

 Swansea University E-Theses ___

A rapid prototyping environment for computational engineering

simulation.

Turner-Smith, Edward Alan

 How to cite: ___
Turner-Smith, Edward Alan (2002) A rapid prototyping environment for computational engineering simulation.. thesis,

Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42915

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42915
http://www.swansea.ac.uk/library/researchsupport/ris-support/

 A Rapid Prototyping Environment for

Computational Engineering Simulation.

By

Edward Alan Turner-Smith
B.Eng., M.Sc.

Thesis submitted to the University of Wales in

partial fulfilment of the requirements for the

Degree of Doctor o f Philosophy

Department of Civil Engineering

University of Wales Swansea

March 2002

C/Ph/237/02

ProQuest Number: 10821305

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10821305

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A Rapid Prototyping Environment tor Computational Engineering Simulation

To My Family

A Rapid Prototyping Environment for Computational Engineering Simulation

D e c l a r a t io n

This work has not previously been accepted in substance for any degree and is not

being concurrently submitted in candidature for any degree.

Signed (candidate)

r /j / 2.0 0 ?Date

S t a t e m e n t 1

This thesis is the result of my own investigations, except where otherwise stated.

Other sources are acknowledged by footnotes giving explicit references. A

bibliography is appended. „ „

Signed _ _ (candidate)

Date h / ■ T - O O ?

S t a t e m e n t 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan, and for the title and the summary to be made available to

outside organisations. /?

Signed_____________ (candidate)

Date S ' / ■ > / ' I Q O I

A Rapid Prototyping Environment for Computational Engineering Simulation

S u m m a r y

This thesis investigates the design and development of an environment for

computational engineering simulations with the aim of providing rapid prototyping

capabilities. The Parallel Simulation User Environment was developed under a

number of projects including CAESAR, MEDUSA and JULIUS, which were funded

by the EC under the ESPRIT initiative. This thesis focuses on the author’s efforts to

harness a collection of computational simulation tools and produce a seamless

integrated environment. Some of the main software tools developed by the author

include graphical user interfaces, application integration modules and communication

libraries.

- iv -

A Rapid Prototyping Environment tor Computational Engineering Simulation

A c k n o w l e d g e m e n t s

I would like to express my sincere thanks to Professor N. P. Weatherill for his

guidance and support, during my research activities that provided the material

contained within this thesis and throughout my time in Swansea.

I would also like to give a very special “thank-you” to Dr. M. Marchant for his

friendship and assistance on numerous occasions. His support was greatly appreciated

and proved a valuable asset to me during my research.

Thanks also go to my colleagues J. Jones, M. Sotirakos and Y. Zheng, who were an

enjoyable group to work with. Without them, I believe the PSUE package would not

have been the success it is today.

I would like to thank my family, for all their support, dedication and guidance

throughout my education. This thesis is a tribute to them.

Thanks also go to Claire, Graham and Janet, for their encouragement, during the

writing of this thesis.

A Rapid Prototyping Environment tor Computational Engineering Simulation

C o n t e n t s

1 Introduction___1

1.1 Introduction__ 2

1.2 Aim and Scope of this Thesis__ 5

1.3 Objectives of the PSUE___6

1.4 Implications of PSUE team development_________________________________8

1.5 Details of the Implementation__9

1.6 Philosophy of Approach__11

2 Graphical User Interfaces__________________________________14

2.1 Review of Graphical User Interfaces___________________________________ 15
2.1.1 Introduction__15

2.1.2 Design o f Control___17

2.1.3 Workspace E lem ents___ 22

2.1.4 Colour and Sound ___ 27

2.1.5 International Considerations [10]__ 29

2.1.6 Errors [7][5]___ 30

2.1.7 Utilising Help [6][4][7][12]___ 31

2.2 Implementation of GUI Guidelines____________________________________ 33
2.2.1 Introduction___ 33

2.2.2 Design o f Control__ 38

2.2.3 Workspace E lem ents___44

2.2.4 Colour and Sound ___ 48

2.2.5 International C onsiderations__48

2.2.6 Errors___ 49

2.2.7 Utilising Help__49

3 PSUE Main Interface______________________________________ 51

- vi -

A Rapid Prototyping Environment tor Computational engineering Simulation

3.1 Overview of the Main Functionality____________________________________52
3.1.1 Data Management ___ 54

3.1.2 Geometrical Manipulations __ 55

3.1.3 Grid Generation__56

3.1.4 S olvers__ 57

3.1.5 Computing Platforms___60

3.1.6 System T o o ls__ 66

3.1.7 Data A nalysis__ 68

3.2 Resource Management___69
3.2.1 Colour Preferences___ 69

3.2.2 Font Preferences__70

3.3 Process Control___72

3.4 Pathfinder___ 74
3.4.1 Pathfinder V iew __74

3.4.2 History V ie w __ 76

3.5 On-line Help___77

3.6 Integration of Applications___79

4 Communication Library____________________________________80

4.1 Overview and Requirements__81

4.2 Comparison of Various Techniques____________________________________86
4.2.1 IPC F acilities__ 86

4.2.2 M ethodology__ 87

4.3 Data Set Manipulation___ 90
4.3.1 Data T ypes___90

4.3.2 Shared Memory Segment Breakdown___ 95

4.4 Shared Memory Communication System______________________________ 96
4.4.1 Initialisation o f the PSUE Main Interface __96

4.4.2 Initiation o f a PSUE M od u le__97

4.4.3 PSUE Module updates Main Interface___ 98

4.4.4 Main Interface updates PSUE M odule___ 98

4.4.5 Closure o f a PSUE M o d u le___ 99

4.4.6 Closure o f the PSUE Main Interface_______________ 99

- vii -

A Rapid Prototyping Environment for Computational Engineering Simulation

4.4.7 Error within the PSUE Main Interface 100

5 Application Integration ___________________________________ 101

5.1 Overview and Requirements___ 102

5.2 Philosophy__ 104

5.3 Development Stages__ 106
5.3.1 Application Button Integration__ 106

5.3.2 Application Initiation__ 108

5.3.3 Data Transfer___ 108

5.3.4 Automation ___109

5.4 Techniques Employed__ 111
5.4.1 Script F iles__ 111

5.4.2 Application Initiation Procedures___ 117

5.4.3 Pipes and Sockets___118

5.5 Application Integration Library______________________________________ 122
5.5.1 Connection and Disconnection with the PSUE ____________________________________ 122

5.5.2 Sending and Receiving Arbitrary Data___123

5.5.3 Extended Data Extraction Facilities__ 123

5.6 Full Example__ 125

5.7 Summary___ 130

6 Application Tool W rapper_________________________________131

6.1 Introduction__ 132

6.2 Architecture__ 134
6.2.1 Techniques E m ployed ___ 136

6.3 Examples___ 139
6.3.1 Example 1 - Surface Grid Definition__139

6.3.2 Example 2 - Complex Geometry D efin ition _______________________________________140

6.4 Summary___ 145

- viii -

A Rapid Prototyping Environment for Computational Engineering Simulation

7 Test Cases___ 146

7.1 Introduction__ 147

7.2 Test Case 1 - Dassault Falcon__ 148
7.2.1 Geometry Manipulation___ 148

7.2.2 Preparation for Grid Generation__ 149

7.2.3 Grid Generation and Partitioning___ 150

7.2.4 Grid Quality Evaluation___ 152

7.2.5 Parallel Flow Solver___ 153

7.2.6 Grid Adaptation___154

7.2.7 Final Solution________________ 155

7.2.8 Sum m ary___156

7.3 Test Case 2 - Airbus A3XX__ 158
7.3.1 IGES Import__ 158

7.3.2 Geometrical R ep air___ 158

7.3.3 Grid Generation___159

7.3.4 Electromagnetic S o lv er __ 159

7.3.5 Data A nalysis___ 160

7.3.6 Sum m ary___ 161

7.4 Test Case 3 - FI6 Fighter___ 162
7.4.1 Geometry Preparation __ 162

7.4.2 Parallel Grid Generation __ 162

7.4.3 Parallel Solver and Adaptation__ 163

7.4.4 Virtual Reality Data Analysis___ 163

7.4.5 Sum m ary___ 164

8 Conclusions ___166

8.1 Overview__ 167

8.2 Discussions__ 169

8.3 Future Developments__ 172

9 References___174

- ix -

A Rapid Prototyping Environment tor Computational Engineering Simulation

L is t O f f ig u r e s

Figure 1-1 - Overview o f the PSUE Components______________________________ 13

Figure 2-1 - General Layout o f Key Areas o f a Module_________________________34

Figure 2-2 - General Layout o f Key Features in Popup Dialog Windows_________ 35

Figure 2-3 - Typical Size and Appearance o f Buttons, Text Fields and Other Widgets

__ 36

Figure 2-4 - Competency Switch___37

Figure 2-5 - Typical View o f a Status and Message Window____________________ 38

Figure 2-6 - Small Section o f the Pathfinder Module___________________________ 39

Figure 2-7 - A Typical Push B utton___ 40

Figure 2-8 - A Typical Toggle Button__ 40

Figure 2-9 - A Typical Option Button__ 40

Figure 2-10 - A Typical Text Entry F ield_____________________________________ 40

Figure 2-11 - A Typical L ist__ 40

Figure 2-12 - Typical Example o f Defaults and Specifications___________________ 41

Figure 2-13 - Example o f Ghosted / Unavailable Functionality__________________ 42

Figure 2-14 - A Progress Indicator Using a Percentage Bar____________________ 43

Figure 2-15 - Comparison between the two different types o f interfaces__________ 44

Figure 2-16 - Panel Showing Close Proximity o f Related Functionality__________ 45

Figure 2-17 - Pulldown Menu Shown with Tear-off Functionality________________ 46

Figure 2-18 - Example o f an Option Menu____________________________________46

Figure 2-19 - The Help Window with Index F acility___________________________ 50

Figure 3-1 - The PSUE Main Interface_______________________________________ 53

Figure 3-2 - The Data Management Functionality_____________________________ 54

Figure 3-3 - The Geometry Manipulation Functionality________________________55

Figure 3-4 — The Grid Generation Functionality______________________________ 56

Figure 3-5 - The Solver Functionality_______________________________________ 57

Figure 3-6 - The Flow Solver Initiation Panel________________________________ 58

Figure 3-7 - The Flow Solver Generic Settings P an el__________________________ 59

Figure 3-8 - The Computing Platforms Functionality__________________________ 61

A Rapid Prototyping Environment for Computational Engineering Simulation

Figure 3-9 - The Parallel Tools Functionality________________________________ 61

Figure 3-10 - The Remote Connection Tool - RECON__________________________62

Figure 3-11 - The Machine Connection Panel for RECON_____________________ 63

Figure 3-12 - The CODINE Connection Panel________________________________ 64

Figure 3-13 - The Optimisation Control Panel________________________________ 65

Figure 3-14 - The System Tools Functionality________________________________ 67

Figure 3-15 - The Data Analysis Functionality_______________________________ 67

Figure 3-16 - Typical View for the Colour Resource M anager__________________ 70

Figure 3-17 - Typical View o f the Font Resource Manager_____________________ 71

Figure 3-18 - Typical View o f the Process Control P a n el_______________________72

Figure 3-19 - Typical View o f the Pathfinder Panel____________________________ 75

Figure 3-20 - Typical View o f the History P an el______________________________ 76

Figure 3-21 - Typical View o f the On-Line Help Facility________________________78

Figure 4-1 - Client / Server Topology__ 81

Figure 4-2 - Daemon Controlled Topology___________________________________82

Figure 4-3 - Specific Data Sets Transferred Between the PSUE and Modules______84

Figure 4-4 - Communication Methods and the Type o f Data Transmitted_________ 87

Figure 4-5 - Comparison o f the Socket and Shared Memory Communication Methods

__ 89

Figure 5-1 - Structure o f the PSUE Integration System ________________________105

Figure 5-2 - Example o f Three User Applications Integrated into the Main

Functionality Region.__ 107

Figure 5-3 - Application Initiation Panel____________________________________ 109

Figure 5-4 - Comparison o f Application Integration with and without Automation 110

Figure 5-5 - Flow Diagram o f the Main Part o f the Script File Parser__________ 115

Figure 5-6 - Flow Diagram o f the Automation Part o f the Script File P arser 116

Figure 5-7 - Comparison o f the Two Application Initiation Methods_____________118

Figure 5-8 - Connection Procedure for the Pipe System ______________________ 120

Figure 5-9 - Connection Procedure for the Socket System_____________________ 121

Figure 5-10 - View o f the Grid Generation Functionality Region_______________126

Figure 5-11 - Original Main Routine o f the Tetragrid Application______________127

- xi -

A Rapid Prototyping Environment tor Computational Engineering Simulation

Figure 5-12 - Final Main Routine o f the Tetragrid Application_________________ 128

Figure 6-1 - Comparison o f the Application Integration and Tool W rapper 136

Figure 6-2 - The Tool Wrapper Configuredfor a Surface Mesh Definition_______ 139

Figure 6-3 - The Tool Wrapper Configuredfor a Complex Geometry Definition _ 141

Figure 7-1 - Falcon Geometry in the Geometry Builder________________________149

Figure 7-2 - Falcon Geometrical Configuration with Grid Sources______________150

Figure 7-3 - Surface and Volume Grids for the Falcon Geometry_______________151

Figure 7-4 - Typical View o f the Histogram Chart o f the Grid Quality Statistics 153

Figure 7-5 - Grid Adaptation Module Showing the Point Cloud Around the Falconl55

Figure 7-6 - Final Solution o f the Airflow Around the Dassault Falcon _________ 156

Figure 7-7 - Summary o f Data Flow for Falcon Test Case ____________________ 157

Figure 7-8 - Summary o f Data Flow for A3XX Test Case _____________________ 161

Figure 7-9 - Summary o f Data Flow for FI 6 Test Case________________________164

- xii -

A Rapid Prototyping Environment tor Computational Engineering Simulation

L is t o f T a b l e s

Table 1-1 - Members o f the Development Team_________________________________8

Table 2-1 - Typical Guidelines for a Graphical User Interface__________________ 15

Table 4-1 - The Shared Memory Segments and their Content___________________ 95

Table 4-2 - Actions Performed during Initiation o f a PSUE Module______________97

Table 4-3 - Actions Performed when Updating the Main PSUE Interface_________ 98

Table 4-4 — Actions Performed when the Main Interface updates a PSUE Module _ 98

Table 4-5 - Actions Performed during the Closure o f a PSUE Module___________ 99

Table 5-1 - Script Files Controlling Functionality Regions____________________ 107

Table 5-2 - Connection and Disconnection Routines__________________________ 122

Table 5-3 - Arbitrary Send and Receive Routines_____________________________ 123

Table 5-4 - A Selection o f the Extended Data Extraction Routines_______________ 123

Table 6-1 - Advantages and Disadvantages o f the Application Integration and the

Tool Wrapper___ 135

Table 6-2 - Example Set o f Key Tool Wrapper Item s__________________________ 137

Table 7-1 - A Summary o f each Stage's Tasks and Data Transfer fo r Test Case 1 _ 157

Table 7-2 - A Summary o f each Stage's Tasks and Data Transfer fo r Test Case 2 _ 161

Table 7-3 - A Summary o f each Stage's Tasks and Data Transfer fo r Test Case 3 164

- xiii -

A Rapid Prototyping Environment tor Computational Engineering Simulation

G l o s s a r y

API Application Protocol Interface

ASP Application Service Provider

AVS Advanced Visual Systems - Proprietary post-processing

software

CAD Computer aided design

CAESAR CEC Esprit Project - Clusters o f Computationally Intensive

Applications for Engineering Design and Simulation on

Scalable Parallel Platforms

CEM Computational Electro Magnetics

CFD Computational Fluid Dynamics

Check Button A widget that allows the user to switch options on and off.

CODINE Proprietary load balancing software

Dialogs Windows that are sub-windows of the primary window of the

application

Ensight Proprietary post-processing software

FEA Finite Element Analysis

Flite3D UWS grid generation and CFD solver suite

Front-End A GUI for a specific application

FTP File Transfer Protocol

GAA Generic Authorisation and Access

GSI Grid Security Infrastructure

GUI Graphical User Interface

HCI Human Computer Interaction

HPCN High Performance Computing and Networking

IP Internet or Intercommunication Protocol

IPC Inter Process Communications

IRIS/Explorer Proprietary post-processing software

- xiv -

A Rapid Prototyping Environment tor Computational Engineering Simulation

JULIUS

MEDUSA

Menubar

Menus

Motif

MPI

MPP

MSC/Patran

MSC/Nas tran

OpenGL

Options Menu

Panels

ParaGraph

PC

Popup Menu

PSUE

Pulldown Menu

Push Button

PVM

Radio Button

sees
SDK

SMP

CEC Esprit Project - Joint Industrial Interface for End-User

Simulations

CEC Esprit Project - Multi-disciplinary Engineering Design

via Unitary Software Applications

A menu that is always located at the top of the primary

window of an application

Widgets that help group other widgets - used as menubars,

option menus, pulldown menus and popup menus

Window library based on X Windows

Message Passing Interface

Multi-Processor Platform

Proprietary pre-processing software

Proprietary FEA software

Open Graphics Library from SGI

A menu widget that allows the user to select one of a multiply

number of options

Windows that are sub-windows of the primary window of the

application

Front-end to MPI

Personal Computer - Usually Intel Technology

A menu widget that groups options and presents them in a list

that appears where the mouse is located

Parallel Simulation User Environment

A menu widget that is part of a menubar or option menu

A button widget that activates a particular task or action.

Parallel Virtual Machine

A button widget that when multiples are grouped together into

a radio box allow the user to switch between multiple choices

Source Code Control System

Software Development Kit

Shared Memory Platform

- xv -

A Rapid Prototyping Environment for Computational Engineering Simulation

Socket Bi-directional data stream for transferring data using a

particular network protocol

SSP Storage Service Provider

TCP Transmission Control Protocol

Text Field A widget that allows the entry o f text and / or numerical

values

TLS Transport Layer Security

UDP User Datagram Protocol

UNIX Operating systems used by professional workstations, MPPs

and SMPs

VPN Virtual Private Network

Widget A Motif component of a window system that could be a

button, label, frame, drawing area, text areas etc

XML Extensible Markup Language

XPVM X-Based Parallel Virtual Machine

X Windows Window based system for UNIX platforms

- xvi -

Introduction

1 In t r o d u c t io n

Introduction

1.1 Introduction

Computers have now been used in research and industry for quite some time however

the technological advancement of computers is still very rapid. In recent years, there

has been a large increase in new software and extensive developments to existing

packages supporting multidisciplinary computational engineering. To carry out most

computational simulations, an end-user is required to employ a collection of these

software packages, usually creating a complex sequence of events. As computer

platforms rapidly increase in performance and reduce in cost, research and industrial

sectors are increasingly able to exploit High Performance Computing and Networking

(HPCN). However such facilities can further complicate the simulation process.

The industrial sector is progressively increasing product complexity, yet demands a

reduction in the time required for each stage of the simulation and requires the ability

for rapid execution of problem set-up. The complexity of the product definitions and

simulation requirements also increases the volume of computational data involved.

This in turn generates communication bottlenecks and platform limitations that may

also constrain the extent o f the problem even further.

Clearly, there is a requirement for a multidisciplinary engineering environment that

encompasses all o f the key stages and controls the overall computational simulation

and product design. Such an environment would need to allow for the integration of

arbitrary application software with the efficient but transparent communication of

computational data between the key stages. The bottlenecks and limitations associated

with the computational data and engineering software should be minimised by using

facilities such as direct inter-process communications and shared memory

management.

At the time that the research for this thesis was started, use o f computers in

computational engineering was widespread. However, in order to perform a typical

solution of an engineering problem, a number o f stages would be required, e.g.

Introduction

geometry creation and manipulation, pre-processing, analysis and finally post­

processing. Often, each of these stages would require the execution of a number of

programs. This process is usually a cumbersome activity and so the research behind

this thesis is based upon the concept of integrating all of the modules and tools. This

would produce a single easy-to-use environment.

Such an integrated environment that can also be referred to as a problem solving

environment, would need to incorporate many of the details discussed so far. An

integrated environment should provide some generic functionality but most

importantly allow for the direct integration of the software that it targets. The

environment should assist in the seamless connection between separate modules that

should also include data communications.

A successful integrated environment would need to be able to assist the simulation

engineering process and would provide a single unified interface. An environment

should improve the efficiency of the solution process and increase the effectiveness of

the tools and should also speed up training of users and the progression of the users

skills. Finally, the environment should generate a tool that is greater than the sum of

all of its constituent parts.

Some of the major challenges of computational engineering that can be overcome

with an environment include:

• Easier and faster execution of the total simulation process.

• Seamless connections between separate software packages and hardware

platforms.

• Users hidden from differences between data structures.

• Automatic data transfer.

• Management o f data volume and bottlenecks.

This thesis, “A Rapid Prototyping Environment for Computational Engineering

Simulation”, explores just some of the possibilities that are currently available for the

Introduction

exploitation of computing technology. In the author’s own opinion, ‘Computational

Engineering Simulation’ can be considered as the ability for engineers to model multi­

disciplinary engineering problems on computers, usually to a high degree of accuracy.

The main benefits of using a computer to analyse a model as compared to

conventional methods, e.g. computational fluid dynamics compared with wind tunnel

measurements, are the time taken to get results, hardware requirements, manpower

requirements and therefore costs. Also in the author’s own opinion, a ‘Rapid

Prototyping Environment’ is a tool that will allow the user to set-up and execute a

particular engineering problem as swiftly as possible and allow amendments to the

problem definition to be carried out easily.

The rapid prototyping environment presented in this thesis is known as the “Parallel

Simulation User Environment” (PSUE) [1]&[2]. The PSUE was initially designed

under a CEC ESPRIT project called “CAESAR” (Clusters of Computationally

Intensive Applications for Engineering Design and Simulation on Scalable Parallel

Platforms) which was to ascertain the feasibility of such an environment. A second

CEC ESPRIT project called “MEDUSA” (Multi-disciplinary Engineering Design via

Unitary Software Applications) involved further development of the environment

with the PSUE as the core software. Due to the success of the PSUE development, a

third CEC ESPRIT project was initiated called “JULIUS” (Joint Industrial Interface

for End-User Simulations) which aimed to produce a new, more intelligent

engineering environment based on parts of the PSUE environment.

Introduction

1.2 Aim and Scope of this Thesis

The aim of this thesis is to present the author’s involvement in the development of the

Parallel Simulation User Environment (PSUE). Since the author has not developed all

of the PSUE software, and the PSUE encompasses a large number of computational

engineering tools, only certain areas o f the PSUE will be presented within this thesis.

The main modules that will be discussed include:

• The main PSUE interface which controls and communicates with all the other

modules of the PSUE.

• The communication library used to control and transfer data.

• The application integration facility that allows any arbitrary application to be

integrated into the environment.

• The application tool wrapper that combines the application integration facility and

the communication library.

Chapter 2 discusses the study and implementation of graphical user interfaces.

Chapters 3 through to 5 discuss the main PSUE interface, the communication library

and the application integration, respectively. Chapter 6 discusses the tool wrapper,

which is an extension and unification of the communication library and application

integration facilities. Chapter 7 presents three test cases showing typical use of the

PSUE and finally, Chapter 8 concludes the research covered by this thesis.

Introduction

1.3 Objectives of the PSUE

As previously mentioned, the PSUE was initially developed under the CAESAR

project, and was intended to be a demonstrator project in order to ascertain whether

the concept of an integrated environment was feasible. The main intentions of this

project were to integrate the tools required to carry out a full solution of an

engineering problem into a single easy-to-use environment. The environment was also

required to be applicable to various multi-disciplinary engineering applications and to

utilise the fast growing High Performance Computing and Network (HPCN)

capabilities of computers.

The main tools required for a simulation that were integrated within the environment

include:

• Geometry importation, creation and manipulation.

• Topology construction.

• Grid generation.

• Solver initiation and control.

• Visualisation of results.

During the initial development of the environment a number of key objectives were

identified by industrial end-users [3]:

• Reduction of problem set-up time.

• Reduction of user training period.

• A modular framework for continued development.

• Integration o f arbitrary engineering simulation applications.

• Exploitation o f High Performance Computing and Networking (HPCN).

The development of the PSUE continued under the MEDUSA project, in which

further modules where integrated within the environment which involved further pre­

processing, analysis, post-processing and load balancing facilities.

Introduction

The JULIUS project proposed a fully integrated engineering environment based on

the PSUE functionality and successes. The main development that the author was

involved with, during this project, was the extension and amalgamation of the

communication library and the application integration capabilities to produce the

application tool wrapper.

In troduction

1.4 Implications of PSUE team development

Since the PSUE has been developed over a num ber o f years and within a number o f

projects, the software has been designed and written by a num ber o f individuals. The

m em bers o f the development team are shown in Table 1-1 below.

Table 1-1 - Members o f the Development Team

Prof. N.P. Weatherill Team Leader Overall Project Leadership
Dr. M.J. Marchant Team Supervisor Project M anagement

Team Advisor
Dr. O. Hassan Team Consultant Grid Generation
Dr. Y. Zheng Software Developer Geometry Manipulation

Grid Generation Interface
Mr. E.A. Tumer-Smith Software Developer Main PSUE Interface

Communication System
Application Integration
Grid Generation
Tool W rapper

Mr. M. Sotirakos Software Developer Grid Analysis
Parallel Tools

Mr. J. Jones Software Developer Help System
Parallel Visualisation

Mr. R. Said Research Student Grid Generation

This thesis describes the sections o f the PSU E that have been designed and developed

by the author. In certain areas, the author has worked in collaboration with other

developers or has taken over certain responsibilities. As this occurs the thesis will

explain which parts were the responsibility o f the author and which were the

responsibilities o f another m em ber o f the developm ent team.

Chapter 7, which presents a number o f test cases, covers all aspects o f a simulation

and therefore covers more areas o f the PS UE than the author was responsible for.

