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Summary
The main objective of this thesis is the computational implementation and assess­

ment of multi-scale constitutive modelling strategies based on the volume averaging 
of the strain and stress tensors over a representative volume element (RVE) under 
infinitesimal strains assumption. The computational procedure is based on the fi­
nite element discretisation at both macro- and microscopic levels. Four classes of 
multi-scale constitutive models are considered, corresponding to: the Taylor, the lin­
ear boundary displacement, the periodic boundary displacement fluctuations and the 
uniform boundary traction assumptions. The corresponding finite element formula­
tion is described in detail including the derivation of the homogenised tangent moduli 
which are crucial for the use of the Newton-Raphson method in the iterative solution 
of non-linear macro-scale problems.

The code developed possesses a recursive hierarchical structure. Under this scheme 
the main equilibrium procedure, operating on the macroscopic level, calls itself each 
time it requires to evaluate the material behaviour by homogenisation of micro­
structure.

A comprehensive set of numerical examples is presented. Application of the multi­
scale methodology to materials with linear elastic microscopic constituents is consid­
ered first. The effect of the fibre orientation in the micro-cell and anisotropy of the 
RVE on the homogenised material properties are also discussed. Existing analytical 
methods are used to benchmark the numerical results. The effect of the topology of 
cavities on the homogenised material properties and the overall yield surface under 
different boundary conditions are also studied in the context of elasto-plastic material 
models. Finally, a materially non-linear fully coupled two-scale boundary value prob­
lem is solved numerically, demonstrating the suitability of the developed framework 
to large scale computations.

The present research shows that the adopted multi-scale methodology provides an 
effective tool for the constitutive modelling of heterogeneous materials in the linear 
and non-linear range.
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Chapter 1

Introduction

1.1 Introduction

From the dawn of human history, materials have been weapons of progress. His­
torical ages were even named after them: the Stone Age, Bronze Age, Iron Age and 
so on. Today, we cannot qualify our age after just one material, for our era is the era 
of choice. We have the possibility of using the right material at the right place. Com­
posite materials are one of the well-known materials of our time. Weight/strength 
ratio is the main advantage of this group of materials. On the other hand, their high 
cost in comparison to other materials makes them suitable for industries, such as 
aerospace where cost is a secondary factor.

From glass fibre reinforced plastics to advanced carbon fibre reinforced epoxy, com­
posite materials are very diverse. For instance, fibre composites are normally made 
of reinforcement and another material, which binds the reinforcement. This binder 
is called a matrix. The composite mechanical behaviour have directional properties 
associated with the preferred directions of the reinforcement fibres. The matrix ef­
fectively controls the mechanical properties in the transverse direction. Compared 
with metals, such composites have higher specific strength and higher specific elastic 
moduli. Generally speaking, composites are also less prone to corrosion.

Many industries such as aerospace, ship-building and automotive have used com­
posites for several decades. However, regardless of the rate of development of compos­
ites, basic concepts are not difficult to grasp. If certain rules and principles are clearly 
understood and systematically followed, practicing engineers can have maximum use 
of these remarkable materials.

1



Chapter 1: Introduction 2

Most materials are heterogeneous at a certain scale of observation. This hetero­
geneity has a significant effect on the overall macroscopic behaviour. The physics and 
mechanics of the micro-structure affect the overall response of the macro-structure. 
To this end, the effect of the size, shape, spatial distribution and mechanical proper­
ties of the micro-structure on the overall behaviour of heterogeneous materials should 
be considered.

In many engineering applications, it is essential to determine the overall char­
acteristics of the heterogeneous media. The understanding of the behaviour of the 
micro-structure and the relation between micro- and macro-structure can help us to 
design different composite materials such that the resulting macroscopic behaviour 
presents the required characteristics. However, the diversity of the possible situations, 
regarding the geometry, the scale and the contrast of multi-phase structures, is such 
that it is useful to have a guideline for choosing the appropriate modelling tool for a 
given application [2].

From economical points of view (time and cost), making the direct modelling of 
the material behaviour for different material samples with different volume fractions, 
sizes, various geometrical and physical properties, and loading paths is impractical. 
Therefore, a means of continuous interchange of information and modelling strategies 
between different scales is needed.

The simplest method of estimating macroscopic properties for a given hetero­
geneous material so-called the rule of mixtures. The overall property in this case 
is obtained as an average over the each individual properties of the constituents, 
weighted with their volume fractions. Strictly speaking, this method disregards the 
influence of important phenomena arising from the (often very complex) interaction 
between the phases and takes only the volume ratio of the different constituents into 
consideration.

The effective medium approximation is another method that provides the overall 
behaviour of heterogeneous materials. This method has been developed by a number 
of authors, e.g. [3-5]. The material properties are derived from the analytical method 
of a boundary value problem for a spherical or ellipsoidal inclusion of one mater­
ial bounded in an infinite matrix of another material. The self-consistent method 
leans to the previous method, in which a particle of one phase is embedded into the 
effective material [6,7]. This model is suitable for granular micro-structures, such 
as polycrystals, and can be related to the concept of complete disorder, in terms of
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statistical information [8]. The predicted behaviour from these methods are suitable 
for structures that have a geometrical regularity that typical particulate and fibre- 
reinforced composites do not possess [9]. In addition, this method fails to describe 
the behaviour of clustered structures and it is not convenient for matrix/inclusion 
morphologies. Moreover, self-consistent approximations should not be applied to dis­
persions unless the phase contrast is small enough [9]. The generalized self-consistent 
model (considering a continuous matrix phase) [10], can be applied to avoid the above 
limitations of the classical self-consistent model.

Following by the non-linear version of the self-consistent model (see Hill [11]), the 
variational bounding methods, [12-14] have been used to estimate the properties of 
composite materials. These methods are based on variational principles in the linear 
theory of elasticity and provide upper and lower bounds for the overall composite 
properties. The derived bounds from these methods are close enough when the ratio 
between the different phase moduli are not too large.

The asymptotic homogenisation theory is another approach to estimate the overall 
properties of heterogeneous materials [15].. This method applies an asymptotic ex­
pansion of displacement and stress fields in terms of the ‘natural length parameter’, 
which is the ratio of a characteristic length of the heterogeneities and a measure of the 
macro-structure, see [16-19]. The performance of this method usually is restricted to 
very simple microscopic geometries and simple material models, in context of small 
strains. An overview of observed situations in heterogeneous materials and different 
homogenisation methods have been presented in [1,2].

Over the past few years, a promising alternative approach -  the so-called compu­
tational homogenisation methodology -  has been developed. The basic ideas of this 
approach have been presented in [17,20-22] and further developed and improved in 
more recent works [23-29]. In these methods the relation between stress and strain 
could be obtained at every point of interest of the macro-structure based on the de­
tailed modelling of the micro-level attributed correspond to that point. To show the 
advantage of these methods we can highlight the following items:

1. No need to have any constitutive material model at macro-level.

2. Ideal for any arbitrary material models.

3. Demonstrate the effect of the micro structural information into the macroscopic 
behaviour.
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4. The averaging technique on the micro level could be independent from macro­
level, i.e. the finite element method [22,25,28], the Voronoi cell method [20,21], 
a crystal plasticity framework [23,24], or numerical methods based on Fast 
Fourier Transforms [14,29].

5. Enable the incorporation of finite deformations and rotations on both micro 
and macro levels.

One of the main concerns in the fully micro-to-macro transition technique is that, 
this procedure is computationally expensive. This problem can be overcome by par­
allel computation [25,30]. Another option is selective usage, where the model divided 
into critical and non-critical regions. The non-critical regions are modelled by con­
ventional continuum closed-form homogenised constitutive relations or by the consti­
tutive tangents obtained from the micro-structure analysis but kept constant in the 
elastic domain, while in the critical regions the fully coupled multi-scale analysis of 
the micro-structure is performed [26]. Regardless of the adapted computational strat­
egy, the numerical homogenisation approach seems to be a flexible tool to establish 
micro- or macro-structure property relations in materials, where the overall behav­
iour of heterogeneous material is not yet possible to predict by any other method. 
Moreover, this micro-macro modelling technique may be used for constructing, eval­
uating and verifying other homogenisation methods as well as micro-mechanically 
based macroscopic constitutive models.

1.2 Scope and outline

This research is intended to review and implement the computational strategies for 
multi-scale analysis of material behaviour in the context of non-linear solid material 
models. Two independent algorithms are defined for the multi-scale analysis; the 
code corresponding to the macro-structure and the associated micro-structural code. 
The only link between these two structures is the macro-to-micro and the micro-to- 
macro transition. The hierarchical structure will be introduced for different types of 
variables. This structure is used to segregate the different scales from each other in 
multi-scale analysis.

Developing different kinematic assumptions at micro-level and study of their ef­
fect on the homogenised behaviour of the multi-phase material is another goal in 
this research. Finally, the effect of different factors such as topology of cavities and
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the prescribed boundary condition over the representative volume element on the 
homogenised behaviour of the cell in the context of plane-stress will be investigated.

The thesis is organised as follows: Chapter 2 reviews basic principles of continuum 
mechanics in large and small deformation. The constitutive theory with internal 
variables followed by more specific constitutive material models will be reviewed in 
chapter 3.

In chapter 4, the discrete boundary value problem and the finite element method 
(FEM) implementation in small strain for the linear and non-linear material models 
will be presented.

Chapter 5 focuses on the existing analytical methods and the fundamental con­
cepts in computational homogenisation. Kinematic assumptions at micro-scale and 
the relevant overall tangent modulus based on the imposed kinematical constraints 
are discussed in detail.

Computer implementation of the multi-scale material models is the next subject 
covered in chapter 6. In particular, the hierarchical structure of the code and general 
implementation aspects are discussed in detail.

Application of the computational multi-scale methodology to materials with lin­
ear elastic micro-constituents is made in chapter 7. The analytical methods are used 
as benchmarks for the numerical results obtained with the computational homogeni­
sation approach.

In chapter 8 the effect of topology of cavities on the homogenised elasto-plastic 
properties will be presented. The study of the effective yield surface of porous elasto- 
plastic media will be considered in chapter 9. The effect of anisotropy of the material 
at micro-level will be discussed for the elastic material models in chapter 10.

In chapter 11 some boundary value problem tests will be presented for the two- 
scale analysis model. Chapter 12 gives a summary of the results achieved in this thesis 
followed by recommendations on the practical use of the computational homogeni­
sation techniques considered. Perspectives of future developments in computational 
homogenisation strategies are also discussed.



Chapter 2

Continuum mechanics

2.1 Introduction

This chapter reviews some basic principles of continuum mechanics which will be 
used in the later chapters of the thesis.

2.2 K inem atics of deformation

Assume 38 to be a body which occupies an open region "¥ of the three-dimensional 
euclidean space & with a boundary dV  in its reference configuration. A deformation 
of 38 is defined by a smooth one-to-one function (see figure 2.1) [31,32]

that maps each material particle X  of 38 into a point

x  = <p{X),

where a; is a new position of the point X  in the deformed configuration of 38.
The vector field u (X )  is the displacement of X  and

x  = X  + u(X).

6
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3 » X 3

u(x)

time = t

time = 0
X

Figure 2.1: General motion of a deformable body.

2.2.1 The m otion

A time-dependent deformation of £ 8  is called a motion of £8 . During the motion 
<£>, the new position of material point X  at time t is given by:

x  =  ip(X,t).

Figure 2.1, shows the general motion of a deformable body. The body is shown in 
its initial position at time = 0 by the coordinates X  with respect to Cartesian basis 
ei and i = 1,2,3. After motion of the body, the current positions of the particles in 
the body are located, at time = t. In terms of the displacement field the motion is 
expressed as:

(p(X,t) = X  + u(X , t) .  (2.1)

Since the relation is one-to-one, tp is invertible so that we may also write [31]:

X  = ip 1(x, t).



Chapter 2: Continuum mechanics 8

2.2.2 M aterial and Spatial coordinates

The material or Lagrangian system is based on the current time t and the coordi­
nates of the initial position of the material point X .  This identification is done with 
respect to the initial configuration [33].

n dim

i —1

where Xi are the components of the point X  in the reference configuration. The 
spatial or Eulerian variables are defined for the current coordinates of the position 
of the material point X  at the current time t. The variables identify the current 
configuration are expressed by [33]:

n dim

X
t = l

where X{ are the components of the point X  in the current configuration.

2.2.3 The deform ation gradient

The deformation gradient of the motion p is the second order tensor F  defined 

by [31]:

fix
F (X , t )  = V<p(X,t) = (2.2)

where V is the material gradient. Therefor, the elemental vector dx can be obtained 
in terms of d X  as (see Figure 2.1) [32],

dx = FdX.  (2.3)

In view of equation (2.1) it can be written as

F  = I  + Vit, (2.4)

and the cartesian components of F  are given by:

F -  =
dXj

= Sij + £jjr, (2-5)

where Xi denote the components of x. Further details are given in [31-37].
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2.2.4 Infinitesim al deform ation and strain tensor

Small or infinitesimal deformations are deformations with sufficiently small dis­
placement gradient, Vix. For such deformations, the description of kinematics can be 
substantially simplified.

As a general measure of deformation, consider the change in the scalar product 
of the two elemental vectors dX\  and dX 2 (in the material position) that deform to 
dx 1 and dx2 in the spatial position. This change will involve both the stretching and 
changes in the enclosed angle between the two vectors (see Figure 2.1).

Recalling from equation (2.3), the spatial scalar product dx 1 • dx2 can be found 
in terms of material vectors as [32],

dx 1 • dx 2 = d X  1 • C d X 2, 

d X  1 • d X 2 = dx 1 • B ~ ldx2, (2.6)

where C  is the right Cauchy-Green deformation tensor and B  is the left Cauchy-
Green tensor and are given in terms of the deformation gradient as [31],

c  =  F t F = I  +  Vw +  (Vit)r  + (Vw)TVw,

B  = F F t = I  + V u  + (Vw)r  + Vu{Vu)T. (2.7)

In general the strain measure E  is the so-called Green-Lagrange strain tensor and 
defined as [32]:

E  = \ ( C - I ) ,

= I  [V« + (Vu)r  +  (Vu)r V u ] . (2.8)z

If the displacement gradient is sufficiently small, the second order terms in Vtx
of the expressions above can be neglected so that, under small deformations, the
following approximation can be made:

C  »  B  «  I  + Vit + (Vu)T.

From the above expression and the definitions of the Green-Lagrange strain tensor 
E  equation (2.8) it follows that, to the same order of approximation,
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This motivates the definition of the infinitesimal strain tensor to measure strains 
under small deformations:

e = V su, (2.9)

where the symmetric gradient of a vector field is defined by:

V»(.) =  sym [V (.)] =  i [ V ( . )  +  V ( . ) r ].

We should emphasize that this work has been done in the framework of small 
strain assumption.

2.2.5 Forces and stresses

The forces associated with the mechanical description of a body can be classed 
into three categories [32]:

1. Boundary forces which are applied to the boundary of the body with dimension 
of force per unit area.

2. Body forces which are acting in the interior of the body with dimension of force 
per unit mass.

3. Internal interactions between adjacent parts of a body with dimension of force 
per unit area.

The axiom of momentum balance

Let 38 be subjected to a system of surface boundary traction, T  acting on ip(dy), 
and body force, f acting on (p(y) (see Figure 2.2). The axiom of momentum balance 
asserts that: for any part of the deformed configuration of 38, the balance of linear 
momentum [31]:

I  pudv = I pfdv + I T(n)da (2.10)

is satisfied, with p denoting the mass density field, and n  is the outward unit vector 
normal to the deformed boundary p(dy)  of 38.

The left hand side of equation (2.10) contains the inertia term, with u  denoting the 
acceleration field of 38 (second derivative of displacement with respect to time) [31].
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X3, x3

time = t

time = 0

Figure 2.2: Schematic representation of body equilibrium and acting forces on the body.

The momentum balance can be expressed in its local form by the equations [31]:

divx(T -\-i—pu in p iy )

T  — crn inip(dy). (2.11)

Cauchy stress tensor

Consider a general deformable body at its current position as shown in Figure 2.3. 
Consider the element of area A a normal to n  in the neighborhood of spatial point p
shown in Figure 2.3. If the resultant force on this area is Ap, the traction vector T
corresponding to the normal n  at p  is defined as [32],

T(n) = lim ^ 5
V ' Aa—*0 Aa

where the relationship between T  and n  must be such that satisfies Newton’s third 
law of action and reaction [31],

T ( - n )  = —T(n).

From the axiom of momentum balance (equation (2.10)) it follows that the surface 
traction has a linear relation with its normal vector n. This implies that there exists 
a tensor field cr(x) such that the Cauchy stress vector is given by [32],

T (x ,n )  = cr{x)n. (2.12)
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3, x3

A p

Aa -n

X,

Figure 2.3: Schematic representation of a deformed body.

2.3 Weak equilibrium. The principle of virtual 

work

The strong form of the momentum balance have been stated in equation (2.11). 
In this section the momentum balance equation will be expressed in its weak form, 
which is the starting point of kinematically based finite element methods.

Assume the body 38 to be subjected to body forces in its interior and surface 
tractions on its boundary. In its deformed configuration, 38 occupies the region <p(y) 
with boundary ^p{dY) defined through the deformation map tp [32].

Under infinitesimal deformations, reference and deformed configurations coincide 
and the virtual work equation reads simply [32]:

[  [a : VT7 — ( f— pii) • rf[dV — f  T-rplA — 0 V77 G 93, (2.13)
J y  Jey

where is the space of virtual displacements of 38.
If the stress field <7 is sufficiently smooth, the virtual work equation is equivalent

to the strong momentum balance (equation (2.11)) for more details we refer to [31,36].
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2.3.1 Linearisation o f the virtual work

The virtual work presented in equation (2.13), is generally nonlinear. In order to 
find a kinematically admissible field of displacement to satisfy the equation (2.13), 
it is essential to use one of the iterative procedures such as Newton-Raphson (see 
section 4.3.1). For this aim we need to linearize the equilibrium equation by using 
the general directional derivative procedure (see references [31,32,38]).

For simplicity of the procedure we assume that the stress tensor is a function of 
the current strain only:

a  — a(e) = a (V su).

Now we want to linearize equation (2.13) with respect to the unknown u  about 
an arbitrary argument u. That is, finding field d such that [31],

J$?(d, rj) = G(u , rj) + DG(u, rj) [d\ = 0 V77 6 2J, (2.14)

where, presents the linearized virtual work functional and

G(u + ed, 77), (2-15)DG(u , v M  = Jf
e=0

is the directional derivative of G at u  in the direction of d. 
The directional derivative of G is given by,

D G ( u , v M  = -  f  [<r(e(e)) : V77 — f • »j] dV — f  T  ■ t)dA
6 e=0Jy JdY

= -  f  [<r(e(e)) : Vri — f  • 17] d,V. (2.16)
e le=0 Jy

In above,

e(e) = V s(u + ed) = £ + eV8d , (2.17)

Straightforward application of the chain rule to the functional cr in equation (2.16) 

yields,

DG{u,r))[d}= [  [C : V sd:Vrj}dV. (2.18)
Jr

The fourth order tensor C  in the context of small strain is known as the tangent 
modulus and defined as,

(2.19)

The above definition will be used to achieve the consistent overall tangent modulus 
for the multi-scale material models.
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2.3.2 Principal directions; principal stresses

For any symmetric stress tensor cr, the eigenvectors of the tensor represent three 
principle directions. The planes having these directions as their normals are known 
as principle planes. The stress vectors which are normal to these planes are principle 
stresses. The principle stresses are the maximum and minimum values of normal 
stresses among all planes passing through a given point.

To determine the principle stresses, from the continuum mechanics (determina­
tion of the eigenvalues and eigenvectors - see reference [33]), the following system of 
equations should be solved,

det(cr — AI) = 0,

where the obtained eigenvalues from the solution of the above equation, present the 
principal stresses for the stress tensor a. Figure 2.4 illustrates the transformation of 
the normal stresses to the principal directions.

Y Y
♦
A

Ox T*y

V
0 Ox

Ty*
Oy]

► X

6a

6\

b)

Figure 2.4: a) Stresses in given coordinate system, b) Principal stresses

2.3.3 S tate o f plane stress and plane strain

If a thin plate is loaded by forces applied at the boundary, parallel to the plane 
of the plate and distributed uniformly over the thickness (see Figure 2.5), the stress 
components, (733, <713, cr23, are zero on both faces of the plate. The state of stress is 
then specified by crn , <j22, cm, only and, is called the plane stress. [39].

Assume that the dimension of the prismatic body in the third direction (perpen­
dicular to the plane) is very large and is loaded by forces that are perpendicular to the
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longitudinal elements. Assume th a t these forces do not vary along the length and it 

may be assumed th a t all cross sections are in the same condition. It is supposed tha t 

the end sections are confined between fixed smooth rigid planes, so th a t displacement 

in the axial direction is prevented (see Figure 2.5). In such a case, the components of 

strain £33, £13, £23, are zero and the state of strain is then specified by £n , £22, £12- 

Such strain case is called the plane strain [39].

2.4 Conclusion

In this chapter, we reviewed some basic concepts of continuum mechanics in the 

context of large and small deformation, such as, the concepts of kinematics of de­

formation, motion, deformation gradient, infinitesimal strain tensor, the axiom of 

momentum balance and definition of Cauchy stress tensor. In addition, the concept 

of weak equilibrium and the principle of virtual work and linearisation of the virtual 

work were presented.

Moreover, the definition of principal directions and principal stresses were ex­

plained and at the end of this chapter the plane strain and the plane stress problems 

were reviewed.

Unit sliced 
section is used 
for analysis

b)

Figure 2.5: Plane problems, a) Plane stress, b) Plane strain
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C onstitutive material m odels

3.1 Introduction

Constitutive material models are defined to link the deformation of a continuum 
body to the forces acting on it and to illustrate the physical characteristic of different 
materials. The first constitutive model we consider is the linear isotropic elastic 
material followed by anisotropic elastic models and, at the end of this chapter, the 
von Mises elasto-plastic model is described.

3.2 C onstitutive theory w ith internal variables

The principle of constitutive determinism restricted to the purely mechanical the­
ory postulates that for a simple material undergoing small straining, the local history 
of the strain tensor e4 (see equation (2.9)) at any point of interest up to instant t 
suffices to determine the history of the stress tensor <r at that point [40]. There­
fore, there exists a symmetric tensor-valued constitutive functional $  such that, at 
an arbitrary instant t [41],

<x« =  «(«*)• (3.1)

The constitutive theory with internal variables is based on the hypothesis that at 
any instant the thermodynamic state at a given point can be completely determined 
by the knowledge of a finite number of state variables. The thermodynamic state 
depends only on the instantaneous value of the state variables and not on their past 
history. It is assumed that the thermodynamic state at any time t for a given point

16
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is determined by the following set of state variables [31]:

{£,<*},

where e and a  represent, respectively, the instantaneous values of the strain tensor 
and the set of internal variables,

= {<**:}>

generally containing scalar, vectorial and tensorial variables associated with dissipa­
tive mechanism (for more detail we refer to [36]). In this case, the specific free energy 
is assumed to have the form [31]:

0  =

and the constitutive behaviour of the material is described by the following general 
set of equations:

f a  = §t
• *  > • {3-2) { a  = f(e ,a )

Effectively, any model of the present type is completely defined by specifying the 
functions 0  and / .

3.3 Linear elastic material m odel

Within this framework, the simplest material model is the linear elastic one (for 
more detail we refer to i.e. [36,39,42,43]), for which the free-energy is expressed as,

i0  = - C  : e : e,

or in index form,

0  =  ~ CijkiSkl^ij' (̂ *̂ )

where, C  is the fourth order tensor of elastic moduli (the elasticity tensor).
The linear stress-strain relation can be derived from equation (3.3) as

_  ^  _  n  -  nCij — Qg.. — Cijkl^kli Or <T O  . S . (3.4)
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The stress and strain tensors are required to be symmetric. In the most general 
case, a fourth order tensor has 81 independent components. However, the symmetry 
of <t and e reduces the number of independent components to 36. On the other hand, 
due to symmetry of stress and strain tensor and from strain energy relation, it can 
be concluded that the stiffness tensor should also be a symmetric tensor, i.e,

Cijkl CfcHj.

With the above restriction for the stiffness tensor, the number of independent 
components of stiffness tensor is reduced to 2 1 . Any further reduction in the number 
of independent components can only be made through restrictions imposed by the 
symmetry properties of the material.

To present Cijki in compact form, it is convenient to introduce a contracted nota­
tion.

Stresses Strain
Tensor Contracted T  ensor Contracted
notation notation notation notation

0 11 04 £11 £1

022 0-2 £22 £2

033 03 £33 £3

723 = 023 04 723 = 2 e23 £4

II h-‘ 05 731 = 2̂ 31 £5

T12 = 0"12 06 7l2 = 2£i2 £6

Table 3.1: Notation for stresses and strains

In Table 3.1, 7 ^ for i ^  j  presents engineering shear strain whereas Eij for i ^  j  
represents tensor shear strain components.

With this notation the stress-strain relations, equation (3.4) with 21 independent 
components for can be written as [43],

Cn C12 C13 C14 C15 Ci6 £1

02 C22 C23 C24 C25 Q26 £2

03 C33 C34 C35 C36 £3

04 C44 C45 C46 £4

05 sym. C55 C56 £5

06 1 p O 1 £6
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or in index notation,
(Ji — CijSj

For symmetry with respect to a plane, Cij has 13 independent components as,

Cn

Cij =

C 12 C 13 0 0 ClQ

C22 C23 0 0 C2Q

C33 0 0 C3Q

Cm C45 0

sym . Cqq 0

Cqq

where the plane of symmetry is — 0. For an orthotropic material (symmetry with 
respect to three mutually orthogonal planes), C  has nine independent components 
and is written as,

Cij =

c 11 Cy2 C 13 0 0 0

C22 C 23 0 0 0

C 33 0 0 0

Cm 0 0

sym . Cqq 0

Cqq

For a transversely isotropic material one of the planes for the orthotropic case is 
taken to be a plane of isotropy. Letting ex be normal to the plane of isotropy, we then 
have five independent components as [43],

'ii C12

C22

sym.

C12

C23

C22

\ { p 22 — C2 3 ) 0
Cqq

0

0

0

0

0

Cqq

Finally, in the case of complete isotropy there are only two independent compo­
nents of , and we have [43],
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Cu  C \2  C \2  0 0 0

C\\ Cv2 0 0 0

c  = Cn  0 0 0

k(C n - C 12) 0 0

sym. |(C'U -  C12) 0

|(C U -  C12) .

In this case the stress-strain relations can be equivalently written as,

& ij ^ k k & i j  “I” 2 ,

where A and p are the Lame coefficients and 6^  is the Kronecker delta symbol. Al­
ternatively, the stress-strain relations can be written compactly in terms of deviatoric 
and dilatational (volumetric) components. Let Sy and (£d)ij be the deviatoric com­
ponents of stress and strain, defined as [43],

S ij =  (Jij '^dijO'kk  

i^ d ) i j =  &ij ~2$ij£kk ' (^*b)

With equation (3.5) the stress-strain relations take the form,

Sij — tlp{s(i)ij^

and

&kk =

where p in particular, is the shear modulus and constant k is the bulk modulus, which
governs volumetric changes. Alternatively, the elastic relation may be expressed in
terms of the Young’s modulus,

9 kp
= Qt _i_—’3 k + p

and Poisson’s ratio,
_  3k — 2p 

2(3 k +  p)
The elasticity tensor for plane stress models and based on the elastic modulus is 

expressed by [44],
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C  = E
I — i/ 2

and for plane strain problems as,

C  = E
(1  + i/)(l — 2 v)

1 v
V 1

0

1 — z/ v 
V 1 — 1/

0  (1  — 2 v ) / 2

3.4 Anisotropic plane elasticity m odels

Prom equation (3.4), the linear elastic law for isotropic material model is expressed 
as [45],

0"ij — C ijk iE k i,

Sij = £>ijkl&kh (3.6)

where S  is compliance tensor. The reduced stiffness and compliance matrices for the 
plane stress condition and a unidirectional lamina model are expressed by [46],

(3.7)

For an isotropic lamina, the components of stiffness and compliance matrices in 
equation (3.7) can be written in terms of engineering constants [46],

'C n C \2 0 " 'S n S12 0 "

c = C \2 C22 0 , S  = S12 S22 0
0 0 Cf66_ 0 0 See_

E vE
0 "

1 V
0 "1—v 2 1—v 2 E E

C  =
v E

1—v 2
E

1—v 2 0 , S =
V
E

1
E 0

0 0 G _ 0 0 1
G .

(3.8)

where E  and v are respectively Young’s modulus and Poisson’s ratio.
We can rewrite the components of the stiffness and compliance matrices for an 

orthotropic lamina containing unidirectional fibres at a fibre orientation angle of 6  = 0 

or 6  =  90 (see Figure 3.1) in terms of the engineering constants by [46],
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r  =  En sn = 4 -
11 1 -  v u v n  ’ 11

C 22 =  ?  E - 2 , S 2 2  = B
1 — ^12^21 22

V l 2Vi2 E22 Si2 =
D 12 =  z , E n

1 -  ^12^21
V2iEu S‘ _  - V 2 1

/ ~i    ’■'21 271 j
^ 2 1  —-- i----------- > -^22

1 -  ^12^21 l
Cqq = G?i2. (3-9) ^66 =  • (3.10)Cri2

The general form of stiffness and compliance matrices for a general orthotropic 
lamina (0 ^  0 or 6  ^  90) could be expressed as,

(3-11)

Elements in the C matrix could be expressed in terms of the material properties 
in the principal material directions in the following form [46],

C\\ = Cncos40 + 2 (Ci2 + 2CQQ)sin26cos26 + C2 2sin4 9 ,

C \2  = Ci2(sin40 + cos40) + (Cn + C2 2 — 4CQQ)sin29cos29,

C22 = C\\sin46 + 2 (Ci2 + 2CQQ)sin26cos26 + C22cos40,

Ciq =  (Cn -  C 12 -  2CQQ)sin0cos30 +  (C 12 -  C22 +  2CQ6)sin39cos9,

C26 =  (Cn ~ C\ 2 ~ 2CQ6)sin39cos9 + (C\ 2 -  C22 + 2C6Q)sin9cos39,

Cqq = (Cn + C22 — 2 C12 — 2CQQ)sin29cos29 + CQQ(sin49 + cos4 9). (3.12)

Figure 3.1 shows lamina with unidirectional fibres at a local fibre orientation angle 
9 with respect to the global material axes. Figure 3.1-(a) is a 2 -D representation in 
the plane of the fibres. The angle 9 is measured positive counter clockwise from the 
global xx axis to the local 11 axis. Figure 3.1-(6) shows 3-D schematic view of the 
lamina when the local fibre axes coincide with the global material axes.

C n C \2 C lQ S n S l 2 S lQ

C  = C \ 2 C 2 2 C 2Q ,~S = S12 S>22 S 2 6

C lQ C 2Q Cqq S lQ S 2 6 S qq



Chapter 3: Constitutive material models 23
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a) b)

Figure 3.1: a) Fibre orientation angle in plane of fibres, b) 3-D view of the principal 
material directions and local fibre directions.

By introducing the transformation m atrix T  as [45-47],

T  =

m  n  2  m n

7i2 77i2 —2 m n

—m n  m n  rn2 — n 2

(3.13)

where m = cosO and n = sinQ, the equations (3.12) can be w ritten as [45-47], 

C\\ =  C \\m A -J- 2 ( 6*12  ~b 2 C*6 6 ) 712 7712 +  C * 2 2 ^ 4 )

C * i2  =  6 * 1 2 ( 7 1 4 4 - 77i 4 )  -j -  ( 6 * 1 1  +  6 * 2 2  —  4:CQQ̂ )n2m 2 ,

6 * 2 2  =  C u n 4 -f- 2 ( 6 * 1 2  ~b 2C(xi)n2m 2 +  6 * 2 2 ^ 4 >

C i e  =  ( 6 * n  —  6 * 1 2  —  2Cw)nm 3 +  (6 * 1 2  —  6 * 2 2  +  2CQQ)n3m ,

6 2 6  =  (6 * 1 1  —  6 * 1 2  —  2C§o)n2>m  -I- ( 6 * 1 2  —  6 * 2 2  +  2CQe)nm3 ,

6 * 6 6  =  (6 * 1 1  +  6 * 2 2  —  2 6 * 1 2  —  2C66)n2m 2 +  C§§{n4 -F  7714 ) . (3.14)

3.5 E lasto -p lastic  m a te ria l m odel

The initial idea of plasticity theory could be traced back to the nineteenth century. 

