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Abstract

Until recently the continental Si cycle at Quaternary (decadal to million-year) time
scales has been largely neglected. Emphasis was placed on silicate-rock
weathering and resulting CO, drawdown on geological time scales, rather than on
shorter-term biogenic processes occurring along the land-ocean continuum. The
ability of some terrestrial plants (e.g. tropical rainforest trees, savanna and wetland
grasses, Papyrus) and aquatic organisms (e.g. diatoms in lakes, rivers and
swamps) to take up, store and recycle significant amounts of Si is increasingly being
recognised, although their impact on the continental Si cycle and Si export to the
oceans under different climatic regimes remains unquantified. The main aim of this
thesis was to reconstruct spatial and temporal patterns of Si cycling in the Nile
Basin during the last 15ka BP.

Seasonal variations in hydrology and Si cycling in the Nile Basin were investigated
using stable isotope (H, O, and Si) compositions of surface waters, as a basis for
interpreting lacustrine diatom sequences. During the dry season, both §'®0 and
5*Si increased, due to enhanced evapotranspiration and to decreased Si supply
relative to biological demand, respectively. Both 5'®0 and 5*°Si showed progressive
enrichment downstream, reflecting cumulative evaporation losses from swamps and
open water, and preferential uptake of %Si by Si-accumulating aquatic organisms.
This research has increased the measured upper limit of 8°°Si for dissolved Si (DSi)
in the world’s rivers by >1%e.

Si- and O-isotope analysis of diatom silica in cores from Lakes Victoria and Edward,
in the headwaters of the White Nile, were employed to reconstruct changes in biotic
Si cycling and palaeohydrology, respectively. The relative abundances of lipid
biomarkers (hydrocarbon-fraction) permitted major changes in terrestrial and
aquatic ecosystems to be tracked. During drier conditions (e.g. the last glacial and
late Holocene) (high 8'®Ogaom), Si cycling was greatly reduced. Diminished
biomass, reduced biotic weathering, a declining soil stock of amorphous silica (ASi)
and decreased run-off in the catchment resulted in biological demand for Si (high
6*°Sigiatom). In contrast, enhanced monsoon rainfall (low 5'®Ogiatom) during the early to
mid-Holocene enabled the proliferation of vegetation in the catchment, which in turn
accelerated silicate-rock weathering and the mobilisation of DSi in surface runoff,
providing a plentiful supply of Si (low 8*Sigawm). Both the modern waters and
palaeo-records indicate that the riverine flux of Si to the oceans on glacial \
interglacial time scales was not constant; resulting in important implications for the

marine Si budget and consequently the global C cycle.
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Notations and abbreviations used in this thesis

Ka BP Kiloannum calendar years Before Present (A.D. 1950)

GMWL Global Meteoric Water Line

AMWL African Meteoric Water Line

LELs Local evaporative lines

ppm parts per million

ppb parts per billion

mg/L milligrams per litre

pmol micromolar; amount of substance concentration

%o per mil; isotopic ratios are reported in parts per thousand (%o)

BSi% Percentage biogenic silica

TOC Total organic carbon

TON Total organic nitrogen

C/N Carbon/nitrogen ratios

HI Hydrogen Index

HCI Hydrochloric acid

H.0. Hydrogen peroxide

HNO, Nitric acid

VSMOW | Vienna Standard Mean Ocean Water; standard for oxygen isotope
analysis

NBS-28 Quartz sand reference material used as a standard for silicon and
oxygen isotope analysis

BFC Diatomite reference material for Shastra County, California, USA, used
as a standard for silicon and oxygen isotope analysis

5°0 Stable oxygen isotope composition; the ratio of '°O to °O in a sample
relative to a standard

5"%0cacite | Oxygen isotope composition of calcite

5 "°Odiatom | Oxygen isotope composition of diatom silica

5°H Stable hydrogen isotope composition; the ratio of °H to 'H in a sample
relative to a standard

- 57si Stable silicon isotope composition; the ratio of *°Si to **Si in a sample
relative to a standard
| 8 Sigitom | Silicon isotope composition of diatom silica

5°C Stable carbon isotopes; the ratio of ™°C to '“C in a sample relative to a
standard

Pwax An n-alkane proxy for terrestrial plant and aquatic emergent plant input

Paq An n-alkane proxy for submerged and floating aquatic macrophytes
input

Payg An n-alkane proxy for algal input

P/E Precipitation/evaporation ratio

LGM Last Glacial Maximum

EAHP East African Humid Period

AHP African Humid Period (~15-5 ka BP)

ASi Amorphous silica; biogenic and non-biogenic amorphous silica

BSi Biogenic silica. e.g phytoliths, diatoms

DSi Dissolved silicon; silicic acid; Si(OH),

TSi ASi + DSi; biologically reactive Si
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Chapter 1: Introduction

The Quaternary period was characterised by cyclic variations in climate and ice-
sheet extent, creating “glacials”, characterized by the existence of large ice sheets
in the polar regions and “interglacials”, associated with warm conditions. Natural
variations in global atmospheric CO, concentrations have occurred in phase with
these cycles, so that CO, concentrations rose from ~190-200 ppmv (parts per
million by volume) at the Last Glacial Maximum (LGM, ~21,000 yrs ago) to ~270-
280 ppmv prior to the Industrial Revolution (Petit et al., 1999). One group of
explanations for these variations in CO; involves changes in the nutrient inventory of
the ocean, notably in the supply of iron (Fe), phosphorus (P), nitrogen (N) and
silicon (Si) for marine plankton (Alverson et al., 2003). Of these elements, Fe, P and
Si are derived mainly from rock weathering and transperted to the ocean by rivers
and aeolian processes. This thesis focuses on past variations in the fluvial transport
of dissolved Si, which are poorly known. Most research on the global Si cycle has
focussed exclusively on weathering (Berner et al., 1983; Berner, 1995; Hilley and
Porder, 2008) on the oceanic Si cycle (De La Rocha et al., 1998; Dugdale and
Wilkerson, 2001; Ragueneau et al., 2006) and has not explored the role of
continental biota in controlling the flux of Si to the oceans (see Street-Perrott and
Barker (2008) and Struyf et al. (2009) for reviews).

The global biogeochemical cycles of carbon and silicon are closely linked by two
main groups of processes (i.e. geological and biological) that act on different time
scales: (1) long-term silicate rock weathering, whereby CO, is consumed and silicic
acid (Si(OH),), otherwise known as dissolved Si (DSi), is released, making Si readily
available for biological uptake; and (2) the faster transfer of CO, from the
atmosphere to the deep ocean by siliceous marine organisms (primarily diatoms:
unicellular phytoplankton), which is commonly referred to as the biological Si pump
(Ragueneau et al., 2006). Diatoms require Si in the form of Si(OH), to build their
shells (frustules). Therefore, the supply of Si reaching the oceans may ultimately
affect the regulation of CO; in the atmosphere, and hence global climate on glacial /
interglacial time scales. Although both mechanisms result in a net drawdown of
CO,, it is the relatively unknown biotic control on Si export from the continents to the

oceans via rivers that most needs to be explored.
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Some terrestrial plants (e.g. tropical rainforest trees, savanna and wetland grasses,
Papyrus) and freshwater organisms (e.g. diatoms and sponges in lakes, rivers and
swamps) have the ability to take up, store and recycle significant amounts of Si. Si
is taken up in dissolved form (DSi) and converted to amorphous silica (ASi), during
which these organisms preferentially incorporate the lighter isotopes (*®Si and °Si),
leaving the residual fluid enriched in the heavier isotope (*°Si) (Leng et al., 2009).
An increasing number of studies is showing that ASi contents of plants differ greatly,
generally ranging from 1 to 10% dry weight, with some species exceeding 20%, in
particular bamboo (Epstein, 1994; Ma and Yamaji, 2006; Struyf and Conley, 2009).
Even the ASi contents of plants that are not classified as Si accumulators
(accumulator plants being defined as those in which Si is taken up to a greater
extent, proportionally, than water) may be comparable to those of essential
macronutrients such as P, S, Ca and Mg (Epstein, 1994). Although there has so far
been no attempt to quantify the potential storage of Si by siliceous freshwater
aquatic organisms such as diatoms, it is estimated that global annual terrestrial ASi
production (terrestrial and aquatic) is of the same order of magnitude as the global
oceanic ASi production by diatoms (~240 Tmol yr'') (Conley, 2002; Laruelle et al.,
2009). Continental biotic Si cycling, therefore, should have a significant impact on Si
fluxes to the ocean, the productivity of siliceous marine organisms and the rate of
CO, drawdown by the marine biological pump. Although the ability of terrestrial and
freshwater organisms to store significant amounts of Si is increasingly being
recognised, their impact on the continental Si cycle and Si export to the oceans

under different climatic regimes remains to be established.

1.1 Main Aim

The main aim of this thesis was to reconstruct temporal and spatial changes in Si
biocycling in the Nile Basin since the last major arid episode (desiccation event) at
~15 ka BP (calendar years), using sediment cores from lakes along the course of
the river. Diatoms preserved in the sediments allowed silicon- and oxygen-isotope
analyses to be carried out, enabling glacial / interglacial changes in Si cycling and
hydrology, respectively, to be reconstructed. The relative abundances of higher-
plant leaf waxes and algal biomarkers permitted major changes in terrestrial and

aquatic ecosystems to be tracked and used to interpret the isotope data.
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1.2 Objectives

Specific objectives were:

e To collect and analyse modern waters from the Nile river system for °H,
5'%0 and 8°°Si and to investigate the downstream evolution of these
parameters in response to seasonal changes in moisture balance and Si
cycling, in order to provide a firm foundation for interpreting the sediment
record.

e To reconstruct millennial-scale variations in Si cycling in the White Nile
headwater basins of Lakes Victoria and Edward during the last 15 ka BP
from 5%°Si in diatom silica preserved in lake sediments.

e To reconstruct past changes in monsoon rainfall and hydrology in the White

Nile headwaters from 8'°0 in parallel with the 5°°Si,,,,, measurements.

diatom?
e To link these results to past changes in terrestrial and aquatic ecosystems
using abundance ratios of lipid biomarkers (n-alkanes, n-alkenes and

botryococcenes).

1.3 Research Hypothesis

This thesis aims to test the hypothesis that riverine fluxes of dissolved Si to the
oceans varied as a result of Late Quaternary climatic and ecosystem changes
driven by orbital forcing. At the LGM, under cooler and drier conditions, plant
biomass, biotic weathering and Si cycling should have been greatly reduced, while
large amounts of stored biogenic silica should have been released to drainage
waters through vegetation degradation and increased erosion of soils and
sediments. In turn, this would reduce Si-isotope fractionation (low 5*°Sigiaiom). In
contrast, enhanced monsoon rainfall and expansion of forest, savannas, lakes and
swamps during the East African Humid Period (EAHP, ~15-5 ka BP) should have
resulted in increased biological demand for Si and greater isotopic fractionation
(high 6>Sigistom)-
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1.4 Rationale for selection of the study region

The Nile Basin was selected as a suitable study area to test the above hypothesis
due to the availability of riverine lakes and swamps to investigate past changes in Si
cycling. Previous coring expeditions, such as the International Decade of East
African Lakes (IDEAL) project, provided a source of (palaeo)lake sediments for this
research as it was not feasible, during the timeframe of the PhD and the budget
available, to core the lakes myself. In addition, Late Quaternary palaeoclimate and
palaeoenvironmental records and established chronologies were available to assist
with interpretation of the data obtained in this thesis. Due to its geographical
positioning, with its flow south to north across distinct latitudinal climates (equatorial
to hyper-arid conditions) and the corresponding large-scale vegetation gradient,
seasonal climate variability and differing geology in the two main tributaries, which
join to form the Main Nile at Khartoum, the Nile Basin give rise to variables that are
thought to be important in the global Si cycle.
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1.5 Thesis structure

The thesis consists of a further nine chapters. Chapter 2 contains information about
the global biogeochemical cycle of Si and its coupling to the global biogeochemical
C cycle. Emphasis is placed on the role of continental biota and their ability to take
up, store and recycle Si, and on the techniques and applications used to track the
continental Si cycle. | also describe the principles of stable-isotope hydrology and
the use of lipid biomarkers to infer past changes in terrestrial and aquatic
ecosystems. Chapter 3 presents an overview of the Nile Basin study region,
including the long-term controls on climate variability and previous palaeoclimate
and palaeoenvironmental studies undertaken in the Basin. Chapter 4 includes
information about how the NERC Isotope Geosciences Laboratory (NIGL) team and
| developed a methodology and capacity for analysing Si isotopes on waters using a
Neptune high-resolution Multi-Coliector  Inductively-Coupled-Plasma Mass-
Spectrometer (MC-ICP-MS). In chapter 5 | describe the sampling strategy and the
methods used to analyse the modern waters for H-, O- and Si-isotopes. | also go
into detail about extracting pure diatom silica from lake sediments for Si- and O-
isotope analysis and the methods used to determine abundance ratios of lipid
biomarkers. Chapter 6 presents results of the physical, chemical and isotopic
characteristics of the modern water samples and their seasonal variability in the Nile
Basin. Chapter 7 is dedicated to Lake Victoria, a lake in the headwaters of the White
Nile. This chapter includes a site description; a summary of previous palaeo-studies
and their findings, the sample material available for the thesis and related existing
data; an account of the site-specific methods used to prepare diatoms for isotope
analysis; and finally the results of the stable- isotope and lipid-biomarker analyses.
Chapter 8 covers Lake Edward, another lake in the headwaters of the White Nile,
and is structured similarly to Chapter 7. The first part of Chapter 9 is the
interpretation of the modern water data for the Nile Basin, which are then used to
help explain the palaeo-records of Lakes Victoria and Edward. This chapter is
rounded off by discussing the implications of this study for past changes in the Si
flux from the River Nile to the Mediterranean Sea during the Late Quaternary.
Chapter 10 draws together the major conclusions of this thesis including the
implications for the global Si cycle and for future research directions.
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Chapter2 Research background

2.1 Introduction

This chapter provides the reader with background information about the key
components of the thesis in order to set the scene for the following chapters. An
explanation of the global biogeochemical cycle of Si and its connections with the
global C cycle is presented. Emphasis is placed on the role of continental biota on
the global Si cycle which forms the basis of this thesis. Following that, information
on the tools used to trace the Si cycle and examples of their applications, with
particular emphasis on using the isotopic composition of diatom silica are
discussed. The principles of stable isotope hydrology are outlined and their
application to natural waters and diatom silica are discussed. The chapter draws to
a close on the principles of lipid analysis in lake sediments with particular focus on
using hydrocarbons for reconstructing past vegetation variations.

2.2 The global biogeochemical cycle of Si

Silicon is the second most abundant element in the Earth’'s crust, comprising 28.8
wt% of the total crust (Wedepohl, 1995). Through the consumption of CO, during
silicate-rock weathering and by the sequestration of CO, to the deep ocean by
siliceous marine organisms (also known as the biological pump), the global
biogeochemical cycles of Si and C are intrinsically linked (Figure 2.1). These
processes operate on different timescales (Tréguer et al., 1995), with silicate-rock
weathering being important over geological timescales (10 to 10° years) and the
biological pump on glacial / interglacial time scales (10 to 10* years). In addition,
vascular plants themselves accelerate silicate rock weathering by increasing soil
CO, and moisture content, producing organic acids and generating chelating
ligands (Lovering, 1959; Berner, 1992; Drever, 1994; Cochran and Berner, 1996;
Berner, 1997; Kelly et al., 1998; Moulton et al., 2000; Hinsinger et al., 2001; Lucas,
2001; Brantley et al., 2011), and thereby introduce another coupling between the
global C and Si cycles through the consumption of CO, by photosynthesis (Figure
2.1).
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Figure 2.1: The coupling of terrestrial and marine biogeochemical cycles of
silicon with the carbon cycle (modified after Exley (1998)). Broken arrows
represent slower rates of exchange between compartments; C = interface with
the carbon cycle; HAS = hydroxyalumino-silicates.

Silicate-rock weathering plays an important role in regulating climate through the
control of C02in the atmosphere and the oceans (Berner et al., 1983; Berner, 1995;
Kump et al.,, 2000). Weathering of silicate minerals (Ca- and Mg-silicates) on the
continents by carbonic acid can be represented by the idealised reaction (Berner et

al., 1983; Berner, 1995):

2C02+ 3H2 + CaSi03-» Ca2++ 2HCO03" + Si(OH)4 (Equation 1),

where Ca2+can be substituted by Mg2+

Carbonic acid is either derived directly from the atmosphere, or from oxidation of
soil organic matter during the degradation of plant biomass (Berner, 1992, 1995;
Berner and Berner, 2012), which ultimately draws down carbon from the
atmosphere via photosynthesis, resulting in the net consumption of atmospheric

C02in the weathering process.
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The idealised reaction of Equation 1 suggests that simple congruent dissolution
occurs during silicate weathering. However, congruent dissolution of silicate
minerals is rare (Berner and Berner, 2012). More commonly, the minerals involved
dissolve to varying extents as a result of their chemical stability and solubility
(Goudie, 2004). Therefore, silicate weathering is usually associated with the
reprecipitation of insoluble elements and the production of secondary weathering
products in the form of secondary clay minerals, or Fe and Al oxides and
hydroxides, as the more soluble elements dissoive and new products form
(Loughnan, 1969; Berner and Berner, 2012). For instance, the example used by
Street-Perrott and Barker (2008) shows the complexity of the silicate weathering
reaction of Ca-plagioclase feldspar to kaolinite:

CaAl,Si,05 +2H,CO; +H,0 — Al,Si,05(OH), + 2HCO;™ + Ca*  (Equation 2),

further weathering allows dissolved silicon (Si(OH),) to be leached from the kaolinite
lattice, forming gibbsite:

Al,Si,05(OH), + H,0 — 2AI(OH); + 2Si(OH), (Equation 3).

The rate of silicate rock weathering is not only affected by atmospheric CO, content
but also by temperature and hydrological controls, which are strongly influenced by
the concentration of CO,; enhanced atmospheric CO, tends to warm the land and
intensify the hydrological cyde. In tum, this increases the amount of silicate
minerals in contact with water, accelerating silicate weathering and the drawdown
of CO, (Berner et al., 1983; Berner and Caldeira, 2002). Other factors affecting the
extent and rate of silicate rock weathering on various temporal scales include:
changes in the continental surface area as a result of uplift rate; sea-level change;
runoff; lithology; and vegetation type, extent and biomass (Knoll and James, 1987;
Berner, 1992; Bluth and Kump, 1994; White and Blum, 1995; Moulton et al., 2000;
Dessert et al., 2003; Fulweiler and Nixon, 2005).

