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A bstrac t

Several non-trivial case studies of Levy and Levy-type generators (with 
variable coefficients) are investigated in order to shed some light on the be­
haviour of general Levy-type processes generated by pseudo-differential op­
erators.



Chapter 1 

Introduction

Feller semigroups and sub-Markovian semigroups are basic objects to 
construct stochastic processes. In case that the transition functions of these 
semigroups have a density with respect to Lebesgue measure, estimates for 
these transition functions lead immediately to estimates for probabilities. 
However, in general not much is known about off-diagonal estimates for these 
transition functions when dealing with Levy-type processes the generator of 
which are pseudo-differential operators with negative definite symbols. We 
refer to [17]-[19] and in particular to [12] and [13] where basic existence results 
and some properties were discussed. The situation for diagonal estimates is 
better . Since general results as presented in [34] and comparison results, see 
for example [33], could be used.

Very recently, in [20], a geometric interpretation for the transition func­
tion of a Levy process was suggested. The basic idea is to try  to get bounds 
of Gaussian type but with different metrics. Metric measure spaces are since 
some time employed to study diffusions, see [10] or [32] and the references 
therein, more recently also jump processes where considered, see [2] and the 
reference there in. However in these cases the metric is given and the process 
already relates to that metric. A basic reference for the analysis on metric 
measure spaces in [11].

The idea in [20] is different. Using the fact that the square root of a (nice) 
negative definite function gives rise to a metric and that these are the only 
metrics which induce a metric space isometric to a Hilbert space, see [30], 
[31], or [5], in [20] it was suggested to express the diagonal estimate in terms 
of the metric induced by the symbol. Moreover, since Fourier transform of 
” Gaussians” should be ’’Gaussians” it was also suggested to express the off- 
diagonal term as a function decaying exponential with respect to (the square 
of) another metric. All this was discussed for Levy processes, only vague 
indications were made for generators with variable coefficients.
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The original aim of our investigations was to settle the case with variable 
coefficients along the lines as elliptic diffusions can be treated using the Rie- 
mannian metric associated with the principal symbol of the generator. This 
programme was too ambitious since almost all basic concepts break down 
when trying to transfer from the local to the non-local case.

However, we succeeded to make several case studies in non-trivial situa­
tions which we think shed some light on the problems we encounter in the 
general situations.

In Chapter 6 we discussed subordinate diffusions for diffusions allowing 
Aronson estimates. Here, given the Aronson estimates, the estimates are triv­
ial, however combined with the geometric interpretation for diagonal terms 
in case of Levy processes, in Chapter 7 we derive a type of geometric in­
terpretation of the diagonal term of the subordinate elliptic diffusions. This 
shows in particular that certain concepts of comparability shall carry over 
to the general situation. Briefly, as a by-product we also give a geometric 
interpretation of a passage-time result published in [25].

In Chapter 9 we construct a new class of examples of variable order sym­
bols which leads to diagonal estimates with natural geometric interpretations.

In Chapter 10 we pick up a different problem: W hat can we do with 
these geometric interpretations. We take a symbol of a Levy process and 
discuss the probability P (X tl G C \ ,X t2 G C2 ) as an example. Assuming 
a representation of the transition function as in [20] we see rather concrete 
how probabilities are related to geometric notions such as balls in the metrics 
determining the transition function. In this part we also start to investigate 
the effect of non-isotropy which is the standard case whenever the process is 
not a subordinate Brownian motion.

While Chapter 10 handles Levy processes, the idea to handle processes 
generated by an operator with x —dependent symbol is to try some approx­
imation procedure by freezing coefficients. Here non-isotropy becomes even 
more important. In Chapter 11 we made some graphical experiments. Start­
ing with a symbol q(x,y,£,r)) we look at the corresponding metrics and 
transition functions for the Levy process associated with q{xo,yo,£,,r)) and 
study the change of geometric features in dependence of xq and yo. Of course 
this serves as a  first hint what we have to expect when treating state space 
dependent metrics. In Chapter 12 we outline some ideas to proceed further 
in the study of processes with variable coefficient symbol.

As already stated, we could not yet establish a complete geometric the­
ory to handle the general case, however we believe to have obtained some 
interesting non-trivial insights in what a general theory shoud cover.

Let us briefly describe the remaining chapter not get covered.
In the second chapter we collect several auxiliary results from analysis.
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We introduce basic notions, for example function spaces and norms, discuss 
the Fourier transform and in particular we discuss the convolution theorem. 
We also discuss the Lax-Milgram theorem as a useful tool needed later on.

In Chapter 3 positive and negative definite functions in the sense of 
Bochner and Schoenberg are introduced, their properties, especially Peetre’s 
inequality, are treated and relations to convolution semigroups of measures 
discussed. We also provide several examples of continuous negative definite 
functions and we discuss the Levy-Khintchine formula. Subordination in the 
sense of Bochner is an important tool for us, so we introduce Bernstein func­
tions and subordinate convolution semigroups. Eventually we discuss func­
tion spaces related to continuous negative definite functions and the Sobolev 
embedding theorem.

Next, in Chapter 4 we shift our focus to one parameter operator semi­
groups. The basic notions and properties are introduced. Furthermore, two 
very important classes of semigroups, Feller semigroup and sub-Markovian 
semigroup, are introduced and examples provided. We aslo discuss symmet­
ric Feller semigroups and extensions of symmetric Feller semigroups. Then 
we handle the two important notions generator and resolvent which have 
strong relationships to each other. In the final part we discuss the famous 
Hille-Yosida theorem which builds the bridge between generators and semi­
groups of operators.

In Chapter 5 we introduce Dirichlet form which serves as a tool for esti­
mating heat kernel in Chapter 6.

In Chapter 8 we discuss the pseudo-differential operators generating Markov 
processes under certain conditions.
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Chapter 2 

Essentials from Analysis

In this chapter, we recall some useful fact from analysis that we will 
need in later chapters. As general reference for these results we refer to these 
results from [17].

For a function u : G —> C, G C  Rn open, we say that u vanishes at infinity 
if for every e > 0 there exists a compact set K  C G such that |u(:c)| < e, if 
x  G K°. We define

(2.1) Coo(G) := {u G C(G) \ u vanishes at infinity}

where C(G) means all continuous functions from G to C. For any measure 
space (fl, A , n) the spaces 1/(11, //), 1 < p < oo, are the usual Lebesgue spaces 
(of equivalence classes) of measurable functions 
f  : H —> C with finite norm

II/IIlp := (JRn\f(x)\pfi(dx)^j /P , 1 < p < oo.

The S c h w a r tz  space  S(Rn) consists of all functions u G C ^ R 71) such that 
for all m 2 G No

Pmum2{v) := S U p x€R n ( ( l  + \x\2)mi/2 ^  \dau(x)\) < OO.
\a\<m2

The family {Pmi,m2)mi,m2eN0 forms a family of separating seminorms. The 
family (pa,p)aM ^  9iven by

PaAU) :=  SUpxeRn \x^dau{x)\
is equivalent to the family {Pmi,m2)mi,m2£N0-

D efinition 2.1. Let G C  Rn be an open set, Cof(G) be functions which 
are arbitrarily often differentiable and have compact support in G. The 
topological dual space D'(G) of Cq°(G) is the space of distributions on G.
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D efinition 2.2. The topological dual space S'(M.n) of the Schwartz space 
S (R n) is called the space of tem pered distributions. It consists of all dis­
tributions u G D'(G) having a continuous extension to S (R n), i.e. S"(Rn) C 
D'(Rn).

Let (S2,.A) be an arbitrary measurable space. The total mass of a measure 
p on (£l,A) is denoted by ||^|| := p(£l), and A4^(Cl) is the set of all bounded 
measures on (D,.A), i.e. p  G implies \\p\\ < oo. By Ail(Q) we
denote the set of all probability measures, i.e. measure p with total mass
M l =  1-
D efinition 2.3. Let [A, D{A)) be a linear operator from X  to Y ,  both being 
topological vector spaces.
i). We call A  continuous when A : D(A) -» Y  is continuous where D(A) 
carries the topology induced by X .
ii). We call A  a closed operator, if T(A) is closed i n l x Y  where T(A) is 
the graph of A, i.e.

T(A) := {{x,y) E X  x Y  | y = Ax  for some x  G D(A)}.

iii). The operator A  is closable if it has a closed extention.

The graph norm  for a linear operator (A ,D ( A )) from a normed space 
(.X , ||.|U ) into the normed space (Y, ||.||y) is denoted by

IMU;X,y := II^IU +  ll^ lly -
The strong operator topology on L { X , Y ) where X  and Y  are normed 

spaces is the topology of pointwise convergence, i.e. this topology is defined 
by the seminorms indexed by x G X :

/ 1-> ll/(z)llr-
Theorem  2.4. (Lax-Milgram theorem) Let H  be a Hilbert space, whose inner 
product and norm will be denoted by (•, •) and || • ||; respectively. Assume that 
£(•,•) is a quardratic form defined on H  x H  and that there exist positive 
constants C and c such that

(2.2) |£(u ,u)| < C\\u\\\\v\\

and

(2.3) |£ (u .« )| >  c |M |2

holds for all u G H. Under these conditions, if  F  G H*, i.e. if  F  is a 
continuous antilinear functional on H, there exists an element u G H  such 
that F (v ) =  £(u ,v) for all v G H . Furthermore, u is uniquely determined by 
F.
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Next, we collect some results from Fourier analysis without proofs but first 
we introduce the definition of Fourier transform on S (R n).

D efinition 2.5. Let u G S (R n). The Fourier transform of u is defined by 

u(£) := (27r)-n/2 [  e~%x'^uix)dx.
J R n

Sometimes we will write Fx^ (u ) ( £ )  or F(u)(£) for u(£).

D efinition 2.6. On 5(R n) we define the inverse Fourier transform by

(2.4) F ~ lu{rj) := (27r)_ny/2 f  eir}yu(y)dy.
J Rn

We also will use F ^ \  (u)(i7) for denoting (F~lu){ri]).

Theorem  2.7. The Fourier transform F  and its inverse F~ l are continuous 
linear mappings from 5 (R n) into itself.

D efinition 2.8. For u G L l (Rn) the function x i-» e~lx'^u(x) is an element of 
L l (Rn), its integral is well defined and therefore we have Fourier transform 
on L 1, i.e.

(2.5) u ( 0  = (27r)-n/2 [  e~ixM x ) d x .
J Kn

Furthermore, we state Lemma of Riemann-Lebesgue

Theorem  2.9. The Fourier transform is a continuous linear operator from 
L l (Rn) into Coo(lRn) and

H U  < (27r)_n/2||u||z(i

holds for all u G L 1(Rn).

The following result is called Theorem o f Plancherel 

Theorem  2.10. For all u G 5(R n)

Ho = Ho

hold where || • ||o is L2—norm.

Rem ark 2.11. The theorem implies that we can extend the Fourier trans­
form from S (R n) to a bijective isometry on L2(Rn).
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We now introduce the convolution of two functions u ,v  E S(Mn), i.e. the 
function

( u * v ) ( x ) =  /  u(x — y)v(y)dy 
J Rn

which is again an element in S(Rn). The convolution theorem states: 

T h eo rem  2.12. Let u ,v  G S(Mn). Then we have

(u • u)A(£) =  (2ir)~n/2{u * £)(£)

and
(u * u)A(£) =  (2tt)n,2u{£) • t)(f )■

R em ark  2.13. Analogous results hold for F ~l .
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Chapter 3

Convolution Semigroups and 
N egative D efinite Functions

In this chapter we collect basic definitions and results about convolution 
semigroups of sub-probability measures on W 1 and negative definite functions. 
I f  not otherwise stated, our basic reference in [17]. We start with:

D efin ition  3.1. A family {pt)t>o of bounded Borel measures on R n is called 
convolu tion  sem igroup  on Rn if the following conditions are fulfilled

(3.1) Pt(Rn) < 1 for all t > 0
(3.2) p s * ptt =  Mf+s s, i > 0 and p0 = eo\
(3.3) pt vaguely as t —> 0;

where (ps * pt)(B) = fRn p s{B -  y)pt{dy) for all B  G # (n).

D efin ition  3.2. A function u : Kn —> C is called positive  defin ite  if for
any choice of k G N and vectors . . . ,  £k G Mn the matrix (w(£J — £l))jti=i,...,k 
is positive Hermitian, i.e. for all Ai , . . . ,  A*. G C we have

0.
3,1= 1

D efin ition  3.3. A function i] : Rn -> C is called negative  defin ite  if

(3.4) -0(0) > 0 
and

(3.5) £ i-> (2'ir)~n/2e~t^  is positive definite for t > 0.



T heorem  3.4. Let (fit)t>o be a convolution semigroup on Rn. Then there 
exists a negative definite function ip : Rn —> C such that

(3.6) M O  =  (27r)-n/2e - ‘,i®

holds for all £ £ Rn and t > 0.

Exam ple 3.5. a where a > 0, £2, |£|a where a  £ (0,2) and |£| are all 
continuous negative definite functions.

Lem ma 3.6. For any locally bounded negative definite function ip there 
exists a constant c^ > 0 such that for all £ £ Rn

\4>(0\ < M 1 +  l£l2)-

The next result is an inequality which in case of the function £ h-* |£|2 is 
often called Peetre ’s inequality.

Lem ma 3.7. Let ip : Rn —> C be a negative definite function. Then we have

The famous Levy-Khnichin formula states:

Theorem  3.8. Every continous negative definite function ip : Rn —► C has 
the representation

^(£) =  c +  «(d •£) +  ?(£)
ix  • £ ^ 1 +  |x 12 

K̂n\{o} V ~ 1 +  |aj|JKn\{0} V 1 4- \x 2 J \x\2

with a non-negative constant c > 0, a vector d £ Rn, a symmetric positive 
semidefinite quadratic form q, and a finite Borel measure p on Rn \  {0}.

We want to introduce subordination of convolution semigroup. For this 
we need the definition of Bernstein functions. A comprehensive monograph 
about Bernstein function is [28]

D efin ition  3.9. A real-valued function /  £ C°°((0, oo)) is called a B ern ­
s te in  func tion  if

(3.7) f >  0 and ( - i f  < 0

holds for all k £ N.
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E xam ple  3.10. The functions f ( x )  =  1—e xs where s > 0, f ( x )  = log(l+x) 
and f a(x) =  xa where a  £ [0,1] are Bernstein functions.

T h eo rem  3.11. Let f  be a Bernstein function. Then there exist constants 
a, b > 0 and a measure n on (0, oo) verifying

roo q

(3.8) — — fi(ds) < oo
Jo+ 1 4* s

such that
roo

(3.9) / (x) = a +  bx +  / (1 — e~x3)p>(ds), x > 0.
J o+

The triple (a,b,fi) is uniquely determined by f .  Conversely, given a,b > 0 
and a measure /i on (0, oo) satisfying (3.8), then (3.9) defines a Bernstein 
function.

Next, we want to relate Bernstein functions to certain convolution semi­
groups of measures.

D efin ition  3.12. Let (r]t)t>o be a convolution semigroup of measures on R. 
It is said to be supported by [0, oo) if supp rjt C [0, oo) for all t > 0.

T h eo rem  3.13. Let f  : (0,oo) —► R be a Bernstein function. Then there 
exists a unique convolution semigroup (rjt)t>o supported by [0, oo) such that

(3.10) C(r]t)(x) =  x > 0 and t > 0,

holds where C stands for Laplace transform. Conversely, for any convolution 
semigroup {r}t)t>o supported by [0, oo) there exists a unique Bernstein function 
f  such that (3.10) holds.

Lem m a 3.14. For any Bernstein function /  and any continuous negative 
definite function ip \ M.n C, the function /  o ifj is also continuous and 
negative definite.

Since f  o ip is a continuous negative definite function, there exists a con­
volution semigroup (fi{)t>o associated with f  o'tp.

P ro p o sitio n  3.15. Let ^  be a continuous negative definite function with 
associated convolution semigroup (fit)t>o on Mn. Further let /  be a Bern­
stein function with associated semigroup {rjt)t>o supported on [0, oo). The 
convolution semigroup )t>o on Rn associated with the continuous negative 
definite function /  o rjj is given by

[  </)(x)f4(dx) = f  [  <p{x)pLs{dx)r)t (ds), $  €  C 0(M n ) .  
j R n  J O  j R n

10



D efinition 3.16. In the situation of Proposition 3.15 we call the convolution 
semigroup {p{)t>o the semigroup subordinate (in the sense of Bochner) to 
(Tt)t>o with respect to (r)t)t>o-

In the following, we will discuss function spaces related to continuous 
negative definite functions.

D efinition 3.17. The space H ^ ,8(Rn) consists of all tempered distributions 
u E S"(Rn) such that

=  IK1 +  l^(-)l)s/2*(-)IU2(R") < 00 •

Now, we will establish some relations to classical Sobolev spaces.