Further details will be given within the chapiter.

Introduction

1.5 Details of the Implementation

In recent years, PC based machines have become extremely powerful. However at the

time of this research only UNIX based machines were powerful enough to execute

most engineering simulations required by the industrial sector.

Generally UNIX machines, compared to PC machines, had faster and more powerful

processors, multi-processor facilities, greater memory capabilities [14], faster and

larger file storage, and superior system boards and were generally produced to a

higher specification.

Most PC machines run Microsoft DOS or Microsoft Windows as an operating system

whereas UNIX machines all operate variations o f the UNIX operating system. The

UNIX operating system may be considered superior to the Microsoft operating system

since it provides, amongst other facilities:

• True multi-tasking capabilities.

• Better process control.

• A stable and robust environment.

• Extended inter-process tools

The opinions presented so far within this chapter led to the decision that the PSUE

should be developed within a UNIX environment and possibly converted to a

Microsoft environment in the future if necessary.

Within the UNIX operating system a standard has been established for most window

programs to follow. This involves the use of the X Window system with a very useful

extension known as the Motif widget libraries. Motif provides an easy to use toolkit

and produces a windows program that gives an aesthetically pleasing representation

using three-dimensional aspects. All of the PSUE window modules have been

developed using the X Window system and the Motif widget library.

Introduction

The graphical manipulation of data within the PSUE has been developed using the

OpenGL graphics library originating from the Silicon Graphics UNIX platform.

OpenGL provides efficient and powerful facilities to present and manipulate data in

real time on a standard UNIX based machine. OpenGL is becoming the standard for

graphics on such machines and therefore was used for all graphics within the PSUE

development.

UNIX operating systems contain a number of very powerful Inter-Process

Communication (IPC) facilities [15] such as shared memory, semaphores, message

queues, pipes and sockets. These provide an excellent method of communicating data

efficiently between separate processes and have been used throughout the

development o f the PSUE, giving the environment its seamless presentation.

The shared memory capabilities have been used extensively to transfer the usually

very large data sets between the various modules o f the PSUE. Since the data sets of

the PSUE are quite specific, a communication library based on shared memory has

been implemented within the PSUE development and provides the first line of data

transport. Shared memory allows the data owned by one process to be accessed by

any number of other processes.

As mentioned above, the PSUE has been developed using the X/Motif window

system and OpenGL, which have been developed in the C programming language

[16-20]. However, a number of tools that have been integrated into the PSUE had

already been developed in the Fortran77 programming language. Therefore, the PSUE

has been developed using both the C and Fortran77 programming languages [14].

- 10 -

Introduction

1.6 Philosophy of Approach

Since the development goals of the PSUE, described previously in the chapter, were

so extensive, a number of software developers would be required. A major software

development project requiring a number of personnel to work simultaneously can be

very difficult to manage. Initially for this reason, the development work was broken

up into a series of modules that would finally reunite to produce the final software

package.

However, as the software development continued it soon became clear that a general

modular framework had many advantages over a fully integrated system:

• Easier software programming - Generally, each software developer may have

their own module to develop and so a Source Code Control System (SCCS) is not

as necessary as if all developers were updating the same source code files

simultaneously.

• A reduction in process overheads - In a fully integrated system the resources

required for all aspects of the package would be loaded at all times, however with

a modular system, only the resources for a particular module that is running would

be loaded.

• A reduction in the complexity of the interfaces - Instead of having one large

interface that contains all options and functionality, a module would only have the

options and functionality pertaining to that specific module. Therefore, the

interface is less cluttered with controls that are redundant at that specific time with

respect to the user’s current project.

• Multiple task access - Since multiple modules may run simultaneously, and due to

the excellent multi-tasking capabilities of the UNIX operating system, each

module could be executing tasks. For example, a user could be setting up a new

geometrical problem definition at the same time as generating a finite volume grid

on another problem definition at the same time as post-processing yet another

problem.

- 11 -

Introduction

• Multiple problem definitions - Similarly to the previous point, since the user may

initiate multiple copies of the same module, the user is able to process multiple

problem definitions simultaneously. For example, generating three finite element

grids on different problem definitions all at the same time.

The software consists of a number of modules that are integrated into an environment

using a communication library that utilises the Inter-Process Communication (IPC)

facilities. A simple menu driven control interface, the main PSUE Interface, controls

all of the other modules and manages the communication library. It also controls the

arbitrary application integration since there is also the communication between these

packages and the PSUE itself.

The key components of the PSUE consist of the main control interface, geometry

editor and builder, grid generators, grid quality assessments and grid adaptation

facilities. Links to HPCN are provided, where appropriate, within these modules and

when coupled with the ability to integrate arbitrary engineering application software,

to the PSUE through the communication library, the environment becomes a powerful

tool encompassing many of the present requirements specified by industry.

Figure 1-1 shows an overview of the PSUE components.

- 1 2 -

Introduction

Builder PSUE

External
Applications

Figure 1-1 - Overview o f the PSUE Components
Grid Generation Grid Analysis

PSUE Communication Library

PSUE Application Integration

PSUE Toolwrapper Connection

Grid Adaptation

Computing Tools
Parallel Tools

Remote Connections

rap pci

- 1 3 -

Graphical User Interlaces

2 G r a ph ic a l U ser In t e r fa c e s

- 1 4 -

G raph ical U ser Interfaces

2.1 Review of Graphical User Interfaces

2.1.1 In troduc t ion

The PSUE, so far, has been presented as an environment however as far as the end-

user is concerned, it can be seen as basically a Graphical User Interface (GUI). This

section is a review o f material relating to the layout and method o f building a

graphical user interface [4-13]. This documentation provided a compact set o f

guidelines that were used whenever and wherever possible in the design o f the PSUE.

There has been a vast amount o f work in this area, especially more recently with the

advancement o f the graphical capabilities o f computers. Graphical User Interfaces are

becoming more widespread and so an interface must be o f a very high standard to

succeed. The window manager used by SUN Microsystems called “OPEN LO O K ”

followed the guidelines [4] as shown in Table 2-1 below.

Table 2-1 - Typical Guidelines for a Graphical User Interface

Easy to learn. Based the interface on a
small num ber o f simple
concepts.

The system is easy to learn
initially, and users can get
work done right away.

Easy to learn new
applications for experienced
users.

Provide a consistent
interface. For example, both
the window manager and
applications work the same
way.

The user can leverage
knowledge and learn new
applications.

Efficient for experts. Minimise keystrokes and
mouse travel.

Increased productivity.

Distinctive user interface. Design a visually
uncluttered and consistent
look.

The open look UI becomes
a signature that people
recognise.

Easy migration for other
interface uses.

Harmonise with other user
interfaces.

Users can move easily
among the major user
interfaces with minimal
retraining.

- 15 -

Graphical user interraces

2.1.1.1 Consistency

Consistency [12] [6] [7] helps users to move from an application that they are familiar

with to another application, bearing in mind that the standards must be very good to

start with. In practise, consistency is difficult to uphold, since many variations can be

applied to a single operation and interpretation is different for various users. For

example, an hourglass [7] used for showing that the computer is busy could be shown

as:

• An hourglass on its own.

• An hourglass with sand moving to indicate time left.

• Figures to show estimated time of completion.

• An icon flashing at a particular rate.

For applications with many sets o f “windows”, large duplications generated in the

name of consistency may be very confusing for the user and they may lose their place

within the overall package. The main areas that need to be consistent are such things

as mouse button actions [12]. For example, if mouse motion while certain mouse

buttons are depressed produces a particular type of transformation, then this should be

the same within all graphical windows.

Users expect components to behave consistently across all applications - push buttons

always perform an action and option buttons always provide selections [12]. Due to

this, when users want to perform an action they look for a push button, usually in a

menu, but they do not look for an option button. Components that are provided should

be used when appropriate rather than creating new ones and the look of a component

should not be altered so drastically that its type is unrecognisable.

The layout of the application windows [12] should be designed according to the

natural use of order and the natural scanning order o f the people who will be using the

application:

• Design for the natural use of order. Consider the tasks that the user will perform

within the application.

- 16-

Graphical User Interfaces

• The natural scanning order is most important when arranging small groups of

components to help the user find the correct component for the task. The most

important and most common commands should come first. In most cases, this

order is from left to right and from top to bottom [11]. However, this may be

different for international considerations.

2.1.1.2 Levels of Competence [4]

When users are learning an application they require assistance to be able to complete

tasks and understand what they are actually doing. However, as these users familiarise

themselves with the application, they no longer need as much help and may want to

work faster. Below are three levels of competence together with possible actions to

assist the user who is at that level:

1. Novice users - The number of possibilities or routes to take should be kept small

and the novice user should be able to carry out a few small tasks easily to build

confidence and to reduce anxiety. Step by step on-line tutorials together with

comprehensive manuals may be very useful for complicated sections o f an

application or for the whole application.

2. Knowledgeable intermittent users - Recognition rather than recall is very

important. The user may have forgotten how to do a certain task, but if there is an

icon / button / menu for this task then the user will know which way to go.

Consistent sequences of actions, meaningful messages, and frequent prompts will

inform the user that they are progressing correctly.

3. Experts - They seek to get their work done rapidly. They demand rapid response

times, brief and less distracting feedback, and the capacity to carry out tasks with

just a few keystrokes or selections. Shortcuts, abbreviations, hot-keys, macros etc

are all good accelerators.

2.1.2 Design of Control

2.1.2.1 Usability [12]

The application should never destroy the user’s motivation. Error messages should be

informative but never sarcastic and allow retrieval of information wherever and

- 1 7 -

Graphical User Interlaces

whenever possible. Users should be informed at all times if the application is busy

and preferably how much longer they have to wait. After an application has

performed a task the user should be informed of the result - good or bad. Users

understand faster and better if they can see what they can do and see changes as they

do them.

The abbreviation of input commands [8] can be very useful, especially for the expert

user. Some abbreviation strategies are:

• Simple truncation (e.g. PR for print)

• Vowel drop with simple truncation (e.g. DVLP for develop)

• First and last letter (e.g. ST for sort)

• First letter of each word in a phrase (e.g. WYSIWYG [12])

• Standard abbreviations from other contexts (e.g. QTY for quantity)

• Phonics (e.g. XQT for execute)

2.1.2.1.1 User's Memory [8]

The user should not be expected to remember too many items of information at the

same time, so usually four items of information should be the most. Users remember

how to retrieve items easier than actually remembering the items themselves. For

example, instead of remembering a file name, an application may list the last files

accessed.

2.1.2.1.2 Computer Jargon [8]

Computing jargon such as “PORT” and “RAM” etc. apply also to commonly used

words and so care should be taken when using such words in dialogs, since the “user's

language” may not fully understand the terms.

2.1.2.2 Modifications [12]

User control is very important. The user should tell the application what to do, not the

application prompting the user all the time for responses. A program that always

shows an initial screen, that always requires confirmation of actions that assumes

- 1 8 -

Graphical User Interlaces

data-entry in particular ways, soon becomes tedious. Users should be allowed to

change the way they use the system e.g. date entry as DD/MM/YY or MM/DD/YY or

even just a default where the application gets the date from the computer.

The application should be user modifiable [12] since different users will have

different requirements such as inputs by icons or words etc. These sorts of entities

should be gathered into the user’s preference section and stored so that every time the

user accesses the application the preferences do not have to be changed. Sensible

default values should be initially provided and then changed if so desired by the user.

2.1.2.2.1 User Flexibility [12]

Good user-application interaction should also allow user flexibility. No matter how

well an application is designed, some users will not like parts of it and they will want

to change these elements. For example, from simple elements like the colours and

fonts, up to complicated elements like the default values. Users should be allowed to

adjust elements of an application because it increases their sense of control over it.

The following attributes of an application should be considered for user

customisation:

• Application parameters

• Colours

• Fonts

• Default values

• Labels

• Messages

• Help information

2.1.2.2.2 Short Cuts [8]

Short cuts for expert users are very important since they will not need so many

prompts. The most basic short cut is a “hot key”, however such a short cut must not

be essential for the application's operation, but they must be reasonably easy to

discover by beginners.

- 1 9 -

Graphical User Interlaces

2.1.2.3 Indicating Action o f Components [12]

When an application behaves as expected and the user is not surprised by the results

of the actions, the user can complete tasks quickly. The first step to consistent

interaction is to provide cues to the result of every action. This means that the

component’s shape, label, and graphics should indicate actions o f components. It also

means that the actions and interactions of components should remain consistent so the

user always knows what to expect.

It also means that interactions should be simple. As interactions become complicated,

it also becomes difficult to visually represent the interaction. Complicated interactions

and components create the possibility for more errors. Even the most complicated

concepts can be clarified by careful organisation, so if an application’s interactions

seem complicated, they should be reorganised for simplicity.

2.1.2.3.1 Showing Labels [10]

One of the best indicators o f the action of a component is its label and this can be

either text or graphical. Labels should be chosen carefully to indicate the action of

each component. Components that perform actions should be labelled with active

verbs. Components that present options should be labelled with nouns. You should

also label component groups, including panels, with nouns to indicate the contents of

the group. E.g chdir standing for “Change Direction” is to obscure, perhaps the full

label should be used in these circumstances.

2.1.2.3.2 Showing Defaults [7]

The application should use default values for common settings or obvious selections.

For example:

• The default value for a text area should be in the text area in the selected state

whenever text entry is requested.

• The default selection in a list should be set in the selected state whenever a list

selection is requested.

- 2 0 -

Graphical User Interlaces

• The default radio button should be filled in a panel at application start-up time. In

any case, once the state is changed, the new state should take the place of the

default until the state is reset.

However, certain changed values may need to be stored by the user e.g. colours or

fonts, so the application should make this possible.

2.1.2.3.3 Showing Unavailable Components [4]

As the state of the application changes, certain components become inappropriate. For

example, minimisation of a window is inappropriate when the window is already

minimised. In such cases, the application should make the inappropriate components

unavailable - this is also called disabling the components. Disabled components

should be visually de-emphasised, usually by greying the label o f the component.

2.1.2.3.4 Showing Action Using Graphics [11][12][4]

Many components also include a small graphic symbol following the label to indicate

the action of the component. Cascade buttons should use an arrow graphic that points

in the direction the cascading menu will appear. Option buttons should use a

rectangular graphic to distinguish them from push buttons.

2.1.2.4 Feedback [12]

Another important element to user interaction is providing feedback about the current

state of the application. This is done, as described in the previous section, by using

labels and graphics and by keeping the interface consistent. The application should

also dynamically indicate the state o f the application’s actions. For example, the

mouse pointer shape changes to indicate when and where special actions can occur.

2.1.2.4.1 Showing Progress and Response Times [4]

If an action takes a long time to complete, the user may mistake the delay to mean that

the system or the application has stopped working. For actions that take a long time to

complete, the application should indicate that there will be a delay with a working

-21 -

Graphical User interlaces

dialog and the mouse pointer should change to an hourglass. If the application can

track the progress o f long actions, it should try to update the working dialog with the

progress of the action, such as in a percentage complete dialog.

Recommended response time [5] guidelines:

• Users prefer shorter response times.

• Longer response times (greater than 15 seconds) are disruptive.

• Shorter response times lead to shorter user think times.

• A faster pace may increase productivity, but error rates may also increase.

• Response time should be appropriate to the task:

- Typing, cursor motion, mouse selections

- Simple frequent tasks

- Common tasks

- Complex tasks

• Users should be advised of long delays.

• Modest variability in response time is acceptable.

• Unexpected delays may be disruptive.

• Empirical tests can help to set suitable response times.

2.1.2.4.2 Providing Warnings [7]

Certain actions can cause destructive results, such as closing an application before

saving changes in the current file. Applications should not disallow such destructive

actions; instead, they should warn the user of the consequences with a warning dialog.

The warning dialog must allow the user to rectify, cancel or ignore the destructive

action, however too many warning dialogs can be disruptive to the user’s main task.

Warning dialogs should be reserved for truly destructive actions.

2.1.3 Workspace Elements

2.1.3.1 Graphical Layout [11]

The constraints of screen width and length, display rate, character set, and

highlighting techniques strongly influence the graphical layout of workspace

50 to 150 milliseconds

less than 1 second

2 to 4 seconds

8 to 12 seconds

- 2 2 -

Graphical User Interlaces

elements. Great care and planning must be carried out to ensure a friendly graphical

user interface is produced which contains all of the required functionality represented

consistently.

2.1.3.1.1 Screen Layout [12][13]

Some of the more general guidelines are as follows:

1. Layout guidelines:

• Balance.

• Regularity, symmetry, predictability.

• Sequential.

• Proportion.

2. Font guidelines:

• For text use lower case with an upper case initial letter.

• Use proportional spacing.

• Stay with one font style.

3. Use of words guidelines:

• No jargon.

• Use short familiar words.

• Use complete words; avoid contractions, short forms.

• Use positive terms.

• Do not include punctuation for abbreviations, mnemonics and acronyms.

4. Text on screen guide lines:

• Keep text up to 30-35 characters wide.

• Use short sentences o f familiar words.

• Place a full stop at the end of each sentence.

2.1.3.2 Menu Design [12]

There are four main types o f menus:

• Pulldown Menus - are pulled down from a cascade button. Cascade buttons should

always be available in the context that they are needed. Menus can also contain

- 2 3 -

Graphical User Interlaces

cascade buttons so that a number of menus may be nested. The menubar is a

horizontal collection o f cascade buttons.

• Tearoff Menus - are a combination of a tearoff button and another menu that is

usually a pulldown menu. A tearoff button contains a dashed line graphic

representing perforations. When the tearoff button is activated, the menu changes

into a dialog box. A tearoff menu is useful when you do not want the menu to

disappear after a menu selection.

• Popup Menus - are context sensitive, but give no cue to their existence. They are

popped up when the user presses a particular mouse button (usually the right hand

button) over a component with an associated popup menu. Popup menus should

only be used to provide shortcuts, since new users of an application may not

realise or remember that they exist.

• Option Menus - provide a means of making a selection from a set of choices and

takes up only a very small space. An Option Menu is popped up from an option

button, which is distinguished by a bar graphic usually on the right side o f the

button.

Menus are composed of titles, elements, mnemonics, and accelerators. A menu’s title

should be unique to avoid confusion and the title should clearly indicate the purpose

of the menu. The most basic menu elements include labels, separators, push buttons,

toggle buttons, and cascade buttons. Either a text label or a graphical icon can identify

the elements and a mnemonic provides a quick way to access menu elements from the

keyboard. While the location cursor is in a menu or menubar, pressing the mnemonic

letter of an element activates that element. An accelerator provides a way to access

menu elements from the keyboard without posting the menu. Accelerators are useful

to the experienced user for saving time when using frequently used components. The

application should provide accelerators primarily as a matter of utility, not design

conformity.

The application should use the following guidelines [5][12] when designing menus

and menu systems:

- 2 4 -

Graphical User Interlaces

• Menu structures should be kept simple.

• Menu elements should be grouped appropriately.

• Menu elements should be listed according to order of use.

• Destructive actions should be separate.

• Mnemonics and accelerators should be provided where appropriate.

2.1.3.3 Dialog Design [5]

Dialog boxes can limit how a user can interact with other windows in order to force

the order of interaction. These limitations, which are called modes, are described in

the following:

• Strive for consistency

• Offer informative feedback

• Design dialogues to promote completion and closure of the dialog

• Offer simple error handling

• Permit easy reversal of actions

• Support internal focus of control

• Reduce short-term memory load

2.1.3.3.1 Mode o f the Application [5] [12]

There are a number of different modes that a dialog may have:

• Modeless - Allows interaction with the secondary window and all other windows.

• Primary modal - Does not allow interaction with any ancestor of the window.

• Application modal - Does not allow interaction with any window created by the

same application even if the application has multiple primary windows.

• System modal - Does not allow interaction with any window on the screen. This

includes windows from all other applications and any icon box.

2.1.3.3.2 Common Dialog Box Actions [12]

Dialog boxes have a combination of the following elements:

1. Yes - Must indicate an affirmative response to a question posed in the dialog box

and then close the window.

-2 5 -

Graphical User Interlaces

2. No - Must indicate a negative response to a question posed in the dialog box and

then close the window.

3. OK - Must cause the application to apply any changes and perform related actions

specified by the components in the dialog box and then dismiss the dialog box.

4. Close - Should cause the current dialog box to be closed without performing any

of the actions specified by the components in the dialog box.

5. Apply - Must apply any changes and perform related actions specified by the

components in the dialog box.

6. Retry - Must cause the task in progress to be attempted again. This action should

be used in message boxes that report an error.

7. Stop - Must end the task in progress at the next possible breaking point. This

action should be used in a working dialog.

8. Pause - Must cause the task in progress to pause. This action should be used in a

working dialog and in combination with “Resume”.

9. Resume - Must cause a task that has previously paused to resume. This action

should be used in a working dialog and in combination with “Pause”.

10. Reset - Must cancel any user changes that have not been applied to the

application.

11. Cancel - Must close the dialog box without performing any dialog box actions that

have not yet been applied to the application.

12. Help - Must provide any help for the dialog box.

2.1.3.3.3 Determining Dialog Box Location and Size [13]

The application should size and place dialog boxes so that they do not obscure

important information in other windows of the application. The initial size of a dialog

box should be large enough to contain the dialog components without crowding or

visual confusion, but otherwise should be as small as possible. Once location has been

determined for one dialog box, all other dialog boxes should be located in the same

way - preferably towards the centre of the main active window.

- 2 6 -

Graphical User Interlaces

2.1.3.4 Data Display and Entry [5][7]

2.1.3.4.1 Data Display

High-level objectives for data display:

• Consistency of data display.

• Efficient information understanding by the user.

• Minimal memory load on user.

• Compatibility of data display with data entry.

• Flexibility for user control of data display.

2.1.3.4.2 Data entry

High-level objectives for data entry:

• Consistency of data-entry transactions.

• Minimal input actions by user.

• Minimal memory load on user.

• Compatibility o f data entry with data display.

• Flexibility for user control o f data entry.

2.1.4 Colour and Sound

2.1.4.1 Colours [12][10][5][6]

Colour is most important for making displays more interesting for the user. Colour is

useful for highlighting, grouping, distinguishing, and drawing attention. The

following guidelines are recommended:

• All captions should be one colour and all data-entry fields another.

• The active window should be a different colour to an inactive one.

• Warning and error messages should be in red.

• When the status of an item changes then its colour should change.

Main window areas should follow the general rules of:

• Workspace background - neutral, lightly saturated colours.

• Window background - neutral, lightly saturated colours.

• Selection/input area - bright, highly saturated colours.

- 2 7 -

Graphical User Interlaces

The best method of designing is to first design in monochrome and then add colour.

Colour is a powerful visual stimulus that means that unfortunate choice combinations

will be noticed:

• A screen should not contain any more than four different colours. Research has

demonstrated that the more colour codes used, the longer it takes the user to

distinguish each one.

• Different shades of the same colour should be used and different variations for

emphasis.

• Different shades of grey are acceptable colour variations.

• Warm colours should be used to indicate actions and brightness for emphasis.

Black, blue or white backgrounds are the most affective.

• Incompatible combinations of colours should be avoided. Examples are blue and

yellow, red and green, green and blue, red and blue.

• High colour contrast should be used for character and background pairs. Examples

are white on black, white on blue, or black on white.

• Light blue should be confined to background areas.

• Red and green are hard to see on the periphery of the visual field and so should

not be used in areas away from the centre of attention.

• Colours should be assigned to user expectations. Blue for cold, red for hot and

danger, green for go, amber for wait.

• Bright colours should be used sparingly.

• Users should be allowed to set their own colours.

• Colour blindness should be considered when choosing colours. (E.g. red<->green)

2.1.4.2 Sound [12]

Sounds within an application should be kept to a minimum, using them only for

confirmations, errors, cancellations, interrupts, etc as required. Sounds are important

to inform the user that the application is still operating correctly. However, sound

should not be a requirement for the standard operation of the application, since some

users may turn their sound level down or may be hard of hearing.

- 2 8 -

Graphical User Interfaces

Some of the most important aspects o f sound are for:

• Information about physical events (e.g. Successful save)

• Information about invisible structures (e.g. Computer to computer

communication)

• Information about dynamic change (e.g. Running of a process)

• Information about abnormal structures (e.g. Errors)

All of these aspects, and others, have many different reasons for being produced and

so different sounds may be required for the different circumstances. For example, if a

physical event occurred such as a successful save, the sound would preferably be

different than another physical event such as a cancellation.

2.1.5 International Considerations [10]

The most important functions needed to develop an international product are

summarised as:

• Appropriate character sets.

• Multiple orientation and direction o f text.

• A way to translate all visible text.

• A way to localise the date, units, formats, colours, and symbols.

2.1.5.1 Country-Specific Text

Obviously, all text cannot be translated for all possible languages for users that may

use the application. However, in some locale, order of reading differs and some

thought should be given to whether it is possible to allow user flexibility to request

order of reading.

2.1.5.2 Country-Specific Data Formats

• Thousand Separators - The comma, period, space, and apostrophe are all examples

of valid separators for units o f thousands and are shown in the following

examples: 1,234,567 1.234.567 1 234 567 1*234*567

- 2 9 -

Graphical User Interfaces

• Decimal Separators - The comma, period, and the centre dot are examples of valid

separators for decimal fractions as shown in the following examples: 5,324 5.324

5*324

• Positive and Negative Values - Various countries indicate positive and negative

values differently. The symbols + (plus) and - (minus) can appear either before or

after the number. Negative numbers can be enclosed in parentheses in applications

such as a spreadsheet.

• Date formats - Most countries use the Gregorian calendar but others do not and

dates can be formatted differently based on the locale. The hyphen, comma,

period, space, and slash are all examples of valid separators for the day, month,

and year. In numeric date formats, the month and day fields can be reversed, and

in some cases, the year field can come first. For example, the 4th of August 1992

can be written as either 4/8/92 or 8/4/92 depending on locale. In addition, users in

other countries sometimes place the year first, so June 11, 1992 could be 920611

or 921106.

