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A bstract

Nowadays, stochastic differential delay equations with jump processes are 

playing an important role in science and industry, particularly, in economics, 

finance and engineering. This thesis focuses on studying the strong con­

vergence and almost sure stability of many kinds of stochastic differential 

delay equations with jumps and its approximations. First of all, we intro­

duce the uniqueness and existence of the global solution of neutral stochastic 

differential delay equations with jumps under the local Lipschitz condition 

by using the Lyapunov function and semi-martingale convergence theorem. 

Then the convergence of Euler-Maruyama method for neutral stochastic dif­

ferential delay equations with jumps has been proved and the rate has been 

estimated both under global Lipschitz condition and local one, for this pur­

pose we also define the continuous approximate solution from the discrete 

approximation. Meanwhile, we analyze the almost sure exponential stability 

of Euler-Maruyama method for neutral stochastic differential delay equa­

tions with jumps, which is derived from the moment stability. Furthermore, 

we study the strong convergence and almost sure stability of theta Euler- 

Maruyama method for neutral stochastic differential delay equations with 

jumps under the local Lipschitz condition and the monotone conditions us­

ing the discrete semi-martingale convergence theorem. Then we introduce 

the Skorokhod problem, and estimate the uniqueness and existence of the 

solution of reflected stochastic differential delay equations with jumps, es­

pecially, we separate the jumps into the large and small jumps and study 

the stability in distribution under the local Lipschitz condition. At last we 

estimate the strong convergence of implicit balanced methods for neutral 

stochastic differential delay equations with jumps.
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Chapter 1

Introduction

1.1 Background

Stochastic differential equations (SDEs) are increasingly playing a significant 

role in many branches of science and industry. Such models have been used 

with great success in a variety of areas, including biology, epidemiology, me­

chanics, economics and finance. The models have been well developed in 

extensive literature, for example, [5, 15, 17, 20, 31, 34, 38]. The numerical 

methods on SDEs have been further established and they can be referred 

to, for instance, [8, 9, 11, 26, 29, 37, 39, 44, 56, 40, 55]. The importance 

of stochastic differential delay equations (SDDEs) derives from the fact that 

many of the phenomena around us do not have an immediate effect at the 

time when they occur. A patient, for example, may show symptoms of ill­

ness days (or even weeks) after he or she was infected. Generally speaking, 

in almost any area of science (medicine, physics, ecology, biology, economics, 

etc.) we can end many systems for which the principle of causality, i.e., the 

future state of a system is independent of the past states and is determined 

solely by the present, does not apply. Many dynamical systems do not only



depend on present and past states but also involve derivatives with delays. 

In order to incorporate this time lag (between the moment an action takes 

place and the moment its effect is observed) into our models, it is necessary 

to include an extra term which is called time delay.

Furthermore, the neutral stochastic functional differential equations are 

important for their applications to chemical engineering systems and aeroe- 

lasticity [31, 32]. In [40], neutral stochastic differential delay equations (NS- 

DDEs) depending on past and present values but tha t involves derivatives 

with delay as well as the function itself, such equations are difficult to mo­

tivate but often arise in the study of two or more simple oscillatory systems 

with some interconnections between them. Mao investigated existence and 

uniqueness, moment and path-wise estimates, exponential stability of neu­

tral stochastic functional differential equations. In the past few decades, the 

theory of NSDDEs has also received a great deal of attention.

Moreover, stochastic differential delay equations with jumps (SDDEwJs) 

have been widely used in many areas of science and industry, especially, in 

economics, finance and engineering, for example [13, 36, 52, 49]. Since most 

SDDEwJs cannot be solved explicitly, numerical methods have become essen­

tial. There is extensive literature on the numerical simulation for stochastic 

differential equations with jumps (SDEwJs) [23, 24, 12] and for SDDEwJs 

[35, 53, 27].

On the other hand, most of the existing results of the solutions for SDEs 

are proved under the global Lipschitz condition. However, there are many 

SDEs that only satisfy the local Lipschitz condition. It is very useful to 

establish solutions for them.
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1.2 Overview of Study

In this paper we focus on the analysis of neutral stochastic differential de­

lay equations with jumps (NSDDEwJs). Chapter 2 shows some notions for 

instance Brownian motion, jump process and some useful inequalities. For 

SDEs, there are two very natural concepts, namely mean-square stability 

and asymptotic stability. Asymptotic stability is more amenable to analyze, 

and hence this property dominates in the literature, especially [43] works in 

the almost surely asymptotic stability of NSDDEs with Markovian switch­

ing, so in chapter 3 we investigate the almost sure asymptotic stability of 

NSDDEwJs under the local Lipschitz conditions by using Lyapunov func­

tion and semi-martingale convergence theorem. By the elicitation of [27] 

and [54] which study the strong convergence of Euler-Maruyama method 

for stochastic differential delay equations with jumps (EMSDDEwJs) under 

the local Lipschitz conditions and calculate the convergence rate, we change 

the model to the NSDDEwJs in chapter 4 which analyze the strong con­

vergence of EMNSDDEwJs, under the global Lipschitz conditions as well 

as the local one, and obtain the rate of convergence as well. Under the lo­

cal Lipschitz conditions, [54] studies the almost sure exponential stability of 

Euler-Maruyama method for neutral stochastic differential delay equations 

with jumps (EMNSDDEwJs), which is derived from the moment stability; 

and [51] uses the monotone conditions to solve the strong convergence and 

almost sure stability of several EM type methods for SDEs. In chapter 5 

we continue to work with the almost sure exponential stability of EMNS­

DDEwJs and strong convergence and almost sure stability of theta-Euler- 

Maruyama method for neutral stochastic differential delay equations with 

jumps (TEMNSDDEwJs) respectively under the local Lipschitz conditions 

based on the continuous and discrete semi-martingale convergence theorems.

10



Chapter 6 focuses on the stability in distribution of reflected stochastic differ­

ential delay equations with jumps (RSDDEwJs) under local Lipschitz condi­

tions by [10] which using the notion of Skorokhod problem. The last chapter 

proves the order of strong convergence of implicit balanced method for neu­

tral stochastic differential delay equations with jumps (BNSDDEwJs) which 

can be referred in [46] by using an important theorem in [45].
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Chapter 2

N otation

2.1 Basic Probability Theory

The outcome of studying mathematical of trials depend on chance by using 

probability theory. All the possible outcome which we call the elementary 

events are grouped together to form a set Q with an typical element, u  E ft. 

Usually we only group the observable or interesting events together as a 

family T  of subsets of Ct because which are not include every subset of Q. 

For the purpose of probability theory, T  should have the following properties:

•  0 E .F denotes the empty set;

•  A E T  => A c E T ,  where A c = Q — A  is the complement of A  in fi;

•  {A{}i>i C T  => E T .

A family T  with these properties is known as a cr-algebra. The pair

is called a measurable space, and the elements of T  is called ^-measurable

sets.

12



IA(u) = <

A real-valued function X  : f2 —► E  is said to be JF-measurable if

{u) : X (u ) < a} E T  for all a E l

The function X  is also called a real-valued random variable. An Rn-valued 

function X ( uj) =  (X i(u;),. . . ,  Xn(u;)) is said to be ^-m easurable if all the 

elements Xi are ^"-measurable. Similarly, a n x m-matrix-valued function 

X ( uj) = {Xij(u))nxm is said to be ^"-measurable if all the elements Xij are 

^"-measurable. The indicator function I  a of a set A  C Cl is defined by

1 for w E  A,

0 for A.

The indicator function I  a is ^"-measurable if and only if A  is an ^"-measurable 

set, i.e. A  E T .

A  probability measure P on a measurable space(fJ,.F) is a function P: 

T  —> [0 , 1] such that

•  P(fi) =  1;

• for any disjoint sequence {A{ }i>i c  T ,
oo

P(u~iA) =
i=1

The triple P) is called a probability space. It is called a complete

probability space if we set

F  = { A c n - . 3 B , C  e T  such that B  c  A  c  C ,P(B) =  P(C)}.

Then T  is a <7-algebra and is called the completion of T .

In the sequence of this section, we let (fi,,F ,P) be a probability space. 

If A  is a real-valued random variable and is integrable with respect to the 

probability measure P, then the number

EX  =
Jn  

13
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is called the expectation of X with respect to P. For p G (0, oo), let LP =

LP(Q] Rn) be the family of Rn-valued random variables with E|X|P < oo. In

L1, we have EX < E|X|.

Moreover, the following two inequalities are very useful:

H o ld e r’s inequality

\E{Xt Y)\ < (E|X|p)p(E|r|9)J (2.1)

X p > l , i  +  i  =  l , X  e V . Y e L " - ,

C hebyschev’s inequality

P{u; : \X (cj)\ > c } <  c~pE \X \p (2.2)

if c,p > 0, X  G LP.

Let X  and Xk, k > 1, be Revalued random variables. The following four 

convergence concepts are important:

•  If there exists a P-null set Ct0 G LF such that for every lj not in f20, the 

sequence {X*.(a;)} converges to X {u)  in the usual sense in Rn, then 

{X*.} is said to converges to X  almost surely or with probability 1, and 

we write lim ^oo Xjt =  X  a.s.

•  If for every e > 0, P{u; : \Xk(u>) — X (u )\ > e} —> 0 as k —> oo, then 

{Xjt} is said to converge to X  stochastically or in probability.

•  If X k , X  G Lp and E|X*. — X \p —► 0, then {X^} is said to converge to 

X in  UP.

•  If for every real-valued continuous bounded function g defined on Rn, 

lim^oo Eg(Xk) =  Eg(X), then {X^} is said to converge to X  in distri­

bution.

14



Both the convergence in IP and the a.s. convergence implies the convergence 

in probability which leads the convergence in distribution. There are some 

important integration convergence theorems and lemmas in the follows (see 

[55, P 8 Theorem 1.1, 1.2] and [1, P7 Corollary 1.1.2] respectively) that

T h eo rem  2.1  (M o n o to n ic  convergence theorem ) I f  {AT} is an in­

creasing sequence of non-negative random variables, then

From this we easily deduce

L em m a 2.1  (F atou lem m a ) I f  {Xk} is a sequence of non-negative random 

variables, if  there exists a integrable random variable Y  such that Xk < Y  

fo r  all k, then

T h eo rem  2.2 (D o m in a ted  convergence theorem ) Let p > 1, { X k }  C 

L p(Q,]Mn) andY  £ Lp(fl;R). Assume that \Xk\ < Y  a.s. and{X k} converges 

to X  in probability. Then X  £ L P ^M P ), {.AT} converges to X  £ LP, and

Now let {Ak} be a sequence of sets in T .  The set of all those points 

which belong to all Ak is called the inferior limit of Ak, and is denoted 

by liminffc-^oo Ak. Clearly,

The set of all those points which belong to infinitely many Ak is called the 

superior limit of Ak and is denoted by l im s u p ^ ^  Ak. It is easy to see

E f lim sup Xk ) > lim sup EAT
\  k—*oc J  k—*oo

lim EAT =  E X

lim inf Ak = U°^ n j ^  A k.

lim sup A k =  U™=i A k.

15



Moreover

lim inf Ak C lim sup Ak .
fc ►OO k— > 0 0

W ith regard to their probabilities, we have the following well-known lemma 

[55, P10 Lemma 1.2].

Lem m a 2.2 (B o re l-C a n te lli lem m a )

That is, there exists a set fb  € T  with P(£2i) =  1 and an integer-valued 

random variable k\  such that for every uj G we have u  is not in Ak  

whenever k > k\{uj).

• I f  the sequence { A k }  C T  is independent and =  0 0  > then

That is, there exists a set CL2 € T  with P(fl2) =  1 such that for every 

u) G ^ 2, there exists a sub-sequence {>U} such that the uj belongs to 

every {A ^} .

Let A, B  G T  with P(B) > 0. The conditional probability of A under 

condition B  is

We also need the more general concept of condition expectation. Let X  G 

L1(f2; M). Let Q C IF be a sub-cr-algebra of T  so (fl, Q) is a measurable space. 

In general, X  is not ^-measurable. We now seek an integrable {/-measurable 

random variable Y  such that it has the same values as X  on the average in 

the following sense

• I f  {Ak} C T  and P(-^fc) < 00> then

P(limsup ;4fc) =  0.

P(limsup >U) =  1.

F(A\B)

B(Ig Y ) = E ( I gX )  i.e. f  Y {u )F (u )=  [  X (u )F (u ) VG G Q.
JG J g

16



Any such random variable Y  is called the conditional expectation of X  given 

Q and it is written

Y= E( X\ g ) .

2.2 Stochastic Processes

Let (fJ,.?7 P) be a probability space. A filtration is a family {^f}f>o of 

increasing sub-cr-algebra of T .  (i.e. T s C C T  for all 0 < s < t <  oo). 

The filtration is said to be right continuous if T t = r\s>tT s for all t > 0. 

If the probability space is complete, we say the filtration satisfies the usual 

conditions if it is right continuous and Tq contains all P-null sets.

From now on, unless otherwise specified, we let (O ,^7, {.Ft}t>0)P) be a 

complete probability space with a filtration {^Ft}t>o which satisfies the usual 

conditions and any stochastic processes will be defined in this space.

A stochastic process is a family of Rn-random variables {X t }*>0, indexed 

by a real parameter t and defined on a common probability space (Q,.F,P). 

The parameter set t usually represents time and so its parameter set I  is 

usually the half line R+ =  [0 , oo), but it may also be an interval [ti,t2] or 

{ 0 ,1 ,2 ,...} . It is worth noting that for each fixed t E /  we have a random 

variable

3  D —► X t{u) G Rn.

Meanwhile, for each fixed w E f l w e  have a function

I  B t - *  X t (u) G Rn,

which is called a sample path of the process. Sometimes we write X ( t ,d )  

instead of X t(cj), and the stochastic process may be regarded as a function 

of the two variables t and uj from /  x to Rn. A stochastic process {^}t>o 

may sometimes be written as {X*}, X t or X (t).

17



An Revalued stochastic process {-ATt}i>o is said to be continuous (respec­

tively right continuous, left continuous) if for almost all lj G £1 the function 

X t(uj) is continuous (respectively right continuous, left continuous) on t > 0. 

It is said to be integrable if X t is an integrable random variable for every 

t > 0. It is said to be {^i}-adapted (or more simply, adapted) if, for every 

£, X t is J~t measurable.

An {^}-stopping time is a random variable r  : Cl —► [0, oo] (it may take 

the value oo) for which {uj : r{uS) < t}  G for any t > 0.

An important type of random process which we must introduce is the 

martingale process. A martingale with respect to {Ft} (or more simply, 

martingale) is an Rn-valued {J^}-adapted integrable process {M t}t>o satis­

fying

E(Mt |.Ffl) =  M a a.s. for all 0 < s < t < oo.

The process is said to be a super-martingale (respectively sub-martingale) 

if equality is replaced by < (respectively >). A right continuous adapted 

process M  = {M t}t>o is called a local martingale if there exists a nonde­

creasing sequence {rfc}fc>i of stopping times with f oo a.s. such that every 

{MtArk ~  Afo} t>o is a martingale. While every martingale is a local martingale 

by [55, P15 Theorem 1.5], the opposite is not true.

We can describe a stochastic process X  = {A*}f>o as being square- 

integrable if E |X *|2 < oo for every t > 0. Let M  = {M t}t>o be a real-valued 

square-integrable continuous martingale, there exists a unique continuous in­

tegrable adapted increasing process denoted by {(M, M)*}, and called the 

quadratic variation of M, such that {M 2 — (M, M )t} is a continuous mar­

tingale vanishing at t = 0 . If N  = {N t}t>o is another real-valued square- 

integrable continuous martingale, we define (M , N )t =  | ( ( M  +  7V, M  +  N )t —  

{M ,M )t — (N ,N )t), and call {(M, N )t} the joint quadratic variation of M

18



and N. It is useful to know that {(M, N )t] is the unique continuous inte­

grable adapted process of finite variation such that {M tNt — (M ,N )t} is a 

continuous martingale vanishing at t = 0. For two real-valued continuous 

local martingales M  = {M t}t>0 and N  = {N t}t>o, their joint quadratic vari­

ation {(M, N )t} is the unique continuous adapted process of finite vanishing 

at t =  0 .

For IRn-valued martingale we have the following well-known Doob’s mar­

tingale inequalities [55, P18 Theorem 1.11].

T h eo rem  2.3 (D oob’s m a rtin g a le  inequa lities) Let {M t}t>o be an Rn- 

valued martingale. Let [a, 6] be a bounded interval in M+,

•  I f  P  > 1, c > 0 and Mt G then

2.3 Brownian M otion

Brownian motion is the name given to the irregular movement of pollen, sus­

pended in the water. It was first observed by the Scottish botanist Robert 

Brown in 1828. The range of applications of Brownian motion covers areas 

such as physics, biology, economics and many more. The first quantitative 

work on Borwnian motion is due to Bachelier (1990), but Einstein (1905) de­

rived the transition density for it. A rigorous treatment of Brownian motion 

began with Wiener (1923), who gave a mathematical representation.

(2.3)

•  I f  p > 1, and Mt € Z /(n ;R n), then

(2.4)

19



D efinition  2.1 Let (fl,.F, P) be a probability space with a filtration {IFt}t>o-

process {B (t)}t>o with the following properties:

•  B (0) =  0 a.s.;

• the increment B(t) — B(s) follows a normal distribution with mean zero 

and variance (t — s) for 0 < s < t < oo;

•  for 0 < s < t < oo, the increment B(t) — B(s) is independent of T s.

D efin ition  2.2 A d-dimensional stochastic process {B (t) =  (B 1(t) , . . . ,  B d(t))} 

is called a d-dimensional Brownian motion if every B l(t), with 1 < i < d, is 

a 1-dimensional Brownian motion and (J51(^)},. . . ,  {B d(t)} are independent.

The increment B(t) — B(s) is normally distributed with mean zero and co- 

variance matrix (t — s)Id, where Id is the d x d identity matrix.

with respect to a d-dimensional Brownian motion {#(£)} for a class of m  x d- 

matrix-valued stochastic process {/(£)}• Since {B (t)}  has unbounded vari­

ations, for almost all w G f2, the Brownian sample path B (u) is nowhere 

differentiable, and so the integral cannot be defined in the usual sense. How­

ever, K. Ito succeeded to give a definition of the stochastic integral using the 

stochastic nature of Brownian motion.

A 1-dimensional Brownian motion is a real-valued continuous {IFt\-adapted

2.4 Stochastic Integrals

In this section we shall define the stochastic integral

[ m d B ( t ) 
Jo

20



Let P) be a complete probability space with a filtration {^}^>o

satisfying the usual conditions. Let B = {B(£)}t>o be a 1-dimensional Brow­

nian motion. Let L2(fi,R) denote the space of all ^ -ad ap ted  stochastic 

processes f t = ft{w) such that

E |/ i |2 < oo

The space of all R-valued, ^ -ad ap ted  stochastic processes f t = ft(u )  such 

that

l l / l l o , t  =  E  [  l / W I 2 < f t  <  00
J  a

is denoted by M 2([a, &]; R).

A real-valued stochastic process /  =  {/(£)}*>0 is called a step process if 

there exist a partition a = t0 < t\ < • • • < tn = b of [a, 6], and bounded 

random variables £i, 0 < z < n — 1 such that & is a .^-m easurable and

n — 1

/ ( 0  =  £o/[t0,ti]M +
1

For this step process / ,  the stochastic integral of /  with respect to B(t) is 

defined as a random variable

[" }(t)dB{t) =  ]T & (B (i+1 -  B u).
J a i=0

D efin ition  2.3 Let f  G M?{[a, 6]; R). The ltd integral of f  with respect to 

B(t) is defined by

pb pb
/  f( t)d B (t)  = lim /  gn(t)dB(t) in L2(fi,R ),

J a  n ^ ° °  J a

where {gn} is a sequence of step process such that

lim E [  | f ( t )  -  gn(t)\2dt = 0.71—► OO /j  a
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D efin ition  2.4 The total variation of a real-valued stochastic process f ,  de­

fined on an interval [a , b] C R is the quantity,
Tip — 1

Vab( f )  =  sup J 2  |f ( X M ) -  f(X<)\.
i=0

where the V  =  {p = {X0, . . . ,  X Up}\p is a partition of [a, b]}. A real-valued f

defined on [a, b], if its total variation is finite.

D efin ition  2.5 Let X  = {Xf}t>o, Y  = {Lt}f>0 be two real-valued stochastic

processes, the quadratic variation of X  is
n

( X , X ) t = lim £ ( * « „ - X ^ ) 2,
k= 1

where p ranges over partitions of the interval o / [0 , t], the \\p\\ is the longest 

of these subintervals, that is max{|Aj — X j_ i| : j  = 1, . . .  , n};
n

( X , Y ) t = l i m X ^  -  )(*» -
«= 1

We shall now extend the Ito stochastic integral to the multi-dimensional case. 

Let {B(t)  =  (B1( t ) , . . . ,  B d(t))T}t>o be a d-dimensional Brownian motion de­

fined on the complete probability space (17, T , P) adapted to the filtration Tt* 

Let M 2{[a, b]; Rnxd) denote the family of all m  x d-matrix-valued measurable 

.^-adapted processes /  =  { ( f i j ( t ) ) m x d } o < t < T  such that

E f  |/ ( s ) |2ds < oo.
J  a

Here, and throughout this thesis, \A\ will denote the trace norm for matrix

A , i.e. |A| =  yTrace(ATA).

D efin ition  2.6 Let f  G A t2([0,T ] ; M.nxd), define ltd integral

f  f (s)dB(s)  =  I* 
Jo Jo

1 f u ( s )  . . .  f u ( s )  \  (  d B 1(s) ^

^ / m l W  . . .  fmd{s)  y  \  d B d(s)  j  
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to be the n-column-vector-valued process whose i-th component is the follow­

ing sum of 1-dimensional ltd integrals

d
E  I* f<j(s)dBt(s).
3 = 1

The Ito integral has a number of nice properties. For / ,  g G jM2([a, 6]; Rnxd) 

and a, f3 are two real numbers, we note the following

• / o i s  ^-m easurable;

. E f * f ( t ) d B ( t ) = 0;

. E\ f  ( t )dB(t )\2 =  E f * \ f ( t ) \ 2dt;

• /„W(<) + Pg(t)]dB(t) =  a  f* f { t )dB( t )  +  P f* g(t)dB(t).

Let £ 2(R+; E nxd) denote the family of all m x d-matrix-valued measurable 

{^i}-adapted processes /  =  {/(£)}*>o such that 

*r
/  I/(01sJo

dt < oo a.s. for every T  > 0.

The following theorem is known as the Burkholder-Davis-Gundy inequality 

[55, P70 Theorem 2.13],

T h eo rem  2.4 (B u rkh o ld er-D a v is-G u n d y  inequa lity) Letg  G Ad2(M+; Mnxd). 