D efinition 3.18. Let s E R. The classical Sobolev spaces # r(Rn) are defined 
by

H r{E") := {u e L2(En) | F -1((l + | f ) s/2ii) e L2(E")}.

These spaces are Hilbert spaces with respect to the norm

| M | „ .  : =  | | F - 1 ( ( l  +  | . | 3 ) * / Ji i ) | U .

=  l l( ( i  +  l-ls ) ' / 2“ )IU»-
The last equality is satisfied because of PlanchereTs theorem.

The classical Sobolev embedding th eo rem  reads as follows

Theorem  3.19. A .  Let t > 0. I f t > ^  + k , k €  No, then for all a  G Ng, 
|a | < k, we have

(3.11) ||I>“u |U  < Ck,n,t \\u\W

a n d  H * { R") C C* (En) := {«  € C*(Rn) | D “u 6 C x { R n ),  |a | <  k } .

B . I f  for some r > 0 it holds

(3.12) (1 +  If|2)r <  0 ^ (1  +  </>(f)), Crrt > 0,

then for s > 0 it follows that

(3.13) IMItfrs <

and H ^ s(Rn) C H rs{R71).
C. if (3.12) holds and rs > |  then

(3.14) |M|oo ^  r̂.s.n.V'

11



and H ^ ,s(Rn) C C ^ W 1).

Note that (3.12) is equivalent to the existence of R  > 0 and Cr>R^ > 0 
such that

(3.15) |«|2r <  Cr M m

for all | > R.
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Chapter 4

A Brief Introduction of One 
Param eter Semigroups

In this chapter we will give a short introduction to the theory of one 
parameter semigroups of operators which we will use in the rest of the thesis. 
We mainly take the material from [17] and [24]- First of all we introduce the 
notion of a (one parameter) semigroup of operators.

D efinition 4.1. A. A one parameter family (Ti)t>0 of bounded linear oper­
ators Tt : X  —> X  (where A is a real or complex Banach space with norm 
| | . | |x )  is called a (one parameter) sem igroup of operators, if To =  id and 
Tg+t = TsoTt holds for all s , t  >  0. B. (Tt )t>o is called strongly continuous 
if lim*_>0 ||Ttu -  u\\x  =  0 for all u G X .  C. ('Tt)t>0 is called a contraction  
semigroup if ||Tt || < 1 for all t > 0, where ||Tt|| denotes the operator norm 
| |T f| |x ,x- D. Furthermore, if X  is an ordered Banach space, then (Tt)t>0 is 
positiv ity  preserving if Ttu >  0 for any u > 0.

Now we give two examples of semigroups constructed by convolution semi­
groups which are important in stochastics.

Exam ple 4.2. Let (pt)t>o be a convolution semigroup on Mn. On the Banach 
space (Coo(Rn), ||.||oo) we define the operator

Ttu{x) /  u(x-y)fjLt(dy).
J Rn

We claim (Tt)t>o is a strongly continous contraction semigroup. First, since
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u G C ^ R 71) is bounded we find

\Ttu{x)\ < \  [  u { x -  y)ih(dy)
17Mn

-  L  \u (x -  y)\v-t(dy)
Jnn

< ||w||oo^(Rn) ^  IMIoo.

The last inequality holds because //*(Rn) <  1. Therefore, ||TM|oo =  supxeRn \Ttu(x)\ 
<  IMIoo which implies that Tt , t > 0, is bounded and a contraction on 
Coo(Mn). From the definition of the convolution of measures, we have

(Tt+su)A(£) = {u * Ht+S)A{£) = (2tt) 2 6 ( 0 / W O  
=  (2ir)%u(0{2n)~%e-it+s)^
= u(Z)e~it+s)^

=  c“t^ ( T aw)A(0  
=  (Tt oT .ti)A(0

which implies Tf+3u = Tt o Tsu. Since /j,0 = e0, we have immediately T0 =  id.
Thus (Tt>o)t>0 has the semigroup property. Finally, we prove that (Tt)t>o is 
strongly continuous for t —> 0. For this we use tha t any function in (^ (M 71) 
is uniformly continuous. Hence, for e > 0, there exists 8 > 0 such that

|u(x) — u(x — y)\ < e for \y\ < 5.

Moreover, the continuity of [nt)t>o in the Bernoulli topology implies that

lim/if (£«*(())) =  £0(B5(0)) = 1,

i.e. 0)) < e and 1 — /it(Kn) < e for 0 < t < to. Now we find

\Ttu(x) -  u(z)| < I [  {u{x - y ) -  u(x)}nt{dy) +  |it(a;)|(l -  /i*(Kn))
\Jw i

-  L  ™ - y ) -  u (x)\nt{dy)
0 )

+  [  |u{x - y ) ~  u(x)\fj,t (dy) +  |Mloo(l -  ^ ( ^ n))
0 )

<  e +  2e||w||oo +  £ |M loo  =  e(l  +  3 |M lo o ) ,

which implies tha t (Tt)t>0 is strongly continuous as t —> 0. Furthermore,
(Tt)t>o is obviously positivity preserving.

This shows that (Tt)t>o is a Feller semigroup in the sense of the following 
definition.

14



D efin ition  4.3. (Tt)t>0 is a Feller sem igroup  if {Tt)t>o is a strongly conti- 
nous contraction semigroup on (CQ0(Rn), ||-||oo) which is positivity preserving.

E xam ple  4.4. Let (fit)t>o be a convolution semigroup on R n as in the above 
example. For u E S(M.n) we define as before

where ||.||0 denotes the norm in L2(Rn). Since S'fR71) is dense in L2(Kn),

extension is a contraction. We denote this extention once again by Tt , t > 0. 
Furthermore, we find

implying the strong continuity of (Tt)t>o as t tends to 0. As in the previous 
example using the convolution theorem we can prove the semigroup property 
on 5(Mn). This extends to the L 2—extension. Moreover, we have 0 < Ttu < 1 
almost everywhere for 0 < u < 1 almost everywhere.

We have now proved that {Tt)t>o is an L2-sub-Markovian semigroup in 
the sense of the following definition.

D efinition 4.5. (Tt)t>o is a sub-M arkovian sem igroup on Lp, 1 < p < oo,
if (Tt)t>o is a strongly continuous contraction semigroup on Z^M71) which 
satisfies 0 < Ttu < 1 almost everywhere for u E Lp(Mn) such that 0 < u < 1.

Now we come to the definition of symmetric Feller semigroups which we 
will use in the Chapter 5

D efinition 4.6. Let {Tt)t>o be a Feller semigroup on C'oo(K). We call (Tt)t>o 
a symmetric semigroup if (Ttu , v)o =  (u, Ttv)o i.e.

and using Plancherel’s theorem, we have

0
< ||u||o 

 ̂ lltillo

we find that each of the operators Tt has an extension to L2(Rn) and this

||Ttu -  it||§ =  JRn \e t m u{£) -  w (O f ^  

=  [  | e - « ) - l 2 |u(0 |2̂ ,
jRn 1

holds for all « , d E C qoCM71) D L2(Rn).

15



The following theorem tells us about extensions of symmetric Feller semi­
groups

Theorem  4.7. Let (Tt)t>o be a symmetric Feller semigroup. Then for any 
1 <  p < oo there is a strongly continuous contraction semigroup (T ^ ) t>o on 
Lp(Rn), such th a tT &) coincides on Lf^R71) n C 00(IRn) withTt, and for p > 1, 
p +  j7 =  I* this implies that

(T}p)y  = t }p' \

Furthermore, each of the semigroups (T, )(>o is sub-Markovian.

Next, we define the generator of a strongly continuous semigroup which 
plays an important part in the theory of semigroups of operators.

D efinition 4.8. Let (Tt)t>0 be a strongly continuous semigroup of operators 
on a Banach space (X , ||.||x)- The generator A  of {Tt)t>o is given by

Au  := lim ~ (strong limit)

with domain

D(A) := {u e  X  : lim ——— -  exists in X} 
f^0+ t

Corollary 4.9. Let A  be the generator of a strongly continuous semigroup 
{Tt)t>o on the Banach space (X , || • ||x)- Then D(A) C X  is a dense 
subspace and A  is a closed operator. Moreover, {Tt)t>o is a strongly con­
tinuous semigroup on D(A) when D(A) is equipped with the graph norm 
IMI^.x =  +  ll^llx Banach space.

We will need

Lem m a 4.10. For all a > 0 and t > 0 we have

——— < 1 — e~at < at 
1 H- at

and
e~at -  1 +  at 

t

16



E xam ple  4.11. Consider the Feller semigroup defined in Example 4.2 we 
have /it(£) =  (27t)~ 2 where rfj is a continous negative definitive function
defined on Rn. For any u G S(Rn), we have

Ttu — u _ 1
=  (2* )-*  f  e“ '{- -----  - u ( O C

C t

Since u G and |^ (0 I — CV>(1 +  l£|2) fr°m Lemma 3.6, we can define
the operator

ijj{D)u(x) := (2tt)_ 2 [  e%x<ilj(£)u(€)d£.
J R n

We want to prove that S(R n) C  Z}(j4(°°)) and A ^ u  = —̂ ){D)u for u G 
S(R n), where A ^  is the generator of the (Feller) semigroup (Tt)t>0 from 
Lemma 4.10. We have

e - m )  -  1 +

which implies

Ttu — u
t + ip(D)u < tc.0 [  (1 +  |£|2)2K£)M£

00 m n
where we use Theorem 2.9 in the above inequality which gives

Ttu — u
lim

£—>0+ t

Generally speaking we cannot characterise D (A °°) using function spaces. 
But, this is sometimes possible for sub-Markovian semigroup on L2(Mn) re­
lated to (/^/)i>0*

E xam ple  4.12. We consider the operator semigroup (Tt)t>0 related to a 
convolution semigroup (nt)t>o with associated continuous negative definite 
function if>. As in Example 4.11 proved this is a sub-Markovian semigroup 
on L2(Rn). In order to find its generator we get first for u G S(M.n)

Ttu — u , . 2
+  ip{D)u

t

e-ty{£) _  1
+  </<(£)= w n L0 JRn

< t 2c i j j  i +  ifi2)4|fi(o ia<ie

=  t2cl,\\u"2

which implies that

lim
t —>0

'-01

Ttu — u
t

H 4 '

+  ^{D )u  

17
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for all u G S (R n). We denote the generator of the sub-Markovian semi­
group in L2(Rn) by A ^  and we have shown that on S (R n) it holds A ^  = 
—ip(D)u. Next, we prove the operator —ip(D) defined on S(R n) is closable in 
L2(Rn). To this end, we consider a sequence (u u v G S (R n), converg­
ing in L2(Rn) to zero. Furthermore, assume that (— converges 
in L2(Rn) to some element — g G L2(Rn). Our aim is to show that — g = 0. 
For this take <f) G 5(R n) and we find

/ ^ ( D ^ ^ d x  = /  ul/,ift(D)(f)dx, 
jRn m n

which implies (g,(f>)o = 0 for all </> G S(Rn), therefore —ipiD) is closable. 
Moreover, we know that the norm ||.||^,2 on 5(R n) is equivalent to the graph 
norm \\u\ \ ^ D ) > L 2 = ||u ||0 +  ||^ (D )u ||0. We know

l|u|l̂  = /K.(1 + l̂ )l)2|̂ )|2̂
Therefore we have

\ M l a =  M D ) u \ \ l  +  M l

which tells that ||.||^,2 is equivalent to ||.||v>(jD),L2- Therefore this implies that 
the domain of the closure A  of —ip(D) is given by

D(A) = S (R n)U ^ D)tL2 =  5(R n)ll'llv’’2 =  H ^’2( Rn).

The notion we are going to introduce next is that of the reso lven t which 
has strong connections to both the generator and the semigroup.

D efinition 4.13. Let (A ,D (A))  be a linear operator on a complex Banach 
space (X , ||.||x). The resolvent set p(A) of A  is defined to be the set of all 
A G C such that (A — 4̂) : D{A) —» X  is one-to-one mapping and its inverse 
(A — A )_1 satisfies the following two conditions:

i) D ( ( \  -  A)~l ) =  X]

ii) (A — A )_1 is bounded on X .

The set cr(A) := C \  p(A) is called the spectrum  of A  and {(A — A)~l \
A G p(A)} the resolvent of A. We denote resolvent by (Ha)acp(A) and
Rx := (A -  A )-1.

The following proposition shows connections between the resolvent and the 
semigroup.

18



P ro p o s itio n  4.14. Let {Tt)t>o be a strongly continuous contraction semi­
group on the Banach space (X , \\.\\x) with generator (A ,D (A)). Then 
{A E C | Re A > 0} C  p(A) and

roo
R \u  =  (A — A)~ u =  e~ Ttudt, u E X , Re A > 0.

Jo

L em m a 4.15. (reso lvent equation)L et A  be a linear operator on X and 
A,/i E p(A). Then the resolvent equation

RxR^ =  R ^R \ =  (A -  p)~l {Rn -  R \)

holds.

To have a concrete understanding of resolvent, we give a short example 
as follows

E x am p le  4.16. Consider the sub-Markovian semigroup on L 2 (Rn) con­
structed using a convolution semigroup {p>t)t>o related to the continuous 
negative definite function tp : Rn —> C. We have

Ttu(x) = [  u(x -  y)pt(dy) = (27t)- ^ [
J R n  J Rn

for u E S (R n). For A > 0 and u E S (R n) we have

R \u(x) = [  e~XiTtu(x)dt 
Jo

=  (2tt)-* f ° °  e ~ Xi f  e i x i e ~ t m u ( ( , ) d t , d t .
Jo J Rn

Due to the reason that (£,£) i-  ̂ e~^x+^ ' )tu(^)elx^ is ^ ((O , oo) x Mn) we get 
from Fubini’s theorem

R\u{x) =  (27r)“ t  [  { [°° e - {x+m)tdt}eixSu{Od£
JRn Jo

=  (2tt)-S f  e i z (  1 i n . M S ) d ( ,  
v '  JRn A +  ^ (f)

and this relation we can extend by continuously to L2(Rn) since ||-RaHIl2 ^  
1̂ 11̂ 11̂2 and *S'(Mn) is dense in L2.

To formulate the Hille- Yosida theorem we introduce the notion of dissi- 
pativity.

D efin ition  4.17. A linear operator A  : D(A) —> X , D(A) C  X ,  is called 
(A —)dissipative  if ||Au — Au\\x > ^IM U holds for all A > 0 and u E D(A).

19



Here is an example of a dissipative operator.

E x am ple  4.18. Let ^  : Rn —> C be a continuous negative definitve function. 
On 5(Mn) which we know is a dense subspace of L 2 (Rn) we introduce the 
following pseudo-differential operator

if>(D)u{x) = (27r)“ t  f  elxty(£)u(£)d£,
J Rn

and we claim —ip(D) is L2(Rn)—dissipative. In fact, for A > 0 and u E 5(R n) 
we find

||Au +  ip(D)u\\l = A2||u||o +  2A [  R e^(£)|£(£)|2d£ +  H V ^H Io
J Kn

> A2||U||g,

which implies the L 2—dissipativity of —'ijj(D).

Now, we come to the famous Hille-Yosida theorem which gives the con­
nection between generators and semigroups of operators.

T h eo rem  4.19. A necessary and sufficient condition that a densely defined 
linear operator (A ,D (A )) on a Banach space (X , ||.||x) is the generator of a 
strongly continuous contraction semigroup (Tt)t>o is that

a) A is dissipative;

b) R (A — A) — X  for some A > 0

Note that an operator satisfying the conditions of Theorem 4-19 is neces­
sarily closed. In application, the operators related to concrete examples are 
often not closed. Therefore we have a more general version of Hille-Yosida 
theorem:

T h eo rem  4.20. A necessary and sufficient condition that a densely defined 
linear operator (A ,D (A )) is closable on a Bananch space (X , ||.||x) and the 
closure A  is the generator of a strongly continuous contraction semigroup 
(Tt)t>o is that

a) A  is dissipative;

b) R (A — 4̂) is dense in X  for some A > 0

Now we come to a characterisation of the generator of Feller semigroups 
which we call positive maximum principle.
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D efin ition  4.21. Let A : D(A) —> B (Rn,R) be a linear operator, D(A) C  
D(Rn,R) where D(Rn,R) is a bounded linear operator from Rn into R. We 
say that (A ,D (A )) satisfies the positive  m ax im um  p rinc ip le  if for any 
u E D(A) such that for some x 0 E Rn the fact that u(xo) =  supa.eRn u(x) > 0 
implies that A u(xo) < 0.

We claim that the generator [A, D (A)) of a Feller semigroup satisfies the 
positive maximum principle. To see this, we assume that (Tt)t>o is a Feller 
semigroup on C ^ R 71) with generator (A ,D (A )), D (A) C  C0 0 (Mn). Suppose 
that u E D{A) and that for some xq E Rn we have u(xq) = supxGKn u(x ) > 0. 
Since each of the operators Tt , t>  0, is positivity preserving we have

(Ttu)(x0) = (Ttu+)(x0) -  (Ttu~)(x0) < (Ttu+)(x0) < ||it+ ||oo =  u(x0)

which implies
Au[xa) =  Um T , -  u(xo) <

v ' t- > 0  t ~
It happens that the positive maximum principle is a characteristic property 
of generators of Feller semigroups. To this end, we need

L em m a 4.22. Suppose that a linear operator (A ,D (A )), D(A) C  C'00(Rn),
on Coo(Rn) satisfies the positive maximum principle on D(A). Then A  is
dissipative.