In addition to CO, being consumed during silicate-rock weathering, dissolved Si
(DSi) is released as orthosilicic acid (e.g. Si(OH);) (see Equations 1 and 3).
Although previously, the global Si cycle was considered to be predominantly a
geochemical cycle, it is becoming increasingly recognised that continental biota play
an important role in the global Si cycle both by enhancing silicate-rock weathering

8
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and by modifying the flux of Si from the continents through the uptake, storage and
recycling of DSi before it is exported via rivers to the oceans (Figure 2.2) (Conley,
2002; Street-Perrott and Barker, 2008; Struyf et al., 2009; Cornelis et al., 2011;
Struyf and Conley, 2012). The supply of DSi is essential for the productivity of
marine diatoms, which are the main phytoplankton in today’s oceans (Tréguer et al.,
1995; Tréguer and Pondaven, 2000; Dugdale and Wilkerson, 2001; Yool and
Tyrrell, 2003), accounting for ~64% of the total primary production (Nelson et al.,
1995), and are estimated to utilise ~240 Tmol yr' of Si (Tréguer et al., 1995).
Diatoms draw down CO, to the deep ocean via the biological pump. A proportion of
the diatomaceous opal may become permanently buried in sediments until it is
recycled through tectonics (Sigman and Boyle, 2000; Ragueneau et al., 2006).
Tréguer et al. (1995) estimated that currently 80% of DSi is derived from runoff from
the continents with the remainder being derived from wind-blown material and sea-
floor (hydrothermal) weathering. Therefore, variations in the fluvial supply of DSi
from the continents are likely to have considerable implications for the carbon export
to the deep sea on glacial / interglacial time scales, due to the resulting changes in
phytoplankton productivity and/or species composition (Archer et al., 2000; Tréguer
and Pondaven, 2000). Based on Germanium/Silicon (Ge/Si) ratios of marine diatom
silica, Froelich et al. (1992) suggested that Si fluxes from rivers to the oceans
during the last glacial were even higher than they are at present, encouraging even
more drawdown of CO, by diatoms.



2: Research background

eolian transpon
ECOSYSTEM SOIL

0.5 Tmote yr | >
plant uptake "y  OCEAN SURFACE

Net nverine
transport .
littertall. ASi
weathering 6 Tmote yr' (*)

diatom

EARTH CRUST & SUBSOIL Hydro- ASi burial
thermal

input
&

Seafloor OCEAN FLOOR
weathering

- primary minerals 6.5 Tmole yr1

- secondary minerals

-diatom ASi insea-
floor sediment

plate tectonics

Figure 2.2: The global biogeochemical cycle of Si. Rectangular black boxes
represent Si fluxes between the primary Si pools. Circular black boxes
represent Si fluxes within the primary Si pools. (*) The 6 Tmole yr-1 flux is
partitioned between the net riverine transport (excluding ASi retained in
estuaries) and the flux resulting from hydrothermal activity and sea-floor
weathering. DSi: dissolved silicon (Si(OH)4). ASi: amorphous silica. From
Struyf et al. (2009).

2.3 The terrestrial Si cycle and the role of biota

Growing interest in the role of continental biota in the global Si cycle reflects the
close coupling between the global biogeochemical cycles of Si and C (see Street-
Perrott and Barker (2008) and Struyf et al. (2009) for reviews). Previously, the main
focus was on long-term geological processes of silicate-rock weathering and the
drawdown of C02 in the marine realm (Berner et al., 1983; Berner, 1994; Berner,
1995; Smetacek, 1998; Dugdale and Wilkerson, 2001; Yool and Tyrrell, 2003;
Ragueneau et al., 2006; Hilley and Porder, 2008). However, growing evidence
shows that certain plants and aquatic organisms have the ability to modify the Si
cycle by taking up, recycling and storing significant amounts of Si in their cells
before it reaches the ocean (Figure 2.3) (Conley, 1997, 2002; Street-Perrott and
Barker, 2008; Struyf and Conley, 2009; Struyf and Conley, 2012). Although Si is not
classified as an essential nutrient for plants, amongst other benefits, it can enhance
structural rigidity and growth, and reduce abiotic and biotic stresses (Jones and

Handreck, 1967; Raven, 1983; Epstein, 1999; Ma et al.,, 2001). Certain plants that
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contain >1% dry weight of silica are known as Si accumulators (Jones and
Handreck, 1967; Marschner, 1995; Ma et al., 2001; Hodson et al., 2005). These are
abundant in a variety of terrestrial and aquatic ecosystems (e.g. grasslands, tropical
rainforests, temperate deciduous forests and wetlands). They have the potential to
retain large amounts of Si (Table 2.1) (Bartoli, 1983; Alexandre et al., 1997; Struyf
et al., 2005; Blecker et al., 2006; Struyf et al., 2007; Ding et al., 2008b; Gerard et al.,
2008; Street-Perrott and Barker, 2008; Struyf and Conley, 2009; Comelis et al,
2010a; Schoelynck et al., 2010; Alexandre et al., 2011).

climate (rainfall, T°)

diatoms plant ASi
macrophytes
ASi litter/soil ASi
DSi _ silicate
! DSi minerals
sediment ASi

Figure 2.3: Schematic representation of the terrestrial biogeochemical cycle
of Si in a general ecosystem (from Struyf et al. (2009)). Black boxes represent
the major Si pools. White boxes represent factors which influence terrestrial
Si cycling. Solid arrows indicate Si fluxes; [a] weathering of primary and
secondary silicates, [b] dissolution of litter/soil ASi to DSi, [c] ASi transport to
rivers through topsoil erosion, [d] plant uptake of DSi, [e] DSi flux towards
rivers through the flux of groundwater, [f] uptake of DSi by diatoms and
macrophytes in the riverine environment, [g] burial of death diatom and
macrophytes biomass, [h] export of DSi and ASi with the downstream river
flux. Dashed arrows indicate influences on the weathering of silicates exerted
by climate and vegetation. T* temperature. DSi: dissolved silicon (Si(OH)4).
ASi: amorphous silica.
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Table 2.1: Estimated storage, recycling and export of Si fluxes in forest and
grassland ecosystems (from Cornelis et al. (2011)). Reference: 1. Lucas et al.
(1993), 2. Alexandre et al. (1997), 3. Bartoli (1983), 4. Cornelis et al. (2010a), 5.
Markewitz and Richter (1998), 6. Gérard et al. (2008), 7. Blecker et al. (2006).

Si (kgha='yr™?)

Vegetation Restitution  Export Reference

uptake by litterfall by drainage
Equatorial forest (Ferralsols) 41 11 1
Equatorial forest (Ferralsols) 58-76 58-76 16 2
Temperate deciduous forest (Cambisols) 23 22 3 3
Temperate deciduous forest (Cambisols)  18-23 18-19 67 4
Temperate coniferous forest (Cambisols) 3043 29-42 0.7-1 4
Temperate coniferous forest (Cambisols) 44 36 5 6
Temperate pine forest (Cambisols) 23 2.1 94 4
Temperate pine forest (Podzols) 6 5 28 3
Temperate pine forest 16 14 17 5
Dry grasslands (Arnidisols) - 26 0.2 7
Humid grasslands (Mollisols 59 11 7

Si is ultimately derived from silicate-rock weathering and is released in dissolved
form as orthosilicic acid (Si(OH),). Dissolved Si (DSi) present in soil solution may be
taken up by terrestrial vegetation and precipitated as hydrated amorphous silica
bodies (phytoliths), or transported into rivers and lakes, where Si-accumulating
aquatic organisms, such as diatoms, sponges and aquatic macrophytes,
progressively extract DSi (Figure 2.3). The residual DSi is transported via rivers,
eventually reaching the oceans where it is an essential nutrient for the siliceous
phytoplankton that dominate the marine biological pump (Harrison, 2000; Tréguer
and Pondaven, 2000). On glacial to interglacial time scales, the Si flux to the oceans
can therefore be expected to vary as a result of changes in climate, vegetation type
and distribution, hydrology and limnology (Georg et al., 2006a; Street-Perrott and
Barker, 2008; Engstrém et al., 2010; Cornelis et al., 2011).

12



2: Research background

2.4 Tracers of the Si cycle
241 Silicon isotopes

Silicon has three stable isotopes: 28Si (92.23%), 29Si (4.67%) and 3Si (3.10%). The
Si isotope composition of a sample is expressed as 629Si or 630Si in per mille (%),

relative to the reference material, NBS-28:

29,
Bs; sample 28Si. sample
529Si = -1 x1000 S30Si = -1 x 1000
' 20Si/ 30,
28Si NBS-28 28SUNBS- 28
(Equation 4) (Equation 5).

The fractionation of stable Si isotopes can be used to trace biogeochemical
processes, as they are fractionated during neoformation of secondary minerals (e.g.
clays) and by biological processes. Measurements of Si isotopes in natural samples
are still relatively scarce: previously reported 530Si values for fresh waters range
from -0.17 to +3.4%o0 (De La Rocha et al., 2000; Ding et al., 2004; Alleman et al.,
2005; Gao et al.,, 2006; Georg et al.,, 2006a; Reynolds et al.,, 2006a; Georg et al.,
2007; Georg et al.,, 2009; Cardinal et al., 2010; Engstrom et al., 2010; Ding et al,,
2011; Opfergelt et al.,, 2011; Hughes et al., 2012), showing that DSi in rivers and
lakes is isotopically enriched in 30Si compared with primary minerals (felsic
magmatic rocks: 530Si = -0.07 + 0.05%0; gneisses, granulites and migmatites: 630Si
=-0.10 £ 0.15%0o (Andre et al.,, 2006); and mafic magmatic rocks: 630Si = -0.29 *
0.08%0 (Savage et al, 2011)). During formation of secondary products (e.g.
phytoliths, diatoms and clays), the light isotope of Si (285i) is preferentially
incorporated into the product (De La Rocha et al.,, 2000), thereby enriching the
residual aqueous solution in the heavier isotopes 29Si and 30Si. Hence, Si isotopes
offer great potential as tracers of the continental Si cycle (Street-Perrott and Barker,

2008).

Diatom silica is formed of biogenic opal (Si02/?H20) containing oxygen (see section
2.5) and silicon isotopes that can be used in palaeoenvironmental studies (Leng and
Barker, 2006; Leng and Swann, 2010). Si is an essential nutrient for the survival of

diatoms and during biomineralization is incorporated into their frustules in dissolved
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form as silicic acid (Si(OH),) (Round et al., 1990; Smol and Stoermer, 2010). The
isotopic composition of the frustules reflects the aqueous environment in which they
formed. As a result of biological fractionation, the lighter isotope (*Si) is
preferentially incorporated in the diatom frustule. Progressive utilization of DSi
results in an enrichment of both diatom and the residual water, making 8*°Sigitom @
suitable tracer of the Si cycle (Leng et al., 2009). The Si-isotope composition of
lacustrine diatoms (8%Siyiwom) iS related to the availability of this nutrient, which in
turn is connected to local factors such as catchment geology and vegetation,
chemical weathering, river and groundwater inputs, water-residence time and the
occurrence of seasonal diatom blooms (Leng et al., 2009; Leng and Swann, 2010).
Experiments have demonstrated that the Si isotope enrichment factor in diatoms of -
1.1 to -1.9%0 (closed system) has no dependence on temperature, pCO,, pH or
species effects during Si isotope fractionation, making 8**Sigiaom @ valid proxy for
nutrient utilisation (De La Rocha et al., 1997; De La Rocha et al., 2000; Milligan et
al., 2004; Varela et al., 2004; Alleman et al., 2005).

Very few studies have used 8*Siga0m in lake sediments so far (Street-Perrott et al.,
2008; Swann et al., 2010; Chen et al., 2012). Most studies of 5*°Sigawm have been
made on marine diatoms, investigating and reconstructing DSi utilisation in the
oceans (De La Rocha et al., 1998; Varela et al., 2004; De La Rocha and Bickle,
2005; Pichevin et al., 2009; Egan et al., 2012). Until now, measurements of
5% Sigaom in continental environments have been restricted to relatively small
catchment-lake ecosystems. Street-Perrott et al. (2008) attempted to reconstruct Si
cycling on Mount Kenya over orbital time scales during the last 38 ka BP using a
multi-proxy approach including §*°Sigatem. Unfortunately, it was not possible to purify
diatoms for Si-isotope analysis from sediments younger than ~14 ka BP. The study
suggested that Si was available for diatom production during the last glacial,
whereas during the late glacial and early Holocene, as the catchment stabilised,
limited mobilisation of Si caused a reduction in diatom productivity in the lake. The
study showed how changes in catchment vegetation can have an impact on ASi and
DSi outputs. In a lake-catchment ecosystem in north-east Siberia, the first combined
O- and Si-isotope analysis of diatom silica was presented for the last 23 ka BP
(Figure 2.4) (Swann et al., 2010). The authors interpreted 5*°Sigiam as reflecting
changes in nutrient availability due to climate-induced variations in chemical
weathering in the catchment and water-column mixing within the lake. High

5*°Sigatom values during the last glacial and the mid- to late Holocene reflected
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decreased weathering and nutrient delivery from the catchment, resulting in
increased utilisation of DSi. In contrast, the early Holocene thermal maximum
exhibited low 630Siddomdue to greater mobilisation of Si from the catchment and
recycling of nutrients within the lake from enhanced mixing. A study in a small
tropical lake in South China used 630Siddom as a palaeotemperature proxy for the
last 2000 years (Chen et al.,, 2012). However, it is difficult to imagine that
temperature variations in the tropics would have been great enough to cause large

changes in diatom productivity and hence DSi utilisation.

15.
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Figure 2.4: Changes in ¢ sos isiatom and s 150 aiatom in Lake EI'gygytgyn, northeast
Siberia. From Swann et al. (2010).

In the context of the large, relatively shallow tropical lakes in the headwaters of the
River Nile, long-term (millennial-scale) changes in 630Sidd0nm are likely to reflect
changes in the Si supply from the catchment rather than changes in nutrient cycling
within the lake in response to stratification or overturning. Several authors have
shown that over long time scales, riverine inputs of biologically available Si (DSi and

ASi) to Lakes Malawi, Victoria and Edward were most important, as the internal
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(lake) Si cycle cannot sustain itself beyond several decades (Johnson et al.,, 1998;
Johnson et al., 2001; Johnson et al.,, 2002; Bootsma, 2003; Russell and Johnson,

2005; Johnson et al., 2011).
2.4.2 GelSi ratios

A relatively new technique has been developed to aid the determination of the
source of dissolved Si, i.e. whether it originated within the soil-plant cycle or
through purely geochemical processes. Germanium/silicon (Ge/Si) ratios reflect
these two naturally occurring pathways (Kurtz and Derry, 2004; Derry et al., 2005).
Germanium behaves like a pseudo-isotope of silicon; hence Ge/Si ratios can be used
as a tracer of Si cycling, particularly in tropical environments (Kurtz and Derry,
2004). Solutions with high Ge/Si ratios are thought to reflect dissolution of
secondary aluminosilicates such as allophone or kaolinite, as the latter are enriched
in Ge (Murnane and Stallard, 1990; Filippelli et al., 2000; Kurtz et al., 2002; Kurtz
and Derry, 2004), whereas low Ge/Si ratios may reflect dissolution of BSi (e.g.
phytoliths) or weathering of primary rock minerals (Kurtz and Derry, 2004; Derry et
al., 2005; Delvigne et al., 2009; Lugolobi et al., 2010). Combining Ge/Si
measurements with other techniques such as Si-isotope analysis will provide a
powerful tool for deciphering Si cycling in a catchment (Derry et al., 2006; Street-

Perrott and Barker, 2008; Cornelis et al., 2010b).

2.5 Stable isotope hydrology

Hydrogen has two stable isotopes: 1H (99.985%) and 2H (0.015%). Oxygen has
three stable isotopes: 180 (99.76%), 10 (0.04%) and 18 (0.20%). The H- and O-
isotope composition of a sample is expressed as 62H and 6180 respectively, in per
mille (%0), relative to the reference materia, VSMOW (Vienna Standard Mean

Ocean Water), where:

18,
1nJ [ 16qn e A
52H = nJsample - 1000 5%0 = sample x1000
16
HA/SMOW O vsmow
(Equation 6) (Equation 7).
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Surface waters can be valuable indicators of the average isotopic composition of
rainfall, especially in situations in which limited evaporative enrichment has occurred
since precipitation (Fritz, 1981; Stern and Blisniuk, 2002). Craig (1961) was the first
to establish the linear relationship between 8?H and 880 in meteoric waters,
defining it as 8°H = 8:3'®0 +10%o, which is known as the Global Meteoric Water Line
(GMWL). This represents the average of many local and regional meteoric water
lines that vary due to differing climatic and geographical factors (Clark and Fritz,
1997). Hence, in regional or site-specific studies, a Local Meteoric Water Line
(MWL) may be preferred. Globally, variations in the 8°H and 80 ratios of
precipitation are controlled by climatic (temperature, rainfall amount, humidity,
evaporation, wind regime) and geographical parameters (latitude, altitude, distance
from moisture source) as described by Dansgaard (1964). At low latitudes, the
spatial distribution of isotopes in precipitation is primarily controlled by the source of
the water, subsequently modified by continental, altitude and amount effects that
are explained by the Rayleigh distillation process (Figure 2.4). Along the trajectory
of an air mass, isotopically heavy water molecules preferentially fall from a
diminishing vapour mass, leaving the residual vapour to become progressively
depleted (leading to lower 5°H and 5'°0). Subsequent rainfall becomes increasingly
lower in isotopic composition (Figure 2.4) (Dansgaard, 1964; Gat, 1996; Clark and
Fritz, 1997; Gat, 2000). This rain-out effect occurs during the transport of an air
mass from an oceanic moisture source to the interior of a landmass (continental
effect), during orographic uplift (altitude effect) and during heavy convective

rainstorms such as those associated with the passage of the ITCZ (amount effect).
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Figure 2.5: Impact of the Rayleigh distillation process on 52H and 5180 values
during atmospheric transport. From SAHRA (2005).

Deviation from the GMWL/MWL indicates that kinetic effects have modified the
original isotopic composition of the precipitation since it was formed. Several
processes can cause this effect. Surface water or rainfall that has undergone
evaporation will typically plot below the MWL on independent Local Evaporation
Lines (LELs) (Figure 2.5) (Craig, 1961; Gat et al., 1994). Slopes between 2 and 5
are common; the exact slope depending on the humidity. Low humidity leads to
slopes very different from the MWL as water-vapour exchange is minimized, and
evaporation becomes an increasingly non-equilibrium (kinetic) process, leaving the
residual water enriched in the heavier isotopes 1 and 2H (Craig and Gordon,
1965). Rain condensed from this evaporated vapour will plot above the MWL (i.e.
with a greater y-intercept, or deuterium excess). The concept of deuterium excess
(or d-excess), defined as d (%0) = 52H - 8-618, was introduced by Dansgaard
(1964) to describe the relationship between the hydrogen and oxygen isotope
compositions of water. It measures the degree of evaporation at the moisture
source or the amount of evaporative enrichment in 180 after the water has
condensed. The most important control on d-excess is thought to be humidity
(Merlivat and Jouzel, 1979). Information about the fractionating processes in
convective systems can be obtained from d-excess values, which may have been

modified from their original source composition during their transportation to the
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precipitation site (Figure 2.6) (Frohlich et al., 2002). Values lower than +10%o0 may
indicate secondary evaporation processes, such as the evaporation of falling
raindrops in a warm, dry atmosphere (Stewart, 1975; Araguas-Araguas et al., 2000).
Recycling of water vapour in continental basins may be responsible for large d-
excess values, as identified in the Amazon Basin (Gat and Matsui, 1991) and the

Great Lakes region of North America (Gat et al., 1994).

