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Summary

In this thesis, families of flux-continuous, locally conservative, finite-volume schemes 

are presented for solving the general geometry-permeability tensor pressure equation 

on structured and unstructured grids in two and three dimensions. The families of 

flux-continuous schemes have also been referred to in the literature as Multi-point 

Flux Approximation or MPFA schemes. The schemes are applicable to the general 

tensor pressure equation with discontinuous coefficients and remove the 0(1) errors 

introduced by standard reservoir simulation (two-point flux) schemes when applied 

to full, anisotropic and asymmetric permeability tensor flow approximation [1, 2, 3]. 

Such tensors may arise when fine scale permeability distributions are upscaled to 

obtain gridblock-scale permeability distributions.

A family of schemes is quantified by a quadrature parametrization where the 

position of continuity defines the quadrature and hence the family. In this work 

the family of flux-continuous schemes is presented in Physical space and Transform 

space, and has been tested for a range of quadrature points. A series of numerical 

test cases are presented and a numerical convergence study is conducted for the 

family of schemes using different types of two and three dimensional structured and 

unstructured grids. Specific quadrature points have been observed to yield improved 

convergence for the family of flux-continuous schemes on structured and unstructured 

grids in two and three dimensions.

This work also presents a complete extension of the family of control-volume dis­

tributed (CVD) multi-point flux approximation (MPFA) flux-continuous schemes for 

general three dimensional grids comprising of different element types e.g., hexahedra, 

tetrahedra, prism and pyramid. Discretization principles are presented for each ele­

ment. The pyramid element is shown to be a special case with unique construction 

of the continuity conditions. The Darcy flux approximations are applied to a range



of test cases that verify consistency of the schemes. Convergence tests of the three- 

dimensional families of schemes are presented, with emphasis on use of quadrature 

parameterization.

A new family of locally conservative cell-centred flux-continuous schemes is pre­

sented for quadrilateral grids. The new family is defined by introducing a piecewise 

constant general geometry-permeability tensor approximation over the subcells of the 

control-volumes and ensures that the local discrete general-tensor is elliptic. A fam­

ily of control-volume distributed subcell flux-continuous schemes is defined in terms 

of a quadrature parametrization, where the local position of flux continuity defines 

the quadrature point and each particular scheme. The subcell tensor approximation 

ensures that a symmetric positive definite discretization matrix is obtained for the 

base member of the formulation. The physical-space scheme has been shown to be 

non-symmetric for general quadrilateral cells [4]. A numerical convergence study of 

the schemes shows that the subcell tensor approximation reduces solution errors when 

compared to the cell-wise tensor scheme, and the subcell tensor approximation using 

the control-volume face geometry yields the best results. A particular quadrature 

point is found to improve numerical convergence of the subcell schemes for the cases 

tested [5].

When applying the family of flux-continuous schemes to strongly anisotropic het­

erogeneous media they can fail to satisfy a maximum principle (as with other FEM 

and finite-volume methods) and result in loss of solution monotonicity for high (full- 

tensor) anisotropy ratios causing spurious oscillations in the numerical pressure solu­

tion. In this work methods for obtaining optimal discretization with minimal spurious 

oscillations are investigated and the use of flux-splitting techniques [6] is extended to 

solve the discrete system for the problems with high anisotropy ratios to improve 

solution monotonicity [7, 8]. Flux-splitting schemes are presented together with a 

series of numerical results for test-cases with strong anisotropy ratios. In all cases the 

resulting numerical pressure solutions are free of spurious oscillations. Monotonicity



issues are also discussed and tests performed confirm optimal monotonicity of the 

schemes as determined by an M-matrix analysis [2, 3, 9, 10, 11].

This thesis also presents a double (#i, (^-fam ily of flux continuous schemes. Where, 

the double qi, ^-fam ily is quantified by choosing a different quadrature parametriza­

tion or quadrature q on different faces of the sub-cell control-volume leading to a 

variable support scheme [10]. M-matrix analysis for double families [10] is then used 

to show a key result for general nine-point schemes, which exposes the limits on the 

schemes for ensuring solution monotonicity. The analysis is used to determine the 

upper limits for obtaining monotonic solutions and to aid the design of schemes that 

minimize the occurrence of spurious oscillations in the discrete pressure field.

Finally, the study of a locally conservative family of schemes is applied to upscal­

ing. Equivalent upscaled permeability is used as a measure of performance of the 

family of schemes [12]. A series of upscaling examples is presented and convergence 

tests are performed for different upscaling techniques. Again the benefits of using the 

quadrature parametrization q are highlighted.
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Chapter 1 

Introduction and Background

1.1 W hat is Reservoir Simulation ?

Reservoir simulation is that process whereby the behavior of a hydrocarbon reser­

voir is inferred from the behavior of a mathematical model which describes it [13, 14]. 

The degree to which the model duplicates the actual reservoir is a function primar­

ily of the input data used, and secondly the adequacy of the model to simulate the 

physical system.

1.1.1 A  B rief H istorical O verview

For many decades after the 1859, recognized as the beginning of our domestic oil 

industry, history reveals tha t finding and producing oil was conducted on a basis of 

feast or famine. The technologist was absent from the scene and it was not until the 

1930s that people in the oil industry started looking at reservoir mechanics in any 

kind of a scientific way.

Reservoir simulators were first built as diagnostic tools for understanding reser­

voirs tha t yielded surprising or odd flow characteristics over years of production. The 

earliest simulators were physical models, such as sandboxes with clear glass sides for
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viewing fluid flow, and analog devices that modeled fluid flow with electrical cur­

rent flow [15]. These models, first documented in the 1930s, were constructed by 

researchers in an attem pt to understand why water starts to be produced with oil 

and why the produced water-oil ratio increases with time [16, 17].

Some things haven’t changed since the 1930s. Today’s reservoir simulator gener­

ally solve the same equation studied 70 years ago-Material balance and Darcy’s Law 

[14, 18, 19]. But other aspects of simulation have changed dramatically. W ith the 

advent of digital computers in the 1960s, reservoir modeling advanced from tanks 

filled with sand or electrolyte to numerical simulators. In numerical simulators, the 

reservoir is represented by a series of interconnected blocks, and the flow between the 

blocks' is solved numerically. In the early days of reservoir simulation, computers had 

limited speed and memory, limiting the number of blocks that could be used. This 

required simplification of the reservoir model and allowed simulation to proceed with 

relatively small amount of input data.

The current state of the art in reservoir simulation is directly related to high 

speed computers, robust and efficient numerical techniques. There is no other way in 

which complex numerical calculations necessary to describe multi-phase flow in porous 

media can be performed economically or even realistically. Increased computer power 

has enabled engineers to create bigger, more geologically realistic models requiring 

much greater data input. This demand has been met by the creating of increasingly 

complex and efficient simulation programs. Computational efficiency has reached a 

stage that allows powerful simulation to be run frequently. Numerical simulation has 

become a reservoir management tool for all stages in the life of a reservoir.

1.1.2 Reservoir Sim ulation and N um erical D iscretization

Petroleum reservoir simulation involves the use of numerical methods to obtain 

the solution of mass and /or energy conservation equations (in integral or partial 

differential form) governing fluid and /o r heat flow in petroleum reservoirs. Any such
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numerical procedure requires numerical discretization techniques. Hence, the Numer­

ical discretization techniques have always been an integral part of reservoir simulation. 

The need for accurate and realistic reservoir simulation has always driven the field of 

research and development of efficient and robust numerical discretization techniques 

for reservoir simulation. There exists a number of different numerical discretization 

approaches which are used in reservoir simulation. One such approach is the Finite 

volume method (FVM). The main subject of this thesis is the use of flux-continuous 

finite-volume numerical discretization techniques for the reservoir simulation pres­

sure equation. In this thesis, the finite volume formulation is used, to provide the 

general framework for the development of a number of novel and appealing schemes 

in the field of petroleum reservoir simulation. Most of the existing numerical reser­

voir simulators employ a pressure equation approximation that assumes a diagonal 

isotropic or anisotropic permeability tensor. A class of new schemes, which are called 

control-volume distributed multi-point flux approximations CVD(MPFA) are appli­

cable to general geometry with diagonal of full permeability tensors and have been 

shown to give excellent results with removal of 0(1) errors introduced by standard 

schemes when applied to problems involving general full tensors in the pressure equa­

tion [1, 2, 9, 20, 3, 21, 6, 4, 22, 23, 5, 24, 12, 7, 8, 25, 10].

1.1.3 R ecent D evelopm ents in R eservoir Sim ulation

Three basic problem areas have dominated much of the recent research in reservoir 

simulation.

First, the need for an effective model to describe the complex fluid and rock 

interactions tha t control recovery processes. Simulators are severely hampered by 

the lack of knowledge of reservoir properties, heterogeneities, and relevant length 

scales and of important mechanisms like diffusion, dispersion, and viscous instabilities. 

Russell and Wheeler [26] and Young [27] present excellent surveys of the influence 

of dispersion and attempts to incorporate it in present reservoir simulators. Since
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the mixing and velocity variations are influenced at all relevant length scales by the 

heterogeneous properties of reservoir, there is a need for volume averaging of terms like 

porosity and permeability. Recently, developments have been made in homogenization 

[28, 29], renormalization [30, 20], scaled averaging [31], upscaling [32, 33], multi-scale 

methods [34, 35, 36, 37], and statistical methods have also been explored to obtain 

effective permeability [38, 39]. A review of different upscaling techniques used in 

petroleum reservoir simulation is also presented in [40]. Also, simulators are now 

used as an experimental tool to develop methods to model the interrelations between 

localized and large scale media effects.

Next, the need to develop accurate discretization techniques that retain the im­

portant physical properties of the continuous models. Recently, a variety of new 

discretization techniques have been developed for both the pressure and transport 

equations. Discontinuous Galerkin (DG)[41, 42], Mixed finite elements (MFEM) and 

related methods [26, 43, 44, 45, 46, 47, 48, 49, 50], and finite volume methods (FVM) 

[2, 9, 3, 21, 4, 51, 52, 53, 54, 55, 56] are being used to yield accurate mass-conservative 

approximations to the pressure and Darcy velocity of the fluid. Eulerian-Lagrangian 

techniques [57, 58, 59] have also been developed that not only conserve mass but also 

take advantages of the computed flow of the fluids to accurately model the transport 

phenomena and simultaneously symmetrize the model equations. Adaptive local grid 

refinement in space and time [60], [61] can be controlled by A posteriori error esti­

mators. Then multi-grid or multilevel iterative techniques [62, 63] can be used to 

efficiently solve the discrete systems.

Finally, the need to develop efficient numerical solution algorithms that utilize 

the potential of the emerging computing architectures. Major potential advantages 

in computing lie in emerging parallel computer architectures and use of parallel com­

putation for Large-Scale Reservoir Simulation[64]. Techniques such as domain de­

composition e.g. [65], [66] tha t naturally split the big problem into smaller pieces 

to be addressed separately on distinct processors, which also allows modularized lo­
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cal grid refinement and can play a significant role in developing effective and robust 

simulation codes.

1.2 Scope of Work and Research Contribution

The work documented in this thesis constituted a number of developments in 

numerical discretization techniques for the subsurface reservoir simulation pressure 

equation. A study of existing numerical discretization techniques was carried out. The 

advantages and limitations of some of these formulations are discussed and analyzed 

in this work with the help of numerical tests.

The major objective of this thesis is to address the important aspects of the exist­

ing families of control-volume distributed multi-point flux CVD(MPFA) finite volume 

approximation schemes [2, 3, 4, 5] employed for the solution of porous media pressure 

equation. And to extend the formulation of the families of CVD-MPFA schemes to 

overcome some existing limitations. The main contributions of this research work can 

be summarized as follows:

(i) A detailed numerical error convergence study for Physical and Transform space 

formulation of the families of CVD(MPFA) schemes was carried out on different 

types of 2D and 3D structured and unstructured grids, with emphasis on quadra­

ture parametrization (where quadrature defines the point of flux-continuity and 

hence the family of scheme) [5, 12, 7, 25].

(ii) An extension of the family of CVD(MPFA) schemes in three dimensions is 

presented for different element types including hexahedra, tetrahedra, pyramid 

and prism, thereby providing flexibility in application of schemes for general 

geometry. Details of the formulation (in Physical Space) are documented and a 

series of cases are tested for numerical convergence [5, 12, 7, 8, 25].

(iii) Pressure field monotonicity issues are discussed for the families of CVD(MPFA)
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schemes and novel methods are proposed for obtaining monotonic solutions with 

use of flux-splitting and specific discretization techniques based on choice of 

quadrature parameterization[7, 8, 25, 10].

The research outputs during the entire course of study period were documented 

and a number of publications, as a result, originated or are forthcoming and are listed 

in the bibliography of this thesis.

1.3 Organization of the Thesis

The thesis is subdivided into ten chapters, including an introduction and conclu­

sion. The synopsis of each chapter is as follows:

Chapter 2 presents a brief review of previous work on flux-continuous finite vol­

ume numerical discretization schemes employed in petroleum reservoir simulation. 

Limitations of classical/standard five-point flux continuous finite volume schemes are 

discussed. The families of CVD(MPFA) schemes are introduced and recent advances 

for the family of CVD(MPFA) schemes are discussed.

The single and multi-phase flow mass conservation equations for fluid flow in 

porous media are presented in Chapter 3. Description of the problem to be solved 

with specified boundary conditions is also presented in this chapter.

Chapter 4 presents an overview of some of the existing numerical discretization 

techniques. Some of the methods mentioned include the finite difference method 

(FDM), the finite element method (FEM), the mixed finite element method (MFEM) 

and the finite volume method (FVM).

Chapter 5 is the largest chapter of this thesis, and is solely dedicated to the con­

struction, analysis and testing of the family of control-volume distributed multi-point 

flux approximation CVD(MPFA) flux-continuous finite volume schemes for numer­

ical discretization of elliptic pressure equation. Here, the discussion starts with es­

sential fundamentals of finite-volume schemes. An overview of standard five-point
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flux-continuous scheme is presented. Fundamentals of the family of schemes are pre­

sented with description of quadrature parametrization which essentially defines the 

family of schemes. Numerical formulation (Physical Space) of the scheme is presented 

on 2D structured and unstructured grids. Next, quadrature parametrization is pre­

sented in 3D and construction of the family of CVD-MPFA schemes is then presented 

for general 3D grids, for different element types including hexahedra, pyramid, prism 

and tetrahedra. The numerical flux calculation and global assembly of fluxes is pre­

sented for both 2D and 3D formulations. Finally, the chapter closes with a series of 

numerical convergence tests for 2D and 3D formulations of the schemes on different 

types of structured and unstructured grids.

Chapter 6 presents a new family of subcell-based, locally conservative cell-centred 

flux-continuous schemes, for quadrilateral grids [67]. A general geometry permeability 

tensor approximation is introduced that is piecewise-constant over the subcells of the 

control-volumes and ensures that the local discrete general tensor is elliptic. The 

subcell tensor approximation ensures that a symmetric positive definite discretization 

matrix is obtained for the base member of the formulation. Finally, a numerical 

convergence study is presented for a sub-cell based family of schemes. W ith the help 

of a numerical convergence study the subcell tensor approximation is compared to the 

cell-wise tensor scheme and the physical-space schemes. The numerical convergence 

comparison is then used to demonstrate the important benefits of using subcell tensor 

approximations with the control-volume face geometry.

Chapter 7 discusses pressure solution monotonicity issues relating to the family 

of CVD(MPFA) schemes in 2D and 3D for structured and unstructured formula­

tions. Numerical cases are tested to demonstrate monotonicity behavior of the family 

of schemes. Novel methods are proposed, backed with numerical examples, to ob­

tain monotonic solutions by combining flux-splitting techniques with CVD-MPFA 

schemes. Specific discretization issues are also discussed to obtain monotonicity pre­

serving families of schemes in 2D and 3D on both structured and unstructured grids.



Chapter 8 presents a new double-family of flux continuous schemes parameterized 

by quadratures (gi, g2). There, the double family is quantified by choosing a different 

quadrature parametrization or quadrature on different faces of the sub-cell control- 

volume leading to a variable support scheme. M-matrix analysis for double families 

presented in [10] is used to establish a key result for general nine-point schemes and 

to exposes the limits on the schemes for ensuring tha t solutions are monotonic. The 

analysis is also used to determine the upper limits for obtaining monotonic solutions 

and to aid the design of schemes that minimize the occurrence of spurious oscillations 

in the discrete pressure field.

In chapter 9 the locally conservative family of CVD-MPFA schemes is applied 

to permeability upscaling. Equivalent upscaled permeability is used as a measure 

of performance of the family of schemes. A series of test cases are presented of 

upscaling, using slices of permeability data from SPE10 data-set. And convergence 

tests are performed using the family of CVD-MPFA schemes for different upscaling 

techniques. Where, again, the benefits of using the family of CVD-MPFA schemes 

are highlighted.

Finally, chapter 10 summarizes the novel research contributions of this work and 

recommendations are made for continuation of work through future research.
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Chapter 2 

Previous Work

2.1 Introduction

In this chapter, some background work related to the topic of this thesis is de­

scribed. A brief overview of development of flux continuous schemes is presented 

in section 2.2. Flux-continuous finite volume discretization and the family of flux- 

continuous control-volume distributed (CVD) finite volume schemes are described 

very briefly in section 2.3. Numerical details of the methods, which are of direct 

importance to this work, are given later in Chapter 5. Finally, section 2.4 presents 

the recent advances for the family of flux-continuous finite volumes schemes outlining 

contribution made by work done in this thesis.

2.2 Flux-Continuous Finite-Volum e Schemes

Edwards and Rogers [1, 2] presented a family of flux continuous scheme applica­

ble to the general full tensor pressure equation to model fluid flow with quadrilateral 

type grids in 2D. These grids are nonorthogonal and use flux balance across the 

quadrilateral block boundaries by constraining the x  and y direction fluxes. Pres­

sure/Potential is constrained at specific points on the boundaries. Such potential
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and flux constraints are used to obtain transmissibility coefficients which reduce to 

harmonic average transmissibilities used in standard diagonal tensor reservoir simula­

tion. These schemes are equally applicable on either a cell vertex or a cell centred grid 

[9, 20, 3] and extension to general unstructured quadrilateral and triangular grids is 

presented in [4]. Verma and Aziz [52] presented numerical schemes for Voronoi grids 

having uniform properties inside the grid cell. This scheme uses flux constraints nor­

mal to the grid cell boundaries. This method can also be used with grids based on 

triangles(2D) and tetrahedra (3D) [68, 52].

Aavatsmark et al [51] presented a method on nonorthogonal, curvilinear grids 

for multiphase flow. Aavatsmark et al. [53] have presented a similar scheme which 

belongs to the family of schemes presented by Edwards and Rogers [1, 2] for discretiza­

tion on nonorthogonal quadrilateral grids for inhomogeneous and anisotropic media, 

while Aavatsmark et al [69, 54, 54] presented a discretization method on unstructured 

triangular grids for general media. This scheme is similar to that presented by Verma 

[52]. The flux continuous schemes are extended to mixed elements (grids of mixed 

cell type) in 2-D and 3-D [6, 4, 70, 71].

2.3 Flux-continuous Finite Volume D iscretization

Rapid variation in permeability is common in oil reservoirs where permeability 

coefficients can jump by several orders of magnitude. Continuity of normal flux and 

pressure at local physical interfaces between grid blocks with strong discontinuities 

in permeability are fundamental laws that must be built into the discrete approxi­

mation of the pressure equation. Finite volume methods are a class of discretization 

schemes that have proven highly successful in approximating the solution of a wide 

variety of conservation laws. The primary advantages of these methods are improved 

numerical robustness through discrete maximum (minimum) principles, applicability 

on very general unstructured grids, and the intrinsic local conservation properties of
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the resulting schemes.
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Figure 2.1: (a) Five-Point Stencil in 2D. (b)Nine-Point Stencil in 2D.

2.3.1 The Fam ily o f F lux-C ontinuous C ontrol-V olum e D is­

tributed  M ulti-Point F lux A pproxim ation (C V D -M PFA ) 

Schem es

Conventional reservoir simulation employs a standard five-point cell-centred sten­

cil in 2D (seven in 3-D) for approximating the discrete diagonal tensor pressure equa­

tion, figure 2.1(a). Continuity of flux and pressure is readily incorporated into the 

standard discretization by approximating the interface coefficients with a harmonic 

average of neighbouring grid block permeabilities. Unfortunately, for an arbitrary 

heterogeneous domain the assumption of a diagonal tensor is not always valid at the 

grid block scale.

In general a full tensor equation arises whenever the computational grid is non- 

aligned with the principal axes of the local tensor field. A full tensor can occur when 

representing cross bedding, modeling any anisotropic medium that is non-aligned with 

the computational grid [19], using non K-orthogonal [72, 73] or unstructured grids 

and when upscaling rock properties from fine scale diagonal tensor simulation to the
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grid block scale [33]. Consequently, standard five-point diagonal tensor simulator will 

suffer from an inconsistent 0(1) error in flux when applied to cases involving these 

major features. Accurate approximation of the full-tensor pressure equation requires 

nine-point support in two dimension (19 or 27 in 3-D), figure 2.1(b). The nine point 

formulation is possibly the most reliable method to counter grid-orientation effect, 

widen the simulator range of applicability to general non-orthogonal grids and full- 

tensors [74, 75, 76].

The derivation of local algebraic flux-continuity conditions for full tensor dis­

cretization operators has lead to efficient and robust locally conservative family of 

flux-continuous finite-volume schemes for determining the discrete pressure and ve­

locity fields in subsurface reservoirs [3, 4, 6] where they are called flux-continuous 

control-volume distributed (CVD) schemes. The schemes constructed were aimed at 

achieving improved accuracy and reduced grid orientation. Increased applicability to 

general curvilinear grids is also gained for both diagonal and full tensor equations. 

Flux-continuous schemes are also presented in [53, 54, 55, 56] (for the fundamental 

member of the above family i.e. q =  1 )where they are called multi-point flux ap­

proximation (MPFA) methods. Similar schemes of this type are also presented in 

[52, 77, 78]. All of the above schemes are applicable to the diagonal and full tensor 

pressure equation with generally discontinuous coefficients and remove the 0(1) er­

ror introduced by standard reservoir simulation schemes when applied to full tensor 

flow approximation while maintaining a single degree of freedom per control-volume. 

Other schemes that preserve flux continuity have also been developed, using the mixed 

method e.g. [26, 48, 49, 79, 80, 81], or more recently Discontinuous Galerkin (DG) 

formulations have been presented [41, 42], however these methods introduce further 

degrees of freedom for fluxes which increase the size of the global system matrix 

when compared to the family of flux-continuous finite volume method presented in 

this thesis.

The premise of the families of flux continuous schemes presented here rests on
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quadrature parametrization [5], where the quadrature point explicitly defines the 

position of imposed flux continuity. The local position of continuity defines the pa­

rameterized quadrature point and hence the whole family of flux-continuous schemes 

for a diagonal or full tensor pressure equation.

"i

=o

Figure 2.2: (a) The grid is orthogonal with gridlines aligned with the principal coor­
dinate axes, (b) The grid is a K-Orthogonal grids

2.4 R e c e n t A d v an ces  for T h e  F am ily  o f C V D -M P F A  

S chem es

The recent advances with regards to the family of CVD-MPFA schemes discretiza­

tion forms an integral part of the work presented in this thesis. The emphasis is on 

numerical pressure solution convergence, monotonicity and extension of the scheme 

to 3D. The convergence rates of the standard CVD-MPFA scheme has been dis­

cussed in [3, 82]. Improved convergence of the scheme with the use of quadrature 

parametrization for both 2D (structured and unstructured)and 3D formulation is 

noted in [5, 7, 25], and will be presented in the proceeding chapters of this thesis. 

Standard reservoir simulation uses two-point flux approximation or TPFA method. 

The TPFA approximation is only valid for K-orthogonal grids (figure 2.2) and hence 

has limited application. Whereas, the CVD(MPFA) schemes have extended reach
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with applicability on general geometry with full heterogeneity and anisotropy. But, 

on the application of these CVD(MPFA) schemes to strongly heterogeneous media 

with combination of certain grids can result in failure to satisfy a maximum prin­

ciple (as with other FEM and FVM) and results in loss of solution monotonicity 

[83, 7, 25, 84]. Efforts have been made to determine the limits of a monotonicity pre­

serving scheme [2, 3, 9, 4, 10, 11, 25, 83, 84]. Novel methods are proposed in this work 

to obtain monotonic solutions using CVD(MPFA) schemes by combining reduced sup­

port discretization techniques and flux-splitting techniques [7, 8, 10]. The family of 

flux-continuous schemes is also used for upscaling techniques [12]. The formulation 

of the family of schemes (in physical space) results in a discretization matrix which is 

non-symmetric in general case. A new family of sub-cell flux-continuous CVD(MPFA) 

schemes is presented in this thesis in an effort to obtain symmetric positive definite 

pressure discretization [24], Also, an extension of the Physical space CVD(MPFA) 

schemes to general 3D grids of any element type [25] is presented here allowing much 

greater flexibility in terms of gridding with regards to application of the scheme to 

general geometry.
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Chapter 3 

Flow Equations and Problem  

Description

3.1 Introduction

The purpose of this chapter is to introduce the principal equations governing 

the fluid flow in porous media, which are modelled throughout this thesis. Fluid 

flow in porous media is governed by the fundamental laws of conservation of mass, 

momentum and energy. A complete treatment of the dynamics and statics of the fluid 

flow in porous media is presented in [19]. Section 3.2 presents Darcy’s Law and the 

flow equations governing single and multi-phase flow. The definition of the problem 

to be modelled in this thesis is presented in section 3.3. Section 3.4 presents a brief 

discussion on different types of boundary conditions applied to solve porous media 

pressure equation.



3.2 Flow Equations

3.2.1 D arcy’s Law and Single P hase Flow

The movement of water, oil and natural gas through the subsurface, known as flow 

in a porous medium is a very complex phenomenon because of the involved scale and 

heterogeneity of the medium. Usually the velocity of the flow is so small (Re «  1) 

and the flow passages are so narrow that laminar flow may be assumed. Rigorous 

analysis of the flow is not possible because of complexity of the shape of the individual 

flow passages. Although, several theories have been formulated, credit is attributed 

to the French engineer Henry Darcy [18], who published his famous work on the 

public fountain of the French city of Dijon. In his work Darcy presented the result 

of his experiment on water flow through sand filters. He summarized his findings 

in the form of a mathematical relationship , in which he concluded that the rate of 

flow through a porous filter is inversely proportional to the length of the filter and 

proportional to the difference in pressure head across the medium, which is known 

as Darcy’s Law [19]. In its most primitive form (ID Single phase flow with gravity 

neglected), the relations is expressed as:

In this expression x  refers to the average direction of flow, v  and ^  represent re­

spective flow density or Darcy velocity and the gradient of pressure/hydraulic gradient 

[19]. The proportionality constant k is called as the permeability or conductivity of 

the medium. For flow in higher dimensions, the permeability will be spatially varying 

tensor K. When the gravity is included, Darcy’s law for single phase flow is expressed
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Here, /i is the viscosity, g is the gravitational constant and 2  is the spatial coor­

dinate in the upward direction. Darcy’s law only considers the average flow behav­

ior over a representative elementary volume (REV) of porous media that must be 

greater than several pores. This volume over which the flow is averaged is termed as 

a control-volume, figure 3.1. Using this control-volume approach, Darcy’s law essen­

tially bypasses both the microscopic level, at which we consider what happens to each 

fluid molecule, and the pore level, at which we consider the flow pattern within each 

pore and between pores. Observations of flow in porous media can then move to the 

macroscopic level at which only average phenomena over the control volume are con­

sidered. That is to say, Darcy’s law is a macroscopic law. Thus the property defined 

at a point in Darcy’s law represent an average property over a control-volume and 

the property at every point in space varies smoothly such that differential calculus 

applies.

r '

Figure 3.1: Primal grid (solid line), Control-volume Dual grid (dotted lines)

Continuity or mass conservation is another important law used in the development 

of the flow equations in porous media, i.e. For steady-state condition, continuity 

requires that the amount of fluid flowing into the control-volume must be equal to 

the amount flowing out. Therefore in integral form the mass conservation equation 

for single phase flow over the control-volume (figure 3.1) is written as:
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JQ J dci
Where v  (defined by equation 3.2) is the Darcy velocity, K  is the elliptic perme­

ability tensor, dn is the boundary of Q, n  is the unit outward normal and (f> is the 

pressure and M  is a source term which is zero away from well locations.

3.2.2 M ulti-phase Flow

When several phases or components are present in porous media, Darcy’s law may 

be extended to describe simultaneous flow of more than one phase:

where I = (o, w, g) (oil,water and gas phases, respectively) and kri is the relative 

permeability of phase /, which is used to account for the reduced permeability of 

each phase due to the presence of the other phases. In petroleum reservoirs different 

hydrocarbon components can exist in both a gas and a fluid phase, while water just 

exists in fluid phase. A large class of models that are widely used in porous media flow 

simulations fall within the black-oil model[85]. The name refers to the assumption that 

the hydrocarbon may be defined as two components: a heavy hydrocarbon component 

called oil and a light hydrocarbon component called gas. The two components can 

be partially or completely dissolved in each other depending on the pressure and 

the temperature, forming either one or two phases (liquid and gaseous). In general 

black-oil models, the hydrocarbon components are also allowed to be dissolved in 

water and the water component may be dissolved in the two hydrocarbon phases. 

The hydrocarbon fluid composition, however, remains constant for all time. The 

alternative, where the hydrocarbons are modelled using more than two components 

and hydrocarbons are allowed to change composition, is called a compositional model 

[86]. Since, emphasis here is on single phase flow further discussions on multi-phase

(3.4)
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flow is refrained. A detailed discussion on flow equations involved in multi-phase flow 

is given in [14, 19].

3.3 Problem  Description

While the methods presented in this thesis are for both single phase and multi­

phase flow problems, specific discretization issues are considered here that arise with 

the finite volume approximation of the pressure equation in single phase flow, ne­

glecting the effects of gravity.

3.3.1 C artesian Tensor

The problem is to find the pressure </> satisfying

over an arbitrary domain f2, subjected to suitable (Neumann/Dirichlet) boundary 

conditions on boundary dQ. The right hand side term M  represents a specified flow 

rate and V =  (dx,dy). Matrix K  can be a diagonal or full cartesian tensor with 

general form

conditions imposed here are Dirichlet and Neumann. For incompressible flow pressure 

is specified atleast at one point in the domain. For reservoir simulation, Neumann

(3.5)

(3.6)

The full tensor pressure equation is assumed to be elliptic such that

k 212 < K n K 22 (3.7)

The tensor can be discontinuous across internal boundaries of Q. The boundary
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boundary conditions on dfi requires zero flux on solid walls such that (KVqC) -72 =  0, 

where h is the outward normal vector to dCl.

3.3.2 G eneral tensor equation

The pressure equation is defined above with respect to the physical tensor in the 

initial classical Cartesian coordinate system. Now we proceed to a general curvi­

linear coordinate system [3] that is defined with respect to a uniform dimensionless 

transform space with a (£,77) coordinate system, where [0 <  (£,77) <  1]. Choosing Cl 

to represent an arbitrary control volume comprised of surfaces that are tangential to 

constant (£, 77) respectively, equation 3.5 is integrated over Cl via the Gauss divergence 

theorem to yield

-  <f (KV</>) • nds =  M  (3.8)
Jdn

where dCl is the boundary of Cl and h  is the unit outward normal. Spatial deriva­

tives are computed using

where J(x, y) =  x^yv — x vy^ is the Jacobian. Resolving the x,y components of velocity 

along the unit normals to the curvilinear coordinates (£,77), e.g., for £ =  constant, 

hds = (yv, —x^drj gives rise to the general tensor flux components

(3.9)

(3.10)

where general tensor T  has elements defined by

Tn =  ( K n y% +  K 22x \  -  2 K 12xr]yr}) /J ,

T22 =  {Kny^  +  K 2 2^  — 2 K i 2x^y^)/J,

T12 =  ( K u f e y r ,  +  x vyz) -  ( K u y vy  ̂+  K 22x vx ^) ) /J  (3.11)
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and the closed integral can be written as

j  J  (d^F + d^G) =  +  ^  =  m  ^  12j

where e.g. A i s  the difference in net flux with respect to £ and F  =  T u fa  +  

Tu(pr], G = Ti20^ +  T22̂ .  Thus any scheme applicable to a full tensor also applies 

to non-K-Orthogonal grids (figure 2.2). Note tha t Tn,T22 > 0 and ellipticity of 

T  follows from equations 3.7 and 3.11. Full tensors can arise from upscaling [33], 

and orientation of grid and permeability field [19]. For example by equation 3.11, a 

diagonal anisotropic Cartesian tensor leads to a full tensor on a curvilinear orthogonal 

grid.