Define, for t > 0,

X(t )  = f  g(s)dB(s) and A(t) = (  \g(s)\2ds.
Jo Jo

Then for every p > 0, there exist universal positive constants cp, Cp depending 

only on p , such that

cpE\A(t)\* < E [  sup |X ( s ) n  <  CpE\A(t)\% (2.5)
\ 0  < s < t J
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for all t > 0. In particular, one may take

cp = {p/2Y, Cp = (32/p)"/2 i f  0 <  p < 2;

Cp =  1, Cp =  4 i f  P = 2;

cv = (2p)-<‘li , Cp = (pp+1/2(p — I )’’-1)?/2 i f  p >  2.

Especially, for t > 0 ,

e (  sup |X (s)| ) <  3E(|>l(t)|i). (2.6)
\  0<s<t /

T heorem  2.5 (G ronw alV s inequa lity) [55, P54 Theorem 2.2] Let T  > 0 

and c > 0. Le£ ?/(•) 6e a Borel measurable bounded nonnegative function on 

[0,T], and letv(f) be a nonnegative integrable function on [0,T\. I f

u(t) < c +  f v(s)u(s)ds for all 0 < t < T,
Jo

then

u(t) < cexp { f .  w(s)ds J1 for all 0 < t < T. (2.7)

(D iscre te  G ronw alV s inequa lity) [55, P56 Theorem 2.5] Let M  be a

positive integer. Let Uk and Vk be non-negative numbers for k = 0 , 1 , . . . ,  M .

If k—1
Uk < uq +  VjUj, for all k = 1 , . . . ,  M,

j=o
then

Uk < uq exp < Vj >, for all k = 1 , . . . ,  M. (2.8)
^  3 = 0  '

2.5 Poisson Stochastic Integrals

Let X  = {^t}*>o be a stochastic process defined on a probability space 

(fi,^7, IP)- We say that it has independent increments if for each
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7i E N  and each 0 < t\ < t2 < . . .  < tn+1 < oo the random variables 

(X(tj+i) — X(t j ) ,  1 < j  < n ) are independent and tha t it has stationary 

increments if each X(t j+i — X(t j ) )  is equal in distribution to X(t j+1 — tj) — 

X  (0). Then we say that X  is a Levy process if

•  X(0) =  0 a.s.;

•  X  has independent and stationary increments;

•  X  is stochastically continuous, i.e. for all a > 0 and for all s  > 0

Here we need to mention a notion, which would be useful in the following 

definitions that let S  be a subsets of R d. We equip S  with the relative 

topology induced from so that U C S  is open in S  if U D S  is open in Rd. 

Let B(S)  denote the smallest a-algebra of subsets of S  that contains every 

open set in S.  We call B(S)  the Borel <r-algebra of S. Elements of J3(S) are 

called Borel sets and any measure on (s, B(S))  is called a Borel measure.

Let 0 < t < oo and A E B(R.d — {0}), define

Note that for each l j  E f2, t > 0, the set function A —> N( t ,A) (u)  is a 

counting measure on B(Rd — {0}) and hence

is a Borel measure on B(Rd — {0}). We write z/(-) =  E(iV(l,-)) and call it 

the intensity measure associated with X .

Let v be a Borel measure defined on M.d — {0}, we say that it is a Levy 

measure if

limP(|AT(t) - X { s ) \  >a)  = 0.
t—*s

N(t ,  A) := J){0 < s < t; A X( s )  e  A}  =  ^  X a ( A X ( s ) ) .

0<s<t
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Let A be a Poisson random measure on R+ x (Rn — {0}) with intensity 

measure v. We assume that v is a Levy measure. Let /  be a Borel measurable 

function from Rn —> Rn and let A G B(M.n — {0}); then for each t > 0, lj G f2, 

we may define the poisson integral of /  as a random finite sum by

Note that each f A f ( x )N( t ,  dx) is Revalued random variable and gives rise to 

a cadlag (right-continuous) stochastic process as we vary t. Since N(t ,  {a:})

0 <-> AX(u)  — x for at least one 0 < u < t, we have [1, (2.5) pp91]

A.M. Lyapunov introduced the concept of stability of a dynamic system in 

1892. Generally speaking, a system is stable if it is insensitive to small 

changes in the initial state or the parameters of the system. Lyapunov devel­

oped a method for determining stability without solving the equation, but 

as the theory of SDEs developed it became clear that a similar method of 

stochastic concept was necessary. In this section we shall introduce various 

type of stability for the n-dimensional SDEs

on t > to. As a standing hypothesis we assume that both /  and g are 

sufficiently smooth so that (2.9) has a unique solution. Moreover, assume that

[  f ( x ) N ( t , d x ) = / ( * X ( u ) ) X a ( A X ( u ) )
J A. ncn .ct0 < u < t

Now taking N  be the compensated Poisson processes, then in [1, P207]

2.6 Stochastic Stability Theory

(2.9)
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/(0 , £) = 0 and g(0, £) =  0 so (2.9) admits the trivial solution X(t;  £0, 0) =  0. 

Let us now present the different kinds of stochastic stability.

Definition 2.7 (A lm ost sure asym ptotic stability)

The trivial solution of equation (2.9) is said to be almost sure asymptot­

ically stable if

P(lim  \X(t; £05X0)1 =  0) =  1 a.s.
t —* 0 0

for all X 0 e R n.

Definition 2.8 (A lm ost sure exponential stability)

The trivial solution of equation (2.9) is said to be almost sure exponen­

tially stable if

limsup — log \X(t] £ 0 ,  Xo)| < 0 a.s.
t —*oo t

for all x 0 er.

Definition 2.9 (M om ent exponential stability)

The trivial solution of equation (2.9) is said to be p-th moment exponen­

tially stable if  there is a pair of positive constants C \ , C2 such that

E | X ( t ; t o , * o ) | ’ ’ <  C i l ^ o l ' e - 0 * - * 0

on t > t0, for all X 0 G ]Rn. It is usually said to be exponentially stable in 

mean square when p = 2 .

Definition 2.10 (A sym ptotic  stability in distribution)

The process X  (£) is said to be asymptotically stable in distribution if there 

exists a probability measure 7r(-) on W 1 such that the transition probability 

p(£,4 , rfC) ° f  X( t )  converges weakly to 1r(d£) as t —> 00 for every £ G Mn.
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Chapter 3

Alm ost Sure A sym ptotic  

Stability of N eutral Stochastic 

Differential Delay Equations 

w ith Jumps

3.1 Introduction

Many dynamical systems not only depend on present and past states but also 

involve derivatives with delays. Hale and Lune [18] have studied deterministic 

NSDDEs and their stability. Taking the environmental disturbances into 

account, Kolmanovskii and Nosov [30] and Mao [40] discussed the NSDDEs. 

Kolmanovskii and Nosov [30] not only establish the theory of existence and 

uniqueness of the solution but also investigate the stability and asymptotic 

stability of the equations, while Mao [40] studied the exponential stability 

of the equations. [18] studied deterministic NSDDEs and their stability. For 

NSDDEs, [43] studied the almost sure asymptotic stability of the equations.
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In this chapter we will mainly discuss the almost sure asymptotic stability 

of NSDDEwJs.

3.2 Non-Linear Neutral Stochastic Differen­

tial Delay Equations w ith Jumps

Let (fi, T , {Pt}t>o, P) be a complete probability space with a filtration {Ft}t>o> 

which is right-continuous having left-limit and satisfies that each {P t\t>o con­

tains all F-null set in T .

Let {B(t)  := (B 1(i), B 2(t) , . . . ,  JBm(t))T, t G [0, T]} be a m-dimensional 

^t-adapted standard Brownian motion independent of J-q.

Let N(dt , dz) be a d-dimensional Poisson processes and denote the com­

pensated Poisson processes by

N(dt,  dz) = (Ni (dt ,dz i ) , . . . ,  Nd(dt, dzd))T

= (Ni(dt, dzi) -  v\(dzi)d t, . . . ,  Nd(dt, dzd) -  vd(dzd)dt)T,

where { Nj , j  = 1,2, . . .  ,d} are independent d-dimensional Poisson random 

measures with intensity measure { ^ , j  =  1 , 2 , . . . ,  d}. We assume that B(t) 

and N(dt , dz) are independent. For more details regarding possion stochastic 

integral, see e.g. [1, P207].

Let | • | be the Euclidean norm as well as the matrix trace norm. Let 

r  > 0 and denote D([—r, 0];Rn) be the family of all right-continuous and 

left-limit Rn-valued functions (j) from [—r, 0] to Rn with the norm \\(p\\ = 

sup_T<t<0 |0 (t)|, and Z)^0( [ - r ,  0];Rn) be the family of all .Fo-measurable 

bounded D([—r, 0];Rn)-valued random variables £ =  {£(t), t  G [—v, 0]}.
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Consider the nonlinear n-dimensional NSDDEwJs

d[X(t) -  G(X( t  -  r))] =  f { X ( t ) , X ( t  -  T))dt + g ( X ( t ) , X ( t  -  r))dB(t)

for any t >  0, r  > 0 and v = (v\ , . . . ,  Vd)T are bounded Levy measures, i.e., 

u(M.d) < oo and v(A)  =  v(—A) for all Borel sets A  G Rd, where X(t~)  = 

limaT* X (s), and G : l n ^ E n, / : M n x R n - + I n and g : R n x Rn -> Rnxm 

as well as h : Rn x Rn x —> Rnxd. We denote tha t each column of the 

n x d  matrix h = [hij] depends on z only through the A>th coordinate i.e., 

h(k\ x , y ,  z) = hW(x,  y, Zfc), z —  ( z i , . . . }Zd) G Rd. Furthermore, all values 

£(t) of the initial segment are assumed to be .Fo-measurable for t G [—r, 0].

Using the notation above, we can rewrite the components Xi(t),  i = 

1 , . . . ,  n, in (3.1) that is

< p i( t)  -  Gi(X(t  -  r))] =  f i (X(t) ,  X ( t -  r))dt + ^ X ( t  -  T))dB}{t)

(3.1)

with the given initial segment

i  =  {((() ,<€ [-r,0 ]}  € Z£o([-t,0 ];R " ) (3.2)

m

(3.3)

A ssu m p tio n  3.1 (Local L ipschitz condition) For each integer R  > 1 

there exists a positive constant K r, such that

| / ( ^ i , 2/i) -  / ( ^ 2, 2/2>|2 +  \g{xu y{) -  g{x2,y2) |2

(3.4)
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for x 1, x 2,y1,y2 £ Rn and t G [0,T], where |a?i| V \yi\ V \x2\ V \y2\ < R. We 

also assume that there is a constant K  G (0,1) such that

\G(yi) -  G(y2)\ < K\yi  -  y21, for all yx,y2 G W 1. (3.5)

Let C2(Rn;R+) be the family of all nonnegative functions V(x)  on Rn that 

are continuously twice differentiable in r .  If V  G C2(Rn;R+), define an 

operator L V  from Rn x Rn to 1  by

LV{x,y)  =  Vx(x -  G(y)) f (x ,y)  +  ^tT&ce[gT{x,y)Vxx(x -  G(y))g{x,y)\
d  -

+  E /  [V (('T - G { y ) )  + h ^ ( x , y , z k) ) - V { x - G ( y ) )  
k~ i J r

-  Vx(x -  G(y))h,k)(x, y, zkj \vk{dzk),

(3.6)

where

v  (x) = ( ? m  y  (x) =
, U  \  8Z! dXn ) '  XX{)  { d X t d x J ^ '

and we will use X{t)  instead of X  (t~) sometimes in the following because

this will not effect on the Lebesgue integrals involved. Then the Ito formula

gives that if V  G C2(Mn; R+), then for any t > 0

V{X{t )  -  G(X( t  -  T )))  -  V(X(0)  -  G ({ (- t) ) )

=  f  L V ( X ( s ) , X ( s - T ) ) d s
Jo

+ f  Vx ( X ( s ) - G ( X ( s - r ) ) ) g ( X ( s ) , X ( s - r ) ) d B ( s )
Jo

m [V ((X («-) -  G(X((s  -  t ) - ) ) )  +  h<-k\X ( s ~ ) ,  X ( s - t )-) ,  * ) )
^ ^

-  V ( X ( 0  -  G (X ((s -  T)~)))]Nk(ds,dzk).

(3.7)
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L em m a 3.1 (Sem i-m artingale convergence theorem) Let Ai(t) and 

A 2(t) be two adapted increasing processes on t > 0 with .Ai(O) =  ^ 2(0) =  0 

a.s. Let M(t)  be a real-valued local martingale with M (0) =  0 a.s. Let (  be 

a nonnegative J^Q-measurable random variable such that E£ < 00 . Define

X( t )  =  £ +  Ai(t)  — A 2(t) +  M(t)  for any t >  0.

I f  X( t )  is nonnegative, then

< lim Ai(t)  < 00 > C < lim X{t)  < 00 > fl < lim A 2(t) < 00 > a.s.,
I t—* 0 0  I I t—*00 J I t —* 0 0  J

where C  C D a.s. means F(CC\DC) = 0. In particular, i/limt_»oo Ai(t) < 00 

a.s. then, with probability 1,

lim X(t )  < 00, lim A 2(t) < 00
t—*oo t—+ 00

and

—00 < lim M(t) < 00.
t —>oo

That is, all of the three processes X ( t ) , A 2(t) and M(t)  converge to finite 

random variables.

3.3 Alm ost Sure A sym ptotic Stability for N eu­

tral Stochastic Differential Delay Equa­

tions w ith Jumps

Let D (Rn; M+) be the family of all right-continuous and left-limit nonnegative 

functions defined on Rn. If K  is a subset of Mn, denote by d(x ,K)  the 

Haussdorff semi-distance between i g R "  and the set K , namely d(x, K ) =
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infygx \x — y\, If W  is a real-valued function defined on Rn, then its kernel 

is denoted by Ker(W) ,  namely Ker(W)  = {x  G Rn : W(x)  =  0}.

For the purposes of stability, we shall assume that for all t G R+,

G(0) =  0, /  (0,0) =  0, 9 (0 , 0) =  0, h(0,0,z)  =  0, (3.8)

which admits the trivial solution £ =  0 for (3.1).

T h eo rem  3.1 Let the assumption 3.1 holds. Assume that there are three 

functions V  G C2(Rn;M+), U G (7(Rn;R +) and W  G C(Rn;R +) such that

LV(x,  y) < - W i x )  + \ 2U(y) -  W ( x  -  G{y)), (3.9)

for (x , y ) G Rn x Rn with Ai > A2 > 0, and

lim V(x) = 00. (3 .10)
|x |—>oo

Then for any initial data £ = {£(£),£ G [—t, 0]} G Dp0{[—t,  0]; Rn), the

(3.1) has a unique global solution which is denoted by X( t;£) .  Moreover, the 

solution obeys that

lim su p y (X (t;4 ) — G(X( t  — r;^ )))  < 00 a.s. (3.11)
t~* 0 0

and Ker (W)  ^  0 and

] i m d ( X ( t - , ( . ) - G ( X ( t - T - , £ ) ) , K e r ( W ) ) = 0  a.s. (3 .12)
t —>00

In particular, if  W  moreover has the property that

W(x)  =  0 if  and only if x = 0, (3.13)

then the solution further obeys that

l imX(£;£) =  0 a.s. (3.14)

33



Before we prove the theorem 3.1, we now first show the uniqueness and 

existence of the global solution to (3.1) as follows.

Theorem 3.2 Let the assumption 3.1 holds. Assume that function V  G 

C72(Mn; there exists a positive constant C, which may different line by 

line, such that

LV(x , y)  <  -A ,U{x) + \ 2U(y), (3.15)

for (x, y) G Rn x Rn with Ai > A2 > 0, and

lim V(x) = 00. (3.16)
|x |—*oo

Then for any initial data £ =  {£(£)>  ̂ G [— t ,  0]} G L>f 0([—t ,  0]; Rn), the (3.1) 

exists a unique global solution which is denoted by X( t )  o n t >  —r .

Proof. Let be the bound for £. For each integer R > f , define

where we set (\x\AR/\x\)x = 0 when a; =  0. Define g ^ ( x , y )  and h ^ ( x , y , z )

similarly. Consider the NSDDEwJs

d[XR(t) -  G( XR(t -  r))] =  f m (XR( t ) , XR(t -  T))dt

+ 9 iR){XR( t ) , XR{ t - T ) ) d B { t ) +  [  h (-R\ X R{ t - ) , X R( ( t - T ) - ) , z ) N ( d t , d z ) ,
J Rd

(3.17)

on t > 0 with initial £. By the assumption 3.1, we observe that f f R\  g(R) and 

h ^  satisfy the global Lipschitz condition and the linear growth condition.

By the known uniqueness and existence theorem [1, Theorem 6.2.3 P304],
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there exists a unique global solution X R(t) on t E [0, r] to the equation

X R(t) =  £(0) +  G(S(t -  r)) -  G ({ (- t) )  +  [ l f {R\ X R(s) , t i s  -  r))ds
Jo

+  f  9 {R){Xr(s),Z(s -  r))dB(s)
Jo

+  [  f  hiR)( XR(s~) ,£{ ( s -T) - ) , z )N{ds ,dz ) .
Jo JRd

(3.18)

Once we obtain the unique solution on [0, r] we can regard them as the initial 

data and consider (3.17) on t E [r, 2r]. In this case, (3.17) can be written as

X R(t) =  f ( r )  +  G(£(t -  T)) -  G(«(0)) +  [  f<R)(XR{s),Z(s ~  r))ds  

+ J  9 {R)(XR{s ) ,£ ( s -T) )dB(s )

+ [  [  hiR){XR{s~),£({s -  T)~),z)N(ds,dz) .
Jt JRd

Again, (3.17) has a unique solution X R(t) on [r, 2r]. Repeating this procedure 

on intervals [2r, 3r], [3r, 4r] and so on we obtain the unique solution X R(t) 

to (3.17) on t  > —t.  Let us now define a stopping time 

aR =  inf{£ > 0 : \XR(t)\ > R}.  

Clearly, |A^(s)| V |Ab?(s — r) | < R  for 0 < s < aR. Therefore

f ( R\ X R(s ) , XR{s -  r)) =  f ( R+1\ X R{s ) ,XR(s -  r)), 

g W ( X R(s ) , XR(s -  r)) =  9 r̂+1\ X r ( s ) , Xr (S -  r)), 

h W ( X R( s - ) , X R(s -  t ) ~ ) , z ) =  h ^ i X ^ ' X ^ s  -  t ) ~ ) , z ) ,  

on r  < s < aR. These implies 

X R(t A aR) = £(0) +  G (X R(t A aR -  r)) -  G(f ( - r ) )
ptAUR ptAarR

+ f ( R+1\ X  R(s), X  R(s — r))ds + /  g(R+1\ X R( s ) , XR( s - T ) ) d B ( s )
Jo Jo

p tA a R p

+ /  h^R+1\ X R( s - ) , X R((s -  T)-) , z) f f (ds ,dz) .
Jo J Rd
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So we have

XR(t) = XR+i(t) if 0 < t < aR.

This implies that aR is increasing in R.  Let a =  aR. The property

above also enables us to define X( t )  for t £ [—r, a) as follows

X(t )  = X R(t) if ~ r  < t < aR.

It is clear that X( t )  is a unique solution to (3.1) for t € [—t, a). To complete 

the proof of global solution, we need to show that P{<r =  00} =  1. By the 

generalized Ito formula (3.7), we have that for any t > 0,

E V[XR(t A ar ) -  G ( X R(t A a R -  r))]
rthcfR (3.19)

=  EK[f (0) -  G(f ( - r ) ) ]  +  E /  L ^ V ( X r {s), X r (s -  r))ds,
Jo

where the operator L ^ V  is defined similarly as L V  which replaced / ,  g and 

h by f^R\  and hlR\  respectively. Due to the definitions of f^R\  g ^  and 

hlR\  we hence observe that

L W V { X r (s), X r (s -  r)) =  L V ( X r (s), X r (s -  r)) if 0 <  s <  * A oR. 

Using (3.15), we can then derive easily from (3.19) that

E(V[Xfl(t A oR) -  G( XR(t A aR -  r ) )] /{„R<(})

< TS.V[XR(t A oR) -  G( XR(t A oR -  r))]

< EVK(0) -  G ({ (-r))] +  AjE j f  U(((*))ds }

HActr
-  (Aj -  A2) /  E£/(X«(«))ds

do

<i>:= EVK(O) -  G (« (-r))] +  A2E J  U(S(s))ds.
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On the other hand, for any u> £ {07? < £}, we have |A"(cr/ )̂| > R  and 

X ( < j r  — t )  < R  so

\Xr (f A <7r ) — G ( X R(t A Or —  r ) ) |

> IX R(t A aR)I -  |G p fR(t A <tr -  r ) ) |

> (1 -  AT)rt.

It then follows from (3.20) and (3.16) that

P{<7fl < t )  < ---------------  .V((l - K) R)

Letting R  —> oo, we obtain that P-ja <  t] =  0. Since t is arbitrary, we must 

have

P{cr =  00} =  1

as desired.

Now let us divide the proof of assertions in theorem 3.1 for five steps.

Step 1. Let us first show assertion (3.11). For fixing any initial data 

£ and writing X(t;£)  =  X(t )  for simplicity, by the generalized Ito formula

(3.7) and condition (3.9) we have

V( X( t )  -  G(X( t  -  t ) ) )  <  K({(0) -  G ( f ( - r ) ) )  +  M(t)

+ [  [ - \ 1U{X(s)) + \ 2U { X ( s - T ) ) - W ( X { s ) - G ( X ( s - T ) ) ) ] d s  
Jo  

< V ( m  -  G (f(—t)) )  + \2J_ t /« W )d s  -  J  W (X (s) -  G(X(s  -  T)))ds + M(t),

(3.21)

where

M(t)  =  f  Vx (X(s)  -  G(X(s  -  r)))g(X(s) ,  X ( s  -  r))dB(s)  
Jo

m [ V ( ( X ( 0  -  G(X((s  -  r ) - ) ) )  +  h ^ { X ( s - ) ,  X ( 8 - t )~), zk))
'

-  V( X(s~)  -  G(X((s  -  T)~))))]Nk(ds,dzk),
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which is a local martingale with M (0) =  0 a.s. Applying lemma 3.1 we 

immediately obtain that

lim supV( X( t )  — G(X( t  — r))) < oo a.s.
f—>oo

which is the required assertion (3.11). It then follows easily that 

sup V ( X( t )  — G(X( t  — t ) ) )  < oo a.s.
0<t<oo

This, together with (3.10), yields

sup \X(t) -  G(X( t  -  r)) | < oo. (3 .22)
0<t<oo

But for any T > 0 , by assumption 3.1, we have if 0 < t < T

|X(f)| <  IG{X(t  -  r)) | +  IX( t )  -  G(X( t  -  T))| 

< K \ X ( t - T ) \  + \ X ( t ) - G ( X ( t - r ) ) \ .