GMWL or LMWL
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Figure 2.6: Conceptual model of 62H versus 6180 for the hydrological cycle.
GMWL (Global Meteoric Water Line) / LMWL (Local Meteoric Water Line)
represent values of global or local precipitation values from which LEL’s
(Local Evaporation Line) can form from. Modified after Gibson et al. (2010).
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Figure 2.7: Schematic plot of 62H versus 5180 showing the global meteoric
water line (MWL; d = 10, slope = 8) of Craig (1961), local evaporation line (LEL;
slope <8), ocean water (SMOW) and relative changes in the d-excess (d). D-
excess in precipitation increases in response to enhanced moisture recycling
as a result of increased evaporate content, d-excess is reduced in the case
where water is lost by evaporation. From Frohlich et al. (2002).

As identified in section 2.4.1, the isotopic composition of diatom silica reflects the
isotopic composition of the aqueous environment in which it formed. The oxygen-
isotope composition of diatoms (s 1s0 sam) IS controlled primarily by water
temperature and/or by the isotope composition of the lake water (Leng and
Marshall, 2004; Leng and Barker, 2006). In the tropics, seasonal temperature
changes are small (Rozanski et al., 1993; Rozanski et al., 1996). Instead the
isotopic composition of the lake water is likely to be the main control on ¢ 150 «iatom
which is influenced by a combination of factors including the amount of precipitation,
the 6180 of the vapour over the source region and surface processes (i.e.
evaporative enrichment) (Barker et al., 2001; Leng and Barker, 2006; Polissar et al.,
2006; Barker et al.,, 2007; Hernandez et al., 2010; Barker et al., 2011; Hernandez et
al., 2011).
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Similarly to silicon isotopes on diatom silica, it is important to understand the
processes which influenced the 8"®Ogawm composition. Due to the difficulty of
separating individual diatom species as a result of their small size, isotopic analysis
is usually performed on mixed assemblages. However, there is limited evidence at
present to suggest species effects or any that are measurable beyond analytical
error (Shemesh et al., 1995; Brandriss et al., 1998; Moschen et al., 2005; Schiff et
al., 2009). Indeed, the different size fractions measured in this thesis, and on
occasion species-specific samples, did not indicate significant offsets in 8"®Ogiatom
composition. Dissolution is a process that may lead to isotope fractionation,
although experiments have been unable to determine the effect on §'®Ogiaiom (Swann
and Leng, 2009; Leng and Swann, 2010). Again, this is unlikely to have had a
significant impact on 8'®Ogaom values measured in this thesis as the diatoms
analysed showed no signs of dissolution or diagenesis. The effect of maturation (the
amount of isotopic exchange between the inner and outer hydroxyl layer of diatom
silica) on 8'®0giaiom is still unknown and requires further investigation (Swann and
Leng, 2009; Leng and Swann, 2010). However, it has been suggested that these
effects are small and therefore §®Oga0om for the time being is at least useful for
qualitative interpretations (Swann and Leng, 2009; Leng and Swann, 2010; Swann
et al., 2010).

2.6 Lipid biomarkers

Organic matter forms part of lake sediments and consists of a mixture of lipids,
carbohydrates, proteins and other biochemicals from living organisms which lived
within the lake (autochthonous), such as phytoplankton, bacteria and
submerged/floating macrophytes, and in the lake catchment (allochthonous), for
example, vascular land plants (Meyers and Ishiwatari, 1993). Such “chemical
fossils” can provide important information about terrestrial and aquatic
palaeoenvironments (Meyers, 1997). more diagnostic than bulk geochemical
properties (Castafieda and Schouten, 2011). Individual compounds or compound
classes that can be traced to a particular source organism or group of organisms
(e.g. terrestrial plants, aquatic macrophytes, algae and bacteria) are called
“biomarkers” (Peters et al., 2007; Castafieda and Schouten, 2011). Lipids are a
fraction of organic matter which are insoluble in water but can be extracted by
organic solvents (Meyers and Ishiwatari, 1993; Killops and Killops, 2005). Within the

lipid fraction are hydrocarbons (organic compounds consisting exclusively of
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hydrogen and carbon, the simplest of which are the straight-chain n-alkanes and n-
alkenes), n-alkanols and n-alkanoic acids, all of which are abundant and have
relatively well known biological origins (Meyers and Ishiwatari, 1993; Meyers, 1997;
Killops and Killops, 2005; Castarfieda and Schouten, 2011). n-Alkanes (saturated
hydrocarbons) are least susceptible to degradation and therefore are most
commonly used in palaeoenvironmental reconstructions (Meyers and Ishiwatari,
1993).

n-Alkanes are biosynthetically derived from decarboxylation of fatty acids: as a
result, they have a strong odd-over-even carbon number predominance (Killops and
Killops, 2005). n-Alkanes generally have chain lengths ranging from Cys to Css
(Barnes and Barnes, 1978). An assessment of the preservation of n-alkanes can be
undertaken using the relative abundance of odd versus even carbon-numbered n-

alkanes, the carbon preference index (CPI) (Bray and Evans, 1961):

cpi=1 ((Czs" Car* Ca9* Ca1+ Cyy) | (Cas* Car* Cag* Cart 033))
2

Equation 8).
(C24+ C26+ Cag+ C30+ C3,)  (C26+ C2g+ Cap+ Caz+ Cy) (Eq )

This equation can be adjusted to include the range of carbon numbers encountered

in a specific study, for example (Ficken et al., 1998):

(Equation 9).

cPl =1 ((Czs"' Cas* Cz7+ C29* Cy) | (Caa+ Cast Cayt Cagt 031))
2

(C22+ Co4+ Co6+ C2g+ C39)  (Ca4+ Coe+ Caa+ Cag+ Cy,)

CPI values close to 1 indicate that a smooth distribution of n-alkanes (almost equal
odd-to-even predominance), which may suggest degradation by oxidation, microbial
activity or erosion during transport (Meyers and Ishiwatari, 1993).

Suites of n-alkane compounds have been identified as characteristic of certain plant
groups can be used to investigate contributions from specific sources (i.e. terrestrial
or aquatic). Long-chain homologues (C.;-Css) are generally characteristic of
terrestrial higher plants (Eglinton and Hamilton, 1967), whereas short-chain
homologues (C4;-C»,) are characteristics of aquatic algae (Cranwell et al., 1987).
Ficken et al. (2000) demonstrated that C,;-C,s n-alkanes (mid-chain lengths) were
the main component of submerged and floating (non-emergent) aquatic

macrophytes. Specific homologues may be characteristic of certain plant types. For
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example, the C3; n-alkane is dominant in grasses and, while the C,; and Cyg n-
alkanes are common in deciduous trees (Cranwell, 1973).

Biomarker proxies, based on ratios of these key groups of source contributors (long-
chain, mid-chain, and short-chain compounds) have been developed to assess the
relative contributions of each group for palaeoenvironmental interpretations. For
example, the P,y ratio is given by the abundance of long-chain n-alkanes over the
sum of mid- and long-chain n-alkanes (Pyax = (C27 + Ca9 + C31)/(C23 + Ca5 + Co7 + Cy
+ Cs)), and reflects the proportions of contributions from terrestrial plants and
emergent aquatic macrophytes such as reeds, relative to submerged/floating
aquatic macrophytes (Zheng et al., 2007). Ficken et al. (2000) proposed the n-
alkane P,q proxy (Paq = (C2s + C25)/(C23 + Czs5 + Cy9 + Cay)) to distinguish the relative
contribution of submerged/floating aquatic macrophytes from that of emergent
aquatic and terrestrial plants. A P,, value of >0.4 signifies that an important fraction
of the n-alkanes originated from submerged/floating plants (Ficken et al., 2000).

Alkenes are unsaturated hydrocarbons (those which have double bonds between
adjacent carbon atoms). Several studies of lacustrine and riverine sediments have
reported high abundances of mid- to long-chain n-alkenes and suggested that they
are algal indicators (Matsumoto et al., 1990; Zhang et al., 2004; Theissen et al.,
2005; de Mesmay et al., 2007; Xu and Jaffé, 2009). With this in mind, Zhang et al.
(2004) formulated a proxy for algal (mixed) inputs based upon the proportion of n-
alkenes and a hydrocarbon compound produced by the green alga Botryococcus
(cyclobotryococcatriene) relative to terrestrial plant input. This index was termed Py
= (Caq + Czsq + Cy7q + cyclobotryococcatriene)/( Cazq + Cosq + Copq +

cyclobotryococcatriene + Cog + C3q + Cg3).

Care must be taken when allocating these broad classifications of n-alkanes (long-,
mid-, and short-chain compounds) to specific sources, as a few studies have
identified exceptions to the general pattern (Castafieda and Schouten, 2011). For
example, Betula, a deciduous tree, was found to contain a large proportion of Cy3 n-
alkanes (Sachse et al., 2006), which would incorporate it into the submerged and
floating aquatic macrophyte classification, based on the n-alkane-based proxies

above.
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2.7 Summary

This chapter summarises the general scientific background to this study. An account
of the global biogeochemical Si cycle and its coupling with the global C cycle
highlights the importance of the relatively neglected and poorly understood role of
continental biota in the global Si cycle. Emphasis is placed on the principles
underlying the analytical techniques used in this thesis, particularly the relatively
new application of Si isotopes to diatom silica as a tracer of the Si cycle. The
principles of stable isotope hydrology are outlined, followed by consideration of the
processes that may affect the isotopic composition of diatom silica. Background
information on lipid biomarker analysis and biomarker-based proxies that can be
used to determine the palaeoenvironment in and around lakes is also presented.
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Chapter 3  Study region: the Nile Basin

3.1 Introduction

This chapter introduces the physical environment of the broader study area, the Nile
Basin, including information about its geography, geology, climatology, hydrology
and vegetation. The second half describes the controlling mechanisms for long-term
climate change across north-east Africa and the evidence for past changes in
hydrology and vegetation.

3.2 Geography

The River Nile is located in northeast Africa, and drains from the tropics northwards
into the Mediterranean Sea (Figure 3.1). The Nile Basin covers an area of over 3
million km? across ten countries; Burundi, Rwanda, Democratic Republic of Congo,
Tanzania, Kenya, Uganda, South Sudan, Republic of the Sudan, Ethiopia, Eritrea
and Egypt. The length of the river is about 6700 km, making the Nile the longest
river in the world. The catchment extends from 4S to 32N, spanning a wide variety
of altitudinal, geological, geomorphological, climatic and vegetation zones (Figures
3.1-3.7). The main tributaries are the White Nile, originating from the headwaters of
the equatorial great lakes in East Africa, and the Blue Nile and Atbara which
descend from the Ethiopian Highlands. The two Niles converge at Khartoum,
Sudan, and flow northwards to the Mediterranean Sea. Climate and vegetation are
closely correlated with precipitation amount and the number of dry months, which
are primarily governed by the northward migration of the Intertropical Convergence
Zone (ITCZ) in boreal summer and by orography (Nicholson, 1996).
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Figure 3.1: Location of the River Nile and its tributaries.
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3.3 Geology

The White Nile and Blue Nile catchments are geologically distinct (Figure 3.2). A
large portion of the Nile Basin is underlain by Precambrian granitic and
metamorphic rocks. Volcanic rocks are more extensively developed in Ethiopia than
anywhere else along the East African Rift system (Williams et al., 2006; Schliiter,
2008). Although the Blue Nile Basin is underlain by Precambrian crystalline
basement, more than two-thirds of the Upper Blue Nile Basin is covered by a thick
stack of weathered trap basalts (Kebede et al., 2005). The Atbara passes through a
similar succession of rock types. In the headwaters of the White Nile, small pockets
of volcanics occur along the Western Rift (e.g. Virunga Mountains) and east of Lake
Victoria. However, more than two-thirds of Uganda are underlain by Precambrian
granites, granulites and gneissic sequences that continue further downstream into
the western part of the Sudd and the Bahr el Ghazal. From Juba northwards along
the main channel and in the plains in the east, unconsolidated sediments are
widespread. In northern Sudan and southern Egypt, the Main Nile flows over
continental clastic sequences and crystalline basement rocks. The remainder of its
passage to the Delta crosses unconsolidated marine sediments.
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Figure 3.2: Simplified geology of the Nile basin (modified after Furon (1958)).
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3.4 Climate

Annual variations in the hydrological budget of the River Nile are largely governed
by the seasonal migration of the Intertropical Convergence Zone (ITCZ), which
separates the relatively stable, dry northeast monsoon from the southeasterly
monsoon airflow from the Indian Ocean, and moves north and south across the
Equator following the overhead sun (Figure 3.3). The Congo Air Boundary (CAB)
defines the convergence of unstable, moist westerly flow from the Atlantic Ocean,
also known as the Congo Air Stream, and easterly flow from the indian Ocean
(Nicholson, 1996). The passage of the ITCZ usually coincides with maximum rainfall
due to intensified convective activity; as a result, the equatorial regions of the White
Nile catchment exhibit a bimodal rainfall pattern (Figure 3.4). Two rainy seasons
occur during the months of March, April, May (MAM) (“long rains”) and October,
November, December (OND) (“shorter rains”), with the north-western tip of Uganda
experiencing a third rainy season during August (Ogallo, 1988). During this time
East Africa is under the influence of prevailing easterly winds (Griffiths, 1972;
Nicholson, 1996), bring moisture from the equatorial and northwest Indian Ocean
during OND and from the south-western Indian Ocean during MAM. In contrast, the
Blue Nile headwaters in the north-western Ethiopian Highlands are characterised by
a single rainy season between the months of June and September, when the ITCZ
reaches its most northerly position (~18N) (Kebede et al., 2006). In both regions,
mean annual rainfall exceeds 1000 mm/year, with additional factors such as
topography and continental water bodies (notably the equatorial great lakes and
Lake Tana) having an influence on regional and local climates through the
distribution of orographic precipitation, rain shadows and land-lake circulations
(Nicholson, 1996). In contrast, northern Sudan (from ~18N) and Egypt, which lie
well beyond the maximum northward limit of the ITCZ (Figure 3.4), experience
negligible rainfall (<560 mm annually) (Camberlin, 2009).
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Figure 3.3: Schematic of the low-level mean flow over tropical Africa in boreal
(June-August) and austral summer (December-February) based on NCEP
reanalysis 925 hPa mean winds and Nicholson (1996). The approximate
positions of the Intertropical Convergence Zone (ITCZ) and the Congo Air
Boundary (CAB) are shown (modified after Levin et al. (2009)).
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Rainfall regimes

Figure 3.4: Annual rainfall regimes for the Nile basin based on an hierarchical
cluster analysis of mean monthly rainfall for 1961-1990 (CRU CL 2.0 data).
Data in the bar charts to the left represent maximum monthly rainfall. For type
7, type 6 is shown as a dashed line for comparison (from Camberlin (2009)).

As noted above, other factors such as topography and large continental water
bodies play an important role in influencing regional and local climates in additional
to large-scale processes. The Ethiopian Highlands block moist, unstable Congo air
from reaching coastal areas in Ethiopia and Somalia (Nicholson, 1996). Likewise,
the low-level Somali Jet, an integral part of the southeast monsoon, is deflected to
the northeast towards Somalia and the Arabian Sea by the highlands of Kenya and
Ethiopia during northern summer, whilst the Ethiopian Highlands deflect flow from

the northeast monsoon during winter along the Somalian Coast, both enhancing
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aridity as a result of frictionally induced subsidence (Nicholson, 1996; Sepulchre et
al.,, 2006; Levin et al., 2009). Orographic uplift plays an important role in local
climates. Generally the highest rainfall occurs in mountainous regions (e.g. the
Rwenzori Mountains and the Ethiopian Highlands; >2000 mm/yr) (Nicholson, 1996).
Also, land-lake circulation, in the form of lake breezes, enhances local convection.
For example, areas north and west of Lake Victoria receive rainfall nearly all year
round (Nicholson, 1996), and isotope data from the IAEA-WMO station at Entebbe,
on the northern shores of the lake, indicate that significant rainfall occurs from
evaporated waters from Lake Victoria (Rozanski et al., 1996). In summary, a very
pronounced south-to-north gradient of decreasing rainfall (equatorial, tropical and
arid) and increasing total number of dry months characterizes the Nile Basin.

3.5 Hydrology

The White Nile flows northwards from the equatorial lakes plateau (Lakes Victoria,
Edward, George and Albert) through a series of lakes and swamps. The western
(Rwenzori Mountains, Lake Edward, River Semliki and Lake Albert) and eastern
(Lake Victoria, Lake Kyoga and Victoria Nile) branches of the White Nile meet at the
northern end of Lake Albert to form the Albert Nile (Figure 3.1). The most distant
tributary of the White Nile is the Kagera (fed by an upper branch from Burundi: the
Ruvyironza River), which flows into Lake Victoria (the largest lake in Africa: 68,000
km?) from the mountains of Burundi and Rwanda in the west. This is the largest
inflow to the lake. The only outflow is via the Victoria Nile near Jinja, which is
controlled today by the Nalubaale Dam (Figure 3.5).

From Uganda, the White Nile flows into South Sudan as the Bahr el Jebel and
enters vast wetlands (30,000-40,000 km?) known as the Sudd, where the river spills
over from the main channel into swamps and seasonal grasslands; only about half
the inflow is returned to the main channel as a result of evaporative losses (Sutcliffe
and Parks, 1999; Mohamed et al., 2005). Beyond the Sudd, the Bahr el Ghazal
enters from the west, although its contribution to the Nile is negligible due to
evaporation and overspill. The Sobat, which drains the south-western Ethiopian
Highlands and the South Sudan Plains, is the final tributary to enter the White Nile,
contributing about half the total flow (Sutcliffe and Parks, 1999).
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The White Nile, fed by more consistent year-round rainfall in the equatorial lakes
region, contributes a smaller proportion (~30%) of the total Nile flow but a more
constant discharge throughout the year than the Blue Nile (Figure 3.6) (Hurst, 1952;
Foucault and Stanley, 1989). Its seasonal variations in flow are also dampened by
storage in major lakes, reservoirs and wetlands (Green and El-Moghraby, 2009). In
contrast, the Blue Nile descends from Lake Tana (3156 km?, 1,800 m a.s.l) in the
western Ethiopian Highlands (average ~2000-3000 m a.s.l., rising to >4000 m) and
contributes about 56% of the Main Nile flow (Figure 3.6) (Foucault and Stanley,
1989). Lake Tana alone supplies ~8% of the main river flow, the remainder coming
from tributaries draining the central and southwestern Blue Nile basin (Shahin,
1985; Conway, 2000). Near Roseires, at the Ethiopian-Sudan border, the river
drops steeply down to the plains of Sudan (<700 m) before flowing northwestwards
towards Khartoum (Shahin, 1985; Sutcliffe and Parks, 1999). The highly seasonal
flow of the Blue Nile (Figure 3.6a) reflects the unimodal rainfall regime at this
latitude (Figure 3.4). Its sediment load is also very high (72% of total Nile sediment
load) (Figure 3.6), due to the steep slopes and relatively sparse vegetation of the
Ethiopian Highlands (Foucault and Stanley, 1989; Sutcliffe and Parks, 1999).
Downstream from the confluence of the White and Blue Niles, the Main Nile flows
northwards through ~3000 km of desert, with its final tributary, the Atbara, joining
300 km north of Khartoum (Figure 3.1). The Atbara drains the northern Ethiopian
Highlands and parts of Eritrea. It exhibits an even more flashy flow regime than the
Blue Nile, due to its proximity to the northern summer limit of the ITCZ, though it still
provides ~14% of the total Nile flow (Figure 3.6) (Foucault and Stanley, 1989).
Below the confluence with the Atbara, several major dams, including the new
Merowe Dam and the older High and Low Dams at Aswan, regulate the flow and
store summer flood waters for hydroelectric power and irrigation (Figure 3.5),
thereby enhancing evaporative losses (Abu-Zied and EIl-Shibini, 1997). Lake Qarun,
near Cairo, is a closed lake fed by a major irrigation canal from the Main Nile
(Flower et al., 2006; EI-Shabrawy and Dumont, 2009).
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Figure 3.5: A long profile of the River Nile and its major tributaries showing
the main river management controls (modified after Church et al. (2011)).

