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SUMMARY

The continuing drive for efficiency in gas turbine development leads to higher 
operating temperatures. Ti6246 is an example of an alloy that has continued to thrive 
due to increased understanding of the interactions of fatigue, creep and environmental 
damage mechanisms at these increased temperatures. These damage mechanisms, 
however, are of particular concern at critically stressed features of these components. 
Therefore there is a requirement to understand the relative contributions of these 
damage mechanisms to material life, particularly at stress concentrations where 
fatigue cracks often initiate.

This programme attempts to address these issues for the titanium alloy Ti6246, 
commonly used in compressor disc applications, though a series of fatigue tests at 
ambient and elevated temperatures. Strain control tests were conducted using cyclic 
and dwell waveforms, providing information on cyclic deformation behaviour. Load 
control tests on notched specimens were performed in air and hard vacuum (10'6 
Torr), using cyclic and dwell waveforms, allowing the relative effects of fatigue, 
creep and environment to be partitioned. Crack propagation testing was also 
conducted on plain and notched specimen geometries under cyclic and dwell 
conditions. The resulting fracture surfaces were then subjected to analysis to 
determine the effect of these test conditions on crack initiation and propagation 
behaviour.

Creep and environmental effects were shown to greatly enhance both fatigue 
initiation and crack propagation rates at high temperatures, with the environment 
being the most damaging mechanism. In air, a transition in damage mechanism was 
seen at high stresses where the material undergoes plastic deformation. This was 
attributed to ingress of environmental species due to oxide cracking.
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1.0 INTRODUCTION

Titanium alloy development has been instrumental to the advancement of the 

gas turbine during the latter half of the 20th century, oc/p titanium alloys have proven 

to be particularly useful, with a comparatively low density and excellent corrosion 

resistance combined with a high operating temperature. These properties have resulted 

in their continued use in critical rotating components such as discs and blades in the 

low to high pressure sections of the compressor. The continuing drive to increase 

engine efficiency however, will mean titanium alloy systems employed in future gas 

turbine designs will operate under regimes of stress and temperature where the 

interaction of fatigue, creep and environmental damage shall limit life. This is a 

situation that will continue in the medium to short term since replacement materials 

such as metal matrix composites and intermetallics, are expensive to develop, difficult 

to manufacture and are unproven under service conditions (Bache 2003).

The effects of these interactions may reduce the effectiveness of current 

fatigue design methods, resulting in dangerously inaccurate component life 

predictions. The main areas of concern on discs are geometry induced stress raisers, 

particularly in the high-pressure compressor.

Generally, the fatigue life at these stress raisers is determined on the basis of 

notch design curves or through the use of strain control data. The latter method is 

based on the assumption that the material in a critical region of the notch root behaves 

in a similar way to a plain specimen undergoing strain control deformation due to it 

being constrained by the bulk material surrounding it.
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This work considers the strain control response and notch behaviour of the 

a+P titanium alloy Ti6246 at ambient temperatures and temperatures where fatigue, 

creep and environment interact. In order to assess the relative contributions of these 

mechanisms to fatigue life, a series of strain and load control tests were carried out in 

air and vacuum, under cyclic and dwell waveforms, with crack propagation testing 

also conducted under these conditions.



2.0 LITERATURE REVIEW

2.1 STAGES OF FATIGUE

Fatigue is defined as a term which applies to changes in properties which can 

occur in a material due to the repeated application of stresses or strains, although 

usually this term applies specially to those changes which lead to cracking or failure 

(General Principles for Fatigue Testing of Metals, 1964). The fatigue process can be 

divided into the following stages:

Stage I is the nucleation (initiation) event during which microstructurally 

small cracks form. Under laboratory conditions it is difficult to define a point of 

initiation, since it can be defined as the point of nucleation of flaws along persistent 

slip bands. In engineering situations a pseudo initiation point is utilized, which in the 

case of gas turbines, is defined as the development of a 0.75mm surface flaw. This 

definition includes crack propagation as well as initiation. Since engineering materials 

contain defects and inclusions, crack growth may also be considered to have begun 

from the first load application, Suresh 2003 and Evans 2003.

Stage II is the short crack growth period where the crack path is heavily 

influenced by microstructure. The crack and plastic deformation zone surrounding the 

crack tip are confined to within a few grain diameters. Here, crack growth occurs 

mainly by single shear in the direction of the primary slip system, resulting in a zig­

zag crack path. Therefore stage II fracture surfaces exhibit a serrated or faceted 

profile, Suresh 2003 and Evans 2003.
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Stage ID is when the crack is sufficiently large for growth rate behaviour to 

be quantified by linear elastic fracture mechanics. At these higher stress intensity 

range values, the crack tip plastic zone encompasses many grains. This stage of crack 

growth involves simultaneous or alternating flow along two slip systems. This slip 

mechanism results in a planar (mode I) crack path normal to the tensile axis. Stage III 

crack growth leads to the formation of fatigue striations in titanium alloys.

A plot of log da/dN versus logAAT for most engineering alloys has a sigmoidal 

variation, where it can be seen that there are three identifiable regimes of fatigue crack 

growth. The first regime is associated with the threshold stress intensity factor range 

AKo, where the average growth increment per cycle is smaller than a lattice spacing. 

Below the threshold cracks remain dormant or grow at an undetectable rate. Above 

the threshold there is a steep increase in log da/dN with logAAT. The second regime is 

known as the Paris regime and exhibits a linear variation of log da/dN  with AK, while 

the third regime corresponds to the range of high AK  values where crack growth rates 

increase rapidly towards catastrophic failure.

Using analytical methods, Westergaard 1939 and Irwin 1957 quantified the 

near-tip fields for the linear elastic crack in terms of the stress intensity factor, K, 

which is a measure of the strength (a scale factor) of the stress field in the vicinity of 

crack tip and is given by:

K  =  (2 .1)

where a is the length of an edge crack, or half length of a centre crack. Suresh 2003
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and Evans 2003.

Stage IV is the final stage of rapid growth as the fracture toughness is 

approached. Suresh 2003 and Evans 2003.

2.2 Cyclic stress-strain response

Cyclic deformation behaviour refers to a continuous change in the cyclic strength that 

may occur throughout a test or at least in the first stage of cyclic deformation. 

Examples of cyclic hardening and cyclic softening (Figures 2.1 and 2.2) (R. Schubert 

et al, 1989\ show the stress course and the hysteresis loop shape from a stress- 

controlled test performed applying a triangular signal with constant amplitude. Cyclic 

hardening leads to an increase in the stress amplitude, resulting in a larger hysteresis 

loop. Cyclic softening has the opposite effect: a decrease of Ao/2 and a reduction of 

the size of the hysteresis loop. The type of behaviour is mainly determined by the pre- 

treatment of the material, for example, cold working prior to cyclic loading may result 

in subsequent cyclic softening, whereas a recrystallization treatment could lead to 

cyclic hardening.

Asymmetrical cyclic deformation result in transient processes that tend to reduce 

asymmetry. Figure 2.3 shows a strain-controlled test in which a mean strain is 

superimposed, resulting in a mean stress arises that slowly diminishes. This process is 

termed cyclic relaxation. If the test is performed under stress control and a mean stress 

is applied, the material may show cyclic creep. The mean strain increases 

continuously, leading to a steady shift of the hysteresis loop to the right.

5



2.3 FATIGUE LIFING METHODS

2.3.1 Total-life Approaches

Traditional fatigue design methods involve the characterisation of total fatigue 

life to failure in terms of the cyclic stress range (the S-N curve) or the strain range 

approach. The fatigue life incorporates the number o f cycles for crack initiation (up to 

90% of total life) and propagation to failure. Since crack initiation life forms a major 

component of the total fatigue life (in smooth tests specimens), traditional stress and 

strain-based methods often represent design against fatigue crack initiation. In high- 

cycle low stress conditions, the material primarily undergoes elastic deformation, with 

fatigue life characterized in terms of the stress-range. Under low-cycle fatigue, 

stresses are high enough to cause plastic deformation prior to failure, therefore fatigue 

life is characterized in terms of the strain-range, Suresh 2003.

Total fatigue-life is characterised as function of variables such as the applied 

stress range, strain range, mean stress and environment. These methodologies 

combine the damage evolution, crack nucleation and crack growth stages of fatigue 

into a single, experimentally characterisable continuum formulation, Suresh 2003.

2.3.2 Stress-life Approach

The stress-life approach was introduced in the 1860s by Wohler (Wohler, 

1867). This empirical method is widely used in fatigue analysis, mostly in high cycle 

fatigue (HCF) applications, where low amplitude cyclic stresses cause primary elastic 

deformation in a component designed for long life, (Suresh 2003p. 221).
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2.3.3 The Fatigue Limit

The standard stress-controlled test involves running specimens to failure under 

a constant amplitude load cycle. A stress-life graph (S-N curve) is then plotted to 

reveal the stress dependence of the fatigue response. Three specific regimes can be 

identified. Lives from 103 to 105 cycles are known as low cycle fatigue and lives of 

105 to >107 cycles are called high cycle fatigue (HCF). Beyond 106 cycles the stress- 

life plot plateaux. This condition is known as the endurance limit, oe. Below this 

level, ferritic steels may be cycled indefinitely without failure, while austenitic steels 

and non-ferrous metals a a (stress amplitude) continue to decline at a shallow angle. 

Under theses conditions the endurance limit is defined as the stress amplitude the 

material can support for at least 107 cycles. (Suresh, 2003, p.222 and Evans 2003,

p.61)

2.3.4 Strain-life approach

When considerable plastic deformation occurs during cyclic loading (e.g. as a 

result of high stress amplitudes or stress concentrations) the fatigue life is markedly 

shortened, i.e. low cycle fatigue (LCF). Realizing the importance of plastic strains in 

causing permanent fatigue damage, Coffin (1954) and Manson (1954) , (Coffin, 1954, 

p.931-950. and Manson, 1954) independently proposed a plastic strain-based 

continuum characterization of LCF. (Suresh 2003, p.221)

2.3.5 Strain-based Approach to Total Life

Information derived from cyclic stress based continuum analysis mainly 

applies to elastic and unconstrained deformation. Engineering components, however,
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tend to undergo a degree of structural constraint and plastic flow, particularly at stress 

concentrations. Under these conditions the strain-life approach is considered.

More detailed quantitative procedures have been developed for handling strain 

control data, giving the approach greater appeal for design and component lifing 

schemes. Strain control testing may be considered a more appropriate method for LCF 

testing, while stress control is better suited to HCF as endurance limit assessments. At 

long lives material response is essentially elastic, so strain and stress control tests 

should show similar behaviour at a given R-value.

Data is typically plotted as strain range against cycles to failure, with the 

resultant graph being divided into elastic and plastic components. This is achieved by 

constructing a tangent to the long life data, forming the elastic component. Then, by 

subtracting the elastic component from the total strain, the plastic component is 

obtained. A third regime, defined as the transition life, can be identified where the 

elastic and plastic lines intersect.

Shorter lives dominated by plastic strain represent LCF behaviour, where the 

material is controlled by ductility, while lives just in excess of the transition represent 

an intermediate regime. HCF behaviour occurs when the elastic line becomes 

asymptotic to the fatigue data and fatigue life is dictated by the rupture strength of the 

material. Optimising the overall fatigue properties therefore requires a balance 

between strength and ductility (Mitchell 1978)
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The following equations give a mathematical representation of the division 

into elastic and plastic components:

where; Ast = total strain

Ase = elasticity component 

Asp = plasticity component

a i  = gradient of plastic line (or fatigue ductility exponent: 0.5 -  0.7 for most

metals)

0C2 = gradient of elastic line ( or Basquin’s exponent)

Cp = plastic strain range at one cycle (or ductility coefficient, or e/')

Ce = elastic strain range at one cycle (or (a / / E), where 0/  = fatigue strength 

coefficient and E  = elastic modulus.

Therefore, the plasticity component Asp = 8 / ' and is known as the Manson- 

Coffin equation. This equation is limited however, since it makes no allowance for the 

endurance limit or mean stress effects. The following modification was proposed by 

Manson to accommodate this omission:

Aet = Aee + Aep (2.2)

A st = CeN f ai + CpN ^ (2.3)

(,\ e , - A e e') = ef 'N f a' (2 .4)

9



where: Aee ' = endurance strain range.

To allow for mean stress, Sachs introduced a further modification:

= (2.5)

where: zm = mean strain (Suresh 2003, p.256-259) and (Evans 2003, p.63-64).

2.3.6 Damage-tolerant Approach

The fracture mechanics approach to fatigue design involves a damage-tolerant 

philosophy, which assumes that all engineering components are inherently flawed. 

The pre-existing flaw size is determined via a non-destructive detection technique.

Where no flaw is detected the initial crack size is considered to be the 

resolution of the detection technique. The useful fatigue life is defined as the number 

of cycles to propagate the crack from the initial size to a critical dimension, which 

may be based on the materials’ fracture toughness.