This implies

sup \ X ( t ) \ < K  sup \X(t  — r ) \ +  sup |A (t) — G(X( t  — r)) |
o <t<T  o < t< T  o <t<T

< K l + K  sup |X(«) |+ sup |X { t ) - G ( X ( t - r ) ) l
0 < t< T  0 < t<T

where f  is the bound for the initial data £. Hence

sup |X (t)| <  — ^  ( k l  + sup IX(t )  -  G(X( t  -  r ) ) | ) .
0< t< T  1 — K  \  0< t< T J

Letting T  —> oo and using (3.22) we obtain that

sup |A (t)| < oo a.s. (3.23)
0<£<oo

Step 2. Taking the expectations on both sides of (3.21) and letting t —► oo, 

we obtain that

POO

E /  W( X( s )  -  G(X(s  -  r))ds < oo. (3.24)
Jo
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This of course implies

poo
/  W ( X { s ) - G ( X { s - T ) ) d s <  oo a.s. (3.25)

Jo

Set y(t) = X( t )  — G(X( t  — r)) for t > 0. It is straightforward to see from 

(3.25) that

lim inf W(y(t))  = 0 a.s. (3.26)l—too

We now claim that

lim W(y(t)) = 0 a.s. (3.27)
t —t oo

If this is false, then

P< lim sup W(y(t))  > 0 f > 0.
t  t—too

Hence there is a number e > 0 such that

P (f i i )  > 3e, (3-28)

where

^ i  =  < lim sup W(y(t))  > 2e 1. 
[  t-too  J

Recalling (3.23) as well as the boundedness of the initial data we can find 

a positive number R, which depends on e, sufficiently large for

P (n 2) >  1 -  e, (3-29)

where

0 ,2  = (  sup \y(t)\ < r V
f  — T < t <  OO J
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It is easy to see from (3.28) and (3.29) that

P(fti n n 2) > 2e. (3.30)

We now define a sequence of stopping times,

rR = inf{Z > 0 : \y(t)\ > R},

(ji =  inf{£ > 0 : W{y(t))  > 2e},

a2i =  inf{t > (J2i-i : W (y(t )) < e}, 1 = 1 , 2 , . . . ,

cr2i+i = inf{Z > <721 : W(y(t)) > 2 e } ,  1 = 1,2 , . . . ,

where throughout this chapter we set inf0 =  oo. From (3.26) and the defi­

nitions of and fZ2 we observe that if u; G 17i fl fZ2, then

tr = oo and cq < oo, VZ > 1. (3.31)

Let IA denote the indicator function of set A. Noting the fact that a2i < oo

whenever <r2/_i < oo, we derive from (3.24) that

POO

oo >E /  W(y(t))dt  
Jo

°°̂  r f a2t
— ^  I{cr2i-i«x>,Q2i<oo,TR=°°} I W(y(t))dt  (3.32)

i= i  L J
oo

^  ^ [^{<72t-i<00,T fl=oo}(g '2f — 0 2 Z - l) ] -
Z=1

On the other hand, by assumption 3.1, there exists a constant L R > 0 such 

that

I/Or, y) I2 V \g(x, y)\2 V [  \h{k)(x, y, zk)\2vk(dzk) < L R (3.33)
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whenever \x\ V \y\ < R. By the Holder inequality (2.1), the Doob martingale 

inequality (2.4) and (3.33), we compute that, for any T  > 0 and I = 1,2, . . . ,

E 

< 3E

I { t r a <t2i- i < oo} sup Iy ( r R  A {a2i - 1 + 1 ) )  -  y { r R  A o2i-1)|:
0 < t< T

suP /  f ( X ( s ) , X ( s - r ) ) d s
0< t< T  I J TjjA<T21— 1

I /,TRA(o-2i-i+A
+  3E / { TJlAa2,_!<(»} sup / g( X ( s ) , X ( s  -  r))dB{s)

0<t<T  I JTRAa2l-\
rTRA(cr2i-i+t) /»
/ / h ( X ( s ~ ) , X ( ( s - T ) - ) , z ) N ( d s , d z )

J tRA<J21-\ J^-d
+  3E

< 3TE 

+  12E

+ Ct ^ 2  E

< Ct L r ,

trA(T21-i<oo} sup 
0<t<T

trA(o’21-1+T)
^{t rA(T2i~i<oo}  /  | / ( X ( 5 ) , X ( 5 - r ) ) | 2d5

J trA<J21-\
rTRA(<T2l-i+T)

{̂trA<J21-i<00} I X (s  — r))|  ds
«/trACT2!-1

d r /*TflA(c72J-l+71)
I { tRA(T21

fTRA(<T2l-i+T) r
!< oo} /  /  | / i W ( ^ ( s ) , X ( 5  -  T ) , 2 * ) | 2 i/fc( d z fc) d s

J  T b A (T 2 1 -1  « /R

(3.34)

where we use X(£) instead of X(£“ ) because this will not efect on the 

Lebesgue integrals involved, and C t  is a positive constant which may dif­

ferent line by line. Since W  is continuous in Rn, it must be uniformly con­

tinuous in the closed ball S r  = {x  G E n : |x | <  R}.  We can therefore choose 

8 = 5(e) > 0 so small such that

\W(x) — W(y)\  < ^ whenever x , y  G S r , \x — y\ < 5. (3 .35)

We furthermore choose T =  T(e,8y R) > 0 sufficiently small for < e. It 

then follows from (3 .34 ) that



Noting that

{rR =  oo, cr2/-i < 00} =  {tr A 0-21-1 < 00, tr = 00} C {tr A o2/_1 < 00}, 

we hence have

P^{TR =  00,02/_l < 00} n  |  ^sup^ |y(o2/-i +  0  -  2/(c7-2I-l)| > 6 < £.

By (3.30) and (3.31), we further compute 

P ^ { tr  =  oo,o2/_i < 00} n  |  swp^\y(a2i-i  +  t) -  y{a2i - 1)| < £

=  P ( { ^  =  oo,o2/_i < 00})

-  =  oo,o2/-i < 00} n  |  ^sup^ |y(o2/-i + t)  -  y(o2/_i)| >

> £.

By (3.35) we hence obtain that

p ( { r *  =  oOjOa-i <  0 0 }  n  (  s u p J W '(1/(021-1 +  * ) )  -  W  (y{a2i - i ) ) \  <  e j )  >  £•

(3.36)

Set

Cli = (  sup \W(y(<T2i- i  + 1)) ~  W(y{cr2l- 1))| < e \ .
f  0 <t< T )

Noting that

02 / M  -  02 l - l { v )  > T  i f  £J G { r R  =  0 0 , o 2/_ 1 <  0 0 } n  f i / ,
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we derive from (3.32) and (3.36) that

oo

OO >   ̂^ [-f{T fl= oo ,cr2 i-i< oo}(<72Z & 2l—l ) \

Z=1
oo

— g ^  v [̂̂ ~{'rfl=oo,g2t- 1 <oo}nO; ip21 ~ &21-1)]
1 = 1

oo

>  T e  ^  P ( { t r  =  o o ,  <T2| - 1  <  o o }  f l  f h )

/=1
oo

> T e ^ ^ e  = oo,
i=i

which is a contradiction. So (3.27) must holds.

Step 3. Let us now show that Ker(W)  0. From (3.27) and (3.22) we

see that there is an f2o C with P(fio) =  1 such that

lim W(y(t,Lj)) =  0 and sup \y{t,uj)\ < oo for all l j  G IV  (3.37)
t--*00 0<t<oo

Choose any l j  G Cl0. Then {y(t , t j)}t>0 is bounded in R n so there must be 

an increasing sequence {^}z>i such that ti —> oo and {y(ti,uj)}i>i converges 

to some y G P n. Thus W(y)  =  lim /-^  W(y(ti,u>)) = 0, which implies that 

y G K er{W ) whence K e r ( W ) ^  0.

Step 4• We can now show assertion (3.12). It is clearly sufficient if we 

could show that

lim d(y{t,uS), Ker(W))  = 0 for all l j  G fV  (3.38)
i—»oo

If this is false, then there are some u  G fi0 such that

lim sup d(y(t,Cj), Ker(W))  > 0.
t—» oo

Hence there is a subsequence {y(i/,a))}/>o of {y(t,u>)}t>o such that

limsupd(y(ti,cj),  Ker(W))  > e
l—* oo
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for some e > 0. Since {y(ti,cj)}i>0 is bounded, we can find its subsequence 

{y(ti,u;)}i>o which converges to some y G IRn. Clearly, y  is not in Ker{W)  

so W(y)  > 0. But, by (3.37), W(y) = h.mi^00W (y(ti1u)) = 0, It is a 

contradiction. Hence (3.38) must holds.

Step 5. Finally, let us show assertion (3.14) under the additional condition 

(3.13). Clearly, (3.13) implies that Ker(W)  = {0}. It then follows from 

(3.12) that

lim[X(£) — G(X( t  — t))] =  lim y(t) = 0 a.s.
t—► oo t —>oo

But, by (3.5),

\X(t)\ < |G(X(t  -  t ) ) | +  \X(t) -  G(X( t  -  r ) ) |

< A- |A-( t - r ) |  +  | A - ( t ) - G ( X ( t - r ) ) | .

Letting t —* oo we obtain that

limsup |X (i)| < X lim sup |X (i)| a.s.
£—»oo t —*oo

This, together with (3.23), yields

lim sup |^(£)| =  0 a.s.
t —*oo

which is the required assertion (3.14). The proof is therefore complete.

3.4 Example

Let B(t)  be a 1-dimensional standard Brownian motion, N(t , z )  be a 1- 

dimensional Poisson process and denote the compensated Poisson process 

by

N(dt ,dz)  = (N(dt ,dz ) — i/(dz)dt). 
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We assume that B(t)  and N(dt,  dz) are independent. Consider a scalar non­

linear NSDDEwJs of the form

d[X(t) -  G(X( t  -  r))] =  f {X( t ) ,  X ( t  -  r))dt  +  g(X(t) ,  X ( t  -  r))dB{t)

+  f  h{ X( t ~ ) , X { ( t - T ) - ) , z )N {d t , d z ) .
J  R

Suppose that

G{y) = -0 .1  y, f ( x )  = - x 3 -  2x , g(y) = y2sint 

h{x,y,z)  = A{z)t i (x,y) ,  h' (x,y) = 0.1 (x2 + y2), 

f  A 2(z)i/(dz) = 1.
J  R

Define V(x) = x 2, therefore the operator

L V  ! M x R —> R

takes the form

LV(x,  y) < —1.83a:4 -  2.3a:2 +  1.07y4 +  0.53y2 -  0.1(z +  O.ly)2,

By defining U(x) = xA -I- 1.2a:2, W{x)  =  0.1a:2, we hence have 

LV(x ,y)  < -1 .83U{x) +  1.07U{y) -  W ( x  -  G(y)) 

which follows the theorem 3.1.
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Chapter 4

Convergence of 

Euler-M aryuama M ethod for 

N eutral Stochastic Differential 

Delay Equations w ith Jumps

4.1 Introduction

Most of NSDDEwJs do not have explicit solutions and hence require numer­

ical solutions. However, there are seldom explicit formula for solutions to 

NSDDEwJs, and several numerical schemes have been developed to produce 

approximate solutions. Mao and Sabanis in [42] have proved that the numer­

ical solution of the Euler scheme converges to the true solution in the sense 

of strong convergence for SDDEs under a local Lipschitz condition and a 

linear growth condition, in [24], Higham and Kloeden have investigated the 

strong convergence of numerical solutions for SDEwJs. Moreover, in [27], 

Jacob, Wang and Yuan estimated the rate convergence of numerical solu-
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tions of SDDEwJs. The main aim of this chapter is to investigate that the 

Euler-Maruyama numerical solutions will converge to the true solutions of 

NSDDEwJs under the local Lipschitz condition, and we do not only show the 

convergence of the Euler scheme, but also reveal the rate of the convergence.

It is the first time that the rate of convergence has been obtained under local 

Lipschitz condition for NSDDEs to the best of our knowledge.

4.2 Euler-M aryuama M ethod for Neutral Stochas­

tic Differential Delay Equations w ith Jumps

Let the time step-size A G (0,1), and A =  ^  ^  for the sufficiently large

integer TV, we also let tn = n A  for n = 0 , 1 , . . . ,  TV. Compute the discrete 

approximations Yn «  X ( t n) by setting Y0 = X (to) and performing

Yn+i ~ G(Yn+i_m) = Yn -  G(Yn. m) +  f ( Y n, Yn- m)A  +  g(Yni Yn- m)A B n 

+  j h{Yn,Yn-m :z)A N n(dz) 
J  Rd

(4.1)

where A Bn = B (tn+1) -  B( tn) and A N n(dz) = N ( t n+lldz) -  N( t n,dz).

Let us introduce the following notations Y(t)  = Yn, Y( t  — r) = Yn-m > 

for t G [tn, t n+1), with the initial value T(0) =  ^(0). The continuous EM 

approximate solution Y  (t ) is to be interpreted as the stochastic integral

Y(t )  = m  -  G(Z(-r))  +  G(Y( t  -  t )) +  f  f (Y(s ) ,  Y( s  -  r))ds
Jo

+ f  g ( Y( s ) ,Y ( s - T) )d B (s ) +  f  [  h(Y(s- ) ,Y( (s  -  T)-),z)N(ds,dz),
Jo Jo JRd

(4.2)

for t G [0,T] with initial data £ =  {£(£), t G [—r, 0]}. Therefore we have for

47



any t > 0,

»nApnis
Y(t)  = «(0) -  G ( « - t ) )  +  G(Y( t  - t ) ) +  f (Y( s ) ,  Y ( s  -  r))ds

Jo
pnA pnA p

+  /  F (s  -  r))dB(s) + /  /  h(Y(s- ) ,  ? ( ( s  -  r )" ) , z)N(ds,  dz)
Jo Jo JRd

+ I  f ( Y ( s ) , Y ( s - r ) ) d s +  [  g ( Y ( s ) , Y ( s - r ) ) d B ( s )
JnA JnA

+ [ [  h ( Y( s - ) ,Y ( (s -T) - ) , z ) N( ds , dz ) .
JnA J Rd

(4.3)

Clearly, Y ( t n) = X ( t n) = Yn =  Y( tn), tha t is, Y(t)  and Y(t)  coincide with 

the discrete approximate solution at the grid-points.

Assume that f , g , h  satisfy the linear growth condition that

d p  

l/(z,2/)|2 +  \g(x,y)\2 +  ^ 2  /  \h{k\ x , y , Zk) \2Vk(dzk) < K ( l  +  \x\2 +  \y\2),
k=1 Jr

(4.4)

and

d p
Y  /  \h{k)( x , y , z k)\pvk(dzk) < K(1  +  \x\p +  \y\p), (4.5)
fc=i Jr

for x , y  G Mn, p > 2.

L em m a 4.1 Under the linear growth condition (4.4) for anyp < 2 and (4.5)

for any p > 2, there exists a positive constant Hp which is independent of A

such that

e (  sup |AT(*)|P>) V f i f  sup \ Y ( t ) A  < H P. (4.6)
V 0< t< T )  \  0< t< T J

P roof. Consider the proof of the first part is more simple which can be 

contained by the second one, hence we here only prove the complicated one 

as follow.
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By using (3.5) and the inequality \a + b\p < (1 + olp~1)p 1(\a\p + ^|&|p) we 

have, let a = v 1 —1\ ' 

sup |y (s ) |pN)
\ 0  <s< t  J

< ( l  +  a?11)  ( E sup |Y(s) — G ( Y (s — t )) |p +  —E sup \G (Y (s — r ) ) |p>)
V  /  \  0< s < t  Ol 0< s < £  J

!
< ( ------— ) E sup |^(5) — G(Y(s  — r ) ) |p +  K E sup |K(s — r ) |p

\ 1  —  K J  0 < s < t  0 < s < t

< ( — U r Y  E sup |K(s) -  <?(?(« -  t ) ) \ p + K E  sup \Y(s)\v + KW. sup |? ( s ) |p
\ 1  —  K J  0 < s < t  - T < s <  0 0 < s < t

<  ( — U Y e b u p  \ Y ( s ) - G { Y ( s - t ) ) \ ”  + - ^ L ;1E, sup |C(S)|”.
\ 1  — K J  o < s < t  1 — K  - t < s< o

Using the form of EM approximation (4.2) and Holder’s inequality (2.1), we 

compute straightforward

/  \  cp -l cp-1
E sup | y ( s ) r )  <  E |£ (0 )|r+  E |G (4 ( - r ) ) r

\o<j<i j  (1 -  k )p (1 -  i c y

+  —^ E  sup | « a)|P +  _ ® . E f  sup I [  f (Y(u) ,  Y(u  — r))d 
1 — K  - t < s < o  (1 —  K ) p \ o < s < t \ J o

t - e (  sup I [  g (Y ( u ) , Y ( u - T ) ) d B ( u ) \
(1 — K ) p \ o < s < t \ J o  I

+

5P_1
+

(1 -  K ) p
E[  sup f  ( h(Y(u ) ,Y((u — t)  ), z)N(du,dz)  

\  0<s<t | Jo J^d
c p - l  r p - l  f?p

^ 77— ^ -E |^ ( ° ) r  +  7-— ^ E |^ ( - x ) r  + -— sup |{(3)|» (1 - K f  (1 - K f  1 — K  -r<«<o
+  (s r>_ ’̂ - J ‘ E \ f ( Y ( u ) , Y ( u - T ) ) \ ”dn 

(i is\vE (  sup I /  9 { y { u ) , Y { u - r ) ) d B { u )  (1 -  K ) p \o<s<t\Jo
5P_1

+

5p
+

( 1 - K )
E^  sup I f  [  h(Y(u ) ,Y((u — r) ),z)N(du,dz)  

K ) p \ o < s < t \ J o  J r d
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By using Burkholder-Davis-Gundy’s inequality (2.5) we have 

E[ sup f  g (Y(u) ,Y(u  — r))dB(u)
V 0<s<f I  Jo

< c M j ^ \ g ( Y { u ) , Y ( u - T ) ) \ 2du

< CpT 2 - 'E r  |9(?(«),?(« -  r))\pdu,
Jo

where Cp is a positive constant, which depends only on p. We also have

e (  sup I f  (  h(Y(u~) ,Y( (u  — r)~) , z )N(du,dz)  ^
\  o<s< t  | Jo  J r d J

< CpE j f  ( ^ J j h W ( Y ( u ) , Y { u - T ) , z k)\2vk{dzk) y  du 

+ C„,(y ; E  f  f  |h ^ { Y ( u ) , Y { u - r ) , z k)\puk{dzk)du,
k= 1 *'°

where (7P)t is also a positive constant, which depends only on p and t, which

follows from [3, Theorem 2.4] (see also [28]). Then we have by using (4.4)

and (4.5)

e (  sup |y (s ) |p)
\ 0  <s< t  J

5P_1 /  K p5P_1 K  \
sup k w( 1  -  K ) p \ ( 1  -  K ) p l - K J  - t < s <  o

/  K p(§T)p~l K php- xCpT l ~ l CPttK p 5p- x\
+  V ( 1  -  K ) p +  ( 1  -  K ) p +  ( 1  -  K ) p )

x ^ y  E\Y(u)\p + E \ Y { u - r ) \ pdu 

5P_1 f  i f p5p_1 K  \- 7i— + (7i—iFw + i—? )E sup KWI”(1 -  K)p \(1  -  K Y  1 - K )  -r<s< o
( K v ^ T y - 1 KPSP-'CpTi-1 C p ^ S * - 1 \

+  \  (1 -  K)p + (1 -  k y  +  (1 -  K)r  )

x ( t E  sup |£(s)|p +  2 f E sup |y ( r ) |pdu
\  —t< s< 0 Jo  0<r<u

< Ci +  C2 f  E sup \Y(r)\pdu,
Jo  0<r<u
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where C\ and C2 are two different positive constants depend on p. Then the 

Gronwall inequality (2.7) shows that

E( sup |y ( s ) H  < C ie°2T := Hp,
\  0<s<f  /

which complete the proof.

4.3 Convergence of Euler-M aryuama M ethod  

for Neutral Stochastic Differential Delay  

Equations w ith Jum ps

A ssum ption  4.1 (Global L ipschitz condition) For a positive constant 

K , we have

\ f (xi ,yi )  -  f(oc2,y2)\2 +  \g{xi,yi) -  g(x2,y2)\2
d r

+  /  I*1**00*1,yi,**) -  h{k)(x2,y2, zk)\2vk(dzk) < K 2(\x2 -  x ^ 2 +  \y2 -  yi
k=i

for x i , x 2, y i , y2 G E n and t G [0,T].

Moreover there is a positive constant K  such that the initial data £ obeys

E lf(v) “  £(w)l <  K \ v ~ UV (4-7)

where —r  < v < u < 0.

