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ABSTRACT

The exact prediction o f load carrying capacity o f reinforced concrete beam with their shear failure, 

and crack pattern has not been yet clearly defined although lot o f research were conducted. 

However, as more and more knowledge and understanding is gained through continuing 

experimental and analytical studies, a day may come when a satisfactory design procedure may be 

developed by using nonlinear finite element analysis.

The objectives o f this study were to investigate the influence o f following factors on shear strength 

of reinforced concrete beam in turn to study shear failure behaviour, and load carrying capacity of 

beams by using nonlinear finite element analysis:

(i) Concrete strength

(ii) Main longitudinal reinforcement ratio

(iii) Shear span -effective depth ratio

(iv) Size o f beam

In this research work, beams o f different cross sections, main longitudinal reinforcement ratios, and 

concrete compressive strengths were investigated by considering different load cases.

From this research work it’s concluded that, shear strength o f reinforced concrete beams increased 

with increase of concrete compressive strength for ( lesser shear span-effective depth ratio), and 

tensile reinforcement ratio. Also nominal shear stress o f reinforced concrete beams increased with 

the increase o f tensile reinforcement ratio and decreased with the increase in beam size.



NOTATION LIST

Symbol Title Units
b Width o f beam mm

d Effective depth o f beam mm

f e u Characteristic strength of concrete cube N/mm2

Ec Concrete elastic modulus N/mm2

V Poisson’s ratio

Ym Material partial safety factor

f  ' Compressive strength o f concrete N/mm2

h Overall depth o f beam mm

D Displacement o f beam mm

P Tensile reinforcement ratio

Sc Shear capacity KN

Ts Tensile stress N/mm2

Cs Compressive stress N/mm2

Ss Shear stress in XY plane N/mm2

V Nominal shear stress N/mm2

Agv Area o f two legged stirrups mm2

Sv Spacing o f shear reinforcement mm

FyV Yield stress o f shear steel N/mm2

a Shear span mm
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CHAPTER 1 
INTRODUCTION 

1.1 Aim of the work

The aim o f the research work is to study the shear failure behaviour o f reinforced concrete beana with 

various combinations of compressive strength o f concrete, shear span -depth ratio, longitudinal 

reinforcement ratio, different beam sizes, and provided same shear reinforcement ratio in all different 

lbeam sizes.

For this purpose ANSYS Package which is finite element software has been used to simulate shear 

failure behaviour of reinforced concrete beam.

Another aim o f this research work is to predict the load carrying capacity o f a reinforced concrete 

beam by the finite element method.

1.2 Layout of Thesis

This chapter deals with objectives o f this research project, discussion about shear strength o f 

reinforced concrete, application o f finite element analysis in structural engineering field with their 

different software packages.

Chapter 2 deals with the literature review about shear strength o f reinforced concrete beam by using 

Ansys program, this in turn gives description o f their method o f analysis.

Chapter 3 introduces the method o f modelling o f reinforced concrete beam, in turn dealt with 

element type, material properties like concrete, steel, and cross section o f reinforced concrete beam.

Chapter 4 deals with the shear stress affected by variable parameters like shear span-effective depth 

ratio, tensile reinforcement ratio, concrete compressive strength, beam size by using nonlinear finite 

element analysis.

Chapter 5 processes the Ansys graphic results obtained from numerical modelling o f reinforced 

concrete beam under two point loading.

Chapter 6 draws discussion and conclusions about the research work.
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1.3 Investigation about shear strength

The ultimate shear strength is defined as the total and complete failure o f the members due to the 

shear and diagonal tension phenomena. The shear strength o f concrete members has generated a lot 

o f research and debate since from turn o f the 20th century until now these design procedures for 

concrete members are bases which primarily depends on experimental results to somewhat than 

purely theoretical findings. Even though extensive work has been conducted on the subject, the 

effects of the main variables on shear strength o f concrete members are yet to be clearly defined and 

accepted in the prevailing literatures.

The following are the list o f experimental work conducted by various investigators on the shear 

strength o f high performance and normal strength concrete beams:

K.G.Moody, I.M.Viest, R.C.Elstner, and Hognestad (1954), concluded the following points:

(i) The simple beams which were tested with one or more concentrated loads in turn failed in 

shear after one more diagonal tension crack formed in the region o f maximum shear.

(ii) The magnitude o f the load causing the formation o f initial diagonal tension cracks depend 

primarily on the dimensions of the cross section and on the strength o f the concrete

(iii) The magnitude o f the failure loads depended primarily on the dimensions o f the cross 

section, on the amount o f longitudinal reinforcement, on the amount o f web 

reinforcement, on the strength o f concrete, and on the length o f shear span.

The ratio of the ultimate load to the load at first cracking decreased as the ratio o f the shear

span/effective depth increased.

The following conclusions drawn by R.C.Elstner, K.G. Moody, I.M. Viest, and E. Hognestad (1955),

(i) The magnitude o f the cracking load depend primarily on the dimensions o f the cross 

section and on the strength o f concrete but practically independent o f web reinforcement

(ii) The magnitude o f the ultimate load depended clearly on the amount and type o f web 

reinforcement

(iii) The magnitude o f the ultimate load increased with increasing amount o f web 

reinforcement and was higher for beams with diagonal stirrups than for beams with 

vertical stirrups
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Phil M. Ferguson and Farid N.Matloob (1959) made the following observation about the shear 

strength o f beams as follows:

(i) Cutting o ff bars in tension zone will bring about some complication in web or shear stress 

which will usually lower in shear strength o f the member. At cut off point o f part of 

tensile reinforcement, there is a sudden increase in the total tension which results in 

increased shear stress at that point and corresponding reduction in diagonal tension 

strength o f  the beam.

(ii) As higher strength steels are used in turn high fs values are used, there is some indication 

that the shear strength (with bar cut off) may be further reduced

(iii) Bending bars instead o f cutting them off will largely or completely nullify these ill results 

and may even increase shear strength above that for full length straight bars

(iv) It is hazardous to cut off bars in a tension zone unless closely spaced stirrups are provided 

at the cut o ff point

(v) Even though the trend today is to eliminate bent bars, this practice seems to eliminate 

some sources o f strength and to introduce some sources o f weakness.

The following conclusions drawn by Boris Bresler and A.C.Scordelis (1963),

(i) The shear strength o f reinforced concrete beams could be increased with small amounts 

o f stirrup reinforcement provided the stirrups are spaced d/2 apart or closer

(ii) The multilayered arrangement of tensile reinforcement appears to be increase shear 

resistance o f  reinforced concrete beams.

The studies such as those done by Taub and Neville (1960) and Kani (1966) had highlighted the 

importance o f a/d ratio on the shear strength o f reinforced concrete beam.

Vecchio and Collins (1982), in their research stated the following points:

(i) Spalled web thickness within the confinement o f the stirrups was considered to be effective

for shear.

(ii) Normal compressive stress increased the shear resistance o f reinforced concrete but normal

tensile stress had the opposite effect.
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K.N.Smith and A.S.Vantsiotis (1982) carried out experiments on reinforced concrete beams under 

two equal symmetrically placed point loads. Test results indicated that, web reinforcement produces 

no effect on formation o f inclined cracks and seems to moderately affect ultimate shear strength. In 

addition to vertical web reinforcement improves ultimate shear strength o f deep beams. However, 

additional horizontal web reinforcement had little or no influence on ultimate shear strength. In 

addition previous conclusions, considerable increase in load carrying capacity was observed with 

increasing concrete strength and decreasing shear span -effective depth ratio.

From previous studies by Kani (1966) and Elzanaty et al (1986) concluded that the tensile 

reinforcement ratio has considerable effect on the shear strength o f reinforced concrete beam.

The following conclusions drawn by Elzanaty, Nilson and Slate (1986),

(i) The code was more conservative at greater concrete compressive strength

(ii) Shear strength o f beams increased with greater concrete compressive strength

As for Johnson and Ramierez (1989), they stated the following points:

(i) The shear force transferred to the stirrups during diagonal tension cracking was greater for 

higher compressive concrete strength and caused stirrups to yield, rupture, and carry greater 

shear force

(ii) The shear contribution from the shear reinforcement was found to decrease with 

increasing concrete compressive strength for beams with minimum amount o f shear reinforcement.

In the research o f Ganwei and Nilson (1990),

(i) The experimental shear capacities o f the reinforced concrete beams were only 60-70% of the 
prediction from the plasticity theory.

Sarsam and Al-musawi (1992) concluded the following points:

(i) Both the ACI and Canadian codes were conservative as concerned to shear strength value 

predictions

(ii) The size or depth factor did not have a significant effect on the shear strength o f beams 

with shear reinforcement
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(iii) The increment o f concrete compressive strength up to 80 MPa did not reduce the safety 

factor (ratio o f test shear strength /predicted shear strength) for the ACI code predictions.

Watanable (1993), the following conclusions drawn by

(i) For beams with concrete compressive strengths up to 110 MPa, Nielsen’s truss or the 

AlJ(Japanese) code method could be used to predict the shear strength provide that the 

effective concrete strength was taken as v f c‘ = 1.7 f

(ii) The ACI code gave over conservative predictions o f shear strengths for beams with large 

amount o f shear reinforcement.

Xie, Ahmad, Yu, Hino and Chung (1994), concluded the following points:

(i) with beams o f a/d ratio o f 3, the shear ductility index ( area under load-deflection curve)

was not significantly influenced by an increase in concrete compression strength

Thirugnana Sundralingam, Sanjayan and Hollins (1995), confirmed the following points:

(i) the diagonal cracking shear force was not influenced by the stirrup spacing

(ii) the ACI 318-89 code predictions were conservative for their beams

(iii) Crack widths were smaller in beams with shear reinforcement compared to those beams 

without shear reinforcement.

As for conclusions drawn by Kriski and Loov (1996),

(i) The shear strength o f a beam with concrete compressive strength up to about 80 MPa

could be assumed to vary with square root o f f  c . This is due to fact that, most o f the ACI 

prefer tensile strength o f concrete for their mix design, that is why shear strength o f 

concrete links to square root o f f  c

As for Dino Angelakos (1999), their objective was to investigate the influence o f concrete strength 

and main longitudinal reinforcement ratio on the shear strength o f large lightly reinforced members 

with or without shear reinforcement.
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The following conclusions resulted from this study:

(i) The average ratio o f the experimental shear failure load to the predicted shear failure load 

for the ACI method and the General method was 0.74.

(ii) The beam specimens constructed with 1% longitudinal reinforcement without shear 

reinforcement, and concrete strengths of 20 MPa, 32 MPa, 38 MPa, 65 MPa, and 80 MPa 

had essentially the same ultimate shear capacity in turn no benefit was realized in the 

shear capacity for the higher strength concrete beams. In fact the beam specimen with 80 

MPa concrete had the lowest shear capacity.

(iii) The effectiveness o f high strength concrete proved to be beneficial only when transverse 

reinforcement was used.

1.4 Finite element Analysis Application in Structural engineering

The finite element method is a powerful numerical technique for analysing structures like nuclear 

power stations, linear and nonlinear (material, geometric, and boundary conditions) linear analysis of 

concrete structures, design o f building frames, bridges, slabs and walls which subject to some 

unusual loading situation, assessment o f stress arising out o f thermal effects, fluid mechanics, 

electromagnetic, geotechnical engineering.

For the usage o f finite element analysis different investigators use their own software or commercial 

software like FEPACS1, MSC/NASTRAN, DENA, and ANSYS.

In turn these commercial finite element software faced major difficulty because o f strain softening 

behaviour o f concrete once it is yielded which leads to inadequate in strain softening behaviour o f 

concrete. This is because these software offer only the traditional nonlinear solution techniques like 

Newton-Raphson, modified Newton-Raphson methods which in turn can not handle the nonlinear 

post yielding analysis o f members made of materials like concrete , soil , and rock which exhibit 

strain softening behaviours after their yielding.
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CHAPTER 2 

LITERATURE REVIEW

2.1 Introduction

The literature on shear behaviour of reinforced concrete beams is very extensive as it extends back to 

the turn o f the twentieth century. This is because o f shear design procedures are generally considered 

to be unsatisfactory in spite of the considerable efforts that are continuously made to revise them. 

However, it is possible to predict the realistic material behaviour by the advancement o f nonlinear 

finite element analysis technique. In order to achieve such good prediction o f behaviour (like failure 

mode, strength, and cracking pattern etc) o f any type o f concrete or steel structures in turn to develop 

a successful nonlinear analysis program requires three major ingredients like:

(i) A realistic material model

(ii) An efficient discretization technique

(iii) An efficient and reliable solution algorithm.

2.2 Numerical modelling of concrete in general

The application o f the finite element analysis for the study o f reinforced concrete beams was first 

reported by Ngo and Scordelis (1967). In their research work linear elastic analysis were performed 

on beams with predefined crack patterns to determine principal stresses in concrete, stresses in steel 

reinforcement, and bond stresses. However accurate determination o f the displacements and the 

internal stresses in a reinforced concrete structure throughout its load history is made difficult.

Again by Nilson (1968) extended the method o f analysis to consider cracking by nodal separation to 

introduce nonlinear material properties and a nonlinear bond-slip relation into the analysis 

(quadrilateral plane stress finite element were used).

Franklin (1970) advanced the capability o f analytical method by applying a variable stiffness 

approach to include the effect of tensile cracking and nonlinear material behaviour (an incremental 

iterative method was used for the nonlinear analysis).

The “initial stress” method proposed by Zienkiewicz et al (1969) was adopted by Valliappan and 

Doolan (1972) to include the effect o f elasto-plastic behaviour o f concrete and steel and progressive 

cracking o f concrete in the study o f reinforced concrete structures.



Suidan and Schnobrich (1973) also studied behaviour of beams by using three dimensional elements 

with 20-node rectangular isoparametric elements.

Oral Buyukozturk (1977) considered a generalised Mohr-Coulomb behaviour for the yield and 

failure o f concrete under combined stress in the nonlinear analysis o f reinforced concrete structures.

The nonlinear finite element analysis system is rarely used in practice for the analysis o f concrete 

structures even though several systems have been developed up to this date. The main reason appears 

to be lack o f accurate numerical description o f material behaviour characteristics. This is due to 

nonlinear stress-strain relationships and a material such as concrete that to exhibit changes in 

behaviour with time because o f gain in strength and creep which in turn both related to the chemical 

process between the cement and the water. Concrete has a very low strength in tension which leads 

to crack at a very early stage o f loading and fracture o f concrete cracking in tension and crushing in 

compression, reinforcement yield add more complexity. The NLFEA systems are based on standard 

numerical techniques by Choleski or frontal solution, iterative procedures based on New-Raphson 

method.

The problem of developing a good material model for reinforced concrete is probably the most 

difficult task. Even though this material has been tested experimentally and in turn it is 

phenomenological behaviour is well understood, it has proved difficult to cast knowledge into 

mathematical forms that could be used in computations for analysis to obtain accurate solution. The 

classical elasticity and plasticity theory could be sufficiently accurate found application particularly 

when the concrete structure fails in cracking o f concrete and yielding o f reinforcement bars. Whereas 

plasticity theory for concrete is sufficiently accurate for uniaxial stress and two dimensional states o f 

stress with proportional loading. But for complex loading histories and three dimensional states of 

stress it has been these theories became inadequate. In addition to these theories , one more theory 

called internal variable theories were to be more powerful in describing materials in which several 

rheological phenomena take place simultaneously ( like gradual deterioration).

One such material model is Endochronic theory which has been adapted to concrete behaviour by 

Bazant (1976). The term “ Endochronic” means that in which case nonlinearity o f the material is 

introduced by means o f an intrinsic time parameter which is an independent scalar variable whose 

increments depends on both time increments and deformation increments. From this endochronic



theory (Valanis) who was first to (for metals) predicts strain hardening, unloading diagrams, effect of 

pretwist on axial behaviour, contraction of hysteresis loops in cyclic loading, and the effect o f strain 

rate. In order to model nonlinear behaviour o f concrete in turn needs three major extensions like:

(i) Hydrostatic pressure sensitivity o f inelastic strain

(ii) Inelastic dilatancy

(iii) Strain softening tendency at high stress

C. S. Krishnamoorthy and A. Panneerselvam (1977), have presented a computer program FEPACS1 

for nonlinear finite element analysis o f reinforced concrete framed structures in which finite element 

formulation for reinforcement in any orientation in computing the element stiffness was explained. 

From their research work in turn concluded that, the algorithm presented is general in nature so as to 

develop the computer program for nonlinear analysis o f any reinforced concrete structures.

A .Amesen, S .1. S0rensen and P. G. Bergan (1979), their research work was to develop two 

different computer programs for nonlinear analysis o f reinforced concrete structures. The first 

program handles plane stress problems (beams, corbels) and second program is developed for 

analysis o f plates (square plates and shells with geometric nonlinear) and shells.

The following are conclusions drawn by their research work:

(i) the plane stress program is efficient and inexpensive in use

(ii) with this program , both geometric and the material nonlinearities are well predicted

(iii) The Endochronic theory could be implemented in a finite element formulation which also 

considers cracking and yielding of reinforcement bars.

Michael D.Kotsovos (1984), finite element analysis o f under and over reinforced concrete beams 

subjected to two point loading indicates that placing shear reinforcement in the middle rather than in 

the shear span results in both higher load carrying capacity and ductility when the shear span to 

effective depth ratio is between 1.0 and 2.50.

The following conclusions were to be drawn from their research work:

(i) the nonlinear finite element analysis o f under and over reinforced concrete beams with

a/d < 2.50 subjected to two loading indicated that placing shear reinforcement within the 

middle span rather than the shear span results in a significant improvement o f both load 

carrying capacity and ductility o f beams.

9



(ii ) whereas in case o f a/d > 2.50, failure o f the beams is due to branching o f the 

diagonal crack within the shear span towards the compressive zone o f the middle span and not 

due to crushing o f the compressive region o f the loading p o in t.

(iii) It has also been found that collapse o f the beams always occurs before the 

compressive strength of concrete is exceeded any where within the beams.

(iv) Even in the compressive zone concrete fails under combined compressive and tensile stresses in 

turn these tensile stresses results from the interaction o f adjacent concrete elements subjected to 

different states of stress.

In this research work, isoparametric elements were used to model both concrete and steel. For each 

a/d and as, four types o f reinforced concrete beams containing different arrangements o f shear 

reinforcement were investigated:

Type A -  without shear reinforcement 

Type B -  shear reinforcement within the shear span only 

Type C -  shear reinforcement within the middle span only 

Type D -  shear reinforcement throughout the span

Strength characteristics:

When a/d = 2.27, Type C carries a max load carrying capacity as when compared to Type B 

irrespective o f tensile reinforcement .This behaviour supports the proposal that collapse o f these 

beams is caused by failure o f the compressive zone of the middle span under compression -tension 

stress conditions and not by failure o f the region o f the loading point under wholly compressive state 

o f stress. Thus using shear reinforcement in the middle span prevents failure o f middle span rather 

than delaying the occurrence o f the diagonal crack within the shear span.

However, a/d > 2.5, sustain a higher load when the shear reinforcement is placed within the shear 

span rather than the middle span. But a/d > 2.5 are know to collapse due to failure o f their shear span 

.It is also concluded from the program that, placing o f shear reinforcement throughout the span 

generally improved the loading carrying capacity o f the beams .