• Time formats - Time formats can change based on locale. The colon, period, and

space are examples of valid separators for hours, minutes, and seconds. The letter

h can separate hours and minutes. There is both the 12-hour or 24-hour notation.

For 12-hour notation, a.m. or p.m. can appear after the time, separated by a space.

The following example shows a number of valid time formats: 1830, 18:30, 04 56,

08hl5, 11.45 a.m., 11.45 p.m., 13:07:31.30, 13:07:31

2.1.6 Errors [7][5]

Error messages should be informative and help the user to correct the problem. Actual

correction should be an easier operation than the operation that caused the error. To

prevent errors, dialogues should guide the user and in certain circumstances if the

error message is going to give the solution, perhaps the application should assume to

continue with that solution. Clear instructions should be provided throughout the

application and allow the user to exit from any process or the application at any time.

When an error occurs the user should be told how the application interpreted the

- 3 0 -

Graphical User Interlaces

situation, and allow the user to define how detailed the error messages are to be. For

example:

• Simple error message - A number was expected.

• Not so simple error message - “T” was entered, but a number was expected.

Brief simple but accurate sentences should be used so that a user can immediately

understand and act upon the message.

2.1.6.1 Error-Message guidelines

Errors should be posted using dialog boxes and should follow these guidelines:

• Product:

- As specific and precise as possible.

- Constructive - an indication of what needs to be done should be given.

- A positive tone should be used not condemnation.

- Multiple levels of messages should be considered.

- Grammatical form, terminology, and abbreviations should be kept consistent.

- Visual format and placement should be kept consistent.

• Process

- A message quality-control group should be established.

- Messages should be included within the design phase.

- All messages should be kept in a file.

- Messages should be reviewed during development.

- Frequency data for each message should be collated.

- Messages should be reviewed and revised over time.

2.1.7 Utilising Help [6][4][7][12]

Even in the most intuitive application, the purpose of a component or the way to do a

task can be hard to figure out for a new user. The application should provide help

mechanisms for all o f its aspects. The menubar should store the location for the help

pulldown menu but short cuts should also be available, e.g. FI.

-3 1 -

Graphical User Interlaces

Users avoid using help because they have difficulty in finding the actual information

they require; however an index and search system helps tremendously. Once they

have reached the required area of help, relevant comprehensive instructions should be

given to allow the user to continue. There should be no difficulty in switching

between help and the working context, and the help interface must also be as simple

as possible, to operate.

The most important aspect of the help facility is the quality and layout o f help

information, and that it must be available at all times.

- 3 2 -

Graphical User Interfaces

2.2 Implementation of GUI Guidelines

2.2.1 Introduction

The principles gathered from section 2.1, the review of graphical user interfaces, were

used to steer the design and development of the various facilities that make up the

PSUE. These guidelines were initially quite relaxed but later tightened as diverging

styles, in the modules, became apparent.

2.2.1.1 Consistency

As mentioned in the previous section, there are various separate modules that are

included within the PSUE. Each module has been designed to be in either of two

states, running in the integrated environment of the PSUE or as a standalone

application. This has required that each module must be totally self-contained but still

allow the sharing of information with others. To be consistent, if a feature of one

module changes, e.g. the layout of the file selection box, the same changes must occur

in all other modules.

Each of the PSUE modules is designed to do different tasks and therefore has

different requirements, however, due to the guidelines they should be generally laid

out in a similar manner. The basic layout followed by the PSUE modules is:

(a) The menubar is always at the top of the window and spans the entire width of

the module’s main window.

(b) The main panel that holds the principal control and manipulation buttons is

located on the left-hand side of the module’s main window. All buttons and

controls are laid out in a typical left-to-right and top-to-bottom style.

(c) Any graphical manipulation window is located on the right-hand side of the

module’s main window. The main PSUE interface was exempt from this

guideline since it was anticipated that its graphical viewer would be used quite

infrequently.

(d) Each module has a status and messages window that is located at the bottom

of the main panel within the module’s main window.

- 3 3 -

G raphica l u s e r Intertaces

(e) All popup windows are laid out in a typical left-to-right and top-to-bottom

style and have a consistent layout o f control buttons, i.e. Apply, Close, Help

etc.

(f) All cursors, hourglasses etc are consistent across all modules.

(g) Buttons, text entry fields, toggle buttons etc all have similar respective sizes,

layouts and actions across all modules.

Figure 2-1 shows the general layout o f the key areas o f a module that involves points

(a) through to (d) from the list above. Figure 2-2 shows point (e) from above that

covers popup dialog windows and Figure 2-3 shows point (g) from above that covers

buttons, text fields and other such standard widgets.

Figure 2-1 - General Layout o f Key Areas o f a Module
 . ~ ..." ~

M enubar

Graphical Manipulation Window

Status and
Messages

- 3 4 -

G raphical U ser Interfaces

Figure 2-2 - General Layout o f Key Features in Popup Dialog Windows

Left to Right
Ordering

Top to Bottom
Ordering

CODINE In te r fa ce

—Alternative Facilities
Tool W rap p er| Rem ote C onnection

Transfer Method---------
N one v File v P i p e S ock et

Direction--------------
Output J Input

-D ata Type —

Hexahedral M esh Data

D ata tra n sfe r for:

Geometry Data

Background Mesh Data

Boundary M esh Data

Tetrahedral M esh Data

All M esh Data J
Solution Data

Saving to filename;

| Neutral Data
. . . .

HHUmUHH

i - Command
/usr/people/jo/bin/tetragrid

| A p p l y j C a n c e l ■
' - -

Standard Dialog Buttons

- 3 5 -

G raphical U ser Interfaces

Figure 2-3 - Typical Size and Appearance o f Buttons, Text Fields and Other Widgets

3 - D

Vutwmg Control
View| Center| H esetl Model 1 Undo

V iew P a n e l C o o r d S y s | S e t R C e n l

Create Point
C rea te Rules

0.12 1.0 2.4

Poin t Curve L o o p § S u r f a c e

ID: 3 ncp: 2

D e s e le c t

Construct

D e c o m p o s e

C urve L o o p f S u rface -3 C r e a t e

R ev X | R ev W

Manipulate
C a lc u la t e B o u n c T n ^ - s o x

Copy | ChOir |D e le te

M irro rY Z I M irro rZ X M irro rX Y

Rot 1 Scale* Rack

Parameters List------------------------
Delaunay Intensity Param eter (Alpha)

Number of Smoothing Loops

g SSb ' '% % V - if ■ %
 - — .. .

1.0001 [1.0000]

m
r - M axim um Dimensions-----------------------------------

Maximum Points (MAXP) 100000 [100000]

Maximum Elements (MAXE) 500000 [500000]

Maximum Element Faces (MAXI) 60000 [60000]

Maximum Rejection Array (MAXD) 18000 [18000]

Close

Font and colour resources are consistent throughout all o f the modules. The main

guidelines for the colours follow the original guidelines mentioned in section 2.1.4.1

and also allow for the user to change the colour o f just about any component found

throughout all the modules. The fonts have been kept simple and only three are used

throughout all o f the modules. The main font is used for all buttons, text entry fields,

status windows etc. and another font is used to highlight sections and frames that

group controls o f a particular manner. The third font is a title font and is used quite

seldom within the modules.

The use o f the mouse is consistent throughout all o f the modules, where for general

user interfaces, the left mouse button is used for almost all operations such as button

selection, slider m ovement etc. On UNIX systems, the middle mouse button defaults

to being able to paste any previously selected text into the given window, text field

etc. and so the modules continue to allow such pasting o f text.

- 3 6 -

G raph ical User Interfaces

Within the graphical user interfaces the mouse is also used to transform and

manipulate the geometrical data. All transformations use the mouse consistently, such

that in transformation mode the mouse buttons have the following actions:

• Left button - Translate the geometrical data.

• Middle button - Rotates the geometrical data.

• Right button - Zoom in and out o f the geometrical data.

While in an editing mode the mouse buttons have the following actions:

• Left button - Selects geometrical entities.

• Middle button - Deselects geometrical entities.

• Right button - Complete / Confirmation o f creation.

One o f the most important areas that must be consistent throughout an application is

the help feature. For this reason a single help facility was developed that could be

individually accessed by each o f the modules. This ensured that the help facility

appeared and acted consistently throughout all modules. This help facility would also

allow' the integration o f the user’s ow n notes and messages.

2.2.1.2 Levels o f Competence

Initially it was planned that various levels o f competence would be built into the

PSUE modules at all stages. Flowever, due to a large unforeseen amount o f other

functionality that would need to be integrated into the modules, the levels o f

competence functionality proposals where greatly reduced. The levels o f competence

would involve a novice level and an expert level, and would only have an influence

within the main PSUE module. Figure 2-4 shows the functionality switch found

within the main interface.

Figure 2-4 - Com petency Switch

- User Level------------------
Tutorial Expert

- 3 7 -

G raphical User Interfaces

2.2.2 Design of Control

2.2.2.1 Usability

As mentioned above, all modules have a status and messages window and a typical

example is shown in Figure 2-5. This is used to inform the user o f the success or

failure o f key operations. All messages are as informative as possible without

generating copious amounts o f data that the user w ould soon tire of.

While a module is busy the user is showm that the application is busy by use o f a

standard hourglass icon and / or by a popup message box that continues to update the

user on how far it is through the particular task.

No extreme com puter jargon is used w ithin any o f the modules. Since the user o f such

an application would have a basic understanding o f computer hardware, certain

simple computer jargon words, such as memory, have been used but kept to a

minimum.

2.2.2.2 Modifications

The guidelines suggest that an application should not tell the user what to do,

however, one o f the key design aspects o f the PSUE and its modules is the ability for

Figure 2-f ^ ' , w ' n ^ " - i w _ age Window

Load a geometry in FLITE3D form
1 point(s) have been created.
2 point(s) have been created.
No curve created:

No point has been picked.
Save a geometry in FLITE3D form
Save a background grid/sources

- 3 8 -

G raphical User Interfaces

it to guide the user through particular tasks. It could be seen that there is a thin line

between telling a user what to do and helping the user come to an informed decision

on what they are likely to need to do next. The PSUE attempts to address this issue,

mainly within the “ Pathfinder Module” that is shown in Figure 2-6. The “ Pathfinder

M odule” is discussed in further detail in the next chapter.

Figure 2-6 - Small Section o f the Pathfinder Module
Salveri

Flam Sal'Jtrlnrtiatjun

M SOPATRAN

MSC'NASTRAN

Cam ['Lit a j Platfarm i

-c Renat* Cannteetan i

CQ DINF Itkteifaee

Parallel P la t fa m i

XPVW

P W RUN

MPI RUN

a

Unlikely
Options

Possible
Alternatives

Likely
Options

As mentioned in section 2.2.1.1 o f this chapter, the PSUE modules allow users to

change fonts and colours o f almost all components. These changes can be stored as

the user’s specific preferences that may be recalled each and every time the user starts

any o f the PSUE modules.

As an extension to the novice / expert level o f competence functionality, short-cut

keys are available within graphical windows. Short-cut keys were not introduced into

the main window interfaces because o f the amount o f complexity, not to mention the

modules diverse functionalities.

2.2.2.3 Indicating Action o f Components

To provide a consistent feel for control widgets within the modules, the following

show how each widget has been used:

• Push Buttons - Selection or activation o f operations.

• Toggle buttons - Selection o f multiple options.

• Option buttons - Selection o f large number of options.

- 3 9 -

G raphical U ser Interfaces

• Text Fields - Entry o f text and or numerical values

• Lists - Selection o f singular and / or multiple items.

Figure 2-7 through to Figure 2-1 1 show typical examples o f each o f the above types

o f widgets.

Figure 2-7 - A Typical Push Button

Apply

Figure 2-8 - A Typical Toggle Button

Auto Apply

Figure 2-9 - A Typical Option Button

Multi View

Figure 2 -10 - A I yp ical I ex t Entry f ield

1.04 -0.32 -1.94

Figure 2-11 - A Typical List
-adobe-courier-bold-o-norm al— 11-80-100-100-m -60-iso8859-1
adobe-courier-bold-o-normal— 14-100-100-100-m -90-iso8859-1

-adobe-courier-bold-o-norm al— 17-120-100-100-m -100-iso8859-1
adobe-courier-bold-o-normal— 20-140-100-100-m -110-iso8859-1

-adobe-courier-bold-o-norm al— 25-180-100-100-m -150-iso8859-1
adobe-courier-bold-o-normal— 34-240-100-100-m -200-iso8859-1

-adobe-courier-bold-r-normal— 11-80-100-100-m -60-iso8859-1
adobe-courier-bold-r-norm al— 14-100-100-100-m -90-iso8859-1

-adobe-courier-bold-r-norrnal— 17-120-100-100-m-100-iso8859-1
-adobe-courier-bold-r-norm al— 20-140-100-100-m -110-iso8859-1
-adobe-courier-bold-r-norm al— 25-180-100-100-m -150-iso8859-1
-adobe-courier-bold-r-norm al— 34-240-100-100-m -200-iso8859-1
-adobe-courier-medium -o-norm al— 11-80-100-100-m -60-iso8859-1
-adobe-courier-medium -o-norm al— 14-100-100-100-m -90-iso8859-1
-adobe-courier-medium -o-norm al— 17-120-100-100-m -100-iso8859-1

H
I a

- 40 -

G raphica l User Interfaces

Throughout all o f the modules, text labels have been used for all control widgets, such

as the buttons and no graphical icons have been used due to requirements o f other

developm ent features.

Default values o f text are provided for most input data entries whereas more

complicated input details such as directory and filenames are left blank. These entries

are facilitated by use o f buttons that initiate a file selection box process for directory

and / or filename selection. Figure 2-12 shows a typical example o f default values and

button use for filename specification.

ine/.PSUE/bin/.

Figure 2-12 - Typical Example o f Defaults and Specifications

Select Optimisation Script.

FilterOptimisation Process--------

No optimisation script is active ti/bigdisk/ed/Downloads/mine/.PSUE/bin/*

Directories

CheckArch
CheckEnv
CreateConfig
GenSurf.ctl
G e o r n B u i l d

GridGen
PSUE
ReCon

line/.PSUE/bin/.

Number of lo#ps
Selection

iti/bi g d is k/e d/D o wn load s/m ine/.PSUE/bin/
Load Initiate Interruptl

Select Filter Cancel
Close

Throughout all o f the modules there are many initial values found within all o f the

different functionality and each one is associated with toggle buttons, option buttons

-4 1 -

G raphical User Interlaces

and entry fields. The specific widget control associated with every default value is set

to show the corresponding value or setting.

One o f the biggest standards within all graphical user interfaces is the appearance o f

components that are not available either temporarily or permanently. These

components are disabled and are visually represented as “ghosted” or “greyed” out

and an example may be seen in Figure 2-13. As certain processes are carried out,

particular tasks may become available and their corresponding components are then

enabled and become visually equivalent to normal components. If at any stage a

particular action results in certain tasks being inappropriate, the corresponding

components should be deactivated as before.

Figure 2-13 - Example o f Ghosted / Unavailable Functionality
r Mampulate

Calculate Bounding Box
Available Functionality

Move Delete Copy ChDir
mmnm

MirrorXY
-

MirrorYZ MirrorZX

A1 ran Unavailable Functionalitv

2.2.2.4 Feedback

As mentioned previously, when a module is busy feedback is given to the user to

signify this fact. At all times the pointer is changed to an hourglass icon and where

appropriate a dialog box is shown. The dialog box contains a message to signify what

is actually taking place and progress indicator. Depending on the task one o f two

methods is used for displaying the progress indicator:

(a) If the length o f the operation is indeterminable, a small bar moves back and

forth to signify that the application is still working.

- 4 2 -

G raphical User In terfaces

(b) If the length o f the operation is known or can be closely estimated, a

percentage bar is used and is updated at regular intervals during the operation.

Figure 2-14 shows a typical progress indicator with a percentage bar as described in

option (b) above.

Figure 2-14 - A Progress Indicator Using a Percentage Bar

ledral Grid File
■■■■Hi
)lution File
■ ■ ■
eutral Fi

Hexahedral Grid File

Solution File

-

IGES File

mis — ..

-M ease w ait... -n
Loading

Boundary file

tral File

ES File

Y> complete

ated.
l i n n f A n n p / ' t i \ i i i t i p g

Help

Some times the delays may be quite short and under these circumstances, popup

dialog boxes can appear and disappear too quickly for the user to acknowledge them

but long enough to distract them. When this is the situation the dialog box should not

be used, just the pointer changing to an hourglass icon should be sufficient.

Direct feedback after a certain key task has been performed should be given each and

every time. This should use the standardised status and messages window found

within each module as discussed previously in this section. However, major critical

errors should be highlighted by high visibility error dialogs that must be

acknowledged before the user can continue. The error message should also appear in

the status window so that a complete history o f the user’s actions is maintained within

one key area.

- 4 3 -

G raphical User In terfaces

The application should take care not to present too many message dialogs that require

confirmation, only critical and very important information messages should require

confirmation.

2.2.3 Workspace Elements

2.2.3.1 Graphical Layout

Since each o f the different modules is used for very different tasks and therefore has

different functionality, the layout o f each module is different to the next but they all

follow the general guidelines discussed previously in this section. These involve a

narrow main panel on the left-hand side o f the main w indow with a messages and

status window below it and the main graphical region, i f present, on the right-hand

side.

When using a graphical region, it is usual to use the entire screen and so such modules

interrogate the window manager in order to ascertain the m axim um size that the main

window may be set to. However, modules that do not use graphical regions are kept

as narrow and compact as is reasonably acceptable. Figure 2-15 shows the difference

between the two types o f interfaces and the amount o f space that they both take up.

2 -1 5 - Comparison between the two different types o f interfaces

Module without
graphical wdndow'

M odule with
graphical window

- 4 4 -

G raphical User In terlaces

If a panel is created that contains a large number o f control widgets, they are laid out

so that widgets that are likely to be the used in conjunction with each other are close,

ensuring that the user is not “jum ping” around the panel unnecessarily. Figure 2-16

shows an example o f the layout o f related functionality. All o f the screen layout

guidelines described previously are followed by all o f the modules.

Figure 2-16 - Panel Showing Close Proximity o f Related Functionality

SmoleView

Control
V ie w l C n n h r l R e s e t ! M o d e l ! U n d o Example
V iew P a n e l? C o o r d S e t R C e n t

Create Point hC r e a te A d ju s t R u le s C reate points
0.1? 1.0 -2.4

V

Point -1 Curve
i'.;

0 <• ID: 3 ncp: 2

S u r f a c e

To select points
D e s e l e c t D e c o m p o s e

!
Cum S u r fa c C re a te

To create Curves
Maiiipuiate -
|C a lc u la te R o iin d m < p T ox|

C o p y C h D irM o v e j D e le te
I M

M irro rY Z j M irro rZ X

rr u n ! A T ran I H of

M irrorX Y

S c a le

2.2.3.2 Menu Design

Almost all o f the m enus used by the modules are pulldow n menus from the menubar

that keeps a certain level o f consistency throughout the application, however option

menus are used occasionally.

As show n in Figure 2-17, every pulldown menu is given the functionality o f a tearoff

menu so that the user has complete freedom to treat the m enu as either a pulldown

menu or a tearoff menu. This allows the user to access the functionality held on the

menu in a variety o f ways. They may use it as a pulldown m enu if they only want to

- 4 5 -

G raphical User Interfaces

access the functionality occasionally, or as a tearoff m enu for continuous use of

particular options. The specific use o f the menu may change as the user uses the

module.

Figure 2-17 - Pulldown M enu Shown with Tear-off Functionality

ance Utilities
sBSBti

Grid-Control
mSSSSm

Topology Information Panel..

Size Information Panel...

Visualization Control Panel ...

Geometry Inclusion Panel...

Geometry Template Panel...

* rcCer Geometry Operation Gizmo ...

Surface Reconstruction Panel...

Rules Topology Relation Panel...
a m s Boundary Condition Panel...

m

The option menus are used within panels w hen two or more options are available and

there is not much space available within the panel. The option button is always

initialised to a specific setting and an example is show n in Figure 2-18.

Figure 2 - 1 8 - E xam ple o f an O ption Menu

SingleView

Multi View

Between the different modules, m enubar pulldown menus are kept as consistent as is

practicably possible, allow ing the user to know where certain functionality is within

one module once they know' w here it is in another.

- 4 6 -

Graphical User interlaces

2.2.3.3 Dialog Design

Four different types of dialog boxes have been used within the modules:

(a) Utility panels that give the user access to further functionality that would not

otherwise fit neatly in the main panel. These are modeless dialogs and

therefore allow the user to continue accessing all other areas of the module.

(b) Informative windows that provide the user with particular important feedback.

These are also modeless dialogs.

(c) Critical warnings and error message boxes. These are both primary modal

dialogs that therefore require the acknowledgement or dismissal of the dialog

before any other functionality maybe accessed.

(d) Application busy dialogs. These are also primary modal dialogs that require

the user to wait until the task is completed upon which the dialog will

automatically close and return control back to the primary window.

All dialog boxes appear at the centre of the primary window unless the window is

placed mostly off-screen. In which case the dialog box will appear at the edge of the

screen, at a point closest to the centre of the primary window whilst ensuring that the

whole of the dialog box is visible.

2.2.3.4 Data Display and Entry

Data display is kept to a minimum so that the user does not become overloaded with

data. Most data is presented sequentially or coupled to allow the user to interact and

store particular values if necessary. Due to the nature of simulation engineering large

data sets are used but seldom seen or accessed as such.

Entry of data follows the same philosophy as data display and usually coexist so that

and data displayed can generally be directly edited and updated.

- 4 7 -

Graphical User Interfaces

2.2.4 Colour and Sound

2.2.4.1 Colours

As mentioned previously, all modules use exactly the same colour scheme that has

been designed to follow the guidelines in the first chapter very closely. The key

aspects include the lightly saturated background being “light steel blue”, highlighted

headings using a darker shade of the blue, all text is black and high contrast colours

are used for highlighting and selection.

The default colours may be changed at any time using the main interface resource

panels and saved as the user’s preference. This also allows the user to adjust the

colours for any visual impediment that they may have.

2.2.4.2 Sound

The PSUE has been designed primarily for the UNIX platform and most large UNIX

vendors produce machines that are not sound orientated. Therefore sound has not

been used at all since any audio cues that may become expected by users on some

machines might not be heard on other machines causing confusion. Similarly, if a user

is used to no sound and then is subjected to audio cues, they too may become

confused.

2.2.5 Internationa] Considerations

Very little direct international considerations were undertaken during the development

of the PSUE modules as it was anticipated that these would be relatively easy to

incorporate at a later stage if needed.

The text used for all labels and buttons uses the machine’s settings for international

character sets and therefore should undertake whatever setting the machine is

configured to. However, data formats are restricted to using no punctuation

characters, for example commas or apostrophes.

- 4 8 -

Graphical User Interfaces

The date and time is presented on the top of the main interface at all times but is used

in long format and therefore would not be expected to change with international

adjustments. The only other situation in which date and time is used is with file

creation and modification times. These are controlled solely by the operating system

and therefore depend directly on the international settings of the specific platform.

2.2.6 Errors

All errors are reported directly to the user and are kept as informative as possible. All

key information is displayed in the dialog box to aid the resolution of the problem.

The messages are kept as constructive as possible and if the situation can be reversed

the appropriate instructions are given.

If a large amount of data is expected to be output as either errors or messages, log

files are used and the message dialog points the user to the appropriate file.

2.2.7 Utilising Help

Help is provided within every module of the PSUE and may be accessed from the

menubars that provide a choice of access methods. Each and every major dialog also

provides access to context sensitive help

A help index is one of the methods provided by the functionality under the menubar

but the help dialog also provides direct access to the help index for the particular

module.

The help dialog has been kept particularly simple to ensure no confusion may occur

and it also allows for the user to configure and edit the help system and contents at a

system and user level. Figure 2-19 shows the simplified help window with the module

specific index facility.

- 4 9 -

G raphical U ser Interfaces

Figure 2-19 - The Help Window with Index Facility

UE Windoam

e present window is PSUE window.e m
window consists of five areas;

1. Menu Bar
2. Functions Workspace
3. Status Area
4. User level control buttons
To select an appropriate topic just click on one of
items in the list below:

enn i;a
(Click here to go back to men

.....
The Menu Bar consists of 4 areas;

-------- --===
TopicFinished Index

■ . ■

^H ypertex t Based
Main Region

hIndex Facility

- 50 -

PSUE Main Interface

3 PSUE M a in I n t e r f a c e

-51 -

PSUE Main Interlace

3.1 Overview of the Main Functionality

The Parallel Simulation User Environment, as discussed in the initial chapter, consists

of a set of modules. These modules are coupled into a seamless environment by the

main graphical user interface that primarily controls the modules and other processes

and also manages data communication.

The main interface, shown in Figure 3-1 below, can be separated into three regions,

which are the menubar, the main functionality region, and the message window. The

message window displays all information messages, warnings and errors so that the

user is always aware of the current situation. The menubar provides access to a

number of general features such as:

• Save and load state facilities.

• Colour and font resource management.

• Process control.

• Pathfinder.

• On-line help.

The main functionality region is the control centre for all the PSUE modules and is

divided into two regions, the generic functionality on the left and the user’s

functionality on the right. Both sets of functionality are arranged into a system of

menus that group various categories of applications together. The user’s functionality

region is reserved for the applications that the user will integrate into the environment

and this is discussed later in the chapter.

- 5 2 -

PSU E Main Interface

—

Facilities

3:31 AM
Friday 15 May 1998a r a U e \

s
s s a s i s a i i i E

r
Tutorialuvmo Expert

U.W. Swan seaG eneric

Data M anagem ent

Geometry M anipulations f

Numerical Libraries \
Grid Generation

Solvers
Ji•. '-N—V'-.H ••->.- v-n u?vS«Ki»v«W!4k ̂ C'-hV.V ” ? A

Computing Platforms !