Following the substantial developments during the last century, today we take advan­

tage of the most successful and well-known phenomenological constitutive models of 

solid materials. The theory of plasticity is expressed for solid materials which after 

loading and unloading show a plastic/irreversible deformation.

In particular, this theory is restricted to predict the behaviour of materials for 

which the permanent deformations do not depend on the rate of application of loads 

and is often referred to as the rate-independent plasticity. M aterials whose behaviour
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can be adequately described by the theory of plasticity are called plastic (or rate- 
independent plastic) materials.

To determine the general mathematical formulation for this theory the experimen­
tal observations have been done for the behaviour of metals under the uniform states 
of combined stresses. In contrast to the elastic materials, for which the state of strain 
depends only on the final state of stress, the deformation that occurs in a plastic 
solid is determined by the complete history of the loading. The plasticity problem 
is, therefore, essentially incremental in nature, and the final displacement of the solid 
obtains as the sum of the incremental displacements following the strain path.

3.5.1 Phenom enological aspect o f p lasticity

The uniaxial tension test is commonly used to assess the behaviour of ductile 
metals. This presentation of the material behaviour is generally known as the stress- 
strain curve (see Figure 3.2). In the schematic diagram of Figure 3.2, where the axial 
stress, o’, is plotted against the axial strain, e, the imposed loading to the bar has 
been increased gradually such that the axial stress changes from zero to prescribed 
value, cr0. The bar is then unloaded back to an unstressed state and subsequently 
reloaded to a higher stress level, <Ti. From this test some important phenomenological 
properties can be identified:

1. The elastic domain is the range of stresses within which the behaviour of the 
material remains purely elastic. The elastic domain is defined by the so-called 
yield stress.

2. By increasing the load, at the yield stress point the evolution of plastic strain 
takes place. This phenomena is known as plastic yielding.

3. The evolution of the yield stress is known as hardening (see the difference 
between two points Yq> and, Yi).
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<T

Figure 3.2: Uniaxial tension experiment with ductile metals [31].

The object of the mathematical theory of plasticity is to provide continuum con­
stitutive models capable of describing (qualitatively and quantitatively) the phenom­
enological behaviour of materials that possess the characteristics discussed above with 
sufficient accuracy. Various criteria have been suggested in the past to predict the 
yielding of metals under complex stresses. Two widely used criteria are those due to 
Tresca and von Mises. From a series of experiments on the extrusion of metals [48], 
Tresca concluded that lplastic deformation occurs when the maximum shear stress 
over all planes attains a critical value given by the yield stress in shear denoted by, 
ky 1 [49].

Von Mises suggested that lplastic deformation occurs when the maximum octa­
hedral shear stress reaches its critical value ’. Because of the direct relation between 
the maximum octahedral shear stress and the distortions] energy, this criterion is 
sometimes termed the maximum distortional energy criterion.

The Tresca criterion is expressed as [49,50]:

$(<t) = 4 J | -  27Jl -  3b k \j \  + 964^2 -  6 4 4 , (3.15)

where, J2(s), and, ^ (s ) , are respectively, the second and third invariant of the devi­
atoric stress tensor,

s := dev[<r) = cr — ^r[<r]. (3.16)
o

Also the von Mises criterion is expressed by

$(<t) =  y / s l i  — cry , (3.17)
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where,

ay — \PSkY, (3.18)

indicates the relation between the uniaxial and shear yield stress. From equation
(3.17), the von Mises effective stress is expressed by

Geff = a/3^2 = yj°lx + tfy  + 3G2Xy -  GxxGyy. (3.19)

Figure 3.3 illustrates the Tresca and the von Mises criteria in the deviatoric plane. 
The Tresca yield locus is a hexagon with distances of y/2/2>Y, from origin to apex on 
the deviatoric plane whereas the von Mises yield surface is a circle of radius y / 2 k y  

( y / j .J =  k y ) .  The constant Y  may be chosen such that, the von Mises and the Tresca 
criteria to be in agree with each other. It is conventional to make the circle pass 
through the apices of the hexagon by taking the constant Y  = y / 3 k y ,  the uniaxial 
yield stress (see 3.18) [51].

Gi
g 2 - g 1= y G2 - G j  = Y

Tresca hexagonVon Mises circle

ACT,

Figure 3.3: Tresca and von Mises yield criteria in deviatoric plane.

We should emphasize that the von Mises elasto-plastic material model has been 
considered in this research and for more detail about other models, criteria, and 
plastic behaviour, we refer to [31,36,48,50,52].
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3.5.2 Von M ises yield  criterion

It should be mentioned that, in the von Mises yield criterion, the volumetric com­

ponents of stress do not take part in the definition of the von Mises criterion and 

only the deviatoric stress can influence the plastic yielding [31,49]. 3-D view in the 

principal stress space of the von Mises model is illustrated in Figure 3.4.

along Hydrostatic axis
Projection of stress 
on deviatoric plane

Deviatoric plane

Von Mises 
vield surface

Arbitrary stress vector 
in stress space

Projection of stress

Hydrostatic axis

Principal stresses

Figure 3.4: 3-D representation of the yield criterion in principal stress space.

C o n stitu tiv e  eq u ations for th e  von M ises e lasto -p lastic  m a te ria l m odel

The general constitutive equations in framework of elaso-plastic materials have 

been explained in detail in [31,36,48-50,52]. Consider a point p, of a generic elasto- 

plastic body, in a configuration at time t0 and assume tha t, at this instant, the 

plastic strain tensor, s p(t0), and all elements of the set ex.(to) of internal variables are 

known. Furthermore, let the motion of 3$ be prescribed between to and a subsequent 

instant, t\. The prescribed motion defines the history of the strain tensor, s(t) ,  a t the 

material point of intrest between instants to and t\. The basic elasto-plastic initial 

value problem is stated in the following [31],
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i(t) = ee(t) + £p(t), (3 .20)

£P(t) = 7 (t)N(cr(t), A(t)), (3.21)

a(t) = 7 (t)H(<r(t), A (£)), (3.22)

${(r{t), A{t)) < 0 , t (*)>0,  7 (t).$(cr(t), A(t)) = 0, (3.23)

i(<r(f),A(f) ) . 7  = 0, (3.24)

where 4> is the yield function, i p is the rate of the plastic strain, 7  is the rate of plastic 
multiplier, d  is the rate of the internal variable for the strain hardening and A is the 
hardening thermo-dynamical force [31].

The rate of plastic multiplier 7 , is defined by,

V =  ^  . I -  \\p P \\7 = £ = V 3  11̂

In equation (3.21) N is the flow vector and H in equation (3.22) is the generalized 
hardening modulus, which defines the evolution of the hardening variables [31].

By taking the von Mises yield function, equation (3.17), as the flow potential, 
from the Prandtl-Reuss plasticity law [31], the flow vector N is given by [31],

N = 9" * = i [ ^ ]  =  \ I l i \ \ ’ (3'25)

and the corresponding flow rule in equation (3.21), is expressed by,

i P = ^ i u v  { 3 - 2 6 )

Hardening laws

The phenomenon of hardening has been identified in the uniaxial experiment. 
Hardening is characterised by a dependence of yield stress level upon the history 
of plastic straining to which the body has been subjected. In the two- and three 
-dimensional situations, hardening is represented by changes in the hardening thermo



Chapter 3: Constitutive material models 29

dynamical force, A, [31], during plastic yielding. These changes may, in general, 
affect the size, shape and orientation of the yield surface, which is defined by:

$(<r, A). (3.27)

In this section we will have a brief review of different types of hardening such as 
perfect plasticity (no hardening) and isotropic hardening.

Perfect plasticity

A material model is said to be perfectly plastic if no hardening is allowed, that 
is, the yield stress level does not depend in any way on the degree of plastification. 
In this case, the yield surface remains fixed regardless of any deformation process so 
that the elasto-plastic modulus, Eep, vanishes and in the von Mises model, this type 
of hardening responds to constant uniaxial yield stress, oy.

Figure 3.5, shows the stress-strain curve of typical uniaxial cyclic test with a 
perfectly plastic von Mises model along with the corresponding deviatoric plane rep­
resentation of the yield surface.

-°y

b)a)

Figure 3.5: Perfect plasticity. Uniaxial cyclic test and deviatoric plane representation, 
a) Deviatoric plane. b) Stress-strain curve for uniaxial cyclic test

Isotropic hardening

A material model is said to be Isotropic hardening if the evolution of the yield 
surface is such that, at any state of hardening, it corresponds to a uniform (isotropic) 
expansion of the initial yield surface, without translation [31].
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During plastic flow, the elastic domain expands equally in both tension and com­
pression. The expansion of the yield surface and the stress-strain curve for uniaxial 
cyclic test with an isotropic hardening for the von Mises model is shown in Figure 
3.6.

Initial surface

Hardening surface

a) b)

Figure 3.6: Isotropic hardening. Uniaxial cyclic test and deviatoric plane representation, 
a) Deviatoric plane. b) Stress-strain curve for uniaxial cyclic test.

The choice of a suitable set of hardening internal variables, a , must be obviously 
dependent on the specific characteristics of the material under consideration. The set 
a  normally contains a single scalar variable, which determines the size of the yield 
surface. The most popular approach is called strain hardening for which the effective 
strain defined by,

g M * . (3.28)

is chosen as the internal variable associated with isotropic hardening. The variable 
ep is also known as accumulated plastic strain and its evolution law for e9 is given 
by [31]:

• p
r  =  \ l | e i > : e" = y  J  p p | (3.29)

The effect of the hardening variables on the size of the yield surface is introduced 
by making the yield stress dependent on ep. For the von Mises criteria, one has for 
the uniaxial yield stress,
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Gy ~  (3.30)

The function (3.30) define the co-called hardening curve, which is the only exper­
imentally determined plastic property required by isotropic hardening materials. If 
av is a linear function of e13, the model is said to be linear hardening. Otherwise, it is 
a non-linear hardening model [31].

3.5.3 R eturn m apping in the elasto-p lastic problem

Due to the additive structure of the total strain rate (see equation (3.20)), the 
numerical integration of the von Mises constitutive initial value problem for the elasto- 
plasticity is split into a sequence of two sub problems: the elastic predictor and the 
plastic corrector.

The procedure starts by solving the system of equations (3.20) - (3.24) for the 
elastic predictor problem, in which the material is assumed to behave purely elastic 
between time tn and tn+i, with the internal variables frozen at the beginning of the
time interval. The elastic predictor problem is defined by the following steps [31]:

Given the strain history e(t) within the time interval [tn,tn+i], find £etr%a\  £p trial 
and c t trm l, that satisfy [31,49]:

■e trial   •& — fc 5
£P trial = 0 ,

OLtria l =  0 ,

with the same initial conditions, as the original elasto-plastic problem:

e‘ M {tn) = < ,  (3.34)

e>M {tn) =  < ,  (3.35)

a friol(t„) = a n. (3.36)

The solution of the elastic predictor problem at time tn+1, denoted e„+'{al, £vnX\al 
and a j+ i > defines the so-called elastic trial state. The next step in the elasto-plastic 
operator split algorithm is to take the elastic trial state as initial condition for the 
plastic corrector problem [31].

(3.31)

(3.32)

(3.33)
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In the plastic corrector (the return mapping) the objective is to find se, ep and 
a , such that the following equations are satisfied [31,49]:

£e(t) = - £ p{t), (3.37)

£p = 7 N, (3.38)

a  =  - 7 H ,  (3.39)

$ ( c r , A ) < 0 ,  7  >  0 ,  7 $ ( < t ,  A )  =  0 ,  ( 3 .40)

where the stress cr and the hardening force A are given by [31]:

_ dip _dip , .
<r = PeTe> A =  f a  ( )

where ip, is the free potential energy.
The initial conditions are:

£'(<„) = (3.42)

£”(<») = (3-43)

«(*») =  < 4 (3-44)

Finally, the solution obtained for the plastic corrector at £n+i, denoted,

n + l  > £ n + l » £ n + 1) a n + i }  ( 3 .45)

is an approximation to the solution of the actual elasto-plastic initial value problem
at tn + 1 [31].

To sum up, the approximated solution of the initial value problem of elasto- 
plasticity has resulted in a numerical algorithm that involves two steps: The elastic 
predictor, which in the evolution problem is solved as if the material were purely 
elastic within the time interval considered, followed by the return mapping, which 
ensures plastic admissibility of the converged state. The return mapping procedure 
is executed only if the elastic trial state violates plastic admissibility [31].

The fully implicit elastic predictor and return mapping algorithm for numerical 
integration of general elasto-plastic constitutive equations, has been summarized in 
the Box 3.1:
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1. Elastic predictor. For given A s  and the state variables at time tn, 

evaluate the elastic trial state:

e trial   _e  . a
Sn+ 1 =  £ n +

a t r ia l    trial
n+1 — n j

_trial   -r I trial \  trial   — I trial
n+1 — " Q£ e |n+l > A n+1 — Q c t +1 ’

2 . Check for plastic admissibility,
IF K % )  < 0 ,

THEN set (.)„+i =  (On+f and EXIT

3. Return mapping. Solve the non-linear system of equations,

<+ i -  + A7 ;vn+1 = o

otn+1 -  a*nr;° / -  A 7 f f n+1 =  0

^(^Vi+i j 0

for een+l, ctn+1, and A7 , with,

_  -  & P _  | A _
®n+l — P  |n+l> A-n+l ^  Q q  l7̂ 1’

4. EXIT

Box 3.1. Implicit elastic predictor and return mapping algorithm for 
numerical integration of general elasto-plastic constitutive equations

For further details, readers are referred to [31,36,48-50,52]. A geometric inter­
pretation of the elastic predictor and plastic corrector is given in Figure 3.7 [49].
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Figure 3.7: The elastic predictor-plastic corrector scheme for the von Mises yield criterion. 
Return mapping for the trial stress, , to the current yield surface,
^n+l = ^K^n+lj

3.6 Continuum m odels for m aterials w ith micro­

structures

Composite materials have many characteristics that are different from more con­
ventional engineering materials. Some characteristics are merely modifications of 
conventional behaviour; others are totally new and require new analytical and exper­
imental procedures. Often, the predicted results from the modelling of such materials 
based on the purely macroscopic theories are in disagreement with the observed consti­
tutive response. By increasing in demand for new composite materials with complex 
structures, the phenomenological theories stretched to their limit of applicability. A 
possible alternative to improve accuracy in this case is by identifying new internal 
variables. However, the disadvantage of this approach is the difficulty for identifica­
tion of states and evolution laws for the extra internal variables. A second alternative 
to solve the problem consists in the adoption of so-called multi-scale models. In this 
method because of the inherent heterogeneous nature of composite materials, they are 
conveniently studied from two points of view: micro-mechanics and macro-mechanics 
and the constitutive description of the macroscopic behaviour is determined by means 
of homogenisation techniques.

Micro-mechanics is the study of composite material behaviour where the interac­
tion of the constituent materials is examined on a microscopic scale. On the other 
hand, macro-mechanics is the study of composite material behaviour in which the 
material is assumed homogeneous and the effect of the constituent materials are con­
sidered only as averaged apparent properties of the composite [53].
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3.7 Conclusion

In the first part of this chapter, we reviewed the basics of constitutive theory with 
internal variables in small strain.

In the second part, three types of constitutive material models were explained: 
The linear elastic material model, anisotropic elasticity model, and the elasto-plastic 
material model. For the second material model, the concept of anisotropy was ex­
plained for the plane stress condition and a unidirectional lamina material model.

In addition, for the elasto-plastic material model, the uniaxial tension experiment 
with ductile metals was discussed. For predicting the yielding of metals under complex 
stresses, two satisfactory and widely used criteria were described, the Tresca and von 
Mises yield criterion. In the following, the phenomenon of hardening was identified in 
terms of the perfect plasticity and isotropic hardening. In addition, the constitutive 
equations for the von Mises elasto-plastic material model were explained.

Finally the necessity of introducing a new approach to cope with new complex 
material models was presented.



Chapter 4 

Basics of F inite elem ent (FE) and 

im plem entation

4.1 Introduction

This chapter reviews some basics of the finite element method (FEM) for 2-D 
solid mechanics problems under small strains. For more details about finite element 
methods refer to standard textbooks such as [31,32,51,54-56],

The finite element method has become a powerful tool for the numerical solution of 
a wide range of engineering problems. The finite element method relies essentially on 
the discretization of the virtual work (equation 2.13) by means of finite element bases 
interpolation (or shape) functions whose parameters are the nodal displacements. 
This is described in the following.

4.1.1 D iscrete boundary value problem

To drive the discretised form of the virtual work equation it is convenient to 
introduce some standard matrix notations. Firstly we define global interpolation 
matrix [31]:

N 9 (x) = \diag[Nl(a:)] diag[N$(x)] ■ ■ ■ diag[N^int(x)] , (4.1)

where diag[Nf] denotes the x n<iim diagonal matrix [31]. We also define the 
global vector of displacements [31]:

36
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and analogously, the vector of virtual nodal displacement [31]:

V =  (4-3)

It is also convenient to introduce the global strain-displacement matrix, which is 
defined in two dimensions for plane strain and plane stress for all nodes and elements 

by [31],

B 9 =
N il 0 N il 0  •• ■ N 9 ,Unpoint >A 0

0 Nl ,2 0 Ni,2 '• 0 ^ nnpoint >2
K  2 N h Ni ,2 Ni,i ■■ Unpoint) 2 P̂inpoint

(4.4)

By generating the finite-dimensional sets [31] we are ready to discretize the virtual 
work equation:

n point

£fmit< =  u 'N f(x)  I u' = «(**) i f  x* € r j  , (4.5)

and

{
n poin t J

T]{inite(x) = Y ,  *liNi( x ) 11? = 0  i f  x ‘ e  \ • (4.6)

Assume that the underlying material is elastic and the stress tensor is a function 
of the strain only and according to the quasi-static formulation [31], where inertia 
effects are ignored, we recall the virtual work expression (equation (2.13)),

[  [<t{Vsu) : Vs ?7 — f • rj]dV -  f  T  rjdA = 0 V77 £ $J. (4.7)
J y  Jay

By replacing our domains to the new finite-dimensional sets (equations (4.5)-
(4.6)), equation (4.7) can be written as [31]:

[  [cr : B 9rj -  f • N 9 rj]dV -  [  T  • N 9rjdA = 0 Vtj € VCF**, (4.8) 
Jy  Jay

or it can be rearranged as [31]:

( J  [(B»)T<t -  (N 9f ( \dV -  J  (N s)TTdAj  ■ ij =  0  Vjj e (4.9)
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Since the above equation is satisfied for all virtual displacements, the term within 
the curly brackets must vanish. Therefore, following the general equations for equi­
librium, the finite element discrete boundary value problem is formulated as fol­
lowed [31],

Fint(u) — Fext = 0, (4.10)

where, Fext, is external global force vectors and, Fmt, represents internal force vectors, 
given as,

pint = f  (B 9)T(TdV, (4.11)
J y

Fext = [  [N9]TfdV + [  [N9]TTdA, (4.12)
J y  Jay

Here, <r, is the stress tensor and, dV , corresponds to global domain. In equation
(4.12), f, is body force vector, T, is traction force acting on the domain, dA.

In finite element computations, internal and external force vectors (equations
(4.11) and (4.12)) are obtained by assembling the element force vectors [31],

A n elem

C=1 ( F f ‘), (4.13)

A n elem

e=l (F T ). (4'14)

In equations (4.13) and (4.14), Fmt, Fex*, are obtained respectively for each ele­
ment from equations (4.11) and (4.12).

4.2 Finite elem ent m odel for the linear elastic prob­

lems

A simple example of application of the finite element method is given in isotropic 
linear elasticity, where the stress tensor is a linear function of the strain tensor:

cr = C  : e, (4.15)
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and the fourth order isotropic elasticity tensor has the classical general format [5 7 ]:

C = 3kIvo1 + 2n ldev, (4.16)

where fi and k are, respectively, the shear and bulk modulus. Let the symbols I  and 
I  designate the second- and fourth-order symmetric identity tensors [57],

I i j  — S { j,

l i j k l  ~  2 “1“ $ i l f i jk ) ‘

In equation (4.16), I vo1 and J deu are spherical and deviatoric part of the identity 
tensor J, respectively given by [57],

r *  = U ® i ,
j-dev  — j   j v o l

4.2.1 The finite elem ent equilibrium  equation

Prom the definition of the strain-displacement matrix (see equation (4.4)), it fol­
lows that,

e = B 9 u, (4.17)

so that, in view of the linear elastic constitutive law for a, we have,

<t = C B 9 u. (4.18)

With the substitution of the above relation into equation (4.11), the global internal 
force vector reduces to the following linear function of u:

Fint(u) =

or, equivalently,

[  (B°) 
.Jy

TC B 9dV u, (4.19)

Fin‘(u) = K u , (4.20)
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where K  is the global stiffness matrix assembled from element stiffnesses:

A n elem

e = i  Ke. (4.21)

Finally, with equation (4.20), the discrete boundary value problem defined by the 
equilibrium equation (4.10) is reduced to the solution of the following linear system 
of algebraic equations for the global nodal displacement vector u :

K u = Fext. (4.22)

4.3 The non-linear increm ental finite elem ent pro­

cedure

In common path-dependent model (see section 3.5.1), the solution of the consti­
tutive initial value problem for a given set of initial conditions is usually not known 
for complex strain paths, e(t). In context of the non-linear incremental finite element 
equation, the target is to find the nodal displacement vector, un+i, at time (pseudo­
time), tn+1, such that the incremental finite element equilibrium equation [31],

R(un+,) = Fi"‘(uB+1) - F ^ 1> (4.23)

is satisfied. In equation (4.23),

F f  = [  (B»)r cr(an, e K +1))dF) (4.24)
Jr

F 'f  = f  [iy»]r fn+1<iV+ f  [Ns\TTn+1dA, (4.25)
Jy* Jdye

The non-linearity of the incremental constitutive function takes part in the defi­
nition of the element internal force vector (equation (4.24)).

In equation (4.24), a , represents the stress tensor based on internal variables, a , 
at time, tn, and strain tensor based on new displacement at time tn+1. Moreover, in 
equation (4.25), N ,  f, T, respectively represent, global shape function, body force 
and traction force vector acting on relevant domains, dV, dA, at time tn+1, [31].
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The loading curve, is often in FE code defined by a load factor, An+i, at arbitrary 
time, tn+1. The proportional loading acting as body force and surface traction are 
given by using load factor,

fn+i = An+1f, (4.26)

T n+1 =  An+iT . (4.27)

In equations (4.26) and (4.27), An+i, represents load factor at time, tn+1, and,
f, T, are prescribed body force vector and traction force and are constant with
respect to time. Therefore the external force can be written in the form of,

F S i = A ^ iF * , (4.28)

where, Fex*, is calculated only once.

4.3.1 The N ew ton-R aphson m ethod

There exists a range of methods that can be employed in solution of the non­
linear set of algebraic equations such as, fixed point iteration, bisection, etc [49]. For 
solving the incremental non-linear equation (4.23), the most effective method is the 
Newton-Raphson method. This method is interesting because of its quadratic rate of 
asymptotic convergence [31].

If k denotes iteration number, then the basic steps of the Newton-Raphson itera­
tive procedure may be summarized in Box 4.1 [49].

Starting loop while, [||R £+ i || > etoi], and, [k < Nmax\.

K +M t \  =  -RJt+i.

"S+i +  *"5+1 -* u£+l>

Update stress and state-variables

Tpint /_fc+l\ ttyext "D^ + l
n+1 V^n+1/ ~  n+1 -^n+l)

k -1- 1 —> k ,

End of the loop

Box 4.1. The Newton-Raphson iterative procedure.
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In Box 4.1, Ctoi, is the prescribed equilibrium convergence tolerance, Nmax is max­
imum number of iteration, 5u is incremental displacement, K represents the global 
tangent stiffness, cr is stress and superscript k and subscript, n, represent iteration 
number and relevant time, respectively. The method is schematically illustrated in 
Figure 4.1 [31].

F int(w)

n+1

n+1

-

S u l S u 1

Figure 4.1: The Newton-Raphson algorithm for the incremental finite element equilibrium 
equation.

As can be seen from Figure 4.1, in time interval, [tn, W i], the procedure is re­
peated until the convergence is obtained (see Box 4.1).

4.4 Conclusion

In this chapter, the finite element formulations were used to present the discrete 
form of the boundary value problem in terms of internal forces and external forces. 
Moreover, discrete form of the linear elastic problems was explained. The non-linear 
incremental finite element procedure was reviewed for path-dependent materials such 
as the von Mises elasto-plastic material models.

The Newton-Raphson method was explained as one of the efficient methods for 
solving the non-linear problems.



Chapter 5 

Com putational hom ogenisation

5.1 Introduction

In the first part of this chapter, different types of analytical methods for the 
effective elastic material properties will be discussed. Among them, the analytical 
solutions presented by Nemat-Nasser [1] for dilute distribution of cavities/inclusions 
in the cell, Taylor assumption, Reuss assumption and Hashin and Shtrikman bounds 
for the effective elastic material properties. In the second part, the computational 
homogenisation concepts are presented. Among them the formulation at micro-level 
and the micro- to macro-transition based on the averaging theory are explained in de­
tail. We should emphasize that the first order computational homogenisation is used 
in the following formulation. Therefore, the effect of second gradient of displacement 
is not considered in the macro-strain tensor.

The multi-scale technique is used to determine the macroscopic constitutive vari­
ables from the solution of the boundary value problem at micro-level. General pro­
cedure for this method, can be expressed by [18,27,58,59],

1. Definition of a representative volume element (RVE) at micro-level with known 
constitutive material models for each constituents.

2. Prescribing the different boundary conditions over the RVE based on the im­
posed macro-strain.

3. Obtaining the macro-variables from the solution of the micro-structure bound­
ary value problem.

Using homogenisation theory has some advantages, among them we refer to the

43
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out standing one in which by using this theory there is no need to define any con­
stitutive material model at macro-level. We should emphasize that although the 
multi-scale model may be defined as a linear or non-linear problem, for simplicity of 
the formulation we will present the formula in one of the iterations of the non-linear 
incremental procedure.

5.2 A nalytical solution for a dilute distribution of 

cavities

This section reviews briefly the analytical methods for porous elastic materials 
used in the assessment of the computational multi-scale approach. These methods 
assume that the elastic homogeneous solid contains a dilute distribution of cavities, 
with typical cavities being sufficiently far apart so that their interaction may be 
neglected [1]. In addition, a very brief review on the damage theory is provided.

5.2.1 Void volum e fraction theory

This method has been throughly discussed by Nemat-Nasser in [1]. It predicts 
the effective isotropic elastic properties of a porous material in plane strain and plane 
stress under two basic assumptions: prescribed macro-stress and prescribed macro­
strain. Two different cases are considered in the woer of Nemat-Nasser: 1) the elastic 
solids contains a dilute distribution of cavities; and 2 ) the cavities are randomly 
distributed. In the latter case, the approach is based on the so-called self-consistent 
method which we do not consider it in this study. The range of validity for the two 
cases is limited to relatively small volume fractions of voids [1]. Since only plane 
problems are considered, an RVE with unit thickness in the out-of-plane direction is 
used and all field quantities are assumed to be uniformly distributed throughout the 
thickness.

Figure 5.1, displays a typical portion of an RVE in a 3-D view. The circular holes 
for the dilute distribution of cavities are assumed to be far apart. Let n be the num­
ber of holes in the RVE and let denotes the volume of a typical hole bounded by 
the surface area The void volume fraction, / ,  is given by

n Q

1 = 1

(5.1)
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with V  being the total volume of the RVE.

Figure 5.1: 3-D view of a typical portion of an RVE containing microcavities. 

Let k be defined as

[ 3 — 4v For plane s tra in ,
k = { (5.2)

[ (3 — v ) / ( l  4 - v) For plane stress,

where v  is the Poisson’s ratio. Under the prescribed macro-stress assumption, the 

effective shear modulus ft, and the effective Poisson ratio v  (see equation 5.2), are 

obtained as,

z  =  {1 +  / ( k + 1 ) } - 1 =  1 - / ( k + 1 )  +  0 ( / 2), (5.3)

* = \ x + f 2E ± 2 ) } { 1  +  /(B +  1 ) } -1
K  {  K  J

= 1 -  + 0 ( f ) .  (5.4)
K

For plane stress, the effective Young modulus, E, and Poisson ratio, v,  are,

|  =  (l + 3 f ) - 1 = l - 3 f  + 0 ( f 2), (5.5)

-  =  (1 +  / - ) ( !  +  3/ ) _ 1
V V

=1 -  (3 - i ) /  +  0 ( / 2). (5.6)V

where 0(.)  represents the higher order term s of the expansions.



Chapter 5: Computational homogenisation 46

Under the prescribed macro-strain assumption, the effective shear modulus p,, and 
the effective Poisson ratio v , are given as

E
P
R

K

For plane stress conditions, the effective Young modulus, E, and Poisson ratio, v, 
are,

— = (i -  / —̂ —)(i -  / —— ) f i  ~  f 3  ~ 2v+3t|2N\
E  v ■/ l +  i;A J l - v >\  J 1 - u 2 J

= 1 - 3  f  + 0 ( f%  (5.9)

l - 6 t» + t»2 l /  3 -  2v + 3t»2 \ - 1

;  v ( i - v 2) /  v  ;  J

- ( 3  - I ) /  + 0 ( / 2). (5.10)

5.2.2 D am age theory

A very brief review on this theory is provided in this section and for more details 
we refer to [36,60]. The phenomenon of damage represents surface discontinuities in 
the form of micro-cracks, or volume discontinuities in the form of cavities. There are 
several types of damage measurement. We focused on the measurement at the scale of 
micro-structure. Measurement at the scale of micro-structure (density of micro-cracks 
or cavities) leads to microscopic models that can be integrated over the macroscopic 
volume element with the help of mathematical homogenisation techniques [36]. To use 
this theory for obtaining the properties of damage in continuum mechanics analysis 
we need to define damage variable D.

In order to define this variable we need to introduce some relations: Let A be the
virgin area of a section of the volume element and Aq be an area of the void, which
is located inside the volume element. We define the effective area as

1 - / ( k + 1 ),

(k + 1 ) ( « 2 — 2k + 2 )
— 1 )

i _ 2) + o ( / 2),

(5.7)

(5.8)

A = A -A o .

Figure 5.2, shows the virgin and effective area of the cell.

(5.11)
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Virgin area of 
the cell \

Effective area

Void inside 
the cell

Figure 5.2: Effective area. Defining a void as cavities.

We define Damage variable as

(5.12)

It is obvious that 0 < D < 1 characterizes the damaged state. The value D = 0 
corresponds to the non-damaged or virgin state, and D = 1 corresponds to the total

5.3 A nalytical solution for a dilute distribution of 

micro-inclusions

In this section all analytical methods described by Nemat-Nasser [1] for micro­
structures with elastic inclusions will be briefly reviewed.

Suppose all micro-inclusions in an RVE are of cylindrical shape (Figure 5.3), or 
they can be approximated as cylinders. Assume that the matrix and the inclusions 
are linearly elastic and isotropic, and have the distinct elastic parameters. In order 
to express the overall elasticity tensor, it suffices to obtain two independent overall 
elastic moduli as functions of the volume fraction of the inclusions (equation (5.1)) 
and the elastic moduli of the matrix and the inclusions.

We should emphasize that the present method assumes a dilute distribution of 
inclusions. The interaction effects are completely neglected [1].

loss of load bearing capacity [36,60], In addition, we can define the effective Young’s 
modulus by,

E = E {1 -D ) . (5.13)

The damage theory affects only the value of the Young’s modulus.
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Q

Figure 5.3: 3-D view of the typical portion of an RVE with micro-inclusion.

5.3.1 D ilute distribution of fibres

First consider an RVE, which contains a random and dilute distribution of aligned 

reinforcing microfibres, and assume th a t the interaction between neighboring fibres 

is negligible. In order to estim ate the overall elastic param eters of the RVE in plane 

problems, the concept of the Eshelby tensor, S (this tensor has been proposed by Es- 

helby for the elasticity problem of an ellipsoidal inclusion embedded in an unbounded 

matrix loaded uniformly at infinity [61]) for an isolated infinitely long circular cylin­

drical inclusion embedded in an unbounded homogeneous solid is performed.