T h eo rem  4.23. A linear operator (A ,D (A )), D(A) C Co^R"), on C ^fR 71) 
is closable and its closure is the generator of a Feller semigroup if  and only 
if  the three following conditions hold:

i) D{A) C Coo(Rn) is dense;

ii) (A , D (A )) satisfies the positive maximum principle;

Hi) R(X — A) is dense in C ^ R 71) for some A > 0.

E x am p le  4.24. Let -0 : R71 -» C be a continuous negative definite function. 
On Co°(Rn) we define the operator

—,il)(D)u(x) = —(27t)- ^ f  elx^'ip(£)u(£)d£.
J R n

Prom Example 4.2 we know that (—0(D ), Co°(Rn)) has an extension gener­
ating a Feller semigroup, hence on Co°(Rn) the operator —0(D ) satisfies the 
positive maximum principle.

In order to introduce the notion of subordination for operator semigroup 
of operators we need to state the following theorem first
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Theorem  4.25. Let (Tt)t>o be a strongly continous contraction semigroup on 
Banach space (X, ||.||) and let (r]t)t>o be a convolution semigroup supported 
on [0, oo) and related to Bernstein function f. Define T /u  for u £ X  by the 
Bochner inteqral

f f ° °Tt u = /  Tsur]t(ds).
Jo

The integral is well-defined and {T /)t>o is a strongly continuous contraction 
semigroup on X .

D efinition 4.26. The semigroup (T/ ) t > 0  defined in Theorem 4.25 is called 
subordinatefin the sense of Bochner) to (Tt)t>o with respect to {r]t)t>o or 
equivalently with respect to / .

As always, we illustrate this construction by our two examples.

Exam ple 4.27. Let (nt)t>o and (r)t)t>o> supp r)t C [0,oo) be the two con­
volution semigroup related to a continuous negative definitive function 0  : 
Rn —► C and a Bernstein function f  : (0, oo) —> M respectively. Consider the 
Feller semigroup o on the Banach space (Coo(Mn;R), ||. ||oo) or sub-
Markovian semigroups {T^ ) t>o on the spaces L 2(E n), constructed by (jLt)t>o- 
On S'fM71) which is dense both in C'00(Rn) and L 2 (Rn) we have always

Ttu{x) = f  u ( x -  y)fit {dy) = (2 t t ) '2  [ elx*e~txlJ®u{€)d£,
j R n  J Kn

where Tt is the restriction of any of the operators or to S (R n). 
From the definition of the subordinate semigroup T / u ( x ) ,  t > 0, we have

Ttf u =  [  Tsurjt (ds)
Jo

= u ( x -  y)fis(dy)r]t{ds)
JO j R n

= (2tt)“ * r  [  eix(e -s*i0 u{(.)d^t (ds)
Jo J Rn

=  (2 tt)“ 2 f  e tâ u (£ )d £  f  e~a,llĵ r)t(ds)
J Rn Jo

(4.1) =  (2tt)-4 f  eix(e - t ,m ) ) u te W
J Rn

We use Fubini’s theorem in the fourth equality above and we always denote 
/0°° fj,a(dy)r)t (ds) by p{{dy) where (p,{)t>o is the convolution semigroup on 
Rn related to the continuous negative definite function /  o 0 . Obviously,
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(4.1) is the subordinate semigroups to ( T ^ ) t>0, p = 2,oo, related to / .  
Furthermore, we have (T/° ° ^ ) t>0 ((T/2̂ ) t>o) is also a Feller semigroup (sub- 
Markovian semigroup on L2(IR;M))

We can now find exactly the generator of (T /) t>0. We only illustrate the 
example of a subordination of a sub-Markovian semigroup associated with a 
convolution semigroup, subordination of the Feller-semigroup follows along 
the same line, however in this case we can not characterize the domain in 
terms of a function space.

Exam ple 4.28. We contruct sub-Markovian semigroup (Tt)t>0 as usual by 
a convolution semigroup (fit)t>o on R n associated to the continuous negative 
definitive function if; : Rn —» C through /}(£) =  (27r)~te“^ ^  i.e. the sub- 
Markovian semigroup {Tt)t>o on L2(Rn;M) is given as follows

Ttu{x) = [  u ( x -  y)fit(dy) = {2tt)~^ [  e ^ e ^ ^ u ^ d f , .  
m n J Rn

The corresponding generator of (Tt)t>o is

Au(x) =  —,ip(D)u(x) = —(27r)- ^ f  eia*7/>(£)u(£)d£
J Rn

which has the space # ^ ,2(IRn) as domain. We know from Example 4.27 that 
the subordinate semigroup (T / ) t > 0  is

T / u (x ) =
m n

and from the definition of the generator, we have

T /  u(x) — u(x)
A*u(x) =  lim

t —>oo

n r . e-t/WO) _  1
=  lim(27r) 2 /  e %x^-------------------u ( £ ) d £

t - W  j  J r  n  t V '

n T + f i - t f M O )  — 1
=  (2 tt) ~ 2  j  e lx< l i m    w ( 0 rf£

J R n  t - t o o  t

(4.2) =  -(2 tr)~ t j  eix<f(il>(£))u(£)dZ
J R n

with D (A f ) — H f°^’2 (M.n). Moreover, we know the Bernstein function /  : 
(0 ,00) —> R has the representation

r  OO

(4.3) f { x ) = Co + C\x +  /  (1 -  e~xs)p(ds), x > 0,
Jo
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where co,ci > 0 and p, is a measure on (0,oo) such that / 0°° j^ p (d s )  < oo. 
Therefore, substituting (4.3) into (4.2) we have for u E S(R )

A f u(x) = -(27r)- ^ jf  ̂  (co +  c i^ (f) +  (1 -  e ~ " ^ s)/i(ds)) u{fi)d£

=  —cqu( x ) +  ciA u(:c) — (27r)“ ^ [  [  elx'^ (l — e ~ ^ s) u ( ^ ) p ( d s ) d ^
J R n  J O

=  —cqu( x ) +  cii4ii(a;) — [  (27r)~2 f  e tx'*(1 — e ~ ^ s ) u ( ^ ) d ^ p ( d s )
Jo j R n

r oo
=  —cqu(x ) -f ciA u(zr) +  /  (T su ( x ) — u ( x ) ) p ( d s ) ,

Jo

where in the third equality above we can change the order of integration since 
for u E S(Mn) we find

e***(l -  e ^ )a)u(0 | < 0# ( O I  A 2)I*(0 I < { s A  2)(1 +  hKODNHOI,

and the function (s,£) 4  (sA  2)(1 +  MODI^COI 1S nids) ® d£ integrable. 
Thus the generator of (T/)*>o is

/•oo
it =  — Colt 4- C \ A u  +  /  ( T su  — u ) n ( d s ) .

Jo

Finally, we introduce analytic semigroups. In this section, X  denotes a 
complex Banach space.

D efinition 4.29. Let A  be a closed operator densely defined in X . The 
operator A  is said to be of type (w, M ) if there exist 0 < u  < tt and M  > 1 
such tha t p(A) D {A: | arg A| > uj} and ||A(j4 — A)_1|| < M  for A < 0, 
and if there exists a number M e such that ||A(>4 — A)_1|| <  M e holds in 
| arg A| >  u  +  e for all e > 0.

T heorem  4.30. Suppose there exist real numbers P, M  and an angle uj E 
[0, | ]  such that —A + P is of the type (u j,M ), then A is the generator of a 
semigroup {T(£)}. T(t) can be continued holomorphically with respect to t 
into the sector {t : | argt| < |  — l j } ,  where T (t +  s) = T (t)T (s) holds. Let 
9 be an arbitrary angle satisfying 0 < 9 < |  — l j , then e~ ^T (t) is uniformly 
bounded in the closed subsector {£|arg£| <  9} and, when t approaches 0 
inside this subsector, T(t) converges strongly to I , for any natural number n 
we have

(4.4) lim s u p ^ +0tn| | ( ^ ) nT(t)|| =  lim sup^ +0 tn \\AnT{t)\\ < oo

D efin ition  4.31. The semigroup described in Theorem 4.30 is called an 
analytic sem igroup or a parabolic semigroup.
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Note that analytic semigroups have the important property that

(4.5) Ttu e  f l  D (A k)
k >  1

for all u G X .
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Chapter 5 

Dirichlet Forms

In this section we want to introduce Dirichlet forms.

Definition 5.1. Let i f  be a real Hilbert space with inner product (, ). £  is 
called a sym m etric form on H  if the following conditions are satisfied:

i) £ is defined on D (£) x D(£) with values in R 1, D (£) being a dense 
linear subspace of H\

ii) £ (u ,v) = £{v, u), £(u  +  v, w) =  £{u, w) +  £(v, w),
a£(u,v) =  £ (a u ,v ), £(u ,u) > 0, u ,v ,w  G D (£ ), a G R 1.

We call D(£) the domain of £.

Given a symmetric form  £ on H

(5.1) £a(u,v) =  £(u ,v) + a (u ,v ), u ,v  £ D{£)
D(£a) = D(£)

defines a new symmetric form on H  for each a  >  0. We know the space 
D(£) is a pre-Hilbert space with inner product £a. Furthermore £a and £p 
determine equivalent metrics on D{£) for different ot,f3 > 0.

D efinition 5.2. A symmetric form £  is said to be closed if

Ufi G D [£S), £ \  ( u n 'U'Ti ^m)  ̂0, 77, 777  ̂OO

=>> 3u G D (£), £\{un — u, un — u) —> 0, n —> oo.

D efinition 5.3. We say tha t a symmetric form £  is closable if the following 
condition is fulfilled:

(5.2) Un G D (£ ) ,  £ { uji  Ujji  ̂Ufi Uyyi} y 0,77, m   ̂ oo,

(un, un) —> 0, n —> oo => £(un, un) —> 0, n —> oo.
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A core of a symmetric form E defined on some L 2 (X ,p ) space with X  
being a locally compact Hausdorff space is by definition a subset C of D (8 ) fl 
Co(X) such that C is dense in D(E) with 8 \ — norm and dense in Cq(X) with 
uniform norm.

L em m a 5.4. A symmetric form (E,D(E)) is closed if and only if D(E) 
equipped with the scalar product Ea, a > 0, is a Hilbert space, i.e. complete.

D efin ition  5.5. A symmetric form E is called reg u la r if E possesses a core

I t ’s clear that E is regular if and only if the space D (E )nC o(X ) is a core 
of E.

D efin ition  5.6. A. Let (E,D(E)) be a closed bilinear form on L2(Rn). If it 
is symmetric and

then (£, D(E)) is said to be a (sy m m etric )D irich le t form.
B. A Dirichlet form (E , D(E) having the property that for two functions 
u ,v  G Co°(Rn) with disjoint support it yield E(u,v) =  0, is called a local 
D irich le t form .

In comparison to the Feller semigroups, we cannot make use of similar 
pointwise statements such as the positive maximum principle in an Lp setting. 
It turns out that the following concept is essential to obtain a characterisation 
of generators of sub-Markovian semigroups, see e.g. Chapter 4-6 in [17]

D efin ition  5.7. A closed, densely defined linear operator A : D{A) -* 
Lp(Rn), 1 < p < oo, with domain D(A) C  Lp(Rn), is called a Dirichlet 
operator if

for all u G D(A).

L em m a 5.8. A Dirichlet operator A  on L ^R ") is dissipative, i.e.
II(A -  A ) u \\lp > A ||u ||lp .

For the rest of discussion related to sub-Markovian case we only con­
sider p =  2 and work with symmetric sub-Markovian semigroups (T^ ) t>o on 
L2(Rn). We know the generator (A , D{A)) of a symmetric L 2 -sub-Markovian 
semigroup is a self-adjoint Dirichlet operator. The following theorem gives 
us also the converse.

E(u+ A 1,u+ A 1) < E(u , u) for all u G D(E)),
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T h eo rem  5.9. A self-adjoint operator A  : D(A) —>• L 2 (Rn), D(A) C L 2 (Rn) 
dense, be a self-adjoint linear operator. Then it is a Dirichlet operator if and 
only i f  it generates a symmetric sub-Markovian semigroup on L 2 (Rn).

The fact that A is a Dirichlet operator implies

(5.3) [  (—Au)udx  =  (—A u ,u ) l 2 > 0.
j R n

Hence —A is a non-negative and self-adjoint operator. The following theorem 
ensures the existence of (—̂4)2 and of a positive semidefinite bilinear form  
(£ ,D (£)) on L 2 (Rn) defined by

(5.4) £(u, v) := ( - A u , v ) L 2 =  ((-A )* u , ( -A )? v ) L 2

for v G D{£) := D ((—A)?) and u G D(A) f l  D{£). We quote the result from  
[ 1 7], Theorem J .̂7.5.

T h eo rem  5.10. Let (A ,D (A )) be a closed and densely defined self-adjoint 
operator on L 2 (Rn), which satisfies (5.3). Then there exists a closed, sym­
metric and positive semidefinite bilinear form (£ ,D (£)) on L 2 (Rn) defined 
by (5.4), which satisfies the Cauchy-Schwarz inequality

\ ( - A u , v ) L 2 \ < \ \ ( - A ) ^ u \ \ L 2 \ \ ( - A ) ^ v \ \ L 2 , u G D ( A ) , v  G D(A*).

Further, we have D{A) D{£) L 2 (Rn), where these continuous em­
beddings are dense. In particular, (D(A),\\ • \ \ a )  and (D(£),\\ • ||g) are 
Hilbert spaces equipped with the graph norms |MU =  IMU2 +  ||(—v4.)ia|| 2̂ 
and \\u\\£ = \\u\ \ L 2 +  y/£(u, u), respectively. Moreover, D{£) =  D ((—A )1/2)

In the following we will give an example of a symmetric translation in­
variant Dirichlet form involving a real-valued continuous negative definite 
function *ip : R n —> R.

E xam ple  5.11. Let ip : Mn —> R  be a continuous negative definite function. 
Then the pseudo-differential operator —'ip(D) defined on Co°(Rn) by

(5.5) -ip(D )u{x) = -(27r)"^ [  elx<'ip(£)u(£)d£
J R n

extends to a self-adjoint Dirichlet operator (A, H ^ ,2 (Rn)), see Exampl 4.12. 
Further, for u G H ^,2 (Rn) we find

£{u,u) := jf  (—Au){x)u(x)dx

=  f  ip{S)u(Z)u(Z)d£ = [  'ipiO\u(£)\2 d£,
J R n  J R n
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which implies that the symmetric Dirichlet form related to (A, i / ^ ,2(Rn)) has 
the domain D(£) = and it is given by

(5.6) £{u,v) = [  0 (f)u (f)£ (f)d f = f  [ij;(D)}iu-[iJ>{D)]*vdx,
J Rn J R n

where —[ip(D)]%u is given on Co°(Rn) by (5.5) with 0(f)*  instead of VKO- 
particular, since (1 +  0(-))5 is aiso a continuous negative definitive function 
with values only in R, we see that for any continuous negative definite func­
tion 0  : Rn —> R the space ( i /^ ’̂ R 71), (•, -)^i) is a symmetric Dirichlet space 
and therefore u E / / ^ ( R 71) implies always that u+ A A and it A A, A > 0, 
belongs to T f^ fR 71) too.

The operator —0(D ) is invariant under translation, i.e. for the operator 
ry : Rn —> R, x i-* x — y, we have

ry{ -^{D )u )(x )  =  - ( 27r ) " t  f  e%(x~vH'ip(£)u(£)dfi
J R n

=  - (27 r)“ n/2 JR n e ix S'ip{Z){Tyu)A(Z)d{i =  ~'ip{D)(Tyu)(x). 

Clearly this calculation applies also to — [0(D )]1//2 which yields

£(Ty{u),Ty(v)) = ([lp(D)]l/2 {TyU),[li;(D)}l/2 {TyV) ) 0

= {jy (\4){D)]l/2 u) ,Ty ([^(D )]1/2^ ))0 

=  {[ip{D)]l/2 u, {ip(D)]l/2 v ) 0 = £ (u ,v),

thus £  is translation invariant in the sense that

£(Ty(u),Ty(v)) = £ (u ,v),

for all it, v E D{£) and y E Rn.
We are looking for another representation of £(u, v) for smooth functions. 