Michael D.Kotsovos (1986) describes an investigation into the causes o f shear failure o f reinforced 

concrete beams subjected to two point loading with shear span-effective depth ratio > 2.50. A finite 

element analysis o f beams with various arrangements o f stirrups has shown that the predicted
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behaviour is incompatible with the concept o f shear capacity o f critical sections that forms the basis 

of current shear design procedures.

The beams were subjected to two point loading with shear span values equal to 300 to 400 mm. and 

corresponding a/d ratio equal to 3.3 and 4.30.

For each a/d and as, four types o f reinforced concrete beams containing different arrangement o f 

stirrup were to be investigated:

Type A -  without shear reinforcement

Type B -  shear reinforcement throughout the span

Type C -  shear reinforcement within the region o f the shear span between cross section at the 

support and that at a distance of 200 mm from the support

Type D -  shear reinforcement throughout the span except in the regions reinforced with shear 

reinforcement in Type C beams

In all cases the shear reinforcement had a cross sectional area o f 16.09 mm2 with a spacing o f 50 mm 

and yield stress o f 417 N/mm2.

From Strength characteristics:

On the basis o f the concept o f shear capacity o f a critical section, beams A, C, and D must have a 

similar load carrying capacity where shear force is constant. Whereas beam D has a load carrying 

capacity significantly greater than that o f beam A and while beams A and C have same load carrying 

capacity in most cases. Furthermore, the load carrying capacity o f beam D is essentially equal to that 

o f  beam B. Whereas on the basis o f the concept o f the compressive force path (1968), a beam 

without shear reinforcement fails due to the development o f tensile stresses within the compressive 

zone.

S .Y. A .Ma and I .M. May (1986),

The finite element method has been used to analyse reinforced concrete structures from zero load up 

to collapse in which modified Newton-Raphson method has been used as the basic solution 

procedure. In this paper, the performance of various accelerators are discussed and compared with 

each other by Crisfield (1984).

The following conclusions drawn from their work:

(i) The use o f the displacement criterion in the procedures with loading incrementation gives 

false pictures o f the behaviour o f the structures at their post collapse stage.
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(ii) The results obtained lend support to the findings o f Crisfield that accelerators used were 

reliable and lead to a significant improvement in the rate o f convergence o f the modified 

Newton-Raphson method.

A. Ranjbaran and M .E. Phipps (1994) have done research work on finite element program for the 

nonlinear stress analysis of two dimensional problems by considering both metallic and reinforced 

concrete structures. For this analysis, software package called DENA were to be employed. In this 

study an embedded model was used. In their program , equation o f systems are solved by using an 

incremental iterative approach in which nonlinear solution is achieved by a series o f successive 

linear solutions and adjustment of material constants in such a way that at the final stage the new 

constitute equation is satisfied .

P .Bhatt and M. Abdel Kader (1995), predicted shear strength o f rectangular reinforced concrete 

beams by using a single material model for concrete. The objective o f their work was to suggest a 

material model to achieve the criteria for good lower bound predictions but at the same time predict 

responses in agreement with the observed behaviour.

In this study the best prediction was for beams with shear reinforcement and a small spacing stirrups 

Sreekanta Das and Muhammad N .S. Hadi (1996),

Performed nonlinear finite element analysis of reinforced concrete members using MSC/NASTRAN. 

In turn MSC/NASTRAN offers many advanced solution techniques like Crisfield’s arc-length 

method, Risk’s arc-length method, and modified Risk’s arc-length method and thus these methods 

can handle the strain softening behaviour adequately.

One o f  the major advantages in modelling RC members in MSC/NASTRAN is that it offers gap 

element. The gap element can be made suitable to simulate cracks in the concrete and additional 

property of friction in the gap element is assigned to be negligible/zero.

One o f  the Crisfield’s arc-length methods is therefore used to pass the unstable region o f the stress- 

strain curve successfully and also in the stain softening region to avoid the numerical complexities 

associated with the nonlinear post yielding analysis o f concrete members.

MSC/NASTRAN offers many special features like one o f them is SUBCASE , which provides the 

options o f applying the total load in different load steps and every load step with different number o f
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load increments , different number of iterations for each load increments , and other controlling 

parameters of nonlinear solution process .

Another special feature RESTART, which is used to restart the solution process from the last 

converged solution which is saved by MSC/NASTRAN automatically. It is concluded that any RC 

members subjected to uni-axial stress condition could be analysed using MSC/NASTRAN version

68.2 very successfully.

The finite element code Ansys version 5.3 has been used in which, a simply supported reinforced 

concrete beam subjected to uniformly distributed loading has been analysed without transverse 

reinforcement.

From their work the following points were to be concluded:

(i) Only nonlinear stress-strain relations for concrete in compression have made it possible to 

reach the ultimate load and determine the entire load-deflection diagram.

Tanijun Wang, Thomas T.C, and Hsu (2001),

Performed nonlinear finite element analysis to various type o f reinforced concrete members using a 

new set o f constitute models established in the fixed angle softened truss model. A computer code 

FEAPRC ( in turn take care o f the four important characteristics o f cracked reinforced concrete like 

softening effect o f concrete in compression, tension stiffening effect by concrete in tension, average 

stress-strain curve of steel bars embedded in concrete, rational shear modulus o f concrete) was 

developed for reinforced concrete structures by modifying the general purpose program FEAP.

From their work the following points were to be concluded:

(i) By this code (FEAPRC), it is possible to predict the behaviour o f reinforced concrete 

members.

(ii) The behaviour o f beams, shear panels, and framed shear walls predicted by FEAPRC was 

found to agree very well with the observed behaviour.

2.3 Reasons for Caution about NLFEA

(i) Diversity of theoretical approaches

A number o f rather diverse approaches exist for nonlinear finite element analysis (NLFEA) 

modelling o f reinforced concrete structures like those available are: models built on nonlinear 

elasticity, plasticity, fracture mechanics, damage continuum mechanics, endochronic theory or
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other hybrid formulations. Cracking can be modelled discretely or using smeared crack 

approaches, in which smeared crack approaches can range from fully rotating crack models to 

fixed crack models, to multiple non orthogonal crack models, to hybrid crack models. In general 

some approaches place heavy emphasis on classical mechanics formulations, other draw more 

heavily on empirical data and phenomenological models.

(ii) Diversity of behaviour models

The reinforced concrete structures particularly in their crack steels are dominated in their 

behaviour by a number o f second order mechanisms and influencing factors. Depending on the 

particular details and conditions prevailing , a structures strength , deflection ductility and failure 

mode may be affected by mechanisms such as : compression softening due to transverse 

cracking, tension, stiffening, tension softening, aggregate inter lock and crack shear slip, rebar 

dowel action, rebar compression buckling, scale effects, creep, and shrinkage. Thus, which could 

be users of a NLFEA software must be aware o f what mechanisms are likely to be significant are 

included in the analysis model.

(iii) Incompability of models and approaches

The formulation and calibration of a concrete behaviour model is often dependent on the particular 

analysis methodology being used. As a result some models can not be randomly transplanted from 

one analysis approaches to another or freely combined with other models. As an example of 

Vecchio and Collins (1986), Okamur and Maekawa (1991), conducted that in, Vecchio and Collins 

formulations o f slip overestimations strength and slightly under- estimates ductility whereas in case 

Maekawa formulation slightly under estimates strength and slightly overestimates ductility.

(i) Experience required

• The use o f NLFEA for modelling and analysis o f reinforced concrete structures requires a 

certain amount o f experience and expertise.

• The proper decisions must be made with respect to modelling o f the structure and selection of 

material behaviour models which will have significant impact on the results obtained

• The proper decisions must be made regarding mesh layout, type o f element used, 

representation o f reinforcement details, support conditions, method of loading, convergence 

criteria, and selection o f material behaviour model will provide divergence o f results.
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2.4 ANSYS Overview

The finite element package used in this research work to simulate behaviour o f shear failure o f 

reinforced concrete beam was ANSYS (7.1) version. The software package ANSYS employed in 

various other simulation works like simulation o f response o f solid structures to various types o f 

loading such as mechanical, thermal, static, dynamic, and electromagnetic. This software ANSYS 

was developed by Swanson Analysis System Inc in 1970’s as a general purpose program in turn it 

could be employed in field such as structural, mechanical, electrical, thermal, fluid, and biomedical. 

ANSYS program could be run in two ways as by writing batch files or by directly interacting 

through graphical user interface (GUI). The following are the most general way o f input data into the 

ANSYS software:

0) Define element type

(ii) Define element real constants

(iii) Define material properties

(iv) Creation of geometrical model

(v) By applying loads obtain solution

(vi) Review the results for accurate solution

The format o f the ANSYS program is written in the following way :

/Prep 7 ------------------------------- Pre-processor

Element type

Element real constant

Material properties

Geometrical model creation

Apply boundary condition —  Solution processor

Apply loads

Analysis type

Review results---------------------Postprocessor

The ANSYS program contains element library which comprised o f 150 different element types with 

each element having a reference number and prefix that identifies the element group. By selecting 

the element type in turn mention their degree o f freedom and whether the element is two or three 

dimensional one. Next step is to mention the element real constant which are the properties depend 

on element type. Another step is to specify material properties where the solution is linear or 

nonlinear. ANSYS provides two methods o f creating a model:

15



(i) Solid modelling

(ii) Direct generation

In the case o f solid modelling, user is to describe the geometrical shape o f the model in turn ANSYS 

automatically meshes this geometry with nodes and elements in which user could be able to control 

size and shape o f these elements. While in the case o f direct generation method, user is to specify the 

location o f each node and connectivity o f each element. Further analysis type is defined, loads were 

to be applied and then solution is initiated. ANSYS program contains different analysis types like 

static, transient, harmonic, modal, spectrum, buckling, and sub structuring. With the selection o f 

appropriate type o f analysis type then loads were to be applied. Also ANSYS program contains the 

following types o f loads like: DoF constraints, forces, body loads, surface loads, inertia loads, and 

coupled field loads. In order to review the results postprocessor needed to obtain appropriate 

solution. The ANSYS program comprises of two types o f post processor :( i) Post 1, which is a 

general post processor in which it allows to review results at specific load step and sub step, (ii) Post 

26, which is time history post processor in turn it allows to review particular result item with respect 

to time frequency.

Research Brief: The main thrust o f this research work was to study the shear failure behaviour o f 

reinforced concrete beams by nonlinear analysis o f finite element method. The variable parameters 

considered were: shear span-effective depth ratio, compressive strength o f concrete, tensile 

reinforcement ratio, same shear reinforcement ratio in all different beams size. In the literature 

review about shear failure behaviour o f  reinforced concrete beam subjected to two point loading by 

M.D.Kotsovos ( 1984, and 1986) , in which their main intension was to study the behaviour o f 

reinforced concrete beams with a shear to depth ratio between 1.0 and 2.5 and greater than 2.5 . 

When a/d > 2.5, they concluded the following points:

From Strength characteristics: The load carrying capacity o f beam type D (stirrups throughout the 

span except in the region at a distance 200 mm from the support) is essentially equal to that o f beam 

type B (which is reinforced stirrups throughout the shear span).

From Deformation characteristics: The beams B and D should exhibit ductile behaviour since in turn 

they were failed in flexure.
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From Fracture characteristics: The placing o f shear reinforcement throughout the span o f beam, 

reduce both the amount of inclined cracking with the shear span and allowed the beam to attain its 

flexural capacity.

Thus from their finite element analysis o f beams with various arrangements o f stirrups has shown 

that the predicted behaviour is incompatible with the concept o f shear capacity o f critical sections 

which forms the basis o f current shear design procedures.

When shear span-effective depth ratio (a/d) = 1 & 2.5, concluded the following points:

From Strength characteristics: The load carrying capacity o f beam type D (stirrups throughout the 

span except in the region at a distance 200 mm from the support) is essentially equal to that o f beam 

type B (which is reinforced stirrups throughout the shear span).

From Deformation characteristics: The beams B and D should exhibit ductile behaviour since in turn 

they were failed in flexure.

From Fracture characteristics: The placing o f shear reinforcement throughout the span o f beam, 

reduce both the amount o f inclined cracking with the shear span and allowed the beam to attain its 

flexural capacity.

Thus from their research work by using finite element analysis o f under and over reinforced concrete 

beams subjected to two point loading indicated that placing shear reinforcement in the middle rather 

than in the shear span results in both higher load carrying capacity and ductility when shear span to 

depth ratio is between 1 and 2.5.

Whereas in the case o f a/d = between 1.0 and 2.5, they concluded the following points:

From Strength characteristics : if a/d =2.27, the load carrying capacity o f beam type C (shear 

reinforcement within middle span) is higher than that o f the beam type B(shear reinforcement within 

shear span) irrespective o f the amount o f tension reinforcem ent.

From Fracture characteristics : The presence o f shear reinforcement throughout the beam type D, 

both delayed the extension o f diagonal cracking within the shear span towards the loading point and 

helped the compressive zone o f the middle span to sustain a substantially larger amount of cracking .
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In the present research work five different beam sizes o f same span length o f 1000 mm were 

considered with equidistant shear reinforcement for the entire span and kept shear reinforcement 

ratio constant in all these beam sizes. The cross sectional areas o f the tension reinforcement were 

(8mm0) 201.06 mm2, (14mm0) 615.75 mm2, (16mm0) 804.24 mm2. The different concrete 

compressive strength, and yield stress o f tensile reinforcement and shear reinforcement considered 

were 16.75, 20.10, 26.80, 33.50, 40.20 N/mm2, and 460, 250 N/mm2. The beams were subjected to 

two point loading with values o f shear span (a) equal to 200, 250, 300, and 350 mm respectively. In 

all five sizes o f beam, the stirrups had a cross sectional area o f (6mm o) 28.27 mm2 with spacing o f 

100 mm.

2.5 Method of solution

For this research work, ANSYS program uses Newton-Raphson method for updating the modified 

stiffness. This method recalculates the stiffness matrix for each iteration within the load step. Once 

the convergence tolerance is reached, the solution could be continued to the next step.

2.6 Selection of Element type

An eight nodded solid element Solid 65 was used for the numerical modelling o f concrete which has 

three degrees o f freedom at each node. Also a three dimensional Link 8 was used for the numerical 

modelling o f the steel reinforcement in which this element has three degrees o f freedom at each 

node.

2.7 Cross sections of Reinforced Concrete Beam

The cross sectional dimensions of beams (120mmx 150mm), longitudinal reinforcement (8mm0), 

shear reinforcement with their spacing (100mm) as shown in Fig.l, and concrete cube strength o f 40 

N/mm2 concern in turn it was chosen from previous research work by C. S. Chin (2002). But, in 

order to study the behaviour o f shear failure o f reinforced concrete beam concern in turn consider 

different beam size, longitudinal reinforcem ent, concrete compressive strength , a/d ratio , and by 

keeping same shear reinforcement ratio in all different beam sizes. The Fig.l represents cross 

section o f reinforced concrete beam with loading arrangement.
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Fig.l Cross sections of Reinforced Concrete Beam with arrangement of Loading
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CHAPTER 3 

NUMERICAL MODELLING OF REINFORCED CONCRETE BEAMS 

3.1 Introduction

The aim of this project work is to present an analytical description o f the numerical modelling o f five 

different sizes o f reinforced concrete beams in which beams were subjected to two point loading 

conditions.

3.2 Modelling of RC beam under two-point loading

For this research work concern, the geometric dimensions o f reinforced concrete beams were 

considered as per C.S. Chin research project (2002). The main thrust of the research work is to study 

shear failure behaviour o f beams under two point loading conditions by using nonlinear finite 

element analysis. The different variable parameters were: shear span-effective depth of beam, 

compressive strength o f concrete, and tension steel ratio with same shear reinforcement ratio in all 

different sizes o f beam in turn to predicting load carrying capacity o f reinforced concrete beams.

3.3 Element type

In the present work, an eight node solid element Solid 65 was used which has got three degrees o f 

freedom at each node, it is capable o f cracking, and crushing and it could be used for both linear as 

well as nonlinear problems. A three dimensional spar element Link8 was used for numerical 

modelling o f the steel reinforcement. Link8 is a uniaxial tension-compression element with three 

degrees o f freedom at each node: translations in the nodal X, Y, and Z directions and it is capable o f 

problems like plasticity and large deflections. Fig.2 and Fig.3 represent Solid 65 element and Link 8 

element.

20



A

O .P

K,L

(Prism  Option)(rebar)

M,N ,0 ,P

(Tetrahedral Option
- not recom m ended)

Fig.2 Solid 65 element

Y

X

Fig.3 Link 8 element

3.4 Material properties
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I The numerical modelling is one o f the most important areas for finite element analysis. The accuracy
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the displacements and the internal stresses in a reinforced concrete structure in its entire load history 

is made difficult due to following factors like:

(i) nonhomogenity o f the member cross sections

(ii) nonlinear material constitute relationship

(iii) inelastic behaviour of concrete requiring adequate yield and failure criteria under biaxial

(multiaxial) states o f stress

(iv) profound influence of progressive cracking and continuing changing topology

(v) bond-slip characteristic between concrete and steel

(vi) Influence of creep and shrinkage.

In compression region, the stress-strain curve is linear elastic up to 30% of the maximum 

compressive strength in turn after concrete attains peak load. As a result o f descending nature o f 

stress-strain curve, crushing occurs at an ultimate strain .Whereas in tension, the stress-strain curve is 

linear elastic up to maximum tensile strength and after the concrete cracks in turn strength decreases 

gradually to zero value by M.Y.H.Bangash (1989).

For the numerical modelling of concrete material by using Ansys program following material 

properties were to consider:

For this project work, it was decided to use as initial elastic modulus from the first point of the curve 

and then compare it with formulae given by BS8110-Part 1:1997 

E c = 5500 Vf c

Also for this research work poisons ratio taken as 0.15. The two input strength parameters like un- 

axial compressive (16.75 N/mm2) and tensile strength (3 N/mm2) were to be considered to define a 

failure surface for the concrete. The uni-axial compressive strength is to control the crushing o f the 

model and uni-axial tensile strength is to control cracking o f the model. The shear transfer coefficient 

indicates conditions o f the crack face and typical shear transfer coefficients range from 0-1 in which 

0 represents smooth crack (complete loss o f shear transfer ) and 1 represents a rough crack (no loss 

o f shear transfer).

The shear transfer coefficients used for this research work are in case o f open crack (0.05) and closed 

crack (0.2). The proceeding table represents concrete material data for element Solid 65 is presented.