Crack propagation life prediction using the damage tolerant-approach involves 

empirical crack growth laws based on fracture mechanics. With respect to linear 

elastic fracture mechanics, the damage-tolerant method applies under conditions of 

small-scale yielding (away from plastic strain field of any stress concentrations) and 

where mainly elastic loading conditions apply.
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This inherently conservative approach is widely used in fatigue-critical 

applications for low cycle fatigue, such as the aerospace industry (Suresh 2003, p. 13).

2.3.7 Fracture mechanics approach

When cyclic stresses applied to a component are sufficiently small that the zone of 

plastic deformation ahead of the advancing fatigue crack is a minor perturbation in an 

overall elastic field, linear elastic fracture mechanics provide appropriate continuum 

descriptions for fatigue fracture. Paris, Gomez & Anderson 1961 (Paris 1961) and 

Paris & Erdogan 1963 (Paris & Erdogan 1963) suggested that for a cyclic variation of 

the imposed stress field, the linear elastic fracture mechanics characterization of the 

rate of fatigue crack growth should be based on the stress intensity factor range:

where Kmax and Kmm are the maximum and minimum values of the stress intensity 

factor during a fatigue stress cycle.

Paris, Gomez & Anderson (1961) and Paris & Erdogan (1963) also showed 

that the fatigue crack growth increment da/dN  is related to the stress intensity factor 

range by the power law relationship:

(2.6)

—  = c (a k )'
dN  ’

(2.7)

where:
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a = crack length

C and m = scaling constants (influenced by microstructure, environment, temperature 

and load ratio, R). (Suresh 2003, p.332-333)

2.4 NOTCHES

2.4.1 Effects of Stress Concentrations

Engineering structures invariably contain stress concentration sites, which are 

the main sites for the initiation of fatigue cracks. The stress and deformation fields in 

the immediate vicinity of the stress concentration have a strong influence on how the 

fatigue cracks nucleate and propagate. This stress concentration is described by a 

factor Kt where:

Kt = minimum localised elastic stress (2.8)
nominal stress

In addition to raising the stress, a notch also creates a biaxial or tri-axial stress 

field. In practice, the reduction in fatigue strength at a given stress is often less than 

the Kt factor indicates. This is due mainly to the fact that many notches do not remain 

in an elastic state under fatigue loads. Stresses at notches can be high enough to 

induce plastic flow, allowing the stress to redistribute and reduce at the notch surface. 

The reduction in fatigue strength due to a notch can be characterised by the fatigue 

notch factor where:

_ fatigue strength o f urmotched specimen
K f  — -------------------------------------------------------------------------------------------

fatigue strength o f notched specimen

12



The level of agreement between theoretical predictions of elastic stress 

concentration and actual effects is measured by the notch sensitivity index, defined as:

K f - 1

K ^ i (2.10)

The parameter q = 0 for no notch effect and q -  1 for the full effect predicted 

by elastic theory (i.e. Kf = Kt). The Kf parameter, which is determined experimentally, 

is not a true constant and has been shown to vary with notch type and severity, 

material and stress level (Suresh 2003, p .242-243) and (Evans 2003, p. 19, 21-22)

2.4.2 Local Strain-based Approach for Notches

The local strain based approach relates deformation in the immediate vicinity 

of a stress concentration to the remote stresses and the determination of the fatigue 

life expected for the local stress and strains. This requires knowledge of the local 

stress and strain histories at the tip of the notch, which can be determined through 

several techniques, the most effective being full elastic-plastic finite element 

simulations. This method however, is both expensive and time consuming. As a 

result, pseudo-analytical methods are commonly used, being cheaper and quicker than 

finite element analysis, but less accurate. One such method is the Neuber analysis.

2.4.3 Neuber Analysis

When elastic deformation occurs at the notch tip the stress and strain 

concentration factors, Ka and Ke are of equal value. Under conditions of plastic

13



deformation however, the theoretical elastic stress concentration factor, Kt, is given by 

the geometrical mean of the stress and strain concentration factors, as stated in 

Neuber’s rule (Neuber 1961, p .544-550) :

k , = 4k j Ts (2.11)

The stress redistribution at the notch root due to plastic deformation can then 

be estimated from this relationship. Maximum stress (and strain) if the material were

never achieved. Throughout the resultant redistribution the stress and strain at the 

notch remains constant. Thus, the equivalent plastic stress and strain can be calculated

(Evans 2003, p. 31).

The prediction of fatigue lives for notched members involves using a 

modification of Neuber’s rule whereby the Kt factor is substituted with Kf, giving:

(Suresh 2003, p .262-265) and (Evans 2003, p .30-32).

2.5 HIGH TEMPERATURE FATIGUE

2.5.1 Damage Mechanisms at Elevated Temperatures

Fatigue crack nucleation in an alloy at elevated temperatures is influenced by the 

following mechanisms:

to remain elastic is calculated using the Kt factor. Plastic flow means this stress is

(2.12)
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(i) Cracking, induced by cyclic slip

(ii) Grain boundary cavitation

(iii) Grain boundary sliding and the development of wedge cracks

(iv) Nucleation and growth of voids at inclusions and precipitates

(v) Oxidation and corrosion.

2.5.2 Cyclic Slip

Cyclic slip is affected by temperature in the following ways. The majority of 

materials exhibit wavy slip characteristics at temperatures greater than one-half the 

homologous temperature, while solid solution alloys show an increase in stacking 

fault energy with increasing temperature Remy, Pineau & Thomas, 1978. (Remy et al 

1978). Increase in temperature also allows for dislocation climb and cross slip. At 

elevated temperatures the kinematic irreversibility of cyclic slip is enhanced by 

oxidation and / gas diffusion. In some materials the tendency for wavy slip can be 

inhibited by dynamic strain ageing, which favours slip planarity. Dislocation climb, 

being time-dependent, makes deformation at elevated temperature strain rate 

sensitive. At elevated temperatures, the stability of many engineering alloys breaks 

down, modifying the stress-strain characteristics.

2.5.3 Creep Cavitation

At low stresses and temperatures of 0.3-0.6Tm most alloys exhibit creep 

deformation by grain boundary cavitation. Cavities nucleate at grain boundary triple 

point junctions, grain boundary particles, ledges on intergranular facets and shear

15



sliding of grain boundary facets. Creep cavity nucleation occurs well below a nominal 

stress level of lOOMPa, and continues over a large part of the fatigue life (Riedel, 

1987). Creep cavitation is strongly influenced by the stress waveform, with long hold 

times in tension resulting in a greater likelihood of cavitation that balanced load 

cycles (Majumdar &Maiya, 1980) and (Baik & Raj, 1982).

2.5.4. Oxidation

An oxidizing environment can influence the mechanisms of high temperature 

fatigue crack initiation in the following ways. An oxidizing environment may prevent 

the closure of cavities at elevated temperatures. Without the protection of an oxide 

layer, a grain boundary near a free surface may be susceptible to oxygen or 

embrittling species diffusing along the boundary to react with grain boundary 

precipitates. Fatigue cracks may nucleate due to enhanced kinematic irreversibility of 

cyclic slip, caused by a combination of surface diffusion and slip step oxidation. 

Microscopic stress concentrations may develop due to preferential oxidation at 

microstructural sites, such as the intersection of a grain boundary with a free surface.

The stress concentrations elevate local stresses, promoting crack nucleation 

(Duquette, 1979). Protective oxide film on a materials surface may be ruptured by 

repeat fatigue loads, providing a path for chemical attack. Cracking of the film itself, 

may also lead to the growth of a fatigue flaw {Wells, 1979).
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2.5.5 Environmental Effects on Fatigue

The fraction of fatigue life at which crack nucleation occurs can be 

significantly affected by the test environment. It was demonstrated by Gough & 

Sopwith that fatigue life is greatly improved in vacuum, or in dry, oxygen-free 

environment, compared to moist laboratory air (Gough Sopwith 1932).

Meyn first showed that striation formation may be completely suppressed in 

vacuum in aluminium alloys, which form well defined striations in moist air (Meyn 

1968). Pelloux reported similar findings for the titanium alloy Ti-6A1-4V in a vacuum 

of 5x1 O'6 torr and suggested that the alternating shear process is reversible provided 

an oxide film isn’t formed on the slip steps created at the crack tip (Pelloux 1969) and 

(Pelloux 1970). Under load reversal the oxide layer obstructs slip so Pelloux 

suggested that this would result in a larger net fatigue crack growth increment per 

cycle in air that in vacuum (Suresh 2003, p .340-341).

2.6 TITANIUM ALLOYS

Titanium became available in commercial quantities following the Second 

World War. It is relatively expensive compared with other common metals, but may 

be the most cost effective in certain applications due to attractive properties. Thus, at 

the beginning of the 1960’s, titanium alloys came into widespread use in aircraft 

engines, with over 90% of titanium production allocated to aircraft applications. 

(Donachie 1982, p. 3). Titanium has two main advantages over other metals, the first 

being a high strength/weight ratio and the second being good corrosion resistance. 

This has made it particularly suitable for aerospace applications (Codings 1984).
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Titanium has a density of 4.5Mg/m3 and has excellent aqueous corrosion 

resistance, a characteristic conferred on its alloys. Titanium is resistant to oxidation up 

to 593°C, but is a reactive metal that can dissolve, interstitially, the elements oxygen, 

nitrogen and hydrogen. This, combined with the allotropic transformation from the 

lower temperature hexagonal close-packed (HCP) form to the higher temperature 

body-centred cubic (BCC) at 882°C limits its application temperature, which 

generally sits at 600°C. The transformation temperature is a function of alloy content. 

Alpha stabilisers promote higher transformation temperatures, while beta stabilisers 

promote lower temperatures (Donachie, 1982, p. 4).

2.6.1 Titanium Alloy Systems

Titanium alloys divide into three classes: alpha, alpha-beta and beta alloys. 

Alpha alloys are higher in strength then unalloyed titanium and are generally quite 

ductile. Alpha-beta alloys contain both alpha and beta stabilisers. Beta alloys have a 

higher density than alpha-beta alloys due to their high alloy content, reducing their 

strength density values (Donachie 1982, p.4).

Alpha-beta alloys have higher strength than alpha alloys and account for more 

than 70% of all titanium used. They range from highly (3 stabilised and deep 

hardening alloys such as Ti 6246 and Ti 662 (which provide high strength at 

intermediate temperatures), to lean a - p  compositions such as Ti 6-4, where a 

comparatively high aluminium content gives excellent strength and elevated 

temperature properties (Donachie, 1982, p. 3).
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Ti-6Al-2Sn-4Zr-6Mo (Near-(3, a+P alloy)is an a+P alloy formed from Ti 

6242 by increasing the Mo content to improve age-hardenability (Collings 1984, 

p. 68). It is a highly p-stabilised, deep hardening a+p alloy, which has high strength at 

room and intermediate temperatures. These properties lead to its use in gas turbine 

compressor parts (Donachie 1974, p. 61-70).

2.6.2 Mechanical Properties and Microstructure

The mechanical behaviour of Ti alloys is strongly dependent on 

microstructure, which itself depends on processing history. An unusual aspect of Ti 

alloy metallurgy is the ability to control the microstructure on two different scales 

virtually independently. Features between 10 and 250pm affect the fatigue and 

fracture behaviour and are affected by processing. Sub-micron features control 

strength and are affected by heat treatment (Flower 1995, p. 104-105).

The properties of titanium alloys not only depend on alloy composition, but 

also on microstructure, with micro structural morphology depending on the final stages 

of fabrication and heat treatment. The majority of a - p  alloys contain substantial 

amounts of P-isomorphous elements (such as molybdenum and vanadium), which 

depress the transformation temperature and stabilize the p phase to lower 

temperatures.

The mechanical properties required of an alloy may be controlled through the 

careful selection of an annealing temperature. Low annealing temperatures result in 

higher strengths due to a fine grain size, while increasing the annealing temperature to 

just below the p transus results in a decrease in ultimate and yield strengths. High
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temperature annealing does result in improved toughness however, and also improves 

creep strength and fracture toughness through the development of an acicular a  

structure (transformed p) (Seagle, 1968).

Ti 6246 microstructure is formed by following the solution treatment ageing 

and solution treatment over-aging heat treatments with air cooling, unlike Ti 6-4 and 

Ti 662. This air cool results in a Widmanstatten a+P in which the P phase is still 

metastable. Further aging results in precipitation of fine a phase in this P resulting in 

strengthening due to the fine microstructure, when compared to the coarse 

microstructures of Ti 6-4 and Ti 662.

This results in Ti 6246 generally having a higher strength than Ti 6-4 and Ti 

662. Ti 6246 also displays a correlation between work hardening rate and toughness, 

though the alloy has a lower toughness overall, when compared with the other two 

alloys. These differences in properties result different fatigue fracture modes. Ti 6-4 

has been shown to fracture through a complex combination of tearing and hole 

formation growth, while Ti 6246 fractures along prior P grain boundaries.

Titanium alloys are known to creep at room temperature at stresses below the 

macroscopic yield stress. Neeraj et al {Neeraj 2005) have shown that the two-phase 

a/p  alloy, Ti-6242, and single phase binary alloy, Ti-6A1, exhibit a dramatic 

asymmetry between tension and compression during room temperature creep, with Ti- 

6242, accumulating about five to six times higher creep strains in tension than in 

compression. The single phase alloy also exhibits tension-compression asymmetry in 

creep, although it was observed to be less pronounced compared to the two phase
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alloy. The core structure of basal dislocations is altered by the addition of alloying 

elements, especially oxygen, and that the tension-compression asymmetry is primarily 

due to the behaviour of these dislocations.

