promising.

An additional neighbourhood-related heuristics, namely the ‘nearest neighbour’ tech

nique, was proposed and tested, aiming to consider actual distances in the physical 

space in the formation of neighbourhoods while still keeping the full overlapping of the 

social network. That is to say, guaranteeing that any particle has direct or indirect access 

to the information acquired by any other particle in the swarm at any stage o f the search. 

The experimental results are inconclusive with regards to its use in mathematical opti

mization. The technique may be especially useful for applications like swarm robotics, 

where the actual distance travelled by the particles matter.

Finally, the possibility o f splitting the neighbourhood in sub-neighbourhoods is investi

gated, together with two different ways of exchanging information between sub

neighbourhoods. The original aim was to keep the different coefficients o f a multi

swarm approach associated with relatively independent sub-swarms o f particles. How

ever the approach can also be applied to sub-neighbourhoods where particles share the 

same coefficients’ settings. Besides, it can be easily adapted for multi-solution search.

It is well-known and widely accepted that the optimal neighbourhood topology is prob

lem-dependent. However, the extensive testing on the forward dynamic topology -with 

and without sub-neighbourhoods- shows promising results for a general-purpose opti

mizer. Recall that ‘general-purpose’ here means that it would perform reasonably well 

on a wide range of problems presenting different difficulties, and not that it would out

perform all other optimizers in all problems (see comments on the ‘No Free Lunch 

Theorem’ in Chapter 2).
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Chapter 8

CONSTRAINT-HANDLING

The constrained optimization problem is conveniently posed to be handled by a Particle Swarm Optimizer, 
and two constraint-handling techniques are described: the ‘Preserving Feasibility with Priority Rules’, and 
the ‘Penalization Method’. A pseudo adaptive scheme to deal with constraints is proposed, and later cou
pled with the two constraint-handling techniques described. The two resulting pseudo adaptive constraint- 
handling methods are tested on a traditional benchmark suite composed of 13 constrained optimization 
problems. Finally, some well-known engineering problems are solved by the proposed approach.

The PSO method is inherently suitable for unconstrained problems. Therefore some ex

ternal mechanism needs to be incorporated to deal with constraints. Thus, the con

strained optimization problem is conveniently formulated so that it can be tackled by a 

Particle Swarm Optimizer. Two constraint-handling techniques, namely the ‘Preserving 

Feasibility with Priority Rules (PFPR)’ and the ‘Penalization Method (PM)’, are briefly 

introduced. The proposed ‘pseudo adaptive scheme’ is described in details, and later 

coupled with the PFPR. The resulting ‘Pseudo Adaptive PFPR’ is tested on a classical 

benchmark suite o f 13 constrained optimization problems, whose formulations can be 

found in appendix II. The same pseudo adaptive scheme is viewed as a means o f intro

ducing adaptiveness to the penalization method (PM) without making the penalization 

coefficients adaptive. Hence a simple static PM is coupled with the pseudo adaptive 

scheme, and the resulting ‘Pseudo Adaptive PM’ is tested on the same suite o f 13 con

strained problems as the PFPR. Finally, a number o f classical, well-known engineering 

problems are tackled using the proposed optimizer.

8.2. Constrained optimization

Since the PSO method cannot handle equality constraints directly, each o f them must be 

turned into a pair o f inequality constraints, while some tolerance for their violations

8.1. Introduction
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must be set. In order to be tackled by a PSO algorithm, the optimization problem is 

conveniently formulated as shown in Eq. (8.1):

Minimize / ( x )

g  j (x) -  Tolfr ; j  =.1.......q
i’Q 1 \

subject to « abs(gy (x>)< Toleq ; j  = q + 1, ... ,q + r

max(0 , xt -  m, ) + max^j-x,. +/,.)< 0  ; / = 1,..., n

where:

g j  (x) : f h constraint function.

T°lineq : Tolerance for inequality constraint violations. Typically, Tolineq = 0.

Toleq ; Tolerance for equality constraint violations.

q , r, : Number o f inequality and o f equality constraints, respectively.
thUj, lj : Upper and lower bound o f the variables in i Dimension.

Hence there are three types of constraints: inequality, equality, and interval constraints 

(also side or boundary constraints), where the latter are a special case o f inequality con

straints. The amount o f constraint violations (cv) is calculated as shown in Eq. (8.2):

cv = Y , max(o,g . (x))+ £ abs(gy.(x))+ ^ [m ax(0 , xt - u i) + max(0 ,-x t. + /.)] (8 .2 )
j= \ j= q + \ i= l

Thus, the constrained single-objective problem is in fact a multi-objective (MO) uncon

strained problem. At the very least, there are two objectives: minimization o f the objec

tive function, and minimization of the constraint violations (cv). However, cv is already 

an aggregation o f objectives, since the minimization of the violation o f each constraint 

is one objective in itself.

8.3. Constraint-Handling Techniques

There are numerous constraint-handling techniques (CHTs) in the literature, according 

to the way the objective function and the constraints are handled (refer to chapter 4, sec

468



c 2 e c CO N STRA IN T-H A N D LIN G Swansea University 
Prifysgol Abertawe

tion 4.4.8). Only the so-called ‘Preserving Feasibility with Priority Rules (PFPR)’ tech

nique and the ‘Penalization Method (PM)’ are briefly discussed hereafter.

Similar CHTs and some others (e.g. involving levels o f comparison, or MO-based tech

niques) can be found in the literature. Refer, for instance, to (Coello Coello, 1999), 

(Coello Coello, 2000), (Hu & Eberhart, 2002), (Farmani & Wright, 2003), (Xie, Zhang, 

& Bi, 2004), (Takahama & Sakai, 2005), (de Freitas Vaz & da Gra9 a Pinto Fernandes, 

2006), (Takahama, Sakai, & Iwane, 2006), (Fuentes Cabrera & Coello Coello, 2007), 

(Helwig & Wanka, 2007), (Innocente & Sienz, 2008), and (Venter & Haftka, 2008).

8.3.1. Preserving Feasibility with Priority Rules

Hu and Eberhart (2002), (2003) proposed the so-called ‘preserving feasibility’ (PF) 

technique, which consisted of simply ignoring infeasible particles. Thus the PSO algo

rithm remains the same, with the addition o f feasibility as a condition for a potential so

lution to be stored in the particles’ memories. The other difference is that such a CHT 

requires the (random) initialization o f a feasible swarm to start the search, which hap

pens to spend considerable resources for highly constrained problems.

Hence the Preserving Feasibility with Priority Rules (PFPR) is proposed here, which 

consists o f the original PF technique proposed by Hu & Eberhart (2002) with the incor

poration o f priority rules (PR) in the comparisons. Thus, priority is given to:

•  the lower conflict value between feasible solutions;

•  the lower constraint violation (cv) between infeasible solutions;

• the feasibility between a feasible solution and an infeasible one;

•  the lower conflict value if  the constraint violations (cv) are the same when two in

feasible solutions are compared.

The concept is similar to solving a bi-objective unconstrained problem, where the objec

tives are the minimization of the objective function and o f the constraint violations, and 

full priority is given to the compliance of the second objective (hence the name PFPR).

This method allows avoiding the evaluation of the objective function for most infeasible 

particles. The exception is when two infeasible particles with the same cv are compared.
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This CHT is popular in the literature under different names, with few or no modifica

tions. For instance, refer to (Toscano Pulido & Coello Coello, 2004); (Takahama & 

Sakai, 2005); (Takahama & Sakai, 2006b); and (He & Wang, 2007); to name a few.

One of the most popular CHTs in Evolutionary Computation (EC) is the penalization 

method (PM) introduced in chapter 4, whose main drawback is the need to find suitable 

penalization coefficients. Performance is very sensitive to these coefficients, whose op

timum settings are problem-dependent.

Penalization methods can be viewed as optimizing two objectives: minimizing the ob

jective function /  (x) and minimizing the constraint violations cv (x), where the second 

objective is already an aggregation o f objectives. These methods combine all the objec

tives into a single scalar function to be optimized, thus turning the constrained problem 

into an unconstrained one where the relative priority awarded to the different objectives 

is somewhat weighed. The main concept is that this new function must coincide with 

the original one when every constraint is satisfied. Hence the objective function is pe

nalized for infeasible solutions only. Different kinds of penalization methods can be 

found in the literature according to the way the penalization is calculated.

The advantage is that they use both objective and constraint functions information 

within the infeasible space to smoothly guide the search towards more promising areas. 

The drawback is that they are sensitive to the tuning o f at least a couple o f problem- 

dependent penalization coefficients. High penalizations might lead to infeasible regions 

not being explored converging to non-optimal but feasible solutions, whereas low pe

nalizations might lead to the system evolving solutions that are violating constraints but 

present themselves as better than feasible solutions. However, research on adaptive co

efficients is extensive in the literature (e.g. (Parsopoulos & Vrahatis, 2002), (Coello 

Coello, 2000)). A classical penalization scheme is shown in Equations (8.3) and (8.4):

8.3.2. Penalization Method

(8.3)
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max 1 < j  < q 

q <  j  <m
(8.4)

where / (x) is the conflict function; /  (x) is the penalized conflict function; / .  (x) is

These coefficients may be constant, dynamic or adaptive, and they can be the same or 

different for different constraints. Typically, kj is set to high and dj to small values. It is 

not recommendable to use different penalization coefficients for different constraints 

because that makes the coefficients’ tuning more difficult for every problem. An alter

native to account for the different sensitivity of the penalized objective function to the 

different constraint violations which may be o f different orders o f magnitude consists o f  

normalizing the constraint violations. Even further, the original conflict function may 

also be normalized so that the latter and the overall measure o f constraint violations are 

of the same order o f magnitude. These normalizations are not dealt with in this thesis.

The optimization problem to be dealt with by a PSO algorithm is formulated as shown 

in Eq. (8.1). Although the tolerance for inequality constraint violations is typically set to 

zero, it is set to the variable Tolineq here, both for generality and to allow its relaxation.

The pseudo adaptive scheme proposed comprises two main parts: 1) a self-tuned initial 

relaxation o f the tolerances for inequality and equality constraint violations; and 2 ) 

some means to progressively decrease the tolerance as the search progresses to meet a 

final desired value.

8.4.1. Self-tuned initial relaxation

The use o f tolerances for equality constraint violations is o f common practice in popula

tion-based methods. It is also not uncommon to relax such tolerances to an arbitrary ini

tial value, where the decrease o f such relaxations is typically deterministic. The aim of 

these relaxations is to temporarily increase the feasible region o f the search-space.

aL

the amount o f violation o f j  constraint; and k} and a . are penalization coefficients.

8.4. Pseudo Adaptive Scheme
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However, the impact o f a given relaxation on the feasibility ratio (FR) o f the search- 

space is problem-dependent, and can vary greatly. For instance, to obtain a feasibility 

ratio in the range FR e [20%,25%], a tolerance for equality constraint violations of 

around ‘0.26’ is required for problem gl 1 (see formulation in digital appendix II). In

stead, a tolerance o f around ‘6.63’ is required for problem gl3 , both problems involving 

equality constraints only.

In addition, since there are problems involving only inequality constraints that present 

very small FRs, the same concept can be applied. That is, the tolerance for inequality 

constraint violations can also be dynamically relaxed. For instance, the tolerance re

quired for problem glO to present a FR e [20%,25%] is around ‘10.83’ whereas it is 

around ‘2790’ for problem g06 (both involving inequality constraints only).

These examples clearly illustrate how problem-dependent the effect of a given tolerance 

may be. Hence an initial ‘self-tuned tolerance relaxation’ is proposed, aiming for a user- 

defined ‘target FR’. Thus, the self-tuning procedure consists o f starting with a small, 

minimum value for the tolerance, and evaluating the constraint functions o f 1 0 0 0  ran

domly selected solutions1. The FR is evaluated, and the tolerance is adequately in

creased or decreased. For problems involving inequality and equality constraints, the 

tolerance for the violations o f equality constraints are arbitrarily kept 1 0  times greater 

than that o f inequality constraint violations.

The aim is to find a tolerance such that (target FR) < FR < (target FR + <5FR), where the 

‘target FR’ and the ‘<5FR’ are defined by the user. The procedure is as follows:

The tolerances are arbitrarily set as fo/(l,l) = 0.01 for inequality and tol{ 1,2) = 0.1 for 

equality constraints, and the approximate FR is calculated by randomly generating 1000 

solutions.

Set *min =1.10 and kmm =10.

If FR < target FR, the tolerances are increased k times within a while loop as shown in 

Eqs. (8.5) and (8 .6 ), until FR > target FR. Therefore k e [l. 1,10], constant within the 

loop. Once the latter is terminated, it may be that FR > target FR + <5FR .

1 O f course this number is arbitrary, and can be adapted as the user sees convenient for available resources.
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k = max(£min,min(kmx, [target FR -FR ])) (8.5)

t o l ( l , j ) i - k -  tol (1, j )  (8.6)

If FR > target FR + <SFR, the tolerances must be decreased. This is performed by storing 

the previous tolerance tol (when FR < target FR) and calculating the difference btol as

shown in Eq. (8.7). The values of &mjn and &max are updated as in Eq. (8.8), where

counter is the number of times that FR > (target FR + <5FR).

Stol = tol — tol (8.7)

k • = km,x = 1 H  ------- (8 .8 )min max .  ^ J
1 0  • counter

The new tolerance to be considered is then calculated within a while loop as shown in

Eq. (8.9) until FR < (target FR + <5FR). Note that tol is outside this while loop.

Stol <— 0.90 • Stol
—  (8.9)

tol = tol + Stol

After the while loop in Eq. (8.9) is terminated, it may happen that FR < target FR, in 

which case the tolerance must be increased again as in Eq. (8 .6 ), but now k has been re

duced as in Eq. (8 .8 ).

Note that the cost of this self-tuning procedure counts in constraint function evaluations 

(CEs), involving no objective function evaluation (FE).

Although it is unusual to relax inequality constraints, there are highly constrained prob

lems with inequality constraints only, which present a very low FR. In addition, even 

when the FR is not low, relaxing the tolerances may help approach the optimum from 

every direction when it is located on active constraints or nearby.

When the FR of the problem is unknown, the program calculates it in the same fashion 

as it calculates an approximate one. If the FR is already higher than the target FR cho

sen by the user, the program re-computes the target FR as 1.1 times the FR of the prob

lem, o f course upper-bounded by 100%. An example o f the self-tuned initial tolerances
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obtained by this procedure for the 13 constrained problems in the benchmark suite in 

appendix II is shown in Table 8.1, where target FR = 20%, and the r5FR = 5% . Once 

the procedure has finished, the FR is calculated for the obtained tolerance by randomly 

initializing 106 solutions (for higher precision). Those values are provided in the Table 

8.1 so as to confirm that using ‘only’ 103 random solutions to calculate the FR during 

the self-tuning procedure is accurate enough. Note that all problems with a FR lower 

than the target (20%) present a FR with initial tolerance (20% )<FR <(20% + 5%). In 

turn, if a problem has a FR greater than the target, it is increased by a factor o f 1.1 by 

means of the initial tolerance (see problem g04 in Table 8.1).

Tab le  8.1. F e a tu r e s  of th e  p ro b le m s  in th e  tes t  suite: n u m b e r  of d im en s io n s ,  inequality a n d  equali ty  cons tra in ts ;  f e a 
sibility ratios (FRs)  of th e  prob lem  with no  to le rance ,  des i red  to le rance ,  a n d  initial to lerance;  a n d  the  m e a n  se lf- tuned 
initial inequality an d  equali ty  to le ran ces .  F R s  a r e  ca lcu la ted  by random ly  gene ra t in g  106 solutions ,  w h e re  final (d e 
sired) equality  cons tra in t  violations to le ran ce  e q u a l s  10 4.

Problem Optimum Dim. IC EC FR [%]
FR [%] for 
desired 

tolerance

FR [%] for 
Initial relaxed 

tolerance

Mean initial 
inequality 
tolerance

Mean initial 
equality 

tolerance

g01 -15.000000 13 9 0 0.0003 0.0003 23.4617 89.92 N/A

902 -0.803619 20 2 0 99.9971 99.9971 99.9971 0.01 N/A

g03 -1.000500 10 0 1 <0.0001 0.0002 24.5335 N/A 1.66

g°4 -30665.538672 5 3<*> 0 26.9887 26.9887 30.2026 0.11 N/A

g05 5126.496714 4 1 n 3 <0.0001 < 0.0001 23.3053 68.88 688.79

g06 -6961.813876 2 2 0 0.0074 0.0074 24.3050 2790.51 N/A

g07 24.306209 10 8 0 0.0001 0.0001 23.8399 383.89 N/A

g08 -0.095825 2 2 0 0.8610 0.8610 23.4371 9.88 N/A

g09 680.630057 7 4 0 0.5232 0.5232 24.0533 421.13 N/A

gio 7049.248021 8 6 0 0.0005 0.0005 21.1715 10.83 N/A

911 0.749900 2 0 1 <0.0001 0.0108 24.8914 N/A 0.26

812 -1.000000 3 1 (@) 0 4.7713 4.7713 22.0256 0.11 N/A

gl3 0.053942 5 0 3 <0.0001 <0.0001 22.8845 N/A 6.63

Other authors claim  there are 6 inequality constraints, but each one defines an interval, therefore no more than 3 constraints can 
be violated simultaneously.

<*) Other authors claim there are two inequality constraints, but they define an interval, so that no more than 1 constraint can be 
violated simultaneously.

m  M ost authors claim  there are 9 3 inequality constraints, but in reality it is one constraint that splits the feasible space in 9 3 (729) 
disjointed spheres. The solution needs to be inside one sphere to be feasible, so that membership to all 729 spheres is not possible. If 
the constraint is viewed as 729 constraints, then at least 728 o f  them will be always violated.

8.4.2. Pseudo Adaptive Tolerance Update

The aim is to make the tolerance update adaptive so that updates are performed when 

they would have a less disruptive or harmful effect in the dynamics of the swarm and in 

maintaining potentially good solutions.
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Thus, updates are performed when a given percentage {per) o f the particles’ best experi

ences (pbest) are located within feasible space (i.e. within the current tolerances). The 

coefficient for the exponential update (ktofl)) is also pseudo adaptive, as shown in Eq. 

(8.10), while the exponential update o f the tolerances is as posed in Eq. (8.11).

kt° lu) = kt0l“° • (l 0 0  -  p e r)+ ktol^  (8 .1 0 )
1 0 0  -  perm:n

tolw =ktolw -tolu~') (8 .1 1 )

Thus, ktol{t) =0.99 for per = permin, ktol{t) = ktol^  for p er  = 100, and the variation 

in between is linear. Therefore, the greater the percentage above a minimum estab

lished, the greater the size of the tolerance decrease.

Given that the tolerance for inequality constraint violations is typically set to ‘O’ and 

here it is kept ten times smaller than the tolerance for equality constraints when both are 

present and relaxed, whenever the tolerance for inequality constraints goes below 1 0 ~5, 

it is automatically reset to ‘O’.

Aiming to avoid too many time-steps without a tolerance update, a ‘safety mechanism’ 

is implemented by enforcing a tolerance update if:

n° to l updates
> tol. timespan (8 .1 2 )

where t is the number o f time-step, n° tol updates is the number of tolerance updates, 

and to l timespan is the average number o f time-steps between tolerance updates that is 

not allowed to be surpassed. When the update is enforced due to Eq. (8.12), the coeffi

cient used in Eq. (8.11) equals ktoli0 = 0.99.

In order to give some time for the particles to find feasible solutions once the tolerances 

have reached their desired value, it is arbitrarily set that such values must be reached by 

the time 80% of the search has been carried out. That is, the desired tolerances must be 

reached by tmin = 0.8 • tmax. If the desired tolerance was not reached by t = 0.9 • t^n, a co

efficient is calculated so that final tolerances are reached by t = tm]n performing an up

date at every remaining time-step. Thus, the coefficient ktol is calculated as shown in

475



C *E C  CO N STRA IN T-H A N D LIN G
Prifysgoi Abertawe

Eqs. (8.13) and (8.14), and is fixed for the whole remaining 0.1 Tmin time-steps (i.e. 

from T = 0.9-?min +1 to t = tmi„).

ktol<> u"M ■ tol10'9'""1 = tol1’- ' 1 (8-13)

r
ktol = (8.14)

where ktol is calculated independently for inequality and equality constraints. For ine

quality constraints -where typically tol^  = 0 - ,  the latter is replaced by 1 0 ” 5 for the 

calculation o f ktol in Eq. (8.14), and the tolerance is set to ‘O’ as soon as it reaches a 

value equal to or below 1 0 -5.

A different adaptive relaxing rule o f the tolerance for equality constraint violations is 

proposed in (Xie, Zhang, & Bi, 2004).

8.5. Pseudo Adaptive PFPR

When using the PFPR technique in highly constrained problems, most o f the search is 

driven by constraint satisfaction, disregarding the conflict function information. Thus, 

by the time a particle finds a feasible location, it might be anywhere with respect to the 

optimal solution. Hence the pseudo adaptive scheme previously proposed is coupled 

with the PFPR technique to help in handling constraints, especially in problems with 

low FRs. By working with the pseudo adaptive scheme, the PFPR technique ‘is fooled’ 

into using objective function information while searching the infeasible space.

8.5.1. Experimental results

A Multi-Swarm (MS) PSO algorithm is used, which is composed o f 50 particles split in 

three sub-swarms. The first sub-swarm is composed of 17 particles under the PSO- 

RRR2-1 settings; the second sub-swarm is composed of 16 particles under the PSO- 

RRR1-1 settings; and the third is composed of 17 particles under the C-PSO-1 settings. 

Three sub-neighbourhoods are used, coinciding with the sub-swarms, with the individ-
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ual overlapping (SNI) discussed in the previous chapter. Every run is performed for a 

length o f 1 0 0 0 0  time-steps.

The neighbourhood is the ‘dynamic forward topology’ with linearly increasing number 

of neighbours, from 2  at the first time-step until it becomes global at the end of the 

search. The nearest neighbour heuristics is activated and acting on the individual best 

experiences (NNB) rather than on the particles’ positions (refer to chapter 7).

The particles’ positions are initialized by generating 1000 independent Latin Hypercube 

Samplings (LHSs), and selecting the one with the maximum minimum distance between 

particles. Each sub-swarm is initialized independent from the others. Velocities are ini

tialized to zero. Every best experience is initialized at exactly the same distance from its 

corresponding particle. Each component o f this distance is calculated as the correspond

ing feasible interval divided by twice the number o f particles in the swarm. The sign of 

the component, and hence the direction o f the distance vector, are randomly generated. 

For each pair ‘p-pbest’, a comparison is performed so that the best one becomes (or 

stays) pbest and the other becomes (or stays) p before the search begins. Thus, every 

particle starts the search with the same, moderate acceleration towards its pbest (the ac

celeration towards its lbest depends on the neighbourhood structure).

The position-based measures of error are relative, whereas the conflict-based measures 

are absolute; tref=  1 0 ; the measures of error are computed on the individual best ex

periences (rather than on the current ones).

The CHT is the PFPR with Pseudo Adaptive tolerance relaxation. Target FR = 20% 

(<5FR = 5%). For the tolerance decrease, ktolmin = 0.90 and permin = 80% in Eq. (8.10),

while tmia = 0 M - tmax =8000 in Eqs. (8.13) and (8.14). Tol*™1 = 0 and Tol*™' =10^ .

A run is considered successful if  the error is no greater than 0.0001, and the statistics 

are calculated out o f 25 runs. The random number generator is reset to its initial state 

only before the first run o f every experiment. The results are provided in Table 8.2 and 

some repeated in Table 8.3 for comparison.

For reference, the experiments are also run without relaxing the constraints, and also 

with self-tuned initial relaxation but with a classic deterministic, exponential decrease. 

In the latter case, ktol = 0.98. These results are also presented in Table 8.2.
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The full output files are provided in *.xlsx and *.mat formats in the digital appendix, 

from where a great amount of information with regards to the search can be obtained. It 

is fair to note that the settings of the experiments did not respond to any kind of tuning.

T a b l e  8 . 2 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  f o r  t h e  1 3  p r o b l e m s  in t h e  t e s t  s u i t e  f o r  t h e  P F P R  t e c h n i q u e  a n d  3  t y p e s  o f  
t o l e r a n c e  r e l a x a t i o n :  n o n e ,  ini t ia l ly  s e l f - t u n e d  w i th  e x p o n e n t i a l  d e c r e a s e ,  a n d  in i t ia lly  s e l f - t u n e d  w i th  P s e u d o  A d a p t i v e  
d e c r e a s e .  T h e  p e r c e n t a g e s  o f  f e a s i b l e  s o l u t i o n s  a n d  s u c c e s s f u l  s o l u t i o n s  ( e r r o r  n o t  g r e a t e r  t h a n  1 ( T 4); t h e  m e a n  
n u m b e r s  o f  F E s  a n d  C E s ;  a n d  t h e  m e a n  p e r c e n t a g e  o f  f e a s i b l e  p b e s t s  a t  t h e  e n d  o f  t h e  s e a r c h  a r e  a l s o  p r o v i d e d .

Ea>
-QO
tx

OPTIMUM
Tolerance
Relaxation

(PFPR)
BEST MEDIAN MEAN WORST

[%]
Feasible

Solutions

[%]
Successful
Solutions

Mean
FEs

Mean
CEs

Mean [%] 
Feasible 
pbests

Runs

NONE -15.0000 -15.0000 -15.0000 -15.0000 100.00 100.00 2.24E+05 5.00E+05 100.00 25

gOl -15.0000 EXP. -15.0000 -15.0000 -15.0000 -15.0000 100.00 100.00 2.25E+05 5.86E+05 100.00 25

P.AD. -15.0000 -15.0000 -14.8981 -12.4531 100.00 96.00 1.16E+05 6.42E+05 100.00 25

NONE -0.8036 -0.7949 -0.7926 -0.6879 100.00 40.00 2.51 E+05 5.00E+05 100.00 25

g02 -0.8036 EXP 0.8036 -0.8034 -0.7949 -0.7581 100.00 48.00 2.52E+05 5.35E+05 100.00 25

P.AD. -0.8036 -0.8034 -0.7949 -0.7581 100.00 48.00 2.52E+05 5.08E+05 100.00 25

NONE -0.9996 -0.9875 -0.9713 -0.8227 100.00 0.00 7.76E+04 5.00E+05 98 64 25

g03 -1.0005 EXP. -1.0005 -1.0005 -1.0005 -1.0003 100.00 92.00 1.21 E+05 5.77E+05 100.00 25

P.AD. -1.0005 -1.0005 -1.0005 -1.0005 100.00 100.00 1.25E+05 5.84E+05 99.92 25

NONE -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 3.24E+05 5.00E+05 100.00 25

g04 -30665.5387 EXP. -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 3.19E+05 5.50E+05 100.00 25

P.AD. -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 3.22E+05 5.14E+05 100.00 25

NONE 5126.4983 5183.5743 5262.5931 5197.5450 92.00 0.00 8.82E+04 5.00E+05 20.48 25

g05 5126.4967 EXP 5126.6759 5149.4887 5226.5105 5211.9654 96.00 0.00 1.09E+05 5.87E+05 26.16 25

P.AD. 5126.5060 5129.6245 5135.0431 5205.0354 100.00 0.00 1.21 E+05 6.28E+05 66.80 25

NONE -6961.8139 -6961.8139 -6961.8139 -6961.8139 100.00 100.00 2.87E+05 5.00E+05 99.76 25

g06 -6961.8139 EXP. -6961.8139 -6961.8139 -6961.8139 -6961.8139 100.00 100.00 2.98E+05 6.18E+05 100.00 25

P.AD. -6961.8139 -6961.8139 -6961.8139 -6961.8139 100.00 100.00 2.41 E+05 6.18E+05 100.00 25

NONE 24.3120 24.3494 24.4183 24.9295 100.00 0.00 1.59E+05 5.00E+05 100.00 25

g07 24.3062 EXP. 24.3149 24.4884 24.5306 24.9681 100.00 0.00 1.54E+05 6.03E+05 100.00 25

P.AD. 24.3246 24.4429 24.4863 25.1151 100.00 0.00 1.60E+05 5.57E+05 100.00 25

NONE -0.0958 -0.0958 -0.0958 -0.0958 100.00 100.00 4.98E+05 5.00E+05 100.00 25

g08 -0.0958 EXP. -0.0958 -0.0958 -0.0958 -0.0958 100.00 100.00 4.96E+05 5.72E+05 100.00 25

P.AD. -0.0958 -0.0958 -0.0958 -0.0958 100.00 100.00 4.98E+05 5.20E+05 100.00 25

NONE 680.6306 680.6341 680.6346 680.6444 100.00 0.00 1.80E+05 5.00E+05 100.00 25

g09 680.6301 EXP 680.6306 680.6322 680.6330 680.6427 100.00 0.00 1.82E+05 6.03E+05 100,00 25

P.AD. 680.6305 680.6334 680.6339 680.6406 100.00 0.00 1.81 E+05 5.36E+05 100.00 25

NONE 7057.5044 7107.2362 7146.9957 7292.5136 100.00 0.00 1.69E+05 5.00E+05 100.00 25

gio 7049.2480 EXP. 7053.8366 7193.8963 7199.2320 7454.0316 100.00 0.00 1.64E+05 5.73E+05 100.00 25

P.AD. 7049.5448 7145.6473 7145.1506 7437.8998 100.00 0.00 8.61 E+04 6.25E+05 98.00 25

NONE 0.7499 0.7499 0.7499 0.7499 100.00 100.00 1.09E+05 5.00E+05 98.96 25

911 0.7499 EXP. 0.7499 0.7499 0.7499 0.7499 100.00 100.00 1.36E+05 5.57E+05 97.28 25

P.AD. 0.7499 0.7499 0.7499 0.7499 100.00 100.00 1.20E+05 5.98E+05 88.88 25

NONE -1.0000 -1.0000 -1.0000 -1.0000 100.00 100.00 4.93E+05 5.00E+05 100.00 25

912 -1.0000 EXP. -1.0000 -1.0000 -1.0000 -1.0000 100.00 100.00 4.96E+05 5.48E+05 100.00 25

P.AD. -1.0000 -1.0000 -1.0000 -1.0000 100.00 100.00 4.95E+05 5.16E+05 100.00 25

NONE 0.0915 0.6562 0.5911 0.9910 100.00 0.00 8.79E+04 5.00E+05 40.80 25

gl3 0.0539 EXP. 0.0545 0.2172 0.2825 0.8696 100.00 0.00 9.99E+04 5.63E+05 40.80 25

P.AD. 0.0539 0.0540 0.1030 0.4391 100.00 64.00 1.11 E+05 6.35E+05 76.88 25
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T a b l e  8 . 3 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  f o r  t h e  1 3  p r o b l e m s  in t h e  t e s t  s u i t e  f o r  t h e  P F P R  c o n s t r a i n t - h a n d l i n g  t e c h n i q u e  
c o u p l e d  w i th  t h e  p r o p o s e d  P s e u d o  A d a p t i v e  S c h e m e .  T h e  p e r c e n t a g e s  o f  f e a s i b l e  s o l u t i o n s  a n d  s u c c e s s f u l  s o l u t i o n s  
( e r r o r  n o t  g r e a t e r  t h a n  1 ( T 4); t h e  m e a n  n u m b e r s  o f  F E s  a n d  C E s ;  a n d  t h e  m e a n  p e r c e n t a g e  o f  f e a s i b l e  p b e s t s  a t  t h e  
e n d  o f  t h e  s e a r c h  a r e  a l s o  p r o v i d e d .  R e s u l t s  f r o m  ( T o s c a n o  P u l i d o  & C o e l l o  C o e l l o ,  2 0 0 4 )  a n d  ( M u n o z  Z a v a l a ,  
H e r n a n d e z  A g u i r r e ,  & Villa D i h a r c e ,  2 0 0 5 )  ( P E S O )  a r e  p r o v i d e d  f o r  r e f e r e n c e .