22



Table 1: Solid 65 Concrete material Data

Const Meaning

1 Shear transfer coefficients for an open crack.

2 Shear transfer coefficients for a closed crack.

3 Uniaxial tensile cracking stress.

4 Uniaxial crushing stress positive.

5 Biaxial crushing stress positive.

6 Ambient hydrostatic stress state for use with constants 7 and 8.

7 Biaxial crushing stress positive under the ambient hydrostatic stress stat (constant 6).

8 Uniaxial crushing stress positive under the ambient hydrostatic stress state (constant 6).

9 Stiffness multiplier for cracked tensile condition, used if Keyopt (7) = 1 (default to 0.6).

The simplified stress-strain curve used in this was constructed from six points and values o f 

maximum stress and maximum strain were according to BS 8110-1:1997.

u>

5.5

Fig.4 Short term design stress-strain curve of normal weight concrete

As with reference to Fig.4 it shows variation o f stress-strain curve o f normal weight concrete in 

which concrete shows plasticity behaviour that is, as the load is applied the ratio between stress and 

strains is approximately linear at first and the concrete behaves almost as an elastic material with a
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full recovery of displacement if  the load is removed. Then after the curve is no longer linear and 

concrete behaves more and more as a plastic material. If the load were removed during the plastic 

range the recovery would no longer be complete and a permanent deformation would remain.

For this study, smeared cracking model was used and by increasing this smeared coefficient in turn 

leads to increase o f stiffness o f the element. The smeared crack model assumes that reinforcement is 

uniformly spread throughout the concrete element in a defined region o f the finite element mesh. 

Also smeared crack model which is capable of properly combining crack formation and the nonlinear 

behaviour o f the concrete between the cracks and o f handling secondary cracking owing to rotation 

o f the principal stress axis after primary crack formation. Similarly smeared crack model is a 

numerical model for capturing the flexural modes of failure o f reinforced concrete systems and it is 

capable of accurately predicts the deflection and shear strength o f a reinforced concrete system for a 

given load.

3.4.2 Steel Reinforcement

The steel reinforcement used for the modelling in the beams in this was assumed to be an elastic 

perfectly plastic material. The stress-strain relationship as proposed by BS8110-1:1997 which is used 

in this study. As with reference to Fig.5 it shows variation o f stress-strain curve for reinforcement.

200 kN/mm‘

Compression

Fig.5 Stress-strain curve for reinforcement
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3.4.3 Specimen Details

The main thrust o f this research work was to study the effects o f variable parameters like a/d ratio, 

concrete compressive strength, tensile reinforcement ratio, and beam size on the shear strength o f 

reinforced concrete beam under two point loading condition by using nonlinear finite element 

analysis. In this research work, five different beam sizes were considered like sizes from (75x100; 

100x125; 120x150; 150x200; 200x300) mm , different a/d ratios considered were range from 0.75- 

4.11, and concrete compressive strength range from 25-60 N/mm2 . In this work, the span length 

considered was 1000mm for all types o f beams and same shear reinforcement was considered for all 

sizes of beams. All five sizes o f beams were simply supported in the direction of the load and there is 

no complication to specify boundary conditions.

As concern to specimen details, Table 2 gives complete detailed description o f various types o f beam 

which is to be used in this present research work and their reinforcement specification.

Table 2 - Cross Sections of Reinforced Concrete Beams

Dimensions

(mm)

75x100  

Beam type .1

100x125 

Beam type 2

120x150  

Beam type 3

150x200  

Beam type 4

200x300  

Beam type 5

Stirrups 6 m m 0 6 m m 0 6 m m 0 6 mm0 6 mm0

Spacing (mm) 100 100 100 100 100

Y ield Stress 

(MPa)

250 250 250 250 250

Long. Steel 2-8 mm0(T); 2-8 mm0(T); 2-8 mm0(T); 2-8m m0(T); 2-8 mm0(T);

Y ield Stress 4-8 m m 0(B ) 4-8 m m 0(B) 4-8 m m 0(B) 4-8 m m 0(B) 4-8 m m 0(B )

(MPa) 4 6 0 4 6 0 4 6 0 4 6 0

Long. Steel 2-14 mm0(T); 2-14 mm0(T); 2-14 mm0(T); 2-14m m 0(T); 2-14m m 0(T);

Y ield Stress 4-14m m 0(B ) 4-14m m 0(B ) 4-14 m m 0(B) 4-14m m 0(B ) 4-14m m 0(B )

(MPa) 4 6 0 4 6 0 4 6 0 4 6 0 4 6 0

Long. Steel 2-16 mm0(T); 2-16 mm0(T); 2-16 mm0(T); 2-16m m 0(T); 2-16m m 0(T);

Y ield Stress 4-16m m 0(B ) 4-16m m 0(B ) 4-16 m m 0(B) 4-16m m 0(B ) 4-16m m 0(B )

(MPa) 4 6 0 4 6 0 4 6 0 4 6 0 4 6 0
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3.4.4 Nonlinear Solution and Results

In the nonlinear analysis, the total load which is applied to a finite element model is divided into a 

series of load increments called as load steps. After the completion o f each these load step, the 

stiffness matrix o f the model is recalculated before proceeding to the next load increment.

The method of solution considered in this Ansys program was Newton-Rapson method which in turn 

updates the model’s stiffness.
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CHAPTER 4

SHEAR STRESS AFFECTED BY VARIABLE PARAMETERS

The objective o f this study were to investigate the influence o f the following variables : concrete 

compressive strength, main longitudinal reinforcement ratio, shear span to effective depth ratio, and 

beam size on the shear strength o f reinforced concrete beam in turn to study shear failure behaviour, 

and load carrying capacity o f beams by using nonlinear finite element analysis .

As concern to specimen details refer Table 2 which gives complete detailed description of various 

types of beam which is to be used in this present research work and their reinforcement specification. 

The Table 3 to 7 represents the comparison o f mid-span deflections obtained by ansys with varying 

shear span-effective depth ratio, concrete compressive strength, tensile reinforcement ratio, and beam 

size.

Beam type 1

Table 3 -  Comparison of mid-span Deflections with different a/d ratio (Beam type 1)

p = 0.03, 

a/d

f 11 CJ

N/mm2

Sc,

KN

D,

mm

p = 0.096, 

a/d

f '1 C  9

N /m m 2

Sc,

KN

D,

mm

p = 0.13, 

a/d

f '* c,

N /m m 2

Sc,

KN

D,

mm

2.4 16.8 26 2.3 2.4 16.8 30 1.5 2.4 16.8 28 1.1

2.9 16.8 22 2.4 2.9 16.8 28 1.6 2.9 16.8 28 1.3

3.5 16.8 22 2.8 3.5 16.8 26 1.5 3.5 16.8 28 1.5

4.1 16.8 18 2.4 4.1 16.8 22 1.3 4.1 16.8 26 1.6

2.4 20.1 30 2.66 2.4 20.1 34 1.8 2.4 20.1 34 1.3

2.9 20.1 26 2.85 2.9 20.1 32 2.1 2.9 20.1 32 1.5

3.5 20.1 24 3.05 3.5 20.1 32 1.8 3.5 20.1 32 1.7

4.1 20.1 24 3.48 4.1 20.1 26 1.5 4.1 20.1 28 1.6

2.4 26.8 40 3.38 2.4 26.8 42 2.2 2.4 26.8 44 1.5

2.9 26.8 34 3.53 2.9 26.8 38 2.1 2.9 26.8 40 1.8

3.5 26.8 30 3.64 3.5 26.8 36 1.9 3.5 26.8 38 1.9
4.1 26.8 28 3.81 4.1 26.8 34 1.8 4.1 26.8 36 2.0

2.4 33.5 34 3.62 2.4 33.5 52 2.7 2.4 , 33.5 56 1.9

2.9 33.5 34 4.05 2.9 33.5 48 2.7 2.9 33.5 52 2.2
3.5 33.5 40 3.97 3.5 33.5 46 2.4 3.5 33.5 48 2.4.

4.1 33.5 44 4.55 4.1 33.5 42 2.2 4.1 33.5 42 2.3

2.4 40.2 50 4.01 2.4 40.2 56 2.9 2.4 40.2 56 1.9

2.9 40.2 44 4.32 2.9 40.2 54 2.7 2.9 40.2 54 2.2

3.5 40.2 38 4.31 3.5 40.2 48 2.6 3.5 40.2 52 2.5

4.1 40.2 36 4.61 4.1 40.2 46 2.2 4.1 40.2 48 2.6
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From Table 3 for Beam type 1, the following observations were made by considering different a/d 

ratio, tensile reinforcement ratio, concrete compressive strength, and beam size by keeping same 

shear reinforcement ratio with even spaced of their stirrups.

For small a/d = 2.4, p = 0.031 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 N/mm2 , the 

observed increased total shear capacity were to be 26, 30, 40, 34, and 50 KN which in turn indicates 

that concrete compressive strength has it’s influence on increased (92.30%) of total shear capacity 

and observed displacements were to be lower (14.96%) as when compared with higher a/d ratio’s 

displacement value i.e. in the range o f 2.30, 2.66, 3.38, 3.62, and 4.01 mm .

For increased a/d = 4.11, p = 0.031 with different f ' c= 16.75, 20.10, 26.80, 33.50, and 40.20 N/mm2, 

the observed decreased or increased total shear capacity were to be 18, 24, 28, 44, and 36 KN which 

indicate that concrete compressive strength has less effect on increment (100%) o f total shear 

capacity and it is observed displacements were to be in the increased order o f 2.40, 3.48, 3.81, 4.55, 

and 4.61 mm.

From Table 3, it is noticed that for small a/d = 2.4, with increased p = 0.096 with different f ' c = 

16.75 , 20.10, 26.80, 33.50, and 40.20 N/mm2 , the total shear capacity were increased from 30, 34, 

42, 52, and 56 KN which indicates that the tensile reinforcement ratio has it’s effect on the increased 

(86.67%) of total shear capacity and observed displacements were to be in the range o f 1.50, 1.80, 

2.21, 2.72, and 2.89 mm .

For increased a/d = 4.11, p = 0.096 with different f  'c= 16.75 , 20.10, 26.80, 33.50, and 40.20 N/mm2 

, the increased and in one case decreased total shear capacity observed were to be 22, 26, 34, 42, and 

46 KN which in turn indicates that even though for increased a/d ratio and increased p ratio which 

has little influence on increment (109%) o f total shear capacity and observed displacements were to 

be 1.31, 1.52, 1.76, 2.15, and 2.22 mm .

Further more from Table 3 again for less a/d = 2.4, p = 0.126 with different f ' c = 16.75 , 20.10,

26.80, 33.50, and 40.20 N/mm2 , there is a tendency o f increase in total shear capacity were to be 

observed as 28, 34, 44, 56, and 56 KN which indicates that tensile reinforcement ratio has some 

effect on the increased (100%) o f total shear capacity as when compared to two previous tensile

reinforcement ratio (i.e. 0.031, and 0.096) and correspondingly observed very small displacements
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were to be 1.01, 1.25, 1.52, 1.95, and 1.90 mm and which in turn tensile reinforcement ratio has it’s 

effect on decreased mid span deflection .

For increased a/d = 4.11, p = 0.126 with different f ' c = 16.75, 20.10, 26.80, 33.50, and 40.20 N/mm2, 

the observed decreased total shear capacity were to be 26, 28, 36, 42, and 48 KN which indicates that 

even though with increased tensile reinforcement ratio and with increased concrete compressive 

strength has less effect on increment (84.61%) o f total shear capacity and observed displacements 

were to be 1.55, 1.62, 1.98, 2.30, and 2.60 mm.

Beam type 2

Table 4 -  Comparison of mid-span Deflections with different a/d ratio (Beam type 2)

p = 0.03, 

a/d

f '1 Ci

N/m m 2

Sc,

KN

D,

mm

p = 0.096, 

a/d

f '1 Ci

N /m m 2

Sc,

KN

D,

mm

P = 0.13, 

a/d

f '1 Ci

N/m m 2

Sc,

KN

D,

mm

2 16.8 38 2.1 2 16.8 46 1.3 2 16.8 46 1.1

2.5 16.8 30 1.9 2.5 16.8 44 1.5 2.5 16.8 46 1.4

3 16.8 26 1.9 3 16.8 36 1.4 3 16.8 38 1.3

3.5 16.8 32 3.1 3.5 16.8 36 1.6 3.5 16.8 36 1.4

2 20.1 44 2.4 2 20.1 54 1.5 2 20.1 56 1.4

2.5 20.1 42 2.9 2.5 20.1 54 1.9 2.5 20.1 54 1.6

3 20.1 36 2.8 3 20.1 44 1.8 3 20.1 52 1.9

3.5 20.1 34 3.1 3.5 20.1 44 2.1 3.5 20.1 50 2.1

2 26.8 58 2.9 2 26.8 72 1.9 2 26.8 68 1.5

2.5 26.8 52 3.3 2.5 26.8 68 2.2 2.5 26.8 60 1.6

3 26.8 42 3.0 3 26.8 54 2.0 3 26.8 60 2.0

3.5 26.8 42 3.5 3.5 26.8 50 2.2 3.5 26.8 54 2.0
2 33.5 74 3.8 2 33.5 78 2.1 2 33.5 84 1.9

2.5 33.5 62 3.9 2.5 33.5 70 2.3 2.5 33.5 76 2.1

3 33.5 52 3.8 3 33.5 62 2.3 3 33.5 64 2.1

3.5 33.5 50 4.2 3.5 33.5 54 2.3 3.5 33.5 60 2.2

2 40.2 86 4.3 2 40.2 96 2.5 2 40.2 96 2.1

2.5 40.2 76 4.7 2.5 40.2 82 2.6 2.5 40.2 92 2.5

3 40.2 62 4.4 3 40.2 74 2.7 3 40.2 72 2.3

3.5 40.2 56 4.5 3.5 40.2 66 2.7 3.5 40.2 70 2.5

From Table 4 for Beam type 2, the following observations were to be made by considering different 

a/d ratio, tensile reinforcement ratio, concrete compressive strength, and beam size.

For less a/d = 1.98, p = 0.031 with different f ' c = 16.75, 20.10, 26.80, 33.50, and 40.20 N/mm2, the 

observed increased total shear capacity were to be 38, 44, 58, 74, and 86 KN which indicates that the
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beam size has more influence on the increment (126.31%) o f total shear capacity and observed 

displacements were to be 2.10, 2.40, 2.97, 3.86, and 4.34 mm.

For increased a/d = 3.46, p = 0.031 with different f ' c = 16.75, 20.10, 26.80, 33.50, and 40.20 N/mm2, 

the observed decrease total shear capacity were to be 32, 34, 42, 50, and 56 KN which is observed to 

be more (75%) as when compared to Beam type 1 with (p = 0.031, and a/d = 4.11) and 

correspondingly observed displacements were to be 3.10, 3.10, 3.56, 4.24, and 4.50 mm.

From Table 4 for lesser a/d = 1.98, p = 0.096 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and

40.20 N/mm2 , there is a tendency o f increase (11.63%) to be observed in the total shear capacity as 

46, 54, 72, 78 and 96 KN as when compared to (a/d = 1.98, p = 0.031 ) and also this increment in 

total shear capacity is far more (71.45%) as when compared to Beam type 1 ( a/d = 2.35, p = 0.096) 

and observed decreased displacements were to be 1.35, 1.57, 1.96, 2.12, and 2.55 mm as when 

compared to (a/d = 1.98, p = 0.031).

Similarly for increased a/d = 3.46, p = 0.096 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and

40.20 N/mm2 , the observed decreased total shear capacity were to be as 36, 44, 50, 54, and 66 KN 

which is to be more (17.86%) as when compared to (a/d = 3.46, p = 0.031) and also observed to 

more (43.47%) as when compared to Beam type 1 with (a/d = 4.11, p = 0.096) and observed 

displacements were to be 1.69, 2.1, 2.21, 2.34, and 2.74 mm which is to be low as when compared to 

(a/d = 3.46, p = 0.031) which in turn more as when compared to Beam type 1 with (a/d = 3.46, p = 

0.031).

Similarly for lesser a/d = 1.98, p = 0.126 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 

N/mm2 , the observed total shear capacity to be same in some case and show little bit more increase 

in total shear capacity as when compared with (a/d = 1.98, p = 0.096) and their values were to be 46, 

56, 68, 84 and 96 KN but this shear capacity observed were to be more (71.43%) as when compared 

to Beam type 1 (a/d = 2.35, p = 0.126) which in turn indicates the effect o f beam size and observed 

displacements were to be 1.16, 1.41, 1.57, 1.98, and 2.18 mm which is to be low as when compared 

to (a/d = 1.98, p = 0.096).

Also with increased a/d = 3.46, p = 0.126 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 

N/mm2 , the observed decreased total shear capacity were to be 36, 50, 54, 60, and 70 KN but this
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value is more (45.83%) as when compared to Beam type 1 with (a/d = 4.11, p = 0.126) and observed 

displacements were to be 1.44, 2.10, 2, 2.27, and 2.51 mm which is to be low in almost all a/d ratio’s 

as when compared to (a/d = 3.46, p = 0.031).

Beam type 3

Table 5 -  Comparison of mid-span Deflections with different a/d ratio (Beam type 3)

p = 0.03, 

a/d

f '1 C>

N/m m 2

SC5

KN

D,

mm

p = 0.096, 

a/d

f '1 Cj

N /m m 2 KN

D,

mm

P = 0.13, 

a/d

f '1 c>

N /m m 2

SC5

KN

D,

mm

1.5 16.8 42 1.09 1.5 16.8 44 0.5 1.5 16.8 48 0.56

1.9 16.8 44 1.46 1.9 16.8 42 0.7 1.9 16.8 44 0.63

2.3 16.8 44 1.77 2.3 16.8 42 0.8 2.3 16.8 42 0.72

2.7 16.8 46 2.18 2.7 16.8 44 1.0 2.7 16.8 44 0.87

1.5 20.1 58 1.57 1.5 20.1 50 0.6 1.5 20.1 54 0.64

1.9 20.1 58 2.00 1.9 20.1 52 0.8 1.9 20.1 54 0.79

2.3 20.1 54 2.23 2.3 20.1 58 1.2 2.3 20.1 60 1.09

2.7 20.1 54 2.59 2.7 20.1 58 1.3 2.7 20.1 60 1.25

1.5 26.8 66 1.63 1.5 26.8 72 0.9 1.5 26.8 70 0.78

1.9 26.8 66 2.10 1.9 26.8 70 1.1 1.9 26.8 70 0.97
2.3 26.8 66 2.53 2.3 26.8 66 1.2 2.3 26.8 66 1.09

2.7 26.8 66 2.93 2.7 26.8 66 1.4 2.7 26.8 70 1.33

1.5 33.5 90 2.29 1.5 33.5 92 1.2 1.5 33.5 94 1.09

1.9 33.5 90 2.92 1.9 33.5 90 1.5 1.9 33.5 90 1.29

2.3 33.5 84 3.25 2.3 33.5 84 1.6 2.3 33.5 88 1.49

2.7 33.5 78 3.43 2.7 33.5 84 1.8 2.7 33.5 84 1.60

1.5 40.2 96 2.35 1.5 40.2 108 1.4 1.5 40.2 110 1.25

1.9 40.2 106 3.39 1.9 40.2 102 1.6 1.9 40.2 104 1.47
2.3 40.2 96 3.61 2.3 40.2 98 1.9 2.3 40.2 98 1.64

2.7 40.2 92 4.0 2.7 40.2 94 2.1 2.7 40.2 96 1.83

From Table 5 for Beam type 3 with lesser a/d = 1.53, p = 0.031 with different f ' c = 16.75 , 20.10,

26.80, 33.50, and 40.20 N/mm2 , the observed increased total shear capacity were to be 42, 58, 66, 

90, and 96 KN which is more (11.63%) and decreased displacements were to be noted as 1.10, 1.57, 

1.63, 2.29, and 2.35 mm as when compared to Beam type 2 with (a/d = 1.98, p = 0.031) .