Mean water Suspended
ara discharge sediment load
e Nile 2800 m V 1 120 x 106t year1
ite Nile
600-
Atbara Atbara
0,
« 400" 14% 25%
s 20 Blue Nile Blue Nile
0- 56% 72%
1_ i— i_ i—i— i_ i— i_ —f—r White Nile IWhite Nile
JFMAMUJJIASOND 30% 3%

Figure 3.6: Typical annual flow regime of the Nile prior to dam formation at
Aswan (1912-1936 averages) (a) and the discharge and suspended sediment
budget of the Nile’s major tributaries (b) (redrawn from Woodward et al. (2007)

after (Hurst, 1952)).
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3.6 Vegetation

The large-scale pattern of natural vegetation and plant biomass in the Nile drainage
reflects the northward decrease in mean annual rainfall, topography and the
distribution of surface water bodies (Figures 3.7 and 3.8). Biomass decreases

northwards in the Nile Basin following the rainfall gradient (Figure 3.4).
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Figure 3.7: Simplified vegetation map of northern Africa including the River
Nile, showing the distribution of the major floristic regions (redrawn from
White (1983)).
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Figure 3.8: Detailed land cover map of the Nile Basin from satellite data.
Detailed land cover map of the Nile Basin from satellite data. Clearly visible
are the vegetation belts that transverse the north African continent, controlled
largely by rainfall amount. Modified after Mayaux et al. (2003).

Terrestrial vegetation in the headwaters of the White Nile is dominated by a mosaic

of savanna, woodland and semi-evergreen rainforest at low-, mid- and high-
elevations, respectively, and montane forest in the highlands in the south-western
part of the basin (Langdale-Brown et al., 1964; White, 1983). Further downstream,
the swamps of the Sudd and Bahr el Ghazal cover a vast area (>40,000km2),
dominated by Cyperus papyrus, Vossia sp., Typha domingensis and floating
macrophytes (Eichhornia crassipes and Pistia stratiotes) in the permanently flooded
channels and swamps (Green and EI-Moghraby, 2009). Seasonally flooded
grasslands back the main swamps and grade into open woodland (with Acacia
seyal and Balanites aegyptiaca). In the east, the Sobat drains a large area of

wetland known as the Machar Marshes, characterised by papyrus swamp and
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wooded grassland. The Upper Blue Nile and Atbara Basins in the Ethiopian
highlands consist of grassy uplands (formerly forested but now only remnants due
to agriculture) with occasional scattered trees (of acacia and doum palm) and
seasonal wetlands around Lake Tana (Cyperus papyrus, Echinochloa pyramidalis
and Echinochloa stagnina), with some of the more humid south-western tributaries
containing papyrus swamps (e.g. Dabus swamp; 900 km?) (Conway, 1997). Acacia
woodland and scrubland characterise the Sudan plains from which tributaries of the
Blue Nile drain (Sutcliffe and Parks, 1999). Vegetation along the Main Nile from
about 18N is very sparse (Figures 3.7 and 3.8), co nsisting mainly of acacia bush
and doum palms, although the banks of the Nile are fringed by riparian swamps and
irrigated fields.

Surrounding the equatorial lakes (e.g. Victoria, Kyoga, George, Edward and Albert)
and Lake Tana are extensive wetlands composed of aquatic grasses (Phragmites
australis, Vossia cuspidata, Echinochloa sp.), large sedges (Cyperus papyrus),
herbaceous reeds (Typha domingensis), and floating and submerged macrophytes
(Eichhornia crassipes, Pistia stratiotes, Ceratophyllum demersum) (Figure 3.9)
(Langdale-Brown et al., 1964; Kendall, 1969; Conway, 1997; Sutcliffe and Parks,
1999; Green, 2009; Green and EI-Moghraby, 2009). In addition, the main river
channels and many of their tributaries are lined with swamps and small ponds,
including the vast areas of the Sudd and Bahr el Ghazal swamps (the area of the
latter is uncertain but smaller than the Sudd) (Sutcliffe and Parks, 1999).
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3.7 Causes of long-term climate variability in north-east
Africa

During the Quaternary period, variations in the Earth’s orbital parameters
(eccentricity, obliquity and precession) are thought to be the main drivers of glacial /
interglacial cycles (Figure 3.10) (Hays et al., 1976; Imbrie and Imbrie, 1979). Small
variations in these parameters can lead to significant changes in the Earth’s receipt
of solar radiation, resulting in seasonal and latitudinal changes in insolation, and
ultimately consequences for the general atmospheric circulation. Milankovitch in
1941 theorised that through a combination of orbital configurations, lower summer
radiation receipts in the northern high latitudes would result in a stronger
temperature gradient between the equator and the poles, causing intensified
general circulation and enabling the transport of enhanced moisture polewards,

which together with warmer winters would favour the expansion of the ice sheets.
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Figure 3.10: Variations of eccentricity, obliquity, precession, and the
combination of all three parameters (ETP) during the last 800,000 years with
their period characteristics indicated by the power spectrum to the right of the
time series (from Bradley (1999)).
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During the Late Quaternary, changes in the precession of the equinoxes resulted in
increased insolation during the summer months across northern Africa. Between
~15000 and 6000 years ago, the northern hemisphere in summer was tilted towards
the sun at perihelion (Earth closest to the Sun), resulting in ~8% more insolation
during the summer than today (Figure 3.11) (Street-Perrott and Kutzbach, 1985;
Kutzbach and Guetter, 1986; Prell and Kutzbach, 1987; COHMAP, 1988). A large
land-sea temperature gradient caused a strengthening and intensification of the
summer monsoon which brought about wetter conditions in North Africa during the
early Holocene, often referred to as the African Humid Period (AHP) (deMenocal et
al., 2000a). Inland penetration of the enhanced summer monsoon enabled a shift in
vegetation belts northwards by ~5° (Street-Perrott et al., 1990; Kutzbach et al.,
1996), transforming parts of the now arid Sahel and Sahara into vegetated
landscapes with expanded waterbodies, including that of palaeolake MegaChad
(>400,000 km?; Drake and Bristow (2006)). The beginning of the so called AHP was
not a smooth transition as expected from orbital forcing alone, but an abrupt
transition when insolation reached 470 Wm? (~4.2% more insolation than present
day) at ~15ka BP (Figure 3.11), as recorded in many palaeoclimate archives
(Street-Perrott and Kutzbach, 1985; Gasse, 2000; Barker et al., 2004; Kiage and
Liu, 2006; Gasse et al., 2008). Positive feedbacks from associated changes in
surface boundary conditions (expanded vegetation and waterbodies, increased soil
moisture) and sea-surface temperatures further amplified the climate response to
orbital forcing (Street-Perrott et al., 1990; Kutzbach et al., 1996; Kutzbach and Liu,
1997).

Across Africa a wide range of proxies from various archives support long term
forcing by orbital variations as the controlling factor of climatic changes on a multi-
millennial time scale (for reviews see Gasse (2000) and Barker et al. (2004)). The
geological and palaeoecological evidence suggests that during the Last Glacial
Maximum (LGM: ~18ka) North Africa was generally dry; humid conditions prevailed
during the early to middle Holocene and drier conditions resumed during the late
Holocene (Gasse, 2000). Superimposed on these long-term trends were millennial-
scale climatic events registered in archives quasi-globally. The release of freshwater
inputs into the North Atlantic Ocean associated with the melting of the Laurentide
Ice Sheet caused intervals of weakened Atlantic Meridional Overturning Circulation
(AMOC) during the last 20,000 years, resulting in changes to global climates (Bard,
2002; McManus et al., 2004). Input of meltwater slowed the AMOC due to

decreases in salinity and temperature and thereby reduced the cross-equatorial
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heat transport and shifted the ITCZ southwards, resulting in decreased rainfall over
tropical Africa (Street-Perrott and Perrott, 1990; deMenocal et al., 2000b; Tjallingii et
al., 2008). During deglaciation of the northern hemisphere ice sheets, catastrophic
iceberg release into the North Atlantic, known as the Heinrich 1 event (Bond et al.,
1992; Hemming, 2004), resulted in a freshening of the North Atlantic Ocean and is
considered to be the cause of Late Pleistocene desiccation of so many East African
lakes (e.g. Lakes Victoria, Albert, Tana) (Stager et al., 2002; Stager et al., 2011).
Another severe cold period, the Younger Dryas, occurred at the very end of the Late
Pleistocene period (~12.5-11.5ka BP), hypothesised to be from a sudden pulse of
meltwater into the northern North Atlantic Ocean from the Laurentide ice sheet
(Teller et al., 2002; Teller et al., 2005), and was recorded in many African climate
archives (Roberts et al., 1993; Gasse, 2000; Stager et al., 2002; Barker et al., 2004;
Kiage and Liu, 2006; Garcin et al., 2007; Gasse et al., 2008). Several other abrupt
climatic events occurred during the Holocene (e.g. 8.2 and 4.2 ka) but were short
lived (decades to centuries), again these were associated with disruption of the
AMOC and its associated heat transport (Alley et al., 1997; deMenocal et al., 2000b;
Bond et al., 2001). An injection of glacial meltwater from breached ice-dammed
Lake Agassiz into the Labrador Sea caused the centennial-scale cooling event
centred around 8500-8250 years BP (Barber et al., 1999; Clarke et al., 2004; Daley
et al., 2011), and is recognised in many climate archives around the globe including
Africa (Alley et al.,, 1997). A combination of interactions between orbital forcing,
atmospheric circulation, oceanic parameters and land surface conditions have
occurred during the Late Quaternary, resulting in different scales of hydrological
fluctuations (deMenocal et al., 2000a; Gasse, 2000).
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Figure 3.11: Northern hemisphere summer (JJA) radiation receipt computed
for 20*N during the last 25 ka BP. By about 10-11 ka BP, summer insolation in
the Northern Hemisphere had peaked to about 8% greater than today due to
changes in the earth’s orbital parameters (Berger and Loutre, 1991). Early
climate models found that an 8% increase in summer insolation would cause
a 40% increased in African monsoonal precipitation (Kutzbach and Street-
Perrott, 1985; Prell and Kutzbach, 1987). From deMenocal et al. (2000a).

3.8 Late Quaternary palaeoenvironments of the Nile Basin

During the Middle to Late Quaternary, tropical Africa was strongly affected by quasi-
periodic variations in the Earth’s orbital parameters (see section 3.7). During boreal-
summer insolation maxima, monsoon rains penetrated deep into the Sahara,
causing a northward migration of the major vegetation belts, increases in river
discharge, and an expansion of lakes and wetlands (Kutzbach and Street-Perrott,
1985; Street-Perrott et al., 1990; Kutzbach et al.,, 1996; Kutzbach and Liu, 1997;
Jolly et al.,, 1998; Joussaume et al.,, 1999; Prentice et al.,, 2000). Changes to the
hydrology and terrestrial and aquatic ecosystems in the Nile Basin during this period
are becoming increasingly well documented from the sediment record (dune sands,
river deposits, lake sediments, lake shorelines, archaeological remains and

Mediterranean sapropels) (Pachur and Kropelin, 1987; Williams et al.,, 2006;
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Williams et al., 2010). During and after the Last Glacial Maximum (LGM, ~21ka),
tropical Africa was generally drier and colder, resulting in eventual desiccation of
several of the headwater lakes (Victoria, Albert and Tana) and their isolation from
the Nile (Talbot and Livingstone, 1989; Johnson et al., 1996; Beuning et al., 1997c;
Talbot and Laerdal, 2000; Lamb et al., 2007; Stager and Johnson, 2008). White Nile
discharge was low and extremely seasonal, while the Blue Nile flood was even
more flashy than today (Adamson et al., 1980; Said, 1993; Johnson, 1996; Williams
et al.,, 2000). Refilling and overflow of the White Nile headwater lakes and Lake
Tana occurred around 14.5 ka BP, marking the abrupt onset of the enhanced
summer monsoon and the so-called “Wild Nile” (Adamson et al., 1980; Rossignol-
Strick et al., 1982; Talbot et al., 2000; Williams et al., 2006; Lamb et al., 2007; Revel
et al., 2010). During the interval ~15 ka to 5 ka BP, a general increase in rainfall
across the entire Nile Basin, apart from the northernmost Sahara, resulted in
enhanced vegetation cover and river discharge; perennial flow into the Nile from
large Saharan wadi systems (Pachur and Krépelin, 1987; Williams et al., 2010); and
widespread proliferation of lakes and swamps. A 450 km? palaeolake west of the
Main Nile in northern Sudan (Williams et al., 2010) and a greatly enlarged Lake
Qarun near Cairo (< 2100 km* Hassan (1986)) were fed by increased overspill of
Nile floodwaters. From mid-Holocene to present, the climate of the Nile Basin has
become much drier due to the southward retreat of the enhanced monsoon, and the
modern discharge regime of the Nile has been established. The collapse of the Old
Kingdom in the Nile valley is thought to have been associated with a decline in
White Nile flow linked to widespread aridity across tropical Africa at ~4.2ka BP
(Hassan, 1997; Stanley et al., 2003).

3.9 Chapter Summary

Flowing from south to north, from tropical headwaters through desert lowlands to
the Mediterranean Sea, the Nile Basin is diverse. Spanning a wide variety of
altitudinal, geological, geomorphological, climatic and vegetation zones, the River
Nile is the longest in the world. Precipitation and vegetation distributions are
controlled largely by the passage of the ITCZ, resulting in a very marked south to
north climatic and vegetation gradient, but also greatly influenced by orography and
large continental waterbodies.
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Large-scale climatic changes affected the Nile Basin and northern Africa as a whole
during the Late Quaternary, controlled primarily by orbital forcing which bought
about enhanced summer monsoons between ~15 and 5 ka BP resulting in
proliferation of rivers, lakes and wetlands and a shift of the main zonal vegetation
belts to more northerly positions. Superimposed on the long-term trend were
centennial- to millennial-scale events which appear to be linked with deep water
formation in the North Atlantic. An increasing number of palaeoclimate and
palaeoenvironment archives are available for the Nile Basin to document these

changes.
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Chapter 4 Methods development: Si-isotope
analysis of waters

4.1 Introduction

Measurement of Si-isotope compositions of waters collected from lakes and rivers in
the Nile Basin was a key element of this project. Using High Resolution Multi
Collector-Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) at the
NERC Isotope Geosciences Laboratory, UK, a new method was devised to analyse
Si isotopes in waters. Currently there is no agreed protocol for analysing Si isotopes
in natural materials by MC-ICP-MS due to its recent development. Through
extensive investigation and exhaustive experimentation, the most suitable analytical
set-up for obtaining accurate and precise data on a Neptune Plus MC-ICP-MS at
NIGL has been achieved. This chapter describes the advancement of MC-ICP-MS
for Si-isotope analysis, the various methodologies developed for varying
instruments and the problems that need to be overcome to obtain data of the high

precision and a accuracy required for Si-isotope analysis.

4.2 Sample storage

Although methods for storing waters for Si isotope analysis and maximising their
longevity was not widely described in the literature, Georg et al. (2006b) provided
enough detail, together with various other authors, to collect, store and preserve
waters for Si-isotope analysis effectively. All samples were filtered through 0.45 pm
Millipore cellulose nitrate filters (47mm diameter) in the field to remove colloidal and
particulate Si (including biogenic silica), together with suspended organic matter,
and acidified with ultra-pure HCI to a pH of between 2-3 to prevent any further
biological activity and polymerization. Water samples were collected and stored in
clean high density polyethylene bottles and kept in the dark until it was possible to
store them at 4°C on return to the UK, where they remained until further analysis. All
additional preparation for Si isotope analysis was carried out in August-September
2011 at the NERC Isotope Geosciences Laboratory in a class 100 clean suite using
sub-samples of the bulk sample. Further details of sample preparation can be found
in Chapter 5, section 5.3.4.
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4.3 Current methods for determining Si concentrations and
other major elements

It is useful to determine the Si concentration (and composition of other elements) of
waters for both additional data about environmental conditions but also so that an
appropriate dilution can be made prior to isotope analysis (Chapter 5, section
5.3.4.1). The most widely used method to determine dissolved Si (DSi)
concentrations is the colorimetric technique (molybdenum blue method) using
spectrophotometry (De La Rocha et al., 2000; Georg et al., 2006b, a; Georg et al.,
2009; Cardinal et al., 2010; Opfergelt et al., 2011; Hughes et al., 2012) or by ICP-
MS/ICP-AES (van den Boorn et al., 2006; Engstrédm et al., 2010; Ding et al., 2011,
Hughes et al., 2012). The colorimetric procedure measures dissolved silica (SiO;)
rather than Si so a correction for the oxygen atoms is required. However, it is not
always clear in the literature whether authors have made this correction. The benefit
of using inductively coupled plasma spectrometry is that other elements can be
measured at the same time. In contrast, colorimetric methods use smaller sample
sizes and are thought to be more sensitive, especially when concentrations are low,

and their instrument costs are lower.

For a batch of 23 Nile water samples, | measured DSi both colorimetrically using a
Hach Lange colorimeter (at the Earth Science Department, University of Edinburgh)
and by ICP-MS (measurements carried out by Dr Simon Chenery and Thomas
Barlow at the British Geological Survey, Keyworth). The two methods produced
significantly different Si concentrations (paired t-test, p = 0.002) (Figure 4.1). Si
concentrations determined by ICP-MS were generally greater than colorimetrically
measured Si, particularly at high concentrations (Figure 4.2). The reasons for the
differences are not fully understood, but it may be that the high temperatures
associated with the plasma resulted in the measurement of colloidal material that
was not measured colorimetrically. Also, human error cannot be discounted,
through the preparation of standards, calculation errors, and dilutions, which may
have influenced the results. It is possible that the water samples were measured
within the Low Range (0-1.600mg/L (ppm)) silica function of the spectrophotometer
and therefore the high Si concentrations would not have been accurately calculated.
Both procedures remain valid techniques. Due to the availability of suitable
equipment and requirement to measure other elements within the water samples,
ICP-MS was chosen in this instance. Precision was typically +2% for colorimetric
methods and +3-15% for ICP.
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Figure 4.1: The relationship between dissolved Si measured colorimetrically
and by ICP-MS on River Nile waters. A paired t-test clearly shows a significant
difference between the Si concentrations obtained through the two methods
(p = 0.002).
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4.4 Advancement in the methods used for Si isotope
measurements

Traditional methods for determining Si isotope compositions of natural samples
(natural waters, biogenic silica, primary and secondary minerals, meteorites/lunar
rocks) use gas source Isotope Ratio Mass Spectrometry (IRMS) and require
fluorination of precipitated SiO. in the preparation stages (Reynolds and Verhoogen,
1953; Douthitt, 1982; De La Rocha et al., 1996; Ding et al., 1996; De La Rocha et
al., 2000; Ding et al., 2004; Ding et al., 2008a; Ding et al., 2008b; Leng and Sloane,
2008; Ding et al., 2011), which is associated with the potential release of hazardous
fluorinating gases, such as bromine pentafluoride (BrFs) or fluorine (F») (De La
Rocha et al., 1996; Ding et al., 1996; De La Rocha, 2002; Ding et al., 2004). Since
the introduction of MC-ICP-MS for Si isotope measurement during the last decade
(De La Rocha, 2002; Cardinal et al., 2003), a renewed interest in the opportunity to
study the biogeochemical cycle of Si has arisen as a result of less complicated

preparation procedures and safer analytical conditions.