Pr
ob

le
m

OPTIMUM OPTIMIZER BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Mean
CEs

Mean [%] 
Feasible 
pbests

Runs

P.AD. PFPR -15.0000 -15.0000 -14.8981 -12.4531 100.00 96.00 1.16E+05 6.42E+05 100.00 25

gOi -15.0000 Toscano Pulido et al. -15.0000 - -15.0000 -15.0000 - - 3.40E+05 - - 30

Munoz Zavala et al. -15.0000 -15.0000 -15.0000 -15.0000 - - 3.40E+05 - - 30

P.AD. PFPR -0.8036 -0.8034 -0.7949 -0.7581 100.00 48.00 2.52E+05 5.08E+05 100.00 25

g02 -0.8036 Toscano Pulido et al. -0.8034 - -0.7904 -0.7504 - - 3.40E+05 - - 30

Munoz Zavala et al. -0.7926 -0.7317 -0.7217 0.6141 - - 3.40E+05 - - 30

PAD. PFPR -1.0005 -1.0005 -1.0005 -1.0005 100.00 100.00 1.25E+05 5.84E+05 99.92 25

g03 •1.0005 Toscano Pulido et al. -1.0047 - -1.0038 -1.0025 - - 3.40E+05 - - 30

Munoz Zavala et al. -1.0050 -1.0050 -1.0050 -1.0050 - 3.40E+05 30

P.AD. PFPR -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 3.22E+05 5.14E+05 100.00 25

g04 -30665.5387 Toscano Pulido et al. -30665.5000 -30665.5000 -30665.5000 -30665.5000 - - 3.40E+05 - - 30

Munoz Zavala et al. -30665.5387 -30665.5387 -30665.5387 -30665.5387 - 3.40E+05 - - 30

P.AD. PFPR 5126.5060 5129.6245 | 5135.0431 5205.0354 100.00 0.00 1.21E+05 6.28E+05 68.80 25

g05 5126.4967 Toscano Pulido et al. 5126.6400 - 5461.0813 6104.7500 - - 3.40E+05 - - 30

Munoz Zavala et al. 5126 4842 5126.5383 5129.1783 5148.8594 - 3.40E-05 - - 30

P.AD. PFPR -6961.8139 -6961.8139 -6961.8139 -6961.8139 | 100.00 100.00 2.41 E+05 6.18E+05 100.00 25

g06 -6961.8139 Toscano Pulido et al. -6961.8100 - -6961.8100 -6961.8100 - - 3.40E+05 - - 30

Munoz Zavala et al. -6961.8139 -6961.8139 -6961.8139 -6961.8139 - 3.40E+05 - - 30

P.AD. PFPR 24.3246 24.4429 | 24.4863 ] 25.1151 | 100.00 0.00 1.60E+05 5.57E+05 100.00 25

g07 24.3062 Toscano Pulido et ai. 24.3511 - 25.3558 27.3168 - - 3.40E+O5 - - 30

Munoz Zavala et al. 24.3069 24.3713 24.3713 24.5935 - - 3.40E+05 - - 30

P.AD. PFPR -0.0958 -0.0958 | -0.0958 | -0.0958 | 100.00 100.00 4.98E+05 5.20E+05 100.00 25

g08 -0.0958 Toscano Pulido et al. -0.0958 - -0.0958 -0.0958 - - 3.40E+05 - - 30

Munoz Zavala et al. -0 0958 -0.0958 0.0958 -0.0958 - - 3.40E+05 - 30

PAD. PFPR 680.6305 680.6334 | 680.6339 | 680.6406 [ ioo.oo| 0.00 1.81 E+05 5.36E+05 100.00 25

g09 680.6301 Toscano Pulido et al. 680.6380 - 680.8524 681.5530 - - 3.40E+05 - - 30

Munoz Zavala et al. 680.6301 680.6301 680.6301 680.6301 - 3.40E+05 - - 30

PAD. PFPR 7049.5448 7145.6473 | 7145.1506 7437.8998 | 100.00j 0.00 8.61 E+04 6.25E+05 98.00 25

glO 7049.2480 Toscano Pulido et al. 7057.5900 - 7560.0479 8104.3100 - - 3.40E+05 - - 30

Munoz Zavala et al. 7049.4595 7069.9262 7099.1014 7251.3962 - - 3.40E+05 - 30

PAD. PFPR 0.7499 0.7499 0.7499 | 0.7499 j ioo.oo| 100.00 1.20E+O5 5.98E+05 88.88 25

g n 0.7499 Toscano Pulido et al. 0.7500 - 0.7501 0.7529 - - 3.40E+05 - - 30

Munoz Zavala etal. 0.7490 0.7490 0.7490 0.7490 - - 3.40E+05 - - 30

PAD. PFPR -1.0000 -1.0000 -1.0000 -1.0000 ioo.oo| 100.00 4.95E+05 5.16E+05 100.00 25

912 ■1.0000 Toscano Pulido etal. -1.0000 - -1.0000 -1.0000 - - 3.40E+05 - - 30

Munoz Zavala et al. -1.0000 -1.0000 -1.0000 -1.0000 3.40E+05 30

PAD. PFPR 0.0539 0.0540 | 0.1030 j| 0.4391 100.00I 64.00 1.11E+05 6.35E+05 76.88 25

gi3 0.0539 Toscano Pulido et al. 0.0687 - 1.7164 13.6695 - - 3.40E+05 - - 30

Munoz Zavala etal. 0.0815 0.6319 0.6269 0.9976 - - 3.40E+05 - - 30

An example of the results of the initialization procedure is shown in Fig. 8.1. This ex

ample is intended to illustrate both the effect of the nearest neighbour procedure and the 

initialization of each pbest at the same distance from its corresponding p. However, in
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the settings for the experiments there are three sub-swarms rather than one, and hence 

their initializations are independent. That is to say, the particles corresponding to each 

sub-neighbourhood would be allocated by the LHS so as to cover the whole search- 

space, regardless of the location of the particles of other sub-neighbourhoods.

1 * -

Initial P s  and P B E S T s - 3 Sub-neigh bourhood s, 1 Sub-sw arm  
Su b-neighbourhoods formed by n earest neiqhbour procedure.
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F ig .  8 . 1 .  E x a m p l e  o f  t h e  i n i t i a l i z a t i o n  p r o c e d u r e  f o r  t h r e e  s u b - n e i g h b o u r h o o d s ,  o n e  s u b - s w a r m ,  a n d  n e a r e s t  
n e i g h b o u r h o o d  p r o c e d u r e  f o r  t h e  g e n e r a t i o n  o f  t h e  s u b - n e i g h b o u r h o o d s .  If t h e r e  w e r e  t h r e e  s u b - s w a r m s  a s  w e l l ,  
e a c h  s u b - n e i g h b o u r h o o d / s u b - s w a r m  w o u l d  a t t e m p t  t o  c o v e r  t h e  w h o l e  s e a r c h - s p a c e  i n d e p e n d e n t l y  f r o m  t h e  o t h e r s .

8.5.2. Discussion

From Table 8.2, it can be observed that the adaptive scheme improves the performance 

of the algorithm in several aspects. In problem g05, it can be observed that it raised the 

percentage of feasible solutions to 100% while the median and mean solutions show 

great improvement despite being unable to meet the demanding success condition. In 

problem g02 , it can be observed that the self-tuned initial relaxation is beneficial (irre

spective o f the form of its posterior decrease), since the percentage o f successful solu

tions increase when this initial relaxation is present. Note that this problem presents a 

very high feasibility ratio, and yet relaxing the constraints is beneficial. The percentage 

of successful solutions is also notably increased by means o f the proposed pseudo adap-

4 8 0
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tive scheme in problems g03 and g 13. The drawback is that one failure (in 25 runs) to 

find the solution in gOl can be now observed.

From Table 8.3, it can be observed that the results obtained are clearly better than those 

in (Toscano Pulido & Coello Coello, 2004); and competitive with the optimizer PESO 

in (Munoz Zavala, Hernandez Aguirre, & Villa Diharce, 2005). Note that they both use 

a higher tolerance for equality constraint violations {Toleq = 10 3).

8.6. Pseudo A daptive Penalization

The aim here is not to develop an adaptive penalization method, but simply to explore 

the possibility o f introducing the pseudo adaptive scheme proposed in this thesis into a 

penalization method, so that it becomes adaptive by penalizing adaptive constraint vio

lations rather than by using adaptive penalization coefficients. Therefore, a simple pe

nalization method is implemented with arbitrarily set -not tuned- constant coefficients.

The penalization scheme proposed is shown in Eqs. (8.15) to (8.17). Notice how the 

adaptiveness in the formulation lies in the adaptiveness of the tolerances for constraint 

violations, despite keeping the penalization coefficients constant.

fp(x)  = / ( * )  + k • j r  [ f j (x)Y  (8.15)
7=1

' '  j max {o, (abs(g7 (x )) -  Toleq)} ; q < j < m  8̂ I6 )

k  =  1 0 6

'2  if fj(x (8.17)
a  =

1 i f / , ( * ) < !

8.6.1. Experimental results

The same settings used in the experiments in section 8.5.1 are used here, but now the 

CHT is a penalization method (PM) with the static coefficients shown in Eq. (8.17).

4 8 1
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The results are provided in Table 8.4 and some repeated in Table 8.5 for comparison. 

Some interesting selected curves of the evolution of the pseudo adaptive tolerances and 

of the mean best solution are offered in Fig. 8.2 to Fig. 8.6. For reference, the experi

ments are also run without relaxing the constraints, and also with self-tuned initial re

laxation but with a classic deterministic, exponential decrease. In the latter case, 

ktol = 0.98. These results are also presented in Table 8.4.

The full output files are provided in *.xlsx and *.mat formats in the digital appendix, 

from where a great amount of information with regards to the search can be obtained.

8.6.2. Discussion

From Table 8.4, it can be observed that the adaptive scheme improves the performance 

of the algorithm in several aspects, while here there is no failure for gOl (like in the 

PFPR). In problem g05, the median and mean solutions also show great improvement. 

In problem g02, the percentage of successful solutions increases with the proposed 

pseudo adaptive scheme. The percentage of successful solutions is also notably in

creased with the proposed technique in problems g03 and g l3, while here also in g09. 

However it seems to be detrimental in glO as it is. Further studies are needed to investi

gate the reason for this, and to improve even more its performance.

From Table 8.5, it can be observed that it generally outperforms results in (Toscano 

Pulido & Coello Coello, 2004), while it is competitive with PESO in (Munoz Zavala, 

Hernandez Aguirre, & Villa Diharce, 2005), outperforming each other on some prob

lems. Namely, the algorithm tested here outperforms PESO in problems g02 and gl3, 

whereas PESO outperforms it in problems g05 and glO. They are competitive in the rest 

of the problems in the test suite, with PESO performing marginally better overall.

Since the values of the tolerances are pseudo adaptive, it is interesting to observe the 

form of the curves and their evolution throughout the search. Due to the stochastic na

ture of the paradigm, those curves vary from one run to the next for a given problem. 

The curves showing the evolution of the tolerances corresponding to four selected prob

lems are offered in Fig. 8.2 to Fig. 8.5. Thus, Fig. 8.2 corresponds to problem gOl in

volving 9 inequality constraints; Fig. 8.3 corresponds to problem g03 involving 1 equal

ity constraint; Fig. 8.4 corresponds to problem g05 involving 3 equality and 1 inequality

4 8 2
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constraints (in the form o f an interval); and Fig. 8.5 corresponds to problem gl3 involv

ing 3 equality constraints. In those figures, the tolerance curves correspond to one single 

arbitrary run, whereas the average curves correspond to the average among all 25 runs.

T a b l e  8 . 4 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  f o r  t h e  1 3  p r o b l e m s  in t h e  t e s t  s u i t e  f o r  t h e  P M  t e c h n i q u e  a n d  3  t y p e s  o f  t o l e r 
a n c e  r e l a x a t i o n :  n o n e ,  in i t ia l ly  s e l f - t u n e d  w i th  e x p o n e n t i a l  d e c r e a s e ,  a n d  in i t ia lly  s e l f - t u n e d  w i th  P s e u d o  A d a p t i v e  
d e c r e a s e .  T h e  p e r c e n t a g e s  o f  f e a s i b l e  s o l u t i o n s  a n d  s u c c e s s f u l  s o l u t i o n s  ( e r r o r  n o t  g r e a t e r  t h a n  1 0 ~ 4); t h e  m e a n  
n u m b e r s  o f  F E s  a n d  C E s ;  a n d  t h e  m e a n  p e r c e n t a g e  o f  f e a s i b l e  p b e s t s  a t  t h e  e n d  o f  t h e  s e a r c h  a r e  a l s o  p r o v i d e d .

•Qo  
aI

OPTIMUM
Tolerance
Relaxation

(PM)
BEST MEDIAN MEAN WORST

[%]
Feasible

Solutions

[%1
Successful
Solutions

Mean
FEs

Mean
CEs

Mean [%] 
Feasible 
pbests

Runs

NONE -15.0000 -15.0000 -15.0000 -15.0000 100.00 100.00 5.00E+05 5.00E+05 99.92 25

g01 •15.0000 EXP. -15.0000 -15.0000 -15.0000 -15.0000 100.00 100.00 5.00E+05 5.86E+05 99.76 25

P.AD. -15.0000 -15.0000 -15.0000 -15.0000 100.00 100.00 5.00E+05 5.75E+05 99.36 25

NONE -0.8036 -0.7949 -0.7926 -0.6879 100.00 40.00 5.00E+05 5.00E+05 100.00 25

g02 -0.8036 EXP. -0.8036 -0.8034 -0.7949 -0.7581 100.00 48.00 5.00E+05 5.35E+05 100.00 25

P.AD. -0.8036 -0.8034 -0.7949 -0.7581 100.00 48.00 5.00E+05 5.08E+05 100.00 25

NONE -0.9992 -0.9832 -0.9726 -0.8949 100.00 0.00 5.00E+05 5.00E+05 98.80 25

g03 ■1.0005 EXP. -1.0005 -1.0005 -1.0005 -1.0003 100.00 96.00 5.00E+05 5.77E+05 100.00 25

P.AD. -1.0005 -1.0005 -1.0005 -1.0005 100.00 100.00 5.00E+05 5.84E+05 99.92 25

NONE -30665.5387 -30665 5387 -30665.5387 -30665.5387 100.00 100.00 5.00E+05 5.00E+05 100.00 25

g04 -30665.5387 EXP. -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 5.00E+05 5.50E+05 100.00 25

ADAPTIVE -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 5.00E+05 5.14E+05 100.00 25

NONE 5126.4984 5158.4660 5242.6720 5708.2809 100.00 0.00 5.00E+05 5.00E+05 25.20 25

g05 5126.4967 EXP. 5126.5160 5155.0725 5235.5661 5885.9125 100.00 0.00 5.00E+05 5.87E+05 24.80 25

P.AD. 5126.5938 5130.1227 5142.2653 5318.2998 100.00 0.00 5.00E+05 6.31E+05 57.52 25

NONE -6961.8139 6961.8139 -6961.8139 -6961.8139 100.00 100.00 5.00E+05 5.00E+05 100.00 25

g06 -6961.8139 EXP. -6961.8139 -6961.8139 -6961.8139 -6961.8139 100.00 100.00 5.00E+05 6.18E+05 100.00 25

P.AD. -6961.8139 -6961.8139 -6961.8139 -6961.8139 100.00 100.00 5.00E+05 6.38E+05 100.00 25

NONE 24.3086 24.3974 24.4474 25.1851 100.00 0.00 5.00E+05 5.00E+05 100.00 25

g07 24.3062 EXP. 24.3223 24.4382 24.4473 24.7962 100.00 0.00 5.00E+05 6.03E+05 100.00 25

P.AD. 24.3222 24.4835 24.5153 24.9482 100.00 0.00 5.00E+05 5.58E+05 100.00 25

NONE -0.0958 -0.0958 -0.0958 -0.0958 100.00 100.00 5.00E+05 5.00E+05 100.00 25

g08 -0.0958 EXP. -0.0958 -0.0958 -0.0958 -0.0958 100.00 100.00 5.00E+05 5.72E+05 100.00 25

P.AD, -0.0958 -0.0958 -0.0958 -0.0958 100.00 100.00 5.00E+05 5.20E+05 100.00 25

NONE 680.6305 680.6326 680.6330 680.6388 100.00 0.00 5.00E+05 5.00E+05 100.00 25

g09 680.6301 EXP. 680.6308 680.6320 680.6325 680.6366 100.00 0.00 5.00E+05 6.03E+D5 100.00 25

P.AD. 680.6301 680.6324 680.6329 680.6380 100.00 8.00 5.00E+05 5.36E+05 100.00 25

NONE 7059.9290 7154.0361 7169.1473 7440.0397 100.00 0.00 5.00E-05 5.00E+05 98.72 25

glO 7049.2480 EXP. 7049.7290 7105.7654 7140.7933 7348.4473 100.00 0.00 5.00E+05 5.73E+05 97.04 25

P.AD. 7118.8730 7489.9450 7570.7811 8155.6550 96.00 0.00 5.00E+05 6.20E+05 82.88 25

NONE 0.7499 0.7499 0.7499 0.7499 100.00 100.00 5.00E+05 5.00E+05 99.20 25

g n 0.7499 EXP. 0.7499 0.7499 0.7499 0.7500 100.00 100.00 5.00E+05 5.19E+05 99.68 25

P.AD. 0.7499 0.7499 0.7499 0.7499 100.00 100.00 5.00E+05 5.95E+05 90.24 25

NONE -1.0000 -1.0000 -1.0000 -1.0000 100.00 100.00 5.00E+05 5.00E+05 100.00 25

gi2 -1.0000 EXP. -1.0000 -1.0000 -1.0000 -1.0000 100.00 100.00 5.00E+05 5.48E+05 100.00 25

P.AD. -1.0000 -1.0000 -1.0000 -1.0000 100.00 100.00 5.00E+05 5.16E+05 100.00 25

NONE 0.1701 0.6003 0.6324 0.9837 100.00 0.00 5.00E+05 5.00E+05 38.80 25

gl3 0.0539 EXP. 0.2780 0.7206 0.7063 0.9969 100.00 0.00 5.00E+05 5.08E+05 40.96 25

P.AD. 0.0539 0.0541 0.1312 0.4397 100.00 36.00 5.00E+05 6.29E+05 79.92 25
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T a b l e  8 . 5 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  f o r  t h e  1 3  p r o b l e m s  in t h e  t e s t  s u i t e  f o r  t h e  P M  c o n s t r a i n t - h a n d l i n g  t e c h n i q u e  
c o u p l e d  w i th  t h e  p r o p o s e d  p s e u d o  a d a p t i v e  s c h e m e .  T h e  p e r c e n t a g e s  o f  f e a s i b l e  s o l u t i o n s  a n d  s u c c e s s f u l  s o l u t i o n s  
( e r r o r  n o t  g r e a t e r  t h a n  1CT4); t h e  m e a n  n u m b e r s  o f  F E s  a n d  C E s ;  a n d  t h e  m e a n  p e r c e n t a g e  o f  f e a s i b l e  p b e s t s  a t  t h e  
e n d  o f  t h e  s e a r c h  a r e  a l s o  p r o v i d e d .  R e s u l t s  f r o m  ( T o s c a n o  P u l i d o  & C o e l l o  C o e l l o ,  2 0 0 4 )  a n d  ( M u n o z  Z a v a l a ,  
H e r n a n d e z  A g u i r r e ,  & Villa D i h a r c e ,  2 0 0 5 )  ( P E S O )  a r e  p r o v i d e d  f o r  r e f e r e n c e .

I 
Pr

ob
lem

 
I

OPTIMUM OPTIMIZER BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Mean
CEs

Mean[%] 
Feasible 
pbests

Runs

P.AD. PM -15.0000 -15.0000 -15.0000 -15.0000 100.00 100.00 5.00E+05 5.75E+05 25 -15.0000

g01 -15.0000 Toscano Pulido etal. -15.0000 - -15.0000 -15.0000 - - 3.40E+05 - 30 -15.0000

Munoz Zavala et al. -15.0000 -15.0000 -15.0000 -15.0000 - 3.40E+05 - 30 -15.0000

P.AD. PM -0.8036 -0.8034 -0.7949 -0.7581 100.00 48.00 5.00E+05 5.08E+05 25 -0.8036

g02 -0.8036 Toscano Pulido et al. -0.8034 - -0.7904 -0.7504 - 3.40E+05 - 30 -0.8034

Munoz Zavala et al. -0.7926 -0.7317 -0.7217 0.6141 - 3.40E+05 - 30 -0.7926

P.AD. PM -1.0005 -1.0005 -1.0005 -1.0005 100.00 100.00 5.00E+05 5.84E+05 25 -1.0005

g03 -1.0005 Toscano Pulido et al. -1.0047 - -1.0038 -1.0025 - - 3.40E+05 - 30 -1.0047

Munoz Zavala et al. -1.0050 -1.0050 -1.0050 -1.0050 3.40E+05 30 -1.0050

P.AD. PM -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 5.00E+05 5.14E+05 25 -30665.5387

g04 -30665.5387 Toscano Pulido et al. -30665.5000 -30665.5000 -30665.5000 -30665.5000 - - 3.40E+05 - 30 -30665.5000

Munoz Zavala et al. -30665.5387 -306655387 -30665.5387 -30665.5387 - - 3.40E+05 - 30 -30665.5387

P.AD. PM 5126.5938 5130.1227 5142.2653 5318.2998 100.00 0.00 5.00E+05 6.31 E+05 25 5126.5938

g05 5126.4967 Toscano Pulido et al. 5126.6400 - 5461.0813 6104.7500 - - 3.40E+05 - 30 5126.6400

Munoz Zavaia et al. 5126.4842 5126.5383 5129.1783 5148 8594 - 3.40E+05 - 30 5126.4842

P.AD. PM -6961.8139 -6961.8139 -6961.8139 -6961.8139 100.00 100.00 5.00E+05 6.38E+05 25 -6961.8139

g06 -6961.8139 Toscano Pulido et al. -6961.8100 -6961.8100 -6961.8100 - - 3.40E+05 - 30 -6961.8100

Munoz Zavala etal. -6961.8139 -6961.8139 -6961 8139 -6961.8139 - 3.40E+05 - 30 -6961.8139

P.AD. PM 24.3222 24.4835 24.5153 24.9482 100.00 0.00 5.00E+05 5.58E+05 25 24.3222

g07 24.3062 Toscano Pulido et al. 24.3511 - 25.3558 27.3168 - - 3.40E+05 - 30 24.3511

Munoz Zavala etal. 24.3069 24.3713 24.3713 24.5935 - 3.40E+05 - 30 24.3069

P.AD. PM -0.0958 -0.0958 -0.0958 -0.0958 100.00 100.00 5.00E+05 5.20E+05 25 -0.0958

g08 -0.0958 Toscano Pulido et al. -0.0958 - -0.0958 -0.0958 - - 3.40E+05 - 30 -0.0958

Munoz Zavala et al. -0.0958 -0.0958 0.0958 -0.0958 - - 3.40E+05 30 -0.0958

P.AD. PM 680.6301 680.6324 680.6329 680.6380 100.00 8.00 5.00E+05 5.36E+05 25 680.6301

g09 680.6301 Toscano Pulido etal. 680.6380 - 680.8524 681.5530 - - 3.40E+05 - 30 680.6380

Munoz Zavala et al. 680.6301 680.6301 680.6301 680.6301 - - 3.40E+05 - 30 680.6301

P.AD. PM 7118.8730 7489.9450 7570.7811 8155.6550 96.00 0.00 5.00E+05 6.20E+05 25 7118.8730

g io 7049.2480 Toscano Pulido et al. 7057.5900 - 7560.0479 8104.3100 - - 3.40E+05 - 30 7057.5900

Munoz Zavala et al. 7049.4595 7069.9262 7099.1014 7251.3962 - - 3.40E+05 - 30 7049.4595

P.AD. PM 0.7499 0.7499 0.7499 0.7499 100.00 100.00 5.00E+05 5.95E+05 25 0.7499

g n 0.7499 Toscano Pulido etal. 0.7500 - 0.7501 0.7529 - - 3.40E+05 - 30 0.7500

Munoz Zavala et al. 0.7490 0.7490 0.7490 0.7490 - - 3.40E+05 30 0.7490

P.AD. PM -1.0000 -1.0000 -1.0000 -1.0000 100.00 100.00 5.00E+05 5.16E+05 25 -1.0000

gi2 -1.0000 Toscano Pulido etal. -1.0000 - -1.0000 -1.0000 - - 3.40E+05 - 30 -1.0000

Munoz Zavala et al. -1.0000 -1.0000 -1.0000 -1.0000 3.40E+05 - 30 -1.0000

P.AD. PM 0.0539 0.0541 0.1312 0.4397 100.00 36.00 ] 5.00E+05 6.29E+05 25 0.0539

g i3 0.0539 Toscano Pulido et al. 0.0687 - 1.7164 13.6695 - - 3.40E+05 - 30 0.0687

Munoz Zavala etal. 0.0815 0.6319 0.6269 0.9976 - 3.40E+05 - 30 0.0815

Due to the tolerance relaxations, intermediate solutions that are temporarily regarded as 

feasible are smaller than the actual feasible minimum. Hence the best solution might 

increase rather than decrease as the search progresses (see Fig. 8.6 for problem g05).
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Fig .  8 . 2 .  P s e u d o  A d a p t i v e  t o l e r a n c e  ( fo r  t h e  P M )  f o r  i n e q u a l i t y  c o n s t r a i n t  v i o l a t i o n s  in p r o b l e m  g 0 1 .  T h e  a v e r a g e  is  
a m o n g  t h e  2 5  r u n s .  T h e  f i g u r e  o n  t h e  r i g h t  is  j u s t  a  z o o m  o f  t h e  o n e  o n  t h e  left.
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F ig .  8 . 3 .  P s e u d o  A d a p t i v e  t o l e r a n c e  ( f o r  t h e  P M )  f o r  e q u a l i t y  c o n s t r a i n t  v i o l a t i o n s  in p r o b l e m  g 0 3 .  T h e  a v e r a g e  is 
a m o n g  t h e  2 5  r u n s .  T h e  f i g u r e  o n  t h e  r i g h t  i s  j u s t  a  z o o m  o f  t h e  o n e  o n  t h e  left.
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Fig .  8 . 4 .  P s e u d o  A d a p t i v e  t o l e r a n c e  ( f o r  t h e  P M )  f o r  i n e q u a l i t y  a n d  e q u a l i t y  c o n s t r a i n t  v i o l a t i o n s  in p r o b l e m  g 0 5 .  T h e  
a v e r a g e  is  a m o n g  t h e  2 5  r u n s .  T h e  f i g u r e  o n  t h e  r i g h t  is  j u s t  a  z o o m  o f  t h e  o n e  o n  t h e  left.

4 8 5



C * E C

v^iiapioi u

C O N S T R A I N T - H A N D L I N G Swansea University
Prifysgol Abertawe

g i3 g i37
 Tol

6
Average Tol

5

8  4
_0>

£ 3:
2

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

time-steps

 Tol

Average Tol

o'

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time-steps

F ig .  8 . 5 .  P s e u d o  A d a p t i v e  t o l e r a n c e  ( fo r  t h e  P M )  f o r  e q u a l i t y  c o n s t r a i n t  v i o l a t i o n s  in p r o b l e m  g 1 3 .  T h e  a v e r a g e  is  
a m o n g  t h e  2 5  r u n s .  T h e  f i g u r e  o n  t h e  r i g h t  is  j u s t  a  z o o m  o f  t h e  o n e  o n  t h e  left.
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F ig .  8 . 6 .  E v o l u t i o n  o f  t h e  m e a n  b e s t  a n d  a v e r a g e  c o n f l i c t  v a l u e s  a m o n g  2 5  r u n s  f o r  p r o b l e m  g 0 5  ( fo r  t h e  P M ) .  R e c a l l  
t h a t  t h i s  i s  a  m i n i m i z a t i o n  p r o b l e m .  T h e  s h a p e  o f  t h e  c u r v e  is  d u e  t o  t h e  t o l e r a n c e  r e l a x a t i o n s .  T h e  a v e r a g e  c o n f l i c t  is  
a m o n g  t h e  c o n f l i c t s  o f  pbests ( b e s t  i n d i v i d u a l  p o s i t i o n s )  r a t h e r  t h a n  a m o n g  t h e  c o n f l i c t s  o f  p s  ( c u r r e n t  p o s i t i o n s ) .

8.7. Pseudo A daptive PFPR  w ith R epair O perator

By tracking the evolution of the optimization with the ‘pseudo adaptive PFPR’ tech

nique in some of the most difficult problems in the test suite, it was realized that a po

tentially good solution was often lost during a tolerance update. One of the main reasons 

for this is that the CHT implemented gives absolute priority to a feasible solution over 

an infeasible one. Hence whenever a global best (gbest) becomes infeasible due to a
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tolerance update, any individual experience (pbest) which remains feasible is regarded 

as a better solution regardless of its location and conflict.

A rudimentary repair operator was implemented to attempt to find a feasible solution 

near gbest whenever the latter becomes infeasible due to a tolerance update. Thus the 

operator only acts on gbest and not at every time-step but between irregular intervals. 

The operator consists of calculating an approximate gradient of the constraint violations 

function (cv) defined in Eq. (8.2). However, cv is typically highly nonlinear, so that it is 

not always straightforward to repair gbest by following (-Vcv). In some cases, cv is de

creased but gbest is still infeasible, so that it might still be lost. Besides, an appropriate 

step-size is also not straightforward. The computation of the scaling factor used to cal

culate the step-size at each iteration of the repair algorithm is shown in Eq. (8.18), and 

the generation of the next position (following the direction of -Vcv) is shown in Eq. 

(8.19). If the components of Vcv are all zeros, Eq. (8.19) is replaced by Eq. (8.20).

If x\'jrat,on) goes out of boundaries, the ‘cut-off at the boundary’ mechanism is activated, 

in which case the new location will not be following the actual -Vcv.

Once a new location has been generated, the function cv is evaluated. If the new loca

tion is feasible, the procedure is terminated. If the new solution is not feasible but the cv 

was reduced, the procedure is repeated from this new location (calculating the new gra

dient) for a maximum of 1000 iterations (iti). If the new location is not feasible and the 

cv was not reduced, then the new location is discarded, s f  is reduced to a 50%, and the 

procedure is repeated for a maximum of 100 iterations (ifc) for the same gradient. Fi

nally, if the cv cannot be reduced after 100 iterations by following -Vcv, the same pro

cedure is repeated but the new location is randomly generated as shown in Eq. (8.21).

max 1 , js f  = min (8.18)

= x (,yr̂ t) _ sf . Vcv^ (8.19)

(iteration) _  ( iteration-1 ) , ( r y  j t  1)
J ~ X\ J ^ \Z,’U(0,1) l )'

max 1 , j
( 8 . 2 0 )
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.(iteration) .(iteration-1) max 1 , j
( 8 . 2 1 )

This operator is certainly poor and inefficient. The aim here was not to propose or de

velop a specific repair operator, but simply to confirm the suspicion that repairing gbest 

would lead to noticeable improvement of the solutions found using this Pseudo Adap

tive scheme. Coupling a better repairing local search should be tested in the future.

8.7.1. Experimental results

The same settings used in the experiments in section 8.5.1 are used here, but now the 

CHT is the ‘Pseudo Adaptive PFPR with Repair operator’. The results obtained are of

fered in Table 8.6, together with those obtained with the plain ‘Pseudo Adaptive PFPR’ 

and with the ‘Pseudo Adaptive PM’.

For reference, results are also presented together with those in (Toscano Pulido & 

Coello Coello, 2004) and in (Munoz Zavala, Hernandez Aguirre, & Villa Diharce, 

2005) (PESO) in Table 8.7; with those in (Fuentes Cabrera & Coello Coello, 2007) and 

in (Munoz Zavala, Hernandez Aguirre, Villa Diharce, & Botello Rionda, 2006) in Table 

8.8; and the success rates (SRs) are compared to those in (Zielinski & Laur, 2006) and 

in (Munoz Zavala, Hernandez Aguirre, Villa Diharce, & Botello Rionda, 2006) in Table 

8.9. Finally, results reported by numerous other authors using different types of opti

mizers are offered in Table 8.10 to Table 8.12.

The full output files are provided in *.xlsx and *.mat formats in the digital appendix, 

from where a great amount of information with regards to the search can be obtained.

8.7.2. Discussion

From Table 8.6, it can be observed that the repair operator improves the performance of 

the ‘Pesudo-Adaptive PFPR’ technique. The failure in problem gOl is resolved; solu

tions for problem g05 are improved; while the mean solution and the percentage of suc

cessful solutions for problem gl 3 are improved by the repair operator.
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From Table 8.7, the ‘Pesudo Adaptive PFPR with Repair operator’ clearly outperforms 

(Toscano Pulido & Coello Coello, 2004), while its performance is competitive with that 

of the PESO in (Munoz Zavala, Hernandez Aguirre, & Villa Diharce, 2005). From Ta

ble 8.8, the proposed algorithm finds better results than (Fuentes Cabrera & Coello 

Coello, 2007), while its performance is not as good as that of the PESO+ in (Munoz 

Zavala, Hernandez Aguirre, Villa Diharce, & Botello Rionda, 2006). It is fair to note, 

however, that the PESO and PESO+ are equipped with a diversity operator similar to 

the differential mutation in Differential Evolution (DE). Table 8.9 also shows better per

formance of the PESO+ in terms of the percentage of successful solutions. In turn, the 

proposed algorithm performs better than the PSO in (Zielinski & Laur, 2006), in par

ticular for problems gOl, g02, g03, g05 and gl3. Table 8.10 to Table 8.12 show that the 

results obtained by the proposed algorithm are competitive with the results obtained by 

a number of different approaches in the literature, outperforming several of them. Ar

guably, the best performer in those tables is the oNSM in (Takahama & Sakai, 2005).

Top-notch PSO algorithms tested not only on these 13 benchmark problems but also on 

11 additional ones extended in (Liang, et al., 2006) for the ‘2006 IEEE Congress on 

Evolutionary Computation’ (CEC’06) are the aforementioned PESO+ in (Munoz 

Zavala, Hernandez Aguirre, Villa Diharce, & Botello Rionda, 2006) and the ‘Dynamic 

Multi-Swarm PSO’ in (Liang & Suganthan, 2006).

A few classical engineering optimization problems are dealt with hereafter with the 

proposed optimizer. Given that the aim is a general-purpose optimizer in the sense that 

it is able to cope reasonably well with different problems, exactly the same settings as 

before are used in these experiments (without repair operator).

The problems to be solved are the Mixed-Discrete Pressure Vessel Design (MDPVD) in 

(Coello Coello, 2000) and its continuous version (PVD); the Welded Beam Design 

(WBD) and the Tension/Compression Spring Design (TCSD) in (Coello Coello, 2000); 

the Himmelblau Nonlinear Problem (HNP) in (Hu, Eberhart, & Shi, 2003); three 

variations of the 10-bar truss problem in (Fleury & Schmit, 1980) and in (Haftka &

8 . 8 .  E n g i n e e r i n g  a p p l i c a t i o n s
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Giirdal, 1992); and the 25-bar truss problem in (Fleury & Schmit, 1980) as well as one 

variation found in (Park & Ryu, 2004).