For increased a/d = 2.69, p = 0.031 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 N/mm2 

, it’s observed that total shear capacity were to be 46, 54, 66, 78, and 92 decreased (4.35%) as when 

compared with (a/d = 1.53, p = 0.031), but this observed shear capacity is more (64.29%) as when 

compared to Beam type 2 with (a/d = 3.46, p = 0.031) and observed displacements were to be 2.18,
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2.59, 2.93, 3.43, and 4.01 mm which appears to be low as when compared to Beam type 2 with (a/d 

= 3.46, p = 0.031).

Again from Table 5 for Beam type 3 for small a/d = 1.53, p = 0.096 with different f ' c = 16.75 , 20.10,

26.80, 33.50, and 40.20 N/mm2 , shows there is an increased (12.50%) tendency in the total shear 

capacity were to be observed as 44, 50, 72, 92, and 108 KN as when compared with (a/d = 1.53, p = 

0.031) which in turn indicates there is an influence o f tensile reinforcement ratio on this incremental 

shear capacity but this total shear capacity was less in some cases but increased more (12.50%) as 

when compared to Beam type 2 with (a/d = 1.98, p = 0.096 ) and observed displacements were to be 

0.59, 0.67, 0.96, 1.26, and 1.42 mm which is to be less as when compared with (a/d = 1.53, p = 

0.031) and which is also less as compared to Beam type 2 with (a/d = 1.98, p = 0.096).

Also for increased a/d = 2.69, p = 0.096 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 

N/mm2 , there is decreased (14.89%) tendency o f total shear capacity were to be observed as 44, 58, 

66, 84, and 94 KN as when compared with (a/d = 1.53, p = 0.096) and this observed total shear 

capacity was more (42.42%) as when compared to Beam type 2 with (a/d = 3.46, p = 0.096) and 

observed displacements were to be 1.01, 1.39, 1.45, 1.85, and 2.1 mm which is to be less deflected as 

when compared with (a/d = 2.69, p = 0.031).

From Table 5 for less a/d = 1.53, p = 0.126 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and

40.20 N/mm2 , the observed increased total shear capacity were to be 48, 54, 70, 94, and 110 KN 

and their displacements as 0.56, 0.64, 0.78, 1.09, and 1.25 mm which is to be less as when compared 

to (a/d = 1.53, p = 0.096) and in turn total shear capacity is more (1.85%) as when compared to (a/d=

1.53, p = 0.096 ) but also this shear capacity was observed to be more (14.58%) as when compared 

to Beam type 2 with (a/d = 1.98, p = 0.126).

Similarly for increased a/d = 2.69 , p = 0.126 with different f ' c = 16.75 , 20.10, 26.80, 33.50 and

40.20 N/mm2 , the observed decreased total shear capacity were to be 44, 60, 70, 84, and 96 KN 

with their displacements were to be 0.87, 1.25, 1.33, 1.60 and 1.83 mm . This total shear capacity 

was found to be more (2.13%) as when compared to (a/d = 2.69, p = 0.096) and this obtained total 

shear capacity was found to be more (37.14%) as compared with Beam type 2 with (a/d = 3.46, p = 

0.126).
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Beam type 4

Table 6 -  Comparison of mid-span Deflections with different a/d ratio (Beam type 4)

p = 0.03, 

a/d

f '1 C?

N /m m 2

Sc,

KN

D,

mm

p = 0.096, 

a/d

f '1 C?

N /m m 2

Sc,

KN

D,

mm

P = 0.13, 

a/d

f '1 c,

N /m m 2

Sc,

KN

D,

mm

1.1 16.8 56 0.6 1.1 16.8 56 0.30 1.1 16.8 58 0.2

1.4 16.8 58 0.8 1.4 16.8 62 0.47 1.4 16.8 60 0.4

1.7 16.8 64 1.1 1.7 16.8 62 0.57 1.7 16.8 62 0.4

2 16.8 64 1.3 2 16.8 68 0.79 2 16.8 66 0.6

1.1 20.1 66 0.7 1.1 20.1 66 0.41 1.1 20.1 68 0.3

1.4 20.1 82 1.3 1.4 20.1 68 0.54 1.4 20.1 68 0.4

1.7 20.1 78 1.4 1.7 20.1 68 0.66 1.7 20.1 70 0.5

2 20.1 80 1.7 20.1 82 0.96 20.1 84 0.8

1.1 26.8 96 1.0 1.1 26.8 102 0.64 1.1 26.8 100 0.5

1.4 26.8 88 1.2 1.4 26.8 96 0.75 1.4 26.8 100 0.6

1.7 26.8 88 1.4 1.7 26.8 86 0.79 1.7 26.8 98 0.8

2 26.8 88 1.7 26.8 88 0.93 2 26.8 88 0.8

1.1 33.5 122 1.3 1.1 33.5 120 0.77 1.1 33.5 116 0.6

1.4 33.5 122 1.7 1.4 33.5 122 0.98 1.4 33.5 116 0.8

1.7 33.5 112 1.8 1.7 33.5 122 1.17 1.7 33.5 116 0.9
2 33.5 118 2.3 33.5 106 1.14 33.5 116 1.1

1.1 40.2 140 1.5 1.1 40.2 142 0.91 1.1 40.2 146 0.8

1.4 40.2 138 1.9 1.4 40.2 144 1.14 1.4 40.2 142 0.9

1.7 40.2 130 2.1 1.7 40.2 136 1.29 1.7 40.2 140 1.1

2 40.2 144 2.8 2 40.2 136 1.47 2 40.2 134 1.2

From Table 6 ( Beam type 4) for lesser a/d = 1.14, p = 0.031 with different f ' c = 16.75 , 20.10, 26.80, 

33.50, and 40.20 N/mm2 , the observed increased total shear capacity were to be ( 56, 66, 96, 122, 

and 140 KN) and their displacements were to be 0.63, 0.75, 1.05, 1.37, and 1.53 mm, which 

indicates that for lesser a/d ratio and increased beam size in turn achieve more total shear capacity 

with increase in concrete compressive strength . This increased total shear capacity was found to be 

more (45.83%) as when compared to Beam type 3 with (a/d = 1.53, p = 0.031) and corresponding 

displacements were found to be less as when compared to Beam type 3 with (a/d = 1.53, p =0.031) .

Similarly for increased a/d = 2, p =0.031 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 

N/mm2 , the observed total shear capacity were to be varied from 64, 80, 88, 118, and 144 KN with 

their displacements were to be 1.35, 1.75, 1.71, 2.37, and 2.89 mm . The observed total shear 

capacity were found to be more (56.52%) as when compared to Beam type 3 with (a/d = 2.69, p = 

0.031). Also observed displacements were found to be less in some cases as when compared to (a/d = 

2.69, p =0.031).
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For Beam type 4 with increased a/d = 1.14, p = 0.096 with different f ' c = 16.75 , 20.10, 26.80, 33.50, 

and 40.20 N/mm2 , the observed total shear capacity were to be slightly increased or decreased with 

their magnitude as 56, 66, 102, 120, and 142 KN with displacements as 0.30, 0.41, 0.64, 0.77, and 

0.91 mm . The observed total shear capacity were found to be less or less same as when compared to 

(a/d = 1.14, p = 0.031) but their displacements were found to be less as when compared to (a/d =

1.14, p = 0.031), but this shear capacity was more (31.48%) as when compared to Beam type 3 with 

(a/d=  1.53, p = 0.096).

With increased a/d = 2, p = 0.096 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 N/mm2 , 

the observed total shear capacity were to be 68, 82, 88, 106, and 136 KN with their displacements 

were to be 0.79, 0.96, 0.93, 1.14, and 1.47 mm. The observed shear capacity was found to be more 

(44.68%) as when compared to Beam type 3 with (a/d = 2.69, p = 0.096 ), and also observed 

displacements were found to be lesser as when compared to Beam type 3 with (a/d = 2.69, p = 0.096 

)•
For Beam type 4 with a/d == 1.14, p = 0.126 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and

40.20 N/mm2 , the observed total shear capacity were found to be( 58, 68, 100, 116, and 146 KN) 

little bit increased as when compared to (a/d = 1.14, p = 0.096) and their displacements were to be 

0.27, 0.37, 0.54, 0.64, and 0.82 mm which is also found to be lesser as when compared to (a/d =

1.14, p = 0.096) . But the total shear capacity was found to be more (32.72%) when compared to 

Beam type 3 with (a/d = 1.53, p = 0.126).

When a/d = 2, p = 0.126 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 N/mm2 , the 

observed total shear capacity were to be 66, 84, 88, 116, and 134 KN which is found to be more 

(39.58%) as when compared to Beam type 3 with (a/d = 2.69, p = 0.126 ) and their displacements 

were to be 0.65, 0.84, 0.81, 1.10, and 1.25 mm which is to be less as when compared with (a/d =2, p 

= 0.096).
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Beam type 5

Table 7 -  Comparison of mid-span Deflections with different a/d ratio (Beam type 5)

p = 0.03, 

a/d

f '1 C j

N /m m 2

SC5

KN

D,

mm

p = 0.096, 

a/d

f ’c,

N /m m 2

s «

KN

D,

mm

p = 0.13, 

a/d

f '1 c>

N /m m 2

Sc,

KN

D,

mm

0.8 16.8 100 0.3 0.8 16.8 94 0.1 0.8 16.8 94 0.12

0.9 16.8 100 0.4 0.9 16.8 98 0.2 0.9 16.8 98 0.23

1.1 16.8 106 0.6 1.1 16.8 100 0.3 1.1 16.8 100 0.29

1.3 16.8 108 0.7 1.3 16.8 100 0.3 1.3 16.8 102 0.36

0.8 20.1 110 0.3 0.8 20.1 112 0.2 0.8 20.1 112 0.19

0.9 20.1 108 0.4 0.9 20.1 114 0.3 0.9 20.1 114 0.27

1.1 20.1 128 0.7 1.1 20.1 114 0.3 1.1 20.1 114 0.33

1.3 20.1 130 0.9 1.3 20.1 128 0.5 1.3 20.1 116 0.41

0.8 26.8 142 0.4 0.8 26.8 146 0.3 0.8 26.8 150 0.31

0.9 26.8 148 0.6 0.9 26.8 148 0.4 0.9 26.8 154 0.39

1.1 26.8 146 0.7 1.1 26.8 152 0.5 1.1 26.8 152 0.47

1.3 26.8 170 1.1 1.3 26.8 150 0.5 1.3 26.8 150 0.53

0.8 33.5 170 0.5 0.8 33.5 168 0.3 0.8 33.5 174 0.36

0.9 33.5 174 0.7 . 0.9 33.5 174 0.5 0.9 33.5 170 0.44

1.1 33.5 174 0.9 1.1 33.5 176 0.6 1.1 33.5 174 0.56

1.3 33.5 206 1.3 1.3 33.5 178 0.7 1.3 33.5 180 0.66

0.8 40.2 210 0.7 0.8 40.2 196 0.4 0.8 40.2 198 0.42

0.9 40.2 200 0.8 0.9 40.2 202 0.5 0.9 40.2 206 0.54
1.1 40.2 204 1 .0 1.1 40.2 208 0.7 1.1 40.2 204 0.65

1.3 40.2 200 1.2 1.3 40.2 206 0.8 1.3 40.2 210 0.7

From Table 7 (Beam type 5) For lesser a/d = 0.75, p = 0.031 with different f  'c = 16.75 , 20.10,

26.80, 33.50, and 40.20 N/mm2 , the observed total shear capacity were to be 100, 110, 142, 170, and 

210 KN and their displacements were to be 0.33, 0.37, 0.47, 0.58, and 0.72 mm . The observed shear 

capacity was found to be more (50%) as compared to Beam type 4 with (a/d = 1.14, p = 0.031) and 

the observed displacements were also lesser as compared to Beam type 4 with (a/d = 1.14, p = 0.031) 

which in turn indicates that the beam size has more effect on the increment o f total shear capacity 

and also one more factor is to be considered in this type o f beam i.e. Beam type 5 with a/d = 0.75, 

which is very small as when compared to all other types o f Beam .

Also for a/d = 1.32, p = 0.031 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 N/mm2 , the 

observed total shear capacity were found to be 108, 130, 170, 206, and 200 KN with their 

displacements were to be 0.75, 0.92, 1,12, 1.36, and 1.22 mm . The observed shear capacity was 

more (38.89%) as when compared to Beam type 4 with (a/d = 2, p = 0.031) but their observed 

displacements were to be less compared to Beam type 4 with (a/d = 2, p = 0.031).
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For lesser a/d = 0.75, p = 0.096 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 N/mm2 , 

the observed total shear capacity were to be 94, 112, 146, 168, and 196 KN and their displacements 

were to be 0.17, 0.23, 0.32, 0.38, and 0.46 mm . The observed shear capacity was found to be varied 

little bit (7.14%) with (a/d = 0.75, p = 0.031) .The observed displacements were found to very less as 

compared to with (a/d = 0.75, p = 0.031). But the observed shear capacity was found to be more 

(38%) as when compared to Beam type 4 with (a/d = 1.14, p = 0.096).

I
s
i Similarly with a/d =  1.32, p  =  0.096 with different f  ' c =  16.75 , 20.10, 26.80, 33.50, and 40.20 

N/mm2 , the observed total shear capacity were to be 100, 128, 150, 178, and 206 KN and their 

displacements were to be 0.39, 0.56, 0.59, 0.73, and 0.83 mm . The observed shear capacity was 

found to be more (51.47%) as compared to Beam type 4 with (a/d = 2, p = 0.096) .The observed 

displacements were found to less as compared to Beam type 4 with (a/d = 2, p = 0.096).

For a/d = 0.75, p = 0.126 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 N/mm2 , the 

observed total shear capacity were to be 94, 112, 150, 174, and 198 KN and their displacements 

were to be 0.12, 0.19, 0.31, 0.36, and 0.42 mm . The observed shear capacity was found to be 

increased (1.02%) as when compared with (a/d = 0.75, p = 0.096) .The observed displacements were 

found to very less as when compared to Beam type 4 with (a/d = 1.14, p = 0.126). The observed 

shear capacity was found to be more (35.61%) as compared to Beam type 4 with (a/d = 1.14, p = 

0.126).

For a/d = 1.32, p = 0.126 with different f ' c = 16.75 , 20.10, 26.80, 33.50, and 40.20 N/mm2 , the 

observed total shear capacity was 102, 116, 150, 180, and 210 KN and their displacements were to 

be 0.36, 0.41, 0.53, 0.66, and 0.78 mm . The observed shear capacity was found to be more (56.71%) 

as compared to Beam type 4 with (a/d = 2, p = 0.126) .The observed displacements were found to 

lesser as when compared to Beam type 4 with (a/d = 2, p = 0.126).

|
\
I The variation o f Nominal shear stress versus effective shear span to depth ratio by considering 

different combinations o f concrete compressive strength , tensile reinforcement ratio, a/d ratio , 

different beam size were to be represented from figures 6 to 20 .
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Fig. 6 shows the effects o f variation o f nominal shear stress with shear span-effective depth ratio for 

different combinations of concrete compressive strength ( f ' c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N/mm2, tensile reinforcement ratio(p) o f 0.031 and shear span-effective depth ratio(a/d) of

2.35, 2.94, 3.53, and 4.11. It can be observed that for lesser the a/d ratio o f 2.35 more the nominal 

shear stresses 2.04, 2.35, 3.13, 3.45, and 3.92 N/mm2 could be achieved with the increase in concrete 

compressive strength. It can also observe that for large a/d ratio o f 4.11 lesser the nominal shear 

stresses 1.41, 1.88, 2.19, 2.66, 2.82 N/mm2 could be achieved for respective concrete compressive 

strength and tensile reinforcement ratio.

Fig. 7 shows the effects o f variation o f nominal shear stress with shear span-effective depth ratio for 

different combinations o f concrete compressive strength ( f ' c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N/mm2, tensile reinforcement ratio(p) o f 0.096 and shear span-effective depth ratio(a/d) o f

2.35, 2.94, 3.53, and 4.11. It can be observed that for lesser the a/d ratio o f 2.35 more the nominal 

shear stresses 2.35, 2.67, 3.29, 4.07, and 4.39 N/mm2 could be achieved with the increase in concrete 

compressive strength and tensile reinforcement ratio. It can also observe that for large a/d ratio of 

4.11 lesser the nominal shear stresses 1.73, 2.03, 2.67, 3.29, and 3.60 N/mm2 could be achieved for 

respective concrete compressive strength and tensile reinforcement ratio.

Fig. 8 shows the effects o f variation o f nominal shear stress with shear span-effective depth ratio for 

different combinations o f concrete compressive strength ( f ' c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N/mm2, tensile reinforcement ratio(p) o f 0.126 and shear span-effective depth ratio(a/d) o f

2.35, 2.94, 3.53, and 4.11. It can be observed that for lesser the a/d ratio o f 2.35 more the nominal 

shear stresses 2.19, 2.67, 3.45, 4.39, and 4.39 N/mm2 could be achieved with the increase in concrete 

compressive strength. It can also observe that for large a/d ratio o f 4.11 lesser the nominal shear 

stresses 2.03, 2.19, 2.82, 3.29, and 3.67 N/mm2 could be achieved for respective concrete 

compressive strength and tensile reinforcement ratio. But contrary to previous observations, in this 

case tensile reinforcement ratio has no effect on the improvement o f the nominal shear stress.
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Nominal shear stress vs Shear span-effective depth ratio(Beam ty p e l)
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Nominal shear stress vs Shear span-effective depth ratio(Beam type2)
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Fig. 9 shows the effects o f  variation o f  nominal shear stress with shear span-effective depth ratio for 

different combinations o f  concrete compressive strength ( f ' c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N /m m 2, tensile reinforcement ratio(p) o f  0.031 and shear span-effective depth ratio(a/d) o f

1.98, 2.47, 2.97, and 3.46. It can be observed that for lesser the a/d ratio o f  1.98 more the nominal 

shear stresses 1.88. 2.17, 2.87, 3.66, and 4.25 N /m m 2 could be achieved with the increase in concrete 

compressive strength and beam size. It can also observe that for large a/d ratio o f  3.46 lesser the 

nominal shear stresses 1.58, 1.68, 2.07, 2.47, and 2.77 N /m m 2 could be achieved for respective 

concrete compressive strength and tensile reinforcement ratio.