T h eo rem  4.1 Under the the assumption 4-1, we have



Proof.
E[ sup |X(s) — y (s ) |'

\0<S<*

< — U e  sup |X(s) -  G(X(s  -  r ) )  -  y (s ) +  G(Y(s  -  r )) |2 
1 — K  o < s < t

+  4 -E  sup |G(X(s -  r)) -  G (y(a -  r )) |2
K  o< s < t

< — U ;E  sup |X (s) -  G(X(s -  r)) -  Y(s) + G(Y(s  -  r )) |2
1 — K  o < s < i

+  K E  sup |X (s — r)  -  Y(s  — r ) |2
o < s < t

< - —~^E sup |X (s) -  G(X(s  -  t ) )  -  Y(s) + G(Y(s  -  r ) ) |2 
1 — K  o < a < t

+  J k E  sup |X (s -  r )  -  Y(s  -  t ) |2 +  — E sup |y (s  -  t )  -  Y(s  -  r ) |2
o< s < t  1 — v K  o < s < t

 < ----------- ------- sup IX(s)  -  G (X(s  -  t ) )  -  Y(s) + G(Y(s -  r )) |2
( i  -  R)(  i  -  V k )  0  <s<t

H ^ - = —E  sup |y (s  — r) — y (s  — r ) |2 H ^ - ^ = E  sup |X (s) -  y ( s ) |2
(1 -  V  K ) 2 0<S <t  1 _  y / K  - T < S <0

 < ------^ .— E sup |Y(s  — t ) — Y(s  — r ) |2
(1 -  V K ) 2 0

H----------——------t= ^E  sup [  f ( X ( u ) , X ( u -  t ) )  -  f ( Y ( u ) , Y ( u -  r))du
— y  K )  o<s<t  | Jo

S_ 

3
+

+
3

—— E sup [  g ( X ( u ) , X ( u - t )) -  g { Y ( u ) ,Y ( u - r ) ) d B { u )
V  K ) o<s<t  | J o

- -j— E sup [  [  h (X(u  ) , X ( ( u  — t )  ) , z )  
V fif) I •'O( 1 - A T ) ( 1 -

— h(Y(u~),  F((w — r)~), z )N(du , dz)

By Holder’s inequality (2.1), Doob’s martingale inequality (2.4) and the as­
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sumption 4.1, we estimate the following three terms that

E sup I [  f ( X ( u ) , X ( u  — r)) — f (Y (u ) ,  Y (u  — r))du 
0<s< t  | Jo

< T K 2 [  E |X (u) -  Y{u ) |2 +  E\X(u  -  r )  -  Y(u  -  r ) |2du,
Jo

E sup I [  g (X (u ) ,X (u  — t )) — g ( Y (u), Y(u  — r))dB(u)
0<s < t  | Jo

< 4K 2 f  E|(X (u) -  Y (u) |2 +  E |X (u -  t )  -  Y (u  -  r)\2du
Jo

E sup f  (  h(X(u~),  X ( (u  — t )~ ) ,z )  — h(Y(u~) ,Y ((u  — r)~) ,z )N(du,  dz)
0<s< t  I Jo  J Rd

< 4  K 2 [  E\X{u) ~ Y ( u ) \ 2 + E \ X { u - r )  -  Y { u - r ) \ 2du.
Jo

By combination we have 

e (  sup \X(s)  — (^)|2>)
\ 0  <s< t  /

 < ------ --  E sup \Y(t — t ) — Y( t  — t ) |2
(1 -  V k ) 2

+  — 3K2(T  + 8) f  E |x (t,)  _  y (ti) |2 +  E |X (u -  t )  -  Y ( u  -  r )|2du
(1 - K ) ( l -  V K) Jo

 < ------^ .  E sup |Y ( t  — t ) — Y( t  — t )\2
(1 - v k ) 2 <><»<*

+  — +  8) [  E \ X ( u ) - Y ( u ) \ 2 + E \ X ( u - T ) ~ Y ( u - T ) \ 2du
(1 -  K){  1 -  V k )  Jo

+ ----  (T  +  8) _  [  E |y (u ) -  Y (u ) I2 +  E |y (u  -  r )  -  ? {u  -  r ) |2du.
(i -  k )( i -  V k )  Jo

For any t e  [0,T] choose n such that t 6  [nA, (n +  1)A). Then 

Y(t)  -  Y( t)  =  y ( t)  -  y (nA ) =  f  f ( Y ( s ) , Y ( s  -  r ))ds
J  nA

+  f g ( Y ( s ) , Y ( s - r ) ) d B ( s ) +  f f  h(Y(s~) ,Y((s  ~ r)~), z)N(ds ,dz) ,  
J  nA  J  n A  J
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by the linear growth condition (4.4) and (4.7)

E\Y(t)  -  Y ( t ) |2 < E sup \Y{s) -  Y{s ) |2
0 <s<t

< (3A +  24) K 2 S  ( E |f  (u) |2 +  E |K(u -  r )|2)du (4-9)
J nA

< K 'A,

as well as

E |y ( i -  r) — F (t — r ) |2 <  E sup |y (s) -  ? ( s ) |2 +  E sup |y (s) -  ? ( s )|2
—T < s< 0 0 < s < i

< K 2\t — r  — (n — m )A |2 +  E sup \Y (s) — Y (s) |2
0 <s<t

< K "A +  E sup |y (s) -  y ( s ) |2
0 <s<t

< K"  A

(4.10)

holds for all t G [0, T] as required, where K'  and K"  are two different positive 

constants.

Then we can come back to the proof of theorem 4.1 that

e (  sup |X ( s ) - y ( s ) | 2)
\ 0 < s < t  /

< K  + 6 K 2(T + S)T (K 'A  + K "A )

(1 -  V k ) 2 (1 -  K)(  1 -  V k )

f  E |X (u )  -  y ( u ) |2 +  E |A '(u  -  r )  -  y ( u  -  -r)|2du 
-  v k )  Jo

6 K 2(T  +  8)

(1 - K )( 1
< K  K „±  +  6 K 2(T + 8)T(K'A + K" A)
_  (i -  V k ) 2 ( i -  i f ) ( i  -  V k )

+ — 12R2('T  +  8 ) f  E  s u p  |A (r) -  y ( r ) |2du,
(1 -  K ) ( 1 -  V K )  JO 0 < r < u

that is by using Gronwall’s inequality (2.7)

e (  sup !*(() -  y(<)|2)  <  c 3ec‘ <  C5A, (4.11)
\0  < t < T  J
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where C% = 6K 2(T + 8)T (K 'A + K "A ) 12K2(T+8)

R em ark  4.1 Since proving as several cases in [27, Lemma 2.4] is not neces­

sary for our fixed time delay models, we choose more easily way as the proof 

of (4.9) and (4.10) to deal with E|Y(£) — Y(t)\2 and E\Y(t  — r) — Y( t  — t )\2.

T h eo rem  4.2 Let the assumption 3.1 and (4.5) hold, the EM approximate 

solution converges to the exact solution of the NSDDEwJs (3.1), in the sense

and write p R  =  o r  A 5 r . Recall the Young inequality for a 1 +  6 1 =  1, and

all a, (3,7  > 0

that

Proof. Define two stopping times

ctr = inf{£ > 0 : \X(t)\ > R }, 

SR = inf{£ >  0 : |Y(£)| > R},

Thus, for any 7  > 0,

E l sup |Y(£) — Y ( t )|
\ 0 < t < T

=  E[ sup |X{t)  — Y\
\  0<t<T

=  E( sup \X(t) -  Y(t)\2l {aR>Tj5R>T} sup \x(t)  - Y ( t ) \ 2l {aR<T or sr < t}
0 <t<T

< e (  sup \ X ( t A p R) - Y ( t A p R)\2l {pR>T})  + —  E ^  sup \X{t) -  Y(*)|p)
\ 0  <t<T J P \ 0  < t< T J

H ^ E { ( J r < T  or 6r < T ),

then we deduce that

W(<7r < T) — E(l{CTil<T}) < El l{aii<r} l * K ) f
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These bounds give

e (  sup \X(t) -  y ( 0 |2>) < ^ (  sup \X(t  A pR) - Y ( t  A pR)\2
\ 0  <t<T J  \ 0  <t<T

| 2 ^ h H p | 2(p -  2)HP

P jryp^RP

Then given any e > 0, we can choose 7  such that 2-+̂ Hp < and then we 

choose R  such that 2(p- 2)Hp < 1 Note for any sufficiently small A it follows
pjP=lRP

that C5A < combining the bounds above we finally get

e (  sup |x ( t)  - y ( t ) | 2N) < c,
\ 0  <t< T J

which complete the proof.

4.4 Convergence R ate of Euler-M aryuama M ethod  

for Neutral Stochastic Differential Delay  

Equations w ith Jumps

Now let us consider the rate of convergence.

A ssum ption  4.2 (Logarithm growth condition) For each R  € N  which is 

in the definition of stopping time, and K r in the assumption 3.1, there exist 

positive constants g and a such that

where a = — 24(T+8)
(l-k){l-y/K)

a K 2R < glogR, (4.12)



T heo rem  4.3 I f  the assumption 3.1 and 4-2 hold, then the order of conver­

gence of the EM approximation is 1/2.

P roof. For each R > 1, define the function

/ ' * w >

where (|rr| A R/\x\)x = 0 when x = 0 and g^R\ x , y )  and h^R\ x , y , z )  are 

similar. Let Yr {£) be the EM approximation to the following NSDDEwJs

<2[X*(t) -  G{XR{t -  r))] =  f R\ X R( t ) ,X R{t -  r))dt + g<-R\ X R( t ) ,X R(t -  r  ))dB(t)

+ f  h(R\ X R{ r ) , X R( ( t - T ) - ) , z ) N ( d t , d z )
J  Rd

with Vfi(O) =  A"(0) and

YR(t) -  G(YR(t -  r)) =  ?R(0) -  G(Yr ( - t ) )  + f  f iR)(YR(s),YR(s -  r))ds
Jo

+ f  9W (YR(s),YR( s - T ) ) d B ( s ) +  f  f  hW(YR(s-),?R{(s ~ T)~),z)N(ds,dz). 
Jo Jo  JR d

By (4.11) we have

E sup |X*(t) -  YR(t) |2 < [/? + T (K '  +  K")]aK%]AeiaK*
0 <t<T  4

< \/}\aK% + T ( K ’ +  K " ) ^ a K 2R} A e ^

<  [P +  T ( K '  +  K " ) \ e aK * A ,

where /3 = — and a  =  — 24(t+8)
( i - V / 0 2 (i - k ) ( i - V k )

X ( t ) =  sup |X (t)|, Y ( t ) =  sup |y(*)|.
0 < t<T 0 < t<T

Define the stopping time

pR = T  A inf{« 6 [0,T] : |X *(0 | V |y*(t)| > R}.
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Clearly, |A/e(^)| V \Xr (1 -  r ) | <  R  for 0 < t < pr , hence

f W ( X R{t) ,XR(t -  t ) )  = r R+1\ X R( t ) ,X R(t -  r)), 

g W ( X R( t ) ,X R(t -  t ) )  = g(R+l\ X R( t ) ,X R(t -  r)), 

h ^ ( X R(s-), X R((s -  r ) - ) ,  z) = hSR+1\ X R(s~ ) ,X R({s - t ) ~ ) , z ) 

on — t  < t < pr. Therefore,

X R(t) = X R+1{t) and YR(t) = YR+1(t) if 0 < t < pR.

This implies that pR is increasing in R , and let p =  limfl—oo Pr , the property 

above also enables us to define X(t)  for t E [—r,p)  as follows

X(t)  = X R(t) if — r  < t < p R .

It is clear that X(t)  is the unique solution to equation (3.1) for t E [—r, p).

On the other hand, for t E [0,T], we compute

E sup |A"(s)| =  E|£(0)| — E |£(—t)|
0 <s <t Ap n

+  K E  sup |A (s — r ) |+ E  sup f  \ f ( X ( u ) ,X ( u  — r))\du 
0<s <t ApR 0<s <t Ap R J o

^ E|g(0)f+"(2gr -  (1 -  g))E|{(-r)| + sup r lx(u)ldu!
1 — K  1 — K  0 < s < t A p n  J o

and by the Gronwall inequality (2.7), we get

E | X ( t A PR)|  <  m * ) \  +  V K T - ( ^ K ) ) m - T ) \ e ^

Noting that |A (p^)| > R, and therefore we derive

<  T )  <  E | * „  <  E | « 0> I H 2 * r - U - * ) ) E | a - , ) | e B

that is

p (  <  T) <  E|C(0)| +  (2/ r r - J l_^ i g ^ r j j  ^  
J ~  (1 -  K ) R
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Letting R  —> oo, we obtain P (pR < T) = 0, this implies lim ^oo  Pr = T  a.s. 

We compute, for t G [0, T)

oo
1 ^ ( 0  — y  W l  =  — ^ " W I ^ { / t - l < X ( T ) v y ( T ) < / i }

i l= l
oo

=  “  /̂R (^)l-*-{/?-l<X(T)vy(T)<H}-
/i=l

Therefore

E sup \X(t) -  y ( i) | <  ^ ( E  sup \XR( t ) - Y R(t)\2)*(El { R - 1 < X ( T ) V Y ( T ) < R } ) 2
0 < t < T  0 < t < T

oo

= T ( E  sup \XR(t) -  YR(t)\2)^ J f (R -  1 < X ( T )  V Y(T )  < R) 
f c i  0<t<T

and from the logarithm growth condition (4.12), it follows that 

E sup |X *(t) -  YR(t) |2 <  [p + T (K '  + K")]R<>A.
0 < t < T

On the other hand, if q > 2 then by Chebyschev’s inquality (2 .2)

¥ (R  — 1 <  |X {T )  V Y { T ) | < fl) < P(K -  1 < |X (T) V T (T )|)

^ E |x ( r ) |* + E |r ( r ) i «  h p

( R - 1 ) i  ~ ( R -  l ) 9’

and therefore,

y/2H~Pe  sup |x ( t )  -  y ( t) | <  Y  \/ \P  + T ( K ’ + K")\R<> J  p V E
0<i<T “  y/(R -  1)9

<  Y  VIP + T (K ' + k ")\r ^ ^ ^ ^ - V a .
R =  1

Let q be sufficiently large such that q > g, we see the right hand side is 

convergent, whence we get the rate of convergence is | ,  which complete the 

proof.
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Chapter 5

Alm ost Sure Stability of 

Numerical M ethods for N eutral 

Stochastic Differential Delay  

Equations w ith Jum ps

5.1 Introduction

The stability theory of numerical solutions is one of the central problems 

in numerical analysis. Stability analysis of numerical methods for NSDDEs 

has recently received a great deal of attention. The stability concepts of nu­

merical schemes for NSDDEs are included due to the stochastic nature, for 

example, moment stability (M-stability) and almost sure stability or trajec­

tory stability (T-stability). Regarding the almost sure stability of numerical 

methods for SDEs, it was shown, by the Chebyshev inequality and the Borel- 

Cantelli lemma, that the moment exponential stability implies almost sure 

exponential stability under certain conditions. Using the technique based
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on the continuous semi-martingale convergence theorem in [54], the stabil­

ity of SDEs has been examined. Note that there are similar expressions for 

the continuous and discrete semi-martingale convergence theorems. To our 

knowledge, there is no similar result using martingale techniques for numer­

ical solutions of nonlinear NSDDEwJs. In the last section we shall use the 

martingale techniques to investigate whether numerical methods can repro­

duce the almost sure exponential ability of the exact solutions to nonlinear 

NSDDEwJs.

Recently, most of the existing convergence theory for numerical methods 

requires the global Lipschitz condition. However, it was observed that the 

classical one, which guarantees the strong uniform convergence of the Euler- 

Maruyama method to the true solution, can be significantly relaxed. They 

proved that under the local Lipschitz condition the uniform bounded-ness 

of moments of the true solution and its approximations are sufficient for 

strong convergence. They immediately raises the question tha t which type 

of conditions can guarantee such a uniform bounded-ness of moments. It is 

well known that the classical linear growth condition is sufficient to bound the 

moments for both SDEs and EM methods, and it is also known that in the 

case of a continuous solution, the first useful step to relax the linear growth 

conditions is to apply the Lyapunov function technique. All these above 

lead us to the monotone condition, and the introduction of the monotone 

condition will be given in section 2. To our best knowledge, there is no 

result about numerical approximation of NSDDEwJs under the monotone 

condition. It allows us to develop bounds for polynomial coefficients. In 

this chapter, we will investigate the almost sure stability of theta method of 

NSDDEwJs under monotone condition, and give a particularly introduction 

of the theta Euler-Maruyama method in the following section.
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5.2 A lm ost Sure Exponential Stability for Euler- 

M aryuama M ethod for N eutral Stochas­

tic Differential Delay Equations w ith Jum ps

T heorem  5.1 Let the assumption 3.1 holds. Assume that there are five 

nonnegative constants 77i-775 such that

2(x -  G(y), f{x ,  0)) < —Hi\x\2 +  H2\y\2, 

I f ( x , y )  ~  f ( x ,  0)| < H3\y\ (5.1)

for all I f

H i > H2 +  27/3 +  7/4 +  7/5 (5.2)

then for any given initial data £ G Dj? ([—r , 0]; W 1), there exists a unique 

global solution to (3.1) and this solution denoted by X ( t ’,£), has property 

that

1 a
limsup-log(|X(*;OI) < -77 a.s.

£—►00 * ^
(5.3)

where a  > 0 is the unique positive root of

^  -  H3 - Ha -  a = (H2 +  H3 +  H5)e' (5.4)
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P ro o f: Let V(x) = \x\2. Using the assumption (5.1), we compute
d a

LV(x ,y) = 2(x -  G (y )J (x ,y ) )  +  \g(x,y)\2 +  Y ]  /  \h{k)(x,y,  zk)\2vk(dzk)
k=i

< 2(:r -  <7(?/), f { x , 0)) +  2 |rr||/(x , ?/) -  /(a:, 0)|

+  lsKz>y)l2 +  ] C  /
fĉ i ^

<  +  i / 2 |y |2 +  2 H 3 \ x \ \ y \  +  t f 4 W 2 +  H 5 |y |2

< — Hi\x\2 +  i^2|y |2 +  Hs(\x\2 +  \y\2) +  H4\x\2 +  TTsM2 

=  - ( H i  -  h 3 -  H4)\x \2 +  (H2 +  Hs +  i / 5)|y |2-

Now the conclusion follows from [41, Corollary 3.2], which complete the proof.

Let A Bn = B( tn+1) — B( tn) and ANn(dz) = 7V(£n+1, dz) — N ( tn, dz) with 

A = jj =  ^  for sufficiently large integer TV, where n =  1 ,2 , ...,1V , and 

yn «  X (tn) by setting Vo =  ^ ( 0) that

^n+l ~ G^^Wl-m) = Yn — G(Yn- m) +  /(U n, Yn- m)A + #(1^, Yn- m) A B n

+  /  h(Yn,Yn. m, z ) A N n(dz).
JRd

(5.5)

T h eo rem  5.2 Let t/ie assumptions 3.1 and (5.1) hold. Assume that f  satis­

fies the linear growth condition, namely, there exists a constant K  > 0 such 

that

\ f(x ,y )\2 < K ( \ x \ 2 + \y\2). (5.6)

Let a  be the positive number which is defined by (5.4) and e G (0, f ) be 

arbitrary. Then there exists a A* > 0 such that if A  < A*, then for any given 

finite-valued T q-measurable random variables £(nA), n = —m , —m + 1 . . . ,  0, 

the EM approximate solution of (5.5) obeys

1 Ct
limsup —— log(|yn|) < —— + £ a.s. (5.7)

n—►oo Tt LA Z
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L em m a 5.1 (D iscrete sem i-m artingale convergence theorem) Let

{j4i}, {Ui} be two sequences of nonnegative random variables such that both 

Ai and Ui are Timmeasurable for i =  1 , 2 , . . and Ao = Uq =  0 a.s. Let 

Mi be a real-value local martingale with M0 = 0 a.s. Let £ be a nonneg­

ative T q-measurable random variable. Assume that {X^} is a nonnegative 

semi-martingale with the Doob-Mayer decomposition

Xi = £ +  Ai — Ui +  Mi .

//lim ^oo  Ai < oo a.s. then, for uj G VI,

lim Xi  < oo, lim Ui < oo,t—too t—►oo

for all of the three processes Xi, Ui and Mi converge to finite random vari­

ables.

P ro o f  o f theorem : Noting that 

I Yn+1 -  G(rn+1_m) |2

= | y„ -  G(y„_m) |2 +  2 (Yn -  G(y„_m), /(y„, y„_ro)A) +  |/(y„, y„-m)A|2
d  a

+  i<?(yn,y„-m)i2A + y ;  /  \h<k\ Y n,Yn- m,zk)\2A v k(dzk) + A M n+1,
J R

d_

~ l  JR

where

| 2 / |  A d |2AMn+1 : = |0(yn,yn_m)|2(|AH|; - A) + 2(yn - G(Yn- m)

+ / (K) ̂n-m) A, g(Yn, Yn_m))A B n

+ 2/̂ (yn,yn_m)ABn, [  h(Yn,Yn_m, z ) A N n(dz)
\  J R d

+ 2/Vn - G(yn_m) + /(yn,yn_m)A, [  h(Yn,Yn. m, z ) A N n(dz)
\  J R d

+ (  [  h(Yn,Yn_m, z ) A N n(dz) - T  [  \hW(Yn,Yn_m,zk)\2A v k(dzk) 
V «/Kd JR
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Then we have

| yB+1 -  G(yn+1_m)|2

= \Yn -  G(y„_m)|2 + 2<yn -  G(y„_m), /(y n, y„_ro)A> + |/(y n, y„_m)|2A2 

+ |<?(y„,yn-m)|2A + y ' [  \h^{Ym Yn. m,zk)\2Auk(dzk) + AM„+1
fc=l •/«

< |y„ -  G(yn_m)|2 + 2(y„ -  G(y„.m),/(y„,o)>a 

+ 2(yn -  G(y„_m), /(y„, y„_m) -  /(y„, o)>a
d  A

+  | / ( n ,  Vn-m)|2A2 +  |ff(yn,y„_m)|2A + 5 2  |ft<fc)( n ,  y„-m, +  am„+1
k=1 *'R

< |y„ -  G(yn_m)|2 -  Hi|yn|2A + ff2|y„_m|2A

+ / /3|y„|2A + tf3|y„-m|2A + k  (|y„|2 + |yn_m|2)A2 

+ //4|yni2A + i /5|y„_m|2A + a  m„+1

and for a positive constant C  > 1, we have

c (n+1)A|y„+1 -  G(yn+1_m)|2 -  c nA|yn -  G(y„_m) |2 

= c<n+1>A(|y„+1 -  G(y„+1_m)|2 -  |yn -  G(yn_m)|2)

+ (c-(»+')A _ GnA)|y„ -  G(y„.m)|2 

<C(»+i)a [a-a2 -  Hi A + tf3A + H4A]|y„|2

+ G(n+1)A[//2A + H3 A + # 5A + /TA2]|y„-m|2 

+ G(n+1)AAMn+i + (C<n+1)A -  C"A)|yn -  G(y„_m)|2,

which implies that
n— 1

CnA|y„ - G(y„_m)|2 < \Y0 - G(£(-t))|2 + ̂ C<i+»AAMm 

1
+

i= 0
t n —1

y- A^ (1  -  C ) -  Hi A  + H3 A +  tf4A +  K  A" ^ G ( ‘+i)A|yj|:
.1 -  K

n —1

+  [tf(l -  C “A) +  H2A + ff3A +  ff5A + ArA 2] ^ G (<+1)A|yi

i= 0

2
I —1711

i= 0
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Since

n —1 —1 n —1 n —1
£ c < « > A|y,_m|2 =  £  C(i+m+l)A|y.|2 + ^ C(2+m+l)A|y.|2^ ^  ^(i+m+ljA |y. |2̂
i= 0  i = —m  2 = 0  i = n —m

we have
71— 1

[£ ( i  -  c ~ A) +  h 2a  +  / /3a  +  i / 5A +  k a 2] 5 2  c (i+m+1)A|y<|2
i = n —m  (5.8)

+ c "A|y„ -  G(y„_m)|2 < o„,

where

i-A\ , it a i u  A i A i or/A 2\/^mA(X (l -  C "A) +  H2A +  H3A +  H5A +  2 K A  )CT

71—1

On : =  |y0 - G K ( - r ) ) | 2 +

+  (  -  i / iA  +  2d/3A +  tf4A +  tfA 2 +  — t ^ ( l  -  C~A) )  ^ j c (i+1)A|yj|: 
V 1 — K  J  J .=Q