T a b l e  8 . 6 .  S t a t i s t i c a l  r e s u l t s  f o r  t h e  p r o p o s e d  ‘P s e u d o  A d a p t i v e  P M ’, ‘P s e u d o  A d a p t i v e  P F P R ’ a n d  ‘P s e u d o  A d a p t i v e  
P F P R  w i th  R e p a i r  o p e r a t o r ’ o b t a i n e d  f o r  t h e  1 3  p r o b l e m s  in t h e  t e s t  s u i t e .  T h e  p e r c e n t a g e s  o f  f e a s i b l e  s o l u t i o n s  a n d  
s u c c e s s f u l  s o l u t i o n s  ( e r r o r  n o t  g r e a t e r  t h a n  1 0 ~ 4); m e a n  n u m b e r s  o f  F E s  a n d  C E s ;  a n d  m e a n  p e r c e n t a g e  o f  f e a s i b l e  
pbests a t  t h e  e n d  o f  t h e  s e a r c h  a r e  a l s o  p r o v i d e d .

i
XIo
i t

OPTIMUM

Pseudo
Adaptive

Tolerance
Relaxation

BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Mean
CEs

Mean [%] 
Feasible 
PBESTs

Runs

P.AD. PM -15.0000 -15.0000 -15.0000 -15.0000 100.00 100.00 5.00E+05 5.75E+05 99.36 25

goi -15.0000 P.AD. PFPR -15.0000 -15.0000 -14.8981 -12.4531 100.00 96.00 1.16E+05 6.42E+05 100.00 25

P.AD. PFPR + R -15.0000 -15.0000 -15.0000 -15.0000 100.00 100.00 9.19E+04 2.36E+06 100.00 25

P.AD. PM -0.8036 -0.8034 -0.7949 -0.7581 100.00 48.00 5.00E+05 5.08E+05 100.00 25

g02 -0.8036 P.AD. PFPR -0.8036 -0.8034 -0.7949 -0.7581 100.00 48.00 2.52E+05 5.08E+05 100.00 25

P.AD. PFPR + R -0.8036 -0.8034 -0.7949 -0.7581 100.00 48.00 2.52E+05 5.08E+05 100.00 25

P.AD. PM -1.0005 -1.0005 -1.0005 -1.0005 100.00 100.00 5.00E+05 5.84E+05 99.92 25

g03 •1.0005 P.AD. PFPR -1.0005 -1.0005 -1.0005 -1.0005 100.00 100.00 1.25E+05 5.84E+05 99.92 25

P.AD. PFPR + R -1.0005 -1.0005 -1.0005 -1.0005 100.00 100.00 1.27E+05 5.91 E+05 99.84 25

P.AD. PM -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 5.00E+05 5.14E+05 100.00 25

g04 -30665.5387 P.AD. PFPR -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 3.22E+05 5.14E+05 100.00 25

P.AD. PFPR + R -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 3.21 E+05 5.13E+05 100.00 25

P.AD. PM 5126.5938 5130.1227 5142.2653 5318.2998 100.00 0.00 5.00E+05 6.31 E+05 57.52 25

g05 5126.4967 P.AD. PFPR 5126.5060 5129.6245 5135.0431 5205.0354 100.00 0.00 1.21E+05 6.28E+05 66.80 25

P.AD. PFPR + R 5126.4985 5128.9372 5130.8828 5149 1589 100 00 0.00 1.09E+05 9.78E+06 46.32 25

P.AD. PM -6961.8139 -6961.8139 -6961.8139 -6961.8139 100.00 100.00 5.00E+05 6.38E+05 100.00 25

g06 -6961.8139 P.AD. PFPR -6961.8139 -6961.8139 -6961.8139 -6961.8139 100.00 100.00 2.41 E+05 6.18E+05 100.00 25

P.AD. PFPR + R 6961.8139 6961.8139 6961.8139 6961.8139 100.00 100.00 2.99E+05 7.26E+D5 100.00 25

P.AD. PM 24.3222 24.4835 24.5153 24.9482 100.00 0.00 5.00E+05 5.58E+05 100.00 25

g07 24.3062 P.AD. PFPR 24.3246 24.4429 24.4863 25.1151 100.00 0.00 1.60E+05 5.57E+05 100.00 25

P.AD. PFPR + R 24.3532 24.4868 24.5000 24.8745 100.00 0.00 1.56E+05 5.61 E+C5 100.00 25

P.AD. PM -0.0958 -0.0958 -0.0958 -0.0958 100.00 100.00 5.00E+05 5.20E+05 100.00 25

g08 -0.0958 P.AD. PFPR -0.0958 -0.0958 -0.0958 -0.0958 100.00 100.00 4.98E+05 5.20E+05 100.00 25

P.AD. PFPR + R -0.0958 -0.0958 -0.0958 -0.0958 100.00 100.00 4.98E+05 5.20E+05 100.00 25

P.AD. PM 680.6301 680.6324 680.6329 680.6380 100.00 8.00 5.00E+05 5.36E+05 100.00 25

g09 680.6301 P.AD. PFPR 680.6305 680.6334 680.6339 680.6406 100.00 0.00 1.81 E+05 5.36E+05 100.00 25

P.AD. PFPR + R 680.6303 680.6323 680.6325 680.6363 100.00 0.00 1.83E+05 5.36E+05 100.00 25

P.AD. PM 7118.8730 7489.9450 7570.7811 8155.6550 96.00 0.00 5.00E+05 6.20E+05 82.88 25

gio 7049.2480 P.AD. PFPR 7049.5448 7145.6473 7145.1506 7437.8998 100.00 0.00 8.61 E+04 6.25E+05 98.00 25

P.AD. PFPR + R 7049.7951 7142.9934 7167.2404 7480.5126 100.00 0.00 8.77E+04 3.29E+06 99.12 25

P.AD. PM 0.7499 0.7499 0.7499 0.7499 100.00 100.00 5.00E+05 5.95E+05 90.24 25

g n 0.7499 P.AD. PFPR 0.7499 0.7499 0.7499 0.7499 100.00 100.00 1.20E+05 5.98E+05 88.88 25

P.AD. PFPR + R 0.7499 0.7499 0.7499 0.7499 100.00 100.00 9.77E+04 6.26E+05 80.88 25

P.AD. PM -1.0000 -1.0000 -1.0000 -1.0000 100.00 100.00 5.00E+05 5.16E+05 100.00 25

912 -1.0000 P.AD. PFPR -1.0000 -1.0000 -1.0000 -1.0000 100.00 100.00 4.95E+05 5.16E+05 100.00 25

P.AD. PFPR + R -1.0000 -1.0000 -1.0000 -1.0000 100.00 100.00 4.95E+05 5.16E+05 100.00 25

P.AD. PM 0.0539 0.0541 0.1312 0.4397 100.00 36.00 5.00E+05 6.29E+05 79.92 25

g13 0.0539 P.AD. PFPR 0.0539 0.0540 0.1030 0.4391 100.00 64.00 1.11E+05 6.35E+05 76.88 25

P.AD. PFPR + R 0.0539 0.0540 0.0545 0.0607 100.00 68.00 8.64E+04 7.12E+05 30.56 25
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T a b l e  8 . 7 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  f o r  t h e  1 3  p r o b l e m s  in t h e  t e s t  s u i t e  f o r  t h e  ‘P s e u d o  A d a p t i v e  P F P R  w i th  R e p a i r  
o p e r a t o r ’. T h e  p e r c e n t a g e s  o f  f e a s i b l e  s o l u t i o n s  a n d  s u c c e s s f u l  s o l u t i o n s  ( e r r o r  n o t  g r e a t e r  t h a n  1 ( T 4); t h e  m e a n  
n u m b e r s  o f  F E s  a n d  C E s ;  a n d  t h e  m e a n  p e r c e n t a g e  o f  f e a s i b l e  pbests a t  t h e  e n d  o f  t h e  s e a r c h  a r e  a l s o  p r o v i d e d .  
R e s u l t s  f r o m  ( T o s c a n o  P u l i d o  & C o e l l o  C o e l l o ,  2 0 0 4 )  a n d  ( M u n o z  Z a v a l a ,  H e r n a n d e z  A g u i r r e ,  & Vil la  D i h a r c e ,  2 0 0 5 )  
( P E S O )  a r e  p r o v i d e d  fo r  r e f e r e n c e .

Pr
ob

le
m

OPTIMUM OPTIMIZER BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Mean
CEs

Mean [%] 
Feasible 
pbests

Runs

P.AD. PFPR + R -15.0000 -15.0000 -15.0000 -15.0000 100.00 100.00 9.19E+04 2.36E+06 100.00 25

g01 -15.0000 Toscano Pulido et al. -15.0000 - -15.0000 -15.0000 - - 3.40E+05 - - 30

Munoz Zavala et al. -15.0000 -15.0000 -15.0000 -15.0000 - - 3.40E+05 - - 30

P.AD. PFPR + R -0.8036 -0.8034 -0.7949 -0.7581 100.00 48.00 2.52E+05 5.08E+05 100.00 25

g02 -0.8036 Toscano Pulido et al. -0.8034 - -0.7904 -0.7504 - - 3.40E+05 - - 30

Munoz Zavala et al. -0.7926 -0.7317 -0.7217 0.6141 - - 3.40E+05 - - 30

P.AD. PFPR + R -1.0005 -1.0005 -1.0005 -1.0005 100.00 100.00 1.27E+05 5.91 E+05 99.84 25

g03 -1.0005 Toscano Pulido et al. -1.0047 - -1.0038 -1.0025 - - 3.40E+05 - - 30

Munoz Zavala etal. -1.0050 -1.0050 -1.0050 -1.0050 3.40E+05 - - 30

P.AD. PFPR + R -30665.5387 -30665.5387 -30665.5387 -30665.5387 100.00 100.00 3.21 E+05 5.13E+05 100.00 25

g04 -30665.5387 Toscano Pulido etal. -30665.5000 -30665.5000 -30665.5000 -30665.5000 - - 3.40E+05 - - 30

Munoz Zavala et al. -30665.5387 -30665.5387 -30665.5387 -30665.5387 - - 3.40E+05 - - 30

P.AD. PFPR + R 5126.4985 5128.9372 5130.8828 5149.1589 100.00 0.00 1.09E+05 9.78E+06 46.32 25

g05 5126.4967 Toscano Pulido et al. 5126.6400 - 5461.0813 6104.7500 - - 3.40E+05 - - 30

Munoz Zavala et al. 5126 4842 5126.5383 5129.1783 5148.8594 - 3.40E+05 30

P.AD. PFPR + R 6961.8139 6961.8139 6961.8139 6961.8139 100.00 100.00 2.99E+05 7.26E+05 100.00 25

g06 -6961.8139 Toscano Pulido etal. -6961.8100 - -6961.8100 -6961.8100 - - 3.40E+O5 - - 30

Munoz Zavala et al. -6961 8139 -6961.8139 -6961.8139 -6961.8139 - - 3.40E+05 - - 30

P.AD. PFPR ♦ R 24.3532 24.4868 24.5000 24.8745 100.00 0.00 1.56E+05 5.61 E+05 100.00 25

g07 24.3062 Toscano Pulido et al. 24.3511 - 25.3558 27.3168 - - 3.40E+05 - - 30

Munoz Zavala et al. 24.3069 24.3713 24.3713 24.5935 - - 3.40E+05 - - 30

P.AD. PFPR + R -0.0958 -0.0958 j -0.0958 -0.0958 100.00 100.00 4.98E+05 5.20E+05 100.00 25

g08 -0.0958 Toscano Pulido etal. -0.0958 - -0.0958 -0.0958 - - 3.40E+05 - - 30

Munoz Zavala et al. -0.0958 -0.0958 0.0958 -0.0958 3.40E+05 30

P.AD. PFPR + R 680.6303 680.6323 | 680.6325 | 680.6363 100.00 0.00 1.83E+05 5.36E+05 100.00 25

g09 680.6301 Toscano Pulido etal. 680.6380 - 680.8524 681.5530 - - 3.40E+05 - - 30

Munoz Zavala et al. 680.6301 680.6301 680.6301 680.6301 - - 3.40E+05 - 30

P.AD. PFPR + R 7049.7951 7142.9934 | 7167.2404 7480.5126 100.00 0.00 8.77E+04 3.29E+06 99.12 25

glO 7049.2480 Toscano Pulido et al. 7057.5900 - 7560.0479 8104.3100 - - 3.40E+05 - - 30

Munoz Zavala etal. 7049.4595 7069.9262 7099.1014 7251.3962 - - 3.40E+05 - - 30

P.AD. PFPR + R 0.7499 0.7499 0.7499 0.7499 | 1 0 0 .0 0 | 100.00 9.77E+04 6.26E+05 80.88 25

911 0.7499 Toscano Pulido et al. 0.7500 - 0.7501 0.7529 - - 3.40E+05 - - 30

Munoz Zavala etal. 0.7490 0.7490 0.7490 0.7490 - - 3.40E+05 - - 30

P.AD. PFPR ♦ R -1.0000 -1.0000 J -1.0000 J -1.0000 | 100.00 100.00 4.95E+05 5.16E+05 100.00 25

912 •1.0000 Toscano Pulido et al. -1.0000 - -1.0000 -1.0000 - - 3.40E+05 - - 30

Munoz Zavala etal. -1.0000 -1.0000 -1.0000 -1.0000 3.40E+05 - 30

P.AD. PFPR + R 0.0539 0.0540 ] 0.0545 0.0607 ioo.oo| 68.00 8.64E+04 7.12E+05 30.56 25

913 0.0539 Toscano Pulido et al. 0.0687 - 1.7164 13.6695 - - 3.40E+05 - - 30

Munoz Zavala et al. 0.0815 0.6319 0.6269 09976 - 3.40E+05 - - 30



c 2 e c C O N S T R A I N T - H A N D L I N G Swansea University
Prifysgol Abertawe

T a b l e  8 . 8 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  f o r  t h e  1 3  p r o b l e m s  in t h e  t e s t  s u i t e  f o r  t h e  ‘P s e u d o  A d a p t i v e  P F P R  w ith  R e p a i r  
o p e r a t o r ’. T h e  p e r c e n t a g e s  o f  f e a s i b l e  s o l u t i o n s  a n d  s u c c e s s f u l  s o l u t i o n s  ( e r r o r  n o t  g r e a t e r  t h a n  1 0 - 4 ); t h e  m e a n  
n u m b e r s  o f  F E s  a n d  C E s ;  a n d  t h e  m e a n  p e r c e n t a g e  o f  f e a s i b l e  p b e s t s  a t  t h e  e n d  o f  t h e  s e a r c h  a r e  a l s o  p r o v i d e d .  
R e s u l t s  f r o m  ( F u e n t e s  C a b r e r a  & C o e l l o  C o e l l o ,  2 0 0 7 )  a n d  ( M u n o z  Z a v a l a ,  H e r n a n d e z  A g u i r r e ,  V illa  D i h a r c e ,  & 
B o t e l l o  R i o n d a ,  2 0 0 6 )  ( P E S O + )  a r e  p r o v i d e d  f o r  r e f e r e n c e .

I 
Pr

ob
lem

 
I

OPTIMUM OPTIMIZER BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Mean
CEs

Mean [%] 
Feasible 
pbests

Runs

P.AD. PFPR + R -15.000000 -15.000000 -15.000000 -15.000000 100.00 100.00 9.19E+04 2.36E+06 100.00 25

goi ■15.0000 Fuentes Cabr. -15.000100 -13.000100 -13.273400 -9.701200 - - 2.40E+05 - - 50

Munoz Zavala + -15.000000 -15.000000 -15.000000 -15.000000 100 100 5.00E+05 - - 25

P.AD. PFPR + R -0.803618 -0.803429 -0.794852 -0.758093 100.00 48.00 2.52E+05 5.08E+05 100.00 25

g02 -0.8036 Fuentes Cabr. 0.803620 0.778481 0.777143 0.711603 - - 2.40E+05 - - 50

Munoz Zavala + -0.803619 -0.803616 -0.800062 -0.785266 100 56 5.00E+05 - - 25

P.AD. PFPR + R -1.000500 -1.000497 -1.000495 -1.000478 100.00 100.00 1.27E+05 5.91 E+05 99.84 25

g03 -1.0005 Fuentes Cabr. -1.000400 -1.000400 -0.993600 -0.667400 - - 2.40E+05 - - 50

Munoz Zavala + -1.000500 -1.000500 -1.000500 -1.000499 100 100 5.00E+05 - 25

P.AD. PFPR + R
30665.538672

-30665.538672 -30665.538672 -30665.538672 100.00 100.00 3.21 E+05 5.13E+05 100.00 25

g04 -30665.5387 Fuentes Cabr.
30665.539800

-30665.539800 -30665.539700 -30665.533800 - - 2.40E+05 - - 50

Munoz Zavala + 30665.538672 -30665.538672 -30665.538672 -30665.538672 100 100 5.00E+05 - - 25

P.AD. PFPR + R 5126.498527 5128.937242 5130.882764 5149.158908 100.00 0.00 1.09E+05 9.78E+06 46.32 25

g05 5126.4967 Fuentes Cabr. 5126.646700 5261.767500 5495.238900 6272.742300 - - 2.40E+05 - - 50

Munoz Zavala + 5126.496714 5126.496714 5126.496714 5126 496714 100 100 5.00E+05 - - 25

P.AD. PFPR * R 6961.813876 6961.813876 6961.813876 6961.813876 100.00 100.00 2.99E+05 7.26E+05 100.00 25

g06 -6961.8139 Fuentes Cabr. -6961.837100 -6961.837100 -6961.837000 -6961.835500 - - 2.40E+O5 - - 50

Munoz Zavala + -6961.813876 -6961 813876 -6961.813876 -6961.813876 100 100 5.00E+05 - - 25

P.AD. PFPR + R 24.353160 24.486815 24.500021 24.874481 100.00 0.00 1.56E+05 5.61 E+05 100.00 25

g07 24.3062 Fuentes Cabr. 24.327800 24.645500 24.699600 25.296200 - - 2.40E+05 - - 50

Munoz Zavala + 24 306209 24.306214 24.306223 24.306301 100 16 5.00E+05 - 25

P.AD. PFPR + R -0.095825 -0.095825 -0.095825 -0.095825 100.00 100.00 4.98E+05 5.20E+05 100.00 25

g08 -0.0958 Fuentes Cabr. -0.095825 -0.095825 -0.095825 -0.095825 - - 2.40E+05 - - 50

Munoz Zavala + -0.095825 -0.095825 -0.095825 -0.095825 100 100 5.00E+05 - 25

P.AD. PFPR + R 680.630324 680.632332 680.632495 680.636292 100.00 0.00 1.83E+05 5.36E+05 100.00 25

g09 680.6301 Fuentes Cabr. 680.630700 680.637800 680.639100 680.667100 - - 2.40E+05 - - 50

Munoz Zavala + 680.630057 680.630057 680.630057 680.630057 100 100 5.00E+05 - 25

P.AD. PFPR + R 7049.795137 7142.993354 7167.240386 7480.512601 100.00 0.00 8.77E+04 3.29E+06 99.12 25

glO 7049.2480 Fuentes Cabr. 7090.452400 7557.431400 7747.629800 10533.665800 - - 2.40E+05 - - 50

Munoz Zavala + 7049.248027 7049.250013 7049.262277 7049.349764 100 16 5.00E+05 - - 25

P.AD. PFPR + R 0.749900 0.749900 | 0.749900 0.749901 100.00 100.00 9.77E+04 6.26E+05 80.88 25

g ii 0.7499 Fuentes Cabr. 0.749900 0.749900 0.767300 0.992500 - - 2.40E+05 - - 50

Munoz Zavala + 0.749999 0.749999 0.749999 0.749999 100 100 5.00E+05 - 25

P.AD. PFPR + R -1.000000 -1.000000 -1.000000 -1.000000 100.00 100.00 4.95E+05 5.16E+05 100.00 25

912 -1.0000 Fuentes Cabr. -1.000000 -1.000000 -1.000000 -1.000000 - - 2.40E+05 - - 50

Munoz Zavala + -1.000000 -1.000000 -1.000000 -1.000000 100 100 5.00E+05 - 25

P.AD. PFPR + R 0.053945 0.053985 0.054494 | 0.060726 100.00 68.00 8.64E+04 7.12E+05 30.56 25

gi3 0.0539 Fuentes Cabr. 0.059410 0.909530 0.813350 2.444150 - - 2.40E-+05 - - 50

Munoz Zavala + 0.053942 0.053942 0.053946 0.054022 100 100 5.00E+05 - - 25



c 2 e c C O N S T R A I N T - H A N D L I N G Swansea University
Prifysgol Abertawe

T a b l e  8 . 9 .  P e r c e n t a g e  o f  s u c c e s s f u l  s o l u t i o n s  ( e r r o r  n o t  g r e a t e r  t h a n  1 0 “ 4) o b t a i n e d  f o r  t h e  1 3  p r o b l e m s  in t h e  t e s t  
s u i t e  b y  t h e  ‘P s e u d o  A d a p t i v e  P F P R  w i th  R e p a i r  o p e r a t o r ’. T h e  p e r c e n t a g e s  o f  f e a s i b l e  s o l u t i o n s  a n d  t h e  m e a n  
n u m b e r s  o f  F E s  a r e  a l s o  p r o v i d e d .  R e s u l t s  f r o m  ( Z i e l i n s k i  & L a u r ,  2 0 0 6 )  a n d  ( M u n o z  Z a v a l a ,  H e r n a n d e z  A g u i r r e ,  
Vil la  D i h a r c e ,  & B o t e l l o  R i o n d a ,  2 0 0 6 )  ( P E S O + )  a r e  p r o v i d e d  f o r  r e f e r e n c e .

Problem OPTIMUM OPTIMIZER
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Runs

P.AD. PFPR + R 100.00 100.00 9.19E+04 25

g01 -15.000000 Zielinski & Laur 100.00 52.00 5.00E+05 25

Munoz Zavala + 100.00 100.00 5.00E+05 25

P.AD. PFPR + R 100.00 48.00 2.52E+05 25

g02 -0.803619 Zielinski & Laur 100.00 0.00 5.00E+05 25

Munoz Zavala + 100.00 56.00 5.00E+05 25

P.AD. PFPR + R 100.00 100.00 1.27E+05 25

g03 -1.000500 Zielinski & Laur 100.00 0.00 5.00E+05 25

Munoz Zavala + 100.00 100.00 5.00E+05 25

P.AD. PFPR + R 100.00 100.00 3.21 E+05 25

g04 -30665.538672 Zielinski 8> Laur 100.00 100.00 5.00E+05 25

Munoz Zavala + 100.00 100.00 5.00E+05 25

P.AD. PFPR + R 100.00 0.00 1.09E+05 25

g05 5126.496714 Zielinski & Laur 100.00 16.00 5.00E+05 25

Munoz Zavala + 100.00 100.00 5.00E+05 25

P.AD. PFPR + R 100.00 100.00 2.99E+05 25

g06 -6961.813876 Zielinski 8> Laur 100.00 100.00 5.00E+05 25

Munoz Zavala + 100.00 100.00 5.00E+05 25

P.AD. PFPR + R 100.00 0.00 1.56E+05 25

g07 24.306209 Zielinski & Laur 100.00 8.00 5.00E+05 25

Munoz Zavala + 100.00 96.00 5.00E+05 25

P.AD. PFPR + R 100.00 100.00 4.98E+05 25

g08 -0.095825 Zielinski & Laur 100.00 100.00 5.00E+05 25

Munoz Zavala + 100.00 100.00 5.00E+05 25

P.AD. PFPR ♦ R 100.00 0.00 1.83E+05 25

g09 680.630057 Zielinski & Laur 100.00 100.00 5.00E+05 25

Muftoz Zavala + 100.00 100.00 5.00E+05 25

P.AD. PFPR + R 100.00 0.00 8.77E+04 25

glO 7049.248021 Zielinski & Laur 100.00 32.00 5.00E+05 25

Munoz Zavala + 100.00 16.00 5.00E+05 25

P.AD. PFPR + R 100.00 100.00 9.77E+04 25

gn 0.749900 Zielinski & Laur 100.00 100.00 5.00E+05 25

Munoz Zavala + 100.00 100.00 5.00E+05 25

P.AD. PFPR + R 100.00 100,00 4.95E+05 25

912 -1.000000 Zielinski & Laur 100.00 100.00 5.00E+05 25

Munoz Zavala + 100.00 100.00 5.00E+05 25

P.AD. PFPR + R 100.00 68.00 8.64E+04 25

gi3 0.053942 Zielinski & Laur 100.00 0.00 5.00E+05 25

Munoz Zavala + 100.00 100.00 5.00E+05 25



c 2 e c C O N S T R A I N T - H A N D L I N G Swansea University
Prifysgol Abertawe

T a b l e  8 . 1 0 .  B e s t  a n d  m e a n  s o l u t i o n s  o b t a i n e d  b y  t h e  ‘P s e u d o  A d a p t i v e  P F P R  w i th  R e p a i r  o p e r a t o r ’ a n d  b y  d i f f e r e n t  
a u t h o r s  a n d  d i f f e r e n t  a p p r o a c h e s  in t h e  l i t e r a t u r e  fo r  p r o b l e m s  g O i  t o  g 0 6  f r o m  t h e  b e n c h m a r k  s u i t e  o f  c o n s t r a i n e d  
p r o b l e m s  in a p p e n d i x  II. T h e  a u t h o r s  i n c l u d e d  a r e :  ( R u n a r s s o n  & Y a o ,  2 0 0 0 ) ;  ( H a m i d a  & S c h o e n a u e r ,  2 0 0 2 ) ;  
( F a r m a n i  & W r i g h t ,  2 0 0 3 ) ;  ( T a k a h a m a  & S a k a i ,  2 0 0 4 ) ;  ( T a k a h a m a  & S a k a i ,  2 0 0 5 ) ;  ( L a n d a  B e c e r r a  & C o e l l o  C o e l l o ,  
2 0 0 5 ) ;  ( Z h e n g ,  W u ,  & S o n g ,  2 0 0 7 ) ;  ( H e r n a n d e z  A g u i r r e ,  Villa D i h a r c e ,  & C o e l l o  C o e l l o ,  2 0 0 7 ) ;  ( P a r s o p o u l o s  & 
V r a h a t i s ,  2 0 0 2 ) ;  ( d e  F r e i t a s  V a z  & d a  G r a g a  P i n t o  F e r n a n d e s ,  2 0 0 6 ) ;  a n d  ( H e  & W a n g ,  2 0 0 7 ) .

OPTIMIZER
g01 g02

Runs
OPTIMUM BEST MEAN Mean FEs OPTIMUM BEST MEAN Mean FEs

P.AD. PFPR + R -15.0000 -15.0000 9.19E+04 -0.8036 -0.7949 2.52E+05 25

Runarsson et al. (ES + SR) -15.0000 -15.0000 3.50E+05 -0.8035 -0.7820 3.50E+05 30

Hamida et al. (ES + ASCHEA) -15.0000 -14.8400 1.50E+06 -0.7850 -0.5900 1.50E+06 31

Farmani et al. (GA + SAFF) -15.0000 -15.0000 1.40E+06 -0.8030 -0.7901 1.40E+06 20

Takahama et al. (aGA) -15.0000 -15.0000 -15.0000 3.50E+05 -0.8036 - - - 100

Takahama et al. (aNSM) -15.0000 -15.0000 8.34E+04 -0.8036 -0.7842 8.34E+04 30

Landa Becerra et al. (COE) -15.0000 -15.0000 1.00E+05 -0.8036 -0.7249 1.00E+05 30

Zheng et al. (IPSO) - - - -0.8035 -0.7899 3.40E+05 30

Hernandez Aguirre et al. 
(NOPREDA+SR)

-15.0000 -14.8400 3.50E+05 -0.8036 -0.7806 3.50E+05 50

g03 g04

OPTIMUM BEST MEAN Mean FEs OPTIMUM BEST MEAN Mean FEs
Runs

P.AD. PFPR + R -1.0005 -1.0005 1.27E+05 -30665 5387 -30665.5387 3.21E+05 25

Runarsson et al. (ES + SR) -1.0000 -1.0000 3.50E+05 -30665.5390 -30665 5390 3.50E+05 30

Hamida et al. (ES + ASCHEA) -1.0000 -0.9999 1.50E+06 -30665.5000 -30665.5000 1.50E+06 31

Parsopoulos et al. (global 
PSO-Co + Pena) - - - -31542.5780 -31528 2890 1.00E+05 10

Farmani et al. (GA + SAFF) -1.0000 -0.9999 1 40E+06 -30665.5000 -30665.2000 1.40E+06 20

Takahama etal. (aNSM)
-1.0005

-1.0005 -1.0005 8.34E+04
-30665.5387

-30665.5387 -30665.5387 8.34E+04 30

Landa Becerra et al. (CDE) -0.9954 -0.7886 1.00E+05 -30665.5387 -30665 5387 1.00E+05 30

de Freitas Vaz et al. (global 
PSO + MO) - - -30665.5000 - 9.75E+05 -

He etal. (PSO + SA) - - - -30665.5390 -30665.5390 8.10E+04 30

Hernandez Aguirre et al. 
(NOPREDA + SR)

-0.9999 -0.9979 3.50E+05 -30665.5387 -30664.3957 3.50E+05 50

g05 g06

OPTIMUM BEST MEAN Mean FEs OPTIMUM BEST MEAN Mean FEs
Runs

P.AD. PFPR + R 5126.4985 5130.8828 1.09E+05 6961.8139 6961.8139 2.99E+05 25

Runarsson et al. (ES + SR) 5126.4970 5128.8810 3.50E+05 -6961.8140 -6875.9400 3.50E+05 30

Hamida et al. (ES + ASCHEA) 5126.5000 5141.6500 1.50E+06 -6961.8100 -6961.8100 1.50E+06 31

Parsopoulos et al. (global 
PSO-Co + Pena) - - - -6961.837 0 -6961.8360 1.00E+05 10

Farmani et al. (GA + SAFF)
5126.4967

5126.9890 5432.0800 1.40E+06 -6961.8000 -6961.8000 1.40E+06 20

Takahama et al. (aNSM) 5126.4967 5126.4967 8.34E+04
-6961.8139

-6961.8139 -6961.8139 8.34E+04 30

Landa Becerra et al. (CDE) 5126 5709 5207 4107 1 00E+05 -6961.8139 -6961 8139 1.00E+05 30

de Freitas Vaz et al. (global 
PSO + MO) - - - -6961.8100 - 1.46E+06

Zheng et al. (IPSO) - - -6961.8140 -6961.8140 3.40E+05 30

Hernandez Aguirre et al. 
(NOPREDA + SR)

No feasible solution found in 
50 runs 3.50E+05 -6961 8139 -6961.8139 3.50E+05 50

(* )  Probably a typ o  (v a lu e  b e lo w  op tim u m ).



c 2 e c C O N S T R A I N T - H A N D L I N G Swansea University
Prifysgol Abertawe

T a b l e  8 . 1 1 .  B e s t  a n d  m e a n  s o l u t i o n s  o b t a i n e d  b y  t h e  ‘P s e u d o  A d a p t i v e  P F P R  w i th  R e p a i r  o p e r a t o r ’ a n d  b y  d i f f e r e n t  
a u t h o r s  a n d  d i f f e r e n t  a p p r o a c h e s  in t h e  l i t e r a t u r e  fo r  p r o b l e m s  g 0 7  t o  g 1 2  f r o m  t h e  b e n c h m a r k  s u i t e  o f  c o n s t r a i n e d  
p r o b l e m s  in a p p e n d i x  II. T h e  a u t h o r s  i n c l u d e d  a r e :  ( R u n a r s s o n  & Y a o ,  2 0 0 0 ) ;  ( H a m i d a  & S c h o e n a u e r ,  2 0 0 2 ) ;  
( F a r m a n i  & W r i g h t ,  2 0 0 3 ) ;  ( T a k a h a m a  & S a k a i ,  2 0 0 4 ) ;  ( T a k a h a m a  & S a k a i ,  2 0 0 5 ) ;  ( L a n d a  B e c e r r a  & C o e l l o  C o e l l o ,  
2 0 0 5 ) ;  ( Z h e n g ,  W u ,  & S o n g ,  2 0 0 7 ) ;  ( H e r n a n d e z  A g u i r r e ,  V il la  D i h a r c e ,  & C o e l l o  C o e l l o ,  2 0 0 7 ) ;  ( P a r s o p o u l o s  & 
V r a h a t i s ,  2 0 0 2 ) ;  ( d e  F r e i t a s  V a z  & d a  G r a g a  P i n t o  F e r n a n d e s ,  2 0 0 6 ) ;  a n d  ( H e  & W a n g ,  2 0 0 7 ) .