Fig. 10 shows the effects o f  variation o f  nominal shear stress with shear span-effective depth ratio for 

different combinations o f  concrete compressive strength ( f ' c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N /nim 2, tensile reinforcement ratio(p) o f  0.096 and shear span-effective depth ratio(a/d) o f

1.98. 2.47, 2.97, and 3.46. It can be observed that for lesser the a/d ratio o f  1.98 more the nominal 

shear stresses 2.27, 2.67, 3.56, 3.86, and 4.75 N /m m 2 could be achieved with the increase in concrete 

compressive strength and tensile reinforcement ratio. It can also observe that for large a/d ratio o f  

3.46 lesser the nominal shear stresses 1.78, 2.17, 2.47, 2.67, 3.26 N /m m 2 could be achieved for 

respective concrete compressive strength and tensile reinforcement ratio.
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Fig. 1 1 shows the effects o f  variation o f  nominal shear stress with shear span-effective depth ratio for 

different com binations o f  concrete compressive strength ( f ' c ) range from 16.75, 20.10, 26.80, 33.50. 

and 40.20 N /m m 2, tensile reinforcement ratio(p) o f  0.126 and shear span-effective depth ratio(a/d) o f

1.98, 2.47, 2.97, and 3.46. It can be observed that for lesser the a/d ratio o f  1.98 more the nominal 

shear stresses 2.27, 2.77, 3.36, 4.16, and 4.75 N /m m 2 could be achieved but could not altered in the 

value o f  shear stress even though with the increase in tensile reinforcement ratio. It can also observe 

that for large a/d ratio o f  3.46 lesser the nominal shear stresses 1.78, 2.47, 2.67, 2.97, 3.46 N /m m 2 

could be achieved for respective concrete compressive strength and tensile reinforcement ratio.

Nominal shear stress vs Shear span-effective depth ratio(Beam type2)
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Beam type 3

Nominal shear stress vs Shear span-effective depth ratio(Beam type3)
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Fig. 12 shows the effects o f variation o f nominal shear stress with shear span-effective depth ratio for 

different combinations o f concrete compressive strength ( f 'c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N/mm2, tensile reinforcement ratio(p) o f 0.031 and shear span-effective depth ratio(a/d) o f

1.53, 1.92, 2.3, and 2.69. It can be observed that for lesser the a/d ratio o f 1.53 more the nominal 

shear stresses 1.35, 1.85, 2.11, 2.88, and 3.07 N/mm2 could be achieved with the increase in concrete 

compressive strength, but there has been no effect of increased beam size on the improvement o f 

nominal shear stress. It can also observe that for large a/d ratio o f 2.69 lesser the nominal shear 

stresses 1.47, 1.73, 2.11, 2.5, 2.95 N/mm2 could be achieved for respective concrete compressive 

strength and tensile reinforcement ratio.

Fig. 13 shows the effects o f variation o f nominal shear stress with shear span-effective depth ratio for 

different combinations o f concrete compressive strength ( f 'c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N/mm2, tensile reinforcement ratio(p) o f 0.096 and shear span-effective depth ratio(a/d) of

1.53, 1.92, 2.3, and 2.69. It can be observed that for lesser the a/d ratio o f 1.53 more the nominal 

shear stresses 1.41, 1.6, 2.3, 2.95, and 3.46 N/mm2 could be achieved with the increase in concrete 

compressive strength and tensile reinforcement ratio. It can also observe that for large a/d ratio of 

2.69 lesser the nominal shear stresses 1.41, 1.85, 2.11, 2.69, and 3.01 N/mm2 could be achieved for 

respective concrete compressive strength and tensile reinforcement ratio.

Fig. 14 shows the effects o f variation o f nominal shear stress with shear span-effective depth ratio for 

different combinations o f concrete compressive strength ( f 'c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N/mm2, tensile reinforcement ratio(p) o f 0.126 and shear span-effective depth ratio(a/d) o f

1.53, 1.92, 2.3, and 2.69. It can be observed that for lesser the a/d ratio o f 1.53 more the nominal 

shear stresses 1.54, 1.73, 2.24, 3.01, and 3.52 N/mm2 could be achieved, but could not be improved 

with the increase in concrete compressive strength and tensile reinforcement ratio. It can also 

observe that for large a/d ratio of 2.69 lesser the nominal shear stresses 1.41, 1.92, 2.24, 2.69, and

3.07 N/mm2 could be achieved for respective concrete compressive strength and tensile 

reinforcement ratio.
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Nominal shear stress vs Shear span-effective depth ratio(Beam type3)
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Beam type 4

Nominal shear stress vs Shear span-effective depth ratio(Beam type4)
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Fig. 15 shows the effects o f variation o f nominal shear stress with shear span-effective depth ratio for 

different combinations o f concrete compressive strength ( f 'c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N/mm2, tensile reinforcement ratio(p) o f 0.031 and shear span-effective depth ratio(a/d) o f

1.14, 1.42, 1.71, and 2. It can be observed that for lesser the a/d ratio o f 1.14 more the nominal shear 

stresses 1.07, 1.26, 1.83, 2.32, and 2.67 N/mm2 could be achieved with the increase in concrete 

compressive strength but there has been decrease in nominal shear stress value due to increased 

beam size. It can also observe that for large a/d ratio o f 2 lesser the nominal shear stresses 1.21, 1.52, 

1.68, 2.25, 2.74 N/mm2 could be achieved for respective concrete compressive strength and tensile 

reinforcement ratio.

Fig. 16 shows the effects o f variation o f nominal shear stress with shear span-effective depth ratio for 

different combinations o f concrete compressive strength ( f 'c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N/mm2, tensile reinforcement ratio(p) o f 0.096 and shear span-effective depth ratio(a/d) of

1.14, 1.42, 1.71, and 2. It can be observed that for lesser the a/d ratio o f 1.14 more the nominal shear 

stresses 1.06, 1.25, 1.94, 2.28, and 2.7 N/mm2 could be achieved with the increase in concrete 

compressive strength but there has been no change in the nominal stress value due to increase in 

tensile reinforcement ratio. It can also observe that for large a/d ratio o f 2 lesser the nominal shear 

stresses 1.06, 1.25, 1.94, 2.28, 2.7 N/mm2 could be achieved for respective concrete compressive 

strength and tensile reinforcement ratio.

Fig. 17 shows the effects o f variation o f nominal shear stress with shear span-effective depth ratio 

for different combinations o f concrete compressive strength ( f 'c ) range from 16.75, 20.10, 26.80, 

33.50, and 40.20 N/mm2, tensile reinforcement ratio(p) of 0.126 and shear span-effective depth 

ratio(a/d) o f 1.14, 1.42, 1.71, and 2. It can be observed that for lesser the a/d ratio o f 1.14 slightly 

more the nominal shear stresses 1.1, 1.29, 1.9, 2.2, and 2.78 N/mm2 could be achieved with the 

increase in concrete compressive strength and tensile reinforcement ratio. It can also observe that for 

large a/d ratio o f 2 lesser the nominal shear stresses 1.25, 1.68, 1.68, 2.29, 2.55 N/mm2 could be 

achieved for respective concrete compressive strength and tensile reinforcement ratio.
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Nominal shear stress vs Shear span-effective depth ratio(Beam type4)
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Nom inal shear stress vs Shear span-effective depth ratio(Beam type5)
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Fig. 18 shows the effects o f  variation o f  nominal shear stress with shear span-effective depth ratio for 

different com binations o f  concrete compressive strength ( f ' c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N /m m 2, tensile reinforcement ratio(p) o f  0.031 and shear span-effective depth ratio(a/d) o f  

0.75, 0.94, 1.13, and 1.32. It can be observed that for lesser the a/d ratio o f  0.75 more the nominal 

shear stresses 0.94, 1.03, 1.34, 1.6, and 1.98 N /m m 2 could be achieved with the increase in concrete 

compressive strength but there has been decrease in nominal shear stress value due to increased 

beam size. It can also observe that for large a/d ratio o f  1.32 lesser the nominal shear stresses 1.01, 

1.22, 1.6, 1.94, and 1.88 N /m m 2 could be achieved for respective concrete compressive strength and 

tensile reinforcement ratio.

Fig. 19 shows the effects o f  variation o f  nominal shear stress with shear span-effective depth ratio for 

different combinations o f  concrete compressive strength ( f ' c ) range from 16.75, 20.10, 26.80, 33.50. 

and 40.20 N /m m 2, tensile reinforcement ratio(p) o f  0.096 and shear span-effective depth ratio(a/d) o f  

0.75, 0.94, 1.13, and 1.32. It can be observed that for lesser the a/d ratio o f  0.75 more the nominal 

shear stresses 0.88, 1.06, 1.38, 1.58, and 1.84 N /m m 2 could be achieved with the increase in concrete 

compressive strength but decreased with increased tensile reinforcement ratio. It can also observe
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that for large a/d ratio o f  1.32 lesser the nominal shear stresses 0.94, 1.2, 1.41, 1.67, 1.94 N /m m 2 

could be achieved for respective concrete compressive strength and tensile reinforcement ratio.

Fig. 20 shows the effects o f  variation o f  nominal shear stress with shear span-effective depth ratio for 

different combinations o f  concrete compressive strength ( f ' c ) range from 16.75, 20.10, 26.80, 33.50, 

and 40.20 N /m m 2, tensile reinforcement ratio(p) o f  0.126 and shear span-effective depth ratio(a/d) o f

0.75, 0.94, 1.13, and 1.32. It can be observed that for lesser the a/d ratio o f  0.75 slightly more the 

nominal shear stresses 0.88, 1.06, 1.41, 1.64, and 1.86 N /m m 2 could be achieved with the increase in 

concrete compressive strength and tensile reinforcement ratio. It can also observe that for large a/d 

ratio o f  1.32 lesser the nominal shear stresses 0.96, 1.09, 1.41, 1.69, and 1.98 N /m m 2 could be 

achieved for respective concrete compressive strength and tensile reinforcement ratio.

Nominal shear s tre ss  vs Shear span-effective depth ratio(Beam type5)
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CHAPTER 5 
ANSYS GRAPHIC RESULTS

The objective o f  the research work was to predict load carrying capacity, shear failure, and crack 

mode by using nonlinear analysis for various types o f  beam size. The following are the Ansys 

graphic results for various types o f  beam with their shear failure and crack mode.

A M  SZQ
NODAL SOLUTI ON #  U m

STEP=1
SUB =3
TIME=10
SXY (AVG)
RSYS=0 
DMX =3.45 
SMN =-8.776 
SMX =8.769

-8.776 -4.877 -.978103 2.921 6.82
-6.826 -2.928 .971332 4.87 8.769

DEFLECTION OF BEAM

Fig. 21 Shear stress contour for Beam type 1

Fig .21 shows variation o f  shear stress contour for Beam type 1 with lower a/d ratio o f  2.35, tensile 

reinforcement ratio o f  0.031, and concrete compressive strength o f  26.80 N /m m 2 and observed shear 

stress were to be 8.77 N /m m 2.

From Fig .6 for less a/d = 2.35, p = 0.031, and f ' c =  26.80 N /m m 2, the observed nominal shear stress 

were to be 3.14 N /m m 2 which is more (2.67 N /m m 2) as when compared to f  'c = 33.50 N /m m 2, and 

also less (3.92 N /m m 2) as when compared to f ' c = 40.20 N /m m 2.
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For increased a/d = 4.1, p = 0.031, and f ' c = 26.80 N /m m 2, the observed nominal shear stress were 

to be 2.19 N /m m 2 which is less (3.45 N /m m 2) as when compared to f  'c = 33.50 N /m m 2, and also less 

(2.82 N /m m 2) as when compared to f ' c = 40.20 N /m m 2.

ANCRACKS AND CRUSHING

STEP=1 
SUB =3 
TIME=10

DEFLECTION OF BEAM

Fig. 22 C rack pattern  for half portion of Beam type 1

Fig. 22 shows crack pattern for Beam type 1 with lower a/d ratio o f  2.35, tensile reinforcement ratio 

o f  0.031, and concrete compressive strength o f  26.80 N /m m 2. In this case, reinforced concrete beam 

subjected predominantly to flexure failure in between shear span, rare appearance o f  third crack and 

crushing o f  concrete at the top, nearer to support as well as at the bottom side o f  beam. On the other 

side shear span subjected rarely to shear failure which slightly tends toward the support.
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NODAL SOLUTION
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AN
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DEFLECTION OF BEAM

Fig. 23 Shear stress contour for Beam type 2

Fig .23 shows variation o f  shear stress contour for Beam type 2 with lower a/d ratio o f  1.98. tensile 

reinforcement ratio o f  0.031, and concrete compressive strength o f  26.80 N /m m 2 and observed shear 

stress were to be 7.98 N /m m 2.

From Fig .9 for less a/d = 1.98, p = 0.031, and f ' c = 26.80 N /m m 2, the observed nominal shear stress 

were to be 2.87 N /m m 2 which is less (3.66 N /m m 2) as when compared to f ' c = 33.50 N /m m 2, and 

also less (4.25 N /m m 2) as when compared to f ' c = 40.20 N /m m 2.

For increased a/d = 3.5. p = 0.031, and f  'c =  26.80 N /m m 2, the observed nominal shear stress were to 

be 2.07 N /m m 2 which is less (2.51 N /m m 2) as when compared to f ' c = 33.50 N /m m 2, and also less 

(2.77 N /m m 2) as when compared to f ' c = 40.20 N /m m 2.
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CRACKS AND CRUSHING

STEP=1 
SUB =9 
TIME=10

O

DEFLECTI ON OF BEAM

Fig. 24 C rack pattern  for half portion of Beam type 2

Fig .24 shows crack pattern for Beam type 2 with lower a/d ratio o f  1.98, tensile reinforcement ratio 

o f  0.031, and concrete compressive strength o f  26.80 N /m m 2. In this case reinforced concrete beam 

subjected to flexure failure with varying in their magnitude in between shear span and rarely uniform 

distribution o f  third crack at the bottom surface o f  beam nearer to support. On the other side shear 

span subjected to shear failure which is more inclined towards the support, rare appearance o f  third 

crack and crushing o f  concrete at top, middle, bottom side ( nearer to support) o f  beam.
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D E F L E C T I O N  O F  BEAM

Fig. 25 Shear stress contour for Beam type 3

Fig. 25 shows variation o f  shear stress contour for Beam type 3 with lower a/d ratio o f  1.53, tensile 

reinforcement ratio o f  0.031, and concrete compressive strength o f  26.80 N /m m 2 and observed shear 

stress were to be 6.2 N /m m 2.

From Fig .12 for less a/d = 1.53, p =  0.031, and f  'c = 26.80 N /m m 2, the observed nominal shear 

stress were to be 2.11 N /m m 2 which is less (2.88 N /m m 2) as when compared to f ' c = 33.50 N /m m 2, 

and also less (3.07 N /m m 2) as when compared to f ' c = 40.20 N /m m 2.

For increased a/d = 2.7, p = 0.031, and f ' c = 26.80 N /m m 2, the observed nominal shear stress were to 

be 2.1 I N /m m 2 which is less (2.5 N /m m 2) as when compared to f ' c = 33.50 N /m m 2, and also less 

(2.95 N /m m 2) as when compared to f ' c = 40.20 N /m m 2.
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DEFLECTI ON OF BEAM

Fig. 26 C rack pattern  for half portion of Beam type 3

Fig .26 shows crack pattern for Beam type 3 with lower a/d ratio o f  1.53, tensile reinforcement ratio 

o f  0.031, and concrete compressive strength o f  26.80 N /m m 2. Here the reinforced concrete beam 

subjected to flexure failure in between shear span portion. On the other side shear span subjected to 

flexure as well as shear failure, rare appearance o f  third crack and crushing o f  concrete at top, 

bottom(nearer to support), middle side o f  beam.
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Fig. 27 Shear stress contour for Beam type 4

Fig. 27 shows variation o f  shear stress contour for Beam type 4 with lower a/d ratio o f  1.14, tensile 

reinforcement ratio o f  0.031, and concrete compressive strength o f  26.80 N /m m 2 and observed shear 

stress were to be 6.7 N /m m 2.

From Fig .15 for less a/d = 1.14, p = 0.031, and f  'c = 26.80 N /m m 2, the observed nominal shear 

stress were to be 1.83 N /m m 2 which is less (2.32 N /m m 2) as when compared to f ' c =  33.50 N /m m 2, 

and also less (2.67 N /m m 2) as when compared to f ' c = 40.20 N /m m 2.

For increased a/d = 2, p = 0.031, and f ' c = 26.80 N /m m 2, the observed nominal shear stress were to 

be 1.68 N /m m 2 which is less (2.25 N /m m 2) as when compared to f ' c = 33.50 N /m m 2, and also less 

(2.74 N /m m 2) as when compared to f ' c =  40.20 N /m m 2.
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DEFLECTION OF BEAM

Fig. 28 C rack  pattern for half portion of Beam type 4

Fig .28 shows crack pattern for Beam type 4 with lower a/d ratio o f  1.14, tensile reinforcement ratio 

o f  0.031, and concrete compressive strength o f  26.80 N /m m 2. In this case reinforced concrete beam 

subjected to flexure in between shear span. On the other side shear span subjected to shear as flexure 

failure, rare appearance o f  concrete crushing and third crack at bottom (nearer to support), top, and 

middle side o f  beam.
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DEFLECTION OF BEAM

Fig. 29 Shear stress contour for Beam type 5

Fig .29 shows variation o f  shear stress contour for Bearn type 5 with lower a/d ratio o f  0.75, tensile 

reinforcement ratio o f  0.031, and concrete compressive strength o f  26.80 N /m m 2 and observed shear 

stress were to be 6.83 N /m m 2.

From Fig .18 for less a/d = 0.75, p = 0.031, and f  'c = 26.80 N /m m 2, the observed nominal shear 

stress were to be 1.34 N /m m 2 which is less (1.6 N /m m 2) as when compared to f ' c = 33.50 N /m m 2, 

and also less (1.98 N /m m 2) as when compared to f  'c = 40.20 N /m m 2.

For increased a/d = 1.32. p = 0.031, and f ' c = 26.80 N /m m 2, the observed nominal shear stress were 

to be 1.6 N /m m 2 which is less (1.94 N /m m 2) as when compared to f ' c = 33.50 N /m m 2, and also less 

(1.88 N /m m 2) as when compared to f ' c =  40.20 N /m m 2.
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ANCRACKS AND CRUSHING
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Fig. 30 C rack pattern for half portion of Beam type 5

Fig .30 shows crack pattern for Beam type 5 with lower a/d ratio o f  0.75, tensile reinforcement ratio 

o f  0.031, and concrete compressive strength o f  26.80 N /m m 2. In this case reinforced concrete beam 

subjected to flexure failure (three fourth portions) o f  span. On the other side shear span subjected to 

shear (one third portions) as well as flexure failure, rare appearance o f  third crack and crushing o f  

concrete at top side o f  beam.
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CHAPTER 6 

DISCUSSION ANDCONCLUSIONS

The following observations can be made regarding the effects o f the prominent variables on the shear 

strength o f reinforced concrete beam with uniform distribution o f shear reinforcement for entire span 

length in all types o f beam by using nonlinear finite element analysis:

1. The shear strength o f reinforced concrete beam in case o f (Beam type 1) increased with the 

increase o f concrete compressive strength o f about (26.80 N/mm2) for lesser shear span- 

effective depth ratio o f 2.4 with different tensile reinforcement ratios o f (0.031, 0.096, and 

0.13). The corresponding increment in shear strength and displacement were to be in the order 

of 42.85%, 23.53%, 22.22% and 12.72% (decrease), 25.56% (increase), 30.26 %(decrease) as 

when compared with large shear span- effective depth ratio o f (4.1) with the same respective 

tensile reinforcement ratio.