System Tools

Line Repair Module

Flow Solver 2D

ElectroMagnetics

m-.

Data Analysis

P S U F in i t ia te d

Figure 3-1 - The PSUE Main Interface
!..... - LilQ

The generic functionality consists o f the following main categories:

• Data Management

• Geometrical Manipulations

• Numerical Libraries

• Grid Generation

• Solvers

• Computing Platforms

• System Tools

• Data Analysis

- 5 3 -

PSU E Main Interface

The selection o f one o f these categories will display the specific functionality o f that

type. The following sections describe the functionality within each o f the categories.

3.1.1 Data Management

The data management section is used to contain all o f the file input and output

facilities for the main interface. This section is the only section o f the main interface

functionality region that does not have a region for the user’s applications. The

loading capabilities are found on the left and the saving capabilities on the right.

Figure 3-2 - The Data Management Functionality

Data Management

Geometry File Geometry File

Background Grid File Background Grid File

Boundary Grid File Boundary Grid File

Grid File Grid File

Hexahedral Grid File

Solution File

Flexahedral Grid File

Solution File

Neutral File Neutral File

IGES File IGES File

Go Back

A num ber o f specific PSUE file types are contained within this section but there is

also provision for exportation o f data to other packages. For example, under the

M EDUSA project, a filter system was developed to create, append and read

MSC/Patran database files. Figure 3-2 shows the data m anagem ent functionality and

- 5 4 -

PSU E M ain Interface

the PSUE file types that include geometry files, background grid definitions for

controlling grid generation, boundary and volume grids, along with neutral and

solution data files.

The figure also shows the IGES import and export facility, however, it should be

noted that this underlying technology was provided by a project partner, IPK, from

the C A ESA R project. The MSC/Patran functionality mentioned above is not shown as

the functionality is only provided if the main interface detects that the software is

available on the current platform.

3.1.2 Geometrical Manipulations

Figure 3-3 - The Geometry Manipulation Functionality

Geometry Manipulations-
Generic

Geometry Builder

MSC/PATRAN

Go Back

U.W. Swan sea

New Window

Help

There are only two options under the generic functionality region o f the geometrical

manipulation section that is shown in Figure 3-3. One o f these options is the PSUE

module “Geometry Builder” w hich deals with CAD creation, manipulation and repair.

- 5 5 -

P S U E M ain Interface

The other option is a close link with MSC/Patran and was developed specifically

under the M EDUSA project.

Upon selection o f MSC/Patran, the PSUE interface will automatically create a new

MSC/Patran database file with all o f the current geometrical data that is in the main

interface. MSC/Patran will then be initiated, by the PSUE, in such a way that it will

automatically load the database that was just created. This provides a very easy and

efficient method o f accessing the functionality o f MSC/Patran.

3.1.3 Grid Generation

The grid generation section shown in Figure 3-4, provides access to three more o f the

PSUE modules and once again, MSC/Patran for exportation o f geometrical and grid

data entities. The PSUE modules provided are the “Grid Generator”, the “Grid

Analysis” and the “Grid Adaption” modules.

New Window

Figure 3-4 - The Grid Generation Functionality

Gnd Generation
G e n e r i c U.W. Swan sea

Grid Generator

Grid Analysis

Grid Adaption

MSC/PATRAN

Go Back

- 5 6 -

PS U E Main Interface

The grid generator, utilising the FLITE3D grid generators, is used to create 2D

isotropic and viscous triangular grids, triangular surface grids and tetrahedral volume

grids. The grid analysis module takes all o f the aforementioned grids, checks them

and then provides an extensive display o f grid quality measurements.

3.1.4 Solvers

The section reserved for solvers, shown in Figure 3-5, contains three options: the flow

solver initiation panel, MSC/Patran and MSC/Nastran. The MSC/Patran option works

in the same way as discussed in the previous sections and transfers all geometrical and

grid entities from the PSUE to MSC/Patran. The MSC/Nastran option opens a panel

for job submission to MSC/Nastran.

Figure 3-5 - The Solver Functionality

- Sobers -

Go Back

U.W.SwanseaGeneric

MSC/NASTRAN

Flow Solver Initiation New Window

MSC/PATRAN

Help

- 5 7 -

P SU E M ain Interface

3 .1.4.1 The Flow Solver Initiation Panel

Within the scope o f the PSUE development, it was not possible to integrate any

specific solver into the PSUE interface as a generic module. Therefore the flow solver

initiation panel was developed as a step towards such functionality. This panel is

completely generic and is controlled using a text file that the user provides. Within

this control file, the user can specify any num ber o f solvers and user-defined

parameters. Upon initiation o f the flow solver panel, the control file is loaded and the

appropriate options are added to the panel. The panel will allow the user to set

appropriate parameters and then create a parameter input file ready for the solver or to

create the parameter file and initiate the solver immediately.

Figure 3-6 shows a typical view o f the flow solver initiation panel and Figure 3-7

shows the generic solver settings panel. The user settings panel appears the same as

the generic settings panel with ju st the revised labels and default values.

Figure 3-6 - The Flow Solver Initiation Panel

= Flow Sofver Initiation Panel • □

Admin Settings Execute Tools Help

Mach Number

Alpha Parameter

0.5

0.0
....

No. Of Iterations

Printing Level

Setup Flag

1500

1

0

Parameter File

/var/tm p/fl o v/3 d. p aram

- 5 8 -

PSU E M ain Interface

Figure 3-7 - The Flow Solver Generic Settings Panel

j Generic Algorithm Settings

Courant Number - C.F.L. 2.0

Boundary Relaxation 0.1

Second Order Dissipation Coefficient 0.4

Fourth Order Dissipation Coefficient 0.2

Enthalpy Damping Coefficient 0.1

Residual Smoothing Coefficient 0.0

Number of Multi Stages 3

1 st Stage Coefficient 0.6

2nd Stage Coefficient 0.6

3rd Stage Coefficient 1.0

4th Stage Coefficient 0.0

5th Stage Coefficient 0.0

Close Reset Help

- 5 9 -

PSUE Main Interface

3.1.5 Computing Platforms

The computing platforms section, shown in Figure 3-8, contains three options for

starting panels and another two options that provide access to other sections. The

panels that may be initiated from this section are the “Remote Connection Tool”, the

“CODINE Interface” and the “Optimisation Panel” modules o f the PSUE that are

discussed below.

The Parallel Platforms section provides access to public domain software for

executing tasks on parallel and networked platforms. The software that has been

included within this section is XPVM, PVM Run, and MPI Run.

The Parallel Tools section, shown in Figure 3-9, provides access to further sections

and options that altogether involve the following items:

• Domain Decomposition section, within which no generic functionality exists since

the development requirements did not include such a facility.

• Parallel Grid Generation, for creation of grids in parallel.

• Grid Analysis, for statistical analysis of grid quality measurements for partitions.

• Parallel Solver, for execution of the FLITE3D parallel solver.

• Performance Monitoring section, which contains access to the public domain

software of XPVM and ParaGraph.

- 6 0 -

P S U b M ain Interface

Figure 3-8 - The Computing Platforms Functionality~ •' ' . ~ —— ; —----------— —
Computing Platforms------------------------------------

Generic

Remote Connections

CODINE Interface

Parallel Platforms

Parallel Tools

Optimisation Control

U.W.Swansea

New Window

Go Back

___________ Figure 3-9 - The Parallel Tools Functionality

- Parallel Tools------------
G e n e r i c

D o m a in D e c o m p o s i t i o n

Para l le l Grid G e n e r a t i o n

Grid A n a ly s i s

I Pa ra l le l S o l v e r s

P e r f o r m a n c e M o n i t o r i n g

Go Back

U.W.Swansea

New Window

Help

-6 1 -

P S U b Main Intertace

3.1.5.1 Remote Connection Tool

The remote connection module is a utility that allows a user to connect to a remote

machine using a username and password. Once connected data files may be

transferred back and forth between the local and remote machines. The module also

provides the ability to initiate any num ber o f jobs on the remote platform and provides

an indicator to show how busy the remote platform currently is. Figure 3-10 shows

the remote connection tool and Figure 3-11 shows the selection o f the remote machine

to connect to.

Figure 3-10 - The Remote Connection Tool - RECON

Control

Exit J
—Machines

Local Machine :

Remote Machine :

giunti

Cevert |

Status W indow-

Connected as ed to
C evert.

r-File Transfer-

Local Machine

Filter

gdi sk/ed/Down1oads/mi n e / . PSUE/bi n /*

Directories

ne/.PSUE/bin/,
ine/.PSUE/bin/..

Files

z

i/CheckArch A

i/CheckEnv =
i/CreateConfig
i/GenSurf.ctl
i/GeomBuild
i/GridGen
i/PSUE
i/ReCon ▼

i ______ J J >

Filter

Remote Machine

F i l t e r

/ n f s /g iu n t i /b i gdi s k /ed /M 09 /*

Directories

S i a M
;d/M09/..
;d/M 09/iges

I/M 0 9/bdryg e o m. d a ta
l/MO 9/fro m jg s
I.M 0 9/f ro m_i g s . d ata
l,'M09/interact
l/M 09/phone-1 l.sec
l/M 09/phone-33.sec
l/M 09/select
l,M 09/select2

El i u i h j EE J
Filter

Send Files Retrieve Files

j-J o b Execu t |o n - - — 1
Command: / n f s / g i u n t i / b i gdi s k / e d /b i n/m pi n t e r a c t] Execute 1

-R e m o te System Activity---------

CPU Usage:
..

- 6 2 -

P S U E M ain Interface

i Bandini
C evert
Clark
Giunti
Hunt
Fangio
Farina
Musso

Figure 3-11 - The Machine Connection Panel for R E C O N

C e v e r t

| Accept. | Close | Help ,

Machine Setup
Local Machine: giunti
R e m o t e M a c h in e

Username:

Password:

Machine:
i

The entire module uses a specially designed communication interface using inter­

process communications, TCP/IP and FTP (File Transfer Protocol). The module

communicates using these standards to ensure that any machine may be linked to as

these should work throughout the industry.

3.1.5.2 CODINE Interface

The CO D IN E Interface module was developed under the M EDUSA project and

provides extensive links with CO DINE that is a load-balancing package. It was

integrated in such a way that the user does not come into contact with C O D IN E ’s

interfaces directly and hence does not need to learn how to operate the software.

Figure 3-12 show the CO DINE connection panel along with some example entries.

The script file is the CO DINE specific script file used to submit the proposed job to

- 63 -

PSU E M ain Interface

the CO DINE job queue. Once the job has been submitted it would be referred to by its

name that is also specified within the connection panel and any program output is

redirected to the specified files.

CODINE Job Submission
Interactive

Batch

Script File /usr/people/ed/eflow3d

Name eflow

Standard Output /tmp/stdout

Standard Error /tmp/stderr

Submit Interface Cancel

Figure 3-12 - The CODINE Connection Panel

The CO DINE interface is far more complicated than the CODINE connection panel

since there is a wealth o f functionality available to the user and administrator.

However, once the software is configured it is expected that little intervention is

required and therefore the connection panel forms a good bond to the CO DINE

software.

3.1.5.3 Optimisation Control Panel

The optimisation control panel is an extension to the PSUE main interface that was

developed under the M EDU SA project. Figure 3-13 shows the optimisation control

panel that is initiated from the main interface at any time. The interface uses the same

script file technology as the user’s functionality as described in section 5.4.1 and

- 6 4 -

P S U E M ain Interface

therefore enables an arbitrary num ber o f applications to be inserted into the

optimisation loop.

Figure 3-13 - The Optimisation Control Panel
Atiacui'etirtM t, ''

7rocess Control

p Optijfiisaton Process

U.W.Swansea

. SsS*

Generate Grid
Run Solver
Auto Check Results

Number of loops: < 5

Load Initiate Interrupt

Close Help

In the example in Figure 3-13, four steps have been used whieh will:

(a) Update the geometry

(b) Re-generate the computational grid

(c) Run the solver

(d) Check the results

Optimisation loops that are more complicated, which could contain conditional

circumstances for example, can be implemented by using appropriate scripts or

programs as a particular step w ithin the optimisation process.

- 6 5 -

PSUE Main Interface

The number of loops of the optimisation may be specified that would normally be

used as the maximum extent of the optimisation process. Once an optimisation script

file has been loaded and the number of loops set, the “Initiate” button will start the

optimisation process and the “Interrupt” button will interrupt and stop the whole

process after the current activity has completed.

3.1.6 System Tools

This section is primarily for the user to integrate any miscellaneous applications into

the environment but it also seemed like an ideal location to include the functionality

that is found in the menubar. Therefore the following options are available:

• Colour Preferences - opens the colour resource management panel.

• Font Preferences - opens the font resource management panel.

• Process Communications - opens the process communications panel.

• Pathfinder - opens the pathfinder panel.

• Object Viewer - opens the object viewer that is a basic visualisation tool.

Figure 3-14 shows the functionality available under the “System Tools” Functionality.

P S U b Main Intertace

Figure 3-14 - The System Tools Functionality

System Tbi

Generic U.W.Swansea

Colour Preferences New Window

Font Preferences

Process Communications

Pathfinder

Object Viewer

F i g u r e 3 - 1 5 - 1 l ie D a t a A n a l y s i s F u n c t i o n a l i t y

Data Analysis

Generic U.W.Swansea

AVS

AVS/Express

Ensight

IRIS/Explorer

MSC/PATRAN

New Window

- 6 7 -

PSUE Main Interface

3.1.7 Data Analysis

The data analysis section, shown in Figure 3-15, provides a number of links to

proprietary software since it was decided that within the development time of the

PSUE only very basic post-processing capabilities would be possible. Such a tool

would never be able to compete with existing proprietary software and so the time

was spent developing close links with some of the existing software such as:

• A VS and A VS/Express

• Ensight

• IRIS/Explorer

• MSC/Patran

- 6 8 -

PSU b Mam Interlace

3.2 Resource Management

All graphical applications involve colours and fonts and an outline of how to use these

resources was given in section 1.5. During the development of the PSUE interface and

the rest o f the modules, these guidelines were followed where possible, however, the

development team also wanted to produce a distinctive window environment. Since

many users have different tastes and styles, resource management was provided to

allow the user to produce their own individual presentation of the PSUE windows.

Upon changing any resource within the main PSUE interface, the results within the

interface will be visible immediately, however, the other modules o f the PSUE will

only show the updated resources when restarted. In other words, any module that is

already running will retain the original resource settings.

3.2.1 Colour Preferences

The colour management panel allows the user to change the colour of almost all parts

of the PSUE interface. The colours are divided into a number of key descriptions:

• Main background colour for windows.

• Main foreground colour for windows (text).

• Title text colour (top of the main interface window).

• Background colour for buttons.

• Foreground colour for buttons.

• Background colour for frame labels.

• Foreground colour for frame labels.

• Background colour for functionality region labels.

• Foreground colour for functionality region labels.

• Background colour of the status window.

• Colours for the drawing area - background, nodes, edges and cells.

Figure 3-16 below, shows the typical view of the colour resource manager.

- 6 9 -

PS U E Main Interface

[Figure 3-16 - Typical View for the Colour Resource Manager
<=»j Resource

^ C olour M anager v" Font M anager

v Main Background

Main Text

Main Title Foreground

Button Background

' Button Foreground

Box Title Background

Box Title Foreground

Function Title Background

Function Title Foreground

S tatu s W indow Background

S election Box Background

Drawing Area Background

Drawing Area Points

Drawing Area Lines

Drawing Area Elem ents

Green

B rightn ess

Apply Auto Apply
Old

C olour
Mew

C olour

C I 'M ’ H e s e i H elp

W henever any change is made to the colour resources the new set-up is stored in a

configuration file so that the settings w ill be retained upon subsequent initiation o f the

PSUE interface.

It should be noted that the author did not develop the hexagonal colour picker within

the colour management panel.

3.2.2 Font Preferences

The font management panel allows the user to change the font o f all regions o f the

main interface. There are only three options: the font for the main title, the font for

framed regions and the font for all other text - labels, buttons, entry fields etc. The

fonts available depend upon the platform that the PSUE is being displayed upon and

which fonts have been installed on that platform. Figure 3-17 below' shows a typical

view' o f the font resource manager.

- 7 0 -

P S U E Main Interface

Figure 3-17 - Typical View o f the Font Resource Manager

Colour Manager ■/v fo n t Manager
=

F ont FistTitle Font
-11 -8 0 -1 0 0 -1 0 0 -m -6 0 -iso 8 8 5 9 -l
-1 4 -1 0 0 -1 0 0 -1 0 0 -m -9 0 -iso 8 8 5 9 -1
-1 7 -1 2 0 -1 0 0 -1 0 0 -m -1 0 0 -iso 8 8 5 9 -1
-2 0 -1 4 0 -1 0 0 -1 0 0 -m -l1 0 - iso 8 8 5 9 -1
-2 5 -1 8 0 -1 0 0 -1 0 0 -m -1 5 0 - iso 8 8 5 9 -1
-3 4 -2 4 0 -1 0 0 - 100 -nn- 2 0 0 - iso8859-1
11 -8 0 -100 -100 - m -60 - iso8859 1

-1 4 -1 0 0 -1 0 0 -1 0 0 m -9 0 -iso8859-1
-1 7 -1 2 0 100 100-m -1 0 0 -iso 8 8 5 9 1

adobe
adobe
ad o b e
adobe
adobe
adobe
adobe
adobe
adobe

c o u n e r-b o ld
co u rie r-b o ld
co u rie r-b o ld
co u rie r-b o ld
co u rie r-b o ld
co u rie r-b o ld
co u rie r-b o ld
courier bold
co u rie r-b o ld

o-n o rm al
o -n o rm al
o -n o rm al
o -n o rm al
o -norm al
o -n o rm al
r normal
r-no rm al
r-no rm al

Woihspace Title Font

S tan d ard Font

Sam ple Text

Parallel Simulation User En
a d o b e -c o u r ie r -b o ld - r-n o rm a l— 2 0 -1 4 0 -1 0 0 -1 0 0 -m -1 1 0 -iso 8 8 5 9 -1

-a d o b e -c o u r ie r-b o ld -r -n o rm a l- -2 5 -1 8 0 -1 0 0 -1 0 0 -m 150 is08859-1
a d o b e -c o u r ie r -b o ld - r-n o rm a l— 34-2 4 0 1 0 0 -1 0 0 -m -2 0 0 iso 8 8 5 9 1

-ad o b e c o u rie r-m ed iu m -o -n o rm a l— 1 1 -80-100 100-m 6 0-iso8859-1
-ad o b e -c o u rie r-m e d iu m -o -n o rm a l— 1 4 -1 0 0 -1 0 0 -1 0 0 -m -9 0 -iso 8 8 5 9 -1

Apply C lose lle se t llel|>

As with the colour management panel, any changes to the font resources are stored so

that the same settings are retained for subsequent initiations o f the PSUE interface.

- 7 1 -

P S U E Main Interface

3.3 Process Control

The process control panel allows the user to manipulate the processes and the memory

m anagem ent system o f the communication library discussed in chapter 4. Figure 3-18

shows an example o f how the process control panel m ay look during a session o f

using the PSUE main interface.

Figure 3-18 - Typical View o f the Process Control Panel

Griil Generation
falcon .pis

Process [2]

Process &.

Geometry Builder
FalcontlFF.fli
Process (5J

O b jec t V iew er C l o s e Help

A representation o f the main PSUE interface is always shown in the centre o f the

screen and as modules are initiated, a representation o f the process is added as a

“ satellite” with a communications link between the PSUE and itself. The information

in the m odule’s box is the module name; the last data loaded within that module or the

data that may have been passed to it; and the process number. The process number is

also displayed after the module name on the main w indow o f the module itself. This is

so that the user can identify processes when they want to transfer data between them.

- 72 -

PSUE Main Interface

The user can select and deselect processes and so when a process exits or updates the

main interface, all selected processes will also be updated with the relevant data. To

stop any communication between the PSUE and a module, the line connecting the

representations of the PSUE and the module may be selected, toggling the connection

on and off.

- 7 3 -

PSUE Main Interlace

3.4 Pathfinder

The pathfinder is a utility that indicates to the user the functionality that is available

and the next logical step forward, as well as providing a history of what has already

been done. The panel is divided into two distinct regions, the pathfinder view and the

history view, but if the user is working in expert mode then only the history view will

be visible. This is so that the panel uses less of the screen up, since an expert user will

probably not need the pathfinder view as they will already now what is available and

what they want to do.

3.4.1 Pathfinder View

The pathfinder view shows all of the generic functionality of the PSUE as a tree

structure to help show where the “original” buttons are within the main PSUE

functionality region. Each of the separate options of functionality is coloured

according to the availability of the particular function:

• Green infers that the option is available and likely to be a possible next step.

• Orange infers that the option is available but not necessarily the ideal next step.

• Red infers that the option is unavailable.

Figure 3-19 shows a typical view of the pathfinder panel. The colours of the options

will change as data is created, loaded or removed, to indicate what new functionality

is available or unavailable. If the colour of an option is green or orange then it may be

selected, in the same way as a button, however, options that are coloured red may not

be selected even though the “original” button in the main interface functionality

region may be selected.

- 7 4 -

r b U b Main Intertace

Figure 3-19 - Typical View o f the Pathfinder Panel
Pathfinder

Fjnmnaiity
Data Management

■— ■—
L<>aiGe»metr/Fiie

Load Background Grid H it

Load Grid File

 [load Hexahedral Grid Lilt ~|wmm> Load Solution File
Load Neutral File

Load MSCPATRAN Database
Save Geometry File

Save Bac fcijwuttd Ga l File
Save Boundary Grid File

Save Grid File1 * MI11 1 llv_________ |
Save Hexabedral Grid File |

Save Solution File

Save Neutral File
Save tlSCPAIftAN Batata se ___ \ mmmssm____

Geometry Mampulatons
Geometry Builder

MSCPATRAN

Numeric al I dranes
Grid Generator)

Grid Generator
Gri<l Analysis

G iii Adapt*n
MSC/PATRAN

Solvers

Flow Solver Initaton I : r r :: .
MSCPATRAN

T O astran

Computm] Platforms
RemdlcTtitfrect on s

COOINE Interface
Parallel Platform s

XPW
PVF.l RUN

Parallel Toolt
Domain Decompositon

Parallel Grid Generation
Grid Analysis

Parallel Solvere
Performance Monitoring

ParaGraph
System Tools ,

Colour Preferences
Lout Preferencesismm

Proce s s Communicaton s

Dtijeet Viewer I
Data Analysis

AVS

AVS/Express mmmt
IRIS/Explorer
MSC.PATRAN

- 75 -

PSU E Main Interface

3.4.2 History View

The history view is updated every time a PSUE functionality button is selected, and

allows the user to have a quick link to the same functionality. The buttons will

activate the appropriate modules, panels or interfaces as if the “original” button had

been selected. Figure 3-20 shows a typical view o f the history panel.

Figure 3-20 - Typical View o f the History Panel

Load Geometry File

G eom etr/ Builder

Grid Generator

Grid Analysis

Grid Adaption

Geometry Builder

Grid Generator

Remote Connections

- 7 6 -

PSUE Mam Interface

3.5 On-line Help

The on-line help facility is based upon a full hypertext concept allowing documents to

link dynamically to other documents. The links to another document or to part o f the

existing document may be text itself or even pictures. All o f the help pages are

contained within text files that may be edited by the user or replaced by the users own

copy o f it. This allows the user to create their own help page or append particular

notes to assist them in particular tasks later.

The help window system allows the user to access the help pages from any o f the

panels within the PSUE. When a help button is selected the help window will be

shown, along with the appropriate information in the main panel of the help window.

A typical view of the help panel is shown in Figure 3-21.

- 7 7 -

P S U E Main Interface

Figure 3-21 - Typical View o f the On-Line Help Facility

E Windo

The present window is the main PSUE window
window consists of five areas;

1. Menu Bar
2. Functions Workspace
3. Status Area
4. User level control buttons
To select an appropriate topic just click on one of the
items in the list below:

m

Menu Bar
(Click here to go back to menu)

The Menu Bar consists of 4 areas;

Topic Index

It should be noted that the author did not develop the code directly associated with

loading and displaying the help text and pictures.

- 78 -

PSUE Main Interlace

3.6 Integration of Applications

As mentioned in the introductory chapter, the initial development under the CAESAR

project required the integration of a number of commercial and confidential

applications. The requirements capture for the project revealed that an alternative

method of direct integration would have to be found, since this would take longer than

the project would permit. This brought about the concept of the application

integration library that allows each user of the PSUE to integrate their choice of

arbitrary applications.

A complete description and analysis o f the application integration facilities are

covered in chapter 5, so this section gives only a brief outline.

At the beginning of this chapter, in section 3.1, the main functionality region was

presented as two parts: the generic functionality and the user’s functionality. It is

through the integration of applications that a user may populate the right side o f the

functionality region with their own applications. Since we have seen that there is a

hierarchical structure to the generic functionality menu, there is a corresponding

region of user’s functionality for each region of generic functionality. Text files that

are loaded when the PSUE is initiated controls each region of the user’s functionality.

The text files, which are stored in the user’s own file store, are plain files that may be

easily modified to integrate a new application. Upon loading a file, the PSUE

ascertains whether it should be creating buttons, labels or pulldown menus. These

entities are then presented in the appropriate region of user’s functionality. The

control file will also contain information about what applications to run when the

button is selected and may also include details about the data to be transferred.

The key issue behind the integration of applications for the PSUE is the ability to

transfer data to and from the arbitrary application. The PSUE transfers the data to the

application using a “data handshake” and may be configured to use file, pipe or socket

protocols to transfer the data.

- 7 9 -

Communication Library

4 C o m m u n ic a t io n L ib r a r y

- 8 0 -

C o m m u n ica t io n Library

4.1 Overview and Requirements

As mentioned previously, the PSUE is separated into the main interface and a number

o f modules. Each o f these modules is an application within itself and therefore to

produce a fully integrated environment the main interface and modules must be

coupled in some way. The reasons for maintaining all o f the modules separately were

discussed in section 1.6.