2.6.2.1 Fatigue properties of a+P alloys

Fatigue behaviour can be separated into fatigue life and fatigue crack growth 

rate (FCGR), which itself can be divided into short and long crack behaviour. The 

fatigue behaviour of Ti alloys is intermediate between high strength steel and high 

strength A1 alloys when compared on a density normalized basis. For a+p alloys there 

is scope for tailoring the balance between fatigue life and fatigue crack growth 

behaviour, due to the wide range of microstructural, thermo-mechanical processing 

and heat treatment options.

Microstructure affects the fatigue life of Ti alloys in two ways. It affects 

strength and crack initiation behaviour. With a+P alloys the concentration of A1 

controls whether slip in the a-phase is planar or wavy, with planar slip occurring in 

localised bands in alloys with A1 contents > 5wt%. Higher oxygen contents also cause 

planar slip to intensify and become localized. Planar slip is a major factor in the 

fatigue behavior of the alloy along with slip band length. a+P alloys with colony 

microstructures have the lowest fatigue strength of any microstructural condition 

because this exhibits a tendency to form long, planar slip bands. Here, the stress to 

initiate plastic deformation is low, with the onset of plastic deformation concentrated 

in the planar slip bands, resulting in early crack initiation. Evidence regarding the 

effect o f oxygen on fatigue strength is contradictory because oxygen promotes planar,
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localised slip, but also increases yield strength. This is an area that has not been 

studied systematically.

Microstructures that contain high volume fractions of fine, acicular structure 

(solution treat and age or P quench) have the best high cycle fatigue (HCF) properties. 

Microstructures that exhibit greater tensile ductility and good fatigue behaviour 

(solution treat and age) tend to have slightly better low cycle fatigue (LCF) properties, 

as predicted by the Coffin-Manson Law. Blocky a  or grain boundary a  have the 

greatest effect on fatigue crack initiation behaviour in the higher cycling stress or 

strain ranges. It is therefore the most detrimental to LCF behaviour and must be 

carefully monitored in applications where LCF is the limiting factor. These features 

also result in increased scatter in LCF life in laboratory testing, affecting minimum 

life LCF curves in design databases (Flower 1995, p. 113-115).

Lutjering (Lutjering 1998) has shown how decreases in alpha colony size in 

a+P titanium alloys significantly enhance yield strength, ductility, fatigue crack 

initiation response and resistance to small fatigue crack growth, while a large colony 

size improves long crack behaviour, enhances fracture toughness and improves creep 

resistance.

At temperatures higher than 540°C in oxidising atmospheres inward diffusion 

of oxygen can result in the formation of an all alpha surface layer called the alpha 

case, the depth of which increases with increasing exposure time and temperature 

(Sung et al 2005). This alpha layer is brittle, lending itself to crack initiation and 

propagation, which seriously degrades the mechanical properties of the bulk material,
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with high-cycle fatigue properties suffering considerably. Titanium a  case has been 

known to fail in fatigue at less than half of the life of titanium without a  case. The 

alpha case is developed by the interstitials such as carbon, nitrogen and oxygen 

diffusing into the titanium material (Pitt et al 2007).

2.6.3 Crack Growth Behaviour of a+P Alloys

The early stages of fatigue crack growth in a+p titanium alloys, is associated 

with the development of facetted regions on the fracture surface. These facets form as 

the crack front addresses the local microstructure, usually having a basal plane 

orientation and are described as quasi-cleavage facets (Evans, Bache McElhone, 

Grabowski, 1997). They have been attributed to the separation of intense slip bands 

under the action of a tensile stress normal to the band.

Ti alloys exhibit a substantial microstructural dependence of fatigue crack 

growth rate (FCGR) behaviour, and is most pronounced in a+P alloys at yield 

strengths in excess of 1200MPa. This is due to the ability to vary micron sized 

microstructural features virtually independently of strength.

Microstructural dependence of FCGR in a+P alloys is strongest in the near 

threshold range of crack growth rates (da/dN < 5xl0'5mm/cycle). Some dependence is 

also noted in the Paris regime (5x1 O'5 to lx l O'3 is Ti-6-4) where da/dN  is proportional 

to AfC  (where the exponent is typically 4-6 for Ti alloys). Above this range the 

divergence of the da/dN  vs. AK  indicated the microstructural dependence of Kic- 

(Flower 1995p. 118).
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2.6.4 Environmental Effects on Crack Growth at Elevated Temperatures

Oxide formation in the crack tip region can lead to closure effects. This is not 

a major factor at room temperature, where the rate of oxide formation is low. At 

temperatures of 500°C and greater oxygen forms on the fracture surface in the crack 

tip region. Oxygen also affects the intrinsic crack growth resistance and it is difficult 

to separate these two factors. Crack growth tests conducted in air at 520°C by Allison 

showed artificially high AA^ values during decreasing AK  (load shedding) tests, 

suggesting oxide-induced closure (Allison 1982). At higher R-values oxygen 

penetration should be more pronounced, due to the crack tip remaining open. This is 

extremely important to high temperature, creep resistant alloys, such as Ti-6-2-4-6.

The greatest effect of environment occurs at AK  values that have 

corresponding values just above the threshold for sustained load cracking. 

Therefore at very low AK  values, no effect is observed because the material is 

immune to the environment. Crack growth rate at high AK  levels can be dramatically 

altered at low frequencies, or if there is a dwell period at the maximum load.

Lesterlin et al (Lesterlin 1996) showed that Ti6246 undergoes a significant 

increase in crack propagation rate from 465°C to 500°C, which these authors 

attributed to environmental effects. The nature of the active species responsible for 

fatigue damage at high temperatures has yet to be determined, with two competing 

theories at present. Petit et al (Petit, Mendez, Berata Legendre and Muller, 1992) have 

attributed the detrimental influence of environment to the embrittling effect of water 

vapour while other authors have suggested oxygen diffusion (Ghonem & Foerch 

1991) and (Foerch, Madsen and Ghonem 1995).
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More recent work by Sarrazin-Baudoux (Sarrazin-Baudonx, 2005) involved crack 

propagation tests in the near threshold and mid-rate ranges under controlled gaseous 

environments and water vapour and oxygen pressures. This research has shown a 

predominant detrimental effect of water vapour, even under very low partial pressure, 

while showing that gaseous oxygen moderates the influence of water vapour with a 

competitive adsorption mechanism between O2 and H2O being proposed.

Work by Demulsant et al (Demulsant, Mendez 1996) has suggested that a 

normal air environment plays an active role in initiation and short crack propagation 

of titanium alloys. It was also shown that vacuum test conditions results in a drastic 

reduction in surface crack densities. Evans et al (Evans 2005) showed that an increase 

in R ratio resulted in an increase in crack growth rates, indicating mean stress 

dependence, a behaviour typical of environmentally assisted crack growth. Lesterlin 

et al’s {Lesterlin, 1996) comparison of closure corrected data in air and vacuum at 

300°C and 500°C showed a substantial influence of atmospheric environment at 

500°C. It was also shown that a lowering of the test frequency induces enhanced crack 

growth rates at these temperatures, with the effect being accentuated at 500°C. Further 

research on environmentally assisted fatigue crack growth, has recently been 

conducted by Henaff et al {Henaff, 2007). This work has added to the body of 

evidence supporting the water vapour adsorption and subsequent hydrogen 

embrittlement model.
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2.6.5 Notch Response of a+(3 Ti Alloy

Bache et al have shown that the microstructural condition strongly influences 

the form of the cyclic stress-strain curve and the corresponding hardening or softening 

characteristics of the alloy (Bache, 1999).

Bache et al showed that the KtAa parameter is a sensitive means of assessing 

the interaction between microstructure and notch geometry, though deviations from 

the general trend were did occur (Bache 1999). These deviations were the result of 

critically stressed volumes of material at the notch root, which are determined by 

fatigue sensitive weak links (microstructural features), the cyclic yield strength, the 

shape of the stress-strain curve and the materials hardening or softening 

characteristics.

Work by Evans (Evans 1999) (Evans, Bache & Nicholas 2001) also showed 

the effectiveness of the K tAa parameter in correlating notch fatigue behaviour. It was 

also indicated that high Kt notches tend to have a better fatigue performance that this 

correlation would suggest, as a result of their smaller plastic zone reducing the 

probability of critically stressed volumes within this area.
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(a) Cyclic hardening

Figure 2.1: Schematic representation of cyclic hardening

fl» Control signal Cyclic softening

Figure 2.2: Schematic representation of cyclic softening
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(e)

Cyclic relaxation

Figure 2.3: Schematic representation of cyclic relaxation



3.0 PROGRAMME AIMS

The literature review focused on the low cycle fatigue response of the 

a+p titanium alloy Ti 6246 at elevated temperatures, where significant interactions 

between creep and environment occur. Particular emphasis was placed on the 

response of these materials, in relation to the presence of stress concentrations, where 

creep deformation can modify the stress and strain conditions at the notch root and 

localised oxidation can affect initiation and crack propagation. This investigation has 

shown that the following areas require further research:

• Notch fatigue behaviour at temperatures where interactions from creep and 

environment are significant.

• The limitations of life prediction methods at low temperatures are 

conservative, but is this conservatism valid at high temperatures, where creep 

and environment failure modes interact with fatigue failure modes?

• What impact do interactions from creep have on crack growth rates?

• The effect of environment on crack growth rates.

•  The effect of creep and environment interactions on design curves based on 

peak elastic stresses (Ktc).

•  The individual contributions of fatigue creep and environment to fatigue life at 

elevated temperatures.

•  Effect of fatigue / creep / environment interactions on crack initiation.

• Effect of fatigue / creep / environment interactions on material deformation.
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In order to explore these issues, a programme involving the following tests was 

conducted at ambient and elevated temperatures:

• Low cycle fatigue cyclic strain control tests

• Low cycle fatigue strain control tests with dwell periods at peak strains.

•  Load control tests of double edged notch (DEN) specimens in air and hard 

vacuum, under cyclic and dwell conditions.

•  Cyclic load control tests of V cylindrical notch (VCN) specimens.

•  Fatigue crack propagation tests on plain specimens using cyclic and dwell

waveforms.

•  Crack initiation recording of DEN specimens under fatigue conditions.

•  Fatigue crack propagation tests on DEN specimens using cyclic and dwell

waveforms.
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4.0 EXPERIMENTAL PROCEDURES

4.1 Ti6246 Microstructure

The material was tested in the as-received condition, following thermo- 

mechanical processing and heat treatments. This resulted in a Widmanstatten 

microstmcture expected from a titanium alloy processed above the beta transus 

temperature, shown in Figure 4.1a and 4.1b, where a  grains and acicular a , in the 

coarse prior (3 matrix, which itself consists of grain boundary a , are clearly visible. 

None o f the samples were shot peened.

4.2 Strain Control Fatigue Testing

Strain control fatigue tests were carried out according to an in house procedure 

based on BS7270:1990 (BS 7270 1990) using an ESH servo-hydraulic test machine 

with a load range of 50kN, an extension range of 0.2mm and a position range of 

10mm.

Waveforms were generated using an external PC, which recorded stress -  

strain data periodically throughout the test to provide hysteresis loops and peak stress 

data. Testing was conducted using strain control specimens with a diameter of ~6mm, 

verified by micrometer according to directives set in the IRC test manual. These 

specimens were manufactured to an in-house specification shown in Figure 4.2. A 

UKAS calibrated air-cooled MTS extensometer (gauge length of 12mm) with 85mm 

ceramic arms controlled the test. Elevated temperature testing was performed in a 

radiant split furnace and temperature was monitored using calibrated n-type 

thermocouples.
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Strain control testing was performed using an R ratio of 0, 0.5 and -1. A 

trapezoidal waveform was used during testing; with all strain-controlled tests 

performed at a constant strain rate (8s/8t = 0.5%/sec) with a 1 second hold at 

maximum and minimum strains. The waveforms corresponding to these criteria are 

shown in Figure 4.3 (R = -1), Figure 4.4 (R = 0) and Figure 4.5 (R = 0.5). Dwell tests 

were performed at the same strain rate with a 120 second hold at maximum strains for 

unbalanced dwell tests and 120 seconds at maximum and minimum strains for 

balanced dwell tests. The waveforms of these dwell tests are shown in Figure 4.6.

Specimen life was defined as when the peak load had dropped 10% from the 

stress. For this programme 105 (100,000) cycles was defined as an LCF "run-out" 

indicated by a horizontal arrow in graphs.

4.3 Load Control Testing

Load control fatigue testing was performed to generate fatigue life data for 

specimens. Testing was conducted using Double-edged notch (DEN) specimens with 

a calculated Kt factor of 1.92, a through thickness of 10mm and a distance of 10mm 

between the notches, as shown in Figure 4.7.

Tests were performed either on a Mayes Servohydraulic test machine with a 

load range of lOOkN or on an ESH Servohydraulic machine with a load range of 

50kN, depending on availability, and were completed in accordance with BS3518. 