The average strain and stress of each fibre can be determined by the uniform strain 

and stress in an isolated infinitely long circular cylindrical inclusion embedded in an 

unbounded homogeneous solid which has the m atrix elasticity and compliance tensors 

C  and S . W hen the overall stress and strain, <r°, e°, which satisfy cr° = C  : e° or 

£° =  S  : <r°, are prescribed for this unbounded solid, the exact uniform strain and 

stress in the isolated microfibre can be calculated from the associated Eshelby tensor, 

S 7 . Hence, the average stress and strain of a typical microfibre in the composite, 

denoted by, a 1 and e 7, are approximated by [1],

e 1 =  A 7 : (A 7 -  S7) " 1 : e°, (5.14)

<r7 =  C 1 : A 7 : (A 7 -  S7) " 1 : S  : cr° 

where, A 7, is the two-dimensional fourth-order tensor,

A7 = (C -  C 7)-1 : C.

(5.15)

(5.16)
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The overall compliance and elasticity tensors, S  and C, are determined from the 
equations (5.14) and (5.15), when the macro-stress a  = <7°, is prescribed [1],

s  =  { 1 (4*> +  / ( A '  -  S ' ) - 1 }  : s ,  (5.17)

and when the macro-strain e  =  s°,  is prescribed the overall elasticity tensor is defined

by W.

C  =  C  : {l<4s> -  / ( A '  -  S ' ) - 1} ,  (5.18)

where, / ,  is the volume fraction of the microfibres (equation (5.1)), and the two- 
dimensional fourth-order identity tensor, (SikSji + 6u5jk) /2 , is denoted by l ^ .

Assume that an isotropic fourth-order tensor can be expressed in terms of two 
basic isotropic fourth-order tensors in two-dimensions [1]

=  2 5ij5kh (5-19) 

=  ~i;SijSiei + ~(5i)lSji + 5aSjic)- (5.20)

Based on, E 1 and E2, the tensorial equation (5.17) can be reduced to,

i E l + ^ E2 =  ^ 1 + / ( f ^ — ) _ i >e I  +

+ (5.21)

and equation (5.18) becomes,

3 ^ 'E 1 + 2/iE2 = 3 K ' { l - f ( K l * 'K I I - s 1) - 1}E 1 +

M l  -  /(-T 3 -7  -  *2)-'}E2, (5.22)fl [X

where, s\ = S2 = and k, is defined in equation (5.2). Here K ', and K '1, are 
defined by [1],

1 _  j (1 — v — 2v2)/E  For plane strain,
( (1 — v)/E  For plane stress,

1 _  J (1 — v 1 — 2 {vi )2 ) /E i For plane strain,
3K fI 1 (l — vI) /EI For plane stress.

(5.23)

(5.24)
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Therefore, the overall elastic moduli K ' , and overall shear moduli p, are obtained, 
when cr =  cr° is prescribed as [1],

%  = t 1
K

=  1 -  ~  Sl)_1 +  0 ( / 2 ) ’ (5'25)

£  = {1 +  / ( _ ^ _ S2)- i} -1
f l K p  — p 1 }

= 1 - / ( ^ 7 - * 2 ) - 1 + 0 ( / 2), (5.26)P p

and when e — e° is prescribed as [1],

2  =  1 -  / ( - S - 7  -  S2)-1- (5.28)P P - P 1

5.4 Taylor assum ption

In the Taylor (or Voigt) assumption [62,63], it is assumed that different mate­
rial phases in a local mixture, share the same history of the imposed macro-strain, 
£  =  £  fibre  =  £  m atrix- This assumption is used to achieve a rough estimate for the 
upper boundary of the effective material properties. The only constraint in this as­
sumption is based on the summation of the direct effect of the volume fraction of the 
different material phases inside the unit cell.

If we assume that Mi is one of the material properties for material phase i with 
volume fraction equal to fc and we have n different phases inside the unit cell, the 
effective material properties based on the Taylor assumption could be expressed by

N ,

n

i—1
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5.5 Reuss assum ption

In contrast to the Taylor assumption in the Reuss assumption it is assumed that 
different material phases at a fixed point, satisfy the uniform stress requirements [65], 
0  =  &  fibre — &  matrix- This assumption is used to achieve a rough estimate for 
the lower boundary of the effective material properties. The only constraint in this 
assumption is based on the summation of the inverse effect of the volume fraction of 
the different material phases inside the unit cell.

If we assume that Mi is one of the material properties for material phase i with 
volume fraction equal to fa and we have n different phases inside the unit cell, the 
effective material properties based on the Reuss assumption could be expressed by [64]

5.6 Hashin and Shtrikman bounds

As pointed out by Hill [66], neither Taylor nor Reuss assumptions are correct.

properties could be obtained from the Taylor assumption only when the Poisson’s
ratio of the different phases is the same.

The Taylor and Reuss bounds are relatively wide apart, and modifications have

Their model has received wide attention.
Hashin and Shtrikman treated the system containing one particulate phase and 

one continuous matrix phase. They employed the ‘minimum energy’ principle and 
introduced bounds of the bulk modulus, K  and shear modulus, G as [12],

The tractions at the interfaces are not in equilibrium under the Taylor condition; the 
interface could not remain bonded under the Reuss condition. The effective material

accordingly been proposed by many researchers such as Hashin and Shtrikman [12].

K?ff  = Km + fp
1 | 3/m

Kp—Km ZKm~\~4Gm

K?ff  = Kp + fm
1 | 3/p >

K m - K p  3Kp+4Gp
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r~iL — C  j,____________________________ iJL_e// "r 1 , 6(ATm +2Gm )/m ’
Gp Gm 5Gjn(3î m+4G'm)

/̂ r[/   /O _i__________fm_________
e f f  ~  W "  i 6(Kp+2Gp)fp ’

G m - G p 5Gp(3/Cp+4Gp)

The superscripts U and L denote, upper and lower bounds and the subscripts m 
and p denote, matrix and particle, respectively.

5.7 H om ogenisation procedure

Homogenisation procedure is used to determine the effective properties of struc­
tures with micro-structural heterogeneities like inclusions or voids at smaller micro­
scopic length scales. The micro-structures define representative volumes of linear and 
non-linear heterogeneous materials such as inelastic composites, polycrystalline ag­
gregates or particle assemblies. The definition of an overall macroscopic response of a 
heterogeneous material with complex micro-structure in an averaged or homogenised 
sense is often referred to micro-to-macro transition.

5.7.1 M ulti-scale analysis and R epresentative Volum e Ele­

m ent (RVE)

Hierarchical multi-scale modelling, differentiating between regions requiring differ­
ent resolutions, is becoming a progressively more useful tool for modelling deformation 
and damage in heterogeneous materials. Sub-structuring in these models enables pure 
macroscopic analysis in some parts of the domain using homogenised or effective ma­
terial properties and changing the scale to the microscopic modelling at a different 
scale in other regions of the domain [18].

The multi-scale model may be categorized into two essential levels:

1. Purely macroscopic domain (level-1), with homogenised material parameters.

2. Purely microscopic domain (level-2), where the RVE exists and extended micro- 
structural regions with spatial distribution of heterogeneities needs to be mod­
elled.

Figure 5.4 is a schematic representation of the above cited levels.
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a) Homogeneous body. b) RVE.
(level-1) (level-2)

Figure 5.4: Schematic representation of the multi-scale levels.

T he dom ain of the  RVE is assum ed to  consist in general of a solid part, f ts , and 

a void p a rt, f tv, (see Figure 5.5)

ft = fts u ftv

D.1

Figure 5.5: Schematic representation of different parts of RVE.

For sim plicity, in th is research we consider only RVEs whose void p a rt does not 

in tersect the  RVE boundary,

ft fl ftv =  0.

5.7.2 H om ogenisation and Localization

For in troducing  the concept of hom ogenisation, first, we will have a brief review 

of some fundam ental concepts in this area. According to  overall properties of highly 

heterogeneous m edium , as cited in previous section, two different scales are concerned: 

the  m acroscopic scale (w ith coordinate, x) a t which the size of the  heterogeneities is 

very small, and  the  so-called ‘m icroscopic’ scale (w ith coordinate, y ), of dimensions 

of th e  order of th e  heterogeneities. For exam ple, in the  hom ogenisation theory  of 

periodic m edia, th e  RVE is the  unit cell, which generates the  com plete s truc tu re  of 

th e  com posite by periodicity. Figure 5.6, is a schem atic representation of m acro­

s tru c tu re  w ith  periodic m icro-structure.
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global periodicity

boooj

Microstructure 
global periodicity

a) Heterogeneous body with 
periodic microstructures

b) Equivalent homogeneous body c) RVE

Figure 5.6: Schematic representation of macro-structure with periodic micro-structure.

At a m acroscopic point x  of the  m acro-continuum  we m ust consider two different 

groups of variables:

1. T he m acroscopic variables, which stand  in the  homogeneous body.

2. T he microscopic variables defined over the  entire  dom ain of the  RVE.

In the  approach  followed in this thesis the  essential assum ption underlying the 

relationship betw een macro- and m icro-variables is the  volume averaging of the  stra in  

and stress tensors w ith <x and e denoting, respectively, the  m acro-stress and stra in

in which, | V  | =  f v dV, is a dom ain th a t is defined over the  RVE and, (•) =  p? f y - dV, 

stands for the  averaging operator. Moreover, all th e  m echanical quantities are usually 

assum ed to  be additive functions and are averaged when proceeding from the micro­

scopic level to  th e  m acroscopic one [15]. The procedure th a t  relates m echanical quan­

tities like stress and  s tra in  and the  micro constitu tive laws to  macroscopic quantities 

by averaging equations (5.29)-(5.30) is term ed homogenisation, <x(y),e(y) —> <x, e. 

T he inverse procedure is term ed localization, th a t  is am ounts to  a  micromechanics 

problem , which perm its to  determ ine microscopic quantities, <r, e —> <r(y), e (y ) [15], 

where cr and e are the  m icro-stress and stra in  fields defined over the  RVE.

E quation  (5.29) can be w ritten  in another form,

fields.

(5.29)

(5.30)
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<r(x,t) = ^  f a ( y , t ) d V  = [  a(y, t)dV  +  [  a(y,t)dV. (5.31)
v Jn ^ Jns v

By using the integration by parts formula [67],

j  S (Vv)TdV = f  (Sri) 0  vdA — f  (divS) 0  vdV, (5.32)
J  Q JdCl J n

and with the replacement of S  with a, v  with y  and combined with identity Vy = I,  
we can rewrite the equation (5.31) to the new form,

[  <rdV = [  <rdV+ [  crdV
J  n Jcta J s iv

= / (crn) 0  ydA — / (diva) 0  ydV —
J  on J  n®

/  (diva) 0  ydV  +  /  [an] 0  ydA, (5.33)
JdQ?

where [an], denotes the jump of vector field a n  across the solid-void interface, diT.

5.7.3 M inim um  RVE kinem atical constraints

Equation (5.30) naturally places a constraint on the possible displacement field 
of the RVE. That is, only fields u  that satisfy Equation (5.30), can be said to be 
kinematically admissible. The necessary condition for a micro-displacement field u  
to be kinematically admissible is,

u  G

where the minimally constrained set of kinematically admissible microscopic displace­
ments, , is defined by [41],

| v, sufficiently regular V avdV  =  (5.34)

In domain (5.34), sufficiently regular fields refers to the functional fields that all 
operations in the present context make sense.

An equivalent expression for the above constraint can be obtained in terms of RVE 
boundary displacements. By definition of integration by part for the general tensor 
form (see equation (5.32)) and by specialising the cited formula and identifying the
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generic tensor S  with I ,  the vector field v  with u  and the domains with the RVEs 
domains, in the absence of voids (£lv = 0), equation (5.34) can be written as [41],

-7  [  u ® s ndA. (5.35)
V Jdn

£  =

where the definition of symmetry tensor product for any arbitrary vector field is given 

b y ,

u  v = ~{u ® v  + v  ® u),

and dQ, presents the boundary for the RVE (see Figure 5.5).
In the presence of voids (Qv ^  0), when the strain is not defined in the sub domain 

CLV C fi, constraint (5.34) is generalized as,

Ve  = / u ® s n sdA+  / u ® s n vdA
JdQ.3 J d a v

= u ® 3 n sdA + / u  ®s n sdA + /  u  (g)5 n vdA, (5.36)
J d  n Jdo.ar\dnv J d n vn dn a

where n a and n v are, respectively, the outward unit normals to the solid and void 
domains at their boundaries. From Figure 5.5, by observing that n s = —n v at the 
intersection d£l3 fl dQ,v, it can be concluded that in equation (5.36) the two last 
integrals on the right hand side of equation cancel each other so that the generalized 
expression (5.36) recovers equation (5.35). An alternative for the expression (5.34) 
is [41],

Jf* = |  v, sufficiently regular L v ndA = V i \  (5.37)

5.7.4 A dd itive sp lit o f th e  m icroscopic displacem ent

Any microscopic displacement field, u  may be split into [41],

u(y,t)  =  e(x,t )y + u(y,t),  (5.38)

which is a sum of a linear displacement e y , (varies linearly in y), and a displacement 
fluctuation, u. Accordingly, the microscopic strain field is decomposed into,

e(y,t) =  e(x,t) + (5.39)
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a sum of a homogeneous strain (constant in y) which is the same as macroscopic 
strain, e , and a strain fluctuation field [41],

e = Vsu, (5.40)

that generally varies in y. From equation (5.38) and with regard to the constraint 
(5.37), it can be concluded that any kinematically admissible displacement fluctua­
tion, it, satisfies,

u  G (5.41)

where [41],

Jff* = ^insufficiently regular | J v 0 3 ndA  = o |, (5.42)

is the minimally constrained set of kinematically admissible displacement fluctuations 
of the RVE. This constraint will be used in one of the classical boundary conditions 
over the micro cell.

To show that the integral of the obtained tensor from the symmetric tensor product 
in equation (5.42) is equal to zero, recall (5.34) and equation (5.30). As a result, the 
overall strain tensor is defined by,

£  = - t  /  VsiidV. (5.43)
y Jn

From the additive split of the microscopic displacement (see equation (5.38)), the 
above equation can be written as,

£  = i  f  Vs (u + u)dV = ^- f  Va (u) dV + ^j [  Vs (u) dV. (5.44) 
v Jn y Jo, y Jsi

In equation (5.44), the gradient of macro-displacement, u, is equal to macro strain, 
e, and the integral over the volume will be canceled by the volume averaging. As a 
result,

(5.45)
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Equation (5.45) can be rewritten by Green’s formula as,

- 7  [  u ® s ndA = 0. (5.46)
V Jdo.

Assume that X  is a subspace of vector space X *,

X  C X \

Accordingly, for a given macroscopic strain e, the set X  ̂ is the translation of 
space X  given by [41],

X = ^u  = ey + u u £  X |  (5-47)

By definition, the space of virtual displacements in solid mechanics is the set of all 
variations of kinematically admissible displacement fields of the problem in question. 
Here V  denotes the space of virtual displacements at micro-cell and is defined by,

y  = {rj = Vi — v 2 \vi,v2 e X }  . (5.48)

Prom the definition of translation space and the space of virtual displacement at 
micro-level (constraint (5.48)) we can write,

Vi =  ey + v  i

V2 = ey + v  2. (5.49)

By subtracting V\ and v 2 , from equation (5.49), we have,

rj = v i ~ v 2- (5.50)

The space of virtual displacement at micro-level (constraint (5.48)) can be ex­
pressed as,

y = x. (5.51)



Chapter 5: Computational homogenisation 59

The same arguments applied to the rate form of additive split of the micro­
displacements,

u = ly  + u. (5.52)

By using the same procedure (5.48)-(5.51) for the rate of the micro-displacements 
(velocity), we can show that any kinematically admissible fluctuation velocity, u , 
satisfies,

i i e y

5.7.5 Form ulation o f the tw o-scale boundary value problem

In this section, based on the previous section, we present only the results, which 
are obtained for the micro-and macro-scale principal equations, while the detailed 
formulations are given in [15,18,19,30]. First the principal of virtual work (see section 
2.3) is considered to show the RVE is in equilibrium if and only if the variational 
equation [41],

[  <r{y, t) : V W  -  /  f(v, t) • r/dV — [  T ( y , t) -r)dA = 0 V77 G Y , (5.53)
Jo Jo, Jon

holds at each t.
For sufficiently regular fields a, the variational equations of equilibrium (5.53), for 

the void and solid parts of the RVE, can be equivalently written in differential form 
as,

div<r(y,t) = i{y,t) 
diver(y,t) = f(y,t) 
a{y , t)n  = T{y,t) 
[<r{y,t)n] = 0

Vy G ft3, 
Vy G ftv, 
Vy G 5ft, 
Vy G 5ftv,

(5.54)

The equations (5.54) are called the strong form of equilibrium over the RVE at micro­
level.

The average stress (equation (5.33)) can be expressed in terms of boundary trac­
tion and body force with introducing the strong form of equilibrium equation, (equa­
tion (5.54)), as,
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=  y [  T(y , t )  ydA — f  {(y,t) 0 , ydV
Jdn JQ.a

(5.55)

The micro-scale boundary value problem for a unit cell yields the following vari­
ation forms [30]: Find, u(y) E y rmcro) such that:

/Jn
: crdv = 0, V77 E y r

cr =
di\)

£ = V^(x) + (5.56)

where, the first equation in (5.56) is the part of the equilibrium condition for the 
RVE in absence of body force and external traction acting on the boundary of void 
in RVE. The solution for, u(y), is expressed by [30],

u  = s/u(x).y  +  u. (5.57)

On the other hand, the macro-scale problem is given as follows:
Find, u (c e )  E s u c h  t h a t :

f  & : S/rjdV = f  f.rjdV + f  T.rjdA, V?7 E r macro,
J y  J y  Joy

V = T i n  f CTdV'

S =  |4 rr f  sdV =  v u , (5.58)
I y I Jn

where, is the space of admissible macroscopic displacement vectors and, y macroi 
is the space of admissible variational macroscopic displacement.

Finally, the two-scale boundary value problem for the elasto-plastic body is defined 
as follows:

Find the set of macroscopic state variables,

* roacro:= /  ix(a;), S-(as), c(as) \ , (5.59)

that satisfies the macro-scale boundary value problems equations (5.58), so that the 
set of microscopic variables,

X m icro j u (y) ,£(y),ep( y ) ,a (y ) ,a (y ) ,7 (y ) } ,  (5.60)
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would satisfy the set of governing equations (5.56), at the micro-scale [30]. Note that, 
the macro-scale material model is embedded in the average relationship and each 
micro structural response plays a role of constitutive laws.

5.7.6 T he H ill-M andel principle o f m acro-hom ogeneity

The Hill-Mandel principle of macro-homogeneity [6], implies that macroscopic 
stress power must be equal to the volume average of the microscopic stress power 
over the RVE corresponding to the macroscopic point. Therefore, for any state of the 
RVE which characterized by a stress field cr is in equilibrium, we have,

a  : I  = jz j a  : idV. (5.61)
v Jn

The identity (5.61) must hold for any kinematically admissible microscopic strain 
rate field, i  (see equation (5.39)). The Hill-Mandel principle holds if and only if the 
virtual work of the external surface traction T, and body force field, f, of the RVE 
vanish. Therefore, the Hill-Mandel principle is equivalent to the following variational 
equations,

[  T  r)dA = 0, [  f • T]dV = 0 Vry e  r .  (5.62)
Jdsi Jn3

The constraints (5.62) could be proved as follows: By having the equations (5.39)
and (5.40) and replacing them into the equation (5.61) we obtain,

i  f  a  : edV = ^  f  <r : (e + V ’u)dV (5.63)
V Jn V Jn

= a  : I  +  i  f  <r : V'tidV. (5.64)
V Jn

Hence, identity (5.61) hold if and only if [41],

a  : V 8iidV = 0 Vu G r .  (5.65)/Jn
By using the integration by part formula (5.32) into the equation (5.65) and in 

the presence of voids, we obtain,

/ cr : V 8udV = / a n  • udA — / (diva) • udV
Jn Jen Jna

—  J  (diva) • udV  + j  [an] • udA. (5.66)
Jnv Jon?

From the strong equilibrium equations (5.54), and in the absence of body force 
acting on the void section of the RVE [41],

f(y,t) = 0  V y e W ,
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equation (5.66) can be written in condensed form as,

Jn Jen Jna
[  a  : V sudV = j T  • udA — f  f • udV. (5.67)

Thus, from equation (5.65) and equation (5.67), the Hill-Mandel principle is equiv­
alent to the following variational equation [41]:

The above equation holds if and only if each of its integrals vanish individually. 
Hence, the constraint (5.62) is proved.

5.8 K inem atic assum ptions at micro-scale

The imposition of the macroscopic strain e on the micro-cell (RVE) can be done 
by means of different kinematic assumptions. The simplest hypothesis is to assume 
that all the micro structural constituents undergo a constant deformation identical 
to the macroscopic one. This commonly referred to as the Taylor assumption which 
is an extension of Voigt [62] method to crystal plasticity [63]. Another common 
strategy is to assume a uniform stress over the RVE which indeed is equal to the 
macro-stress [64,65]. This is called the Reuss assumption. The Taylor assumption 
provides an upper bound to the overall stiffness, while the Reuss assumption provides 
a lower bound. Classically four types of conditions are used to solve the problem at 
micro-level: prescribed uniform deformation (or the Taylor) assumption, the linear 
boundary displacement condition, the periodic boundary displacement fluctuations 
condition and anti-periodic tractions on the boundary, and the uniform boundary 
traction assumption .

Figure 5.7, illustrates RVE’s deformed configurations (with exaggerated deforma­
tion) for three cited boundary conditions. Before explaining the different boundary 
conditions at micro-level, the microscopic constitutive response and equilibrium are 
reviewed.

By using the axiom of constitutive determinism (see 3.1) in micro-equilibrium 
equation (5.53), the equilibrium problem can be stated in terms of the displacement 
fluctuation field as follows: Find u  € V  such that, for each t ,

(5.68)

f  t) +  V*u(y, <)]*} : V w  -  f  T%, t) ■ rjdA =  0 
J ( l* JdQ v

Vri € r. (5.69)
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an

Undeformed cell with 
internal and boundary 
domains.

a) Linear displacements. b) Uniform tractions. c) Periodic displacements and 
antiperiodic tractions.

Figure 5.7: RVE boundary conditions, a) the linear displacement boundary condition; b) 
the uniform boundary traction assumption and c) the periodic displacement fluctuations 
boundary condition.

After solving the above problem, with u  in hand, the macroscopic stress can be 
obtained from equation (5.31) which,

Alternatively, in this step one may determine the reaction forces T  and f by freeing 
the space of virtual displacements after solving equation (5.69) and then obtaining 
the macroscopic stress from expression (5.55) exclusively in terms of external forces.

5.9 The Taylor assum ption

This model is obtained by choosing the space of virtual displacements at micro-cell 
(equation (5.48)) as [41],

<r(y, t) = £{[e(a, t) + Vsix(y, t)]*}.

y  _  y  T aylor _ (5.70)

That is, the kinematical constraint on the RVE is

u  = 0 My G Qs. (5.71)
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Equation (5.71) is the solution for the micro-equilibrium equation (5.69). This 
choice implies that the associated total microscopic displacement field is linear in y,

u{y, t) = e(x, t)y Vy G Q3, (5.72)

and the micro-cell strain is homogeneous [41],

£(y,t) = e(x,t),  (5.73)

The above equation implies that, the strain at each micro-element is identical to 
the imposed macro-strain;

& £ elern•

The microscopic stress is obtained from the micro-cell constitutive equation with 
prescribed strain, e :

cr(y,t) =$(e t{x,t)). (5.74)

This method usually overestimates the overall behaviour of the model. Therefore, 
the results, which are obtained from this method, are rough and are not realistic. 
Another point in this assumption is application of a macroscopic strain field on the 
micro-structure leads to a local stress field that cannot be in equilibrium.

In conclusion, from equations (5.31) and (5.74) the homogenised stress tensor 
under the Taylor assumption is obtained as,

a{x,t) =  -7  /  a{y,t)dV = ^~ [  <r(y, t)dV = vsa, (5.75)
v Jn v Jn*

where v8 presents the solid volume fraction and defined by, v8 =  ^r.
If the solid part of the unit-cell composed with k different solid constituents with

different volume fractions, equation (5.75) is rewritten as

k
& = X ^ ?cri’

i = l

(5.76)
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where the solid volume fraction of phase i is presented by vf.
Prom equation (5.75) and by using the definition for the overall tangent modulus, 

we have,

Equation (5.77), presents the overall tangent modulus for the Taylor assumption 
that is a volume average of the weighted tangent modulus for n elements at RVE.

5.10 The linear displacem ent boundary assum p­

tion

tion which is prescribed at micro-level. This boundary condition shows softer and 
more realistic behaviour for the micro-structures and the overall properties with re­
spect to the Taylor assumption.

Figure 5.8: Schematic representation of the nodes on the boundary of RVE in the linear 
displacement assumption.

This class of boundary assumption is derived by assuming that the micro-cell 
boundary displacement fluctuations vanish. In other words, the set taking part in 
equation (5.69) is chosen as [41],

y  _  yLmear s  sufficiently regular \u(y, t) = 0 Vy € dfi}. (5.78)

Q̂ elem
(5.77)

The linear displacement boundary condition is another classical boundary condi-

By having the above choice, the equation (5.38) is expressed as,

u* = u(y,t) = e(x,t )y ondQ, (5.79)
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Moreover, the constraint (5.78) satisfies the first part of the variational statement 
of the Hill-Mandel principle over the dQ (equations (5.62)). For the rest of the domain 
at RVE, fi, the Hill-Mandel principle implies that,

f(y,t) = 0 inQ.. (5.80)

The RVE has been divided into the following (see Figure 5.8):

• Interior nodes (whose degrees of freedom will be denoted by the subscript i).

• Nodes which belong to the boundary of the cell (subscript b).

The pseudo code format for this assumption is illustrated in Box 5.1.

1- Set the nodal displacements on the surface of the micro-structure 
(see Figure 5.8),

u6 =

2- Get the current internal force vector, Fmt(u), and the associated tangent, 
stiffness, K(u), of the micro-structure, based on the discretized nodes,
y i  G Cl, and, y b G dft,

pint _

3- Update the displacements in the interior domain by solving the equations

Fext = K U ,

Ui -  K ^ F i => ui,

4- Check for convergence: if , || F* ||> tol, go to 2.
5- Compute the condensed stiffness matrix associated with the boundary, 

dQ [27],

K«, := Km, -  K^K^K.i,

6- Compute the macroscopic stress components and the overall
tangent modulus,

t) = v [/so ydA\ ,

C = ±BbK bbBl,

F  i 

F  6
K  =

hfi Kib 
Kw Kbb
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Box 5.1.Micro-to-macro transition for linear displacement.

Box 5.1, shows an iterative procedure for the computation of the equilibrium state 
within a typical incremental step, including the setting up of new matrix representa­
tions of the homogenised stress and the overall tangent modulus [27]. G «^3 x & 2 M,
is defined as a global coordinate matrix and for an arbitrary node, g, with material 
coordinate (j/i, 2/2), is defined by [27],

. . - i

2yi 0
0 2y2
2/2 2/i

(5.81)

M  is number of nodes on the boundary, dQ, therefore, global coordinate matrix 
can be expressed by,

:= [u. (5.82)

The projection matrices, which define the interior contribution and the contribu­
tions on the boundary, are defined as,

p .  e  @ {N -M ).n dim x  g N . n d ,i m ?  ( 5  3 3 )

G & M-ndim x  <%N.ndim  ̂ (5.84)

N  is the total number of nodes for micro-structure and ridim = 1, 2, 3, indicates the
dimension for the micro-structure problem. P is defined as Boolean matrix, i.e. it
consists of integers 0 and 1.

The contributions for the overall tangent matrix are defined as,

Kit Kib

h.-e*W&T
i

P<KPf

„K bi K bbm i 5* W PtK P^

In other words, the condensed stiffness matrices are assembled from the corre­
sponding degrees of freedom for the internal nodes, K^, boundary nodes, K&*,, or 
combination of them, and Kw, from the global stiffness K.
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The matrix Dg for an arbitrary node q £ dQ, with coordinate (yi, 2/2) is obtained 
as follows: Equation (5.78) in matrix form is expressed by,

(5.86)
U i £ l l £12 y \

U2_ £21 £22_ y 2.

From Box 5.1 and the first step, we have,

U(, =  B>t e, (5.87)

where the equation (5.87), for the unknown matrix, D&, is written as,

r -1 - _ £llUi
=

ai a<i ^3
£22

u 2 _ a4 <25 0>Q

(5.88)

By making equation (5.86) equal to equation (5.88), and by solving the obtained 
system of equations for the unknown variables ai...06, we have,

_
0

1 2 y i 0  "

ai <*2 ^3 y i 2 2/2 1
0 2  2/2

U4 U5 OiQ 0 y2 § 2/ i .
”  2

_ 2/2 y \ _

— ^qi (5.89)

5.10.1 The overall tangent m odulus for th e  linear displace­

m ent boundary condition

The overall tangent modulus presented in Box 5.1 is based on the procedure 
explained by Miehe in [27]. We present an alternative approach for calculating the 
overall tangent modulus.

From Box 5.1 and step 3, the general form of the equilibrium equation is,

K U  = F ext. 

Equation (5.90) in matrix form is expressed by,

(5.90)

K u K^ ' U* + Ui 'f -
Ku K bb_ ul  + u b .f k

(5.91)
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The linear displacement boundary constraint (5.78), and the equilibrium condition 
at micro-level (see Box 5.1, step 4), are used to rewrite the equation (5.91) as a system 
of equations,

(5.92)
f Ka(Ui -f- Ui) -H KfoUfr — Fi, f KaUi — {KaUi -f- K ibu b),

\  K bi(u* + ui) + K bbu*b = Fb, \  KbiUi + KtiU* +  K bbul = Fb,

The second system of equations in equation (5.92) can be written in the form of

( u i = - K ^ K IU \
\  KbiUi + K h U* = Fb,

In equation (5.93), U* stands for, [u* ul]T and K i  and K u  are defined by,

(5.93)

u fII£

Ku Kib
K

’uf"II£

Kbi K bb
.u b_

(5.94)

(5.95)

By substituting iii, from equation (5.93) into the second part of the same equation, 

we have,

(K u  -  K u K ^ K r j U "  = Fb, (5.96)

or in condensed form,

where,

and

K i n U* =  Fb,

K m  = {Ku  -  K u K ^ K , ) ,

J J *  _  TTTiT

(5.97)

global

where D^aZ is assembled for all the internal and boundary nodes at RVE.
On the other hand, from Box 5.1 and step 6, we can rewrite the average stress 

formula with,
1 rib

(5-98)
i= 1



Chapter 5: Computational homogenisation 70

or by definition (5.81), equation (5.98) can be written as,

(5.99)

From definition of the overall tangent modulus, we have,

By using expression (5.97) for the boundary force vector, into the equation (5.99), 
we have,

5.11 The periodic boundary displacem ent fluctua­

tions assum ption

The third possible definition of well-posed microscopic equilibrium problems con­
sists in imposing periodic displacement fluctuations along the unit-cell boundary. In 
this particular model, the boundary is decomposed into two parts, T+ and T- , with 
outward normals n f  and n~ .  Boundary sides of the RVE have been equally sized 
into pair nodes { y + , y ~ } -  In other words, each point y + G T+ has a corresponding 
pair y~  G T~. For an arbitrary pair of node i, we can write,

The kinematical assumption in this boundary condition is defined as,

y  = yPenodic ^  {{^sufficiently regular |u(y+,t) = u(y~,t) Vypairs £ (.5.102)

By defining the admissible virtual displacement space V  as a constraint in (5.102), 
equation (5.42) can be written as [41],

where i stands for the number of pairs of nodes, over the boundary of RVE.