The shear strength of reinforced concrete beam in case o f (Beam type 2) increased with the 

increase o f concrete compressive strength o f about (26.80 N/mm2) for lesser shear span- 

effective depth ratio o f 1.98 with different tensile reinforcement ratios o f (0.031, 0.096, and 

0.13). The corresponding increment in shear strength and decrement in displacement were to 

be in the order o f 38.09%, 44.00%, 25.93% and 19.86%, 12.75%, 27.38% as when compared 

with large shear span- effective depth ratio o f (3.5) with the same respective tensile 

reinforcement ratio.

The shear strength of reinforced concrete beam in case of (Beam type 3) increased with the 

increase o f concrete compressive strength o f about (26.80 N/mm2) for lesser shear span- 

effective depth ratio o f 1.53 with different tensile reinforcement ratios o f (0.031, 0.096, and 

0.13). The corresponding increment in shear strength and decrement in displacement were to 

be in the order o f 0.00%, 9.10%, 0.00% and 79.95%, 51.04%, 70.51% as when compared with 

large shear span- effective depth ratio o f (2.7) with the same respective tensile reinforcement 

ratio.

The shear strength o f reinforced concrete beam in case o f (Beam type 4) increased with the 

increase o f concrete compressive strength o f about (26.80 N/mm2) for lesser shear span- 

effective depth ratio o f 1.14 with different tensile reinforcement ratios o f (0.031, 0.096, and 

0.13). The corresponding increment in shear strength and displacement were to be in the order
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of 9.00%, 15.90%, 13.63% and 62.85% (decrease), 45.31% (decrease), 50% (increase) as when 

compared with large shear span to effective depth ratio o f  (2) with the same respective tensile 

reinforcement ratio.

The shear strength o f reinforced concrete beam in case o f (Beam type 5) decreased with the 

increase o f concrete compressive strength o f about (26.80 N/mm2) for lesser shear span- 

effective depth ratio o f 0.75 with different tensile reinforcement ratios o f (0.031, 0.096, and

0.13). The corresponding decrement in shear strength and displacement were to be in the order 

of 19.71%, 2.74%, 0.00% and 138%, 84.37%, 70.96% as when compared with large shear 

span- effective depth ratio o f (1.32) with the same respective tensile reinforcement ratio.

2. The shear strength o f reinforced concrete beam increased with the increase o f concrete 

compressive strength of about (26.80 N/mm2) and beam size as in the case o f (Beam type 2) for 

less shear span to effective depth ratio o f 1.98 with different tensile reinforcement ratios o f 

(0.031, 0.096, 0.13). The corresponding increment in shear strength and displacement were to 

be in the order of 45.00%, 71.42%, 54.54% and 13.80% (decrease), 12.75% (decrease), 3.28 

%(decrease) as when compared to (Beam type 1 with small shear span- effective depth ratio o f 

2.4) with the same respective tensile reinforcement ratio.

The shear strength o f reinforced concrete beam increased with the increase o f concrete 

compressive strength o f about (26.80 N/mm2) and beam size as in the case o f (Beam type 3) for 

less shear span to effective depth ratio o f 1.53 with different tensile reinforcement ratios o f 

(0.031, 0.096, 0.13). The corresponding increment in shear strength and displacement were to 

be in the order of 13.79%, 0.0%, 2.94% and 82.20% (decrease), 104.16% (decrease), 101.28 

%(decrease) as when compared to (Beam type 2 with small shear span- effective depth ratio of 

1.98) with the same respective tensile reinforcement ratio.

The shear strength o f reinforced concrete beam increased with the increase o f concrete 

compressive strength o f about (26.80 N/mm2) and beam size as in the case o f (Beam type 4) for 

less shear span to effective depth ratio o f 1.14 with different tensile reinforcement ratios o f 

(0.031, 0.096, 0.13). The corresponding increment in shear strength and displacement were to 

be in the order of 45.45%, 41.67%, 42.85% and 55.23% (decrease), 50.0% (decrease), 44.44
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%(decrease) as when compared to (Beam type 3 with small shear span- effective depth ratio of 

1.53) with the same respective tensile reinforcement ratio.

The shear strength o f reinforced concrete beam increased with the increase o f concrete 

compressive strength o f about (26.80 N/mm2) and beam size as in the case o f (Beam type 5) for 

less shear span to effective depth ratio o f 0.75 with different tensile reinforcement ratios o f 

(0.031, 0.096, 0.13). The corresponding increment in shear strength and displacement were to 

be in the order o f 47.91%, 43.13%, 50.0% and 123.40% (decrease), 100% (decrease), 74.19 

%(decrease) as when compared to (Beam type 4 with small shear span- effective depth ratio o f

1.14) with the same respective tensile reinforcement ratio.

3. The shear strength o f a reinforced concrete beam increases with an increase in concrete 

strength, beam size, and tensile reinforcement for smaller shear span-effective depth ratio.

4. The shear stress o f a reinforced concrete beam increases with an increase in tensile 

reinforcement and decreased with an increase in beam size.

5. The shear stress value o f (2.11 N/mm2) obtained for Beam type 3 ( f 'co f 26.80 N/mm2, a/d ratio 

o f 2.7, p ratio 0.031) by ansys result agrees very well with the experimental shear stress value 

of 2.58 N/mm2 with ( f 'co f 27.37 N/mm2, a/d ratio o f 2.57, p ratio 0.031).
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APPENDIX - A

Table 8 -  Details of Beam type 1 with Ansys results (b = 75 mm, h = 100 mm, d = 85 mm)

a/d Fyv,

N/tnm2

Asvi

mm2

Sv,

mm

p f '1 Ci

N /m m 2

Sc,

KN

C s,

N /m m 2

T1 S?

N /m m 2

Ss,

N /m m 2

v ,

N /m m 2

Sc, cal 

KN
2.4 250 56.50 100 0.03 16.8 26 -18.92 2.95 5.60 2.03 23
2.9 250 56.50 100 0.03 16.8 22 -18.18 2.11 3.96 1.72 23
3.5 250 56.50 100 0.03 16.8 22 -21.16 2.14 4.17 1.72 23
4.1 250 56.50 100 0.03 16.8 18 -20.37 1.33 3.48 1.41 23
2.4 250 56.50 100 0.03 20.1 30 -21.60 3.54 6.26 2.35 24
2.9 250 56.50 100 0.03 20.1 26 -22.78 2.63 5.24 2.03 24
.3.5 250 56.50 100 0.03 20.1 24 -24.12 2.33 5.26 1.88 24
4.1 250 56.50 100 0.03 20.1 24 -24.79 2.35 5.69 1.88 24
2.4 250 56.50 100 0.03 26.8 40 -30.95 1.62 8.77 3.13 25
2.9 250 56.50 100 0.03 26.8 34 -32.12 3.29 6.82 2.66 25
3.5 250 56.50 100 0.03 26.8 30 -32.87 2.30 6.97 2.35 25
4.1 250 56.50 100 0.03 26.8 28 -33.35 2.24 6.31 2.19 25
2.4 250 56.50 100 0.03 33.5 44 -36.75 1.57 9.38 3.45 26
2.9 250 56.50 100 0.03 33.5 40 -38.79 1.86 8.77 3.13 26
3.5 250 56.50 100 0.03 33.5 34 -39.20 2.95 7.50 2.66 26
4.1 250 56.50 100 0.03 33.5 34 -40.67 2.96 7.99 2.66 26
2.4 250 56.50 100 0.03 40.2 50 -43.06 1.74 10.76 3.92 27
2.9 250 56.50 100 0.03 40.2 44 -45.17 1.94 9.44 3.45 27
3.5 250 56.50 100 0.03 40.2 38 -46.47 3.14 8.52 2.98 27
4.1 250 56.50 100 0.03 40.2 36 -47.26 2.91 7.69 2.82 27
2.4 250 56.50 100 0.09 16.8 30 -15.98 2.12 5.84 2.35 28
2.9 250 56.50 100 0.09 16.8 28 -16.41 1.79 5.16 2.19 28
3.5 250 56.50 100 0.09 16.8 26 -16.30 1.82 4.94 2.03 28
4.1 250 56.50 100 0.09 16.8 22 -15.61 2.89 4.20 1.72 28
2.4 250 56.50 100 0.09 20.1 34 -17.57 1.46 8.68 2.66 29
2.9 250 56.50 100 0.09 20.1 32 -18.31 2.09 6.09 2.51 29
3.5 250 56.50 100 0.09 20.1 32 -20.17 2.10 6.48 2.51 29
4.1 250 56.50 100 0.09 20.1 26 -20.69 1.81 4.85 2.03 29
2.4 250 56.50 100 0.09 26.8 42 -24.10 2.04 8.02 3.29 31
2.9 250 56.50 100 0.09 26.8 38 -24.21 1.48 7.18 2.98 31
3.5 250 56.50 100 0.09 26.8 36 -26.63 1.79 7.59 2.82 31
4.1 250 56.50 100 0.09 26.8 34 -29.47 1.93 6.15 2.66 31
2.4 250 56.50 100 0.09 33.5 52 -31.07 1.51 11.51 4.07 32
2.9 250 56.50 100 0.09 33.5 48 -32.48 2.57 9.26 3.76 32
3.5 250 56.50 100 0.09 33.5 46 -35.00 1.60 9.54 3.60 32
4.1 250 56.50 100 0.09 33.5 42 -35.70 2.59 8.59 3.29 32
2.4 250 56.50 100 0.09 40.2 56 -34.28 1.94 11.18 4.39 33
2.9 250 56.50 100 0.09 40.2 54 -36.99 1.79 10.14 4.23 33
3.5 250 56.50 100 0.09 40.2 48 -37.87 2.52 10.01 3.76 33
4.1 250 56.50 100 0.09 40.2 46 -42.01 0.88 9.52 3.60 33
2.4 250 56.50 100 0.13 16.8 28 -14.36 2.22 5.54 2.19 29
2.9 250 56.50 100 0.13 16.8 28 -15.29 1.89 5.42 2.19 29
3.5 250 56.50 100 0.13 16.8 28 -16.89 1.90 5.81 2.19 29
4.1 250 56.50 100 0.13 16.8 26 -17.14 1.79 4.61 2.03 29
2.4 250 56.50 100 0.13 20.1 34 -18.27 2.00 7.37 2.66 30
2.9 250 56.50 100 0.13 20.1 32 -17.21 1.77 6.37 2.51 30
3.5 250 56.50 100 0.13 20.1 32 -18.28 1.02 6.52 2.51 30
4.1 250 56.50 100 0.13 20.1 28 -17.98 1.74 5.00 2.19 30
2.4 250 56.50 100 0.13 26.8 44 -23.52 2.41 9.53 3.45 32
2.9 250 56.50 100 0.13 26.8 40 -23.55 1.83 7.31 3.13 32
3.5 250 56.50 100 0.13 26.8 38 -26.60 1.06 7.93 2.98 32
4.1 250 56.50 100 0.13 26.8 36 -27.66 2.19 7.40 2.82 32
2.4 250 56.50 100 0.13 33.5 56 -31.21 1.57 10.9 4.39 34
2.9 250 56.50 100 0.13 33.5 52 -31.93 1.83 9.68 4.07 34
3.5 250 56.50 100 0.13 33.5 48 -31.66 2.68 9.74 3.76 34
4.1 250 56.50 100 0.13 33.5 42 -31.51 2.33 8.14 3.29 34
2.4 250 56.50 100 0.13 40.2 56 -32.64 1.74 11.25 4 .39 35
2.9 250 56.50 100 0.13 40.2 54 -35.08 1.75 10.45 4.23 35
3.5 250 56.50 100 0.13 40.2 52 -36.60 1.53 10.31 4.07 35
4.1 250 56.50 100 0.13 40.2 48 -39.35 2.60 9.36 3.76 35



Table 9 -  Details of Beam type 2 with Ansys results (b = 100 mm, h = 125 mm, d = 101 mm)

a/d Fyv,

N /m m 2

A SV|

mm2

Sv,

mm

p f '1 Cj

N/m m 2

Sc,

KN

Cs,
N /m m 2

T1 S>

N /m m 2

s*
N /m m 2

v ,  

N /m m 2

Sc, cal 

KN

2 250 56.50 100 0.03 16.8 38 -18.78 1.87 4.91 1.88 28
2.5 250 56.50 100 0.03 16.8 30 -18.83 1.25 3.72 1.48 28

3 250 56.50 100 0.03 16.8 26 -18.94 1.10 3.47 1.28 28
3.5 250 56.50 100 0.03 16.8 32 -22.30 1.30 4.48 1.58 28
2 250 56.50 100 0.03 20.1 44 -22.40 2.11 5.88 2.17 29

2.5 250 56.50 100 0.03 20.1 42 -24.35 1.98 5.79 2.07 29
3 250 56.50 100 0.03 20.1 36 -24.25 1.52 4.97 1.78 29

3.5 250 56.50 100 0.03 20.1 34 -25.25 1.40 4.67 1.68 29
2 250 56.50 100 0.03 26.8 58 -31.05 2.34 7.98 2.87 31

2.5 250 56.50 100 0.03 26.8 52 -32.16 1.94 6.93 2.57 31
3 250 56.50 100 0.03 26.8 42 -31.76 1.59 5.43 2.07 31

3.5 250 56.50 100 0.03 26.8 42 -33.93 1.69 6.15 2.07 31
2 250 56.50 100 0.03 33.5 74 -39.93 0.91 9.32 3.66 32

2.5 250 56.50 100 0.03 33.5 62 -40.48 2.66 8.03 3.06 32
3 250 56.50 100 0.03 33.5 52 -39.54 1.92 7.06 2.57 32

3.5 250 56.50 100 0.03 33.5 50 -41.48 1.82 6.92 2.47 32
2 250 56.50 100 0.03 40.2 86 -47.96 3.19 11.49 4.25 33

2.5 250 56.50 100 0.03 40.2 76 -48.79 2.98 9.95 3.76 33
3 250 56.50 100 0.03 40.2 62 -48.38 2.27 8.91 3.06 33

3.5 250 56.50 100 0.03 40.2 56 -48.70 1.96 8.19 2.77 33
2 250 56.50 100 0.09 16.8 46 -16.51 1.85 5.55 2.27 35

2.5 250 56.50 100 0.09 16.8 44 -18.50 3.63 5.27 2.17 35
3 250 56.50 100 0.09 16.8 36 -17.68 2.35 4.66 1.78 35

3.5- 250 56.50 100 0.09 16.8 36 -19.88 2.45 5.02 1.78 35
2 250 56.50 100 0.09 20.1 54 -19.26 1.85 6.12 2.67 36

2.5 250 56.50 100 0.09 20.1 54 -21.99 2.45 6.20 2.67 36
3 250 56.50 100 0.09 20.1 44 -21.00 3.04 5.86 2.17 36

3.5 250 56.50 100 0.09 20.1 44 -23.75 3.02 5.25 2.17 36
2 250 56.50 100 0.09 26.8 72 -27.96 1.61 8.87 3.56 38

2.5 250 56.50 100 0.09 26.8 68 -31.54 2.32 8.32 3.36 38
3 250 56.50 100 0.09 26.8 54 -28.84 3.44 7.02 2.67 38

3-5 250 56.50 100 0.09 26.8 50 -30.46 2.97 6.03 2.47 38
2 250 56.50 100 0.09 33.5 78 -32.77 1.06 9.51 3.86 40

2.5 250 56.50 100 0.09 33.5 70 -34.58 0.97 7.93 3.46 40
3 250 56.50 100 0.09 33.5 62 -34.25 1.91 8.31 3.06 40

3.5 250 56.50 100 0.09 33.5 54 -34.05 3.40 6.69 2.67 40
2 250 56.50 100 0.09 40.2 96 -40.29 1.36 11.56 4.75 42

2.5 250 56.50 100 0.09 40.2 82 -40.22 1.45 9.84 4.05 42
3 250 56.50 100 0.09 40.2 74 -41.90 1.44 9.73 3.66 42

3.5 250 56.50 100 0.09 40.2 66 -41.79 1.85 8.41 3.26 42
2 250 56.50 100 0.13 16.8 46 -16.01 1.95 5.65 2.27 37

2.5 250 56.50 100 0.13 16.8 46 -18.47 1.87 5.44 2.27 37
3 250 56.50 100 0.13 16.8 38 -17.45 3.18 4.76 1.88 37

3.5 250 56.50 100 0.13 16.8 36 -18.76 2.55 4.53 1.78 37
2 250 56.50 100 0.13 20.1 56 -19.85 2.16 6.86 2.77 38

2.5 250 56.50 100 0.13 20.1 54 -20.20 2.37 6.46 2.67 38
3 250 56.50 100 0.13 20.1 52 -22.42 2.05 6.57 2.57 38

3.5 250 56.50 100 0.13 20.1 50 -24.05 1.92 6.25 2.47 38
2 250 56.50 100 0.13 26.8 68 -26.08 1.61 8.28 3.36 41

2.5 250 56.50 100 0.13 26.8 60 -26.19 1.64 7.36 2.97 41
3 250 56.50 100 0.13 26.8 60 -26.48 1.68 7.58 2.97 41

3.5 250 56.50 100 0.13 26.8 54 -29.27 3.66 6.83 2.67 41
2 250 56.50 100 0.13 33.5 84 -32.43 2.40 10.30 4.15 43

2.5 250 56.50 100 0.13 33.5 76 -34.32 1.23 9.38 3.76 43
3 250 56.50 100 0.13 33.5 64 -33.46 1.95 7.78 3.16 43

3.5 250 56.50 100 0.13 33.5 60 -34.27 2.16 7.23 2.97 43
2 250 56.50 100 0.13 40.2 96 -37.92 1.01 11.51 4.75 44

2.5 250 56.50 100 0.13 40.2 92 -41.98 2.51 10.91 4.55 44
3 250 56.50 100 0.13 40.2 72 -37.40 0.99 9.02 3.56 44