OPTIMIZER
g07 g08

Runs
OPTIMUM BEST MEAN Mean FEs OPTIMUM BEST MEAN Mean FEs

P.AD. PFPR + R 24.3532 24.5000 1.56E+05 -0.0958 -0.0958 4.98E+05 25

Runarsson et al. (ES + SR) 24.3070 24.3740 3.50E+05 -0.0958 -0.0958 3.50E+05 30

Hamida et al. (ES + ASCHEA) 24.3323 24.6636 1.50E+06 -0.0958 -0.0958 1.50E+06 31

Farmani et al. (GA + SAFF) 24.4800 26.5800 1.40E+06 -0.0958 -0.0958 1.40E+06 20

Takahama etal. (aGA) 24.4010 24.5420 3.50E+05 - - - 100

Takahama et al. (aNSM)
24.3062

24 3062 24.3062 8.34E+04
-0.0958

-0.0958 -0.0958 8.34E-04 30

Landa Becerra et al. (CDE) 24.3062 24.3062 1.00E-05 -0.0958 -0.0958 1.00E+05 30

He etal. (PSO + SA) - - - -0.0958 -0.0958 8.10E+04 30

Zheng et al. (IPSO) - - - -0.0958 -0.0958 3.40E+05 30

Hernandez Aguirre et al. 
(NOPREDA+SR) 24 3118 24.5243 3.50E+05 -0.0958 -0.0945 3.50E+05 50

g09 giO

OPTIMUM BEST MEAN Mean FEs OPTIMUM BEST MEAN Mean FEs
Runs

P.AD. PFPR + R 680.6303 680.6325 1.83E+05 7049.7951 7167.2404 8.77E+04 25

Runarsson et al. (ES + SR) 680.6300 680.6560 3.50E+05 7054.3160 7559 1920 3 50E+05 30

Hamida et al. (ES + ASCHEA) 680.6300 680 6410 1.50E+06 7061.1300 7497.4340 1.50E+06 31

Parsopoulos et al. (global 
PSO-Co + Pena)

680.6350 680.6630 1 00E+05 - - - 20

Farmani et al. (GA + SAFF) 680 6400 680.7200 1 40E+06 7061 3400 7627 8900 1.40E+06 20

Takahama et al. (aGA)
680.6301

680.6460 680.6870 3.50E+05
7049.2480

7053.9510 7514 2330 3.50E+05 100

Takahama et al. (aNSM) 680.6301 680.6301 8.34E+04 7049.2480 7049.2480 8.34E+04 30

Landa Becerra et al. (CDE) 680 6301 680.6301 1.00E+05 7049.2481 7049.2483 1.00E+05 30

de Freitas Vaz et al. (global 
PSO + MO) 680 6300 - 1.69E+06 - - -

Hernandez Aguirre et al. 
(NOPREDA + SR)

680.6305 680.6415 3.50E+05 7142.8357 9891.6745 3.50E+05 50

911 912
Runs

OPTIMUM BEST MEAN Mean FEs OPTIMUM BEST MEAN Mean FEs

P.AD. PFPR + R 0.7499 0.7499 9.77E+04 -1.0000 -1.0000 4.95E+05 25

Runarsson et al. (ES + SR) 0.7500 0.7500 3.50E+05 -1.0000 -1.0000 3.50E+05 30

Hamida et al. (ES + ASCHEA) 0.7500 0.7500 1.50E+06 - - - 31

Farmani et al. (GA + SAFF) 0.7500 0.7500 1.40E+06 - - -

Takahama et al. (aNSM) 0.7499 0.7499 0.7499 8.34E+04 -1.0000 -1.0000 -1.0000 8.34E+04 30

Landa Becerra et al. (CDE) 0.7499 0.7580 1.00E+05 -1.0000 -1.0000 1.00E+05 30

He et al. (PSO + SA) - - - -1.0000 -1.0000 8.10E+04 30

Zheng et al. (IPSO) 0.7500 0.7500 3.40E+05 - - - 30

Hernandez Aguirre et al. 
(NOPREDA + SR)

0.7499 0.7527 3.50E+05 -1.0000 -1.0000 3.50E+05 50
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T a b l e  8 . 1 2 .  B e s t  a n d  m e a n  s o l u t i o n s  o b t a i n e d  b y  t h e  ‘P s e u d o  A d a p t i v e  P F P R  w i th  R e p a i r  o p e r a t o r ’ a n d  b y  d i f f e r e n t  
a u t h o r s  a n d  d i f f e r e n t  a p p r o a c h e s  in t h e  l i t e r a t u r e  f o r  p r o b l e m  g 1 3  f r o m  t h e  b e n c h m a r k  s u i t e  o f  c o n s t r a i n e d  p r o b l e m s  
in a p p e n d i x  II. T h e  a u t h o r s  i n c l u d e d  a r e :  ( R u n a r s s o n  & Y a o ,  2 0 0 0 ) ;  ( T a k a h a m a  & S a k a i ,  2 0 0 4 ) ;  ( T a k a h a m a  & S a k a i ,  
2 0 0 5 ) ;  ( L a n d a  B e c e r r a  & C o e l l o  C o e l l o ,  2 0 0 5 ) ;  ( Z h e n g ,  W u ,  & S o n g ,  2 0 0 7 ) ;  ( F l e r n a n d e z  A g u i r r e ,  V illa  D i h a r c e ,  & 
C o e l l o  C o e l l o ,  2 0 0 7 ) ;  a n d  ( W a n g  & Y in ,  2 0 0 8 ) .

OPTIMIZER
g13

Runs
OPTIMUM BEST MEAN FEs

P.AD. PFPR + R 0.0539 0.0545 8.64E+04 25

Runarsson et al. (ES + SR) 0.0540 00675 3.50E+05 30

Takahama et al. (aGA) 0.0540 0.0558 3.50E+05 100

Takahama et al. (aNSM)
0.0539

0.0539 0.0668 8.34E+04 30

Landa Becerra et al. (CDE) 0.0562 0.2883 1.00E+05 30

Zheng etal. (IPSO) 0.1709 0.8257 3.40E+05 30

Hernandez Aguirre et al. (NOPREDA + SR) 0.0540 0.053985 n 3.50E+05 50

Wang et al. (RSPSO) 0.0540 0.0565 3.50E+05 30

(* )  O n ly  7 ou t o f  50  runs cou ld  fin d  a fea s ib le  so lu tion  for th is problem .

8.8.1. Pressure Vessel Design (PVD)

The problem consists of minimizing the total cost of the material, forming, and welding 

of a cylindrical vessel capped at both ends by hemispherical heads. There are 4 design 

variables: x\ is the thickness of the shell (Ts), *2 is the thickness o f the head (Th), X3 is 

the inner radius (R), and X4 is the length of the cylindrical section of the vessel (L). Re

fer to Fig. 8.7 for a graphical visualization of the problem.

F ig .  8 . 7 .  I l l u s t r a t i o n  o f  t h e  P r e s s u r e  V e s s e l  D e s i g n  ( P V D )  p r o b l e m ,  t a k e n  f r o m  ( C o e l l o  C o e l l o ,  2 0 0 0 ) .  

The problem can be formulated as follows:



c 2 e c C O N S T R A I N T - H A N D L I N G Sw ansea University 
Prifysgol Abertawe

Minimize:

/ ( x )  = 0.6224-x, • x3 -x4 + 1.7781 •x 2 -x32 +3.1661 *x,2 -x4 + 19.84-X," -x3 (8.22)

Subject to:

g,(x) = -x, + 0.0193 • x3 < 0  
g 2(x) = —x2 + 0.00954 -x3 < 0

g 3(x) = —n  -x32 *x4 — — 'Ti 'X^ +1296000 < 0
(8.23)

X j — 99 < 0 ; -  Xj + 0 < 0 ; j  - 1,2 

x , — 200 <0 ; - x ,+ 1 0 < 0  ; / = 3,4J J •'

xi, X2 are constrained to integer multiples of 0.0625 (mixed-discrete version).

Best known solution (to the best of my knowledge) for the mixed-discrete version:

Best solution for the continuous version (obtained by (Auger, et al., 2007)):

x* = (0.7781686414,0.3846491626,40.3196187241,200.0000000000)
/(x * )  = 5885.332774  ̂ ’

Coello Coello (2000) and Hu, Eberhart, & Shi (2003) include a 4th constraint in their 

formulations, but it is redundant with the interval constraints. They both also set the 

lower limit of the first two variables above the actual solution they report. Hence such 

limit is relaxed here from ‘ 1’ to ‘O’.

It appears that the third coefficient in Eq. (8.22) is replaced by some authors by 

‘3.1611’, in which case the mixed-discrete optimum is /(x * )  = 6059.131296, as re

ported in (Hu, Eberhart, & Shi, 2003) (hence they solve a problem different from the 

formulation they reported). Here the problem solved is as posed in Eq. (8.22). The re

sults are shown in Table 8.13, in Table 8.14 and in Fig. 8.8 for the mixed-discrete ver

sion, and in Table 8.15, in Table 8.16, and in Fig. 8.9 for the continuous version of the 

problem. The results obtained are competitive with the best results in the literature.

x* = (0.812500,0.437500,42.098446,176.636596) 
/(x * )  = 6059.714335

(8.24)

4 9 7
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T a b l e  8 . 1 3 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  b y  t h e  ' M u l t i - S w a r m  M u l t i - S u b - n e i g h b o u r h o o d  N N B  P s e u d o  A d a p t i v e  P F P R ’ 
P S O  a n d  b y  d i f f e r e n t  a u t h o r s  a n d  d i f f e r e n t  a p p r o a c h e s  in t h e  l i t e r a t u r e  f o r  t h e  M i x e d  D i s c r e t e  P r e s s u r e  V e s s e l  D e 
s i g n  ( M D P V D )  p r o b l e m .  T h e  a u t h o r s  i n c l u d e d  a r e :  ( C o e l l o  C o e l l o ,  2 0 0 0 ) ;  ( H e  & W a n g ,  2 0 0 7 ) ;  ( T a k a h a m a  & S a k a i ,  
2 0 0 6 a ) ;  ( T a k a h a m a ,  S a k a i ,  & I w a n e ,  2 0 0 6 ) ;  ( W o r a s u c h e e p ,  2 0 0 8 ) ;  a n d  ( W a n g  & Y in ,  2 0 0 8 ) .

MDPVD OPTIIMUM BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Runs

MS-SN NNB P.AD. PFPR 6059.714335 6059.714335 6060.972012 6090.526202 100.00 80.00 1.42E+05 25

Coello Coello (GA) 6288.744500 6290.018736 6293.843232 6308 149652 - 11

He etal. (PSO+ SA) 6059.7143 . 6099.9323 6288.6770 - 8.10E+04 30

Takahama et al. (tPSO) 6059.714335 6059.7143 6136.7744 6410.0868 - - 5.00E+04 30

Takahama etal. (eDE) 6059.7143 . 6065.8767 6090.5262 . 1.00E+04 30

Worasucheep (CPSO-DD - NP=20) 6059.714334 - 6059.714353 6059.714726 - . 2.00E+05 30

Wang et al. (RSPSO) 6059.7143 - 6066.2032 6100.3196 - - 3.00E+04 30

T a b l e  8 . 1 4 .  C o o r d i n a t e s  o f  t h e  b e s t  s o l u t i o n  f o u n d  b y  t h e  ‘M S - S N  N N B  P . A D .  P F P R ’ P S O  f o r  t h e  M D P V D  p r o b l e m .

Coordinates of best solution found by the ‘MS-SN NNB P.AD. PFPR’

X\ *2 * 3 * 4

0.81250000 0.43750000 42.09844560 176.63659584

r

• Mean Best Conflict

501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501  6001 6501 7001 7501 8001  8501 9001 9501

Tim e-steps

F ig .  8 . 8 .  C o n v e r g e n c e  o f  t h e  m e a n  b e s t  s o l u t i o n  f o r  t h e  M i x e d - D i s c r e t e  P r e s s u r e  V e s s e l  D e s i g n  ( M D P V D )  p r o b l e m .

T a b l e  8 . 1 5 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  b y  t h e  ‘M u l t i - S w a r m  M u l t i - S u b - n e i g h b o u r h o o d  N N B  P s e u d o  A d a p t i v e  P F P R ’ 
P S O  a n d  b y  d i f f e r e n t  a u t h o r s  a n d  d i f f e r e n t  a p p r o a c h e s  in t h e  l i t e r a t u r e  f o r  t h e  P r e s s u r e  V e s s e l  D e s i g n  ( P V D )  p r o b 
l e m .  T h e  a u t h o r s  i n c l u d e d  a r e :  ( d e  F r e i t a s  V a z  & d a  G r a g a  P i n t o  F e r n a n d e s ,  2 0 0 6 )  a n d  ( F o r y s  & B o c h e n e k ,  2 0 0 4 ) .

PVD OPTIMUM BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Runs

MS-SN NNB P.AD. PFPR 5885.333005 5890.160720 5896.662569 5930.479983 100.00 0.00 1.89E+05 25

de Freitas Vaz et al. (global PSO + MO) 5885.332774 5885.33 - - - - 8.79E+05 -

Forys (PSO with 2-level sociality) 5885.49 - - - - - -

4 9 8
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T a b l e  8 . 1 6 .  C o o r d i n a t e s  o f  t h e  b e s t  s o l u t i o n  f o u n d  b y  t h e  ‘M S - S N  N N B  P . A D .  P F P R ’ P S O  f o r  t h e  P V D  p r o b l e m .

Coordinates of best solution found by the ‘MS-SN NNB P.AD. PFPR’

*2 *3 •*4

0.77816878 0.38464923 40.31962573 199.99990247

r

-Mean Best Conflict

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

F ig .  8 . 9 .  C o n v e r g e n c e  o f  t h e  m e a n  b e s t  s o l u t i o n  f o r  t h e  c o n t i n u o u s  P r e s s u r e  V e s s e l  D e s i g n  ( P V D )  p r o b l e m .

8.8.2. Welded Beam Design (WBD)

The problem consists of minimizing the cost of a welded beam subject to constraints on 

shear stress (rmax), bending stress in the beam (amax), buckling load on the bar (Pc), end 

deflection of the beam (<5max), and side constraints. There are 4 design variables. Refer to 

Fig. 8.10 for a graphical visualization of the problem.

Fig .  8 . 1 0 .  I l l u s t r a t i o n  o f  t h e  W e l d e d  B e a m  D e s i g n  ( W B D )  p r o b l e m ,  t a k e n  f r o m  ( C o e l l o  C o e l l o ,  2 0 0 0 ) .  

The formulation of the problem is as follows:

4 9 9
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Minimize:

/ ( x )  = 1.10471 -jc,2 -jc2 +0.04811 -jc3 -jc4 -(14 + jc2) (8.26)

Subject to:

g,(x) = r(x )-r ,„ „  < 0  

g ,(x ) = <T(x)-<Traas < 0

g„(x) = 0.10471 -x,2 +0.04811 -(l4 + x-,)-5  < 0
g 5(x) = 0.125 -  jc, < 0 
g 6(x) = £ ( x ) - £ max < 0  

g 7(x) = P - JPr(x )< 0

(8.27)

where:

Xj - 2 < 0  ; - X j  +0.1 < 0  ; j  —1,4

xk — 10 < 0 ; -  xk + 0.1 < 0 ; k  = 2 ,3

P = 6000 lb ; L = \4 in ; £  = 3 0 x l0 6 /»* ; G = \ 2 x \ 0 6 psi

"̂max = 1 3600 PSi ; ^nax = 30000  Psi \ m̂ax = 0-25 in
P

r(x) = J(r')2+ 2 T V ^  + (r") r =

M R
J

M = P

J  — 2-\  V2 • x. • jc, •

v

2 /

R = J —
2 f  
-  +

1 2
+

jc, + x-

V 4

<t ( x )  =

X, + x.

* ) - - £ ¥ -  ; * M =E - x 3 - x 4

4.013 • E •
2 6 

x 3 - x 4

36
Zr

2

6 P L
2*

x 4 • x 3

1 _ 3
2 1  V 4 G

(8.28)

Best known solution (to the best o f my knowledge):

x* = (0.205730,3.470489,9.036624,0.205730) 

/(x * )  = 1.724852
( 8 . 2 9 )

5 0 0
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The results are offered in Table 8.17, in Table 8.18, and in Fig. 8.11, where the solution 

is found in every run. Given that termination conditions other than a maximum number 

of time-steps are not activated yet, the search extends far beyond necessary.

T a b l e  8 . 1 7 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  b y  t h e  ‘M u l t i - S w a r m  M u l t i - S u b - n e i g h b o u r h o o d  N N B  P s e u d o  A d a p t i v e  P F P R ’ 
P S O  a n d  b y  d i f f e r e n t  a u t h o r s  a n d  d i f f e r e n t  a p p r o a c h e s  in t h e  l i t e r a t u r e  f o r  t h e  W e l d e d  B e a m  D e s i g n  ( W B D )  p r o b l e m .  
T h e  a u t h o r s  i n c l u d e d  a r e :  ( C o e l l o  C o e l l o ,  2 0 0 0 ) ;  ( d e  F r e i t a s  V a z  & d a  G r a g a  P i n t o  F e r n a n d e s ,  2 0 0 6 ) ;  ( F o r y s  & 
B o c h e n e k ,  2 0 0 4 ) ;  ( H e  & W a n g ,  2 0 0 7 ) ;  ( T a k a h a m a  & S a k a i ,  2 0 0 6 a ) ;  ( T a k a h a m a ,  S a k a i ,  & I w a n e ,  2 0 0 6 ) ;  a n d  
( W o r a s u c h e e p ,  2 0 0 8 ) .

WBD OPTIIMUM BEST MEDIAN MEAN WORST
[%1

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Runs

MS-SN NNB P.AD. PFPR 1.724852 1.724852 1.724852 1.724852 100.00 100.00 4.08E+05 25

Coello Coello (GA) 1.748309 1.773586 1.771973 1 785835 . . . 11

de Freitas Vaz et al. (global PSO + MO) 1.814290 . _ . . 9.60E+05

Forys (PSO with 2-level sociality)
1.724852

1 724800 . . _
He etal. (PSO+ SA) 1.724852 _ 1.749040 1.814295 . 8 10E+04 30

Takahama et al. (ePSO) 1.724900 . 1.725200 1.735800 . 5.00E+04 30

Takahama et al. (eDE) 1.724900 1.724900 1.724900 1.724900 - 1.00E+04 30

Worasucheep (CPSO-DD - NP=20) 1.724852 1.724852 1.724852 1.724852 - - 2.00E+05 30

T a b l e  8 . 1 8 .  C o o r d i n a t e s  o f  t h e  b e s t  s o l u t i o n  f o u n d  b y  t h e  ‘M S - S N  N N B  P . A D .  P F P R '  P S O  f o r  t h e  W B D  p r o b l e m .

Coordinates of best solution found by the ‘MS-SN NNB P.AD. PFPR’

*2 *3 *4

0.20572964 3.47048867 9.03662391 0.20572964

501 1001

■ Mean Best Conflict
1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

T im e-steps

1.80E+00

1.79E+00

1.78E+00

1.77E+00

1.76E+00

1.75E+00

1.74E+00

1.73E+00

1.72E+00

1.71E+00

1.70E+00

F ig .  8 . 1 1 .  C o n v e r g e n c e  o f  t h e  m e a n  b e s t  s o l u t i o n  f o r  t h e  W e l d e d  B e a m  D e s i g n  ( W B D )  p r o b l e m .

5 0 1
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8.8.3. Tension/Compression Spring Design (TCSD)

The problem consists o f minimizing the weight o f a tension/compression spring subject 

to constraints on minimum deflection, shear stress, surge frequency, restrictions on the 

outside diameter, and side constraints. There are 3 design variables: x\ is the wire di

ameter, X2 is the mean coil diameter, and X3 is the number of active coils, which is not 

restricted to integer values in their formulation (see Fig. 8.12).

Fig .  8 . 1 2 .  I l l u s t r a t i o n  o f  t h e  T e n s i o n / C o m p r e s s i o n  S p r i n g  D e s i g n  p r o b l e m  ( T C S D ) ,  t a k e n  f r o m  ( C o e l l o  C o e l l o ,  2 0 0 0 ) .

The problem is formulated as follows:

Minimize:

p p D

(t

/ ( x )  = x,2 -x2 -(*3+ 2 ) (8.30)

Subject to:

g,(x) = l -
x 1 • X

< 0

71785-x,

4 • x 2 - x  
12566 - \x* •. 
. 140.45-x,

(8.31)

x, -  2 < 0 ; -  x, + 0.05 < 0

x2 —1.3 < 0  ; -  x., + 0.25 < 0
x3 - 1 5 < 0  ; — x3 + 2 < 0

Best known solution (to the best o f my knowledge):

5 0 2
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x* -  (0.051755,0.358316,11.195851)
(8.32)

/(x * )  = 0.012665 v ;

The results are offered in Table 8.19, in Table 8.20, and in Fig. 8.13, where the pro

posed approach finds the best results. Notice that there is a much smaller number of FEs 

in (He & Wang, 2007). As before, there are many more FEs than needed here, where the 

aim is to keep the settings unchanged.

T a b l e  8 . 1 9 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  b y  t h e  ' M u l t i - S w a r m  M u l t i - S u b - n e i g h b o u r h o o d  N N B  P s e u d o  A d a p t i v e  P F P R ’ 
P S O  a n d  b y  d i f f e r e n t  a u t h o r s  a n d  d i f f e r e n t  a p p r o a c h e s  in t h e  l i t e r a t u r e  f o r  t h e  T e n s i o n / C o m p r e s s i o n  S p r i n g  D e s i g n  
( T C S D )  p r o b l e m .  T h e  a u t h o r s  i n c l u d e d  a r e :  ( C o e l l o  C o e l l o ,  2 0 0 0 ) ;  ( d e  F r e i t a s  V a z  & d a  G r a g a  P i n t o  F e r n a n d e s ,  
2 0 0 6 ) ;  a n d  ( H e  & W a n g ,  2 0 0 7 ) .

T C S D OPTIIMUM BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Runs

MS-SN NNB P.AD. PFPR

0.012665

0.012665 0.012667 0.012670 0.012686 100.00 100.00 1.55E+05 25

Coello Coello (GA) 0.012705 0.012756 0.012769 0.012822 - - . 11

de Freitas Vaz et al. (global PSO + MO) 0.013193 . - - - 7.58E+05 .
He etal. (PSO + SA) 0.012665 - 0.012707 0.012719 8.10E+04 30

T a b l e  8 . 2 0 .  C o o r d i n a t e s  o f  t h e  b e s t  s o l u t i o n  f o u n d  b y  t h e  ‘M S - S N  N N B  P . A D .  P F P R ’ P S O  f o r  t h e  T C S D  p r o b l e m .

Coordinates of best solution found by the ‘MS-SN NNB P.AD. PFPR’

■*i Xi *3
0.05168288 0.35656916 11.29768179

• Mean Best Conflict

1 501 1001 1501 2001 2501 3001 3501 4001  4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

2.00E-02

1.90E-02

1.80E-02

1.70E-02

1.60E-02

1.50E-02

1.40E-02

1.30E-02

1.20E-02

1.10E-02

1.00E-02

9.00E-03

8.00E-03

7.00E-03

Fig. 8 .1 3 .  C o n v e r g e n c e  o f  t h e  m e a n  b e s t  s o lu t io n  for  t h e  T e n s i o n / C o m p r e s s i o n  S p r in g  D e s i g n  ( T C S D )  p r o b le m .

5 0 3
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8.8*4, Himmelblau’s Nonlinear Problem (HNP)

The problem consists of 5 variables subject to 3 inequality constraints in the form of 

intervals, and also subject to interval constraints. The problem is formulated as follows:

term in the conflict function is formulated in (Coello Coello, 2000) as 37.29329 - x , ,  

while other authors formulate it as 37.293239 - x ,  (e.g. problem g04). Likewise, the third 

term in g,(x) can also be found in the literature as 0.0006262 - x ,  : x 4 (e.g. g04). Here 

the formulation is as in (Hu, Eberhart, & Shi, 2003). This problem is included here de

spite not being an engineering problem because it is in the test suites both in (Coello 

Coello, 2000) and in (Hu, Eberhart, & Shi, 2003).

The results are shown in Table 8.21, in Table 8.22, and in Fig. 8.14.

Minimize:

/ ( x )  = 5.3578547 - x 3 2 +0.8356891 - x ,  - x 5 + 37.2932239 - x ,  -40792.141 (8.33)

Subject to:

g, (x) = 85.334407 + 0.0056858 • x2 • x 5 + 0.00026 • x, • x4 — 0.0022053 • x3 • x5 

g 2(x) = 80.51249 + 0.0071317• x2 • x5 + 0.0029955• x, • x2 + 0.0021813-x32 
g 3(x) = 9.300961 + 0.0047026 • x3 x5 + 0.0012547 • x, *x3 + 0.0019085 -x3 * x 4 

0 < g , ( x ) < 9 2
90 < g 2(x) < 110 

20 < g 3(x) < 25
(8.34)

x ,  - 102 < 0 ; - x ,  +  78 < 0
x 2 - 4 5 < 0  ; - x 2 + 3 3 < 0

x ,  -4 5  < 0 ; — x. +27 < 0 ; / = 3,4,5J J ^

Best known solution (to the best of my knowledge):

x* -  (78.000000,33.000000, 27.070997,45.000000,44.969242) 

/(x * )  = -31025.561420
(8.35)

Differences can be found in the literature in some formulations. For instance, the 3ui
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T a b l e  8 . 2 1 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  b y  t h e  ‘M u l t i - S w a r m  M u l t i - S u b - n e i g h b o u r h o o d  N N B  P s e u d o  A d a p t i v e  P F P R ’ 
P S O  a n d  b y  d i f f e r e n t  a u t h o r s  a n d  d i f f e r e n t  a p p r o a c h e s  in t h e  l i t e r a t u r e  f o r  t h e  H i m m e l b l a u ’s  N o n l i n e a r  P r o b l e m  
( H N P ) .  T h e  a u t h o r s  i n c l u d e d  a r e :  ( C o e l l o  C o e l l o ,  2 0 0 0 ) ;  ( d e  F r e i t a s  V a z  & d a  G r a g a  P i n t o  F e r n a n d e s ,  2 0 0 6 ) ;  
( T a k a h a m a  & S a k a i ,  2 0 0 6 a ) ;  ( T a k a h a m a ,  S a k a i ,  & I w a n e ,  2 0 0 6 ) ;  a n d  ( W o r a s u c h e e p ,  2 0 0 8 ) .

H N L P OPTIIMUM BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Runs

MS-SN NNB P.AD. PFPR -31025.561420 -31025.561420 -31025.561420 •31025.561420 100.00 100.00 2.80E+05 25

Coello Coello (GA) -31020.859000 -31017.213691 -30984.240703 -30792.407738 _ _ 11

de Freitas Vaz et al. (global PSO + MO) -31012.100000 . . . - - 7.84E+05 .

Takahama etal. (ePSO)
u&O.OuH aU

-31025.559900 . -31025.543200 -31025.467400 . - 5.00E+04 30

Takahama etal. (eDE) -31025.560100 . -31025.557900 -31025.549000 . - 1.00E+04 30

Worasucheep (CPSO-DD - NP=20) '-31026.647264 (*) - -31002.170814 -30994.129379 - - 2.00E-05 30

T a b l e  8 . 2 2 .  C o o r d i n a t e s  o f  t h e  b e s t  s o l u t i o n  f o u n d  b y  t h e  ‘M S - S N  N N B  P  A D .  P F P R ’ P S O  f o r  t h e  H N P .

Coordinates of best solution found by the ‘MS-SN NNB P.AD. PFPR’

X l X l X l *4 * 5

78.00000000 33.00000000 27.07099711 45.00000000 44.96924255

-3.00E+04

-3.02E+04

• Mean Best Conflict
1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501  6001 6501 7001 7501 8001  8501 9001 9501

Tim e-steps

F ig .  8 . 1 4 .  C o n v e r g e n c e  o f  t h e  m e a n  b e s t  s o l u t i o n  f o r  t h e  T e n s i o n / C o m p r e s s i o n  S p r i n g  D e s i g n  ( T C S D )  p r o b l e m .

8.8.5. 10-Bar Plane Truss

This is a classical engineering problem used to test optimization algorithms. However, 

there are different versions in the literature, some of them differing in minor details that 

may go unnoticed. Furthermore, numerical comparisons between results obtained from 

different formulations are not infrequent. The formulations of the problem implemented

5 0 5
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here are taken from (Fleury & Schmit, 1980) and from (Haftka & Giirdal, 1992), and are 

expressed in SI units. The analysis problem is as shown in Fig. 8.15 and Eq. (8.36).

Aluminium 

E = 68.95 x 106 kN/m2 

p  = 2768 kg/nr

< <Ja = ±172375 kN/m: (except for member 9) (8.36)

cr'9) =3-(±172375 kN/m2)

A ■ = xmin = 0.6452 cm2mm min

p  = (0 -  444800N o)

1 0 - b a r  t r u s s

F ig .  8 . 1 5 . 1 0 - B a r  T r u s s  p r o b l e m ,  w h e r e  t h e  o b j e c t i v e  is  t o  m i n i m i z e  t h e  m a s s  w h i l e  c o m p l y i n g  w i th  c o n s t r a i n t s .

The objective of the optimization problem is to minimize the mass of the structure, sub

ject to constraints. Hence the variables are given by the cross sections of the members. 

Different optimization problems can be posed according to the constraints imposed.

8.8.5.1. Stress Constraints

The problem is then formulated as follows:

Minimize:

10
/ ( x )  =  2 >  ( 8 . 3 7 )

Subject to:
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g,.(x) = max

x - 2 0 0 < 0

(7, CJ
V - l

(«')
< 0

- * . +  0.6452 < 0

i = 1.....10

j  =  l  1 0

(8.38)

where /,• is the length of member ‘f  and cr*0 its allowable stress. The upper bound of 

the variables (200) is arbitrarily set here to a high value.

The results are shown in Table 8.23, in Table 8.24, and in Fig. 8.16, where those ob

tained by other authors are also provided for reference. Other settings delaying conver

gence -e.g. PSO-RRR2-1 with 100 particles and 5000 time-steps (i.e. approximately the 

same FEs)- lead to better results. However the same settings as before are maintained 

for consistency (except that the NNB was deactivated for the truss experiments).

T a b l e  8 . 2 3 .  S t a t i s t i c a l  r e s u l t s  o b t a i n e d  b y  t h e  ' M u l t i - S w a r m  M u l t i - S u b - n e i g h b o u r h o o d  P s e u d o  A d a p t i v e  P F P R ’ P S O  
a n d  b y  d i f f e r e n t  a u t h o r s  a n d  d i f f e r e n t  a p p r o a c h e s  in t h e  l i t e r a t u r e  f o r  t h e  1 0 - B a r  T r u s s  p r o b l e m  w i th  s t r e s s  c o n 
s t r a i n t s .  T h e  a u t h o r s  i n c l u d e d  a r e :  ( H a f t k a  & G u r d a l ,  1 9 9 2 ) ;  ( B u r t o n ,  2 0 0 4 )  a n d  ( G h a s e m i ,  H i n t o n ,  & W o o d ,  1 9 9 9 ) .

1 0 - B a r  T r u s s  ( S t r e s s )
OPTIIMUM

(SI)
BEST MEDIAN MEAN WORST

[%]
Feasible

Solutions

[%]
Successful
Solutions

Mean
FEs

Runs

MS-SN P.AD. PFPR 684.687377 706.201241 706.782877 744.425308 100.00 0.00 2.29E+05 25

(Haftka & Gurdal. 1992) (Unear) 679.934408 _ . .

(Haftka & Gurdal, 1992) (Reciprocal) 684.016736 . . _ . .

(Haftka & Gurdal, 1992) (Conservative) 694.902944 . - - _ _

(Haftka & Gurdal, 1992) (Quadratic)
679.299379

679.934408 . _ . _ _ .

(Haftka & Gurdal, 1992) (Recip-quadratic) 679.934408 . _ _ - .

(Haftka & Gurdal, 1992) (Linear force) 679.934408 . . . . _ .

(Burton, 2004) (GA re-birth) 692.634984 - . _ . .

(Ghasemi, Hinton, & Wood, 1999) (GA) 696.263720 _ _ . - 4.00E+04 .

(Ghasemi, Hinton, & Wood, 1999) (GA re-birth) 687.645472 - - - - - 4.00E+04 .

T a b l e  8 . 2 4 .  C o o r d i n a t e s  o f  t h e  b e s t  s o l u t i o n  f o u n d  b y  t h e  ‘M u l t i - S w a r m  M u l t i - S u b - n e i g h b o u r h o o d  P s e u d o  A d a p t i v e  
P F P R ’ P S O  a n d  b y  d i f f e r e n t  a u t h o r s  a n d  d i f f e r e n t  a p p r o a c h e s  in t h e  l i t e r a t u r e  f o r  t h e  1 0 - B a r  T r u s s  p r o b l e m  w i th  
s t r e s s  c o n s t r a i n t s .  T h e  a u t h o r s  i n c l u d e d  a r e :  ( H a f t k a  & G u r d a l ,  1 9 9 2 ) ;  ( B u r t o n ,  2 0 0 4 )  a n d  ( G h a s e m i ,  H i n t o n ,  & 
W o o d ,  1 9 9 9 ) .

Coordinates of best solution

Xl Xl x4 x$ *6 Xl *8 *9 *10

OPTIMUM (SI) 50.967640 0.645160 52.257960 25.161240 0.645160 0.645160 37.419280 35.548316 23.741888 0.903224

MS-SN P.AD. PFPR 49.673107 1.935305 53.543717 23.868901 0.645200 1.935305 39.229592 33.755724 22.503816 2.736934

(Burton, 2004) (GA re-birth) 47.980549 3.703218 22.174149 55.328922 0.651612 3.716122 41.735400 31.309615 20.838668 5.245151

(Ghasemi, Hinton, & Wood, 1999) (GA re-birth) 48 503129 2.954833 54 386988 22 864470 0.645160 2967736 40.561209 32.206387 21 612860 4.161282

5 0 7
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1.00E+03

9.50E+02

9.00E+02

8.50E+02

8.00E+02

7.50E+02

7.00E+02

6.50E+02

5.00E + 02

5.50E+02M e a n  B est C onflict

5.00E+02

1 501  1001 1501 2001 2501 3001 3501 4001 4501 5001 5501  6001 6501 7001 7501 8001 8501 9001 9501

T im e-steps

Fig. 8 .16. C o n v e rg e n c e  of the  m e a n  b e s t  solution for the  10-Bar T ru s s  problem with s t r e s s  co n s t ra in ts  only.

The optimum solution in Table 8.23 is the one reported in (Haftka & Gurdal, 1992, p. 

244), where the US customary units are turned into the SI units considering the mass 

equivalences as 1 lb = 0.453592 kg.

Also note that the lower limit for the variables were set in (Haftka & Gurdal, 1992) to 

0.01 inches (equal to 0.64516 cm) whereas the problem was solved here in the SI sys

tem as posed in (Fleury & Schmit, 1980), where the lower limit was set to 0.6452 cm 

(see * 5  in Table 8.24). In addition, the variables for the PSO search are in cm2 while the 

Finite Element (FE) analysis is in m 2. These changes o f units produce round-off errors.

As stated by Haftka and Gurdal (1992), the Optimal Design and the Fully Stressed De

sign (FSD) differ in this problem (see (Haftka & Gurdal, 1992, p. 244)). Thus, although 

the objective function is linear, the constraints seem to generate local attractors where 

they are active. The details o f the cross sections (areas) and stresses are offered in Table 

8.25 for the optimal design o f the 10-Bar Truss with Stress Constraints from (Haftka & 

Gurdal, 1992) (mass = 679.299379 kg); and in Table 8.26 for the best design found by 

the MS-SN P.AD. PFPR PSO (mass = 684.687377 kg). Active or nearly active con

straints are shown in bold, red font. As it can be observed, the stresses on each bar are 

very similar despite the noticeable difference in the designs. This is even more notice

able when observing the FSD in (Haftka & Gurdal, 1992, p. 244). The results o f the op

timal design by the PSO-RRR2-1 P.AD. PFPR (100-5000) and those o f  the FSD are 

shown in Table 8.27, in Table 8.28, and in Fig. 8.24.
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T ab le  8 .25  Details of th e  FE a n a ly s is  of the  optimal d es ign  in (Haftka & Gurdal ,  1992) of th e  10-Bar  T ru s s  prob lem  
with s t r e s s  cons tra in ts .