-  1 QTPex̂  1
C =  gg = y^KllI^gtobal- (5.101)

r+ u  rt- e  on,

Ip a irs  /  p  

? (£ (5.103)
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The external surface traction, T, depends on the outward normals on the boundary 
of the cell. Moreover, the external boundary traction is orthogonal to 'pPeriodic} as a 
result, we can write [41],

[  T  ■ rjdA = 0 ^ i q e y  Periodiĉ  ^  1Q4)
JdSl

The above equation implies that T, is anti-periodic on the dQ and we can write, 

^ (y +,t) = -T (y~ , t )  VypairsZdtt- (5.105)

Same as the linear displacement boundary condition, the constraint (5.104), sat­
isfies the first part of the variational statement of the Hill-Mandel principle over the 
d£l (equations (5.62)). For the rest of the nodes of the RVE, the above constraint 
implies that,

f(?/,£) =  0 in Q. (5.106)

To obtain the homogenised stress tensor and the overall tangent modulus under 
the periodic boundary displacement fluctuations condition, the RVE has been divided 
into the following (see Figure 5.9):

• Interior nodes (whose degrees of freedom will be denoted by the subscript I).

• Nodes which belong to T+ (subscript P).

• Nodes which belong to T~ (subscript M).

• Corner nodes (subscript C).

Comer 
node '■

Comer 
^ * node

Interior
nodes

L*

Comer 
' node

Comer
node rBottom

Figure 5.9: Schematic representation of the nodes on the boundary of RVE - The periodic 
boundary displacement fluctuations assumption.
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The general solution procedure for this boundary condition comprises the following 
steps:

Recall additive split of the microscopic displacement (equation (5.38)),

where, u* is given by,

u  =  u* +  u,

u '  = e(x,t)y,

(5.107)

(5.108)

The next step is to assemble and solve the equation (5.90), for unknown displace- 
ment fluctuations:

K U  =  F ext

K n K ip K im K ic

K PI K p p K p m K p c

K m i K m p K mm K m c

K ci K c p K cm K c c

u * i +  U i ' Fi~

u * p  + U p FP

u *m  +  u m F m

u*c  + u c Fc _

(5.109)

Prom equation (5.108), we can write known prescribed displacements as follows: 

u*j = eyu Up = eyp , u*M = eyM, u*c  = eyc , (5.110)

where y  is the coordinate of the nodes at micro-cell,

y  = [yi yp vm yc]T.

To obtain the unknown displacement fluctuations from equation (5.109) we can 
rewrite the cited relation as,

K ( U *  +  U )  =  F - >  K U  =  F  — K U * ,  

or in matrix components form,

K n
K

Krp K IM K IC

~ ' p i  K p p  K p m  K p c  

Kmi Kmp Kmm Kmc  
K ci  Kcp  Kcm K c c

u i '  Fi~

U p FP

U m Fm

Uc _FC_

- K U * (5.111)
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The prescribed domain for the admissible displacement fluctuations, (relation 
(5.102)), implies,

U p  = U m - (5.112)

Moreover, to avoid rigid body motion, the fluctuations part of the displacement 
at corners were assumed equal to zero,

u c  = 0. (5.113)

By substituting the above assumptions (relations (5.112)-(5.113)) into equation 
(5.111) and after some easy manipulations we have,

K u  K ip +  K im 
K pi Kpp  +  K pm 

K mi K mp + K mm 
K c i  K c p  +  K c m

’  Fj'
u i FP
U p F m

_FC_

- K U * . (5.114)

From equation (5.106) and the strong form of the micro-equilibrium equations 
(equations (5.54)), we can say,

Fi =  0.

Moreover, the anti-periodicity of traction on the dQ, (equation (5.105)) is used in 
terms of boundary reactions,

F p  =  — F m -

By replacing the above relations into the equation (5.114), the reduced system of 
equations can be written as,

K n U i  +  { K i p  -I- K i m )u p  =  — (K u u } +  K ip u * P +  K i m u *m +  K i c u *c ),

KpiUi  +  {Kpp  +  K PM)up +  {Kpiu*i +  Kppu*P +  KpmU*m +  Kpcu*c ) = Fp,  ̂

K M i U i  + { K m p  + K m m ) u p  + { K m i u *i + K m p U*p  + K m m U*m  + K m c u c ) = ~ K P , 

KciUi  +  {Kcp  +  Kcm)up +  {K c i u } -I- Kcpu*P +  Kcm^m  +  K cc ^ c)  =

By summing up the left side of the equations, associated with Fp, from equation 
(5.115), we can write,

K a  K ip + K im

K p i  +  K mi Kpp  +  K Pm 4- K mp +  K mm_
K u  K ip K im

ui  
U p

K ic
K p i  + K m i  K p p  + K -MP K pm + K M M K PC + K MC

(5.116)

U*.
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Equation (5.116) is solved for unknown fluctuations displacements, [uj up]T. By 
having ui  and up in hand, and from equation (5.115), other external forces, Fc , FP 
and Fm , can be obtained.

By implementing the constraint (5.106), into the equation (5.55), the homogenised 
siress tensor is obtained by,

o-{x,t) = [  T(y,t )  ydA = [  T{y , t )yTdA. (5.117)
v Jen v Jan

From the finite element method and by using the interpolation functions, element 
displacement can be presented as,

b
u  = ^ J V iuj, (5.118)

i= 1

From micro-equilibrium equation (5.69), and equation (5.118), the traction part 
of the micro-equilibrium equation on the boundary can be written as

[  T ( y , t) • rjdA = [  T(y, t) ■ ( ^  N ^ d A
J a n  Jdo. i=1

r b
= /  y Z N iT ( y , t )  -rjidA

JdV  i= 1

, t)dA^j - rji

i = i

From equations (5.117) and (5.119), the overall stress tensor is expressed by,

x 1cr(x,t) = — s y m
, i=l

(5.120)

Note that the external forces, F ,  on the boundary of the cell, for this particular 
boundary condition, are expressed by,

Fb = [Fp F m  Fc]t . (5.121)

5.11.1 T he overall tangent m odulus for th e  periodic bound­

ary displacem ent fluctuations assum ption

In computational homogenisation method, because of implicit approach, the tan­
gent modulus should be determined numerically by relations between variations of the
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macroscopic stress and macroscopic strain at associated integration point at macro­
level [68].

C =
da
de'

In this section the consistent overall tangent modulus under the periodic bound­
ary displacement fluctuations assumption is achieved by reducing the total unit-cell 
system of equations (see equation (5.111)) to the relation between the forces acting 
on the boundary, dCl, and the displacement on the boundary.

From equation (5.116), fluctuation part of displacements, U  =  [ui Up]T, can be 
obtained as follows,

U = —K { 1K 2 U*,

where,

K u  K ip + K im

Kpi  -f- K mi Kpp  -I- K pm + K mp +  K mm

(5.122)

(5.123)

and

Ko =
K u  K ip K im K ic

K p i  + K m i  K p p  + K m p  K p m  + K m m  K p c  + K m c
. (5.124)

Moreover, from equation (5.115), external forces acting on boundary of the cell, 

are obtained as,

Fp = [Kpi Kpp  + K pm\ U  + [Kpi Kpp K pm Kpc]U *,

FP = K 3U + K 4 U*. (5.125)

Because of anti-periodicity condition we can write,

Fm = ~Fp, 

Fm = - { K zU + K aU% (5.126)

and finally,

Fc

Fc

[Kci K cp + K cm]U + [Kci K cp K cm K cc\ U *,

K 5U + K 6 U*. (5.127)
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By replacing U  from equation (5.122) into equations (5.125)-(5.127), we have,

FP =  ( K a - K 3K ? K 2) U ' ,

Fc =  ( K 6 - K , K ^ K 2)U%

FP =  K PU \  (5.128)

Fm =  —K p U *, (5.129)

Fc  =  K CU \  (5.130)

From equation (5.121), it can be written,

~Fp K P
Fb = Fm = - K P

. k c  .

U* (5.131)

or in condensed form,

F b  —  K P e r i o d i c ^  K p er{Qd ic ^  global^  • (5.132)

Following the same procedure for the linear displacement boundary condition, 
(see equations (5.99)-(5.101)), the homogenised tangent modulus for the periodic 
fluctuations displacement boundary assumption is obtained. Therefore, the tangent 
modulus can be written [68],

-  1 Qpex̂  1
c  = — Dfr-"—— = —^bKperiodii^global' (5.133)

5.12 The uniform boundary traction assum ption

The final class of multi-scale models is derived under the assumption of mini­
mum kinematical constraint on the RVE (see the defined spa^e in (5.42)). For this
constraint, the space "V is defined such as [41],

Traction  = J sufficiently regular I I u<S>3 ndA =
I I Jdo.IL (5.134)

With the same explanation for the linear displacement boundary condition and 
the periodic fluctuations displacement assumption, from the above choice we have,

(5.135)
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The external surface traction compatible with the present model is given by

T(y, t) = <r(y, t)n(y) = a (x, t)n(y) Vy G dtt, (5.136)

where a (x ,t)  is a macro-stress at corresponding point x  of macro-structure.
To obtain the homogenised stress tensor and the overall tangent modulus under 

the uniform boundary traction assumption, the nodes on the boundary of the cell 
have been decomposed as follows:

• Interior nodes, I.

• Corner nodes with dependent degrees of freedom, with subscript d.

• Boundary nodes and corner node with independent degrees of freedom (free 
nodes), with subscript / .

• Corner nodes with prescribed degrees of freedom, with subscript p.

Figure (5.10) is a schematic representation of the above decomposition of the 
micro-cell.

Free nodes

Interior
nodes

Free #-
Free nodes

Figure 5.10: Schematic representation of the nodes on the boundary of RVE - The uniform 
boundary traction assumption.

Assume the system is in equilibrium, thus we can write,

p i n t  =  p e x t ' (5.137)

From equation (5.90) and the variational form of the system we have,

F int.rj = F ext.rj

KXJ.rj = F ext.T) VtJ £ "//Traction' (5.138)
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The developed form of equation (5.138), based on the boundary decomposition, 
is expressed by,

K n K i f K Id K Ip U*j +  XL/ m Fj Vi

K f i K ff K Sd K f P XL) +  Uf Vf Ff Vf
K dI Kds K dd K dp xid +  u d Vd Fd Vd

K pI K p f Kpd Kpp_ XL* +  XLp VP Fp VP

(5.139)

To avoid the rigid body motion, the imposed constraints, over the cell are,

77P = 0.
(5.140)

By substituting the constraints (5.140) into (5.139) and by eliminating the last 
row from the system of equations, we have,

f
XL*t

>

~Kn K i f K Id K Ip
1 ' K u K i f K i d u i Vi

< K f i K f f K f d K fp
XL)

+ K f i K f f K fd XLf > • Vf
Ud _K diK dI Kdf Kdd K dp Kdf Kdd u d Vd.

.Ur. >

Fj Vi

Ff Vf . (5.141)

F d_ Vd.

From defined space (5.134), we can write,

/  u ® s ndA=  /  N u  Cg)s ndA  = 0, (5.142)
Jdn Jan

where iV is a vector of shape functions over the boundary of cell.
To define a relation between any arbitrary displacement fields belonging to the 

space y Tractlon such as, Vf and vd, on the boundary of RVE, assume boundary of 
RVE could be divided into two sub-domains, T+ and T- , where,

r+u r  = an,

and u  is constant in each domain. Equation (5.142) for all the boundary elements is 
expressed by,
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Ai=1 [* / !VcL4 ®s n +  + it J  N dA ® s n  = 0, (5.143)

or,

C u  =  0. (5.144)

The matrix C , in above, is specified for free, dependent and prescribed degrees of 
freedom on the boundary dCt. Thus, equation (5.144) can be rewritten as,

[Cf C d Cp] [V f vd vp]T = 0. (5.145)

The prescribed degrees of freedom for the Prescribed nodes on the boundary, 
assumed to be zero,

Up = [0 0 0]. (5.146)

Therefore, equation (5.145), could be written as,

[Cf C d Cp] [vf vd O f = 0, (5.147)

or,

CfVf =  —Cdvd => v d = —C^lCjVf. (5.148)

Assume that,

R  = - C j ' C f .  (5.149)

Thus, by substituting R  from equation (5.149) into equation (5.148) we have,

vd = R v f . (5.150)

By using the above relation between any admissible displacement field belonging 
to y Tractton̂ We have,

rjd = Rrjf, ud -  Ruf.  (5.151)

By replacing (5.151) into equation (5.141), we have,
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K n

K f i
K dI

K if
K f f
K ,f

K Id
K fd
K m

K Ip

Kfp
K dp

U*J r
K „

u)
+ K n

u d
Kdi

u l

K i f  +  K i dR

Kdf +  K ddR

ui

I* / .

Vi
W

Rrjf

> / ' m
Ff Vf
.Fd. Rr}f

(5.152)

To eliminate R  from Rrjf in the last row of equation (5.152), a general index form 
for the last row of the above equation is written, such that,

KijUjRjkrjk =  RkjKijUjrjk.

As a result, equation (5.152) can be written as,

(5.153)

K „ K if K , d K,„

K f i K f f K/d Kfp
R TK dI R TK ^ R TKdd R TK dp

K n

K f i
R TK dI

K i f  +  K i dR  

K f f  +  K f dR  
R TKdf +  R tK mR

ui

[* /.

Adding up the correspondent rows to rjf, leads to,

u}
U *f

Ud
u*

Vi
Vf
Vf

+

’ F, ' V i
Ff • Vf

R TFd Jlf.

(5.154)

Ku Kif Kid Kip
K fi + R TK dj K f f  +  R TK df K fd +  R TK dd K fp +  R TK dp_

Ui
u*t
u
ul

K u  K i f  +  K i dR ui 1 . Vi
K f i  +  R TK dj K f f  +  K fdR  +  R TK df +  R TK ddR_ */. J Vf.

+

Fj Vi
Ff +  R TFd Vf.

(5.155)
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In case of equilibrium, the system of equations obtained from (5.155) should be 
solved for unknown fluctuation displacements from,

Kn Kif Kid Kip
K f i  +  R TK di K ff +  R TKdf K fd +  R TKdd K fp +  R TK dp

K u  K i f  +  K UR
K n  +  R TK di K f f  +  K f dR  +  R TKdf +  R TK ddR

u}

u f  

Ud

UP.
ui

I*/.
[5.156)

Same as the periodic fluctuations displacement boundary assumption, the ho­
mogenised stress is obtained from equations (5.117) and (5.119) after assembling the 
boundary reaction forces.

Fb =  [Ff Fd Fp]t , (5.157)

yJ
i= 1

(5.158)

5.12.1 T he overall tangent m odulus for the uniform  bound­

ary traction  assum ption

The procedure to determine the consistent overall tangent modulus for this par­
ticular boundary assumption, follows the same steps as in the periodic boundary 
displacement fluctuations assumption. From equation (5.156), we have,

where,

U  =  - K I lK aU% (5.159)

K a =

K k =

K „  K If K u  K Ip
K }, +  R TK dI K ff + R TK dJ K Ii +  R TK dd K fp +  R TK ,

K u K , f +  K IdR
K fI +  R TK d, K ff +  K , dR  +  R TK dJ +  R TK ddR  '

dp_

(5.160)
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By using (5.159) and from equation (5.156), we can obtain the correspondent external 
forces for the boundary nodes, such as,

Ff =  (K / i  -  K f 2K ; lK a) CT =  K FU \

Fd =  ( K dl -  K d2K ; lK a) V  = K dU \

F„ = ( K pl -  K p2K ; lK a) U* =  K PU \

where in above equations,

Kf\  =  [Kfi K f f  K f d K f p] , K f 2 =  [Kfj  Kf f  4- K f dR \ ,

K di = [Kdi Kdf Kdd Kdp] , Kd2 =  [Kdi Kdf 4- K ddR ] ,

Kpi — [Kpi Kpf Kpd Kpp], Kp2 — [Kpi Kpf 4- KpdR\ .

Boundary force vector is assembled from equations (5.161)-(5.163),

(5.161)

(5.162)

(5.163)

(5.164)

F b =  [.F f F d Fp K f  K d  K P (5.165)

or in condensed form,

F b  — K 'Traction  U  — K t  r a c tio n ^  global ̂  ’ (5.166)

The same procedure as other boundary conditions is used to obtain the overall 
tangent modulus. Therefore, it can be written,

-  1 1
C = =  y J h K T r a ^ J ^ ,  (5-167)

where, for the uniform boundary traction assumption, Bgi0bai and D*, are defined as,

IDglobal = pDj %  Pd Pp],

and,

P 6 =  [P, P d "pj*
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5.13 Conclusion

In this chapter we presented the analytical methods for the effective material 
properties. In addition, we introduced the concepts of computational homogenisa­
tion. Initially, two concepts related to the homogenisation procedure were expressed: 
homogenisation and localization. In addition formulation for two-scale boundary 
value problem was explained.

Four kinematic assumptions at the micro-scale were described. The Taylor as­
sumption for which the macro strain is imposed uniformly over the whole micro cell, 
the linear boundary displacement assumption explained directly in terms of prescribed 
displacements on the boundary nodes, the periodic fluctuations displacement bound­
ary condition and, finally, the uniform boundary traction assumption. These last two 
assumptions require a non-conventional treatment of the RVE boundary degrees of 
freedom.

The consistent overall tangent moduli were also derived from the reduced system 
of equilibrium equations for the different kinematic assumptions.



Chapter 6

Computer im plem entation of 

multi-scale material m odels

6.1 Introduction

The theory of the homogenisation (reviewed in chapter 5) represents a potentially 
very accurate modelling methodology for characterizing the mechanical behaviour 
of heterogeneous media in general. In summary, multi-scale methodologies of the 
present type evaluate the actual stress and strain over a representative volume ele­
ment (RVE), and by means of a homogenisation procedure, transfer those values to 
the macroscopic scale. The two-scale boundary value problem involves two distinct 
equilibrium conditions, at the macro- and micro-scales, which must be satisfied si­
multaneously (see Box 6.1). Figure 6.1 shows the flow diagram for two-scale analysis. 
In general, the resulting coupled mechanical problem can not be solved analytically. 
Numerical methods based on FEM are particularly well suited for actual computa­
tions.

This chapter describes the structure of a multi-scale finite element computer pro­
gram. The code described here -  written in MATLAB language -  has been developed 
for two-scale analysis of generally dissipative non-linear solid under the small strain 
assumption.

84
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Macro-level Micro-level

• Initialize the macro and micro 
model

• Specify an RVE to every macro 
elements at GP

---- ► • Assemble the RVE’s
stiffness

• Assemble global stiffness and <----
obtain incremental displacement

• Prescribe boundary 
condition

• Calculate the overall 
tangent modulus

• Obtain the incremental macro 
strain for each element at each 
GP

---- ► • Solve the boundary
condition for imposed 
macro strain

• Assemble global internal force <----
• Check for convergence

• Obtain the average stress

Box 6.1. Two-scale analysis procedure.

6.2 The MULTISCALE function

The multi-scale code is organised in three main parts: data input, analysis, and 
output. The main function is named MULTISCALE. It calls the (sub-)functions listed 
in Table 6.1 [69].

Name of the function Description
READ_DATA For reading the data.
RESET_VARIABLES For resetting and initializing the variables.
Load_incr_loop For solving the single or multi-scale problems.
PLOTTING_MESH For plotting the initial and deformed meshes and 

relevant contour plots.

Table 6.1: List of functions called by main program MULTISCALE.

A general flowchart of the program is shown in Figure 6.1.
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( stait )Start

T
Read
DataI
Reset \  

variables

Main body o f the code

Load_incr_loop

( Plotting 
mesh J

C )

<D

Figure 6.1: Flow chart for Multi-scale code.

Data input is carried out by function READJDATA. Program variables are divided 
variables into two groups;

1. The variables that are fixed during the process.

2. The variables that may be updated during the process.

The first group contains: material types (elastic, plastic, visco-plastic), analysis 
type (plane strain, plane stress or axisymmetric), information about geometry of the 
macro-structures or micro-structures, material properties and element groups (for 
multi-material models), types of element and element properties (number of gauss 
points), thickness (for plane stress), load history which includes the number of load 
increment, load factors, time history (for visco-plastic materials), convergence tol­
erances and number of iterations for Newton-Raphson method, prescribed displace­
ments, external loads, rotation angle (for some models which rotation of the structure 
is required) and amplification factor for plotting deformed meshes.

The variables like internal forces, accumulated load factors, total time and relevant 
variables for each load increment, from load history, total displacements, reactions, 
prescribed values for nodes (for solving the boundary conditions problems for macro- 
or micro-structure) and state-variables belong to the second group.

All fixed are stored in a structure named ibvp, and variables that may be updated 
are stored in structure variables.
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In this way, the code can be organised with a recursive structure which, in prin­
ciple, may contain as many scales as necessary (see Figure 6.2).

Variables

H > •
E

9  4 )1O ,^ St
CO -

?

1
Fixed non-fixed

ibvp. variables.

5
Fixed non-fixed

ibvp. ibvp. variables.variables.

Figure 6.2: Hierarchical structure for variables.

The Load_incr_loop function is the main body of the code. All calculations for 
single- and multi-scale problems are performed in this function.

After the Load_incr_loop function is executed, the p lo t jnesh function will plot 
the initial and deformed meshes, different stress contour plots, and the effective plastic 
strain contour plot (for elasto-plastic material models) for the macro-structure. In 
the next sections we will briefly review these sub-functions.

6.2.1 T he Load_incr_loop function

As mentioned above, this function works as a main body for the multi-scale code. 
This function contains two main loops; the outer loop over load increments, and the 
inner loop, which iterates for the solution of incremental equilibrium equations using 
the Newton-Raphson algorithm.

Figure 6.3, shows the flowchart of the macro-scale computation at the two-scale 
analysis method (see section 5.7.5), which has been defined in Load_incr_loop func­
tion. The numerical algorithm for the macro-scale analysis has the same structure 
as that of the standard FEM. This structure has been defined in a way that for the 
multi-scale analysis the calculation for the overall tangent modulus and the average 
stress are performed through the associated sub-functions.
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Set variables to specified  
load increment

T.
i Calculation for stiffness and ~i *<-
I incremental displacement I

Calculation for stress and
global mtemal force

Checking for 
convergence

Print results

Figure 6.3: Flow chart for Load_incr_loop function. Two main loops over load increment 
and over N-R algorithm.

Two points should be considered during the multi-scale analysis:

1. The estimation process for the macroscopic stress and strain. As shown in equa­
tions (5.29) and (5.30), these macroscopic values are evaluated as the volume- 
average quantities of the corresponding microscopic ones, which are actually 
the solutions of the micro-scale self-equilibrium problem. In other words, the 
non-linear material responses at macro-scale are evaluated at Gauss points in 
the macroscopic domain, at which the micro-scale problem is solved for the self­
equilibrated stress state. Accordingly, the micro-scale problem plays the role 
of the macro-scale constitutive relation in an implicit manner. More specifi­
cally, the macroscopic FE (finite element) model identifies the microscopic FE 
analysis results with ‘the material property at a macro-scale integration point’. 
In the actual macroscopic FE algorithm, a macroscopic FE is assigned an ID 
number of the corresponding cell model instead of the material ID in the usual 
FE analysis. Such treatment is schematically illustrated in Figure 6.4 [30].
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S  : Macro-strain

CF: Macro-stress

Macro-FE model A macroscopic element 
and integration point

Microscopic problem 
at each Gauss-point

Figure 6.4: Illustration of the algorithmic structure of two-scale analysis.

2. The macroscopic tangent modulus of the linearized equation for the macro struc­
ture. This homogenised tangent modulus naturally arises along with the require­
ment of the consistency between micro-and macro equilibrium states [30],

r ‘ — 
n '  d e l '

(6.1)

In equation (6.1), the superscript, i , illustrates the number of the iteration in 
Newton-Raphson algorithm and the subscript, n, indicates the time or loading step 
[30).

By setting the variables into the relevant load history values, the code calculates 
the stiffness and incremental displacement by calling the relevant functions. Based 
on the total displacement, the elemental displacements, strain and incremental strain 
are obtained.

These variables will be used in the subsequent steps, which are the functions for 
updating state-variables and estimating the global internal forces. The cited sub­
functions are defined in global_internal_force function (see Figure 6.3).

Checking for convergence is the next step in load_incr_loop function. This func­
tion is used to check [31],

R (U „ + i)  EE F*n<(U n+i)  -  F £ ,  =  0, (6.2)

where the global internal and external forces at time, tn+1, and nodal displacement, 
U n+i, are represented respectively by, F mt(U n+ i), and, F®+j.
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The norm of the residual, || ||, may be less or more than the predefined
tolerance, therefore the flag for convergence will be set to the relevant situation. If 
the iterative method converged after, i + 1, iterations, the results will be printed 
into the output text file and the procedure will be repeated by new values for load 
increment, otherwise same procedure will be continued for the next iteration till the 
obtained results by the Newton-Raphson method satisfied the equilibrium equations.

We should emphasize that if the numerical solution is converged, the state-variables 
are reset to the converged values, which are cited as old values and at the multi-scale 
problems, if the solution for macro-structure is converged, the convergence flag for 
macro-structure will be set to true, otherwise as mentioned, the procedure will be 
repeated as long as the equilibrium is obtained. [69].

6.3 A utom atic load increm ent cutting

Due to non-linearity of the proposed problem, the converged results may not be 
obtained from the solution of the equilibrium equations at macro- or micro-level. To 
cope with this problem and make the structure of the code robust, the load increment 
cutting facility has been defined. This function, can be activated by the following 
reasons:

1. Not getting the converged solution at macro-level within the maximum allowed 
number of the Newton-Raphson iterations. In this case load increment cutting 
flag will be set to active sign inside the convergence function and all the variables 
will be reset to the last converged results.

2. Failure due to the iterative procedure at micro-level to get the converged solu­
tion within the total number of the Newton-Raphson iterations. In this case 
load increment cutting flag will be set to active sign at micro averaging stress 
function and at macro-level all the variables (macro- and micro-levels) will be 
reset to the last converged results.

3. Failure in stress update functions (at macro- or micro-level). In this case load 
increment cutting flag will be set to active sign inside the stress update function 
and all the variables will be reset to the last converged results.

The load increment cutting has been defined to reset and restart the new procedure 
by taking the half of the failed load step. MATLAB’s facilities have been used to call
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the main function, Load_incr_loop, to solve the same problem at the failed time step 
for the new load steps. Figure 6.5, shows the check points for the load increment 
cutting function in the main multi-scale algorithm.

Set variables to specified 
load incrementr

Set variables 
( la st to new) 

Divide load increment 
by half 

1 1 L -_
Failure in stress update 

subroutines 
(macro/micro-level)

I
I Calculation for stiffness and j I **
I mcremental displacement I

! Calculation for stress and li-i . . . .  . . i
global mtemal force

in N-R convergence 
at micro-level

Checking for 
convergenceNO 

&
Failure in N-R 
convergence

Print results

Figure 6.5: Functional position for load increment cutting facility.

6.4 Macro-and micro-scale coupling

The goal in this part is to develop and implement a single structure for solving 
the single- and multi-scale problems concurrently. The procedure is for estimating 
the state-variables at Gauss-points at the macro-level and respectively the micro­
structures, which are defined in these points. The code should solve a new problem at 
micro-level. Therefore, for solving the micro-structures under the prescribed bound­
ary condition at micro-level, an independent routine has been implemented to solve 
the problem at micro-level and pass the averaged stresses to macro-level. Based on 
the first supposition, hierarchical structure for the variables (see Figure 6.2), the new 
problem is defined by passing the specified level’s variables into the cited function. 
This process is illustrated in Figure 6.6. The advantage of this method is that the
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code is completely independent at the different scales. Therefore, the defined struc­
ture for variables plays the main role at the multi-scale analysis.

variable* at

(1)

iter = 1
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Un+1
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t  m+1'

variables 

old = new

Figure 6.6: Illustration of the concurrent algorithm for two-scale analysis.

Figure 6.6, shows conjugacy of the multi-scale analysis. Initially, the code starts 
to analyze the macro level. In different iterations at macro-level, the new problem 
is defined at the micro-level by specified boundary condition. After this stage, the 
new problem is solved as single-scale problem. As can be seen from Figure 6.6, the 
micro-levels have the same pattern and the same solver for non-linear problems as 
macro-level. The obtained results based on the homogenisation theory (see section 
5.7.2) are transferred to macro-level at the relevant integration points.

An important point at the multi-scale analysis is that, although the solution at 
the micro-level may converge in m  iterations, the macro-level solution may still not
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be converged. In this case the obtained homogenised results for integration points at 
macro-level, based on the converged results at micro-level, should not be assumed as 
converged and final results. Therefore, because these results are temporary, they are 
located in new part of the structural variables (old at micro-level is defined as new at 
macro-level). As long as the results are converged at macro-level after, n, iteration, 
the converged results are saved into the la s t  part of the structural variables. As 
cited in section 6.2, for the subsequent load step, these values will be used as initial 
values for the variables [69].

6.5 M ulti-scale analysis for the overall stiffness ma­

trix and state-variables

This part reviews the structure of the code in the case of assembling the overall 
stiffness matrix, estimating the homogenised tangent modulus and the state-variables. 
As mentioned in section 6.2.1, in the multi-scale analysis, the relevant variables are 
used to solve the problem in two main sub-functions: assembling the global stiffness 
and updating the global internal force based on the homogenised stress field (see 
Figure 6.3). According to Figure 6.3, the first sub-function is used for estimating 
the homogenised tangent modulus, overall stiffness matrix and calculating the overall 
incremental displacement which is obtained from [69],

k ; +1a < ++\  =  - r ; +1, (6.3)

where K is the global stiffness, Au is incremental displacement and R  indicates the 
residual. Integers i and n represent the number of iterations and relevant time steps 
respectively.

According to Figure 6.3, the first step is to estimate the tangent modulus, assem­
bling the global stiffness and in addition, solving the equation (6.3). These calcula­
tions are performed in assemble_solve function and relevant sub-functions. These 
series of calculation are shown in Figure 6.7 [69].
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Global stiffness

Assemble_solve
function

Strain-displacement matrix

(Global) Tangent modulus

Elemental stiffness

Solve

for incremental dicplacement

Figure 6.7: Process of assembling the global stiffness and calculating the incremental 
displacement.

It can be seen from Figure 6.7 that, the main function has been divided into two 
parts. The first section is used for assembling the global stiffness while, the second 
section is used to solve the equation (6.3).

In the first part of this division, the code has been organized to determine the 
tangent modulus for different types of material from separate sub-functions (material 
routines). Note that the homogenisation of the tangent stiffness matrix is obtained 
from the consistency between micro-and macro-scale equilibrium states.

Importantly, in this stage we have implemented a strategy for solving the multi­
scale problems. We have defined the ‘multi-scale’, as a type of material models. 
Therefore, material type ‘multi-scale’ is recognized by the multi-scale code as material 
models, such as, linear elastic material model or elasto-plastic von Mises material 
model.

The advantage of this assumption is that, after solving the relevant boundary 
condition, over the cell, for obtaining the stiffness at the micro-level, the unique 
procedure is followed by the code for calculating the tangent modulus and stiffness 
in the same fashion as when solving the problem for the single-scale material models. 
This procedure is illustrated as a flowchart in Figure 6.8. It should be mentioned that 
in the multi-scale analysis and for obtaining the homogenised tangent modulus based 
on different boundary conditions at micro-level, a switch function CTMULT, has been 
defined. The function of CTMULT is to call the relevant sub-routines for calculating 
the overall tangent modulus at micro-level and based on the prescribed boundary 
condition over the cell [69].
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Figure 6.8: Flow chart for assembling the global stiffness and relevant variables. Multi-scale 
is defined as a type of material model.

Figure 6.8, shows different sections, based on different types of material. The sub­
functions (material routines), which are defined in MULTISCALE code, are completely 
independent and they are detached, based on different types of material and type of 
analyses (plane-stress, plane-strain or axisymmetric (only for single-scale analysis)).

As can be seen from Figure 6.8, in the case of multi-scale analysis, we defined a 
‘multi-scale’ material model. When the code reaches from macro-level to this stage, 
by solving the prescribed boundary condition over the cell at micro-level, the ho­
mogenised tangent modulus is obtained for the corresponding integration point at 
macro-level. The procedure, which the code follows for the multi-scale analysis, is 
the same as the single-scale analysis’ procedure, except the part, which is defined for 
solving the boundary conditions at micro-level.

The second part of the multi-scale code according to Figure 6.3, relates to the 
updating stress components, the state-variables and assembling the global internal 
forces. These calculations are performed in global_internal_force function and 
relevant sub-functions. In this part of the code we followed the same detachment as 
in the previous section; that is defining the ‘multi-scale’ as a new type of material. As 
already mentioned, the independent material routines have been applied for updating 
the state-variables as the ones used in estimation of the tangent modulus.

Figure 6.9, shows this procedure for updating the state-variables and assembling 
the global internal forces [69].
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Figure 6.9: Flow chart for updating state-variables and assembling global internal forces. 
Multi-scale is defined as a type of' material model.