3.5 250 56.50 100 0.13 40.2 70 -40.63 2.08 8.83 3.46 44



Table 10 - Details of Beam type 3 with Ansys results (b = 120 mm, h = 150 mm, d = 130 mm)

a/d Fyv,

N /m m 2

Asvi

mm2

Sv,

mm

p f '1 Ci

N /m m 2

Sc,

KN

Cs,

N /m m 2

T1 S>

N /m m 2

Ss,

N /m m 2

v ,

N /m m 2

Sc, cal 

KN
1.5 250 56.50 100 0.03 16.8 42 -14.28 2.32 3.73 1.34 36
1.9 250 56.50 100 0.03 16.8 44 -16.96 2.11 3.99 1.41 36
2.3 250 56.50 100 0.03 16.8 44 -18.36 1.99 3.77 1.41 36
2.7 250 56.50 100 0.03 16.8 46 -20.68 1.85 4.08 1.47 36
1.5 250 56.50 100 0.03 20.1 58 -18.86 2.04 5.30 1.85 37
1.9 250 56.50 100 0.03 20.1 58 -22.26 2.17 5.35 1.85 37
2.3 250 56.50 100 0.03 20.1 54 -21.70 1.71 5.23 1.73 37
2.7 250 56.50 100 0.03 20.1 54 -24.62 2.00 4.84 1.73 37
1.5 250 56.50 100 0.03 26.8 66 -22.89 2.21 6.21 2.11 39
1.9 250 56.50 100 0.03 26.8 66 -27.10 1.42 6.24 2.11 39
2.3 250 56.50 100 0.03 26.8 66 -30.31 1.40 6.66 2.11 39
2.7 250 56.50 100 0.03 26.8 66 -33.19 1.41 6.62 2.11 39
1.5 250 56.50 100 0.03 33.5 90 -31.05 2.57 8.41 2.88 41
1.9 250 56.50 100 0.03 33.5 90 -36.90 2.32 8.32 2.88 41
2.3 250 56.50 100 0.03 33.5 84 -39.60 2.20 8.39 2.69 41
2.7 250 56.50 100 0.03 33.5 78 -40.32 2.12 7.67 2.50 41
1.5 250 56.50 100 0.03 40.2 96 -33.76 2.57 9.05 3.07 42
1.9 250 56.50 100 0.03 40.2 106 -44.29 2.88 9.89 3.39 42
2.3 250 56.50 100 0.03 40.2 96 -47.16 2.64 9.54 3.07 42
2.7 250 56.50 100 0.03 40.2 92 -47.84 2.46 8.11 2.94 42
1.5 250 56.50 100 0.09 16.8 44 -11.90 1.97 3.69 1.41 44
1.9 1 250 56.50 100 0.09 16.8 42 -12.52 1.56 3.59 1.34 44
2.3 250 56.50 100 0.09 16.8 42 -13.75 1.27 3.48 1.34 44
2.7 250 56.50 100 0.09 16.8 44 -14.93 1.41 3.93 1.41 44
1.5 250 56.50 100 0.09 20.1 50 -14.06 1.82 3.98 1.60 46
1.9 250 56.50 100 0.09 20.1 52 -15.83 1.70 4.42 1.66 46
2.3 250 56.50 100 0.09 20.1 58 -19.04 2.25 5.77 1.85 46
2.7 250 56.50 100 0.09 20.1 58 -18.46 2.21 5.40 1.85 46
1.5 250 56.50 100 0.09 26.8 72 -19.88 2.52 6.57 2.30 48
1.9 250 56.50 100 0.09 26.8 70 -21.67 2.20 6.21 2.24 48
2.3 250 56.50 100 0.09 26.8 66 -23.60 2.22 6.36 2.11 48
2.7 250 56.50 100 0.09 26.8 66 -25.31 2.22 6.24 2.11 48
1.5 250 56.50 100 0.09 33.5 92 -26.62 1.48 8.19 2.94 51
1.9 250 56.50 100 0.09 33.5 90 -28.01 3.11 7.96 2.88 51
2.3 250 56.50 100 0.09 33.5 84 -29.48 2.80 8.01 2.69 51
2.7 250 56.50 100 0.09 33.5 84 -32.31 2.64 7.52 2.69 51
1.5 250 56.50 100 0.09 40.2 108 -29.49 1.63 9.62 3.46 53
1.9 250 56.50 100 0.09 40.2 102 -32.63 1.62 8.84 3.26 53
2.3 250 56.50 100 0.09 40.2 98 -35.24 3.26 8.91 3.14 53
2.7 250 56.50 100 0.09 40.2 94 -38.36 2.92 9.13 3.01 53
1.5 250 56.50 100 0.13 16.8 48 -12.35 1.67 3.89 1.53 46
1.9 250 56.50 100 0.13 16.8 44 -12.14 2.29 3.61 1.41 46
2.3 250 56.50 100 0.13 16.8 42 -13.23 1.35 3.57 1.34 46
2.7 250 56.50 100 0.13 16.8 44 -14.52 1.55 3.72 1.41 46
1.5 250 56.50 100 0.13 20.1 54 -14.74 2.44 4.51 1.73 48
1.9 250 56.50 100 0.13 20.1 54 -15.35 1.83 4.61 173 48
2.3 250 56.50 100 0.13 20.1 60 -17.29 2.74 5.56 1.92 48
2.7 250 56.50 100 0.13 20.1 60 -19.06 2.64 5.55 1.92 48
1.5 250 56.50 100 0.13 26.8 70 -18.56 2.57 6.24 2.24 51
1.9 250 56.50 100 0.13 26.8 70 -20.49 2.59 5.91 2.24 51
2.3 250 56.50 100 0.13 26.8 66 -21.43 2.63 5.96 2.11 51
2.7 250 56.50 100 0.13 26.8 70 -22.57 2.51 6.17 2 .24 51
1.5 250 56.50 100 0.13 33.5 94 -25.50 2.36 8.31 3.01 54
1.9 250 56.50 100 0.13 33.5 90 -26.03 3.37 7.74 2.88 54
2.3 250 56.50 100 0.13 33.5 88 -27.60 3.20 7.91 2.82 54
2.7 250 56.50 100 0.13 33.5 84 -29.01 3.11 7.49 2.69 54
1.5 250 56.50 100 0.13 40.2 110 -30.99 1.68 9.80 3.52 56
1.9 250 56.50 100 0.13 40.2 104 -32.12 1.56 8.95 3.33 56
2.3 250 56.50 100 0.13 40.2 98 -32.70 3.31 9.45 3.14 56
2.7 250 56.50 100 0.13 40.2 96 -35.18 3.19 8.46 3.07 56



Table 11 - Details o f Beam type 4 with Ansys results (b = 150 mm, h = 200 mm, d = 175 mm)

a/d Fyv,

N /m m 2

Asvi

mm2

S v ,

mm

p f '1 C>

N /m m 2

Sc,

KN

C s,

N /m m 2

T1 s,

N /m m 2

S.,

N /m m 2

v ,

N /m m 2

Sc, cal 

KN

1.1 250 56.50 100 0.03 16.8 56 -11.02 1.98 3.85 1.06 48
1.4 250 56.50 100 0.03 16.8 58 -13.46 2.10 3.81 1.10 48
1.7 250 56.50 100 0.03 16.8 64 -16.77 1.95 4.38 1.21 48
2.0 250 56.50 100 0.03 16.8 64 -19.14 1.93 3.70 1.21 48
1.1 250 56.50 100 0.03 20.1 66 -13.85 2.04 3.60 1.25 49
1.4 250 56.50 100 0.03 20.1 82 -18.28 1.86 5.34 1.56 49
1.7 250 56.50 100 0.03 20.1 78 -20.13 1.83 5.11 1.48 49
2.0 250 56.50 100 0.03 20.1 80 -22.63 2.14 5.58 1.52 49
1.1 250 56.50 100 0.03 26.8 96 -19.97 2.47 6.71 1.82 52
1.4 250 56.50 100 0.03 26.8 88 -21.92 2.02 4.85 1.67 52
1.7 250 56.50 100 0.03 26.8 88 -24.59 0.91 6.10 1.67 52
2.0 250 56.50 100 0.03 26.8 88 -26.46 1.77 6.28 167 52
1.1 250 56.50 100 0.03 33.5 122 -24.59 2.58 8.45 2.32 54
1.4 250 56.50 100 0.03 33.5 122 -28.35 1.62 8.18 2.32 54
1.7 250 56.50 100 0.03 33.5 112 -31.31 1.33 7.78 2.13 54
2.0 250 56.50 100 0.03 33.5 118 -35.99 1.42 8.29 2.24 54
1.1 250 56.50 100 0.03 40.2 140 -28.48 2.22 10.04 2 .66 56
1.4 250 56.50 100 0.03 40.2 138 -32.68 1.67 9.60 2 .62 56
1.7 250 56.50 100 0.03 40.2 130 -36.40 1.53 9.06 2.47 56
2.0 250 56.50 100 0.03 40.2 144 -45.93 1.86 9.23 2.74 56
1.1 250 56.50 100 0.09 16.8 56 -9.86 2.08 3.15 1.06 58
1.4 250 56.50 100 0.09 16.8 62 -11.01 2.32 4.02 1.18 58
1.7 250 56.50 100 0.09 16.8 62 -12.37 2.07 3.92 1.18 58
2.0 250 56.50 100 0.09 16.8 68 -14.53 1.66 4.40 1.29 58
1.1 250 56.50 100 0.09 20.1 66 -12.54 2.02 4.10 1.25 60
1.4 250 56.50 100 0.09 20.1 68 -12.89 1.88 4.48 1.29 60
1.7 250 56.50 100 0.09 20.1 68 -13.99 1.57 4.52 1.29 60
2.0 250 56.50 100 0.09 20.1 82 -17.32 1.50 5.19 1.56 60
1.1 250 56.50 100 0.09 26.8 102 -19.16 1.83 6.94 1.94 64
1.4 250 56.50 100 0.09 26.8 96 -18.56 1.36 6.22 1.82 64
1.7 250 56.50 100 0.09 26.8 86 -19.02 1.45 5.58 1.63 64
2.0 250 56.50 100 0.09 26.8 88 -20.97 2.00 4.81 1.67 « 64
1.1 250 56.50 100 0.09 33.5 120 -21.51 2.26 8.22 2.28 67
1.4 250 56.50 100 0.09 33.5 122 -23.37 1.82 8.04 2.32 67
1.7 250 56.50 100 0.09 33.5 122 -26.04 1.58 7.82 2.32 67
2.0 250 56.50 100 0.09 33.5 106 -26.95 1.42 6.16 2.01 67
1.1 250 56.50 100 0.09 40.2 142 -25.75 2.71 9.99 2.70 70
1.4 250 56.50 100 0.09 40.2 144 -28.82 2.55 9.72 274 70
1.7 250 56.50 100 0.09 40.2 136 -29.85 2.11 9.26 2.59 70
2.0 250 56.50 100 0.09 40.2 136 -32.62 1.83 8.97 2.59 70
1.1 250 56.50 100 0.13 16.8 58 -8.97 2.03 3.65 1.10 62
1.4 250 56.50 100 0.13 16.8 60 -10.86 1.61 4.04 1.14 62
1.7 250 56.50 100 0.13 16.8 62 -11.57 2.35 3.98 1.18 62
2.0 250 56.50 100 0.13 16.8 66 -13.64 2.36 4.10 1.25 62
1.1 250 56.50 100 0.13 20.1 68 -11.35 1.82 4.31 1.29 64
1.4 250 56.50 100 0.13 20.1 68 -12.31 2.51 4.38 1.29 64
1.7 250 56.50 100 0.13 20.1 70 -13.63 2.01 4.49 1.33 64
2.0 250 56.50 100 0.13 20.1 84 -17.08 1.56 5.17 1.60 64
1.1 250 56.50 100 0.13 26.8 100 -18.38 1.70 6.65 1.90 68
1.4 250 56.50 100 0.13 26.8 100 -19.22 2.54 6.71 1.90 68
1.7 250 56.50 100 0.13 26.8 98 -20.17 1.80 6.49 1.86 68
2.0 250 56.50 100 0.13 26.8 88 -20.76 1.67 5.20 167 68
1.1 250 56.50 100 0.13 33.5 116 -20.01 1.87 7.73 2.21 71
1.4 250 56.50 100 0.13 33.5 116 -21.41 2.35 7.55 2.21 71
1.7 250 56.50 100 0.13 33.5 116 -23.59 1.72 7.80 2.21 71
2.0 250 56.50 100 0.13 33.5 116 -26.15 1.72 7.57 2.21 71
1.1 250 56.50 100 0.13 40.2 146 -26.33 2.96 10.13 2.78 74
1.4 250 56.50 100 0.13 40.2 142 -26.91 2 .76 9.83 2.70 74
1.7 250 56.50 100 0.13 40.2 140 -28.71 2.42 9.55 2.66 74
2.0 250 56.50 100 0.13 40.2 134 -30.29 1.96 9.10 2.55 74



Table 12 - Details of Beam type 5 with Ansys results (b = 200 mm, h = 300 mm, d = 265 mm)

a/d Fyv,

N /m m 2

Asvi

mm2

Sv,

mm

p f '1 C i

N /m m 2

Sc,

KN

Cs,

N /m m 2

T1 S>

N /m m 2

Ss,

N /m m 2

v ,

N /m m 2

Sc, cal 

KN

0.8 250 56.50 100 0.03 16.8 100 -8.46 2.02 4.79 0.94 71
0.9 250 56.50 100 0.03 16.8 100 -10.3 2.38 4.81 0.94 71
1.1 250 56.50 100 0.03 16.8 106 -12.85 1.42 4.97 1.00 71
1.3 250 56.50 100 0.03 16.8 108 -13.47 2.38 4.85 1.01 71
0.8 250 56.50 100 0.03 20.1 110 -10.72 2.29 5.13 1.03 73
0.9 250 56.50 100 0.03 20.1 108 -11.98 2.11 5.21 1.01 73
1.1 250 56.50 100 0.03 20.1 128 -15.79 1.08 6.08 1.20 73
1.3 250 56.50 100 0.03 20.1 130 -17.36 1.30 5.92 1.22 73
0.8 250 56.50 100 0.03 26.8 142 -13.85 1.93 6.83 1.34 77 ,
0.9 250 56.50 100 0.03 26.8 148 -17.27 2.13 7.30 1.39 77
1.1 250 56.50 100 0.03 26.8 146 -18.93 1.46 7.31 1.37 77
1.3 250 56.50 100 0.03 26.8 170 -24.04 1.52 7.90 1.60 77
0.8 250 56.50 100 0.03 33.5 170 -16.40 2.44 8.23 1.60 80
0.9 250 56.50 100 0.03 33.5 174 -19.85 2.36 8.74 1.64' 80
1.1 250 56.50 100 0.03 33.5 174 -22.15 1.36 9.26 1.64 80
1.3 250 56.50 100 0.03 33.5 206 -29.47 1.15 9.73 1.94 80
0.8 250 56.50 100 0.03 40.2 210 -20.69 1.84 10.35 1.98 82
0.9 250 56.50 100 0.03 40.2 200 -23.84 1.63 10.02 1.88 82
1.1 250 56.50 100 0.03 40.2 204 -27.46 1.68 10.71 1.92 82
1.3 250 56.50 100 0.03 40.2 200 -30.08 1.74 10.81 1.88 82
0.8 250 56.50 100 0.09 16.8 94 -8.46 2.40 4.54 0.88 86
0.9 250 56.50 100 0.09 16.8 98 -8.21 2.25 4.59 0.92 86
1.1 250 56.50 100 0.09 16.8 100 -9.63 2.15 4.70 0.94 86
1.3 250 56.50 100 0.09 16.8 100 -10.48 1.91 4.94 0.94 86
0.8 250 56.50 100 0.09 20.1 112 -10.81 2.37 5.13 1.05 89
0.9 250 56.50 100 0.09 20.1 114 -11.48 1.93 5.64 1.07 89
1.1 250 56.50 100 0.09 20.1 114 -12.40 2.72 5.25 1.07 89
1.3 250 56.50 100 0.09 20.1 128 -14.60 1.92 5.96 1.20 89
0.8 250 56.50 100 0.09 26.8 146 -14.12 2.15 6.82 1.37 94
0.9 250 56.50 100 0.09 26.8 148 -15.82 2.20 7.11 1.39 94
1.1 250 56.50 100 0.09 26.8 152 -17.94 1.76 7.37 1.43 94
1.3 250 56.50 100 0.09 26.8 150 -18.16 1.69 7.28 1.41 94
0.8 250 56.50 100 0.09 33.5 168 -18.11 2.21 6.71 1.58 99
0.9 250 56.50 100 0.09 33.5 174 -20.58 1.66 8.08 1.64 99
1.1 250 56.50 100 0.09 33.5 176 -20.07 1.39 8.70 1.66 99
1.3 250 56.50 100 0.09 33.5 178 -20.98 1.87 8.72 1.67 99
0.8 250 56.50 100 0.09 40.2 196 -18.94 2.13 9.16 1.84 103
0.9 250 56.50 100 0.09 40.2 202 -21.59 1.66 9.72 1.90 103
1.1 250 56.50 100 0.09 40.2 208 -24.49 1.64 10.22 1.96 103
1.3 250 56.50 100 0.09 40.2 206 -24.67 1.36 10.30 1.94 103
0.8 250 56.50 100 0.13 16.8 94 -8.27 3.17 4.09 0.88 90
0.9 250 56.50 100 0.13 16.8 98 -8.00 2.00 4.59 0.92 90
1.1 250 56.50 100 0.13 16.8 100 -9.11 1.80 4.65 0.94 90
1.3 250 56.50 100 0.13 16.8 102 -10.17 1.66 5.06 0.96 90
0.8 250 56.50 100 0.13 20.1 112 -10.41 2.25 4.95 1.05 94
0.9 250 56.50 100 0.13 20.1 114 -11.34 2.33 5.14 1.07 94
1.1 250 56.50 100 0.13 20.1 114 -12.15 1.82 5.17 1.07 94
1.3 250 56.50 100 0.13 20.1 116 -12.80 1.82 5.23 1.09 94
0.8 250 56.50 100 0.13 26.8 150 -15.08 2.38 7.43 1.41 99
0.9 250 56.50 100 0.13 26.8 154 -16.45 3.34 7.38 1.45 99
1.1 250 56.50 100 0.13 26.8 152 -16.85 1.94 7.23 1.43 99
1.3 250 56.50 100 0.13 26.8 150 -17.07 1.89 7.17 1.41 99
0.8 250 56.50 100 0.13 33.5 174 -15.87 2.23 7.99 1.64 104
0.9 250 56.50 100 0.13 33.5 170 -16.34 1.95 7.92 1.60 104
1.1 250 56.50 100 0.13 33.5 174 -19.14 2.25 8.50 1.64 104
1.3 250 56.50 100 0.13 33.5 180 -20.58 2.19 8.74 1.69 104
0.8 250 56.50 100 0.13 40.2 198 -18.65 1.86 9.20 1.86 108
0.9 250 56.50 100 0.13 40.2 206 -20.11 2.34 9.88 1.94 108
1.1 250 56.50 100 0.13 40.2 204 -23.30 1.92 9.97 1.92 108
1.3 250 56.50 100 0.13 40.2 210 -26.09 1.29 10.49 1.98 108
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APPENDIX -