3.4 Boundary Conditions

The two most common kinds of boundary conditions used in reservoir simulators 

to solve equation 3.5, are

3.4.1 D irichlet

This boundary condition requires the specification of pressure at the reservoir 

boundaries or wells. Typically, this involves specifying flowing bottom hole pressure 

at a well and a constant pressure at physical boundaries of reservoir.

3.4.2 N eum ann

This boundary condition requires specification of flow rates at reservoir bound­

aries. Typically, it involves specifying flow rates at wells and no-flow across physical 

boundaries of reservoir.
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Chapter 4 

Num erical D iscretization  

Techniques

4.1 Introduction

Much of the theory of physical phenomena is described by differential and inte­

gral equations. Such equations appear not only in physical sciences, but in biology, 

sociology, and all scientific disciplines that attem pt to understand these physical phe­

nomena. But many of these equations have no exact solution. Therefore to find 

solutions to such equations we must resort to numerical techniques. The objective of 

any numerical method for solving a problem involving a differential or integral equa­

tion is to generate a set of algebraic equations involving a finite number of unknowns, 

whereby the solution of algebraic equations characterizes an approximation of the 

solution of the original problem.

In view of the complexity of the permeability and geometry of petroleum reser­

voirs, numerical methods are necessary for discretization of reservoir simulation ellip­

tic pressure equation introduced in previous chapter. This chapter presents numerical 

methods suitable for discretization of heterogeneous elliptic equation with application 

to reservoir simulation. The methods discussed include the classical Finite differ­
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ence method (FDM), Finite element method (FEM), Mixed finite element method 

(MFEM) and Finite volume method (FVM).

The chapter is organized as follows: Section 4.2 summarizes Finite difference meth­

ods with application to reservoir simulation. Section 4.3 presents a brief description 

of Finite element methods (Galerkin’s formulation) applied to elliptic pressure equa­

tion of reservoir simulation. Mixed finite element method is described in section 4.4 

along with a discussion of the benefits and drawbacks for application to reservoir 

simulation. Finally, details of Finite volume formulation are presented in section 4.5.

4.2 Finite Difference M ethod

The finite difference method (FDM) is probably the best known numerical method 

for solving differential equations. It is used extensively in conventional reservoir 

simulation [87, 88, 89, 89, 90, 91]. In this method the derivatives of the equation in 

consideration are replaced by finite differences. These can be derived from truncated 

Taylor series expansions. The values of the dependent variable at a discrete number 

of points in the grid become the unknowns. The FDM can be best illustrated by 

considering one dimensional version of elliptic pressure equation 3.3 with Neumann 

boundary on dQ, (zero flux on solid wall) such tha t (KVfa) • h = 0, where n  is the 

outward normal vector to dQ. Assuming permeability tensor K  is homogeneous in 

the problem domain. In this case equation 3.3 can be written as:

=  /  (4.1)

with /  a known function. The boundary condition simply reduces to

<t> = 0 (4.2)

Let Xi denotes a point in an equidistance grid with spacing h and let fa , fa+\ 

and fa -\  denotes the unknown values of <fr in the points x^Xi+i and Xi-i respectively.
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Then, Taylor expansion of the function <f> around X{ yields

<f>i+i = <j>i + h<t>{xi) +  \ h 2h(f)\xi) +  \ h zh(f)"(xi) +  0 (h A) (4.3)z o

and

<t>i- i  = <f>i- h<t> (x^  +  \ h 2h(f)'(xi) -  \ h zh(j)"(xi) +  0 (h A) (4.4)
Z 0

adding equations 4.3,4.3 and dividing by h2 gives

4>i+1 — 2 fc +  fa-1
 ^2 =  /* (4-5)

where fa = f(x i) .  Prom the above it follows that this approximation is correct to 

order h2.

However, for multidimensional problems with non-orthogonal grids and general 

permeability description, such FD schemes are not directly applicable as the differen­

tiation now involves the permeability as well as the pressure i.e. in ID permeability 

k = k(x) and the equation 3.3 now will be written as

~{k(x)(f)(x)'y = f  (4.6)

hence, now the permeability should also be included in the FD scheme. This can 

be achieved by expressing (k(x)(j)(x)/) = <f>(x) and writing a discrete version of <I>(x) 

in a similar fashion using Taylor series expansion.

Although, FDM may be classified as simplest of all available numerical methods 

and are very easy to program, but problems with FDM are well known. Classical 

FDM can be expected to break down near the discontinuities in the solution where 

differential equation does not hold and a special treatment is required [92]. For general 

non-orthogonal grids in 2D, and generally varying permeability tensors, discrete two- 

point finite difference method does not lead to a convergent scheme and the numerical 

solution converges to the wrong solution [93]. Also, FDM are well suited only for
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regular domains and are limited in terms of application on irregular domains. Hence, 

the use of Finite-difference methods in reservoir simulation is not generally applicable.

4.3 Finite Elem ent M ethod

The finite element method (FEM) is also one of the most popular method for solv­

ing partial differential equations. A number of different approaches may be adopted. 

Of these Rayleigh-Ritz (based on variational formulation) and Galerkin (based on 

the weak formulation) methods are probably the best known [94, 95]. The literature 

available on FEM is vast and the details of the methods and their applications can 

easily be found in e.g., [94, 95, 96, 97, 98, 99, 100].

In applying Galerkin approach to the elliptic pressure equation equation (—V • 

(KV0) =  m), the first step is to derive a weak formulation for the problem. This 

is obtained by multiplying the equation by an arbitrary test function 0  and then 

integrating by parts over the domain Cl. Using the Green’s first identity for integration 

by parts in combination with the Neumann boundary condition (KV0) • n  =  0 yields 

the weak formation as

[  (KV0) • V 0 d r =  [  m'ljjdr (4.7)

which must hold for every differentiable test function 0 . In applying the Galerkin’s 

FEM to equation 4.7 the domain Cl is divided into small volumes, called elements. 

These can be quadrilaterals or triangles in 2D and cubes,pyramids, prisms or tetrahe­

drons in 3D and can be chosen depending on complexity in geometry, which provides 

geometric flexibility. The computational points are identified by vertices or other 

characteristic points (e.g. cell/element-centre) in the network formed by the elements. 

The Unknown 0 is approximated by
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N

1 = 1

where denotes a set of interpolation function called basis functions and

{$i}iLi denotes set of unknown coefficients to be determined. The basis functions have 

local support, i.e. the area in which they are non-zero is limited to a few adjacent 

elements, and they span the space of piecewise polynomials functions. Further more 

they are defined to be equal to unity at a given computational point and equal to 

zero at all other computational points, e.g.

x  E [zi-i,x»],

x e [ x i , x i+1], (4.9)

X i
Xi Xi — i 

X%-if-1 X 
Xi-j_i Xi

0 otherwise

Subsequently each coefficient <j>i in the expansion of equation 4.8 corresponds to 

the value of unknown (j) in the associated computational point. Substituting the 

expansion of equation 4.8 and the functions 'ipj for j  =  1,2...., N  as test functions in 

the weak formulation (equation 4.7) produces N  equations in N  unknowns {4>i}iLi- 

These can be reformulated as single matrix equation

AijQj = Mi (4.10)

where

i — 1 , , N  and j  = 1 , ,AT

The matrix A  can now be inverted to obtain the vector of unknowns (j). The use of 

FEM today, is widespread in many different fields of study. FEM enjoys its popular­

ity due to advantages in modeling complex geometries; and its natural enforcement 

of Neumann boundary conditions. The FEM are known to be accurate on smooth 

data ( homogeneous permeability) [99]. Whereas, in the case of application of Clas­

sical FEM to a medium involving discontinuities, which is common in petroleum
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reservoir simulation, an undesired smearing effect occurs [101, 102, 70, 71]. This is 

a direct result of the loss of local conservation property of the method, due to lack 

in flux continuity across the interior interfaces across which the permeability can be 

discontinuous in general case, as discussed in [101, 102, 103, 104, 105, 106, 70, 71]. 

Advantages of CVD(MPFA) verses CVFE in terms of flow field resolution are shown 

in 2-D and 3-D in [70, 71]. Whereas, other finite element methods like Discontinuous 

Galerkin (DG) methods [107, 108, 109] and Mixed finite element methods (MFEM) 

[110] with improved resemblance of the physics of the problem and ability to handle

discontinuous media are considered as a better choice.

4.4 M ixed Finite Element M ethod

The name ” mixed method” indicates a finite element method which has more than 

one approximation space. The mixed finite element method [80, 26] uses both the 

fluxes and the pressure as primary unknowns simultaneously, whereas finite element 

method fluxes are computed from the discrete pressures in a post processing step. 

The method emphasizes the flow and in many cases gives a more accurate picture of 

the flow. Besides, the method fulfills the physics of the problem, with conservation of 

mass locally (where Galerkin FEM fails) as well as it is applicable to irregular domains 

with anisotropic, heterogeneous discontinuous permeability tensor [111, 112, 79].

To derive the mixed finite element formulation the second order reservoir simula­

tion elliptic pressure equation is expressed in terms of two first order equations one

for pressure and one for Darcy velocity, given as:

v  =  -K V 0  (4.11)

V • v  =  ra (4.12)

The above two equations will now be used for weak formulation. To obtain a
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weak formulation for the two equations, one multiplies by suitable test functions, and 

integrates over the domain £2. The two equations can now be written as:

f  K -1v • ipdr = — f  (pV-ipdr (4-13)

/ ipV • vd r  = — pm dr  (4-14)
Jq J q

For the equation 4.13 after applying Green’s theorem and integrating by parts we 

obtain:

I  K -1v  • ipdr =  — I  V • ipcpdr + f  ip • ncpds (4-15)
Jq Jq J  dQ

W ith no-flow boundary conditions the system of equations reduces to

/  K -1v  • ipdr = — (  V • ip(pdr ' (4.16)
J  £2 i/n

/ ipV • v d r = — (pmdr (4.17)
Jq Jq

If all boundaries have no-flow boundary conditions imposed, an extra constraint 

must be added to make equations 4.16-4.17 well-posed. A common choice is to set 

the mean pressure to a constant where fQ cpdr = 0 , e.g. [86]. Here, we introduce (•, •)

for inner products in some inner product space. Using this inner product notation,

the weak formulation of equations 4.16-4.17 reads: Find (v, (p) G H(div) x L 2 such 

that

(K lv,ip) =  (4>, V*V0 G H(div),  (4-18)

(V-v,y?) =  (m, (p) (p G L2. (4-19)

The discrete problem reads: Find (v^, (ph) E x ^ C  H{div) x L2 such that
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(K-1̂ )  = (0,V.^)
(V • v, </?) =  (m, ip)

W> € V*, (4.20)

(4.21)

The discrete space $h is the space of piecewise constants and the discrete space 

Vfc is in many application chosen to be the lowest order Raviart Thomas space [80] 

for triangular, tetrahedral, or regular parallelepiped grids. The mixed finite element 

methods are able to handle discontinuities in media with great ease because of inherent 

flux continuity condition (over the control-volume edges) in the formulation. The 

MFEM is shown to be locally mass conservative for medium involving discontinuities 

and hence, are well suited for petroleum reservoir simulation. The only drawback 

of the method is that it is computationally more expensive, because of solving for 

pressure and velocity simultaneously.

The mixed finite element framework has also been extended to account for a 

control volume formulation by Russel [113, 112] and co-workers. The expanded 

Mixed finite element method was developed by Wheeler, Yotov and co-workers [114, 

111]. The relationship between the mixed finite element method and flux-continuous 

CVD(MPFA) schemes is given by Edwards in [4] (symmetric case) and [67] for the 

physical space (non-symmetric case), recently a proof of convergence of MPFA was 

presented in [115], which exploits this relationship. Discontinuous Galerkin method 

[41, 42] and Mixed Finite element method are frequently used in reservoir simulation 

[26, 43], but they prove to be computationally more expensive due to the additional 

degrees of freedom.

4.5 Finite Volume M ethod

The Finite volume methods (FVM) are related to the original integral equations, 

and are derived from conservation of physical quantities over cell volumes. To use the



Figure 4.1: Control-volume Dual grid (dotted lines)

FVM, the problem domain D is divided into small volumes called as control-volumes, 

figure 4.1. The partial differential equations under consideration are then integrated 

over each control-volume to obtain a set of equations in the form of surface integrals. 

By way of illustration, integrating the elliptic pressure equation over a small control- 

volume V  with surface S  leads to

where n is an outward unit normal vector to surface S  (figure 4.1). W hat is left 

to be approximated is the flux for an edge e, which is part of the control-volume 

boundary S. This is given as

Fundamental to FVM is the introduction of control-volume cell average. Godunov 

[116] introduced this interpretation in the discretization of the gas dynamics equations 

by assuming piecewise constant solution representation in each control-volume with 

values equal to cell average. The finite volume formulation is also suitable for discon­

tinuity capturing and have been used in obtaining solution to nonlinear hyperbolic 

conservations laws [117, 118, 119, 93, 92].

Local conservation is a desirable property in numerical modeling of flow in porous

(4.22)

(4.23)
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media. FVM are derived such that fluxes are conserved [120, 121, 122, 123] for 

both cell-centred and (dual grid) polygonal control-volume node based formulations. 

Numerical discretization techniques [2, 20, 3, 21, 4, 22, 23, 5, 24, 12, 7, 8, 25, 10] 

based on flux-continuous finite volume formulation forms the heart of this thesis and 

will be discussed extensively in the next few chapters. Advantage of using FVM 

over FDM and FEM can be stated respectively as: Relative ease by which FVM can 

solve problem on irregular geometries with discontinuities and its ability to conserve 

variable even on a coarse mesh.

4.6 F in ite  V o lum e F o rm u la tio n

Vertex 

Solution 

Grid /  Edge 

Boundary

Vertex / Solution •

Grid lines

Boundary

Cell edges

Figure 4.2: (a) Cell-centred Formulation, (b)Cell-Vertex Formulation.

The finite volume formulations considered in this thesis are for both cell-centred 

and cell-vertex control-volume distributed formulations e.g. [3, 4, 5]. In these formu­

lations flow variables and rock properties, e.g., rock permeability tensor, share the 

same location within the control-volume. In the cell-centred formulation the control- 

volume is taken to be the cell of the primary grid imposed on the region £2, flow and 

rock variables are located at the centre (velocity is computed on cell faces) 4.2(a). In
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the cell-vertex finite volume formulation a control-volume is constructed by joining 

cell centres and edge midpoints around the common cell vertex and flow variables 

and rock properties are assigned to the vertices of the primal grid and are piecewise 

constant over each cell vertex control-volume, velocity is resolved locally on each 

control-volume subface at a chosen point leading to a (family) quadrature 4.2(b).

The 2D formulations of the flux-continuous schemes presented in this thesis involve 

cell-centred/control volume distributed formulation for structured quadrilateral grids 

and cell-vertex/control volume distributed formulation for both structured quadri­

lateral and unstructured triangular grids. The 3D formulation of the schemes will 

be cell-vertex/control volume distributed. However, it should be noted that on a 

structured grid the cell-centred/control volume distributed formulation of the fam­

ily of flux-continuous schemes can easily be converted to cell-vertex/control volume 

distributed formulation by translating the operations onto a grid tha t is essentially a 

dual mesh.
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Chapter 5 

Families of Flux-Continuous CVD  

(M PFA) Schemes

5.1 Introduction

The main focus of this work is on the families of flux-continuous, locally conser­

vative, control-volume distributed (CVD) finite volume schemes and the discretiza­

tion issues related to these schemes. The complexity in geometry and geology of 

subsurface reservoirs continues to present a challenge to numerical methods for reser­

voir simulation. Rapid variation in permeability with strong anisotropy are common 

in subsurface reservoirs. Hence, continuity of flux and pressure are key properties 

for numerical methods employed for discretization of the reservoir simulation pres­

sure equation. The families of locally conservative flux-continuous schemes have 

this property as they are built on the underlying principle of continuity in nor­

mal flux and pressure. These schemes have been developed for solving the general 

geometry-permeability tensor pressure equation on structured (cell-centred and cell 

vertex grids) and unstructured (cell vertex) grids and are control-volume distributed 

(CVD) [3, 6, 4, 22, 23, 24, 5, 12, 7, 8, 25]. The familes of schemes are classified by 

the quadrature parametrization 0 <  q <  1, where the scheme quadrature q defines



34

the point of continuity and hence the family of schemes [5].

In this chapter a detailed formulation of the family of flux-continuous schemes in 

physical space, with emphasis on variable quadrature point (defining the position of 

continuity) is presented for both, 2D (structured and unstructured) grids and 3D grids 

comprising of different element types (Hexahedra, Tetrahedra, Prism and Pyramid) 

[25]. Numerical convergence study is also presented for the family of schemes showing 

the benefits of using quadrature parametrization.

This chapter starts by dedicating section 5.2 to the details of flux-continuous for­

mulation starting in 1-D followed by classical five-point schemes in 2D and the general­

ization of the flux-continuous schemes for 2D structured and unstructured grids, with 

discretization of the scheme in physical space. Section 5.3 starts with the motivation 

for the family of flux-continuous schemes and presents an overview of the family of 

schemes with emphasis on use of different quadrature point (quadrature parametriza­

tion) for imposing continuity of flux and pressure. The following section, section 5.4, 

presents a complete extension of the family of CVD (MPFA) flux-continuous schemes 

for general three dimensional grids comprising of any element types, hexahedra, te tra­

hedra, prism and pyramid elements. Discretization principles are presented for each 

element. The pyramid element is shown to be a special case with unique construction 

of the continuity conditions. Finally, in section 5.5 and 5.6 a detailed numerical con- 

vergency study is presented for the family of schemes with the help of series of test 

cases for 2D and 3D formulations respectively.

5.2 Flux Continuous Approxim ation

The key to any finite volume formulation lies in working with the integral form of 

flow equations. The Gauss divergence theorem is applied locally to the volume integral 

of divergence over each control volume. A unique discrete flux is then assigned to 

each control-volume face and each closed integral is approximated by sum of discrete
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Figure 5.1: One dimensional Cell centered and Cell face pressures

outward normal fluxes. For a given face which is common to two neighbouring control- 

volumes, a unique flux is added to left hand control-volume while the same flux 

is subtracted from the right hand control-volumes leaving only the sum of global 

domain boundary fluxes. Thus the flux-continuous schemes considered here are locally 

conservative. The construction of the flux-continuous scheme is given below.

5.2.1 F lux-C ontinuous A pproxim ation  in ID

We begin with classical cell centered formulation in one dimension where pressures 

and permeabilities are defined with respect to cell centres. In this case equation 3.3 

reduces to

where m  is possible specified local flow rate, Fi+1/2 =  —Kd(f)/dx and the derivative 

remains to be defined. If the coefficient K is sufficiently smoothly varying it is possible 

to use linear interpolation between the centers of cells i and i +  1 and approximates 

the flux by

(5.1)

Integration of the equation 5.1 over the cell i (referring to figure 5.1) results in the 

discrete difference of fluxes

Fi+1/2 — Fi_ 1/2 — m (5.2)
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Fi+1/2 =  - K i+i/2(<i>i+i -  (pi)/Ax (5.3)

where K i+1/2 is a suitable average of the adjacent cell centered permeabilities. 

However if K is discontinuous then since normal flux and pressure are continuous 

the pressure gradient is in general discontinuous and thus linear interpolation is not 

valid across the cell faces separating jumps in permeability. The standard solution 

to this problem is described in [14]. Continuous pressure and normal flux are incor­

porated in the cell centered approximation by introducing a mean pressure </>/ at a 

cell face dividing neighbouring cells figure 5.1. Equating the resulting one sided flux 

approximation at the cell face results in

- K r((/)r -  (f>f)/Axr = -  fa)/Axi  (5.4)

which ensures flux continuity. From equation 5.4 cell face pressure is given by

(j)f  = (faKt/Axi +  (f)rK r/ A x r) / (K i /A x i  +  K r/ A x r) (5.5)

which is back-substituted into the discrete flux equation 5.4 to yield the classical cell 

face flux approximation

F  = - 2 K rK M r -  <t>i)!(KrA x t +  K tA x r) (5.6)

5.2.2 F lux-C ontinuous A pproxim ation in 2D: C lassical F ive

Point Schem e

As in one dimension pressures and permeabilities have a cell-wise distribution and 

cells act as control volumes. The equivalent two-dimensional discontinuous diagonal 

tensor five-point scheme on rectangular grid is derived by introduction of interface 

pressures and a sub-cell triangular support as indicated in figure 5.2(a). As in one 

dimension cell face pressures are eliminated in the flux continuity conditions to yield
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Pressure
Support

*

Figure 5.2: (a) Imposing continuity between the grid blocks in a five-point
scheme(b)Cell-centered five-point support on a cartesian grid.

Figure 5.3: (a) Full tensor pressure support with standard default quadrature point 
q =  1

the classical five point scheme with harmonic mean coefficients in two dimensions, 

further details of the scheme can be found in [3]. The support for the classical 

five-point scheme is shown in figure 5.2(b),and shows that introduction of cell face 

pressures (<bf = (0jv, </>s, )) enables the normal velocity and pressure to be

point-wise continuous at the cell faces.
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5.2.3 Full Tensor F lux A pproxim ation

Continuous normal flux and pressure discretization of the reservoir simulation 

pressure equation is required in order to honour correct local physical interface con­

ditions between grid blocks with strong discontinuities in permeability. A consistent 

full tensor flux approximation requires an increase in support compared to the stan­

dard two-point flux. In general a nine-point scheme is required for approximation of 

equation 5.1 with a full (or diagonal) tensor in two-dimensions, as indicated in fig­

ure 5.3(a) for a Cartesian grid and figure 5.5(a) for a quadrilateral grid respectively. 

Here we review the derivation of the family of flux-continuous schemes presented in 

[3, 4, 5]. Emphasis is on the comparison and benefits of different quadrature points 

(explained in section 5.3 below) that belong to the family of flux continuous schemes 

derived in physical space. There are multiple motivations for the families of schemes 

for both full and diagonal tensor formulations and these are stated below. This is 

followed by a presentation of the quadrature parameterization on which the schemes 

are based.

(a) (c)

Figure 5.4: (a) Nine-point scheme support, (b) Dual-cell, (c) Four Sub-cells of cell 
1, vertices V ^i  =  1, ..4
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5.3 Family of Flux-Continuous Finite Volume Schemes 

- 2D Formulation

Local conservation, flux and pressure continuity are physical properties satisfied 

by the solution of equation 3.3. Local conservation is the basis upon which every 

finite volume scheme is built and relies on a flux balance, where relative to a given 

control-volume face, flux is subtracted from the left volume and the same flux is added 

to the right volume. We note that while flux continuity ensures local conservation, 

the converse is not necessarily true. Consequently we must therefore build flux conti­

nuity into the approximation of equation 3.3. The families of flux-continuous locally 

conservative control-volume distributed (CVD) finite volume schemes presented in 

[3, 6, 4, 22, 23, 24, 5, 12, 7, 8] have been developed for different gird types includ­

ing cell vertex structured, unstructured and cell centred formulations in physical and 

transform space. Numerical convergence for a range of quadrature rules in physical 

space are presented in [5].

In this section we present the framework for the physical space formulation spe­

cialized to the structured cell centred quadrilateral grids (the formulation has also 

been developed for cell vertex structured and unstructured grids e.g. [4, 5, 7], also 

see Appendix C ).

The nine node support of the scheme is indicated in figure 5.4(a). The scheme 

has cell centred flow and rock variables, so that the approximation points (or nodes) 

are shared by both variables and are at the centres of the primal grid cells. Thus in 

this case the primal grid cells are the control-volumes and the schemes are control- 

volume distributed CVD with respect to the primal grid cells, where the central 

control-volume is the cell with vertex position vectors rv i, iv2, rv3, iv4 and the scheme 

is centred on node 1, figure 5.4(c).
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D ual-C ell

Each group of four cell centred nodes surrounding a primal grid vertex defines the 

fundamental corners of a dual-cell, as indicated by the dashed line in figure 5.4(b). 

The perimeter of each dual cell is defined by joining cell centres to cell edge mid-points 

as shown in figure 5.4(b).

The dual-cells partition the primal quadrilateral grid cells (or control-volume) into 

sub-quadrilateral cells, which are called subcells [4]. Each control-volume and each 

dual-cell are comprised of four subcells, figure 5.4(b). Each subcell has one corner 

attached to a cell centre node and the opposite corner attached to a control-volume 

corner (a primal grid vertex). A subcell is illustrated in figure 5.4(c) with corner 

position vectors iq, r^, iv3, r# . The two faces of a subcell attached to the primal grid 

vertex define two sub-faces of a parent control-volume, refer to the top right corner 

of the cell in figure 5.4(c), over which (0 < q < 1], see figure 5.5.

Figure 5.5: (a)Nine-point continuous pressure support, highlighted dual-cell dashed 
line, (b) Points of Flux-Continuity (N,S,E,W) on subcell faces of a dual-cell (c) 
Quadrature points on subcell faces q=0.1, q = 1 hollow squares, general q bold

Subcells

<7 „  V 3

(a) (b)

squares.
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Pressure Sub-triangles

Pressure sub-triangles are defined within subcells as follows: Interface pressures 

(j)N-> 4>S, (pE , 4>w are introduced on the four s u b - f a c e s  inside each dual cell at specified 

positions (N ,S ,E ,W ) ,  as defined in figure 5.5(b). Sub-triangles are then formed 

by connecting cell centres to the interface pressure positions and the sub-triangles 

indicate local piecewise linear support of pressure. For example figure 5.5(c) shows 

a subcell with sub-triangle (1,5, W)  inside the subcell, points (S, W )  are indicated 

with solid squares. Introduction of interface pressures (f>N,(j>Si<t>E,<f>w (figure 5.5(b)) 

automatically ensures point-wise pressure continuity across control-volume interfaces 

in a locally coupled system. Pressure gradients are therefore piecewise constant over 

the sub-triangles and are linear functions of discrete cell-centre and cell interface 

pressures.

5.3.1 M otivation for the Family o f Schem es

Motivation for the family of flux-continuous schemes and flexibility in location 

of quadrature point with 0 < q < 1 is to allow for improvement in accuracy e.g. 

q=l / 2  yields a significant gain in accuracy with order 0 (h6) truncation error for 

the Laplacian operator and 0{h4) for an anisotropic constant diagonal tensor [3]. A 

nine point scheme will also reduce grid orientation effects [21] and flux-continuous 

nine-point schemes can improve upscaling even in the case of a diagonal tensor by 

detecting cross-flow [20, 12]. Variable q can also improve diagonal dominance of the 

full tensor approximation [3].

5.3.2 Family o f CVD (M PFA )Schem es - Q uadrature param­

eterization

The family of schemes is formed when imposing normal flux and pressure continu­

ity conditions at the four positions (A, S , E, W), figure 5.5(b)) on the s u b - f a c e s , where
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o.i

(c) (d)

Figure 5.6: Quadrature parametrization on the sub-cell faces - exploded view of figure 
5.5(b).

the four shaded triangles meet in a dual cell. On each sub-face the point of continuity 

is parameterized with respect to the subcell face by the variable q where referring 

to figure 5.5(c) the range of q is given by (0 <  q < 1]. Specific quadrature points 

q = 0.1, 1 are illustrated in figure 5.6 (hollow squares) together with the subcell 

triangle construction for a generic value of q (solid squares). The quadrature point 

q = 1 corresponds to the point of intersection between the sub-faces and the dual-cell 

perimeter. Hence, for a given subcell, the points of continuity can lie anywhere in
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the intervals (0 < q <  1] on the two faces of a subcell inside a dual cell, tha t coincide 

with the control-volume sub-faces, and the value of q defines the quadrature point 

and hence the family of flux-continuous finite-volume schemes. Cell face pressures 

are introduced at N , E , S , W  locations (figure 5.5(b)). Pressure sub­

triangles are then defined with local triangular support within each quarter (sub-cell) 

of the dual-cell as shown (shaded triangle) in figure 5.5(b). Pressure 0, in local cell 

coordinates, then assumes a piecewise linear variation over each triangle. The most 

primitive member of the family of schemes (illustrated in figure 5.3(a)) corresponds 

to the quadrature point position coincident with the cell face mid-point i.e. q = 1. 

The general cell-centred flux-continuous schemes support is shown in figure 5.5(a).

The parametric variation in q is illustrated further using the sub-cell example 

of figure 5.5(c), with sub-cell containing sub-triangle (1,5, W). Let r i =  (x\,y{) 

denote the coordinates of the cell-centre and r# =  (x s ,y s ), *w — (x w ,yw )  denote 

the local continuity coordinates. Then it is understood that the continuity position 

is a function of q with r s(q) and Tw(q)• The coordinate system of a physical cell is 

illustrated in figure 5.5(c), where the origin (q = 0) is the top right hand corner of 

the cell and q = 1 is the cell-face mid-point and is given as e.g. along the right hand 

cell face

r  v(«) =  rVa +  |( A r v 23) (5-7)

where

Ar v 23 =  (ix v2 -  x vz), (Vv2 -  yvz)), rv 2 =  (xv2,yv2), rv 3 =  (xv^yvz) (5.8)

However,it should be noted that a different parametric value could also be chosen 

along each subface so that rs(q\) and r ^ f e )  which leads to a variable support scheme, 

presented in [10].
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(c)

v1

Figure 5.7: (a) Dual cell- Dashed line: Flux and pressure continuity at N,S,E,W, 
Quadrature q = 1/2 (b) Subcell of the Dual cell with pressure support, (c) One-sided 
quadrature (Q uadrature q =  1 ).

5.3.3 F o rm u la tio n  of Schem e in P h ysica l Space

Full tensor tran sform  space and p h ysica l space flux approximations has been pre­

viously presented in [3, 4]. Here, we now consider the full tensor flux approximation 

in p h ysica l space. Note that while normal flux is continuous across an interface tan­

gential flux can be discontinuous. As described in previous section, with respect 

to each dual-cell primal grid cell-face pressures <f>/ = (f)N, 4>e, 4>s, f iw  are introduced 

at the N ,S ,E ,W  locations indicated in figure 5.7(a). A local triangular support is 

introduced within each quarter of the dual-cell (sub-cell) as shown in figure 5.7(b). 

Pressure (j) and the cell coordinates assume a piecewise linear variation over each 

triangle, for example, over the triangle of cell 1 (figure 5.7(b)), given as:

0 =  f<£s +  # i v  +  ( l - f - ? 7 ) 0 i ,  

X = & s  +  rjxw +  (1 -  £ -  Tj)xi, 

y =  £s/s +  WJW +  0- - £ - 77)2/1 ,

(£,77) are area coordinates and (xs{q), ys{q)),{xw(q), yw(o)) are local continuity
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coordinates and pressure is piece-wise continuous over each triangle. Piecewise con­

stant Darcy fluxes are now constructed on each of the pressure sub-triangles belonging 

to the sub-cells of the dual-cell as shown in figure 5.7(b). The local linear pressure </>, is 

expanded in sub-triangle coordinates. The Darcy flux approximation for sub-triangle 

(1,5, W )  is given below.