Load ranges were selected to be 20, 50 or 100kN, dependent on the peak load 

applied to the specimen. A fatigue (or endurance) limit of 105 cycles was employed 

in these tests, at which point the test was stopped. These ‘run-out' tests are indicated
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by horizontal arrows in the results plots. Vacuum testing was conducted under a 

hard vacuum of 1CT6 Torr.

4.4 Initiation & Crack propagation Testing

Crack propagation testing was conducted using Double-edged notch (DEN) 

specimens with a calculated Kt factor of 1.92, a through thickness of 10mm and a 

distance of 10mm between the notches (Figure 4.7), a 10mm x 10mm comer crack 

specimens (CC10) with a 0.35mm notch machined into one comer (Figure 4.8) and 

comer crack double-edged notched (DEN) specimens with a calculated Kt factor of 

1.92, a through thickness of 10mm and a distance of 10mm between the notches.

Testing was performed on a Mayes Servo-hydraulic machine with a load 

range of lOOkN with loads measured to an accuracy of 0.0 lkN. A waveform was 

generated by a PC, which controlled the testing apparatus and periodically took crack 

growth measurements. Peak and minimum load remained constant throughout the 

tests with the growth of the crack causing a gradual increase in AK at the crack tip. 

Initiation tests were conducted at R= 0 at temperatures of 500°C and 550°C. Crack 

propagation tests were undertaken using a R ratio of 0.1 using a 1-300-1-1 

trapezoidal (5 minute dwell) waveform on CC10 specimens, while comer crack 

DEN specimen tests were conducted at R= 0.05, 0.1 and 0.7. Testing was completed 

at 20°C, 500°C and 550°C.

Crack propagation testing involved the use of the Direct Current Potential 

Drop (DCPD) method to record data, which were conducted in accordance with the 

Rolls Royce procedure MMM 31002. The technique involved periodically (to avoid
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heating the specimen) passing a current of 30 amps through a test piece and 

measuring the electrical potential across the crack plane, with the P.D. being 

measured using commercially pure platinum (99.99% platinum) wires of 0.05mm 

thickness. The placements of the wires for DEN initiation, DEN comer crack 

propagation, DEN centre-hole crack propagation and plain specimen crack 

propagation are show in Figures 4.9, 4.10, 4.11 and 4.12 respectively.

As the crack propagated a higher voltage was required to drive the current 

through the specimen due to the decrease in cross sectional area. However, the 

method requires accurate calibration, which involved taking surface replicas of cracks 

following initiation testing, by using acetone and polycarbonate at 75% of the peak 

load. From the replica, a final crack size was measured, using a travelling stage 

microscope, to an accuracy of 0.005mm. The sample was then tinted by heating in air 

and cycled to failure at room temperature so that crack length measurements could be 

verified. This method allowed for the detection of the initiation of a crack in a 

specimen as early as possible.

4.5 Specimen Analysis - Microscopy and Fractography

Fractured test pieces required no preparation prior to microscopy. However, 

crack propagation tests were halted before fracture and the following procedures were 

employed. Specimens were heat treated at 400°C encouraging a thin layer of oxide to 

form, thus colouring all exposed surfaces. Test-pieces were then subjected to fatigue 

at room temperature, using a positive R to propagate the existing crack to failure. 

Fracture surfaces were then examined using the Jeol JSM 6100 scanning electron
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microscope in conjunction with the Oxford Instruments Link ISIS Software System in 

order to identify initiation sites, striations and other features.

Metallographic samples were mounted in a conductive Bakelite resin and 

prepared by grinding with increasingly fine grades of silicon carbide paper before 

polishing with 6pm and 1pm diamond paste. Etching of the titanium alloy Ti 6246 

was performed using Krolls reagent - 2% HF, 3%HN03, 95% H2O. A Reichart-Jung 

optical microscope was used in conjunction with a Nikon Coolpix digital camera to 

study the underlying microstructure of the fractures.
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Figure 4.1a: Optical image of Ti6246 niicrostructiire,

Figure 4.1b: High magnification optical image of Ti6246 niicrostructiire.
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Figure 4.9: Wire placement for DEN initiation tests



Figure 4.10: W ire placement for DEN corner crack propagation tests.

Figure 4.11: Wire placement for DEN centre hole crack propagation tests.

Figure 4.12: Wire placement for plain specimen crack propagation tests.



5.0 RESULTS

5.1 STRAIN CONTROL TESTING

Strain control testing was performed in order to provide information on the 

mechanical response of the alloy when tested under cyclic loading and also to 

characterise the alloys fatigue properties when tested at different R ratios and 

temperatures. This testing is relevant to the constrained regions at notch roots {Evans, 

1999). The strain control results provided the basis for predicting crack initiation lives 

of the notched specimens.

5.1.1 Cyclic Tests

5.1.1.1 20°C Testing

Cyclic testing began with a standard series of R= -1 tests at 20°C, performed at 

8max = 0.5%, 1%, 1.5% and 2%, with an additional test performed at Emax = 0.7 to 

provide additional data for a fatigue curve (Figure 5.2). A series of R= 0 and R= 0.5 

tests were also conducted at 20°C. Figure 5.1 shows a strain vs life comparison of the 

20°C data, with the results displayed on a standard log-log scale. Figure 5.2 compares 

the monotonic and cyclic stress-strain behaviour at R= -1, with the material showing 

evidence of relaxation, and the cyclic yield stress being approximately 800MPa.

A sequencing test (compression first) was conducted at R= 0 at 20°C, with a 

peak strain of 1% to compare the material response with a tension first test, resulting 

in the data shown in Figure 5.3. This shows that in compression, the material has a
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higher modulus (assuming some yielding due to micro-plasticity, due to a low strain 

rate of 0.5%s'! and yield strength (UTS).

5.1.1.2 Elevated temperature testing

R= -1 strain control testing was conducted at 300, 400, 450, 500 and 550°C at 

peak strains of 0.5%, 1%, 1.5% and 2%. Comparisons of the monotonic and cyclic 

stress-strain behaviour at each temperature are presented in Figures 5.4 to 5.8. At 

300°C the cyclic stress curve matches that of the initial curve with no indication of 

cyclic hardening or softening, while at 400°C what appears to be cyclic hardening at 

higher (1.5%) peak strains is observed. This trend becomes more pronounced as 

temperature increases to 450°C and 500°C, though the 0.5% peak strain test result 

may be considered anomalous. At 550°C creep relaxation is observed once again.

The general trend observed from the initial loops at all peak strains (Figures 

5.9 to 5.12), is a decreasing modulus and yield stress as the temperature increases. 

This drop is most apparent between 20°C and 300°C. At 0.5% peak strain no plastic 

deformation is evident. At greater peak strains the substantial difference between 

maximum stress at 20°C and the high temperatures becomes more pronounced. At 

peak strains of 1.5% and above, widening of the loops and bowing (Bauschinger) 

effect in compression is observed, thus making it difficult to obtain accurate modulus 

values in compression. The specimen buckling in compression of the 550C test at 2% 

peak strain is also clearly visible.
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The decrease in modulus is also apparent in the stabilised condition, shown in 

Figures 5.13 to 5.15, with what appears to be hardening at 450°C. At peak strains of 

1% and 1.5% a large amount of stress relaxation at 20°C is evident, in comparison to 

the higher temperatures. This corresponds to the data seen in Figure 5.2.

Figures 5.16 through 5.18 show a temperature comparison of normalized 

stress vs cycles plots at peak strains of 0.5%, 1% and 1.5% respectively. At a peak 

strain of 0.5% a constant stress throughout the tests corresponds to the elastic 

behaviour of the material as seen in Figures 5.9 and 5.13, while the significant 

decrease in stress at 20°C, in comparison to the elevated temperature tests, further 

indicates the stress relaxation at room temperature.

A a-Nf curve of all the R= -1 cyclic (Figure 5.19) data shows that there is a 

large difference between the 20°C curve and that of the high temperature data. Figure 

5 .20 presents a As-Nf plot of the same data, where at the higher strain ranges of 2 and 

3% the fatigue lives across the range of tested temperatures are tightly grouped. At 

strain ranges below 1% temperature differences result in a wider range of lives.

5.1.1.3 Dwell Tests

Dwell tests were conducted at 450, 500 and 550°C at a peak strain of 1% and 

R= -1, in order to investigate fatigue behaviour at temperatures where time dependent 

effects may have a strong influence.
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A comparison of the initial stress-strain loops for trapezoidal 2 minute 

unbalanced dwell tests at all temperatures is shown in Figure 5.21, with a peak strain 

of 1% and R= -1. The effect of the 2-minute dwell can be seen at the positive peak 

strain end of the loop. Figure 5.22 gives a closer examination of this area in the form 

of a stress against time plot for the initial loop of each test at all temperatures. At 

450°C the stress remains constant after an initial period of stress relaxation, while at 

550°C the stress continues to fall during the 2-minute dwell period. A similar drop is 

seen at 500°C, though to a lesser extent than 550°C. Examinations of the stabilised 

loops, shown in Figure 5.23, also display a marked difference between temperatures. 

At 500°C and 550°C the mean stress has dropped into compression, while at 450°C 

the mean stress is tensile. The difference in mean stress is also clear in Figure 5.24, 

which shows a stress against time plot in the stabilised condition.

Balanced trapezoidal 2-minute dwell tests (trapezoidal, 1-120-1-120) were 

conducted at the same temperatures to see whether the creep deformation seen in the 

unbalanced tests was reversible. A comparison of the initial stress-strain loops of the 

balanced and unbalanced tests at 550°C is shown in Figure 5.25. The stress relaxation 

of the balanced test can be seen in both tension and compression and is shown clearly 

in the stress against time plot, Figure 5.26. A comparison of the stabilised loops 

(Figure 5.27) show a mean stress of approximately zero for the balanced dwell test, 

compared to a compressive mean stress for the unbalanced test. Finally, an S-N curve 

comparing both balanced and unbalanced dwell data with cyclic data of the same 

temperatures is presented in Figure 5.28.
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5.2 LOAD CONTROL TESTING

5.2.1 Double Edge Notch (DEN) Fatigue Tests

DEN fatigue tests were conducted at a range of peak stresses to produce 

fatigue curves under air and hard vacuum (1CT6 Torr) conditions for both cyclic and 

dwell waveforms. In order to do this cyclic tests were conducted at temperatures of 

20, 450, 500 and 550°C in air at R= 0, with some R= -1 tests at 20°C. To take account 

of environmental effects, cyclic-vacuum tests were performed at 450 and 550°C. 

Creep effects were highlighted through 2-minute dwell tests (1-1-120-1) at 500 and 

550°C, while creep and environmental effects were separated by 2-minute dwell tests, 

run in vacuum at 550°C.

A comparison of air and vacuum tests at 450°C are presented in Figure 5.29. It 

can be seen that vacuum test lives are approximately an order of magnitude greater 

than air test lives. Dwell test were not conducted at 450°C due to minimal creep 

effects in Ti6246 at this temperature, as indicated in the strain control testing at this 

temperature, described previously.

Figure 5.30 show a comparison of dwell and cyclic data at 500 and 550°C. At 

these higher temperatures a significant decrease in life is apparent for the 2 minute 

dwell tests.

It is worth noting that although strain control tests at 550°C showed 

significantly more creep than 500°C tests, the decrease in life due to dwell was no 

greater at 550°C than at 500°C in DEN tests.
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Previous figures have shown the extent of reduction in life caused by creep 

and environmental effects. Figure 5.32 compares cyclic and dwell tests in air and 

vacuum at 550°C, and shows the effect of the combined fatigue-creep-environment 

interaction at high temperatures. The 550°C cyclic data in vacuum can be treated as a 

baseline for the creep and environment effects at high temperature since the vacuum 

negates the environmental mechanisms and the 1 second hold time of the cyclic test is 

insufficient to cause significant creep damage at these stress levels. The effect of 

creep can be assessed by comparing the baseline with the 550°C dwell data in 

vacuum. The environmental effect can be determined through comparison with the 

550°C cyclic data in air. From this it can be seen that environmental effects account 

for a greater decrease in specimen life than creep effects. A comparison of the 

baseline data with the 550°C dwell data in air, show the combined effects of creep and 

environment. From this, it can be seen that the effect is cumulative, with this set of 

data having the shortest life of all test conditions at 550°C.

The plot in Figure 5.33 presents a comparison of all the DEN fatigue tests 

during this programme. The overall trend when comparing all the data is that of a 

distinct transition of the fatigue curve of air tests from a steep gradient to a shallow 

gradient below a stress of approximately lOOOMPa, corresponding to a life of 104 

cycles. This transition is not seen in the 20°C and vacuum data, which tends to show a 

more typical decrease in life with increasing stress.

Figure 5.34 compares only the cyclic data, in air, at 450, 500 and 550°C. It can 

be seen at elevated temperatures, that the fatigue curve up to 104 cycles has a steep 

gradient, which then becomes extremely shallow at longer lives. It is also worth
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noting that specimens tested at 500°C have longer lives than 450°C tests at a given 

peak elastic stress.