Most communication systems use one o f two models:

• Client / Server Applications - One process acts as the server application and all

other processes act as client applications (See Figure 4-1).

• Daemon Controlled Applications - All processes have equal status within the

communication system but an extra process is continually running in the

background controlling all communications between the other processes (See

Figure 4-2).

Figure 4-1 - Client / Server Topology

Client 1 Client 2

Server

Client 3

Client 4

C lient A p p l ic a t io n s - P erfo rm specific opera t ions

Server Application - Perform s specific opera t ions and
contro ls data and its transfer

- 8 1 -

C o m m u n ic a t io n Library

Figure 4-2 - Daemon Controlled Topology

Application 1 Application 2

Daemon

Application 3 Application 4

All A pplica t ions - Perform specific opera t ions

D aemon - C on tro ls data and its transfer

The PSUE environment was developed as a client / server application with the main

PSUE interface as the server application. This was because it was expected that the

PSUE main interface would always be the starting point for any work within the

PSUE environment. A daemon-controlled system was also eliminated due to the

complexity and, in this case, the inefficiency o f such a method. This inefficiency

arises due to the expected large volume o f data that would have to pass through the

daemon no matter where its destination.

With the PSUE main interface as the server application, the other modules o f the

PSUE environment are the client applications communicating data back to the main

interface. As the server application, the main interface then controls when and where

to send the data to the next client application, if at all. Since the main interface itself

utilises the data from the client applications there is not the inefficiency that would be

expected in the daemon based communication system. For one client application or

module to communicate wdth another client application, all data must be

communicated through the server application, the main interface.

- 8 2 -

Communication Library

The communication system controls and transfers all data such as the internal process

numbers, where to place the windows on the screen, through to actual geometrical and

grid entity details, such as nodal coordinates.

The development of a communication system requires a large amount of planning and

the key objective for the PSUE communication system was to ensure that the facility

would be easily integrated into the main interface and all o f the PSUE modules. The

easiest method of providing such functionality is to create a library o f functions that

may be accessed by the server and client applications and hence the PSUE

communication library was developed. Due to the modular structure of the PSUE

environment and the number of developers involved, the library must be easily

accessed and be as simple as possible to implement.

Due to the complexity of a communication system, ideally the communication library

would be completely transparent to the user. However, since the PSUE main interface

allows the expert user to influence where the data is transferred to and from, the

communication library must allow some user manipulation.

The communication library must be fast, efficient and robust, however, if an error

does occur, recovery of data is of the utmost importance. The communication system

must be able to handle a number of different types of data, such as:

• Initial authentication tokens.

• Major event notifications.

• Actual geometrical entities:

- Point coordinates.

- Curve connectivity.

- Surface connectivity.

- Boundary conditions.

• Actual grid entities:

- Nodal coordinates.

- Cell connectivity.

- 8 3 -

Co m m u n ica t io n Library

- Boundary conditions.

- Material properties.

• Actual solution data:

- Scalars.

- Vectors.

- Tensors.

Since there is a great deal o f different types o f entities and the num ber o f such entities

is expected to be very large (e.g. Millions o f cells), the communication library must

work intelligently to minimise the amount o f data traffic. If all the data is transferred

to all modules at all times the environment would very quickly grind to a halt. Figure

4-3 shows the different types o f data transferred to and from each o f the PSUE

modules.

Figure 4-3 - Specific Data Sets Transferred Between the PSUE and Modules

Grid
Generation

Grid
Adaptation

Geometry
Builder

Grid
Analysis

PSU E

Tool
Wrapper

General Control Signals and Information

Geometrical Entities

Grid Entities

Solution Data

- 8 4 -

Communication Library

Finally, the communication library must be easily expandable due to the ongoing

development of the main interface and all of the modules. This requires a modular

configuration of the data and a filter system to be built into the library.

- 8 5 -

Communication Library

4.2 Comparison of Various Techniques

The UNIX operating system provides a number of different methods in which

communication of data may be carried out. The simplest method for data transfer is

the use of files written and read from file stores. Most other methods may be

collectively known as Inter-Process Communication (IPC) facilities and have

significantly greater efficiency than file store usage.

4.2.1 IPC Facilities

4.2.1.1 Semaphores

A semaphore contains an integer value and any process that is connected to the

semaphore may set or read the value. This is very useful for sending and receiving

signals that are represented by a single value.

4.2.1.2 Message Queues

A message queue contains a text message and any process that is connected to the

message queue may set or read the message.

4.2.1.3 Shared Memory

Shared memory is created in segments, much like normal memory, and all processes

that are connected to the memory segment are able to read and write to the same block

of memory.

4.2.1.4 Pipes

A pipe is a unidirectional data stream for sending or receiving arbitrary data by using

a file store. An empty file is created and one process writes data to the file as the other

process reads the data on a first in first out basis. Since no data is physically written to

the file store a pipe is much more efficient than storing the actual data in a file.

- 8 6 -

C o m m u n ica t io n Library

4.2.1.5 Sockets

A socket is a bi-directional data stream for sending and receiving arbitrary data that

utilises network protocols. This allows communication o f data between multiple

processes on different machines, which may be geographically distributed.

Figure 4-4 shows a comparison o f the different communication methods. It shows that

the sockets and shared m em ory methods provide the easiest method of

communication since they allow any data type to travel bi-directionally.

Figure 4-4 - Communication Methods and the Type o f Data Transmitted

Process A Semaphores (Integers) Process B
B id irec tional

Process A Message Queues (Text) Process B
B id irec tio n a l ^

Process A H Shared Memory (Any Data) Process B
B id irec tional

Process A Pipes (Any Data)
^ -- —

Process B
U n id ire c tio n a l (2 req u ired)

Process A Sockets (Any Data) Process B
B id irec tio n a l

4.2.2 M ethodology

Two different communication systems were devised, one based on sockets and the

other based on shared memory.

- 8 7 -

Communication Library

4.2.2.1 Socket Based System

As the PSUE main interface initiates a new module, it creates a new semaphore and

socket connection to the module. The module then connects to both the semaphore

and the socket. The semaphore is used to flag events between the main interface and

the module, such as, a flag sent from the main interface to the module to inform the

module that it should start sending any data that it has, back to the main interface.

Any data that needs to be transferred to and from the module is done so by using the

socket connection.

This method was found to be effective, however, the transfer of large data sets was

very inefficient and large delays were incurred.

4.2.2.2 Shared Memory Based System

Upon initialisation of the PSUE main interface, a small shared memory segment is

created, known as the global segment, which will hold the memory addresses to all

other shared memory segments.

As the PSUE main interface initiates a new module, it creates only a socket

connection to the module. The module then connects to the socket connection and

also connects to the global shared memory segment. The socket is used to send basic

information back and forth between the main interface and the module. The

information consists of both integer values and text messages. When the main

interface is required to send a data set to the module it will create the shared memory

segments that it will need and populates the memory with the required data. The

global shared memory segment is then updated so that the module may connect to the

other shared memory segments and read the required data. When the module needs to

send data the reverse occurs.

Even though this method is much more complicated than the socket based

communication system, the efficiency for data transfer was much greater. Figure 4-5

shows the comparison between the two methods.

Co m m u n ica t io n Library

Figure 4-5 - Comparison o f the Socket and Shared M emory Communication M ethods

Socket Based

Semaphore

PSUE Module

Socket

Control System

— Dat a

Shared Memory Based
Global Shared

Memory Segment
And Socket

PSUE Module

_ Dynamic Shared
Memory Segments

- 8 9 -

C om m unica t io n Library

4.3 Data Set Manipulation

As a module loads or creates data, a data set is built within each module. From time to

time these data sets will need to be passed through the communication system and it is

anticipated that these data sets will become very large, e.g. 1+GByte o f data. W hen

creating a shared memory segment, the required size must be specified and mem ory

o f the machine is allocated to the shared memory segment. If only one shared m em ory

segment was to be used for the entire data set the m achine would need to find a block

o f free memory capable o f holding the entire data. As the data sets get larger, the

location o f a single contiguous free m emory region large enough is less likely, which

in turn would cause a failure. Therefore, the data set is separated into clusters o f data

and provides the modular configuration that was discussed earlier in the chapter. In

total, a data set that contains all types o f data would require 21 separate shared

segments (see section 4.3.2). Section 4.3.1 describes all o f the different data types that

are used within the PSUE environment and section 4.3.2 gives a breakdown o f what

data types are contained w ithin each shared memory segment.

4.3.1 D ata Types

The following tables show the configuration o f the data types used throughout the

communication system o f the PSUE environment.

The coordinates object is used to describe the x, y, and z coordinates location

such as a grid point.

Coordinates Object
X Coordinate________________________________
Y Coordinate________________________________
Z Coordinate________________________________

The vector object is used to describe the u, v, and ŵ components such as a face

normal direction.

Vector Object
X Component
Y Component
Z Component

- 9 0 -

C o m m u n ica t io n Library

The vertex object is used for geometrical nodes and contains a coordinate

object to specify the actual x, y, and z components, a boundary condition, a

material and property index and the ability to set grid source control

specifications.

Vertex Object
Coordinates Object
Boundary Condition
Material Value
Property Value
Grid Source Values

The curve object is used for geometrical curves and contains a type flag to

show how the curve is currently being used, the number o f vertices used to

make up the curve together with the array o f the vertex indices, an index value

for identification and a grid source flag for grid source specification.

Curve Object
Type__________________
Number o f Vertices
Array o f Vertex Indices
Index_________________
Grid Source Flag______

The edge object is used to group geometrical curves and contains a type flag

ju s t like the curve object above, the number o f curves used to make up the

edge together with the array o f the curve indices, and an index value for

identification.

Edge Object
Type_________________
Num ber o f Curves
Array o f Curve Indices
Index

The loop object is used to associate geometrical curves with geometrical

surfaces. It contains the number o f curves used to make up the edge together

with the array o f the curve indices. There is also the surface index that the loop

is associated with and a surface specification that signifies if the surface is

specified or not.

- 9 1 -

C o m m u n ica t io n Library

Loop Object
Number o f Curves
Array o f Curve Indices
Surface Index_________
Surface Specification

The surface object is used for geometrical surfaces and starts with a type flag

to show' how the surface is being used, e.g. boundary surface. The surfaces are

represented as Coons patches and so the num ber o f edges in the u and v

directions are used followed by the array, o f size u*v, edge objects, followed

by the surface index for identification.

Surface Object

I x E£__________________________
Num ber o f Edges in U Direction
Number o f Edges in V Direction
Array o f Edge Objects_________
Index

The cell object is used for generic grid cells and starts with the num ber o f

connectivities making up the cell. A boundary condition value may be stored

and grid and geometry indices mat be specified to link the cell back to the

original geometry. Finally the connectivity indices are given.

Cell Object
Number o f Connectivities
Boundary Condition_________
Grid Index__________________
Geometry Index_____________
Array o f Connectivity Indices

The line object is used to link multiple vertex objects together to create more

complex grid control specifications such as line and triangular grid sources.

The object contains the number o f vertex objects to be used followed by the

array o f the vertex objects.

Line Object
Number o f Vertices
Array o f Vertex Objects

- 9 2 -

C o m m u n ica t io n Library

The discretisation object is used to associate grid point mappings on a given

Coons surface patch. It contains the index to the grid point and a value o f u

and v (normalised) within the Coons patch. It is also used with curve objects

in which case the v direction value is redundant.

Discretisation Object
Index__________________________
Normalised Value in U Direction
Normalised Value in V Direction

The curve tangent object is used to store the associated x, y and z tangents (or

derivatives) on a curve object at the given x, y, and z coordinates.

Curve Tangent Object
X, Y, Z Coordinates
X, Y, Z Tangents

The surface tangent object is used to store the tangents on a surface object at

the given x, y and z coordinates. The derivatives with respect to u and the

derivatives with respect to v are stored along with second derivatives with

respect to both directions.

Surface Tangent Object
X, Y, Z Coordinates_________________________
X, Y, Z Tangents with respect to U Direction
X, Y, Z Tangents with respect to V Direction
X, Y, Z Tangents with respect to both U and
V Directions

The grid curve object is used to associate the positions o f the grid points on an

original curve along w ith the original curve discretisation. The number o f grid

points on the curve is stored followed by the discretisation objects for each o f

these grid points. The original curve description is contained as the number o f

original vertices followed by the curve tangent objects for each o f these

original vertices.

Grid Curve Object
Num ber o f Redistributed Vertices
Array o f Discretisation Objects
Num ber o f Original Vertices
Array o f Curve Tangent Objects

- 9 3 -

C o m m u n ic a t io n Library

The grid surface object is used to associate the positions o f the grid points on

an original surface along with the original surface discretisation. The number

o f grid points on the surface is stored followed by the discretisation objects for

each o f these grid points. The original surface description is contained as the

num ber o f original vertices in the twx> parametric directions follow/ed by the

surface tangent objects for each o f these original vertices.

Grid Surface Object
N um ber o f Redistributes Vertices__________
Array o f Discretisation Objects____________
N um ber o f Original Vertices in U Direction
Num ber o f Original Vertices in V Direction
Array o f Surface Tangent Objects

The data set object controls the entire data structure model. It contains the total

numbers o f each object wdthin the different areas o f geometry, grid control

specifications, grid definitions and solution data.

Data Set Object
Num ber o f Geometrical Vertices_______
Number o f Geometrical Curves________
Num ber o f Geometrical Loops_________
Num ber o f Geometrical Surfaces______
Num ber o f Tri/Tet Grid Vertices_______
Num ber o f Tri/Tet Grid Cells__________
Num ber o f Tri/Tet Boundary Grid Cells
Num ber o f Grid Curves_______________
Num ber o f Grid Surfaces______________
Grid Type____________________________
Num ber o f Quad/Hex G rid Vertices____
Num ber o f Quadrilateral Cells_________
Num ber o f Hexahedral Cells___________
Num ber o f Background Grid Vertices
Num ber o f Background Grid Cells_____
Num ber o f Point Grid Sources_________
Num ber o f Line Grid Sources__________
Num ber o f Triangle Grid Sources______
N um ber o f Solution Vertices___________
Num ber o f Solution Cells______________
N um ber o f Variables per Vertex_______
Number o f Variables per Cell__________

- 9 4 -

C o m m u n ica t io n Library

4.3.2 Shared Memory Segment Breakdown

The 21 shared segments that collectively cover an entire data set are broken down as

shown in Table 4-1.

Table 4-1 - The Shared Memory Segments and their Content

1 Numbers for all major data types Data Set Object
2 Geometrical Vertices Array o f Vertex Objects
3 Geometrical Curves Array o f Curve Objects
4 Geometrical Loops Array o f Loop Objects
5 Geometrical Surfaces Array o f Surface Objects
6 Tri/Tet Grid Vertices Array o f Vertex Objects
7 Tri/Tet Grid Cells Array o f Cell Objects
8 Tri/Tet Grid Boundary Cells Array o f Cell Objects
9 Grid Curves Array o f Grid Curve Objects
10 Grid Surfaces Array o f Grid Surface Objects
11 Boundary Grid Vertices Array o f Vertex Objects
12 Boundary Grid Cells Array o f Cell Ob jects
13 Quad/Hex Grid Vertices Array o f Vertex Objects
14 Quadrilateral Cells Array o f Cell Objects
15 Hexahedral Cells Array o f Cell Objects
16 Background Grid Vertices Array o f Vertex Objects
17 Background Grid Cells Array o f Cell Objects
18 Point Grid Sources Array o f Vertex Objects
19 Line Grid Sources Array o f Line Objects
20 Triangle Grid Sources Array o f Line Objects
21 Solution Variables Array o f Real Values

- 9 5 -

Communication Library

4.4 Shared Memory Communication System

Before any description of the communication system may be started, it should be

clarified how a process monitors system activity and hence knows when particular

actions need to be taken. Since the main PSUE interface and all o f the modules are X-

window based applications, a special functionality has to be used. This functionality is

a “time-out” routine that is called after a specific period. For example, the main

interface will need to check for messages from all of the modules frequently, perhaps

every 1/10th of a second. Upon receiving a message the program can process the

message and then go back to monitoring all the modules. The “time-out” routine must

continue to call itself after the specified time delay.

4.4.1 Initialisation of the PSUE Main Interface

When the PSUE main interface is started it will initialise the communication system

by creating a shared memory segment and two dummy sockets. The shared memory

segment is known as the global shared memory segment as it will always be available

to all processes and will only be destroyed when the main interface terminates. The

segment contains space to store all o f the other shared memory segment id numbers

and the actual memory addresses. The creation of the shared memory segment

involves the actual creation command and then the attachment of the main interface to

the shared memory segment, which provides the memory address.

The two dummy sockets that are created are used to replicate unique sockets that are

the actual sockets used to communicate messages back and forth between the main

interface and the individual modules. Each module has two of it’s own sockets, one

for reading messages and one for writing messages. Even though sockets are bi­

directional, two sockets are used for each module so that race conditions are

eliminated. Race conditions occur when it is undefined which process will try to read

from the socket before the other.

- 9 6 -

C o m m u n ica t io n Library

4.4.2 Initiation of a PSUE Module

When a module is initiated from within the main interface, Table 4-2 shows the

actions that are performed.

Table 4-2 - Actions Performed during Initiation o f a PSUE Module

1. Module started using com m and line
arguments that specify global shared
m emory segment id, and both dum m y
socket ids.

Non-existent

Waiting

2. Check comm and line arguments for
connection details.

3. Attempts to connect to first dum m y
socket.

4. Creates shared memory segments.
5. Attaches to the shared mem ory

segments.
6. Copies the local memory into the

shared memory segments.
7. Detaches from the shared m em ory

segments.
8. Creates socket for receiving

messages.
9. Creates socket for sending messages.

Waiting

Waiting

10. Connects to socket for sending.
11. Connects to socket for receiving.
12. Sends module name.
13. Sends module process id.

14. Receives module name.
15. Receives module process id.
16. Sends main interface process id.
1 7. Sends PSUE ID for the module.

Waiting

Waiting

18. Receives main interface process id.
19. Receives PSUE ID for the module.
20. Attaches to the global shared memory

segment.
21. Attaches to all other shared memory

segments.
22. Copies shared mem ory data into local

memory.
23. Detaches and deletes shared memory

segments.
24. Send OK signal.

25. Receive OK signal. Continues initiation.

- 9 7 -

C o m m u n ica t io n Library

4.4.3 PSUE Module updates Main Interface

Table 4-3 shows the actions that are performed by both the PSUE main interface and

the module when the module updates the main interface with a data set.

Table 4-3 - Actions Performed when Updating the Main PSUE Interface

Monitoring modules.

1. Creates shared m emory segments as
appropriate.

2. Attaches to all shared memory
segments.

3. Copies local mem ory data into shared
memory segments.

4. Detaches from the shared memory
segments.

5. Sends UPDATE signal.
6. Receives UPDATE signal.
7. Attaches to shared memory segments.
8. Copies shared m emory data into local

memory.
9. Detaches and deletes shared memory

segments.
10. Updates all other modules that require

it. (See section 4.4.4)

Continues working as before.

4.4.4 Main Interface updates PSUE Module

Table 4-4 shows the actions that are performed by the PSUE main interface and any

module that requires updating w ith the data set from within the main interface.

Table 4-4 - Actions Performed when the Main Interface updates a PSUE Module

1. Creates shared m emory segments as
appropriate.

2. Attaches to all shared m emory
segments.

3. Copies local memory data into shared
m emory segments.

4. Detaches from the shared memory
segments.

5. Sends DATA signal.

Monitoring connection to main interface.

- 9 8 -

C o m m u n ica t io n Library

Waiting

6. Receives DATA signal.
7. Attaches to shared memory segments.
8. Copies shared memory data into local

memory.
9. Detaches and deletes shared memory

segments.
10. Sends OK signal.

1 1. Receives OK signal. Continues working as before.

4.4.5 Closure of a PSUE Module

When a module closes due to either user intentions or an error, the actions that are

performed are shown in Table 4-5. Since the main interface is updated with the data

set that w as currently within the module, it is hoped that no actual data loss will occur

even if an error causes a module to crash.

Table 4-5 - Actions Performed during the Closure o f a PSUE Module

Monitoring modules.

1. Updates the main interface as
specified in section 4.4.3.

2. Detaches global shared memory
segment.

3. Sends EXIT signal.
4. Receives EXIT signal.
5. Sends OK signal.

Waiting

Continues monitoring.
6. Receives OK signal.
7. Exits.

4.4.6 Closure of the PSUE Main Interface

Upon the shutdown o f the main interface, it is expected that the user is actually

shutting down the entire environment. Therefore, the main interface sends a QUIT

signal to each module and waits for a confirmation OK signal. As each module

receives the QUIT signal they send the OK signal back to the main interface and

proceeds to close the application.

- 9 9 -

Communication Library

4.4.7 Error within the PSUE Main Interface

If an error was to occur within the main interface data loss is the primary concern and

the modules that the user is working in should not be affected. Therefore, upon an

error occurring, the main interface will send a DISC signal to all modules to inform

them to disconnect from the communication system.

- 1 00 -

Application Integration

5 A p p l ic a t io n In t e g r a t io n

Application Integration

5.1 Overview and Requirements

During the development of the PSUE under the CAESAR project it was realised early

on that for the environment to be a success a number of multi-disciplinary engineering

applications would have to be integrated into the PSUE. The project did not provide

adequate time in which to fully integrate all of the applications, therefore an

alternative method to direct integration had to be devised. An application integration

system was proposed, in which an arbitrary application maybe integrated into the

environment with an almost invisible data connection.

The integration of almost any application must be achievable and the transfer of data

between the PSUE and the application must be as simple as possible. A particular user

must be able to integrate an arbitrary number of applications in a structured manner.

This will allow a user to group particular applications together and provide a similar

structure to the generic functionality of the PSUE as discussed in section 3.1.

The user may integrate their functionality within the groups provided by the generic

functionality of the PSUE. Each section of functionality is controlled by a specific

control file and allows the user to specify the application, data transfer type and data

components required for the integration of the application. The control file for each

functionality region is a text file stored in the PSUE configuration directory and is

specific to each user of the PSUE. The text file format is designed to be as simple as

possible but at the same time being able to include as much information as would be

required to fully integrate an application.

The transfer of data between applications is perhaps one of the most important aspects

of the application integration system. Data must be able to flow from the PSUE to the

application and back again as seamlessly as possible. Once the data requirements have

been specified the user should be able to use their application as if the application was

part of the PSUE. There should be a choice of data transfer protocols and the type of

data to be transferred should be customisable. The latter is usually a very complicated

process and was not integrated into the basic application integration system but has

- 1 02 -

Application Integration

been utilised within the Application Tool Wrapper, which is discussed in the next

chapter.

- 1 0 3 -

Application Integration

5.2 Philosophy

One of the main requirements for the integration of applications is the ability to

integrate almost any application into the PSUE environment. This has required a very

structured approach to the design of the application integration system involving a

number of key aspects that include:

• Application configuration.

• Application and data control.

• Application initiation.

• Data transfer.

The integration of applications into the PSUE is implemented using the text files

previously mentioned. These files contain the details of button labels, application

executables, data transfer criteria and menu configuration. The PSUE controls the

initiation of an application and any data transfer to and from the new process as

shown in Figure 5-1.

The level to which an application may be integrated into the environment depends on

a number of issues including;

• The type of application

• The configurability of the application

• Access to application source code

- 1 0 4 -

A pplica tion Integration

Figure 5-1 - Structure o f the PSUE Integration System

PSU E C o m m un ica tionsASCII Control File
File, P ipe and Socket
C o m m u n ica tio n s

File Parser

PSU E

Data
Transfer

Data
Transfer

Application

''

The ASCII script file is created by the user and controls the appearance o f

applications within the PSUE interface. The initiation o f an application requires the

specification o f data transfer information for communication from the PSUE to the

application and also from the application back to the PSUE. This specification may be

given during the initialisation o f the application or within the controlling script files

for an automated connection to the application.

- 105 -

Application Integration

5.3 Development Stages

Due to the structured nature of the application integration system, the development

was easily separated into a series of stages. There were four stages in all that

comprised the application button integration, application initiation, data transfer and

automation.

5.3.1 Application Button Integration

The integration of applications into the PSUE is visible to the user through the

appearance of push buttons, within the functionality region of the main interface.

Figure 5-3 shows an example of the functionality region with three user applications

integrated. The appearance of these buttons is activated by the creation of script files

that also contain details of the applications to integrate. Since there is a series of

generic functionality regions as discussed in section 3.1, each region has a

corresponding script file that controls the applications in that region. Table 5-1 below

shows the corresponding script file for each functionality region.

- 106-

A pplication Integration

Figure 5-3 - Example o f Three User Applications Integrated into the Main
Functionality Region.

Functionality
Generic U.W. Swansea

Data Management Line Repair Module
■■■■■■■■■I
Flow Solver 2D

ElectroMagnetics

Geometry Manipulations

Numerical Libraries

Grid Generation

Solvers

Computing Platforms

System Tools

Data Analysis

Initiates a
ine repair

application

Initiates a
D fluid

flow solver

Initiates a
lectromagnetics

solver.

Generic Functionality User’s Functionality

Table 5-1 - Script Files Controlling Functionality Regions

Main generic functionality PSUEscript.main
Geometry manipulations PSUEscript.geom
Numerical libraries PSUEscript.nlib
Grid generation PSUEscript.grid
Solvers PSUEscript.solv
Computing platforms PSUEscript.comp
Parallel platforms PSUEscript.plat
Parallel tools PSUEscript.ptls
Domain decomposition PSUEscript.dode
Performance monitoring PSUEscript.pmon
System tools PSUEscript.syst
Data Analysis PSUEscript.data

This part o f the development o f the application integration system involved the

creation o f the data format for the script files and the production o f the appropriate

translator within the PSUE initialisation sequence.