We know the continuous negative definite function 0  : R71 —> R has a Levy- 
Khinchin representation

(5.7) 0 (f)  =  c +  q{f ) +  /  (1 -  cos(x • f ))v(dx)
J K\{0}

Now, substituting (5.7) into (5.6) we can get

(5.8) £ ( u ,  v) = c L  u(x)v(x)dx  +  / ri> ±  %i9 f £ dVd [̂ dx

+  ^ f  f  (u (x  +  v) — u{x))v(x  +  y) -  v(x))v(dy)dx.
2  J R n  J R n
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Let us consider (5.8) for u ,v  E C'o°(Rn) (or i f^ ,1(Rn) with supp uflsupp u =  0.
This implies supp ^  n  supp = 0 for 1 < / < n, by the locality of the
differential operator and therefore we find

£(u, v) =  i [ f (u{x +  y) -  u{x)){v(x -\-y )~  v(x))v{dy)dx.
I  J m n  m n

E xam ple  5.12. Let ip : Rn x Rm -> 1  be a continuous negative definite 
function with Levy-Khinchine representation

(5.9) ip(^ 77) =  [ f  (1 -  cos(£ • x  +  77 • y))v(dx, dy)
J  J ( R n  xRm)\{0}

where 1/ is the corresponding Levy measure on (R71 x Rm) \  {0}. Associated 
with ip we introduce the scale of spaces H ^ ,s(Rn x Rm), s > 0, by

(5.10) x Mm) =  { « £  L2(Rn x Rm) | ||u||*,, < 00} 

where

(5.11) IMI%,,= i  L (l + 4> (i,r])Ynt,ri)\2 dndi-
J R n J R m

Here u denotes the Fourier transform of it, i.e.

(5 .1 2 )  u (£ , 77) =  f  f  e~lx^~iyr)u(x,y)dydx.
J R n J R m

The Dirichlet form associated with ip has domain H ^,l(Rn x Rm) and is given 
by

£ * (u ,v )=  f  f  ip{Z,ri)u{Z,Ti)v(Z,ri)dr)dt
J R n j R m

= 0 /  I I {u{xi  -  x 2}yi  -  y2) ~  u ( x u yi ) ) {v (xi  -  x 2,yi  -  y2)
2 J R n  J R m  J R n x R m \ { 0 }

-  v(x i,y i))i/(dx 2 ,dy 2 )dyidxi.
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Chapter 6

H eat kernels and some of their 
estim ates

In this chapter, we will discuss estimates for the densities of transition func­
tions, i.e. the Markov kernels representing the semigroups under consider­
ation. We discuss mainly symmetric Feller semigroups since we can use 
Hilbert space methods to obtain regularity results.

First of all, let {Tt ) t > 0 be a symmetric Feller semigroup which we consider 
on Coo(Rn) fl L2(Rn). From the definition of Feller semigroup, for x  G IRn 
and t > 0 fixed, the mapping u i-> Ttu(x) is a linear continuous and positive 
functional on Coo(lRn) fl L2(Mn). From Riesz’s representation theorem, it 
follows that for x fixed there exists a Borel measure pt(x,dy) on B ^  which 
is uniquely determined and

(6.1) Ttu(x) = [  u(y)pt (x ,d y )
J R n

holds for u G C0 0 (Mn)r \L 2 (Mn). We can extend (Tt)t>o to all constants using 
the lemma below.

L em m a 6.1. Let (Tt)t>o be a Feller semigroup. Then we may extend Tt , 
t > 0, to all constant functions x a G R, and for a > 0 we have

(6.2) Tta < a.

By monotone convergence we find using (6.2)

1 > (Tt l)(x) = lim [  uu{y)pt{x,dy) = [  1 pt{x,dy).

Therefore each of the measures pt (x,dy), x  G W 1, t > 0, is a sub-probability 
measure. Hence we may extend Tt to Bb(Rn) just by defining the operator Tt
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by

(6.3) Ttu(x) := /  u(y)pt{x,dy) 
m n

for all u  G Bb{M.n). Moreover, we find that

\ f tu(x)\ < \u(y)\pt (x, dy) < \\u

or
HTHIoc < Halloo

i.e. Tt : Bb{M.n) —> {u : Mn —> R \ Ĥ Hoo < 0 0 } is a positive preserving 
contraction. So we claim

T heorem  6.2. Let (Tt)t>o be a symmetric Feller semigroup and define pt {x, dy) 
by (6.1). Then pt (x , dy) is a sub-Markovian kernel for every t > 0.

Now we are in the position to prove also the semigroup property of the 
extended family (Tt)t>o of the Feller semigroup (Tt)t>o■ Foru  G Coo(Rn) and 
t ,s  > 0 we can use Fubini’s theorem

/  pt+s(x, dz)u(z) =  Tt+Su(x)
J Rn

for all t ,s  > 0, x  G Mn and A  G The equations (6 .4 ) are called the
C h a p m an-K o lm ogorov  equations, and it follows that

Tt(Tsu ){x )=  pt (x,dy) [  ps(y,dz)u(z)
JR n J Rn

and the uniqueness part of Riesz’s representation theorem gives

(6.4)

(6.5) Tt+s — Tt ° Ts — Ts o Tt.

In addition, since T0 =  id, we find that

(6 .6)

implying that

p0 (x,dy) = ex(dy)

for all x  G Mn, i.e. Tq = id. Therefore we have proved
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T heorem  6.3. Let (Tt)t>o be a Feller semigroup. Then there exists a family 
(pt(-,-))t>o of sub-Markovian kernels on Rn x satisfying the Chapman- 
Kolmogorov equations (6.4)-

For L 2 —sub-Markovian semigroups the situation is more complicated since 
x  (->• T ^ u ( x )  in this case is only almost everywhere defined. In the situations 
we are interested in however, we can assume the existence of a sub-Markovian 
kernels with similar properties as discussed for Feller semigroups. For details 
we refer to Chapter 3 in [18] and Chapter 6  in [19]

D efinition 6.4. An L2-sub-Markovian semigroup (Tt)t>o is conservative if 
Tt l = 1 a.e. for all t > 1.

Let {Tt)t>o be a symmetric Feller semigroup or an L 2 —sub-Markovian 
semigroup with representing kernels pt(x ,dy), i.e.

Ttu(x) = J  u(y)pt (x, dy).

We want to find condtions for pt (x,dy) having a density with respect to 
Lebesgue measure, i.e.

Pt(x, dy) = p t( x ,y ) \ {n\d y ) ,

and then we long for estimates for the density pt(x , y). The following result, 
due to Dunford and Pettis, is a tool for getting the existence of densities:

Theorem  6.5. Let K op : LP{G) —> L°°(G), 1 < p < oo, be a bounded 
linear operator. Then there exists a kernel function K  : G x G —► <C, K  £ 
L°°(G) <S> LP'(G), 1 + ^  = 1, such that

(6.8) K opu(x) = Jq K {x , y)u(y)dy.

Conversely, every operator defined by (6 .8 ) with a kernel function K  : G x 
G —> C, K  e  L°°(G) <8) LP'(G), ^ ^  = 1, defines a bounded linear operator
from LP{G) into L°°(G). Furthermore, the operator norm of K op is given by

\\Kop\\ = esssupx6G ||AT(:r, OIIlp'-

In case that the semigroup under consideration is also a conservative sym­
metric L2—Markovian semigroup the next result taken from N. Varopoulos[34] 
gives estimates for the operator norms o fT t, and these estimates are diagonal 
estimates for the corresponding densities.
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T h eo rem  6 .6 . Let (Tt)t>o be a symmetric conservative sub-Markovian semi­
group on L2(Rn) with related regular Dirichlet form {8 ,D (£)). Moreover, let 
p > 2 and N  := ^  > 2. The following estimates are equivalent

(6.9) IMIlp < c£(u,u) for all u G D{£)\

(6.10) ||u ||i t4/W < for a l l u e  £>(£) n  L1 (IC)
(6.11) | |r t ||i i_ t co <  d t ~ N ! 2 for all t >  0,

where | |B ||x - r  denotes the operator norm of B  : X  —> T.

Note that (6.9) is a Sobolev-type inequality and (6.10) is a Nash-type 
inequality.

Note that the symmetry of pt(x ,y) implies by the Chapman-Kolmogorov 
equations and the Cauchy-Schwarz inequality

i  i.

pt{x,y) <p?{x>x)Pt{y,y),

which gives

i i
ess s u p ^ ^ n  pt{x, y) < (esssupxeRn pi (x, x))(esssupy€Rn p i (y, y))

= (ess supx£Rnpt(x ,x ))  < (ess supx>yeRn pt{x,y))

i.e.

(6.12) (ess sup X)y€mnpt(x,y)) = (ess supxGRn pt{x,x)).

Therefore (6.11) is a diagonal estimate for pt (x ,y ), i.e. an estimate for 
pt{x,x) which controls also pt (x,y).

In case we have instead of (6.9) a Garding-type inequality

IM|\p < c2 £\{u , u) = c2{£{u, u) +  A(u ,u )0), A > 0,

we obtain instead of (6 .1 1 )

< Cz W jN / 2 -

and
ext

ess supx,y&Rnpt{x,y) < q ( A ) ^ .

The following result which is due to R.Schilling and J. Wang[29j  relates The­
orem 6 . 6  to subordiante semigroups.
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T h eo rem  6.7. Let {Tt)t>o be a strongly continuous contraction semigroup of 
symmetric opertators on L 2 {X, m) and assume that for each t > 0; Tt \Lz(X,Tn)nLl{x,m) 
has an extension which is a contraction on L l {X ,m ), i.e. ||Ittt||i < ||u||i for 
all u G L 1(X , m) fl L 2 (X , m). Suppose that the generator (A, D{A)) satisfies 
the following Nash-type inequality:

(6.13) \\u\\lB(\\u\\l) < (A u,u), u £ D(A), \\u\h = 1,

where B  : (0, oo) —» (0, oo) is an increasing function. Then, for any Bern­
stein function f , the generator f(A )  of the subordinate semigroup satisfies

(6.14) M /  (b  ( ^ ) )  < ( f(A )u ,u ) t u 6 D (f(A )), HI, =  1.

The following example gives a diagonal estimate of transition function in 
the context of the Cauchy semigroup. The aim is to have diagonal estimates 
of transition function of subordinate Cauchy semigroups in the end.

E xam ple  6 .8 . Let (X t)t>0 be the two-dimensional Cauchy process whose 
symbol is 'ifi^rj) = y/ £ 2 +  rj2 and the transition function is

(6.15) P t { x )y) = ^ L
2ir { { x 2 +  y 2 ) +  t2)3/2

-  Us-
x=0,2/=0Therefore we have ||T*||Li_ Loo =  pt (0) =  ^  ((3.2 + y 2 *) + t 2 ) 3 /2

ing Theorem 6.6, we know from (6.15) that iV =  4 in the inequality (6.11) 
which implies

(6.16) \\u\ \3L 2 < c£(u,u), u G D(S) D L ^ R 2), |M|z,i =  1.

In order to apply Theorem 6.7, we rewrite (6.16) as

IMIi2^ (IM Ii2) ^  (A u ,u ) where B(x)  = -:r1//2,

therefore we can deduce from Theorem 6.7 that if we let f ( x )  = x a, (0 <  
a < 1), we have

IN Ih f  ( B ( ^ 2^ ) )  -  ( ^ /u >u)> u 6 D(A/)' IM k 1 =  1 

M lb f ( \  ( ^ f )  < ( ^ - “ >

( “ 21 )  -  (Af u,u)

(6.17) \\u\\^2 a < d (A^u}u)
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Using Theorem 6.6 this implies

l | T / < c " r ^ ,  t > 0 , N '  = i / a
/ N*

which is equivalent to pi (0) < c"t r .

We want to prepare some considerations for following sections. Let

(6.18) L(XiP) =  j ^ j L (au(x )£ . )

be a uniformly elliptic differential operators with coefficients aki = aik £ 
Cb(Mn). Thus with 0 < Xq we have

(6.19) Ao|£|2 <  £  a u W t e , <  Ao'lfl2.
k , l = 1

It is well known that in this case there exists a fu n d a m e n ta l so lu tio n  
T : (0, oo) xMn x E n -» R to the operator ^  — L(x, D) such thatY( t , x , y)  > 0, 
x T( t , x ,y)  is a C 2 —function, 1 1-> Y( t , x ,y)  is a C l —function, Y( t ,x,y)  =
Y( t , y ,x)  and

(6.20) 9V(Ux,y ) _ L (x ,Dx)Y( t ,x ,y)  = Q

and

(6.21) limt_>0 f  Y{t , x , y) f (y)dy  =  f ( x )
J R n

for f  £ Cb(Mn). Moreover it holds

(6.22) Ttf ( x ) =  [  Y( t , x , y ) f ( y )dy , t > 0,
J R n

where {Tt)t>o is the Feller (or Lp—sub-Markovian) semigroup generated by 
an extension of L(x,D) .  (Compare Theorem 2.9 in [18] or A.Friedman[8 ], 
or S.Ito[1 4 ].)

Thus Y( t ,x,y)  is a heat kernel and we long to estimate it. Under our 
assumptions two-sided estimates were obtained by D.Aronsonfl]:

T h eo rem  6.9. For Y as above it holds

(6.23) /ciTl l ( t ,x,y)  < Y( t ,x,y)  < K2 Y1 2 ( t , x ,y)  

where

(6.24) r [ t t X iV )  = —

is the heat kernel associated with 7 A(n), A(n) being the Laplace operator in
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Now let f  be a Bernstein function associated with the convolution semi­
group (r]t)t>o, supp?7f([0,oo}). We consider the subordinate semigroup

(6.25) T / u ( x ) =  [  [  T{s,x,y)u(y)dyr]t (ds).
J 0  j R n

With

(6.26) T f ( t , x , y ) = [  T(s,x,y)r}t(ds)
Jo

we find

(6.27) T /u ( x )  =  Tf {t, x , y)u(y)dy.

Now (6.23) implies with

, r°°
(6.28) T l J ( t ,x ,y)  = /  T^is^x^y^t ids)

Jo

the estimates

(6.29) /cir7l ,/ (i, x, y) < Tf {t, x, y) < «2r 72,/(£, x, y).

We will try to interpret (6.29) in geometric terms later on, see Chapter 7.
Finally, we want to state a comparison theorem on Dirichlet forms which 

we take from the paper [33]. For i = 1,2, let (£^l\  D ( £ ^ ) )  be a symmetric 
Dirichlet form on L 2 and { T ^  : t > 0} the symmetric strongly continuous 
Markovian semigroup on L2 associated with £ ^ .

T h eo rem  6.10. Assume that D (£ ^ )  D  D ( £ a n d  that there is a positive 
number C such that

(6.30) £ {l){u,u) < C £ (2 ){u,u), u e  D{£ (2)),

and moreover suppose

(6.31) ||T((1)|| 1—>00 ^ g(t), t > 0,

where g is a right continuous nonincreasing function and satisfies the follow­
ing condition: H{£) =  J^°{G(rj)/g(G(r]))}dr} < +oo, £ > 0, G being the left

( 2 )continuous inverse function of g. I f T )  ’I = 1 m —a.e., t > 0, then it holds 
that

(6.32) \\Tti2) \\1^ 0 0 <2h( t /2C) ,  t >  0,
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where h is the inverse function to H .
In particular, i f tgi t )  is continuous and nondecreasing, then

(6.33) I l l f ’U1 —>00 < 2g{t/2C), t > 0.

Therefore, , / t | |7 ’/ 1̂ || i_4oo is continuous and nondecreasing in t, then 

||7(®||1-m» < 2||T(̂ 2C||1_too, t > 0.

We immediately obtain the following 

C oro lla ry  6.11. Let D ( £ ^ )  = D ( £ a n d  assume that

C\S^2 \u ,u )  < £^l\u ,u )  < C2 £^2 \ u , u ) ,  u G £^l\

for some Ci > 0, i =  1,2. If 1 =  1 m —a.e. , t > 0, and is
continuous and nondecreasing in t for each i , then

(6.34) (1/2)117^,11,^, < \\Tt{% ^  < 2 | |T $ /2)t||1̂ ), t > 0

Since we know HTtHi-̂ oo =  pt{0) in case of a Levy process, we can write
(6.34) as

(6-35) lpgU<>) <  P(1>(0) <  2p(c,/2),(0)

in the translation invariant case or

(6-36) ^P2C2((0) <  P t )(x,x)  < 2P(c,/2)t(°)

in the general case.

R em ark  6.12. p\2̂  is still translation invariant in the general case.
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Chapter 7

A Geom etric Interpretation of 
the Transition D ensity of a 
Levy process

In this chapter, we mainly summarize some results from the paper [20] 
which will be used in the next chapters. From now on, (X f ) t > 0 is a symmetric 
Levy process, i. e. ip is real-valued, in addition, in Levy-Khintchine formula, 
we let c = dj = q̂ i = 0 which means

^ ( 0  ~  (1 — cosy& vidy), v Levy measure
J R n \ {  0}

and ip(£) =  0 i f  and only if £ = 0. Then

d+(£,v) : = '0 1/2(£ -  ??)

is a metric on R n.
First of all, we introduce the notion of a metric measure space.