For updating the state-variables, such as stress components, at each Gauss point, 
the strain tensor is required. The procedure in the multi-scale code has been design to 
obtain the strain tensor and the material properties before updating and calculating 
the state-variables from the relevant material routines. In the multi-scale analysis, 
the main transition between macro- and micro-scale analysis is done by passing the 
macro-strain for the specific integration point at the macro-level to the micro-level 
and by solving the prescribed boundary condition over the cell at micro-level. The 
macroscopic variables and the homogenised stress tensor are then obtained and re­
turned to the integration point at the macro-level (see Figure 6.4).

As can be seen from Figure 6.9, in the section ‘multi-scale material models’, the . 
variables, with regard to the last converged flag or the load increment cutting flag 
for the macro-structure, will be reset to the relevant variables structures at micro­
level. After resetting the variables for the micro-level, the independent function is 
called from macro-level to solve the prescribed boundary condition over the cell and 
calculate the homogenised stress field at micro-level. Note that this function is called 
for each integration point at the macro-structure.
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Figure 6.10: Flow chart for updating state-variables and calculating the homogenised stress 
tensor at micro-level.

Figure 6.10 shows a flowchart for the function used to solve the prescribed bound­
ary condition at micro-level and the homogenised stress field. This function has been 
called SUMULT in multi-scale code, which represents the stress update for multi-scale 
material models.

Note that the new problem is defined at micro-level for relevant macro-iteration 
number (see Figure 6.6). Based on the obtained results from micro to macro transition 
and FEM (see chapter 4), the global forces will be assembled.

Figure 6.11 illustrate the main structure and the links between substructures of 
the multi-scale code. Different paths have been indicated by 1, 2, 3 and 4.
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Figure 6.11: Flow charts for multi-scale analysis.

6.6 Conclusion

In this chapter implementation of the multi-scale finite element code has been 
described. The code is based on an incremental procedure for general dissipative 
materials coupled with a full Newton-Raphson scheme for equilibrium iterations. A 
key feature of the multi-scale program is its recursive hierarchical structure whereby 
the main equilibrium procedure calls itself when, at the Gauss point, computational 
homogenisation is used to describe the material behaviour.

Also worth nothing is, its data structure in which the macro-problem description 
contains all micro-information stored with a similar structure compatible with the 
recursive nature of the equilibrium problem.



Chapter 7

Comparison between analytical 

and numerical m ethods for the  

overall response o f the elastic 

m aterial m odels

7.1 Introduction

This chapter presents numerical examples to validate the elastic part of the multi­
scale code. The analysis has been focused on two types of micro-structures: dilute 
distribution of cavities in the cell and dilute distribution of fibres in the RVE. It should 
be mentioned that the dilute distribution of cavities/fibres is an additional restriction 
in analytical analysis to avoid the effect of interaction between cavities/fibres and 
this restriction is not applicable to computational homogenisation. The accuracy and 
the validity of the numerical results for the effective material properties have been 
assessed by comparison with analytical solutions presented in chapter 5. Some of 
the presented solutions are based on the different types of micro-structures under 
the plane strain or plane stress assumptions. In addition, for dilute distribution of 
cavities in the cell, the numerical results have been compared with the numerical 
results based on the damage theory.
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7.1.1 Void volum e fraction theory

This theory has been discussed in section 5.2.1. Table 7.1 contains the estimated 
effective values for Young’s modulus and Poisson’s ratio based on equations (5.2)- 
(5.10) for a material whose matrix properties are E = 70 GPa and, v = 0.2.

Macro-stress prescribed

/ E V
5% 60.86956522 0.2173913
10% 53.84615385 0.23076923
15% 48.27586207 0.24137931
20% 43.75 0.25
30% 36.84210526 0.26315789
40% 31.81818182 0.27272727
50% 28 0.28
60% 25 0.28571429
70% 22.58064516 0.29032258

Macro-strain prescribed

/ E V
5% 59.4660194 0.22330097
10% 48.8372093 0.25581395
15% 38.0434783 0.30434783
20% 26.9230769 0.38461538
30% 0 1
40% 0 -1
50% -28 -0.28
60% -50 -0.14285714
70% -71.1864407 -0.08474576

Table 7.1: Effective material properties based on analytical estimates [1].

The values in Table 7.1, are given for both the prescribed macro-stress and macro­
strain assumptions. The effective Young’s modulus E  and Poisson’s ratio v are dis­
played against the values for percentage of the void volume fraction / .  As can be seen 
from Table 7.1, material properties under the prescribed macro-strain assumption are 
acceptable up to 30% of void volume fraction of the RVE.

7.1.2 D am age theory

Table 7.2 contains the values for the effective Young’s modulus, E , and damage 
variable, D , with respect to the percentage of the void volume fraction, / ,  based on 
the equations (5.11)-(5.13). Note that the initial values for material properties are: 
E = 70 GPa, and v = 0.2.
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/ D E
5% 0.05 66.5
10% 0.1 63
15% 0.15 59.5
20% 0.2 56
30% 0.3 49
40% 0.4 42
50% 0.5 35
60% 0.6 28
70% 0.7 21

Table 7.2: Effective material properties based on damage theory.

7.2 D ilute distribution of fibres

Table 7.3 contains the effective values for Young’s modulus and Poisson’s ratio 
based on equations (5.25)-(5.28). The material properties for the matrix are: E  = 
70 GPa and, v = 0.2, and for the inclusion, E1 = 210 GPa and v1 = 0.3.

Macro-stress prescribed

/ E V
5% 73.182 0.205
10% 76.667 0.21
15% 80.5 0.216
20% 84.737 0.223
30% 94.706 0.239
40% 107.334 0.258
50% 123.847 0.284
60% 146.366 0.319
70% 178.892 0.37

Macro-strain prescribed

/ E V
5% 73.042 0.205
10% 76.081 0.209
15% 79.118 0.213
20% 82.152 0.216
30% 88.215 0.222
40% 94.271 0.228
50% 100.322 0.233
60% 106.369 0.237
70% 112.412 0.241

Table 7.3: Effective material properties based on analytical solutions for dilute dis­
tribution of micro-inclusions.

7.3 Num erical tests w ith elastic assum ption

In this section we consider two groups of micro-structures. The first group is the 
micro-structure with a hole, and the second group is the micro-structure with the
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elastic inclusions instead of the holes and elastic material in the matrix.

In general, we defined four types of micro-structure for each group. Each group 

contains different void or inclusion volume fraction (VVF or IVF) values in RVE. The 

side length of the cube-shaped representative m icro-structure under the consideration 

is 1/im. Table 7.4 shows different numerical models of micro-structure in both groups.

Micro groups Number of Elements Number of Nodes Void Volume Fraction
Model 1 878 487 5%
Model 2 816 459 1 0 %
Model 3 785 446 15%
Model 4 736 424 2 0 %

Micro groups Number of Elements Number of Nodes Inclusion Volume Fraction
Model 1 922 502 5%
Model 2 918 500 1 0 %
Model 3 930 506 15%
Model 4 912 497 2 0 %

Table 7.4: Different models of micro-structure.

Model 3 
15% W F

Model 4 
20% VVF

Model 2 
10% W F

Model 1 
5% VVF

Figure 7.1: Different FE models of micro-structure based on various values of void volume 
fraction (VVF).

wm

Model 1 x 10J Model 2 x104
5% IVF 10% IVF

Model 3 x 10'*
15% IVF

Model 4 x 104
20% IVF

Figure 7.2: Different FE models of micro-structure based on various values of inclusion 
volume fraction (IVF).
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Figure 7.1 shows different FE models of micro-structure based on various values 

of void volume fraction and Figure 7.2 shows different types of micro-structure based 

on various values of inclusion volume fraction.

As a first numerical test to obtain the homogenised properties of micro-structures 

and based on the first group of micro-structures, a single square m acro-structure is 

defined with suitable boundary condition and by imposing the prescribed displace­

ment on the RVE the variation of the effective shear modulus, /i, from multi-scale 

analysis, with respect to the m atrix shear modulus, /x, has been plotted (see Figure 

7.3). In the same figure the graphs for the prescribed macro-stress and macro-strain 

based on the void volume fraction theory have been illustrated.

Figure 7.3 shows the variation of the homogenised shear modulus, fi, with respect 

to the void volume fraction, / ,  for plane stress analysis with v  = 0 .2 .

i
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Figure 7.3: Normalized overall shear modulus for v =  0 . 2
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Since a dilute distribution of cavities is assumed, the applicability of these results 

is limited to small values-of the void volume fraction, /  [1 ]. As can be seen from Figure 

7.3, the Taylor assumption presents the upper bound for the homogenised material 

properties. The closest curve to the linear displacement boundary assumption is 

the prescribed macro-stress curve. The results obtained for the periodic boundary 

displacement fluctuations condition are located between the prescribed macro-stress 

and macro-strain curves. On the other hand, the softest behaviour, which is obtained 

by the uniform boundary traction assumption, tends to the analytical curve which 

has been plotted based on the prescribed macro-strain assumption. Therefore from 

Figure 7.3 it can be concluded that the proposed assumptions by Nemat-Nasser [1 ], 

the prescribed macro-stress and macro-strain prescribed, respectively give the upper 

limit and lower limit for the overall elastic material properties for porous media.

In the second part of the elastic tests, we used the micro-structures with inclusions 

(group two). Figure 7.4 illustrates the graphs obtained from equations (5.25) - (5.28) 

based on the prescribed macro-stress and macro-strain. In the same figure we plot 

variation of the effective shear modulus, /I, from multi-scale analysis, with respect to 

the m atrix shear modulus, p  (see Figure 7.4).

-  •♦-Taylor 

—■— Linear 

Periodic

Uniform traction

X— Nemat-Nasser(Pre.macros tress) 

-♦— Nemat-Nasser(Pre. macros train)
0.9

0 0.05 0.15 0.2 0.25 0.3 0.35 0.40.1

/

Figure 7.4: Two-dimensional overall shear moduli of an RVE with dilute distributed inclu­
sion. v 1 =  0.3 and v = 0.2.
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We note th a t analytical results based on a dilute distribution of micro-inclusion are 

strictly applicable to small values of the micro-inclusion volume fraction /  [1]. As can 

be seen from Figure 7.4, the graph obtained from the linear displacement boundary 

condition presents the closest curve to  the graph obtained from the prescribed macro­

stress assumption. On the other hand, the lower bound is presented by the curve based 

on the prescribed macro-strain assumption and the closest curve is obtained from the 

uniform boundary traction assumption.

. JS>-
-  •♦-T aylor  

—■— Linear
Periodic 

— a— Uniform traction 

— •— Reuss
- - o  - - Hashin (Upper bound)

o  Hashin (Lower bound)
0.9

0.15 0.2 0.25 0.3 0.350.05 0.1 0.40
/

Figure 7.5: Two-dimensional overall shear moduli of an RVE with dilute distributed inclu­
sion. v 1 =  0.3 and v  =  0.2.

Figure 7.5 shows the numerical results based on the multi-scale analysis and the 

analytical results based on; the Taylor, Reuss, and Hashin - Shrikman assumptions. 

From Figure 7.5 it can be seen tha t the stiffest behaviour is obtained by the Taylor 

assumption from numerical analysis. Both Hashin - Shrikman assumptions (upper 

bound and lower bound) show softer behaviour with respect to  the Taylor assumption. 

Both Hashin - Shrikman assumptions show stiffer behaviour in comparison with the 

other assumptions. As can be seen from Figure 7.5 among the analytical methods, 

the Reuss method presents the lower bound for the homogenised material properties 

while, in numerical methods the lower bound has been presented by the uniform 

boundary traction assumption.
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7.4 Conclusion

In this chapter we presented the different numerical examples for the multi-scale 
analysis. Firstly, based on the analytical solution for the dilute distribution of micro­
cavities, and damage theory, and for the dilute distribution of fibres at micro-level, 
from the theory presented by Nemat-Nasser [1], we obtained the effective material 
properties for different values of void/inclusion volume fraction at micro-cell. The 
analytical solutions were used to obtain the upper and lower bounds for the overall 
elastic material properties.

Numerical multi-scale tests were performed to validate the accuracy of the ob­
tained homogenised elastic material properties with the analytical obtained results 
from the above theories. For the multi-scale tests, two types of micro-structures were 
considered: The RVE with different percentage of the micro-cavities and the unit cell 
with different size of the micro-inclusions.

Different boundary conditions were assumed over the RVE: The Taylor assump­
tion, the linear displacement boundary condition, the periodic boundary displacement 
fluctuations condition, and the uniform boundary traction assumption.

The important observations are:

• The obtained overall behaviour of the multi-scale analysis from the micro-cavity 
models under the uniform boundary traction assumption shows the closest re­
sponse to the analytical behaviour obtained from the macro-prescribed strain 
assumption. On the other hand, the obtained homogenised behaviour from the 
linear displacement boundary condition shows closest response to the prescribed 
macro-stress assumption in void volume fraction theory.

• The obtained overall behaviour of the multi-scale analysis from the micro­
inclusion models under the uniform boundary traction assumption shows the 
closest response to the analytical behaviour obtained from the prescribed macro­
strain assumption. On the other hand, the obtained homogenised behaviour 
from the linear displacement boundary condition shows closest response to the 
prescribed macro-stress assumption in void volume fraction theory.

• Among the analytical methods, the Taylor assumption provides the upper limit 
for the homogenised elastic material behaviour while, the Reuss assumption 
shows the lower limit for the overall response for the elastic material models.



Chapter 8 

Study of the effect o f distribution  

of cavities on the hom ogenised  

elasto-plastic properties

8.1 Introduction

In this chapter the homogenised elasto-plastic response of the RVE will be con­
sidered. In the first part of this chapter, basic numerical tests will be performed to 
benchmark the developed computational framework. In the second part, the effect of 
distribution of cavities on the homogenised behaviour will be considered.

8.2 H om ogenised elasto-plastic response

The effect of the shape of the RVE on the homogenised behaviour of the micro-cell 
has been investigated by many authors. The shape of the RVE has been considered 
as square, hexagonal (honeycombs) and random. Among others, results have been 
presented by S. Ghosh, K. Lee and S. Moorthy [21], S. Ghosh, K. Lee [70], D. B. 
Zahil, S. Schmauder and M. McMeeking [71], V. Carvelli ans A. Taliercio [72]. The 
mechanical and transport properties of two-dimensional cellular solids consisting of ei­
ther hexagonal, triangular, square or Voroni cells have been discussed by S. Torquato, 
L.V. Gibiansky, M.J. Silva and L.J. Gibson [73].

The effect of the size of the RVE on the rate of the convergence has been presented 
by R Ladeveze, A. Nouy and O. Loiseau [74] and V. Kouznetsova [59].

107



Chapter 8: Study of the effect of distribution of cavities 108

8.3 M odels specification

Two different models are considered: regular cavity model, and irregular cavity 

model with random distribution of voids. Two different cells are considered for each 

group: a single cell (reference RVE) and an RVE which is modified by repetition of 

the reference cell in two directions (see Figure 8.1). For all models the void volume 

fraction of the RVE is taken as 15%. For convenience the models are labeled as: 

Reg.m - 1  =  1 pm,  Reg.m-2 =  2 p m  (4-blocks with 4-voids),

Irreg.m-1 =  1 pm,  Irreg.m-2 =  2 p m  (4-blocks).

0.5

0.5

Reg.m - 1 x10J 0.5 1 1.5 2 o

R eg.m -2 x1°J
0-5 1 0 0.5 1 1.5 2

Irreg.m -1 Irreg.m -2 «10'

Figure 8.1: Different regular cavity models belong to the first group.

The 8 -noded quadrilateral element with 4-Gauss points is used in all cases. The 

m atrix in all models is assumed to be composed of the von Mises elasto-plastic ma­

terial with linear strain hardening. The material properties assigned are; Young’s 

modulus E  = 70 GPa,  Poisson ratio v  = 0.2, the initial yield stress ayo = 0.243 GPa  

and strain hardening modulus H = 0.2.

The overall response of the RVE is considered under three assumptions; (i) the 

linear displacement boundary condition, (i i ) the periodic boundary displacement fluc­

tuations condition and (Hi) the uniform boundary traction.

8.3.1 A nalysis approach

All simulations have been performed by employing the com putational homogenisa­

tion under plane-stress. The average stress is obtained by imposing the macro-strain 

over the unit cell and solving the problem for defined boundary condition over the 

RVE. An arbitrary imposed macro-strain tensor is expressed by:

[^11,^ 22 , 2 ^12] =  [0.001,0.001,0.0034],
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To obtain the load step at each load increment, the generic strain tensor is mul­
tiplied the by the relevant load factor. The multiplication factors (load factors) are 
defined by:

A =  [0,0.1, ..,4],

To illustrate the overall behaviour of the models, different graphs have been pre­
sented based on the effective homogenised stress,

<re/ /  = y/ 3*̂ 2»

against the Euclidean norm of the imposed macro-strain tensor,

Ml = \ j 1̂1 + 2̂2 + 2 1̂2-

Figure 8.2 shows the effective stress - strain norm graphs for the regular mod­
els under the aforementioned boundary conditions. As can be seen from Figure 8.2 
the models show different responses for different imposed boundary conditions. The 
important point to observe is that as expected from the definition of the RVE and 
the periodic boundary displacement fluctuations condition, changing in the geome­
try of the cell, by means of the repetition of the reference cell, does not affect the 
homogenised behaviour of the cell.

Figure 8.3 shows the equivalent plastic strain distribution for both regular models 
under the periodic boundary displacement fluctuations assumption at the last con­
verged load factor multiplied by the original strain tensor. The occurrence of localised 
bands with significant plastic straining can be observed on both contour plots. In ad­
dition, the growth path for the effective plastic strain for the model Reg.m-2 shows 
the same pattern (each block) and magnitude as the evolution path of the reference 
block model Reg.m-1.
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-■— Reg.m - 2 (linear)

-a— Reg.m - 1 (periodic)

* -  Reg.m - 2 (periodic)

-*— Reg.m - 1 (uniform traction) 

- • — Reg.m - 2 (uniform traction)

Figure 8.2: Effective stress - strain norm graphs for the regular models under different 
boundary conditions.

0.001 0.002 0.003 0.004 0.005 0.006

Strain norm

0.007 0.008 0.009

•  # 
•  •

Reg.m - 1

U.06

0.05

0.04

0 03 

0.02

001 

0 
-0.01

Reg.m - 2
*10

Figure 8.3: Effective plastic strain contour plots for the regular models under the periodic 
boundary displacement fluctuations assumption.

The same observations have been made from the simulations of the irregular cavity 

models. Figure 8.4 shows the effective stress - strain norm graphs for the irregular 

cavity models under different boundary conditions while the growth of the effective 

plastic strain has been illustrated in Figure 8.5 at the last converged load factor 

multiplied by the original strain tensor.
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Figure 8.4: Effective stress - strain norm graphs for the irregular models under different 
boundary conditions.
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Figure 8.5: Effective plastic strain contour plots for the irregular models under the periodic 
boundary displacement fluctuations assumption.

In conclusion, the above results show tha t, for the heterogeneous media with a 

periodic micro-structure, the overall behaviour of the cell, as we expected, remains 

unchanged when the imposed constraint over the RVE is the periodic boundary dis­

placement fluctuations.

Irreg.m - 1
i

Irreg.m - 2
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8.4 The effect of distribution of cavities on the  

overall behaviour of the RVE

Porous materials with complex internal void structures have many uses in science 
and industry (e.g. geophysics, civil engineering, ocean engineering, petroleum engi­
neering and environmental engineering). The relative performance of different porous 
solids in these applications is highly dependent on the internal pore structure of each 
material. Deriving the physical and mechanical properties of a porous medium from 
parameters describing the structure of the medium (e.g., porosity, cavity’s distribu­
tion, and effective surface area) is an ongoing challenge for scientists.

In this section we validate our results for homogenised behaviour of the composite 
materials by comparison with other authors results. Firstly, we considered the effect 
of the regularity and irregularity of cavities in the micro-cell. Several works consider 
the effect of the regular and irregular distribution of the fibres. Among them we 
mention R. Foye [75], A.R. Zecca and D.R. Hay [76]. Inelastic behaviour of fibre 
composite materials have been investigated by T.I. Zohdi [77], N. Ohno, X. Wu and 
T. Matsuda [78], C.W. Nan and D.R. Clarke [79]. Reference [79] studies the effect of 
particle size and distribution and volume fraction on the homogenised deformation. 
The overall behaviour of the non-linear composites with complex micro-strutures 
have been studied by H. Moulinec and P. Suquet [80,81] in which the Fast Fourier 
Transformation method has been implemented to avoid meshing and provide direct 
use of micro-structure images.

The effect of the regularity, irregularity and density of the cavities at micro-level 
for porous media is another research area which has been considered in many publica­
tions. R.J.M. Smit, W.A.M. Brekelmans and H.E.H. Meijer [82] have shown that the 
irregular void distribution causes a radical change in deformation behaviour. A con­
tinuum level elastic-plastic constitutive modeling method has been used for composite 
and porous materials by L. Lee and S. Ghosh [80]. The micro-structural morphology, 
e.g. spatial distributions, shapes, sizes, and properties of the individual phases at 
both macro and micro-level has been investigated for composite materials and porous 
media. They have shown that the anisotropy caused by the morphology and induced 
plastic flow in the micro-structure can be the source of the distinctly different overall 
responses. Finally, a complete study on the effects of the size, regularity and irregu­
larity of distributed cavities at two scales have been performed by Kouznetsova [59].
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In this section our aim is to study the overall behaviour of the RVE under two 
different assumptions; firstly, regular distribution of the cavities in the unit cell and 
secondly, randomly distribution of the cavities in the RVE.

8.5 Problem  specifications

For this section we defined a square unit cell containing; (i) a single circular hole 
embedded in a soft matrix for the regular structure and (ii) several voids surrounded 
by a matrix for modelling the random structure. Ten different unit cells with non­
regular arrangements of voids are considered. The side length of the unit cell is lfim 
and the void volume fraction is kept at 15% of the RVE. Note that in all randomly 
distributed cavity models, we use the fixed void volume fraction with different pore 
size distribution.

Two types of element have been chosen for this section; linear 3-noded triangle 
element and 8-noded quadrilateral element with 4-Gauss points. The imposed macro­
strain and material properties for this section are identical to the previous examples 
in this chapter.

The analysis has been done under three different boundary conditions; (i) the lin­
ear displacement boundary condition, (ii) the periodic boundary displacement fluc­
tuations condition and (Hi) the uniform boundary traction assumption.

To illustrate the growth of the plastic zone and principal stress components inside 
the cell and circumference of the cavities different contour plots have been used.

8.5.1 Linear Triangle elem ent m odels

For the examples in this section the linear triangle element is used. To increase 
the accuracy of the results we use relatively fine meshes. Table 8.1 shows the relevant 
information about the number of the elements and nodes for each example. Figure 8.6 
gives a schematic representation of different models obtained by random distribution 
of cavities.
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Figure 8 .6 : Regular an irregular distribution of cavities for triangle element models.

Model
Type

Number  o f  
Elements

Number  o f  
Nodes

Regular 2889 1545
Irreg. Model  — 1 4407 2357
Irreg. Model  — 2 3809 2040
Irreg. Model  — 3 3760 2008
Irreg. Model  — 4 3497 1869
Irreg. Model — 5 3653 1958
Irreg. Model — 6 3588 1920
Irreg. Model — 7 3891 2081
Irreg. Model — 8 3868 2075
Irreg. Model  — 9 3685 1968

Irreg. Model  — 10 3636 1949

Table 8.1: Different models for triangle element.

In the first test we obtain the average stress for all models under the linear dis­

placement boundary condition. Figure 8.7 shows the effective stress - strain norm 

curves for all different micro-models. As can be seen from Figure 8.7, the main dif­

ference between the regular and irregular cavity models becomes more obvious in the 

elasto-plastic range.
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Figure 8.7: Effective stress - strain norm curve for all triangle element models under the 
linear displacement assumption.

From this observation we can say th a t the overall response of the regular cavity 

model with linear displacement boundary assumption shows yielding at higher stresses 

than the irregular cavity models.

The average stress-strain curves have also been obtained for all models under the 

periodic boundary displacement fluctuations condition. This is shown in Figure 8 .8 . It 

can be seen tha t, in contrast to the linear displacement boundary condition, deviation 

of the overall response for all irregular models takes place on both sides of the regular 

cavity model. In general, under the periodic boundary displacement fluctuations 

condition, it may be concluded tha t calculations performed on the simplest regular 

unit cell usually provide an answer within an acceptable tolerance with respect to the 

average response from all irregular models.
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Figure 8 .8 : Effective stress - strain norm curve for all triangle element models under the 
periodic assumption.
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Figure 8.9: Effective stress - strain norm curve for all triangle element models under the
uniform boundary traction assumption.
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Finally the effective homogenised stress - strain norm graphs for the regular and 
irregular cavity models have been plotted in Figure 8.9 under the uniform boundary 
traction assumption. In the elastic zone the irregular cavity models show different 
behaviour from the regular cavity model. After the yielding point the effect of the reg­
ularity and irregularity of cavities on the homogenised behaviour of the RVE is more 
pronounced. In general, under the uniform boundary traction assumption the regular 
cavity model shows yielding at higher stresses than the average yielding stresses from 
all the irregular cavity models.

In the next section we consider the same examples by using 8-noded quadrilateral 
element.

8.5.2 Q uadrilateral 8-node elem ent m odels

In this section we use 8-node quadrilateral element with 4-Gauss points for the 
regular and irregular cavity models. Table 8.2 shows the relevant information about 
the number of the elements and nodes for each model. Figure 8.10 is a schematic 
representation of different models obtained by random distribution of cavities.

Model
Type

Number of 
Elements

Number of 
Nodes

Regular 350 1158
Irreg. Model — 1 2581 8052
Irreg. Model — 2 573 1869
Irreg. Model — 3 372 1249
Irreg. Model — 4 369 1231
Irreg. Model — 5 690 2222
Irreg. Model — 6 553 1798
Irreg. Model — 7 638 2062
Irreg. Model — 8 638 2065
Irreg. Model — 9 477 1566
Irreg. Model — 10 370 1243

Table 8.2: Different models for 8-node quadrilateral element.
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Figure 8.10: Regular and irregular distribution of cavities for 8 -node quadrilateral element 
models.

Figure 8.11 shows the effective stress - strain norm curve for all models under 

the linear displacement boundary condition. The overall behaviour of the micro­

models with 8 -noded quadrilateral element shows the same response as the unit- 

cells with linear triangle element under the linear displacement boundary condition. 

The homogenised response from the regular cavity model gives an upper bound in 

comparison with the irregular cavity models behaviour. In other words, the obtained 

overall behaviour from the irregular cavity models show softer response with respect 

to the regular cavity model behaviour.

In addition we have obtained the average stress for all models under the periodic 

boundary displacement fluctuations condition. Figure 8.12 shows the effective stress 

- strain norm curve for all models under the periodic boundary displacement fluctu­

ations condition.
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Figure 8.11: Effective stress - strain norm curve for all quadrilateral element models under 
the linear displacement assumption.
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Figure 8.12: Effective stress - strain norm curve for all quadrilateral element models under
the periodic assumption.
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From Figures 8.11 and 8.12, it may be concluded tha t, with respect to the defined 

boundary condition, for the linear displacement boundary condition, the overall re­

sponse of the regular cavity model shows yielding at higher stresses than  the irregular 

cavity models. On the other hand, under the periodic boundary displacement fluctu­

ations condition, deviation of the overall response for all irregular models takes place 

on both sides of the regular cavity model. One might consider th a t the results for the 

regular cavity model under the periodic boundary displacement fluctuations assump­

tion provide acceptable approximation for overall behaviour of randomly distributed 

cavity models.
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Figure 8.13: Effective stress - strain norm curve for all quadrilateral element models under 
the uniform boundary traction assumption.

Figures 8.13 shows the effective stress - strain norm graphs for the regular and 

irregular cavity models under the uniform boundary traction assumption. From these 

graphs it may be concluded th a t except for three irregular models, the yielding point 

for the regular cavity model has a higher value than the irregular cavity models. Al­

though the averaged behaviour for the irregular cavity models shows stiffer behaviour 

in elastic zone, they show softer behaviour in the plastic range.
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8.5.3 The effect of different elem ent types on the hom ogenised  

response

In this part our aim is to compare the overall behaviour of the unit cell w ith respect 

to the performance of the different element types with full and reduced integration 

points. The unit cell with the regular cavity model is the model which has been 

selected for this part of the test. We have analysed the model with linear triangle 

element, 8 -noded quadrilateral element with 4-Gauss points, and finally the same 

quadrilateral element model with full integration points (9-Gauss points).
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Figure 8.14: Effective stress - strain norm curves for all element types under the linear dis­
placement boundary condition, the periodic boundary displacement fluctuations condition 
and the uniform boundary traction assumption.

Figure 8.14 shows the effective homogenised stress - strain norm for the regu­

lar cavity model under three different boundary conditions; the linear displacement 

boundary condition, the periodic boundary displacement fluctuations condition and 

the uniform boundary traction assumption.

As can be seen, the overall response of the linear displacement assumption shows 

yielding at higher stresses compared with the unit cell under the periodic boundary 

displacement fluctuations assumption. On the other hand, the uniform boundary
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traction presents the lower bound for the homogenised behaviour of the regular cavity 
models.

By comparing the observed responses from different elements with various nu­
merical integration points, it may be concluded that the softest behaviour is shown 
by 8-noded quadrilateral element with 4-Gauss points. Slightly stiffer behaviour is 
shown by the same element but with full integration points and finally the stiffest 
response is obtained by using linear triangle elements. Note that because of defining 
fine meshes for the models with linear triangle element, the obtained results are close 
to the 8-node quadrilateral element model results.

8.6 Study of the m odels

In this section we focus on the behaviour of the unit cell in more detail. We 
chose two models: (i) regular cavity model and (ii) Irregular cavity model-5 with 
random voids. 8-noded quadrilateral element with reduced number of Gauss points 
is employed in all simulations. Imposed macro-strain follows the same pattern as the 
above examples.

The effect of the regularity of voids inside the RVE on the average stress com­
ponents and also growth of the plastic zone inside the RVE will be considered. We 
present the graphs for the normal components of the average stress and the effective 
stress graph (calculated from average stress components). Several snap-shots of the 
effective stress graphs are used to study the different responses of the unit cell before 
and after the yielding point.

8.6.1 R egular cavity m odel under th e linear displacem ent 

boundary assum ption

First we focus on the results obtained from the linear displacement boundary 
assumption. Figure 8.15 shows the normal stress components against the strain norm. 
From Figure 8.15 it can be seen that the stress components of the homogenised stress 
show quite similar behaviour. The similarity of the components of the average stress 
is because of the symmetry of the unit cell, regular distribution of cavities at micro 
level and finally equal components of the imposed strain in x and y directions.

Figure 8.15 also shows a graph which is based on the effective stress (equation 
(3.19)). The data for this graph have been calculated based on the normal average
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stress components and have been plotted against the strain-norm.

We chose four different stages on the graph to show the growth of the plastic 

regime inside the unit cell (see Figure 8.16). These points are assigned as a — d: and 

are shown at the different stages of the loading process before the plastic yielding 

point and after the plastic yielding point. To clarify the growth of the plastic zone 

inside the unit cell at each stage, we plot the deformed shapes of the unit cell together 

with the relevant effective plastic strain contour plots.
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Figure 8.15: Effective stress - strain norm curves for the regular model under the linear 
displacement boundary assumption.

From Figure 8.16, it is clear tha t for this regular cavity model and under the linear 

displacement boundary assumption, the growth path of the plastic zone starts  from 

the boundary of the void and it develops along the diagonal side of the cell up to the 

boundary of the RVE.
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Figure 8.16: Effective plastic strain contour plots for the regular model under the linear
displacement assumption.
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Figure 8.17 shows the growth of the homogenised normal stress components <rxx,

cryy and crxy •
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Figure 8.17: Stress contour plots for the regular cavity model under the linear displacement
assumption.
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8.6.2 Regular cavity m odel under the periodic boundary dis­

placem ent fluctuations assum ption

In this section we consider the results obtained from the periodic boundary dis­

placement fluctuations condition. Figure 8.18 shows the normal stress components 

against the strain norm. From Figure 8.18 it can be seen th a t the stress components 

of the average stress dxx and cryy show quite similar behaviour. The similarity of the 

components of the average stress is related to the symmetry of the unit cell, regular 

distribution of the the cavities at micro-level and equal components of the imposed 

strain in x  and y directions.
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Figure 8.18: Effective stress - strain norm curves for the regular model under the periodic 
boundary displacement fluctuations assumption.