Optimal Design o f the 10-BarTruss with Stress Constraints (mass = 679299379 kg) from (Haftka & Gurdal, 1992)

Variables Bars Areas [cm2) Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress

1 1 50.9676 0.6452 7899.50 1.72E+08 -1.72E+08 1.72E+08 99.99

2 2 0 6452 0.6452 100.00 1.72E+08 -1.72E+08 1.72E+08 99.50

3 3 522580 0.6452 8099 50 -1.72E+08 -1.72E+08 1.72E+08 99.99

4 4 25.1612 0.6452 3899.75 -1.72E+08 -1.72E+08 1.72E+08 100.00

5 5 0.6452 0.6452 100.00 -4.86E+05 -1.72E+08 1.72E+08 0.28

6 6 0.6452 0.6452 100.00 1.72E+08 -1.72E+08 1.72E+08 99.50

7 7 37.4193 0.6452 5799.64 1.72E+08 -1.72E+08 1.72E+08 99.96

8 8 35.5483 0.6452 5509.66 -1.73E+08 -1.72E+08 1.72E+08 100.10

9 9 23 7419 0.6452 3679.77 2.58E+08 -5.17E+08 5.17E+08 49.96

10 10 0.9032 0.6452 139.99 -1.73E+08 -1.72E+08 1.72E+08 100.52

T ab le  8.26. Details of the  FE an a ly s is  of th e  b e s t  d es ig n  of th e  10-Bar T ru s s  p rob lem  with s t r e s s  c ons tra in ts  found by 
the  ‘MS-SN P.AD. P F P R ’ P S O .

Best Design o f the 10-Bar Truss with Stress Constraints (mass = 684.687377 kg) by the MS-SN PAD. PFPR PSO

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress

1 1 49.6731 0.6452 7698.87 1.72E+08 -1.72E+08 1.72E+08 100.00

2 2 1.9353 0.6452 299.95 1.72E+08 -1.72E+08 1.72E+08 100.00

3 3 53.5437 0.6452 829878 -1.72E+08 -1.72E+08 1.72E+08 100.00
4 4 23.8689 0.6452 3699.46 -1.72E+08 -1.72E+08 1.72E+08 100.00

5 5 06452 0.6452 100.00 -1.00E-07 -1.72E+08 1.72E+08 0.00
6 6 1.9353 0.6452 299 95 1.72E+08 -1.72E+08 1.72E+08 100.00
7 7 39.2296 0.6452 6080.22 1.72E+08 -1.72E+08 1.72E+08 100.00
8 8 33.7557 0.6452 5231.82 -1.72E+08 -1.72E+08 1.72E+08 100.00
9 9 22 5038 0.6452 3487.88 2 59E+08 -5.17E+08 5.17E+08 50 00
10 10 2.7369 0.6452 424.19 -1.72E+08 -1.72E+08 1.72E+08 100.00

Tab le  8.27. Statistical r e su l t s  ob ta in ed  by th e  ‘P S O -R R R 2 -1  P s e u d o  A daptive P F P R ’ an d  by th e  Fully S t r e s s e d  D e
sign (FSD) in (Haftka & Gurdal ,  1992) for the  10-Bar T ru s s  p roblem  with s t r e s s  cons tra in ts .

10-BarTruss (Stress) OPTIIMUM
(SI)

BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Runs

PSO-RRR2-1 P.AD. PFPR (100-5000)
679.299379

682.145601 699.785190 698.332731 709.496934 100.00 0.00 6.08E+04 25

(Haftka & Gurdal, 1992) (FSD) 782.536918 - - - - -

Tab le  8.28 .  C o o rd in a te s  of the  b e s t  solution found by th e  ‘P S O -R R R 2 -1  P s e u d o  Adaptive  P F P R ’ a n d  by th e  Fully 
S t r e s s e d  Des ign  (FSD ) in (Haftka & Gurdal,  1992) for the  10-Bar T ru s s  p rob lem  with s t r e s s  cons tra in ts .

Coordinates of best solution

* 2 * 3 *4 * 5 * 6 * 7 * 8 x 9 * 10

OPTIMUM (SI) 50.967640 0.645160 52.257960 25.161240 0.645160 0.645160 37.419280 35.548316 23.741888 0.903224

PSO-RRR2-1 P.AD. PFPR (100-5000) 50.275648 1.332764 52.941176 24.471442 0.645200 1.332764 38.377471 34.607845 23.071896 1.884813

(Haftka & Gurdal, 1992) (FSD) 26.516076 25.096724 76.709524 0.709676 0645160 25.096724 71.999856 0.967740 0.645160 35.548316
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 M ea n  Best Conflict

Time-steps

Fig. 8 .17. C o n v e rg e n c e  of the  m e a n  b e s t  solution for the  10-Bar T ru s s  problem  with s t r e s s  co n s t ra in ts  only found by 
the  'P S 0 - R R R 2 -1  P.AD. P F P R  (100-5000) ' .

The analysis details are shown in Table 8.29 for the optimal design by the PSO-RRR2-1 

P.AD. PFPR, and in Table 8.30 for the FSD provided in (Haftka & Gurdal, 1992).

Tab le  8.29. Details of the  FE an a ly s is  of the  b e s t  d es ig n  of the  10-Bar T ru s s  p roblem  with s t r e s s  c ons tra in ts  found by 
the  ‘P S O -R R R 2 -1  (100-5000)  P AD. P F P R ’.

Best Design of the 10-BarTruss with Stress Constraints (mass = 682.145601 kg) by the PSO-RRR2-1 (100-5000) PAD. PFPR PSO

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress

1 1 502756 0.6452 7792.26 1.72E+08 -1.72E+08 1.72E+08 100.00
2 2 1.3328 0.6452 206 57 1 72E+08 -1.72E+08 1.72E+08 100.00
3 3 52 9412 0.6452 8205 39 -1 72E-08 -1.72E+08 1.72E-08 100.00
4 4 24 4714 0.6452 379285 -1 72E+08 -1.72E+08 1.72E+08 100.00
5 5 0 6452 0.6452 100.00 1.50E-01 -1.72E+08 1.72E+08 0.00
6 6 1.3328 0.6452 206 57 1 72E+08 -1.72E+08 1.72E+08 100.00
7 7 383775 0.6452 5948.15 1 72E+08 -1.72E+08 1.72E+08 100.00
8 8 34.6078 0.6452 536389 -1.72E+08 -1.72E+08 1.72E+08 100.00
9 9 23.0719 0.6452 357593 2 59E+08 -5.17E+08 5.17E+08 50.00
10 10 1.8848 0.6452 292.13 -1.72E+08 -1.72E+08 1.72E+08 100.00

T ab le  8.30. Details of th e  FE  ana lys is  of th e  fully s t r e s s e d  d es ig n  in (Haftka & Gurdal,  1992) of th e  10-Bar T ru s s  
problem  with s t r e s s  cons tra in ts .

Fully Stressed Design (FSD) of the 10-BarTruss with Stress Constraints (mass = 782.536918 kg) from (Haftka & Gurdal, 1992)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress

1 1 265161 0.6452 4109.75 1.72E+08 -1.72E+08 1.72E+08 99.90
2 2 25 0967 0.6452 3889.76 1.72E+08 -1.72E+08 1.72E+08 100.07
3 3 76.7095 0.6452 11889.26 -1 72E+08 -1.72E+08 1.72E+08 100.02
4 4 0.7097 0.6452 109.99 -1 67E+08 -1.72E+08 1.72E+08 97.17
5 5 0.6452 0.6452 99.99 -8 29E+05 -1.72E+08 1.72E+08 0.48
6 6 25.0967 0.6452 3889.76 1.72E+08 -1.72E+08 1.72E+08 100.07
7 7 71.9999 0.6452 11159.31 1.72E+08 -1.72E+08 1.72E+08 100.02
8 8 0.9677 0.6452 149.99 -1 73E+08 -1.72E+08 1.72E+08 100.32
9 9 0.6452 0.6452 99.99 2.61 E+08 -5.17E+08 5.17E+08 50.39
10 10 35 5483 0.6452 5509.66 -1.72E+08 -1.72E+08 1.72E+08 99.91
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As shown in Table 8.25, Table 8.26, Table 8.29, and Table 8.30, noticeably different 

designs may lead to the bars in the truss being subjected to very similar stresses.

Comparing to other authors’ results, those obtained by the MS-SN P.AD. PFPR are 

competitive.

8.8.5.2. Stress and Displacements Constraints Case 1

This is the same problem as in section 8.8.5.1 but with two additional constraints:

1) ^-displacement o f  node ‘1’ equals uyX = -0 .0 5 0 8  m

2) y-displacement o f  node ‘3 ’ equals uy3 = -0 .0254 m

Therefore Eq. (8.38) is replaced by Eq. (8.39). Beware that the displacements are 

directly called from the analysis (in [m]) whereas the limits to the variables are used 

within the PSO search (in [cm2]).

Therefore there are now 10 interval constraints, 10 inequality constraints, and 2 equality 

constraints. Notice that there is a mistake in the formulation o f the displacement limits 

for node 3 in (Haftka & Gurdal, 1992). The results are shown in Table 8.31, in Table 

8.32, and in Fig. 8.18. The solution obtained in (Fleury & Schmit, 1980) is also reported 

for reference.

Recall that the equality constraints in Eq. (8.39) are replaced by the inequality 

constraints in Eq. (8.40) in order to tackle the problem with a PSO optimizer. Hence 

solutions marginally below the actual optimal are possible. Refer to Table 8.31, where 

the optimal solution reported for this problem is as in (Fleury & Schmit, 1980).

g,.(x) = max
W  J  J

(8.39)

jc, - 2 0 0 < 0  ; -  jc(. + 0.6452 < 0 ; / = !,.. .,10
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g n (x) = abs

g 12(x) = abs

• vl

0.0508 

u .

+ 1

'y 3

0.0254
+ 1

< 7 o /  = 1 0

< T o l„  = 1 0eq

(8.40)

T ab le  8.31. Statistical r esu l ts  ob ta in ed  by the  ‘Multi-Swarm Multi-Sub-neighbourhood  P s e u d o  A daptive  P F P R ’ P S O  
an d  by (Fleury & Schmit,  1980) for th e  10-B ar  T ru s s  problem  with s t r e s s  a n d  two equali ty  c ons tra in ts  (y- 
d isp la c e m e n ts  of n o d e s  1 ’ a n d  ‘3 ’).

10-BarTruss
(Stress & Displacement 1)

OPTIIMUM
(SI)

BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Runs

MS-SN P.AD. PFPR
1836.610000

1836.311164 1838.259962 1838.427791 1841.668990 100.00 4.00 1.02E+05 25

(Fleury & Schmit, 1980) 1836.610000 - - - - - -

T ab le  8.32. C o o rd in a te s  of the  b e s t  so lu tions found  by the  ‘MS-SN P.AD. P F P R '  and  by Fleury  a n d  Schm it  (1980) for 
th e  10-Bar T ru ss  prob lem  with s t r e s s  and  two equali ty  cons t ra in ts  (y -d isp lacem en ts  of n o d e s  ‘1’ a n d  ‘3 ’).

Coordinates of best solution

* i Xl * 3 x . * 5 *6 Xl Jf* * 9 *10

MS-SN P.AD. PFPR 145.291157 8.964421 139.789818 54.594323 0.645286 0.645200 81.766020 94.085914 76.859520 12.864237

(Fleury & Schmit, 1980) 146.2000 9.0390 139.2000 54 4200 0.6452 0.6452 81.8800 93.8100 76.9700 12.7900

M e a n  B est C onflict

T im e-steps

Fig. 8.18. C o n v e rg e n c e  of the  m e a n  b e s t  solution for 10-Bar T ru s s  prob lem  with s t r e s s  a n d  2 equali ty  c ons tra in ts  (y- 
d is p la c e m e n ts  of n o d e s  ‘1’ an d  ‘3 ’).

The details o f the o f the FE analysis o f the optimal design for the 10-Bar Truss problem 

with Stress and Displacement Constraints (Case 1) from (Fleury & Schmit, 1980)
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(where mass = 1836.61 kg) are offered in Table 8.33 and in Table 8.34; whereas those 

o f the best design found by the MS-SN P. AD. PFPR PSO (mass = 1836.311164 kg) are 

offered in Table 8.35 and in Table 8.36.

Tab le  8.33. C r o s s  s e c t io n s  ( a re a s )  a n d  s t r e s s e s  de ta i ls  from the  FE ana lys is  of th e  optimal d e s ig n  in (Fleury & 
Schmit,  1980) of th e  10-B ar  T ru s s  prob lem  with s t r e s s  a n d  d i sp la c e m e n t  co n s t ra in ts  ( C a s e  1).

(Fleury & Schmit, 1980) - 10-Bar Truss with Stress & Displacement Constraints 1 (mass = 1836.61 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress

1 1 146.2000 0.6452 22659.64 6.02E+07 -1.72E+08 1.72E+08 34.94

2 2 9.0390 0.6452 1400.96 1.23E+07 -1.72E+08 1.72E+08 7.14

3 3 139.2000 0.6452 21574.71 -6.46E+07 -1.72E+08 1.72E+08 37.46

4 4 54 4 200 0.6452 8434.59 -7.97E+07 -1.72E+08 1.72E+08 46.23

5 5 0 6452 0.6452 100.00 2.98E+07 -1.72E+08 1.72E+08 17.31

6 6 0.6452 0.6452 100.00 1.72E+08 -1.72E+08 1.72E+08 99.97

7 7 81.8800 0.6452 12690.64 7.84E+07 -1.72E+08 1.72E+08 4549

8 8 938100 0.6452 14539.68 -6.57E+07 -1.72E+08 1.72E+08 38.10

9 9 76.9700 0.6452 11929.63 7.97E+07 -5.17E+08 5.17E+08 15.41

10 10 12.7900 0.6452 1982 33 -1.23E+07 -1.72E+08 1.72E+08 7.13

T ab le  8.34. D is p la c e m e n t  de ta i l s  from the  FE ana lys is  of th e  optimal d es ig n  in (Fleury & Schmit,  1980)  of the  10-Bar 
T ru s s  p rob lem  with s t r e s s  a n d  d i s p la c e m e n t  c ons tra in ts  ( C a s e  1).

(Fleury & Schmit, 1980) - 10-Bar Truss with Stress & Displacement Constraints 1

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u

ux 09617 - -

1 uy -5.0802 -5.0800 -5.0800 100.00

uz 0.0000 - -

ux -1.9131 - - -

2 uy -7.3656 - -

uz 0 0000 - -

ux 0.7986 - -

3 uy -2.5404 -2.5400 -2.5400 100.02

uz 00000 - -

ux -0.8563 - -

4 uy -29361 - -

uz 0.0000 - - -

ux 0.0000 - - -

5 uy 0.0000 - - -

uz 0.0000 - - -

ux 0.0000 - - -

6 uy 0.0000 - - -

uz 00000 - - -

Note that the jp-displacements o f nodes ‘1’ and ‘3 ’ in Table 8.36 are marginally 

violating the equality constraints in the orginal formulation due to the tolerance set in 

Eq. (8.40). The reason why the ^-displacement o f node ‘3’ in Table 8.34 is marginally
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violating the equality constraint is the round-offs o f the values o f  the areas input into the 

truss analysis. In fact, uv = -2.5400 cm for node ‘3' in (Fleury & Schmit, 1980, p. 135).

Tab le  8.35. C r o s s  s e c t io n s  ( a re a s )  and  s t r e s s e s  de ta i ls  from the  FE a n a ly s is  of the b e s t  d e s ig n  found by the  ‘MS-SN 
P.AD. P F P R ’ P S O  for the  10-Bar T ru ss  prob lem  with s t r e s s  an d  d i s p la c e m e n t  co n s t ra in ts  ( C a s e  1).

MS-SN P.AD. PFPR - 10-BarTruss with Stress & Displacement Constraints 1 (mass = 1836.311164 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress

1 1 145.2912 0.6452 22518.78 6.06E+07 -1.72E+08 1.72E+08 35.15

2 2 8.9644 0.6452 1389.40 1.24E+07 -1.72E+08 1.72E+08 7.20

3 3 139.7898 0.6452 21666.12 -6.43E+07 -1.72E+08 1.72E+08 37.30

4 4 54.5943 0.6452 8461.61 -7.94E+07 -1.72E+08 1.72E+08 46.08

5 5 0 6453 0.6452 100.01 2.98E+07 -1.72E+08 1.72E+08 1729

6 6 0 6452 0.6452 100.00 1.72E+08 -1.72E+08 1.72E+08 100.00

7 7 81.7660 0.6452 12672.97 7.85E+07 -1.72E+08 1.72E+08 45.55

8 8 94.0859 0.6452 14582.44 -6.55E-07 -1.72E+08 1.72E+08 37.98

9 9 76.8595 0.6452 11912.51 7.98E+07 -5.17E+08 5.17E+08 15.43

10 10 128642 0.6452 1993 84 -1.22E+07 -1.72E+08 1.72E+08 7.09

T ab le  8.36. D isp la c e m e n t  de ta i ls  from th e  FE a n a ly s is  of th e  b e s t  d es ig n  found by the  ‘M S-SN  P.AD. P F P R ’ P S O  for 
th e  10-Bar  T ru s s  p rob lem  with s t r e s s  and  d i sp la c e m e n t  con s t ra in ts  ( C a s e  1).

MS-SN P.AD. PFPR - 10-BarTruss with Stress & Displ. Constraints 1

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u

ux 09681 - - -

1 uy -5.0805 -5.0800 -5.0800 100.01

uz 0.0000 - -

ux -1 9062 - -

2 uy -7.3665 - - -

uz 0.0000 - -

ux 0 8036 - -

3 uy -2.5403 -2.5400 -2.5400 100.01

uz 0.0000 - -

ux -0.8527 - - -

4 uy -2.9354 - - -

uz 0.0000 - - -

ux 0.0000 - -

5 uy 0.0000 - - -

uz 0.0000 - - -

ux 0.0000 - - -

6 uy 0.0000 - -

uz 0.0000 - -

8.8.5.3. Stress and Displacements Constraints Case 2

This is the same problem as in section 8.8.5.1 but with they-displacem ents in nodes ‘1’ 

to ‘4 ’ restricted to the interval ±0 .0508 . Therefore Eq. (8.38) is replaced by Eq. (8.41):
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S i (x) = max 

g u ( x )  =  a b s  

g l 2( x )  =  a b s  

g n ( x )  =  a b s  

g {4( x )  =  a b s

a ,

or O')

cr.

a ( / )
V a+ J  V a-

f  u. A

<0

y  l

0.0508
- 1<0

zz v2

0.0508

“ v3

0.0508

U yA

0.0508

- 1 <0

- 1<0

- 1<0

X : - 20 0<0

1 =  1,...,10

(8.41)

x ,+0.6452 < 0  ; z=l,...,10

Therefore there are now 10 interval constraints and 14 inequality constraints. The 

results are shown in Table 8.37, in Table 8.38, and in Fig. 8.19. The solutions obtained 

in (Fleury & Schmit, 1980), in (Park & Ryu, 2004), and in (Li, Huang, Liu, & Wu, 

2007) are also reported for reference.

Tab le  8.37 .  S tatistical r e su l t s  o b ta in e d  by th e  ‘Multi-Swarm M ulti-Sub-neighbourhood  P s e u d o  A daptive P F P R ’ P S O  
an d  by o th e r  a u th o r s  for th e  10-Bar  T ru s s  prob lem  with s t r e s s  an d  four inequa l i ty -d isp lacem en t  co n s t ra in ts  ( n o d e s  ‘1’ 
to ‘4 ’). T h e  a u th o r s  inc luded  are :  (Fleury & Schmit, 1980); (Park  & Ryu, 2004); a n d  (Li, H uang , Liu, & Wu, 2007).

10-BarTruss
(Stress & Displacement 2)

OPTIIMUM
(SI)

BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

[%]
Successful
Solutions

Mean
FEs

Runs

MS-SN P.AD. PFPR 2295.406788 2295.521831 2295.832101 2302.669693 100.00 4.00 1.67E+05 25
(Fleury & Schmit, 1980) (NEWSUMT) 2308.353600 - - - . . - .
(Fleury & Schmit, 1980) (DUAL 2) - 2295.600000 . . . . . .
(Park & Ryu, 2004) (RSA) 2329.702943 . . . . 4.16E+03
(U, Huang, Liu, & Wu, 2007) (HPSO) 2295.592825 - - - - 1.50E+05

T ab le  8.38. C o o rd in a te s  of th e  b e s t  so lu t ions  o b ta ined  by the  ‘Multi-Swarm M ult i -Sub-neighbourhood  P s e u d o  A d a p 
tive P F P R '  P S O  a n d  by o th e r  a u th o r s  for the  10-Bar  T ru s s  prob lem  with s t r e s s  a n d  four inequa l i ty -d isp lacem en t  c o n 
stra in ts  ( n o d e s  T  to '4'). T h e  a u th o r s  included are:  (Fleury & Schmit,  1980); (Park  & Ryu, 2004); a n d  (Li, H uang ,  Liu, 
& Wu, 2007).

Coordinates of best solution

* i Xl * 3 *4 * 5 Xi * 7 Xg *9 -*10

MS-SN P.AD. PFPR 196.036900 0.645225 150.371312 98.335803 0.645290 3.497145 48.056234 136.008467 138.695325 0.645201

(Fleury & Schmit, 1980) (NEWSUMT) 199.7000 0.6452 168.3000 97 0400 0.6452 1.2650 52.7900 130.5000 130.5000 0.6452

(Fleury & Schmit, 1980) (DUAL 2) 196.9000 0.6452 149.7000 98.2000 0.6452 3.5550 48.1100 135.8000 138.9000 0.6452

(Park & Ryu, 2004) (RSA) 182.1287 0.6452 148.4513 82.4514 0.6452 0.6452 57.1612 163.8061 135.6126 0.6452

(Li, Huang, Liu, & Wu, 2007) (HPSO) 198.0899 0.6452 149.4642 97.9546 0.6452 3.5548 48.1289 135.3417 138.7610 0.6452
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Fig. 8 .19. C o n v e rg e n c e  of th e  m e a n  b e s t  solution for the  10-Bar T ru s s  p roblem  with s t r e s s  a n d  four inequality- 
d i s p la c e m e n t  co n s t ra in ts  ( n o d e s  T  to ‘4 ’).

Note that the best solution in Table 8.37 is found by the MS-SN P.AD. PFPR.

The details o f the o f  the FE analysis o f the optimal design for the 10-Bar Truss problem 

with Stress and Displacement Constraints (Case 2) from (Fleury & Schmit, 1980) 

(where mass = 2295.6 kg) are offered in Table 8.39 and in Table 8.40; whereas those o f 

the best design found by the MS-SN P.AD. PFPR PSO (mass = 2295.406788 kg) are 

offered in Table 8.41 and in Table 8.42. The stress constraint is marginally violated for 

bar ‘5 ’ in Table 8.39, most likely due to the round-off in the input o f  the cross-sections 

o f the optimal design from (Fleury & Schmit, 1980). The displacement constraints are 

either active or almost active for nodes ‘ 1 ’ and ‘2 ’ in both Table 8.40 and Table 8.42.

T ab le  8.39. C ro s s  s e c t io n s  ( a re a s )  and  s t r e s s e s  detai ls  from th e  FE ana lys is  of the  optimal d e s ig n  in (Fleury & 
Schmit,  1980) of the  10-Bar  T ru s s  p rob lem  with s t r e s s  and  d i s p la c e m e n t  cons tra in ts  ( C a s e  2).

(Fleury & Schmit, 1980) DUAL 2 - 10-BarTruss with Stress & Displacement Constraints 2 (mass = 2295.60 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress

1 1 196.9000 0.6452 30517 67 4.58E+07 -1.72E+08 1.72E+08 26.56

2 2 06452 0.6452 100.00 -9.07E+O6 -1.72E+08 1.72E+08 5.26

3 3 149 7000 0.6452 23202.11 -5.86E+07 -1.72E+08 1.72E+08 34.02

4 4 98.2000 0.6452 15220.09 -4.54E+07 -1.72E+08 1.72E+08 26.31

5 5 0.64 52 0.6452 100.00 1.72E+08 -1.72E+08 1.72E+08 100.02

6 6 3.5550 0.6452 550.99 -1.65E+06 -1.72E+08 1.72E+08 0.95

7 7 48.1100 0.6452 7456.60 1.27E+08 -1.72E+08 1.72E+08 73.86

8 8 135.8000 0.6452 21047.74 -4.75E+07 -1.72E+08 1.72E+08 27.58

9 9 138 9000 0.6452 21528.21 4.53E+07 -5.17E+08 5.17E+08 8 77

10 10 0.6452 0.6452 100.00 1.28E+07 -1.72E+08 1.72E+08 7.44
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T ab le  8.40. D isp la c e m e n t  d e ta i ls  from the  FE ana lys is  of the  optimal d es ig n  in (Fleury & Schmit,  1980)  of the  10-Bar 
T ru s s  p rob lem  with s t r e s s  a n d  d i sp la c e m e n t  cons t ra in ts  ( C a s e  2).

(Fleury & Schmit, 1980) DUAL 2 - 10-BarTruss with Stress & Displacement Constraints 1

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u

ux 04868 - -
1 uy -5.0788 -5.0800 5.0800 99.98

uz 0.0000 - -

ux -1.3792 - - -

2 uy -5.0570 -5.0800 5.0800 99.55
uz 0.0000 - - -

ux 0.6071 - - -

3 uy -1.8680 -5.0800 5.0800 36.77
uz 0.0000 - - -

ux -0.7777 - -
4 uy -41544 -5.0800 5.0800 81.78

uz 0.0000 - - -

ux 00000 - - -

5 uy 00000 - -
uz 0.0000 -

ux 0.0000 - - -

6 uy 0.0000 - - -
uz 0.0000 - - -

T ab le  8.41. C r o s s  s e c t io n s  ( a re a s )  a n d  s t r e s s e s  de ta i ls  from the  FE an a ly s is  of the  b e s t  d es ign  found  by the  ‘MS-SN 
P.AD. P F P R ’ P S O  for th e  10-B ar  T ru s s  p rob lem  with s t r e s s  a n d  d isp la c e m e n t  co n s t ra in ts  ( C a s e  2).

MS-SN PAD. PFPR - 10-BarTruss with Stress & Displacement Constraints 2 (mass = 2295.406788 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%]max stress
1 1 196.0369 06452 30383 90 4.60E+07 -1 72E+08 1.72E+08 26.67
2 2 06452 0.6452 100.00 -9.03E+O6 -1.72E+08 1.72E+08 5 24
3 3 150.3713 0 6452 23306 16 -5.84E+07 -1.72E+08 1.72E+08 33.87
4 4 98.3358 0 6452 15241.14 -4.53E+07 -1.72E+08 1 72E+08 26.28
5 5 06453 0 6452 100.01 1.72E-08 -1.72E+08 1 72E+08 100.00
6 6 3 4971 0 6452 542.02 -1 67E+06 -1.72E+08 1 72E+08 097
7 7 480562 0.6452 7448 27 127E+08 -1.72E+08 1.72E+08 7394
8 8 136 0085 0.6452 21080.05 -4.75E+07 -1.72E+08 1.72E+08 27 54
9 9 138 6953 0.6452 2149649 4 54 E+07 -5.17E+08 5.17E+08 8 78
10 10 0 6452 0.6452 100.00 1.28E+07 -1.72E+08 1.72E+08 7.41

T ab le  8.42. D isp la c e m e n t  de ta i ls  from th e  FE ana lys is  of the  b e s t  d es ign  found by the  ‘MS-SN P.AD. P F P R ’ P S O  for 
th e  10-Bar T ru s s  p rob lem  with s t r e s s  and  d i sp la c e m e n t  co n s t ra in ts  (C a s e  2).

MS-SN PAD. PFPR - 10-BarTruss with Stress & Displ. Constraints 2

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u
ux 0.4899 - - -

1 uy -5.0800 -5.0800 5.0800 100.00
uz 0.0000 - - -
ux -1.3749 - -

2 uy -5.0579 -5.0800 5.0800 99.56
uz 0.0000 - - -
ux 0.6097 - - -

3 uy -1.8687 -5.0800 5.0800 36.79
uz 0.0000 -
ux -0.7742 - -

4 uy -4.1547 -5.0800 5.0800 81.79
uz 00000 - - -
ux 0.0000 - -

5 uy 0.0000 - - -

uz 0.0000 - - -
ux 0.0000 - - -

6 uy 00000 - - -

uz 0.0000 - - -
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8.8.6. 25-Bar Space Truss

This is another classical engineering problem used to test optimization algorithms. 

Again, there are different versions in the literature. The formulations o f  the problem im

plemented here are taken from (Fleury & Schmit, 1980), (Li, Huang, Liu, & Wu, 2007), 

and (Park & Ryu, 2004), and are expressed in SI units. The optimization problem is as 

shown in Fig. 8.20 and Eq. (8.42) to Eq. (8.44).

Aluminium 

E = 68.95 x 106 kN/m2 

p  = 2768 kg/m3 

A ■ = jc - =0.06452 cm2min mm

cya+ = +275800 kN/m2 (allowable tension stress)

(8.42)

Minimize:

10

f(*) = YjP'xrh (8.43)
1=1

Subject to:

g,.(x) = max 1 <0

(8.44)

x , - 1 0 0 < 0  ; - x , +0.06452 < 0 ; / = ,8
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z
4

190.5cm

254cm

190.5cm

254cm

508cm
( 10)'

508cm

Bar Nodes

1 1 2

2 1 4

3 2 3

4 1 5

5 2 6

6 2 4

7 2 5

8 1 3

9 1 6

10 3 6

11 4 5

12 3 4

13 5 6

14 3 10

15 6 7

16 4 9

17 5 8

18 4 7

19 3 8

20 5 10

21 6 9

22 6 10

23 3 7

24 4 8

25 5 9

Fig. 8 .20 .  25 -B ar  T ru s s  prob lem  in SI units, from (Azid, Kwan, & S e e th a r a m u ,  2002)  with marginal  modification. T he  
ob jec tive  is to minimize the  m a s s  while complying with cons tra in ts .  T h e  tab le  of connectivity  is a lso  provided.
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8.8.6.I. Case 1 (Fleury & Schmit, 1980)

The 25-Bar truss problem as posed in (Fleury & Schmit, 1980) presents two Load 

Cases. Here the problem is solved for each Load Case (LC) separately, followed by a 

classical ad-hoc design. Finally, the problem is solved so that both independent Load 

Cases are considered simultaneously throughout the optimization process (thus doubling 

the number o f constraints). The allowable compression stresses are offered in Table 

8.43, which were calculated considering Euler’s critical buckling load.

Tab le  8.43. Allowable c o m p re s s io n  s t r e s s  for th e  m e m b e r s  of th e  25-B ar  T ru s s  from (Fleury & Schmit ,  1980).

Sections (variables) Members Allowable compression 
stress [kN/m2|

-V| 1 -241959

* 2 2  5 -79913

*3 6 - 9 -119318

10, 11 -241959

-Vi 12, 13 -241959

* 6 14 -  17 -46603

X l 1 8 - 2 1 -47982

*8 22  -  25 -76410

Ad-hoc design

Load Case 1

The load components are shown in Table 8.44, while the results for this Load Case 

alone are offered in Table 8.45, in Table 8.46, and in Fig. 8.21.

Tab le  8.44. Load c o m p o n e n t s  on th e  n o d e s  (Load C a s e  1), from (Fleury & Schmit,  1980).

NODES LOAD COMPONENTS
X y z

1 4448 44480 -22240
2 0 44480 -22240

3 2224 0 0
6 2224 0 0

T ab le  8.45. Statistical resu l ts  ob ta in ed  by the  'Multi-Swarm Multi-Sub-neighbourhood  P s e u d o  A dapt ive  P F P R ’ P S O  
for the  25-B ar  T ru s s  prob lem  with Load C a s e  1, a s  in (Fleury & Schmit,  1980).

25-Bar Truss, Load Case 1
(Fleury & Schmit, 1980)

BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

Mean
FEs

[%]
FR

[%]
FR 

Initial Tol.
Runs

MS-SN P.AD. PFPR 207.051222 207.052911 207.053792 207.060904 100.00 1.86E+05 92.77 99.80 25
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T ab le  8 .46 .  C o o rd in a te s  of th e  b e s t  solution ob ta in ed  by the  ‘Multi-Swarm M ult i -Sub-neighbourhood  P s e u d o  A d a p 
tive P F P R ’ P S O  for th e  2 5 -B ar  T ru s s  prob lem  with Load C a s e  1, a s  in (Fleury & Schmit,  1980).

Coordinates of best solution

X i * 2 X i x 4 x 5 X t * 7 *8
0.180386 0.472271 23.105736 0.064520 13.440916 4.953560 0.145487 25.471843

L

-M e a n  B est C onflic t

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tlm e-steps

Fig. 8 .21. C o n v e r g e n c e  of th e  m e a n  b e s t  solution for the  25-B ar  T ru s s  prob lem  with Load C a s e  1.

The details o f  the o f the FE analysis are offered in Table 8.47 and in Table 8.48.

Tab le  8.47 .  C r o s s  se c t io n s  ( a re a s )  an d  s t r e s s e s  de ta i ls  from the  FE  an a ly s is  of the  b e s t  d es ig n  found  by th e  ‘MS-SN 
P.AD. P F P R ’ P S O  for the  25 -B ar  T ru s s  prob lem  with Load C a s e  1 ( s e e  T ab le  8.44).