D efin ition  7.1. A m e tric  m easu re  space is a triple (X , d,p)  where (X , d) 
is a metric space and / i  is a measure on the Borel sets of the space X.

We are mainly interested in metric measure spaces whose metric is in­
duced by a negative definite function. In particular, every locally bounded, 
non-periodic negative definite function with ip{0) =  0 induces a metric on Rn 
by

(7.1) d^ : Rn x R n -» [0,oo), d ^ , r j )  := yjip(£ -  rj)

The metric d$ is invariant under translations, i.e.

c W f +  C,»7 +  C) =  <h(Z>ri)’
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To proceed further, consider , rj) =  ipl 2̂ {f, — rf) and

B ^ )r ) :  =  b e M n | ^ )r?) < r }
=  {rj e  Rn I V>(£ -v i )  < T2}

Notice that 4 +  -Bd̂ (0 ,r). We set

m(r)  := inf{|?7| | ip1̂ 2^ )  — r},

M(r)  := sup{|?7| | ipl^2 (p) = r}.

When B (x , p) denotes the Euclidean ball with center x and radius p,

B(f,m(r))  C B ^ f a r )  C B(f ,M(r) ) .

Lem m a 7.2. The metric d$ generates the Euclidean topology if and only if 
limi^ooV'K) > 0.

D efin ition  7.3. Let ip : Rn -* R non-periodic, continuous negative definite 
function such that d$ is a metric which generates the Euclidean topology. 
Then we call ip to be m e tric  g en era tin g  on Rn and this class is denoted by 
MCAf(Rn), i.e. ip E MCAf (Rn).

In the following we assume always ip E AiCAf(Rn).

We want to study the metric measure space (Rn, d^, A ^ ). For this we 
need to introduce the notion of volume doubling which plays a central role in 
the analysis on metric measure spaces.

D efin ition  7.4. Let (X,d ,p)  be a metric measure space. We say that 
(X,d ,p)  or p  has the volum e doub ling  p ro p e r ty  if there exists a con­
stant C2 such that

(7.2) v {Bd(x, 2r)) < c2 p { Bd(x , r))

holds for all metric balls B d(x,r)  =  {y E X  : d(y,x) < r} C X .  If (7.2) 
holds only for all balls with radii r < p for some fixed p > 0, we say that 
(X,d ,p)  (or p) is locally volume doubling. If volume doubling holds, then 
for R  > 1,

, i{Bd{x, R)) <  1)) =  R]0̂ i x ( B d(x, 1)),

i.e. R p ( B d(x, R)) has at most power growth.
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An important class of metric measure space are so called homogeneous 
spaces (in the sense of Coifman and Weiss): {X,d,g)  is a homogeneous 
space if there exists N  > 1 such that for all x  E X  and all radii r > 0 the 
ball B d(x , r) contains at most N  points x \, ■ ■ • ,x n  such that d{xj,Xk) > r/2 
for j  ^  k.

L em m a 7.5. If (Rn,rf^, A ^) has the volume doubling property, where xp E 
MCTZ(Rn), then it is a homogeneous space.

The aim is to understand the transition density pt(x) of a given Levy 
process in geometric terms using the fact that ip1/ 2 is a metric. We assume 
in the following always that { X f )t>o is a symmetric Levy process, that its 
transition function has a density pt given by

(7.3) pt{x) = (2tt)-" [  e - ^ e - W V d t ,
J R n

and that d ^ , r j )  = 'ipl^2(^ — rf) is a metric on R n which has with respect to 
the Lebesgue measure the volume doubling property.

The first observation is that

(7.4) pt(0) =  (2tt)-" f  e -m } d t = (27r)"n j f °  A<n)(B'i*(0, f j ) ^ Tdr

which yields under the assumption of volume doubling:

T h eo rem  7.6. ([20] or [22]) I f  the metric measure space (Rn,d^, A ^ ) has 
the volume doubling property then we have with constants 0 < 71 < 72

(7.5) 7iA(n)( ^ ( 0 ,  4=)) < Pt(0) <  ± ) ) .

Thus we can interpret the diagonal term in the setting of the metric mea­
sure space (Rn, d^, A ^).

Following further [20] we note that Theorem 7.6 also extend to foip where 
f  is a Bernstein function with corresponding convolution semigroup (r)t)t>o, 
i.e. we have

(7.6) ^  f°°  < A ' " ) ( B ^ ( 0 , ^ | ) )

< 7 2 f  AW(B^(0,^)h(<lS)
J O  y / S

provided the metric df0$ has again the volumn doubling property.
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We can apply these results immediately to the Aronson estimates (6.17) 
and (6.23). First we observe that (6.17) implies

(7.7) KiVXl(t, x, x) < T(t, x, x) < K,2 TX2 (t, x, x)

but

(7.8) T7 (t,a:,x) = p / ( 0 )  =  (47T7t)-n/2

where p}(x) is the transition density corresponding to 7 A(n).
Thus we get

(7.9) «iPfAl(0) < T( t , x ,x)  < k2p72(0).

Note that x i-> T( t , x ,x)  is in general non-constant, i.e. it is x —dependent, 
but the lower and upper bounds are independent of x and are understood in 
the metric measure spaces (Rn,df(71|.|2), A ^ )  and (Kn, df(72|.|2), A^) .  Note 
that by Lemma 3.9.34-A in [17] the two metrics d /( 7 l |-l2) and <̂ /(72| |2) are 
equivalent. In case that f  is a Bernstein function such that f( \  • |2) induces 
a metric on Rn having the volume doubling property with respect to Lebesgue 
measure, using (6.23), we first arrive at

(7.10) ( t , x ,x)  < Tf ( t , x , x )  < K2 T 1 2 ' f ( t , x ,x)

and since
, r  00

(7.11) T1 , f( t , x , x ) =  r 7(5, 2:,a:)77f(rfs)
Jo

it follows further
r o o  r o o

(7.12) ki ^  p'l1 (0)r}t {ds) < Tf ( t , x , x)  < k 2 Jq p72(0)r)t{ds).

Now we can use (7.5) and (7.6) to deduce

(7.13) -)=)) <  Tf ( t , x , x)  < K;A<n)(B/(7al |2)( 0 .^ ) ) -

Again we conclude that T^( t ,x ,x)  is controlled in terms of two metric mea­
sure spaces carrying equivalent metrics and these controls are x —independent.

So far we dealt only with pt{0) =  p f(0). As discussed in [20] there are 
good reasons to conjecture that in many cases there exists a second metric, 
in general depending on t, such that

(7.14) pt(x -  y) =  pt(0)e~6* ^x,v).

42



Clearly the metric must be translation invariant too. 

Here are some examples:

In case of the Brownian motion we have 

(7-15) 5ttw ( x , y )  = - j= \x  -  y\,

for the Cauchy process we have in one dimension

(7-!6) h\\(x>y) = ^ln[^ Vj2 —  ],
for the symmetric one-dimensional Meixner process we have

(7.17) SttM( x , y )  = -  In
p ^ t + i ( x - y )  ^

r(!) -  V  W l  4-

Moreover, Theorem 7.1 in [2 0 ] gives classes of examples where (7.14) holds 
for subordinate Brownian motion in dimension n =  1,2,3.

Again we can apply this to the Aronson estimates, assuming that /  o | • |2 
leads to a representation (7.14). 7n this case we can apply (6.23). For this 
we note first that now

r o o

T 'rJ( t , x ,y)  = j^ r 7(5, x , 2/)77f(aJs)
r o o  |a: —y |2

=  / p5(0)e 77t(ds)

=  pf(7l f ) (0)e‘ {-2/hi i)(ll!/),

which yields
(7.18)

and hence we have in this case a rather uniform geometric control on T l ( t , x, y).

Eventually we want to give a probabilistic application of these results. For 
this let (X ? )t>0 be a symmetric Levy process such that the metric measure 
space (Rn,c/^,A^) has the doubling property. For R  > 0 and x  G we 
introduce the first passage time of B R(x) = {y G Mn | \x — y\ < R} as

(7.19) aR := inf{* > 0 | \ X f  - x \ >  R}.
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Following R.Schilling[25] the estimates

(7-20>  ^ T H a  *  ZSUP1€I<1 ^ ( r) suP|«l<i^(sfl)

hold. However, within the metric measure space (M.n,d^, A ^ ) these estimates 
become

(7.21)  < E x(ax) < --------- — T ,
SUP|£|<1 “J(°> * )  SUP| |̂<1 d$(°> 8 *

z.e. they have a geometric meaning.
Note that (7.21) is an estimate for an expectation, hence the metric should 

be that we encounter in the Fourier-transformed space: E x ( g r ) is the Fourier 
transform of the distribution of g r  at 0 G Mn.
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Chapter 8

On Pseudo-Differential 
Operators Generating Markov 
Processes

Already in the previous two sections we discussed non-translation invariant 
generators of Feller and L 2 —sub-Markovian semigroups, namely the genera­
tors of the subordinate semigroups (T /)t>o where f  is a Bernstein function 
and (Tt)t>o is generated by (an extension of) L (x,D ) as given by (6.18). In 
the section we want to summarize some basic results on pseudo-differential 
operators generating Markov processes. Our main reference is W.Hoh[13] 
and [17]-[19].

Let q : Rn x Mn —» C be a locally bounded function such that for any 
the function q(x, •) : Mn -» C is continuous and negative definite. On 

Cq°(W 1) or S (R n) the operator

(8.1) q(x,D )u(x) = {2n) ~ n / 2  f  eix*q(x, £)&{£)(%
J R N

is defined and is called a pseudo-differential operator with negative 
definite symbol q(x , £).

As a first result we state

T h eo rem  8.1. Let q : R71 x Rn —► C be a locally bounded function such that 
for any x  G Mn the function q(x, •) : Rn —> C is continuous and negative 
definite. Define on Co°(Rn) the operator

(8.2) -q (x ,D )u (x ) := [  elx*q(x,£)u{£)d£.
m n

Then the operator (—q(x,D),CQ°(Rn)) satisfies the positive maximum prin­
ciple.
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Proof. First note that by Lemma 3.6 we have

k(z ,OI < c ( z ) ( l  +  |£|2)

for all x  G Rn and £ G Mn, which implies that the operator q{x,D) is 
well defined on Co°(Rn)- Now let u G Co°(Mn) and xq G Mn such that 
u(xo) =  supx€Kn u(x) > 0. We have to prove that — [q(x, D)u](xo) < 0 holds. 
Consider the function 0 XO : Rn —> C, ipXQ(€) = q{xo ,0 -  By our assump­
tions £ -> "0X0(0 is a continuous negative definite function and the operator 
~ 4 >x0(£) is a continuous negative definite function and the operator 
defined on Co°(En) by

~'ipXQ(D)u(x) = eix'fyxo(£)fi(£)d£

=  - ( 27r ) " t  elx^ ( z 0,£)u(£)d£

satisfies the positive maximum principle, thus we have

- i(jxq{ D ) u { x o) <  0 

for u(xo) =  supxGKn u{x) > 0. But for any u G Co°(lRn) we have

~[q(x,D)u](x0) =  -(27t)"5 eixo'^ ( z 0,£)fi(£)d£

= —(2tt)~^ jf  ̂  elso'e^ * o (0 * ( 0 ^

=  - 0 IO(^)^(^o)

which implies the theorem. □

Having the Hille-Yosida-Ray theorem in mind or the results about sym­
metric Dirichlet forms we may ask when is is possible to extend —q{x, D) as 
in Theorem 8.1 to a generator of a Feller semigroup or L 2 —sub-Markovian 
semigroup.

In the affirmative case we may ask whether the transition functions of 
these semigroups have densities and we may try to estimate these densities 
and to give these estimates a geometric interpretation.

For constructing semigroups with a pseudo-differential operator as gener­
ator we introduce two approaches. The first uses Hilbert space methods and 
a pertubation argument and is taken from [15], see also [17].

Note that we just recall the results in a straightforward way, neither do 
we go into detailed proofs nor do we optimize conditions on the symbol class.
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Let ip : Rn —> R be a continuous negative definite function and assume

for all |£| > 1 with some c > 0 and r > 0. We consider now a symbol

holds for all £ G Mn, and Cm is a constant such that

(8.8) (1 +  M2)M/2 <  C m  £  \ r f \  . i j e N J .
m<M

We need the following assumptions
(A .2 .M ) The symbol <72(37 0  is M -times continuously differentiable with 
respect to x and for (3 G Nq, \{3\ < M , there are functions G L l (Rn) such 
that for M  > n +  1

(8.3)

(8.4) q : R” x R" -»■ M

with decompostion

(8.5) ?(z>f) =  9 i(0  +  9 2 ^ ,0

where q\ and <72(27-) are continuous negative definite functions. 
In addition we assume for some constants 0 < cq < c\

( A . l )  cq(1 + ^(f)) < 0i(O < ci(l + V>(0)

for all £ G Mn , |£| >  1 .
We define the constant 7m &s

(8 .6) 7 m  : = (8CM(2(1 +  1 +  K|2) - M+1^ ) _1

where c^ is such that

1 +  i ’iO <  (1 +  c^ ) ( l  +  l£l2)

(8.9) <  ^ ( x ) ( l  + -0 (0 )

(A .3 .M ) With the constant 7m > 0 as in (8 .6 ) we have

(8 .10)
\ 0 \ < M

where c0 is taken from (A .l)
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T h eo rem  8.2. Let ip : Rn —► R be a continuous negative definite function 
satisfying (8.3) for some r > 0. Assume that (A .l), (A .2 .M) and (A.3.M) 
holds with an integer M  > V 1) +  n. Then {—q(x, D), Co°(Rn)) is closable 
in C ^ R 71) and the closure is the generator of a Feller semigroup.

R em ark  8.3. This theorem is due to Jacob [15], we followed in our pre­
sentation Hoh [13]. The interpretation of the result is that certain pertur­
bation —q2 (x ,D ) of —qi(D) are admissible in the sense that —q(x,D ) =  
—qi(D) — q2 (x, D) is also a generator of a Feller semigroup.

Let q{x,D ) be as in Theorem 8.2 and denote by B \ the corresponding 
bilinear form

(8.11) B \(u ,v ) = (~ q {x ,D )u ,v ) 0 +  \ ( u ,v )0, A > 0.

Originally defined on Co°(Rn) one can prove, see [12], [13], that B \ has a 
continuous extension to / / ^ ( R 71) and that —q(x,D ) extends to a Dirichlet 
operator with domain H ^,2 (M.n).

The following resulte is taken from [13], Corollary 8.4, however, it is 
essentially contained in [12]. We simply write B  for Bo:

T h eo rem  8.4. Under the assumption of Theorem 8.2, and in case q(x, D ) is 
a symmetric operator on L 2 (Rn), then (B, iiT ^ R "))  is a regular symmetric 
Dirichlet form.

The results of Theorem 8.2 and 8 . 4  depend on certain estimates which
we collect in the following. Details are given in [12] and [13]. Under the
assumptions of Theorem 8.2 we have

(8.12) ||q(x, D)u\\As < c\\u\ \ ^ a + 2  

for s G R, \s — 1| +  1 +  n < M , and u G H ^,s+2( Rn);

(8.13) \Bx(u,v)\ < cIM I^ilM l^i

for M  > n +  1 and all u, v G H (Rn) .
Moreover, using (A.3.M) it holds for all A > A0 for some A0 G M

(8.14) B x(u,u) > | |M |2 , tl ,u  e

Finally for s > 0, M  > |s — 1| +  1 +  n and u G H ^,s+2 (Rn) we have

(8.15) IM ka+2 < c{\\q(x, D )u \\A s +  H o ) .

The second method of constructing Feller semigroups starting with a pseudo- 
differential operator with a negative definite symbol is using a symbolic cal­
culus introduced by W.Hoh[12], see also W.Hoh[13].
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D efinition 8.5. A. A C°° function q : R n x Rn —> C is said to be a symbol 
in the class if for all a ,/? G Nq there are constants ca#  > 0 such that

(8.16) \d%d$.q{x,Z)\ < ca^ { \  +  ^ ) ) S = ^ i S l 1

holds for all x  E Mn, £ £ Rn with m  E R called the order of q. Here the 
function p is defined as p : No -» N0, p(k) =  k A 2.
B . If instead of (8.16) we have

(8-17) \d£d%q(x,£)\ < ca^{l +  ^ ( 0 ) m/2

we called q a symbol in the class 5™’̂ .

The following result is due to W.Hoh, see also [18].

Theorem  8.6. Assume that (8.3) holds. Let q E S 2' ^  and assume that 
£ i-> q{x,£) is for every x  E Rn continuous and negative definite. I f

(8.18) q(x,£) > £(1 +  ^ ( 0 )

for some 5 > 0 and all |£| > R > 0, then —q{x,D ) defined on Co°(Rn) 
closable in CQO(Mn) and its closure generates a Feller semigroup.

Note that (8.18) implicitely requires q(x , £) to be real-valued.