- l
+  {K{ 1 -  C~A) +  H2A  +  7/3A + H5A  +  XA2) Y ,  c ii+m+1)A\Yi\‘

i = —m
n —1

+  Y ,  G<’+1)AAMj+i.
2= 0

Now we need to show M (N )  := Y ilo 1 ^ ,+1̂ A M i+i is a local martingale, 

which is equivalent to prove

E ( M ( H ) |^ _ J  =  M {N  -  1). (5.9)

Indeed,

E(M(yV)|JiJV_1) =  M ( N  -  l ) + E ( A M N\TtN_1)

= M ( N  -  1),

thanks to the fact that

E(|.9(ytf_i,yw_ro_i)|2(|A B jv-i|2 -  a ) ! ^ . , )

=  Is fy jv -!, yA,-m- i ) | 2E ((|A B A r-i|2 -  A ) ! ^ . , )  =  0,
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since ^(Y/v-i, Vjv-m-i) |2 is -measurable, and |AjB^_i|2 — A is indepen­

dent of JrtN_1, we can obtain the following results similarly

E((F(YN-i) ,g{YN-i iYN-m- i ) )A B N - i \J rtN_1) = 0 ,

E((/(YjV-l>y)v-m-l)A, 0 (Yjv_i, Yjv_m_i))A.BjV-l|-^ijv-1) =  0 , 

and we can also obtain

= o,

/  { f O ^ N - l ,  ^AT—m —l ) A ,  / l (Y Jv_ i ,  y ) v _ m _ i ,  z ) )  A7V/v_ i  ( d z )
\ J  R*

where AA^v-i is independent of FtN-i as well, and

FtN.  i =  0 ,

El h(YN- 1, Yw-m-i, z) AiV^_i (dz)

d «
V  /  |/iW(YJV_ i>YJV_m_ i>zfc)|2Ai/fc(dzfc)
fc=i ^

Then we prove the following form for the reason of ANj^_i  independent of 

A B n _i that

Since we have

/  ( p ( Y a t - i ,  Y m -m -x ) ,  / i (Y a t_ i ,  Y /v -m - i>  ^ ) ) A 7V ^ _ i ( d z ) A 5 Ar_i

E( ATV^v-1A J3jv-i | ̂  j )

— E((iVyv — N n - i )(Bn  — ^iV—l) 1-̂ iV—l)

=  EfiVjv-Bjvl-^v-i) +  N n - i B n - i  

-  E(iVArBĵ _ i|^r/v-i) — E(iV)v_iBjv|^jv-i) 

=  E(7V^jBjv|^:)v - i )  — N n - i B n - i ,

? tN- 1 I =  0
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where E(iVjv|^v-i) =  N n - i  and E(Byv|^v-i) =  #jv-i by using the martin­

gale property. Now we only need to check

E(JVjvB jv|.FJv_1) =  Nn̂ Bn.l (5.10)

Noting that, for two martingale processes N(t)  and B( t ), N(t)B(t )  — [N, B](t) 

is a martingale, where [iV, B] is the corresponding quadratic covariance pro­

cess (see [55, P15]). Hence, if we can show [N, B](t) = 0, then (5.10) follows

immediately. Moreover, for two semi-martingales X  and Y

{X,Y](t) = J 2 & X ( s ) & Y ( ° l
3 < t

where A X ( 5 ) =  X (s) — X (s“ ), provided that one of the processes N(t)  or 

B(t)  is of finite variation [55, P16] and [1, P233]. Compute 

[N, N]{t) =  [N(t) -  Af, N(t)  -  At]

=  [ ! V , j V ] ( t ) - 2 A [ J V ( l ) , « ]  +  A 2 [ M ]

=  ]T (A /V (s))2 -  2A£(AAT(5)As) +  A2 ^ ( A s )2
s < t  s < t  s < t

=  £ (A 1 V (S))2 — max(A£)2A A N(s)  +  max(At)A2 ^ ^ (A s)
s < t  s < t  s < t

=  £ (A JV (« )) =  N(t),
s < t

which means N(t)  is the finite variation, since A —► 0 and A N(t) = 0 or 1. 

Then [AT, B](t) = 0. Consequently, B ^ N ^  is a martingale, and

^ ( N n B n  I ^ t v - i)  =  N n - i B n - i

as required. So C^+1̂ a A M 1+i is a local martingale. Let us now intro­

duce the function

h(C) : =  (K(  1 -  C~A) +  H2A  +  H3A +  HbA +  X A 2)C (m+1)A



Choose A? > 0, such that for any A < AT, —̂ - / / 1A + / /3A + //4A + / f  A2 >1 — A
0. We therefore have h'(C) > 0 for any C > 1. Clearly,

h(l)  = 2 K A 2 + + H2 + 2 H3 + H4 + H 3) A.

Hence, there exist two solutions that Ai and A2, and then for any A < A£ =  

(Hi — H2 — 2H3 — Hu — Hs) / 2K, h( 1) < 0 , where Ai < A£ < A2, which 

implies that for any A < A | A AJ, there exists a unique C£ > 1 such that 

h(Cl)  = 0. Choosing C  =  C^, we therefore have

o n = |y0 -  G«(-r)) |2 + [ k (  1 -  crA) + h 2 a  + h 3 a
—1 n — 1

+ H5A  + K A 2) C,(<+m+1)A|V; |2 +  ^ C (<+1)AAMi+1.
i=—m i=0

Noting that the initial sequence Yi < 00 for a l l « =  —m , . . . ,  0, by the lemma 

5.1, for C =  lim ^oo \Yn — G(Yn- m)\ < 00 a.s. By (5.8), therefore we 

have

limsupQnA|yn -  G(y„_m)|5i*nA |
J  ^  

n—►oo

< lim sup ( c i " A|yn -  G(y„_ro) |2 +  (£ (1  -  C _A) +  h 2 a
n—►oo \

n —1 \

+ H3A  + HbA  + 2 K A 2) c ,(i+m+1)A|yi|2 )
(5.12)

i= n—m  '

< lim On < 00 a.s.
“  n—*oo

Noting that mA =  r , by (5.11),

+  n 2 +  n 3 +  2H5 + KA^j c,*r
A

+  !■, * 7 't  - H l + H3 + 2Hi + K A  = 0. 
(1 -  K ) A

(5.13)

Choose the constant n  such that C = and hence 1 — C A =  1 — e fJ,A.
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Define

SaO*) =  f  ̂  + H 2 + H3 + H5 + K A ^ e ^

1 — e“/iA
+ 7i ^  +  Ha + tfA .

(1 -  AT)A

Letting =  logC^, by (5.11), for any A < A) A A j, we have

M / 4 ) =  o.

Noting tha t limA—o(l — e~rA) / A  =  fi, we have

ton M /r )  =  (Up + H2 + H3 + H ^ e T

+ - H i  + H3 + Ht.
1 - K

By definition of a , (5.13) and (5.15) we have

lim = a,
A —>0

which implies that for any positive e G (0, | ) ,  there exists a A£ ; 

that for any A < A3, we have

f i * A >  a -  2e.

Note that (5.13), together with the definition of fi* A  shows that 

lim su p e ^ nA|Yn -  G{Yn- m)\2 < 00.
n —n x

Because we have

\Yn\2 < K\Yn. m\2 +  y i j \ Y n -  G(l"n-m)|2,

(5.14)

(5.15)

0 , such

70



so,

limsupe''A"A|y g 2
n—+oo

< ^ l im s u p e ^ nA|r n_m|2 +  - i r  lim su p e ^ A ^ I^  -  G(V;-m) |2
n—>00 1 — /T n —* 00

-  supeM̂ nA|yn -  G(yn_m)|2
(1  — i \  J n—>00

<  OO.

We therefore obtain that for any A < Aj A A£ A AJ,

lim sup log | Yn | < —̂  + e  a.s.
n —►oo ^

5.3 Theta-Euler-M aryuam a M ethod for N eu­

tral Stochastic Differential Delay Equa­

tions w ith Jum ps

In this section we will define the TEMNSDDEwJs (3.1). Let A Bn = B( tn+1)— 

B( tn) and A Nn(dz) = N ( tn+i,dz) — N ( tn,d z ) with A =  ^  ^  for suffi­

ciently large integer N , where n = 1 , 2 , . . . ,  and Yn «  X ( t n) by setting

Y0 = X(0) that

^n+i — G(Yn+i_m) =Yn — G(Yn_m) +  6 f (Yn+i, Ŷ ,+i_m)A

+  (1 — Q)f(Yn, yn_m)A +  g(Yn, Yn-rr^ABn (5.16) 

+  f  h(Yn, yn_m, z ) A N n{dz)
JRd

where 6 E (0 , 1).

Now, we need to ensure this scheme is well defined. For this purpose, we 

impose the following one-sided Lipschitz condition on /  in x: there exists a
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constant K  such that for any Xi,X2 , y  G Mn and I > 0,

{xi -  x 2J ( x u y) -  f ( x 2,y)) < K |x] -  x 2\2. (5.17)

Under this condition, let A < K  1 and for n  G [—m, 0] we can rewrite (5.16) 

as

Yn+j -  G(£(n +  1 -  m)) =  £(n) -  G(^(n -  m)) +  0 /(y n+i, £(n +  1 -  m))A

+  (1 -  ~  ™))A +  #(£(n), £(n -  m ) ) A B n

Define Z : Rn -> Rn by

Z(c) := c — d — 0/(c, £(n +  1 — m))A

In the follows we shall use the uniform monotonicity theorem [50, Theorem 

C.2 in Appendix C, P656] to show that the equation Z(c) =  0 has a unique 

solution.

T h eo rem  5.3 (U niform  m onoton icity  theorem) Suppose that G : Rn 

Rn is continuous and for a positive constant C that

Then there exists a unique u G l "  such that G(u) =  0 and, furthermore,

Then let Yn+1 =  c, and

G(£,{n +  1 -  m)) -  G(£{n -  m)) +  £(n)

+  (1 -  0)/(f(»i),£(n -  m))A +  g(€(n),£(n -  m))ABn

(G(v) — G(w),v — w) > C||v — w\\2 V v, w G Rn.



Then by one-sided Lipschitz condition (5.17) we have

( Z ( c ) - Z ( c ) , c - c )

= ((c — d) — 0/(c, £(n +  1 — ra))A — (c — d) +  0/(c, £(n +  1 — m))A,c — c) 

= (c — c, c — c) — (0/(c, £(n +  1 -  m)) — 0/(c, £(n +  1 — m)), c — c)A 

> (1 — K0A)\c — c|2,

for n G [—m,0]. Then repeating this procedure we can obtain the same 

result for n G [0, m] and so on. Then combine all integrals from [—m, 0] 

to [(TV — 1)A,A^A] we have the following result that for n G [—m ,N A ]  

the existence of a unique solution c G R "  such that Z(c) =  0 follows from 

the uniform monotonicity theorem. Hence there exists a unique solution to

(M onotone condition) Let the assumption 3.1 holds, for all x , y  G l n

and t G [0,T], there exist positive constants a  and (3 such that

for all :r, y G Mn. Clearly, for 9 > |  the above condition does not need to

T h eo rem  5.4 Let the assumptions 3.1 and (5.18) hold. There exists a 

unique, global solution X( t)  to (3.1). Moreover, the solution has the proper­

ties that for any T  > 0,

(5.16).

( x - G { y ) J { x , y ) )  +  Ug(x , y ) \2 +  [  \hm ( x , y , z k)\2vk(dzk)
I i J ®

(o, m a x  |

(5.18)

¥.\X(T)\2 < C,

where C is a positive constant.
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P roo f: Applying the Ito formula to the function V(x) =  \x\2, we have

LV(x,  y ) <  2ot + 2(5{\x\2 +  \y\2).

Define a stopping time

aR =  inf{i >  0 : \X(t)\ > R },

therefore

E |X (t A aR) -  G(X(t  A<tr  — t ) ) | 2 < \X0 -  G ( X ( - r ) ) |2 +  2T a
rtAcrji f tA uR

+ 2(3 E\X{s)\2ds + 2(3 E |X (s — r)\2ds,
Jo Jo

where
rtAoR ptAcrR—T

2(3 j  E \ X { s - r ) \ 2ds = 2(3 J  E |X (s)|2rfs

/ 0 rtAcrR

E|C(s)|2ds +  2(3 j  E |X (s)|2ds.

Therefore

E |X (t A aR) -  G (X(t  A a R -  r ) ) |2 <  |X0 -  G ( X ( - t ) ) \ 2 + 2T a  

+  2t(3 sup E|£(s) |2 +  4/? f  E |X (s A crR)\2ds.
—T < s< 0  Jo

By using (a +  b)2 < £  +  with 0 < K  < 1 and (3.5), we have

\ X ( t A a R)\2 = \ X ( t A a R) -  G(X(t  A c t r -  t ) )  +  G(X(t  A g r  — r ) ) |2 

< K \X ( t  AcrR -  t ) [2 +  1 ^ \X{t A ct r )  — G(X(t A aR — r))\2.
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Taking the expectation in both sides, we have

S U p  E | X ( s  A Ur) | 2

0 < s < t

< K  sup E |X (5 A gr — r ) |2 H sup E |X (s A <7̂ ) — G(X{s A ar — t ))\2
0 < s < t  1 — K  0< s < t

< K  sup E |^(s) |2 +  X sup K\X(s  A ctr) |2
—r < s < 0  0<s<£

+ — -  ~ sup E|X(s A c tr )  -  G ( X { s  A c r R -  t ) ) \ 2 
1 — K  o < s < t

< — ^ 1*0 -  g k c - t ))!2 +  -  2—1% -  
“ ( l - i f ) 2 } n  (1 - K ) 2

+  ^ — “  sup E I^M|2 +  n  4^ 2 /  SUP E |X (u  A aii)|2du.(1 — K y  -T<s<0 (1 — A )2 7o 0<U<S

Then by using Gronwall’s inequality (2.7) we obtain 

sup E\X(t  A <tr) |2
0 < t < T

V (1 — k  y  (i — K y  - t < s<  o

f 477? 1
e X P { ( l - / t ) 2 } '

Hence for c t r  < t we have

P(<rfi <  T ) R 2 =  E ( l{<,s <t})fl2 < E (|X (i A <  C.

It implies that P(ctr < T)  — > 0 as R  —> oo, that is ctr —*■ oo as R  —► oo.

Next, let —» oo and applying Fatou’s lemma 2.1, we obtain E |X (T ) |2 <

C , which completes the proof. From now on we always assume that A G 

( 0 ,m a x { J j ,  * != ££}].

(P olynom ial g row th  condition) For three positive constants C, p and 

q, we have
a

l / ( z > y ) l  V  | p ( z , 2 / ) |  v V  /  | / i ( f c ) ( a ; , ^ , Z j f e ) | i / j f e ( d 2 i b )  <  C ( i  + | a ; | p  + | j / | 9 ) ,  V r c , y G
fc=i

(5.19)
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T h eo rem  5.5 Let the assumption 3.1, (5.18) and (5.19) hold, and let A* G
I-K)
4/30(0, max { 7̂ ,  }] &e sufficiently small such that whenever A < A * we

have

—— < 2 and eA < 2 . 
A “

Then, forA < A* and T  > 0 there exists a constant C  > 0, such that 

E\Yn\2 < C.

P roo f: Let gr =  inf{n : |yn| > R } be a stopping time with respect to 

{^7tn}n> o- We then define a function

F{x) — x -  G(y) -  0 f ( x , y) A, 

such that we represent (5.16) as

F(Yn+1) =F(Yn) +  f ( Y n, yn_m)A +  g(Yn, Yn. m)A B n 

+  [  h(Yn,Yn_rn, z ) A N n(dz).
JRd

Now we have the following equation

|F ( l-;+1) |2 =  l^ ( K ) |2 +  If ( Y n, Yn. m) |2A2 +  |g(Yn, Yn. m)|2A +  AM n+1
d A

+  2(F(Yn) , f { Y n, r n _ m ) ) A  +  V  /  |h ^ ( Y n,Yn^m,z k)\2A u k(dzk)
k=i J r

=  |F (y „)|2 +  AM n+1 +  ( 2(Yn -  G(Yn), f ( Y n, Yn. m)) +  |9 (y„, yn_m)l

+  E  f  \hw {Yn,Yn- m,z k)\2vk(dzk) + (1 -  20)|/(yn,yn_m)|2A )A ,
k=1 •/ r  '
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where

AMn+1 =  \g(Yn,Yn. m)\2(A B l  -  A) +  2(F(Yn),g(Yn,Yn_m))A B n 

+  2 (f (Yn, y„_m) a , 3(y„, y„_m))ABn

+ 2(3(y„,y„_m)ABn, f  h(Yn,Yn. m, z ) A N n(dz)
\  J R d

+  2/F (y n), ^  fc(yn, y„_m, z ) A N n(dz ) \

+ 2 ( f ( Y n,Yn_m)A, f  h(Yn,Yn_m, z ) A N n(dz)
\  J R d

2 ^
+ ( f  h(Yn,Yn. m, z ) A N n(dz) -  V  f  \hW(Yn,Y„-m,z k)\2A v k{dzh) 

\  J R d k = 1  J R

It is possible to rewrite as

|F(y„+1)|2 = |F(y„)|2 +  A(Yn)A  +  a m„+1,

where

yi(y„) = 2(yn -  G(y„), /(y„, y„.m)> + |s(y„, y„_m)|2
d f |ftW(y„, y„_m, + (i -  2fl)|/(yn, y„_m)|2A.

/c=l *'R

Therefore, let TV be any nonnegative integer such that N A < T. Summing 

up the inequalities above from n = 0 to N  A &r , we get

NAgr NA<tr

| F ( n , A„H+I) |2 = |F(y0)|2 + J4(y0)A + AM„+ £  A(Yn)A+ £  AMn+1,
n = l  n= 0
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then we have

NActr NA(jr, N A oR JVAor

\Ynaor+i\2 <  --- ^(\F(Yo)\2 + A(Y0)A + AM0+ Y  A(y„)A + Y  AM»+‘
1 -  A  \  -| „_nv n—1 n=U

(iVA<rfi)+l v (7VA<th)+1

+ 53 2e(Yn-G(Yn-m)J(Yn,Yn-m))A\ + Y T:|G(Kn_m)|2
n = l  '  n = l  K

1 /  *
< y z r  ( |F (y °)i2 + i4 (y °) A + A M o + 5 2  j4(y" )1M ( n )A

'  71=1

N N

+ Y A M n+1l l0t„R](n) + 53 2$(Yn -  G(Vn_m), f(Ynt y„_m))lM (»)A
71=0 71=1

+  2 0  (Y jv  AaR+ l  — G ( Y j v  AaR+ l  — 7 7 l)j f  ( Y n  AaR +  l  ) ^ jV A c 7 fl +  l -  771 ) > A j

+ Y i |G (y „ -m)|2l[0,„„](«) +  i|G (K NÂ +1_m)|2.
71=1

Applying the assumptions 3.1, (5.18) and (5.9), we then take the expectation 

on both sides of the inequality above and get

1 f  NE|>wR+1|2 < — ^El\F(Y0)\2 + /l(y0)A + e53 (4a + 4/J(|y„|2 + |yn_m|2))lM (n)A
'  71=1

-|- 2 0 ( Y NA aR +1 G ( Y j i f A<TR-\- 1—77i), f  ( Y n A(TR+ 1 i ^VAct/j+1—77l))^^

+ E(AP|yn_m|2l |0,„J1](n) + ÂIX/VAa-Jt + l— 77l| )

< —U-E(|F(y0)|2 + .4(yo)A + 8 Na) + 53E(|yn|2l M (n))
1 — K 1 — K 71=1

N 4/9A N+ K 53 E(|y„.m|2l|0,,R](n)) + -Z-jr 53 E(|y„-m|2l [0,,Rl(n))
71=1 71=1

+  - ^ —̂ {E\Y^NActr)+i \2 +  El^ATAaflJ+l-Tnl2) +  ^E|X/VA<rH+l-7n|2-
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Then

E sup |Yn|2
0<n<N  A c t r + 1

C  4/3A N<  =---------------- 1--------- =--------------  SUP y^EflYnPlroCTpifn)]
(1 -  K ) 2 — 4(3$A  ( 1 -  K ) 2 - 4 ^ A o < n < j L i , ^  1 J

+  n ^  k \*  +X  sup Y E [ly’- ’"l2 l[°.^](n )]>(1 — K y  — 4 ( 3 8  A o<n<NA<TR 
where C  is a positive constant may different line by line. Now by discrete 

Gronwall’s inequality lemma 5.1,

E sup [| V„|21[o,̂ h] («)] <    exp |  / f A 4IM A I  ’
o < t i < n a < t r + i  (1 —  K ) 2  —  4 ( 3 8 A l(l —  K y  —  4 ( 3 8  A J

where we use the fact that N A  < T .  Thus, letting R  —> oo and applying 

Fatou’s lemma 2.1, we have E|Yv+i|2 < C, which complete the proof.

5.4 Alm ost Sure Stability for Theta-Euler- 

M aryuama M ethod for N eutral Stochas­

tic Differential Delay Equations w ith Jumps

Theorem 5.6 Let the assumptions 3.land  (5.18) hold. Assume that there 

exist two functions uj G (7(En;E+) and W  G (7(En;E+) such that
1 I   0/3

((x  -  G{y)) , f{x ,y))  +  -\g(x,y)\2 + — ^ — \f{x,y) \2&

+  1  ^ 2  (  \h(k,(Yn. zk)^vk(dzk) < -A iu i(i) +  \ 2u(y)  - W ( x -  G(y)),
k —1

(5.20)

for all x , y  £ En and A G (0,max{^Y, }] with Ai > A2 > 0. Then the

solution of the theta EM method (5.16) obeys

lim sup | Yn |2 < OO, U .S .,
n —>oo
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lim o;(yn) = 0, a.s.
n—►oo

and

^E(u>(yn))A < 00.
n=0

If  additionally u  G /C

lim Yn = 0, a.s.
n—► oo

where K denotes the class of continuous, non-decreasing functions y  : R+ —*■

R+ with 0) =  0.