Figure 8.18 also shows a graph which is based on the effective stress. The data  

for this graph have been calculated based on the average stress components and have 

been plotted against the strain-norm. We chose four different stages on the graph and 

used contour plots to show the evolution of the plastic zone inside the unit cell (see 

Figure 8.19). These points are denoted as a — d, and are shown at different stages 

of the loading process before the plastic yielding point and after the plastic yielding 

point.
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To clarify the growth of the plastic zone inside the unit cell at each stage, we plot 

the deformed shapes of the unit cell together with the relevant effective plastic strain 

contours at each stage. From Figure 8.19, it can be seen th a t the growth path of 

the plastic zone follows the deformed shape of the unit cell and resembles hyperbolic 

curves.

a)

b)

Figure 8.19: Effective plastic strain contour plots for the regular model under the periodic
boundary displacement fluctuations assumption.
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Figure 8.20 shows the growth of the overall normal stress components axx, ayy 

and <7 ,xy
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Figure 8.20: Stress contour plots for the regular model under the periodic boundary dis­
placement fluctuations assumption.
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8.6.3 Regular cavity m odel under the uniform  boundary trac­

tion  assum ption

For the last boundary condition over the regular cavity model we consider the 

results obtained from the uniform boundary traction assumption. Figure 8.21 shows 

the normal stress components against the strain norm. From Figure 8.21 it can be 

seen tha t the homogenised stress components axx and ayy show identical behaviour. 

The similarity of the components of the average stress is related to the s}^mmetry of 

the unit cell, regular distribution of the cavities at micro-level and equal components 

of the imposed strain in x  and y directions.
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Figure 8.21: Effective stress - strain norm curves for the regular model under the uniform 
boundary traction assumption.

Figure 8.21 also shows a curve representing the effective stress. The da ta  for this 

curve have been calculated based on the average stress components and have been 

plotted against the strain-norm. We chose four different snapshots on this graph to 

show the evolution of the plastic zone inside the unit cell (see Figure 8.22). These 

points are denoted as a — d, and are shown at different stages of the loading process 

before the plastic yielding point and after the plastic yielding point.
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To clarify the growth of the plastic zone inside the unit cell at each stage we plot 

the deformed shapes of the unit cell together with the relevant effective plastic strain 

contours at each stage. From Figure 8.22, it can be seen th a t the growth path  of 

the plastic zone follows the deformed shape of the unit cell and resembles hyperbolic 

curves in similarity to the periodic boundary displacement fluctuations assumption.

a)

*

I:

d)

Figure 8.22: Effective plastic strain contour plots for the regular model under the uniform
boundary traction assumption.
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Figure 8.23 shows the growth of the overall normal stress components axx, ayy 

and gxy.

R egu lar cavity
QUAD-8 with 4 GP 

Uniform boundary traction assumption

Stress yyStress xx

Figure 8.23: Stress contour plots for the regular model under the uniform boundary traction
assumption.
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W ith regard to the contour plots obtained for different boundary condition we 

can consider the effect of the various boundary conditions on the internal variables 

such as stress components and effective plastic strain. As can be seen these effects 

are crucial in plastic failure. It is clear from effective plastic strain contour plots and 

imposed strain pattern, th a t plastic failure starts from boundary of the inner void 

and develops up to the boundary of the unit cell.

8.6.4 Irregular cavities m odel-5 under the linear displace­

m ent boundary assum ption.

To show the difference between the regular distribution of the cavities and random 

distribution of the cavities we chose to study the irregular model-5. As in previous 

tests for the regular model, firstly we consider the problem under the linear displace­

ment boundary condition. The obtained results based on this boundary condition 

have been depicted in Figure 8.24.
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Figure 8.24: Effective stress - strain norm curves for the irregular model-5 under the linear 
displacement boundary assumption.
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Figure 8.24 shows the average stress components against the strain norm. Al­
though the imposed strain has the same components in x and y directions, in this 
model the stress components of the average stresses axx and ayy are not identical with 
each other. The difference in the values of the components of the average stress in 
this model is caused by the random distribution of the cavities in the unit cell.

Figure 8.24 also shows the effective stress curve for this model. The data for this 
graph have been calculated from the average stress components and have been plotted 
against the strain-norm. As can be seen from Figure 8.24 we chose four different stages 
to show the evolution of the plastic zone inside the unit cell (see Figure 8.25). These 
points are denoted as a — d, and are shown at different stages of the loading process 
before the plastic yielding point and after the plastic yielding point.

To clarify the evolution of the plastic zone inside the unit cell at each stage we 
plot the deformed shapes of the unit cell together with the relevant effective plastic 
strain contour plots. From Figure 8.25 it can be seen that the evolution path of the 
plastic zone follows the deformed shape of the unit cell.
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Figure 8.25: Effective plastic strain contour plots for the irregular model-5 under the linear 
displacement boundary assumption.
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Figure 8.26 shows the evolution of the homogenised normal stress components
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Figure 8.26: Stress contour plots for the irregular model-5 under the linear displacement
boundary assumption.
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8.6.5 Irregular cavities m odel-5 under the periodic boundary  

displacem ent fluctuations assum ption

In addition to the linear displacement boundary assumption we also provide results 

based on the periodic boundary displacement fluctuations condition. Figure 8.27 

shows the homogenised stress components against the strain norm. Although the 

imposed strain has the same components in x  and y directions, from Figure 8.27 it 

can be seen tha t the average stress components in different directions are not identical 

with each other. The difference of the components of the average stress components 

in this model is caused by of the random distribution of the cavities in the unit cell.
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Figure 8.27: Effective stress - strain norm curves for the irregular model-5 under the 
periodic boundary displacement fluctuations assumption.

Figure 8.27 also shows the homogenised effective stress plot. The data  for this 

graph have been calculated based on the average stress components and have been 

plotted against the strain-norm . As can be seen from Figure 8.27 we chose four 

different stages of this graph to show the evolution of the plastic zone inside the unit 

cell (see Figure 8.28). These points are denoted as a — d, and are shown at different 

stages of the loading process before the plastic yielding point and after the plastic 

yielding point.



Chapter 8: Study of the effect of distribution of cavities 137

To illustrate the evolution of the plastic zone inside the unit cell at each stage, we 

depict the deformed shapes of the unit cell together with the relevant effective plastic 

strain contour plots at each stage. From Figure 8.28 it can be seen th a t the evolution 

of the plastic zone follows the deformed shape of the unit cell.

Figure 8.28: Effective plastic strain contour plots for the irregular model-5 under the
periodic boundary displacement fluctuations assumption.
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Figure 8.29 shows the evolution of the overall normal stress components crxx, oyy 

and x y
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Figure 8.29: Stress contour plots for the irregular model-5 under the periodic boundary
displacement fluctuations assumption.
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8.6.6 Irregular cavities m odel-5 w ith  uniform  boundary trac­

tion  assum ption.

The irregular cavity model-5 has been considered under the uniform boundary 

traction assumption. Figure 8.30 shows the homogenised stress components against 

the strain norm.

Although the imposed strain has the same components in x  and y directions, from 

Figure 8.30 it can be seen th a t the average stress components in differnt directions 

are not identical with each other. The difference in the values of the average stress 

components in this model is caused by the random distribution of the cavities in the 

unit cell.
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Figure 8.30: Effective stress - strain norm curves for the irregular model-5 under the 
uniform boundary traction assumption.
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Figure 8.30 also shows the effective stress curve for this model. As can be seen 
from Figure 8.30 we chose four different stages of this graph to show the evolution 
of the plastic zone inside the unit cell (see Figure 8.31). These points are assigned 
as a — d, and are shown at different stages of the loading process before the plastic 
yielding point and after the plastic yielding point.

To clarify the evolution of the plastic zone inside the unit cell at each stage, we 
plot the deformed shapes of the unit cell together with the relevant effective plastic 
strain contour plots. From Figure 8.31, it can be seen that the evolution path of the 
plastic zone follows the deformed shape of the unit cell.
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Figure 8.31: Effective plastic strain contour plots for the irregular model-5 with uniform
boundary traction assumption.
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Figure 8.32 shows the evolution of the homogenised normal stress components
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Figure 8.32: Stress contour plots for the irregular model-5 with uniform boundary traction
assumption.
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W ith regard to the different contour plots obtained from the linear displacement 

boundary condition, the periodic boundary displacement fluctuations condition, and 

the uniform boundary traction assumption, we can consider the effect of the various 

boundary conditions on the internal variables such as stress components and effective 

plastic strain. As can be seen these effects are crucial in plastic failure. It is clear 

from effective plastic strain contour plots and imposed strain pattern , th a t plastic 

failure starts from a critical loaded ligament between two voids and develops up to 

the boundary of the unit cell.

8.7 T he RVE w ith  dense a rea  of voids

The last test in this chapter is a unit cell of side length equal to 1 f im and the void 

volume fraction value equal to 15%. In this model we consider a large unmber of cav­

ities and consequently discretize a model by a dense mesh (see Figure 8.33). 3-node 

linear triangular element is employed. This model is considered as a plane-stress 

problem and under three boundary conditions; (i) the linear displacement bound­

ary condition, (ii) the periodic boundary displacement fluctuations condition and 

(in)  the uniform boundary traction assumption. Imposed macro-strain and material 

properties for this model are identical to previous examples in this chapter.

1 x 103

0.5

0

Figure 8.33: Unit cell with dense distribution of voids.



Chapter 8: Study of the effect of distribution of cavities 144

The effective average stress for the model under the cited boundary conditions is 

shown in Figure 8.34 against the norm of the strain.
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Figure 8.34: Effective stress - Strain norm curves for dense model under three boundary 
conditions.

Figure 8.34 illustrates comparison between the overall properties of the regular 

model with single void inside the unit cell and the dense model. This figure clearly 

indicates the convergence of the average properties with increase of the statistical 

sample representing the heterogeneities at the micro-level. As can be seen from Figure 

8.34, although the homogenised responses of the dense model under the three different 

boundary conditions become close to each other, the linear displacement boundary 

condition shows upper bound while the uniform boundary traction presents the lower 

limit for the overall behaviour of the dense model.

Figure 8.35 shows the effective plastic strain contour plots for the dense mesh un­

der the linear displacement boundary condition, the periodic boundary displacement 

fluctuations condition and the uniform boundary assumption, ft is generally accepted 

th a t the growth path for the effective plastic strain follows the certain path inside the 

cell (see Figure 8.35). This path  usually is known as ‘rupture p a th ’, which in practice 

w ith further increase in load usually gives the failure pattern. The density of the
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cavities, the distance between the neighbouring cavities and the size of the cavities 

are crucial factors to form this critical failure ligament at micro-level.

Linear displacement assumption. Periodic displacement assumption.

Uniform boundary traction assumption.

Figure 8.35: Effective plastic strain contours for dense model under three boundary
conditions.

8.8 C onclusion

In the first part of this chapter, it was shown tha t the im plem entation of the multi­

scale code satisfies the basic requirements for the heterogeneous media with a periodic 

micro-structure. To this end numerical simulations were performed to benchmark the 

overall behaviour of the cell remains unchanged when the imposed constraint over the 

RYE is the periodic boundary displacement fluctuations.
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In the second part of this chapter we have focused on the effect of the distribution 
of the cavities in the unit cell. For this aim we have defined one regular cavity model 
and ten different models with random distribution of the cavities. Firstly we have 
obtained the overall response of the models by imposing the macro-strain over the unit 
cells. The analyses were considered under three boundary conditions. For obtaining 
these results we used linear triangle element and 8-node quadrilateral element with 
full and reduced number of integration points. Based on the effective stress - strain 
norm graphs, for the linear displacement boundary condition we observed that the 
regular model shows yielding at higher stresses compared with the other models. In 
contrast, the uniform boundary traction shows the softest overall behaviour. Based 
on the obtained results for the periodic boundary displacement fluctuations condition 
we could accept the regular model as a good estimate for other irregular models with 
reasonably small error.

We have selected two models; the regular cavity model and the irregular model-5 
with 8-node quadrilateral element with 4-Gauss points, and reviewed the behaviour 
of the models in more detail. Based on the stress components graphs we concluded 
that the randomly and regular distribution of the cavities make an effect in the overall 
behaviour of the unit cell in two main directions, x and y. Moreover, based on contour 
plots, the distribution of the cavities had critical role in plastic behaviour of the unit 
cell.

We showed the relation between growth of the effective plastic strain and dis­
placement of the unit cell with respect to the defined boundary assumptions. The 
irregularity of the micro-structure is reflected in the yield process, which occurs as 
a sequence of shear part of the imposed strain, distributed over the whole micro­
structure. A shear process typically involves the development of shear bands in, for 
example, a critically loaded ligament between two voids.

Finally, the last test has illustrated that increasing in density of pores cause the 
overall properties of the RVE under the three different boundary conditions converge 
towards each other. Still the results obtained by the linear displacement boundary 
condition give the upper limit, and the results obtained under the periodic boundary 
displacement fluctuations condition show a softer response. The lower limit for the 
homogenised properties has been given under the uniform boundary traction assump­
tion.



Chapter 9 

Study of the effective yield surface 

of porous media

9.1 Introduction

The object of this chapter is the study the homogenised elasto-plastic behaviour 
of porous media based on the computational homogenisation methodology presented 
in earlier chapters.

Several authors proposed models for porous material behaviour in which the real 
material is replaced by an ‘equivalent’ homogeneous material with an additional inter­
nal parameter describing the material porosity Among these models, Gurson’s [83] is 
the most widely accepted. This model was developed by considering porous material 
with a single cavity in a unit cell composed of a rigid plastic von Mises material. The 
resulting yield surface is obtained as [83]

(9.1)

where aeqv = y/3^ (s ) , is the von Mises equivalent stress, s is deviatoric stress, /  is 
void volume fraction and ay is microscopic equivalent tensile yield stress. In equation 
(9.1), due to axial symmetry assumption, ah = an •

Gurson’s model was later modified by Tvergaard [84] (Gurson-Tvergaard equa­
tion), by introducing additional parameters resulting in

^  + 2qlf ‘cosh \ 9 2 ^ m\  -  1 -  9?/*2 =  0, (9.2)

$. =  %  +  2/cosh f ^ )  - l - / 2 =  0,
V 2 av )
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where, q\ and q2 are additional parameters and the hydrostatic pressure crm is ex­
pressed by,

3

5m = ^ 2  oaf 3. (9.3)
i=l

They were found to be in agreement with numerical studies of materials containing 
periodically distributed circular cylindrical or spherical voids by using q\ ~  1.5 and 
q2 «  qj.

In this chapter, we consider the effect of the porosity of material on the effective 
yield surface. The porosity is varied in terms of the void volume fraction, distribution 
of cavities, and the regularity of distribution of cavities at micro-level. The effect of 
different boundary conditions over the RVE on the homogenised yield surface is also 
considered.

9.2 M odels specification

In this section, we chose a unit cell with side length equal to 1 /im and a single 
cavity in the middle of the cell. This model is denoted the ‘regular cavity model’. 
The unit cell has been modeled with two different cavity types represented by circular 
and square hole. The 8-noded quadrilateral element with 4-GP has been selected for 
finite element mesh model. Figure 9.1 shows two different unit cells with 15% cavity.

a) Circular hole b) Square hole

Figure 9.1: Two different unit cells’ mesh models, a) Circular hole, b) Square hole.

Table 9.1 shows the relevant information about the number of elements and nodes 
for different unit-cell models with a circular hole, and Table 9.2 gives the same infor­
mation for square cavity models.
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Model
Type

Number o f 
Elements

Number o f 
Nodes

Regular 5% 126 438
Regular 10% 128 448
Regular 15% 128 448
Regular 20% 124 444
Regular 30% 92 348

Table 9.1: Different unit-cells with circular hole.

Model
Type

Number o f 
Elements

Number o f 
Nodes

Regular 5% 128 448
Regular 10% 128 448
Regular 15% 160 560
Regular 20% 192 672
Regular 30% 224 784

Table 9.2: Different unit-cells with square hole.

The von Mises elastic perfectly plastic material model has been selected for the 
matrix. The material properties assigned to these models are; Young’s modulus: 
E = 70 GPa, Poisson ratio: v = 0.2 and uni-axial tensile yield stress equal to 
ayo = 0.243 GPa.

9.3 Analysis approach

All examples have been carried out by employing the computational homogenisa­
tion under the plane-stress assumption as a single scale analysis. The average stress is 
obtained by imposing the macro-strain over the unit cell and solving the problem for 
defined boundary condition over the RVE. The generic imposed macro-strain tensor 
is expressed by the following form:

e = [en, £22,0] =  [0.01,0.01,0]. (9.4)

The load factors multiplied to the above strain tensor are defined by:

[0,0.1,...,4],



Chapter 9: Study of the effective yield surface of porous media 150

To cover the whole range of the macro-strains without shear component, we spec­
ified a general pattern for all examples in this chapter. This pattern follows the 
angular parameter A, which could be obtained from the reference strain-circle shown 
in Figure 9.2 and multiplied by the original strain tensor.

£ = [Ai£h, X2S2 2 ,0], (9.5)

where Ai =  Cos6, X2 = SinO and 6 is an angle of the reference line with respect to 
the 1-1 axis in strain space (see Figure 9.2).

Figure 9.2: Macro-strain path at strain space circle.

The values for 6 are,

0 = [0°, 5°, 10°, 15°,..., 360°].

Initially, uniaxial test is used in which 6 = 0 and macro-strain tensor defined 
only by one component, £n, in 1-1 direction. By increasing the value of 6, new 
combinations of the macro-strain components create different deformed configurations 
over the RVE such as stretching, compressing and shear deformation. Figure 9.3 shows 
different loading paths regarding to the different imposed macro-strains over an RVE 
with 15% circular cavity under the linear displacement boundary condition. As can 
be seen from this figure the yield surface, for this particular model, can be achived 
by connecting the ultimate nodes from different loading paths.
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Figure 9.3: Loading path for different imposed macro-strains over the cell

9.4 Overall yield stress surfaces for regular m odels

This section is divided into two parts. The first part is related to the study of 
the homogenised yield surfaces of the micro-structures with cylindrical cavities and 
the next part is the same study but instead of the unit-cells with circular hole, the 
regular unit cell models with square cavities have been considered.

9.4.1 Taylor assum ption over the RVE w ith  circular hole

We start by showing predicted yield surface under the Taylor assumption which 
is the upper bound for homogenised material models. This assumption shows the 
stiffest behaviour of all kinematical assumptions.
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o

o'
0.5-0.5 1.5

Full micro ce ll 
micro ce ll Cyl. hole 5 %  

micro ce ll Cyl. hole 10% 
micro ce ll Cyl. hole 15% 
micro ce ll Cyl. hole 20%  
micro ce ll Cyl. hole 30%

Figure 9.4: Overall yield surfaces for the Taylor assumption.

Figure 9.4 shows different yield surfaces for different micro cavities under the 

Taylor assumption. These graphs have been plotted in homogenised principal stress 

space (an  — 0 2 2 )  • For more convenience in the interpretation of the results, axes 

have been normalized with respect to the microscopic equivalent tensile yield stress, 

ayo. As can be seen from these graphs, by increasing the void volume fraction, unit 

cells show softer response, in other words, they lose their load-bearing capacity with 

respect to the unit cell w ithout cavity. From the definition of the Taylor assumption 

it can be concluded th a t by increasing the size of the cavity -  in this case up to 30% of 

the cell’s volume -  the new micro cell loses more than 30% of its original load capacity 

in biaxial test. It should be mentioned th a t because of stiff response of the Taylor 

assumption, in shear deformation, we have smooth ellipse shapes for all overall yield 

surfaces with different void volume fractions. In the next sections it will be shown 

th a t this behaviour is not always valid for other boundary conditions, and unit cells 

show different behaviour especially in the biaxial stress region.
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9.4.2 Linear displacem ent boundary condition over the RVE 

w ith circular hole

The linear displacement boundary condition is the next boundary condition which 

is considered. In this boundary condition, different macro-deformations have been 

imposed over the RVE under the linear displacement boundary condition. The ho­

mogenised responses for different unit-cells have been plotted in Figure 9.5.

oe> *
1.5

Full micro ce ll  
micro c e ll  Cyl. hole 5% 
micro c e ll Cyl. hole 10% 
micro c e ll Cyl. hole 15% 
micro ce ll Cyl. hole 20%  
micro ce ll Cyl. hole 30%

Figure 9.5: Overall yield surfaces for the Linear displacement boundary condition.

As can be seen from Figure 9.5, under this boundary condition the overall yield 

surfaces show completely different shapes with respect to the yield surfaces obtained 

from the Taylor assumption. These variations are clearly shown by sharp edges which 

are the results obtained from biaxial deformation tests and smoother side lines for 

shear deformation responses. In addition, as we expected, this boundary condition 

shows softer response in comparison to the Taylor assumption. This means th a t in 

this boundary condition, by increasing the void volume fraction of the micro-cell, the 

unit cell loses more strength in comparison with the same void volume fraction model
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under the Taylor assumption. For example from Figure 9.5 it may be seen that, in the 
biaxial test, a unit cell with 30% cavity under linear displacement boundary condition 
has lost 50% of its original load-bearing capacity.

9.4 .3  Periodic displacem ent boundary condition  over the RVE  

w ith  circular hole

Study of the homogenised yield surface under the Periodic displacement boundary 
condition is more valuable due to its closest response to the real material behaviour. 
The imposed macro-strains are the same as those in the previous test.

Figure 9.6 shows different homogenised yield surfaces under the periodic displace­
ment fluctuations boundary condition for different void volume fractions. The most 
interesting point in these graphs, is the overall response of the unit-cells in biaxial 
tensile deformation. The homogenised yield surfaces of the unit-cells under the pe­
riodic displacement fluctuations boundary condition in this region result in straight 
lines. The reason for this behaviour according to Ponte Castaneda [85], is that the 
yield surfaces exhibit ‘flat sectors’ at or near some weak point modes. The corre­
sponding weak modes, in this example, belong to the imposed macro-strains which 
cause shear deformations over the unit-cell. In other words, unit-cells do not show 
enough strength for imposed macro-shear deformations. The range of this behaviour 
varies. It is less for the unit-cells with smaller void volume fraction value and by 
increasing the void volume fraction value this range is increased. As we mentioned 
earlier, the periodic displacement fluctuations boundary condition is one of the most 
reliable boundary conditions that can be used to predict the real behaviour of the 
composite materials. The limit range of the response for this boundary condition is 
lower than linear displacement boundary condition and is higher than the uniform 
boundary traction condition. Therefore, by increasing the void volume fraction at 
micro-level we expect that the RVE loses more of its original load capacity. This fact 
has been shown in Figure 9.6. From these graphs it may be concluded that, in the 
biaxial test, a unit-cell with 30% cavity under the periodic displacement fluctuations 
boundary condition will lose its original load-bearing capacity by a value of around 
60%.
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Figure 9.6: Overall yield surfaces for the Periodic displacement fluctuations boundary 
condition.

9.4.4 The uniform boundary traction  condition over the RVE 

w ith circular hole

In contrast to the Taylor assumption, uniform boundary traction condition presents 

lower bound for the overall behaviour of the RVE. The predicted homogenised behav­

iour of the micro-cell under the uniform boundary traction condition shows a softer 

response with respect to the periodic displacement fluctuations boundary condition 

or linear displacement boundary condition. Softening of the overall yield surfaces is 

one of the expected effects of the uniform boundary traction condition over the RVE.

The effect of the boundary condition has been shown in Figure 9.7. Comparing 

the resulting homogenised yield surfaces (Figure 9.7) with other overall yield surfaces 

which obtained from other boundary conditions (Figures 9.4 - 9.6) confirms th a t the 

homogenised response from micro-cell is much softer than other boundary assump­

tions. For example for a unit-cell with 30% cavity, in the biaxial test, its load bearing 

capacity reduces to the 40% of its original load capacity and in the uni-axial test, its
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load capacity reduces to 2 0 % of the original one.

o

o 1.5

Full micro cell 
micro cell Cyl. hole 5% 
micro cell Cyl. hole 10% 
micro cell Cyl. hole 1 5% 
micro cell Cyl. hole 20% 
micro cell Cyl. hole 30%

Figure 9.7: Overall yield surfaces for the uniform boundary traction condition.

Figure 9.8, shows the load-bearing capacity of the regular micro-cell model against 

the void volume fraction under the equal biaxial conditions. As can be seen from 

Figure 9.8, by increasing the percentage of the void volume fraction of micro-cell, load 

capacity of the micro-cell decreases with respect to the different prescribed boundary 

conditions over the RVE. From Figure 9.8, it is clear tha t a unit cell with 30% cavity, 

has the most load-bearing capacity under the Taylor assumption because of rigidity 

overall response of this boundary condition, and the lowest load-bearing capacity is 

obtained from uniform boundary traction condition over the unit-cell.
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Figure 9.8: Load capacity in biaxial test for different boundary conditions.

9.4.5 Taylor assum ption over the RVE w ith  square hole

In the second part of our homogenised yield surface study, regular cell models with 

a square hole in the middle of the cell have been considered. We start our tests with 

the Taylor assumption. The results for the overall yield surfaces have been plotted in 

Figure 9.9.

9.4.6 Linear displacem ent boundary condition over the RVE  

w ith  square hole

The next boundary condition is the Linear displacement boundary condition. In 

this boundary condition, different macro-deformations have been imposed over the 

RVE under the linear displacement boundary condition. The homogenised response 

for different unit-cells with square cavity has been plotted in Figure 9.10. From this 

figure it may be seen tha t, in the biaxial test, a unit cell with 30% square cavity under 

the linear displacement boundary condition has lost almost 48% of its original load- 

bearing capacity. The difference between square cavity and cylindrical hole has not 

dom inated the overall response of the unit-cell in the linear displacement boundary 

condition.
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micro cell Sq. hole 5% 
micro cell Sq. hole 10% 
micro cell Sq. hole 15% 

-•-m icro cell Sq. hole 20% 
- • - micro cell Sq. hole 30%

Figure 9.9: Overall yield surfaces for the Taylor assumption.
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-■-micro cell Sq. hole 5% 

micro cellSq. hole 10% 
-* - micro cell Sq. hole 15% 
-•-m icro cell Sq. hole 20% 

micro cell Sq. hole 30%

Figure 9.10: Overall yield surfaces for the Linear displacement boundary condition.
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9.4 .7  Periodic displacem ent boundary condition  over the RVE  

w ith  square hole

The effect of the shape of cavity, square or cylindrical hole, becomes more obvious 
under the periodic displacement fluctuations boundary condition. Figure 9.11 shows 
different yield surfaces under the periodic displacement fluctuations boundary condi­
tion. From Figure 9.11 the same observations are made as the behaviour of the RVE 
with a circular hole in the case of the imposed biaxial deformation.

From these graphs it may be concluded that, in the biaxial test, a unit-cell with 
30% cavity under the periodic displacement fluctuations boundary condition will lose 
its original load-bearing capacity by a value of around 45%. The obtained load- 
bearing capacity value for a cell with a square cavity shows stiffer overall response as 
compared to the same model with circular cavity.

9.4 .8  T he uniform  boundary traction  condition  over the RVE  

w ith  square hole

Figure 9.12 shows the overall yield surfaces for an RVE with a square hole under 
the uniform boundary traction assumption. Comparing the homogenised uniform 
boundary traction yield surfaces in Figure 9.12 with other overall yield surfaces ob­
tained from other boundary conditions (Figures 9.9 - 9.11), confirms that the ho­
mogenised response from micro-cell is much softer than other boundary assumptions. 
For example, for a unit-cell with 30% cavity, in the biaxial test, its load bearing 
capacity reduces to 33% of the original load capacity.

By comparing the homogenised yield surfaces which have been obtained from the 
regular square cavity models, shown in Figure 9.12, with the overall yield surfaces 
obtained from the regular circular cavity models (Figure 9.7) it may be concluded that 
the regular micro-cell models with square cavity shows softer response in equi-biaxial 
tests, while the same model shows stiffer behaviour for imposed shear deformation.
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Figure 9.11: 
condition.
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Overall yield surfaces for the Periodic displacement fluctuations boundary

- • -F u l l  micro cell 
-■ -m icro cell Sq. hole 5% 
-• -m ic ro  cell Sq. hole 10% 
-x -m ic ro  cell Sq. hole 15% 
-• -m ic ro  ce llS q . hole 20% 
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Figure 9.12: Overall yield surfaces for the uniform boundary traction condition.



Chapter 9: Study of the effective yield surface of porous media 161

Figure 9.13 shows two contour plots of the equivalent plastic strain over the micro­

cell with 30% square cavity and 30% circular hole under the uniform boundary trac­

tion condition. These contour plots have been plotted at the same stage of the 

imposed macro-strain when 9 =  45° in equation (9.5).

As can be seen from Figure 9.13 (a), concentration of the maximum value for 

plastic flow at the corners of the square cavity implies th a t this model shows softer 

response in comparison with the same model with a circular hole (Figure 9.13 (6)). 

Shear bands in Figure 9.13 (a), s ta rt from corners of the square hole and develop up 

to the outer boundary of the unit-cell -  from inside of the cell to the outside of the 

cell -  while in the circular cavity model, Figure 9.13 (6), the maximum values for 

shear bands start from outside of the micro-cell (sides of the boundary) and develop 

to the surface of the circular hole.

a) 30% square cavity b) 30% circular cavity

Figure 9.13: Effective plastic strain contour plots for: a) Square cavity, and b) circular 
hole.

Figure 9.14 shows the load-bearing capacity of the regular micro-cell models 

against the void volume fractions under equi-biaxial condition. As can be seen from 

Figure 9.14, by increasing the percentage of the void volume fraction of the micro­

cell, load capacity of the micro-cell decreases, with respect to  all prescribed boundary 

conditions over the RVE. From Figure 9.14, it is clear th a t a unit cell with 30% cavity 

has the highest load-bearing capacity under the Taylor assumption, and the lowest 

load-bearing capacity is obtained from uniform boundary traction condition over the 

unit-cell.

As can be seen from Figure 9.14, the effect of the uniform boundary traction 

becomes more obvious in comparison with the other boundary conditions. By com­

paring the normalized values of the homogenised stress, <fn/cryo (Figure 9.14 and



Chapter 9: Study of the effective yield surface of porous media 162

Figure 9.8) it may be concluded th a t for both square and circular cavity models the 

Taylor assumption gives the same response in biaxial tests. In the linear displace­

ment boundary condition, an RVE with a circular cavity shows stiffer response in 

comparison with the RVE with square cavity. On the other hand, the periodic dis­

placement fluctuations boundary condition estimates stiffer overall behaviour for a 

unit-cell with square cavity. Finally, the most significant difference is in the uniform 

boundary traction assumption in which the square regular model shows softer overall 

behaviour with respect to the micro-cell with a circular cavity.

Taylor 
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Uni. traction
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Figure 9.14: Load capacity in biaxial test for different boundary conditions.

9.4.9 S tudy of the effect o f shape o f cavities at RVE on the  

hom ogenised yield surface

In this part, we consider the effect of the shape of the cavities in the micro-cell 

on the overall yield surfaces under the periodic displacement fluctuations boundary 

condition. As discussed before, shape of the cavity affects the overall behaviour of the 

micro-cell. For instance in the periodic displacement fluctuations boundary condition, 

we showed th a t by increasing the void volume fraction of the unit-cell with a square 

cavity, the overall response of the RVE shows stiffer behaviour in comparison with the 

same RVE with circular hole at the micro-cell. This behaviour changes for the linear 

displacement boundary condition and the uniform boundary traction assumption, in
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which, by increasing the size of the cavity a unit-cell with a circular hole shows stiffer 

homogenised behaviour in comparison with the RVE with a square cavity.