- 107 -

Application Integration

5.3.2 Application Initiation

Once the application buttons are integrated into the PSUE window environment the

next stage of the development was to initiate the application upon activation of the

corresponding button. The initiation of applications actually came in two stages, now

as a simple process initiation step and later, as data transfer was introduced, as a

process initiation and manipulation step. The first stage initiation only required the

immediate initialisation of the required procedure with absolutely no other interaction

or manipulation. The second stage initiation required different technical routines to

allow command line arguments to be issued followed by extensive communications

between the PSUE and the newly initiated process. In this second stage of the

initiation process, the process must continually be monitored so that if the PSUE

looses contact with the application, appropriate steps for data recovery and a clean

disconnection from the PSUE are carried out.

5.3.3 Data Transfer

The third stage of development of the application integration system was the

ijtroduction of data transfer. This involved the ability to transfer data from the PSUE

to the application upon its initiation and then the transfer of data from the application

to the PSUE upon its completion. Three separate methods of transferring data were

developed that use files, pipes and sockets. At this stage, due to the increasing

complexity of the application integration system, a process initiation panel had to be

developed that may be seen in Figure 5-5 below.

- 108-

A pplica tion Integration

Figure 5-5 - Application Initiation Panel

r-Alternative Facilities------------
Tool Wrapper | Remote Connection | CODINE Interface

N o ne S o c k e t

■ . . .
i - Transfer Method■

 ̂ n - .r- -

Data Direction-------------
O u tp u t

r-Data Type

Data transfer for: Output

1 Geometry Data

Background Mesh Data

| Boundary Mesh Data

I Tetrahedral Mesh Data

Saving to filename;

Hexahedral Mesh Data

All Mesh Data

Solution Data

Neutral Data

—Command String-
/usr/people/jo/bin/tetragrid

Cancel Help

5.3.4 Automation

The final stage o f the application integration system was the automation step. The

main development for this stage involved the format o f the script files and the

translator within the PSUE initialisation procedure. A series o f new comm ands were

integrated into the file format o f the script files that would replace the need to open

and use the application initiation panel. Since most applications would be set up to

specifically use a particular communication method and data format every time that

- 10 9 -

Appl ica t ion Integration

application was initiated, all o f the appropriate options would have to be set in the

application initiation panel. The automation process allows the user to specify all the

requirements only once within the script files. After doing this, upon selection o f the

application button within the main functionality regions, the application would be

initiated immediately without using the application initiation panel, making the

application integration a far shorter task. Figure 5-7 show a comparison between the

tw o methods showing a far smoother integration o f an application when using the

automated approach.

Figure 5-7 - Comparison o f Application Integration with and without Automation

W i t h o u t Au tom at ion
C ontro l file w ith basic

in fo rm ation

File Parser
User selections required

PSUE Data Module Application

PSUE C o m m un ica tions File, P ipe and Socket C om m un ica tions

W ith A u tom at ion
C ontro l file with

advanced in form ation

F ile Parser

Application

PSUE

Application Integration

5.4 Techniques Employed

A number of special techniques were employed throughout the application integration

system, which include script files, initiation procedures, pipes and sockets. This

section will describe each of these in further detail.

5.4.1 Script Files

Upon initialisation of the PSUE, all of the application integration script files are

examined for their existence and content. As the window environment is created the

script files give details of each of the buttons to be created and data is stored about the

corresponding applications. The number of buttons that may be integrated into a

particular region is unlimited and the specification of drop down menus is also

possible. Once a functionality region is filled with buttons any further addition of

application buttons or menu buttons will cause the functionality region to become a

scrolled region. The user may then scroll up and down in order to access all of their

applications. Under these circumstances, it may be better for the user to specify

menus of buttons to group the applications and reduce the scrolling requirement.

At this first stage, the script files controlling application integration only involve

application button names and the corresponding executable with its full path name.

The script file starts with a line that gives the label that appears at the top of the

functionality window and is followed by a menu command. The script files are set out

using menus with the main menu at the top. Each menu contains both application

buttons and their executables or other menu names. In order for the PSUE to know

when a menu is being referenced the name must be “Menu” and the next line is the

name and label of the menu, which must be specified later in the script file. A

standard entry for an application has the application button label followed by the

application executable.

Example 1 - This will produce two buttons labelled “Program 1” and “Program 2”

that will initiate the applications “/usr/bin/programl” and “/usr/bin/program2”

respectively. The label at the top of the functionality region will be “U.W. Swansea”.

- I l l -

Application Integration

U.W.Swansea
Menu Main
{
Program 1
/usr/bin/program1
Program2
/usr/bin/program2
}

Example 2 - This will produce a series o f menus and buttons and again the label of

the functionality region will be “U.W.Swansea”.

U.W.Swansea
Menu Main
{
Program 1
/usr/bin/program1
Menu
Structured Grid Generators
Program 2
/usr/bin/program2
Menu
Unstructured Grid Generators
}
Menu Structured Grid Generators
{
Program 3
/usr/bin/program3
Menu
Quad Grid Generators
}
Menu Quad Grid Generators
{

r
Menu Unstructured Grid Generators
{

}

The second stage of the script file development includes the automation sequences

and commands. As discussed in section 5.3.4, the automation sequence allows the

- 1 1 2 -

Application Integration

user to avoid the application initiation panel and therefore the script files must allow

for all possible selections within the application initiation panel.

The automation description for each application follows immediately after its existing

reference for name and executable. The first entry flag to indicate whether this

application has an automated description or not - a zero indicates no automation while

a one indicates that there is automation and the description follows. The next entry

may be one of NONE, FILE, PIPE or SOCKET, which indicates the method of

transferring any data. If NONE has been specified then no further information is

required and the application will initiate with no data transfer as soon as the

application button is activated. If FILE has been specified then two further entries

must be given, the first is the file type and the second is the filename. Obviously, this

restricts the user to always using the same file to transfer data but this can be very

useful if a temporary area us used, such as /tmp. If PIPE or SOCKET is specified then

a pipe or socket, which are discussed further on in this chapter, is used to transfer the

data to and from the application. There are three options available for pipe and socket

transfers that are OUT, IN or BOTH. If the OUT option is specified then data will

only be sent from the PSUE to the integrated application upon initialisation and will

be sent in the data format that must be specified in the next entry. If the IN option is

specified then data will only be received by the PSUE when the integrated application

is completed and will receive the data in the format that must be specified in the next

entry. If the BOTH option is specified then data will be transferred from the PSUE to

the integrated application upon initialisation in the data format that must be specified

in the next entry. Data will also be transferred from the integrated application back to

the PSUE, when the application is completed, in the data format that must be

specified in the next entry.

Whenever a data format must be specified as laid out in the above description, seven

options exist:

• GEOMETRY - The full geometrical definition.

• BOUNDARY - The boundary grid definition.

- 1 1 3 -

Application Integration

• BACKGROUND - The background grid density definition.

• GRID - The full triangular and/or tetrahedral grid definition.

• HEXGRID - The full quadrilateral and/or hexahedral grid definition.

• RESULTS - The solution results definition.

• NEUTRAL - All definitions.

Example 3 - The following example shows the use of the automation commands and

gives a description of each line on the right hand side.

Mixed Applications Title string
Menu Main
r

Main menu
{
Comments Form First application name
/usr/bin/feedback First application executable
0 No automation
Xterm Second application name
/usr/bin/X11/xterm Second application executable
1 Automated application
NONE No data transfer (just start process)
Fileview Third application name
/usr/people/jo/bin/fileview Third application executable
1 Automated application
FILE Use file transfer
NEUTRAL Use the neutral data file type
/tmp/jobloggs.neu Save to this filename
Grid Flow Fourth application name
/usr/people/jo/bin/gfp Fourth application executable
1 Automated application
SOCKET Use socket transfer
BOTH Data to be transferred both ways
GRID Grid data to be sent out
RESULTS Results data to be brought back in
}

Figure 5-5 shows the flow diagram of the main part of the file parser and how it

iterates until all information and menus have been loaded and built. Figure 5-6 shows

the flow diagram of the file parser for the automation sequences.

- 1 1 4 -

Application Integration

Figure 5-5 - Flow Diagram of the Main Part of the Script File Parser

At the
end o f the

menu?

Link to
new

menu?

Mo-,No

Yes Yes

Is there
automation Mn.

At the
end o f the

file?

.No,

Yes

Yes

Finished

Store menu name

Read title string

Read next entry

Read automation
sequence

Read menu title and
enter menu details

Store name and
executable

- 1 1 5 -

Application Integration

Figure 5-6 - Flow Diagram of the Automation Part of the Script File Parser

Start o f automation
sequence

Is it o f
type

FILE?

Is it o f
type

PIPE?

Is it o f
type

SOCKET

Set automation
to NONE

N o Mu Mu

Yes Yes es

Mn. Mn.direction
OUT?

direction
BOTH?

direction
IN?

Yes Yes es

End o f automation
sequence

Read and store data
type for receiving

Read and store data
type for sending

Read and store data
type for sending

Read and store data
type for receiving

Read and store file
name

Read and store data
type

Set communication
type to socket

Set communication
type to pipe

- 116 -

Application Integration

5.4.2 Application Initiation Procedures

As discussed in the previous section 5.3, the application initiation was developed in

two stages. The first was a simple initiation o f the application using the “system”

command to execute the new process. This method has two major disadvantages that

are (a) command line arguments for the new process are cumbersome to manage and

(b) no system information is passed back to the PSUE to allow manipulation and

communication. Even though this first method has these disadvantages it provided a

fast and efficient method of initiating the processes, which is all that was needed at

first.

The second stage of the application initiation development involved a number of other

more complicated system facilities. Firstly, to allow the PSUE to know the identity of

the new process it must create a new process thread (fork), where upon one process

thread continues as the PSUE and the second process thread executes and therefore

becomes the new application. The first thread stores the identity of the second thread

that may then go on to be used for manipulation and communication. Another

extension of the system facilities is the use of command line arguments. With the

development of the file, pipe and socket data transfer methods, certain key

information that is discussed in the next section must be passed to the new process.

The easiest method of doing this is through the use of command line arguments, but

the application may already be using command line arguments. To simplify the

situation, the command line arguments of the application are broken down into an

array that is then passed to a system facility (execvp) that can handle these arrays to

execute the application. A comparison of the two methods is shown in Figure 5-7

below.

- 1 1 7 -

Application Integration

Figure 5-7 - Comparison of the Two Application Initiation Methods
First Method

Full
Command

Execute process
with “system”

command

Second Method

Full
Command

Separate
command
into array

Manange threads

Create new thread
with “fork”
command

Execute process
with “execvp”

command

5.4.3 Pipes and Sockets

Pipes and sockets were initially explained under section 4.2.1, and have some subtle

differences. However, one of the key differences between them is the ability for

sockets to work in an inter-platform capacity and that sockets transport data more

efficiently.

If data is to be transferred in one direction only, then a pipe or socket works very well

and causes very little inconvenience. Since pipes are unidirectional, if data is to be

transferred in both directions then two pipes would have to be created for the process:

one for sending data from the PSUE to the application and one for receiving data from

the application to the PSUE. Since sockets are bi-directional, only a single socket

connection needs to be made even if data is to be transferred in both directions.

- 1 1 8 -

Application Integration

In practise, when a pipe or socket connection is being used to transfer data to and

from an application certain key information should always be transferred back, such

as the total amount of data received. Therefore, if a pipe is to be used and data is only

to be transferred in one direction, e.g. from the PSUE to the application, two pipes are

still created. This is so that the data definitions may be transmitted in one direction

and the other key information can be transmitted in the other direction. In other

words, an application connected using the pipe system always has two pipes

associated with it and an application connected using the socket system always has

one socket associated with it. Figure 5-8 shows the connection procedure for an

application using the pipe system and Figure 5-9 shows the connection procedure for

an application using the socket system.

- 119 -

Application Integration

Figure 5-8 - Connection Procedure for the Pipe System
PSUE Actions Application Actions

Create pipe 2
(for receiving data)

Connect to pipe 1
(for receiving data)

Exit

Initiate application

Create pipe 1
(for sending data)

Receive confirmation
on pipe 2_____

Destroy pipes 1 and 2

Receive data
on pipe 1

Send data
on pipe 2

Send confirmation
on pipe 2

Send confirmation
on pipe 1

Receive data
on pipe 2

Connect to pipe 2
(for sending data)

Send data
on pipe 1

Receive confirmation
on pipe 1_____

- 1 2 0 -

Application Integration

Figure 5-9 - Connection Procedure for the Socket System
PSUE Actions Application Actions

Connect to socket

Send data
on socket

Receive data
on socket

Receive confirmation
on socket

Disconnect from
socket and exit

Listen on socket for
new application

Create socket and
bind to an address

Initiate application

Disconnect and
destroy socket

Send confirmation
on socket

Send confirmation
on socket

Send data
on socket

Accept socket

Receive confirmation
on socket

Receive data
on socket

-121 -

A pplication Integration

5.5 Application Integration Library

When data is to be transferred using pipes or sockets the source code o f the external

application must be developed to incorporate the appropriate functionality. In order to

assist the user with the integration o f their application the application integration

library was developed. The library provides the full range o f routines, in both the

FORTRAN and C languages, required to integrate an application into the PSUE when

using pipes and sockets. The library contains utility routines to connect and

disconnect pipes and sockets and also to send and receive data in various formats.

Once the source code developments have been made, recompilation o f the application

is required with the linking o f the application integration library.

5.5.1 Connection and Disconnection with the PSUE

Since the FORTRAN and C languages use quite different methods o f utilising

command line arguments, separate routines had to be created for the two languages

for this operation. The routines shown in Table 5-2 deal with the connection and

disconnection o f an application to the PSUE, using pipes and sockets.

Table 5-2 - Connection and Disconnection Routines

ALFConnectPipe FORTRAN routine to make a pipe
connection to the PSUE.

ALCConnectPipe C routine to a make a pipe connection to
the PSUE.

A LFConnectSocket FORTRAN routine to make a socket
connection to the PSUE.

A LCConnectSocket C routine to make a socket connection to
the PSUE.

ALDisconnectPipe Routine to disconnect a pipe connection
(language independent)

ALDisconnectSocket Routine to disconnect a socket connection
(language independent)

- 122 -

Appl ica t ion Integration

5.5.2 Sending and Receiving Arbitrary Data

Once a pipe or socket connection has been made data may flow between the PSUE

and the application. The core routines for transmitting the data back and forth are

“ read” and “write” routines, but these are rather cumbersome for the user to

implement. Therefore some base sending and receiving routines, which can be seen in

Table 5-3, were added to the library. All o f these routines are language independent.

Table 5-3 - Arbitrary Send and Receive Routines

ALReadData Reads either an integer or real value from
the given pipe or socket.

ALWriteData Writes either an integer or real value to
the given pipe or socket.

ALReadArray Reads an array o f either integers or real
values from the given pipe or socket.

A L Write Array Writes an array o f either integers or real
values from the given pipe or socket.

ALEndRead Sends confirmation o f the data ju s t
received on the given pipe or socket.

ALEndW rite Waits for confirmation o f the data just
sent on the given pipe or socket.

5.5.3 Extended Data Extraction Facilities

It was quickly found that the arbitrary data transfer routines described above still did

not simplify the application integration enough. The next stage was the extended data

extraction routines that would internally transfer all o f the data definition and then

provide access to the data storage as and w hen the user required it. Selections o f these

routines are shown in Table 5-4 and are again language independent.

Table 5-4 - A Selection o f the Extended Data Extraction Routines

AERequestGridData Receives the entire grid definition from
the specified pipe or socket and stores all
the data in a local data structure. Finally,
it sends back confirmation to the PSUE.

ALGetAllNodes Retrieves nodal ids and coordinates from
the local data structure.

ALGetAllCells Retrieves cell ids and connectivities from

- 123 -

Application Integration

the local data structure of all cells with
the specified cell type.

ALGetNodeData Retrieves boundary conditions, material
and property values from the local data
structure.

ALGetCellData Retrieves boundary conditions, material
and property values from the local data
structure of all cells with the specified
cell type.

- 1 2 4 -

Application Integration

5.6 Full Example

Within this section a full description of integrating an application into the PSUE will

be given. This imaginary application will be a tetrahedral grid generator that will need

the triangular boundary grid definition from the PSUE and, after generating an

unstructured tetrahedral grid, it will need to transfer the full grid definition back to the

PSUE before exiting.

The first stage will be to edit the script file for the relevant functionality region and

add the appropriate entries for the grid generator, which will be named “tetragrid”

Since there is a grid functionality region it makes sense to add the application to that

particular area. Assuming that other applications are already in the script file, the final

file listing would be as follows:

U.W.Swansea
Menu Main
{
File View
/usr/people/jo/bin/fileview
0
Tetra-Grid Generator
/usr/people/jo/bin/tetragrid
0
Grid View
/usr/people/jo/bin/gridview
0
}

Initially there is no automation sequence but as will be seen later in this section, the

automation sequence will be added in. Figure 5-10 shows the view of the grid

generation functionality region of the PSUE after loading the script file listed above.

- 125 -

A pplica tion Integration

Figure 5-10 - View o f the Grid Generation Functionality Region

Generation
G eneric U .W .Sw ansea

Grid Generator

Grid Analysis Tetra-Grid Generator

Grid Adaption

MSC/PATRAN

The next stage o f integration is to plan w hat source code has to be developed within

the existing source code o f the “ tetragrid” application. Generally, we will need to:

• Connect to the PSUE.

• Receive all o f the boundary grid definition from the PSUE.

• Confirm receipt o f the data with the PSUE.

• Execute the original tetragrid source code - i.e. generate the grid

• Send all o f the new tetrahedral grid definition to the PSUE.

• Confirm that the PSUE received all the data.

• Exit.

This example will assume that the tetragrid application was initially written in the C

language and that the communication method will utilise the socket system. Figure

5-1 1 shows the very simple source code o f the original main routine o f the tetragrid

- 126 -

Application Integration

application and Figure 5-12 shows the source code of the final main routine. Static

arrays of memory have been used to simplify the overall source code.

_______ Figure 5-11 - Original Main Routine of the Tetragrid Application______

int main (int argc, char **argv)
{

float coords[100000][3];
int connectivity[500000][4];
int boundary[100000][3];
int numPts, numTri, numTet;

LoadData (numPts, numTri, coords, boundary);
TetraGrid (numPts, numTri, numTet, coords, boundary, connectivity);
SavaData (numPts, numTri, numTet, coords, boundary, connectivity);

exit;
}

- 1 2 7 -

Application Integration

Figure 5-12 - Final Main Routine o f the Tetragrid Application
int main (int argc, char **argv)
{

float coords[100000][3];
int connectivity[500000][4];
int boundary[100000][3];
int numPts, numTri, numTet;
int connectedToPSUE, count, num;

if (connectedToPSU E = ALCConnectSocket (argc, a r g v))

{
ALReadData (&numPts, ‘int’);
ALReadData (&numTri, ‘int’);
for (count = 0; count < numPts; count++)
{

ALReadArray (coords[count], ‘real’, 3);
}
for (count = 0; count < numTri; count++)
{

ALReadData (&num, ‘int’);
ALReadArray (boundary [count], ‘int’, num);

}
ALEndRead();

}e ls e LoadData (numPts, numTri, coords, boundary);

TetraGrid (numPts, numTri, numTet, coords, boundary, connectivity);

if (connectedToPSU E)
{

ALW riteData (num Pts, ‘int’);
ALW riteData (num Tet, ‘int’);
ALW riteData (numTri, ‘int’);
for (count = 0; count < numPts; count++)
{

ALWriteArray (coords[count], ‘real’, 3);
}
for (count = 0; count < numTet; count++)
{

ALW riteData (4, ‘int’);
ALWriteArray (connectivity [count], ‘int’, 4);

}
for (count = 0; count < numTri; count++)
{

ALW riteData (3, ‘int’);
ALWriteArray (boundary[count], ‘int’, 3);

}
ALEndWrite();
ALDisconnectSocket();

}
else SavaData (numPts, numTri, num Tet, coords, boundary, connectivity);

exit;

- 1 2 8 -

Application Integration

With the source code as above the application is ready to be integrated into the PSUE.

Upon initialisation of the PSUE, the new application button will appear in the

functionality region as previously shown in figure 5.6 and when activated will open

the application initiation panel. Each time the user wishes to use the tetragrid

application they will have to specify in the panel: a socket connection, that outward-

bound data is of the boundary data type, that inward-bound data is of the grid data

type and then select “Proceed”. Since this would become quite tedious and some users

may even make mistakes, it makes sense to automate this connection using the script

files. Since the connection process will always be the same, e.g. there are no

filenames that may change; no complications arise when automating this connection.

The typical changes to the script file to provide an automated connection would

produce a script as follows:

U.W.Swansea
Menu Main
{
File View
/usr/people/jo/bin/fileview
0
Tetra-Grid Generator
/usr/people/jo/bin/tetragrid
1
SOCKET
BOTH
BOUNDARY
GRID
Grid View
/usr/people/jo/bin/gridview
0
>

The application, tetragrid, has now been fully integrated into the PSUE and the whole

process has been very quick and easy to implement. Unfortunately, a major

disadvantage with the application integration system while using pipes and sockets is

that it may not be able to fully utilise the integration system for applications with

which the user does not have the source code readily available.

- 1 2 9 -

Application Integration

5.7 Summary

The application integration system allows the user to integrate an arbitrary application

into the PSUE in a simple but powerful way. After an application has been “plugged

in”, it may be initiated any number of times by a simple click on its application

button. The application buttons are grouped into regions of particular task types and

can be set-up to utilise cascading menus that improve access to large numbers of

applications.

The communication of data can use a number of different methods or the user may

choose not to send any data at all, for example, when a system utility such as a

calculator is to be initiated. The methods of communication include file transfer, dual

pipes that are unidirectional or a socket that is bi-directional. The data may be sent

just to the newly initiated application, or just from the application when it finishes or

both. Different types of data may be transferred to and from the application and

include geometry, surface mesh, volume mesh and solution data. The whole

communication and initiation processes may be automated within the controlling

script files.

The application integration system provides a highly versatile method of

incorporating applications into the PSUE environment as seamlessly as possible. The

partners of the CAESAR project all found the application integration facilities very

useful and were able to gather their different engineering simulation tools together

into the PSUE with great results.

- 130-

Application Tool Wrapper

6 A p pl ic a t io n T o o l W r a pp e r

- 131 -

Application Tool Wrapper

6.1 Introduction

The Application Tool Wrapper is the next generation tool for the integration of

applications into the PSUE environment. It gives the user the ability to “wrap” any

application with the capacity to transfer almost arbitrary data back and forth to the

PSUE. It was developed under the JULIUS project.

We have seen that the application integration system allows great flexibility for

integrating arbitrary applications, however it does have its limitations. The

Application Tool Wrapper builds on the application integration facilities by allowing

arbitrary data to be communicated to the application. It also allows for the transfer of

data to proprietary applications for which source code is unavailable for adding

application integration library code.

The Application Tool Wrapper was initially intended to replace the current

Application Integration system, however, it was quickly noted that both facilities are

very powerful tools with slightly differing capabilities. It was therefore decided to

keep both facilities within the PSUE and have them run side by side. This gives the

user the maximum amount of flexibility when deciding how to integrate their

application.

During the initial design of the Application Tool Wrapper it was decided that the

facility would maximise use of the previous technology employed by the PSUE. The

PSUE communication library, used for internal modules, uses advanced

communications and a complex data structure but gives far more control over the

data. On the other hand, the application integration system has relatively simple

communications and straightforward sets of data. The Application Tool Wrapper was

anticipated to amalgamate the two methods providing all of the functionality o f the

internal data structure through relatively simple communication systems.

It should be noted at this stage that the Application Tool Wrapper that is described

within this thesis is an early experimental prototype. The communications between

- 1 3 2 -

Application Tool Wrapper

the actual Tool Wrapper and the application are very basic within this early version;

however, it has been fully integrated into the PSUE communication library. Many

other features that were intended to be included within the Tool Wrapper had not been

completed at the time when the author’s work finished with the module.

- 133 -

Application lo o l Wrapper

6.2 Architecture

The Application Tool Wrapper was developed as another module of the PSUE so that

it could benefit from the entire data structure of the PSUE. It can be seen as another

module, for example, like the grid generation module but instead of generating grids,

its purpose is to communicate data back and forth to external applications. Since the

Tool Wrapper is a module of the PSUE it utilises the communication library that

represents efficient and comprehensive transfer of data to the module.

In a way, it may be seen as an amalgamation o f the PSUE Communication Library

and the Application Integration system. The communication library allows the

efficient but comprehensive data sets to be transferred to the Tool Wrapper and the

Application Integration side allows the initialisation and communication to new

arbitrary applications. This concept follows the original architecture plans for the

PSUE that all key functionality is provided in a modular way and drawn together into

a unified environment.

As discussed in section 4, the communication library utilises shared memory as its

core method for transferring data from one module to another, by way of the PSUE

main interface. Since the tool wrapper is always initiated from the PSUE there is no

overhead incurred by requiring the data to go through the PSUE main interface. It was

intended that from the tool wrapper the data might be transferred using any of the

original application integration methods; file, pipe and socket, however, at the time

that this thesis was written only the file method had been implemented.

As previously mentioned above, the tool wrapper may be seen as a method to

integrate applications and runs side by side with the application integration method.

Long term, it is intended that the tool wrapper will replace the application integration

system, but this will only happen when all o f the useful functionality o f the

application integration system is implemented into the tool wrapper facility. Table 6-1

shows the current advantages and disadvantages o f the two methods.

- 134 -

A pplication Tool W rapper

Table 6-1 - Advantages and Disadvantages o f the Application Integration and the
Tool W rapper___

Application Integration Uses file, pipe and socket
communications.
May be automated.

Requires access to source
code.
Can only communicate
using PSUE data formats.

Tool Wrapper Does not require access to
source code.
Can communicate using
arbitrary data formats.

Only uses files for
communications.
No automation.