(5.10)9S — 91

9 w  ~  <f>i

x s {q) -  x i \  I y t(q)  \  _  I y s (q) ~  Vi 

x w (q) -  xi )  y  yv(q) )  y  yw(q) -  yx

Using equations 3.9, 5.10 and 5.11 the discrete Darcy velocity is defined as

(5.11)

vh =  - K xV0a =  -iC G fa) | ^  | (5.12)
fir)

Where K 1 is the local permeability tensor of cell 1 and dependency of V<^ on quadra­

ture point arises through

r v  W 1 I I 1 (  fa -< h \  , ,

“Ul'Uw -w ĵ U-J
where approximate r^(q) and rv(q) are defined by equation 5.11. J(q) is the 

jacobian matrix as a function of quadrature q. Note that (#i,?/i) is the position

vector of the cell centre of cell 1 in figure 5.4, iv3 =  {x v3 ,yv3) is the position vector

of the corner vertex V3 of the cell. The normal flux at the left hand side of S(figure 

5.7(a)) is resolved along the outward normal vector dLs = \{{yvz ~yv2)i ~ (x v3 ~ x v2)) 

(figure 5.7(b)) and is expressed in terms of the general tensor T  as

F j  = vh ■ dLs = ~(Th4>( +  T ^ l  (5.14)

where it is understood that the resulting coefficients of ( ^ ,  (j>v)\s are denoted by Tu\$  

and T12H and are sub-cell approximations in physical space, of the general tensor



46

components given in equation 3.11 at the left hand face of S. A similar expression 

for flux is obtained at the right hand side of S from cell 2(figure 5.7(b)). Similarly 

sub-cell fluxes are resolved on the two sides of the other faces at W,N and E. Flux 

continuity is then imposed across the cell interfaces at the specified positions N,S,E 

and W (figure 5.7(a))for a specified quadrature point q ( section 3.3.2 above). The 

local physical space flux continuity conditions are now defined in the dual cell and 

expressed as

f n  = — {Tu <t>$ +  T i24>t))\n  = : —(Tufa  +  Ti 2(f>v)\%,

Fs = — {Tn</>z +  Tu ^ t, ) ^  = —(T nfe  +  T i2 ^ ) ||,

Fe = ~  Pl20£ +  ^22077)||; = — (Ti2(p£ +  T2 2</>7?)|!;,

Fw = — (7i20£ +  T22 (j>r1) \w =: — (Ti2<l>$ +  722^)1^ (5.15)

Where e.g.

- ( T n ^  +  Ti2<y  |‘ =  - ( T n l ^ l '  +  T ^ l ^ l 1) (5.16)

and T \la denotes the physical space tensor approximation as a function of quadrature 

point q for subcell i and interface point a = cr(q) resulting from normal Darcy velocity 

resolution on the control-volume faces.

Using the local piecewise linear variation of pressure over each sub-triangle in the 

dual cell equation 5.15 can be expressed explicitly with respect to potential differences 

as
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Fn =  —(Tn\x((f)N — M  +Ti2\%(<j)4 — (i>w)) = —{Tn\%(4>3 — 4>n) + T i2\%(4>3 — <I>e)) 

Fs = —p u l s e s  — 01) +  Ti2 \s((f>w — 0l)) = ~ P li |s (0 2  — 4>s) +  ^12||(0JS ~  <h))

Fe = —(Tl2\2E((f>‘2 — <f>S) +  T22\%(<i>E — <h)) = — (^12|i;(03 — <A/v) +  ^22^(^3 — <Ae)) 

Fw = — (Tl2 \w(</>S — (f>l) +  T2 2 \w((i>W — (pi)) = —(Tulwi^N — <Pa) +  T22\w(<i>4 ~  <f>w))

(5.17)

Where, e.g., for sub-cell 4 in figure 5.7 (c) <f>£ = ((f)n — M -  The linear system of 

equation can be written as

F  =  A ^ f  +  B l $ v =  An$>f +  B r $ v (5.18)

where F  = (Fn ,F s ,F e ,F w ) are the fluxes defined in the dual-cell and 4>/ =

(<t>N, 4>s, <Pe , 0w >) represents interface pressures. Similarly =  (0i, 02,03,04,) rep­

resents cell centered pressures. Thus the four interface pressures are expressed in 

terms of the four cell centered pressures. Prom equation 5.18 <£/ is eliminated to 

obtain the flux coefficient matrix given as

F  =  (A l (Al -  A r Y ^ B r  -  B l ) +  B l ) $ v (5.19)

This illustrates a key advantage of the method as in one dimension, the cell-face pres­

sures are determined locally in terms of the cell centered pressures in a preprocessing 

step thus avoiding introduction of the interface pressure equations into the assembled 

discretization matrix. Therefore flux continuity in the case of a general tensor is 

obtained while maintaining the standard single degree of freedom per cell. Since the 

continuity equations depend on both 0£ and 0^ (unless a diagonal tensor is assumed 

with cell-face midpoint quadrature resulting in a 2-point flux), the interface pressures 

$ /  =  (07v, 0s, (pEi 0 w ,) are locally coupled and each group of four interface pressures 

is determined simultaneously in terms of the four cell centered pressures whose union 

contains the continuity positions.
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5.3.4 D isc re te  F lu x  A p p ro x im atio n  for S tru c tu re d  G rid s

i-l/lj+l/1

(a)

Figure 5.8: (a) Control volume quadrant fluxes on a cartesian grid.

Once the flux coefficient matrix has been calculated (equation 5.19) the discrete 

scheme is defined by approximating equation 3.12 with the sum of eight fluxes, two 

per control volume quadrant as in figure 5.8(a), the top right hand dual-cell has index 

i + 1/2, j  +  1/2. The net flux for the respective right hand side and top cell faces (in 

a global assembly) is given by

- 0 + 1 /2 J  FjVi+1/ 2 , j - l / 2  ■Fs't+1/ 2 , i+ l / 2

F i , j+ 1/2 F 'E i _ 1/ 2 j +1/2 F w i+1/2,j + l/2

(5.20)

Finally, the discrete scheme is completed by defining the closed integral of net flux 

over the control-volume (i,j) which results in

Fi+1/2J — Fi-1/2,j +  Fitj+1 /2 — F i j—1/2 =  M  (5-21)

where M is the specified flow rate. It should also be noted here that for any quadrature 

point q, other than the cell face mid-point (q=l/, a nine point flux-continuous scheme 

is always obtained regardless of whether the tensor is full or diagonal.

Although, the formulation of the family of flux-continuous finite-volume schemes 

in 'physical space leads to a discretization matrix which is non-symmetric in the general
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case. However, it is possible to derive an alternative formulations in transform space 

[3, 24] that yield a symmetric positive definite (SPD) discrete matrix. And it will 

form the basis for next chapter, where it be described in detail.

5.3.5 Form ulation o f Schem e in Physical Space- On U nstruc­

tured Grids

This section presents a brief summary of the formulation of flux-continuous schemes 

for unstructured grids (for detailed formulation see Appendix C). In this case pres­

sures and permeabilities are vertex centered. A control-volume is constructed around 

each vertex by joining cell edge mid-points to cell centers for all cells common to a 

given vertex. The physical permeability is assigned to the control-volume. Using an 

analogous procedure to tha t for the structured grids the flux continuity formulation 

is carried over directly to treat unstructured triangular grids [4]. For a triangular 

grid three flux continuity conditions are imposed within each triangle where a local 

coordinate system is associated with each subcell of a given triangle, figure 5.9(a). 

Interface pressures <f>/ =  (0jv, 0s, 0#) are introduced in a similar fashion to section 

5.2.2 and three subcell triangular basis functions are formed joining vertex pressures

=  (0i, 02,03) with adjacent interface pressures 4>/. The pressure assumes a piece- 

wise linear variation over each subcell triangle and the derivatives 0X and 0y are linear 

functions of and

5.3.6 D iscrete F lux A pproxim ation for U nstructured  Grids

Similar to the structured case the system of fluxes for unstructured grids are 

rearranged in the form

F  = A ^ f  +  B l &v =  +  B r $>v (5.22)

where =  (0/v, 0 5 , 4>e ) represents the interface pressures for triangular grids.
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3

F n F e

1 2

(b)

Figure 5.9: (a)Control-volume , Flux and pressure continuity positions at N, S, E 
shown on a Triangle. Quadrature q =  1/2. (b)Sub-cell triangular basis functions and 
fluxes at interface.

Similarly <f>v =  (</>i,</>2?03) represents cell vertex pressures for triangular grids. Thus 

the interface pressures can now be expressed in terms of the cell vertex pressures.

From equation 5.22 <3?/ can be eliminated to obtain the flux coefficient matrix as for 

structured grid and is given as

F = (A l (Al -  A Ry \ B R -  B l ) +  B L)QV (5.23)

After calculating the flux coefficient matrix the Gaussian integral of divergence 

over each control-volume is obtained by global flux assembly.

5.4 F am ily  o f F lu x -C o n tin u o u s  C V D  (M P F A ) S chem es 

- 3D F o rm u la tio n

Subsurface reservoir dimensions can have very different length scales in the ver­

tical and horizontal directions. Moreover, layers, fractures and faults all give rise 

to complex physical geometries and grid-blocks that represent the underlying geol­

ogy are rarely orthogonal. This requires flexible gridding for a consistent numerical
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2 -Prim s E lem ents

ti.iHo.lc.il E lem en ts  1 -H *xah«li al E lem en t 3 -P y m n iil E lem ents

(a)

Figure 5.10: (a) Decomposition of hexahedral element into 2-prism, 6-tetrahedral and 
3-pyramid elements

method to be applicable. Maximum flexibility in grid generation is achieved when 

allowing grids to be comprised of any connecting combination of hexahedra, tetrahe- 

dra, prism and pyramid elements [25]. This is an important motivating factor for the 

schemes presented here. For illustration of element types a regular hexahedral (block) 

element can easily be decomposed into either two-prisms, five or six-tetrahedral or 

three-pyramid elements as shown in figure 5.10.

The schemes presented here are vertex centred, where for a given control-volume 

surrounding a grid vertex, flow variables and rock properties are assigned to grid 

vertices and rock properties are piecewise constant with respect to the associated 

control-volumes and thus the schemes are control-volume distributed or CVD. There­

fore, discontinuities in rock properties occur over control-volume faces. The physical 

constraints that must be enforced are continuity of pressure and continuity of normal 

flux across each interface that separates a change in the geological medium, therefore 

the continuity conditions must be applied across the control-volume faces.

The initial or primal grid considered here is comprised of elements i.e. combina­

tions of tetrahedra, prisms, pyramids and hexahedra elements (also called cells), with



52

corners defined by grid vertices. A polyhedral control-volume is built around each 

grid vertex, which generates a primal-dual grid.

C ontro l-vo lum e

'5

1' d

(b)(a)

(d)

Figure 5.11: (a) Constraint points and boundary for a prism element, (b) Constraint 
points and boundary for a hexahedra element, (c) Constraint points and boundary 
for a pyramid element, (d) Constraint points and boundary for a tetrahedral element. 
(Quadrature q =  1)

Construction of the control-volume starts in a primal grid cell. The cell centre 

(or circumcentre) is joined to cellface mid-points, cellface mid-points are joined to 

cell-edge mid-points. As a result the primal grid cells are decomposed into sub- 

hexahedra or subcells [7] figure 5.11. In each case the number of subcells corresponds 

to the number of vertices defining the primal element. A hexahedra element has 

eight vertices and thus eight sub-cells, one for each vertex. Similarly, a prism element 

has six, the pyramid element has five and the tetrahedral element has four sub-cells 

respectively as shown in figure 5.11. Note each subcell is always a hexahedra. Each
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subcell belongs to the control-volume of the unique vertex to which it is attached. 

Cell vertex control-volumes are defined by a local assembly or recomposition at each 

primal grid vertex of all subcells that are attached to the vertex. The resulting set of 

polyhedral control-volumes defines a dual grid relative to the primal grid which we 

call the primal-dual.

5.4.1 3 D -F in ite  V olum e A p p ro x im atio n

1 2
e

(a)

Figure 5.12: (a) Control-volume faces and edges of primal cell in tetrahedral element.

As with all finite volume schemes we begin with application of the Gauss diver­

gence theorem to the integral of divergence, over a given control-volume. A unique 

discrete flux is then constructed for each control-volume face and the closed integral of 

flux is approximated by the sum of discrete outward normal fluxes. For a given face 

between two neighbouring control-volumes, the unique flux is subtracted from the 

left-hand control-volume and added to right-hand control-volume leading to a locally 

conservative scheme with respect to the polyhedral control volumes that contain the 

discrete permeability tensors with flow variables defined at their vertices. Within the 

flux build process, fluxes are approximated on control-volume subcell faces inside each 

primal grid cell, in analogous step to 2-D [3, 4, 5]. The construction of flux-continuity
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conditions are presented below. Each subcell flux is associated with a unique cell 

edge, and the number of primal cell fluxes constructed inside each primal cell is equal 

to the number of cell edges, 12 for hexahedra, 9 for prism, 8 for a pyramid and 6 for 

tetrahedra.

The subcell fluxes are accumulated with respect to their primal cell edges within 

an assembly process. The edge index e(i, j )  refers to the j th primal edge attached 

to vertex z, e.g. figure 5.12. The net edge based single phase flux Fei j ^  associated 

with edge e(i,j)  is comprised of the sum of adjacent subcell fluxes that belong to the 

primal grid cells with common edge e(z, j) ,  with

^SC E

= E  FM  (5-24)
<7= 1

where N s c e  is the number of subcells attached to the edge e(i,j).  After assembly 

of net edge-based flux, the discrete scheme for each vertex z is completed with closed 

integral of net Gaussian flux approximated by sum of net edge-based fluxes connected 

to the ith vertex. For single phase flow on unstructured grids the assembled finite 

volume scheme at vertex z can be written concisely as:

Nedy
Y ,  F ' w t f )  = Mi (5.25)
3 =1

where summation is over all Nedv edges passing through the ith grid vertex, (Mi

denotes a specified flow rate at vertex z, or is zero otherwise).

5.4.2 F lux C ontinuity in H exahedra, Tetrahedra and P rism  

Elem ents

In this section a continuous flux and pressure family of schemes (q-family) for­

mulation is presented for hexahedra, tetrahedra, prism and pyramid elements. This 

work is based on the flux continuous schemes of [3, 4] and 3-D cell vertex formulations
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presented in [52, 70]. The continuity conditions for the hexahedra, tetrahedral and 

prism elements follow an analogous procedure described below. There is an important 

exception in the case of the pyramid element and this treatment is discussed in the 

next section.

By definition of a cell-vertex CVD formulation any variation in permeability will 

occur inside the primal grid cell across interior subfaces of adjacent control-volumes, 

which also correspond to faces of the subcells. Thus continuity of flux and pressure 

must be imposed across the interior subfaces.

Interface pressures are introduced in a 3D grid element, at one point on each 

control-volume subface, establishing point-wise continuity in pressure (figure 5.11), 

which is also the point at which normal flux continuity is enforced. The local position 

of flux continuity is parameterized in the local subcell-face coordinate systems with 

parametric variables (ql,q2).

Q u a d ra tu re  p a ram ete riz a tio n  q-fam ily in 3D

5

r4

Figure 5.13: (a) Pyramid cell with pressure support, (b) Pressure support on a subcell 
of pyramid element for quadrature q = | . (c) Pressure support on subcell of pyramid 
element for quadrature q = 1. (d) Pressure support on subcell of pyramid element 
for variable quadrature q.



56

Similar to two-dimensional construction of the flux continuous schemes [3, 4, 5] a 

quadrature parameterization is introduced in the three-dimensional formalism, where 

local position of continuity defines scheme quadrature as function of q, where q varies 

over (0, 1], consequently the co-ordinates of the continuity position define the flux- 

continuous q-family of schemes. The co-ordinate system of a physical pyramid cell 

is illustrated in figure 5.13. Referring to the subcell face defined by coordinates 

(ri, r 2, r3, r4), the origin (q = 0) is at the top right hand corner of the figure 5.13(b). 

The subcell face mid-point quadrature q = \  with a variable quadrature q is shown in 

figure 5.13(b) and 5.13(d) respectively. The quadrature q = 1 refers to the left hand 

bottom corner of the subcell face shown in figure 5.13(c) and is given by

ra = n(l -  0(1 -  V) + “ V) + ̂ 3&  + ̂ 4 (1 -  O7? (5-26)

where

n  = (xi,yi,Zi),i = 1,...4 (5.27)

While the quadrature parametrization q\ =  (1 — £),<?2 =  (1 — ?7) can vary differ­

ently on three different faces of the subcell, in this chapter a symmetric variation is 

considered on each subcell face with q\ =  (?2 =  Q, though in [10] unequal is explored, 

which will be further discussed in chapter 8.

As in [3, 4, 5] parameterization of the continuity points leads to a general choice 

for flux quadrature thus defining the q-family of schemes. The number of interface 

pressures matches the number of edges of the primal cell, thus the number of compo­

nents of vector 4>f is equal to 12 for a hexahedra, 9 for prism, 8 for a pyramid and 6 for 

a tetrahedra. The local vector of primary variables (global degrees of freedom) of the 

pressure system with respect to a primal element are denoted by 4>v =  (</>i, ....(f>Nv ) , 

where N y  is equal to the local number of vertices, 8 for a hexahedra, 6 for a prism, 

5 for a pyramid and 4 for a tetrahedral element as shown in figure 5.11.
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The inward view from a primary corner vertex attached to a hexahedral, tetrahe­

dral or prism element, looking inside the respective element is of the three interior 

subcell faces on which the interface pressures lie. Joining each vertex with its 3 ad­

jacent interface pressures creates a set of subcell tetrahedral basis functions. (While 

the same is true for the 4 base nodes of a pyramid, the summit node view sees four in­

terfaces, figure 5.11(c). And as a consequence construction of the scheme on pyramid 

element needs special consideration (see section 5.4.3).

Construction of Scheme

Piecewise constant subcell physical space fluxes are approximated using the local 

tetrahedral basis functions over which pressure is linear and gradients are piecewise 

constant. For each subcell

Vi = -K iV ^ i, i = 1, ....IV,, (5.28)

where Ki and V0, are the ith subcell permeability tensor and gradient respectively.

First the formulation is illustrated for a primal hexahedra element, figure 5.11(b) 

shows the eight subcells and permeabilities inside a primal hexahedral cell with the 8 

vertex pressures. The potential gradient approximation V</>i in subcell 1 is expressed 

as

 ̂ A xl(q) A x2(q) A x3(q) ^  ̂ <t>a ~  (j>l ^
= Ayi(q) A y2(q) A y3(q) ~  (f>l

U J  ̂ A zl(q) A z2(q) A z3(q) y ^  <t>e ~  <l>i y

Where the coefficients follow from the piecewise linear tetrahedral basis functions 

(alternatively via Taylor series) and are well known [124]. The discrete physical space 

flux corresponding to subcell 1 at interface a figure 5.11(b) is then defined by

Fla AaV\ • na (5.30)
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Where na is the outward normal on the interface at a pointing away from vertex 1.

Note that the flux can also be expressed in terms of the approximate general tensor 

where

1 1 ^
F la  =  - 5 ( T i ( &  -  f c )  +  r i f a ,  -  <fl) +  T U < f e  -  4>l))  =  - 4  E T l A H . l  ( 5 - 3 1 )

3 = 1

Where T* •, j  = 1,2,3 are defined at a and are functions of subcell 1 geometry and 

=  1,2,3 are the differences between interface pressures at (a, d, e) and local

vertex 1.

Expressions for the other physical space subcell fluxes are obtained in a similar 

fashion. Fluxes resolved on each side of the common subfaces are now equated to 

obtain a set of flux continuity conditions with number matching tha t of the number of 

local interface pressures (and thus edges) within the primal element. For the primal 

hexahedra element, fluxes are defined at interfaces a , b, c, d, e, / ,  g , h, i , j , k and I at a 

physical position on each subface that determines the quadrature, defined by q. The 

equations of continuity at these points are:

v[ •na = V2 -n a v6 -n c = v5 - nc vz -n e = v[ • rie

v2 • nb = vh- nb v5 -n d = v i - n d vl • n f  = v2 ■ n /

v8 ■ nk = v7 ■ nk v8 -n g = v6 -ng vz -n i = V4c'n i

• ni = vz • ni v7 • nh = v5 • n h vA- fij = v 8 - ftj

Where na,nb,nc, n ^ n ^ n f ,  ngj7ih,rii, rij, nk and ni are the outward normals. The 

continuity conditions of equation 5.32 are next expressed (in a similar fashion as 2D 

formulation) as

F  = Ai,(f)f +  B l 4>v =  AR(j)f +  B r 4>v (5.33)

Where </>/ are the interface pressures and (f)v are vertex pressures defined above. 

A l ,B l , A r and B r are matrices whose entries are also functions of quadrature parametriza-
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tion q. The interface pressure 0 / in equation 5.33 can now be expressed in terms of 

cell vertex pressures <f)v (as in 2D formulation) yielding:

F  = (Al ({Al -  A r ) - \ B r -  B l )) +  B l ) ^  (5.34)

Thus the cell-face pressures are eliminated from the flux by being determined 

locally in terms of the primal cell vertex pressures in pre-processing step, avoiding 

introduction of the interface pressures equation into the assembled discretization ma­

trix. By expressing the continuity conditions as at a

F‘ =  - 7  =  - 7  (5.35)
j= 1 j=l

where j  sums over the 3 interior subcell face potential values, leads to the alter­

native form

A F  =  - A 0 V (5.36)

where the entries of matrix A  are local inverse tensor element combinations and

A 4>v =  (021 j 031? 043? 042? 084? 073? 051? 075? 086? 087? 062? 065) (5.37)

are the differences of vertex pressures. An analogous procedure is used for pris­

matic and tetrahedral elements. Consistency of the formulation follows from equation 

5.37 which shows that flux is zero for constant potential. The relationship with the 

mixed method can also be deduced from equation 5.36, see [4, 24] for details. The 

above systems equations 5.36,5.37 represent the generalisation of the standard flux 

with harmonic coefficients to general elements with families of schemes defined by 

quadrature point q.
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5

3

Figure 5.14: Control-volume faces, Flux and pressure continuity positions at a, b, c, 
d, e, f, g and h shown on a Pyramid element. (quadrature q — 1)

5.4.3 C o n tinuous F lu x  in th e  P y ra m id  E lem en t

The pyramid element is comprised of 4 sub-hexahedra and 1 octahedral sub-cell, 

where 4 hexahedral sub-cells belong to the 4 base node control volumes and the 

octahedral sub-cell belongs to the summit node control volume, figure 5.14. Unlike 

hexahedra, tetrahedral and prism elements where each node view inside the respective 

element sees three interior subcell faces, for the pyramid, the summit node view sees 

four subcell faces, figure 5.14. Hence, construction of the scheme on a pyramid element 

needs special consideration.

There are eight interfaces inside each pyramid element and there is one flux cor­

responding to each interface. For construction of the scheme in 3D a face potential 

is introduced at each interface (total of 8) to impose continuity in pressure. The face 

potentials along with the vertex potentials are used to define potential gradients in­

side each of the sub-control volumes in the pyramid which are used to define velocity 

at each interface. Velocities are then used to approximate flux at each interface. For 

the base vertex subcells, flux continuity is imposed across each subinterface between 

control volumes as above where
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v i ' n a =  v2 - na v3 -nc =  v4 - nc
(5.38)

v2 -nb =  v3 -nb Va ■ nd = Vi ■ nd 

The special case of the scheme is illustrated here for the summit node and subcell 

for quadrature q = 1, and is generalized for any continuity position on each interface.

For region 5 (where we have 4 interfaces around the node 5) we have one extra 

degree of freedom. In order to treat this case we couple three interfaces at a time 

to the summit node and obtain equations similar to equation 5.38 with a total of 4 

sets of equations involving node 5, where the interfaces attached to node 5 involve 

(in anti-clockwise direction) h-e-f, e-f-g, f-g-h and g-h-e, figure 5.14. The normal 

fluxes across the interfaces are based on velocities at points a, 6, c, d, e, / ,  g and h. 

The constraint equations at these points are:

vi ■ne =  v5 -ne v3 -ng =  v5 -ng 

Vi • Tif — v§ • tTj vi  • nh =  v5 • nh 

Equations 5.38 and 5.39 then define 8 algebraic flux continuity equations for the 

interface pressures. These equations can then be expressed in the form of equation 

5.34 or equation 5.36. Thus three sub-cell fluxes are obtained with respect to each base 

vertex and four sub-cell fluxes with respect to the summit vertex. Consistency of the

formulation is verified below, using a linear test case with homogeneous permeability

tensor and using uniform and perturbed pyramid grid elements, exact values for 

numerical pressure and velocities are obtained.

5.5 Numerical Convergence Study

The aim of this study is to test the effect of quadrature point on convergence. 

While, numerical convergence tests in transform space have previously been per­

formed by Edwards and Rogers in [3] and Eigestad et al. in [82] presents numerical 

convergence of the default member of the family of flux-continuous schemes considered
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here i.e for q=l. A study of numerical convergence for the family of flux-continuous 

schemes in terms of a range of quadrature points was first presented in [5] and forms 

part of this work and is presented here. In this section firstly, a physical space nu­

merical convergence study is presented for structured and unstructured grids in 2D 

followed by physical space numerical convergence study in 3D, for a series of test 

cases.

In all test cases the permeability field remains fixed under grid refinement, ensuring 

that each problem is invariant with respect to each grid level for the convergence study.

(b) (d)

Figure 5.15: Different subdomains with internal discontinuous permeabilities. 3(a) 
Subdomain with discontinuity along 9 =  27r/3. 3(b) Subdomain with discontinuity 
along 9 = 7r /3 . 3 ( c ) Subdomain with discontinuity along 9 = n/2. 3(d) Subdomain 
with discontinuity along 9 = 27r/3.

5.5.1 Convergence results on 2D structured grids (physical 

space

In this section convergence study results for the family of flux-continuous schemes 

for a range of quadrature points are presented (q = 0.1,0.5,0.287,1). where q =  0.287 

is the Gauss quadrature point. A numerical convergence study is performed for each of 

the domains illustrated in figure 5.15 where subdomain K \.. .K 4 indicates the variation 

in the permeability field. The different types of grid used are shown in figure 5.16. 

The Discrete L2 norm is used to investigate pressure and velocity errors, which is
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defined for pressure and velocity as

(5.40)

(5.41)

Here, /  =  — v  • n  (where v  =  KV</>) is the edge normal flow velocity. Subscript h 

refers to numerical solution. Further Vi is the volume of the grid cell z,and Qj is the

refinement levels used for the L2 norm calculation were 8x8 , 16x16, 32x32, and 64x64 

and were used for all test cases in 2D. In each case dirichlet boundary conditions are 

prescribed via the exact solutions.

The first example involves uniform flow over a rectangular domain. The medium 

is divided into two parts as shown is figure 5.17(a). The permeability field is discon­

tinuous and permeability ratio is 1/10 across the medium discontinuity. The discon-

The diagonal permeability tensor K  =  cl, where c =  10 for rx  +  sy < 0 and c =  1 

for rx  +  sy > 0. The numerical solution shown in figure 5.17(b) was obtained using 

a grid aligned along the discontinuity. The numerical solution was found to be exact 

for any quadrature point q, which is a result of using piecewise linear variation in 

pressure over each subcell and exact (physical space) geometry representation in the 

piecewise constant fluxes.

volume associated with edge j  (where two cells are separated by edge j) .  The grid

CASE 1:

tinuity is aligned along the line rx  + sy = 0, where r = tan(7r /3 ) / ( l  -I- tan(ir/3)) and 

s = 1/(1 +  tan(7r /3)).The pressure field is piecewise linear and varies as

rx  +  sy , rx  +  sy < 0 , 

10(rx + sy), rx  +  sy > 0 .
(5.42)

V
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Triangular M««h 128 •lament* Cartesian Maari 16x16

(a)

(d)

Figure 5.16: Different girds used to test numerical cases, (a) Unstructured transfinite 
Mesh aligned along 9 = 27r/3 discontinuity, (b) Cartesian Mesh, (c) Transfinite mesh 
aligned along 6 =  27r/3 discontinuity (d) Zigzag grid honoring internal discontinuity.

Similar cases were tested by Edwards and Rogers [3] and Eigestad et al. [82]. 

Edwards and Rogers [3] obtained the exact solution for a discontinuous medium 

when a uniform parallelogram grid is used (where T  is exact). Eigestad et al. used a 

random grid and obtained the exact solution in physical space (for q = 1).

The aim of this study is to investigate convergence of flux-continuous schemes and 

exploit the flexibility in quadrature point by testing for a possible optimal quadra­

ture point of the family of schemes. The above example shows that uniform linear
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(a) (b)

Figure 5.17: CASE 1: (a) Medium discontinuity, (b) Exact Numerical pressure - 
Physical space.

or piecewise linear flows are reproduced exactly by the numerical scheme for any 

quadrature point consistent with the piecewise linear approximation. The following 

numerical examples test the numerical convergence of the family of flux-continuous 

schemes for a range of quadratures for more challenging examples where an exact 

solution is available and where the scheme cannot obtain an exact solution.

CASE 2:

Kl Kr

Figure 5.18: Discontinuous Tensor field

This example is taken from Edwards and Rogers [3]. In this case the pressure field 

is piecewise quadratically varying over the domain shown in figure 5.18. The domain



66

Figure 5.19: CASE 2: (a) Numerical Pressure Solution, (b)Convergence of Pres­
sure with variable quadrature points, (c) Velocity convergence of velocity along X 
direction, (d) Velocity convergence of velocity along Y direction.

discontinuity is aligned along the line x = 1/2, and the analytical solution is given by

cix2 +  dm2, x < 1/2,
f a y )  = < ' ’

ar +  brx +  crx  -(- dry , x > 1/2,
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[ (  50 0 \
, x < 1/ 2,

V O  1 /
K  = I )  (

/ 1 0 \
I I , x  >  1/2,

\  0 10 /

Oi =  K n \ r / K i i \ i ,

(5 =  K 2 2 \i / K 2 2 \i ,

CLy --- 1 ^

/  =  4 o r / ( ( a - 2 ) / ? + l ) ,

br = ( / ? - ! ) / ,

Cr =  f ,

d r  Ct-TTh 17- /  221 r* ?

Ci o t f d c r ,

d i  =  d r  (5.43)

The imposed top boundary flux is also discontinuous at x  =  1/2, resulting in a

discontinuous tangential flux across the domain. The computed numerical solution 

and the plots showing L2 norm of pressure and velocity errors for the quadrature range 

(0 < q < 1) are shown in figure 5.19. For this test case the best numerical convergence 

for pressure was obtained for quadrature q =  0.1. The numerical convergence rates

for pressure and velocity for this case are presented in table 5.1.

Quadrature q <f>h Convergence fhx Convergence fh„ Convergence fh  Convergence
q = 0.1 0 (h 2) 0(ft177) 0 ( h lm ) 0 (h l m )
q = 0.5 Oifi1™) 0 ( h 177) 0{h  ) 0 {h lm )
q = l 0 {h lm ) 0 ( h lm ) 0 (h 1Ti)

Table 5.1: Numerical Convergence rates for Pressure and Velocity: CASE 2.

The next cases test the effect of discontinuous permeability with a corner in the
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Ptot of 12 Pressure i

(a) (b)

I s

45

(c) (d )

Figure 5.20: CASE 3: (a) Numerical Pressure Solution, (b) Convergence of Pres­
sure with variable quadrature points, (c) Convergence of Velocity along X direction, 
(d)Convergence of Velocity along Y direction.

field upon convergence. In each of the following test case (case 3-7) taken from 

Eigestad et al. [82] and B.Riviere [41] the problem involves a rectangular domain with 

discontinuous permeability variation as indicated in figure 5.15.The exact solution in 

each case takes the form

0(r, 9) — ra(aiSin(aO) +  biCos(a9)) (5.44)

Difference between problems are in terms of strength of the coefficients, permeability 

tensor and orientation, which also determine the level of difficulty in each case.
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CASE 3:

For this case analytical pressure solution is given by equation 5.44 and the domain 

discontinuity shown in figure 5.15(c) has an internal angle 6 = 7t/2. The permeability 

tensor is given as Ki =  kj.  where ki is a scalar, for i = 1, ...,4, taking values k\ =  

5, k3 =  ki and k2 = l , k 4 = ki. Cartesian and Zig-zag grids shown in figure 5.16(b), 

5.16(d) were used to test this problem. The coefficients that describe the analytical 

solution are given by

a  =  0.53544095,

fll =  0.44721360, &i =  2.33333333,

a2 = -0.74535599, b2 = 1.0,

a3 =  -0.94411759, b3 = 0.5555556,

a4 = -2.40170264, 64 =  -0.481481481. (5.45)

The L 2 norm of pressure and velocity errors along with the numerical pressure 

solution obtained on a Cartesian grid are shown in figure 5.20. From the numerical 

convergence rates for pressure and velocity (for all quadrature points q) shown in 

table 5.2, it can be seen that the best numerical convergence of pressure and velocity 

on Cartesian grid was obtained for quadrature q = 0.1, where numerical pressure 

converges in the discrete L 2 norm with order /i1-0653 and numerical velocity ( fx, f y) 

converges with order h0109 and h012 respectively.