T heorem  8.7. I f  q is as in Theorem 8 . 6  and q(x,D ) is a symmetric operator 
on L2(Rn); then (B, / f^ ’̂ M71)) is a regular symmetric Dirichlet form.

Using Hoh’s calculus, in his thesis [4] , see also [5], B. Bottcher succeeded 
to construct a fundamental solution to the problem

^  + q{x,D )u = f  

lim u(',t) =  uo E L 2 (]Rn).

His results allow to consider the expression

(8.19) (27r)"n/2 [  eixte~q M u{Z)dZ
J Rn

as approximation (fort > 0 small) o fT tu, {Tt)t>0 being generated by —q{x, D), 
compare [5], p. 1241-

We will return to this result later on.
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As outlined in [16] or [20], see also R.Schilling[26], given a ’’nice” Feller
process, we can calculate the symbol of its generator as

j r x ( p i ( X t - x ) - S  _  1 N
(8.20) -q {x , f ) =  limt_>0 -----------------------.

This formula enables us to identify many subordinate processes as being gen­
erated by a pseudo-differential operator. This applies for example to the pro­
cesses associated with (T /) t>o, T /  given as in (6.19).
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Chapter 9

An Exam ple for Diagonal 
Estim ates in Case o f a Simple 
Generator w ith Variable 
Coefficients

A major aim of our thesis, as indicated in the introduction, is to explore 
in geometric terms how the non-isotropy with respect to the co-variables of a 
negative definite symbol is reflected in the behavior of the transition density 
of the corresponding process. Moreover, we want to include the case of non­
translation invariant generators and use the idea of freezing coefficients to 
get some insights. In this section we want to provide a class of toy-examples.

Let fa  : Rn —> R and fa  • Rm —»• R be two continuous negative definite 
functions with Levy-Khinchine representations

(9.1) fa i t )  = JR n m ( 1 -  cos{x£))i/i(dx) 

and

(9.2) fa(r)) = f  (1 -  cos{yrj)ffi2 (dy),
J Rm\{0}

respectively. Let a\ : Rn —> R and a2 : —> R be two continuous functions
such that 0 < a\{x) < ||ai||z,oo < oo and 0 <  a2 (y) < ||a2||z,°° < oo. Then on 
Rn x Rm a negative definite symbol is given by

(9.3) q{x, y, f , 77) =  77) +  a2 {y)fa{£) +  a ^ f a i y ) ,

where ip : Rn x Rm -> R is a further continuous negative definite function 
with corresponding Levy measure v.
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We assume with a constant Ki that

1 +  ^ ( 0  +  ^2 fa) < « i( l +  V;K ^ ) ) a

for some a  E (0,1].
Let q(x,y, Dx, Dy) denote the pseudo-differential operator

q{x, y, A ,  Dy)u{x, y) = (27r)"1̂  [  [  elx(ieiyriq{x, y, f , rj)u(^ r))dr)d£.
JKn JRm

P ro p o s itio n  9.1. The operator q(x , A ,  A )  maps F A 2(Mn x Rm) contin­
uously into L 2 (Mn x Mm).

Proof. We need to show

| | g ( z ,  y , A , A M U a < C | | w | | ^ >2.
First we note

\\q{x,y,Dx,D v)u \ \ L 2

< |M A >  A M U 2 + \\a2 {-)ipi{Dx)u \ \L 2 +  I M O W A M U 2-

Now, by the definition of A ,  Dy) it follows from Plancherel’s theorem that

IM A :, A /H U 2 =  ||Ffa>(A , A M I U 2

and since A ,  Dy)u =  F _1 (?/;(•, ‘M ’> ’)) we find

I M A , A M U ’ =  II f (f - 1M - , - M t )))IU2

=  iw -, •)«(■. 01U2 =  ( f f  

-  { L f RJ i + ^ ) ) 2 \ ^ ) \ 2 dvds y

= IUIU.2,

Next we find

(9-4) I M O W A M U 2 ^ I M U H I W A M U 2-

Note that

(9.5) il>i(Dx)u(x,y) = F _1(^i(-)w(-,'))
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and again, by Planchrel’s theorem we get 

|| M D x ) u \\l * =  | | ^ l ( - ) * ( v ) I U 2

< k i ||( i  +  ^ ) qw(-,-)IU2 < Kill(i +  ^)w(-,-)lU2
=  11̂ 11-0,2 j

implying

(9.6) \\a2{’) ^ \ { D x) u \\L2 < Ki||a2||oo||w||v.,2-

Analogously we find

(9.7) \\ai(’) ^2 (D y)u\\L2 < K\ || <3-11| oo 11 110,2

proving the proposition. □

We define on 5(R n x R771) the quadratic form

(9.8) £(u ,v) = (q (x ,y ,D x,D v)u ,v ) L 2

P ro p o sitio n  9.2. The quadratic form £ has a continuous extension to 
H ^ ,1 {Rn x Rm), i.e. for all u ,v  G i7^,:L(Rn x Rm) it holds

(9.9) \ €(u,v) \  < «2|M |iM lM k i .

Proof. Since

(9.10)
£{u,v) = {q(x,y ,D x,D y)u ,v ) L 2 

= (i/>(Dx, Dy)u ,v ) L 2 +  {a2 (-)'ipi{Dx)u ,v ) L 2 +  (ai{-)ip2 (Dy)u, v ) L 2

We can treat each term separately. First we note

\(ip{Dx,D y)u ,v )L2 \ = |(F _1(7/;(-, •)£(•,-)),u(-,-))L2|

=  I M v M v ) , ^ - , - ) ) ^ !

=  I W ^(v )w(v ),V ^(v M v ))l2I
< \ \ ^ u \ \ l A \ ^ v \ \ L 2

(9.11) <  I M k i l M k i -

The second equality derives from Plancherel’s theorem.
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Next we consider {cl2 (')'4>\{Dx)u ,v ) l 2 \

= /  a2 (y)( iJi(Dx)u(x,y)v(x ,y)dx)dy
J R m  J R n

=  {JRnM Z ){F x^u ){£ ,y ){F x^ v ) { £ ,y ) d ^  dy

= L  a2^ ( L  ^U S){F x»tu)(Z ,y)$U O {Fx»tv)(€,y)<% )dy
J a\ \ J  JHl J

= X - ° 2^  {Juy ^ D^ x ’ y ty i  (Dx)v(x, y)dx^J dy 

which implies

\(a2 ( ')^ i(D x)u ,v )L2 \ < ||a2|U~ [  [  \'ipHDx)u{x,y)\\'ip?(Dx)v (xyy)\dxdy
J R m  J R n

< \M L °° \\^H Dx)u\\L4 'llJi { Dx)y\\L^

Since

(9.12) \ W ( Dx)u\\2L2 = [  [  M O H ^ v ) \ 2 d^drj
J R m  J R n

- Ki L  LJ R m  J R n

we arrive at

(9.13) \(cl2 (-)^i(D x)u ,v )L2 \ < « i||a2||L«>||it||^1i||u|U,i

Analogously we get

(9.14) \(ai{>)^2 (Dy)u ,v )L2 \ < «i||ai||Loo||w||^i||v||0,i.

Combining (9.11), (9.13) and (9.14) gives (9.9) with

(9.15) H2 > 1 +  Avi ( ||ai lloo +  11 a-2 11 £30) •

□
T h eo rem  9.3. The quadratic form  ( 8 , H *,1(Mn x Rm)) is a closed and sym­
metric form in particular S(u ,u) > 0; and sub-Markovian. Hence (£, i / ^ ,1(Mnx 
Rm)) is a symmetric Dirichlet form
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Proof. It remains to prove that £(u ,u) > 0 and is sub-Markovian. We claim 
that each of the three terms in the decomposition (9.10) is non-negative. 
For each term we use the Levy-Khinchin representation of if), ipi and ^ 2  

respectively to find

(9.16)

( i > ( D x , D y ) u , v ) L 2 =  -  I  I  I  ( u ( x i - X 2 , y i - y 2 ) - u ( x i , y i ) )
2 JRn J R m  JRnxRm\{0}

x {v(xi -  X2,yi -  2/2) -  v (x i,y i))v (d x2, dy2)dyi dxi

and

(9.17) {a2 {-)^\{Dx)u ,v ) L 2 =  i  f  a2 (y) f  [  (u{xi -  x 2 f y) -  u(xi))
2 JRm J R n  JRn\{0}

x (v(xi -  x 2 ,y) -  v (x l ))vl (dx2 )dxldyl

as well as

(9.18)

M ) M D v)u ,v ) L 2 = a i(x) vi -  y*) -  “ (*>vi))

x {v(x,yi -  y2) -  v (x ,y i))v 2 {dy2)dyidx

Since a \(x ) > 0 and a2 (y) > 0 it follows that £(u ,u) > 0. Furthermore, from 
the book [17] or [9] we also know £  is sub-Markovian. □

Thus we can associate with (£, x Mm)) or with —q(x, y, Dx, Dy) a
symmetric sub-Markovian semigroup. Clearly, a further symmetric Dirichlet 
form is (£ ^ , x Rm)) the generator of which is —̂ (Dx^Dy) and

(9.19) £^(u ,u ) < c£(u,u).

Thus adding the assumptions ^(0,0) =  0, and the conservativeness of the 
semigroup (Tt)t>0 generated by —q (x ,y ,D x,D v), we obtain by Theorem 6 . 6  

diagonal estimates for {Tt)t>0 in terms of geometric conditions related to 
(Tf)t>  0.

To provide an example we need the following result taken from Page 132 
in [18]

T h eo rem  9.4. Let (Tt)t>o be a Feller semigroup with generator (A ,D (A )) 
such that C£°(]Rn) C D(A) and A IC ^M 71) =  —q(x,D ) with symbol q(x,tf) 
in the similar form as (9.3) satisfying supxGRn M s ,01 < c(l +  |£|2). The 
semigroup {Tt}t>0 is conservative, if q (x ,0 ) = 0.

Conversely, if{T t }t>0 is conservative andq(-, 0) continuous, thenq(x, 0) =
0.
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E x am p le  9.5. In the following example we do not use the result of Theorem 
8.2 and 8.4, but we rely on their proofs. The structure of the coefficients 
imply that all commutators of importance are zero, hence no regularities of 
the coefficients is needed to get estimates. Take ip(ti,rj) = (|£|2 +  \rj\2)1//2, 
■01 (£) =  l£|1//2> ^ 2(77) — M 1/2, first °f afi» we need t°  check that {Tt)t>o is 
a Feller semigroup using Theorem 8.6. We let ?/;(£, 77) =  (|£|2 +  M 2)1 in 
Theorem 8.6. Since (|£|2 -f I77I2)^ is equivalent to (1 +  |£|2 +  |t7|2)^ — 1, we 
have q(x, y, £, 77) =  (1 + 1£|2 +  I77I2) 2 -  1 + a2 (y)\ti\i +  ai(a:)I7712. Moreover, we 
can choose |£| and [77! large enough so that we have a2 (y)\^\ 2 +ai(x)\r ] \ :2 — 1 > 
0. Furthermore, <7(2 , 7/, £ ,77) > (1 +  (|£|2 +  I77I2) 2) satisfies condition (8.18). 
Therefore, —q(x ,y ,D ^ ,D r]) is a generator of a Feller semigroup. Secondly, 
we can use Theorem 9.4 to verify that the Feller semigroup associated with 
our generator — q(x, y, D^) is conservative. To this end, we need to verify 
that supX I/eR\q{x, y , £, 77)! < c(l +  |£|2 +  I77I2) which is obvious since 0 < 
ai{x) < H î||z,°° < 00 and 0 < a2 (y) < ||cz,2Hz,00 < 00. Then we can use 
Theorem 6.10 to get an estimate of our symbol we stated beforehand. In 
Theorem 6.10 we take as the Dirichlet form associated with ^>(£,77) and 
£(2) as the Dirichlet form associated with <7(2 , 7/, £, 77). From Example 6.8 
we can get that ||Tt || 1—».oo — ~£~2 which means we can take g(t) = ^ t ~ 2 and
■^(0 =  2^_1 2̂ an<̂  =  Therefore, | | t / 2̂ || < 2C 2 t~2. Then we
can use Theorem 6.6 and Theorem 6.7 to get the estimate of subordination 
of our symbol which is the same as Example 6.8 except the coefficients.

Unfortunately, so far this approach does not provide examples for off- 
diagonal estimates.

56



Chapter 10

An Application of the  
Geom etric Interpretation of the  
Transition Function

With this chapter we start the second part of our thesis where we want to 
show how a geometric interpretation of transition functions might become 
useful in probability theory. Our contributions are more case studies than 
complete theories, but we believe that they still give some new insights.

In this chapter we study first transition functions of certain Levy processes 
with state space Rn and then we move to a more concrete (class of) exam­
ple (s) in order to get a better understanding of the non-isotropic behaviour 
of certain (classes of) Levy process(es).

Let ( X f )t>o be a symmetric Levy process with state space Rn and transi­
tion function pt which we assume to exist as element in Coo(Rn) given by

(10.1) P t ( x )  — (2vr)_n f  eia*e-<^ d f .JRn
Furthermore, we assume that pt has the form

(10.2) pt (x - y ) =  pt {0 )e~6̂ ^ x,y) 

with pt (0) as in (7.4), i-e.

(10.3) Pf(0) =  (27r)-n J f  f^ ) )e ~ Tdr,

where ^ ( £ , 77) = V>1//2(£ — p) is assumed to be a metric, in fact we assume 
that the metric measure space (Rn, d A ^ ) has the volume doubling property, 
and hence we have, compare Chapter 6 , that

(10.4) p t (0) x  A(")(B‘(* (0 ,4=)) t > 0.
V t

57



Moreover we assume that •) is a metric on IRn.

In order to get some idea how to use the geometric interpretation in the 
following we pick up one simple problem, namely to estimate some probability.

Let the process start at z G Mn and try to find, i.e. estimate, the proba­
bility

(10.5) P z( x t l e C u x t2 e C 2)

for Borel sets C\, C2 C Mn and t\ < t2. For reasons which become clear in 
Chapter 12 we prefer here to have an arbitrary starting point z e  R n, not 
just O G Mn. Using the very definition and properties of (Levy) processes we 
find, see R.Schilling [27],

(10.6) P*(Xtl e Cu X t2 e C2) = Ttl (xClTt2- tlXc2)(z) 

or

(10.7) P * ( x h e C i , x t2e C 2)

=  f Pt A z  -  z )xc , (z )  ( L n Pt2- t I ( x  -  y ) x c 2 ( y ) d y )  d x .

Now we use the representation (10.2) for pt to find

P * ( x h £ c ux tl e c2)
=  JRn XCi(x)Pti(0)e_<5̂ £i (z,x) Xc2{y)pt2- t1(0)e~5̂ t2-ti ix'v)dy) dx

=  Ph(Q)Pt2 - t i W  JRn ( JRn Xc1(^)xc2(2/)e"^-ti (2,x)e_^-t2 - ti (:E’y)d?/) dx

(10.8) = ptl(0 )pt2 - tl(0 ) [  f  e ^ ' ^ ’̂ e ^ ' t z - ^ ’̂ dydx.
Jci Jc2

For bounded Borel sets C\ and C2 the formula (10.8) allows us to obtain 
further estimates. For this observe that

f  f  e~S't’iti^z'x^e~5'i,'t2 ~ti^x’y^dydx 
JCi Jc2
> e-suPxeCj,vec2 (*•*)+«$, t2 - t l (*.*))\(n)( ^ )A(n)(C2)

With (10.4) we obtain (with constants depending only on ip and the volume 
growth function)

P z(X t l e C u x t2 e C 2)

> coAWfB^fO, - ^ ^ ( " ' ( ^ ( O ,

e -  s u P x e C j , y e c 2 ^  )  ^ ( n )  ^
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Furthermore we have

P z(X h e Cl t X h e  C2) < c1 X<'n'>(Bd*(0 ,-^r ))X<-n'>(Bd*(0, u  1 ))•
y / t  i y j t  2 — ti

e -  in fx 6 C l , weCa («J , ta ( * , * ) + ^ , t2 _ t l  ( x , y ) ) X (n)  ^  j  A (n )  )

0 /  course we now can specific the sets C\ and C2. In particular when pre­
scribing both sets with the metric d^ or with the metrices <^>t2 and 6 $tt2 - t1} 
respectively, we obtain purely geometric bounds.

As C i,C 2 are considered as sets in the state space it would be natural to 
characterise both sets with the metric 5^.. For example we may take

(10.9) C! =  S {* '-(x  o ,n ) ,

(10.10) C2 = B 5*-‘̂ { y 0 ,T2),

and we may assume C\ fi C2 =  0, z £ C\ U C2.
We want to use these considerations to get some more ideas on what 

happens in non-isotropic situations. For this we split Mn =  Mni x M”2 and 
consider the symbol

(10.11) :Rni x Rn2 R

= ' 0 l ( O  +  V;2(77)

Now, to ipj corresponds a Levy process { X f3)t>o with state space Knj; j  = 
1 ,2 , and for the corresponding transition functions we assume representations 
analogous to (1 0 .2 ), i.e.,

(10.12) P“ \ x } -  y j) =

For this case it follows now with C \ , C2 c  R"1+"2

(10.13) P z(X tl 6 Cu X t 2  € C2) =  Ttl(xClTt2 -t,X c 2 )(z)

= J  Ptl (z ,x )xc i(x )  ( JRnPt2 - tA x ,y)Xc 2 {y)dy) dx.