MS-SN P.AD. PFPR - 25-Bar Truss Load Case 1 (mass 207.051222 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress
1 1 01804 0.06452 279.58 -7.39E+07 -2.42E+08 2.76E+08 30 56

2 04723 0.06452 731.98 -7.99E+07 -7.99E+07 2.76E+08 100.00
3 0.4723 0.06452 731.98 2.03E+06 -7.99E+07 2.76E+08 0.74
4 0.4723 0.06452 731.98 -348E+07 -7.99E+07 2.76E+08 43.58
5 0.4723 0.06452 731.98 4.71E+07 -7.99E+07 2.76E+08 17.08
6 23.1057 0 06452 35811.74 -3.26E+07 -1.19E+08 2.76E+08 27.31
7 23.1057 0.06452 35811.74 2.15E+07 -1.19E+08 2.76E+08 7.79

O
8 23.1057 0.06452 35811.74 -3.12E+07 -1.19E+08 2.76E+08 26.16
9 23.1057 0.06452 35811.74 2.29E+07 -1.19E+08 2.76E+08 8 29
10 00645 0.06452 100.00 -7.29E+06 -2.42E+08 2.76E+08 301
11 0 0645 0.06452 100.00 -1.20E+07 -2.42E+08 2.76E+08 4 95
12 13.4409 0.06452 20832.17 -3.25E+07 -242E+08 2.76E+08 13.43
13 134409 0.06452 20832.17 2.13E+07 -2.42E+08 2.76E+08 7.71
14 4.9536 0.06452 7677.56 -3.08E+07 -4.66E+07 2.76E+08 65.98
15 4.9536 0.06452 7677.56 2 35E+07 4.66E+07 2.76E+08 8.51
16 4.9536 0.06452 7677.56 -3.34E+07 -4.66E+07 2.76E+08 71.68
17 4.9536 0.06452 7677 56 2.08E+07 -4.66E+07 2.76E+08 7.55
18 0 1455 0.06452 22549 -1.83E+06 -4.80E+07 2.76E+08 3.82
19 01455 0.06452 22549 4.80E+07 4.80E+07 2.76E+08 100.00
20 01455 0.06452 22549 3.99E+07 4.80E+07 2.76E+08 1446
21 01455 0.06452 22549 -6.27E+06 4.80E+07 2.76E+08 13.07
22 25.4718 0.06452 39478.99 2.35E+07 -7.64E+07 2.76E+08 8.51

23 25.4718 0.06452 3947899 -3 07E+O7 -7.64E+07 2.76E+08 40.23
24 25.4718 0.06452 39478.99 -3.37E+07 -7.64E+07 2.76E+08 44.05

25 254718 0.06452 39478.99 2.05E+07 -7.64E+07 2.76E+08 7.45

521



u n a p i & i  v

C 2 E C  C O N STR A IN T -H A N D LIN G  Swansea^Jniversily
Prifysgol Abertawe

Tab le  8.48. D isp la c e m e n t  de ta i ls  from the  FE a n a ly s is  of the  b e s t  d es ign  found  by the 'MS-SN P.AD. P F P R '  P S O  for 
th e  25-B ar  T ru s s  prob lem  with Load C a s e  1 ( s e e  T ab le  8.44).

MS-SN P.AD. PFPR - 25-Bar Truss Load Case 1 (mass = 207.051222 kg)

Nodes Dis Dlacement (u) [cm] Max. Displacement [cm] [%] max u
ux 0.3803 -0.8890 0.8890 42.78

1 uy 08890 -0.8890 0.8890 100.00

uz -0.1390 -0.8890 0.8890 15.63

ux 0.1760 -0.8890 0.8890 19.79
2 uy 0.8890 -0.8890 0.8890 100.00

uz 0.0148 -0.8890 0.8890 1.67

ux 0.1891 - - -

3 uy -0.0850 - - -
uz -0.3730 - - -

ux 0.0994 - - -
4 uy -0.0915 - - -

uz -0 2159 -

ux 0.1736 - - -

5 uy -00584 - - -
uz 0.2798 - - -
ux 0.1149 - - -

6 uy -0.0648 - -
uz 01227 - - -
ux 0.0000 - -

7 uy 0 0000 - -
uz 0.0000 - - -
ux 0.0000 - - -

8 uy 0.0000 - - -
uz 0.0000 - - -
ux 0.0000 -

9 uy 0.0000 - - -
uz 0.0000 - -
ux 0.0000

10 uy 00000 - -
uz 0.0000 - -

Load Case 2 

The load components on the nodes are shown in Table 8.49, while the results are pro

vided in Table 8.50, in Table 8.51, and in Fig. 8.22.

T ab le  8.49. Load c o m p o n e n t s  on th e  n o d e s  (Load C a s e  2), from T a b l e  9 C a s e  1' in (Li, H uang , Liu, & Wu, 2007).

NODES LOAD COMPONENTS
X y z

1 0 88960 -22240
2 0 -88960 -22240

T ab le  8.50. Statistical re su l t s  o b ta ined  by the  ‘Multi-Swarm M ulti-Sub-neighbourhood  P s e u d o  A dapt ive  P F P R ’ P S O  
for th e  25-B ar  T ru s s  prob lem  with Load C a s e  2, a s  in (Li, H uang, Liu, & Wu, 2007).

25-Bar Truss, Load Case 2
(Li, Huang, Liu, & Wu, 2007)

BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

Mean
FEs

[%]
FR

[%]
FR 

Initial Tol.
Runs

MS-SN P.AD. PFPR 177.836584 177.962599 177.971916 178.263114 100.00 1.58E+05 85.72 94.93 25
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T a b le  8.51 .  C o o rd in a te s  of the  b e s t  solution o b ta ined  by the  ‘Multi-Swarm M ult i -Sub-neighbourhood  P s e u d o  A d a p 
tive P F P R ’ P S O  for th e  2 5 -B ar  T ru s s  prob lem  with Load C a s e  2, a s  in (Li, H uang , Liu, & Wu, 2007).

Coordinates of best solution

Xl X} *4 *5 *6 Xy x *

0.064520 0.064520 0.064520 8.702263 1.126640 13.324509 0.109402 6.985344

 M e a n  B est C onflic t

O.OOE+OO

1 501  1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501 8001 8501 9001 9501

Tim e-steps

Fig. 8 .22 .  C o n v e rg e n c e  of the  m e a n  b e s t  solution for the  25 -Bar  T ru s s  prob lem  with Load C a s e  2.

The details o f  the o f the FE analysis are offered in Table 8.52 and in Table 8.53.

T ab le  8.52 .  C r o s s  s e c t io n s  ( a r e a s )  and  s t r e s s e s  de ta i ls  from the  FE ana lys is  of the  b e s t  d es ig n  found  by the  ‘MS-SN 
P.AD. P F P R ’ P S O  for the  25 -B ar  T ru s s  prob lem  with Load C a s e  2 ( s e e  T ab le  8.49).

MS-SN P.AD. PFPR - 25-Bar Truss Load Case 2 (mass 177.836584 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress
1 1 0.0795 0.06452 123.14 -7.88E+07 -2.42E+08 2.76E+08 32.58

2 13.1804 0.06452 2042847 -4.40E+07 -7.99E+07 2.76E+08 5501
3 13.1804 0.06452 2042847 4 48E+07 -7.99E+07 2.76E+08 16.24
4 13.1804 0.06452 2042847 4.48E+07 -7.99E+07 2.76E+08 1624

5 13.1804 0.06452 20428.47 4  40E+07 -7.99E+07 2.76E+08 55.01
6 17.8010 0.06452 27589.92 3 74E+07 -1.19E+08 2.76E+08 13.54
7 17.8010 0.06452 2758992 -5.12E+07 -1.19E+08 2.76E+08 42.91
8 17.8010 0.06452 2758992 -5.12E+07 -1.19E+08 2.76E+08 42.91
9 17.8010 0.06452 27589 92 3.74E+07 -1.19E+08 2.76E+08 1354

10 00648 0.06452 100.43 8 83E+07 -2.42E+08 2.76E+08 32.01
11 00648 0.06452 100.43 8.83E+07 -2 42E+08 2.76E+08 32.01
12 0.5671 0.06452 878.99 1.09E+08 -2 42E+08 2.76E+08 39.67
13 0.5671 0.06452 878.99 1.09E+08 -2.42E+08 2.76E+08 39.67
14 2.0592 0.06452 3191.61 -4 66E+07 4.66E+07 2.76E+08 100.00
15 2.0592 0.06452 3191.61 1.71E+07 4.66E+07 2.76E+08 6.21
16 2.0592 0.06452 3191.61 1.71E+07 4.66E+07 2.76E+08 6.21
17 2.0592 0.06452 3191.61 4.66E+07 4.66E+07 2.76E+08 100.00
18 12.3056 0.06452 19072 56 2.82E+07 4.80E+07 2.76E+08 1021
19 123056 0.06452 19072 56 -4.80E+07 4.80E+07 2.76E+08 100.00
20 12.3056 0.06452 1907256 -4 80E+07 4.80E+07 2.76E+08 100.00
21 12.3056 0.06452 19072.56 2.82E+07 4.80E+07 2.76E+08 10.21
22 0.5623 0.06452 871.45 -7.64E+07 -7.64E+07 2.76E+08 100.00

23 0.5623 0.06452 871.45 -5 22E+07 -7.64E+07 2.76E+08 68.37

24 0.5623 0.06452 871.45 -7 64E+07 -7.64E+07 2.76E+08 100.00

25 0.5623 0.06452 871.45 -5.22E+07 -7.64E+07 2.76E+08 6837
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T ab le  8.53 .  D isp la c e m e n t  de ta i ls  from th e  FE a n a ly s is  of th e  b e s t  des ign  found by the  'M S-SN P.AD. P F P R ’ P S O  for 
th e  25 -B ar  T ru s s  prob lem  with Load C a s e  2 ( s e e  Tab le  8.49).

MS-SN P.AD. PFPR - 25-Bar Truss Load Case 2 (mass = 177.836584 kg)

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u

ux 0.1089 -0.8890 0.8890 12.25

1 uy 0.8890 -0.8890 0.8890 100.00

uz -03262 -0.8890 0.8890 36.70

ux -0.1089 -0.8890 0.8890 12.25

2 uy -08890 -0.8890 0.8890 100.00

uz -0.3262 -0.8890 0.8890 36.70

ux 0.1186 - - -

3 uy -0.1102 - - -

uz -0.4858 - - -

ux 0.4209 - - -

4 uy 0.3541 - - -

uz -0.0170 - - -

ux -0.1186 - - -

5 uy 0.1102 - - -

uz -0.4858 - - -

ux -0.4209 - -

6 uy -0.3541 - - -

uz -0.0170 - - -

ux 0 0000 - -

7 uy 0.0000 - -

uz 0.0000 -

ux 0 0000 -

8 uy 0.0000 -

uz 0.0000 -

ux 0.0000 -

9 uy 0.0000 -

uz 0.0000 - - -

ux 00000 - - -

10 uy 0.0000 - - -

uz 0.0000 - - -

It is fair to note that, if  the FE analysis is performed on the optimal design reported in 

(Fleury & Schmit, 1980) for the second Load Case posed in (Fleury & Schmit, 1980, p. 

142), the stress constraints o f bars ‘10’, M l, and ‘17’ are violated by a large margin. It 

appears that there is a mistake in the formulation o f  the second Load Case. If the latter is 

replaced by the first Load Case in (Li, Huang, Liu, & Wu, 2007), all constraints are sat

isfied, while the stress constraints o f  bars ‘19’ and ‘20’ as well as the y-displacement- 

constraints on nodes M’ and ‘2 ’ are nearly active as reported in (Fleury & Schmit, 1980, 

p. 102). This is the reason why the second Load Case considered here (see Table 8.49) 

is as in (Li, Huang, Liu, & Wu, 2007) rather than as in (Fleury & Schmit, 1980, p. 142).

A possible ad-hoc design for both Load Cases consists o f choosing the greater cross- 

section o f each bar among both Load Cases, as shown in Table 8.54. The resulting mass 

for this design equals 3 1 5 . 6 2 9 6 1 6  kg.
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Tab le  8 .54 .  C o o rd in a te s  of an  a d -h o c  solution for both Load C a s e s ,  from the  so lu tions  for e a c h  in d e p e n d e n t  Load 
C a s e  o b ta in e d  by the  ‘Multi-Swarm M ult i -Sub-neighbourhood  P s e u d o  A daptive  P F P R ’ P S O  for the  2 5 -B ar  T ru s s  
p rob lem  a s  in (Fleury & Schmit ,  1980) a n d  in (Li, Huang , Liu, & Wu, 2007).

Coordinates of best solution

* 1 * 2 * 3 *4 * 5 * 6 * 7 * 8

0.175509 13.180447 23.096234 0.064797 13.411980 4.952039 12.305618 25.487831

The details o f the FE analysis o f this ad-hoc design are offered in Table 8.55 and in Ta

ble 8.56 for the Load Case 1 (see Table 8.44), and in Table 8.57 and in Table 8.58 for 

the Load Case 2 (see Table 8.49). As it can be observed in the tables, no stress or dis

placement constraint is active (or nearly active).

T ab le  8 .55 .  C r o s s  s e c t io n s  ( a re a s )  an d  s t r e s s e s  de ta i ls  from the  FE ana lys is  of th e  a d -h o c  d es ig n  in T ab le  8 .54  for 
th e  2 5 -B ar  T ru s s  p rob lem  with Load C a s e  1 ( s e e  Tab le  8.44).

MS-SN PAD. PFPR - Ad-hoc Design - 25-Bar Truss Load Case 1 (mass = 315.629616 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress

1 1 0.1755 0.06452 272.02 1.05E+07 -2.42E+08 2.76E+08 3.82

2 131804 0.06452 20428.47 -1.78E+07 -7.99E+07 2.76E+08 22.23

3 131804 0.06452 20428 47 -1.48E+07 -7.99E+07 2.76E+08 18.56

4 13.1804 0.06452 2042847 1.16E+07 -7 99E+07 2.76E+08 4 22

5 13.1804 0 06452 20428.47 1.46E+07 -7.99E+07 2.76E+08 5.29

6 23.0962 0.06452 35797.01 -2.56E+07 -1.19E+08 2.76E+08 21.49

7 230962 0 06452 3579701 1 55E+07 -1.19E+08 2.76E+08 561
O

8 230962 0 06452 3579701 -2.43E+07 -1.19E+08 2.76E+08 20 34

9 23.0962 0.06452 35797.01 1.68E+07 -1.19E+08 2.76E+08 6.11

10 00648 0 06452 100.43 -9 48E+06 -2.42E+08 2.76E+08 3.92

11 00648 0 06452 100.43 -142E+07 -2.42E+08 2.76E+08 5.86

12 134120 0.06452 20787.32 -8 01E+96 -2.42E+08 2.76E+08 3.31

13 13.4120 0.06452 20787 32 3.39E+06 -2.42E+08 2.76E+08 1.23

14 4.9520 0.06452 7675.20 -3.07E+07 4.66E+07 2.76E+08 65.95

15 4.9520 0.06452 7675.20 2 35E+07 4.66E+07 2.76E+08 8 52

16 4.9520 0.06452 7675.20 -3.34E+07 -4.66E+07 2.76E+08 71.65

17 4 9520 0.06452 7675 20 2.08E+07 4.66E+07 2.76E+08 7 56

18 12.3056 0.06452 19072.56 -1.60E+07 4.80E+O7 2.76E+08 33 25

19 12.3056 0.06452 19072.56 -1.65E+07 4.80E+07 2.76E+08 34.38

20 12.3056 0.06452 1907256 1.10E+07 4.80E+07 2.76E+08 3.97

21 12.3056 0.06452 19072.56 1 04E+07 4.80E+07 2.76E+08 3.78

22 254878 0.06452 39503.77 1.97E+-07 -7 64E+97 2.76E+08 7.15

23 25.4878 0.06452 39503.77 -2.51E+07 -7.64E+07 2.76E+08 32.79

24 25.4878 0.06452 39503.77 -2 80E+07 -7.64E+07 2.76E+08 36.61

25 25.4878 0.06452 39503.77 1.68E+07 -7.64E+07 2.76E+08 6.09
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T ab le  8.56. D isp la c e m e n t  de ta i ls  from the  FE a n a ly s is  of th e  a d -h o c  d es ign  in T ab le  8 .54  for th e  25 -B ar  T ru s s  p rob 
lem with Load C a s e  1 ( s e e  T ab le  8.44).

MS-SN P.AD. PFPR - Ad-hoc Design - 25-Bar Truss Load Case 1

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u
ux 0.0250 -0.8890 0.8890 2.81

1 uy 0.6955 -0.8890 08890 78.23
uz •0 0424 -0.8890 0.8890 4.77
ux 0.0541 -0.8890 0.8890 6.08

2 uy 0.6955 -0.8890 0.8890 78.23
uz -0.0609 -0.8890 0.8890 -6.85
ux 0.0175 - -

3 uy -0.1035 - - -
uz -0.2401 - -
ux -0 0046 - -

4 uy -0.1100 - - -

uz -0.2552 - - -
ux 00111 - - -

5 uy -0.0709 - -
uz 01615 - - -
ux 0.0018 - -

6 uy -00773 - - -
uz 0.1766 - -
ux 0.0000 - - -

7 uy 0.0000 - -
uz 00000 - -
ux 0.0000 - -

8 uy 00000 - -
uz 0.0000 -
ux 0.0000 - - -

9 uy 00000 - - -
uz 0.0000 -
ux 0.0000 - - -

10 uy 0.0000 - - -
uz 0.0000 - -

T ab le  8.57 .  C r o s s  s e c t io n s  ( a re a s )  a n d  s t r e s s e s  de ta i ls  from th e  FE ana lys is  of th e  a d -h o c  d e s ig n  in T ab le  8 .54  for 
th e  25 -B ar  T ru s s  p rob lem  with Load C a s e  2 ( s e e  Tab le  8.49).

MS-SN PAD. PFPR - Ad-hoc Design - 25-Bar Truss Load Case 2 (mass = 315.629616 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress
1 1 0.1755 0.06452 27202 2.12E+07 -2.42E+08 2.76E+08 767

2 131804 0.06452 2042847 -4.55E+07 -7.99E+07 2.76E+08 56.93

2
3 13.1804 0.06452 2042847 4.50E+07 -7.99E+07 2.76E+08 16.32
4 13.1804 0.06452 20428.47 4.50E+07 -7.99E+07 2.76E+08 16.32
5 13.1804 0.06452 2042847 -4.55E+07 -7.99E+07 2.76E+08 56.93
6 23.0962 0.06452 35797.01 2.87E+07 -1.19E+08 2.76E+08 10.40
7 23.0962 0.06452 35797.01 -3.87E+07 -1.19E+08 2.76E-08 32.47
8 23.0962 0.06452 35797.01 -3.87E+07 -1.19E+08 2.76E+08 3247
9 23.0962 0.06452 35797.01 2.87E+07 -1.19E+08 2.76E+08 1040
10 0 0648 0.06452 100.43 -1.18E+-07 -2.42E+08 2.76E+08 488
11 00648 0.06452 100.43 -1.18E+07 -2.42E+08 2.76E+08 4.88
12 134120 0.06452 20787.32 -2.25E+06 -2.42E+08 2.76E+08 0.93
13 134120 0.06452 20787 32 -2.25E+06 -2.42E+08 2.76E+08 0.93
14 4.9520 0.06452 7675.20 -1.74E+07 -4.66E+07 2.76E+08 37.31
15 4.9520 0.06452 7675.20 7.50E+06 -4.66E+07 2.76E+08 2.72
16 4.9520 0.06452 7675.20 7.50E+06 -4.66E+07 2.76E+08 2.72
17 4.9520 0.06452 7675.20 -1.74E+07 -4.66E+07 2.76E+08 37.31
18 12.3056 0.06452 19072.56 3.50E+07 -4 80E+07 2.76E+08 12.69
19 12.3056 0.06452 19072.56 -4.05E+07 -4.80E+O7 2.76E+08 84.41
20 123056 0.06452 19072.56 -4.05E+07 -4.80E+07 2.76E+08 84.41
21 12.3056 0.06452 19072.56 3 50E+07 -4.80E+07 2.76E+08 12.69
22 254878 0.06452 39503.77 -5.09E+06 -7.64E+07 2.76E+08 6.66

23 254878 0.06452 39503.77 -3.18E+06 -7.64E+07 2.76E+08 4.16
24 25.4878 0.06452 39503 77 -5.09E+06 -7.64E+07 2.76E+08 6.66
25 25.4878 0.06452 39503.77 -3.18E+06 -7.64E+07 2.76E+08 4.16
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T a b le  8.58. D isp la c e m e n t  de ta i ls  from the  FE ana lys is  of the  a d -h o c  d e s ig n  in T ab le  8 .5 4  for th e  25 -B ar  T ru s s  p ro b 
lem with Load C a s e  2 ( s e e  T ab le  8.49).

MS-SN P.AD. P FP R -A d- hoc Design - 25-Bar Truss Load Case 2

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u

ux -0.0292 -0.8890 0.8890 3.29

1 uy 0.7987 -0.8890 0.8890 89.84

uz -0.0543 -0.8890 0.8890 6.10

ux 0.0292 -0.8890 0.8890 3.29

2 uy -0.7987 -0.8890 0.8890 89.84

uz -0.0543 -0.8890 0.8890 6.10

ux 0 2344 - - -

3 uy -0.0947 - - -

uz -0.2265 - - -

ux 0.2282 - - -

4 uy 0.0620 - -

uz 0.1480 - -

ux -0.2344

5 uy 0.0947 - -

uz -0 2265 - - -

ux -0 2282 - -

6 uy -00620 - -

uz 0.1480 - - -

ux 0.0000 - - -

7 u y 00000 - -

u z 0.0000 - - -

u x 0 0000 - - -

8 u y 00000 - - -

u z 0.0000 - -

u x 0 0000 - -

9 u y 00000 - -

u z 0 0000 - -

u x 00000 - -

10 u y 0.0000 - -

u z 0.0000 - -

Simultaneous, op tim al design

A more clever optimal design may be carried out by simultaneously complying with the 

constraints associated with both independent Load Cases throughout the search. Thus 

the number o f  constraints is doubled, replacing Eq. (8.44) by Eq. (8.45). Note that in 

this case, two FE analyses are performed for each candidate solution.

The results obtained are provided in Table 8.59, in Table 8.60, and in Fig. 8.23. The 

best solutions from (Fleury & Schmit, 1980) and from (Li, Huang, Liu, & Wu, 2007) 

are also provided for reference.

Note that the feasibility ratio (FR) equals 92.77% for the problem with Load Case 1 

(see Table 8.45), it is equal to 85.72% for the problem with Load Case 2 (see Table 

8.50), while for the problem with both Load Cases the FR equals 82.22%.
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T ab le  8.59 .  S tatistical r e su l t s  o b ta in ed  by the  ‘Multi-Swarm M ult i -Sub-neighbourhood  P s e u d o  A dap t ive  P F P R ’ P S O  
for the  2 5 -B ar  T ru s s  p rob lem  with two Load C a s e s  a s  in (Fleury & Schmit,  1980) an d  in (Li, H uang , Liu, & Wu, 2007).

25-Bar Truss, 2 Load Cases
(Fleury & Schmit, 1980)
(Li, Huang, Liu, & Wu, 2007)

BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

Mean
FEs

(%]
FR

[%]
FR 

Initial Tol.
Runs

MS-SN P.AD. PFPR 247.262219 247.305477 247.372550 247.712946 25.00 1.95E+05 82.22 91.49 25

(Fleury & Schmit, 1980) 247.310000 - - - - - -

(Li, Huang, Liu, & Wu, 2007) 247293822 - - - - -

T ab le  8.60. C o o rd in a te s  of th e  b e s t  solution o b ta in ed  by th e  ‘Multi-Swarm M ul t i -Sub-ne ighbourhood  P s e u d o  A d a p 
tive P F P R ’ P S O  for the  2 5 -B ar  T ru s s  problem  with two Load C a s e s  a s  in (Fleury & Schmit,  1980) a n d  in (Li, H uang , 
Liu, & Wu, 2007) .

Coordinates of best solution

-*i X l *3 *4 *5 *6 X l *8

MS-SN P.AD. PFPR 0.064772 12.777407 19.371632 0.064520 0.064520 4.419923 10.824245 17.146269

(Fleury & Schmit, 1980) 0.064500 12.820000 19.298000 0.064500 0.077400 4.407000 10.833000 17.188000

(Li, Huang, Liu, & Wu, 2007) 0.064516 12.709652 19.458026 0.064516 0.064516 4477410 10.845140 17.051579

- M e a n  B est C onflic t

1 501  1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001  6501 7001 7501 8001 8501 9001 9501

T im e -s te p s

4.00E+02

3.80E+02

3.60E+02

3.40E+02

3.20E+02

3.00E+02

2.80E+02

2.60E+02

2.40E+02

2.20E+02

2.00E+02

Fig. 8 .23 .  C o n v e rg e n c e  of th e  m e a n  b e s t  solution for th e  25 -B ar  T ru s s  prob lem  with two Load C a s e s  a s  in (Fleury & 
Schmit, 1980) a n d  in (Li, H uang ,  Liu, & Wu, 2007).

The solution obtained by the MS-SN P.AD. PFPR PSO is better than those reported in 

(Fleury & Schmit, 1980) and in (Li, Huang, Liu, & Wu, 2007).

The details from the FE analysis o f the design obtained by the MS-SN P. Ad. PFPR PSO 

are provided in Table 8.61 and Table 8.62 for the first Load Case; and in Table 8.63 and 

Table 8.64 for the second Load Case. The details from the FE analysis o f  the optimal 

design reported in (Fleury & Schmit, 1980) are shown in Table 8.65 and Table 8.66 for 

the first Load Case; and in Table 8.67 and Table 8.68 for the second Load Case.
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T ab le  8.61 .  C ro s s  s e c t io n s  ( a re a s )  a n d  s t r e s s e s  detai ls  from th e  FE ana lys is  of the  b e s t  d e s ig n  found by the  ‘MS-SN 
P.AD. P F P R ’ P S O  for th e  25 -B ar  T ru s s  p rob lem  with two Load C a s e s  a s  in (Li, H uang, Liu, & Wu, 2007)  and  in 
(Fleury & Schmit,  1980), w h en  lo ad ed  with the  first Load C a s e  ( s e e  Tab le  8.44).

MS-SN PAD. PFPR - Simultaneous Design - 25-Bar Truss Load Case 1 (mass = 247262218 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress
1 1 0.0648 0.06452 100.39 2.45E+07 -2.42E+08 2.76E+08 8.90

2 12.7774 0.06452 1980379 -2.09E+07 -7.99E+07 2.76E+08 26.15
3 12.7774 0.06452 19803.79 -1.79E+07 -7.99E+07 2.76E+08 22.36
4 12.7774 0.06452 19803.79 1.46E+07 -7.99E+07 2.76E+08 5.30
5 12.7774 0.06452 19803.79 1.77E+07 -7.99E+07 2.76E+08 6.40
6 19.3716 0.06452 30024 23 -2.92E+07 -1.19E+08 2.76E+08 24 46
7 19.3716 0.06452 30024 23 1.70E+07 -1.19E+C8 2.76E+08 6.18
8 19.3716 0.06452 30024.23 -2.75E+07 -1.19E+08 2.76E+08 2309
9 19.3716 0.06452 30024 23 1.87E+07 -1.19E+08 2.76E+08 6.77

10 0.0645 0.06452 100.00 -1.10E+07 -2.42E+08 2.76E+08 4 55
11 0 0645 0.06452 100.00 -1.38E+07 -2.42E+08 2.76E+08 5.72
12 0.0645 0.06452 100.00 -2.69E+07 -2.42E+08 2.76E+08 11.11
13 0.0645 0.06452 100.00 7.63E+05 -2.42E+08 2.76E+08 0.28
14 4 4199 0.06452 6850.47 -3 44E+07 4.66E+07 2.76E+08 73 85
15 44199 0 06452 6850.47 2 64E+07 4.66E+07 2.76E+08 9.55
16 4.4199 0.06452 685047 -3.74E+07 4.66E+07 2.76E+08 80.28
17 4 4199 0.06452 6850 47 2 33E+07 4.66E+07 2.76E+08 847
18 10.8242 0.06452 16776 57 -2 54E+07 4  80E+O7 2 76E+08 52.93

7
19 10.8242 0.06452 1677657 -2.60E+07 4.80E+O7 2.76E+08 54.22
20 10.8242 0.06452 16776.57 1 47E+07 4.80E+O7 2.76E+08 5.32
21 10.8242 0.06452 1677657 1 40E+07 4.80E+O7 2.76E+08 5.09
22 17.1463 0.06452 26575.12 2 83E+07 -7.64E+07 2 76E+08 10.25
23 17.1463 0.06452 26575.12 -3 39E+07 -7 64E+07 2.76E+08 44 33
24 17 1463 0.06452 26575.12 -3.82E+07 -7.64E+07 2.76E+08 5000

25 17 1463 0.06452 26575 12 2 39E+07 -7.64E+07 2.76E+08 8 68

T a b le  8.62. D isp la c e m e n t  de ta i ls  from the  s a m e  FE ana lys is  a s  in Tab le  8.61.

MS-SN P.AD. PFPR - Simultaneous Design - 25-Bar Truss Load C ase 1

Nodes Dis placement (u) [cm] Max. Displacement [cm] [%] max u
ux 0 0166 -0.8890 0.8890 1.87

1 uy 0.8890 -0.8890 0.8890 100.00
uz -0.0577 -0.8890 0.8890 6.49
ux 0 0844 -0.8890 0 8890 949

2 uy 0.8890 -0.8890 0.8890 100.00
uz -0 0827 -0.8890 0.8890 9.31
ux 00461 - -

3 uy -0.0969 - -
uz -0 3116 - -
ux -00281 - -

4 uy -0.1008 - - -
uz -0.3313 - - -
ux 0.0100 - -

5 uy -0.0626 -
uz 0.2025 - - -
ux 0.0079 - - -

6 uy -0.0665 - -
uz 0.2222 - -
ux - - -

7 uy - - -
uz - - -
ux - - -

8 uy - -
uz -
ux - -

9 uy - -
uz - - -
ux - - -

10 uy - - -
uz - - -
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T ab le  8.63 .  C r o s s  se c t io n s  ( a re a s )  a n d  s t r e s s e s  detai ls  from the  FE an a ly s is  of the  b e s t  d es ign  found  by th e  ‘MS-SN 
P.AD. P F P R '  P S O  for th e  2 5 -B ar  T ru s s  prob iem  with two Load C a s e s  a s  in (Li, H uang , Liu, & W u, 2007)  a n d  in 
(Fleury & Schmit ,  1980), w h en  lo ad ed  with th e  s e c o n d  Load C a s e  ( s e e  T ab le  8.49).

MS-SN PAD. PFPR - Simultaneous Design - 25-Bar Truss Load Case 2 (mass = 247.262218 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress

1 1 0 0648 006452 100.39 3.64E+07 -2.42E+08 2.76E+08 1321
2 12.7774 0.06452 19803.79 -4.82E+07 -7.99E+07 2.76E+08 60.37

3 12.7774 0.06452 19803.79 4.79E+07 -7.99E+07 2.76E+08 17.38
4 12.7774 0.06452 19803.79 4.79E+07 -7.99E+07 2.76E+08 17.38

5 12.7774 0.06452 19803.79 -4 82E+07 -7.99E+07 2.76E+08 60.37

6 19.3716 0.06452 30024.23 3.34E+07 -1.19E+08 2.76E+08 12.11

3
7 19.3716 0.06452 30024.23 4.55E+07 -1.19E+08 2.76E+08 38.12
8 19.3716 0.06452 30024.23 -4.55E+07 -1.19E+08 2.76E+08 38.12
9 19.3716 0.06452 30024 23 3.34E+07 -1.19E+08 2.76E+08 12.11

10 0.0645 0.06452 100.00 -1.24E+07 -2.42E+08 2.76E+08 512
11 0 0645 0.06452 100.00 -1.24E+07 -2.42E+08 2.76E+08 512

12 0.0645 0.06452 100.00 -1.29E+07 -2.42E+08 2.76E+08 5.32
13 00645 0.06452 100.00 -1.29E+07 -2.42E+08 2.76E+08 5.32
14 44199 0.06452 6850.47 -1.81E+07 4.66E+07 2.76E+08 38.76
15 4.4199 0.06452 6850.47 7.00E+06 4.66E+07 2.76E+08 2.54
16 44199 0.06452 6850.47 7 00E+06 4.66E+07 2.76E+08 2.54
17 44199 0.06452 6850.47 -1.81E+07 4.66E+07 2.76E+08 38.76
18 108242 0.06452 16776.57 3.67E+07 4.80E+07 2.76E+08 13.30
19 10.8242 0.06452 16776.57 -4.80E+07 4.80E+07 2.76E+08 100.00
20 108242 0.06452 16776 57 -4.80E+07 4.80E+07 2.76E+08 100.00
21 10.8242 0.06452 16776.57 3.67E+07 4.80E+O7 2.76E+08 13.30
22 17.1463 0.06452 26575.12 -8.01 E+06 -7 64E+07 2.76E+08 10.48

23 17.1463 0.06452 26575.12 -1.95E+06 -7.64E+07 2.76E+08 2.55

24 17.1463 0.06452 26575.12 -8.01 E+06 -7.64E+07 2.76E+08 10.48

25 17.1463 0.06452 26575.12 -1 95E+06 -7 64E+07 2.76E+08 2.55

Tab le  8.64 .  D isp la c e m e n t  de ta i ls  from th e  s a m e  FE ana lys is  a s  in Tab le  8.63.