5.2.2 V Cylindrical Notch (VCN) Tests

VCN tests were conducted in order to provide additional notch response 

information by providing data for Kt values of 2.8. This involved R = 0 cyclic testing 

at 20, 450, 500 and 550°C, an S-N curve of which, is presented in Figure 5.35. It can 

be seen that there is a significant drop in fatigue life between 20°C and 450°C, which 

is also reflected in the strain control data conducted during this programme. It is also 

worth noting that the expected drop in fatigue life from 450°C to 500°C is present, 

unlike in the DEN tests.

A comparison of the cyclic, R = 0 VCN and DEN data in air (Figure 5.36), 

show good correlation between the data (shown on a K&max basis).

5.2.3 Initiation Tests, DEN Specimen, Air, R= 0

In order to gain crack initiation and growth data for the DEN tests, potential 

difference (P.D.) monitoring was employed during the air tests at 550°C under R = 0 

loading conditions. Three of these tests were interrupted, with crack replicas produced 

and measured, to allow for a correlation to be made between voltage change and crack 

length. The results of this are shown in Figure 5.38. This also provided a linear fit for 

a range of voltages over which a crack length can be determined (Figure 5.39). This 

information was then used to determine crack length versus the number of cycles, as 

shown in Figure 5.40. The data indicates that life to a crack 2.19mm in length, as a
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fraction of the total life, varied from 80% to 90% of the total life. Ultimately, this 

information allows da/dN vs AK data to be generated. All the data used, were for 

crack lengths that were between the smallest and largest detected cracks.

Consistent results were obtained, despite the fact that accuracy was reduced 

because the P.D. wires were connected across the entire notch, to allow free initiation 

of the cracks, as shown in Figure 5.44. From this graph a small increase in the crack 

growth rate from 500°C to 550°C cyclic tests can be seen, while there is a significant 

increase in crack growth rate at 550°C when a 2 minute dwell period is added.

Figure 5.45 shows a comparison of the freely initiated crack data with the 

comer cracked DEN and plane specimen comer crack tests. It can be seen that the 

freely initiated crack tests start with a very high AK  compared to the crack 

propagation tests. This is due to the high stresses used during these tests, compared to 

the crack propagation tests. It appears that the freely initiated data may converge with 

the crack propagation data for both dwell and cyclic tests at 550°C.

5.3 CRACK PROPAGATION TESTS

5.3.1 Plane Corner Crack (CC10) Specimens

Plane specimen comer crack propagation testing during this programme 

concentrated on extended dwell waveforms in order to compare with previous work 

{Ford 2002) conducted in air and vacuum at 450, 500 and 550°C using 2-minute dwell 

and cyclic waveforms. Therefore tests were conducted at 20, 500 and 550°C with a 5 

minute hold (1-1-300-1) at peak stress and R= 0.1.
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Figure 5.47 compares cyclic ( l- l - l- l ) ,  2 minute (1-1-120-1) and 5 minute (1- 

1-300-1) dwell data at 500°C. It can be seen that the cyclic data shows the slowest 

crack propagation rate, with the rate increasing as the dwell period increases.

5.3.1.1 CC7 Pre-deformed, 20C, R= 0

Crack growth involves propagation through a plastic region at the notch root. 

The effect prior fatigue damage has on growth kinetics was explored by pre-straining 

comer crack specimens under strain control and then monitoring subsequent growth 

from comer slits. Figure 5.48 demonstrates that applied strain ranges up to 1% did not 

affect growth characteristics.

5.3.2 Double Edge Notch (DEN) Crack Propagation Tests

Crack propagation of DEN specimens was undertaken using either a centre 

hole or a comer slit to initiate the crack. Cyclic comer crack DEN tests were 

conducted at 20°C and 500°C with R ratios ranging from 0.05 to 0.7, while one 500°C 

2 minute dwell test was performed at R = 0.1. Centre hole tests were performed at 450 

and 500°C with a R ratio of 0.1. Again, this data was generated to complement 

previously generated data (Ford 2002).

Figure 5.49 compares centre hole and comer crack DEN tests with an R ratio 

of 0.1 at 500°C. From this it can be seen that the growth rates correlate. A comparison 

of plane and DEN corner crack specimens at 550°C presented in Figure 5.50 shows 

good correlation between DEN and plane specimen test. At lower AK values however,
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it can be seen that the data begins to diverge. In order to determine whether this 

divergence was the result of creep effects at this temperature, or a miscalculation of 

the DEN specimen K values, a similar test was conducted at 20°C with the results 

shown in Figure 5.51. It can be seen that there is no discrepancy between this data, 

indicating that it is unlikely to be a K value miscalculation. What is also clear in 

Figure 5.50, is the increase in crack propagation rate as R ratio increases.

A plot of the cyclic, R= 0.1 and 2 minute dwell, R= 0.1 (both at 500°C) 

compared with previous DEN specimen data (Evans, Jones & Bache) is shown in 

Figure 5.52. The previous data is taken from tests of centre hole DEN specimens of 

3mm diameter, compared to the 10mm diameter specimens of this programme. The 

cyclic test shows good correlation with the previous data, although the 2 minute dwell 

data has a large amount of scatter, the effect of the dwell period is clear with an 

increased crack growth rate at a given AK compared to the cyclic data at 500°C.

A comparison of centre hole and comer crack DEN crack propagation data at 

450, 500 and 550°C is presented in Figure 5.53. This shows an increase in the crack 

propagation rate as temperature increases, emphasising the increased role of creep and 

environmental damage. The R= 0.7 test at 550C indicates that the damage 

accumulation is enhanced by mean stress, promoting either faster creep rates or 

accelerated environmental cracking.
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5.4 PREDICTION OF NOTCHED SPECIMEN BEHAVIOUR

5.4.1 The Coffin-Manson Method

The Coffin-Manson method (Cofpn 1973), (Manson 1965) involves separating 

R= -1 strain control data into elastic and plastic components, shown in the equation 

5.1.

A s Tot=CeN af 2 +CpN a;  (5.1)

At room temperature:

Ce = 0.0361 

Cp = 1.0301 

a l  = -0.792 

a2  = -0.1233

In order to calculate the strain at the notch root, the Neuber (Neither 1961) 

appoximation was employed, which involves the redistribution of a hypothetical 

elastic line, in order to calculate the conditions in the plastic zone at the notch root. 

This is defined through the following relationship:

Stress (a) x strain (e) = constant (5.2)

Figure 5.54 shows the redistribution process represented by the hyperbolic 

curve AB. Where this curve intercepts the stabilised cyclic stress-strain curve, the 

stabilised condition in defined. By assuming elastic deformation of the material the
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line BC is added, which is extended to the applied stress, giving minimum stress and 

strain values. This elastic unloading response was used after examining R= 0 and R= - 

1 FEM data. The strain data determined for the notch root was then inputted into the 

Coffin-Manson equation, allowing notch life prediction to be performed.

The notch life predictions using the Coffin-Manson method are shown in 

Figure 5.55, where it provides a good prediction for DEN R= -1 data, but 

overestimates the R= 0 DEN data. It must be noted that these observations do not take 

into account the results of the potential difference monitoring of freely initiated notch 

tests. These showed that 80 to 90% of DEN fatigue life was spent growing a fatigue 

crack to 2.19mm, leaving 10-20% of total fatigue life for crack propagation. By 

comparison, cracks in strain control tests, once initiated, propagate quickly to failure.

Notch life predictions were also done for the VCN data and resulted in good 

predictions of experimental data shown in Figure 5.55.

5.4.2 The Walker Strain Method

The Walker strain method involves quantifying mean stress effects through the 

correlation of different R value data (Walker 1970), by using equation 5.3:

As =  <7max.
T~~*

r & sE^

V^max J
(5.3)

where; Aew = Walker strain

Omax = maximum stabilised stress
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E = modulus 

As = strain range 

m = Walker exponent

Altering the Walker exponent through a process of curve fitting, until the 

strain control data of different R values correlated, resulted in m = 0.45 at 20°C. 

Fitting a curve to this correlated data resulted in the following equation:

A £w = 0.0346iV71525 (5.4)

The conditions at the notch root were calculated using the Neuber method, 

described previously, with the strain range and maximum stabilised stress values 

being used to calculate a Walker strain for the notched specimen. This allows notched 

specimen lives to be predicted. For R= -1 data the Walker method provided an 

accurate prediction, while there is a slight over-prediction for R= 0 notches. At 450°C 

the Walker strain method provided a reasonable prediction of R= 0 notched specimen 

lives, shown in Figure 5.56.
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6.0 DISCUSSION

6.1 STRAIN CONTROL

6.1.1 Temperature

As stated in the previous chapter the high temperature cyclic fatigue behaviour 

of Ti6246 was assessed by testing at a range of temperatures from 20°C to 550°C.

The general trend seen during strain control testing on plain specimens was 

that of cyclic softening at room temperature (Figure 5.2), which then transitioned 

through a state where neither cyclic softening or hardening was apparent at 300°C 

(Figure 5.4). The material then exhibited signs of cyclic hardening up to temperatures 

of 500°C (Figures 5.5 -  5.7) with hardening being greater at higher peak strains, while 

at 550°C the material once again shows signs of softening (Figure 5.8). The softening 

seen at room temperatures is likely due to the redistribution of dislocations as the 

material is cycled, while the cyclic hardening seen at higher temperatures indicates 

that dislocation recovery occurs prior to the beginning of testing while the specimen is 

being saturated at the test temperature. At 550°C, kinematic softening can be 

attributed to creep effects. It is argued that the cyclic softening response at ambient 

temperatures is due to inhomogeneities in the alloy microstructure, which in this case 

are the different properties of primary alpha and transformed beta phases in bimodal 

structures ( Lutjering 1998).

As temperature increases a decrease in modulus and yield stress is evident, 

with the drop being most apparent between 20°C and 300°C. At greater peak strains 

the substantial difference between maximum stress at 20°C and the high temperatures
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becomes more pronounced. At greater peak strains widening of the loops and bowing 

effect in compression (Bauschinger effect) become apparent.

By comparing the initial (Figures 5.10 -5.11) and stabilised loops (Figures 

5.14 & 5.15) the large amount of stress relaxation at 20°C is evident, in comparison to 

the higher temperatures. This corresponds to the data seen in Figure 5.2. The stress 

relaxation is also reflected in the normalized stress vs cycles plots and is likely due to 

the lack of dislocation recovery at room temperature.

The effect of elevated temperature on fatigue life is clear from Figure 5.19, 

with the drop in fatigue life from 20°C to 300°C being greater than the range of 

fatigue life from 300°C to 550°C. It is therefore reasonable to assume that the stress 

relaxation seen at 20°C is a major factor in determining the fatigue life of strain 

control tests. The cyclic hardening seen at elevated temperatures must also be 

contributing the materials decreasing fatigue performance. At 550°C however, the 

benefits of cyclic softening are clearly being negated by creep effects (with creep 

damage ahead of the crack tip shown in Figure 6.1), which cause damage that will 

accelerate the fatigue process.

Also worth noting here is the steep gradient of the fatigue curve at high 

temperatures up to 104 lives, which then becomes shallow at longer lives. This trend is 

not exhibited in the 20°C curve, indicating a change in failure mechanism at high 

temperatures. This has been shown to be the result of oxide cracking by Mailly 

(Mailly 1999), which shall be discussed in a later section.
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Figure 5.20 helps to highlight effect of strain range on strain control lives, with 

differences in temperature at strain ranges of 2 and 3% having little effect on fatigue 

life. At strain ranges of 1%, temperature has a marked effect on fatigue life, possibly 

the result o f scatter. It is also interesting to note that at these lower strain ranges, a 

small change in strain results in a substantial difference in fatigue life. These trends 

indicate that the fatigue life of the material is dependent on strain level at strain ranges 

of 2% and above, with this dependence decreasing below 1% as the alloy transitions 

from elastic to plastic deformation.

All strain control fracture surfaces were taken from R= -1, 1% peak strain 

tests, for a direct comparison. Figures 6.2 to 6.5 show overviews of the fracture 

surfaces of strain control specimens tested cyclically at 20, 450, 500 and 550°C 

respectively. One of the most notable differences is when comparing the 20°C fracture 

surface to the high temperature fractures. The 20°C specimen has a comparatively 

featureless fracture surface topography with multiple initiation sites around the 

circumference, where it is difficult to distinguish the fatigue crack propagation portion 

of the surface from that of final failure. This is not the case with the high temperature 

specimens however. At these temperatures, the fatigue fracture is clear, with multiple 

initiation points being visible.

Views of the specimen gauge lengths are shown in Figures 6.6 to 6.9 at 

temperatures of 20, 450, 500 and 550°C respectively. A comparison of these images 

makes the effect of temperature on fatigue initiation clear. At 20°C there is no surface 

damage visible aside from that of the main fracture site. At elevated temperatures 

multiple surface cracks are visible, which is particularly apparent at 450°C. Further
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increases in temperature do not necessarily result in greater numbers of surface 

cracks, and therefore initiation sites. Instead, it can be seen that these surface cracks 

are longer and contain small areas where the crack is almost parallel to the loading 

direction. This is particularly clear in Figure 6.9. This indicates that these large cracks 

consist of multiple initiation sites, which have propagated as independent cracks, and 

then merged through shear to become larger, single crack propagation fronts. This 

suggests either an increased crack propagation rate at high temperature, or a shorter 

life to initiation, thus allowing more time for the crack to propagate at the same rate.