As we can see from Table 6-1, there are currently some key issues differentiating the

two methods o f the application integration system and the tool wrapper - so when

should the user implement which method? The application integration method allows

the use o f pipes and sockets that are far more efficient in transporting data than files,

however the user is restricted to PSUE identified data formats and requires access to

source code. Therefore, if the user has access to the source code o f the application

they wish to integrate and the PSUE data formats include the required data for the

application, the user would be advised to utilise the application integration system. On

the other hand if the source code is not available or the PSUE data formats do not

provide an adequate data structure, the tool w rapper would need to be used. Figure

6-1 shows the comparison between the application integration system and the tool

wrapper.

- 135 -

A pplication Tool W rapper

Figure 6-1 - Comparison o f the Application Integration and Tool Wrapper

Control file

PSUE Communication
^^Library

PSUE Direct Access

File
C o m m u n ica t io ns

File, P ipe and Socket
C om m un ica t ion s

Application Integration Tool Wrapper

Application

Data Module
(PS U E data fo rm ats)

Too! Wrapper
(A n y data format)

PSUE

6.2.1 Techniques Employed

The general techniques employed such as the application initiation and data transfer

have been described previously in section 5.4 since it was mentioned that existing

technology would be used where possible. The major new technique employed by the

tool wrapper is the scripting language used to control what data is sent through the

communication channel.

This technique has been implemented using two separate procedures, which are the

specification procedure and the interpretation procedure. The specification o f the data

to be transferred is carried out by selecting the required key data from a list, provided

in the left-hand side o f the application. As the user selects key items from the list they

are automatically added to the “work area” on the right-hand side. The key items are

- 1 3 6 -

A pplication Tool W rapper

recognised command strings provided by the interface and therefore may be easily

interpreted in the second procedure. The key items work in conjunction with a small

num ber o f key com m ands that are currently just “ for” and “endfor” . It is anticipated

that far more key comm ands would be implemented such as: “ i f ’, “else”, “end if”,

“ while” .

The key items are a series o f identifies linked with each and every data item within

the PSUE data structure. Table 6-2 shows an example set o f the key items and their

interpretation.

Table 6-2 - Example Set o f Key Tool W rapper Items

TEXT() This allows specification o f any text or static data

INDEX Index or entity number, e.g. node number

NU M BER OF NODES The number o f nodes

NU M BER OF CELLS The number o f cells

CONN 1 Connectivity node 1 for current cell

X CO O R D X coordinate for current node

X U TA NGENT X derivative in U direction for current surface

Y V TA NGENT Y derivative in V direction for current surface

Z U V TA NGENT Z second derivative for current surface

SU RFA CE INDEX Surface index for current entity

M ATERIAL INDEX Material index for current entity

SOLUTION NO DE 2 Solution variable 2 for current node

SOLUTION CELL 3 Solution variable 3 for current cell

The key items and key comm ands are used to build the data format required by the

users application. It is kept as simple as possible and most o f the data structure may

be created by pointing and clicking on the specific key items. As a simple example,

assume an application requires the number o f nodes in a mesh and the corresponding

x, y and z coordinates for each node.

- 1 3 7 -

Application lo o l Wrapper

The key structure would be:

NUM BEROFNODES

for NUMBER_OF NODES

X COORD Y COORD Z_COORD

endfor

However, if the nodes were not in order the index identity may also need to be sent to

the application so that it may order them appropriately. The following key structure

would be required:

NUM BEROFNODES

for NUMBER OF_NODES

INDEX X COORD Y COORD Z COORD

endfor

The tool wrapper uses a number of key items for more than one use and one of these

is the INDEX key item. The tool wrapper interprets each key item in the manner that

it believes is right and so in the above structure it would send the index of the current

node through the communication channel. However if the line “for

NUMBER OF NODES” were actually “for NUMBER OF CELLS” it would

assume that the index of the current cell is the intended data to be sent. This is the

interpretation procedure.

- 138-

A pplication Tool W rapper

6.3 Examples

In order to help understand the procedures involved within the tool wrapper two

examples are presented. The first represents the communication o f a simple surface

grid definition and the second represents a complex geometrical definition.

6.3.1 Example 1 - Surface Grid Definition

Figure 6-2 shows the tool wrapper interface with the key item list on the left-hand

side and the work area on the right-hand side. The user specifies the data file name

that will be used to transfer the data that in this case is named “/var/tmp/tg.sur” . The

com m and string is also specified, as “/public/bin/tetragrid - f /var/tmp/tg.sur” that

allows the application, tetragrid, to automatically load the file since the application

uses the “- f ’ option to do this.

Figure 6-2 - The Tool W rapper Configured for a Surface Mesh Definition

Data File Marne: /v a r /tm p /tg .s u r C om m and: /p u b l ic /b in / t e t r a g r id - f /v a r /tm p /tg .su r

j -D a ta S p ec ifica tio n
(A vailable Data D ata Form at

INDEX
TEXTO
NUMBER_OF_NODES
X_COORD
Y_COORD
Z_COORD
NUMBER OF_CELLS
C o n n i
CONN 2
CONN_3
SURFACEJNDEX
NUMBER_OF_CORNERS
NUMBER_OF_CURVES
NUMBER_OF_NCPOINTS
COORD INDEX
DISCRTETISATIONJJ
NUMBER _OF_OCPOINTS
X_COORD
Y COORD

TEX T (Title)
T EX T (D escription)
NUM8ER_0F_N0DES NUMBER_DF_CELLS
fo r NHWBER_0F_N0DES

INDEX X_C00RD Y_C00RD Z_COORD
endfor
for NUMBER_OF_CELLS

INDEX C0NN_1 C0NN_2 C0NN_3 SURFACE_INDEX BC_INDEX
endfor

&<§S5§

Initiate Exit

- 1 3 9 -

Application Tool Wrapper

The key structure is shown below in blue along with a description of what each line

represents:

TEXT(Title)
This provides a line of text that would print “Title”

TEXT (Description)
This provides a line of text that would print “Description”

NUMBER OF NODES NUM BEROFCELLS
This provides the number of nodes and faces within the surface mesh

for NUMBER OF NODES
INDEX X COORD Y_COORD Z_COORD

endfor
This enters a loop of size equal to the number of nodes, and for each of

those nodes the node index, x, y and z coordinates are provided.

for NUMBER OF CELLS
INDEX C O N N 1 CONN 2 CONN_3 SURFACE INDEX BC_INDEX

endfor
This enters a loop of size equal to the number of cells, and for each of

those cells the cell index, 3 connectivities, surface index, and boundary

condition index are provided.

6.3.2 Example 2 - Complex Geometry Definition

Figure 6-3 shows the tool wrapper interface again but with a more complex set o f key

structures. The user specifies the data file name that will be used to transfer the data

and the application to be initiated once again. This example shows some further

functionality that the application integration system is not capable of. The key

structures contain not only the geometrical definition but also the background mesh

density grid and grid sources. If the application integration system was being utilised

only one of the two data sets could be transferred or the neutral file format would

have to be used, possibly including a lot of extra data that would not be necessary.

- 140-

A pplica tion Tool W rapper

Fi^ure 6-3 - The Tool W rapper Configured for a Coniplex Geonietry Definition

Data File Name: /c g tu r n e r /fa lc o n .d a t Command: / f a l c o n .d a t - s f /tm p /c g tu r n e r /fa lc o n .d a t

p-Data Specification -
Available Data Data Format

INDEX
te x tq

NUMBER_SF_NODES
X_COORD
Y_COORD
Z_CGORD
NUMBERJ3F CELLS
CONN t
CONN_2
CONN_3
SURFACE_INDEX
NUMBER_OF CORNERS
NUMBER_OF_CURVES
NUMBER_OF_NCPOINTS
COORD_INDEX
DISCRTETISATIONJJ
NlJMBER_OF_OCPOINTS
X_COORD
Y_COORD
Z_COORD
X_TANGENT
YTANQENT
Z TANGENT
NUMBER_OF_SURFACES
NUMBER OF_NSPOINTS
COORDJNDEX
DISCRTETISATION_U
DISCRTETISATION_V
NUMBER_OF_OSPOINTS_U
NUMBER_OF_OSPOINTS_V
X_COORD
Y*COORD
Z_COORD
X UTANGENT
Y_U_TANGEFTT
Z_U_TAIMGENT
X_V TANGENT
Y_VTANGENT
Z_V_TANGENT
X_UV_TANGENT
YJJVTANGENT
Z_UV_TANGENT
NUMBER_OF_BACKGROUND NODES
X_COORD
Y COORD

TEXT(* background mesh)
NUMBER_OF_BACKGROUND_NODES NUMEER_OF_BACKGROUND_CELLS NUMBERJD
fo r NUMBER_OF_BACKGROUND_NODES

INDEX X_C00RD Y_C00RD Z_C00RD
TEXT(1 .0 0 .0 0 .0) INTENSITY
TEXT(0 .0 i . 0 0 .0) INTENSITY
TEXT(0 .0 0 .0 1 .0) INTENSITY

endfor
for NUMBER_OF_BACKGROUNC'_CELLS

INDEX C0NN_1 C0NN_2 C0NN_3 C0NN_4
endfor
TEXT(*points)
fo r NUMBER_OF_P0INT_SOURCES

INDEX
X_C00RD Y_C00RD Z_C00RD INTENSITY INNER_RADIUS OUTER_RADIUS

endfor ~
TEX T(*lines)
fo r NUMBER_0F_L1NE_S0URCES

INDEX
X_COORD Y_C00RD Z_C00RD INTENSITY INNER_RADIUS OUTER_RADIUS
X_C00RD Y_C0ORD Z_C00RD INTENSITY INNER_RADIUS OUTER_RADIUS

endfor
for NUMBER_OF_TRIANGLE_SOURCES

INDEX
X_C0ORD Y_C00R0 Z„CO0RD INTENSITY INNER_RADIUS OUTER_RADIUS
X_C00RD Y_C00RD Z_C00RD INTENSITY INNER_RADIUS OUTER_RADIUS
X_C00RD Y_C00RD Z_C00RD INTENSITY INNER_RADIUS OUTER_RADIUS

endfor
NUMBER_OF_CELLS NUMBER_OF_N0DES TEXT(0) NIJMBER_0F_CORNERS NUMB
fo r NUMBER_0F_N0DES

INDEX X_CO0RD Y_C00RD Z_C00RD
endfor
fo r NUMBER_OF_CELLS

INDEX CONN_] C0NN_2 C0NNJ3 SURFACE_INDEX
endfor
fo r NUMBER_OF_CURYES

INDEX NUMBER_0F_NCPOINTS
fo r NUMBER_QF_NCPOINTS

COORD_lNDEX DISCRTETI SAT ION_U
endfor

endfor
fo r NUMBER_OF_SURFACES

INDEX NUMBER_OF_NSPDINTS
fo r NLWBER_0F_NSP01 NTS

COORDJNDEX DISCRTETISATION_U DI SCRTET I SAT 10N_V
endfor

endfor
fo r NUM6ER_0F_CURVES

INDEX NUMBER_0F_OCPOINTS
fo r NUMBER_OF_0CPOI NTS

X_C00RD Y_C00RD Z_C00RD X_TANGENT Y_TANGENT 2_TANGENT
endfor

- 141 -

Application Tool Wrapper

The key structure is shown below in blue along with a description of what each line

represents:

TEXT(* backgound mesh)
This provides a line of text that would print “* background mesh”

NUM BEROFBACKGROUNDNODES...
N U M B E R O FB ACKGROUNDCELLS...

NUM BERO FPO INTSO URCES...
NUM BERO FLINESO URCES...

NUMBEROFTRIANGLESOURCES
This provides the number of nodes and cells in the background mesh

density description and the number of point, line and triangle grid sources

for NUMBER OF BACKGROUND NODES
INDEX XCOORD Y_COORD Z_COORD
TEXT(1.0 0.0 0.0) INTENSITY
TEXT(0.0 1.0 0.0) INTENSITY
TEXT(0.0 0.0 1.0) INTENSITY

endfor
This enters a loop of size equal to the number of background nodes, and

for each of those background nodes the node index, x, y and z coordinates

are provided. These are then followed by the given text strings and the

intensity value at the nodal position.

for NUMBEROFBACKGROUNDCELLS
INDEX CO NN1 CONN_2 CONN_3 CONN_4

endfor
This enters a loop of size equal to the number of background cells, and for

each of those background cells the cell index and 3 connectivities are

provided.

TEXT(* points)
This provides a line of text that would print “* points”

for NUMBER OF POINT SOURCES
INDEX
X COORD Y COORD Z_COORD INTENSITY INNER RADIUS OUTER_RADIUS

endfor
This enters a loop of size equal to the number of point sources, and for

each of those point sources the index, x, y and z coordinates are

provided. These are then followed by the intensity value and the inner and

outer radii o f the point source.

- 142-

Application Tool Wrapper

TEXT(* lines)
This provides a line of text that would print “* lines”

for NUM BEROFLINESOURCES
INDEX
X COORD YCOORD ZCOORD INTENSITY INNERRADIUS OUTER_RADIUS
X COORD Y COORD Z_COORD INTENSITY INNER RADIUS OUTER_RADIUS

endfor
This enters a loop of size equal to the number of line sources, and for

each of those line sources the index is provided. Followed by the x, y and

z coordinates, the intensity value and the inner and outer radii of the point

sources at either end of the line source.

TEXT(* triangles)
This provides a line of text that would print “* triangles”

for NUMBEROFTRIANGLESOURCES
INDEX
X COORD Y COORD Z_COORD INTENSITY INNER RADIUS OUTER RADIUS
X COORD Y COORD Z COORD INTENSITY INNER RADIUS OUTER_RADIUS
X COORD Y COORD Z_COORD INTENSITY INNER RADIUS OUTER RADIUS

endfor
This enters a loop of size equal to the number of triangle sources, and for

each of those triangle sources the index is provided. Followed by the x, y

and z coordinates, the intensity value and the inner and outer radii o f the

point sources at all three ends of the triangle source.

NUM BEROFCURVES N U M BER O FSU R F ACES
This provides the number of curves and surfaces within the geometry

definition.

for NUMBER OF CURVES
INDEX NUMBEROFNCPOINTS
for NUMBER OF NCPOINTS

COORDINDEX DISCRETISATIONJJ
endfor

endfor
This enters a loop of size equal to the number of curves and for each of

those curves the index and the number of new curve points is provided. A

second loop is entered of size equal to the number of new curve points for

the current curve. Within this loop the coordinate index and the discretised

distance in U along the curve is provided for the current point on the

current curve.

- 143-

Application Tool Wrapper

for NUMBEROFSURFACES
INDEX NUMBEROFNSPOINTS
for NUMBER OF NSPOINTS

COORD INDEX DISCRETISATION U DISCRETISATION_V
endfor

endfor
This enters a loop of size equal to the number of surfaces and for each of

those surfaces the index and the number of new surface points is provided.

A second loop is entered of size equal to the number of new surface points

for the current surface. Within this loop the coordinate index and the

discretised distance in U and V across the surface is provided for the

current point on the current surface.

for NUMBER OF CURVES
INDEX NUMBEROFOCPOINTS
for NUMBER OF OCPOINTS

X COORD Y COORD Z_COORD
XTANGENT Y TANGENT Z_T ANGENT

endfor
endfor

This enters a loop of size equal to the number of curves and for each of

those curves the index and the number of old curve points is provided. A

second loop is entered of size equal to the number of old curve points for

the current curve. Within this loop the x, y and z coordinates and the x, y

and z tangents in U are provided for the current point on the current curve.

for NUMBER OF SURFACES
INDEX NUMBEROFOSPOINTS
for NUMBER OF OSPOINTS

X COORD Y COORD Z COORD
X_U_T AN GENT Y_U_T ANGENT Z_U_T AN GENT
X_V_T AN GENT Y_V_T ANGENT Z_V_T ANGENT
X U V_T AN GENT Y_UV_T ANGENT Z_UV_T ANGENT

endfor
endfor

This enters a loop of size equal to the number of surfaces and for each of

those surfaces the index and the number of old surface points is provided.

A second loop is entered of size equal to the number of old surface points

for the current surface. Within this loop the x, y and z coordinates, the x, y

and z tangents in U, the x, y, z tangents in V and the x, y and z tangents in

UV are provided for the current point on the current surface.

- 144-

Application Tool Wrapper

6.4 Summary

The overall design of the tool wrapper produces a highly versatile and configurable

tool. It allows the PSUE the ability to integrate any application and to communicate

key data between the PSUE and the application. The data format is very flexible and

is specified by the user upon initiation of the application.

As mentioned, the tool wrapper is an early prototype designed for the JULIUS project

but has already proved that the concept is feasible and would be very powerful once

all of the planned developments have been made to the facility. These include further

expansion of the data structures to include arbitrary entities that would allow for

almost all eventualities. The other major planned developments include bringing the

tool wrapper communication methods up to the same level as the application

integration system. One further development that has not been mentioned so far is the

implementation of data retrieval from the application back through the tool wrapper to

the PSUE.

As has just been outlined, there is still a huge amount of required development work

on the tool wrapper and until this is done, it would be expected that the application

integration system would remain the key tool to use when integrating applications into

the PSUE.

- 145-

Test C a se s

Test Cases

7.1 Introduction

This section represents the results of the development of the PSUE. Since the

development techniques and philosophy of the PSUE are new it is very difficult to

make a direct comparison of the PSUE with any other system. The main method of

evaluating whether the PSUE is a success or not is to examine the benefits of the

system when carrying out test cases. Obviously, the target will be to meet the

objectives of the PSUE as discussed in section 1.3.

The main test case that will be presented within this thesis utilises the Dassault Falcon

aircraft geometry and will include all the steps required to reach a solution of the

airflow around the aircraft.

Two further test cases will be presented but due to the confidentiality of the

geometries, illustrations will not be shown. Both cases are aircraft configurations, the

first is the solution of an electromagnetic solver on the A3XX airline jet and the

second is the solution of the airflow around the F16 fighter jet. However, it must be

highlighted that any arbitrary geometry and any multidisciplinary engineering

application may be used. For example, the PSUE has been used to model the Thrust

Super Sonic Car (SSC), an electrical transformer and power station cooling towers

amongst many other applications.

The test cases described in this chapter cover all the procedures involved with

carrying out an engineering simulation and therefore include descriptions o f some

functionality that was not developed by the author. This functionality has been

included in the test case descriptions to provide a complete picture of how the PSUE

operates overall.

- 147-

Test Cases

7.2 Test Case 1 - Dassault Falcon

The objective for this first test case is to take the geometry of the Dassault Falcon,

generate a tetrahedral grid, partition the grid, run a 3D flow solver with the

configuration to convergence, adapt the computational grid and calculate the final

results.

7.2.1 Geometry Manipulation

The original data for this case was provided as geometrical entities in the Flite3D

geometry file format. Since this was employed as the base geometry format within the

PSUE, as specified in the user manual [21], no geometry conversion is necessary and

the file may be loaded into the PSUE directly. Figure 7-1 shows the Falcon geometry

loaded in the geometry builder module of the PSUE.

As can be seen in the illustration, the geometry requires some additional parts,

namely, a symmetry plane and a far field. This can be generated within the geometry

builder [21] extremely easily with the template panel. A plane is created for the

symmetry plane and a hemisphere for the far field.

- 148-

T est Cases

Figure 7-1 - Falcon Geometry in the Geometry Builder

File Config Mode Appearance Utilities Grid-Contiol Help

Point
Adjust Rules

Point i Curve a Loop] Surface

Decompose

Manipulate------------
Calculate Bounding Box

All j Move j Delete | Copyf ChDir

MirrorVZ | MirrorZX | MirrorXYSB

I r a n | A fr iin I Rot | S c a le | Back

Load a geometry in FUTE3D form

7.2.2 Preparation for Grid Generation

There are three stages for preparing the geometry for grid generation and these are: (a)

checking the topology o f the geometry, (b) setting up the boundary conditions and (c)

setting up the controls for grid density.

An automatic topology generator is provided within the geometry builder that will

generate and check the topology. If any problems occur the user will need to manually

correct the geometry and/or the topology.

A boundary condition panel is provided to set values at the node level, line or curve

level, or surface level. Using this panel, boundary conditions o f grid nodes and cells

may also be modified after the generation o f a grid.

- 14 9 -

T est Cases

The final stage o f the geometry preparation step is the specification o f grid densities

around the geometry. The grid generator [21] that has been provided as generic

functionality within the PSUE is the FLITE3D system [21],[26] and uses the idea o f

sources to control the density o f cells in specific regions. Sources come in three types,

point, line and triangular. The grid sources can be created within the geometry builder

and Figure 7-2 shows the final geometrical configuration with the grid sources.

Figure 7-2 - Falcon Geometrical Configuration with Grid Sources

7.2.3 Grid Generation and Partitioning

All o f the data has now been prepared ready for the grid generation step but the data is

in the geometry builder module, not the grid generation module. The user would now

exit the geometry builder that would automatically and transparently invoke the PSUE

- 1 5 0 -

Test C ases

communication library to pass all o f the data definitions back to the main interface o f

the PSUE. The user now starts the grid generation interface that again automatically

and transparently receives the data definitions held within the main PSUE interface.

Hence, the user has changed modules without having to undertake any transferral o f

data themselves providing an almost seamless connection o f modules.

Within the grid generation interface [21], since all data is already available, the user

may immediately start the automatic surface grid generator, followed by the automatic

tetrahedral grid generator. After this has completed the resulting grid definition may

be readily viewed within the geometry viewer module within the PSUE. Figure 7-3

shows the resulting surface and volume grids for the Falcon geometry - the purple

grid shows the surface grid on the actual aircraft surfaces while the yellow grid shows

cutting regions through the volume grid.

Figure 7-3 - Surface and Volume Grids for the Falcon Geometry

- 151 -

Test Cases

Now that the initial volume grid has been generated, the user can exit the grid

generation module that once again will send all the data back to the main PSUE

interface using the communication library.

The nest step in the simulation procedure is to partition the new volume grid,

however, the PSUE does not provide any generic functionality to do this and so an

external application must be integrated. The PSUE functionality region provides an

area specifically for this task, namely the Domain Decomposition area, and the script

file that controls this region is named “PSUEscript.dode”. The script file is created

and is edited so that its contents are:

Partitioners
Menu Main
{
Swansea Partn
/usr/people/jo/bin/partn
1
SOCKET
OUT
GRID
}

This will produce a single button that will be labelled “Swansea Partn” and will

initiate the partitioning application “/usr/people/jo/bin/partn”. The grid definition that

was just generated within the PSUE grid generation module will be sent to the grid

partitioner using a socket connection through the PSUE application integration

library. The partitioner prompts for the number of domains to create and then

continues to process the grid-partitioning algorithm. The application used is a research

code written within UWS and is based on the Recursive Spectral Bisection method

[29]. The output from the grid partitioner is a series o f grid files - one for each

domain.

7.2.4 Grid Quality Evaluation

Since each of the grid files is actually a computational grid in itself, they may be

treated individually. Therefore, each may be sequentially loaded into the grid quality

evaluation module [21] of the PSUE to check its quality statistics. Figure 7-4 shows

the typical presentation of results for a grid within the grid quality evaluation module,

- 152 -

T est C ases

in the histogram mode. The user may move on to the next step o f the simulation once

they are satisfied with the quality o f the grid and its partitions.

Figure 7-4 - Typical View o f the Histogram Chart o f the Grid Quality Statistics
Summary o f Grid Quality Measures

No. ol Faces f ‘ ~ 287816 No. of Points 250721 <10720No. ol Elements

Max & Min Volume 161.66029-1 0.000001 j 7 Max & Min value of (Average Side Length)A*3 / Volume

? Max & Min Circum scribed Radius 15.650558 0.03513-1

Max & Min Inscribed R adius 2.899208 0.000058

1 Max & Min Dihedral Angle 72.889313 0.048265

Max & Min No. of Elements on a Poin t 52 2 ■ i

Max & Min Ratio of Adjacent Volumes 260.893768 0.255659

Max 6 Min Ratio of Side Lengths per Node

Graphical RepresentationM easure No Grid Partition No

Minimum Value - 1.0021
Maximum Value - 11.006-1 R eturn to Top Level

F requency

. . ■i .

46 55494995 6.4589844 7 3684692 83779541 91874390 10.0969238 11006408752 LS115801 2.8710449

11.006409 1.002075

P 9 .434563 1.020825

1.034765

7.2.5 Parallel Flow Solver

The next step is to solve the flow in parallel which involves starting an application on

a remote parallel platform. The parallel flow solver is based on a research application

written at UWS as a serial Euler flow solver. The parallel version o f the solver was

also developed at UWS. The remote connection tool o f the PSUE is initiated and the

remote machine specified within the interface. Firstly, the various grid files that were

created from the grid partitioner m ust be transferred to the remote platform and then

secondly, the parallel flow solver may be initiated. Both o f these functions are carried

out under the remote connection tool.

- 153 -

Test Cases

Once the flow solver has been directed towards the partitioned grid files it only needs

to know the number of partitions and the number of iterations to run for. When the

flow solver has finished the number of iterations that it needs to or sufficient

convergence o f the solution has been reached, the flow solver may be stopped and the

solution data output to a file. The remote connection tool may then be used once again

to retrieve the solution data file back to the local machine. This solution data may then

be loaded back into the PSUE main interface to coexist with the original grid

definition. The complete data set may then be transferred to one of the data analysis

applications that have been integrated very closely with the PSUE or may be used to

adapt the original computational grid.

7.2.6 Grid Adaptation

The grid adaptation module of the PSUE is actually an extension of the geometry

builder module. The same viewing functionality is still available but there is also a

grid adaptation algorithm incorporated that utilises the H-Refinement method [28].

This module has a series o f tools to include and exclude certain regions for refinement

and solution value range specification. Figure 7-5 shows a view of the point cloud

around the Falcon geometry coloured by density variable.