During the last decade progress has been made to improve the way in which Si
isotope analysis of natural samples is carried out both in the preparatory stages (De
La Rocha et al., 1996; Engstrom et al., 2006; Georg et al., 2006b; van den Boorn et
al., 2006) and in the determination of their Si isotope composition (De La Rocha et
al., 1996; De La Rocha, 2002; Cardinal et al., 2003; Engstrém et al., 2006; Georg et
al., 2006b). Even though determining Si isotope compositions by MC-ICP-MS has
its associated difficulties (time consuming, mass bias, matrix effects etc; will be
discussed later), it is still deemed much safer than the fluorination of silicon (De La
Rocha, 2002), and has been received well by the scientific community. However,
there is still no agreed protocol for analyzing Si isotope compositions in natural
samples by MC-ICP-MS, presumably because it is still in its infancy and users are

running samples on varying instruments.

4.5 Development in the preparation and purification of Si
prior to Si isotope analysis

In 1996, over forty years after the first measurements of Si isotope abundances in
natural samples were carried out (Reynolds and Verhoogen, 1953), De La Rocha
and colleagues reignited interest in the determination of Si isotope compositions in
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natural samples with their attempt to improve methodologies for quantitatively
recovering and purifying Si from biogenic silica and water samples. They devised a
procedure, modified after Defreitas et al. (1991), which included using 2.5 M HF to
dissolve biogenic silica, followed by the precipitation of dissolved silicon with the
addition of cleaned TEA-moly reagent and subsequent fluorination of the
precipitated product with F, to form silicon tetrafluoride (SiF;) gas for analysis by
IRMS. At the same time Ding et al. (1996) were making improvements to their
fluorination line after the methodology created by Clayton and Mayeda (1963) using
bromine pentafluoride (BrFs) as the fluorinating reagent. Both procedures allowed
good recovery of Si, however, safety considerations when using HF and the
potential release of dangerous fluorinating gases during analysis meant that the

methodology was not completely satisfactory.

With the advent of MC-ICP-MS for stable isotope analysis, allowing more timely and
safer measurements of Si isotopes to be carried out, new preparation techniques
were necessary prior to isotope analysis. Samples needed to be introduced to the
mass spectrometer as a solution rather than a gas as is required for gas source
IRMS, and to be free from other components that could potentially cause matrix
interference with the measurement of the isotopic abundances of Si (see section
4.6). Initially, samples (biogenic silica, minerals and standards) were prepared by
dissolving them in HF and HCI, and those containing organic matter underwent an
acid digestion (hot H,O, or HNO3) before dissolution in HF/HCI (De La Rocha, 2002;
Cardinal et al., 2003). A few years later, a new wave of purification and recovery
protocols for Si isotope analysis were developed (Engstrom et al., 2006; Georg et
al.,, 2006b; van den Boorn et al.,, 2006). These workers took advantage of ion
exchange resin to purify Si by chromatographic separation, first demonstrated by
Wickbold (1959) for other purposes.

Engstrom et al. (2006) applied the use of anion-exchange resin to purify and pre-
concentrate Si in water samples for isotope analysis. Several elution and wash
stages through the column were used to remove major inorganic constituents and to
recover Si in the final phase. Si recovery was satisfactory (>97%); however, the use
of HF to pretreat some of the samples prior to being loaded on to the column and
also as part of the elution stages in the chromatograph purification, resulted in final
solutions containing significant quantities of HF. Georg et al. (2006b) took the
principle of ion exchange a step further, and removed the need to use HF almost
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entirely, making it a much safer procedure. They used cation-exchange resin to
separate Si (Si is neutrally (H,SiO4) or negatively (HsSiO4) charged in solutions with
pH 2-8) from positively charged ions (anions) using purely Milli-Q water to elute. In
addition, Georg et al. (2006b) found that sensitivity increased (higher beam
intensity) and higher mass bias stability was obtained as a result of avoiding the use
of HF which ultimately improved the precision of the Si isotope measurements. The
use of HF in Si isotope measurements by MC-ICP-MS should be avoided as Si can
be easily lost by volatilization, and corrosion of the glass parts of the internal
apparatus by HF are likely to cause significant background noise (Georg et al.,
2006b; van den Boorn et al., 2006). Chromatographic recovery and purification of Si
for MC-ICP-MS, without the use of HF, is more reliable, faster, simpler and safer,
improves accuracy and precision through the removal of most matrix interferences,
prevents Si isotope fractionation, enables high recovery of Si (>98%) and allows the
use of small sample sizes (Georg et al., 2006b).

4.6 Development of MC-ICP-MS for the analysis of Si
isotope compositions in natural samples

Increasingly being used for the determination of Si isotopes abundances is MC-ICP-
MS, favoured over the use of gas source IRMS due to faster preparation procedures
and analytical time, less complicated and safer methodologies owing to the
avoidance of HF and fluorinating gases, and the utilization of much smaller sample
sizes. However, associated with the use of MC-ICP-MS are some important
analytical difficulties (such as matrix interferences, sensitivity and background
issues, mass bias effects) which must be overcome to enable accurate and precise
measurement of Si isotope abundances, comparable to IRMS (De La Rocha, 2002).
During the last few years, various analytical and instrumental (e.g. Nu Plasma, Nu
1700 and Neptune) setups have been developed/tested to try and overcome these
problems (De La Rocha, 2002; Cardinal et al., 2003; Engstrom et al., 2006; Georg
et al., 2006b; van den Boorn et al., 2006; Abraham et al., 2008; van den Boorn et
al., 2009; Hughes et al., 2011; Zambardi and Poitrasson, 2011).

One of the main problems associated with MC-ICP-MS, but not with IRMS, as most
major mass interference problems are eliminated by measuring Si as SiF," ions
(Cardinal et al., 2003), is the effect of isobaric and polyatomic matrix interferences

that can occur with species that have similar masses to Si. A list of all the potential
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isobaric interferences on the Si isotope peaks are presented in Table 4.1. The
doubly charged ions (e.g. S6Fe2+ 58Fed 8SNi2y, 60Ni2t) can be removed and
eliminated during ion-exchange resin purification (van den Boorn et al., 2006).
However, several interferences from N-, O- and C-containing species are
impossible to remove chemically or by ion-exchange purification since they are
entrained from the atmosphere (Engstrom et al., 2006). Although, the use of a
Cetac Aridus desolvating nebulizer, allowing the mass spectrometer to operate in
dry-plasma mode, is thought to reduce the introduction of interfering atmospherically
derived species substantially (Cardinal et al., 2003; van den Boorn et al.,, 2006). In
particular, major interferences with the 28Si and 30Si peaks are caused by 14N2 and

14N 180, respectively.

Table 4.1: Potential matrix interferences with Si isotope peaks (from Engstrom
et al. (2006) and van den Boorn et al. (van den Boorn et al., 2006)).

Type of interferent

Isotope Importance Hydrides Nitrogen Carbon Doubly
based based charged
285 Major N 14N + T+
Minor SoFe2+
26i Major 14N 14N H + 1 160 H+
Minor 2BSiH+ 16N N + 16+ 58F e 2+
T+ 5N 2+
J0Si Major 14N 160 +
Minor 28 iH+ wNH+ 1o+ BONi2+
1N 14N 2H +

In the very early stages of developing the use of MC-ICP-MS for Si isotope analysis,
it was not possible to overcome interferences with the 30Si peak, and so emphasis
was placed on the two lighter isotopes of Si (De La Rocha, 2002; Cardinal et al,
2003). 63Si was determined using the empirically derived relationship 630Si =
1.93626i (De La Rocha, 2002). However, this was not entirely satisfactory as the
assumption was that the samples had been subjected only to mass-dependent
isotope fractionation. Changes to instrumental setup and analytical settings have
allowed progress to be made in resolving interferences with all three Si peaks. High-
resolution capabilities of both the Neptune and NuPlasma 1700 MC-ICP-MS are
sufficient to accurately and precisely measure the Si isotopes on the interference
free plateaus (Engstrom et al.,, 2006; Georg et al., 2006b; Reynolds et al., 2006b;

Zambardi and Poitrasson, 2011). van den Boorn et al. (2006) also managed to
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measure all three peaks interference-free using a Neptune MC-ICP-MS at medium
resolution, and suggested that using an Cetac Aridus desolvating nebulizer
prevented tailing on the *Si peak by N0 interference as experienced by
Engstrém et al. (2006) using wet-plasma mode. Further measures that have been
considered to improve sensitivity include the type of solution in which the samples
and standards are introduced into the mass spectrometer, in order to prevent
competition for ionization energy in the plasma (van den Boorn et al., 2006). Georg
et al. (2006b) found that running samples in HF-free solutions improved sensitivity
by 30-40% as a result of eliminating fluoride ions in the plasma and van den Boorn
et al. (2006) suggested that higher sensitivities are obtained in HNOj; matrix,
although the use of HCI may be more suitable to avoid further interference from NO*
ions (Engstrém et al., 2006).

As highlighted earlier, when using the commonly adopted use of cation-exchange
resin to prepare samples, it is not possible to separate Si from other anionic species
or from other species that are not positively charged. Originally, it was thought that
these species (e.g. sulphates, nitrates and dissolved organic carbon) did not
interfere with Si isotope abundance measurements (George et al. 2006). However,
it has been shown subsequently that high concentrations of these species can have
significant impact on Si isotope measurements (van den Boorn et al., 2009; Hughes
et al., 2011). van den Boorn et al. (2009) were the first to show that sulphur present
in samples could cause a shift of up to +1.3%. in 5°°Si values, and suggested that
significant offsets could occur in SO,/Si ratios above 0.02 wt.%. The reason for
these offsets is uncertain. However, as sulphur isotopes have much higher masses
than Si isotopes, which therefore excludes isobaric matrix effects, it is thought
instead that instrumental mass bias is the cause of the offset (van den Boorn et al.,
2009). Later, Hughes et al. (2011) showed that dissolved organic matter, nitrates
and chloride ions, which are not removed by the cation-exchange purification
procedure, may also contribute to Si isotope offsets. To overcome these potential
problems Hughes et al. (2011) suggested that doping of both samples and
bracketing standards (matrix-match) at the same level with quartz distilled sulphuric
acid (for sulphate), nitric acid (for nitrate) and hydrochloric acid (for chloride) in
sufficient quantities to exceed the natural concentrations, would prevent isotopic
bias (van den Boorn et al., 2009; Hughes et al., 2011). Due to the complexity of
organic matrices it is not possible to balance the contaminant with doping solutions,

instead various methods are suggested for decomposing organic matter prior to
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column chemistry (Hughes et al., 2011). It must be noted that their results were only
based on two samples, both with high DOC/Si ratios, and may not be representative
of typical river samples. Even so, these problems should be given serious
consideration when planning Si isotope analysis, in particular for natural water and

altered rocks as they may contain elevated concentrations of these species.

To correct for these mass bias effects, standard-sample bracketing techniques
(matrix-matched) and doping samples and standards with Mg of a known isotopic
composition (**Mg/**Mg), allow the data to be corrected. Any measured deviation
from the known Mg isotope composition is attributed to mass bias drift and the Si
isotope data are corrected accordingly. Mg, with its three isotopes (24, 25, 26) being
close to the mass of Si, is the most suitable external standard for silicon (Cardinal et
al., 2003). However, De La Rocha (2002) suggested that the mass fractionation of
Mg would be unlikely to reflect that of Si due to the superior transmission of Mg
through the MC-ICP-MS. In addition, Georg et al. (2006b) suggested that doping
with Mg would add to the problem of matrix effects, causing further instability.
Several authors have recently shown that Mg doping is a reliable mass bias drift
correction of Si ratios (Cardinal et al., 2003; Engstrém et al., 2006; Hughes et al.,
2011, Zambardi and Poitrasson, 2011). Zambardi and Poitrasson (2011)
encouraged the use of Mg spiking and suggested that there was no evidence that
significant bias in the fractionation factors between Si and Mg was induced by MC-
ICP-MS. Although Mg doping does not improve the accuracy of silicon isotope
measurements, it does allow for the correction of mass bias drift, leading to more
precise Si measurements. Accuracy is achieved through the standard-sample

bracketing approach by normalising to the reference material.

4.7 Chapter Summary

Currently there is no consensus on a standard procedure for preparing and
measuring Si isotopes by MC-ICP-MS. Presumably this is because it is a new
technique, researchers are using varying instruments and there is limited
information available on the problems that have arisen when developing the
methodologies. Extensive research and experimentation by Dr Matt Horstwood and
Vanessa Pashley at the NERC Isotope Geosciences Laboratory (NIGL) led to the
analytical set-up chosen for analysis of Si-isotopes in solutions on a Neptune Plus
MC-ICP-MS, which will be presented in the following chapter.
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Chapter 5 Research design and methodology

5.1 Introduction

This chapter describes the rationale underlying the sampling strategy for both the
modern system and the sediment core analysis. Details of the methodologies used
for analysing water samples for isotope analysis (H, O and Si), in particular, the new
methodology developed for this thesis at the NIGL for Si isotopes in waters, and the
final analytical set-up that was decided on to overcome the problems effecting Si-
isotope analysis by MC-ICP-MS (covered in Chapter 4) are presented. The
procedures used for isolating diatoms from lake sediments are described and the
newly developed system for simultaneously measuring O and Si isotopes of diatom
silica at the NIGL using a fluorination technique and Gas Chromatography-Isotope
Ratio Mass Spectrometry (GC-IRMS) are explained. The methodology used for
extracting, quantifying and identifying biomarkers from lake sediments are described

in detail.

5.2 Sampling scheme

Transects of surface waters along the length of the River Nile were sampled for
hydrogen (H), oxygen (O) and silicon (Si) isotopes during both wet and dry seasons
in order to investigate the downstream evolution of their stable-isotope compositions
in response to seasonal changes in moisture balance and Si cycling. Understanding
the isotope systematics of the modern Nile Basin should help to interpret the Late
Quaternary lacustrine diatom palaeo-record. Diatom silica is formed of biogenic opal
(SiO,-nH,0) containing oxygen and silicon isotopes that can be used in
palaeoenvironmental studies (Leng and Barker, 2006; Leng and Swann, 2010). The
isotopic composition of the frustules reflects the aqueous environment in which they
formed. Utilising available sediment cores and sections from along the River Nile,
coupled measurements of stable Si and O isotopes on preserved lacustrine diatoms
were employed to reconstruct downstream changes in biotic Si cycling and
palaeohydrology, respectively. Abundance ratios of lipid biomarkers (n-alkanes)
were used to track corresponding vegetation changes in terrestrial and aquatic

ecosystems.
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5.3 Surface water sampling

5.3.1 Sampling strategy

A total of 79 surface water samples was collected from the White, Blue and Main
Nile drainages, including major tributaries and lakes, during both low-flow (“dry
season”: May-June 2009 and April-May 2011 (n = 34)) and high-flow conditions
(“wet season”: October-December 2010 (n = 45)), in order to represent seasonal
variations (Figure 5.1; Table 5.1). The aim was to obtain a representative coverage
of the Nile Basin catchments in order to understand the processes operating within
the Basin. Selected rivers and lakes were identified prior to fieldwork from maps and
research articles covering individual sub-basins. Sampling locations were largely
defined by ease of access to the River Nile tributaries, often by the presence of
bridges crossing rivers and proximity to roadways, allowing access to rivers banks.
Occasionally samples were collected from aboard boats whilst traversing the river.
Generally samples were collected from tributaries or Nile-fed lakes just prior to them
merging with the main Nile branches (e.g. White, Blue and Main Niles) or with other
tributaries which eventually flow into the Nile. The number of samples collected
during different seasons was dependent on budgetary constraints and therefore the
ability to access remote sites. For example, during the first expedition in May-June
2009 to the headwaters of the Blue and White Niles, resources were limited and
reliance was placed on the use of public transport, which meant that remote areas
were not easily accessible. For the second (2010) and third (2011) field expeditions,
a National Geographic grant allowed private hire of local vehicles and enabled
isolated sites to be sampled.
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Figure 5.1: Sampling site locations of collected water samples from the Nile
Basin. Numbered sites correspond to those in Table 5.1.
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Figure 5.1.
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Sample site name

Bujuku River, Rwenzori Mts., Uganda
River Mubuku, Rwenzori Mts.,
Uganda

River Mubuku, Rwenzori Mts.,
Uganda

River Ishasha, Uganda
River Ntungwe, Uganda

Mpanga River, Uganda
Lake Mahoma, Rwenzori Mts.,
Uganda

River Nkusi, Uganda

River Kagera, Uganda

River Kafu, Uganda

River Semliki, Uganda-Congo
Kazinga Channel, Uganda

White Nile, Khartoum, Sudan

Albert Nile, Uganda

Victoria Nile Delta, Uganda

Lake Albert (north), Uganda-Congo
Murchison Falls, Victoria Nile, Uganda
Victoria Nile, Bujagali Falls, Uganda
Outflow from Lake Victoria, Uganda
Lake Albert (south), Uganda-Congo
Lake Edward, Uganda

Ssese Islands, Lake Victoria, Uganda
Lake Victoria, Entebbe, Uganda
Paraa, Victoria Nile, Uganda

Ribb River, east Lake Tana, Ethiopia
Gish Abay, Ethiopia

Gilgel Abay, Ethiopia

Chimba, Gilgel Abay, Ethiopia

Alata River, Ethiopia

Gumara River, E. Lake Tana, Ethiopia
River Zarima, Ethiopia

River Tekezd, Ethiopia

River Magech, N. Lake Tana, Ethiopia
Blue Nile, Khartoum, Sudan

Tis Issat Falls, Blue Nile, Ethiopia
River Atbara, Atbara, Sudan

Blue Nile, Bahir Dar, Ethiopia

Main Nile (L. Nasser), Sudan

Main Nile, Dongola, Sudan

Main Nile, Karima, Sudan

Main Nile, Atbara, Sudan

Main Nile, Khartoum, Sudan

Main Nile, Aswan, Egypt

Bahr Yusuf, Faiyum, Egypt

Main Nile, Cairo, Egypt

Main Nile, Luxor, Egypt

Main Nile (L. Nasser), Aswan, Egypt
Lake Qarun, Faiyum (SE), Egypt
Lake Qarun, Faiyum (SW), Egypt
Lake Qarun, Faiyum (W), Egypt

Date
(month-
year)

Oct-10
Oct-10

Oct-10
Oct-10
Oct-10
Oct-10

Oct-10
Nov-10
Oct-10
Nov-10
Oct-10
Oct-10
Dec-10
Nov-10
Nov-10
Nov-10
Nov-10
Nov-10
Nov-10
Oct-10

Oct-10
Oct-10
Oct-10
Oct-10
Oct-10
Oct-10
Oct-10
Oct-10
Oct-10
Dec-10
Oct-10
Dec-10
Oct-10
Dec-10
Dec-10
Dec-10
Dec-10
Dec-10
Dec-10
Nov-10
Nov-10
Dec-10
Dec-10
Nov-10
Nov-10

Wet season

Lat.
(dec.
deg.)