A more detailed comparison of the fatigue fracture surfaces highlights the 

increase in damage as temperature elevates. At 20°C (Figure 6.14) an uninterrupted 

fracture surface is presented with no visible sub-surface damage. Figure 6.15 shows 

the fracture surface of the 450°C specimen, where minimal creep and environmental 

damage is evident. This is expected of Ti6246 at this temperature since creep effects 

do not generally become severe until 470°C (Lesterlin 1995)

The increase in damage at 500°C can be seen in Figure 6.16, with extensive 

sub-surface cracking normal to the crack propagation direction. Worth noting is the 

detail shown in Figure 6.17. This is the area of the crack that propagated at 45° to the 

applied stress, which was attributed to final failure. Here however, the surface has a 

striation-like appearance.

At 550°C, the severity of the sub-surface cracking is even greater, as shown in 

Figure 6.18 What is also notable at this temperature is the secondary cracking of the
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fracture surface, originating from the specimen surface (Figure 6.19). This relates 

directly to the surface damage seen in Figure 6.9.

The effects of creep and environment on Ti6246 have been recognised in the 

high temperature data from the previous section. In order to thoroughly distinguish 

these creep effects, dwell tests were conducted under strain control.

6.1.2 Strain Control - Dwell

Dwell tests were conducted at 450, 500 and 550°C at a peak strain of 1% and 

R= -1, in order to show the varying effects of creep.

The results for the unbalanced 2 minute dwell tests showed that the decrease in 

stress during the hold at peak strain becomes more severe as temperature increases 

(Figures 5.21 -  5.24), likely due to the effects of creep. In the stabilised condition, the 

tensile mean stress at 450°C indicates a slight amount of cyclic hardening at 450°C, 

which was also seen in the cyclic tests at 400°C and 450°C. At 500°C and 550°C the 

shift of the mean stress into compression is due to creep in the tensile part of the 

cycle.

The comparison of balanced and unbalanced tests at 550°C showed that the 

shift in mean stress seen in the unbalanced test was not reflected in the balanced test, 

where the mean stress remains at approximately zero. In combination with the stress 

relaxation seen in both tension and compression in the balanced test, it can be 

surmised that there is a level of reversibility of the creep damage in this type of test.
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The S-N curve comparing both balanced and unbalanced dwell data with 

cyclic data of the same temperatures is presented in Figure 5.28. It indicates that dwell 

has a negligible effect on the fatigue life in this type of test. In relation to this 

observation, it is worth noting that all strain control dwell tests were conducted at a 

strain range of 2%, placing them in the strain dependent regime, observed during 

cyclic testing (shown in Figure 6.10). Therefore the effects of dwell at strain ranges of 

1% and below may present a different response.

A similar effect was seen in testing of Ti6246 with R = 0 at 500°C, with a 2 

minute dwell by Evans et al {Evans, Jones & Williams 2005), where the unaffected 

fatigue life of the dwell tests were attributed to a greater level of stress relaxation 

during the dwell periods, thus offsetting the effects of any damage due to strain 

accumulation.

This corresponds with the data shown in Figures 6.11, 6.12 and 6.13, which 

compare the stabilised loop for cyclic and dwell tests at 450, 500 and 550°C 

respectively. At 450°C the dwell period exhibits a small amount of stress relaxation at 

peak strain, which has very little effect on the stabilised loop, confirming that creep is 

having a minimal effect at this temperature. At 500°C the stress relaxation (due to 

creep) during the dwell period (also shown in Figure 5.24) at peak strain in tension 

results in the reduction of the peak and mean stress, but has no overall effect on the 

stabilised stress range. The same effect is seen with more severity in the unbalanced 

550°C.
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The balanced dwell test (2 minutes at tensile and compressive peak strain) 

provides a clearer comparison with the cyclic loop. Though the stress relaxation due 

to creep at maximum and minimum strain is clearly visible, it is apparent that the peak 

stresses in tension and compression are virtually identical for both conditions. This 

can be attributed to the fact that these strain control tests were carried out at an R = -1. 

This suggests that while stress relaxation offsets the creep damage that occurs during 

the unbalanced dwell period, the balanced dwell relies on reversal of creep damage in 

compression for the same effect.

It is interesting to look at the dwell results on the As -  Nf plot (Figure 6.10) in 

more detail. It indicates that for a given strain range dwell has a beneficial effect on 

fatigue life at 450°C and to a lesser extent at 500°C, while at 550°C the dwell has a 

detrimental effect. When compared with the Aa -  Nf plot (Figure 5.28), the increase 

in life at 450 and 500°C relates to a decrease in stabilised stress range, while the 

opposite is true at 550°C. This indicates that dwell is having a net benefit effect on 

fatigue life up to 500°C, while having a detrimental effect at higher temperatures. This 

agrees with the notch fatigue data shown in Figure 5.30, where the dwell period at 

550°C has a greater effect on life than the 500°C dwell period at higher stresses, 

indicating that at this temperature, creep is more damaging than beneficial.

Due to the small differences in fatigue life accorded to dwell, these trends may 

be attributed to scatter. The likelihood of this is reduced however, when compared 

with trends seen in the notched load control data generated as part of this programme.
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6.1.2.1 Dwell Fractography

An overview of the fracture surfaces of the 2 minute unbalanced dwell at 450 

and 550°C are shown in Figures 6.20 and 6.22 The equivalent 500°C specimen failed 

due to a 10% drop in stress from the stabilised condition, with the test being stopped 

before complete fracture, therefore no fracture surface is available. Instead a view of 

the gauge length is presented in Figure 6.21. The fracture surface of the 2 minute 

balanced dwell test is shown in Figure 6.23. Comparing these fracture surfaces with 

those of the cyclic tests at the equivalent temperatures shows similar fracture 

topographies, with multiple initiation sites around the circumference. This observation 

reinforces the fact that dwell has a small effect on fatigue life in comparison with 

cyclic tests at this strain level.

The effects of creep and environment on the specimens are more apparent 

when looking at the gauge length of the specimens. These are shown for the 

unbalanced tests in Figures 6.24 to 6.26 at 450, 500 and 550°C respectively. The 

balanced specimen is shown in Figure 6.27 Multiple surface cracks are visible at all 

temperatures, though the damage is more severe at 550°C, compared to 450°C. This 

surface damage is also clear at 500°C in Figure 6.21, and in more detail in Figure 

6.25

When looked at in detail (Figures 6.28 -  6.31) for unbalanced dwell at 450, 

500 and 550°C and balanced 550°C), the dwell fracture surfaces compare well with 

the cyclic fracture surfaces, with sub-surface cracking normal to the crack propagation
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direction becoming more severe as the temperature increases. Worth noting is the 

triple point intergranular fracture seen in Figure 6.29, indicating creep effects.

The effect of the surface damage on the fracture surface can be seen at 450°C 

in Figures 6.32. This is of interest since there is no equivalent surface damage at the 

same temperature in the cyclic tests. Figures 6.33 and Figure 6.34 show the 

underlying surface damage of the unbalanced and balanced tests at 550°C, which are 

also seen at the same temperature during cyclic tests.

6.2 PLAIN CRACK PROPAGATION

A dwell period was shown to have no effect on the crack growth rate of plain 

specimens at 20°C (Figure 5.46), while at 500°C dwell results in a significant increase 

in the crack propagation rate (Figure 5.47), suggesting this is the result of creep and 

environmental damage.

6.3 NOTCH FATIGUE

6.3.1 Load Control - Double Edge Notch (DEN) Fatigue Tests

The flexibility of load control testing allows for the contribution of creep and 

environment to fatigue at high temperatures to be separated into their individual 

components, through cyclic and dwell tests in air and vacuum.

To assess the effects of temperature on fatigue, cyclic fatigue tests were 

conducted at elevated temperatures (Figure 5.34) and resulted in longer fatigue lives 

at 500°C than 450°C for a given peak stress. Since it is assumed that the constrained
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material at the notch root behaves in a similar manner to plain specimen tests in strain 

control, it is worthwhile to compare these results with strain control tests of the 

equivalent temperatures. The strain control dwell tests allow for a more detailed 

analysis of creep effects for a given temperature. It was shown that there was minimal 

stress relaxation during dwell periods at 450°C, with stress relaxation increasing as 

temperature increases (Figure 5.24). This increased stress relaxation results in lower 

peak stresses at the stabilised condition for 500°C, compared to 450°C (Figure 5.23). 

Therefore it is likely that the increased creep deformation around the notch root at 

500°C results in sufficient stress relaxation that the peak stress at this temperature is 

lower than at 450°C. The larger accumulation of creep strain at the notch root and net 

section at 550°C leads to a significant reduction in life. Crack propagation tests 

conducted at this temperature failed away from the machined notch resulting in net 

section stress rupture, showing the effects of creep at 550°C.

An overview of the fracture surface of a 20°C specimen is shown in Figure 

6.56. Only two main initiation sites are visible, with a small crack propagation area 

surrounding them. As with the 20°C strain control tests, the fracture surface (Figure 

6.57) exhibits no sub-surface damage, which is consistent with a lack of creep 

damage. The 450°C fracture surface presents all the hallmarks of an elevated 

temperature test in air, with multiple initiation sites at both notch edges (Figure 6.35 

and 6.36) and sub-surface damage. At 500°C the type and level of sub-surface damage 

seen on the fracture surface (Figure 6.47) is equivalent to that seen at 450°C, with a 

similar number of surface initiation sites at both temperatures. This sits well with the 

test data since the observed fracture surfaces come from tests with peak elastic 

stresses of 1268MPa (450°C) and 1120MPa (500°C), which resulted in similar lives.
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The further reduction in life for a given peak stress at 550°C is not only reflected in 

the additional sub-surface cracking perpendicular the direction of crack propagation 

(Figure 6.43), but also in the damage seen to originate from surface cracks (Figure 

6.42).

6.3.2 Vacuum Tests

The effects of creep on Ti6246 at 450°C are minimal, therefore the air and 

vacuum tests at this temperature (Figure 5.29) provide a good example of the effects 

of environment on fatigue life, with vacuum test lives being approximately an order of 

magnitude greater than that of air test lives. The comparison of 550°C air and vacuum 

data show a similar difference in life to the 450°C data. This indicates that 

environment has a dominant effect on fatigue life at elevated temperatures. This is 

particularly true at high peak stresses.

Figures 6.35 -  6.38 show the fracture surfaces of a DEN specimen tested in air 

at 450°C under a cyclic waveform with a peak stress of 1268MPa. Multiple initiation 

sites are visible on both edges of the notch, with sub surface cracking visible on the 

fracture surface. Also note the striations on the fracture surface.

The fracture surfaces shown in Figures 6.39 and 6.40 show the fracture surface 

of a specimen tested at 450°C under a cyclic waveform at a peak strain of lOlOMPa in 

vacuum. Under these test conditions the main crack propagates from a single initiation 

point, while sub-surface cracking and striations are absent from the fracture surface. 

With creep effects being minimal at 450°C and similar peak stresses being compared 

in air and vacuum, the multiple initiation sites and sub-surface cracking seen in the air
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test can be largely attributed to environmental effects. This indicates that environment 

plays a dominant role in the crack initiation stage and also contributes to damage 

during crack propagation.

The trends that differentiate the air and vacuum fatigue fracture characteristics 

at 450°C are echoed in the 550°C fractography data, with the vacuum test resulting in 

a single initiation site (Figure 6.46) and little sub-surface damage. The air test results 

in multiple initiation sites (Figure 6.41) and extensive sub-surface cracking, both 

perpendicular to the crack propagation direction (Figure 6.43) and cracks originating 

from surface damage (Figure 6.42). When comparing vacuum tests at 450°C and 

550°C in vacuum the only notable difference is a slight increase in the severity of sub­

surface fracture. From this, it can be suggested that the level of creep damage 

accumulated during cyclic testing is not the dominant factor for fatigue life at high 

peak stresses (ranging from 1 0 1 0 -1 120MPa).

6.3.3 Load Control DEN Dwell

The comparison of notch cyclic and dwell fatigue tests at 500 and 550°C 

(Figure 5.30) show that the 2 minute dwell period resulted in a significant decrease in 

life for a given peak stress, indicating that the interaction of creep and the 

environment has a detrimental effect at these temperatures, with creep damage ahead 

of the crack tip one of the most likely reasons for this drop in life (Ford 2002). The 

results of the strain control dwell tests raised the question as to whether the creep 

effects are beneficial to the life of the notched specimens by reducing the stresses at 

the notch root, but this data seems to indicate that it has been outweighed by the 

damage the creep is doing at 550°C.
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This conclusion appears incomplete however. When the strain and load control 

dwell data is compared on the same plot (Figure 5.31), where the load control data is 

plotted on a peak elastic stress basis and the strain control data on a stabilised stress 

range basis, a pattern emerges. As stress increases, dwell test lives and cyclic test lives 

converge, becoming virtually indistinguishable above lOOOMPa, suggesting that 

fatigue is the dominant factor at high peak stresses. This stress level corresponds with 

the transition level seen in the strain control tests (Figure 5.20 or Figure 5.28), above 

which fatigue life becomes strain dependent, which in turn reflects the transition from 

elastic to plastic deformation. It can be seen in Figure 5.29 that vacuum tests do not 

show the same transition seen in air tests. This suggests that plastic deformation at 

these stresses results in surface oxide cracking, which allows ingress of the 

environment to the material surface, aiding initiation and crack propagation.