P roo f: Let F(x,  y) = x —G(y) — 6 f ( x , y)A and define an = inf{n : |yn| > R}  

is a stopping time with respect to {^in}n>o- We have the following inequality

|F(yn+1)|2 = |F(yn)|2 + 1 f(Y„, vn_m)|2A2 + \g(Yn, y„_m)|2A
d  a

+ 2(F(y„),}{Yn,y„_m))A + V  / |/iW(y„,yn_m,2lt)|2Â(<iz*) + AMn+1
k= i J*

= |F(y„)|2 - a (y „ )a  + a m„+1,
(5.21)

where

A(Yn) : = - ( 2(yn -  G(y„), f(Yn, Yn. m)) + |ff(yn, y„_m)|2

+  y  f  |AW(V„, Yn. m, zk)\2Uk{dzk) + (1 - 26)\f(Yn, y„_m)|2A
fe=i J k
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and

AMn+1 : =  Ig(Yn, K„_m)|2(A B2 -  A) +  2<F(yn), g(Yn, Yn. m) ) A B n 

+ 2 (f{Yn, Y„.m) A ,  g(Yn, y„_m))AB„ 

+ 2{g(Yn,Y„-m) A B n, [  h(Yn, Yn- m, z ) A N n(dz)
\  J R d

+  2^F (y„), JRd h(Yn, y„-m, z ) A N n(dz ) \

+  2 ( / ( y m yn. m)A, f  h(Yn,Yn_m,z ) A N n{dz)
\  JRd

+ ( f  h(Yn,Yn- m, z ) A N n(dz) - V ]  f  \h™(Yn,Yn- m,zk)\2A v k(dzk)
\  J  R d •'R

For any integer N  > 1, by (5.21) it is easy to see that

N  N

i m „ +1)|2 =  im > ) |2 -  5 > ( y „ ) A  +  ^ A M , +1. (5.22)
n = 0  n = 0

It suffices to verify that
N  N

>l(yB) > 0 and M (N )  := ^  A M n+i is a local martingale.
7 1 = 0  7 1 = 0

In what follows we shall show both of them one by one. Note by (5.20) and 

(3.2) that

N  N  N

^ ^ 5 > ( K") -  A2J > ( y „ - ro)
7 1 = 0  7 1 = 0  7 1 = 0

N  m  N

>  X l ^ ( Y „ )  -  \ 2 ^ ( Y n. m ) -  X2 “ { Y n - m )
71=0 71= 0 71=771+1

N  m  N

> X1 5>(y„) -  X2Y ,“iYn-m) ~ M £>(y„)
71=0 71= 0 71= 0

N  m

>  (Al -  A2) J > ( y „ )  -  A2 ^ “ { Y n - m )
71= 0  71=0

N

>  (Ai -  A2) y ^ o ; (y n) -  A2 s u p ^ ( £ ( s ) ) t .
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Due to Ai > A2, we have (Ai — A2) Yln=o^O^n) >  0? and by (5.9) M (N )  is a 

local martingale. Now the (5.22) can be rewritten as

\F(YtN+1)\2 < \F{Y0)\2 + X2 sup o;(£(s))r
—T < S < 0

N  N
K A

*71+1 ■

(5.23)

71=0 71=0

Then we are in a position to apply the lemma 5.1 to obtain

lim |F(Tn)|2 < 00.
71—>00

Observing the fundamental inequality [7] tha t for any a, b G M and a > 0,

9 622ab < aa  H-----,
a

and let a  = K  and by the Assumption (5.18), it is easy to show that

|y„ -  G (rn_m)|2 =  |yn|2 -  2(Yn,G{yn-m)) + |G(y„_m)|2 

>  \Yn\2 -  K\Yn\2 -  i |G ( y „ . m)|2 +  |G (rn_m)|2

>  ( l - K ) \ Y n\2 - K ( l - K ) \ Y n- m\2,

and

|F (y n)l2 = \y„ -  G(y„_m) |2 -  20<y„ -  G(yn_m),/(y„,yn-m)> a
+  e2\f(Yn,Yn. m)\2A 2 

> \y„ -  G(y„_m)I2 -  2/3eA(|y„|2 +  |y„_m|2) 

+  e2|/(y „ ,y n. m)|2A2 -2 a 0 A  

> (1 - K -  2 ^ A ) |y „ |2 -  {K ( l  - K )  + 2/?«A)|y„_m|2 -  2a 0A,
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taking lim supn_+00 on both sides that 

lim sup[|F(yn)|2]
71—►OO

> limsup[(l — K  — 206A)\Yn\2)
n—>00

+  lim sup [— {K(l  — K)  +  2/?0A)|Yn_m|2] +  lim sup [—2a6 A]
n—►oo n—>oo

> (1 — K  — 206A) limsup[|Yn|2]
n—► oo

— (K(l  — I<) +  206A)  liminfflYn-™!2] — lim inf [2e*0A]n—►oo n—*oo

> (1 — K  — 206A)  limsup[|Yn|2]
71—>00

— (K ( l  — K)  +  206A)  limsup[|Yn_Tn|2] — lim inf [2a0 A]
71—►OO

> ((1 — K ) 2 — 406A)  limsupflYnl2] — liminf[2o:0A].
Jl—>00 71—>0°

Choosing A sufficiently small which further yields that

lim sup | Yn |2 < oo, a.s.
71—̂OO

By lemma 5.1,
OO

A < oo, a.s..
71=0

which implies

If additionally w £ /C

lim u(Yn) =  0, a.s.

lim Yn =  0, a.s.
71—► OO

as required. Summing up the both sides of (5.21) we have
oo AT

y]u ;(Y n)A < |F(Y0)|2 +  A2 sup w (((s))r +  y 'A M „
^  -r<,<o ^

Then taking expectation on both sides, the proof completed.
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Chapter 6

Stability in D istribution for 

Reflected Stochastic  

Differential Delay Equations 

w ith Jumps

6.1 Introduction

Since the importance of delay equations derived from the fact that many 

phenomena witnessed around us do not have an immediate effect at the mo­

ment of their occurrence, delay dynamical systems are used in a lot of models 

of science and engineering. Moreover, in applications of some quantities of 

interest needed to be positive, Kinnally and Williams [33], Bo and Yuan [10] 

present the reflection which is positively constraint. Furthermore, [30] has 

not only established the existence-and-uniqueness theory, but also investi­

gated moment asymptotic bounded-ness and moment exponential stability 

of the equations. Most of the existing papers are concerned with the stabil-
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ity of RSDDEs in respect of sample paths or moments. However, in many 

practical systems, such stability is sometimes too strong and in this case it 

is useful to know whether or not the probability distribution of the solution 

will converge weakly to some distributions (but not necessarily to zero). In 

this chapter, we will couple the Bownian motion, small jump and large jump 

terms (referred to [4]) separately to the system and study the stability in 

distribution of RSDDEwJs by using the Skorokhod problem which will be 

introduced in section 2.

6.2 Reflected Stochastic Differential Delay Equa­

tions w ith Jumps

Consider the nonlinear n-dimensional RSDDEwJs

dX(t)  = f ( X ( t ) , X ( t  -  r))dt  +  g(X(t),  X ( t  -  r))dB(t)

+ J  h(X( t~) ,X( ( t -T ) - ) , z )N( dt , dz )  (61)

+  f  t i ( X ( r ) , X ( ( t - T ) - ) , z ) N ( d t , d z )  + dL(t),
J  |2 |> r

for any t > 0. Here the given initial segment

4 =  {«(<),<£ [-r ,0 ]} e  ^ o([-r,0];R "), (6.2)

where X(t~) = lim5jf X (s), /  : Rn x Rn —► Rn and g : Mn x ]Rn —> Mnxm as 

well as h, h' : Rn x E n x R d —> E nxd the positive number r  plays the role 

here of separating small jumps (which are compensated) from large jumps 

(which are not) [4]. We denote that each column h ^  of the n  x d matrix 

h = [hij] depends on z only through the fc-th coordinate z*, i.e., h^k\ x ,  y, z) =  

hSk\ x ,  y, Zfc), 2 =  (z i , . . . ,  Zd) € Furthermore, all values £{t) of the initial 

segment are assumed to be J^-measurable for t G [—r, 0].
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The RJ-valued processes L(t) = {Li(t), L2(t) , . . . ,  Ln(t))T is called the 

regulator of the solution processes X  = (X(t)-,t > —r). Specially, the i- 

th  component of L(t) can only increase when the i-th component of X(t)  

reaches the point zero. Hence, the action of L(t) is termed reflection at the 

boundary of the orthant R". Further, the regulator L(t) satisfy the following 

properties: [19] The «-th component of L(t) is continuous, nondecreasing T t- 

measurable and L;(0) =  0,z =  1 ,2 ,. . .  ,n , and for all t > 0, it holds that 

P- a.s.

[  X { s f d L ( s )  = 0.
Jo

Then we will refer to [33, Definition 2.1.1] for the definition of solution to 

equation (6.1). For the existence and uniqueness of the solution we shall 

impose a hypothesis:

A ssu m p tio n  6.1 Assume that f , g , h , h f satisfies the local Lipschitz condi­

tion and the linear growth condition, i.e. for each integer R >  1 there exist 

a positive constant K R and another positive constant K , such that

\ f ( x u yi) -  f  (*̂ 2)2/2)[2 +  \g(oc!,yi) -  g(x2,y2)\2 
d r

+  5 Z  /  \hik)(x u y u zk) -  h {k\ x 2,y2, Zk)\2vk{dzk)
k=1 J\zk\<r

d f+ / \h'{k){x1, y1, zk) -  t i {k)(x2, y2, zk)\2vk(dzk)
J \z k \> rf c = l  J \*k\>r 

< X R(\x2 -  x i | 2 +  |y2 -  2/1 12),
(6.3)

\ f (x ,y ) \2 + \g(x,y)\2 + *^2 [  \h{k)(x,y,  zk)\2uk(dzk)
k=1 J \ z k \<r

+  /  \ti{k\ x , y , z k)\2vk{dzk) < K(\x \2 +  \y\2),
k=l J\zk\>r

for  a?i, x 2, yi, y2 G Rn and t G [0,T], with |xi| V |yi| V l^ l  V \y2\ < R.
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Let C2(Rn,R+) denote the family of all nonnegative functions V{x) on Rn 

that are continuously twice differentiable in x. If V  G C2(Rn,R+), define an 

operator LV  from Rn x Rn to R by

LV (x ,y )  = Vx(x ) f (x ,y )  +  ^tra,ce[gT(x, y)Vxx(x)g{x, y)]
d

+  y :  [  [V(x +  h{k\ x , y , z k)) -  V{x) -  Vx(x)h{k)( x ,y , z k)\vk(dzk) 
k=1 J \ z k \<r

d r
+  /  [V{x + t i {k)(x ,y , z k) ) - V ( x ) ] v k(dz),

J \z k \> rjb=i J \zk\>r

where

\  d x i  d x n J  \ 9 x i d x j / n x n

Then the Ito formula gives tha t if V  € Cs(Rn,R+), then for any t >  0

V{X{t)) -  V(X(0))

= f  L V ( X ( s ) , X ( s - T ) ) d s +  f  Vx{X{s))g(X(s),X{s -  r))dB(s)
Jo Jo

+ Y . f f  [y W s“) + hw {X{s~),X{{s -  T ) ~ ) , z k ) )  -  V(X(s-))]Nk(ds,dzk) 
k= l  J \ zk\<r

+ J 2  f  f  \V(X(s-)  + h*k\ X ( s - ) , X ( ( s - T ) - ) , z k) ) - V ( X ( s - ) ) ] N k(ds,dzk)
k= l  J °  J \ zk\>r

+  f  Vx{X{s))dL{s).
Jo

Then let us come to discuss the existence and uniqueness of (6.1).

T h eo rem  6.1 Let £ = (£(t);t G [—t, 0]) be an element of Djr0([—r, 0];R+).

Assume the assumption 6.1 holds. Then there exists a unique solution X  (t ) 

to equation (6.1) with initial data Xo = £ and X 0(t) =  £(0).

P ro o f  At first we shall give some definitions about the Skorokhod problem 

and its solutions from [48] and [14]. Let B be a closed set in Rn, and for each
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x  G dB, let d(x) denote a set of unit vectors, which is called directions of 

reflection. For ip G D([0, X1]; Rn), let |ip\(T) denote the total variation of ip 

on [0, T]. For a set B  C Rn, and q  G 1 , we define aB  = {ax  : x  G B}.

D efin ition  6.1 (Skorokhod problem) Let ip G D ([0,T];Rn) with ip(0) G B be 

given. Then ((f), p, if)) solves the Skorokhod problem if

• (f> = p  + ip, (f)(0) = p(0);

• (f)(t) G B for t G [0, T\;

•  \ip\(T) < oo;

• IV’K*) = Jm Jr{«s)e9e}rf|V’l(«);

• There exists measurable 7 : [0,T] — Rn such that 7 (s) G d((p(s)) (d\ip\

a.s.) and \fj(t) = / (0 f] 7 (s)d\if>\(s).

Hence <f) never leaves B, and ip changes only when (p G dB, in which case 

the change points in one of the directions d(<p). The ip term is related to the 

local time spent on dB.

By [33, Appendix A], given an adapted stochastic process {C(t),t > 0} 

taking values in R” , all defined on some filtered probability space (0, T , {PFt}t>o> 

we define

S(C)W =  C(0) +  [  f (C(s ), t( s  ~ r ) )ds+  f  g(C,(s),C(s ~  r ))dB(s)
Jo  Jo

+ [  [  h(C(s~)X((s -  r )~ ) ,z )N(ds ,dz)  (6.4)
Jo J \z \<r

+  [  [  h'(C(s~),(((s - r ) ~ ) , z ) N ( d s ,d z ) ,
J o  J \z \>r  

For a  solution X  of the (6.1),

X ( t )  = S(X)( t)  + L(t)



for t G [0,t], where the regulator term L has the following explicit formula 

in terms of S(X):  for each i = 1 , . . . ,  n,

L \ t )  =  m a x ((S p 0 y (5))- , t > 0. 
se[o,t]

For any adapted process £ =  (£(t);t > 0) taking values in R+. Using the 

form of solution to Skorokhod problem, there exist Lipschitz functions </> and 

ip with > 0 and K^ > 0 respectively, such that

X( t )  = 4>(S(X))(t), and L(t) = i>(S(X))(t), on fe [0 ,T ] .  (6.5)

Because of the uniqueness of solution to the Skorokhod problem; L is a 

function of X  that Ll(t) = maxo<s<*pC(s))_ , i =  1 , . . . , n .  Then as a 

consequence of [33, Proposition A.O.l(i)], we have the following lemma.

L em m a 6.1 For any 0 < a < b < oo

max sup \X l(t) — A I(s)|
s,t€[o,fe]

< K +max sup \(S(X))l(t) -  (S(X)Y(s)\.
1=1 s, t€[a,b]

Now let £ be the bound for £. For each integer R  > £, define

where we set (|x| A R/\x\)x  =  0 when x  =  0. Define g ^ ( x , y ) ,  h)R\ x , y , z )  

and h'(R\ x , y , z )  similarly. Consider (6.4)

5(X fl)(f) =  X fi(0) +  [  f W ( X R(s ) ,X R(s -  r))ds 
Jo

+ f  giR\ X R(s ) ,X R( s - r ) ) d B ( s )

° f ,  ,  (6.6)
+  /  /  h<-R\ X R( s - ) , X R( ( s - T ) - ) , z ) N ( d s , d z )

Jo  J\z \<r

+ f  [  h 'W ( X R(s-), X R((s -  r)~), z)N(ds,  dz),
Jo J\z \>r
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on t > 0 with initial £. By assumption 6.1, we observe that f^R\  g^R\  

h(R) and h ' ^  satisfy the global Lipschitz condition and the linear growth 

condition.

By [2, Theorem 6.2.9 P374] (also [47, Proposition 3.1]), the uniqueness 

and existence on t E [0, r] of (6.6) can be proved. Once we obtain the unique 

solution on [0, r] we can regard them as the initial data and consider (6.6) 

on [r, 2t]. Repeating this procedure on intervals [2r, 3r], [3r, 4r] and so on, 

we obtain the unique solution S(Xn)(t)  to (6.6) on t > —r. Then it follows 

from the proof of (3.17), which is showing that P{f7 =  oo} =  1, by defining a 

stopping time and using the Lipschitz functions </>, if) and (6.5), we obtain that 

(6.1) exists a unique, {^j^o-m easurable, right continuous and left limited 

global solution X(t).

6.3 Stability in D istribution for Reflected Stochas­

tic Differential Delay Equations w ith Jumps

The main purpose of this section is to discuss the stability in distribution of 

the solution (6.1). We now first give the definition of stability in distribution.

For the segment processes X t = (X(t  +  s); —r  < s < 0). Let X^(t)  denote 

the solution of (6.1) with initial data X 0 = £ E Dp0([—t ,  0]; R” ) and X f  =

(X^(t  +  s); — r  < s < 0) for t > 0. Let p{t,£,d£) denote the transition 

probability [40, P84] of the process X (t ). Denote by P(£, 4, T) the probability 

of event -jW(t) G T}, i.e. with T E B(R” ), which denotes the Borel cr-algebra

of R J, P (£ ,£ ,r) =  f r p(t,$,d() .

D efin ition  6.2 The processes X t is said to be stable in distribution if  there 

exists a probability measure 7r(-) on D([—t , 0];R” ) such that the transition
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probability p(t,^,d(^) converges weakly to ir(d() as t —> oo for every £ E 

D([—t ,  0];R "). In this case, (6.1) is said to be stable in distribution.

T h eo rem  6.2 Suppose that the segment X t satisfies the following properties: 

(PI) For all £ E D([—r,0 ];R "),

sup E ||J ^ ||2 < oo. (6.7)
0 < t< o o

(P2) For any compact subset M  of D{[—r, 0];R"),

lim E\\Xf -  X ? f  =  0 (6.8)
£—►00

uniformly in £,77 E M . Then X( t )  is stable in distribution.

To prove this theorem we need to introduce more notations. Let IP(MIji)

denote all probability measures on Rn. For P i,P 2 £ P(Rn) define metric di,

as follows:

d L ( P i , P 2 ) = s u p |  f  m v I K ) - /  m ) ¥ 2(<%)
/€L | jRn JJJn

and

L =  { /  : £>([-r,0];R") R : |/(£) -  /(r,)| <  \\t -  r,|| and | / (  )| < 1}.

Let us now present three lemmas.

L em m a 6.2 Under the assumption 6.1, for every p > 0 and any compact 

subset M  ofM.n,

su p E ( sup |J ^ (s ) |p ) < oo Vt > 0.
£€M \ o  <s< t  J

L em m a 6.3 Let the assumption 6.1 holds and (6.1) have property P2. Then,

for any compact subset M  o f R n,

lim dh{p(t^,-),p(t,r],-)) = 0
£—>oo

uniformly in E M.
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Lemma 6.4 Let the assumption 6.1 holds. I f  (6.1) has properties P I and 

P2, then for any x E Rn, {p(t,£, •) : t > 0} is Cauchy sequence in the space 

P(Mn) with metric c£l-

The proof of lemma 6.3, 6.4 and theorem 6.2 are similar with [19, Lemma 

3.3, Lemma 3.4,Theorem 3.1] without Markovian switching.

Then let us derive results on the stability in distribution for the processes 

X ( t), i.e. we shall establish some sufficient criteria for (PI) and (P2) of 

Theorem 6.2. We first proof (PI).

Proposition 6.1 Let the assumption 6.1 holds and c\ be a positive number 

and Ai > A2 > 0. Assume that there exist functions V(x) E C2(R"; R+) and 

Wi(x) E C(R” ;M+) such that

ci|x |2 < V(x) < uji(x), (6.9)

for all x E R" and

(6 .10)

where

with Xi > 0 (i 7̂  /), and

LV{x,y) < -Aiwi(x) + \ 2ui{y) (6 .11)

for all (x,y) E R" x R", then

sup E||X«||2 < 00, V « e ^ o([-r,0 ];R y . (6.12)
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Proof. For convenience, we write X*(t) = X (t) for any initial data X (0) =  £. 

Define a stopping time by

ctr = inf(t >  0; |X(*)| > R),

where we set inf 0 =  oo as usual. By the generalized Ito formula, we have 

that for any t > 0,

E V ( X { t A a R) ) - E V { X { 0 ) )
rtA<TR rtAcFR

=  E /  L V ( X { s ) , X ( s - r ) ) d s  + E Vx{X?(s))dL(s)
Jo Jo

a
t/\cjR

Vx{X{s))g{X(S) ,X ( s  -  r))dB{s)

d ptAcTR n

+E/ / r a o  + ‘wwi^(('-fru)) (6.13)k = 1 J  0 J \ i k\<r
- y ( X ( S-))]iVfc(rfs,d^)

 ̂ I'tAaR
+  E /  /  | V ( ^ ( r ) + ) i « ( X ( S - ) , J f ( ( 8 - r ) - ) , 2 t ))

fc=l J\zk \> r

- V { X { s - ) ) ] N k{ds,dzk)

By using (6.10) and the fact of dL{t) > 0 for all t > 0, P-a.s.

rtAoR
E /  Vx{X?(s))dL(s) < 0.

Jo

Furthermore, by (6.11), we then derive from (6.13) that

E V{X{t  A aR)) <  El/(£(0)) +  A2 J  an(Z(s))ds. (6.14)

Letting R  —> oo we have

E V(X( t ) )  <  EK(4(0)) +  A2 j  w!($(«))</«. (6.15)
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This implies

sup E V(X(t) )  < oo. (6.16)
0<t<oo

Hence by the condition (6.9),

sup E|A:(1)|2 < - ( W (£(()))+  A2 /
0<t<OO \  J - T  /

In what follows, we shall estimate the segment processes X t. Let t > t and 

9 E [0,t]. From (6.1) and the ltd formula, it follows that

|* ( i  -  *)|2 -  |X (t -  T)|2

=  f  \ g ( X ( s ) , X ( s - r ) ) \ 2ds + 2 [  X  (s)T f  (X  (s) , X  (s -  r))ds
J t  — T  J t  — T

p t —6 nt—6
+ 2 X(s )Tg ( X ( s ) , X ( s - T ) ) d B ( s )  + 2 /  X (s )TdL(s)

J t  — T  J t  — T

+  2 /  [  \h{k)(X ( s ) ,X ( s  -  r ) , z k)\2vk{dzk)ds
k- l  J t - r  J \ zk\<r

+  E I* - * I  W k\ X ( s - ) , X ( ( s - T ) - ) , z k)\2
k = l J t - r  J\*k\<r

+ 2X ( s - ) Th W ( X (S- ) , X ( ( s  -  t )“ ) ,zk)]Nk(ds,dzk)
d r t - 0

+ E  I " [  w o .  * ((»  - ’■ n . o i 2
k = l  J t - r  J \ z k \>r

+ 2 X ( s - )Th 'M ( X ( s - ) ,X ( ( s  -  t ) ~ ) ,  zk)}Nk(ds, dzk)

+  f  f  \h'(k)(X ( s ) ,X ( s  -  T) , zk)\2vk(dzk)ds 
k = l  J t - r  J \ z k \>r

+  E f  ‘ f  [W s)  +  V < * H * M W s - t ) ,z * ) |2 -  \X(s)\2]vk(dzk)dS.
k - \  J t - r  J \ z k \>r

(6.17)

By the property of regulator L(t), we have P-a.s.