0.3581
0.3581

0.3436
-0.6157
-0.5667
0.0832

0.3455
1.1301
-0.9393
1.5454
1.0287
-0.1883
15.6141
2.2859
2.2509
2.2208
2.2749
0.4831
0.4208
1.0440

11.9937
10.9716
11.3648
11.7060
11.4963
11.8393
13.3419
13.7337
12.4872
15.6139
11.4904
17.6778
11.6059
21.8079
19.1811

18.4957
17.6620
15.6473
24.0829
29.3084
30.0430
25.7032
23.9703
29.4694
29.4694

58

Long,
(dec.
deg.)

29.9718
29.9718

30.0399
29.6578
29.7235
30.3224

29.9684
30.9946
31.7632
32.0389
30.5283
29.9073
32.4937
31.3727
31.3834
31.3316
31.6752
33.1630
33.1964
30.5294

37.7109
37.1991

37.0341

37.1673
37.5909
37.6354
37.8788
38.1878
37.4475
32.5325
37.5855
33.9762
37.4074
31.3156
30.4874
31.8091

33.9745
32.5086
32.8869
30.8450
31.2276
32.3847
32.8962
30.7696
30.7696

(m.a.s.l)
2552

2552

1608
934
938
1201

2880
1029
1139
1045
653
918
391
633
628
631
635
1112
1135
618

1799
2721
1875
1809
1617
1795
1220
9200
1882
409
1642
353
1804
170

Date
(month-
year)

Jun-09
Jun-09
May-11
May-09
May-09
May-09
May-09
Jun-09
Jun-09
Jun-09
Jun-09
Jun-09
Jun-09
May-09
May-09

May-09
May-09
May-09
May-11
May-09
Apr-11
May-09
Apr-11
Apr-11
Apr-11
Apr-11
May-11
Apr-11
Apr-11
Apr-11
Apr-11
Apr-11
Apr-11

Apr-11

Dry season

Lat.
(dec.
deg.)

1.0630
-0.1849
15.6141
2.3913
2.2449
2.2601
2.2735
0.4610
0.4208
1.0309
-0.2093
-0.2554
0.0560
2.2864
11.9943

11.7081
11.4929
11.8379

15.6139
11.4904
17.6778
11.6050
22.0218
19.1811
18.4957
17.6620
15.6569
24.0888
29.3084
30.0420
25.7028
23.9702
29.4683

29.4541

Long,
(dec.
deg.)

30.2269
29.9055
32.4937
31.4769
31.3913
31.3486
31.6693
33.1755
33.1963
30.5076
29.8856
32.0386
32.4814
31.5747
37.7130

37.1680
37.5902
37.6359

32.5325
37.5855
33.9762
37.4079
31.3393
30.4874
31.8091

33.9745
32.5103
32.8922
30.8451

31.2269
32.6370
32.8963
30.7789

30.4003

in

Alt.
(m.a.s.l.)

636
917

614
618
614
623
1126
1137
620
911
1133
1134
622
1794

1808
1647
1795

409
1642

1788
178
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Due to the extent of the study area it was impossible to sample all major stretches
of the River Nile during the peak of the rainy season and at minimum flow. It should
also be noted that due to logistical and financial constraints, dry-season samples
from the Upper and Lower Niles were collected two years apart and therefore do not
reflect continuous sampling down the length of the river during a single dry season.
Unfortunately, political instability prevented travel through South Sudan, thereby
ruling out sampling of the Sudd and Bahr el Ghazal swamps, which are believed to
play important roles in both the hydrological (Sutcliffe, 1974), and Si cycles
(McCarthy et al., 1989). Logistical and safety considerations also prevented
sampling of the Blue Nile between the Blue Nile Gorge, west of Lake Tana, and just
above its confluence with the White Nile in Khartoum.

5.3.2 Sample collection and storage

Samples were collected in pre-cleaned HDPE bottles from freely flowing water. In
each case, the collection bottle and lid were rinsed three times in the water of
interest before collecting the final sample 30cm below the surface. Immediately after
collection, electrical conductivity, water temperature and pH were measured using a
handheld meter (Hanna Instrument: HI9835). In the field, samples were filtered
through 0.45um Millipore™ cellulose nitrate filters (47mm diameter) to remove
colloidal and particulate Si (including biogenic silica), as well as suspended organic
matter, and acidified with 1-2ml of ultra-pure HCI to a pH of between 2 and 3 to
prevent any further biological activity or polymerization (Georg et al., 2006b). They
were stored in clean 250ml HDPE bottles, and where possible, in dark and cool
conditions whilst in the field. Air was evacuated by squeezing each bottle and
allowing the contents to overflow before sealing it with a screw cap. These actions
minimise biological activity and gas exchange prior to analysis. Filter papers were
air-dried in order to retain the particulate matter for future analysis. On return to the
UK, water samples were stored in the dark at 4T until they were analysed at the
NIGL for H, O and Si isotopes and elemental concentrations.

5.3.3 Multi-elemental analysis of waters using ICP-MS

Careful selection of key rivers and lakes was required as only 46 of 79 waters
collected were permitted for analysis by the NERC Isotope Geosciences Facility
Steering Committee (NIGFSC) (Grant no. IP-1151-1109). Sub-samples from each of
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the chosen water samples were taken to measure the major- and trace-element
composition of individual waters. Of particular interest was the quantification of Si
concentrations, firstly for the preparation of samples for Si isotope analysis and
secondly for the understanding of processes operating within the Nile Basin.
Quantification of Si was carried out using an Agilent 7500cx series quadrupole
Inductively Coupled Plasma-Mass Spectrometer (ICP-MS), featuring an Octopole
Reaction System (ORS), in combination with a CETAC auto-sampler at the BGS,
Keyworth (analysis was carried out by Dr Simon Chenery and Thomas Barlow at
BGS). The ORS removes matrix-based polyatomic interferences using a single set
of cell conditions (helium mode) (Woods, 2007). Each sample was spiked with a
mixed internal standard solution containing Sc, Ge, Rh, In, Te, Re and Ir at a ratio of
1:10 delivered continuously on-line via a T-piece. Accuracy was checked using
certified reference water NIST 1643e. Typical uncertainty associated with ICP-MS is
+10% (3 S.D.). However, for, Na, Ca, Si, P, S, K, Fe, Zn, Sr and Ba, the overall
uncertainty is of the order of +15% For Li, B and Al the overall uncertainty is of the
order of £20%. | needed to screen individual sample compositions to identify high
concentrations of individual elements which might saturate the column during
purification of Si (e.g. Na, Mg, Al, Ba) or cause polyatomic interferences when
analysing Si isotopes using the MC-ICP-MS (e.g. SO,?, NOy). Data were reported
in ppb or ug/L except for the elements Na, Mg, P, S, K and Ca, which were reported

as ppm or mg/L. Full compositional data can be found in Appendix I.

5.3.4 Siisotope analysis using MC-ICP-MS
5.3.4.1 Purification of Si for isotope analysis: column chemistry

Purification of Si was required to prevent potential matrix interferences from other
components during isotope analysis by MC-ICP-MS and to prevent clogging of the
sampler cone. Of the 46 water samples that were analysed for their chemical
composition by ICP-MS, only 44 samples had Si concentrations high enough for Si-
isotope analysis (Table 5.2). In a class 100 clean-room suite at the NIGL | used
cation-exchange resin to chromatographically separate Si after adapting methods
from Georg et al. (2006b) and van den Boorn et al. (2006) (see section 4.5 in
Chapter 4). At a pH of between 2 and 8, Si species are either neutral (Si(OH),) or
anionic (H3SiO,4) and will therefore pass freely through cation-exchange resin whilst

all major cations (Na, Ca, K, Mg, Al) are retained on the column.
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Table 5.2: Water samples that were analysed for their chemical composition
and underwent chromatographic separation of Si using cation-exchange
resin. 46 samples plus 5 replicates had their chemical compositions
determined. Two samples (Site numbers 18 and 19) had Si concentrations that
were too low for Si-isotope analysis and were removed from any further
analysis. Site numbers correspond to Figure 5.1.

Sample Total volume
load (ml) Additional ml's (ml)
Initial Si on to of Milli-Q water including Final
conc. cation- to dilute to 3ml elution concentration

Sampling Site (ppm or exchange required final with Milli-Q  of Si (ppm or
date/season no. Site name and location mg/L) column concentration water mg/L)
Oct-10/Wet 3 River Mubuku, Rwenzori Mts., Uganda 5.7 4 0.6 7.6 3
Oct-10/Wet 4 River Ishasha, Uganda 5.6 4 0.47 7.47 3
Oct-10/Wet 5 River Ntungwe, Uganda 12.0 1 0 4 3
Oct-10/Wet 7 Lake Mahoma, Rwenzori Mts., Uganda 11 7 0.27 10.27 0.75
Oct-10/Wet 9 River Kagera, Uganda 71 3 11 71 3
Jun-09/Dry 1" River Semliki, Uganda-Congo 6.9 3 0.9 6.9 3
Oct-10/Wet 1" River Semliki, Uganda-Congo 8.9 2 0.93 5.93 3
Oct-10/Wet 1" River Semliki, Uganda-Congo 8.9 2 0.93 5.93 3
Oct-10/Wet 1" River Semliki, Uganda-Congo 8.9 2 0.93 5.93 3
Oct-10/Wet 1" River Semliki, Uganda-Congo 8.9 2 0.93 5.93 3
Oct-10/Wet 1" River Semliki, Uganda-Congo 8.9 2 0.93 5.93 3
Oct-10/Wet 1" River Semliki, Uganda-Congo 8.9 2 0.93 5.93 3
Jun-09/Dry 12 Kazinga Channel, Uganda 10.7 2 213 713 3
Oct-10/Wet 12 Kazinga Channel, Uganda 10.2 2 1.8 6.8 3
Dec-10/Wet 13  White Nile, Khartoum, Sudan 6.0 3 0 6 3
May-11/Dry 13 White Nile, Khartoum, Sudan 3.8 2 0.07 5.07 1.5
May-09/Dry 14 Albert Nile, Uganda 1.2 5 0 8 0.75
Nov-10/Wet 14  Albert Nile, Uganda 29 4 0.73 7.73 15
May-09/Dry 15  Victoria Nile Delta, Uganda 21 8 0.2 11.2 15
Nov-10/Wet 15  Victoria Nile Delta, Uganda 3.3 3 0.6 6.6 15
Jun-09/Dry 18  Victoria Nile, Bujagali Falls, Uganda 0.2 - - - -
Nov-10/Wet 18  Victoria Nile, Bujagali Falls, Uganda 1.5 3 0 6 0.75
Jun-09/Dry 19  Outflow from Lake Victoria, Uganda 0.2 - - - -
Nov-10/Wet 19  Outflow from Lake Victoria, Uganda 11 7 0.27 10.27 0.75
Jun-09/Dry 20 Lake Albert (south), Uganda-Congo 1.2 5 0 8 0.75
Oct-10/Wet 20 Lake Albert (south), Uganda-Congo 238 4 0.47 7.47 1.5
May-09/Dry 25 Ribb River, east Lake Tana, Ethiopia 3.3 3 0.6 6.6 15
Oct-10/Wet 25 Ribb River, east Lake Tana, Ethiopia 8.8 2 0.87 5.87 3
May-09/Dry 28 Chimba, Gilgel Abay, Ethiopia 10.9 2 2.27 7.27 3
Oct-10/Wet 28 Chimba, Gilgel Abay, Ethiopia 7.4 3 14 7.4 3
Oct-10/Wet 31 River Zerma, Ethiopia 18.9 1 2.3 6.3 3
Oct-10/Wet 32 River Tekez6, Ethiopia 9.9 2 1.6 6.6 3
Oct-10/Wet 33 River Megetch, N Lake Tana, Ethiopia 16.0 1 1.33 5.33 3
Dec-10/Wet 34 Blue Nile, Khartoum, Sudan 7.3 3 1.3 7.3 3
May-11/Dry 34  Blue Nile, Khartoum, Sudan 5.7 4 0.6 7.6 3
May-09/Dry 35 Tis Issat Falls, Blue Nile, Ethiopia 3.7 3 14 7.4 1.5
Oct-10/Wet 35 Tis Issat Falls, Blue Nile, Ethiopia 4.9 5 0.17 8.17 3
Dec-10/Wet 36  River Atbara, Atbara, Sudan 8.8 2 0.87 5.87 3
Apr-11/Dry 36 River Atbara, Atbara, Sudan 51 5 0.5 8.5 3
Dec-10/Wet 39 Main Nile, Dongola, Sudan 6.3 3 0.3 6.3 3
Apr-11/Dry 39  Main Nile, Dongola, Sudan 4.6 6 0.2 9.2 3
Dec-10/Wet 41 Main Nile, Atbara, Sudan 5.8 4 0.73 7.73 3
Apr-11/Dry M Main Nile, Atbara, Sudan 4.0 2 0.33 5.33 1.5
Nov-10/Wet 45  Main Nile, Cairo, Egypt 0.8 45 0 48 0.75
Apr-11/Dry 45  Main Nile, Cairo, Egypt 11 7 0.27 10.27 0.75
Dec-10/Wet 46 Main Nile, Luxor, Egypt 29 4 0.73 7.73 1.5
Apr-11/Dry 46 Main Nile, Luxor, Egypt 2.6 5 0.67 8.67 15
Dec-10/Wet 47  Main Nile (L. Nasser), Aswan, Egypt 34 3 0.8 6.8 1.5
Apr-11/Dry 47  Main Nile (L. Nasser), Aswan, Egypt 2.7 4 0.2 7.2 15
Nov-10/Wet 48  Lake Qarun, Faiyum (SE), Egypt 25 4.5 0 7.5 15
Apr-11/Dry 48 Lake Qarun, Faiyum (SE), Egypt 5.0 2 1.67 6.67 1.5
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Prior to column chemistry, all consumables were cleaned with ultrapure (low Si; ppt)
acids (e.g. Romil-UpA™, Aristar® Ultra or other quartz distilled brands) to remove
any traces of inorganic constituents and Si (see Table 5.3). Unless otherwise stated,
when referring to acids and reagents, Romil-UpA™ grade was used. The cation-
exchange resin (Bio-Rad® AG 50W-X12) was pre-cleaned to remove fines that
might clog the MC-ICP-MS during sample uptake (Table 5.3). Disposable Bio-Rad®
Bio-Spin chromatography columns did not undergo a pre-cleaning stage as they
would be cleaned during the wash stages of the resin. A full equipment list can be
found in Appendix II.

Table 5.3: Procedure for cleaning consumables prior to chromatographic
exchange.

Consumable Acid/Reagent Procedure
Savillex collection 4M HNO; (UpA) Thin layer to cover base of container to
vials (only for new vials)  allow reflux for 24 hours on a hotplate at

120<C. Lid loosely tightened.
Decant HNO3; and rinse 3 times with Milli-Q

water.
Storage bottles for 2M HCI + HF (UpA) Add enough HCI solution to cover base of
acid solutions container and add a few drops of HF.

Reflux for 24 hours on a hotplate at 120<C.
Decant HCI. Rinse with Milli-Q water 3
times and half fill with Milli-Q water to reflux
overnight on the hotplate.

Rinse with Milli-Q water and allow to dry.

Pipette tips and 1.5M HCI + HF Put pipette tips and storage tubes and lids

storage tubes (SpA) into a 1 litre Teflon® container and fill to top
with HCI and a few drops of HF. Allow to
reflux for 24 hours on a hotplate at 120T.
Lid loosely tightened.

Decant HCI. Rinse with Milli-Q water 3
times and fill with Milli-Q water to reflux
overnight on the hotplate.

Rinse with Milli-Q water and allow to dry.
Store in sealed bags.

Resin AG 50W-X12 Rinse resin over several days with Milli-Q
water to remove fines. Shake resin in water
and allow to settle, decant off supernatant
(20-30 washes).

1.5M HCI (UpA) Add HCI solution to resin, enough to cover,
until use. Store in Teflon® squeezy bottle.
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Using 10ml disposable Bio-Rad® Bio-Spin chromatography columns mounted on a
carousel/rack, 1.8ml of pre-cleaned resin was loaded into the resin reservoir, taking
care to prevent the formation of air bubbles in the column. Prior to loading the
sample on the column, a series of preconditioning washes with HCI, HNO; and Milli-
Q water was carried out as detailed in Table 5.4. The pH of the last drop of Milli-Q
water coming off the resin prior to loading the sample was tested to make sure that
no acid solution remained. The sample was loaded 1ml at a time to prevent
overloading on the column, and simply eluted with 3ml of Milli-Q water as the
prevailing Si species do not bind to the resin (Georg et al., 2006b). A 3ml elution is
required to ensure all Si is recovered (Georg et al., 2006b; van den Boorn et al.,
2006).

The amount of sample loaded was based on the initial Si concentration and the final
concentration required (i.e. 0.75, 1.5 or 3 ppm), but was generally between 1 and
8ml (Table 5.2). Where possible, final Si concentrations were diluted to 3ppm,
however samples with initial Si concentrations of <4ppm and <1.5ppm were made
to 1.5ppm and 0.75ppm final Si concentration respectively, as the 3ml elution meant
that they were heavily diluted. Samples were diluted with Milli-Q water after column
chemistry directly into the purified sample to obtain the required final concentration.
Batches of samples (and reference materials) with matching final Si concentrations
were required to stabilise the MC-ICP-MS. A minimum concentration of 0.75ppm
was required to effectively obtain precise data. The full procedure for column

chemistry and calculations can be found in Appendix lIl.

Table 5.4: Cleaning procedure for individual chromatographic columns with
1.8ml of resin. All acid solutions were made using Romil-UpA™ grade acid
and Milli-Q water.

Volume Concentration Chemical
3mil 3M HCI
3ml 6M HCI
3mil ™ HNO;
3mi 10M HCI
3mi 6M HCI
3ml 3M HCI

Fill MQ-e
3ml MQ-e
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5.3.4.2 Preparation of standards/reference material

Two silica (SiO;) reference materials were used to check the accuracy and precision
of Si isotope analysis: NBS-28 (NIST RM 8546) and Diatomite. NBS-28 is a quartz
sand and is the international Si isotope standard reference material. Diatomite is a
pure opal sample, whose values are widely reported in the literature (Reynolds et
al., 2007), and is used here as a validation material. Since both NBS-28 and
Diatomite are solids, they require dissolution prior to purification.

An alkaline fusion procedure, as set out by Georg et al. (2006b) and frequently used
in the dissolution of rocks and minerals for determining Si content, was used to
dissolved the solid reference materials into an aqueous solution. At NIGL, reference
materials were ground to a powder in an alumina pestle and mortar. Following that,
a known amount of powder (between 1 and 10mg) was transferred to a homemade
Ag crucible (99.99% Ag sheet: Goodfellow) and mixed with 200mg of Merck
Suprapur NaOH flux. The Ag crucible was placed into a pre-cleaned lidded, alumina
crucible to prevent contamination. After 30 minutes at 720 in a muffle furnace, the
resulting fusion-cake was dissolved in 20ml of Milli-Q water. A 0.1M NaOH 500ml
stock solution of NBS-28 was made to 13ppm of Si with a pH of ~12. The reference
solutions were processed through the same column chemistry procedure as the
water samples, outlined in section 5.3.4.1. In addition, to process the samples and
standards in the same way and to matrix-match the compositions, a sub-sample of
the NBS-28 stock solution was acidified with UpA HCI to a pH of 2-3 prior to column
chemistry.