Using our previous estimates we obtain
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(10.14)

P z( x h e  cuXto s  c2) >
P t^ O .O jp fa -^ fO .O )  j Xc\(xux2)

J R n l + n 2

e - S (t 11)2 ( z i , x 1) - d (t 2i)2 ( z 2 , x 2 )

(  r -  sup (dit 12)f t l ( x l , y i )+5<̂ )f t i (x2,y2)) \
/  ̂ e xeCi ' y e C 2 Xc2(y i,y 2 )dyidy2 ] dxidx2\ m ni+ n 2 j

sup i ( * l .V l) + ^ 2 -2t i ( * 2 ,I«))
> p tl(0,0)pt2_tl(0,0)e A"(C2)

f  XCiC^i.^Je-4'1* (*1,xi,-i‘i (*2,X2)dxidx2
J R n l + n 2

sup (*2 ,y2 ))
> p fl( 0 ,0 K _ tl(0,0)e

-  sup (* i,* i)+ 5 t(J )i t (*2,*2))
e An(C1)A"(C2),

and

(10.15)

e C,, A* e C2) <

Pu(0 ,0)P(2- (1 (0,0) x * (*i , !(X!'X2)

_ CaBl*W1>+5t2-ti C®2.̂ 2)) , . \e ieCi'«eC2 Xc2 (y u y 2 )dyidy2 ] dxidxt
R n l + n 2 /

— inf (t fj^2t ( x i , y i ) + < 5{ ^ 2tl ( x 2 )J/2 ))
< f t l (0,0 ) ^ ( 0 , 0)e A„(C2)

7Rnl+n2
— inf (<5^2/ (xi)2/i)+<5^2/ (X2 .J/2 ))

< Pll(0,0)Pt2_(l(0,0)e ‘2- " 1

-  inf ($t(! )2(zi,xi)+<5£(2)2(22,X2)) .
e lGCi 1 1 An(Ci)An(C2)
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We now want to specialize further. We consider the case where Cj = Cjti x 
Cjt2 , j  = 1,2, and Cjj C Rni

P z( x t l e C 1 , x t2 e C 2) =

ft1(0,0)ft,_(l(0,0) f
./Rn l+ n2

(Jr» i+»2 e_i,<Ĵ ' <:‘’1'!' l)e_4‘2̂ ' <I!,!'2,Xc2(yi,y2)^ i( iy 2) dxid22 

=  P ( i(0 ,0 )p (2_ ( l ( 0 , 0) f  X C u M x c ^ 2 ) e < 2^ - % )2^
J R n l + n2

(Jr»i+»j e" i '<2" 'l<I1’!'l)e_‘S‘2)" '1<I2'l,2>Xc2i (yi)Xc22(3/2)dyirfy2) dari«fa2 

=  Pu (0 ,0 )p t j_ t l (0 ,0) f X C n i ^ e - * ™ ^  L XcI2(x2) e - C ( « « )
j R n i 7R n2

(Y  e_5tV-*i(a:i*vl)xc21(2/i) [  e~5 (t2 - ti {x2 ,V2 )x c 22 (y2 )dyidy2) dxxdx2
\ J  Rn i 7R n2 /

=  P 21(* u ‘ € C „ ,X (t ‘ £ C v)P * (X t?  € C jj.X ,*3 6 C22).

iVoto /o r  e  C n .X j  6 Ci2) and P 22(X,t2 € C2i,X ,t2 € C22) toe can
apply the previous results.
R em ark  10.1. The process (X f>Q) associated with the characteristic expo­
nent, i.e. symbol, (10.11) splits into the processes [ X f l )t>0 and ( X p ) t>0>

(X ?)t = ( ( X * ',X p ) ) t>o
In case we consider product sets C, x C2 C R"1 x R"2 the process ( X f )t>o 
is decoupled, we need only consider the components to obtain results for 
(X f)t> o- This is of course the content of the last calculation. From the 
geometric point of view matters are easy too, we are dealing with products 
only. However, in case that C  C Rni x Rn2 is not of product structure, we 
start to observe a type of coupling of { X f1) ^  and { X f2)t>o of both processes.
In particular, due to the non-isotropy we discover that while the products of 
balls in (Rni x R712, d f1 0  d f2) and the balls in (Rn, S f) give rise to the same 
topological space, their geometric impact (for example on estimates) is quite 
different.

I f  Cj 7̂  Cji x Cj2, j  =  1,2, in general, i t ’s complicated to estimate if 
we take arbitrary Cj, but if we take C\ — 5 ^ ( 0 ) ,  C2 = B ^1-t2(0), where 

=  ^(i1)2 +  $i2)2 and dti-t2 =  Stl-t2 +  sti- t2> therefore, we have

P z{Xtl E Cu X t 2 E C2) =  J^npf1{z ,x )xc1(x) JRnPt2 -tiXc2{y)dydx

= Pti(0)pt2 - t 1 (0) f  e~5?i{z'x)x Cl(x) f  e~6^ - h ix'y)XC2 (x)dydx
J Rn J Rn
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So we have upper bound and lower bound of P z(X tl G C \,X t 2 £ C2),

(10.16) pl l (0)pl2_i l (0)A"(Bri;.(0))A’' ( B ^ - “ (0)) <  P*(Xtl € C ,,X t 2 e  C2)

< Ph (0 )Pt2 - h (0 )e -rh n(B ^ (0 ) )e - rh n(B % -“ (0))

Exam ple 10.2. If we take C, =  B f'(0 )  x B f2(0), C2 =  x B f 2 (a2),
where tpi(£) — l£|2 and rp2 {v) = |r?i, therefore, from (10.14) and (10.15), we
have

P*(xh € CUXH e c2) >
-  sup <C -M  (* i .Vi )+"5,(! - i , f e .K ) )  „

P<1(0,0)p(2. t l (0,0)e A (C2)

1 1 1  1 1 1
>  „  ,_____ X  —  X  —  X   ; ■ X  —  X

2 y /W i 7V t X 2yJlT{t2 ~  U )  ^  t 2 ~  U

x g~ ( ~2 In((̂ 2~ l̂)^)~t~l n ((^2 — f1 )2+max{|ai —11,11+°11}2)+ln((t2 ~ 1̂ )̂ ~t-max{la 2 —h’1Q2 + 1|}2)̂

J  ;i+22 ,+21nf 1 + (t2--%)2^  
x 4 x e ' 2 \ <e2—*i)2 / /  x 4

and

P \ X tx G C i,X ta G C2) <

Ph (0 ,0)pt2- tl (0 ,0)e“« c“ « s <,!,<2L2“ (X2M))x  2(C2)

I l l  1 1 1
<  — ■ =  X  —  X  —  X  , X  —  X

2y/nU,  7r tx 2y/7r{t2 -  U )  n  t 2 -  h

X e - ( i ( t p T 7 7 ~ 21n(( t2 - i i ) 2) + l n ( ( f 2 - t i ) 2+ m a x { s g n ( ( a i - l ) ( H - a i ) ) ,0 } m i n { |o i - l | , | l + o i | } 2) )

^  e - l n ( ( f 2 - t i ) 2+max{sgn((o2 - l ) ( o 2 + l ) ) , 0 }m in{ |a 2 - l | , | o 2 + l | } 2)

x 4 x e - ( ^ M ) X 4

E xam ple  10.3. If we take C\ = B f ( 0,0), C2 = B f  (01, 02), where =
|£|2 +  M> therefore, from (10.14) and (10.15), we have
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P z ( X t l e C u X t 2 e C 2) >
-  sup ( ^ 2 - t i  (X2 .2/2 ))

pfl( 0 ,0 K _ tl(0,0)e A (C2)
-  sup (zi,xi)+(5t(2)_2t (*2,*2))

e *eC‘ A (Ci)
^  1 1 1  1 1 1
>  „  ,_____ X  -  X  —  X   X  -  X

2 y / n h  7r t i  2 y j i r ( t 2 -  t i )  tt t 2 -  t i

x  e _ ( ^ 2 ^ 1 7 - 21n((t2- *1)2) +ln((*2- i l )2+ max{lal - 1U1+ ail}2)+ ln((*2-*i)2+niax{|a2-l|)|a2+l|}2))

X 8^  x  e - ( ^ +21” ( ^ ) )  x  *X1 
3 3

and

P z(X tl € Cu X t 2  6 C2) <

ft, (0 ,0)P(2-(j (0 ,0)e- * « £ ,« * (' S?“ <i,’!',)+^ L2‘' (I2'V2))A2(C.2)

“  Lni  (z l , a;l)+ ^ t2 ^ t1 (Z2,X2))
A2(C:)

_ 1 1 1  1 1 1
<  - - ^ = :  X  -  X  —  X  -------^  ■■■■ ■■■■ . X  -  X

2y/irU 7r ii 2v/tt(^2 ~  *i) * t2 - t \
X  e _ ( 4 ( t ^ t n _21n((t 2 - t i ) 2) + l n ( ( t 2 - f i ) 2+ m a x { sg n ( (a i - l ) ( l+ a i ) ) ,0 } m in { |o 1- l | , | l + a i | } 2) )  

x  g — ln((f2—f i ) 2+max{sgn((a2 —l) (o 2 +  l)),0} min{|o2 - l | , | o 2 + l | } 2)

X  ^  ( ^ + 2 1 „ ( 1 ± ^ ! ) )  8 V 2

3 3
E x am p le  10.4. If we take Ci =  B f^O ), C2 =  B 5 fl~t2 {0), where 5 is related 
1° = l£|2 +  Ipl, we calculate S as follows.

Pt{xi,x2) =  (27r)-(ni+n2)) [  ei{xi'X2)^d^ dr]
JKni xR n2

=  (27r)_(ni+n2) [  e"i(x^ +X27?)e ' t(^|2+|77l)d{dp
7Rni xRn2

= (27r)-ni f  e -“ l{e-i|?|2df • (27r)-"2 f  e~iX2rie - tMdri
jRn i m n 2

= Pt{xi)pt{x2)
Since we know the 6  values of Gaussian and Cauchy process from the paper 
[20], therefore we can deduce that

S (x i,x 2) =  -  ln(£2) +  ln(£2 +  x\),
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/rora(10.16),wehavePz(X tl E C \,X t 2 E C2 ) >

—4 =  x - x - x  — = 1 --------   x - x  — A2( S 1i‘1(0))A2(Bi*2- ‘1(0))
2 ^  7T t! 2^7r(t2 - t l )  * <2-<!

and

P*(X4l e  C , , x tj e  C2) <

— x - x - x  . 1 x - x  — e - 1A2(B i‘1(0))e-1A2(Bj‘2- ‘'(0))
2V5rtT 7T tj 2^/tt(t2 -  tj) 7T t2 -  ti v 1 v "  v 1

Since the volume of the metric balls are hard to calculate even using Math- 
ematica, we can not calculate the exact estimates of the above.
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Chapter 11 

Some Graphical Experim ents

We have seen that in many cases of Levy processes there is a natural 
geometric interpretation of the transition functions involving two t —dependent 
families of metrics. These metrics are in general non-isotropic.

In case we are dealing with Markov processes generated by non-translation 
invariant operators, i.e. by pseudo-differential operators having an x —dependent 
symbol, in general we do have neither explicit formula for the transition func­
tion nor so far a geometric interpretations of these transition functions. How­
ever, using some symbolic calculus or other approximation procedures, com­
pare [29] or [6 ], it is possible for small time and locally with respect to some 
point x 0 in the state space to compare such transition function with those of 
the corresponding Levy process obtained when freezing the coefficients of the 
generator, i.e. the x —dependence, at Xq . Thus one might have the idea to 
approximate a probability such as

Px°(xtl e Gux t2 e g2)

by probabilities calculated with the help of transition functions of certain Levy 
processes. Thus it is a natural question to study, i.e. to compare the tran­
sition functions (and the underlying metrics) of Levy processes obtained by 
freezing the coefficients of a given generator at different point, i.e. to compare 
transition functions

p?ux - y) =  (27r)-"/2 t
JRn

for a sequence (Xj)jĜ  in state space.
We know that in general we have to handle non-isotropicc operators (met­

rics, transition functions) and hence it is important to have some knowledge 
how the non-isotropy develops when Xj runs through a set of points.
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In order to have concrete functions and an affordable amount of calcula­
tions we restrict the case study to the symbol

<l{x,y,Z,ri) = a(y ) \ $ \ 2 + b{x)\rj\

where x ,y  G R  as are £, 77 E R. Freezing the coefficients leads to consider the 
characteristic functions

a{yo)\t\2 + b{x0 )\r}\ 

and the corresponding Levy processes. In this case we find

-  x 2lVl -  y2) = plX0 M)(0 ,0 )e '5‘2(*o.»o>((l,’!'‘)'(l2'!'2))

where
p f ° M ) ( 0 ,0) =  ----- ;......■  -y.....

271-3/ 2^3/2  yJa{yQ) yjb{x 0 )

with corresponding m etr ic  d f y ’yo\ ( £  1 , 7? i ) ,  (^2> ^ 2 ) )  : =  y/tipiZ — 77) and  

6l(x0,v0)((x i>yi)> ( ^ 2 , 2 / 2 ) )  =  ~  M t 2b M )  +  ln {t2b(x0)2 +  (y2 -  y i ) 2)

The following plots show the balls with respect to the metric d!ff'V:>\  the balls
with respect to the metric 5 fy ’ŷ  and the transition function p f ],ŷ  for dif­
ferent values o f t  and x0) y0.

In order to have a good understanding of the Levy-type transition function 
p (x \,x 2) = p(0 ,Q)e~6t(Xl,X2\  we need to understand the metric ball

0) = { (6 ,6 )  e K2 1 a(yo)l6l2 + K x0)|6 | < 0  

and the metric ball

^t(xo,xo)(0 ,l) =  {(7/1, 772) e  R2 | ^ ^ - \ n { t 2 b{x0)) + \n{t2 b{x0 )2 -\-r]l) < 1}.

The first set of plots shows J5^(0) for t =  0.3, a = 1 and b running through 
a set of values for b, b = 1,1.5,2,2.5,3,3.5. The second set of plots shows 
B ^ ( 0) for t = 0.3, 6 = 1  and a set of values for a, a = 1,1.5,2,2.5,3,3.5.

R em ark  11.1. In the following graphics we replace a(yo) and b(xo) by a and 
6 since we want to see the effects of isotropy and simplify the notation.
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First Set of Plots for B f  (0)
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•2 0 2
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(a) t = 0.3, a = 1, 6 = 1 (b) t  = 0.3, a =  1, b = 1.5

-2 j
-2 0 2

2

0

-2
2 n 2

(c) t = 0.3, a = 1,6 =  2 (d) t =  0.3,a =  1,6 =  2.5

67



- 2-L.
2 0 2- 2

(e) t — 0.3, a — l,b  = 3 (f) t — 0.3, a — 1,6 =  3.5

Figure 11.1: £ =  0.3, a =  1, 6 takes the values from 1 to 3.5 in the interval of 
0.5
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Second Set of Plots for B f  (0)
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0 2- 2

(a) t = 0.3, a = 1,6 = 1 (b) t — 0.3, a = 1.5,6 =  1
2
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■2 0 1 2

2

0

•2
■2 0 21

(c) t = 0.3, a = 2,6= 1 (d) t = 0.3, a =  2.5,6 = 1
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- 2

■2 0 2

2

0

-2

-2 0 2
(e) t = 0.3, a =  1, b = 3 (f) t  = 0.3, a =  1, b = 3.5

Figure 11.2: £ =  0.3, 6 = 1 ,  a takes the values from 1 to 3.5 in the interval of 
0.5

The second set of plots for Bf (0)  shows the more interesting phenomenon, 
namely a more visible change of the non-isotropic character of the ball B f ( 0). 
Note that we can consider each plot as belonging to one fixed Levy process, 
but we can also consider the series as change of local approximation for the 
transition function associated with a generator —q(x , y ,Dx , Dy) with symbol 
q(x,y,£,rj) = a(y)|£|2 +  tb(x)\r]\ where a and b are nice functions taking the 
appropriate values for x ,y  E {1 ,1 .5 ,2 ,2 .5 ,3 ,3 .5 } .

Now we turn to the ball Bst(xo,yQ){0,0) where

(11.1) <5*((x0,2/o), (0,0)) =  “  \n(t2 b(xo)2) +  \n{t2 b{x0 ) 2 +  x\).