Quadrature q (j>h Convergence f hl Convergence fhv Convergence fh Convergence
q = 0.1 0 ( h im '6b) 0 (h ulm) 0 (h ul2) 0 (h 011)
q = 0.5 0 ( h im ) O(hom ) O(homl) 0 (h uml)
q = l 0 ( h 10 ) 0 (^ UU68) 0 (h umi) 0 (h uu“ )

Table 5.2: Numerical Convergence rates for Pressure and Velocity: CASE 3.
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L. Pressure snor Normal Valodty error

(a) (b)

Figure 5.21: CASE 3: (a) Numerical Pressure convergence with variable quadrature, 
(b) Numerical velocity convergence with variable quadrature.

Using Zigzag/Chevron grids shown in figure 5.16(d) the numerical pressure con­

verges with order /i109 and numerical velocity converges with order h0-205 for quadra­

ture q =  0.1 as shown in table 5.3. The plots of L 2 norm for numerical pressure and 

velocity errors for different quadrature points using Zig-zag grids are shown in figure 

5.21.

Quadrature q <j>h Convergence fh Convergence
q = 0.1 0 ( h im ) 0 (/i°'2U5)
q = 0.5 0 ( h 1V2) O(fe0186)
q = 1 0 ( h LU7) 0 0 C

n

Table 5.3: Numerical Convergence rates for Pressure and Velocity on Zig-zag grids: 
CASE 3

CASE 4:

For this case analytical solution for pressure is again given by equation 5.44 and 

the domain discontinuity is shown in figure 5.15(c) with an internal angle 6 = 7t/2. 

The permeability tensor is given by Ki =  kj.  where ki is a scalar, for i = 1,...,4, 

taking values ki = 100, k^ = ki and k2 = 1,^4  =  k±. This problem is tougher
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Figure 5.22: CASE 4: (a)Numerical Pressure solution, (b) Numerical convergence 
of Pressure with variable quadrature points, (c) Numerical convergence of Velocity 
along X direction, (d) Numerical convergence of Velocity along Y direction.

(a)
Lj Normal Vwoot V emx

compared to the previous one as there is a large variation in permeability across the 

discontinuity and a  value is small comparatively. The problem is tested on Cartesian 

as well as Zig-zag grids, shown in figure 5.16(b),5.16(d). The coefficients that describe
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Figure 5.23: CASE 4: (a) Numerical convergence of Pressure with variable quadra­
ture. (b) Numerical Convergence of Velocity with variable quadrature.

the analytical solution are given by

a  =  0.126902097221,

a i  =  0 . 1,

a2 =  —9.603960396, 

a3 = -0.4803548672, 

aA = 7.701564882,

h  =  1.0 , 

b2 = 2.960396040,

63 =  -0.8827565925,

64 =  -6.456461752. (5.46)

L2 norm of pressure and velocity errors obtained on a Cartesian grid are shown in 

figure 5.22. The best numerical convergence for pressure and velocity on a Cartesian 

grid was again obtained for quadrature q = 0 .1, where numerical pressure solution 

converges in the discrete L2 norm with order h0 326 and numerical velocity ( /x, f y) 

were found to be diverging. For these cases pressure converges with exponent a  <  1, 

since velocity is proportional to pressure gradient, therefore velocity can be expected 

to have a negative exponent. The divergence of velocity is also observed by Eigestad 

et al. [82], The convergence rate of pressure for q = 0.5 and q = 1 is of the order of 

h0-194 anc[ fo0.166 respectively. Convergence rates are also shown in table 5.4
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Quadrature q (f)h Convergence fh Convergence
q = 0.1 0 (h u™) Diverge
q = 0.5 0 (f t°194) Diverge
q = 1 0 (h Diverge

Table 5.4: Numerical Convergence rates for Pressure and Velocity on Cartesian Grids: 
CASE 4

Quadrature q (j)h Convergence fh Convergence
q = 0.1 Diverge
q = 0.5 0 (h a:i*b) Diverge
q = l

00CMdo

Diverge

Table 5.5: Numerical Convergence rates for Pressure and Velocity on Zig-zag grids : 
CASE 4

Using Zigzag/chevron grids (shown in figure 5.15(d)) numerical pressure and ve­

locity convergence rates are shown in table 5.5. Improved convergence is seen for 

quadrature q =  0.1 with order /i102, showing a clear advantage in pressure conver­

gence when using q =  0.1. However, velocity diverges. As before, such a diverging 

behavior of velocity is consistent with Eigestad et al. [82]. Figure 5.23 shows the plots 

of numerical pressure and velocity convergence with variable quadrature points on 

Zig-zag grids. The pressure convergence results known for this test case from Eiges­

tad et al. [82] is of the order of h0,22.

CASE 5:

In this case analytical solution is given by equation 5.44 and the domain disconti­

nuity is along the line 27t/3, shown in figure 5.15(a). The domain is divided into two 

parts with the permeability tensor Ki =  kj.  where ki is a scalar, for i =  1,2 taking 

values ki = 100 and &2 =  1. The grid used to test this case was aligned along the 

discontinuity. The coefficients that describe the analytical solution are given by
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’ 0.2887

(a) (b)

Figure 5.24: CASE 5: (a) Numerical Pressure solution, (b) Numerical Pressure 
convergence with variable quadrature.

Figure 5.25: CASE 6: (a) Numerical pressure on the given domain, (b) Convergence 
of Numerical pressure for different quadrature points.

a  = 0.75472745,

ai =  E0, b\ = E00995049,

a2 = 100.980198, b2 = 1.99990197.

(5.47)
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For this test case numerical convergence of pressure was obtained to be the order 

of h1523, for quadrature point q = 0.1 on the grid aligned along the discontinuity. 

The pressure convergence for different quadrature point is shown in figure 5.24. The 

convergence for velocity was found to be of the order of h0'75. On using the gauss 

quadrature point q = 0.2887 the convergence rate of pressure was found to be of the 

order of him . It was found that gauss quadrature points sometimes perform better 

in the case of smoother problems.

CASE 6:

Here the analytical solution is given by equation 5.44 and the domain discontinuity 

is along the line 27r/3 as shown in figure 5.15(d) with the permeability tensor Ki =  kj. 

where ki is a scalar, for 1,..., 4, taking values k\ =  100, ks = k\ and k2 = l , k A = kA. 

The grids used to test this case were aligned along the discontinuity. The coefficients 

tha t describe the analytical solution are given by

a  =  0.13448835,

&i =  1.0,

a2 =  4.90138222, 

a3 =  -0.85392910, 

aA = -9.94074425,

&i =  0.14177447, 

b2 = -13.3407815, 

b3 = -0.53935618, 

bA = 10.1578346. (5.48)

The plots in figure 5.25(a) and figure 5.25(b) shows the numerical pressure solution 

and pressure convergence respectively for this test case. The pressure convergence 

for this test case using the grid aligned along the discontinuity was found to be of 

the order of h1'23 for quadrature q = 0.1. The reported convergence of pressure for 

this test case in [82] was of the order of h0-24. This result again demonstrates that a 

significant improvement in convergence is obtained by exploiting the family of schemes
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and using the quadrature point q = 0.1. This case is not as smooth as the previous 

one and on using gauss quadrature point q = 0.2887 the convergence of pressure for 

this case was found to be of the order of h0A3 which is less than the convergence rate 

found for q =0.1.

CASE 7:

Numerical Pressure values on the given domain Plot o< L21 ; No o! control Volume* with alpha * 0.51671

Figure 5.26: CASE 7: (a) Numerical Pressure solution. (b)Numerical Convergence 
of Pressure with variable quadrature points.

Here the analytical solution for pressure is also given by equation 5.44 and the 

domain discontinuity is along the line 7r/3 as shown in figure 5.15(b) with the perme­

ability tensor Kj =  kj., where ki is a scalar, for 1 , ,  4, taking values k\ = 6, k% = ki 

and k2 = 1, k4 = k\. The grids used to test this case were aligned along the disconti-
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nuity. The coefficients tha t describe the analytical solution are given by 

a  =  0.51671199,

ai = 1.0, bi = 0.27735010,

a2 =  1.71428571, b2 = -0.91129318,

a3 =  0.32944606, b3 = -0.98406726,

aA = -0.820074971, bA =  -1.75974652. (5.49)

The plots in figure 5.26(a) and figure 5.26(b) shows the numerical pressure solution 

and pressure convergence respectively for this test case. The pressure convergence for 

this test case with the grid aligned along the discontinuity was of the order of /i1051 

for quadrature q = 0.1 and the velocity convergence was found to be of the order of

/ i0 5 2 .

A series of other numerical examples were also tested on Cartesian and zigzag grids 

with different values of a , a* and bi over the domains shown in figure 5.15(b),5.15(c) 

and 5.15(d). All show the same trend, i.e. for quadrature point q = 0.1 convergence 

results are the best compared to other quadrature points.

5.5.2 Convergence resu lts on unstructured grids

In this section convergence rates for the family of flux-continuous schemes is pre­

sented for tests performed on unstructured grids. Numerical convergence for the 

family of schemes on unstructured grids was also presented by the author in [5, 7]. 

The formulation of the family of schemes on unstructured grids is cell-vertex based 

[5, 7] (as explained in section 5.3.5),therefore for cases with internal discontinuities, 

boundary aligned grids (BAG) [5, 52] are used for numerical convergence (for details 

on BAG see appendix A). The convergence is measured in discrete L2 norm as shown 

in equation 5.40,5.41 for both pressure and normal velocities.

CASE 8:
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Numerical Pressure Solution
Triangular Mesh 128 elements

(a) (b)

T ria n g u la r  M e s h  3 2  e le m e n ts

(c)

Figure 5.27: CASE 8:(a) Unstructured Grid. (b) Exact Numerical Solution,
(c)Control-volume aligned triangular grid.

This test case is taken from Edwards and Rogers [3]. For this case the permeability 

is discontinuous with a domain discontinuity similar to the one shown in CASE 1 and 

is given along the line x + y/2 = 3/4. The grid used for solving the unstructured case 

is control-volume boundary aligned as shown in figure 5.27(c). The pressure field is 

piecewise linear and is given by
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200/3(z +  y/2), x + y / 2 <  3/4, 

2/3(z +  y/2)  +  99/2, x + y / 2 >  3/4,
(5.50)

A full discontinuous permeability tensor is defined as

1 - 1 /4  \
x + y / 3 <  3/4,

- 1 /4  1/2 j

100 -1 00 /4  \
, x  + y /2  > 3/4,

-1 0 0 /4  100/2 I

On solving this problem on a unstructured grid with 128 elements shown in figure 

5.27(a) the exact solution shown in figure 5.27(b) was obtained using the physical 

space formulation for all quadrature points. This verifies that the family of flux- 

continuous schemes is equally applicable to unstructured grids and is exact for linear 

(or piecewise linear) problems.

The rest of the test cases are presented on smooth and rough unstructured grids 

as shown in figure 5.28. Rough grids are formed by introducing an 0(h)  random 

perturbation in smooth grids. The grid refinement levels for L2 norm calculation are 

from 16x16 to 128x128.

CASE 9:

In this test case the analytical solution is given by

(j)(x, y) = cosh('Kx)cosh('Ky) (5.51)

on a square domain [0,l]x[0,l] with homogeneous permeability tensor. The Con­

vergence of velocity and pressure was found to be of the order of 0 ( /i1-5) and 0 (h 2) 

respectively (figure 5.29) using smooth grid as shown in figure 5.28(a). Convergence 

of velocity was found to be order of 0 ( h l ) on rough grids (figure 5.28(b)), shown in 

figure 5.29. Pressure and velocity convergence rates (for different quadrature points)
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(a) (b) ( c )

(d) (e) (f)

Figure 5.28: (a) Regular Triangular mesh, (b) Perturb Triangular mesh, (c) Control- 
volume aligned Triangular mesh for discontinuity at x =  0.5. (d) Control-volume 
aligned Triangular mesh for discontinuity at x =  0.5 and y =  0.5. (e) Control-volume 
aligned perturbed mesh, (f) Control-volume aligned perturbed mesh.
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Figure 5.29: CASE 9: (a) Pressure convergence, (b) Velocity Convergence
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Quadrature q 4>h Convergence fh  Convergence
q = 0.1 0(ftlil88) 0 ( h im9)
q = 0.5 0(ftli)88) 0 (/i1463)
q = 1 0 ( h l M ) 0 {h 1A7b)

Table 5.6: Numerical Convergence rates for Pressure and Velocity on smooth grids : 
CASE 9

Quadrature q 4>h Convergence fh  Convergence
q = 0.1 Of*1-948) 0 ( h lm l)
q = 0.5 o(h2mT) 0 ( h UMi)
q = 1 0 (/i1S158) 0 (h um2)

Table 5.7: Numerical Convergence rates for Pressure and Velocity on rough grids : 
CASE 9

for this test case are also shown in table 5.6 and 5.7 respectively for smooth and rough 

grids.

CASE 10:

This test case is similar to CASE 2 presented before, this case is tested on un­

structured grids shown in figure 5.28(c) and 5.28(f). The best numerical convergence 

of pressure and velocity for uniform triangular grids (shown in figure 5.28(c)) was 

found to be 0 (/i3073) and 0 ( /i1-95) respectively for quadrature q =  0.1, figure 5.30. 

However this is a non-uniform refinement with h reduced significantly at the bound­

ary due to the boundary aligned grid. On randomly perturbed grid (shown in figure 

5.28(f)) numerical convergence of pressure and velocity falls to 0 ( h L33) and 0(h°'97) 

respectively for quadrature q =  0.1,figure 5.30. The convergence rates in tabular form 

are indicated in table 5.8 and 5.9 for smooth and rough grids respectively.

CASE 11:

The following examples test the numerical convergence of the unstructured scheme 

for the previously defined range of quadrature points applied to a challenging exam­

ples involving a corner point singularity in the field (taken from [41, 82]. The test
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Figure 5.30: CASE 10: (a) Pressure convergence, (b) Velocity Convergence

Quadrature q 4>h Convergence fh Convergence
q = 0.1 0(/z3 073) 0 (/i1949)
q = 0.5 0 (/i248V) 0 ( /P 979)
q = 1 0 (/i2-605) 0 ( /iL995)

Table 5.8: Numerical Convergence rates for Pressure and Velocity on smooth grids 
CASE 10

Quadrature q 4>h Convergence fh Convergence
q = 0.1 0(/P-335) 0 (/i0978)
q = 0.5 0 ( h 1^ 6) 0 (/i1088)
q = l 0(/z1295) 0 (/i1443)

Table 5.9: Numerical Convergence rates for Pressure and Velocity on rough grids 
CASE 10

case is similar to CASE 3 presented on structured quads before. The square domain 

is sub-divided into four sub-domains and permeability tensor is discontinuous across 

each sub-domain boundary. The analytical solution of pressure is given by equation 

5.44. The difference between the problems is in terms of the strength of coefficients 

and permeability tensor. For case with a = 0.5354 best numerical convergence for
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pressure and velocity on uniform triangular grids (shown in figure 5.28(d)) was found 

to be of the order 0 ( h 2a)respectively for quadrature q = 0.1, figure 5.31(a). The 

numerical convergence falls to an order less than 0 {h 2a) for perturbed gird (shown 

in figure 5.28(e)) with best convergence is achieved for quadrature q =  0.1, figure 

5.31(b). We found that for decreasing value of parameter a  the numerical conver­

gence of pressure falls and, for cases with strong discontinuity and smaller value of 

parameter a , numerical velocity start to show diverging behavior. But in general bet­

ter convergence is obtained by using quadrature q =  0.1 which is consistent with the 

results presented on structured quads [5]. This result is also consistent with an earlier 

observation regarding these schemes being more sensitive to cross-flow for q < 1 [20]. 

The convergence results are also shown in table 5.10 and 5.11 for smooth and rough 

grids respectively.

P re ssu re  C o nvergence a  =  =0  5 35 44095  Velocity  C onvergence a  = =0 .53 54 40 95
4 5
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Figure 5.31: CASE 11: (a) Pressure convergence, (b) Velocity Convergence 

CASE 12:

Now, we present a test case on domains involving faults. In this test case a square 

domain with layered permeability field with faults is chosen as shown in figure 5.32(a). 

Boundary conditions are chosen such that pressure is specified at the top and bottom
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Quadrature q 4>h Convergence fh Convergence
q = 0.1 Of/i1025)

Ooo

q = 0.5 0 ( h lua) Of/i1020)
q = l 0 (h ussi) Of/i1-018)

Table 5.10: Numerical Convergence rates for Pressure and Velocity on smooth grids 
: CASE 11

Quadrature q (f>h Convergence fh Convergence
q = 0.1 Of/i1) Of/i0™5)
q = 0.5 Of/i°'sS7) Of/i.0'**77)
q = l Of/i0'983) 0{h axzl)

Table 5.11: Numerical Convergence rates for Pressure and Velocity on rough grids : 
CASE 11

boundary of the domain. No-flow conditions are imposed on left and right boundary 

of the domain.

Initially the domain is mapped with a primal quad mesh as shown in figure 5.32(b). 

Now a secondary mesh is created by joining the cell-centres of the quadrilaterals to 

cell edge mid-points, figure 5.32(c). Now the problem is solved on the secondary grid 

using cell-vertex formulation of the scheme [5] with primal grid forming the boundary 

aligned control-volumes for the secondary grid. The numerical result for this flow 

problem is shown in figure 5.33(b).

This test case demonstrates the capability of the family of schemes to be applicable 

on domains involving faults. It also shows the benefits of cell-vertex formulation.

5.5.3 Sum m ary - 2D R esu lts

The families of physical space flux-continuous schemes are shown to be exact on 

structured and unstructured grids (for all quadrature points) for problems where 

pressure is piecewise linear.

More generally, for the cases involving an interior field singularity where pressure
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Quad m«sh containing 16 mesh elements
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>

0 2 0 6
X

(c) ( d )

Figure 5.32: CASE 12: (a) Layer permeability in a domain with fault, (b) Quad mesh 
mapping faulted domain, (c) Transformation mesh formed by joining cell-centres to 
cell edge mid-points. (b)Transformed hybrid mesh.

is expressed in polar form as a function of a it was found that convergence rate 

for pressure and velocity decreases with decreasing a. The numerical experiments 

show that there is a certain inverse proportionality between convergence rate and 

roughness of the coefficients, smoother coefficients tend to yield better convergence, 

as the coefficient of roughness increases the convergence rate decreases. However, 

from the convergence study it is observed that quadrature point q — 0.1 appears to 

be optimal and results in improved convergence compared to other quadrature points 

tested. In particular significant improvement in convergence rates are obtained for
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Numerical Pressure- $

v.n — 0

(a) (b)

Figure 5.33: CASE 12: (a) Specified boundary condition. (b)Numerical solution.

q = 0.1 compared to standard MPFA (q — 1). Similar behavior was also observed in 

one of the earlier papers by Edwards [20], where superconvergence was observed for 

q < 1.

5.6 N u m e ric a l C o n v e rg en ce  o n  3D  G rid s

In this section convergence study results are presented for the family of schemes 

for a range of quadrature points (0 < q < 1) . Similar convergence tests were also 

presented for 3-D formulation of the family of schemes by Pal and Edwards in [25]. 

The convergence rates are measured by discrete L2 norms for both pressures and 

normal velocities,

f h -  f  II =  ~  j

(yj+ + Vj-)
u -  f

1/2

1 /2

E Vhj -  m

(5.52)

Here fh is the discrete flux and fh  refers to the discrete solution, is the volume 

of the cell i and V± are the volumes of the cell separated by edge j .  The simulation
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Figure 5.34: (a) Hexahedra element mesh, (b) Pyramid element mesh, (c) Tetrahedra 
element mesh, (d) Prism element mesh

domain is [0,l]x[0,l]x[0,1] and hence the total volume of simulated domain in all the 

test cases is unity.

The 3-D formulation described here is cell-vertex based as for unstructured grids, 

therefore cases with internal discontinuities requires boundary aligned grids [5, 7, 52] 

for testing numerical convergence (see appendix A). The convergence test is carried 

out using different types of grids shown in figure 5.34 and 5.35.

CASE 1:

First we test the convergence of the numerical solution where the analytical so­

lution is given by (p(x,y,z) = x + y + z + 1 on the domain [0,l]x[0,l]x[0,l] with 

homogeneous permeability tensor K  =  I. Dirichlet conditions boundary conditions 

are implemented by specifying solution at the boundary nodes. The numerical solu­

tion was found to be exact for pressure (shown in figure 5.36) and velocity for all the 

grids shown in figure 5.34 and 5.35.



Figure 5.35: (a) Hexahedra element perturbed mesh, (b) Perturbed pyramid element 
mesh, (c) Perturbed prism element mesh, (d) Perturbed tetrahedral element mesh.

Numerical Pressure

0 0

Figure 5.36: Numerical Pressure solution shown in slice: 3D-Case 1.

CASE 2:

This test case is taken from [125] here the exact pressure solution is given as:
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(f>(x,y,z) =  sin{V2'Kx)sinh{ny)sinh{nz)  (5.53)

and the medium is chosen to be isotropic and homogeneous. Convergence is 

considered for both pressure and normal velocity. Dirichlet boundary conditions are 

prescribed via exact solution. The numerical pressure solution is shown in figure 5.37.

Numerical Pressure

Figure 5.37: Numerical Pressure solution shown in slice: 3D-Case 2.

Convergence tests were performed using the uniform grids shown in figure 5.34. 

In general Convergence of pressure is found to be of 0 (/i2), figure 5.38. Super conver­

gence in pressure with 0 (/i4) was seen for quadrature q =  0.5 in case of a hexahedral 

mesh, figure 5.38(a). This behavior illustrating increased accuracy (super conver­

gence) is consistent with the property reported in [3] for constant homogeneous tensor. 

Convergence of velocity was also found to be of 0 {h 2) as expected.

CASE 3:

This case involves the same problem as case 2, now using slightly perturbed grids 

as shown in figure 5.35. The convergence of velocity and pressure for all quadrature 

points for this case is shown in figure 5.39 and 5.40. The convergence of pressure was 

found to be of 0 (h 2) and velocity convergence was found to drop to 0 { h l ) for q = 0.1.
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Figure 5.38: 3D-CASE 2: (a) Pressure Convergence on Hexahedral Mesh, (b) Velocity 
Convergence on Tetrahedral mesh, (c) Pressure Convergence on Prism Mesh, (d) 
Velocity Convergence on Pyramid Mesh.

In general convergence in pressure was found to improve with use of quadrature 

q = 0.1 and velocity convergence was found best for q = 1, figure 5.39.

CASE 4:

This test case was first presented in [25]. This case involves a discontinuity in the 

medium where the medium is divided into two subdomains at x =  0.5. The analytical 

solution for pressure in the two subdomains is given by:

=  (2x — l ) 2 +  5(2x — l ) i /+  5(2x — 1 )2: 

(f)R = {2x — l )2 +  (2x — l)y  +  (2x — l)z

0.0 < x < 0.5 (5.54) 

0.5 <  x < 1.0
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3 Convergence on Slightly Perturbed Hexahedral Mesh Velocity Convergence on Slightly Perturbed Hexaheral Mesh
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Figure 5.39: 3D-CASE 3: (a) Pressure Convergence on Perturbed Hexahedral Mesh, 
(b) Velocity Convergence on Perturbed Hexahedral mesh, (c) Pressure Convergence 
on Perturbed Tetrahedral Mesh, (d) Velocity Convergence on Perturbed Tetrahedral 
Mesh.

The permeability tensor is given as:

K r  =

K r =

1 0 0 

0 1 0 

0 0 1

5 4 4 

4 5 4 

4 4 5

0.0 < x < 0.5 (5.55)

0.5 < x < 1.0

This problem is tested on a hexahedral and pyramid element boundary aligned
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Figure 5.40: 3D-CASE 3: (a) Pressure Convergence on Perturbed Prism Mesh, (b) 
Velocity Convergence on Perturbed Prism mesh, (c) Pressure Convergence on Per­
turbed Pyramid Mesh, (d) Velocity Convergence on Perturbed Pyramid Mesh.

grid where the domain discontinuity is aligned with the control-volume [5, 7, 52]. The 

convergence of numerical pressure and velocity for BAG grid with hexahedral element 

is shown in figure 5.41. The convergence of numerical pressure and velocity for BAG 

grid with pyramid elements is shown in figure 5.42. The numerical pressure solution 

is shown in figure 5.43.

In both cases (Hexahedral and Pyramid BAG’s) the convergence of pressure was 

found to be of order slightly greater than 0(h)  with better convergence for q =  0.1. 

The numerical convergence of velocity was found to be close to 0(h).

CASE 5:

This case is taken from [42], the domain is a box [0,l]x[0,l]x[0,1]. The coefficient
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q =  0.1 -Uniform ref, S lo p e  = 0  9 7798

>?
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Figure 5.41: 3D-CASE 4: (a) Pressure Convergence on Boundary Aligned Hex Mesh, 
(b) Velocity Convergence on Boundary Aligned Hex Mesh.

P re ssu re  C onvergence on D iscontim ous Ju m p  C a s e . Pyram id  M esh

- 6 -  q = 1 -Uniform ref, S lop e =1 3084 
q =  0 .5  -Uniform ref. S lope =1 2128 

— q =  0.1 -Uniform ref, S lope =1.3111
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i
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Velocity  C onvergence on O iscontim ous Ju m p  C a s e , P yram id  M esh

q = 1 -Uniform ref. S lop e =1 0336 
q =  0 .5  :-Uniform ref, S lop e =1 0405 
q = 0.1 -Uniform ref, S lope =1 .0263

3 5

Log2(N)

(a> (b)

Figure 5.42: 3D-CASE 4: (a) Pressure Convergence on Boundary Aligned Pyramid 
Mesh, (b) Velocity Convergence on Boundary Aligned Pyramid Mesh.

tensor K = I. Dirichlet boundary conditions are imposed using the exact pressure 

solution given as:

0(z, y, z) = e x p ( - x 2 -  y2 -  z2) (5.56)
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Num erical P re ssu re

0 0

Figure 5.43: 3D-CASE 4: Numerical Pressure shown in slice on a boundary aligned 
Hex Mesh.

Num erical P re ssu re

Y-Axis 0 0 x_Ax|S

Figure 5.44: 3D-CASE 5:Numerical Pressure solution shown in slice on Tetrahedral 
Mesh.

The numerical solution is obtained on the uniform hexahedral mesh of figure 5.34(a). 

The numerical solution is shown in figure 5.44. The numerical convergence for pres-
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Figure 5.45: 3D-CASE 5:(a) Convergence of Numerical Pressure, (b) Convergence of 
Velocity.

sure and velocity for this case using hexahedral mesh is shown in figure 5.45. The 

convergence of pressure was found to be close to order 0 ( h 2). The convergence of 

velocity is also found to be of order 0 ( h 2) for q =  1 whereas for other quadrature 

points convergence of velocity falls to 0(h).

i

Figure 5.46: 3D-CASE 6:(a) Domain meshed with tetrahedral elements, (b) Numer­
ical Pressure Solution.
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CASE 6:

In order to verify the validity of the code on an irregular domain, a linear pressure 

field with isotropic permeability tensor is used to define the test case. The irregular 

domain is meshed with tetrahedral elements as shown in figure 5.46 (a). Exact values 

of pressure and velocity are obtained for all quadrature points. The numerical pressure 

solution is shown in figure 5.46 (b).

(a)

Figure 5.47: 3D-CASE 7: (a) Hex mesh mapping faulted domain, (b) Transformed 
mesh formed by joining cell-centres to cell edge mid-points.

CASE 7:

Finally, we present a test case on domains involving faults, in this test case a 

cubical domain [0-1, 0-1, 0-1] with layered permeability field with faults is chosen, 

similar to the 2D test case (CASE 12) as shown in figure 5.32(a). Similar boundary 

conditions are are implemented with the pressure being specified at (x-z) face of 

the domain for (y =  0) and (y =  1). No-flow conditions are imposed on the other 

boundaries of the cubical domain.

To obtain the numerical solution, approach used here is similar to the one used for 

2D test case (CASE 12). Initially the cubical domain is mapped with a primal mesh 

consisting of hexahedral elements, figure 5.47(a). Now a secondary mesh is created



Figure 5.48: 3D-CASE 7: (a) Numerical Solution shown as a slice at z =  0.5.

by joining the cell-centres of the hexahedra to cell edge mid-points resulting in a 

control-volume boundary aligned mesh consisting of hexahedra and prims elements, 

figure 5.37(b). Now the problem is solved on the secondary grid using cell-vertex 

formulation of the scheme [5] with primal grid forming the boundary aligned control- 

volumes for the secondary grid. The numerical pressure solution is shown as a slice at 

z =  0.5 for this flow problem in figure 5.48. The numerical pressure solution resembles 

the numerical solution obtained for 2D case (CASE 12), figure 5.33(b).

This test case demonstrates the capability of the family of schemes to be ap­

plicable on domains involving faults in 3D with use of mixed grids (hexahedra and 

prims elements). The test case also demonstrates the benefit of formulating family of 

schemes on different element types in 3D, thereby giving flexibility in application of 

the schemes. Last but not the least this test case also shows the benefits of cell-vertex 

formulation.

5.6.1 S um m ary  3-D R e su lts

The family of flux-continuous finite-volume schemes is presented for different el­

ement types including Hexahedra, Prisms, Tetrahedra and Pyramid elements. The 

scheme is found to be exact for all quadrature points g, for cases where pressure is 

linear and the medium is isotropic and homogeneous. Use of quadrature parame­
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terization is explored for 3D grids. Benefits of using different quadrature types are 

also noted with improved convergence behavior in cases including discontinuous coef­

ficients. Super convergence is also observed for one of the test cases with quadrature 

q =  0.5. Use of quadrature q = 0.1 in 3D shows improved convergence behavior 

consistent with that observed previously in 2-D [5].
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Chapter 6 

Positive Definite Pressure 

Equation D iscretization

6.1 Introduction

As stated in the previous chapter, formulation of the family of flux-continuous 

finite-volume schemes in physical space leads to a discretization matrix which is non- 

symmetric in the general case for both quadrilateral grids and triangular grids. How­

ever, an alternative formulations for the family of schemes that yield a symmetric 

positive definite (SPD) discrete matrix have been derived in transform space [3]. 

Where, a local piece-wise constant general-tensor (T) approximation is introduced 

over the cell or control-volume [3], [56] for structured grids.

Here, we present another family of schemes which are formed when introducing 

piece-wise constant general-tensor approximations over the subcells of each control- 

volume. These schemes were initially presented in [4, 22, 23], where the schemes were 

developed for structured and unstructured grids and were shown to be SPD for any 

grid. These formulations achieve SPD discretization by introduction of additional 

approximation in geometry. Further details of the material in this chapter are given 

in [24, 67].
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This chapter presents a convergence study of the locally conservative sub-cell 

based flux-continuous formulations with focus on both, the effect of the local sub-cell 

tensor approximation and the effect of different quadrature rules [5]. A comparison 

of the sub-cell family of flux-continuous schemes, with physical and control-volume 

transform space formulations of the family schemes is also presented, with the help of 

numerical convergence tests. In this study the sub-cell schemes are formulated with 

respect to cell-centered flow and rock variables where control-volumes are the primal 

quadrilateral grid cells. The base sub-cell schemes yield a discretization matrix which 

is symmetric positive definite. The relationship between the new formulations and 

earlier flux continuous schemes is given.

This chapter is organized as follows: Section 6.2 discusses physical space formula­

tion of the scheme and loss of symmetry for the physical space formulation in general 

case. General positive definite conditions are summarized in section 6.3. Subcell ten­

sor approximations are presented in section 6.4. The subcell family of flux-continuous 

schemes is presented in section 6.5. A comparison between physical, transform and 

subcell transform space formulations of the family of scheme is presented in section

6.6, with the help of numerical convergence tests for a range of quadrature points. A 

summary follows in section 6.7.