5.3.4.3 Siisotope analysis using MC-ICP-MS

Si isotope analyses of aqueous solutions were made using a Thermo Fisher
Neptune Plus Multi Collector-Inductively Coupled Plasma-Mass Spectrometer (MC-
ICP-MS) at the NIGL, in wet plasma mode using a glass nebuliser coupled to a SSI
quartz dual cyclonic spray chamber. Typical instrument operating conditions are
summarised in Table 5.5. The instrument was operated in high resolution (HR) to
overcome interferences from N-, O- and C-containing species that are not removed
by ion-exchange purification. Isolation of these interferences from the isotopes of Si
requires a resolution (R) of at least 4000 (R=M/AM, where AM is the difference
between the two masses of interest). The Neptune Plus at NIGL is capable of a
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resolution of ~9000, more than sufficient for partial (or pseudo) resolution across the
Si mass range. However, the interference free peak flat is typically very narrow
(<15milli amu). At this resolution, any drift in magnet stability becomes significant;
hence constant vigilance was required to ensure the magnet remained centred.
Both samples and standard solutions were doped with the same level (matrix-
match) of quartz distilled sulphuric acid (for sulphate), nitric acid (for nitrate) and
hydrochloric acid (for chloride), in sufficient quantities to exceed the natural
concentrations, to prevent isotopic bias, as recommended by Hughes et al. (2011)
and van den Boorn et al. (2009) (see section 4.6 for further information).

Table 5.5: Summary of the analytical set-up used at the NIGL on the Neptune
Plus MC-ICP-MS for Si isotope analysis.

Forward power 1200W

Reflected Power <2W

Plasma Gas 16l/min

Auxiliary gas flow 0.8l/min

Nebuliser carrier gas flow 1.17!/min

Nebuliser 200ul/min glass (Glass Expansion)

Spray chamber Stable Sample Introduction (SSl) quartz dual cyclonic
Type of detector Faraday (10''Q resistors)

Torch Demountable glass torch with Sapphire injector
Cones Thermo Fisher nickel ‘H’ sample and skimmer
Sample uptake time 90 seconds

Wash time between samples ~ 5 minutes

Sensitivity of about 11V/ppm was obtained, which is comparable to, or better than
values reported in the literature (Engstréom et al., 2006; Georg et al., 2006b;
Zambardi and Poitrasson, 2011), with an instrument background contribution of
~0.4% (~45mV ?2Si measured on the blank acid). This was achieved by introducing
samples to the system through a glass nebuliser coupled to a SSI quartz dual
cyclonic spray chamber (wet plasma), optimising both the signal stability and
intensity, while keeping background contributions to a minimum. Although
experiments proved that the Cetac Aridus Il introduction system (dry plasma)
improved sensitivity, this was coupled with high and unstable background Si,
making it unsuitable for the high precision analysis required for silicon isotope
determinations. Background contributions were further reduced through the use of a

sapphire injector (CPI International), rather than the conventional Si injector, and
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through the avoidance of HF in the preparatory stages (section 5.3.4.1) which

prevented erosion of the glass parts of the mass spectrometer (Georg et al., 2006b).

Mass bias and instrumental drift were corrected using a combined external Mg
doping and standard-sample bracketing approach (Cardinal et al., 2003; Zambardi
and Poitrasson, 2011). A typical sampling sequence was: blank - reference - blank
- sample - blank, etc. Data are expressed in relative deviations of 30Si/28Si ratios
from the NBS-28 standard (NIST RM 8546) using the common delta notation (6)

and expressed as parts per thousand (%0), using the following equation:

'"Asample (Equation 1)

Si'standard

Accuracy and reproducibility (630Si) were checked during analytical sessions using a

secondary reference material (Diatomite).

5.3.5 Oxygen and hydrogen isotope analysis using IRMS

All 79 water samples collected from the Nile Basin were analysed for O and H
isotopes by Isotope Ratio Mass Spectrometry (IRMS) at the NIGL by Carol
Arrowsmith under the NIGFSC grant. For O-isotope analysis, the waters were
equilibrated with C02 using an Isoprep 18 device. Mass spectrometry was
performed on a VG SIRA. For H-isotope analysis, an on-line Cr reduction method
was used with a EuroPyrOH-3110 system coupled to a Micromass Isoprime mass
spectrometer. Isotopic ratios (18 /180 and 2H/1H) are expressed in standard delta
notation, as 6180 and 52H (%0, parts per mille), with respect to the international
standard VSMOW (Vienna Standard Mean Ocean Water) using the following

equation:

sample (Equation 2)
A'standard
Analytical precision was typically +0.05%o0 for S180 and +1.0%o for 52H.
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5.4 Lake sediment cores

5.4.1 Sampling strategy

The main aim was to reconstruct changes in the intensity of biotic Si cycling since
the Last Glacial Maximum (LGM) in the Nile Basin. Due to the novelty of the project
and its technical constraints (restricted to the number of analyses determined by the
grant in kind from the NIGFSC), the aim initially was for a broad (low-resolution)
understanding of glacial / interglacial variations of the continental Si cycle, with the
intention of focussing in at higher temporal resolution once significant results had
been obtained. Sediments were generally sampled at 500-yr resolution back to the
period of lowest lake levels at the end of the last glacial (~20ka), or as far back as
individual cores allowed. This period spans the arid conditions at the end of the
LGM, the onset of the enhanced summer monsoon (African Humid Period) at ~15
ka BP, and the shift to drier conditions from ~5.5 ka BP to present (Kutzbach and
Street-Perrott, 1985). Beneficially, many of the cores had already had their biogenic
silica (BSi) content and/or diatom concentrations measured, which aided the
selection of samples for isotopic analysis.

To isolate enough diatoms for isotopic analysis (~5mg) (Leng and Sloane, 2008),
the initial BSi concentrations needed to be relatively high (~10%). If the diatom
concentration was lower, a correspondingly larger amount of sediment was
processed. Prior work on the White Nile lakes (Victoria and Edward) provided
confidence in their suitability for extracting pure diatom components; BSi
concentrations in Lake Victoria and Lake Edward exceed 35% (Johnson et al.,
2000; Russell et al., 2003a).

5.4.2 Sample material and selection

Sample material used in this research came from previous coring expeditions. One
of the deciding factors for choosing the Nile Basin as suitable study region was the
wealth of previously cored lakes and the availability of material with existing age
models and useful proxy information. Sediment core material for Lake Victoria
(White Nile, Uganda) and Lake Edward (White Nile, Uganda-D.R. Congo) was
obtained from the US Limnological Research Centre at the National Lacustrine Core

(LacCore) Facility at the University of Minnesota, USA, which was collected during
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the International Decade for the East African Lakes (IDEAL) project (lake locations

in Figure 5.1).

The benefit of using previously cored/studied material is that there are usually well
established age-models and corresponding proxy data that complement the
research and aid interpretation of new data. Specifically, for this research, data were
available for most material on the biogenic silica (BSi) concentrations (%) and/or
diatom valve concentrations, with corresponding age-depth models, which was
extremely useful when selecting sediment samples for isotope analysis on diatom
silica. It is a prerequisite that sediments are rich (210%) in BSi in order to obtain
enough diatom material for isotope analysis (~5mg) (Leng and Sloane, 2008). If this
is not the case, it is possible, to work with larger amounts of sediment, if available,
in order to extract enough diatom material at the end. For example, it was common
to begin with ~5-10g (dry weight) of sediment with ~8% BSi, achieved by sampling
across a depth range of 5-10cm of core.

5.4.3 Age models

Existing age models for Lakes Victoria and Edward were available based on
radiocarbon dating (Johnson et al., 2000; Russell et al., 2003a; Beuning and
Russell, 2004). Existing age models were used rather than developing new models
(see Chapters 7 and 8 for Lakes Victoria and Edward, respectively), in order to

permit direct comparison with existing proxy data.

5.4.4 Determination of biogenic silica (BSi) concentrations

Biogenic silica (BSi) concentrations provide useful proxy information in their own
right and serve as an indicator of past productivity, predominantly of diatoms. BSi
concentration data were already available for Lakes Victoria and Edward, (Johnson
et al.,, 1998; Russell et al,, 2003a), and assisted with choosing suitable sample
levels. The abundance of BSi was determined using a timed wet-alkaline chemical
digestion that relies on biogenic silica components dissolving first before silicate
minerals (DeMaster, 1981; Krausse et al., 1983; Conley, 1998; Conley and
Schelske, 2001).
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5.4.5 Purification of diatom silica for isotope analysis

Lake sediments are composed of a variety of components including silts, clays, fine
sands, tephra shards, organic matter (e.g. pollen, charcoal, wood, algae), biogenic
silica (e.g. diatoms, phytoliths, sponge spicules), and carbonates (e.g. shells) (Last
and Smol, 2001; Schnurrenberger et al., 2003). In order to analyse diatom silica for
O and Si isotopes, the diatom frustules must be free of any other components or
“contaminants” that may be present in the sediments (Leng and Sloane, 2008).
Contaminants in this sense refer to any remaining sediment components other than
diatoms, as any contamination may significantly change the measured isotope
values (Brewer et al., 2008). Several chemical and physical methodologies have
been suggested for isolating and cleaning diatom frustules (Shemesh et al., 1988;
Shemesh et al., 1995; Morley et al., 2004; Rings et al., 2004; Swann et al., 2006;
Tyler et al., 2007). The methods used here to remove contaminants were tailored

specifically for each individual sample, depending on its composition.

The first step was to remove carbonates and organics, following a similar
methodology to that outlined by Morley et al. (2004) (Figure 5.2), whereby
hydrochloric acid (HCI) and hydrogen peroxide (H.O,) were used, respectively.
Removal of organics by H,O, took up to several days (TOC often >10%). An
additional treatment step with nitric acid (HNO;) was employed to remove remaining
organic matter and to etch the surface of the diatom frustules to release any clays
trapped within the pores (personal communication with Professor Phil Barker at
Lancaster University). Following that, samples were sieved at 63, 38 and 20 ym by
gently washing through with deionised water. This step allowed samples to be
divided and isolated into “groups” of contaminants, for example silts and clays, for
ease of determining the next suitable methodological step and to isolate the diatoms
further (Figure 5.2; Stage 2). Due to the large quantities of sediment used, sieving
took up to several days per sample. All samples underwent this chemical (removal

of organics and carbonates) and physical (sieving) procedure.
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Subsequent additional steps were tailored to the individual samples depending on
the remaining contaminant(s). Such additional steps included:

o Differential settling: to allow the settling out of heavier silts compared to the
relatively buoyant diatoms which were decanted-off.

o Heavy liquid separation: using sodium polytungstate (SPT) at a specific
gravity of ~2.2 g/ml to float-off diatoms (specific gravity of ~2.1 g/ml) whilst
denser contaminants sank. Much lower densities allowed the separation of
green algae (e.g. Botryococcus and Pediastrum) from diatoms.

¢ Sonication: using an ultrasonic bath mineral aggregates were broken-up
and re-sieving/SPT often allowed them to be isolated from the diatoms

¢ Additional treatments with HNO3/H,0,: sometimes it was necessary to
treat samples again to remove stubborn organics or to remove organic
matter that was exposed after sonication.

e SPLITT: gravitational split-flow thin fractionation uses laminar flow to
separate samples into two components based on their density and
hydrodynamic properties (Rings et al., 2004). This was carried out on some

samples at the Environment Centre, Lancaster University.

Of the additional steps used, differential settling was most effective and extremely
simple. A full step-by-step methodology can be found in Appendix IV. The most
common size fractions used for isotope analysis, due to the final product being the
cleanest, were 20-38 um and 38-63 um. It is very difficult to separate individual
diatom species for isotope analysis due to their microscopic size (Swann et al.,
2007), and so it is common to perform isotope analysis on bulk (mixed species)
samples. A number of studies (Shemesh et al., 1995; Brandriss et al., 1998;
Moschen et al., 2005; Schiff et al.,, 2009) have investigated whether individual
species cause an offset in the isotope value; however their results showed either
that species effects did not exist or that the offset was within analytical reducibility.
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Figure 5.2: Methodology used by Morley et al. (2004) to extract diatoms from
lake sediments for isotope analysis.
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5.4.6 Assessment of contamination levels

At every stage of purification, each sample was visually assessed for remaining
contaminants on temporary slides under a light microscope (Zeiss Axiophot) at
x1000 magnification. After the final clean-up stage, to assess the level of purity of
the samples, the ratio of diatoms versus remaining contaminant was measured by
counting at least 300 particles (diatoms or contaminants) along transects across the
full length of the slide to make sure that the whole coverslip was sampled (i.e. from
the edges to the centre) (see methodology for making permanent slides in Appendix
V). The diatom samples needed to be very pure (>97%) for isotope analysis in order
to avoid significant contributions from other sedimentary components. Therefore, in
addition to inspection by light microscopy, all samples were observed and imaged
on a Hitachi S4800 Scanning Electron Microscope (SEM) to provide further
evidence and records of sample purity. Once samples were deemed pure enough
for isotope analysis, they were freeze-dried for 48 hours and analysed at the NIGL
for coupled O and Si isotopes.

5.4.7 Coupled Si- and O-isotope measurements using GC-IRMS

Using the newly developed methodology at the NIGL for coupled O- and Si-isotope
analysis of biogenic silica (Leng and Sloane, 2008), 43 sufficiently pure diatom
samples extracted from sediments of Lakes Victoria and Edward were analysed by
Hilary Sloane at the NIGL using a step-wise fluorination technique. 3-5mg of purified
diatoms were loaded into nickel reaction tubes where they were outgassed for 2
hours at 250C to remove surficial water. Reaction with bromine pentafluoride at
250C for 6 minutes removed the outer layers of diatom silica (hydrous layer)
containing exchangeable oxygen before a full reaction with an excess of reagent at
500C for 14 hours to dissociate the silica into ox ygen, which was subsequently
converted into CO, following the method described by Clayton and Mayeda (1963),
and silicon as SiF,. Following extraction, the collected gases were analysed for O
and Si isotopes using a Finnigan MAT™ 253 Isotope Ratio Mass Spectrometer
(IRMS). Full details of the fluorination line and methodology developed at NIGL are
given by Leng and Sloane (2008). All §'®0 and 5%°Si data were reported relative to
VSMOW and NBS-28, respectively. Using the NIGL within-run laboratory standard
(BFC; diatomite from Shastra County, California) accuracy and reproducibility were

tested. Accuracy (20) was checked on reference material BFC (5'°0: +28.88
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+0.36%0, n = 13; 530Si: +0.05 +0.15%0, n = 7) (Figure 5.3), which yielded isotope
compositions indistinguishable from previously published values (Leng and Sloane,
2008; Chapligin et al., 2011). Replicate analyses of sample material indicated a
mean analytical reproducibility (la) of 0.19%o0 (range: +0.08 to +0.30%o0, n = 6) and
0.07%o0 (range: +0.01 to +0.19%0, n =8) for oxygen-isotope (s 1s0 aatom), and silicon-
isotope (s s0s siaom) composition of diatom silica, respectively. Quality control of
mass bias was checked by plotting 52Si by 530Si (Figure 5.4). Three diatom
samples that plotted outside the expected mass-dependent fractionation
relationship were identified as containing contamination, and were eliminated from

further analysis (these samples are discussed in detail in Chapter 8, section 8.9.2).

+29.80
+29.60
+29.40
+29.20

si +29.00

9

O +28.80

+28 60
+28.40
+28.20
+28.00

+0.40
+0.30
+0.20
+0.10

0.00
-0.10

-0.20

Figure 5.3: Reproducibility of reference material BFC (diatomite deposit from
Shastra County, California, US) at NIGL for oxygen (a) and silicon (b)
isotopes. Error bars are 2o and the blue horizontal line represents the mean.
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Figure 5.4: 628i and 630Si values of all diatom samples and reference
materials analysed. Error bars represent 1a and are referred to in the text.

5.4.8 Lipid extraction

Sediments from Lakes Victoria and Edward were sampled at ~500-year resolution
for total lipids (n = 59). A known amount of sediment (~1g) from each depth was
freeze-dried and ground. Lipid class compounds were extracted from the dry
sediment samples with dichloromethane (DCM)/methanol (9:1) using an accelerated
solvent extractor (Dionex: ASE 200) at IOO'C and 1500 psi for 25 minutes in 1
cycle. Following the methods of Ficken et al. (1998) and Huang et al. (1999), total
extracts were split into acid and neutral fractions using solid phase extraction
(Aminopropyl Bond EIlut® cartridges). Samples were loaded on to pre-cleaned
columns (DCM and DCM/isopropanol (2:1 v/v)) and the neutral fraction was eluted
with DCM/isopropanol (2:1 v/v) and the acid fraction was recovered using 2% acetic
acid in ether. The acid fraction was then methylated with methanolic HCI and set
aside as the acid fraction was not used in this study. The neutral fraction was
fractionated further into a hydrocarbon and a polar fraction by column
chromatography using freshly activated alumina, eluting the hydrocarbons with
hexane/DCM (9:1 v/v) and subsequently the polar fraction with methanol/DCM (1:1
vlv). The polar fraction was not investigated further in this thesis. The hydrocarbon

fraction was de-sulphurized by the addition of activated copper turnings prior to the
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separation of the branched hydrocarbons (non-adduct fraction) from the straight-
chain hydrocarbons (adduct fraction) by urea adduction. A known amount of
standard solution (n-C3s alkane) was added to each sample prior to analysis by gas
chromatography-mass spectrometry (GC-MS). A detailed methodology for the lipid
extraction and fractionation procedure can be found in Appendix VI.

5.4.9 Lipid analysis using GC-MS

Quantification and identification of straight chain hydrocarbons (adduct fraction: n-
alkanes and n-alkenes) and branched hydrocarbons (non-adduct fraction} were
carried out by GC-MS performed on an Agilent 6890 gas chromatograph
(split/splitless injection, 70 eV, El) interfaced directly with an Agilent 5975 mass
spectrometer equipped with an automatic sampler and computer workstation. A
HP5-MS fused silica capillary column (30 m x 0.25 mm; 0.25 ym film thickness) was
used. The oven temperature was held at 60 T for 1 min, ramped at 10 T per
minute to 180 T and then ramped at 4 C per minute to 300 T where it was held
for 15 minutes. Helium was used as the carrier gas. Compounds were identified by
comparison with known mass spectra, with published data and with the NIST Mass

Spectral Library spectra (version 2.0, 2005).