The first set of plots refer to t = 0.3, a = 1 and b E {1 ,1 .5 ,2 ,2 .5 ,3 ,3 .5} ,  i.e. 
this corresponds to the first set of values consider for B f ( 0). For the second 
set of plots in this case we have chosen t = 0.5, a = 1 and b E { 1 , . . .  ,3.5};  
a third set is considered with t =  0.75, a =  1 and b E { 1 , . . . ,  3.5}. Especially 
the second and the third series of plots show very clearly how the non-isotropy 
of the balls change. Next we consider the some three values of t, i.e. t =  
0.3,0.5 and 0.75, we fix b = 1 and let run now a through the set { 1 , . . . ,  3.5}.

Having in mind for example the estimates in the last chapter, we get a 
better understanding by these plots to which extent the non-isotropy geometry 
will affect the probabilities.
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First Set of Plots for B§t
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(a) t = 0.3, a = 1, 6 = 1 (b) t = 0.3, a = 1,6 = 1.5
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(c) t = 0.3, a = 1, 6 = 2 (d) £ =  0.3, a =  1,6 =  2.5
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(e) t = 0.3, a =  1,6 = 3 (f) t = 0.3, a =  1, b = 3.5

Figure 11.3: £ =  0.3, a =  1, b changes from 1 to 3.5 in the interval of 0.5
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Second Set of Plots for B§
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Figure 11.4: t  =  0.5, a  =  1, b changes from 1 to 3.5 in the interval of 0.5



Third Set of Plots for B$t
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(e) t -  0.75, a -  1,6 = 3 (f) t = 0.75, a = 1,6 = 3.5

Figure 11.5: £ =  0.75, a =  1, 6 changes from 1 to 3.5 in the interval of 0.5
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Fourth Set of Plots for B§t
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(e) t = 0.3, a = 3, b = 1 (f) t = 0.3, a = 3.5, b =  1

Figure 11.6: t = 0.3, b = 1, a varies from 1 to 3.5 in the interval of 0.5
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Fifth Set of Plots for B$t
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(c) t = 0.5, a = 2, b = 1
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Figure 11.7: t  =  0.5, b =  1, a  varies from 1 to 3.5 in the interval of 0.5



Sixth Set of Plots for B§t
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(e) t =  0.75,a — 3,6= 1 (f) t =  0.75,a = 3.5,6= 1

Figure 11.8: t =  0.75, 6 =  1, a varies from 1 to 3.5 in the interval of 0.5
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We come to the graphic study of p ( x \ , x2). We know

Pt[xuX2) = Mibmexp (" ̂ +ln(a2) - ln(a2 +xl))
The following plots corresponding in the first set to t = 0.3, a = 1 and 
b G {1, . . . ,  3.5}, while in the second set to t  — 0 . 3 , 6= 1  and a G {1, . . . ,  3.5}. 
It is the first series which shows best character the non-isotropy may develop.
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(e) t = 0.3, a = 1, b = 3 (f) t = 0.3, a = 1,6 =  3.5

Figure 11.9: t = 0.3, a — 1, b changes from 1 to 3.5 in the interval of 0.5
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Chapter 12

Towards a Study of Transition  
Functions for Levy-type  
Processes

Before we start to address how we may study and interpret the transition 
function of a stochastic process generated by a pseudo-differential operator 
with variable coefficients, i.e. an operator —q(x,D) with a symbol q(x ,£) 
which is with respect to £ a continuous negative definite function and not 
constant with respect to x, we need to collect more information on the trans­
lation invariant case. In this case q{x,£) = ip(£) is just a continuous negative 
definite function. As such ip need not be smooth, take as example the func­
tion ip{£,r]) =  |£|Q +  \q\&, 0 < a < p < 2, £ E Rn; 77 € Rm. Further ip need 
not be convex and in addition, in general we can not decompose in a series 
of homogeneous terms, and even in case where this is possible, the highest 
order form does in general not provide us with a reasonable principal symbol. 
Just have a look at ip(£,r}) =  |£|a +  \r}\ ,̂ 0 < a < {3 < 2, £ E M.n, 77 <  Rm. 
The leading homogeneous term is \r)\P, but it does not give any control on the 
£—dependence. This example highlights also a further problem, namely the 
fact that in general a continuous negative definite function is non-isotropic.

Thus the idea to transfer ’’standard” techniques used to handle elliptic 
operators, i.e. operators with a well-defined homogeneous, isotropic principle 
symbol which is eventually smooth (everywhere but at the origin) and which 
controls the full symbol, hence the operator, this idea does not look promising, 
not even in case of translation invariant operators, i.e. generators of Levy 
processes. In fact already the definition of the spaces H ^,s(M.n) takes this into 
account, we use the full symbol, not a part of the symbol. Note that we may 
decompose ip according to ip = ip\ +  ip2 and assume that l im ^ o o  =  0.
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In this case i /^ 1,s(]Rn) and the two norm || • ||^liS and || • ||^>a are equivalent, 
however this decomposition is in general not unique.

Further, when looking at symbols depending on x, i.e. q(x,£), for differ­
ent X \ , X 2 G the symbols q(xi,£) and q(x2 ,$) with ”frozen” coefficients 
may have different order which need not be varied in discrete steps, consider 
the symbol q(x,£) = |£|a^ ,  0 < a(x) < 2 for all x  G Kn. Thus, even in 
case we can develop a ’’good” theory for the operator —ip(D), and the asso­
ciated semigroup and stochastic process, we can not expect to transfer it to 
operators —q{x, D) and their associated semigroups and processes since the 
properties of —q(x, D) and —q(x2 ,D) may change and become quite unre­
lated. Subordination of variable order, i.e. symbols of type of f(x,ip(£)) or 
even f ( x , q ( x ,£)) give examples, compare [6 ] or [7] . Here for every x the 
function r i-> f { x , r )  is supposed to be a Bernstein function.

Despite all these obstacles, there are some thoughts we may follow up and 
for this we first want to sketch some basic ideas, some of which we indicated 
already in Chapter 7. Let q(x,£) be a negative definite symbol, i.e. for every 
x  G Mn fixed £ i-» q{x,£) is a continuous negative definite function. Suppose 
—q(x ,D) is (or extends to) a generator of a Markov or Feller semigroup 
(Tt)t>o and assume that Tt has a density, i.e.

Next we freeze the coefficient o fq(x , D ) a t x £  Rn; hence we obtain a contin­
uous negative definite function ^*(£) =  <?(#,£)• Denote by {{Ytx)t>o, n j ) z€Rn 
the corresponding Levy process i.e.

Denote the corresponding process by ( (Xt)t>o, P z)zeRn- Thus

(12.1) P z(Xt e C )  = TtXc(z) =

= f Xc{y)Pt(z,v)dy = f p t (z,y)dy.

( 12.2)

(2jr)-"/2 J
with

(12.3)

89



Here IIzxY * denotes the distribution o f Y tx under 11*. Thus, from (12.3) we 
deduce for the density px of {Sf) t>o, where

(12.4) S f u ( z ) =  [  u(z — w)fit (dw) = f  u(w)p°[(z — w)dw,
J  Rn J  Kn

that

(12.5) pUy) = ( 2 7 r ) ' n /2  f  eiyie - tq M d£.
J R n

We may agree that the process ((Xt)t>o} P z)zm n and the processes 
{{Ytx)t>o,Uzx)z£Rn are all defined on the Skorohod space V  and that the ran­
dom variables are just the projections, which allows us to write X t for X t as 
well as for Y x, t > 0. Thus we only need to deal with the probability measures 
P z and II* defined on V .

Following B.Bdttcher, compare [4] and [5], see also Chapter 1, we know 
that under suitable conditions on the symbol q(x,£) we have for the symbol 
cr(Tt)(x,£) of the semigroup generated by —q(x,D) the asymptotic formula

(12.6) <r(Tt)(x, 0  = +  r0(t, 0; x, 0

with ro(t, 0; x, £) —> 0 as t —> 0, weakly in some locally convex topology induced 
on an appropriate symbol class.

Thus we may try to get an approximation forpt(z, y) byp f ( z - y ) .  We may 
even think P z, z G Mn fixed, ”embedded” into a field of probability measures 
(II*)x€Rn. While Bottcher’s result is precise it does not allow direct calcula­
tions of approximate probabilities so far. Nonetheless the idea is striking to 
find for example

(12.7) Pz(Xt l eCux t2eC2)
by using the probabilities (n*)xeRn and we want now explore on an heuristical 
level how this may work out.

The starting point is of course

P*(Xtl 6 Cl t X t 2 6 C2) =  TtlX Cl(Th - h Xc2 )(z)

= L Pt,(z,y)xc,(y) i  Pt2- t l (y ,w)xc 2 (w)dwdy
J R n  J R n

(12.8) =  JCiPti(z ,y) JC2 Pt2 -h(y,™)dwdy.

Clearly, we have to assume t\ and t2 — t\ to be small, and Bottcher’s result 
also suggest that \x — y\ and \y — w\ are small. However, y varies in C\ and 
w in C2.
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Suppose we can get a good approximation (given some error bound e) 
where \z — y | and \y — w\ are small. Thus assume the existence of a E Mn 
and b 6 W 1 such that

(12.9)
m ax(sup{|a — y\ | y e  Ci}, |a -  z|,sup{|& -  y\ \ y G Ci},sup{|& -  w\ \ w G C2})
< 5

implies we get a good error bound, then we may replace 

<“ ) L  Ph (z, y) Jc  ̂Ph-h  (y , w)dwdy

by

(12.H) p£(z -  y) J ^ P ^ - h i y  ~  ™)dwdy.

Before we discuss further the problems of getting estimates, let us discuss
( 1 2 .1 1 ) in light of our non-isotropy problems and the geometric interpretation 
of the transition function of a Levy process.

Suppose that the transition density of a Levy process is given by

(12.12) pt(x - y )  = pt{0 )e~6?{x'y)

with a metric 6 t on Kn. Due to the translation invariance, in the following 
it is sufficient to restrict ourselves to the case x  G Rn and y = 0. Since

(12.13) /  e-'s‘<I,0)dz =  —r—r
J K" P((0)

we know that given e > 0 there exists R  = R(e) such that

(12.14) /  e - s‘ {z 'a)d x  < e
Jb%( o)

However our studies in Section 10 suggest that not the Euclidean balls B%(0) 
captures the shape of pt(') best.

In case we know that

(12.15) lim isi-yoo^^O) =  oo,

then for every e > 0 we can find some r = r(e) such that

(12.16) f  . e -5?{x'0)dx < e.
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In this case we find

(12.17) P°(Xt 6 C ) -  f  R (0 )e-*?W»<fc < e,
y(B°t (o))nC'

and it is the knowledge of the metric geometry, i.e. the shape of the ball 
J3**(0), which allows to get an approximation of P° ( Xt 6 C). Clearly, a 
more detailed knowledge of C will lead to an improved estimate.

Now we return to (12.11) and under the assumptions made above we note 
that given e > 0 we can find r\ and 7*2 such that

(12.18) (0 ),^_ tl (0) J4 i0ajw..1 (-) (6) °'J0>̂

is an approximation of (12.11). Note that we have to deal with two different 
metrices reflecting the fact that at different points in general we have to expect 
a different (metric) geometry governing the process.

So far the consideration in the section form a programme for future re­
search. We pointed out in a heuristical manner what we expect to hold in lack 
of any knowledge of off-diagonal estimates for transition functions of pro­
cesses generated by (non-isotropic) pseudo-differential operators —q(x,D).  
The emphasis is on the geometric structure of the transition function.

Of course, the example used in Section 10 may serve once again for cal­
culation.

A more challenging problem is to find first evidence in form of estimates 
which turn our ideas into theorems. While for the considerations leading 
to (12.18) estimates are attainable in such concrete case, it seems that the 
current state of the art does not allow to derive estimates for

I J  fti (*> V) J  Pia-ii (y, w)dwdy -  J ^  p“ (z -  y) J  p\2_tl (y -  w)dwdy\.

92



Bibliography

[1 ] Aronson, D., Bounds for the fundamental solution of a parabolic equa­
tion. Bull. Amer. Math. Soc. 73 (1967), 890-896.

[2] Barlow M. T., Grigor’yan A, Kumagai T., Heat kernel upper bounds for 
jump processes and the first exit time. J  Reine Angew Math, 2009, 626: 
135-157.

[3] Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Anal­
ysis, vol. 1 . Providence, RI: Amer Math Soc, 2000.

[4] Bottcher, B., Some investigations on Feller processes generated by 
pseudo-differential operators. PhD-thesis, University of Wales Swansea, 
Swansea 2004-

[5] Bottcher B., A parametrix construction for the fundamental solution of 
the evolution equation associated with a pseudo-differential operator gen­
erating a Markov process. Math Nachr, 2005, 278: 1235-1241.

[6 ] Evans, K., Jacob, N., Feller semigroups obtained by variable order sub­
ordination. Rev. Mat. Complut. 20 (2007), 293-307.

[7] Evans, K., Jacob, N., Variable order subordination in the sense of 
Bochner and pseudo-differential operators. Math. Nachr. 284 (2011), 
987-1002.

[8 ] Friedman, A., Partial differential equations of parabolic type. Prentice- 
Hall Inc., Englewood Cliffs NJ 1964-

[9] Fukushima M., Oshima Y., Takeda M., Dirichlet Forms and Symmetric 
Markov Processes. Berlin: Walter de Gruyter, 1994-

[10] Grigor’yan A., Analytic and geometric background of recurrence and 
non-explosion of the Brownian motion on Riemann manifolds. Bull Amer 
Math Soc (N.S.), 1999, 36: 135-249.

93



[11] Heinonen J., Lectures on Analysis on Metric Spaces. New York: 
Springer-Verlag, 2001.

[12] Hoh W., A symbolic calculus for pseudo-differential operators generat­
ing Feller semigroups. Osaka J Math, 1998, 35: 798-820.

[13] Hoh W., Pseudo differential operators generating Markov processes. Ha- 
bilitationsschrift, Universitaet Bielefeld, Bielefeld 1998.

[14] ltd, S., Diffusion equations. Translations of Mathematical Monographs, 
Vol. 114, Amer. Math. Soc., Providence R I 1992.

[15] Jacob N., A  class of Feller semigroups generated by pseudo-differential 
operators. Math Z, 1994> 215: 151-166.

[16] Jacob N., Characteristic functions and symbols in the theory of Feller 
processes. Potential Anal, 1998, 8: 61-68.

[17] Jacob N., Pseudo-Differential Operators and Markov processes, vol.l:
Fourier Analysis and Semigroups. London: Imperial College Press, 2001.

[18] Jacob N., Pseudo-Differential Operators and Markov processes, vol.2:
Generators and Their Potential Theory. London: Imperial College Press,
2002.

[19] Jacob N., Pseudo-Differential Operators and Markov processes, vol.3: 
Markov Processes and Applications. London: Imperial College Press, 
2005.

[20] Jacob, N., Knopova, V., Landwehr, S., Schilling, R., A geometric inter­
pretation of the transition density of a symmetric Levy process. Science 
China. Mathematics. 55(2012), 1099-1126.

[21] Jacob N., Schilling R. L., Subordination in the sense of S. Bochner-An 
approach through pseudo differential operators. Math Nachr, 1996, 178: 
199-231.

[22] Knopova V., Schilling R. L., A  note on the existence of transtion prob­
ability densities for Levy processes. Forum Math (in press).

[23] Landwehr S., On the geometry related to jump processes. PhD Thesis. 
Swansea: Swansea University, 2010.

[24] Ma, Z.-M., and Rockner M., An introduction to the theory of (non- 
symmetric) Dirichlet forms. Universitext, Springer Verlag, Berlin 1992.

94



[25] Schilling R. L., Growth and Holder conditions for the sample paths of 
Feller processes. Probab. Theory Relat. Fields 112 (1998), 565-611.

[26] Schilling R. L., Conservativeness of semigroups generated by pseudo 
differential operators. Potential Anal, 1998, 9:91-104■

[27] Schilling R. L., Portzsch, L., Brownian motion. An introduction to 
stochastic process. De Gruyter, Berlin 2012.

[28] Schilling R. L., Song R, Vondracek Z. Bernstein functions. Theory and 
Application. Berlin: Walter de Gruyter, 2010.

[29] Schilling R. L., Wang, J., Functional inequalities and Subordination: 
Stability of Nash and Poincare. Math. Z. (in press).

[30] Schoenberg I. J., Metric spaces and positive definite function. Trans 
Amer Math Soc, 1938, 44:^22-536.

[31] Schoenberg I. J., Metric spaces and completely monotone functions. Ann 
of Math, 1938, 39: 811-842.

[32] Sturm K. T., Diffusion processes and heat kernels on metric spaces. Ann 
Probab, 1998, 26: 1-55.

[33] Tomisaki, M., Comparison theorems on Dirichlet norms and their ap­
plications. Forum Math. 2(1990), 277-295.

[34] Varopoulos, N. Th., Saloff-Coste L., Coulhon T., Analysis and geome­
try on groups. Cambridge Tracts in Mathematics, Vol. 100, Cambridge 
University Press, Cambridge 1992.

95