6.2 Loss of Sym m etry in Physical  Space Formula­

tion

Following the discussion from previous chapter, for a general quadrilateral cell of 

arbitrary distortion the local variation in geometry will mean that the local general 

tensor T  will vary according to local spatial position in the cell. Referring again to 

the example cell in figure 5.7(a) in general

^12Ivy 7  ̂ -̂ 1215 (6 .1)



which is the source of loss of symmetry in the local subcell flux matrix [22, 67] and 

consequent loss in the discrete matrix of the physical space formulation. The effect 

on discretization is discussed below.

6.2.1 Physical-Space Flux: Inverse Tensor Form

In this section, the physical space flux is now derived in an alternative form in­

volving potential differences between nodes [6, 4] and follow the analysis presented 

in [67]. We return to the physical space flux of equation 5.17 expressed in terms of 

potential differences between interface pressures and nodal pressures, for any quadra­

ture point on the interface, and reformulate the flux continuity conditions in terms 

of the subcell tensors as

{Tr \ F s ) = - ( * * " * > ,  c m  ) =  - ( * ' * * ) .
F w  4>W ~  01 F e  <f>E ~  02

(T . ) - i ( ) =  _ ( *  -  fcr )f ( r 4 ) _1( FN )  =  _ { <PN - t * ) (g 2)

F e  03 — 0J5 F w  04 — 0W

where fluxes are grouped according to subcell numbers (general-tensor superfixes) 

that are in common and equation 6.2 is an equivalent form of equation 5.17. The 

physical space tensor approximations belonging to each subcell are given below

T l / HIS 12 IS T 2 =Tn 11Is Tn 11Is

t 12\1\w T22
11 1 w

Tn\ 3
1N Tn\ 3

N

Ti2 |3 1E t 22\31E

T 1 12 rp  12
A l l s  1 2 1 S

T  |2 T  |2 
j-12\E 122\E

t 3 = | ~ " ,j;  | ,  r 4 =  | Tu l"  Tl21"  | (6.3)
Tvi\W -̂ 221 w

It is important to note that the tensor approximations resulting from physical 

space resolution are not generally symmetric unless the cell is a square, rectangle or 

a parallelogram. With T^2 = T i2\s and T2\  =  T12|^  then by equation 6.1 T12 ^  T21 

in the general case. Thus the inverses of the discrete tensors in equation 6.2 are
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not symmetric in the general case. Denoting the inverse of the general-tensor by 

T  = (T)-1 and adding pairs of equations operating on common fluxes, e.g., adding 

the top rows of the first pair of equation sets in equation 6.2 yields

p ;1! +  T f J F s  + T ^ F e  +  f l 2 F w  =  - { < h - 4 > s  +  < t> s- < h )  =  ~ { < h ~  4>i) (6-4)

which eliminates the unknown interface pressure directly. Gathering the other flux 

pairs and expanding in a similar fashion leads to a system of equations that expresses

the fluxes directly in terms of potential differences viz

AF = - A 0 V (6.5)

where

F  =  (Fs, Fe , Fn , Fw )T, A0V =  (021, 032, 034, 04i)T (6.6)

and the flux coefficient matrix is given by

f  T h  +  T ?i 0 r p l   ̂
1 12

f k
rp2 I 7̂ 3 122 "T" 122 T k 0

0 T h T k  +  T k t ?2

0 f i r 2̂2 + T 22 )

The dual-cell flux matrix entries are equal to elements of the general tensor inverse 

corresponding to each subcell component of control-volume. This form of the physical 

space scheme shows that

a) the flux can be written as a linear combination of pressure differences where

F  =  —A '1 A 0V (6.8)

and therefore demonstrates consistency for a constant pressure field for any quadra­

ture point q.

b) the physical-space flux matrix is not generally symmetric.

c) the introduction of a symmetric tensor approximation will lead to a symmetric flux
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matrix and an SPD discrete system [4].

d) a connection between the physical space scheme and the mixed finite element 

method can be made [4, 24].

The fluxes of equation 6.5 embody the full tensor generalization of the harmonic 

mean. This is seen by considering the case of a diagonal tensor. In this case at each 

interface equation 6.4 reduces to

Where for a given interface I and r denotes the respective left and right hand side 

control-volumes. Rearranging equation 6.9 leads directly to the well-known 2-point 

flux approximation with harmonic mean coefficient.

For the base scheme q = 1, the positions of interface pressures from adjacent 

dual-cells will coincide. While each interface pressure is continuous in the direction 

normal to the control-volume face by construction, the interface pressures can be 

discontinuous in the tangential direction (to the interface), i.e. between adjacent 

dual-cells when a full-tensor is present. This crucial step leads to the system being 

locally coupled. Conversely, had the interface pressures been continuous tangentially 

as well as in the normal direction, the system would be globally coupled. Following 

Russell and Wheeler [26], this key observation has been extended to full tensors in 

[4, 24, 67] to unlock the relationship between the physical space MPFA schemes and 

the mixed finite element method.

6.3 Positive Definite Physical Space Family of Schemes

Following the positive definite analysis presented in [67], it can be stated tha t a 

(not necessarily symmetric) matrix Mg is positive definite, if for any non-zero vector



104

(6 .10)

The analysis presented in [67] shows that the schemes are positive definite if the 

symmetric part of the discrete tensor T, i.e. | ( T  +  T*) (superfix t is transpose) is 

positive definite.

Note that this result does not require that the tensor actually be symmetric and 

therefore applies for all quadrature points q and thus the whole family of both physical 

space and transform space schemes, provided that the local discrete tensor is elliptic 

and holds for each subcell energy contribution. A symmetric positive definite (SPD)

scheme will result if each discrete subcell tensor is symmetric (T{2 = T2l) and elliptic
• 2 *T[2 < (TqT^), as constructed in the next sections. The SPD result will then follow 

from the above since the flux matrix equation 6.7 will then be symmetric, leading to 

a symmetric global matrix [4] and ellipticity ensures that equation 6.10 is positive. 

These results also hold for triangles, the cell vertex formulation is treated in [4, 7, 25] 

and cell-centred formulation in [126].

N .3
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(b)

S:.;
1*

► .--'.'—I
T

4

------ t
x  ;

%
■ ■ 1

T ' ^ 2  I  ------- ♦

(C)

Figure 6.1: (a)Physical-space Quads and Piece-wise constant Tensor (quadrature point 
q = 1) (b) Piece-wise constant Tensor over subcells, (c) Sub-cell Transformation to 
Piece-wise constant General Tensor per subcell.
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6.4 Sym m etric Positive D efinite Tensor Approxi­

m ation

Loss of symmetry in the general tensor occurs in the physical space approximation 

due to the variation in general tensor over the control-volume faces, as discussed in the 

above section. An SPD formulation is favored theoretically for proving convergence 

and practically for using simpler more robust solvers. A symmetric positive definite 

(SPD) flux-continuous scheme is obtained if each pair of sub-cell fluxes are defined 

with respect to the same piece-wise constant symmetric general tensor per sub-cell 

[4], figure 6.1 where local numbering refers to the subcells of the control-volume.

This approximation has been shown to lead to a symmetric flux matrix and a 

symmetric positive definite discretization matrix [4]. A symmetric positive definite 

discrete general tensor is a fundamental condition for obtaining a symmetric positive 

discrete matrix. Also use of a unique local SPD tensor in defining local sub-cell fluxes 

mirrors an analytic flux property in the discrete approximation.

Phymcal Space

Figure 6.2: Control-volume Cell-wise Transformation.

The first flux continuous schemes that have been shown to be SPD for quadrilat­

eral meshes, were obtained by using a transform space formulation at the cell level 

where a mean piece-wise constant general-tensor approximation is used over each cell 

(control-volume), figure 6.2, and the general-tensor is approximated at the cell-center 

[3, 53]. However, an SPD formulation is obtained at the expense of an additional ap­
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proximation in geometry, compared to the physical space formulation which maintains 

exact geometry and is therefore more accurate.

While both formulations (cell level and subcell level) ensure that the discrete ma­

trix is SPD, the subcell formulation first proposed by Edwards [4], [22], [23] has im­

portant advantages over the cell-wise transform space formulation proposed in [3, 53]. 

By definition a piecewise constant subcell tensor is a superior approximation of the 

tensor due to allowing a finer scale variation in the tensor geometry, precisely on the 

sub-scale, resulting in four discrete values compared to a single value at the cell level, 

for a given quadrilateral cell. This has important convergence implications and the 

practical outcome in terms of convergence rates is presented in the results section. 

Secondly, unlike the cell-wise approximation, the subcell scheme generalises to un­

structured grids as in [4],[22], [23], allowing any grid combination of quadrilateral and 

/o r triangular cells. In all cases the sub-cell flux continuous schemes are symmetric 

positive definite for any grid type.

One of the key issues in this new formulation is the identification of the appropriate 

approximation of general-tensor T fc, for each subcell k = (1, ..,4).

In principle there are an infinite number of possibilities depending upon the point 

chosen to evaluate the tensor inside the subcell. In each of the following subcell tensor 

approximations the local piecewise constant tensors restore ellipticity and symmetry, 

e.g. instead of equation 6.1 we now have

r 12|V =  T u fs  =  r 12|l (6.11)

Different possible general-tensor approximations have already been presented for tri­

angles and quadrilaterals in [22, 23]. Here we consider three of the many possible 

approximations for quadrilateral grids.
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\

2

(a) ( b )

Figure 6.3: (a)Control-volume sub-cell Centre Tensor (£ =  0.5,77 =  0.5). (b) Control-
volume Sub-cell face Tensor (£ =  1,77 =  1). Quadrilateral primal grid Cell (solid line)
Dual-Cell (dashed line) , Subcell (1,E,M,W). Subcell transform coordinate system 
origin (£ =  77 =  0) corresponds to primal grid Quadrilateral mid-point.

6.4.1 P ositive  D efin ite  - S im ple A verage

The first definition is defined by a simple average of the cross terms with

+  (6 .12)

this has the effect of replacing the local tensor T J by

1(7”' + (7p ‘) (6.13)

(where superfix t denotes transpose) which is one of a number of approximations 

motivated by the general definition of a positive definite matrix (i.e. | ( 4 J +  (A7)*)) 

when the matrix is non-symmetric. While equation 6.12 symmetrizes the tensor for 

any quadrature q, convergence is at best poor.

6.4.2 Local M app ing  - Subcell C en tre  T ensor

The second definition, following [22, 23, 67], is a local mean general-tensor, for 

each local sub-quadrilateral of every primal quadrilateral cell. In this case each sub­

quadrilateral is in effect mapped to a unit cell via a bilinear transformation given
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as

r  =  n ( l  -  0 (1  “  V) +  r 2f  (1 “  V) +  r 3 ^  +  r 4(l -  t?)£ (6.14)

where r  is the position vector of an arbitrary point in the subcell, r* is the position 

vector of the sub-cell corner coordinates and (£,77) are the local unit transformed 

cell coordinates figure 6.3(a). In this definition [22] we choose (£ =  0.5,77 =  0.5) 

corresponding to the mean subcell centre value.

6.4.3 Control-volum e Face Tensor

In the third definition [22, 23, 67], the piece-wise constant tensor is defined with 

respect to the subcell control-volume face geometry, figure 6.3(b). The local general 

tensor is built in a coordinate system directly aligned with the two control-volume 

faces, so that the surface normal vectors are naturally incorporated within the formu­

lation. This formulation is most closely associated with the physical space control- 

volume sub-faces and the approximation corresponds to (£ =  1,77 =  1), equation 

6.14. Thus the tensor is defined by the geometry of the triangle defined by the two 

parent control-volume sub faces i.e. the two faces of the subcell as indicated in figure 

6.3(b). This approximation is robust provided that no pair of control-volume sub-cell 

faces are parallel. If parallel sub-faces are detected the above sub-cell centre tensor 

approximation is used.

It is anticipated that this approximation will be the most successful, since by 

definition it is based entirely on control-volume face geometry.

6.5 Family of Subcell Schemes and Sym m etric Pos­

itive Definite Approxim ation

The family of subcell tensor schemes is readily defined by returning to the physical 

space formulation of the family of schemes (section 4.3.3) and replacing the physical
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space tensors of equation 6.3 with the piecewise constant symmetric positive definite 

subcell tensors defined in the previous section, where

and the tensor superfix corresponds to the local number of the subcell in the dual- 

cell. The subcell schemes follow directly, using equation 6.15 in equations 5.15 - 5.19 

now formed with respect to each local subcell transform space where

Figure 6.4: Subcell Transform Space and General Quadrature Point q

where J(£, 77) =  £ar)p — £prja and (a, ft) are area coordinates of the pressure sub­

triangle in subcell transform space, figure 6.4. The range of quadrature points corre­

spond to the interface pressure points as before and now define a family of schemes 

in sub-cell transform space.

(6.15)

(6.16)

6.5.1 Subcell Tensor S P D  F lux

In [4] it is shown that for the base member of the family of subcell schemes, using 

quadrature q = 1 yields a symmetric positive definite discretization matrix for quadri­
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lateral and triangle meshes. The base (SPD) scheme flux is derived directly below 

in cell centred form. Using (one-sided) control-volume face mid-point quadrature (q 

= 1), (figure 5.7(c)) and repeating the steps of equations 6.2 - 6.7 with equation 6.3 

replaced by equation 6.15 with a piecewise constant symmetric tensor per subcell, the 

flux is given by

AF  =  -A ^ v  (6.17)

where

F =  (Fs, Fjs, Fft, FW)T , A 0V =  (021 ,4>32, <f>u, ^4i)T (6.18)

and in this case the flux coefficient matrix is symmetric, with

''ifx + T ? ! T?2 0 Tfc >
T’2 7̂ 2 i ifi3 m3 n

12 22 "t-  22 12 u

o f 32 #?, +  :?&

\  ^12 0  ^12 ^ 22  +  ^ 22 /

The dual-cell flux matrix entries are now comprised of elements of the inverse 

of the subcell tensors corresponding to each subcell component of control-volume. 

Symmetry of the flux matrix equation 6.19 follows from the symmetry of the subcell 

tensors. In contrast compare the physical-space flux matrix of equation 6.7 with the 

subcell tensor flux matrix equation 6.19. Symmetry of the flux matrix equation 6.19 

leads to a symmetric discretization matrix together with positive definiteness [4].

The subcell fluxes of equations 6.5,6.17 embody the full tensor generalization of 

the harmonic mean. If the tensor is locally diagonal the interface equations reduce 

to the form of equation 6.9 or

2K jK rfa  -  fa) 
h(Kt  +  K r)

recovering the well-known 2-point flux approximation with harmonic mean coefficient.

6.19



6.6 N u m e ric a l R e su lts
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Figure 6.5: (a) Transfinite mesh aligned along 6 = 27t/3 discontinuity, (b) Zig-Zag 
grid honoring internal discontinuity along X and Y axis, (c) Cartesian Perturbed 
Grid honoring discontinuity.

In this section we present a study of the effect of subcell tensor approximation, 

where the tensor is calculated using control-volume face geometry (figure 6.3) and 

quadrature point on convergence of the subcell scheme formulation. A comparison is 

made between the subcell formulation, physical space formulation and the cell-wise 

transformed control-volume scheme. A positive-definite test of the physical space 

and subcell transform space tensors is also conducted for each q considered in the 

convergence study (except for subcell transform space q = 1, which is SPD). For all 

grids the discrete physical space and subcell transform space tensors are found to 

be positive-definite for q = 0.5 and q — 1. We note that the numerical convergence 

study of the family of flux continuous schemes in physical space (presented in previous 

chapter) has shown that quadrature point q = 0.1 yields improved convergence when 

compared to other quadrature points [5].

6.6.1 C onvergence R esu lts

A convergence study is presented for the subcell schemes using the subcell tensor 

approximations described above and range of quadrature points q =  0.1,0.5 and 1. 

The subcell schemes are tested on the grids shown in figure 6.5.

Pressure and velocity convergence are measured using the L2 error norm where
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Lo =
analytical  pnum erical  ^ 2  j  . \ /2

E 7k
(6 .21 )

and Ai is the area of the grid cell i. The grid refinement levels used for the L2 

norm calculation are 4x4, 8x8, 16x16,32x32 and 64x64 for all test cases.

CASE 1: The first test example involves uniform flow over a rectangular domain. 

The pressure field is linear and varies as

(p(x,y) =  i  +  y -  1/2 (6 .22)

The diagonal permeability tensor K = cl, where c =  10. The numerical solution 

of equation 6.22 is obtained on a grid aligned with an interior boundary oriented at 

27r/3 from the horizontal line as shown in figure 6.5 (a). The numerical pressure and

||

Figure 6.6: CASE 1: (a) Plot of L2 error norm for pressure, Cell-wise Transform 
Space, (b) Plot of L2 error norm for pressure, Sub-cell Scheme.

velocity were found to be exact for all quadrature points when using the physical 

space scheme as control-volume geometry is exactly represented and the numerical 

approximation and exact solution are both piecewise linear. Since the tensor fields 

are found to be positive definite for this case (so that discrete operator Mg is positive 

definite and the inverse exists) the exact solution property can be deduced from the 

discrete error equation McCh =  0 where solution error eh = 0(x, y ) — <ph (difference
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between exact and discrete solutions). For the cell-wise transform space scheme, 

convergence of the numerical solution is found to be of the order 0 ( h 2) for pressure 

and velocity [3, 5, 127].

On solving the problem with the subcell scheme, numerical convergence of pressure 

and velocity was found to be of order slightly greater than 0 ( h 2) for all quadrature 

points. The errors obtained in numerical pressure and velocity are found to be much 

less when using the subcell formulation compared to the cell-wise formulation, figure

6.6. This is consistent with using the superior tensor approximation provided by the 

subcell scheme.

CASE 2: Next we test an example on a similar grid to that of the previous 

example, involving a smooth reference solution on a homogeneous medium. The 

analytical solution of pressure is given by

<p{x,y) =  sin(nx)sinh(iry) (6.23)

The permeability tensor is diagonal and is given by K =  cl where c =  1000. Dirichlet

I I

Figure 6.7: CASE 2: (a) Plot of L2 error norm for pressure, Transform Space, (b) 
Plot of L2 error norm for pressure, Sub-cell Scheme.

boundary conditions are applied on the boundary on a square domain. The order 

of convergence of pressure and velocity is found to be close to 0 ( h 2) for the cell- 

wise control-volume transform space formulation. Whereas, for the subcell scheme
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formulation the order of convergence for pressure and velocity is found to be greater 

than 0 (h 2) for all quadrature points. As in the previous test case, the errors are found

quadratic pressure, where the exact solution given by equation 6.24 below. This ex­

ample involves a discontinuous jump in permeability and is therefore more challeng­

ing than the previous examples. The domain shown in figure 6.8 has a permeability 

discontinuity at x  =  0.5 and the permeability tensor is quite distinct in the two sub- 

domains. This numerical example was also presented in previous chapter, where the 

details of coefficients of equation 6.24 can be found.

to be less for the subcell scheme formulation for all quadrature points compared to 

the cell-wise formulation, see figure 6.7.

Kl K r

Figure 6.8: Discontinuous Tensor field

CASE 3: The third numerical example ([3]) involves solving the problem with

y )
CiX2 +  d i y 2, x  < 1/2,

a r  +  br x  +  c r x 2 +  d r y 2 , x  >  1 / 2 ,
(6.24)

K  = <

V

x < 1/2,

x > 1/2,

(6.25)
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0.4

Figure 6.9: CASE 3: (a)Numerical pressure solution using Sub-cell Scheme, (b) 
Numerical Pressure contours.

Quadrature q=0.1 q=0.5 q=l
Physical space scheme 0 (/iL35) 0 ( /i135) O CO A

Subcell transform space scheme 0 (/i°955) 0(/i°'941) O{hom2)
Cell-wise transform space scheme 0 (/tu'3Zi) O(/i0#48) 0 (/iU62B)

Table 6.1: CASE 3: Pressure convergence with variable quadrature q

The above numerical example has been tested previously [3, 5] and a 0 ( h 2) con­

vergence for pressure and close to 0 ( h 2) convergence for velocity has been obtained 

for the CVD scheme in physical space. Here we test this example on a domain shown 

in figure 6.8 using cartesian perturbed grids honoring discontinuity as shown in figure 

6.5(c). The numerical solution of the pressure is shown along with the pressure con­

tours in figure 6.9. Comparison of numerical convergence results for physical space 

scheme, subcell transform space scheme and cell-wise transform space scheme are 

shown in tables 7.1,7.2. Plots of the numerical convergence of pressure and velocity

Quadrature q=0.1 q=0.5 q=l
Physical space scheme 0(h ' ) O 0 (/i° 989)

Subcell transform space scheme O{h0231) 0(h°- 0 ( h u:2b6)
Cell-wise transform space scheme o S3- o CT>

__
y O(homri) O(hom )

Table 6.2: CASE 3: Velocity convergence with variable quadrature q
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for cellwise transform space scheme is shown in figure 6.10. Plots of the numeri­

cal pressure and velocity convergence for subcell transform space and physical space 

schemes are shown in figure 6.11, 6.12 respectively. Convergence rates of pressure 

and velocity convergence are found to improve when using the subcell scheme which 

results in reduced computational error compared to the cell-wise formulation.

Figure 6.10: CASE 3: (a) Pressure Convergence for cell-wise Transform Space for­
mulation. (b) Velocity Convergence for cell-wise Transform Space formulation.

S!

Figure 6.11: CASE 3: (a)Pressure convergence for Sub-cell Scheme formulation, (b) 
Velocity convergence for Sub-cell Scheme formulation.

CASE 4: The following numerical examples test the numerical convergence of 

the sub-cell scheme for the previously defined range of quadrature points applied to 

challenging examples involving a corner point singularity in the field (taken form
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Figure 6.12: CASE 3: (a)Pressure convergence for Physical Space formulation, (b) 
Velocity convergence for Physical Space formulation.

K2 K1

K3 K4

Figure 6.13: CASE 4: (a)Subdomain with discontinuity along 6 = 7r/2. (b) Numerical 
Pressure solution on the domain.

[42, 82]). The domain is divided into four sub-domains and the permeability tensor 

is discontinuous across each subdomain boundary as shown in figure 6.13(a). The 

numerical solutions are computed on zig-zag grids honoring the discontinuities shown 

in figure 6.5 (b). The exact pressure solution is given by

0(r, 6) = ra(aisin(a6) +  biCos(aO)) (6.26)

The difference between problems is in terms of strength of the coefficients and per­

meability tensor, which also determines the level of difficulty in each case. We will 

start with smoother case with higher value of the parameter a  and gradually moving
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Figure 6.14: SUBCASE 4.1:(a)Pressure convergence for cell-wise Transform space 
formulation, (b) Velocity convergence for cell-wise Transform space formulation.

to more tougher cases with smaller values of the parameter a.

Quadrature II O q=0.5 q=l
Physical space scheme 0 ( h l m ) 0 ( h M)

oo

Subcell transform space scheme

00t-o-eo

O(ho m ) O(humo)
Cell-wise transform space scheme 0 ( h U2ii) O{h0-2'M) 0 ( h ant>)

Table 6.3: SUBCASE 4.1: Pressure convergence with variable quadrature q

SUBCASE 4.1: For the first test example we choose a — 0.53544095 (where the 

other coefficients can be found in [5]), the numerical pressure solution for physical 

space scheme is shown in figure 6.13(b). Plots of numerical pressure and velocity 

convergence for the cell-wise transform space control-volume formulation are shown 

in figure 6.14. Plots of numerical pressure convergence of velocity and pressure for 

subcell transform space scheme and physical space scheme are shown in figure 6.15.

Quadrature q=0.1 q=0.5 q=l
Physical space scheme 0(/i°-235) 0 (/ifl193)

00do

Subcell transform space scheme o ( V 205) 0 ( h ulm) 0 ( /i° 175)
Cell-wise transform space scheme o p CO O(hout>) 0 ( h UU4)

Table 6.4: SUBCASE 4.1: Velocity convergence with variable quadrature q
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And Comparison of numerical convergence results for physical space scheme, subcell 

transform space scheme and cell-wise transform space scheme are shown in tables 

6.3,6.4. Again, errors in pressure and velocity are much less in the case of the subcell 

scheme compared to the cell-wise transform space formulation.

I*

Figure 6.15: SUBCASE 4.1: (a)Pressure convergence for Sub-cell scheme formulation, 
(b) Pressure convergence for Physical Space formulation.

SUBCASE 4.2: Next we test a numerical example for a = 0.28009739. In this case 

the numerical convergence of pressure for the cell-wise transform space formulation is 

found to be of the order of h0 502 for q = 0.1 as shown in figure 6.16(a) and velocities 

are found to be diverging. For the sub-cell scheme the numerical convergence of 

pressure is found to be of the order of O(h0 584) for q =  0.1 (figure 6.16(b)) and 

velocities are diverging. The numerical convergence of pressure for Physical space 

formulation is shown in figure 6.16(c). Again subcell scheme pressure errors are much 

less than that of the cell-wise scheme and are quite comparable to physical space 

pressure convergence results, also, q = 0.1 yields the best overall performance.

SUBCASE 4.3: This test case is less smoother compared to previous two test cases 

because of smaller value of the parameter a. For this test example the parameter 

a = 0.1269020697. The numerical convergence of pressure for the cell-wise transform 

space formulation is found to be of the order of O(h0 583) for q = 0.1 as shown in 

figure 6.17(a) and velocities are found to be diverging.
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Figure 6.16: SUBCASE 4.2: (a)Pressure convergence for Transform space formula­
tion. (b) Pressure convergence for Sub-cell Scheme formulation, (c) Pressure Con­
vergence Physical Space.

For the subcell scheme the numerical convergence of pressure is found to be of the 

order of 0(/i°'625) for q = 0.1 (figure 6.17(b)) and velocities are found to be diverging. 

The numerical pressure convergence for physical space formulation is found to be 

of the order of 0 ( h i m ) for q = 0.1 whereas, numerical velocities are found to be 

diverging [5, 82]. However, as in the previous cases pressure errors in case of sub-cell 

scheme formulation are much less than the cell-wise scheme.

I ! i

Figure 6.17: SUBCASE 4.3: (a)Pressure convergence for Transform space formula­
tion. (b) Pressure convergence for Sub-cell Scheme formulation, (c) Pressure conver­
gence for Physical Space Scheme formulation.

SUBCASE 4.4:

Finally, we take a test case where a — 0.13448835 and the domain discontinuity
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K 4

Figure 6.18: SUBCASE 4.4: (a)Subdomain with discontinuity along 6 — 27r/3. (b) 
Numerical Pressure solution.

is along the line 27r/3 as shown in figure 6.18(a). The numerical solution is obtained 

using grid aligned with an interior boundary oriented at 27t/3 from the horizontal 

line as shown in figure 6.5(a) (further detail regarding strength of coefficients for this 

test case can be found in [5]). For this test case numerical solution is shown in figure 

6.18(b). The numerical pressure convergence for Physical space formulation is shown 

in figure 6.19(a) and pressure convergence for sub-cell scheme formulation is shown in 

6.19(b). The numerical velocities are found to be diverging as also noted in [5, 82]. It 

can be seen that for this particular test case super-convergence is obtained for q = 0.1 

for both physical and sub-cell scheme formulations. Also, the convergence rates are 

quite comparable. The g-family is able to sense cross flow for q < 1 [20].

Superior performance of the sub-cell scheme compared to cell-wise transform space 

is also obtained for stronger values of a, where sub-cell errors are found to be signif­

icantly smaller. Velocities are found to be diverging in these later cases for physical 

and transform space. We note that the rate of pressure convergence has exponent 

less than one, since velocity is proportional to pressure gradient, velocity errors may 

loose an order in convergence, which implies a negative rate.
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?

Figure 6.19: SUBCASE 4.4: (a)Pressure Convergence Physical Space scheme, (b) 
Pressure Convergence Sub-cell Scheme.

6.7 S u m m a r y

A symmetric positive definite general-tensor formulation is presented. A new fam­

ily of flux continuous schemes are defined by the introduction of piecewise constant 

subcell general-tensor approximations within the formulation. The physical-space 

fluxes are shown to be non-symmetric for general quadrilateral cells and can conse­

quently lead to non-symmetric discretization schemes.

The effect of subcell tensor approximation and quadrature point on convergence 

is presented and compared with the cell-wise transformed control-volume scheme. 

The subcell scheme uses a finer scale representation of the cell geometry compared 

to the cell-wise transform scheme and is found to have the better overall convergence 

performance for the cases tested. In particular the control-volume face subcell tensor 

approximation yields the best results. For the SPD schemes quadrature point q = 0.1 

is found to be the most beneficial for the subcell schemes.

Note that while symmetry is restored for general quadrilateral grids by the subcell 

schemes together with SPD discretization for q = 1, the piecewise constant subcell 

tensor still involves an additional approximation in geometry. Consequently the sub­
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cell methods cannot generally retain the accuracy of the physical space schemes, but 

can improve performance when compared with the cell-wise tensor schemes.

The physical space schemes maintain exact geometry of the control-volumes but 

loose the ability to retain symmetry of the discretization for general quadrilateral 

grids.
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Chapter 7 

M onotonicity Issues

7.1 Introduction

Monotonicity behavior of the family of flux-continuous schemes has been in ques­

tion since its early formulation. Conditions for a symmetric positive definite matrix 

are given in [3, 4]. Conditions for when the family of schemes yield an M-matrix 

are are presented in [2, 9, 3], where it is shown that the discretization matrices ob­

tained in the case of a full tensor are conditionally diagonally dominant with negative 

off-diagonals and M-matrices are only obtained for a limited range of full tensors. 

For high anisotropic ratios with grid skewness the resulting discrete matrix for these 

schemes is found to be non-monotonic (as with more standard methods) and the 

numerical solution consequently exhibits spurious oscillations.

The aim of this chapter is to address the monotonicity issues relating to the 

family of schemes and to obtain a solution to this problem. In this chapter along 

with discussion of monotonicity issues numerical tests are also performed in 2-D and 

3-D. An M-Matrix analysis [3] is used to determine the route towards optimal schemes 

with respect to monotonicity.

A novel numerical strategy [7, 8] is presented here which involves the use of flux- 

splitting (introduced in [6]) applied to the family of flux-continuous schemes. Proper­
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ties of the flux-splitting schemes for the single-phase pressure equation are presented 

in [6, 128]. Here it is shown that careful use of flux-splitting can remove the spurious 

oscillations introduced in the numerical pressure solution by highly anisotropic per­

meability tensors in porous medium. Previous work aimed at preserving monotonic 

behavior of the solutions for strong heterogeneity and skew grids is presented in [129]. 

Conditions for monotonicity have previously been derived in [2, 9, 3] for an M-matrix 

and in [83, 84] for a monotone matrix. Grid optimization techniques have also been 

used to improve monotonicity of the discrete system [130]. However, these techniques 

appear to be limited subject to permeability anisotropy ratio. In contrast, the flux- 

splitting techniques [7, 8] presented here are easier to implement for both structured 

and unstructured grids and can handle very strong anisotropic heterogeneity.

This chapter is organized as follows: Section 7.2 summarizes conditions required 

to obtain a monotonic solution and describes performance of the family of flux- 

continuous schemes with respect to monotonicity, with the help of numerical ex­

amples. Section 7.3 describes the flux splitting technique to solve the discrete system 

and shows how it can be used to compute a monotonic solution for the family of 

flux-continuous schemes. Section 7.4 presents numerical examples that demonstrate 

the use of flux-splitting techniques for preserving monotonicity. Section 7.5 presents 

the procedure to obtain quasi-monotonic schemes which minimizes oscillations in nu­

merical solution. A summary follows in section 7.6.

7.2 M onotonicity in 2-D and 3-D

The family of flux-continuous schemes results in a discrete matrix which forms 5-9 

row entries on structured 2D grids and 7-27 row entries on structured 3D grids. The 

discrete system can be written as

A(p = b (7.1)
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Where A is the discrete matrix operator, <j> is the unknown pressure and b is the source 

term. Ideally the discrete system of equation 7.1 should be monotone, and satisfy 

a maximum principle which is analogous to that of the continuous counterpart of 

the discrete problem and hence ensuring tha t the numerical solution is free from 

nonphysical oscillations. The discrete matrix operator A  is monotone if and only if 

A  is non-singular and it obeys the following condition [131]

A -1 >  O (7.2)

where O is a zero matrix. While a monotone discretization matrix ensures that a 

non-negative source and boundary data yields a non-negative pressure field, it has 

not been proven that a monotone discretization matrix will prevent discrete spurious 

local extrema occurring in the discrete solution of the general tensor pressure equation. 