MS-SN P.AD. PFPR - Simultaneous Design - 25-Bar Truss Load Case 2

Nodes Dis Dlacement (u) [cm] Max. Displacement [cm] [%] max u
ux -0.0503 -0.8890 0.8890 5.66

1 uy 0 8890 -0.8890 0.8890 100.00
uz -0.0735 -0.8890 0.8890 8.26
ux 0.0503 -0.8890 0.8890 5.66

2 uy -0 8890 -0.8890 0.8890 100.00
uz -0.0735 -0.8890 0.8890 8.26
ux 0.2836 - -

3 uy -0.1028 - - -

uz -0.2543 - - -

ux 0.2480 - - -
4 uy 0.0686 - - -

uz 0.1453 - - -
ux -0.2836 - - -

5 uy 0 1028 - - -

uz -0.2543 - - -
ux -0.2480 -

6 uy -0.0686 -

uz 0.1453 - -
ux 0.0000

7 uy 00000 - -

uz 0.0000 - - -
ux 0.0000 - - -

8 uy 0.0000 - - -

uz 0.0000 - - -

ux 0.0000 - - -

9 uy 0.0000 - - -

uz 0.0000 - -

ux 00000 - -

10 uy 0.0000 -

uz 0.0000 - -
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Tab le  8.65. C ro s s  s e c t io n s  ( a re a s )  a n d  s t r e s s e s  detai ls  from th e  FE ana lys is  of the  optimal d e s ig n  in (Fleury & 
Schmit,  1980) for th e  25 -B ar  T ru ss  p rob lem  with two Load C a s e s  a s  in (Li, H uang , Liu, & Wu, 2007)  a n d  in (Fleury & 
Schmit,  1980), w h en  lo ad ed  with the  first Load C a s e  ( s e e  T ab le  8.44).

(Fleury & Schmit, 1980) - 25-Bar Truss Load Case 1 (mass = 247.31 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress
1 1 0.0645 0.06452 99.97 2.46E+07 -2.42E+08 2.76E+08 8.92

2 12 8200 0.06452 19869.81 -2.09E+07 -7.99E+07 2.76E+08 2614

3 12.8200 0.06452 1986981 -1.79E+07 -7.99E+07 2.76E+08 22.36
4 12.8200 0.06452 19869.81 1 46E+07 -7.99E+07 2.76E+08 5.31

5 12.8200 0.06452 19869.81 1.77E+07 -7.99E+07 2.76E+08 6.40
6 192980 0.06452 29910.11 -2.93E+07 -1.19E+08 2.76E+08 24.52
7 19 2980 0.06452 29910.11 1.71E+07 -1.19E+08 2.76E+08 6.19

vJ
8 19.2980 0.06452 29910.11 -2.76E+07 -1.19E+08 2.76E+08 23.15
9 19.2980 0.06452 29910.11 1.87E+07 -1.19E+08 2.76E+08 678
10 0.0645 0.06452 99.97 -1.10E+07 -2.42E+08 2.76E+08 4.57
11 0.0645 0.06452 99.97 -1.39E+07 -2.42E+08 2.76E+08 5.76
12 0.0774 0.06452 119.96 -2.66E+07 -2.42E+08 2.76E+08 11.00
13 0.0774 0.06452 119.96 6.45E+05 -2.42E+08 2.76E+08 0.23
14 4.4070 0.06452 6830.44 -3.45E+07 4.66E+07 2.76E+08 74.06
15 4.4070 0.06452 6830.44 2.64E+07 -4.66E+07 2.76E+08 CD Cn oo

16 4 4070 0.06452 6830.44 -3.75E+07 4.66E+07 2.76E+08 80.52
17 44070 0.06452 6830.44 2.34E+07 4.66E+07 2.76E+08 8.49
18 108330 0.06452 16790 14 -2.53E+07 4  80E+07 2.76E+08 52.75
19 10.8330 0.06452 16790.14 -2.59E+07 4.80E+07 2.76E+08 54.04
20 10.8330 0.06452 16790.14 1.46E+07 4.80E+07 2.76E+08 5.30
21 10.8330 0.06452 16790.14 1.40E+07 4.80E+07 2.76E+08 5.07
22 17.1880 0.06452 26639 80 2 82E+07 -7.64E+07 2.76E+08 10.24

23 17.1880 0.06452 26639.80 -3.38E+07 -7.64E+07 2.76E+08 44 26
24 17.1880 0.06452 26639.80 -3.81 E+07 -7 64E+07 2.76E+08 4992
25 17 1880 0.06452 26639.80 2.39E+07 -7.64E+07 2.76E+08 8.67

T ab le  8.66. D isp la c e m e n t  de ta i ls  from the  s a m e  FE ana lys is  a s  in Tab le  8.65.

(Fleury & Schmit, 1980) - 25-Bar Truss Load Case 1

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u
ux 0.0164 -0.8890 0.8890 1.84

1 uy 0 8888 -0.8890 0.8890 99.98
uz -0.0577 -0.8890 0.8890 6.49
ux 00844 -0.8890 0.8890 9.49

2 uy 08888 -0.8890 0.8890 99.98
uz -0.0828 -0.8890 0.8890 9.31
ux 0.0457 - - -

3 uy -0.0976 - -
uz -0.3115 - -

ux -0.0278 - - -

4 uy -0.1016 - - -

uz -0.3312 - -

ux 0.0099 - - -

5 uy -0.0631 - - -
uz 0.2025 - - -
ux 0.0081 - - -

6 uy -0.0671 - - -
uz 0.2221 - -

ux 0.0000 -

7 uy 0.0000
uz 0.0000
ux 0.0000

8 uy 0.0000
uz 0.0000 -

ux 00000 - -

9 uy 0 0000 -

uz 0.0000 - -

ux 0.0000 - - -

10 uy 0.0000 - - -

uz 0.0000 - -
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Tab le  8.67. C ro s s  se c t io n s  ( a re a s )  a n d  s t r e s s e s  de ta i ls  from th e  FE ana lys is  of th e  optimal d e s ig n  in (Fleury & 
Schmit,  1980) for th e  25 -B ar  T ru s s  prob lem  with two Load C a s e s  a s  in (Li, H uang , Liu, & Wu, 2007)  a n d  in (Fleury & 
Schmit,  1980), w h e n  lo ad ed  with the  s e c o n d  Load C a s e  ( s e e  T ab le  8.49).

(Fleury & Schmit, 1980) - 25-Bar Truss Load Case 2 (mass = 247.31 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress
1 1 00645 0.06452 99.97 3.65E+07 -2.42E+08 2.76E+08 13.22

2 12.8200 0.06452 1986981 -4.82E+07 -7.99E+07 2.76E+08 60.26

3 12 8200 0.06452 1986981 4 78E+07 -7.99E+07 2.76E+08 1734

4 12.8200 0.06452 19869.81 4.78E+07 -7.99E+07 2.76E+08 17.34

5 12.8200 0.06452 19869.81 -4 82E+07 -7.99E+07 2.76E+08 60.26

6 19.2980 0.06452 29910.11 3.35E+07 -1.19E+08 2.76E+08 12.14
7 19.2980 0.06452 29910.11 -4.56E+07 -1.19E+08 2.76E+08 38.23
8 19.2980 0.06452 29910.11 -4.56E+07 -1.19E+08 2.76E+08 38.23
9 19.2980 0.06452 29910.11 3.35E+07 -1.19E+08 2.76E+08 12.14

10 0.0645 0.06452 99.97 -1.25E+07 -2.42E+08 2.76E+08 5.15
11 00645 0.06452 99.97 -1.25E+07 -2.42E+08 2.76E+08 5.15

12 0.0774 0.06452 119.96 -1.28E+07 -2.42E+08 2.76E+08 5.30
13 0.0774 0.06452 119.96 -1.28E+07 -2.42E+08 2.76E+08 5.30
14 4.4070 0.06452 6830.44 -1.80E+07 4.66E+67 2.76E+08 38.72

15 4.4070 0.06452 6830.44 6.95E+06 4.66E+07 2.76E+08 2.52

16 4.4070 0.06452 6830.44 6.95E+06 -4.66E+07 2.76E+08 2.52
17 4.4070 0.06452 6830.44 -1.80E+07 4.66E+07 2.76E+08 38.72

18 10 8330 0.06452 16790.14 3.66E+07 4.80E+67 2.76E+08 13 29
19 108330 0.06452 16790.14 4.79E+07 4.80E+67 2.76E+08 99.83
20 10.8330 0.06452 16790.14 -4.79E+07 4.80E+07 2.76E+08 99.83
21 10 8330 0.06452 16790 14 3 66E+07 4.80E+07 2.76E+08 13.29
22 17.1880 0.06452 26639.80 -8.08E+06 -7.64E+07 2.76E+08 10.57

23 17.1880 0.06452 26639.80 -1 87E+06 -7 64E+07 2.76E+08 244

24 17.1880 0.06452 26639.80 -8.08E+06 -7.64E+07 2.76E+08 10.57

25 17.1880 0.06452 26639.80 -1.87E+06 -7.64E+07 2.76E+08 2 44

T able  8.68. D isp la c e m e n t  de ta i ls  from the  s a m e  FE ana lys is  a s  in T ab le  8.67.

(Fleury & Schmit, 1980) - 25-Bar Truss Load C ase 2

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u
ux -00504 -0.8890 0.8890 5.67

1 uy 0 8887 -0.8890 0.8890 99.97
uz -0.0735 -0.8890 0.8890 8.27
ux 0.0504 -0.8890 0.8890 5.67

2 uy -0.8887 -0.8890 0.8890 99.97
uz -0.0735 -0.8890 0.8890 8.27
ux 0.2834 -

3 uy -0.1029 - - -

uz -0.2537 - - -

ux 0.2480 -

4 uy 0.0685 - - -

uz 01448 - - -

ux -0.2834 - - -

5 uy 0.1029 - - -
uz -0.2537 - - -
ux -0.2480 - - -

6 uy -0.0685 - - -

uz 0.1448 - -
ux 0.0000 - -

7 uy 0.0000 - -
uz 0.0000 - -
ux 0.0000 -

8 uy 0.0000 - -

uz 0.0000 - -

ux 0.0000 - -

9 uy 0.0000 - -

uz 0 0000 - - -

ux 0.0000 - -

10 uy 0.0000 - -

uz 0.0000 - -
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A model o f the 25-Bar Truss problem in ‘Altair Hyperworks’ subject to the Load Case 1 

can be observed in Fig. 8.24.

Fig. 8 .24. Altair H yperw orks  (OptiStruct) m odel of the  2 5 -b a r  t ru ss  prob lem  with Load C a s e  1.

It should be noted that every time a reference to other authors’ results was made, such 

results were presented in SI units, performing a conversion o f units when necessary.

8.8.6.2. Case 2 (Park & Ryu, 2004)

In this case the allowable compression stress is the same for all members, and the same 

in magnitude as the allowable tension stress, as shown in Eq. (8.46). The truss is opti

mized for a single Load Case, which is shown in Table 8.69.

<ja = —275800 kN/m 2 (allowablecompression stress) (8.46)

The solutions obtained are provided in Table 8.70, in Table 8.71, and in Fig. 8.25. The 

solution reported in (Park & Ryu, 2004) is also presented for reference.
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T ab le  8.69. Load c o m p o n e n t s  on  th e  n o d e s  for the  25-B ar  T ru s s  prob lem  a s  in (Park  & Ryu, 2004).

NODES
LOAD COMPONENTS

X y z
1 4448 44480 -44480
2 0 44480 -44480
3 2224 0 0
6 2668.8 0 0

T ab le  8.70. S tatistical re su l t s  o b ta in ed  by th e  ‘Multi-Swarm M ulti-Sub-neighbourhood  P s e u d o  A dapt ive  P F P R ’ P S O  
for the  25 -B ar  T ru s s  p rob lem  a s  fo rm ula ted  in (Park  & Ryu, 2004).

25-Bar Truss
(Park & Ryu, 2004)

BEST MEDIAN MEAN WORST
[%]

Feasible
Solutions

Mean
FEs

[%]
FR

[%]
FR 

Initial Tol.
Runs

MS-SN P.AD. PFPR 210.657550 210.658297 210.658706 210.663929 100.00 2.02E+05 94.88 99.78 25

(Park & Ryu, 2004) (RSA) 230 034647 - 9.20E+03 -

T ab le  8.71. C o o rd in a te s  of th e  b e s t  solution ob ta in ed  by the  ‘Multi-Swarm M ul t i -Sub-ne ighbourhood  P s e u d o  A d a p 
tive P F P R '  P S O  for th e  2 5 -B ar  T ru s s  prob lem  a s  fo rm ula ted  in (Park  & Ryu, 2004).

Coordinates of best solution

* 1 * 2 x 3 ■*4 * 5 * 6 * 7 * 8

MS-SN P.AD. PFPR 0.064824 0.254690 23.479418 0.064533 12.813289 5.016230 1.026282 25.258462

(Park & Ryu, 2004) (RSA) 0 645160 0.903224 21 548344 0.645160 5.741924 6 387084 9.677400 19.612864

M e a n  B est C onflict

Fig. 8 .25. C o n v e rg e n c e  of the  m e a n  b e s t  solution for the  25 -B ar  T ru s s  prob lem  a s  in (Park  & Ryu, 2004) .

The details from the FE analysis o f  the design obtained by the MS-SN P. Ad. PFPR PSO 

are provided in Table 8.72 and Table 8.73, whereas the details from the FE analysis o f 

the design reported in (Park & Ryu, 2004) are offered in Table 8.74 and Table 8.75.

535



c 2 e c C O N STR A IN T -H A N D LIN G Swansea University
Prifysgol Abertawe

Tab le  8.72 .  C r o s s  s e c t io n s  ( a re a s )  an d  s t r e s s e s  de ta i ls  from th e  FE ana lys is  of the  b e s t  d es ig n  found by the  ‘MS-SN 
P.AD. P F P R ’ P S O  for the  25 -B ar  T ru s s  prob lem  form ula ted  a s  in (Park  & Ryu, 2004).

MS-SN P.AD. PFPR - 25-Bar Truss - Park & Ryu foimulation (mass = 210.657550 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress

1 1 0.0648 0.06452 100.47 -1.75E+08 -2.76E+08 2.76E+08 6346
2 0.2547 0.06452 394.75 -1.35E+08 -2.76E+08 2.76E+08 49.00

2
3 0.2547 0.06452 394.75 1.60E+07 -2.76E+08 2.76E+08 5.80
4 02547 0.06452 394.75 -9.12E+07 -2.76E+08 2.76E+08 3308
5 0 2547 0.06452 394.75 6.15E+07 -2.76E+08 2.76E+08 22.30

6 234794 0.06452 36390.91 -3.72E+07 -2.76E+08 2.76E+08 1350
7 23.4794 0.06452 36390.91 1.63E+07 -2.76E+08 2.76E+08 5.92
8 23.4794 0.06452 36390.91 -3.59E+07 -2.76E+08 2.76E+08 13.01
9 23.4794 0.06452 36390.91 1.77E+07 -2.76E+08 2.76E+08 641

10 0.0645 0.06452 100.02 -1.68E+07 -2.76E+08 2.76E+08 6.11

11 0.0645 0.06452 100.02 -2.12E+07 -2.76E+08 2.76E+08 7.68
12 12.8133 0.06452 19859.41 -3.74E+07 -2.76E+08 2.76E+08 13.57
13 12.8133 0.06452 19859.41 1.61E+07 -2.76E+08 2.76E+08 5.83
14 5.0162 0.06452 777469 -3.53E+07 -2.76E+08 2.76E+08 1279

15 5.0162 0.06452 7774.69 1 83E+07 -2.76E+08 2.76E+08 663
16 50162 0.06452 7774.69 -3.79E+07 -2.76E+08 2.76E+08 1374

17 5.0162 0.06452 7774 69 1.56E+07 -2.76E+08 2.76E+08 567
18 1.0263 0.06452 1590.64 -2.53E+07 -2.76E+08 2.76E+08 9.16
19 1.0263 0.06452 1590.64 -3 19E+07 -2.76E+08 2.76E+08 11.56
20 1.0263 0.06452 1590.64 1.80E-07 -2.76E+08 2.76E+08 6.51
21 1.0263 0.06452 1590.64 7.55E+06 -2.76E+08 2.76E+08 2.74
22 252585 0.06452 39148.27 1.83E+07 -2.76E+08 2.76E+08 662

23 252585 0.06452 39148.27 -3 54E+07 -2.76E+08 2.76E+08 12 84

24 252585 0.06452 3914827 -3.83E+07 -2.76E+08 2.76E+08 1390

25 252585 0 06452 39148.27 1.52E+07 -2.76E+08 2.76E+08 551

T ab le  8.73 .  D isp la c e m e n t  de ta i ls  from the  s a m e  F t  ana lys is  a s  in Tab ie  8.72.

MS-SN P.AD. PFPR - 25-Bar Truss - Park & Ryu formulation

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u
ux 0.8889 -0.8890 0.8890 99.99

1 uy 08707 -0.8890 0.8890 97.95
uz -0.1287 -0.8890 0.8890 14.48
ux 04054 -0.8890 0.8890 45.60

2 uy 0.8890 -0.8890 08890 100.00
uz -0.1173 -0.8890 0.8890 13.20
ux 0.0765

3 uy -0.0970 - - -
uz -0.3408 - - -

ux -0.0269 - - -

4 uy -0.1032 - - -
uz -0.3330 -
ux 0.0587 - - -

5 uy -0.0447 - -

uz 0.1642 -
ux 0.0143 - -

6 uy -0.0505 - - -

u z 0.1425 - - -

u x 0.0000 - -

7 uy 0.0000 - -

u z 0.0000 -

u x 00000 - -

8 u y 00000 - - -

u z 0.0000 - -

u x 0.0000 - -

9 u y 0.0000 - -

u z 0.0000 - - -

ux 0.0000 - -

10 u y 0.0000 - -

uz 0.0000 - -
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T ab le  8.74. C r o s s  se c t io n s  ( a re a s )  a n d  s t r e s s e s  detai ls  from th e  FE ana lys is  of the  optimal d e s ig n  in (Park  & Ryu, 
2004)  for the  2 5 -B ar  T ru s s  p roblem  form ula ted  a s  in (Park  & Ryu, 2004).

Park & Ryu - 25-Bar Truss - Park & Ryu formulation (mass = 210.657550 kg)

Variables Bars Areas [cm2] Min. areas [cm2] [%] min. areas Stresses [N/m2] Allowable Stresses [N/m2] [%] max. stress
1 1 0 6452 0.06452 999.94 -1.60E+07 -2.76E+08 2.76E+08 5.81

2 0.9032 0.06452 1399.91 -5.60E+07 -2.76E+08 2.76E+08 20.31

3 09032 0.06452 1399.91 -1.32E+07 -2.76E+08 2.76E+08 4.77

4 0.9032 0.06452 1399.91 -9.77E+06 -2.76E+08 2.76E+08 3.54

5 0.9032 0.06452 1399.91 3.31 E+07 -2.76E+08 2.76E+08 11.99

6 21.5483 0 06452 33397.93 -4.00E+07 -2.76E+68 2.76E+08 14.49
7 21.5483 0.06452 33397.93 1.72E+07 -2.76E+08 2.76E+08 6.25
8 21.5483 0 06452 33397 93 -3.85E+07 -2.76E+08 2.76E+08 13.96
9 21 5483 0.06452 33397.93 1.87E+07 -2.76E+08 2.76E+08 6.78

10 0 6452 0 06452 999.94 -6.87E+06 -2.76E+08 2.76E+08 249
11 0 6452 0 06452 999.94 -6.89E+06 -2.76E+68 2.76E+08 2.50
12 5.7419 0 06452 8899.45 -3.43E+07 -2.76E+08 2.76E+08 12.44
13 5.7419 006452 8899.45 1.36E-07 -2.76E+08 2.76E+08 494
14 6.3871 0.06452 9899.39 -2.72E+07 -2.76E+08 2.76E+08 9.87

15 6.3871 0.06452 9899.39 1.48E+07 -2.76E+08 2.76E+08 5.37

16 6.3871 006452 989939 -2.93E+07 -2.76E+08 2.76E+08 10.63
17 6.3871 0.06452 9899.39 1.27E+07 -2.76E+08 2.76E+08 461
18 9.6774 0.06452 1499907 -2 83E+07 -2.76E+08 2.76E+08 10.25
19 96774 0.06452 14999.07 -2.90E+07 -2.76E+08 2.76E+08 10.51
20 96774 0.06452 14999.07 1 31E+07 -2.76E+08 2.76E+08 4 75
21 9.6774 0.06452 14999.07 1.20E+07 -2.76E+08 2.76E+08 435
22 19.6129 0.06452 30398.12 1.93E+07 -2.76E+68 2.76E+08 7.01

23 19.6129 0 06452 30398.12 -3 64E+07 -2.76E+08 2.76E+08 13.20
24 19.6129 0.06452 30398.12 -4.02E+07 -2.76E+08 2.76E+08 14.57

25 19.6129 0.06452 30398 12 1.54E+07 -2.76E+08 2.76E+08 5.58

T ab le  8.75. D isp la c e m e n t  de ta i ls  from the  s a m e  FE ana lys is  a s  in T ab le  8.74.

Park & Ryu - 25-Bar Truss - Park & Ryu formulation

Nodes Displacement (u) [cm] Max. Displacement [cm] [%] max u
ux 0.2332 -0.8890 0.8890 26.23

1 uy 0 8858 -0.8890 0.8890 99.64
uz -0.1146 -0.8890 0.8890 12.89
ux 01889 -0.8890 0.8890 21.25

2 uy 0.8871 -0.8890 0.8890 99.79
uz -0.1347 -0.8890 0.8890 15.16
ux 0.0557 - - -

3 uy -0.0451 - - -
uz -0.3019 - - -

ux -0.0391 - - -
4 uy -0.0454 - -

uz -03165 - -

ux 0.0286 - -
5 uy -00264 -

uz 01354 - -

ux -0.0090 - - -

6 uy -0.0262 - - -

uz 0.1488 - - -
ux 0.0000 - - -

7 uy 0.0000 - - -

uz 0.0000 - -
ux 0.0000 - -

8 uy 0.0000 - - -
uz 0.0000 -
ux 0.0000 - -

9 uy 0 0000 - - -
uz 0.0000 - -
ux 00000 - - -

10 uy 0.0000 - - -
uz 00000 - - -
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As shown in Table 8.70, the optimal design returned by the MS-SN P.Ad. PFPR PSO is 

considerably -and suspiciously- better than the one reported in (Park & Ryu, 2004). 

The details from the FE analyses for both designs (see Table 8.72 to Table 8.75) show 

that both o f them comply with all constraints stated in their formulations in (Park & 

Ryu, 2004).

One reason to explain the noticeable difference in the mass o f the optimal design may 

be that they set a greater value for the minimum cross section, which is not clear in their 

work. Notice that the minimum cross section in their optimal design is ten times greater 

than in the design obtained here (refer to Table 8.71). Another reason may be that they 

may have considered buckling constraints in their optimization process, although they 

do not specify so. Literally, they state (...) The constraints are imposed on the allowable 

stresses of the truss members and the allowable maximum displacements at the joints (Park & 

Ryu, 2004). While the buckling constraint is indirectly included in the values of the al

lowable compression stress in (Fleury & Schmit, 1980) by means of Euler’s critical 

load, the magnitudes o f the allowable compression and tensions stresses are the same in 

(Park & Ryu, 2004). Nevertheless, both designs in Table 8.71 were tested on a FE 

analysis incorporating buckling (not included here). The results show that the design in 

(Park & Ryu, 2004) comply with the buckling constraints whereas the design obtained 

here violates the buckling constraints for bars ‘2 ’ and ‘4 ’. Therefore, the considerable 

difference in the masses for the optimal designs obtained may be due to their considera

tion o f additional buckling constraints not specified in (Park & Ryu, 2004).

A pseudo adaptive constraint-handling technique was proposed and extensively tested 

in this chapter. The technique is said to be pseudo adaptive because, in spite o f present

ing adaptive features, it still requires some parameters to be set by the user, such as the 

percentage o f individual experiences that need to be feasible for a tolerance update to 

take place ‘adaptively’.

The pseudo adaptive scheme starts by self-tuning the initial relaxation o f the tolerances 

aiming for a target initial feasibility ratio of the problem, and then adaptively decreases

8.9. Closure

5 3 8
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its value until the final, desired tolerance is reached. This scheme was successfully cou

pled with a Multi-Swarm PSO optimizer with three sub-neighbourhoods and a dynamic 

forward topology taken from previous chapters, and with two different constraint- 

handling techniques (CHTs): the preserving feasibility with priority rules (PFPR) and 

the penalization method (PM). The performances o f both CHTs were improved by the 

pseudo adaptive scheme when testing the algorithm on a set o f 13 benchmark con

strained problems taken from the literature. Especially, but not only, when facing highly 

constrained problems with low feasibility ratios.

The algorithm with the pseudo adaptive PFPR technique was also tested on a number o f  

engineering problems typically used in the literature to assess the performance o f opti

mization algorithms. The optimizer proved itself capable o f dealing with a wide variety 

of problems with reasonably good performance and without any kind o f tuning. Recall 

that this algorithm was previously tested on a set o f hard benchmark unconstrained 

problems in previous chapters.
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Chapter 9

CONCLUSIONS

A summary of the main achievements, findings, and contributions throughout this thesis is presented, fol
lowed by potential lines for future research to continue this work.

The objective o f this thesis was to develop a fully working particle swarm optimizer for 

real-valued -exceptionally discrete or mixed-discrete- hard constrained and uncon

strained optimization problems. It was aimed at a general-purpose algorithm in the 

sense that it would be suitable to cope with a wide range o f problems with reasonably 

good performance, without requiring much adaptation or tuning.

While a practical algorithm was pursued, some mathematical framework was desirable 

to support the developments from the bottom up. Therefore an extensive study o f the 

influence o f the settings o f the coefficients in the velocity update equation -as well as 

those o f the velocity constraint- on the behaviour of an isolated particle pulled by sta

tionary attractors were carried out, partly theoretically, partly heuristically, and partly by 

simply visualizing trajectories.

Although there were previous outstanding works on the trajectories o f the deterministic 

particle and on the influence o f the coefficients’ settings on the dynamics o f the swarm, 

they are typically hard-to-follow and therefore their use becomes limited. A somewhat 

rigorous yet more accessible study o f the convergence was carried out in chapter 5, pro

viding insight into the trajectory o f the particle that goes beyond the speed o f conver

gence and the settings o f three coefficients.

Choosing the desired average behaviour and controlling the strength o f randomness 

(chapter 6 ) add even more flexibility into the algorithm, and provides more control over 

the behaviour o f a stochastic method like particle swarm optimization. In fact, it was 

observed that reducing the range o f (/> for the same pair Vmean-w’ remarkably speeds up

9.1. Contributions

541



vjfflj/
Swansea University 
Prlfysgol Abertawe

convergence regardless o f the magnitudes of the corresponding roots o f the characteris

tic polynomial. Thus a convenient reformulation o f the update equations was proposed 

so that both the average behaviour and the strength o f randomness can be controlled by 

the settings o f the coefficients. This reformulation encompasses both the classical and 

the constricted PSO. Chapter 6  was concluded with useful guidelines as to how to 

choose the coefficients in order to obtain the behaviour desired.

It was also shown that -rather counter-intuitively- setting the individuality weight to a 

value perceptively higher than that o f the sociality weight may not be effective in delay

ing convergence and improving exploration. In fact, it might turn out to be harmful for 

the exploration abilities o f the algorithm. Conversely, handling the settings o f the coef

ficients in the velocity update equation comprises an effective means to control the form 

and speed of convergence.

It was concluded that setting the velocity constraint to half the feasible interval is, at 

worst, harmless, and it is therefore advisable. Smaller values appear over-restrictive, as 

they excessively narrow the search space and disrupt the normal dynamics o f the 

swarm. The extensive study of the coefficients carried out allows controlling the trajec

tories by means of their settings instead o f by an external, disruptive vmax constraint.

Aiming for an optimizer that performs reasonably well on a wide range of different 

problems without adaptations or tuning, some robust coefficients’ settings and combina

tion o f settings -as well as robust dynamic neighbourhood topologies- were proposed 

and tested on a set of unconstrained benchmark problems. This algorithm coupled with 

a proposed pseudo adaptive constraint-handling mechanism resulted in a robust particle 

swarm optimizer which can cope with a wide variety o f hard unconstrained and con

strained problems, such as discontinuous, multimodal, or implicit problems, or simply 

those with extremely low feasibility ratios. This optimizer was tested on a number of 

problems without any sort o f tuning, exhibiting good performance.

In addition to the fully working robust particle swarm optimizer, the pseudo adaptive 

constraint-handling mechanism proposed is suitable for use on any other evolutionary 

algorithm. In turn, the sub-neighbourhoods techniques may be useful for multi-solution 

search, while the nearest neighbourhood procedure may be convenient for problems 

where the actual distance travelled by a particle matters. That is, in problems translated

V
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into the physical space such as in swarm robotics. Thus, the transfer o f information 

throughout the swarm is guaranteed thanks to a given topological neighbourhood, while 

the nearest neighbour procedure forms neighbourhoods with some physical meaning.

9.2. Future research

Even regarding topics effectively addressed within this thesis, there are aspects that still 

require further research and testing. For instance, it has been extensively studied how to 

choose the coefficients so as to obtain a given desired behaviour, while perhaps it is 

more important to address how to choose the desired behaviour. In addition to that, sto

chastic convergence studies have not been formally addressed.

With regards to the neighbourhoods, there are some classical topologies such as the 

‘von Neumann’ and the ‘stochastic star’ structures which were not tested. Furthermore, 

even the experiments performed were carried out on a small benchmark, which in addi

tion is now known to be biased. The next natural step is to confirm the findings and 

conclusions resulting from this thesis on new, extended and unbiased benchmarks. After 

all, the algorithm is expected to work well on both biased and unbiased problems. In 

addition, there are some failures to achieve a given (demanding) success condition in 

the experiments performed that need to be investigated further.

The study o f the coefficients, neighbourhood and constraint-handling were necessarily 

incomplete. Only three coefficients’ settings and a combination o f them were exten

sively tested numerically, and on a small set o f problems. Even in the proposed pseudo 

adaptive constraint-handling mechanism, there are parameters involved whose sensitiv

ity needs to be investigated. For instance, the initial feasibility ratio, the maximum time 

allowed between updates, or the minimum percentage o f individual best experiences 

required to trigger an update.

Finally, there are important aspects o f the particle swarm optimization method that were 

not studied within this thesis, such as the swarm-size and the types o f initialization.
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Appendix

AUXILIARY ARITHMETICS

Some auxiliary, complementary and cumbersome arithmetic work supporting Chapter 5 is provided in this 
section to facilitate the understanding of the formulae provided. Borrowing the term from French Mathema
tician Maurice Clerc (Clerc, Particle Swarm Optimization, 2006a), this section is for a m a t e u r s .

A I.l. Deterministic particle’s position equation

By deterministic particle it is referred to the single particle studied in Chapter 5, with 

constant coefficient ({) and stationary attractors. Somewhat tedious and burdensome ar

ithmetical work is presented here so as to confirm that the equation derived for the de

terministic particle’s position is indeed the solution o f the recurrence relation. Thus, 

considering the first two positions x(0) and x(l 1 as the initial conditions -recall that v(0> 

can be directly obtained from x(l)- , the same x(2) is calculated from the recurrence rela

tion and from the positions’ equation. Also, the initial conditions are obtained from re

placing the initial two time-steps in the positions’ equation. Both the recurrence relation 

and the position’s equation are re-written hereafter for convenience. The former is as 

shown in Eq. (AI. 1), while the latter is given by Eqs. (AI.2) to (AI.4).

x (/) + (<j) — w — l)-x (/ 1} + w- x (l 2) =(/)■ p  (AI.l)

(AI.2)

where

7  —  y l f i 2 ~ ( 2 ‘ w + 2 ) - ^  +  ( w - l ) 2 ( A I . 3 )

( 1 + w ) _ i  r  . (A I4,
' 2 2 2  ’ 2 _  2  2  2  ( '

A l
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AI.1.1. Initial conditions

By replacing t = 0 and t = 1 in Eq. (AI.2), the initial conditions *<o) and x(1) must be ob

tained. Thus, for t = 0:

A*=0) _

,u=0) _

In turn, for t = 1:

,(*=!)

p + ^ —
7

-At-------- L +
7

n l r̂ P ~
o

i

i * 1

1 o

hP  1
7 7 7 r

I II Hence,

~('=0) -  - , r2 'l 3̂ 1 o

1 + 1 o

wV — jy i

7 7

o

II
o

i

1 o

------- L ' K  +

1 1 o

(AI.5)

(AI.6 )

(AI.7)

(AI.8 )

7 7
(AI.9)

' 1 ' 1 
7 7 7

r2 +  L- r2 (AI. 10)
7

xw = p _ ( p - x m) .ri + { p - x m) .
7 7

(AI.11)

x^ = p + (e ^ } .
7

*('=,) = * (,)

(AI.l 2) 

(AI.l 3)

Thus the initial conditions are confirmed. It is more laborious to derive x(2) from the re

currence relation in Eq. (AI.l) and from the particle’s position equation in Eq. (AI.2).