At a peak stress of 1120MPa the 2 minute dwell period at 500°C has very little 

effect on fatigue life (Figure 5.30). This is reflected in observations of the fracture 

surfaces where there does not appear to be a substantial difference in the number of 

initiation sites, or any major surface damage away from the main fracture plane 

(Figures 6.47 and 6.49). However, sub-surface damage does appear to be more severe 

in the dwell specimen (Figure 6.50) compared to the cyclic test (Figure 6.48). Since 

comparisons of vacuum and air test fracture surfaces have shown that sub-surface 

cracking can be largely attributed to environmental effects, this increased severity 

suggests the dwell period allows greater time for environmental ingress leading to 

greater material damage. At 550°C, where dwell and therefore creep have a major 

effect on fatigue life (Figure 5.30), there is significantly more damage at the notch 

surface of the dwell test (Figure 6.51), compared to the cyclic test (Figure 6.41),
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suggesting that creep is interacting with the environment, increasing fatigue crack 

initiation damage. This is reflected in a comparison of the 500°C and 550°C dwell 

data, where surface damage is greater at 550°C compared to 500°C.

6.3.3.1 Vacuum

Previous figures have shown the extent of reduction in life cause by creep and 

environmental effects. Figure 5.32 compares cyclic and dwell tests in air and vacuum 

at 550°C, and shows the effect of the combined fatigue-creep-environment interaction 

at high temperatures. In this instance the 550°C cyclic data in vacuum may be treated 

as a baseline for the creep and environment effects at high temperature since the 

vacuum negates the environmental mechanisms and the 1 second hold time of the 

cyclic test results in comparatively less creep damage than the dwell tests. The effect 

of creep can be assessed, by comparing the baseline with the 550°C dwell data in 

vacuum. The environmental effect can be determined through comparison with the 

550°C cyclic data in air. From this it can be seen that environmental effects account 

for a greater decrease in specimen life than creep effects. It is also worth noting that 

the dwell period in air results in a similar decrease in fatigue life to that caused by 

dwell in vacuum. This suggests that the effect of creep on fatigue life is unaffected by 

the environment. This complements the observations made of the cyclic data in Figure 

5.29 which showed that creep does not affect the amount of damage caused by the 

environment. A comparison of the baseline data with the 550°C dwell data in air, 

show the combined effects of creep and environment. From this, it can be seen that 

the effect is cumulative, with this set of data having the shortest life of all test 

conditions at 550°C.
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The cause of the environmental damage exhibited in Figure 5.32 is a 

continuing subject of discussion. Some have attributed the damage to water vapour, 

while others have indicated the ingress and diffusion of oxygen as a possible cause

(Ghonem <£ Foerch, 1991) (Foerch, Madsen & Ghonem 1993).

The water vapour model, forwarded by Petit (Petit 1992,) (Lesterlin, Sarrazin- 

Baudoux & Petit 1995) account for crack growth rate differences in air and vacuum 

suggests there is a critical growth rate (<da/dN)cr, which is dependent on material and 

test condition. This critical value is reached when the crack tip plastic zone is equal to 

the alloy grain size. When crack growth rate is greater than this value, it advances 

normally, but at a higher rate due to water vapour adsorption. At rates below the 

critical value, there is time for water to dissociate, leaving the hydrogen to cause 

increases in crack growth rate. This model has been further promoted by the recent 

work of Sarrazin-Baudoux {Sarrazin-Baudoux, 2005) and Henaff et al {Henaff, 2007) 

whose research has shown a predominant detrimental effect of water vapour, even 

under very low partial pressure.

6.4 DEN - INITIATION

Though the free initiation data gathered from measurements across the notch 

root is not highly accurate due to the bulk of material over which the potential 

difference is recorded, some general trends were observed.
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6.4.1 Temperature

A comparison of initiation lives at 500°C (Figure 5.42) and 550°C (Figure 

5.40) show that temperature has little effect, with both specimens reaching the 

detection threshold of 2.19mm at approximately 4000 cycles. To see if the transition 

at lOOOMPa has any influence on initiation life it is worth comparing a 750MPa test 

(Figure 5.38) with a 1120MPa test (Figure 5.41). The results show that initiation, as a 

proportion of total fatigue life is greater for the lower peak stress. This reinforces 

previous observations where the damage mechanism in tests greater than 

approximately lOOOMPa has been attributed to oxide cracking. This would encourage 

surface initiation through environmental ingress, leading to the shorter initiation life 

seen here.

6.4.2. Dwell

To determine whether the dwell effect on fatigue life in the elastic response 

region is linked to initiation life, it is necessary to compare the initiation data of cyclic 

and dwell specimens tested below the lOOOMPa peak stress threshold. While strain 

control tests spend up to 95% of their life at the initiation stage the results presented in 

Figures 5.40 and Figure 5.43, show that crack growth to 2.19mm accounts for 

approximately 80 - 90% of the fatigue life of the cyclic and dwell tests.

Figures 6.47 shows the fracture surfaces of the specimens tested with a cyclic 

waveform at 500 and 550°C respectively, while Figures 6.49 and 6.51 show the 

equivalent fracture surfaces tested with a 2 minute dwell. All specimens were tested at 

a peak strain of approximately 1120MPa. Multiple initiation points along the notch
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root can be seen in all specimens. The effect of the dwell period at 500°C can be 

clearly seen in the form of surface damage in Figure 6.49. The severity of this surface 

damage increases dramatically at 550°C. Since the surface damage from multiple 

initiation sites are not seen during vacuum testing, it can be taken that environmental 

damage is creating favourable conditions for crack initiation, which are greatly 

enhanced by the 2 minute dwell period as temperature increases. This suggests an 

interaction between creep and the environment, which enhances surface initiation.

6.4.3 Elevated temperature fatigue

The plot in Figure 5.33 presents a comparison of all the DEN fatigue tests 

during this programme. The overall trend when comparing all the data is that of a 

distinct transition of the fatigue curve of air tests from a steep gradient to a shallow 

gradient below a stress of approximately lOOOMPa, corresponding to a life of 104 

cycles. This transition is not seen in the vacuum data, which tends to show a more 

typical decrease in life with increasing stress.

This corroborates the work of Evans et al. (Evans, Jones & Williams 2005) 

who showed that at lives greater than 104 cycles, the fatigue curve in air for Ti6246 

transitions from a steep gradient to a shallow gradient, indicating a change in damage 

mechanism, which corresponded with the level of strain that equates to the onset of 

plastic deformation. At lives shorter than this transition, and therefore higher strain 

levels, multiple surface cracks were present, and when compared with vacuum data by 

Mailly (Mailly 1999), the transition was not present, indicating an environmental 

effect, which Mailly attributes to the lack of integrity of the oxide layer above the

63



transition strain allowing the ingress of the environment. Below the transition, they 

found that specimens did not fail, or propagated to failure from one major crack site.

The fracture surfaces of two specimens tested in air under a cyclic waveform 

at 550°C are shown in Figures 6.54 and 6.55, which were subjected to peak strains of 

750MPa and 1119MPa respectively. At 750MPa a single point of initiation is present, 

while at 1119MPa there are multiple initiation sites on both notch edges, matching 

Mailly’s observations.

6.4.4 Freely Initiated Tests

The P.D. monitored freely initiated notch tests were run to failure, allowing 

not only initiation data to be recorded, but also crack propagation data, providing 

information on the influence of temperature and dwell. The comparison of this data 

(Figure 5.44) presented some interesting results in that there was very little difference 

in crack growth rate between 500 and 550°C, with the only substantial difference 

occurring at lower AK  values. A comparison of these three tests shows that peak stress 

is the dominant factor in this early stage of crack growth.

The effect of dwell however, is clear at these high temperatures, with the 2 

minute dwell resulting in a substantial increase in crack growth rate compared to the 

equivalent cyclic test, highlighting the effect of creep and environment on crack 

growth rate.
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6.4.5 DEN Crack Propagation

The results of DEN comer crack and centre hole crack propagation tests 

(Figure 5.52) reflect the freely initiated crack propagation results with the dwell 

period leading to a substantial increase in crack growth rate at a given AK at 500°C. 

Interestingly, the difference between the 500°C and 550°C crack growth rate is greater 

here, than the freely initiated tests. It is worth noting however, that this temperature 

difference also involves the comparison of a comer crack and centre hole DEN 

specimen, though the 500°C comparison in Figure 5.49 indicates that this has no 

effect on the crack propagation rate.

The relation of the DEN crack propagation data to the freely initiated DEN 

data (Figure 5.45) showed that the freely initiated crack tests start with a very low 

crack propagation rate at higher A K ’s compared to the crack propagation tests, 

reflecting the high peak stresses of the freely initiated tests. Though not conclusive, it 

appears that the two sets of data may converge. If this were the case, it would indicate 

the point at which the freely initiated DEN tests show the same behaviour as the crack 

propagation DEN tests, suggesting this is the point at which the crack escapes the 

large plastic zone around the notch root and behaves like a typical crack propagation 

test.

The DEN notch geometry was shown to have no effect on crack propagation 

rate at 20°C (Figure 5.51), so to assess how the DEN notch geometry affects fatigue 

crack propagation at elevated temperatures, a comparison with plain crack 

propagation specimens is needed. This is presented in Figure 5.50. Though the 

difference in crack propagation rates is small, their divergence at lower AK
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approaching the threshold condition suggests that creep and environment effects are 

occurring close to the notch root or the plastic zone around the notch root is having a 

substantial effect.

Mean stress effects on crack propagation are also presented in Figure 5.50, 

with an increase in R ratio resulting in a substantial increase in crack propagation rate, 

indicating a strong dependence on mean stress. This behaviour can be attributed to 

time dependent creep deformation, with the high mean stress allowing static creep 

deformation and damage to occur and environmentally assisted crack growth due to 

the crack remaining open for a greater proportion of the loading-unloading cycle, 

allowing the environment to access the crack tip.

6.5 V CYLINDRICAL NOTCH (VCN) TESTS

The S-N curve of VCN fatigue data (Figure 5.35) exhibits a significant drop in 

fatigue life between 20°C and 450°C, which is also reflected in the strain control data 

conducted during this programme. It is also worth noting that the expected drop in 

fatigue life from 450°C to 500°C is present, unlike the DEN tests. This is likely due to 

the differing specimen geometries affecting the levels of stress relaxation at these 

temperatures.

Fracture surface images of VCN specimens were taken at a peak stress of 

lOOOMPa. At 20°C (Figure 6.58) a single initiation site is visible with the crack 

propagating (bottom to top) from this point to final failure. At 450 and 500°C (Figures 

6.57 and 6.60) multiple initiation sites are present, though final failure still occurs at 

the specimen surface. Only at 550°C do the multiple initiation sites result in final
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failure occurring at a sub-surface location. It is clear from these results that increasing 

temperature leads to an increase in the number of initiation sites, which in turn 

contributes to a decrease in fatigue life. This is consistent with the other specimen 

geometries tested in air during this programme and can therefore be related to 

environmental damage

The effect of high temperatures on the crack propagation stage of VCN tests 

can be seen in the relevant ffactographs. At 20°C the fracture surface appears intact 

(Figure 6.62), while at 450°C some sub-surface damage appears. This damage 

becomes more severe as temperature increases, as shown in Figures 6.64 for 500°C 

and Figures 6.65 and 6.66 for 550°C.

6.5.1 Stress Concentrations Effects

Certain comparisons have been made between plain and double-edged notched 

specimen data in previous sections, which mostly involved the use of strain control 

deformation data to help define the effects of temperature and dwell on DEN tests. 

Analysis of VCN test data and fracture surfaces has been used to reinforce 

observations made of plain and DEN data. In order to assess the overall effects of the 

specimen geometries on fatigue life, direct comparisons of these geometries are 

required.

A comparison of DEN and VCN S - N  data (Figure 5.36) allows the effect of 

different Kt values on fatigue life to be evaluated. In previous sections the main 

differences highlighted were longer lives at 500°C compared to 450°C in the DEN 

data, attributed to creep effects at the notch root of the 500°C tests. This was a trend
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not seen in the VCN data. When compared on the same axes however, the general 

correlation of the two sets of data at a given temperature can be seen reflecting a 

similarity in the behaviour at the notch root. This is interesting since the stress field 

imposed by the VCN notch is smaller than that of the DEN specimen, making it less 

likely that there will be a weak link within the stress field. This tends to result in 

longer lives for VCN tests.