A sufficient condition for a maximum principle (which can ensure that no spurious

extrema occur in the discrete solution) is that A  is a M —matrix, i.e. monotone

matrix (or positive definite) with a^j < 0 for i ^  j .  The following conditions (often 

easier to verify) also define an M —matrix:

Q*i,i ^  0 , V i

< 0 

S j  0, \/%

In addition A must either be strictly diagonally dominant,i.e.
n

A ,i '> ^   ̂| -A j I? i =  l,2,...,71

or else A must be irreducible and

n

A,i > ^ 2  I Ai'j I’ * =  (7.5)
j=i,j&

(7.3)

(7.4)
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with strict inequality for at least one row. The conditions (derived in [3, 9]) for 

nine-node schemes to have an M-Matrix are

m m (Tn,T22) > 77(Tn +  T22) > | 7 i2 | (7.6)

where rj is a function of quadrature point [3]. Tij are the general tensor coefficients. 

One of the essential conditions here is that Ti2 <  77im(Tn,T22), which is particularly 

limiting on the range of tensors that are applicable since this condition is only suf­

ficient for ellipticity Tf2 < TnT22, so that in the general case these schemes do not 

possess M-Matrices.

It has been previously noted in [7, 8, 83, 25] that the 2D 9-point formulation and 

3-D 27-point formulation suffers from loss of monotonicity and hence violation of the 

maximum principle resulting in spurious oscillations in the numerical pressure field, 

when applied to a medium with high full-tensor anisotropy. However, it will be shown 

in the next section that solving such problems by the Flux-splitting technique [6] with 

a locally imposed maximum principle yields numerical pressure solutions that are free 

of spurious oscillations [7].

We will now present numerical examples which demonstrate the loss of monotonic­

ity and violation of maximum principle when using the finite volume formulation in

2-D and 3-D (note that standard schemes also fail on this example). In these examples 

a point source is introduced at the centre of the domain (Square [0,l]x[0,l] in 2-D and 

Cube [0,l]x[0,l]x[0,l] in 3-D) with orthogonal Cartesian grid in 2-D and Hexahedral 

grid in 3-D and zero Dirichlet pressure holds elsewhere on the boundary. Two differ­

ent (isotropic and anisotropic) permeability tensor fields are tested and the results are 

shown for 2-D and 3-D formulation of the scheme in figure 7.1 and 7.3 respectively. It 

can be seen from figure 7.1(a) and 7.3(a) that the numerical pressure solution in the 

first case (isotropic) has a maximum principle. In the second case (with anisotropy 

ratio of 1:1000,with grid non-aligned with the principal axes leading to a full-tensor
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Numerical Pres

Numerical Pressure- A Numencal Pressure contours

(c) (d)

Figure 7.1: (a) 2-D Numerical pressure solution with isotropic permeability tensor, 
(b) 2-D Numerical pressure contours for isotropic tensor, (c) 2-D Numerical pressure 
solution with anisotropy ratio 1:1000 and angles between grid and principal perme­
ability axes =  30 degrees, (d) 2-D Numerical pressure contours for anisotropy tensor.

I  250.75 432.58 \
(see Appendix B) , figure 7.2) the tensor field violates equation

y 432.58 750.25 J
7.6 with {mm(750.25,250.75) ^  432.58} and the numerical pressure solution shown 

in figure 7.1(b) and 7.3(b) clearly violates the maximum principle resulting in spu­

rious oscillations including some negative pressure values, hence equation 7.2 is not 

valid in this case. The spurious oscillations in pressure do not disappear even with 

mesh refinement. A similar test in 2-D with Green’s function was presented in [83].
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(a) (b)

Figure 7.2: (a)Hexahedral Mesh, (b) Quad Mesh corresponding to Hexahedral Mesh 
with Discretization Stencil in 2D and Permeability Anisotropy Direction.

The violation of the maximum principle by the family of flux-continuous finite-volume 

schemes and standard CVFE for high anisotropy ratios presents a major challenge 

for numerical approximation of elliptic PDE’s.

7.3 Flux-Splitting Technique
ii

' Flux-splitting for the family of flux-continuous finite volume schemes is presented

I in [6], where unconditional stability is proven for constant coefficients and its ben-

| efits were discussed with respect to computational efficiency. Further properties of

flux-splitting discretization are also given in [6] where flux-splitting is defined so as to 

maintain local conservation at any iterative level, so that non-converged solutions are 

still locally conservative. A further study of iterative performance of flux-splitting is 

presented in [128]. In this section a brief overview of flux-splitting is presented and a 

modification is given to obtain monotonic solutions for cases with high anisotropy ra­

tio. Following [6] fluxes are cast in the form of a leading two-point flux corresponding 

to the diagonal tensor together with cross-flow terms. The flux is now split so as to
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Numerical Pressure

Numerical Pressure

0 0

(c) (d)

Figure 7.3: (a) 3-D Numerical pressure solution with isotropic permeability tensor, 
(b) 3-D Numerical pressure contours for isotropic tensor shown as slice at z =  0.5.(c)
3-D Numerical pressure solution with anisotropy ratio 1:1000 and angles between grid 
and principal permeability axes =  30 degrees, (d) 3-D Numerical pressure contours for 
anisotropy tensor shown as slice at z =  0.5.

generate a semi-implicit scheme that retains an implicit approximation of the diago­

nal tensor contribution and employs an explicit approximation of all flux cross-flow 

terms, thereby retaining standard diagonal tensor Jacobian inversion, and preserves 

existing simulator code design and efficiency.
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7.3.1 Splitting at M atrix Level

First we consider splitting at matrix level. Let the fully implicit nine-point dis­

cretization matrix be denoted by A ^  and the discrete solution by fa . Now the matrix 

A(9) can be decomposed into a leading pentadiagonal matrix A ^  and a residual ma­

trix A^9-5) where

4 (9 ) =  4 (5) +  4 (9 - 5) 

the respective split matrices are denoted symbolically by

(7.7)

A<5> =

( 0 A(9) 0 ^
(9) A (9)

4 (9 -5 ) =

a( 9) 4 W
^ i - l , j  ^ i + l , j

0 A f l  1 0 j
( >t(9) 0 .4(9)U lj+1

0 0 0

 ̂ 4 9V ,  0 )

(7.8)

(7.9)

Solver strategy can then be defined using a semi-implicit schemes of the form

A (r,l<pk+1 +  A ,a- 5)<pk = b (7.10)

Another, matrix level splitting can be obtained by splitting the nine-point dis­

cretization matrix A(9) into a leading A^9+) matrix and a residual A^9A matrix. Where 

A^9+) matrix holds all the positive entries and A^9-) holds all the negative entries. 

This also give rise to a semi-implicit schemes of the form

4 ( 9 + ) ^ + i  + 4 (9 -)< ^ fc = b (7.11)

Similarly, there can be many other forms of matrix splitting but we are restricting 

our study to these two types of matrix splitting.
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7.3.2 Splitting at F lux level

The splitting is illustrated as follows: Let A  denote the Jacobian matrix for the 

nine-point flux-continuous system of equations, and B denote the Jacobian matrix for 

the classical two-point system of equation. The basic principle behind flux splitting 

is to express the nine-point flux in terms of two-point flux evaluated at (iterate or 

time) level (k +  1) and a remainder term at level k , written as:

F s =  F T P-« +  (F k _  F TP-} (712)

where F s is the consistent split-flux, and on a structured grid F  is a 9-point

operator in this case and F TP is 2-point flux. First we rewrite the original discrete

system of equations (Eq. 9.2) as:

B < £ + ( A - B ) 0  =  6 (7.13)

(7.14)

(7.15)

(7.16)

where

B {5) =

results from the 2-point flux and

/ 0 d(5) 
Bi,j+1

*(5) b {9)1,3
0 d(5) 

Bi,j~ 1

d (5 )
n i+l,3

(  v(9) X.(9) Y K(9) \
i,j+1 i+llj+ l

y"(9)
A i,j

(9) y(9) v ( 9 )

y (  9)^ ( 9) _  B (5) =

V W  Y W  Y ^>

then the flux-split iteration is defined by:

B <t>k+1 =  (B -  A ) /  +  b

The above equation results in the following iterative method:

^ + l  =  ( I  -  B -1A)0* +  B _16 (7.17)
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The iteration is stable if ||(I — B -1A)|| <  1 and stability for a constant full- 

tensor is proven in [6]. The above iteration scheme converges with a specified toler­

ance. These flux-splitting formulations are equally applicable to both structured and 

unstructured control volume distributed formulations.

7.4 Numerical Experim ents w ith  Flux-Splitting

In this section some numerical results are presented with application of flux- 

splitting to the family of flux-continuous finite volume schemes. The matrix split­

ting methods presented in section 7.3.1 have also been tested but the flux splitting 

scheme is found to yield the best performance (with fewer iterations) and is therefore 

used here. Flux-splitting techniques are also equally applicable to structured and 

unstructured grids.

7.4.1 F lux-sp litting  on structured grids

(a)

Figure 7.4: (a) Medium Discontinuity, (b) Mesh aligned along the discontinuity.
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Numoncal Pressure- 4» at Iteration 6Numoncal Pressure 4 ^  at Iteration 4

(c) (d)

Figure 7.5: (a)Finally converged flux-split solution, (b) Uncorrected Solution, (c) 
Flux-split solution after 4th iteration, (d) Flux-split solution after 6th iteration.

L inear D iscontinuous P ressu re  S o lu tion

First, we test the flux-splitting technique on a piecewise linear case where the 

exact solution is well known and monotonic. This example involves uniform flow over a 

rectangular domain. The medium is divided in two parts as shown in the figure 7.4(a). 

The grid aligned along the discontinuity was used to obtain the numerical solution as 

shown in figure 7.4(b). The permeability field is discontinuous and permeability ratio 

is 1/100 across the discontinuity. The analytical pressure is piece-wise linear and is 

given by
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(7.18)

A full discontinuous permeability tensor is defined as

K  =

1 -1 /4  \

- 1 /4  1/2 J
100 -100 /4

100/4 100/2

x  +  y j 3 < 3/4,

x + y / 2 >  3/4,

The flux-splitting technique presented in section 7.3.2 is used to obtain the numer-

0 (h 3) error compared to the numerically converged solution, shown in figure 7.5(c) 

and figure 7.5(d).

Non-smooth Anisotropic Solution with Point Source at Centre

Next, we apply the method to a Green’s function on a Cartesian grid, using the 

flux-splitting technique to obtain a monotonic solution for a case with high anisotropic 

ratio. The problem in consideration has a anisotropy ratio of 1/1000, with angle be­

tween grid and principal permeability axes of 7r/6 leading to a full tensor(see Appendix 

B) and thus violates equation 7.6. As with the direct discrete solution, the final con­

verged solution is non-monotonic as shown in figure 7.6(a) because of high anisotropy 

and oscillations in numerical solution can be seen clearly in figure 7.6(b). Here we 

introduce a slightly modified iteration strategy for flux-splitting technique compared 

to that presented in section 7.3.2. The algorithm for which is described as follows: In 

order to obtain a monotonic solution, as the iteration proceeds kth iterate is stored 

and solution at iteration k  +  1 is computed and a test for local extrema is conducted, 

away from sources and sinks, if for all nodes j  connected to node i

ical solution, figure 7.5. The numerical solution after 6th iteration is obtained with

mirij{(f)j} < (f>i < m ax j {(f>j} (7.19)
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Figure 7.6: (a)Converged Solution of a Green’s Function on anisotropic medium with 
anisotropic ratio of 1/1000, angle between grid and principal permeability axes 7r/6. 
(b)Numerical solution contours showing the oscillations, (c) Flux-split solution after 
31st iteration, (d) Finally converged flux-split solution, (e) Oscillation free flux-split 
solution contours after 31st iteration, (f) Oscillation free flux-split solution contours 
of finally converged solution.
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the iteration proceeds and the solution at the kth iteration is overwritten with the 

solution obtained after the k +  1 iteration. If the test fails (equation 7.19) numerical 

solution at k +  1 iteration is replaced by the value stored at kth iterate for each node 

that fails equation 7.19. The iteration proceeds until the desired tolerance criteria is 

met. Thus the solution process is in effect non-linear. Using this iteration strategy 

the finally converged solution thus obtained is free of any numerical oscillations. The 

numerical results after the 31s* iteration and finally converged solution are presented 

for this case in figure 7.6(c) and 7.6(d) respectively. These non-converged solutions 

are monotonic and free from spurious oscillations as shown in solution contours (figure 

7.6(d),7.6(e)) compared to the non-monotonic converged solution in figure 7.6(a).

Numerical convergence rates are computed for this non-smooth anisotropic so­

lution, for different quadrature points q. The discrete L 2 norm is used to evaluate 

approximation errors. The fine grid discrete solution is used as the reference solution 

for the convergence test, figure 7.7. The numerical pressure convergence rates are 

shown in figure 7.8. The numerical values of convergence rates is also presented in 

table 7.1.

Quadrature q=0.1 q=0.5 q=l
Flux-Splitting Scheme O(/i°-20u) O(how l) O O i—1 00 Cn

Table 7.1: Non-smooth Anisotropic Solution with Point Source at Centre: Pressure 
convergence with variable quadrature q

Non-smooth Anisotropic Solution with Source at Corner

Next, we present an example with a point source located at the corner of a square 

domain with orthogonal grid and zero Dirichlet pressure holds elsewhere on the bound­

ary. Two different permeability tensor fields are tested and the results are shown in 

figure 7.9. It can be seen from figure 7.9(a) that the numerical pressure solution in 

the first case (isotropic) has a maximum principle. In the second case (with high 

anisotropy ratio 1:1000, with grid non-aligned with the principal axes leading to a
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Figure 7.7: (a) Oscillation free Non-smooth anisotropic flux-split solution with point 
source at centre on a fine grid, (b) Numerical Pressure Contours.

Plot of L2 norm

q = 1 Error = 0.18509  
q = 0 5 Error = 0191 4 2  
q = 0 1 Error =  0 20045

Figure 7.8: Numerical Pressure Convergence Rates for q = 0.1, 0.5 and 1.

full-tensor) the tensor field violates 7.6 with (mm(750.25,250.75) ^  432.58} and the 

numerical pressure solution shown in figure 7.9(c) clearly violates the maximum prin­

ciple resulting in spurious oscillations with negative pressure, hence equation 7.2 is 

not valid in this case. The spurious oscillations in pressure do not disappear even 

with mesh refinement. Now, on applying the flux-splitting technique on this prob­

lem, following the similar procedure as described for previous test case, the results
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Figure 7.9: (a)Nurnerical solution for point source with homogeneous diagonal perme­
ability tensor. (b)Numerical solution contours for the source homogeneous diagonal 
permeability tensor, (c) Numerical solution for point source with high anisotropic 
medium with anisotropic ratio of 1/1000, angle between grid and principal perme­
ability axes 7r/6. (d)Numerical solution contours showing the oscillations.

obtained after 31st iteration and the finally converged solution are shown in figure 

7.10(a) and 7.10(b). It can be seen from the contour plots shown in figure 7.10(c) 

and 7.10(d) that the numerical solutions obtained are free of spurious oscillations and 

satisfy a general monotonicity condition.

Similar to the previous test case, numerical convergence rates are also computed 

for this non-smooth anisotropic solution. The discrete L2 norm is used to evaluate 

approximation errors. Again, as for this test case exact solution is unknown, we 

replace it with the discrete solution computed on a very fine mesh, figure 7.11. The 

numerical pressure convergence rates are shown in figure 7.12. The numerical values
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Numerical Pressure- 4>a

Figure 7.10: (a)Flux-split solution after 31st iteration. (b)Finally Converged flux- 
split solution.(c) Flux-split solution contours after 31st iteration.(d)Contours of finally 
converged flux-split solution.

of convergence rates is also presented in table 7.2.

Table 7.2: Non-smooth Anisotropic Solution with Point Source at Corner: Pressure 
convergence with variable quadrature q

Quadrature q=0.1 q=0.5 q=l
Flux-Splitting Scheme O 7? o o O(h0/Tm) 0(/i°-718)

7.4.2 U n s tru c tu re d  grids

The final test case involves applying the methods to a Green’s function as before, 

now solved on an unstructured grid (figure 7.13(a)). The (direct method) discrete
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Numerical Pressure- 4 ^

Y X

(a) (b)

Figure 7.11: (a) Oscillation free Non-smooth anisotropic flux-split solution with point 
source at corner on a fine grid, (b) Numerical Pressure Contours.

Plot of L2 norm

-O - q = 1 Error = 0.71846  
q =  0 5 Error = 0 70976 

—f- q = 0 1 Error = 0 71026

Figure 7.12: Numerical Pressure Convergence Rates for q = 0.1,0.5 and 1.

Numencal Pressure Contours -

solution and monotonic-split method solution are shown in figure 7.13(b), 7.13(c) and 

7.13(d), which demonstrates the effectiveness of the method on unstructured grids.
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Numerical Pressure- 4

(c) (d)

Figure 7.13: (a)Unstructured mesh aligned with anisotropy, (b)Oscillatory numerical 
solution contours.(c)Oscillation free flux-split solution after 14th iteration.(d) Con­
tours of flux-split solution after 14th iteration.

Triangular Mesh Triangular Mesh

(a) (b)

Figure 7.14: (a) Positive 4-ve stencil for positive . (b) Negative -ve stencil for negative.
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7.5 Quasi-M onotonic Schemes in 2-D and 3-D

In this section we will use equation 7.6 to guide construction of optimal schemes 

that minimize the occurrence of spurious oscillations in 2 and 3-D. In particular 

(following [3]) the quadrature point with

|T12|
 ̂ Tn +  T22

reduces the condition of equation 7.6 for an M-matrix to

m in(T n, T22) > | Xi2 | (7.21)

and following the M-matrix analysis of [3], the 9-point formulation with quadrature 

defined by equation 7.20 reduces to a 7-point formulation with angular sign dependent 

stencil, depending upon the sign of, where stencils Figure 7.14(a),7.14(b) are denoted 

-fve for positive and -ve for negative respectively. The 7-point schemes have M- 

matrices provided the appropriate angular sign dependent stencil is used and equation 

7.21 holds. The angular direction can be chosen locally over the primal quadrilateral 

element, giving rise to a variable support scheme [10, 25].

The general conditions for a triangular scheme to have an M-matrix were presented 

in [22] and are precisely the same as equation 7.21. Therefore the M-matrix analysis 

is used to guide the triangulation to replicate the ” 7-point” support according to 

the sign of stencil. Further details of construction of quadrilateral and triangular 

schemes of variable support to match the local variation in sign of Ti2 in order to 

gain an M-matrix or minimise oscillations is presented in [10] and will be discussed 

in next chapter.

We now present results from a series of tests of the 2D and 3D formulation of the 

family of schemes for monotonicity. The results show that these schemes exhibit loss 

of monotonicity (but only in a limited sense). The results are consistent with the 

M-matrix conditions of equation 7.20,7.21.

(7.20)
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(«

(C) (d )

Figure 7.15: (a) Numerical simulation domain with anisotropic permeability, (b) 
Triangular grid with angular direction of triangulation consistent with direction of 
anisotropy in both subdomains, (c) Triangular grid with direction of triangulation 
consistent with anisotropy only in upper subdomain, (d) Triangular grid with direc­
tion of triangulation against the direction of anisotropy in both subdomains

Here, we first test a 2-D example with permeability tensor that changes direction 

in anisotropy halfway across the domain as indicated in figure 7.15(a). A point source 

is placed in the centre of the [0-l]x[0-l] domain. Three different types of triangulation 

are compared, with a difference in angular direction in each case, figure 7.15(b-d). 

Since the scheme on a triangular grid is cell-vertex based, control-volume boundary 

aligned [5, 7, 52] triangular grids are used to handle the jump in permeability tensor.

From the numerical results shown in figure 7.16-7.18 we conclude that the test 

case of figure 7.16(a), which has nearest alignment of angular direction with principal



145
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Figure 7.16: (a) Numerical Pressure solution with no pressure oscillations, (b) Tri­
angular grid with direction of triangulation flowing direction of anisotropy in both 
subdomains.

axes of the permeability tensor (consistent with M-matrix analysis), shows the best 

pressure solution. In this case the local scheme support varies with consistent angular 

direction, at the point of change in direction of the permeability principal axes. This 

example shows that in general, the scheme will require a variable support between 7 

to 9 nodes depending on the local permeability field orientation in order to maintain 

angular consistency with the M-matrix analysis. In contrast, it is seen in figure 7.18 

that when the direction of triangulation is in the opposite angular direction to that 

of the permeability anisotropy, oscillations in numerical pressure solution are more 

prominent and smearing of the solution increases with departure of angular alignment 

from the principal axes directions.

We note that a method of minimizing oscillations using grid generation has been 

presented in [130]. The work of the above section provides fundamental support for 

this type of approach to grid generation. Indeed the above approach to developing 

discretization schemes, by maintaining angular consistency between the M-matrix 

analysis and permeability field orientation also provides a general guiding principle
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( « ) (b)

Figure 7.17: (a) Numerical Pressure solution with less dominant pressure oscillations,
(b) Triangular grid with direction of triangulation following anisotropy only in upper 
subdomain.

for unstructured grid generation using any element type.
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(«) (b)

Figure 7.18: (a) Numerical Pressure solution with more prominent oscillations.(b) 
Triangular grid with direction of triangulation against the direction of anisotropy in 
both subdomians

Next we test a numerical example involving a Green’s function with a point source 

in 3-D domain. The unit source is located at the centre of the domain. Numerical sim-
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Figure 7.19: (a)Hexahedral Mesh, (b) Quad Mesh corresponding to Hexahedral Mesh 
with Discretization Stencil in 2D and Permeability Anisotropy Direction.

ulation is performed using 3-D mesh with prism elements as shown in figure 7.19(a). 

Two different permeability tensor fields are tested; Isotropic tensor case and a case 

with underlying permeability tensor having high anisotropy ratio 1:1000 with prin­

cipal axes at an angle of 7r/6 relative to the grid coordinate system leading to a full 

tensor in the X-Y plane (figure 7.19) that violates equation 7.21. Thus the scheme 

does not have an M-matrix in this case. Numerical results are shown in figure 7.20. 

A similar case was tested before for hexahedral mesh in 3-D where severe numerical 

oscillation were observed for high anisotropy (figure 7.3). In contrast, when prism 

mesh is used with the same highly anisotropic full permeability tensor the severity 

of oscillations in the numerical pressure field is much less intense compared to what 

is seen on the hexahedral mesh, figure 7.20. We note the strong analogy between 

the 2-D and 3-D meshes for this case. The hexahedral mesh is comprised of a set of 

planer 2-D quadrilateral meshes and the prism mesh is comprised of a set of planer 

2-D triangular meshes (figure 7.19). The behavior of the family of schemes can essen­

tially be understood for this case by looking at the 2-D M-matrix analysis equation 

7.6, which shows that a 9-point scheme has more limiting constraints for an M-matrix
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than a 7-point scheme, viz equation 7.21. In particular if the resulting 9-point scheme 

cannot have an M-matrix when a full-tensor is present, whereas the 7-point scheme 

will permit a full tensor, albeit conditional subject to equation 7.21 [3].

Numerical Pressure contoursNumencal Pressure

Numencal Pressure

0 0

(c) (d)

Figure 7.20: (a) Numerical Pressure solution on a uniform prism mesh with isotropic 
permeability tensor, (b) Numerical Pressure contours for pressure surface in X-Y 
plane at Z =  0.5. (c) Numerical Pressure solution on a prism mesh with highly 
anisotropic permeability tensor, (d) Numerical Pressure contours for the pressure 
surface in X-Y plane at Z =  0.5.

It can be seen in figure 7.19(b) that on a triangulated quadrilateral mesh the dis­

cretization stencil reduces to a 7-point scheme compared to 9-point on a quadrilateral 

mesh (figure 7.2(b)). The reduced 7-point discretization stencil is on a triangular mesh
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that ’’follows” the direction of anisotropy and is angular sign consistent with the M- 

matrix condition, resulting in improved behavior of the scheme for highly anisotropic 

permeability tensors. Hence, we can conclude tha t this behavior of the scheme on the 

prism grid is due to angular sign alignment of the grid with the direction of anisotropy.

7.6 Summary

In this chapter Monotonicity issues related to the formulation of the family of 

schemes are explored in 2-D and 3-D. Two different kinds of splitting techniques are 

presented, which can be broadly classified into Flux-splitting and Matrix-splitting. 

The splitting techniques yield monotonic numerical solutions for full-tensor perme­

ability fields with high principal anisotropy ratios. A key component of this solution 

procedure is in obtaining a predicted monotonic solution computed by the two-point 

flux approximation, where the resulting M-matrix is used as a driver and the (de­

ferred) correction to the iteration (in this case) is added at each iterative step until 

a local extrema is detected, in which case the iterative procedure uses the previous 

value (locally).

The flux-splitting technique is found to be most efficient as its convergence to final 

solution is faster compared to other splitting techniques. Flux-splitting also maintains 

local conservation at any level of iteration. These splitting techniques are equally 

applicable to structured and unstructured grids in two and three dimensions. Splitting 

techniques may be more suitable for obtaining monotonic numerical solutions when 

compared to grid optimization, which appear to be applied at lower anisotropy ratio. 

The splitting technique is used here for anisotropy ratios of 1/1000 and higher.

For cases where an M-matrix can not be obtained, M-matrix analysis [3] is used to 

develop discretization methods of variable support with minimum spurious oscillations 

for full-tensor problems with high anisotropy in 2-D and 3-D.

Maintaining angular consistency between the M-matrix analysis and permeability
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field orientation provides a general guiding principle for developing discretization 

schemes and grid generation that minimize spurious oscillations.
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Chapter 8 

Quasi-M onotonic Variable Support 

(qhQ2) Families of Schemes

8.1 Introduction

The focus of this chapter is on seeking the most robust approximation with respect 

to monotonicity. A general (two parameter) double (qi, g2)-family of flux-continuous 

schemes is presented [10]. M-matrix analysis for double families presented in [10] 

exposes the limits on the schemes for ensuring monotonic solutions in the case of full 

tensors. The generality of the double family analysis establishes a key result; that a 

locally conservative scheme cannot posses an unconditional M-matrix in the case of 

an arbitrary elliptic full-tensor. The analysis presented in [10] is used to determine 

the upper limits for obtaining monotonic solutions and to aid the design of schemes 

that minimize the occurrence of solutions with spurious oscillations in the general 

case.

This chapter is organized as follows: A summary of the formulation of the double­

family of flux-continuous finite volume schemes, with discretization in physical space 

is presented in section 8 .2 . Section 8.3 summarizes the conditions required to ob­

tain a monotonic solution and describes performance of the family of flux-continuous
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schemes with respect to monotonicity. Section 8.4 presents numerical examples that 

demonstrate the benefits of using double family of flux continuous schemes for pre­

serving monotonicity. Finally, a summary is presented in section 8.5.

w

Figure 8.1: (a) Points of Flux-Continuity (N,S,E,W) on sub-cell faces of a dual-cell 
(b) Quadrature points on a sub-cell faces ql,q2

8.2 (q l ,q 2 )  Fam ilies  o f  C V D (M P F A )  S chem es -

D o u b le  Q u a d r a tu r e  P a r a m e te r iz a t io n

The formulation and analysis of the double (gi, g2)-family of scheme presented in

[10] is summarized below. A general guideline for construction of the double (gi,g2 )- 

family of flux-continuous schemes on lines similar to the construction of g-family of 

schemes is presented and the difference between two formulations are highlighted. 

A detailed formulation of the double (gi5 g2)-family of flux-continuous schemes is 

presented in [10].

The double (gx, g2)-family of flux continuous schemes is formed when imposing 

normal flux and pressure continuity conditions on the sub-faces where the four shaded 

triangles meet, at the four positions (N , S, E, VF), in (or on the perimeter of) the dual 

cell figure 8.1(a), as in construction of the g-family. On each sub-face the point of 

continuity is parameterized with respect to the subcell face by the variable q =  (gi, <72)
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depending on the subface, where referring to figure 8.1(b) (0 < gi, 52 <  1]. For a given

the two faces of each subcell inside a dual cell, that coincide with the control-volume

double family of flux-continuous finite-volume schemes.

The parametric variation in q  =  (^1,^2) is illustrated further using the sub-cell 

example of figure 8.1(b), with sub-cell containing sub-triangle (1,5, IF). Let r i  =  

(x i,y i)  denote the coordinates of the cell-centre and =  (xs,ys),*w  = {xw,Vw) 

denote the local continuity coordinates. Then it is understood that the continuity 

position is a function of q  with rs (g i, #2) and rw(gi, #2)- Different values of quadrature 

point are illustrated in figure 8 .1(b).

Now, similar to the g-family of scheme cell face pressures 0jv, 0£> 0s> 0w are in­

troduced at N , 5, E, W  locations. Pressure sub-triangles are defined with local tri­

angular support imposed within each quarter (sub-cell) of the dual-cell as shown in 

figure 8.1(a). Pressure 0, in local cell coordinates, is piecewise linear over each tri­

angle. Piecewise constant Darcy fluxes are now constructed on each of the pressure 

sub-triangles belonging to the sub-cells of the dual-cell as shown in figure 8 .1(a). 

The local linear pressure 0, is expanded in sub-triangle coordinates. The Darcy flux 

approximation for sub-triangle (1,5, W ) is given below.

sibcell, the points of continuity can lie anywhere in the intervals (0 < gi,g2 <  1] on

sab-faces, and the values of (gi,<?2) define the local quadrature points and hence the

ste(q) -  3/1 

yw( q) -  j/i

(8 .1)

(8 .2)

Using equations 8 .1,8.2 the discrete Darcy velocity is defined as

(8.3)
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Where K is the local permeability tensor of cell 1 and dependency of V<fo on quadra­

ture point arises through

GM  I *  )  -  (  ' " “ 'l tK  ( * • - * ' )  (8.4)
\  <t>r, )  \  - ^ ( q )  a*(q) /  q̂' \ < t > w - ( f > i  )

where approximate r^(q) and r 7?(q)are defined by equation 8.2. The normal flux 

at the left hand side of S( figure 8 .1(a)) is resolved along the outward normal vector 

dLs — (Ayr3)s , —A x r3,s) =  \ (A.2/32, —A a^) (figure 8 .1(b) and is expressed in terms 

of the general tensor T =  T(q) as

F \ =  vh ■ dLs = - ( T f o i  + T}2<t>„)\ls  (8.5)

where it is understood that the resulting coefficients of —(0 ,̂ >̂77) 15 denoted by Tn\g  

and T12H are sub-cell (physical-space) approximations of the general tensor compo­

nents (equation 8.5) at the left hand face at S, and are functions of q. A similar

expression for flux is obtained at the right hand side of S from cell 2 (figure 8 .1(a).

Similarly sub-cell fluxes are resolved on the two sides of the other faces at W,N and 

E. Flux continuity is then imposed across the four cell interfaces at the four positions 

N,S,E and W (figure 8.1(a) which are specified according to quadrature point q. The 

rest of the formulation follows directly from chapter 5. The details of the discrete 

double family scheme coefficients and the M-matrix analysis are presented in [10].

8.3 CVFE - Double Families and M onotonicity

In the above section we have presented general families of flux-continuous lo­

cally conservative finite-volume schemes. For constant permeability coefficients these 

schemes can be mapped onto a more transparent control-volume finite element CVFE 

nine-point framework for general schemes presented in [9]. Such a ’’mapping” was 

demonstrated in [3] for the family of general tensor schemes as a function of q. The
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Figure 8.2: Dual-Cell flux approximation

mapping facilitated the first M-matrix analysis of the CVD(MPFA) methods, pre­

sented in [2 , 3].

In this section we summarize the general double family of CVFE schemes presented 

in [10]. The double family embodies all possible locally constant coefficient 9-point 

schemes and their subordinate 7-point schemes, as indicated in [3] for the single 

family. The double family of CVFE fluxes is defined over a primal grid cell if a cell- 

vertex formulation is employed and is defined over the primal dual-cell if a cell-centred 

formulation is employed. The CVFE fluxes are derived from a bilinear approximation 

of pressure over the cell parameterized by (0 <  £ <  1), (0 <  77 <  1).