A2



c 2 e c AUXILIARY ARITHM ETICS
v0/

Swansea University
Prifysgol Abertawe

AI.1.2. First position derived from initial conditions

From the recurrence relation in Eq. (AI.l),

JC(2) +(^ — w - l) -x (1) + w -x (0) =(/)• p (AI.l 4)

(AI.l 5)

(AI.l 6 )

From the particle’s position equation in Eq. (AI.2),

»= / , + >'2 - ( p - ^ OI) - ( p - x (' ) ) . ?,|2 + - r 1 -(p-x< 0>)+ (P - x " ) ) ^ 2

Y 7

y x ™  = y - p  + r2 *(p—*(0))-r,2 - ( /> - x (1)) - ^ 2 — r, ' ( p - x (0))-r22 + (p —jc(1))-r22 (A I.l8 )

y  • x (2) = (rx2 -  r2 )• x(1) + (r, • r2 -  r2 • r2 )• x(0) + (y + r2 • r2 - r 2 - rx • r2 + r2 )• p  (AI. 19)

r - x (2) =(^i2 - r 2 } x (n + f i -r2 - r,2 ■r2J x m + { y - \ r 2- r 2 )-(r, ■r 2 - r 2 •*,])•/?! (AI.20)

In order to make the calculations neater, the coefficients o f x(1), x(0) and p  in Eq. (AI.20) 

will be considered separately. From Eq. (AI.4), rx- r 2 = y . Therefore,

r 2 = r 2 - 2 - r x-y + y ‘

2 2 r\ :rx - r 2 =2 - rx- y - y

(AI.21)

(AI.22)

Replacing r\ from Eq. (AI.4) yields

r\ ~ r2 ~2-
1 + w-</> + y

y - y 2 = y + w-y-(f) -y

r 2 — r 2 = y  • (l + w -  (f)

(AI.23)

(AI.24)

In turn,

A3
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_ (l + w f  ~ (l + w)-^ + (l + w ) - y - ( \  + w)-^ + ^ 2 -^ -^  + (l + w)- y -  (j) - y + y 2 ^  ^5 ^
4

= - - ( ( l  + w f  +</>2 + y 2 - 2 - ( l  + w)-<f> + 2-(l + w)’y - 2 - 0 - y )  (AI.26)

Likewise,

= —-((l + w) 2 + <j>2 + y 2 - 2 - { \  + w)-<t>-2-(\. + w)-y + 2-<j>-y) (AI.27)

Note that Eq. (AI.24) can also be derived from Eqs. (AI.26) and (AI.27). 

Thus,

^(l + w f  + (l + w)-(j)2 + (l + w)- y 2 -  2  • (l + w f - (j) -  2  • (l + w f ’/ +  ^
+ 2 -(l + w)-^-y +

-  (l + w f  • (j) -  <f)1 -  (j) • / 2 + 2  • (l + w)-(j)2 + 2  • (l + w)- (f) • y -  2  • • y  +

+ (l + w) 2 • /  + (j>2 • y + / 3 - 2 • (l + w)-(j)'y - 2  • (l + w)-y 1 + 2  • (j) • y 2

(AI.28)

Operating arithmetically,

(l + w)3 - +  y 3 + 3 • (l + w)-(j)2 - (l + w)'y2 - 3  • (l + w)2 • (f> + 

- (l + w) 2 • y  + 2 • (l + w)-(j) • y + (f) • y 2 - (f1 • y

Likewise,

^(l + w) 3 - - y 3 + 3 • (l + w)-<j)2 - (l + w)-y 2 - 3  • (l + w) 2 • (j) + 

+ (l + w) 2 • y - 2  • (l + w)- (j) • y  + (j) • y 2 + (j)2 • y

(AI.29)

(AI.30)

Hence, from Eqs. (AI.29) and (AI.30),

(/i-r22 - 7i2 -r2 ) = L ( 2 -y3— 2-(l + w) 2 •  ̂+ 4-(l + w)-^-^-2- ( i 2 -y) (AI.31)

{ r r r ! - r ? - r 2) = t . ( r L J l ± ^ L  + (l + w) . j - t L
2 1 2

(AI.32)
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Replacing y 2 from Eq. (AI.3),

(', ■rl - r y r 2) = t \ f - ( 2 -w + 2 } - t  + (w - Xt . - {̂ ^  + (\ + w).<l>- ^ (AI.33)

/ 2 2 \ 7 ( (f>2 + ( / ) - ! ’W - 2 ’W / x ^2>
y \ ’r2 ~ r\ ’r2)=   —  + (1 + w ] - ^ - — (AI.34)

(ri ’r2 ~ V\ 'V2 ) = “ ‘   (w + l ) * ^ - 2 -W+(l + —
2 ^ 2

(AI.35)

M2 (AI.36)

Introducing Eqs. (AI.24) and (AI.36) into Eq. (AI.20),

/ •  jc(2) = / ' ( l  + w -^)-jc(,) + ( - y - w ) - x {0) + ( y - y - ( l  + w -^ ) - ( - /* w ) ) -  p  (AI.37)

y - x (2) = y-(l  + w - 0 ) - x (,) -  y ' W ’X(0) + ( y - y - y - w + y ’<fi+y’w)-p (AI.3 8 )

(AI.39)

As can be observed, Eqs. (AI.16) and (AI.39) are the same, quod erat demonstrandum. 

This confirms that the equation derived for the position o f the deterministic particle with 

stationary attractors is indeed Eq. (AI.2).

AI.2. Region in ‘( f t-w ’ plane for complex roots

The boundaries o f the region o f the plane where the roots o f the characteristic 

polynomial are complex are obtained by setting y = 0 . Thus, from Eq. (AI.3):

(ft2 - ( 2 -  w + 2 ) * ^ + ( w - l ) 2 -(j)2 - 2 -  w - ^ - 2 - ^ + w 2 - 2 -  w+1 = 0 (AI.40)

= >  w 2 — 2 - ( ^ + l ) - w+(<f>—l ) 2 = 0 ( A I . 4 1 )
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(AI.42)

Since the complex conjugate roots occur for w2 -2 * (^  + l)* w + (0  —1)~ < 0 , the complex 

region is defined as in Eq. (AI.43), where the signs of the inequalities are illustrated in 

Fig. AI.l for the particular case of (f) = 4. For the curves bounding the region with com

plex roots, refer to section 5.2.3.2 in chapter 5.

(AI.43)

10
Associated parabola for phi = 4 
Root 1 w = 1 
Root 2 w = 95

0

5

-15

20
3 5 6 7 8 9 100 2 4

w

Fig. A I . l  Exam ple o f the parabola associated to Eq. (A I.41) for <f> = 4. The interval where the function is sm aller than 
zero (com plex roots in the '<f>-w p lane) is between the roots of the parabola.

AI.3. Diagonalization o f the system matrix M

This section is complementary to section 5.3 in chapter 5. Given a system matrix M  of 

size n (n = 2 in this case) and n linearly independent families o f eigenvectors associated 

to the eigenvalues of M , there exists a matrix A such that

A ■ M  ■ A =
re, ( 0

(AI.44)

where each o f the n columns of matrix A comprises one of the eigenvalues.

Let us call evj to the / h eigenvector, so that

A 6
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ev, ... eVj «vJ (AI.45)

Therefore, and calling Aj the j  column of matrix A,

M -A  = (m -A  ... M- Aj  ... M - A , )  

=> M- A = (M-evt ... M-ev .  ... M - e vnj 

=> M - A  = (e, -ev, ... ej-evj  ... en-ev„)

(AI.46)

Introducing A 1,

A 1 ’M  A = A 1 -(e, •ev] ... 

=> 4̂_1 • M  ■ A = (e, • ^ _1 • eVj 

=>A~l ’M - A  = (e1-A~] -Al

ej-evj  ... e„-evn)

... ej-A-'-eVj ... e„-A-' -evJ  

... e . -A-' -A.  ... en-A~'-A^

(AI.47)

Expanding Eq. (AI.47) for n = 2, the diagonalization o f the system matrix M  in terms of 

its eigenvalues can be explicitly observed:

A~‘ - M A  = (AI.48)

Thus, in the case dealt with in chapter 5,

M  =
^  W  ( j )  ' M 1 +  w

f- .  l \ ; ev, = ; e ,  =
{ - W  ( l - j i i)) 2

Given that M  • ey  = ei • ev;. and from Eq. (AI.49),

-  w-v + ( l - ^ ) - y  =
^ 1  + w (j) y  
y ~ ! T ~ 2  + 2, •y

1 — w —<b — yv =   ---------- y
2 - w

(AI.50)
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Likewise,

fr

ev, = 2-w
y

y
y

(AI.51)

1 + w (j) y^

V 2  2  2
•J

1 - w - ^ + r
v -   ---------- y

2-w

(AI.52)

r(  1 -w-<f> + y^\ y
—  -y2-w J

y
(AI.53)

Hence, for y  -  2 - w , the matrix A used for the diagonalization o f M  is as in Eq. (AI.54):

(AI.54)
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Appendix II

BENCHMARK TEST PROBLEMS

The mathematical formulations of two sets of benchmark optimization problems are offered in this appen
dix. The first one is composed of five unconstrained functions taken from (Trelea, 2003), whereas the sec
ond set is composed of 13 constrained functions taken from (Toscano Pulido & Coello Coello, 2004).

Although performing well or badly on a set o f problems does not guarantee that the 

trend would persist for other problems, sets o f especially selected benchmark problems 

posing different difficulties are the most popular mechanism to assess the performance 

of an optimizer, compare it to those o f others, and infer similar performance for prob

lems o f the same characteristics. Two sets o f benchmark problems are offered hereafter. 

The first one is composed of unconstrained problems presenting different difficulties, 

which also allow testing different dimensionalities. The second set is composed o f prob

lems with inequality, equality, or both types o f constraints.

Maximization problems are turned into minimization ones.

This test suite o f unconstrained problems is taken from (Trelea, 2003), and each func

tion is considered for 2-, 10-, and 30-dimensional search-spaces.

This is a simple, unimodal function, easy for gradient-descent methods as all gradients 

point towards the global optimum. However, not only do optimization algorithms have 

to perform well on extremely complex problems but also on the simple ones. Hence it is 

often used for benchmarking gradient-free optimization methods.

AII.l. Introduction

AII.2. Unconstrained problems

A I I .2 .1 .  S p h e r e

A9
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Interval constraints: 

Dimensionality:

Location of global optimum: 

Global optimum:

/=!

[ - 1 0 0 ,1 0 0 ]"

n = 2; n = 10; n = 30 

X j *  =  0  V i  

f ( x * )= 0

A plot of the 2-dimensional sphere function is offered in Fig. All. 1

(All. 1 )

BENCHMARK TEST CONFLICT FUNCTION

.4

1 00

x 10

11 8 

, 6  

1 .4 

1.2  

1

0.8

0.6

0.4

0.2

x 10

1 0 0

-100 -100

a

’ A

Fig. A ll. 1: Surface plot and co lour-m ap o f the 2-d im ensional Sphere function within the region [—100.100]2.

A I I .2 .2 .  R o s e n b r o c k

This is a harder unimodal function -suitable for search-spaces of more than one dimen

sion-, which displays an extensive flat surface around the optimum. For more than three 

dimensions, the problem becomes moderately multimodal.

/ W = Z  | 0 °-(jcM - ; f . 2 ) 2 + L - > ) 2 (All.2)
/=1

Interval constraints: [-30,30]“
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Dimensionality:

Location of the global optimum: 

Global optimum:

n = 2; n = 10; n = 30 

x . *  =  l Vi 

/ ( x * ) =  0

Plots of the 2-dimensional Rosenbrock function are offered in Fig. AII.2 to Fig. AII.4.

BENCHM ARK TEST CO NFLICT FUNCTION
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Fig. AII.2: Surface plot and co lour-m ap of the 2-d im ensional Rosenbrock function w ithin the region [—30.30]2.
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Fig. A ll.3: Surface plot and co lour-m ap o f the 2-d im ensional Rosenbrock function w ithin the region [-1 .5 ,2 .0 ]2.
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BENCHM ARK TEST CO NFLICT FUNCTION

Fig. A ll.4: Surface plot and colour-m ap of the 2-d im ensional Rosenbrock function within the region [0 .8 ,1 ,2]2.

A I I .2 .3 .  R a s t r ig in

This function displays a single global optimum but many local optima in the form of 

valleys. The difficulty in finding the global optimum is in the numerous local optirra 

whose conflict values are close to the global optimum.

/ ( x )  = X[*<2 - 1 0 -cos(2*7T-x(.)+ 10 (A ll.3)
i=i

Interval constraints: [-5.12,5.12]"

Dimensionality: n = 2 \ n =  10; n = 30

Location of the global optimum: x *  = 0 Vz

Global optimum: / ( x *) = 0

The multimodality of the function can be observed in the plots offered in Fig. A ll.5 ard 

Fig. AII.6 for 2-dimensional search-spaces. Note that multimodality may refer either o 

local or to global optima. Thus, the Rastrigin function is multimodal in the sense thit 

there are local optima, but unimodal in the sense that the global optimum is unique.

A12
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Rastrig in function within the region [—5.12 ,5 .12]2.

BENCHM ARK TEST CONFLICT FUNCTION
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Fig. A ll.5: Surface plot and co lour-m ap of the 2-d im ensional

0

BENCHM ARK TEST C O NFLICT FUNCTION

-1 -1

Fig. A ll.6: Surface plot and co lour-m ap of the 2-d im ensional Rastrig in function within the region [-1 .0 ,1  0 ]2.

A I I .2 .4 .  G r ie w a n k

This function also displays a single global optimum and numerous local optima in the 

form of valleys. It can be viewed as a sort of noisy sphere function, where the amount of 

noise decreases with the increase o f dimensionality.

A13



c 2 e c

n p p o i iu ia  11

B E N C H M A R K  P R O B L E M S Swansea University
Prifysgol Abertawe

' 4000 f t
X-

C O S

V sT i J
+ 1 (All.4)

Interval constraints: [-600,600]"

Dimensionality: n = 2; n = 10; n = 30

Location o f the global optimum: x *  = 0 V/

Global optimum: / ( x *) = 0

” f  x. ^
Thus, the influence of the term ]~~[ cos —j=- decreases as n increases. Therefore higher

;=1 V V / >

dimensions do not necessarily imply an increase in the difficulty o f the problem.

Several plots of the 2-dimensional Griewank function are offered in Fig. AII.7 to Fig. 

A11.9 for different regions of the search-space.

BENCH M ARK  T E ST  C O N FL IC T  FUNCTION

A
160 600

140 400

120 200
100

0
80
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-200

40 -400

20 -600

si

TA

-500 .500

Fig. AII.7: S u r fa c e  plot a n d  c o lou r -m ap  of th e  2 -d im ensiona l  G riew ank  function within the  region [—6 0 0 .6 0 0 ]2.

A I I .2 .5 .  S c h a f f e r  f6

This comprises a very hard function to be optimized, which presents numerous local 

optima in the form of ring-like depressions rather than the more typical valleys. Thus, 

there are a high number of local optima of different conflict values (different iso-rings).

A1 4
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In turn, there are infinite local optima within each ring. It is nevertheless a unimodal 

function in the sense that there is a single global optimum.

BENCHM ARK T EST  C O N FLICT FUNCTION

2.5

|1 5

10.5

Fig. A ll.8: Surface p lot and co lour-m ap of the 2-dim ensional G riewank function w ithin the region [ -6 0 ,60]2.

BENCHM ARK T EST  C O N FLICT FUNCTION
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Fig. A ll.9: Surface plot and co lour-m ap o f the 2-dim ensional G riewank function w ithin the region [ -1 0 ,10]2.

/ ( * ) =

( 1 ■ ^
2

sin -0 .5
IV '=• J + 0.5 (A ll.5)

1 + 0 .0 0 1 -^jc,.
*=i y
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Interval constraints: [-100,100]"

Dimensionality: n - 2 \ n -  10; n = 30

Location of the global optimum: x *  = 0 V/

Global optimum: / ( x  *) = 0

Plots of the 2-dimensional Schaffer f6 function are offered in Fig. AIL 10 to Fig. AIL 13.

BENCHM ARK TEST C O N FLICT FUNCTION

n0.9

0. 8
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0 . 6
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0 . 2

0.1

- 1 0 0  - 1 0 0

Fig. A ll.10: Surface plot and colour-m ap o f the 2-d im ensional Schaffer f6 function within the region [—100,100]2.

BENCHM ARK TEST CO NFLICT FUNCTION

Fig. A II.1 1: Surface plot and co lour-m ap of the 2-d im ensional Schaffer f6 function within the region [—30.30]2.
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BENCHMARK TEST CO NFLICT FUNCTION

-5 -5

Fig. A ll.12: Surface plot and co lour-m ap of the 2-d im ensional Schaffer f6 function within the region [—5,5]2.

BENCHMARK TEST CONFLICT FUNCTION

Fig. A ll. 13: Surface p lot and co lour-m ap o f the 2-d im ensional Schaffer f6 function within the region [—1,1 ]2.

It is not very difficult for the particles in PSO to approach the region that contains the 

global optimum, since the closer to the global optimum the better the local optima. 

However, the fact that there are very good local optima completely surrounding the 

global optimum makes the latter harder to find, especially for higher dimensions.

A I I . 3 .  C o n s t r a i n e d  p r o b l e m s

This set has been successively extended through the years by different researchers. 

Thus, the first 11 problems were tested in (Hamida & Schoenauer, 2002), the first 12

A1 7
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problems in (Hu & Eberhart, 2002), and the 13 problems in (Toscano Pulido & Coello 

Coello, 2004). More recently, the benchmark has been remarkably extended to 24 prob

lems in (Liang, et al., 2006) for CEC’06 special session on ConstrainedReal-Parameter 

Optimization. Due to time constraints, only the first 13 problems -i.e. those in (Toscano 

Pulido & Coello Coello, 2004)- are dealt with in this thesis. Nonetheless, the solutions 

presented hereafter are taken from (Liang, et al., 2006), as the same tolerance for viola

tions of equality constraints is adopted here: Toleq = 0.0001.

AII.3.1. Problem 01 (gOl)

The problem consists of a 13-dimensional search-space, a nonlinear (quadratic) objec

tive function in all 13 variables, 9 linear inequality constraints, and interval constraints 

on the variables. The problem can be formulated as follows:

Minimize:

Subject to:

/ ( x )  = 5 - X
W=1 j =1 y=s

(AII.6 )

g, (x) = 2  • x, + 2  • x2 + x l0 + x,, - 1 0  < 0  

g 2 (x) = 2  • x, + 2  • x3 + jc10 + x12 - 1 0  < 0  

g 3 (x) = 2  • x2 + 2 • jc3 + x ,, + xt2 — 1 0  < 0

g4 (X) = - 8  • Xj + x , 0 < 0

g 5 (x) = - 8 -*2+ * n < 0  

^ 6  (x) = - 8 ' JC3 + JV, 2 < 0  

S i (x) = - 2 • x4 - x5 + x10 < 0  

g8(X) = - 2 -*6-*7+*H
S 9 (x) = - 2 - x 8—x9+ xi2 < 0

(AII.7)

jc/ — 1 <  0  :j

X ;  -100  < 0

- X j < 0  ;

I -  Xj < 0

y = l,...,9,13 

! j  = 1 0 ,1 1 , 1 2

Solution:

A 1 8
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x* = (l, 1 , 1, 1 , 1 , 1 , 1 ,1 , 1 ,3,3,3,1)

/(x * )  = - 15
g ] (x*), g 2 (x*), g 3 (x*), g 4 (x*), g 5 (x*), and g 6 (x*) are active

(AII.8 )

AII.3.2. Problem 02 (g02)

The problem consists o f a 20-dimensional search-space, a nonlinear objective function 

in all 2 0  object variables, 1 linear and 1 nonlinear inequality constraints, and interval 

constraints on the variables. The problem can be formulated as follows:

Minimize:

/ w = -

£  COS4 (x, ) ■- 2 • cos2 (x,)
/=1 1=1 (AII.9)

Subject to:

g,(x) = 0 .7 5 -n A r ,< 0
1 = 1

g 2 (x) = X * ,.-7 .5 -rc< 0
i=i

x . - 1 0  < 0  ; —x, < 0  ; j  = !,...,« ; n = 2 0

(AIL 10)

Solution:

'3.16246061572185,3.12833142812967,3.09479212988790 
3.06145059523469,3.02792915885555,2.99382606701730,
2.95866871765285,2.92184227312450,0.49482511456933, 
0.48835711005490,0.48231642711865,0.47664475092742, 
0.47129550835493,0.46623099264167,0.46142004984199, 
0.45683664767217,0.45245876903267,0.44826762241853, 
0.44424700958760,0.44038285956317

/(x * )  = -0.80361910412559 ; g,(x*) is close to being active (-1 0 -8)

(AIL 11)

A 1 9
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AII.3.3. Problem 03 (g03)

The problem consists o f a 10-dimensional search-space, a nonlinear objective function 

in all 1 0  object variables, 1 nonlinear equality constraint, and interval constraints on the 

variables. The problem can be formulated as follows:

Minimize:

m = - 4 n n- t i x j
j =i

Subject to:

abs
r  n \

^i(x) = Z V ~ 1
•/■=>

<Tol eq

x. - 1 < 0  ; —x, < 0  ; y = !,...,« ; n = 1 0

Solution:

(All. 12)

(AIL 13)

* 1 - 1x :xj = ~ r  ’ J = 1’- ’w v «
/(x * )  = - i

(All. 14)

Solution for Toleq = 0.0001:

^0.316243576472830690.316243577414338339, ' 
0.316243578012345927,0.316243575664017895,

x* = 0.316243578205526066,0.31624357738855069, 
0.316243575472949512,0.316243577164883938, 
0.316243578155920302,0.3162435761473 74916 

/(x * )  = -1.00050010001000

(AIL 15)

AII.3.4. Problem 04 (g04)

The problem consists o f a 5-dimensional search-space, a nonlinear (quadratic) objective 

function in all 4 variables, 3 nonlinear inequality constraints in the form of intervals

A 2 0
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(hence sometimes referred to as six constraints), and interval constraints on the vari

ables. The problem can be formulated as follows:

Minimize:

/ ( x )  = 5.3578547 -x3 2 +0.8356891 -x, -x5 +37.293239-x, -40792.141 (AII.16)

Subject to:

The problem consists o f a 4-dimensional search-space, a nonlinear objective function in 

2  o f the variables only, 1 nonlinear inequality constraint in the form of an interval 

(hence sometimes referred to as two constraints), 3 nonlinear equality constraints, and 

interval constraints on the variables. All 4 variables are involved in the constraint func

tions. The problem can be formulated as follows:

g, (x) = 85.334407 + 0.0056858 • x2 • x5 + 0.0006262 • x, • x4 -0.0022053 • x3 • x5 

g 2 (x) = 80.51249 + 0.0071317 • x2 • x5 + 0.0029955 • x, • x2 + 0.0021813 • x32 

g 3 (x) =9.300961 + 0.0047026 -x3 -x5 + 0.0012547-X] -x3 +0.0019085 -jc3 -x4 

0 < g ] (x) < 92 
90 < g 2 (x) < 110 

20 < g 3 (x) < 25
(AIL 17)

x ,-1 0 2 < 0  ; - x ,+ 7 8 < 0
x2 - 4 5 < 0  ; - x 2 + 3 3 < 0
Xj — 45 < 0 ; —Xj +21 < 0  ; j  = 3,4,5

Solution:

x* = (78,33,29.9952560256815985,45,36.7758129057882073) 
f i x * )  = -30665.53867178332 

gj(x*) and g 6 (x*) are active
(AIL 18)

AII.3.5. Problem 05 (g05)

Minimize:

f i x )  = 3'jt, + 0.000001- x ,3 + 2 -x 2 + 0.000002/3 - x 2 (AIL 19)
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Subject to:

g, (x) = abs(x3 -  x4 )-0 .5 5  < 0
abs(g2 (x) = 1 0 0 0  • [sin(- x3 -  0 . 25) + sin(- x4 - 0 . 25)]+ 894.8 - x {)<Toleq 

abs{g3(x) = 1000-[sin(x3 -0 .25)+sin (x3 - x 4 -0 .25)]+  894.8- x 2)< Tol 

abs(g4(x) = 1 0 0 0  •[sin (x4 -0 .2 5 )+  sin(- x3 + x4 -  0 . 25)]+1294.8) < Tol (AII.20)

Xj - 1 2 0 0  < 0

x.. -0 .55  < 0

- x ; + 0 < 0j
-  x .. -0 .55  < 0

j  - 1 . 2

7= 3 ,4

Solution for Toleq = 0.0001:

x* =
'679.945148 297028709,1026.06697 600004691,
0.118876369094410433 -0.39623348 521517826 

/ ( x * )  = 5126.4967140071

(AII.21)

AII.3.6. Problem 06 (g06)

The problem consists o f a 2-dimensional search-space, a nonlinear objective function in 

the 2  variables, 2  nonlinear inequality constraints, and interval constraints on all vari

ables. The problem can be formulated as follows:

Minimize:

/ ( x )  = (x, - 1 o )3 + {x2 -  20) 3 (AII.22)

Subject to:

g, (x) = -(*, -  5) 2 -  (x2 -  5) 2 +100 < 0 

g 2 (x) = (x, -  6 ) 2 + (x2 -  5 f  -  82.81 < 0
(AII.23)

x ,-1 0 0 < 0  ; -x ,+ 1 3 < 0
x2 - 1 0 0 < 0  ; - x 2 + 0 < 0

Solution:

A 2 2
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x* = (14.09500000000000064,0.8429607892154795668)
f All 241

/(x * )  = -6961.81387558015 ; Both g,(x*) and g 2 (x*) areactive

AII.3.7. Problem 07 (g07)

The problem consists o f a 10-dimensional search-space, a nonlinear objective function 

in all variables, 3 linear and 5 nonlinear inequality constraints, and interval constraints 

on the variables. The problem can be formulated as follows:

Minimize:

/ ( x )  = x, 2 + x2 2 + x, -x2 -14-x , -1 6 -x 2 + (xj -1 0 ) 2 + 4-(x 4 - 5 ) 2 +(x5 - 3 ) 2 + 

+ 2 • (x6 - 1) 2 + 5 • x7 2 + 7 • (x8 - 1 1) 2 + 2 • (x9 - 1 0) 2 + (x]0 - 7 ) 2 + 45
(AII.25)

Subject to:

g, (x) = 4 • x, + 5 • x2 -  3 • x7 + 9 • x8 -105 < 0
g 2(x) = 1 0  • x, -  8  • x2 -1 7  • x7 + 2  • x8 < 0

g 3 (x) = - 8  - Xj +2*x2 +5 -x9 — 2*x]0 -1 2  < 0

g 4 (x) = 3 *(x, - 2 ) 2 + 4  -(x2 -  3) 2 + 2-x 32 -  7 - x4 -120  < 0

g 5 (x) = 5 • x,2 + 8  • x2 + (x, -  6 ) 2 -  2 • x4 -  40 < 0

g 6 (x) = x ,2 + 2 • (x2 -  2 ) 2 -  2 • x, • x2 +14 • x5 -  6  • x6 < 0

g 7 (x) = 0.5 • (x, -  8 ) 2 + 2 • (x2 -  4 ) 2 + 3 • x5 2 -  x6 -  30 < 0

g 8 (x) = -3 - x, + 6  -x2 +12 -(x, - 8 ) 2 - 7  'X10 < 0

(AII.26)

xy - 1 0  < 0 -X ; - 1 0 < 0 y = l ,  . . . , 1 0

Solution:

x*_

/ 2.17199634142692,2.3636830416034,8.77392573913157, ^
5.09598443745173,0.990654756560493,1.43057392853463,
1.32164415364306,9.82872576524495,8.2800915887356, 

n8.3759266477347 

/(x * )  = 24.30620906818

g, (x*)? g 2 (x*X g3 (x*X g4 (x*)’ g 5 (x*)> and g 6 (x*) are active

(AII.27)
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AII.3.8. Problem 08 (g08)

The problem consists o f a 2-dimensional search-space, a nonlinear objective function in 

the 2  variables, 2  nonlinear inequality constraints, and interval constraints on the vari

ables. The problem can be formulated as follows:

Minimize:

Subject to:

x sin3 (2 '^--x)'Sin(2 '^'X9)
/ ( x ) = ---------- 1— r r — \ ---------  ( A I L 2 8 )Xj • (X, +X2)

g] (x) = Xj2 -  x 2 +1 <  0 

gi  (x) = 1 -  x, +  (x2 -  4 ) 2 < 0

Xj  - 1 0  < 0  ; —Xj  + 0 < 0  ; y  =  l , 2

Solution:

(AII.29)

x* = (1.22797135260752599,4.24537336612274885)
f ( x * ) =  -0.0958250414180359 (AII.30)

AII.3.9. Problem 09 (g09)

The problem consists of a 7-dimensional search-space, a nonlinear objective function in 

all 7 variables, 4 nonlinear inequality constraints, and interval constraints on the vari

ables. The problem can be formulated as follows:

Minimize:

/ ( x )  =  ( * , - 10)2 + 5 - (*2 - 12)2 + x , 4 + 3 - (*4 - 11)2 +
6 2 4 (AII.31)

+  10 *x5 + 7 - x 6 + x 7 —4 - x 6 - x 7 - 1 0 -x6 - 8 -x 7

Subject to:

A 2 4
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Solution:

g, (x) = 2 • x 2 + 3 • x24 + x3 + 4 • x42 + 5 • x5 -127  < 0 

g 2 (x) = 7 • Xj + 3 • ,x2 +10 • jc32 + x4 -  x5 -  282 < 0 

g 3 (x) = 23 • x, + x2 2 + 6 -x6 2 - 8 - x 7 -196  < 0  

g 4 (x) = 4 • jc,2 + x2 -  3 • jq • x2 + 2 • x 2 + 5 • x6 -11  • x7 < 0
(AII.32)

Xj - 1 0  < 0 - x ,  - 1 0 < 0 y = u , 7

X *  =

f 2.33049935147405174,1.95137236847114592,  ̂
-  0.477541399510615805,4.36572624923625874,
-  0.624486959100388983,1.03813099410962173, 
1.5942266780671519)

/ ( x  *) = 680.630057374402 ; g](x*) and g 4 (x*) are active

(AII.33)

AII.3.10. Problem 10 (glO)

The problem consists o f an 8 -dimensional search-space, a linear objective function in 

only 3 variables, 3 linear and 3 nonlinear inequality constraints, and interval constraints 

on the variables. The problem can be formulated as follows:

Minimize:

/ ( x )  = x} + x 2+x2 (AII.34)

Subject to:

g, (x) = -1 + 0.0025 • (x4 + x6) < 0 

g 2 (x) = -1 + 0.0025 *(jc5 + x 7 - * 4)<  0 
g 3 (x) = — 1 + 0 . 0 1  • (xg -  x5) < 0

g 4 (x) = -jc, -x6 +833.33252 *jc4 +100*x, -83333.333 < 0
g 5 (x) = —jc2 -x7 +1250-x5 + x 2 ’X4 -1250*x4 < 0 (AII.35)
g 6 (x) = - x 3 • x8 +1250000 + x3 • x5 -  2500 • x5 < 0

x ,-1 0 0 0 0 < 0  ; - x , + 1 0 0 < 0  ; y=l, . . . ,7
Xj — 10000 <0 ; -  Xj +1000 < 0  ; j  = 2,3

xy. - 1 0 0 0 < 0  ; —Xj +10 < 0 ; y = 4,...,8

A 2 5



^ i iu ia  ii

C lE C  BENCHMARK PROBLEMS
Prifysgol Abertawe

Solution:

'579.306685017979589,1359.97067807935605,5109.97065743133317,' 
182.01769963061534,295.601173702746792,217.982300369384632, 

286.41652592786852,395.601173702746735 J (AII.36)

/ ( x  *) = 7049.24802052867 

g,(x*), g 2 (x*) ^ ( x*) are active

x* =

AIL3.11. Problem 11 (g ll)

The problem consists o f a 2-dimensional search-space, a nonlinear (quadratic) objective 

function in the 2  variables, 1 nonlinear equality constraint, and interval constraints on 

the variables. The problem can be formulated as follows:

Minimize:

/ ( x )  = x , 2 + (x2 - l ) 2 (AII.37)

Subject to:

abs(g] (x) = x2 -  x, 2 )< Toleq 

x , - l < 0  ; - X j - 1 < 0  ; y = l , 2

Solution:

x* = + _ L I

f ( \  *) = 0.75

Solution for Toleq = 0.0001:

(AII.38)

(AII.39)

x* = (±0.707036070037170616,0.500000001333606807) (AII.40)
/ (x * )  = 0.7499
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AII.3.12. Problem 12 (gl2)

The problem consists o f a 3-dimensional search-space, a nonlinear (quadratic) objective
-i

function in all 3 variables, 1 nonlinear inequality constraint composed o f 9 (729) dis

jointed spheres, and interval constraints on the variables. Although it is commonly said 

in the literature that there are 729 constraints, in reality it is only one, as complying with 

one o f them automatically means violating all others. That is to say that only one can be 

met at a time. The problem can be formulated as follows:

Minimize:

/ w = -
lOO-fc, - 5 ) 2 ~(x2 - 5 f  ~{x} - 5 f  

1 0 0
(AII.41)

Subject to:

g, (x) = (jc, -  p f  + (x2 - q f  + (x3 -  r)2 -  0.0625 < 0 
where p ,q , r  = 1,...,9

x . - 1 0 < 0  ; — x. < 0  ; y = 1,2,3

(AII.42)

Solution:

x* = (5,5,5) 

/ (* * )  = - !
(AII.43)

AII.3.13. Problem 13 (gl3)

The problem consists o f a 5-dimensional search-space, a nonlinear objective function in 

all 5 variables, 3 nonlinear equality constraints, and interval constraints on the variables. 

The problem can be formulated as follows:

Minimize:

/ ( x )  = eXyXrXyX4'X5 (AII.44)

Subject to:
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n p p u i  i u i a  i i

c 2 e c  benchmark problems

abs(g{ (x) = Xj2 + x2 2 + X32 + x 2 + X 2 -1  o)< Toleq 

abs(g2 (x) = x, • x3 -  5 • x4 • x5) < Toleq 

abs(g3(x) = x,3 + x 23 + l ) <  Toleq

Xj —2. 3<0  ; — Xj — 2.3 5: 0 ; j  = 1,2

Xj — 3.2 <0  ; ~ xj — 3.2 < 0  ; j  = 3,4,5

Solution:

(-1.71714224003,1.59572124049468,1.827250240627 C  
X "[-0.763659881912867,-0.76365986736498 ,

/ (x * )  = 0.053941514041898

Swansea University 
Prifysgol Abertawe

(AII.45)

(AII.46)
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