[  X ( s ) r dL(s) = [  X ( s )TdL(s) -  [  X{s)TdL(s) = 0. 
Jt-r Jo Jo
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Then we estimate the terms as follow 
i  ̂d rt-e

E sup
0 < 0 < T

d r t -

j f \h{k)( X ( s ) , X ( s - T ) , z k)\2i/k{dzk)ds 
k = l J t - r  J \ zk\<r

+ E  / ' 6 j  [i*<fc>( ^ ( s - ) ,^ ( ( s  -  t ) - ) , ^ ) i 2
k = l  J t - r  J \ z k \<r 

+  2X(s~)Th(k\ X ( s ~ ) , X ( ( s  -  r ) _), zk)\Nk(ds,dzk)

= E sup I [  [  Ihik){X(s~) ,X ((s  -  r ) - ) , z k)\2N k(ds,dzk)
0<0<T | J t - T  j \ z k \<r

+ Y 1  [  \  2X(s~)Th{k)(X (s~ ) ,X ( ( s  -  r ) - ) , z k)Nk{ds,dzk)
k = l  J t - r  J \ z k \<r

(6.18)

where
| d r t - 0

E sup
0 <0<T

d rt

[  f  Ih ^ i X i s ^ ^ d s - T r i z k ^ N ^ d Z k )
k- l  J t - r  J \ zk\<r

= E ± f  [  \hm ( X ( s ~ ) , X { ( s - T ) - ) , z k)\2N k{ds,dzk)
k = l J t - r  J \ z k \<r

=  E E / 4 /  \hM(X(s~)}X ( ( s - T ) - ) , z k)\2Nk(ds,dzk) (6.19)
k—l J t - T  J \ z k \<r

+  E E  f  f  \hik){ X ( s - ) , X ( ( s - T ) - ) , z k)\2vk(dzk)ds
k = l J t - T  J \ z k \<T

= 1 2  f  fk—l J t - T  J \ z k \<r

so does the large jumps term. In the meanwhile,

E sup I Y ' f l  [|X(s) +  ft'w ( ^ W , ^ ( « - T) ,^ ) l 2 - | ^ ( s ) l 2]I/) i ( ^ ) ^
0< 9< t I k=1 J t - T  J \ z k\>r

< 2 E  f  f  \h,(k\ X ( s ) , X ( s - T ) , z k)\2uk(dzk)ds 
k = l J t - T  J \ zk\>r

+ [  [  \X(s)\2vk(dzk)ds
k = l J t - T  J \ z k\>r
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which implies that 

d

J 2  [  [  \X(s)\2vk(dzk)d s=  f  |* ( S)|2E / .  i/k(dzk)ds
k = l  J t - r  J \ z k \>r J t - r  k = i J \ z k \ > r

= [  \X{s)\2^ 2 v k{\zk\ > r)ds =  'Y ^ y k{\zk\ > r) j |X (s)|2ds,
Jt~T k= 1 k=i Jt~T

where Ylk=i yk{\zk\ > r) < oo. By the Burkholder-Davis-Gundy inequality 

(2.6) and 2ab < ^ a2 +  ab2 for a > 0,

»■t-Q
E

O < 0 < T

r
sup /  X (s )Tg(X(s), X ( s  — r))dB(s)
< 0 < T  | J t  — T

< 3 e (  sup \X(t  — 9)\2 f  \g (X(s ) ,X(s  — r))\2ds
\o  < e < T  J t - T  j

sup \X{t -  6)\2 + 27E f  \ g ( X ( s ) , X ( s - T ) ) \ 2ds,
i z  o<e<T J t - T

<
~  12

as well as

d r t - 0
E sup

O < 0 < T
f f X ( s - ) Th ^ \ X ( s ~ ) , X { ( s - T ) - ) , z k)Nk(ds,dzk)

k = l  J t - T  J \ z k \<r

< sup \ X ( t - 0 ) \ 2
l z  O < 0 < T

d rt
+ 2 7 E J 2  [  f  \ h W ( X ( s - ) , X ( ( s - T ) - ) , z k)\2i,k(dzk)di 

k = l  J t - T  J \ z k \<r
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and the large jumps term. Then we have

E sup |X ( t  — 0)|'
O < 0 < T

< 2E|X ( t  -  r ) |2 +  (2  +  j y k(\zk\ >  r ) )  f ]  E |X (s)|2ds

+  2 [  E \ f ( X ( s ) , X ( s - T ) ) \ 2ds + m  f E |9( X ( s ) , ^ ( s - r ) ) |2(is 
J t  — T J t  — T

+ c  j  E ^  f  \h{k)(X ( s ) ,X ( s  -  r ) , z k)\2vk(dzk)ds
J t - T  J\zk\<r

+ C' f  E ^  [ \h 'W (X(s) ,X(s  -  T), zk)\2v(dzk)dS.
J t - T  k = i J \ z k\>r

(6.20)

Therefore by linear growth condition (6.3) we have 

E sup |X ( t  -  0) |2
o<e<T

< 2E|X ( t  -  t ) I2 + C [  E |X (s)|2ds +  C' [  E (|X (s)|2 +  |J>f(s -  r ) |2)ds 
J t  — T J t  — T

< C  + C'E sup |X (t)|2,
0<£<oo

where C, C' > 0 are constants which may different line by line. Using (6.16) 

we obtain (6.12), which complete the proof.

R em ark  6.1 Using the definition of compensate Poisson processes twice to 

prove the terms of (6.18) and (6.19) and the fact of Poisson measure is a 

counting measure to take off the superior are more convenient than the proof 

of [47, Proposition 3.1] and [6, Proof of (4-7)].
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To solve property (P2), we need to consider the difference between two solu­

tions of (6 .1) starting from different initial values, namely

where the initial datum £,77 G D([—r , 0];R "). In addition, the pair of 

processes and ( X v ^ n L 11) solve the Skorokhod problem X(t)  =

S(X)(t )  +  L(t) with different initial datum, respectively. For given function 

U G C2(lRn; R+), we define an operator L'U : Rnx4 —> R associated with

(6 .21) by

L'U(x1,y1, x 2,y2) = Ux(x 1 -  x 2) ( f ( x 1,yi) -  f ( x 2,y2))

+  ^trace[(#(a;i,V\) ~  g(x2,V2 ))TUxx(x1 -  x 2){g(x1:yi) -  g{x2, y2))]

+  [U(x 1 -  x 2 +  (h{k\ x u y2jzk) -  h{k\ x 2 -  y2, z k)))
K=l M<r

- U { x 1 -  x 2) -  Ux(x 1 -  x 2)(h{k)(x1,y2,zk) -  h{k){x2 -  y2, zk))\vk(dzk)

+  [U{xl - x 2 + {ti{k\ x u y2, z k) -  h,{k)(x2 -  y2,zk))) - U ( x  1 -  x2)\vk(dzk).

(6 .21)

For the future use, we shall impose anther hypothesis:
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A ssu m p tio n  6.2 There is a K  > 0 which m ay different of the previous one 

such that

(xi - x 2, f ( x u yi)  -  f ( x 2, y 2))  +  \g(xu yi)  -  g ( x2, y 2)\2

d  ̂ r
+  y :  /  \h{k\ x i , y i , z k) -  h{k)(x2, y 2, z k)\2vk(dzk) 

k=l J\zk\<r 

d  ^  p

+  J Z  /  W {k)(xi, Vu zk) -  h(k)(x2, y2, zk)\2yk{dzk) 
k= 1 J \*\>r

<  K ( \ x 2 - x i |2 +  | y 2 - y i | 2 )

for  Xi ,X2, 7 / 1 ,  7 / 2  £  R J .

P ro p o sitio n  6.2 Let the condition of proposition 6.1 and the assumption

6.2 hold. Assum e that there exist positive numbers c2 and  A 3 >  A 4 >  0 and 

U{x)  G C 2(Rn;R +), uj2(x) G C(Rn;R) such that

(7(0,0) =  0.

c2\x\ <  lj2(x ) A U( x ),  (6.22)

and

for

r \ r  T o r  7
0. 1 = l , 2 , . . . , n ,  (6.23)

:=  (a;i, - - -, 3,1-1, =Fa:i, a;i+i, - - -, 

with all X{ G R (i ^  /) and xi G R+, and

L ' U ( x \ , x 2 , 7/ 1 , 7/2 ) <  - A 3a;2 (a?i -  x 2 )  +  A4c^2 ( 2/1 -  2/2 ) ,  ( 6 -2 4 )

/o r all x i , x 2, y i , y 2 G R+, t/ien

lim ||Xf — A7||2 =  0 uniformly in ^,rj G M, (6.25)
t —* 00

for any compact subset M  of £)([—r, 0]; R ").
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Proof. First we prove

lim — X v(t)\2 = 0 uniformly in £,77 £ M. (6.26)
t —* 00

Let R  be positive number and define a stopping time by

6R = inf{i >  0; |X ( (t) -  X ”(t)| > R }.

Setting Tr = qr A t  and applying the Ito formula to (6.21) we conclude that

f°
WJ[X<(Tr )) -  X \ T r )} < E(7(f(0) -  7/(0)) + A4t  J  u;2(£(S) -  V(s))ds

-  (Aj -  A4)E /  |X«(s) -  Ar’ (s)|2ds
JO

+ E f R Ux( X({s) -  X’ (s))c((L£ -  i ”)(5). 
./0

(6.27)

We conclude that by employing the condition (6.23) and property f* X (s)TdL(s) 

0, P-a.s.

[ TR Ux{Xt -  X n)(s)d(L^ -  L^)(s)
J o

= f * Ux(X< -  X*)(s)d(lf)(s) -  f R Ux(X* -  X ^ d ^ s )
J o  J o

= f R U.((X* -  X ! ) ( s ) , ( X l ,  -  X l J i s ) ,
J o

(Xf+1 -  x?+1)(s), . . . , ( X i -  X*)(s))d(L<)(s)

- fTR Ux({X[ - X!) (s ) , . . . .  ( X l ,  -  XLMs), Xf(s) ,
J o

(Xf+1 -  X?+1)(s) , . . . ,  (X i  -  X%)(s))d(L’l)(s) <  0, 

since dL^{t) > 0 and dh1](t) > 0. This implies
poo

/ e |a:£(s) -  Ar"(s)|Jds

1 x t°  ( 6 -2 8 )
<   r-U(Z(0) -  7/(0)) +  - — i — r  /  u72(£(s) -  7](s))ds < oo.

^ 3  — M  'm  M  J - T
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Then we claim

lim E |X £(t) -  X ”(t)|2 =  0. (6.29)
t—*oo

If (6.29) false, then there exists a constant A >  0 such that

limsupE|A^(£) — AT7?(i)|2 =  A.
t—700

So there is a positive number e < ^  and a sequence (tn, n =  1, 2, . . . , ) ,  

tn —> oo as n —► oo such that

E \ X ^ t n) - X ^ { t n)\2 > A - e .

Let t > tn and 11 — tn\ < 1. Then by (6.21)

X^{t) -  X ' i t )

= X*(tn) -  X n(tn) +  r  d{L* -  Lv)(s)
J t n

+  f m x ^ s ) ,  X < ( s  -  t ) )  -  f ( X v(s), X*(s -  r ) ) ] < f a  
J t n

+  -  r)) -  g i X ^ s l X ^ s  -  T))]dB{s)
J tn

+  f  [  [h ( X < ( s - ) , X t ( ( s - T ) - ) , z )
J t n J\z \<r

-  h i X ' i s - ) ,  X ”((s -  r ) “ ), z)}N(ds, dz)

+ f  f  [(i'(X( (S- ) , l f ( ( S - r ) - ) , 7 )
J tn  J\z \>r

-  t i i X ' i s - ) ,  X ' f t s  -  r ) - ) ,  z)]N(ds, dz).
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As a consequence

|X«(t) -  X ”(t)\2

> ||A -£(t„) -  -  | £ d ( l A  -  L”)(s)

+ A /(X « (s ) , X<(s ~  r)) -  f{X*(s),  X ’ (s -  r))]<fe
J  t n

| j \ g ( X t ( s ) , X < ( s  -  r)) -  g(X^(s) ,X^(s  -  r))]dB(s)

[h(X<(s-), X<((s -  t ) ~ ) ,  z )  -  h{X"{s-) ,  X"((s  -  t ) - ) ,  z)]lV(dS, dz)
f t n J \z \<T

[/i'(X £( s - ) ,X « ( ( s  -  t ) - ) , z )  -  h ' (X ,l( s - ) , X ’’({s -  r) -)]N(ds ,dz)
Hn J \z \> r  

This implies that

E |X £(t) -  X r'(t)\2

> ^E|X«(J„) -  X "( tn)\2 -  2e | J ‘ d(L« -  L")(s)

-  2E| j \ f { X t { s ) , X t { s  -  r)) -  } { X \ s ) , X " ( s  -  r))]ds 

- e |  f  \g (X t(s ) ,X t (s  -  r)) -  g i X ' ^ X ^ s  -  r))]dB(s)

- E  /  /  [/i(X£(5 -) ,X £((S - r ) - ) , 2) - A ( X ''( S- ) >X ’> ( ( s -T ) - )1z)]JV(ck,dz:)
I Jtn J \z \< r

-  e |  f f [h'(X((s~), X t ( ( s  -  r ) - ) ,  z) -  h ' (X”(s-), X ”((s -  r)~), z)]N(ds, dz)
I Jtn J  M >r

(6.30)

Note that

2e | d ( i £ -  L’ )(s)

= 2 E |( tf( t)  -  L£(tn)) -  (U>{i) -  L”{tn))|2 

<4E|(L«(t) -  L«(t„))|2 +  4E|(L”(t) -  £ ”(<„))|2.

(6.31)
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From (6.1), for any t > tn, we have

L(t) -  L(tn) = X ( t ) ~  X ( t n) -  [  f ( X ( s ), X ( s -  t ))ds
Jt„

-  [  g (X ( s ) ,X ( s  -  t) )dB(s)  -  j f h(X (s~ ) ,X ( ( s  -  r ) - ) , z )N (ds ,d z )
** tn ^ tn J |2|<C7™

n h'(X(s~), X ( (s  — t )~) ,  z)N(ds, dz).
: \>r

Hence

lE\L(t) -  L(tn)\2 = 5E\X(t) -  X(t„)\2 + 5E\ /  f ( X ( s ) , X ( s  -  r))ds

+  5E /  g (X (s ) ,X (s - r ) )d B (s ) +  5E| I I h (X (s~ ),X ((s  -  r)~), z )N(ds ,dz)
’tn J \ z \ < r

+ 5E| I I h '(X (s~) ,X ( (s  — r)~),  z)N(ds, dz)\
’tn J \ z \ > r  \

Substituting this into (6.31) yields

2 e | jf* d ( L € - L * » ) ( 5 )

+  20E 

+  20E 

+  20E 

+  20E 

+  20E 

+  20E

< 20E|X«(f) -  X ( (tn) |2 +  20E|X”(t) -  X ”(tn)\2 

f  f (X < (s ) ,X < (s -T ) )ds
J t n

f g (X < (s ) ,X H s - r ) ) d B (s )
Jt„

n h ( X ( ( s - ) , X ( ((s -  r ) - ) , z )N (d s ,d z )
: \< r

n h {X ”( s - ) , X ,'({s z)N(ds, dz)
, '\<T

f f h ' (X t(s -) ,  X t ( ( s  -  r ) - ) ) ,  z)N(ds, dz)
Jtn J \ z \ > r

n t i ( X i ( s - ) ,X " ( ( s  -  t ) ~ ) ,  z)N(ds, dz)
: l>r

+  20E J  f ( X ’>(s),X’1( s - T ) ) d s

+ 20e| J ‘ g(X"(s), X ”(s -  r))dB(s) 

2

(6.32)
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In what follows it is sufficient to estimate the following two terms E|X^(£) — 

X ^(tn) |2 and E |X 7?(t) — X n{tn) |2. Next applying the Ito formula

|X«(i) -  x<(<„)|2

=  2 f \ x ( ( s )  -  X t ( t n)]Tf ( X t ( s ) ,X t ( s  -  r))ds
J t n

+  2 / V {M -  X ( ( tn)]Tg(X*(S), X ^ s  -  r))dB(s)
J t n

+  E  f  I  l \ x ( { s - ) - x ( ( t; )  + h{kX x t ( s - ) , x H ( s - T ) - ) , z k)\2
k=1 J t n  J \ z k \<r

-  |X<(«-) -  X i{ t - ) \2}Nk(ds,dzk) +  f  \g(X<(s),Xt(s -  r ))|2ds 

+ E  f  [  -  **(*») +  h 'W (X t[s-) ,  X<((s - r ) ~ ) ,  zk)\2
k=1 J t n  J \ z k \>r

-  |X«(s-) -  X ^ t - ) \ 2]Nk(ds,dzk) +  2 / V {M -  X t ( tn)]TdL(s)
J t n

+ ^ 2  [  [  \hik){X*(s) ,X t(s  -  T),zk)\2vk{dzk)ds 
k=1 J t n  J\Zk\<r

m [ \x ( (s) -  X<(tn) +  X<(s -  r ) , zk) I2
iv_ i :fcl>r

-  | x 4(s) -  X ( (tn)\2]i/k(dzk)ds.

(6.33)

Observe that

- 2  [  (X t( tn ) ,d L (s ))<  0
J t n

since from the definition and the increasing property of the regulators we 

have

2 f  (X t(s),dL(s))  =  2 f  (X ( (s),dL(s)) - 2  f  " {X ( (s),dL(s)) =  0.
J  tn 0 v  0
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Thus, taking expectations on both sides of (6.33) and estimate it using the 

method, which is same as the proof from (6.17) to (6.20), we obtain

E sup \X*(s) -  X*(tn)|
0 < s< t

d
< (2  +  5 > * (|.z* | > r ) )  f  E\X^(s) -  X ^(tn)\2ds
' k=l ' •'*»

+  2 f  E \ f ( X ( ( s ) ,X ( ( s - r ) ) \ 2ds + m  f  E \g(X( ( s ) ,X ( (s -  r))\2ds
J t n Jtn

+ C f E ^ 2  f \h{k)(X ^(s) ,X ^(s  -  r ) , z k)\2vk(dzk)ds
J t n  lc — l  J \ zk \<r

+ C' f  f  \h,{k)( X i {s))X^(s -  r ) , z k)\2v(dzk)ds.
J t n k = i J \ z k\>r

Consequently, thanks to the Holder inequality (2.1) and Doob’s martingale 

inequality (2.4), (6.32) gives

I /** 2
2E /  d(L( -  Li)(s)

I Jtn

< 2 o (2  +  y V ( |z * |  > r ) )  f  E\X<{s) -  X t ( tn)\2 + \X ’>(s) -  X ' i t j f d s  
\  k=1 )  Jtn

+  40(t -  tn) [  E| f ( X ( (s), X<(s -  r ) ) |2 +  |/ ( X ”(s), X "(s  -  r ) ) |2<fc
J tn

+  8 0 x 1 1 0  I  E |9(A :« (s),A :« (s-r)) |2 +  |9 (X ’’(s ) ,X ’’( s - r ) ) | 2ds
J t n

+ C  / ' E E  [  \h M ( X < { s ) ,X t ( s -T ) ,z k)\2
J t n  k=1 J \ z k \<r

+  I -  r ) , z k) \W (d zk)ds

+ C f  E ^  f  \ h 'W ( X t ( s ) ,X t ( s - T ) , z k)\2 
J t n  k = l J \ zk \>r

+  \h,{k)( X T1(s ) ,X r,(s -  r ) , z k)\2i/k(dzk)ds.
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Putting this into (6.30), and using the linear growth condition to f , g , h ,h f, 

we have

E|X{(f) -  X ” ( i ) |2 > ^E|X«(tn) -  X ”(tn)\2 
0 

-  CK E f(\(X<(s)\2 +  |*«(s -  r ) |2 + |X”(S)|2 +  |A >  -  r)|2)ds,
Jtn

(6.34)

where Ck  is a positive constant which may different line by line. From 

proposition 6.1 it follows that there exists 0 < 8 < 1 such that

CKE A |(x < (s)|2 + |X<(s -  r)|2 + | A » p  + |jr”(s -  r)|2)ds < e,
Jtn

whenever \t — tn\ <8. This, together with (6.34), yields

E|X<(t) -  X ’ (t) |2 >  (6.35)

whenever |£ — tn | ^  8. It follows that

poo

/  V,\X( (t) -  X"(t)\2dt = oo. (6.36)
Jo

Since this contradicts with (6.28), we must have (6.29). We finally can follow 

the desired (6.26) by a similar argument of [58]. Next let t > r  and 6 E [0, r],

106



b y  I t o ’s  fo r m u la  a n d  ( 6 .2 1 ) w e  o b t a in  

\ X t ( t  -  6 )  -  X ' i t  -  $ ) \ 2

=  |X < ( t  -  r )  -  X ”(t -  r ) | 2 +  2  /* ( X ( (s) -  X ’l(s))Td(L( -  L ” ) ( s )
«/ t — T

+  f  6 |g ( X ( ( s ) , X i ( s - T ) ) - g ( X ”(s ) ,X ’’( s - T ) ) \ 2ds
J  t — T

+  ] T  f  6 [  \hW (X( (s ) ,X t(s  -  r ) , z k) -  hV‘\ X ’'( s ) ,X ’'(s -  T),zk)\2uk(dzk)ds 
k = l  J t - r  J \ z k \<r

+  2  f  V « ( s )  -  X ” W ) t [ / ( A : « ( s ) ,  -  r ) )  -  / ( X ” ( s ) ,  * ” (« -  r ) ) ]r f i
«/ t — T

+  2  f  ( X < ( s )  -  X ” ( s ) ) 7’[3 ( X « ( 5 ) ,  X < ( s  -  t ) )  -  g iX ^ s ) ,  X*(s -  r))]dB(s)
J  t —T

+  E  f  6 [  \\h(k)( X t ( s - ) ,X < ( ( s - T ) - ) , z k) - h (-k\ X ’>(s-),X’> ( ( s -T ) - ) , z k)\2
k = l  J t - T  J \z k \< r

+ 2(X t(s~) -  X ”(s-))T {h(k\ X ( ( s - ) ,  X*({s -  r )~ ) ,zk)

-  h ^ ( X i ( s - ) ,  X ”((s zk))]Nk(ds, dzk)

+  E  f  '  f  [\h,{k\ X i ( s - ) , X ^ { s - r ) - ) t zk) - h ' (-k\ X ' ' ( s - ) , X ' ' ( { s - T ) - ) , z k) f
Jfc=l J t - r  J \ z k \>r

+  2 ( X < ( s - )  -  X "(s-))r (h'(k>(X<(s-), X*((s - r ) ~ ) , z k)

-  h/W(X”(S- ) ,X ’>((s -  r ) - ) , z k))]Nk(ds,dzk)

+  E  f  6 [  [Ih , { k \ X i ( s ) , X t ( s  -  T),zk) -  f t ' W p r ' M . X ’Hs -  T),zk) I2
Jt=l J t - T  J \ z k \>r

+ 2 ( X « ( s )  -  X ”(S))T(h '^ (X ((s) , X<(s -  t ), zk)

-  /i'<*>(X” ( s ) ,  X ” ( s  -  r ) ,  zk))\vk{dzk)ds

(6.37)
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Compare with the calculation from (6.17) to (6.20), and the assumption 6.2 

we have

E sup \X*(t -  6) -  X ^ t  -  6)\2
0 <0<T

»t-0<
5E|X*(t -  t )  -  X^{t -  t ) I2 +  5E [  {Xt{s) -  X ri{s))Td(L* -  L7?)(s)

J  t  — T

+ CKV. f (|A*(s) -  X ^ s )!2 +  |X<(s -  r)) -  X"(s  -  r ) |2)ds 
J  t  — T

<  5E\X( (t -  t ) -  X ^ it  -  t ) \ 2

+  C K E  [  (|X«(s) -  ^ ( s )!2 +  |X«(s -  t)) -  X*(s  -  r ) |2)ds,
J  t  — T

(6.38)

because we can use a fact therein, P-a.s.

f { X * { s )  -  X n(s))Td(L( -  L”)(s)
Jo

=  f  X ( (s)Td(Lt - L ”) ( s ) -  [  X n(s)Td(Li -  L”)(s)
Jo Jo

= -  [  X ( (s)TdL”(s) -  f  X "(s)TdL( (s) < 0 ,  Vf > 0,
Jo Jo

since dLv(t) > 0, dL^{t) > 0, X f{t)  > 0 and X f( t )  > 0 for all I = 1 ,2 ,. . .  ,n. 