For example, control-volume face flux Fs is defined at a point on the subcell 

control-volume subface ,figure 8.2, where £s = 1/2. Similarly Fw  is defined on the 

adjoining control-volume subface ,figure 8 .2 , where rjw = 1 /2  so that

Fs = —~(Tn(((f>2 — 0 i)( l — v) +  (03 — M v )  +  Ti2((04 — 0 i)( l/2 )  +  (03 — 02)1/ 2), 

Fw =  <M (l/2) +  (03 -  * ) l / 2 )  +  T22((04 -  00(1  - { )  + ( ^ 3 - ^ ) 5)

and the S, N  fluxes are defined for (0 < £ < 1/ 2), (0 < 77 < 1/2).



156

8.3.1 F lu x -co n tin u ity  an d  Local C o n serv a tio n

We note that CVFE schemes are locally conservative, but not flux continuous; A 

flux-continuous finite-volume scheme is locally conservative however the converse is 

not necessarily true and CVFE is a case in point. Of course CVFE is (trivially flux 

continuous over the control-volume faces [9], but in the CVFE formulation key flux 

continuity is lacking across the interior interfaces across which the permeability can 

be discontinuous in the general case.

8.3.2 C V D (M P F A ) an d  C V F E

The key results of the analysis, presented in [10] include a mapping between the 

coefficients of the CVD(MPFA) double family scheme and the CVFE double family 

for a spatially constant full-tensor field. The M-matrix analysis of the CVFE double 

family presented in [10] establishes bounds on the CVFE double family coefficients, 

which are then used via the mapping to establish the corresponding bounds for the 

flux-continuous CVD double family coefficients.

Figure 8.3: (a) -ve stencil(b)+ve stencil
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8.3.3 Variable Support R eduction

As noted in [3], if we choose the default (double family) quadrature points with

£ =  7 H T 12| / ( T n + T 22) (8.7)

then an M-matrix is obtained subject to a sufficient condition for ellipticity, i.e.

I T12 |<  m m (T n ,T 22) (8-8)

In general the choice of quadrature defined by equation 8.7 yields a scheme that will 

select a variable support, which depending upon the local tensor and orientation (fig­

ure 8.3) can be between a nine point scheme to a seven point scheme (on a structured 

grid) and maintain an M-matrix provided equation 8.8 holds. Families of reduced 

support schemes are also obtained if we exploit the double families of schemes.

All of these schemes give rise to M-matrices provided equation 8.8 is satisfied, 

further details are given in [10].

8.4 Numerical Results

In this section numerical tests of the reduced support schemes are presented, with 

specific quadrature points for the double families of schemes.

C A S E  1: P L A N A R  F IE L D

The first case involves the a uniform anisotropic domain with a Green’s function 

(point source) in the middle of the domain and with Dirichlet zero pressure conditions 

imposed on the boundary.

The full-tensor is given by

K  =  [1,0.99,0.99,1] (8.9)

In the first case using the 9-point scheme with qi = g2 =  q =  1 (with high anisotropy 

ratio, with grid non-aligned with the principal axes leading to a full-tensor) the tensor
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Figure 8.4: (a) Numerical Pressure Contours with visible spurious oscillations q\ = 
q2 = q = 1(b) Oscillation free Numerical Pressure Contours. qx = q2 = q = 0.01

field violates equation 8.8. The numerical pressure solution shown in figure 8.4(a) with 

visible spurious oscillations. Clear violation of the maximum principle resulting in 

spurious oscillations.

In the second case using the 9-point scheme with qi = q2 = q = 0.01 deduced from 

equation 8.7 which ensures that the nine-point scheme will reduce to a seven-point 

scheme with an M-matrix with off-diagonal terms equal to zero. The scheme and 

computed numerical pressure solution have a maximum principle figure 8.4(b).

C A SE 2: V  FIEL D

In the next case, we test a 2-D example with a permeability tensor that changes 

direction in anisotropy halfway across the domain going from K =  [1,0.99,0.99,1] 

to K =  [1 ,-0  .99, —0.99,1] as indicated in figure 8.5. A point source is placed in 

the centre of the [0-l]x[0-l] domain and Dirichlet conditions apply as before. Note 

that this test case involves a discontinuous jump in permeability tensor, so that the 

M-matrix conditions are tested under variable coefficient conditions.

Results with qi = q2 = q = 1 are shown in figure 8.6(a) with visible spurious
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(« >

Figure 8.5: (a) Change in direction of anisotropy in Permeability Tensor at y = 0.5

Numerical Pressure Contours- Numencal Pressure Contours- 4*,^

Figure 8.6: (a) Numerical pressure contours with visible spurious oscillations q\ = 
Q2 = q = 1- (b) Numerical pressure contours with no spurious oscillations qi = q2 = 
q = 0.01.

oscillations. In the second case using the reduced support scheme with q\ =  q2 = 

q = 0.01 deduced from equation 8.7 yields the results in figure 8.6(b) , also results 

using the double family with q\ =  0.005025125, #2 =  1 are shown in figure 8.7. In 

these cases the M-matrix conditions are satisfied. Further test cases comparing single 

family, double family and reduced 7-point support are presented in [10].
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Numerical Pressure Contours- 4*,^

Figure 8.7: (a) Oscillation free Numerical Pressure Contours for double family q\ =  
0.005025125, q2 = 1

8.5 S u m m a ry

A general (two parameter) double (qi, (^-family of flux-continuous locally conser­

vative schemes is presented. The generality of the double family analysis establishes 

a key result; Any locally conservative scheme on or within a 9-point stencil applied 

to a locally constant full-tensor field can only have a conditional M-matrix consistent 

with the earlier analysis of [3]. The conditions are expressed in terms of limits on 

the size of the cross terms, which are only sufficient for ellipticity, and on the angular 

directional support for the upper limit of the family of schemes.

The M-matrix analysis [10] determines the upper limit for obtaining monotonic solu­

tions and to aid the design of schemes that minimize the occurrence of solutions with 

spurious oscillations in the general case.

The analysis also shows that for weaker cross terms with lower anisotropy ratio there 

exists a range of M-matrix nine point schemes and therefore the families of schemes 

enhance the M-matrix conditions.

When the limit on the full-tensor cross terms are exceeded the angular condition 

resulting from the analysis is used as a guide to construct quasi-monotonic schemes. 

This results in schemes of locally directional support that vary according to the local
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orientation of the tensor field. The variable support schemes are able to compute 

pressure fields with minimal oscillations and much improved resolution compared to 

schemes relying on fixed quadrature rules.
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Chapter 9 

U se of Quadrature Point in 

Upscaling

9.1 Introduction

Subsurface reservoirs generally have a complex description in terms of both ge­

ometry and geology. Typical reservoir grid block sizes are of the order of tens of 

meters, while rock properties are measured below the centimeter scale. This poses 

a continuing challenge to modelling and simulation of reservoirs since fine-scale ef­

fects often have a profound impact on flow patterns on larger scales. Resolving all 

pertinent scales and their interaction is therefore imperative to give reliable qualita­

tive and quantitative simulation results. Consequently, averaging or homogenization 

techniques are needed to scale up the fine scale grid information to resolve the flow 

on a coarse grid. The representation of fine grid properties on a coarse grid scale is 

obtained via the principle of upscaling. Upscaling has been a standard procedure in 

reservoir simulation for nearly four decades, most upscaling techniques are based on 

some kind of local averaging procedure in which effective properties in each grid-block 

are calculated solely from properties within the grid block. Different flow patterns 

may call for different upscaling procedures, it is generally acknowledged that global
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effects must also be taken into consideration while using a upscaling technique in 

order to obtain robust coarse-scale simulation model.

The type of the upscaling technique employed plays a key role in retaining fine 

scale geological information within grid blocks for practical size. More general meth­

ods of upscaling involve local fine scale flow simulations over the domains defined by 

coarse grid blocks. These methods are subjected to specific boundary conditions and 

require the use of appropriate discretization schemes. The main quantity computed 

in single phase upscaling is called as equivalent permeability and is denoted by K*.

In this work the family of flux-continuous schemes is used for computing upscaling 

simulations and the performance of different quadrature points in upscaling is mea­

sured with respect to equivalent permeability K*. The refinement studies presented 

involve:

(i) A pure refinement study showing only the effect of increased grid resolution on 

upscaled permeability, compared to that obtained directly from the fine scale 

solution.

(ii) A self consistent comparison where a classical mathematical convergence test is 

performed. The same coarse scale underlying permeability map is preserved on 

all grid levels including the fine scale reference solution.

(iii) A consistent comparison of upscaled permeability where each grid level has its 

own NxN permeability map.

The literature on upscaling procedures is extensive [33, 132, 133], ranging from 

renormalization techniques, e.g., [20, 30],via local simulation techniques [33, 32], to 

multiscale methods [37, 86, 35, 34, 134]. A review of different upscaling techniques 

is also presented in [40]. Several attempts have been made to analyze the upscaling 

techniques, but so far there is generally no theory or framework for assessing the 

quality of an upscaling procedure. The quality of upscaling techniques is usually



164

assessed by comparing upscaled production characteristics with those obtained from 

a reference solution computed on an underlying fine grid.

This chapter is organized as follows: Section 9.2 gives a brief description of the up- 

scaling problem encountered in reservoir simulation. Section 9.3 presents an overview 

of the upscaling procedure used in this work. Section 9.4 describes the implementation 

of the boundary conditions for upscaling procedure. Upscaling results using the dif­

ferent kinds of upscaling procedure used here are presented in section 9.5. Summary 

follows in section 9.6.

9.2 Problem  Description

The process of upscaling permeability from the pressure equation 3.5 is often 

termed as single-phase upscaling. Most of the single-phase upscaling techniques seek 

homogeneous block permeabilities that reproduce the same total flow through each 

coarse grid-block as one would get if the pressure equation was solved on the under­

lying fine grid with correct fine-scale heterogeneous structures. However, to design 

upscaling techniques that preserve averaged fine-scale flow-rates is in general nontriv­

ial because the heterogeneities at all scale have a significant effect on the large-scale 

flow pattern. A proper coarse-scale model must therefore capture the impact of het­

erogeneous structures at all scales that is not solved by the coarse grid. Hence, the 

intent here is to replace equation 3.5 on fine scale with a equivalent coarse scale equa­

tion characterized by an effective permeability tensor defined as K* which varies on 

a coarse scale i.e

V • (—K*(X, Y )  • V</>) = 0 (9.1)

This equation sates tha t the net flow-rate is related to the average pressure gradient 

through a upscaled Darcy law.
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Figure 9.1: Permeability tensor on each fine-scale cell Cjj upscaled over each coarse- 
scale cell C iyj .

9.3 U p sc a lin g  P r o c e d u r e

In upscaling rock properties from fine scale diagonal tensor simulations to grid 

block scale, the permeability tensor of a porous medium, specified on each fine scale 

cell Cij is upscaled or homogenized over each coarse-scale or computational cell Cij 

containing the fine cells Q j, figure 9.1.

v .« =  0

°r ig h t = 0°  left = ]

Figure 9.2: Fine scale permeability with standard boundary conditions.

The standard upscaling procedure for a grid cell or grid block involves solving a 

local flow problem over the cell subject to a global pressure gradient imposed across 

the cell in the x-direction with no-flow boundary conditions applied on the top and 

bottom walls of the cell as shown in figure 9.2. This upscaling procedure gives us 

an effective diagonal permeability tensor. Using the above pressure and velocity 

boundary condition upscaled permeability K* determined by global mass conservation
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conditions

{bright (pleftjLy   ^  (0j+ lj 4>i,j)-^-i+l/2, jA y  ĝ ^
L T A .X

x  i = 1

The boundary conditions can then be interchanged between x  and y to find the 

upscaled permeability in other direction

j r ^ *  {(fitop <f ib o t to m )L 'x  ___  ( 0 1 , 7 + 1  4>i , j ) - ^ i , j + l / 2 ^ X  ^  ^

- K22 Ty Ay (9'3)

The equation 9.2 gives the equivalent permeability in x-direction K ^ ,  and the equa­

tion 9.3 gives the equivalent permeability in y-direction K 22- Due to specification 

of no-flow ( V  • n  =  0) top and bottom boundary condition and vice-versa there is 

no cross-flow over the domain and hence the equivalent permeability tensor is diago­

nal and the cross-terms K^2, K 21 are equal to zero. The standard no flow condition 

boundary condition for upscaling is consistent with the harmonic average approxima­

tion when a one dimensional permeability field is present. Another popular option is 

to choose periodic boundary conditions. That is, one assumes that each grid block 

is a periodic cell in a periodic medium and imposes full correspondence between the 

pressure and velocities at opposite sides of the block. For a complete overview of 

existing upscaling techniques that are applied in reservoir simulation one can refer to 

[33, 132, 133, 20, 30, 32, 37, 12, 40].

9.4 Im plem entation of Boundary Conditions

Consistent with the cell-centered definition of the scheme, the grid is extended 

by one cell in each direction i.e if the original grid was 32x32 the extended grid will 

be 34x34. At the center of each exterior cell (left-right or top-bottom) a constant 

pressure is imposed. Note that flux integration is now a function of quadrature point 

q. At boundaries the exterior cell permeability values are set equal to their adjacent 

cell values. For zero normal flow conditions corner permeability values are set equal
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Figure 9.3: (a) Permeability for Linear Interpolation boundary, (b) Permeability for 
No flow boundary.

to the adjacent cell values as shown for the 2x2 grid in figure 9.3(a). Since no-flow 

boundary conditions are implemented, the permeability values at the corresponding 

cell-center points is set to zero, figure 9.3(b).

9.5 U p sc a lin g  R e su l ts

PERMEABILITY FIELD
PERMEABILITY FIELD

20 40 00 80 100 120

(a) (b)

Figure 9.4: (a)Typical fine scale permeability distribution on 128x128 mesh, (b) 
Upscaled permeability on a 64x64 mesh.

In this section the upscaling results are presented. A series of data-sets are taken 

as slices from the SPE10 permeability data-set for upscaling [135]. A typical perme­
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ability distribution on a fine mesh along with upscaled permeability on a coarse mesh 

is shown in figure 9.4. Although, the family of family of flux-continuous finite volume 

schemes can be used for upscaling both diagonal or full permeability tensor. Whereas 

here, the family of schemes is used to upscale only diagonal permeability tensor cases. 

The results are presented for three different types of upscaling refinement strategy 

subject to the same boundary conditions. Different cartesian meshes are used in ob­

taining the upscaling results, with the finest mesh of 128x128 grid resolution and the 

coarsest mesh of 4x4 grid resolution.

9.5.1 1.0 R efinem en t S tu d y  w ith  R en o rm alized  P e rm ea b ility

M  f I '

D ire c t  U p sc a lin g

In d i re c t  U p sc a lin g

o >

i>

P erm  K*

4> U p sc a led  
P erm  K*

(a)

Figure 9.5: (a) Refinement with Renormalized Permeability, e.g. upscale 128x128 = >  
64x64, this upscaled permeability field (64x64) is then used in next upscaling step.

In this refinement comparison, the local permeability is upscaled to the next course 

grid level hierarchically, so that permeability values are renormalized to each courser 

level. Results showing the effect of different grid levels on upscaled permeability, 

compared to that obtained directly from the fine scale solution are presented, figure 

9.5. The effect of using different quadrature points (i.e. different q) on upscaling is
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analyzed. The upscaled values of equivalent permeability and K 22 with variable 

quadrature is shown in table 9.1 and table 9.2. Referring to the tables, upscaling with 

quadrature q — 0.1 gives the best results compared to other quadrature points.

Quadrature q=0.1 q=0.5 q=l
DataSet 1 Reference 65.5576 61.4317 58.9494

Upscaled 44.9324 43.6320 42.8440
DataSet 2 Reference 42.5595 40.4588 39.1664

Upscaled 32.7892 31.7659 31.1485
DataSet 3 Reference 94.4637 78.1605 70.2935

Upscaled 58.5310 51.9994 48.4086

Table 9.1: Reference and Upscaled permeability for Data-Set 1,2 and 3 with 
variable quadrature q: Refinement with Renormalized Permeability.

Quadrature q=0.1 q=0.5 q=l
DataSet 1 Reference 42.5595 40.4588 39.1664

Upscaled 32.7892 31.7659 31.1485
DataSet 2 Reference 23.8880 22.5757 21.8116

Upscaled 20.1288 19.2585 18.7463
DataSet 3 Reference 21.9042 18.7096 17.3311

Upscaled 19.9642 17.3430 16.1758

Table 9.2: Reference and Upscaled permeability K 22 for Data-Set 1,2 and 3 with 
variable quadrature q: Refinement with Renormalized Permeability.

S w c ts s iv e  R efinem ent 
fo r M athem atical 

C onvergence

(a)

Figure 9.6: (a) Consistent Problem Invariant Convergence Test.
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9.5.2 2.0 R efinem ent Study w ith  Invariant Perm eability  D is­

tribution

In this case the permeability distribution is the same for all grid levels including 

the fine scale reference solution, enabling a classical consistent mathematical con­

vergence test to be performed, figure 9.6. Effects of different quadrature points on 

the convergence of upscaled permeability tensor is explored. Convergence results for 

upscaled permeability tensor and K 22 are shown in figure 9.7. Here, again it can 

be noted tha t quadrature q= 0.1 performs better than the other quadrature point 

values.

9.5.3 R eservoir F ield  R efinem ent Study

This case involves a reservoir field refinement study, where cell values for each grid 

level have permeability defined by upscaling directly from the fine scale permeability 

field as in standard simulation practice. Each grid level is then simulated following 

the standard boundary condition procedure and an equivalent permeability tensor 

is deduced and compared with the reference solution obtained from upscaling the 

global fine scale permeability field, figure 9.8. The upscaled permeability values 

and K 22 for data-sets 1, 2 and 3 are shown in tables 9.3,9.4, 9.5,9.6,9.7 and 9.8 

respectively. The results show (as in the previous tests) that q= 0.1 provides the 

best overall performance.

9.6 Summary

A study of a locally conservative family of flux-continuous schemes applied to 

upscaling is presented. Equivalent permeability is then used as a measure of scheme 

performance. Convergence tests are performed; (i) comparing equivalent permeability 

convergence with grid refinement and renormalized permeability, (ii) a self consistent
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Quadrature q=0.1 q=0.5 q=l
Reference (128x128) 65.5576 61.4317 58.9494

Upscaled(64x64) 63.5480 59.6080 52.4568
Upscaled (32x32) 60.0459 52.1773 47.4611
Upscaled (16x16) 59.2855 52.0012 47.8408

Upscaled (8x8) 59.2298 52.4006 48.5089
Upscaled (4x4) 55.4194 50.5745 47.6116

Table 9.3: Reference and Upscaled permeability K*1X for Data-Set 1 with variable 
quadrature q: Reservoir Field Refinement Study.

Quadrature q=0.1 q=0.5 q=l
Reference(128xl28) 42.5595 40.4588 39.1664

Upscaled(64x64) 38.8468 35.6740 32.7899
Upscaled(32x32) 28.3519 24.7645 22.8728
Upscaled (16x16) 27.2980 24.0491 22.3203

Upscaled(8x8) 26.8884 23.9251 22.2696
Upscaled (4x4) 24.8003 22.8183 21.6604

Table 9.4: Reference and Upscaled permeability K 22 for Data-Set 1 with variable 
quadrature q: Reservoir Field Refinement Study.

Quadrature q=0.1 q=0.5 q=l
Reference(128x128) 56.2280 52.6990 50.5713

Upscaled(64x64) 54.6767 48.7680 43.6740
Upscaled (32x32) 51.7379 45.0948 41.0981
Upscaled(16xl6) 52.2747 45.6833 41.9042

Upscaled (8x8) 50.3396 44.4549 41.0701
Upscaled (4x4) 43.3755 39.5181 37.1926

Table 9.5: Reference and Upscaled permeability for Data-Set 2 with variable 
quadrature q: Reservoir Field Refinement Study.

study where the same (coarse) permeability field is used for each grid level including 

the reference solution (problem invariant per grid level). (iii) a practical convergence 

study where each grid level has a permeability field obtained by upscaling directly 

from the finest grid level. Note that the problem permeability field changes on each
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Quadrature q=0.1 q=0.5 q=l
Reference(128x128) 23.8880 22.5757 21.8116

Upscaled (64x64) 23.4380 21.7867 20.8896
Upscaled(32x32) 23.3436 20.5161 19.0252
Upscaled( 16x16) 23.2004 20.4882 19.0578

Upscaled(8x8) 22.9740 20.5094 19.1416
Upscaled (4x4) 20.2055 18.7261 17.8856

Table 9.6: Reference and Upscaled permeability K 22 for Data-Set 2 with variable 
quadrature q: Reservoir Field Refinement Study.

Quadrature q=0.1 q=0.5 q=l
Reference(128xl28) 94.4637 78.1605 70.2935

Upscaled(64x64) 92.0353 68.3512 57.5476
Upscaled(32x32) 91.9651 74.9757 66.9956
Upscaled( 16x16) 89.9315 74.5197 67.0022

Upscaled(8x8) 84.7896 70.1481 63.0479
Upscaled (4x4) 76.1334 63.0145 56.6640

Table 9.7: Reference and Upscaled permeability for Data-Set 3 with variable 
quadrature q: Reservoir Field Refinement Study.

Quadrature q=0.1 q=0.5 ►a 11

Reference (128x128) 21.9042 18.7096 17.3311
Upscaled(64x64) 21.2921 17.1401 15.3652
Upscaled(32x32) 21.3842 17.9277 16.3889
Upscaled(16xl6) 21.7363 18.4977 17.1098

Upscaled (8x8) 21.1987 18.1143 16.8027
Upscaled (4x4) 17.9895 15.4713 14.4080

Table 9.8: Reference and Upscaled permeability K£2 for Data-Set 3 with variable 
quadrature q: Reservoir Field Refinement Study.

grid level for strategies (i) and (iii). Results are presented for a number of permeability 

fields. Consistently throughout the study under the different convergence comparisons 

and quite distinct permeability fields, results show that quadrature q = 0.1 improves 

upscaling when compared to other quadrature points. This is consistent with earlier
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results of pressure field convergence tests as presented in [5, 20].
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Figure 9.7: Upscaled Permeability Convergence of K*x and K*y for Data-Set 1,2 
and 3 respectively with variable quadrature point (q): Consistent Problem Invariant 
Convergence Test.
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Fine scale

Figure 9.8: (a) Consistent Upscaling Convergence Test.



176

Chapter 10 

Conclusions and Recom m endations

10.1 Conclusions

Locally conservative families of flux-continuous finite-volume schemes have been 

presented for the physical space formulation in this thesis. The two dimensional for­

mulation of the family of schemes was first introduced by Edwards and Rogers in [2]. 

The family of schemes are quantified by quadrature parametrization where quadra­

ture defines the point of continuity and hence the family. The family of schemes are 

applicable to diagonal and full discontinuous tensor coefficients. This thesis presents 

the complete extension of the family of flux continuous finite-volume schemes CVD 

(MPFA) to all elements Hexahedra, Prism, Pyramid and Tetrahedral in 3-D and is a 

major contribution towards unstructured grid flow discretization.

In this thesis CVD (MPFA) schemes are used in an attem pt to overcome some 

of the major limitations of standard schemes when applied to general geologies and 

geometries. The families of CVD (MPFA) schemes ensure tha t a consistent locally 

conservative flux approximation is achieved for grids comprised of any element type 

and combination allowing maximum flexibility in grid generation.

Numerical convergence test for full tensor problems with discontinuous coefficients 

show improved convergence behavior with use of quadrature parameterization q. In
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general it is observed from the convergence study that quadrature point q = 0.1 ap­

pears to be optimal and results in improved convergence compared to other quadra­

ture points. In particular significant improvement in convergence rates are obtained 

for q =  0.1 compared to standard MPFA (q =  1). This observation is substanti­

ated further by performing a convergence study with respect to a standard upscaling 

procedure.

In the general case these schemes do not always lead to an M-Matrix. The physical 

space schemes are non-symmetric for general quadrilateral cells. Hence, a new family 

of flux-continuous schemes presented in [67] is discussed here for obtaining a symmet­

ric positive definite general-tensor formulation. Whereby symmetry is achieved by 

introduction of piecewise constant subcell general-tensor approximation within the 

formulation.

The effect of subcell tensor approximation and quadrature point on convergence is 

presented and compared with both the physical space schemes and the cell-wise trans­

formed control-volume schemes. The subcell schemes use a finer scale representation 

of the cell geometry compared to the cell-wise transform scheme and are found to 

have the best overall convergence performance for the cases tested. In particular the 

control-volume face subcell tensor approximation yields the best results. The quadra­

ture point q =  0.1 is found to be the most beneficial in terms of numerical convergence. 

It is also found that the subcell scheme numerical convergence is considerably closer 

to tha t of the physical space formulation than the cell-wise transform-space scheme.

Monotonicity issues related to the family of schemes are discussed. The flux- 

splitting technique is applied to the family of schemes and developed to obtain im­

proved monotonic behavior of the schemes when applied to problems with highly 

anisotropic media. An important component of this solution procedure is to obtain 

a monotonic solution computed by the two-point flux approximation, where the re­

sulting M-martix is used as a driver and the remainder (deferred) correction to the 

iteration is added at each iterative step before a local extrema is detected. For cases
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where an M-matrix can not be obtained, M-matrix analysis is used to develop specific 

discretization methods which guarantees minimum spurious oscillations for full-tensor 

problems with high anisotropy in 2-D and 3-D.

A general double (g i,^ -fam ily  of flux-continuous locally conservative schemes is 

presented. M-matrix analysis is used to determine the upper limit for obtaining mono­

tonic solutions and to aid the construction of schemes that minimize the occurrence 

of numerical solutions with spurious oscillations in the general case.

Finally, the ^-family of schemes is applied to carry out upscaling on slices of SPE10 

data-set [135] using different upscaling techniques. A series of convergence tests are 

performed on different slices of SPE10 permeability data using different quadrature 

-q. Here again benefits of using quadrature parametrization are highlighted.

10.2 Recom m endations for Future Work

The work presented in this thesis is only the beginning for research and devel­

opment of the family of control-volume distributed flux-continuous schemes (CVD- 

MPFA ^-family of schemes). This work has laid the foundation for numerous further 

investigations, all of which will hopefully give an even greater insight on this novel 

and interesting approach with application to subsurface reservoir simulation. Further 

possible research routes are suggested here:

(i) A quasi monotonic variable support (ql,q2)-iami\y of schemes is presented here. 

Further extension of the variable support family of schemes to general unstruc­

tured 2D and 3D grids can be carried out. A numerical convergence study 

should also be carried out for the variable support (gi, ^ -fam ily  of schemes for 

2D and 3D formulation on structured and unstructured grids highlighting the 

quadrature parametrization and its benight.

(ii) The variable support scheme presented here, in a limiting case, results in a
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seven or nine point scheme. Variable support scheme gives improved mono­

tonicity behavior when applied highly heterogeneous anisotropic medium, com­

pared to q-family of nine point schemes. The variable support scheme can also 

be combined with flux-splitting similar to the single (q)- family of scheme and 

monotonicity behavior of combined scheme can be investigated for both 2D and 

3D formulation.

(iii) Flux-splitting scheme presented here for the single (q)- family of schemes re­

sults in improved monotonicity behavior for the schemes. Further, work on 

flux-splitting with the family of schemes formulation in 3D can be carried out 

and its effect on monotonicity behavior of the family of schemes in 3D can be 

investigated.

(iv) Here, the family of schemes formulation has been presented on different types 

of 2D and 3D grids. Very simple examples of mixed grids in 2D and 3D have 

been presented in this thesis. Further work can be undertaken where family of 

schemes can be tested on different types of increasingly complex mixed grids in 

2D i.e unstructured grids comprising of quadrilateral and triangular elements. 

And mixed grids in 3D comprising of different element types e.g., hexahedra, 

prism, tetrahedra and pyramids.

(v) In this work very simple examples are tested using family of schemes for bound­

ary aligned grids and cases with faults in 2D and 3D. Further work can be done 

where boundary alignment algorithm can be generalized to more complicated 

boundaries and further cases with faults and pinch-outs can be tested.

(vi) In this work relatively less emphasis has been put on improving the solver. Sim­

ple gaussian elimination has been used for matrix inversion operations. Further 

research and development can be done in this area by implementing better 

sparse solvers. Especially, for carrying out numerical convergence study with
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more number of cells/elements in 3D. Parallel programming approach can also 

be looked into for testing increasing complex numerical examples in 3D.

(vii) The upscaling technique presented in this thesis using family of schemes is im­

plemented using no-flow boundary conditions and is limited to 2D. Further work 

can be done in this direction where upscaling can be carried out implementing 

periodic boundary conditions and using family of schemes in 3D.

(viii) In this work some interesting examples are presented where cell-vertex and cell- 

centred approaches are combined to obtain solution for cases involving faults 

in 2D and 3D. This combined approach appears to be very promising and this 

area needs further investigation.
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Upper-Case Roman

A  Jacobian matrix of 9-point flux-continuous system of equations
A l  Matrix of assembled flux-coefficients operating on interface pressures (L-Left)
A r  Matrix of assembled flux-coefficients operating on vertex pressures (R-Right)
B Jacobian matrix of 2-point flux-continuous system of equations
B l  Matrix of assembled flux-coefficients operating on interface pressures (L-Left)
B r  Matrix of assembled flux-coefficients operating on vertex pressures (R-Right)
C ij Coarse scale cell (i-row, j-col)
E  Ellipticity of tensor (E  < 1 )
E East direction
F  Flux-coefficient matrix (2D Structured - 4x4, 2D Unstructured - 3x3)
F Flux in x-coordinate direction
G Flux in y-coordinate direction
G Gradient operator
I Identity matrix
J Jacobian matrix
K  Permeability tensor (2x2 - 2D, 3x3 - 3D)
K * Equivalent permeability tensor (2x2 - 2D, 3x3 - 3D)
Lx Face length along x-coordinate direction
Ly Face length along y-coordinate direction
L2 Error norm
M Specified source or sink term
Mg A positive definite matrix of size (nxn)
N North direction
O Zero-matrix, matrix with all entries equal zero
Q Source term
S South direction
S Surface of domain Cl
T  Transmissibility tensor (2x2 - 2D, 3x3 - 3D)
T  Transformed tensor (2x2 - 2D, 3x3 - 3D)
Uh Function space in U
Vh Function space in V
W West direction
X X-coordinate direction
Y Y-coordinate direction
Z Z-coordinate direction



| Lower-Case Roman

| ai,3
I
| ei
| eh

\ A
| fhX
[ h'U

I f
h
i
j
k
I
1
m
n
n
n
n~N
ns
nE
riw
V
Q
q
r
r

! t
| u
I V
! X

i y 
i z

Element entries of matrix A (i-row, j-col)
Fine scale cell (i-row, j-col)
Edge mid-point index 
Solution error $ — <f)h 
One dimensional scalar flux 
Discrete flux
Discrete flux in x-direction 
Discrete flux in y-direction
Subscript used to represent interface of left and right cells
Small increment in x or y direction
No of cells in x-direction
No of cells in y-direction
One dimensional permeability
Different phases (oil, water, gas)
Subscript used to represent left cell 
Source or sink in ID 
Iteration level 
Outward normal vector 
Outward unit normal vector 
Outward normal vector at interface N
Outward normal vector at interface S
Outward normal vector at interface E
Outward normal vector at interface W
Quadrature value corresponding to q\
Quadrature parametrization
Col-vector with values (^1,^2) in 2D and (#1, #2, #3) in 3D
Parametric variation in x and y coordinate direction
Subscript used to represent right cell
Superscript used to represent transpose of a matrix
Flux in x-direction
Flux in y-coordinate direction
x-coordinate direction
y-coordinate direction
z-coordinate direction



Upper-case Greek

r Boundary of domain
A, Quantity between two different levels of i
A; Quantity between two different levels of j
A zF Quantity between two different levels of F in ^-coordinate
A r,G Quantity between two different levels of G in ^coordinate
A Quantity between two different levels of (j>
Vcj) Gradient of pressure <j>
V v Gradient of velocity v
V z Gradient of depth z
$ Vector of pressure (f>

Vector of interface pressure (pf
Vector of vertex pressure <j>v

n Any problem domain

Low er-case G reek

<t> Discrete pressure values
4*x Derivative of pressure in x-coordinate direction
fiy Derivative of pressure in y-coordinate direction

Derivative of pressure in z-coordinate direction
4>i Discrete pressure value in left cell
(j)r Discrete pressure value in right cell
<t>f Discrete interface pressure value
{(>*l) Transformed coordinates 0 <  (£, 77) <  1
0 Angle in degrees
ip Test function in L 2 space
V Test function in H(div) space

Area coordinates
(J Value which is function of ( p,q)

Viscosity of fluid
n pi with value in degrees =  180 degrees



Sym bols

min Minimum
max Maximum
Physical Physical Space
Transform Transform Space
di Partial derivative with respect to i,j,
V Gradient operator
VT Divergence operator
V 2 Laplacian operator

A b b rev ia tio n s

CVD Control Volume Distributed
DG Discontinuous Galerkin
FDM Finite Difference Method
FEM Finite Element Method
FVM Finite Volume Method
MFEM Mixed Finite Element Method
MPFA Multi Point Flux Approximation
NP Nine Point
SPD Symmetric Positive Definite
SPE Society of Petroleum Engineers
TPFA Two Point Flux Approximation
TP Two Point
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ii

A ppendix A  

Grid Construction

The simulation of fluid flow in petroleum reservoirs is performed by discretizing 

the actual domain into number of subdomains or gridblocks and locally applying the 

conservation law to each fluid component in the system. Although the physical pro­

cesses are independent of this fictitious discretization of the domain, the outcome 

of any flow simulation depends on the grid geometry and the discretization scheme. 