Batch File of Beam type 1

/TITLE, DEFLECTION OF B EA M  

/PREP7

ET, 1, SOLID65  

R, 1

R, 1 ,3 ,  0.1,0, 0 , 3 ,  0.1 

RM OR E, 90,0,3,0 .1 ,0,90  

R CO N  

ST A T

MP, EX, 1 ,3 0 1 4 4  

MP, N U X Y , 1 ,0 .15  

TB, CONCR, 1

T B D A T A , 1, 0.05, 0.2, 3, 16.75 

TB, M KIN, 1 

TBTEM P, STRAIN

T B D A T A , 1, 0 .000139, 0 .0005, 0 .00075, 0 .0012, 0.0035  

TBTEM P,

T B D A T A , 1 ,4 .19 ,  10.16, 14.77, 16.65, 16.75

MP, EX, 3, 30144  

MP, N U X Y , 3 ,0 .1 5  

TB, M KIN, 3 

TBTEM P,, STRAIN

T B D A T A , 1, 0 .000139, 0 .0005, 0 .00075, 0 .0012, 0.0035  

TBTEM P,

T B D A T A , 1 ,4 .1 9 ,  10.16, 14.77, 16.65, 16.75

ET, 2, LINK8 ! L O N G ITU DINA L STEEL

R, 2, 50.25

M P, EX, 2,200000

MP, N U X Y , 2, 0.3

TB, bkin, 2

T B D A T A , 1,460

ET, 4, LINK8 ! LINK STEEL

R, 4, 28 .27

MP, E X , 4 ,200000

M P, N U X Y ,  4, 0.3

TB, bkin, 4

T B D A T A , 1,250



/VIEW , 1,1,1,1 

/A N G , 1 

/REP, FAST  

/A U T O , 1 

/REP  

LPLOT

! LIST OF Nodes  

N , 1,0,0,0

2, 0,0,15

3, 0 ,0,30

4, 0,0,45

5, 0 ,0,60

6, 0,0,75

7, 0,15,0

8, 0, 15, 15

9, 0, 1 5 ,3 0

10, 0, 15, 45

11, 0, 15, 60

12, 0, 1 5 ,7 5

13, 0,25,0

14, 0, 25, 15

1 5 .0 ,  2 5 ,3 0

16, 0, 25, 45

17, 0 ,2 5 ,  60

18, 0, 25, 75

19, 0,35,0

20, 0 ,3 5 ,  15

2 1 . 0 . 3 5 . 3 0

22, 0, 35, 45

23, 0, 35, 60

24, 0, 35, 75

25, 0,45,0

26,'0, 45, 15

27, 0, 45, 30

28, 0, 45, 45

29, 0, 45, 60  

N , 30, 0, 45, 75



N , 3 1 ,0 ,5 5 ,0  

N, 32, 0, 55, 15 

N,*33, 0, 55, 30  

N , 34, 0 , 5 5 , 4 5  

N , 35, 0, 55, 60  

N , 36, 0, 55, 75

N , 37, 0,65,0  

N , 38, 0, 65, 15 

N , 39, 0, 65, 30 

N , 40, 0, 65, 45  

N , 41, 0, 65, 60  

N , 42, 0, 65, 75

N , 43, 0,75,0  

N , 44, 0, 75, 15 

N , 45, 0, 75, 30  

N , 46, 0, 75, 45  

N , 47, 0, 75, 60  

N , 48, 0, 75, 75

N , 49, 0,85,0  

N , 50, 0, 85, 15 

N , 5 1 ,0 ,  8 5 ,3 0  

N , 52, 0, 85, 45 

N , 53, 0, 85, 60  

N , 54, 0, 85, 75

N , 55, 0, 100, 0 

N , 56,0,100,15  

N , 57,0,100,30  

N , 58,0,100,45  

N , 59,0,100,60  

N , 60,0,100,75  

N G E N , 41, 60,1,60,1,25

! LIST OF ELEMENTS A N D  N O D E S THEY CONNECT  

TYPE, 1 

M AT, 1 

REAL, 1

E, 1 ,2 ,  8,7 ,61,62,68,67  

E, 2, 3, 9 ,8 ,62,63,69,68  

E, 3 ,4,10,9,63,64,70,69



E, 4, 5 ,11 ,10,64,65,71,70  

E, 5 ,6 ,12 ,11 ,65 ,66 ,72 ,71

E, 7, 8 ,14,13,67,68,74,73  

E, 8 ,9 ,15 ,1 4 ,68 ,6 9 ,75 ,7 4  

E, 9, 10 ,16,15,69,70,76,75  

E, 10, 11,17,16,70,71,77,76  

E, 11, 12,18,17,71,72,78,77

E, 13, 14,20,19,73,74,80,79  

E, 14, 15,21,20,74,75,81,80  

E, 15, 16,22,21,75,76,82,81  

E, 16, 17,23,22,76,77,83,82  

E, 17, 18 ,24,23,77,78,84,83

E, 19, 20 ,26,25,79,80,86,85  

E, 20, 21 ,27 ,26,80,81,87,86  

E, 21, 22 ,28 ,27,81,82,88,87  

E, 22, 23 ,29 ,28,82,83,89,88  

E, 23, 24 ,30 ,29,83,84,90,89

E, 2 5 ,26 ,3 2 ,31 ,85 ,86 ,92 ,91  

E, 26, 27 ,33 ,32 ,86 ,87 ,93 ,92  

E, 27, 28 ,34,33,87,88,94,93  

E, 28, 29 ,35 ,34 ,88 ,89 ,95 ,94  

E, 29, 30,36,35,89,90,96,95

E, 31 ,3 2 ,38 ,3 7 ,91 ,9 2 ,98 ,9 7  

E, 32, 33 ,39,38,92,93,99,98  

E, 33,34,40 ,39 ,93 ,94 ,100 ,99  

E, 3 4 ,3 5 ,4 1 ,4 0 ,9 4 ,9 5 ,1 0 1 ,1 0 0  

E, 35, 36, 42,41,95,96,102,101

E, 37, 38, 44 ,43,97,98,104,103  

E, 38, 3 9 ,4 5 ,44 ,9 8 ,99 ,1 05 ,1 04  

E, 39, 40 ,46 ,45 ,99 ,100 ,106 ,105  

E, 40 ,41 ,47 ,46 ,100 ,101 ,107 ,106  

E, 41 ,42 ,48 ,47 ,101 ,102 ,108 ,107

E, 43 ,44 ,50 ,49 ,103 ,104 ,110 ,109  

E, 44 ,45 ,51 ,50 ,104 ,105 ,111 ,110  

E, 45,46,52 ,51 ,105 ,106 ,112 ,111



E, 46 ,47 ,53 ,52 ,106,107,113,112  

E, 47 ,48 ,54,53,107,108,114,113

E, 49 ,50,56,55 ,109 ,110 ,116 ,115  

E, 50 ,51 ,57 ,56 ,110,111,117,116  

E, 51 ,52 ,58 ,57 ,111,112,118,117  

E, 52 ,53 ,59 ,58 ,112,113,119,118  

E, 53 ,54 ,60 ,59 ,113,114,120,119  

EGEN, 40, 60, 1, 45 ,„„„  25

TYPE, 2 

M AT, 2

REAL, 2 ! LON GITU DINA L STEEL

E 8, 68

E 68,128

E 128,188

E 188,248

E 248,308

E 308,368

E 368,428

E 428,488

E 488,548

E 548,608

E 608,668

E 668,728

E 728,788

E 788,848

E 848,908

E 908,968

E 968, 1028

E 1028, 1088

E 1088, 1148

E 1148, 1208

E 1208, 1268

E 1268, 1328

E 1328, 1388

E 1388, 1448

E 1448, 1508

E 1508, 1568

E 1568, 1628

E 1628, 1688

E 1688, 1748



E, 1748, 1808 

E, 1808, 1868  

E,*1868, 1928  

E, 1928, 1988  

E, 1988, 2048  

E, 2048, 2108  

E, 2108, 2168  

E, 2168, 2228  

E, 2228, 2288  

E, 2288, 2348  

E, 2348, 2408

E, 9, 69 

E, 69,129  

I  E, 129,189

I E, 189,249

E, 249 ,309  

E, 309,369  

E, 369,429  

E, 429,489  

E, 489 ,549  

E, 549,609  

E, 609,669  

E, 669,729  

E, 729,789  

E, 789,849  

E, 849,909  

E, 909,969  

E, 969, 1029  

E, 1029, 1089 

E, 1089, 1149  

E, 1149, 1209 

E, 1209, 1269  

E, 1269, 1329  

E, 1329, 1389  

E, 1389, 1449  

E , 1 4 4 9 ,1 5 0 9  

E , 1509, 1569  

E , 1 5 6 9 ,1 6 2 9  

E, 1629, 1689 

E , 1689, 1749 

E , 1749, 1809



E, 1809, 1869 

E, 1869, 1929  

E,*1929, 1989  

E, 1989, 2049  

E, 2 0 4 9 ,2 1 0 9  

E, 2109 ,  2169  

E, 2169 ,  2229  

E, 2229 ,  2289  

E, 2289 ,  2349  

E, 2349 ,  2409

E, 10, 70  

E, 70 ,130  

E, 130,190  

E, 190,250  

E, 250 ,310

' E, 310,370
I
I E, 370 ,430

E, 430 ,490  

E, 490 ,550  

E, 550,610  

E, 610 ,670  

E, 670 ,730  

E, 730 ,790  

E, 790 ,850  

E, 850,910  

E, 910 ,970  

E, 970, 1030  

E, 1030, 1090 

E, 1 0 9 0 ,1 1 5 0  

E, 1150, 1210 

E, 1210, 1270 

E, 1270, 1330  

E, 1 3 3 0 ,1 3 9 0  

E, 1 3 9 0 ,1 4 5 0  

E, 1450, 1510 

E , 1 5 1 0 ,1 5 7 0  

E, 1 5 7 0 ,1 6 3 0  

E, 1630, 1690 

E, 1 6 9 0 ,1 7 5 0  

E, 1 7 5 0 ,1 8 1 0  

E, 1 8 1 0 ,1 8 7 0



1870, 1930

1930, 1990  

1990, 2050  

2 0 5 0 ,2 1 1 0  

2 1 1 0 ,2 1 7 0  

2170, 2230  

2230, 2290  

2290, 2350  

2350, 2410

11 ,71

71,131  

131,191  

191,251 

251,311

311,371  

371,431  

431,491  

491,551  

551,611  

611,671  

671,731  

731,791  

791,851  

851,911  

911,971  

971, 1031 

1031, 1091 

1091

1151

1211

1271

1331

1391

1451

1511

1571

1631

1691

1751

1811

1871

1151

1211

1271

1331

1391

1451

1511

1571

1631

1691

1751

1811

1871

1931



E, 1931, 1991 

E, 1991 ,2051  

E, 2051, 2111 

E , 2 1 1 1 ,2 1 7 1  

E, 2 1 7 1 ,2 2 3 1  

E, 2 2 3 1 ,2 2 9 1  

E, 2 2 9 1 ,2 3 5 1  

E, 2 3 5 1 ,2 4 1 1

E, 53,113  

E, 113,173  

E, 173,233  

E, 233,293  

E, 293,353  

E, 353,413  

E, 413,473  

E, 473,533  

E, 533,593  

E, 593,653  

E, 653,713  

E, 713,773  

E, 773,833  

E, 833,893  

E, 893,953  

E , 9 5 3 ,1 0 1 3  

E , 1013 ,1073  

E, 1073, 1133 

E , 1133 ,1193  

E , 1193 ,1253  

E, 1253 ,1313  

E, 1313, 1373 

E , 1373 ,1433  

E, 1433, 1493 

E, 1493, 1553 

E, 15 53 ,1613  

E , 1613, 1673 

E, 16 73 ,1733  

E, 1733, 1793 

E , 1 79 3 ,1853  

E, 18 53 ,1913  

E , 1913, 1973 

E , 1 97 3 ,2033



E , 2 0 3 3 ,2 0 9 3  

E, 2 0 9 3 ,2 1 5 3  

E, 215 3 ,  2213  

E , 2 2 1 3 ,2 2 7 3  

E , 2 2 7 3 ,2 3 3 3  

E, 2 3 3 3 ,2 3 9 3  

E, 2 3 9 3 ,2 4 5 3

E, 50 ,110  

E, 110,170  

E, 170,230  

E, 2 30 ,290  

E, 29 0 ,350  

E, 350 ,410  

E, 410 ,4 70  

E, 4 70 ,530  

E, 530 ,590  

E, 590 ,650  

E, 6 50 ,710

; E, 710 ,770

i  E, 770 ,830

i E, 830 ,890
!

E, 890 ,950  

E, 950, 1010  

E , 1 0 1 0 ,1 0 7 0  

E, 1 0 7 0 ,1 1 3 0  

E , 1130, 1190  

E, 1190, 1250  

E, 1250, 1310 

E, 1310, 1370 

E, 1370, 1430 

E, 1430, 1490 

E, 1490, 1550
!

E, 1550, 1610  

E, 1610, 1670  

E, 1670, 1730  

E, 1730, 1790  

E, 1790, 1850 

E, 1850, 1910 

E, 1910, 1970 

E, 1970, 2030  

E, 2030 ,  2090



E, 2 0 9 0 ,2 1 5 0  

E, 2 1 5 0 ,2 2 1 0  

E ,2 2 1 0 ,  2270  

E, 227 0 ,  2330  

E, 2330 ,  2390  

E, 239 0 ,  2450

TYPE, 2 

M AT, 2 

REAL, 4

! TR A N V E R SE  STEEL

128.129

129.130

130.131  

131,137  

137,143 

143,149  

149,155  

155,161  

161,167  

167,173 

173,172  

172,171  

171,170  

170,164  

164,158  

158,152  

152,146  

146,140  

140,134  

134,128

368.369

369.370

370.371  

371,377  

377,383  

383,389  

389,395  

395,401  

401,407



E, 407,413  

E, 413,412  

E, 412,411  

E, 411,410  

E, 410,404  

E, 404,398  

E, 398,392  

E, 392,386  

E, 386,380  

E, 380,374  

E, 374,368

E, 608,609  

E, 609,610  

E, 610,611  

E, 611,617  

E, 617,623  

E, 623,629  

E, 629,635  

E, 635,641 

E, 641,647  

E, 647,653 

E, 653,652  

E, 652,651  

E, 651,650  

E, 650,644  

E, 644,638  

E, 638,632  

E, 632,626  

E, 626,620  

E, 620,614  

E, 614,608

E, 848,849  

E, 849,850  

E, 850,851  

E, 851,857  

E, 857,863 

E, 863,869  

E, 869,875  

E, 875,881  

E, 881,887



E, 887,893  

E, 893,892  

E,*892,891 

E, 891,890  

E, 890,884  

E, 884,878  

E, 878,872  

E, 872,866  

E, 866,860  

E, 860,854  

E, 854,848

E, 1088 1089

E, 1089 1090

E, 1090 1091

E, 1091 1097

E, 1097 1103

E, 1103 1109

E, 1109 1115

E, 1115 1121

E, 1121 1127

E, 1127 1133

E, 1133 1132

E, 1132 1131

E, 1131 1130

E, 1130 1124

E, 1124 1118

E, 1118 1112

E, 1112 1106

E, 1106 1100

E, 1100 1094

E,
I

1094 1088

E, 1328 1329

E, 1329 1330

E, 1330 1331

E, 1331 1337

E, 1337 1343

E, 1343 1349

E, 1349 1355

E, 1355 1361

E, 1361 1367



E, 1367, 1373 

E, 1373, 1372 

E,*1372, 1371 

E, 1371, 1370 

E, 1370, 1364 

E, 1364, 1358 

E, 1358, 1352 

E, 1352, 1346 

E, 1346, 1340 

E, 1340, 1334 

E, 1334, 1328

E, 1568, 1569 

E, 1569, 1570 

E, 1570, 1571 

E, 1571, 1577 

E, 1577, 1583 

E, 1583, 1589 

| E, 1589, 1595

| E, 1595, 1601

| E, 1601, 1607

E , 1 607 ,1613  

E , 1613, 1612 

E, 1612 ,1611  

E, 1611, 1610 

E, 1610, 1604 

E, 1604, 1598 

E, 1598, 1592 

E , 1 59 2 ,15 86  

E , 1586, 1580 

E , 1 58 0 ,1 5 7 4  

E, 15 74 ,1 5 6 8

E, 1808, 1809 

E , 1 80 9 ,1 8 1 0  

E, 1810 ,1811  

E, 18 11 ,1 8 1 7  

E , 1817 ,1 82 3  

E , 1 82 3 ,1 8 2 9  

E, 1829, 1835 

E , 1835 ,1841  

E, 1841, 1847



E, 1847, 1853 

E, 1 8 5 3 ,1 8 5 2  

E,*1852, 1851 

E, 1851, 1850 

E, 1 8 5 0 ,1 8 4 4  

E, 1844, 1838  

E, 1838, 1832  

E , 1 8 3 2 ,1 8 2 6  

E , 1 8 2 6 ,1 8 2 0  

E, 1820, 1814 

E, 1814, 1808

E, 2048, 2049  

E, 2049, 2050  

E, 2050, 2051  

E, 2 0 5 1 ,2 0 5 7  

E, 2 0 5 7 ,2 0 6 3  

E , 2063, 2069  

E, 2069, 2075  

E, 2 0 7 5 ,2 0 8 1  

E, 2 0 8 1 ,2 0 8 7  

E , 2 0 8 7 ,2 0 9 3  

E , 2 0 9 3 ,2 0 9 2  

E, 2092, 2091  

E, 2 0 9 1 ,2 0 9 0  

E, 2090, 2084  

E , 2084, 2078  

E, 2078, 2072  

E, 2072, 2066  

E, 2066, 2060  

E, 2060, 2054  

E, 2054, 2048

E , 2288, 2289  

E, 2289, 2290  

E , 2290, 2291  

E, 2 2 9 1 ,2 2 9 7  

E , 2 2 9 7 ,2 3 0 3  

E , 2303, 2309  

E, 2309, 2315  

E, 2 3 1 5 ,2 3 2 1  

E, 2321, 2327



E, 2 3 2 7 ,2 3 3 3  

E, 2 3 3 3 ,2 3 3 2  

E .2 3 3 2 ,  2331  

E, 2 3 3 1 ,2 3 3 0  

E, 2 3 3 0 ,2 3 2 4  

E, 2324 , 2318  

E, 2 3 1 8 ,2 3 1 2  

E, 2 3 1 2 ,2 3 0 6  

E, 2306 , 2300  

E, 2 3 0 0 ,2 2 9 4

E, 2294 , 2288  

/Solu

! APPLIED FORCE  

x=13000

F, 655, FY,-x/6  

F, 656, FY,-x/6  

F, 657, FY,-x/6  

F, 658, FY,-x/6  

F, 659, FY,-x/6  

F, 660, FY,-x/6

F, 1855, FY,-x/6  

F, 1856, FY,-x/6  

F, 1857, FY,-x/6  

F, 1858, FY,-x/6  

F, 1859, FY,-x/6  

F, 1860, FY,-x/6

FLST, 2, 6, 1,

FITEM, 2,121  

FITEM, 2 ,122  

FITEM, 2,123  

FITEM, 2 ,124  

FITEM, 2,125  

FITEM, 2 ,126  

DJP51X, , 0 , , , ,  U X ,U Y,U Z,

FLST, 2, 6, 1,

FITEM, 2, 2281  

FITEM, 2, 2282  

FITEM, 2, 2283  

FITEM, 2, 2284



FITEM, 2, 2285  

FITEM, 2, 2286  

D ,P51X , , 0 , , , ,  ,U Y ,U Z , , ,

SSTIF, ON  

A UTOTS, O ff  

N S U B S T , 9 

TIME, 24

OUTRES, ALL, ALL  

NEQIT, 220  

NLG EO M , ON  

Solve

/POST1

/D  SCALE, 1, 10

PLDISP, 1 ! PLOT DISPLA CED  SHAPE

FINISH

/PO ST26

/A X L A B , Y, FORCE  

/A X L A B , X, D ISPLA CEM ENT  

N SO L , 2, 1206, U , Y  

RFORCE, 3, 126, F, Y  

PROD, 2, 2 „ „ „ - l  

PROD, 3, 3 „ „ „ + l  

X V A R , 2

PLVAR, 3 ! PLOT D ISPLA CEM ENT V S  FORCE

PRVAR, 2, 3