Figures 9.15 and 9.16 show the comparison between the normalized values of the 

homogenised stress component, &u/(Jy0, in biaxial tests for a regular micro-cell model 

with a circular and square cavity model under the periodic displacement fluctuations 

boundary condition and uniform boundary traction assumption. As can be seen from 

figures 9.15 - 9.16, the effect of the shape of the cavity becomes more pronounced with 

increase of the size of the void under the uniform boundary traction assumption.
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Figure 9.15: Load capacity in equi-biaxial test for different cavities - Periodic displacement 
B.C.
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Figure 9.16: Load capacity in equi-biaxial test for different cavities - Uniform boundary
traction assumption.
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To illustrate the effect of the shape of the cavities on the overall yield surface we 

have plotted the relevant yield surfaces for a regular micro-cell model with 30% void 

volume fraction and different cavity shape. Figure 9.17 shows two diffrent graphs; 

the first one is the homogenised yield surfaces for an RVE with a circular and square 

cavity model under the periodic displacement fluctuations boundary condition and 

the second one the overall yield surfaces for different shape of the cavities under the 

uniform boundary traction assumption.
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- 0.6 ■0.4 - 0.2 0.2 0.4
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micro cell Sq. hole 30%

a) Periodic displacement BC.

0.4

O
-0.4 -0.2 0.4

-0.1

- 0.2

micro cell Cyl. hole 30% 
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b) Uniform boundary traction assumption

Figure 9.17: The effect of the cavity shape on the overall yield surface. a)Periodic dis­
placement boundary condition. b)Uniform boundary traction assumption.
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9.4.10 P rojection  o f the stress com ponents on th e deviatoric  

stress space

This part presents the projection of the overall yield surfaces on the deviatoric 
stress space. The homogenised normal stress components axe obtained from different 
boundary conditions: Taylor assumption, Linear displacement boundary condition, 
periodic displacement fluctuations boundary condition and uniform boundary traction 
assumption. The stress components have then been projected to the deviatoric stress 
space, sxx and syy.

Devitoric stress components are obtained by,

s = cr -  crhydI, (9.6)

where crhyd. is hydrostatic pressure which is equal to \trace(cr) and I  is the identity 
tensor.

In the following the effect of the regular cylindrical cavity model and square cavity 
model on the overall yield surfaces in deviatoric space will be considered.

Figure 9.18 shows the homogenised yield surfaces for the regular micro-cell cavity 
model with a circular cavity under the Taylor assumption in deviatoric stress space. 
As can be seen from these graphs, an increasing in size of the cavity at micro-cell 
affects the overall deviatoric stress components. The outer yield surface represents 
the behaviour of the unit-cell without any cavity and the inner yield surface shows 
the homogenised behaviour of a unit-cell with 30% void volume fraction. These yield 
surfaces in deviatoric space follow the same ellipsoidal shape but with different sizes 
which are dependent on the size of the cavity.

Figure 9.19 shows the projection of the overall yield surfaces obtained from the 
micro-cells with a square cavity in the deviatoric stress space. The comparison be­
tween the square and circular cavity regular models shows that in the Taylor assump­
tion there is no difference between the micro-cells with circular and square cavities.
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Figure 9.18: Overall yield surfaces for circular cavity models in deviatoric space for the 
Taylor assumption.
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Figure 9.19: Overall yield surfaces for square cavity models in deviatoric space for the 
Taylor assumption.
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Figure 9.20 presents different overall yield surfaces for the circular cavity models 

under the linear displacement boundary condition. The effect of the linear displace­

ment boundary condition appears in the change of shape of yield surfaces in com­

parison with the Taylor assumption. Smooth curvatures of the corners in the Taylor 

assumption change to spindle shapes in the linear displacement boundary condition. 

From this figure it can be seen tha t by increasing the void volume fraction of the 

micro-cell, the smaller overall yield surface is obtained in deviatoric stress space.

Full micro cell 
micro cell Cyl. hole 5% 
micro cell Cyl. hole 10% 
micro cell Cyl. hole 15% 
micro cell Cyl. hole 20% 
micro cell Cyl. hole 30%

0 .05  -

-0.15 0.05

.05 -

-0.15 -

Figure 9.20: Overall yield surfaces for circular cavity models in deviatoric space for the 
Linear displacement boundary condition.

In addition, Figure 9.21 shows the homogenised yield surfaces for the plane stress 

problem for the regular micro-cell models with a square cavity. The effect of the 

square shape of the cavity models under the linear displacement boundary condition 

is not clear in comparison with the circular cavity models. In both models the value 

of sxx varies from 0.14 G Pa  from a uniform micro-cell w ithout any cavity to 0.06 GPa  

for the micro model with 30% cavity.
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Figure 9.21: Overall yield surfaces for square cavity models in deviatoric space for the 
Linear displacement boundary condition.

Figure 9.22 shows the overall yield surfaces based on the homogenised deviatoric 

stress components under the periodic displacement fluctuations boundary condition. 

Smooth side lengths in yield surfaces are the effect of the periodic displacement fluc­

tuations boundary condition. The softness of the periodic displacement fluctuations 

boundary condition is clear with respect to the Taylor assumption or the linear dis­

placement boundary condition, in which sxx varies from 0.1 G Pa  in the Taylor as­

sum ption to 0.05 GPa  in the periodic displacement fluctuations boundary condition.

Figure 9.23 shows the overall yield surfaces for the micro-cells with a square cavity 

under the periodic displacement fluctuations boundary condition. The overall shape 

of the yield surfaces is the same as the homogenised yield surfaces obtained from 

the micro-cells with a circular hole. Softer response of the micro models under the 

periodic displacement fluctuations boundary condition in the case of imposed macro­

shear deformation is the same for both circular and square cavity.
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Figure 9.22: Overall yield surfaces for circular cavity models in deviatoric space for the 
periodic displacement fluctuations boundary condition.
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Figure 9.23: Overall yield surfaces for square cavity models in deviatoric space for the
periodic displacement fluctuations boundary condition.
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The effect of the shape of the cavity under the periodic displacement fluctuations 
boundary condition is almost evident in these two figures (Figures 9.22 - 9.23). This 
effect appears in uni-axial and biaxial tests in which the overall response of the RVE 
with square cavity shows yielding at higher stresses compared with the same model 
with a circular hole. As can be seen from figures 9.22 and 9.23, by increasing the void 
volume fraction, the difference between two shapes of the cavities is more apparent 
with sxx in a 30% circular cavity model has a value around 0.05 GPa. However, 
for the same micro-cell with a square cavity and 30% void volume fraction sxx has a 
value of more than 0.05 GPa. This effect confirms that by increasing the void volume 
fraction at micro-level and under the periodic displacement fluctuations boundary 
condition, the RVE with a square cavity shows yielding at higher stresses compared 
with the same RVE with a circular hole.

Finally the overall response of the micro-cell with a circular cavity is illustrated 
in Figure 9.24 under the uniform boundary traction condition. The graphs in this 
figure confirm that this boundary condition shows the softest overall response for the 
homogenised load-bearing capacity of the micro-cell, in comparison with the other 
boundary conditions. Significant contraction in the yield surface, obtained from the 
unit-cell with 30% void volume ratio, shows the softness of the deformation at micro- 
cell, and weakness of the overall response of the regular unit-cell model under imposed 
macro-shear deformations in the uniform boundary traction assumption.

Figure 9.25 shows the homogenised yield surfaces for the regular micro-cell models 
with a square cavity. As can be seen from these graphs, the effect of the square 
cavity and circular hole has dominated the overall yield surface of the micro-cells 
with different void volume fractions. The effect of the shape of the cavity at micro- 
cell implies different shape of the homogenised yield surface for a unit-cell model with 
the same void volume fraction.
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Figure 9.24: Overall yield surfaces for circular cavity models in deviatoric space for the 
uniform boundary traction assumption.
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Figure 9.25: Overall yield surfaces for square cavity models in deviatoric space for the
uniform boundary traction assumption.
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9.5 Hom ogenised yield surfaces for irregular m od­

els

In this section the effect of the randomness of the distribution of the cavities in 
the unit cell on the homogenised yield surface will be discussed.

Irregular models in this section have the same size and specification as the regular 
models’ tests in the previous section. The 8-noded quadrilateral element with 4-GP 
has been selected for finite element mesh model.

In order to be consistent with other irregular mesh models, we chose two different 
irregular micro-cell models with 15% void volume ratio: irregular cavity model type-5 
and irregular cavity model type-10. Figure 9.26 is a schematic representation of the 
irregular micro-models.

a) b)

Figure 9.26: Two different unit cells’ mesh models, a) Irregular cavity model Type-5, b) 
Irregular cavity model Type-10.

As in other tests, different macro-strains have been imposed over the micro-cells. 
In order to study the real behaviour of the micro models in composite materials, 
the only boundary condition which has been considered in this study is the periodic 
displacement fluctuations boundary condition.

The main difference between the irregular models’ behaviour and regular model’s 
behaviour is that the irregular models do not show an isotropic overall response, and 
because of randomly distributed cavities, the homogenised behaviour of the RVE may 
result in an anisotropic response. This fact will be demonstrated on the overall yield 
surfaces obtained from the irregular unit cell models.
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Figure 9.27: Homogenised yield surfaces for different irregular cavity models.

Figure 9.27 shows different homogenised yield surfaces obtained from different 

irregular and regular cavity models. These graphs have been plotted in the normalized 

homogenised stress components space. To compare the effect of the regularity and 

irregularity of distributed cavities in micro-cell on the overall behaviour of composite 

materials in the same graph, we have plotted the overall yield surface obtained from 

the regular cavity model with 15% cavity as a reference isotropic response of the 

micro-cell.

As can be seen from Figure 9.27, although the obtained overall yield surface from 

the irregular cavity model type - 1 0  is quite close to the homogenised yield surface ob­

tained for the regular cavity model, it has been distorted with respect to the regular 

cavity model’s behaviour. This distortion in shape of the yield surface could be inter­

preted as an anisotropic response of the micro-irregular model type-10. On the other 

hand, the homogenised behaviour of the irregular cavity model type-5 dem onstrates a 

completely different behaviour with respect to the regular cavity model and irregular 

cavity model type-10. This dissimilarity and softening of the overall response from 

micro-cell type-5 confirms the effect of the shape and the distribution of cavities of 

the unit-cell.
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Figure 9.28: Overall yield surfaces for different irregular cavity models in deviatoric stress 
space.

Figure 9.28 shows the effect of the irregularity of cavities on the overall yield 

surfaces in deviatoric stress space. As can be seen from Figure 9.28, the obtained 

yield surface from irregular cavity model type - 1 0  shows the nearest response to the 

regular cavity model’s yield surface, and the homogenised yield surface obtained from 

the irregular cavity model type-5 shows softer behaviour with respect to the other 

models and has been located inside all other yield surfaces.

9.6 D iscussion

In this section, we refer to some literature corresponding to  evaluation and study 

of the homogenised yield surface for porous media. Following the order of the tests 

conducted, first we review some papers related to the regular cavity models at micro­

level, followed by some technical reports and papers dealing with the effect of the 

distribution and the shape of the cavities on the overall response of the composite 

material models.
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As mentioned at the begining of this chapter, Gurson [83] is one of the pioneers 
who estimated the overall behaviour of the composites with regular cavities. H. 
Li et a1. [86], have used homogenisation theory, and the kinematic limit theorem 
for determining the plastic limit loads of ductile composites, such as metal matrix 
composites in plane stress problem. According to this paper, the macroscopic strength 
of perforated materials monotonically decreases with the increase in the radius of 
holes. In addition, the obtained behaviour for an RVE with 19.3% regular cavity shows 
similar behaviour to the experimental results presented by Litewka [87]. Litewka 
[87], has assumed different penetration patterns for perforated metal sheets and by 
imposing different loads has caracterized the overall behaviour of the perforated sheet 
with respect to the penetration pattern.

O’Donnel and Porowski [88], have investigated an analytical method to obtain the 
yield surface for the sheet perforated with a uniform triangular pattern of round holes 
and subjected to in-plane stress of arbitrary biaxial force. In his paper, based on the 
different characterization of the cavities, lower and upper bounds for the overall yield 
surface for a perforated plate were presented. The presented limits for the overall yield 
surfaces may be located between the results obtained from the linear displacement 
boundary condition and the periodic displacement fluctuations boundary condition 
from our numerical homogenisation analysis.

The effect of size of the cavity on the overall yield surface has been mentioned by 
many authors, among them Winnicki et ai. [89] have defined a coefficient based on the 
perforation pattern to present the distribution of the cavity. The relation between this 
coefficient and the overall shape of the yield surfaces has been shown. By increasing 
the coefficient, the size of the yield surface becomes smaller. Instead of the effect of 
size of the cavity on the homogenised yield surface of multiphase materials, Ponte 
Castaneda and Zaidman [85] have shown the effect of size of the inclusion on the 
overall response of the RVE.

Finally we refer to the paper written by Ghosh S. [90]. Examples described in this 
paper are mostly in plane strain problem and the analysis method is based on the 
Voroni Cell Finite Element Method. The influence of microscopic heterogeneities on 
the overall behaviour has been shown to depend on morphological characteristics like 
size, shape orientation and spatial distribution of constituent phases (inclusion/void).
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Bilger et a1. [91] deals with the effect of the irregularity of cavities on the ho­
mogenised yield surface, particularly with the specific role played by porosity fluctu­
ations inside an RVE. Three types of micro-structures have been specified: random 
micro-structures with no void clustering, micro-structures with a connected cluster of 
voids and micro-structures with disconnected void clusters. Results show that the ran­
dom micro-structures without clusters and micro-structures with a connected cluster 
are the hardest and the softest configurations, respectively, whereas micro-structures 
with disconnected clusters lead to intermediate responses.

The anisotropy of sheet metal during sheet forming is a combination of the initial 
anisotropy due to its previous history of thermomechanical processing and to the plas­
tic deformation during the stamping operation [92]. The former leads to a symmetry 
with the orthotropic character while the latter, called deformation-induced anisotropy, 
can destroy this symmetry when principal material symmetry and deformation axes 
are not superimposed [92].

The following papers refer to the effect of the irregularity of cavities on the overall 
isotropic and anisotropic behaviour of the models: F. Barlat [93] [94] (a pioneer in 
studying the overall behaviour of anisotropic metal sheets and the effect of anisotropy 
on the overall yield surface who has pursued research by modifying the proposed yield 
function for anisotropic materials’ behaviour and has performed this concept in a 
wider area). F. Barlat and J. Lian [95], J. Lian F. Barlat and B. Baudelet [96], Yoon 
J. Barlat F. Dick R. Chung K. and Kang T [92], Barlat F. Brem J.C. Yoon J.W. 
Chung K. Dick R.E. Lege D.J. Pourboghrat F. Choi S.*and Chu E. [97], H. Artez [98] 
and R. Hill [99].

9.7 Conclusion

In this chapter we studied the effect of pores on the elasto-plastic response of 
porous media. It has been shown that the shape of the cavity at micro-level and the 
prescribed assumption over the RVE are two important factors which affect the pre­
diction of the overall yield surface of the composite material. For example it has been 
shown that for an RVE with a given percentage of voids, under the linear displace­
ment boundary condition the cell with circular hole shows yielding at higher stresses 
compared with the cell with square cavity. On the other hand, the homogenised re­
sponse of the RVE with square cavity under the periodic displacement fluctuations
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boundary condition shows yielding at higher stresses compared with the same regular 
model with circular hole. Finally for the uniform boundary traction the yielding at 
lower stresses are presented from a unit-cell with square cavity while for the same 
model circular hole presents yielding at higher stresses.

The effect of the boundary conditions and increasing the size of the cavity (circu­
lar/square) was another topic which has been investigated in this chapter. In general 
by increasing the size of the cavity at micro-cell; the higher yielding stresses have 
been obtained from the Taylor assumption followed by linear displacement boundary 
condition. The periodic displacement fluctuations boundary condition shows yielding 
at lower stresses compared with the linear displacement boundary condition. Finally 
the uniform boundary traction assumption gives the lower bound for the homogenised 
behaviour of composite material models.

In the following we also presented the same effect in the deviatoric stress space. It 
has been illustrated that the same considerations can be drawn in this case as under 
the plane stress conditions.

At the end of this chapter the effect of randomness distribution of the cavities in 
the unit cell on the homogenised yield surfaces was discussed. Based on the distribu­
tion and the shape of the cavities, the overall yielding stresses of the micro-cell could 
be lower compared with the regular cavity model and in some cases the homogenised 
behaviour could be anisotropic.



Chapter 10

Study of the effect of anisotropy of 

the RVE on hom ogenised elastic 

material properties

10.1 Introduction

Composites with short and randomly distributed fibres or particulates have in 
general isotropic properties. For such composites, conventional theories combined 
with some knowledge on material characteristics are normally acceptable for analysis 
and design. Often, the maximum specific strength and stiffness can be obtained 
when long straight fibres with appropriate orientation are along the main direction 
of loading. This produces highly anisotropic composites. Most composite material 
structural components are in the form of laminated beam, plate or shell elements.

The basics of anisotropic linear elastic constitutive material models has been re­
viewed in chapter 3. In the present chapter we show numerical examples where the 
overall elastic properties of strongly anisotropic composites are obtained by means 
of the computational homogenisation procedure. The obtained numerical results are 
compared with using analytical results.

178
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10.2 Num erical exam ples

In this section, we show the effectiveness of the multi-scale analysis procedure in 
simulation of the RVE with orthotropic material properties such as laminate mate­
rials. We define one layer of stiff fibres in a plane embedded in a soft matrix. A 
unit-cell has been selected in the plane of the longitudinal fibres.

The first set of the numerical examples is concerned with a cantilever beam made 
from an elastic laminate material under plane stress assumption. The numerical 
results from the multi-scale analysis are compared with the obtained results from the 
FORTRAN code (MPAP) [42]. This numerical example demonstrates the application 
of the multi-scale analysis in the ‘prediction of the homogenised behaviour of the 
orthotropic laminate composites.

In the second part of this section, the effect of fibre orientation on the overall 
laminate composite material properties is considered. Analytical methods are used 
to check the validity of the numerical results.

First we provide a brief explanation of the mixture rule in micro-mechanics con­
text. Mixture rule, will be used to predict the overall material properties of linear 
elastic composites based on the volume fraction of the matrix and the fibres.

10.2.1 M icro-m echanics o f com posites. M ixture rule

A structural engineer, when designing a structure, tends to rely almost entirely 
on mechanical test results for the properties of the materials to be used. However, 
since the application of composite materials for general purpose structures and the 
range of composite formulation are so diversified, a design engineer must be able to 
estimate the properties of composites to be used from the properties of the constituent 
materials, and may also have either to specify the property requirements or direct 
the manufacturing process to obtain the required properties. Unlike the traditional 
engineers, new generation engineers may have to be able to design the material as 
well as the structure. In any case, it is important for a design engineer to be able to 
obtain expected mechanical properties of a composite chosen for a specific structural 
element, from given constituent materials. This will enable comparison of overall 
design concepts, including structural efficiency, material cost, long term economy of 
the structure and so on [47].

For orthotropic materials in a plane stress state, four engineering constants are



Chapter 10: Study of the effect of anisotropy of the RVE 180

necessary to completely define the composite material behaviour. These are the 
Young’s moduli in the longitudinal direction, E n , and in the transverse direction, 
E2 2 , Poisson’s ratio, vu  and the shear modulus G12 [47].

There are two groups of methods to obtain such properties. One is the empirical 
method which is often called the rule or law of mixtures, and the other is the ‘exact’ 
method. The rule of mixture, which is often sufficiently accurate for many micro­
mechanical problems, is based on the statement that the composite property is the 
sum of the properties of each constituent multiplied by its volume fraction. The ‘exact’ 
method involves the mechanics of materials and theory of elasticity approaches [47].

The assumption for both methods are that both the matrix and the fibres are 
homogeneous, isotropic and linearly elastic, and the fibre is, in addition to the above, 
regularly spaced and aligned. An additional important assumption is that the fibre, 
matrix and composite have the same amount of strain in the same direction [47].

We should notice that for each of the following variables, the subscripts, / ,  and 
m, refer to fibre and matrix, respectively. In this section, we only present part of 
the relations corresponding to longitudinal and transverse elastic modulus, Poisson’s 
ratio and shear modulus. Further details can be found in some of the reference 
books [45-47]. The main relations are the followings:

1. Longitudinal modulus of elasticity;

Eu = EmVm + Ef Vf , (10-1)

where Vf and Vm, represent the volume of the constituents, respectively.

2. Transverse modulus of elasticity;
EfEmE22 = ------------ . (10.2)

E,Vm + EmV, V 1

3. Poisson’s ratio, V12, V21',

Poisson’s ratio, V1 2, is defined as the strain developed in the 2-direction when 
the laminate is stressed in the 1-direction [47],

v12 = (10.3)
£11

The strain £ 2 2  is a function of two components, namely, the fibre components, 
—v/£ 11, and the matrix component, — vm£\\. The lateral strain, in the 2- 
direction, e22 , is —(vf£nVf + um£nVy. Therefore,
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—£22
Vl2 VmVm-

£ll
(10.4)

The other Poisson’s ratio, V2 1 , can be obtained from,

U 21 =  V12
22
11

(10.5)

4. Shear modulus, G1 2;

G12 —
GfGr,

G f V m  +  G m V f ’
(10.6)

where G/ and Gm, represent the shear modulus of the matrix and the fibres, 
respectively.

10.2.2 C antilever beam  subjected  to  a point load

Figure 10.1, shows a homogeneous cantilever beam at macro-level subjected to a 
point load, P. The geometry of this model is defined by I = 80 mm, h = 40 mm, 
t — 1 mm  and the point load is equal to 300 KN. To avoid occurrence of stress 
concentration around the point of the imposed point load, we changed a point load 
with a distributed load along the free edge of the cantilever beam.

h

Figure 10.1: Cantilever beam subjected to a point load.
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At micro-level three different cells have been considered. The side length of these 
cells are equal to 1 pm  and the matrix and the fibres are two different constituents of 
these cells. The volume fraction of the .fibres is assumed to be 15% of the volume of 
the RVE. Figure 10.2 shows three different cells with three different fibre orientation 
angles. By rotating the reference cell’s local axes (11-22) with respect to the global 
axes (xx — yy), new cell models have been created (see Figure 10.3).

le-3_______________  le-3_______________  le-3

Z Z 2

0
0 = 0

le-3 0

0 = 45°
le-3 0

0
O

90

Figure 10.2: Three different cells at micro-level.

y y

22

Figure 10.3: Rotation of the reference cell.

Material properties which have been used for the matrix and the fibre are expressed

b y ,

Matrix
specifications

Fibre
specifications

Em — 3.4 GPa Ef = 110 GPa
vm = 0.35 Vf = 0.22
Vm =  85 % Vf = 15 %

Table 10.1: Material specifications for the matrix and the fibre.

By substituting the constituents’ material properties into the mixture rule, equa­
tions (10.1)-(10.6), we can estimate the overall material properties for the laminate 
composite to be



Chapter 10: Study of the effect of anisotropy of the RVE 183

En = 19.39 GPa,

E22 = 3.9783 GPa,

V\2 = 0.3305,

G\2  = 1.4742 GPa,

Diao = 4.87,

where Aso> represents the degree of the isotropy for the composite. This value is 
obtained from the ratio of the longitudinal modulus of elasticity with respect to the 
transverse modulus of elasticity for the composite

(10.7)

10.2.3 F in ite elem ent d iscretization  o f th e  problem

To exploit the finite element method for this example, the cantilever beam at 
macro-level has been discretized with 392, 4-noded quadrilateral elements with 4 
Gauss Points. At micro-level the unit cell has been defined with 1092 quadrilateral 
8-noded elements with 4 Gauss Points. Figure 10.4 illustrates the FE mesh and 
boundary condition for cantilever beam at macro-level with imposed nodal loads on 
the free edge of the beam and the unit cell at micro-level.

0.001 nTTTTM + H-M H^m rrrrm

a

q EEEEEEi i i i i i i i i i i i i , B B B 3  
0 0.001

b) Unit cell

Figure 10.4: FE mesh illustration for cantilever beam and unit cell.

To obtain the displacement of the middle free end of the beam, a, the finite element 
analysis is performed under plane stress condition. The linear elastic materials have 
been assumed for matrix and fibres at micro-level.
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T he obtained results are illustrated  in Figure 10.5. This figure shows the  dis­

placem ents of the  beam  at node, a, against the  fibre orientation angles for two dif­

ferent analysis and three different assum ptions; F irst, single-scale num erical results 

for o rtho trop ic  cantilever beam  are obtained  by M PA P code [42] by using the m a­

teria l properties obtained from the  m ixture rule for lam inate com posite. Second, 

m ulti-scale analysis results are obtained under three different boundary  conditions 

a t micro-level: the  linear displacem ent boundary  condition, the  periodic boundary  

displacem ent fluctuations condition and the  uniform  boundary  trac tion  assum ption. 

T he homogenised m aterial properties, in the  m ulti-scale analysis, are obtained from 

the  hom ogenisation procedure.
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Figure 10.5: Comparison between the multi-scale and single-scale analysis for nodal dis­
placement of the node a  . Degree of isotropy=4.87.

Figure 10.5 shows th a t  the  displacem ents on the  free edge of the  cantilever beam  

have been affected by the fibre orientation angles. In o ther words, th is effect could be 

in terp re ted  such as, the  m inim um  and the  m axim um  displacem ents of the  cantilever 

beam  occur when the  fibres orientation angles are zero and 90 degree, respectively. 

F igure 10.5 also shows, the  effect of the  boundary  conditions a t micro-level. As can 

be seen from Figure 10.5, when the  fibre orien tation  angle is zero, the  m axim um
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displacement of the beam is observed under the uniform boundary traction assump­
tion. On the other hand, when the fibre orientation angle is 90 degree the maximum 
deflection of the beam occurs under the single-scale analysis (MPAP).

It should be mentioned that to benchmark the multi-scale analysis for this partic­
ular example, the overall material properties were extracted from the overall tangent 
moduli and the obtained results form the single-scale analysis showed the similar 
displacements to the obtained results from the multi-scale analysis. The symmetry 
of the cell, micro-mesh and orthotropy of micro-cell materials are the basis of this 
observation.

10.2.4 Effect o f fibre orientation

In this section, the effect of the fibre orientation angles on the homogenised ma­
terial properties will be considered. The validity of the results from the multi-scale 
analysis is assessed by comparing the numerical results with the analytical results 
from the equations (3.14). An isotropic material behaviour has been assumed for the 
constituent materials at micro-level (matrix and fibres).

For this example we defined an RVE with side lengths equal to 1 /zra. The volume 
fraction of the fibres is assumed to be 15% of the volume of the RVE. The material 
properties for this section are identical to the previous example (see Table 10.1).

To obtain the effect of the fibre orientation angles on the overall material prop­
erties, the multi-scale analysis has been used for different cells with the variation of 
the fibre angles from 0 to 90 degree.

The material properties have been extracted directly from the obtained overall 
tangent modulus from multi-scale analysis. The analysis has been performed for 
three different boundary conditions, the linear displacement boundary condition, the 
periodic boundary displacement fluctuations condition and the uniform boundary 
traction assumption. Equations (3.14) have been used to assemble the analytical 
overall elasticity tensor.

Graphs in Figure 10.6 show the ratio between the transformed Young’s modulus 
and shear modulus with respect to the reference properties - refer to the principal 
material axes - of the lamina (fibre orientation 0 = 0°).
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Figure 10.6: Ratio between the transformed and the original material properties.

In Figure 10.6 the dashed lines are used to illustrate the analytical results. In 

contrast the continuous lines show the numerical results for the different boundary 

conditions. It is seen th a t the effect of the boundary condition at micro-level becomes 

significant for the Young’s modulus ratio when the fibre orientation is in its reference 

position 0 = 0°. On the other hand, by changing the fibre orientation to 45 degree 

with respect to the horizontal axis, the effect of the boundary condition on the shear 

modulus ratio becomes significant.

The same procedure has been performed to show the variations of the Poisson’s 

ratio achieved from the analytical and the numerical analysis with respect to the 

fibres orientations. The obtained results are illustrated in Figure 10.7. As can be 

seen from this figure, changes in fibre orientation angles and the prescribed boundary 

condition over the micro-cell are two dominant factors for the multi-scale simulation 

of the overall behaviour of the fibre oriented composite materials.
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Figure 10.7: Variations of the Poisson’s ratio with respect to the transformed material 
properties.

Based on the presented results in Figures 10.6 and 10.7, it may be concluded that, 

among the presented bounds for the overall material properties based on the differ­

ent boundary conditions, the periodic boundary displacement fluctuations condition 

predicts the better results for the overall m aterial properties Figures 10.8, show the 

variation of the obtained components of the overall tangent stiffness m atrix from the 

analytical solution with respect to the multi-scale analysis results under the periodic 

boundary displacement fluctuations condition. The figures show the variation of a 

specific component of the tangent modulus with respect to the changes of the fibre 

angles.
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Figure 10.8: Comparison between the components of the overall tangent stiffness.
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10.3 Conclusion

In this chapter, we focused on the overall behaviour of the continuous fibre rein­
forced composite materials. We considered the effect of the fibre orientation angles 
on the overall elastic material properties.

In the numerical tests, we compared the single-scale analysis for anisotropic can­
tilever beam with the multi-scale analysis. The overall elastic material properties 
for the single-scale analysis were obtained from the mixture rule. In the multi-scale 
analysis and at micro-level we defined an RVE with two different isotropic materials, 
fibre and matrix. The homogenisation procedure was performed under the various 
boundary conditions: (i) the linear boundary displacement, (it) periodic boundary 
displacement fluctuations, and (Hi) the uniform boundary traction assumption. The 
obtained results for the cantilever beam displacement, illustrated that, by chang­
ing the angle of the fibres orientation, the maximum displacement was obtained as 
expected from the uniform boundary traction assumption.

The effect of the fibre orientation angle on the homogenised Young’s modulus 
and Poisson’s ratio was shown in the second part of the tests. To illustrate that, we 
studied the effect of the fibres angles at the micro-level on the homogenised tangent 
modulus. The results for the overall tangent modulus obtained from the computer 
analysis were compared with the results obtained from the analytical method.



Chapter 11 

Boundary value problem exam ples

11.1 Introduction

This section presents the solution of elastic and elasto-plastic single- and two- 
scale boundary value problems. The application of the formulation presented in 
chapter 5, is demonstrated by the series of numerical examples. In the elastic part of 
the boundary value problem test, the multi-scale analysis has been performed for a 
perforated plate at macro-level and two types of micro-structures (dilute distribution 
of cavities in the cell and dilute distribution of fibres in the cell) at micro-level. The 
validity of the numerical results for the perforated plate in the elastic zone have been 
considered with the single-scale analysis for the perforated plate with the reduced 
material properties obtained from the analytical solution presented by Nemat-Nasser 
[1], and the damage theory (see section 5.2). In addition, we consider the multi­
scale analysis for the elasto-plastic material models. Because of lack of the analytical 
solution for non-linear models, we used our obtained results in the elastic zone as 
our point of reference. In the multi-scale analysis we considered different boundary 
assumptions at micro-level: (i) the Taylor, (ii) the linear boundary displacement, 
(in) the periodic boundary displacement fluctuations and (iv) the uniform boundary 
traction assumption.

11.2 Perforated plate - Problem  specification

A perforated strip is chosen with a uniform thickness. The calculation was per­
formed by imposing uniform displacement control at the upper edge. For obvious 
symmetry considerations, only one-quarter of the specimen was analysed. The 3-D

192
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view and 2-D geometry are shown in Figure 11.1.

-5 .0

hi

a) b)

Figure 11.1: Plane-stress strip with a circular hole, a) Undeformed 2-D geometry, b) 3-D 
view.

We defined four types of macro-structure and for each macro-structure we defined 

four types of micro-structure with different void volume fractions of the RVE. The 

three-noded linear triangular element has been chosen for this example.

Firstly, the problem is solved for the elastic behaviour and the results for the 

homogenised responses are compared with analytical methods, which were cited in 

section 5.3. In the last part of this example, the simulation is performed for one 

selected macro and micro-structure with elasto-plastic material model with isotropic 

hardening behaviour. Numerical tests are performed under plane-stress condition.

The macro-boundary condition, which is considered for this plate, is illustrated in 

Figure 11.2. Dimensions for the symmetric quarter of the strip, as shown in Figure

11.1 (a), are: 10 mm, width, 18 mm, length and 1 mm uniform thickness along 

the strip (see 11.1 (b)). Material properties for this example are, E  =  70 G P a , 

v  — 0.2, for matrix and E  =  210 G P a , v  =  0.3, for inclusion, which are respectively 

Elastic or Young’s modulus and Poisson’s ratio (see section 7.3 for different types of 

micro-models).