Some grids are more appropriate to specific simulation problems than others. Con­

struction procedure of some of these grids is described here.

A .l  Delaunay Triangulation

Delaunay triangulation is the most widely used triangulation method in unstruc­

tured mesh generation. It is one of the fastest triangulation methods with relatively 

easier implementation, giving excellent results for most applications. Given a set of 

nodes Delaunay triangulation forms triangles by the the criterion that no vertex of a 

triangle lies inside the circum-centre of any other triangle (also known as circle crite­

rion) . In 3D triangulation is such that the circum-sphere of any tetrahedron contains 

no vertex of any other tetrahedron inside it. Delaunay triangles define nearest nat­

ural neighbors in the sense that nodes are closer to their mutual circum-centre than
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any other nodes. These circum-centres form the vertices of the Voronoi tessellation. 

Hence, Voronoi polygon surrounding a node is a region that is closer to that node 

than to any other node in the set.

A  T *

Figure A.l: Voronoi Control-volume surrounding a grid node

A .2 V orono i G r id s

Given a set of grid nodes, Voronoi control-volume/gridblock can be generated 

using the Voronoi criterion mentioned above. A Voronoi gridblock is defined as the 

volume associated with each grid node which is nearer to its own grid node than any 

other grid node. A Voronoi control-volume/gridblock associated with a grid node is 

shown in figure A.I. Intersection of perpendicular bisector lines (planes in 3D) of 

the underlying Delaunay mesh of connecting grid nodes defines the boundary of the 

Voronoi control-volume. Because of the way Voronoi grid geometry is generated, it 

always gives a convex control-volume/gridblock. The numerical model when perme­

ability field is isotropic is very simple when a Voronoi grid is used to discretize the 

domain [136]. Geometrical properties are also easier to compute for convex shaped 

grids [52].
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Figure A.2: CVFE grid

A .3 C V F E  G r id s

A 2D grid is defined to be CVFE type if the control-volume/gridblock boundaries 

are made from the edge-centres and barycentres of underlying Delaunay triangles.

The barycentre of a triangle is the intersection of the line from a vertex to the centre 

of triangle edge opposite it. In 3D, a CVFE grid is made from the edge-centres, 

barycentres of triangular faces of the tetrahedra and barycentre of the tetrahedra.

For a tetrahedron, the lines from its nodes to the barycentre of the triangular face 

opposite it intersects at a common point. This point is the barycentre of tetrahedron.

A CVFE grid associated with a grid node is shown in figure A.2. CVFE gridblocks are 

normally not convex unlike Voronoi grids which are always convex, which complicates 

the calculation of some geometrical properties of the gridblock.

A .4 C o n tro l-v o lu m e  B o u n d a r y  A lig n e d  G r id s

Control-volume boundary aligned grids are formed by aligning the control-volume/grid 

blocks boundaries with reservoir heterogeneities [5, 7, 52]. To generate a control- 

volume boundary aligned grid (CV-BAG) the gridblock/control-volume boundaries 

need to be adapted to the reservoir geometric feature/bed boundaries. A bed bound­

ary is typically defined by a set of points in 2D and is called a ployline. For each edge
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Figure A.3: Control-volume Boundary Aligned Grid (CV-BAG)

of the underlying Delaunay triangles if it is cut by a polyline then the edge midpoint 

for this edge is modified to be the intersection of the edge and polyline. And the 

control-volumes are modified to align along the reservoir geometry/bed boundary as 

shown in figure A.3.

Generating such a grid in 3D is geometrically very complex and requires complex 

geometrical algorithms and computation. For the purpose of boundary aligned cases 

tested in this thesis the reservoir bed boundary is defined by straight lines in 2D and 

by planes in 3D, which can easily be implemented using the procedure defined above.



A ppendix B 

Perm eability Tensors

* X

Figure B.l: Cartesian coordinate system X-Y and new coordinate system X’-Y’ ro­
tated at an angle 0 .

Let the Cartesian coordinate system in 2D be denoted by x ,y  axes. And in 

this coordinate system let the velocity for a highly anisotropic diagonal permeability 

tensor field is given by the equation

v  =  —K V $

where in 2D diagonal anisotropic permeability tensor is give as

(B.l)
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and the anisotropy ratio is given as 1 /^2 2  •

Consider a set of new Cartesian axes x ',y ' (figure B .l) having the same origin 

as the old system, and let the position of new axes with respect to the old axes be 

defined by the direction cosines cXjV,i.e., the cosines of the angle (9) between the new 

axis x' and the old axis x. Then the permeability tensor in the new system is given 

by the following equation

K ' = (  cos(0) -s in (9 )  \  /  K u  ° \  (  cos(0 ) sin(6 ) \  

y sin(9) cos(9) J y 0 K 22 J y —sin(9) cos(9) J
The new permeability tensor field K ' in the system rotated by an angle 9 is now 

a symmetric full tensor with element entries given as [19]:

rs, K 1I + K 22 K 1 1 —K 22 / - q  a \K u  = -------------+ --------------cos (29) (B.4)

IS/ K u  — K 2 2  .K l2  = -------- -------sin(29)

K 'v  =

(B.5)

The axes (x, y) when the off-diagonal entries of the permeability tensor field van­

ishes are called the principal axes and the element of the diagonal along this axes are 

called the principal permeabilities. The principal permeabilities are the eigenvalues 

of the symmetric permeability tensor (K7) in the new axes.
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A p p e n d i x  C  

C e l l - v e r t e x  F o r m u l a t i o n

C . l  C o n s t ru c t io n  o f  th e  F am ily  o f  S chem es  o n  U n ­

s t r u c tu r e d  T r ia n g u la r  G r id s

Figure C.l: (a)Control-volume , Flux and pressure continuity positions at N, S, E 
shown on a Triangle. Quadrature q =  1/2. (b)Sub-cell triangular basis functions and 
fluxes at interface.

Here construction of cell-vertex based family of schemes on unstructured grids is 

described in detail. Figure C.l shows triangulation of four nodes, voronoi control-

3

4

2

(a)
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volume (CV) surrounding node 1 and parts of control-volume faces for nodes 2,3 and 

4. Since, the formulation considered here is cell-vertex based each control-volume is 

assigned a permeability tensor e.g., control-volume surrounding node 1 has perme­

ability tensor K i, similarly control-volumes surrounding nodes 2,3 have permeability 

tensor K 2 and K 3 respectively. As shown in figure C .l a triangular pressure support 

is introduced and continuity of flux and pressure is imposed across control-volume 

faces at points N,E and S. Where points N,E and S are functions of quadrature 

parametrization q.

Single phase flow rate across face S is given as:

h a  =  -  J  V i • n sdL =  - A s v[ • n 3

— A g -|- (C.l)

A positive value of /  signifies flow into the control-volume and negative value 

signifies flow out of the block. Single phase velocity is region 1 is estimated by:

; (c.2)
<P ly

To estimated the potential gradient in equation C.2 we assume potential varies 

linearly in region 1. Hence we have the equations

<Ps =  (f>i +  (xs (q) -  Xi)(f)ix +  (ys (q) -  yi)<t>iy

(j>N = <f>i + {x n (q) ~  x i) ( j> ix  +  (yN(q) ~  y\)(f>iy (C.3)

Which gives
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cp s  -  <f)i

<p n  — 4> i

05 — 0!

<Pat — <Pl

(C.4)

{xs (q) -  x i) (ys (q) -  2 / i )

(2^ ( 9 ) -  a q ) (2 /iv(g) -  V i)

{VN{q) -  x x) (;y i  -  ys (q))

 ̂ (x\ -  x N(q)) (xs (q) -  Xi)

where

Di = X!(ys (q) -  yN(q)) +  x s (q)(yN(q) -  yi) +  x N(q)(yi -  ys (q)) (C.5)

Hence we can write equation C.4 as

^ lx ^  _  (  A n ( ^  A ^{q) \  I 4>s-<l>i 

01 y J \  ^ 21(9) ^ 22(9) J \  <}>n ~  <f>i

similarly we can write expressions for CV surrounding nodes 2 and 3. For node 2 

we have

M  = ( Bll(^ Sl2(^ ( C 7 )
<t>2y I  I  - 6 2 1 ( 9 )  6 2 2 ( 9 )

(C.6)

d>Q — cbo

<PE ~  02

and for CV surrounding node 3 the equation is: 

^ 3x \ (  C u (9) Cu(q) <PN — 4> 3
(C -S)

03y J  \  C21 (9) C22 (9)

It should be noted that the coefficients of the matrices above are functions of 

quadrature q. As we want fluxes normal to interfaces to mach on either side of points 

N,E and S. Hence we form three constraint equations, one each at points N,E and S 

by imposing continuity of fluxes. At S:

vi -n s = v2 ’ ns (C.9)

where ris is the outward normal with respect to 1 on the CV face. At N:

v{ • rijsr = V3 • rijsr (C.10)
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where rim is the outward normal with respect to 1 on the CV face. At E:

v2 • nE = v3 • nE (C .ll)

where is the outward normal with respect to 2 on the CV face. Expanding the

continuity equation C.9 we get :

(vxi -  vX2 )nxs +  {vyi -  vy2 )nyS = 0, 

and substituting the terms for velocities we get

nxs [Kixx(An{4>s ~  <t>i) +  A i2(4>n  — 4>\)) 

+ K i xy{A2i{(j)s — 4>i) +  A 22 (4>n  — 4> i ) ) ]

+nys[Kixx(An((l)s ~  0 i) +  A i2(cf)N — 0 i))

+ K i xy { A 2i( ( j ) s  — <t>i) +  A 2 2 ((f)N — (j>i))]

=  n x s [ K 2xx( B n ( ( t ) s  — (f)2) +  B i 2 (4>e  — & ) )

+ K 2 x y ( B 2i(<j)s — $ 2 ) +  B 22 ((/)e — 02 ))]

+nys[K2xx(Bii((j>s — 4> 2) +  B i2(4>e — 4>2))

+ K 2xy(B2i((j)s — <!> 2) +  B 22((f>E — ^ 2 ))]

We can now arrange the above equation in terms of the coefficients oi(pN,(fis,<f>Ei<f>i 

and <p2. In a similar manner we can use the other two continuity equation C .ll, C.12 

and then collect the coefficients. Then the three continuity equations C.9 can be cast 

into following form:

(C.12)

(C.13)
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y A-Lzi A  

/

A-Lli Al,i2 A-Li3

A-Ii21 A.£j22 Az,23

L 32 A-L/33 J  

A rh  A Ri 2 j4 r13 

Ar,2i A r  22 Ar^s 

R32 A

4>e

{(pN J 
\  t

I  b L u  b L i2 b L i3 W  •*- N

V A r 31 A } R 33  J

+ BL2I B  L22 BL>23 

y BL31 B l 32 B

<t>s

<f*E 

\<i>N )

+

L 33 J

b R i i  b R i 2 b Ri3

b R21 b

Where the coefficients of the matrix are given as:

R22 R23

\  B r 31 B R 32 B R 33 J

(f>i 

<t> 2

V *  J

<f>2 

V <h )

A lu

AL12

A l \ 3

A l  21 

Ajj 22 

Al23 

AL31 

Al.32 

AL33

UXSK \ xxA n  +  nxsK i xyA 2i

0

nxsK \xxA i2 +  nxsK ixyA 22

0 

0 

0

n ys K \ xxA u  +  nysK i xyA 2\

0

ny s ^ l xxAi2 +  nysK i xyA 22

(C.14)

(C.15)
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B lu — —nxsK  ixx{An  +  A i2) — nxsK i xy(An  +  A i2)

B lw — 0

B l 13 =  0

B l2i — —nysKixx(Au  +  ^ i 2) — nysK ixy(A n  +  A i2)

B l 22 — 0

B l 2 3 =  0

B l 31 =  0

B l 32 =  0

B l 33 =  0

A ru

A r 12

A r 13

A r 21

A r 22

A r 23

A r 31

A r 32

A r33

nxs K 2xxB u  +  nxsK 2xyB 21 

nxsK 2xxB i2 +  nXsK 2xyB 22 

0

nys K 2xxB n  +  K 2xy B 2 1

nys K 2xxB i2 +  nys K 2xyB 22

0 

0 

0 

0

(C. 16)

(C.17)
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B ru = 0

B r 12 =  —n x s K2xx( B i i  +  B i2) — n xsK 2xy{ B n  +  B i 2)

B r 13 =  0

B r 21 =  0

B r 22 =  —R y s ^ 2xx{ B n  +  £ 12) — n ysK 2xy( B n  +  B i 2)

B r 23 =  0

B r 31 =  0

B r 32 =  0

B r 33 = 0 (C.18)

Similar expression can be formed for rest of the continuity equation C.10, C .ll  

and C.12. Prom equation C.14 interface pressures can be eliminated by expressing 

interface pressures in terms of cell-vertex pressures as:

=  ( A l  -  A r ) - \ B r  -  B l ) $ v  (C.19)

where =  [<£s , (f)E , <f>N ]' and <P/ =  [<j> 1, (j)2 , f o ] '

Once the interface pressures are expressed in terms of cell centred pressures the 

flux coefficient matrix then can be written as:

F  = (A l ((Al -  A r ) ~ \B r  -  B l )) + B l )$ v (C.20)

Now using similar equations fluxes can be computed for other CV’s in the domain 

and a global assembly can be performed accordingly.
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Figure C.2: Control-volume , Flux and pressure continuity positions at N, S, E shown 
on a Quadrilateral.

C.2 C e l l-v e r te x  F o rm u la t io n  on  Q u a d r i la te r a l  G r id s

This section describes the construction of cell-vertex family of schemes on quadri­

lateral grids. In cell-vertex based scheme a quadrilateral element contains parts of 

four homogeneous CVs (with permeability tensor K 1? K 2, K 3 and K 4), one surround­

ing each node and there will be four interfaces of the CVs inside each quadrilateral 

element, figure C.2. There will thus be four fluxes inside each quadrilateral. An 

interface pressure is introduced at point N,S,E and W, figure C.2. These interface 

pressures along with nodal pressures are used to estimate pressure gradient inside 

each of the CVs in the quadrilateral, which can then be used to compute the velocity 

at each interface. The velocities are used to estimate fluxes at each interface. Conti­

nuity of flux and pressure is imposed at the point N,S,E and W (which are functions 

of quadrature parametrization q). The single phase flow rate across face S is given 

as:

Single phase flow rate across face S is given as:
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fis  = -  J  vi • nsdL = - A s vi • ns 

— As\pixVjxs "h ^lj/^j/s]

where ns  is the outward normal on the interface S  with node 1 considered as an 

inside point. A positive value of /  signifies flow into the block while a negative value 

signifies flow out of the block. The single phase velocity in region i  ( i  = 1, ..,4) is 

given by:

Vi =  - [ K iV 4>i\

Ki”  Kixv » =  I. •••! 4 (C.22)
KiyX Kiyy J  \  fiiy

To estimate the pressure gradient in above equation linear basis functions are 

introduced in region 1,.., 3 of the quadrilateral element assuming pressure varies lin­

early. Hence we have the equations:

(f>s =  <f>\ +  (xs (q) -  z i ) 0 i *  +  (ys {q ) -  yi)(f>iy 

4>w = <f>i +  (ocw (q) -  X i)(j> ix +  (yw(q) -  yi)<l>iy (C.23)

Which gives

(xs {q) -  xi)  . {ys {q) -  yi)

(xw (q) -  a*) (yw {q) ~ yi)

l_ f  (yw(q) ~ zi) (yi -  ys (q)) ^  ̂

Dl \  (xi -  xw (q)) (xs ( q ) - x i )

Hence equation C.24 can be written as

^ lx | =  ( A l1 ^  A l2 ^  ] |  <i>s-<l>x - ,c  2g.
<hy I  I  ^2l(5) ^ 22(9) /  \  4>W ~  <t> 1

<PS — <t> 1

4>w — <pi

U>Q — ©1

4>w — (pi
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similarly we can write expressions for CVs surrounding nodes 2,3 and 3. For node 

2 we have

4>2X | / A l f a )  ^ 1 2  fa)

02y  )  I  A l f a )  ^ 22(9)

05 — 02

05  —  02
(C.26)

,for node 3 we have

03x | ( A l f a )  ^ 12(9) | | 0W — 03

03y  )  V A i f a )  C 22 fa) I  I  0Jv — 03
(C.27)

and finally for node 4 we have

04
(C.28)

A lfa )  A 2fa) W  0 5 - 0 4  

A l f a )  £>22fa) /  \ 0 i V - 0 4  

Flow rates across the interfaces are based on the velocities at the points N,S,E 

and W. As mentioned earlier, velocities normal to interfaces should match at these 

points on both side of the interface. Hence four continuity equations are formed, one

at each of the points. The continuity equations at points N,S,E and W are:

v i - r i s  =  V2 - n s

V \  • T l w  =  V 3 • T l w

V2 • nE = V3 ' tie

v*3 'U n  =  vl-riN  (C.29)

respectively, where rf#, riw, rib and ns  are outward normals on face E, W, N  and 

S  respectively. Now expanding the equation C.30 and substituting the terms for ve­

locities similar to the formulation on triangles as in section C .l we obtain expressions 

like
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n x s [ K i x x ( A i i ( ( f ) s  — <t> 1) +  A i 2{4>n ~  4> 1))

+ K ixy{A2\{<i>s — 4> 1) +  A 22 {$N — fa))

+nys[Kixx(Aii(4>s — fa) +  A i2((()n  — fa))

+-^lxy(A 2 i{4)s — fa) +  A 22 ((f>N ~  4> 1))] 

=  7ixs[^2XI(-Sll(</>5 ~  fa) +  -Sl2(^£; — <̂2)) 

+K2xy(B2i(4>S — fa) +  B 22{(i>E — (f>2))]

+nys [K2xx(Bu((l)s — fa) +  Bi2(4>E — fa))

+K2xy(B2l{4>S — fa) +  B22(4>E — fa))]

(C.30)

similar expression can be obtained for rest of the continuity equations. Following 

from section C .l the above equations can now be cast into following form:

A i ^ f  +  B l <!>v = A n $ f  +  B r<$>v (C.31)

where =  [</>#, 4>s, 4>e , <f>w]' and =  [fa, fa, fa, fa]', and A L ,B L ,A R ,B R  are 

matrices of size 4x4. The coefficients of the matrices are expressed as:
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A lu = nxsK ixxAi2 +  nxsK ixyA 22

A l\2 = nxs K iXxAii  +  nxsK ixyA 2i

A l\3 = 0

A-l14i = 0

A-L21 = nysKixXAi2 +  nysK u yA22

A-L22 = nys KixxAn  +  nysK ixyA2i

A]_,2Z = 0

A-L24 = 0

A-Lsi = 0

CO = 0

A lzz = 0

CO = 0

A l 4 1 = 0

A-L>42 = 0

A l,43 = 0

A u i = 0
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B l u =

B l 12 = 0

B l i z = 0

B l 14l = 0

B l 2i
= ny

B l 22 = 0

B l 2z
= 0

B l 2i = 0

B l z i
= 0

B l 32 = 0

S3 CO CO = 0

B l 34 = = 0

B l  41 = 0

B l  4 2 = 0

CO = 0

B Ui = 0

°xs- lXS I ' l x y / ± 21

(C.33)



219

A r u
= 0

A R 12 = n xsK 2xxB n  +  n xsK 2xyB 2i

A r 13 = n xsK i xxB i 2 +  n xsK 2xyB 22

A r 1a = 0

A R21 = 0

- ^ J ?22 = n y s K 2xxB n  +  n ysK 2xyB 2i

A r 3̂ = n y s K i xxB i 2 +  n ysK 2xyB 22

^ - i ?24 = 0

A j J s i
= 0

A r 32 = 0

COCO

ft! = 0

^ i ?34 = 0

A f i L t l = 0

-̂ ■Ra2 = 0

A r a3 = 0

A raa = 0
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B ru =  0

BR12 = —Rxs^ 2xxB u  — nxsK 2xyB 2i 

B r 13 =  0 

B r 14 =  0 

B r 21 — 0

B r 22 =  n ysK 2 xxB n  +  nys K 2xyB2i

B r 23 =  0

B r 24 =  0

B r 3 i  =  0

B r 32 =  0

B r 33 =  0

B r 34 =  0

Br41 =  0

B r A2 =  0 

B r 43 =  0

B r^  = 0 (C.35)

Prom equation C.31 interface pressures <f>/ can now be eliminated by expressing 

them in terms of vertex pressures

= {Al  -  A r ) - \ B r  -  B l ) $ v (C.36)

After eliminating interface pressures the flux coefficient matrix can then be written 

in a similar manner as:

F  = (Al ((Al -  A r ) ~ \B r  -  B l )) + B l )$ v (C.37)

Once the fluxes are computed using equation C.37 global assembly follows.
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C.3 Cell-vertex Formulation on Quadrilateral Grids: 

Inverse Tensor Form

The flux is now derived in an alternative form involving potential differences be­

tween nodes following [6, 4]. We return to the physical space flux of equation C.30 

expressed in terms of potential differences between interface pressures and nodal pres­

sures, for any quadrature point on the interface, and reformulate the flux continuity 

conditions in terms of the subcell tensors as:

( X T l ( F S ) =  ( T V ( f S ) =  - ( ^ S ),
F w  <t>W — <j>1 F e 4>E — 4> 2

( T V (  ^  ) =  - (  ** ~  ). F"  ) = (C.38)
F e  <j>3 ~  <!>e F w  <!>a ~  4>w

where fluxes are grouped according to subcell numbers (denoted by general-tensor 

superfixes) that are in common and equation C.38 is then an equivalent form of 

equation C.30. The physical space tensor approximations belonging to each subcell 

are written as:

T i =  I i s  T 2 =T11 11
Is Tu 11

Is

T12I
1
w T22 11 

1 w

T11I 3AT T12I
3
N

T12
|3 
1E T22 31E

T u 12
Is T12

12
Is

T12
|2 
1E T22

|2 
1E

T n |
4
1N T12 |4liV

T12I
4
W T22I 4\w

Now denote T }2 — Ti2 |s, T21 = Ti2\w and ^12 7̂  T2\  in the general case. Thus 

the inverses of the discrete tensors in equation C.39 are not symmetric in the general 

case. Denoting the inverse of the general-tensor by T  = (T )_1 and adding pairs of 

equations operating on common fluxes, e.g., adding the top rows of the first pair of 

equation sets in equation C.38 yields

C?11 +  T ^ ) F s  + T?2FB + ? l2Fw = + = <k) (C.40)
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which eliminates the unknown interface pressure directly. Gathering the other flux 

pairs and expanding in a similar fashion leads to a system of equations that expresses 

the fluxes directly in terms of potential differences viz

AF = -A<h (C.41)

where

F  =  (F s ,  F e , F n , F w )t , A 0 V =  (02i? 032? 034? 0 4 i)T (C.42)

where double suffices of 0 denote potential differences e.g. 021 =  02 — 0i and the flux 

coefficient matrix is given by 

/

A =

T h  +  T11 rp2
1 12 0 r p l  \  

1 12

T ii
n p l  1 rpZ  122 122 T k 0

0 f t i  + Th f t 2

0 Tii ^22 + ̂ 22 J

(c.43)

Thus the dual-cell flux matrix entries are comprised of elements of the general tensor 

inverse corresponding to each subcell component of control-volume.

C.4 Cell-vertex Formulation in 3D

Construction of the cell-vertex family of schemes on general 3D grids is presented 

in chapter 5. In this section scheme construction is presented for a tetrahedral el­

ement, figure C.3. Exactly the same principles as mentioned in chapter 5, section 

C .l and section C.2 will be used for construction of the cell-vertex family of schemes 

on a tetrahedral element. Decomposition of a tetrahedron into homogeneous control- 

volumes associated with the vertices is shown in figure C.3. It is assumed that prop­

erties like permeability tensor inside each control-volume are homogeneous. The 

permeability tensor may be full, asymmetric and anisotropic.

A tetrahedron will have four homogeneous regions, one surrounding each node 

and there will be six interfaces inside each tetrahedron. There will thus be six flow
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1

Figure C.3: Control-volume faces, Flux and pressure continuity positions at a, b, c, 
d, e and f shown on a Tetrahedral element. (quadrature q = 1)

terms inside each tetrahedron. An interface pressure is introduced at each interface 

depending on position of continuity parameterized by quadrature q (just like 2D case 

presented in section C .l and C.2). These interface pressures along with cell-vertex 

pressures are used to estimate pressure gradient inside each of the control-volumes 

in the tetrahedron which can then be used to estimate velocity at each interface. 

The velocities are used to estimate the fluxes at each interface. The flux across an 

interface should be the same when calculated with properties of the control-volumes 

on either side of the interface. This condition is satisfied by forcing the velocities 

normal to interface to be same on both sides (pointwise continuity condition, where 

the point of continuity is determined by quadrature - q).

Single phase flow rate, for a fluid of unit viscosity fip and unit formation volume 

factor Bp, across interface a (i.e the interface on which a lies), based on the velocity 

in region 1 is
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/ia  =  -  I vi • nadA = - A av[ • na 
J a

= Aa [vlxnxa +  vlynya +  viznza], (C.44)

where na is the outward normal on the interface a with node 1 considered as an 

inside point. A positive value of /  signifies flow into the block while negative value 

signifies flow out of the block. Single phase velocity in region i( i = 1, ..,4) is given 

by:

( ^ îxx ^ îxy K ixz \

■K-iyx ^~iyy ^iyz

K-izx ^~izy

2 =  1 , . . . ,  4 (C.45)
4L 

K  
) \ ^ iz )

To estimate the pressure gradients in the above equations we assume that potential 

varies linearly in region 1, ...4 of the tetrahedron. And this gives following equations:

4>a =  4>i +  (Xa(q) -  Xi)(j)lx +  (ya{q) -  yi)(j)iy +  (za(q) -  yi)(f)lz

4>b = (f>i + (x b(q) -  xi)(t>ix +  {yb(q) ~  yi)(f>iy +  (zb(q) -  yi)<j>iz

4>c =  <f>i +  (xc{q) -  x x)(j)ix +  (yc(q) -  yi)(f>iy +  (zc(q) -  yi)(f>iz (C.46)

Which gives

^ <t>lx ^ 

<t>ly 

\  $\z )

^ (xa(q) ~  X\) (ya(q) -  yx) (za{q) -  zx) ^

(xb(q) -  x i) (yb(q) -  yi) (zb(q) -  zx)

\  (x c(q) -  xi)  (yc(q) -  yx) (zc{q) -  z{)

- i

3.47)

Hence the equation C.47 can be written as
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0 1  y

\  0 iz y

^ i4(g)xi A(g)x2 A(g)x3 ^ I 4>a 01

06 “  01 

 ̂ 0c -  01

{CAS)MQ)y 1 -%)y3

y A(g)zi A(g)z2 A(g)*3 y

In a similar manner expressions for region 2, 3 and 4 are obtained. In region 

2 pressure at points a,d and e (which are function of quadrature - g)are expanded 

about the pressure at node 2, in region 3 pressure at points b,d and /  are expanded 

about node 3 and in region 4 pressure at points c, e and /  are expanded about node

4. Using these expression like above the pressure gradient in each of the remaining 

three regions can be obtained and can be given as:

and

 ̂ 02* ^ ( B{q)xi £fa)x2 B(q)X3 }

02 y = B{q)yi B(q)y2 B{q)yz

 ̂ 02z j \  B{q)zi B(q)z2 B (q)z3 )

 ̂ 03*  ̂ C'(g)xi C{q ) X2 C(q)x3 N

03 y = C'fejyl C{q)y2 C(g)„3

 ̂ 03 * y v tf(g),i C{q ) Z2 C(9)«3 )

 ̂ 04* ^ f  £>(<ri*i D{q)x 2 D(q )x3 N

04 y = £ (g )yi B{q)y2 D(q),/i

\  04z j  ̂ £(?)*! D(q)z2 D (q)z3 )

 ̂ 0o ~  02  ̂

0d — 02 

^ 0e -  02 y

 ̂ 06 — 03  ̂

0d — 03

^ 0 /  — 0  3 y

(C.49)

(C.50)

(C.51)0e 04

y 0 /  — 0  4 y

Flow rates across the interfaces are based on the velocities at the points o, 6, c, d, e 

and / .  As mentioned earlier, velocities normal to the interface should match at these 

points on both sides of the interface. Hence six continuity equations are formed, one 

at each of the points. The continuity equations at points a, 6, c, d, e and /  are:
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V l’ Tla =  V2 ' na 

Vi • nb = v3 - nb 

v\ • nc = vA • nc 

v2 -n d = vz • nd 

v2 -n e = vA-n e

v*3 ' 7lf  = U4 ' TLf (C.52)

respectively, where na,n b,n c,nd ,ne, and rif are outward normals on face a, 6, c, d, e

and /  respectively. The following variables, for u = x ,y  and z, are now defined:

F-*• lM i =  F X U in Xa  +  F y Ui T iy a +  K ZUinZa; * =  1,2,

B u b i ~  F X U iT lXb +  F y Ui T iy b -\~ K ZUi T lZb ,

COt-HII
•CO

F UCi =  F XU i n Xc  +  K y U i 7 i y c +  K ZUi n Z c; * =  1,4,

F u d i —  F XUi T iXd  - f -  K y U jr i y d  +  K ZUinZd; i = 2 ,3 ,

FL U&i — K XUi nXe +  K y U i T iy e +  K ZUi nZe; t =  2,4,

F u f i =  F XUi Tlx  f  T K y U iT ly j: T K ZUi Tbz  J  ,

'vt5

COII
•<s>

The expressions for pressure gradients from equations C.48,C.49,C.50 and C.51 

are put into the expressions for velocities in equation C.45. The resulting expressions 

are put into the set of continuity equations C.52. The coefficients of interface pressure 

and cell vertex pressures are then collected in the continuity equations and following 

equation (in matrix form ) results:

+  B l&v = An<&f +  B r $ v (C.54)

where =  [</>a, <j)b, </>c, </>d, </>e, </>/]' and =  [</>i, 4>2: </>3, ,From equation C.31 

interface pressures <£>/ can now be eliminated by expressing them in terms of vertex
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pressures Qv. After eliminating interface pressures the flux coefficient matrix can then 

be written in a similar manner as:

F  = (Al ((Al -  A r ) ~ \B r -  B l )) + Bt )3>„ (C.55)

Once the fluxes are computed using equation C.55 global assembly follows.
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There is an unalterable law governing every thing and every being that exist or 

lives. I  may not deny the law or law giver, because I  know so little about it or 

him. God to be God must rule the heart and must transform it. It is proved, in 

the transformed conduct and character of those who have felt the real presence of god 

within. In the mist of death life persist, in the mist of untruth truth persist, in the 

mist darkness light persist, hence, I  gather that god is life, truth light, he is love, he 

is the supreme good. - M .K .G an d h i