- 1 54 -

T est C ases

7.2.7 Final Solution

Once the grid adaptation has been carried out the new grid must be repartitioned and

solved using the relevant steps in sections 7.2.3 and 7.2.5. The final solution data m ay

then be transferred with the full grid definition to a data analysis application. The

application used in this case is the Ensight (Version 5) software provided by CEI

(w ww.ceintl.com). Within this software, all sorts o f post-processing may be carried

and an illustration o f the flow around the Dassault Falcon together w ith some o f the

partitions is shown in Figure 7-6. The figure shows the flow solution at a mach

num ber o f 0.7 on a mesh o f approximately 146,000 cells partitioned into 16. The

surface plot, contour plot and streamlines arc all coloured by static pressure.

Figure 7-5 - Grid Adaptation Module Showing the Point Cloud Around the Falcon

File Mode Appearance Utilities

Variable Name WeightNorm
Pressure
Entropy
Pressure Loss
Mach Number
Density
Density" U
Density " V
Density" W
Denslty"Fnergy

Apply Global Weighting Factors
(according to length scale)
Evaluate Specified Criteria !

Open Control Limits Panel

Create Control Regions

Entity Visualisation---------------
J Colour existing grid points

(according to calculated criteria)

j View new points
Number of new points: 172168

Show Regions As;

Wireframe

m Control
Maintain Surface Integrity

Load a 3d grid.
Load solution data.
Load solution data.

- 155 -

T est C ases

Figure 7-6 - Final Solution o f the Airflow Around the Dassault Falcon

M ip; <cT~^v

7.2.8 Summary

Figure 7-7 show/s a summary o f the data flow' through the PSUE for the Falcon test

case and Table 7-1 summarises each stage’s tasks and data transfers.

- 1 5 6 -

T est C ases

Figure 7-7 - Summary o f Data Flow for Falcon Test Case

Geometry
Builder-------------------

Grid
Generation

 — ------------

Grid
Partitioner

PSUE

Grid
Analysis

Ensight

Grid
Adaptation-----------------

Parallel
Solver

PSUE Communication Library

Application Integration System

Remote Connection Tool

PSUE Specific Connection

PSUE Module ----------------------

External Application

Table 7-1 - A Sum mary o f each Stage's Tasks and Data Transfer for Test Case 1

Geometry Builder Check topology
Set boundary conditions
Set grid controls

Geometry Geometry
Mesh Control

Grid Generator Generate surface grid
Generate volume grid

Geometry
Mesh Control

Grid

Grid Partitioner Partition grid Grid Multiple Grids
Grid Analysis Check and analyse grids Multiple Grids None
Parallel Solver Solve for flow solution Multiple Grids Solution Data
Grid Adaptation Adapt grids Geometry

Grid
Solution Data

New Grid

Grid Partitioner Partition new grid New Grid Multiple New
Grids

Parallel Solver Solve for new solution Multiple New
Grids

New Solution
Data

Ensight Visualise solution data Multiple New
Grids
New Solution
Data

None

- 1 5 7 -

1 est Cases

7.3 Test Case 2 - Airbus A3XX

Due to the confidential nature of the A3XX geometrical configuration, it is not

possible to provide any illustrations of the aircraft, but since the general facilities of

the PSUE have already been seen in the previous section, this should not cause a

problem. This test case was carried out in conjunction with British Aerospace at their

Sowerby research centre.

The main objectives for this test case are to import a geometrical configuration,

undergo any required geometrical repair, followed by grid generation, an

electromagnetic solver and the final analysis of the solution data.

7.3.1 IGES Import

Within the data management functionality of the PSUE main interface exists the

ability to import files using the IGES format (developed by IPK (www.ipk.fhg.de)

within the CAESAR project). The data files provided for this particular configuration

were separated into a number of IGES files and therefore each file must be imported

and then saved as the PSUE internal geometry format. The PSUE main interface can

then be used to initiate the geometry builder module that is able to amalgamate all of

the geometry files into a single configuration.

7.3.2 Geometrical Repair

Upon amalgamation of the geometry within the geometry builder module [21], a

number of problems with the geometry are easily highlighted. These include:

• Duplication of surfaces

• Overlaps o f surfaces

• Holes or gaps between surfaces

The duplication of surfaces is very easy to correct - one of the surfaces is deleted

however the other two problems highlighted above are not so easy to overcome. The

overlaps require the initial overlapping surface to be deleted and the resulting hole

- 158 -

Test Cases

may be covered with a new surface or treated as a hole or gap between the surfaces,

which is discussed below.

The geometry builder provides functionality specifically for the closure of gaps and

holes between surfaces. The surface reconstruction panel provides a number of

options of how to knit together the surrounding surfaces.

Once all o f the geometrical errors have been rectified the topology is created and the

boundary conditions set. The final stage before grid generation is the specification of

the grid sources.

7.3.3 Grid Generation

The geometry builder currently holds all of the data definitions and so these are

transparently transferred back to the PSUE main interface using the communication

library when the module has finished. The main interface is used to initiate the grid

generation module [21] and again, all o f the data is transferred automatically to the

new module using the communication library.

The triangular surface mesh is generated, followed by the generation of the tetrahedral

volume grid. This data is then transferred back to the PSUE main interface ready for

being checked within the grid analysis module. Once the user is satisfied with the grid

that has been generated the data may be sent to the solver.

7.3.4 Electromagnetic Solver

In this case, an electromagnetic solver (an internal code belonging to Sowerby

Research Centre of British Aerospace) is being used and is an external application

that has been integrated into the PSUE using the application integration system. The

application has been configured to connect using the socket system and has been

programmed to receive the full grid definition and then to send the solution data once

the algorithm has finished.

- 159-

Test Cases

The application has been integrated into the “Solvers” functionality region and the

appropriate script file (PSUEscript.solv) has been edited as follows:

U.W. Swansea
Menu Main
{
EM Solver
/usr/people/jo/bin/emsolver
1
SOCKET
BOTH
GRID
RESULTS
}

Since all of the grid data is currently within the PSUE main interface, the user may

immediately initiate the integrated application, emsolver, which will automatically

have the grid definition transferred upon initialisation.

After the solver has finished, the resulting solution data is automatically transferred

back to the PSUE before the solver exits. Once again, all o f the data now resides

within the PSUE main interface and all that remains is to visualise the results.

7.3.5 Data Analysis

Within the data analysis functionality region is the proprietary software, AVS/Express

(www.avs.com), which is used in this particular test case. The data is automatically

saved from the PSUE into the appropriate data formats relevant for this particular data

analysis package. Upon initiation of AVS/Express, particular script files are

automatically invoked to transparently load the newly created data files.

With all of the data in the data analysis package the user may set about visualising the

results they need.

- 160-

T est C ases

7.3.6 Summary

Figure 7-8 shows a summary o f the data flow through the PSUE for the A3XX test

case and Table 7-2 summarises each stages tasks and data transfers.

Figure 7-8 - Summary o f Data Flow for A3XX Test Case

AVS
Express

Import
IGES

PSUE

G eom etry
Builder

CEIM
Solver

G rid
G en era t io n------------------

G r id
Analysis

PSUE Communication Library

Application Integration System

PSUE Specific Connection

PSUE Module

External Application

Table 7-2 - A Summary o f each Stage's Tasks and Data Transfer for Test Case 2

IGES Import Import IGES file IGES file Geometry
Geom etry Builder Repair topology

Set boundary conditions
Set grid controls

Geometry Geom etry
Mesh Control

Grid Generator Generate surface grid
Generate volume grid

Geometry
Mesh Control

Grid

Grid Analysis Check and analyse grids Grid None
CEM Solver Solve for EM solution Grid Solution Data
AVS/Express Visualise solution data Grid

Solution Data
None

- 161 -

Test Cases

7.4 Test Case 3 - F16 Fighter

Due to the confidential nature of the FI6 geometrical configuration, it is not possible

to provide any illustrations o f the aircraft, but since the general facilities of the PSUE

have already been seen in a previous section, this should not cause a problem. This

test case was carried out in conjunction with DAS A at the University of Stuttgart.

The main objectives for this test case are to prepare the geometrical configuration,

generate an unstructured grid in parallel, solve the airflow in parallel using a panel

method flow solver, adapt and further solve the grid according to flow parameters and

finally process the solution data.

7.4.1 Geometry Preparation

The geometry required extensive additions and manipulation in order to produce a

topologically correct configuration and most of this work was carried out within the

PSUE geometry builder module [21]. Upon creation of the topology and setting the

boundary conditions, only the grid source configuration is required. The grid is to be

generated in parallel however the algorithm used is essentially the same as the

sequential grid generator. Therefore, the existing method for creating grid sources

within the geometry builder may still be used for controlling the grid density within

the parallel grid generator.

7.4.2 Parallel Grid Generation

Initially, the PSUE grid generation [21] module must generate the triangular surface

grid. This requires the geometry builder to update the main PSUE interface with all of

the data definitions. This is done using the communication library that continues to

transfer the data to the grid generation module. Once the surface grid has been

generated, the new boundary grid definition must be transferred back to the PSUE

main interface via the communication library.

The parallel grid generator [27],[30],[31] is a relatively new module of the PSUE and

therefore has not been totally integrated into the system. The data residing in the

- 162-

Test Cases

PSUE main interface must be saved to a file that can be subsequently loaded in to the

parallel grid generator. The parallel grid generator module is initiated from the PSUE

generic functionality but without any data transfer.

The application loads the relevant data from the files saved by the PSUE main

interface and begins to generate the unstructured tetrahedral grid in parallel. The

resulting volume grid is stored in a file ready for the solver.

7.4.3 Parallel Solver and Adaptation

The parallel solver (an internal code belonging to DASA) is a panel method based

flow solver that partitions the grid itself as a pre-processing stage. The solver is to be

executed on a massively parallel platform - Cray T3E - and so the remote connection

tool is used as in the first test case. Upon sufficient convergence of the flow solver,

the data is output to file and transferred back to the local platform.

The PSUE main interface loads the newly acquired solution data and initiates the grid

adaptation module. All of the required data definitions are transferred to the grid

adaptation module, using the communication library, where the grid is refined in the

relevant regions.

The refined grid and solution is then sent back through the same loop to the parallel

platform in order to carry out further solver iterations. Once the final data has been

calculated the data is retrieved back to the PSUE main interface for data analysis.

7.4.4 Virtual Reality Data Analysis

Due to heavy refinement of the grid in this particular test case, normal data analysis

packages, such as Ensight, would have great difficulty visualising the solution data

and facilities such as parallelised visualisation [32] would be necessary. Since this test

case was being carried out at the University of Stuttgart and the site also hosted a

large virtual reality facility (Virtual Environments Lab

- 163 -

T est C ases

www.hlrs.de/organization/vis/velab), the large data set was processed using parallel

visualisation techniques and viewed within a virtual reality environment [33].

7.4.5 Summary

Figure 7-9 shows a summary o f the data flow through the PSUE for the F I 6 test case
and
Table 7-3 summarises each stages tasks and data transfers.

Figure 7-9 - Summary o f Data Flow for FI 6 Test Case

PSUE Communication Library

Application Integration System

Remote Connection Tool

No Transfer

PSUE Module

External Application--------------------------

Virtual
Reality

Geometry
Builder

Grid
Generation-------------------

Parallel
Grid Gen. ------------------

Grid
Adaptation

■ - — - ■ ■ ■

Parallel
Solver

Table 7-3 - A Summary o f each Stage's Tasks and Data Transfer for Test Case 3

G eom etry Builder Repair topology
Set boundary conditions
Set grid controls

Geometry Geometry
Mesh Control

Grid Generator Generate surface grid Geometry
Mesh Control

Surface Grid

- 164 -

Test Cases

Parallel Grid
Generator

Generate volume grid Surface Grid
Mesh Control

Volume Grid

Parallel Solver Partition volume grid
Solve for flow solution

Volume Grid Solution Data

Grid Adaptation Adapt Grid Geometry
Volume Grid
Solution Data

New Volume
Grid

Virtual Reality Visualise solution data None None

- 1 6 5 -

Conclusions

8 C o n c l u sio n s

- 166 -

Conclusions

8.1 Overview

This thesis has presented details of a computer environment for engineering

simulation tools. The environment has been developed to fully utilise the existing

capabilities of computing technology readily available within industrial and

educational establishments.

The environment provides extensive capabilities for the integration of computational

engineering applications. The ability to integrate any arbitrary application allows for a

great flexibility within the environment and thereby creates a toolkit and provides a

very powerful tool. This same tool provides access to the rapidly increasing

capabilities of HPCN, possibly the technology that will grow most rapidly within

information technology in the foreseeable future.

Although this thesis has presented details of the PSUE, a multi-disciplinary

engineering application environment designed and developed by a team, it has

concentrated almost entirely on the author’s work in relation to the design and

development of the PSUE and its functionality.

The PSUE was originally bom in 1994 by Professor N. P. Weatherill and Dr M.

Marchant. A design period of 1994-1998 saw development during 1995-1999 and has

led to the design and development of the 6S Environment of the CEC ESPRIT project

- JULIUS. However, due to the extremely rapid development of computer hardware

and especially software, the PSUE and its modules are already out-dated and therefore

redundant to a certain degree.

Many companies and institutes throughout Europe have used the PSUE however, due

to a halt on further design and development of the PSUE it has failed to become a

commercial success.

- 167-

Conclusions

As part of the development of the PSUE and as a requirement for the ESPRIT

projects, a number of detailed documents were written including a user manual [21],

user tutorial [22], developer’s guide [23], application integration handbook [24] and

finally the system documentation [25].

- 168-

Conclusions

8.2 Discussions

The main interface is the core application of the PSUE system and its modules. The

design requirements for this software included the integration of all applications and

the communication of data between those applications. The authors development of

the main interface has met these requirements but to what extent?

The communication library that connects all of the PSUE modules together is

extremely affective at providing an almost seamless flow of data between the

modules. It also provides great flexibility for the experienced user to work with

multiple problem definitions at any one time. However, a shared memory

communication system is restricted by the computer hardware of the platform on

which the application is running. There is a large overhead of memory for this

particular communication system and on the average size workstation this limits the

user on the amount of data they can access at any one time.

The user is able to integrate any number of arbitrary applications into the PSUE

environment that in it self is a very useful feature. The PSUE also allows extensive

automated data transfer between the PSUE and the applications, especially if the

source code for the application is freely available. However a major disadvantage of

the data transfer system is that only data formats specified by the PSUE may be used

to transfer the data.

The PSUE provides the single unified interface that was originally suggested would

be required to create a successful environment, along with the ability to assist in the

simulation engineering process. The PSUE also fulfils this target and the other major

challenges originally presented in this thesis due to the extensive work carried out on

application integration, data transfer and management.

The original key objectives o f the PSUE have also been met. The reduction in

problem set-up time is quite considerable and for a particular case that would

- 169-

Conclusions

normally take 2-3 weeks the user could expect to reduce that time to well under 1

week. Due to the general configuration of the PSUE interface and its modules, users

learn quickly and efficiently, reducing training periods, however further work should

be carried out in this area. The modular framework and integration o f arbitrary

applications have been fulfilled directly as a result of the architecture of the PSUE.

Finally, the HPCN exploitation was quite extensive at the time the PSUE was

developed but due to the rapid development of hardware systems and networks, is

lagging behind technology.

One of the major technological advancements in recent time is grid technology

[34][35], which promotes the use of universally wide computing resources to carry

out most types of e-business and e-solutions. Grid computing produces and defines

protocols, services and tools that allow scalable virtual organisations [34] to utilise

idle computers on an international scale. The protocols cover major issues such as

quality or service, job scheduling, co-allocation and accounting of resources. The

services include storage service providers (SSP), application service providers (ASP),

and Grid Security Infrastructure (GSI) that extends virtual private networks (VPN),

Transport Layer Security (TLS) and Generic Authorisation and Access(GAA).

The grid allows the virtual organisations, which may span multiple institutions, to

access various geographically distributed resources using resource management

protocols that also allow co-allocation of the resources. The grid also provides,

through the protocols, secure remote access to the computing and data resources and

data management at all levels including transfer. The identification of the protocols

and services is the first priority [34] of the grid architecture followed by the

Application Protocol Interface (API) and Software Developmen Kit (SDK). APIs and

SDKs allow developers to create complex applications that will interface with the grid

architecture. They accelerate code development, enable code sharing and enhance

application portability.

Conclusions

The development of APIs and SDKs and the internal structure of the grid architecture

utilise the protocols and services of the grid and these facilities are termed

“Middleware” [34]. Globus is an open source reference implementation of protocols

[35] and is an example of Middleware facilities. However, it not only provides APIs

and SDKs but also the protocols and services if they are not already available at the

resource level. Globus also involves web service technologies [35] focussing on XML

to address heterogeneous distributed computing.

These capabilities would extend the current HPCN and encourage geographically

distributed abilities o f the PSUE. An example implementation within the PSUE would

be the parallel visualisation of data [32] within the third testcase. The geographically

distibuted resources are pooled together to allow the visualisation of large datasets

[36]. The grid allows the management and manipulation o f the resources, security and

integration of applications to allow the visualisation to happen.

The PSUE was initially designed and developed to be a prototype in order to ascertain

whether the concept of a fully integrated engineering simulation environment is

feasible. The author believes that the PSUE proves that this is feasible and the PSUE

has been a major success and could lead to an environment that would easily be a

major technological and commercial success.

- 171 -

Conclusions

8.3 Future Developments

It was mentioned in section 8.1 that design and development of the PSUE has been

halted however if further development was to be made on the PSUE the author

recommends the topics discussed below.

The main PSUE communication library and the application integration library have

been developed independently. The environment would benefit greatly if a single

system, encompassing all o f the existing functionality, was developed to cover

generic functionality modules and external applications. The communication system

should be developed based on a socket system since the main disadvantage, the speed,

has now been resolved and a socket system will enable a distributed PSUE. This

would allow separate modules to be shown and even operated from another machine

that may even be geographically distributed.

The first step to a completely unified application integration system is the Tool

Wrapper, a module that would possibly allow as much integration for a proprietary

application as an in-house application, for which the program source code is available.

The Tool Wrapper is still very much a simple prototype however it has huge

development prospects and managed appropriately would provide a great level of

flexibility for the user to integrate almost any application.

The current links for HPCN should be improved and made far more transparent and

automatic. A new development area for parallelisation is the visualisation of data for

pre and post processing [32], Also, the grid technology discussed in the previous

section should also be researched and the appropriate capabilities integrated into the

PSUE as standard functionality, at all levels.

As computer technology continues to rapidly increase, new areas for design should

include artificial intelligence and virtual reality that can be used at almost all stages of

an engineering simulation.

- 17 2 -

Conclusions

Going back to the base formation of a user interface, many extensions and new

functionality may be introduced into the modules of the PSUE. Levels of competence,

feedback, automatic completion of input data, short-cut keys, icons instead of text for

controls, amongst other features, could all be enhanced to provide more intuitive and

easier to use interfaces. As these features are developed and enhanced, further

concepts will come to light, as this is the continual evolution observed within most

computer interfaces.

- 1 7 3 -

References

9 Re f e r e n c e s

[1] N.P.Weatherill, M.J.Marchant, E.Tumer-Smith, Y.Zheng, M.I.Sotirakos; A

Parallel Simulation User Environment for Computational Engineering; 5th

International Conference on Grid Generation in Computational Fluid Dynamics;

Starkville, Mississippi, USA; 1-5* April 1996.

[2] N.P.Weatherill, M.J.Marchant, E.Tumer-Smith, Y.Zheng, M.I.Sotirakos; The

Design of a Graphical User Environment for Multi-Disciplinary Computational

Engineering; ECCOMAS 1996; Paris; September 1996.

[3] N.P.Weatherill, M.J.Marchant, E.Tumer-Smith, Y.Zheng, M.I.Sotirakos; PSUE

- Requirements Capture; Civil Engineering Department, University of Wales

Swansea; Official Report CR/941/96.

[4] Sun Microsystems Inc.; OPEN LOOK Graphical User Interface Functional

Specification; Addison-Wesley Publishing Company; 1989; ISBN: 0201523655

[5] B.Shneiderman; Designing the User Interface - Strategies for Effective Human-

Computer Interaction; Addison-Wesley Publishing Company; 2nd edition;

1992; ISBN: 0201694972

[6] B.Laurel; The Art of Human-Computer Interface Design; Addison-Wesley

Publishing Company; 1990; ISBN: 0201517973

[7] J.R.Brown and S.Cunningham; Programming the User Interface: Principles and

Examples; 1989; ISBN: 0471638439

[8] K.Cox and D.Walker; User Interface Design; 2nd edition; 1993; ISBN:

0139528881

[9] J.Preece et al.; A Guide to Usability: Human Factors in Computing; Addison-

Wesley Publishing Company; 1992; ISBN: 020162768X

[10] E.Grandjean and E.Vigliani; Ergonomic Aspects of Visual Display Terminals;

1980; ISBN: 0850662117

[11] R.E.Eberts; User Interface Design; 1993; Prentice Hall; ISBN: 0131403281

[12] Apple; Human Interface Guidelines: The Apple Desktop Interface; Addison-

Wesley Publishing Company; 1987; ISBN: 0201177536

- 1 7 4 -

References

[13] UIST; Fourth Annual Symposium on User Interface Software and Technology;

1991.

[14] M.I.Sotirakos and R.Said; Memory Management using C and FORTRAN;

Internal Memo; Civil Engineering Department, Swansea University; January

1995.

[15] W.R.Stevens; Unix Network Programming; Prentice Hall Inc.; ISBN: 0-13-

949876-1

[16] A.Nye; Xlib Programming Manual; O’Reilly & Associates Inc; ISBN: 1-56592-

002-3

[17] A.Nye; Xt Toolkit Intrinsics Programming Manual; O’Reilly & Associates Inc;

ISBN: 1-56592-003-1

[18] Open Software Foundation; OSF/Motif Programmers Reference; Prentice Hall

Inc.; ISBN: 0-13-143166-8

[19] OpenGL Architecture Review Board; OpenGL Programming Guide; Wesley

Publishing Company Inc.; ISBN: 0-201-63274-8

[20] OpenGL Architecture Review Board; OpenGL Reference Manual; Wesley

Publishing Company Inc.; ISBN: 0-201-63276-4

[21] E.Tumer-Smith, Y.Zheng, M.I.Sotirakos; PSUE - User Manual; Civil

Engineering Department, University o f Wales Swansea; Official Report

CR/938/96.

[22] E.Tumer-Smith, Y.Zheng, M.I.Sotirakos; PSUE - User Tutorial; Civil

Engineering Department, University o f Wales Swansea; Official Report

CR/939/96.

[23] E.Tumer-Smith, Y.Zheng, M.I.Sotirakos; PSUE - Developer’s Guide; Civil

Engineering Department, University of Wales Swansea; Official Report

CR/942/96.

[24] E.Tumer-Smith; PSUE - Application Integration Handbook; Civil Engineering

Department, University of Wales Swansea; Official Report - ESPRIT

MEDUSA.

- 175 -

References

[25] E.Tumer-Smith, Y.Zheng, M.I.Sotirakos; PSUE - System Documentation; Civil

Engineering Department, University o f Wales Swansea; Official Report

CR/940/96.

[26] N.P.Weatherill and O.Hassan; Efficient three-dimensional Delaunay

Triangulation with Automatic Point Creation and Imposed Boundary

Constraints; International Journal Numerical Methods in Engineering, Vol. 37;

1994.

[27] N.Verhoeven, N.P.Weatherill and K.Morgan; Parallelisation of an Unstructured

Grid Generation Algorithm; Parallel CFD Conference, Pasadena, USA; July

1995.

[28] R. Lohner; Adaptive H-Refinement on 3-D Unstructured Grids for Transient

Problems; AIA A-%9-0365", 1989.

[29] Steven T. Barnard and Horst D. Simon; A Fast Multilevel Implementation of

Recursive Spectral Bisection for Partitioning Unstructured Problems;

Concurrency: Practice and Experience, Vol. 6, No. 2.; April 1994.

[30] N.P.Weatherill, R.Said and K.Morgan; The Construction of Large Unstructured

Grids by Parallel Delaunay Grid Generation; Numerical Grid Generation in

Computational Field Simulations; Ed. M.Cross., B.K.Soni, J.F.Thompson,

J.Hauser, P.R.Eiseman; Proceedings of the 6th International Conference, held at

the University of Greenwich; July 1998.

[31] R.Said, B.Larwood, N.P.Weatherill, O.Hassan, K.Morgan; Parallel Delaunay

Unstructured Grid Generation; 7th International Conference on Numerical Grid

Generation in Computational Field Simulations; September 25-28, 2000;

Chateau Whistler Resort Whistler, British Columbia, Canada.

[32] J.W.Jones and N.P.Weatherill; The Visualisation of Large Unstructured Grid

Data Sets; Numerical Grid Generation in Computational Field Simulations; Ed.

M.Cross., B.K.Soni, J.F.Thompson, J.Hauser, P.R.Eiseman; Proceedings of the

6th International Conference, held at the University of Greenwich; July 1998.

[33] L.Sastry, J.V.Ashby, D.R.S.Boyd, R.F.Fowler, C.Greenough, J.W.Jones,

E.A.Tumer-Smith and N.P.Weatherill; Virtual Reality Techniques for

Interactive Grid Repair; Numerical Grid Generation in Computational Field

- 176 -

References

Simulations; Ed. M.Cross., B.K.Soni, J.F.Thompson, J.Hauser, P.R.Eiseman;

Proceedings of the 6th International Conference, held at the University of

Greenwich; July 1998.

[34] I.Foster, C.Kesselman, S.Tuecke; The Anatomy of the Grid: Enabling Scalable

Virtual Organizations; International J. Supercomputer Applications, 15(3),

2001 .

[35] I.Foster, C.Kesselman, J.M.Nick, S.Tuecke; The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration; Open

Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002.

[36] I.Foster, J.Insley, C.Kesselman, G.von.Lasewski, M.Thiebaux; Distance

Visualisation: Data Exploration on the Grid; IEEE Computer Magazine, 32(12),

1999.

- 1 7 7 -