A von Mises yield condition with linear isotropic hardening for the matrix is ob­

tained by,
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ay{£p) = 0.2^ + 0.243, (11.1)

where, e9, is the effective plastic strain and, ay, is the von Mises yield stress value at 
relevant point. Hardening curve for this example is illustrated in Figure 11.3.

1.043

0.243

Figure 11.2: Boundary con- Figure 11.3: Linear isotropic hardening curve,
dition for macro-structure.

In the multi-scale analysis, we considered the strip as a macro-structure and dis­
cretized it by different meshes. Table 11.1, contains the relevant information for differ­
ent meshes of the plate. These divisions are based on the number of the finite element 
meshes, (coarse to fine mesh). Figure 11.4, shows four different macro-structures with 
four different types of mesh, which are used at the multi-scale analysis.

Macro groups Number of Elements Number of Nodes
Mesh 1 39 28
Mesh 2 96 62
Mesh 3 378 217
Mesh 4 886 486

Table 11.1: Different meshes for macro-structure.
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Figure 11.4: Different types of macro-structure.

In multi-scale analysis, all groups of micro-structures are implemented for each 

m acro-structural mesh at integration points (Gauss points). The macro-structure 

mesh for both groups of micro-structures are, schematically, shown in Figure 11.5.

Vr4&&&<&&* < i?

Figure 11.5: Micro-structures in each Gauss point of macro-structural meshes. Micro­
structures with cavities and inclusions.
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11.2.1 E lastic tests  for perforated p late

In the first elastic test we considered the first group of micro-structures (micro­
cavities). The analyses were restricted to the elastic range. So far, by using the new 
effective material properties, which are obtained from the cited theories in section 
5.3 for micro-cavities, we ran similar example as a single-scale model. In this part 
our aim is to check the accuracy of the homogenised numerical results against the 
analytical results in elastic zone.

The following is based on the homogenisation assumption. By using different 
micro-structures for each macro-structure, we can analyze the multi-scale model for 
our specimen. This analysis is based on the initial material properties’ values. In 
multi-scale analysis and at micro-level we focused on; the Taylor assumption, the lin­
ear displacement assumption, the periodic boundary displacement fluctuations con­
dition and uniform boundary traction assumption.

To show the accuracy of the numerical homogenised results (multi-scale analysis) 
with the obtained results from the analytical theories (single-scale), we have obtained 
the elastic behaviour of the specimen at the both single-and multi-scale models.

Table 11.2 contains the reactions of the perforated plate obtained from the applied 
displacements. The numerical multi-scale analysis results have been compared against 
the single-scale analysis and analytical solutions.

According to the obtained results (see Table 11.2) increasing the void volume 
fraction makes the macro-structures softer. From Table 11.2 it may be concluded that 
the void volume fraction theory, which has been represented in [1] under the macro­
stress prescribed assumption, gives a closest estimate with respect to the periodic 
boundary displacement fluctuations assumption at the multi-scale analyses. On the 
other hand, the obtained overall behaviour from the damage theory shows the similar 
behaviour to the Taylor assumption at the multi-scale analysis. Above all we should 
note that all of those comparisons have been done in elastic zone.
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Macro-structure Type-1

Reactions for applied Displacement
Micro-structure 

Type-1 
(5% hole)

Micro-structure 
Type-2 

(10% hole)

Micro-structure 
Type-3 

(15% hole)

Micro-structure 
Type-4 

(20% hole)
Single-scale analysis-Filled micro-structure 0.035943 0.035943 0.035943 0.035943
E-reduced (Nemat-Nasser/Pre-strain) 0.030525 0.025059 0.019515 0.013807
E-reduced (Nemat-Nasser/Pre-stress) 0.031247 0.027637 0.024776 0.022451
E-reduced (Damage-66.5,63,59.5,56) 0.034144 0.032347 0.030551 0.028754
Multi-scale analysis (Taylor) 0.03419 0.0324 0.030603 0.028811
Multi-scale analysis (Linear) 0.03162 0.027965 0.024955 0.022366
Multi-scale analysis (Periodic) 0.031568 0.02781 0.024695 0.022009
Multi-scale analysis (Traction) 0.030925 0.025476 0.020231 0.01546

Macro-structure Type-2

Reactions for applied Displacement
Micro-structure 

Type-1 
(5% hole)

Micro-structure 
Type-2 

(10% hole)

Micro-structure 
Type-3 

(15% hole)

Micro-structure 
Type-4 

(20% hole)
Single-scale analysis-Filled micro-structure 0.035051 0.035051 0.035051 0.035051
E-reduced (Nemat-Nasser/Pre-strain) 0.029773 0.024452 0.019049 0.013487
E-reduced (Nemat-Nasser/Pre-stress) 0.030477 0.026959 0.02417 0.021905
E-reduced (Damage-66.5,63.59.5,56) 0.033297 0.031545 0.029793 0.028041
Multi-scale analysis (Taylor) 0.033341 0.031597 0.029844 0.028096
Multi-scale analysis (Linear) 0.030838 0.027276 0.02434 0.021812
Multi-scale analysis (Periodic) 0.030789 0.027125 0.024087 0.021468
Multi-scale analysis (Traction) 0.030165 0.024862 0.019756 0.015109

Macro-structure Type-3

Reactions for applied Displacement
Micro-structure 

Type-1 
(5% hole)

Micro-structure 
Type-2 

(10% hole)

Micro-structure 
Type-3 

(15% hole)

Micro-structure 
Type-4 

(20% hole)
Single-scale analysis-Filled micro-structure 0.034032 0.034032 0.034032 0.034032
E-reduced (Nemat-Nasser/Pre-strain) 0.028909 0.023743 0.018497 0.013092
E-reduced (Nemat-Nasser/Pre-stress) 0.029592 0.026179 0.02347 0.02127
E-reduced (Damage-66.5,63,59.5,56) 0.03233 0.03063 0.028928 0.027225
Multi-scale analysis (Taylor) 0.032373 0.030679 0.028977 0.02728
Multi-scale analysis (Linear) 0.029942 0.026482 0.023628 0.021173
Multi-scale analysis (Periodic) 0.029892 0.026327 0.023367 0.02081
Multi-scale analysis (Traction) 0.029293 0.024146 0.019189 0.014675

Macro-structure Type-4

Reactions for applied Displacement
Micro-structure 

Type-1 
(5% hole)

Micro-structure 
Type-2 

(10% hole)

Micro-structure 
Type-3 

(15% hole)

Micro-structure 
Type-4 

(20% hole)
Single-scale analysis-Filled micro-structure 0.033775 0.033775 0.033775 0.033775
E-reduced (Nemat-Nasser/Pre-strain) 0.028693 0.023564 0.018356 0.012992
E-reduced (Nemat-Nasser/Pre-stress) 0.02937 0.025981 0.023294 0.021109
E-reduced (Damage-66.5,63,59.5,56) 0.032086 0.030396 0.028709 0.027019
Multi-scale analysis (Taylor) 0.032129 0.030447 0.028757 0.027073
Multi-scale analysis (Linear) 0.029716 0.02628 0.02345 0.021011
Multi-scale analysis (Periodic) 0.029664 0.026125 0.023184 0.020643
Multi-scale analysis (Traction) 0.029072 0.023964 0.019044 0.014564

Table 11.2: Nodal reactions obtained from the elastic analysis of the imposed dis­
placement (micro-cavity model).
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In the second elastic test we considered the second group of micro-structures 
(micro-inclusions). Same as the previous test on the BVP, the analyses were restricted 
to the elastic range. So far, by using the new effective material properties, which are 
obtained from the cited theories in section 5.3 for micro-inclusions, we ran similar 
example as a single-scale model. In this test we focused on the micro-structures with 
micro inclusions for which the damage theory is not applicable. In fact in this test 
we compared the numerical results, which are obtained from the multi-scale analysis 
with two analytical solutions, which are based on the macro-stress and macro-strain 
prescribed.

Table 11.3 contains the results of seven different types of elastic behaviour of 
perforated plate; the multi-scale behaviour of specimen under the Taylor assumption, 
the linear displacement boundary assumption, the periodic boundary displacement 
fluctuations assumption, and the uniform boundary traction assumption and micro­
inclusion volume fraction theory under two macro-stress and macro-strain prescribed 
assumptions. In addition the overall behaviour of the perforated plate has been 
analysed before reinforcement with inclusion. Therefore the effect of the inclusion 
at micro-level for the reinforced composites has been considered with respect to the 
homogeneous model.



Chapter 11: Boundary value problem examples 199

Macro-structure Type-1

Reactions for applied Displacement
Micro-structure 

Type-1 
(5% inclusion)

Micro-structure 
Type-2 

(10% inclusion)

Micro-structure 
iype-3 

(15% inclusion)

Micro-structure 
Type-4 

(20% inclusion)
Single-scale analysis-Filled micro-structure 0.035943 0.035943 0.035943 0.035943
E-reduced (Nemat-Nasser/Pre-strain) 0.037501 0.03906 0.040617 0.042173
E-reduced (Nemat-Nasser/Pre-stress) 0.037573 0.03936 0.041325 0.043496
Multi-scale analysis (Taylor) 0.03949 0.043098 0.044321 0.04723
Multi-scale analysis (Linear) 0.037555 0.039311 0.041219 0.043266
Multi-scale analysis (Periodic) 0.037549 0.039289 0.041174 0.043192
Multi-scale analysis (Traction) 0.037498 0.039095 0.040756 0.042487

Macro-structure Type-2

Reactions for applied Displacement
Micro-structuie 

Type-1 
(5% inclusion)

Micro-structure 
Type-2 

(10% inclusion)

Micro-structure 
Type-3 

(15% inclusion)

Micro-structure 
Type-4 

(20% inclusion)

Single-scale analysis-Filled micro-structure 0.035051 0.035051 0.035051 0.035051
E-reduced (Nemat-Nasser/Pre-strain) 0.036573 0.038094 0.039615 0.041133
E-reduced (Nemat-Nasser/Pre-stress) 0.036643 0.038387 0.040306 0.042427
Multi-scale analysis (Taylor) 0.038515 0.042041 0.04557 0.049081
Multi-scale analysis (Linear) 0.036625 0.038339 0.040202 0.042198
Multi-scale analysis (Periodic) 0.036618 0.038318 0.040157 0.042127
Multi-scale analysis (Traction) 0.036569 0.03813 0.039752 0.041443

Macro-structure Type-3

Reactions for applied Displacement
Micro-structure 

Type-1 
(5% inclusion)

Micro-structure 
Type-2 

(10% inclusion)

Micro-structure 
Type-3 

(15% inclusion)

Micro-structure 
Type-4 

(20% inclusion)

Single-scale analysis-Filled micro-structure 0.034032 0.034032 0.034032 0.034032

E-reduced (Nemat-Nasser/Pre-strain) 0.035512 0.036988 0.038465 0.039939
E-reduced (Nemat-Nasser/Pre-stress) 0.035578 0.037273 0.039137 0.041195

Multi-scale analysis (Taylor) 0.037397 0.040821 0.044249 0.04766

Multi-scale analysis (Linear) 0.03556 0.037225 0.039033 0.040972

Multi-scale analysis (Periodic) 0.035555 0.037204 0.03899 0.0409
Multi-scale analysis (Traction) 0.035507 . 0.037024 0.038599 0.040242

Macro-structure Type-4

Reactions for applied Displacement
Micro-structure 

Type-1 
(5% inclusion)

Micro-structure 
Type-2 

(10% inclusion)

Micro-structure 
Type-3 

(15% inclusion)

Micro-structure 
iype-4 

(20% inclusion)

Single-scale analysis-Filled micro-structure 0.033775 0.033775 0.033775 0.033775
E-reduced (Nemat-Nasser/Pre-strain) 0.035242 0.036709 0.038174 0.039635
E-reduced (Nemat-Nasser/Pre-stress) 0.03531 0.036993 0.03884 0.040884
Multi-scale analysis (Taylor) 0.037115 0.040511 0.043915 0.047298
Multi-scale analysis (Linear) 0.035292 0.036942 0.038739 0.040662

Multi-scale analysis (Periodic) 0.035285 0.036922 0.038694 0.04059
Multi-scale analysis (Traction) 0.035237 0.036743 0.038307 0.039937

Table 11.3: Nodal reactions obtained from the elastic analysis of the imposed dis­
placement (micro-inclusion model).
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As expected, increasing the micro-inclusion volume fraction makes the macro­
structures stiffer (see Table 11.3). Moreover, it may be concluded that a dilute distri­
bution of micro-inclusions which has been represented in [1] under the macro-stress 
and macro-strain prescribed assumptions, gives a good estimate respectively, for the 
periodic boundary displacement fluctuations assumption and the uniform boundary 
traction assumption at the multi-scale analyses.

Another point to mention is the rate of convergence with respect to the size 
of the macro mesh models. Figure 11.6, shows the rate of convergence for total 
reactions under four boundary assumptions at the multi-scale analysis with respect 
to increasing the number of elements in the macro-structural meshes for one type 
of micro-structures. Vertical axes show the total reactions along global, Y, axis and 
horizontal axes show increasing the number of the macro-structures’ meshes. Figure 
11.6, is for micro cavity model type-3.
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Figure 11.6: Rate of convergence with respect to increasing the number of elements at 
macro-structure.
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Finally the im portant observation made in the elastic part of the test for micro­

structures with cavities is the CPU time for analysis. In general, multi-scales analyses 

are very time-consuming. This point has been illustrated in Figure 11.7, for macro­

structure type-3. In this test we analyzed the same specimen as a multi-scale model 

in elastic zone for four different boundary assumptions by using all types of micro­

structures with cavities. Figure 11.7 shows the highest analysis time for the uniform 

boundary traction assumption at micro-level. The reason for this observation may be 

expressed by imposing the minimum kinematical constraint on the RVE and difficulty 

in obtaining the converged solution for the multi-scale problem.

C om putational time for single and tw o-scale analysis 
(M acro-structure type-3)

□  Traction ■ Period ic

□  Linear □  Taylor

Traction
Periodic J

Linear

Figure 11.7: Computational time for elastic multi-scale analysis.

11.2.2 E lasto-p lastic tests for perforated plate

In the second part of our numerical tests, we analyzed the perforated plate under 

the multi-scale assumption by defining the elasto-plastic von Mises material model 

with isotropic hardening at micro-level. The results are obtained under different 

boundary assumptions.
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To validate and check the obtained results from the multi-scale analysis, we re­
ferred to the relevant papers. The effect of the different boundary conditions over the 
RVE in the multi-scale analysis has been presented by Kaczmarczyk [100]. Moreover, 
the homogenised elasto-plastic curves for the multi-phase materials have been demon­
strated by [23,24,27]. The effect of the multi-scale analysis on the macro-to-micro 
transition for the elasto-visco-plastic material models under the periodic boundary 
displacement fluctuations condition has been demonstrated by Kouznetsova [59]. The 
Voroni cell finite element method has been used based on the periodic boundary 
displacement fluctuations condition by Ghosh et al [90] to analyse the multi-phase 
material models.

Firstly we consider the porous material models. For this example, a perforated 
plate has been considered with the same geometry as defined in section 11.2. The 
finite element mesh which has been used in this model is quadrilateral 8-noded element 
with 4 Gauss points, at both macro- and micro-levels.

Figure 11.8, shows the Finite Element meshes used for this example. Because of 
time consideration in multi-scale analysis, a coarse mesh has been selected at macro­
level (24 quadrilateral 8-noded elements and 89 nodes) while, at micro-level, relatively, 
fine mesh has been defined (350 quadrilateral 8-noded elements and 1158 nodes).

Micro-structure mesh modelMacro-structure mesh model

Figure 11.8: Finite element mesh at macro- and micro-level.
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Figure 11.9 shows the behaviour predicted under different boundary conditions 

a t micro-level. The vertical axis shows to tal nodal reactions while, the horizontal 

axis presents the applied displacement in Y  direction. Different boundary conditions 

have been implemented at micro-level such as: Taylor assumption, linear displace­

ment boundary condition, periodic boundary displacement fluctuations condition and 

uniform boundary traction assumption. Figure 11.9 illustrates the variety of the ho­

mogenised responses from the perforated plate.
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Figure 11.9: Plastic behaviour for multi-scale analysis under two boundary assumptions. 
Micro-structures with micro-cavities.

Figure 11.9 shows tha t, actual homogenised behaviour for the perforated plate has 

been located between the results obtained from the Taylor assumption (as an upper 

limit) and the uniform boundary traction assumption (as a lower limit). In the next 

sections we will show th a t between the linear displacement boundary condition and 

the periodic boundary displacement fluctuations condition, the homogenised behav­

iour of the heterogeneous m aterial models under the periodic boundary displacement 

fluctuations condition gives the closest behaviour with respect to the numerical single­

scale analysis and experimental results.

For comparing the homogenised plastic behaviour of the perforated plate under
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different boundary conditions, the obtained results from the single-scale analysis have 

been plotted against the multi-scale analysis, (see Figure 11.10).

As showed in section 5.2.1, the void volume fraction theory, which is represented 

in [1], is only valid for the linear elastic m aterial models. To have an estimation in case 

of replacing the elastic m aterial properties with the obtained analytical overall elastic 

properties from the void volume theory, the homogenised elasto-plastic behaviour 

of the perforated plate with reduced elastic m aterial properties but with the same 

yielding condition (see equation 1 1 .1 ) have been plotted in the same figure.

Figure 11.10 shows tha t, by changing the material type for the perforated plate 

from the homogeneous to the porous media (heterogeneous m aterial model), the over­

all behaviour of the plate, shows a decrease in stiffness with increase of the percentage 

of the cavity at micro-level. Moreover, by prescribing different boundary conditions 

over the RVE the homogenised behaviour of the plate varies from the stiffest behav­

iour (obtained from the Taylor assumption) to the softest behaviour (obtained from 

the uniform boundary traction) for the homogenised behaviour of the heterogeneous 

material.

—•— Taylor assumption 

—■— Linear assumption 

—A— Periodic assumption 

—x— Traction assumption 

—*— Homogeneous material

Nemat-Nasser (macro, strain)
1 1---
0.0125 0.025 0.0375

1 1---
0.0625 0.075

Applied-Displacement

Figure 11.10: Plastic behaviour for different assumptions. Micro-structures with micro­
cavities.
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In the following, the elasto-plastic test with micro-inclusion has been considered. 

The multi-scale analysis format has the same procedure as the elasto-plastic test 

for the micro-structure with micro-cavity. We analyzed the perforated plate under 

the multi-scale assumption by defining the elasto-plastic von Mises materials with 

isotropic hardening for m atrix and linear elastic m aterial for micro-inclusion. The 

material properties at both levels are the same as the defined m aterial properties for 

the m acro-structures and the micro-structures with inclusion (see section 1 1 .2 ).

Figure 1 1 .1 1 , is a schematic representation for the finite element mesh, quadrilat­

eral 8 -noded element with 4 Gauss points, in two scales. Because of time considera­

tion in multi-scale analysis, coarse mesh has been selected for m acro-structure while, 

at micro-level, relatively fine mesh has been defined. The number of the elements 

at m acro-structure are: 24 quadrilateral 8 -noded elements with 89 nodes while, the 

number of the elements a t m icro-structure are: 418 quadrilateral 8 -noded elements 

and 1335 nodes.

Micro-structure mesh modelMacro-structure mesh model

Figure 11.11: Schematic representation of the finite element mesh at macro- and micro­
level.
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The results have been obtained under four different boundary conditions at micro­

level: the Taylor assumption, the linear displacement boundary condition, the peri­

odic boundary displacement fluctuations condition and the uniform boundary traction 

assumption in context of plane-stress.

Figure 11.12, shows the homogenised m aterial behaviour for the multi-scale analy­

sis in which, the vertical axis shows to tal nodal reactions and the horizontal axis 

presents the applied displacement from top of the plate. Different curves are the 

representative of different assumptions over the RVE.

From Figures 11.10 and 11.12, it can be seen tha t, the elastic material properties 

at micro-inclusion, dominate the overall behaviour of the cell. As a result, the overall 

reactions on the boundary nodes at m acro-structure show higher values in comparison 

with the obtained reactions from the multi-scale analysis for the macro-structure with 

micro-cavity cell model.
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Figure 11.12: Plastic behaviour for multi-scale analysis under four boundary assumptions. 
Micro-structures with micro-inclusions.

For comparing the homogenised m aterial behaviour obtained from multi-scale 

analysis with the single-scale analysis, the obtained results from single-scale analysis 

have been plotted against the multi-scale analysis in Figure 11.13. The analytical solu­
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tion for a dilute distribution of micro-inclusions theory presented by Nemat-Nasser [1 ] 

has been used to modified and replaced the elastic material properties for the single­

scale analysis. Although the theory presented by Nemat-Nasser is valid for the linear 

elastic m aterial models, the elasto-plastic behaviour of the modified material models 

has been plotted in the same figure. Figure 11.13, illustrates five different curves in 

the elasto-plastic zone. The axes are the reactions against applied displacement.
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Figure 11.13: Homogenised material behaviour for different assumptions. Micro-structures 
with micro-inclusions.

As can be seen from Figure 11.13, the obtained overall responses from the multi­

scale analysis for an RVE with micro-inclusion, follow the same order as the material 

model with cavity. The stiffest behaviour obtained from the Taylor assumption and 

the softest response obtainied from the uniform boundary traction assumption. The 

curve obtained from the reduced material properties for the single-scale analysis, 

based on the Nemat-Nasser presented theory, shows stiffer behaviour with respect to 

the linear displacement boundary assumption but after the yielding point, this curve 

converges to the periodic fluctuations displacement boundary assumption.
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Computational time is the most im portant factor in elasto-plastic multi-scale 

analysis. The estim ated com putational times for the multi-scale and the single-scale 

tests have been illustrated in Figure 11.14. The multi-scale tests have been performed 

with the micro-cavity model under: the Taylor assumption, the linear displacement 

boundary condition, the periodic boundary displacement fluctuations condition and 

the uniform boundary traction assumption. The estim ated analysis time for the 

single-scale model has been obtained from the proposed theory by Nemat-Nasser and 

based on the macro-prescribed strain assumption. The estim ated com putational times 

for the multi-scale tests (macro-structure with micro-cavity) have been illustrated in 

Table 11.4.

Model Required Time (Hour)
Single-scale 0.022538

Linear assumption (Multi-scale) 35
Periodic assumption (Multi-scale) 86
Traction assumption (Multi-scale) 119

Table 11.4: Computational time for multi-scale model with micro-cavity.

120

1 0 0 -

8 0 -
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M ulti-scale M ulti-scale M ulti-scale M ulti-scale S in g le -sca le
T aylor Linear Periodic Traction

assu m p tion  assu m p tion  assu m p tion  assu m p tion

Figure 11.14: Computational time for elasto-plastic multi-scale analysis - macro-structure 
with micro-cavity model.
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11.3 C om parison  betw een  m ulti-scale and  single­

scale analysis

Validity of the  hom ogenised behaviour of the  m ulti-phase m aterial models is con­

sidered in th is chapter. In order to  do this, we com pared the  m ulti-scale analysis w ith 

the  single-scale analysis. For the  m ulti-scale model, a hom ogeneous perforated  strip  

has been considered, sam e as the  model in section 11.2, for the  m acro-structure. For 

the  single-scale F E  analysis, a perforated  p late  has been defined as a  heterogeneous 

structu re . Two types of elem ent have been used for the  F E  mesh; (i) linear 3-noded 

triangle elem ent w ith one Gauss point and (ii) 4-noded quadrilatera l elem ent w ith 4 

Gauss points (see F igure 11.15).

The m acro-structu re  mesh for single-scale analysis has been generated w ith 18527 

linear triangle elem ents and 10240 nodes. T he second m acro-m esh model has been 

generated w ith 11216 4-node quadrilateral elem ents and 12147 nodes.

a) Triangle element b) 4-node quadrilateral element

Figure 11.15: Macro-structures with different types of element for single-scale analysis.
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For the multi-scale FE analysis we defined a perforated plate as a macroscopic 
homogeneous structure and at micro-level we defined a unit cell with side length 
equal to 1 mm  and void volume fraction equal to 50% of the RVE. For the multi­
scale alalysis and because of time and memory consideration, we used linear 3-noded 
triangle element for both macro and micro-structures models (see Figure 11.16). The 
number of elements and nodes for macro-structure are 25 and 21 respectively, while, 
at micro-structure we generated the FE mesh for the unit cell with 603 elements and 
352 nodes.

CSicnKH

M a cro -stru ctu re  M icro -stru ctu re

Figure 11.16: Macro-mesh and micro-mesh for multi-scale analysis.

The single-scale analysis is performed for the applied displacement from top of 
the strip by the FEM software ELFEN. Figure 11.17 shows the reactions along Y  
direction against the applied displacements from top.

The overall results obtained from the multi-scale analysis have been considered un­
der four different conditions at micro-level; (i) the Taylor assumption, (ii) the linear 
displacement boundary condition, (in) the periodic boundary displacement fluctu­
ations condition and (iv) the uniform boundary traction assumption. The overall 
responses obtained from different boundary conditions over the unit cell have been 
illustrated in Figure 11.17.
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Figure 11.17: Reaction along Y  direction against the applied displacement.

From Figure 11.17 it can be seen that, the obtained results form the single-scale 

analysis for the both models (linear triangle element, and 4-noded quadrilateral ele­

ment) show the similar behaviour with respect to each other. On the other hand, the 

plotted graphs from the multi-scale analysis show different behaviour under different 

boundary conditions. The Taylor assumption shows stiffer behaviour in compari­

son with other boundary assumptions and it can be assumed as an upper bound for 

the homogenised behaviour of the perforated plate. Between the linear displacement 

boundary condition and the periodic boundary displacement fluctuations condition 

it is clear from Figure 11.17 tha t, the periodic boundary displacement fluctuations 

condition shows closer behaviour to the single-scale analysis curves. Finally, the ob­

tained results from the uniform boundary traction present the lower bound for the 

homogenised behaviour of the perforated plate.

Figure 11.18, shows the evolution of the effective plastic strain at single-scale 

analysis.
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Figure 11.18: Effective plastic strain contour plot at last converged stage.

11.4 C onclusion

In this chapter a boundary value problem consisting of the stretching of a perfo­

rated plate has been discussed in detail. Different numerical simulations have been 

performed in the context of multi-scale analysis. For these tests, four different macro­

structures were defined ranging from coarse to dense meshes. For each Gauss point at 

macro-level, four types of micro-structures were defined. The micro-structures were 

categorized based on the different percentage of the micro-cavities and the unit cell 

with different size of the micro-inclusions from 5% to 20% of the volume of the cell.

Firstly, the multi-scale analysis was performed for the four different boundary con­

ditions at micro-level in the elastic zone. For comparison between multi-scale analysis 

and single-scale analysis, the single-scale tests were performed based on the reduced 

material properties from the theory presented by Nemat-Nasser [1] and damage theory 

for the elastic m aterial model. The obtained results showed th a t the homogenised 

response of the perforated plate depends on the prescribed boundary condition at 

micro-level and the size of the cavity/inclusion at RVE.

The rate of convergence was another point which was considered in this chapter. 

The number of the elements in mesh model made a direct effect on the accuracy of 

the results. This fact and the effect of different boundary assumptions at micro-level



Chapter 11: Boundary value problem examples 214

were illustrated in separate graphs. In general, increasing in number of the elements 
at macro- and micro-structures cause the increase in accuracy of the homogenised 
results.

The elasto-plastic test was another part of this chapter. In the first test we focused 
on porous micro-structure modelled as a von Mises elasto-plastic material. In the 
following test we considered a heterogeneous micro-structure with micro-inclusions 
modelled as an elastic material and the matrix as a von Mises elasto-plastic materials 
with isotropic hardening.

The computational time estimation was considered. The multi-scale analysis is 
generally time consumer. If we want to simulate the whole attributes of micro­
structures, apart of memory of computers, time is one of the main factors in analysis 
which should be considered during the procedure.

Finally, we checked the validity of the multi-scale analysis by comparing a single­
scale model analysis with two-scale material model analysis. We showed that the 
periodic boundary displacement fluctuations assumption shows closer overall behav­
iour with respect to the single-scale analysis for a periodic macro-structure.
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Conclusion

12.1 Summary

In conclusion, the objective of this research was the computational implementation 
and assessment of multi-scale constitutive modelling strategies based on the volume 
averaging of the strain and stress tensors over a representative volume element (RVE) 
under infinitesimal strains assumption.

In the computational homogenisation procedure, definition of RVE, micro equilib­
rium, formulation of two-scale boundary value problem, micro-to-macro transition, 
and the Hill-Mandel principle were explained. In addition, by defining a suitable 
functional space of virtual displacements of the RVE, four classes of multi-scale con­
stitutive models were considered, corresponding to: the Taylor, the linear bound­
ary displacement, the periodic boundary displacement fluctuations and the uniform 
boundary traction assumptions. The corresponding finite element formulation was 
described in detail including the derivation of the homogenised tangent moduli which 
are crucial for the use of the Newton-Raphson method in the iterative solution of 
non-linear macro-scale problems.

A recursive hierarchical structure was developed for the multi-scale code. The 
advantage of implementation of this structure is the main equilibrium procedure calls 
itself when, at a Gauss point on the macroscopic level, computational homogenisation 
is used to describe the material behaviour.

A comprehensive set of numerical examples was presented. Application of the 
multi-scale methodology to materials with linear elastic microscopic constituents was 
considered first. Existing analytical methods were used to benchmark the numerical

215
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results. The effect of the distribution of cavities on the homogenised elasto-plastic 
material properties was studied. It was shown that increasing in density of pores 
cause the overall properties of the RVE under the three different boundary condi­
tions converge towards each other. In this case, unlike the single cavity model all 
boundary conditions give similar distribution of the plastic strain. The effect of pores 
on the elasto-plastic response of porous media was studied. It was shown that the 
shape of the cavity at micro-level and the prescribed assumption over the RVE are 
two important factors which affect the prediction of the overall yield surface of the 
heterogeneous material. In addition, anisotropic homogenised behaviour was shown 
due to randomness distribution of the cavities in the RVE. The effect of the fibre 
orientation at micro-cell and anisotropy of the RVE, with linear elastic constituents, 
on the homogenised material properties was discussed. The obtained overall material 
properties from the mixture rule were compared with the obtained homogenised mate­
rial properties from the computational homogenisation analysis. Finally, a materially 
non-linear fully coupled two-scale boundary value problem was solved numerically, 
demonstrating the suitability of the developed framework to large-scale simulations.

12.2 Future directions

It is obvious that the computational homogenisation still needs to be further 
explored to simulate the more realistically behaviour of multi-phase materials. Ac­
cording to our research the presented code and concept of multi-scale material model 
should be developed in many aspects, which are:

1. To simulate an accurate behaviour of heterogeneous materials, implementation 
of 3D elements is required in many situations.

2. To capture size effects on the homogenised material properties, implementation 
of the second order computational homogenisation is essential.

3. Different types of material models have been defined in the multi-scale code, 
including, the linear elastic, von Mises elastic perfectly plastic and von Mises 
elasto-plastic with isotropic hardening, mixed hardening and visco-plastic ma­
terial model. The structure of the code has been defined in a manner that new 
material models can be easily implemented. To this end, new material routines
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should be added to the relevant sub-functions for estimating tangent modulus 
and stress updating routines.

4. Different behaviour of the material models at micro-cell is another point which 
needs to be considered. Among them, cohesion between inclusion and ma­
trix, micro-cracking, fatigue, pressurized fluid embedded by matrix, free surface 
interaction and many more material related behaviour are needed to be imple­
mented, developed and studied.

5. Finally, mainly due to ease of implementation and debugging the MATLAB 
language has been used to develop the code. This language is not suitable 
for large-scale simulations or parallel analysis as it is usually extremely slow; 
therefore, transferring this code to other powerful platform such as, C or C++ 
is an important step.

In general, the overall behaviour of the heterogeneous materials are affected by 
many factors at micro-level, such as: the shape, spatial distribution and mechanical 
properties of the micro-structure. Although from the computational point of view, 
the multi-scale analysis is very expensive in terms of time and memory, the lack of 
accurate constitutive material models for more complex materials such as biological 
materials i.e. human tissue, justifies the performance of the multi-scale analysis to 
determine the overall response of this group of materials. This is the one of clear 
potential application of the methodology studied in this thesis.

To sum up, This research has provided some insight into the behaviour of com­
putational homogenisation methods. The computational homogenisation is a very 
active research field at present and many developments are underway, especially in 
context of implementation of concurrent computer analysis in multi-scale models.
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