The required assertion (6.25) finally follows from (6.26) and (6.38). The 

proof is hence complete.

6.4 Exam ples

In this section we first show an Corollary that

C o ro lla ry  6.1 Let Assumption 6.1 and 6.2 hold, and let c be a positive 

number, A5 > A6 > 0; A7 > A8 > 0. Assume that there exist functions 

V{x) e  C2(R+) satisfying < 0, U(x) G C2(1R) obeying ^ ( x f )  < 0,
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and ^  > 0, and u(x) G C2(M) such that

c\x\2 < V ( x ) <  lj(x ), 

c\x\2 < U(x),

LV{x,y) < - \ 5c j ( x )  + \ 6uj{y),

LU (x i — 2/1, ^2 — 3/2) <  —A7u;(:ri — 3/1) +  X8uj(x2 — 3/2)?

Then

sup ( sup E||A^(£)||2 J < 00,
£GM \  0<t< oo  /

and

lim E|X« -  X?\2 = 0,
t —*oo

uniformly in £,77 G M, where M  is a compact subset of D([—t ,  0];R+).

Now we turn to give an simple example. Let B(t) be a 1-dimensional standard 

Brownian motion, N (t, z) be a 1-dimensional Poisson process and denote the 

compensated Poisson process by

N (dt,dz)  =  (N (d t,d z ) — v{dz)dt).

We assume that B(t) and N (d t , dz) are independent. Consider a 1-dimensional 

linear RSDDEwJs of the form

dX{t) = A{X{t)  +  X ( t  -  1 ))dt +  C X (t  -  1 )dB(t) +  [  D X(t~)N (dt, dz)
J  | z\<r

+ f D 'X (t~ )N (d t,dz) + dL(t),
J  | z | > r

A'0 =  4 e ^ 0( [ -1 )0];M+),

on t > 0, where the M+-valued reflected term L(t) satisfies the properties 

that t —*■ L(t) is a nondecreasing and continuous random process and it
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satisfies X (s)TdL(s) =  0. Define /  : R+ x R+ —> R and g : R+ —> R as

well as h , h! :  R+ — ► R by f { x ,y )  = A(x  +  y), g(y) =  Cy  and h(x) = D x ,

=  D 'a : .

Assume that there is a positive number (3 such that

3A(3 +  D2 j  v(dz) + D' [  v{dz) < 0,
J \z \< r  J \z \> r

A p  +  c 2p  >  o.

Next we examine the stability in distribution. We first construct the functions 

V  : R+ —> R+ and U : R —> R+ by V(x) = U(x) = (3\x\2. It is easy to check 

that the operator L V  from R+ —» R+ to R has the form

LV(x, y) = 2(3xA(x +  y) +  (3C2\y\2 +  f  D2\x\2is(dz) +  f  2(Df2 +  l) \x^v(dz)
J \z \< r  J \z \> r

< [3 A(3 + D 2 f  v(dz) +  2(D'2 +  1) f  v(dz)]\x\2 +  [A(3 +  C2(3]\y\2, 
J \z \< r  J \z \> r

similarly for xi, x 2, yi, 3/2 £ R+,

L U (x iJx 2,y i ,y 2)

= 2(3{xl -  x2)A(x 1 -  £2 +  (yi -  ya)) +  (3C2\yi -  y2|2 +  /  D2|xi -
J \ z \< r

+  f  2{D’2 + l)\xx — x 2\2v{dz)
J \z \> r

< [3A/3 +  D2 f  v{dz) +  2{D'2 +  1) f  v(dz)\\xi -  x 2\2 +  [A(3 +  C2{3\|ya -  y2|2.
J \z \< r  J \z \> r

Suppose f z i/(dz) < 00, then the jump term satisfies the Assumption 6.1.

On the other hand, since Vx(x) = 2(3x, for all the vectors having the form 

x® := (x i , . . . ,  £/_i, 0, xi+1, . . . ,  x n) with Xi G R+ (i 7̂  I) and I = 1,2, . . .  ,n, it 

is easy to get =  2/?x0 =  0, similarly, x f  := (zi, . . . ,  x h , £z+i, • • •, x n)

with all G R (i ^  /) and xi G R+, we have for / =  1 ,2 , . . . ,  n, =

—2(3xi < 0, and f^(£/+) =  2(3xi > 0, because of (3 > 0. By Corollary we can 

conclude that the solution process X t is stable in distribution.
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Next we shall give another example considering an 1-dimensional non­

linear RSDDEwJs,

dX (t)  = [ -2 X (t)  -  D X ( t  -  l)]dt +  g (X ( t ) ,X ( t  -  1 ))dB(t)

+ j  h (X ( t ) ,X ( t  -  l ) ,z )N (d t ,d z )
J \z \< r

+ [  h '(X(t), X ( t -  1), z)N(dt, dz) + dL(t),
J \z \> r

X 0 = i  € £ ) ^ ( [ - l ,0 ] ;R +).

We now shall give some conditions to support the corollary above. Suppose 

that

xD{y) < Yq \x \2 + Yq \v \2^

J  \h{x,y,z)\2v ( d z ) < ^ \ x \ 2 + ^ \ y \ 2

\g(x,y)\2 < \\x\2 + \\y\2
[  \h'{x, y, z)|2 +  2xh'(x, y, z)i/(dz) < A w 2 +  :^ |y |2,

J\z\>r 16 16

and

(£i -  x2)(D(y1) -  D(y2)) < -  :r2|2 +  ^ |y i  -  y2|2,

f  1 1/  \h(x\,yi, z) -  h(x2,y2,z)\2v{dz) < — \xi -  x 2\2 +  — \yi -  y2\2
J \z \< r  1 6  1 6

\9(x uVi) - ^ 2 ,3 / 2 ) |2 < - |£ i  — x 2\2 +  - |y i  — y2|2 

/  |/i'(£ i,y i,z ) -  t i ( x 2,y2,z)\2 + 2{xi -  x 2)( t i(xu  yu z)
J \z \> r

- t i ( x 2,y2,z))v(dz) < - x2\2 + J q \Vi — 2/2I2-

Let the functions V  : R+ —» R+, U : R —> R+, and let V(x) = U(x) =  |rr|2,



and
5 3

LU{x1,x 2,y u y 2) < -% \x i ~ ^ | 2 +  g|yi ~ y2 \2

Then the conditions of the corollary hold.

112



Chapter 7

Convergence of Balance 

M ethod for N eutral Stochastic  

Differential D elay Equations 

w ith Jum ps

7.1 Introduction

During the last few years several authors have proposed implicit numerical 

methods for stochastic differential equations in respect of strong and weak 

convergence criteria. The balanced method can be interpreted as a family of 

specific methods providing a kind of balance within approximating stochastic 

terms in the numerical scheme [46]. One can hope tha t by an appropriate 

choice of the parameters involved in these schemes one is able to find an 

acceptable combination suitable for the integration of a given stiff stochastic 

differential equation. Numerical experiments show a better behavior of the 

balanced method in comparison with the explicit Euler method. For example,
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the balanced method is having a larger range of suitable step sizes where 

they work without any numerical instability in contrast to the explicit Euler 

method. In this chapter we will investigate the convergence of balanced 

method for NSDDEwJs.

7.2 Balance M ethod for N eutral Stochastic 

Differential D elay Equations w ith Jum ps

In this chapter we shall let the coefficients of (3.1) satisfies the global Lips- 

chitz condition and linear growth condition.

A ssum ption  7.1 (Global L ipsch itz condition) There exist a positive 

constant K , such that

\ f (xu yi) -  / ( x 2j 2/2 ) | 2 -h  yi) — ^ ( ^ 2 , y2)|2
 ̂ r

+  S  /  \hik)(x u y h zk) ~  h{k\ x 2,y 2,z k)\2vk(dzk) < K (\x2 -  x ^ 2 +  \y2 -  2/i|2), 
fc=i Jr

(7.1)

for X \ ,x2,y \ ,y 2 G Rn and t G [0,T]. Assume moreover that f ,  g, h satisfy 

the linear growth condition that

 ̂ r
|/ (^ 2 /) |2 +  b(z>y)|2 +  ] C  /  \h{k)(x ,y ,z k)\2vk(dzk) <  A i( l +  \x\2 +  |y|2),

fc=i J r

for x ,y  G E n, p > 1. We also assume that there is a constant K  G (0,1) 

such that

|<?(3/i) -  G(y2)| <  K\y! -  y21, for all yu y2 G E n. (7.2)
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Now let us introduce the family of balanced methods. A balanced method 

applied to (3.1) can be written as the general form that

y„+i -  G(y„+1_m) = Yn- G(y„_m) + /(yn,y„-m)A + 9(y„, y„_m)ABn 

+ j  h{Yn, rn_m, z)ANn{dz) +  ( c o (y n , Tn_m)A
n

+  5 > ( y „ ,  y„_m)|A B„|) [Yn -  G(y„_m) -  (yn+1 -  G(yn+1_m))],
i = l

(7.3)

where A Bn = B ( tn+i) -  B (tn), A N n(dz) = N ( tn+1,dz) -  N ( tn,dz) and 

Ci := Co, Ci,. . . ,  cn represent n x n-matrix-valued functions. We assume that 

for any sequence of real numbers (a f) with a 0 € [0, a], a\ > 0 , . . . ,  a n > 0, 

where a  > A for all step sizes A considered and x ,y  G Kn, the matrix

n

M (x, y) = I  + a 0co(^, y) +  3/) (7-4)
i = i

has an inverse and satisfies the condition \(M (x,y))~1\ < K  < oo. Here I  is 

the unit matrix. Obviously (7.4) can be easily fulfilled in keeping c0, c i , . . . ,  cn 

all positive definite. Thus, under these conditions one obtains directly the 

one-step increment Yn+1 — GiXn+i-m) — (Yn — G(Yn- rn)) of the balanced 

method via the solution of a system of linear algebraic equations. Further­

more, we suppose tha t the components of the matrices Co, c1}. . . ,  cn are uni­

formly bounded. That is to say, there exists a positive constant B , such 

that

h i  <  B, (7.5)

where i = 0 , l , . . . , n .  Then we illustrate the following lemma before show 

the main result.
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L em m a 7.1 Let the assumption 7.1 holds, there is a positive constant H  

such that

E sup \X f\2 < H( 1 +  \y\2), (7.6)
0 <s<t

where X \  denote the value of a solution of (3.1) at time t which starts from 

y e  Mn.

7.3 Convergence of Balance M ethod for N eu­

tral Stochastic Differential Delay Equa­

tions w ith  Jum ps

T h eo rem  7.1 Under the assumption 7.1 and (7.5), the balanced method

(7.3) converges with strong order 7 =  0.5, that is for all k = 0 ,1 , . . .  ,n, 

where n =  0 , 1 , . . . ,  TV and step size A =  T / N  = r /m ,

(E|X,„ -  yn|2)i < C{ 1 +  |Xo|2)iA i, (7.7)

where C does not depend on A.

To prove the theorem 7.1 we recall the following theorem concerning the 

order of strong convergence (see [44], [45]).

T h eo rem  7.2 Assume for a one-step discrete time approximation Y  that 

the local mean error and mean-square error for all N  = 1 ,2 , . . . ,  and n = 

0 , 1 , . . . ,  N  satisfy the estimates



withp2 > \  and pi > P2 ~\~\, where the positive constant C may different line 

by line. Then

(E|X£° -  Yn|2)^ < C{ 1 +  \X0\2)^ A P2~% (7.10)

holds for each k = 0 ,1, . . . ,  n.

P ro o f  o f T h eo rem  7.1. At first, we show that the estimate (7.8) holds 

for the balanced method (7.3) with p\ = §. For this purpose, the local Euler 

approximation step

= v„ -  G(yn_m) + G(yn+1_m) + /(y„, y„-m)A + <?(yn, y„_m)ABn

+  [  h(Yn,Yn- m,z )A N n(dz), 
J Rd’Rd

(7.11)

which can be deduced for n =  0 , 1 , . . . ,  N  — 1 that

Hi : = |E(X£+1 -  G(X£1_J -  (y„+i -  G(y„+1_m)))|

< |e ( * £ +i -  g (x £ , _ J  -  (yn+! -  G(yn+1_m)))| 

+  i e ^  -  G(y„+1_m) -  (yn+1 -  G(yn+1_m)))|,

by Holder’s inequality (2.1) and global Lipschitz condition we have

^ : =  \e (x ?:+i -  G(x?:+1_ j  -  ( y £ j  -  G(yn+1- m)))|

= 3|e rmx?;,x£j -  /(y„,y„_m)]du
I -An

< 3 A ^  /  ( E | / ( ^ , x ^ _ m) - / ( y n>y „ .m)|2) ^ «
Jtn

< 3#fA(E(|<‘ -  y*|2 + -  yfc_m|2))̂

< SlirAl 2E sup \X% -  y*|2)  2
\  fce[-m ,n] /

< CA 2(1 +  E |y„|2)5,
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then by using E |AB„| < VmA, and (7.5) we also have

H, : = E (*»+1 -  G(Yn+l. m) -  (yB+1 -  G(rn+1_m)))

E ((/ +  C o ( Y n , y„_m)A +  c(Yn, J^^IABnl)-1 

x [co(yn,yn-m)A + ^ c f(yn,yn-m)|ABn|')/(y„,yn_m)A
'  i = 1 '

l
< C A ? ( i  +  E|y„|2 ‘ 2

and we obtain

H3 < C A * [ l  + E\Yn

and

H2 < CAM l+E |rT

Since we have Hi =  H2 +  # 3, we deduce that

sup |E « ‘ - Y k+1) \=  sup |E ( X *  -  G ( X * )  -  (yM  -  C p M - m ) ) )
fce[0,n] /c€[0,n]

+ E (G (* & 1_ J - G ( y t f l_m))|

< sup (Hi + | E ( G ( X * J  -  G(yt+i_m))|)
fce[o,n]

< sup (Hi + K \ n x ^ _ m -  n+i-m)!)
/cG[0,n]

< sup (Hi + K\E(X%+ l- Y k+i)\)
fce[—m,n]

<  s u p  H i  +  s u p  K \E(X%  -  F fc+i ) |
fc€[—m,n] fcG[0,n]

+  sup K \ E ( X * - Y k+i)\
fce[—m,0]

— jpHi = CA*  I 1 + E  sup |yn|2j
k€[-m ,n]  1 — -tv \  fc€[—m,n]

< sup
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Thus the assumption (7.8) with pi = 1.5 in theorem 7.2 is satisfied for the 

balanced method. Similarly, we check assumption (7.9) for the local mean- 

square error of the balanced method (7.3) and obtain by standard arguments

H4 : =  (EIX&, -  G(Xt"+l m) -  (Yn+1 -  G(K„+1. m))|2) 5

< (E |x £ +1 -  G(xr:+1_ j  -  (y®+1 -  G(y„+1_m))|2) i

+  (E ly ® ., -  G (y„+1_ra) -  (y n+1 -  G (y n+1_ro) ) |2) t

by using Holder’s inequality (2.1), Doob’s martingale inequality (2.4) and 

assumption 7.1 we have

H t  : =  (E IX &  -  G(X?;+l_ J  -  (yn£ ! -  G(yn+i_m))|2)^

< (e [| - / ( y n,y n_ro)]d«

+ I r ^ X t J  ~ g(Yn,Yn. m)]dB(u)
I J t n

I f tn+x r
+  /  /  [h(X% , x £ _ m, z) -  h(Yn, yB_m, 2)]JV(du, dz)

I J t n  J  R d

< C A (1 + E |rn|2) ,̂ 

then by using (7.5) we have

h 6 : =  (Ely®., -  G(yn+1_m) -  (y„+1 -  G(yn+1_m))|2) i

e  (/ +  co(y„, y„_m)A + c(y„, y ^ J i A f g r 1 

X (co(y„,y„_m)A + c(yn,y„_m)|AB„|)(/(y„,y„_m)A 

+ ^(yn,yn.J A 5 n+ [  h(Yn,Yn_m,z)ANn(dz) 
J  Kd 

< c a I ( i  +  E|y„|2)2 + 2CA(i + E|y„|2)i 

<CA(1 + E|y„|2)*,
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we also have since i / 4 =  / / 5 +  / / 6,

( e  sup
\  fce[0,n] /

< E sup \X%+1 -  G (* £ ,_  J  -  (Yk+1 -  G (n +1. m))|
fc€[0,n]

Yk  ̂ ^ V .  \|2 ' 2

2
2

+  (E  sup |G ( X £ 1_ J - G ( n +1_m)|
fce[o,n]

< Ht + ( 7f2E sup |x £ +1_m -  n +1- mI2 ' 2
/c€[0,n

r̂ fc V. M2< f f 4 +  AT E  sup |X ^+1 - n +1)|-
\  fc€[0,n]

<  - i r / / 4.
-  l - K

Thus we can choose in theorem 7.2 the exponent p2 = 1.0 together with 

Pi = 1.5 and apply it to finally prove the strong order 7  =  0.5 of the balanced 

method as follows with a useful lemma (see [45, pp-739-740]).

L em m a 7.2 The following representation holds,

[M(« +  A) -  G{Xi (t + A -  t))] -  [ X ^ t  -  A) -  G (X ”(t -  A -  r))] =  £ -  r] - Z ,

(7.12)

where

E |M (t +  A) -  X ”(t + A )|2 <  ||£ -  jj||2(1 -  CA), (7.13)

and

E |Z |2 <  C ||f -  j?||2A, (7.14)

with two different initial data £ and rj, for a positive constant C may different 

line by line.
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Proof of lemma 7.2.

E sup |M (s) - ^ ( s ) ! 2
t< s< t+ A

= E  sup | [ M ( s ) - G ( M ( s - r ) ) ] - [ A ’,( s ) - G ( X ’,( s - r ) ) ]
* < s < i+ A

+  [G(X*(* -  r) )  -  G {X ”(s -  r))] |2

< - ^ E  sup I ^ W - G t M ^ - r ^ - I ^ W - G ^ s - r ) ) ] ! 2
1 — K  t< s< t+ A

+  - I e  sup |G (M (s — t) )  — G (X v(s -  r ) ) |2
K  t< s< t+ A

< 7----- ^ r - ^ E l?(°) -  »?(0)l2 +  — -—=-E|^(—r)  -  »j(—r ) |2 +  E sup‘< ^ ‘+^ M '
(1 -  K f K  1 - K  ( l - t f ) 2

+  fflE sup | ^ ( s  — t ) — — t ) |2
t< s< t+ A

-  -  ''H2 +  R e  sup 1 * ^  -  * " M I 2(1 — K ) ZK  t - T < S < t + A - T

+  2([A  +fP 2 f  E sup |A’{( s ) - X ,,(s)|2<is,
(1 — k  y  J t  t - T < s < t+ a

where for two positive constant C  and C '

E sup |A*(s) -  J'G’fs)!2
t — T<S<t+ A

<II£-77| |2 +  E sup \x*(s) -  X T](s)\2
t<3<t+A

pt-\-A
< C U - i ] \ \ 2 + C' E sup |X ( (s) -  X ' W f d s ,

J t  t — T<S<t+A

by Gronwall’s inequality (2.7) we derive that

E sup |X « ( s ) - X ’»(s)|2 < C ,| |S - j j | |2ec '.
t —r< s< t+ A

So we have
rt+ A

sup \Z\2 < C  E sup | M ( s ) - J T )(s)|2< i s < C | | f - 7 )||2A.
s < t+ A  J t  t —T < s< t+ A

Then

E |X*(t +  A) -  X \ t  +  A )|2 < C\\Z -  rj||2 +  C"||£ -  r/||2A < ||{ -  ^ ( l  +  CA),
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which is the proof complete. Now we focus to proof the theorem 7.2, we have

X x °(tn+1) -  Y x °(tn+1) = X x ‘«(tn+1) -  Y Y"{tn+l)

=  [**-(<»+1) -  X y"(«n+i)] -  [XY"{tn+1) -  Y Y'{ tn+1)],

then

E \X x°(tn+1) - Y x °(tn+1)\2

< 2E|X x ‘»(tn+1) -  X Y"{tn+1)|2 +  2E |X y”(tn+1) -  Ky”(«„+1)|2, 

where by lemma (7.2), (7.9) and lemma 7.1,

E \X x ^ { tn+1) -  * y"(tn+1)|2 < E\Xtn -  Yn |2(1 +  CA),

E |X y"(in+i) -  r r"(t»+i) |2 < C (1 + E |y „ |2)A2”2

< C (l +  E |X 0|2)A2p2.

Then we introduce the notation e2n = E |X tn — Yn|2, noting that the condition 

Pi < P2 +  5 , we have

4+1  < 4 (1  +  C-A) +  C '( l + E |* o |2)A2p2.

By iteration for n = 0,1, . . .  we obtain that

71—1

4  <  C ' ^ f l  +  C A ^ l + E p f o l 2^  <  C(1 + E p f 0|2)A 2fe -5>
i= 0

as was claimed on theorem 7.2. Then theorem 7.1 follows.
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