Of particular interest is a comparison of plain and notched specimen 

geometries. For clarity, DEN and VCN data is compared with plain specimen strain 

control data on separate axes, shown in Figures 6.67 and 5.36 respectively. Both 

graphs are plotted on a stress range vs. life basis (stabilised stress range for strain 

control data) From this comparison a general trend is immediately apparent. At lives 

of approximately 104 cycles and greater, there is a good correlation between the plain 

specimen strain control and notched load control data. At shorter lives (higher 

stresses) however, the strain and load control data diverges, with the strain control 

tests having significantly shorter lives for a given stress.

By referring back to the strain control deformation data (Figures 5.9 to 5.12) it 

can be seen that the correlation of strain and load control data relates to stress ranges 

where the material is exhibiting elastic behaviour. The point at which the plain and 

notched specimen data diverges relates to the onset of plastic deformation, which 

results in oxide cracking, allowing environmental ingress. Therefore, it is clear that 

this failure mechanism is resulting in greater damage to plain specimen geometries, 

than in notched specimens. A possible explanation for this may be because the stress 

field surrounding the notch, which represents the condition of the strain control
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specimen, does not act on the bulk of the notched specimen material. For the notched 

specimens, this could result in less environmental damage once the fatigue crack has 

transitioned from the notch stress field, into the bulk of the specimen, where stresses 

are lower. This would not be the case for the strain control tests, where the stress over 

the cross-section of the specimen is constant, and would therefore not lead to a 

reduction in environmental damage.

It is worth noting however, that due to scatter, it is difficult to determine the 

behaviour of the 20°C VCN data. Without further VCN testing at higher peak stresses 

it is unclear whether this data matches the trend seen in the elevated temperature VCN 

data, or that of the 20°C strain control data, though the Coflfin-Manson prediction with 

R= 0 VCN data suggests that there is a correlation between the 20°C strain control 

and notched specimen data.

6.5.2 Prediction of Notched Specimen Behaviour

Though the Coflfin-Manson method resulted in a good correlation with R= -1 

DEN data, R= 0 predictions overestimated the corresponding experimental data 

(Figure 5.55). This is likely because the actual R= 0 tests still experience a mean 

tensile stress, despite plastic deformation at the notch root forcing unloading into 

compression. The Coflfin-Manson method provides a good prediction since it is based 

on R= -1 strain control data and is therefore suitable for frilly reversed loading at the 

notch root. This accounts for the correlation of predicted and experimental R= 0 VCN 

data indicating that the conditions at the notch root represent those of R= -1 strain 

control tests after an initial shakedown. These results also indicate that using the 

Neuber rule for stress/strain redistribution at the notch root leads to reasonable
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predictions under certain conditions. The Walker strain method resulted in adequate 

predictions at 20°C for R= 0 and R= -1 and at 450°C for R= 0.

70



Discussion

Appendix



Figure 6.1 - Voids ahead of the crack tip at 550WC

Figure 6.2 -  Overview of strain control fracture surface (20°C, cyclic waveform)



Figure 6.3 - Overview of strain control fracture surface (450°C, cyclic waveform)

Figure 6.4- Overview of strain control fracture surface (500°C, cyclic waveform)



Figure 6.5 - Overview of strain control fracture surface (550°C, cyclic waveform)

Figure 6.6 - Strain control gauge length (20"C, cyclic waveform) 
with no surface cracking



Figure 6.7 - Strain control gauge length (450°C, cyclic waveform), 
with multiple surface cracks

Figure 6.8 - Strain control gauge length (500°C, cyclic waveform), 
with multiple surface cracks
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Figure 6.9: Strain control gauge length (550°C, cyclic waveform), 
with multiple surface cracks
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Figure 6.10: Strain range -  life comparison of dwell and cyclic tests
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Figure 6.11: Comparison of cyclic and unbalanced 2-minute dwell stabilised
loops at 450°C
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Figure 6.12: Comparison of cyclic and unbalanced 2 minute dwell stabilised
loops at 500°C
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Figure 6.13: Comparison of cyclic and balanced / unbalanced 2 minute dwell
stabilised loops at 550°C

Figure 6.14 - Strain control fracture surface (20°C, cyclic waveform)



Figure 6.15 - Strain control fracture surface (450"C, cyclic waveform), with 
surface delamination (secondary cracking)
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Figure 6.16- Strain control fracture surface (500°C, cyclic waveform), with sub­
surface cracking



Figure 6.17 - Strain control fracture surface (500MC, cyclic waveform) due to
shear
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Figure 6.18 - Strain control fracture surface (550"C, cyclic waveform), with sub­
surface cracking



Figure 6.19 - Strain control fracture surface (550"C, cyclic waveform), with 
fracture originating from surface.
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Figure 6.20 - Overview of strain control fracture surface (450°C, 2 min dwell in
tension)



Figure 6.21 -  Gauge length of strain control specimen (500"C, 2 min dwell in
tension), with surface cracks.

Figure 6.22 - Overview of strain control fracture surface (550°C. 2 min dwell in
tension)



Figure 6.23 - Overview of strain control fracture surface (550°C, 2 min dwell in
tension and compression).

Figure 6.24 - Strain control gauge length (450°C, 2 min dwell in tension), with
multiple surface cracks



Figure 6.25 - Strain control gauge length (500°C, 2 min dwell in tension), with
multiple surface cracks

Figure 6.26 - Strain control gauge length (550°C, 2 min dwell in tension), with
multiple surface cracks.

Figure 6.27 - Strain control gauge length (550°C, 2 min dwell in tension and 
compression), with multiple surface cracks



Figure 6.28 - Strain control fracture surface (450°C, 2 min dwell in tension), with
surface delainination.
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Figure 6.29 - Strain control fracture surface (500°C, 2 min dwell in tension), with
intergranular fracture



Figure 6.30 - Strain control fracture surface (550°C, 2 min dwell in tension), with
sub-surface cracking

Figure 6.31 - Strain control fracture surface (550°C, 2 min dwell in tension and
compression), with sub-surface cracking



Figure 6.32 - Strain control fracture surface (450°C, 2 min dwell in tension), with
fracture originating from surface.
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Figure 6.33 - Strain control fracture surface (550oC, 2 min dwell in tension), with
fracture originating from surface.



Figure 6.34 - Strain control fracture surface (550°C, 2 min dwell in tension and 
compression), with fracture originating from surface.

Figure 6.35 -  Overview of DEN fracture surface (450°C, in air, cyclic waveform),
with multiple surface initiation



Figure 6.36 - Overview of DEN fracture surface (450°C, in air, cyclic waveform)
with multiple surface initiation

Figure 6.37 - DEN fracture surface (450°C, in air, cyclic waveform), with sub­
surface cracking at the a - P  interface
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Figure 6.38 - DEN fracture surface (450°C, in air, cyclic waveform), with
striations

Figure 6.39 - Overview of DEN fracture surface (450°C, in vacuum, cyclic
waveform), with single surface initiation



Figure 6.40 - DEN fracture surface (450°C, in vacuum, cyclic waveform)

Figure 6.41 - Overview of DEN fracture surface (550°C, in air, cyclic waveform),
with multiple surface initiation



Figure 6.42 - DEN fracture surface (550°C, in air, cyclic waveform), with
fracture originating from surface

Figure 6.43 - DEN fracture surface (550°C, in air, cyclic waveform), sub-surface
cracking



Figure 6.44 - DEN fracture surface (550"C, in air, cyclic waveform), with sub­
surface cracking at the a~P  interface
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Figure 6.45- DEN fracture surface (550°C, in air, cyclic waveform), with
striations
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Figure 6.46 - Overview of DEN fracture surface (550°C, in vacuum, cyclic 
waveform), with single surface initiation site

Figure 6.47 - Overview of DEN fracture surface (500°C, in air, cyclic waveform)



Figure 6.48 - DEN fracture surface (500°C, in air, cyclic waveform), with sub
surface cracking at the a - |3  interface

Figure 6.49 - Overview of DEN fracture surface (500°C, in air, 2 min dwell)
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Figure 6.50 - DEN fracture surface (500°C, in air, 2 min dwell), with sub-surface
cracking

Figure 6.51 - Overview of DEN fracture surface (550°C, in air, 2 min dwell), with
multiple surface cracks
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Figure 6.52 - Overview of DEN fracture surface (550"C, in vacuum, 2 min dwell)

Figure 6.53 - DEN fracture surface (550°C, in vacuum, 2 min dwell), with sub­
surface cracking



Figure 6.54 -  Overview of DEN fracture surface (550°C, in air, cyclic waveform, 
peak elastic stress of 750MPa), with single surface initiation site

Figure 6.55 - Overview of DEN fracture surface (550WC, in air, cyclic waveform, 
peak elastic stress of 1120MPa), with multiple surface initiation sites

Figure 6.56 - Overview of DEN facetted fracture surface (20°C, in air, cyclic
waveform)



Figure 6.57 - DEN fracture surface (20°C, in air, cyclic waveform)

Figure 6.58 -  Overview of VCN fracture surface (20°C, in air, cyclic waveform)



Figure 6.59 - Overview of VCN fracture surface (450°C, in air, cyclic waveform)

Figure 6.60 - Overview of VCN fracture surface (500°C, in air, cyclic waveform)



Figure 6.61 - Overview of VCN fracture surface (550WC, in air, cyclic waveform)

Figure 6.62 - VCN fracture surface (20°C, in air, cyclic waveform)



Figure 6.63 - VCN fracture surface (450"C, in air, cyclic waveform), with sub
surface cracking

Figure 6.64 - VCN fracture surface (500°C, in air, cyclic waveform), with sub
surface cracking



Figure 6.65 - VCN fracture surface (550°C, in air, cyclic waveform), with sub­
surface cracking

lQOvtm

Figure 6.66 - VCN fracture surface (550°C, in air, cyclic waveform), with large
sub-surface crack
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7.0 CONCLUSIONS

• The lack o f dwell sensitivity o f strain control tests was attributed to stress 

relaxation during the dwell period at peak tensile strain offsetting the damage 

o f strain accumulation. During tests where there was a dwell period at peak 

tensile and compressive strains, strain damage accumulated during the tensile 

hold period was shown to reverse during the compressive hold period.

•  Initiation was shown to account for 80 -  90% of total fatigue life for freely 

initiated DEN tests.

• Dwell crack propagation tests at elevated temperatures showed that the 

interaction o f creep and environment with fatigue results in an increase in the 

crack propagation rate.

• Comparison of air and vacuum data indicates that for temperatures up to 

550°C, environmental effects account for a significantly greater decrease in 

fatigue life, compared to creep effects. The dominance o f environmental 

effects on high temperature fatigue is even more significant at higher stresses.

• At temperatures o f 500°C it was shown through the analysis o f plane strain 

control deformation data that creep leads to a reduction in peak stress (i.e. 

stress relaxation) at the DEN notch root, which results in a greater fatigue life 

than the lower temperature o f 450°C. This indicates that creep is beneficial to 

fatigue life up to 500°C. While at the higher temperature o f 550°C, the larger 

accumulation o f creep strain at the notch root and net section leads to a
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significant reduction in fatigue life. This effect was not seen in VCN tests, 

indicating that differing specimen geometries affect the levels o f stress 

relaxation at these temperatures.

• A transition in damage mechanisms was seen for high temperature fatigue 

tests in air as the stress range reaches approximately lOOOMPa. It was shown 

that this stress range corresponds to the onset o f plastic deformation, which 

results in cracking o f the surface oxide layer, allowing ingress o f the 

environment, which facilitates crack initiation and propagation.

• For elevated temperature tests at stress ranges greater than approximately 

lOOOMPa, plane strain control tests experienced significantly shorter fatigue 

lives than notched tests when compared using a peak elastic stress 

concentration factor (Xt). This was attributed to a reduction in environmental 

damage in the notched specimens once the fatigue crack had transitioned from 

the notch stress field into the net section experiencing bulk stress, where 

damage is less than that experienced during strain control tests.

• At 20°C, the Coffin -  Manson method gives accurate predictions o f fully 

reversed (R= -1) DEN data, due to the method being based on R= -1 strain 

control data. R= 0 lives were overestimated, as a result o f the actual tests 

experiencing a mean tensile stress, despite plastic deformation at the notch 

root forcing unloading into compression. This also accounts for the accurate 

prediction o f R= 0 VCN data, due to the conditions at the notch root matching 

those o f R= -1 strain control tests.
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• The Walker strain method gave adequate notch life predictions at 20°C for R= 

0 and R= -1 test conditions. It also results in reasonable predictions at 450°C 

for R= 0.
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8.0 FUTURE WORK

•  Initiation tests with a 2 minute dwell, in order to compare with cyclic initiation 

tests, to see how dwell affects initiation life at high temperature in DEN 

specimens.

•  Load control DEN tests (cyclic and dwell) at higher K tc w  in order to 

compare with plain specimen strain control and load control VCN data at these 

higher stresses.

•  Strain control dwell tests below 1% strain range.

•  Repeat strain control cyclic and dwell tests at 450, 500 and 550 to help reduce 

scatter and resolve the trends seen in these tests.

• Vacuum tests at 500C, dwell and cyclic

• Vacuum dwell and air dwell at 450C

• Vacuum crack propagation, dwell and cyclic.

• Further VCN testing at higher peak stresses

• Isothermal pre-exposure tests followed by fatigue (with and without prestrain) 

to explore the effects o f alpha case on crack initiation.
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