5.5 Chapter summary

The seasonal and strategic sampling strategy employed for understanding the
modern isotope systematics of the Nile Basin is expected to provide, for the first
time, knowledge of downstream processes of Si cycling under different climate
conditions (dry and wet season sampling) and valuable information for interpreting
the palaeo-record. Through the new methodology developed at the NIGL for
analysing Si isotope of waters, accurate and precise measurements have been
achieved, comparable or better than those in the literature. The utilisation of novel
techniques, specifically coupled O- and Si-isotope measurements, for analysing
sediments of Nile-fed lakes at important climate intervals are expected to capture an
insight into how Si cycling has varied during the past under different climate
regimes. Collectively, it was anticipated that these methodologies would provide
complementary information and support further understanding of the continental Si
cycle. Data resulting from these procedures will be presented in the following

chapters.
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Chapter6 Modern surface water results

6.1 Introduction

A total of 79 water samples was collected from the River Nile in order to understand
the modern isotope systematics in the Nile Basin to enable accurate interpretation
of the palaeo-record. Measured parameters (pH, electrical conductance, major
cation composition, 8°H, 8'°0, DSi and 5°°Si) were plotted to identify relationships
and trends, particularly with latitude and altitude. Due to the complicated
hydrography of the River Nile (i.e. many tributaries), latitude is used here as a
convenient proxy for downstream distance. As a result of contrasting geology in the
headwater sub-basins (Figure 3.2), regression lines for physical and chemical
characteristics have been plotted individually for each sub-basin for both wet and
dry seasons. Trends for waters draining the Ethiopian Highlands (Biue Nile and
Atbara) and from the Main Nile are plotted together due to the overriding impact of
waters from the Ethiopian headwaters on physical and chemical composition of
Main Nile waters. References to specific sampling sites are numbered in square

brackets and correspond to those presented in Table 5.1 and Figure 5.1.

6.2 Physical characteristics: pH and electrical conductance

Almost all the water samples collected were tested for their pH and electrical
conductance (EC) (Table 6.1). EC is a proxy for salinity as an increase in dissolved
ions enhances both EC and salinity. On a few occasions it was not possible to
obtain a reading as the instrument failed to calibrate or the apparatus did not
function properly. pH values of White Nile waters ranged from slightly acidic to
strongly alkaline (6.7 to 10.6) and varied very little between seasons (Figures 6.1
and 6.2). In contrast, waters from the Ethiopian Highlands (Blue Nile and Atbara
catchments) displayed a greater range of values (5.9 to 11.7) and were less alkaline
during wet-season conditions (Figures 6.1 and 6.2). In the Main Nile, less alkaline
pH values (7.4 to 8.8) occurred during the dry season than during the wet season
(9.2 to 10.6). Figures 6.1 and 6.2 show that pH values increased northwards and
with decreasing altitude during the wet season but not in the dry season. No
significant spatial trends were observed in pH during the dry season (Figures 6.1
and 6.2).
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Figure 6.1: pH versus latitude. Wet season (closed symbols) and dry season
(open symbols) samples are plotted for the White Nile (squares), Blue Nile
(circles) and Main Nile (triangles). Seasonal trends are identified with
individual regression lines for the White Nile (left-hand side) and the Blue Nile,
Atbara and Main Nile (right-hand side) during the wet season (dotted line) and
dry season (dashed line) to account for varying geology. White Nile wet
season (dotted line; pH = 0.19-Latitude + 8.52, R2 = 0.055, p = 0.423) and dry
season (dashed line; pH = -0.28-Latitude + 8.16, R2= 0.110, p = 0.360). Blue
Nile, Atbara and Main Nile wet season (dotted line; pH = 0.16-Latitude + 5.78,
R2= 0.397, p = 0.025) and dry season (dashed line; pH = -0.01-Latitude + 8.37,
R2=0.021, p = 0.468). Sample site 13 (White Nile, Khartoum) has been omitted
from the White Nile regression as its composition suggests that it may have
been influenced by surface water, groundwater or sediments ultimately
derived from the Blue Nile, although there are too few data to draw any firm
conclusions at this point. For sample numbers, see Table 6.1.
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Figure 6.2: pH versus altitude. Wet season (closed symbols) and dry season
(open symbols) samples are plotted for the White Nile (squares), Blue Nile
(circles) and Main Nile (triangles). Seasonal trends are identified by individual
regression lines for the White Nile (WN) and the Blue Nile, Atbara and Main
Nile (BAMN) during the wet season (dotted line) and the dry season (dashed
line) to account for varying geology. White Nile wet season (dotted line; pH =
8.83-expE0BAttude, R2= 0.003, p = 0.496) and dry season (dashed line; pH = 7E-
05-Altitude + 8.12, R2= 0.010, p = 0.487). Blue Nile, Atbara and Main Nile wet
season (dotted line; pH = -1.8E-03-Altitude + 10.17, R2 = 0.759, p < 0.001) and
dry season (dashed line; pH = 2E-04-Altitude + 8.05, R2 = 0.004, p = 0.495).
Sample site 13 (White Nile, Khartoum) has been omitted from the White Nile
regression as its composition suggests that it may have been influenced by
surface water, groundwater or sediments ultimately derived from the Blue
Nile, although there are too few data to draw any firm conclusions at this
point. For sample numbers, see Table 6.1.
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The electrical conductance of the sampled waters ranged from 17.2 to 613 pS/cm in
the White Nile, 62.8 to 475 pS/cm in the Blue Nile and Atbara, and 184.5 to 50,800
pS/cm along the Main Nile (Figures 6.3 and 6.4). Typically, rainwater has an EC of
-15 pS/cm and drinking water is lower than 700 pS/cm, whereas >45,000 pS/cm is
considered seawater (Rhoades et al., 1992). Seasonal variations were small in all
sub-basins, however, electrical conductivity was generally higher in dry-season

samples (Figures 6.3 and 6.4).
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Figure 6.3: Conductivity versus latitude. Wet season (closed symbols) and dry
season (open symbols) samples are plotted for the White Nile (squares), Blue
Nile (circles) and Main Nile (triangles). Seasonal trends are identified with
individual regression lines for the White Nile (left-hand side) and the Blue Nile,
Atbara and Main Nile (right-hand side) during the wet season (dotted line) and
dry season (dashed line) to account for varying geology. White Nile wet
season (dotted line; Conductivity (log) = 0.07-Latitude + 1.98, R2 = 0.033, p =
0.478) and dry season (dashed line; Conductivity (log) = 0.05-Latitude + 2.24,
R2=0.023, p = 0.447). Blue Nile, Atbara and Main Nile wet season (dotted line;
Conductivity (log) = 1.54 exp-°0BLatitude, R2 = 0.6104, p < 0.001) and dry season
(dashed line; Conductivity (log) = 1.77-exp 002 Lattude, R2 = 0.352, p = 0.076).
Sample site 13 (White Nile, Khartoum) has been omitted from the White Nile
regression as its composition suggests that it may have been influenced by
surface water, groundwater or sediments ultimately derived from the Blue
Nile, although there are too few data to draw any firm conclusions at this
point. For sample numbers, see Table 6.1.
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6: Modern surface water results

Electrical conductivity was greatest towards the Delta in the Main Nile, particularly in
the Nile-fed Lake Qarun in the Faiyum Depression [48-50] (Figures 6.3 and 6.4). All
major sub-basins exhibited an increase in electrical conductivity northwards and

with decreasing altitude (Figures 6.3 and 6.4).
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Figure 6.4: Conductivity versus altitude. Wet season (closed symbols) and dry
season (open symbols) samples are plotted for the White Nile (squares), Blue
Nile (circles) and Main Nile (triangles). Seasonal trends are identified with
individual regression lines for the White Nile (WN) and the Blue Nile, Atbara
and Main Nile (BAMN) during the wet season (dotted line) and dry season
(dashed line) to account for varying geology. White Nile wet season (dotted
line; Conductivity (log) = -4E-04-Altitude + 2.54, R2= 0.637, p = 0.002) and dry
season (dashed line; Conductivity (log) = 8E-04-Altitude + 2.93, R2= 0.367, p =
0.186). Blue Nile, Atbara and Main Nile wet season (dotted line; Conductivity
(log) = -4E-04-Altitude + 2.91, R2 = 0.304, p = 0.070) and dry season (dashed
line; Conductivity (log) = 4E-04-Altitude + 2.90, R2= 0.127, p = 0.308). Sample
site 13 (White Nile, Khartoum) has been omitted from the White Nile
regression as its composition suggests that it may have been influenced by
surface water, groundwater or sediments ultimately derived from the Blue
Nile, although there are too few data to draw any firm conclusions at this
point. For sample numbers, see Table 6.1.
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6: Modern surface water results

6.3 Chemical characteristics: major cations

A full list of the major ions measured in Nile waters can be found in Appendix I.
Presented here is a cation ratio between alkaline and alkaline-earth metals (Na* +
K' / Ca®* + Mg%), which provides a measure of the degree of evaporative
enrichment (Gasse et al., 1995; Gasse, 2002). Mg and Ca carbonate minerals are
usually the first to precipitate. Hence, as evaporative concentration proceeds, the
ratio of Na + K to Ca + Mg increases (Eugster and Hardie, 1978). Cation

concentrations are expressed in meq I

The close relationship between the cation ratio and EC reflects an increase in
dissolved ions with an increase in precipitation of Ca-Mg carbonates relative to Na
carbonates (Figure 6.5). White Nile waters were relatively enriched in Na* and K*,
exhibiting cation-ratio values of 0.3 to 1.5 (Figures 6.6 and 6.7), whereas, the Blue
Nile and Atbara values were much lower (0.2 to 0.4) (Figures 6.6 and 6.7). The
Main Nile cation-ratio values are also high (0.3 to 3.7) relative to dilute waters
draining basaltic terrain, particularly in the saline, closed Lake Qarun [48-50]. The
trend lines for the major sub-basins show that the relative proportion of Na* + K*
increases northwards and with decreasing altitude (Figures 6.6 and 6.7), indicating
a downstream enrichment of alkali metals. Curvilinear regressions best describe
waters originating from the Ethiopian Highlands and the Main Nile, emphasising the
rapid enrichment of Na* + K' in the lower reaches of the Nile. Major cation
concentrations were greatest during the dry season in all major sub-basins (Figures
6.5-6.7).
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Figure 6.5: Cation ratio (Na+ + K+ / Caz + Mg2# versus conductivity. Wet
season (closed symbols) and dry season (open symbols) samples are plotted
for the White Nile (squares), Blue Nile (circles) and Main Nile (triangles).
Seasonal trends are identified with individual regression lines for the White
Nile and the Blue Nile, Atbara and Main Nile during the wet season (dotted
line) and dry season (dashed line) to account for varying geology. White Nile
wet season (dotted line; Cation ratio (log) = 0.33-Conductivity - 0.76, R2 =
0.428, p = 0.165) and dry season (dashed line; Cation ratio (log) =
0.13-Conductivity - 0.20, R2=0.778, p =0.070). Blue Nile, Atbara and Main Nile
wet season (dotted line; Cation ratio (log) = 0.44-Conductivity - 1.52, R2 =
0.743, p = 0.002) and dry season (dashed line; Cation ratio (log) =
0.39-Conductivity - 1.22, R2=0.554, p = 0.096). Sample site 13 (White Nile,
Khartoum) has been omitted from the White Nile regression as its
composition suggests that it may have been influenced by surface water,
groundwater or sediments ultimately derived from the Blue Nile, although
there are too few data to draw any firm conclusions at this point. For sample
numbers, see Table 6.1.
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Figure 6.6: Cation ratio (Na++ K+/ Ca2+t + Mg2H versus latitude. Wet season
(closed symbols) and dry season (open symbols) samples are plotted for the
White Nile (squares), Blue Nile (circles) and Main Nile (triangles). Seasonal
trends are identified with individual regression lines for the White Nile (left-
hand side) and the Blue Nile, Atbara and Main Nile (right-hand side) during the
wet season (dotted line) and dry season (dashed line) to account for varying
geology. White Nile wet season (dotted line; Cation ratio (log) = 0.09-Latitude -
0.12, R2 = 0.225, p = 0.241) and dry season (dashed line; Cation ratio (log) =
0.09-Latitude - 0.03, R2= 0.447, p = 0.157). Blue Nile, Atbara and Main Nile wet
season (dotted line; Cation ratio (log) = 1.7E-03-Latitude2- 0.03-Latitude - 0.43,
R2 = 0.653, p = 0.006) and dry season (dashed line; Cation ratio (log) = 1.8E-
03-Latitude2- 0.03-Latitude - 0.35, R2= 0.622, p = 0.021). Sample site 13 (White
Nile, Khartoum) has been omitted from the White Nile regression as its
composition suggests that it may have been influenced by either surface
water, groundwater or sediments ultimately derived from the Blue Nile,
although there are too few data to draw any firm conclusions at this point. For
sample numbers, see Table 6.1.
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Figure 6.7: Cation ratio (Na++ K+/ Ca2+ + Mg2H versus altitude. Wet season
(closed symbols) and dry season (open symbols) samples are plotted for the
White Nile (squares), Blue Nile (circles) and Main Nile (triangles). Seasonal
trends are identified with individual regression lines for the White Nile (WN)
and the Blue Nile, Atbara and Main Nile (BAMN) during the wet season (dotted
line) and dry season (dashed line) to account for varying geology. White Nile
wet season (dotted line; Cation ratio (log) = -2E-04 Altitude + 0.12, R2= 0.374,
p = 0.116) and dry season (dashed line; Cation ratio (log) = -3E-04-Altitude +
0.27, R2 = 0.216, p = 0.3201). Blue Nile, Atbara and Main Nile wet season
(dotted line; Cation ratio (log) = -3E-04-Altitude - 0.04, R2= 0.375, p = 0.060)
and dry season (dashed line; Cation ratio (log) = -3E-04-Altitude - 0.15, R2 =
0.434, p = 0.128). Sample site 13 (White Nile, Khartoum) has been omitted from
the White Nile regression as its composition suggests that it may have been
influenced by surface water, groundwater or sediments ultimately derived
from the Blue Nile, although there are too few data to draw any firm
conclusions at this point. For sample numbers, see Table 6.1.
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6: Modern surface water results

6.4 Isotope characteristics: §'°0 and 5°H

All 3°H and 6'®0 values for surface water samples (Table 6.2) are plotted for the
Nile drainage as a whole (Figure 6.8a), and individually for the White (Figure 6.8b),
Blue (Figure 6.8c) and Main (Figure 6.8d) Niles, with reference to the African
Meteoric Water Line (AMWL) (solid line). The AMWL (8°H = 7.4-5'°0 +10.1)
represents the isotopic values of precipitation in the interior of East and Central
Africa, and differs slightly from the GMWL (Cohen et al., 1997). The validity of using
the AMWL is confirmed by the fact that small rivers draining into the main branches
of the River Nile plot on or close to the AMWL. Sites deviating from the AMWL form
local evaporative lines (LELs) which are shown for both wet- and dry-season
conditions (Figure 6.8, Table 6.3).

5'®0 values in the Nile Basin ranged from -4.7 to +8.0%o in the wet season and +0.6
to +8.8%o in the dry season (Table 6.3). Dry-season samples (average 5'°0 = +3.9 +
2.2%0; n = 34) were significantly more enriched in ®0 than wet-season samples
(average 8'%0 = +0.8 + 2.9%0; n = 45) (paired t-test, p = 0.001) (Figures 6.8a, 6.9-
6.10). However, there was no significant difference between the slopes of the LELs
in different seasons in any of the individual sub-basins (Figure 6.8b-d). Each major
sub-basin exhibited distinct 3?°H and 5§'®0 values, especially during the wet season,
with both &%H and &0 values increasing northwards and downstream (Figures 6.8
and 6.9; Table 6.3). The 5'®0 values for the Main Nile were significantly higher than
those of either the White Nile (separate variance t-test, p < 0.01) or the Blue Nile
(separate variance t-test, p < 0.0001) during the wet season, but no statistically
significant differences in 8'°0 values between basins were found for the dry season
(Figure 6.8; Table 6.3). Significant linear relationships were observed during the wet
season between 8'®0 and latitude (Figure 6.9; r; = 0.465, p < 0.001), and 5'®0 and
altitude (Figure 6.10; r, = —0.724, p < 0.001), although no significant trends were
found in the dry season. Isotopically lower surface-water samples from high-altitude,
headwater sites (Figures 6.9 and 6.10) in the White Nile (Figure 6.8b) and Blue Nile
catchments (Figure 6.8c) displayed large d-excess values compared with the
GMWL (+10%o) (Figure 6.11).
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6: Modern surface water results

Table 6.3: Regression results for 8°H and 5'°0 of surface water samples in
Figure 6.8.

Regression equation R’ Range of values Mean
Wet season 30 5°H 5°0 1o 5°‘H 10 n
fi'ﬁ%!':ﬁ'f °H=5095"0+878 0989 -47t0+80 -18.410+477 +0.8 29 +127 +14.8 45
White Nile 5°H=5.27-6"0+822 0992 47to+40 -18410+31.7 +0.3 230 +98 +157 20
Blue Nile 5°H=5226"0+980 0973 -24t0+30 49t0+268 06 +19 +67 +99 13
Main Nile 5°H =4.83-5'°0 + 9.41 0992 -0.0to+8.0 +7.5t0+47.7 431 £25 +242 1120 12
Dry season
River Nile 200 _ 18
(all data) 5°H=4.955""0+1043 0966 +06t0+8.8 +10.5t0+53.9 +39 +22 +297 1109 34
White Nile 5°H=5.23-6"0+9.75 0976 +14t0+7.0 +19.0t0o+47.3 +36 +14 +287 +7.4 14
Blue Nile H=4766"0+9.35 0947 +06t0+8.8 +10.5t0+47.3 +41 127 +287 1133 8
Main Nile 5°H=5.00-6""0+11.06 0.994 +1.3t0+8.8 +16.8t0+53.9 +41 126 +316 £131 12
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6: Modern surface water results

6.5 Isotope characteristics: DSi and 5°°Si

Dissolved Si concentrations (DSi) are displayed in both milligrams per litre (mg/L)
and micromolar (uM) units in order to facilitate comparisons with published literature
(Figure 6.12; Table 6.2). uM values follow mg/L values in parentheses. Due to the
contrasting geology in the individual sub-basins (Figure 3.2), regression lines for
DSi have been plotted individually for both wet and dry seasons. Waters from the
Ethiopian highlands (Blue Nile and Atbara catchments) had the highest DSi
contents under both wet-season (average 10.3 + 4.7 mg/L (365 + 169 uM)) and dry-
season conditions (average 5.7 + 3.0 mg/L (204 + 109 uM)), whereas White Nile
waters contained roughly half as much Si (wet season: 5.2 + 3.6 mg/L (187 + 127
puM); dry season: 3.7 + 3.8 mg/L (133 + 135 uM)) (Figure 6.12). A northwards
decrease in DSi was seen in all sub-basins during both seasons (Figure 6.12). DSi
concentrations were highest during the wet season, particularly in rivers draining the
Ethiopian Highlands (Figure 6.12).

Figure 6.12 (next page): Si concentration versus latitude. Si concentrations
are presented in both mg/L (left y-axis) and uyM (right y-axis) units. Wet season
(closed symbols) and dry season (open symbols) samples are plotted for the
White Nile (squares), Blue Nile (circles) and Main Nile (triangles). Seasonal
trends are identified with individual regression lines for the White Nile (left-
hand side) and the Blue Nile, Atbara and Main Nile (right-hand side) during the
wet season (dotted line) and dry season (dashed line) to account for varying
geology. White Nile wet season (dotted line; DSi = -1.67-Latitude + 6.00, r; = —
0.331, p = 0.133) and dry season (dashed line; DSi = -2.29-Latitude + 6.38, r; =
-0.054, p > 0.05). Blue Nile, Atbara and Main Nile wet season (dotted line; DSi
= 41.57-exp®'1ethude = _0.576, p = 0.019) and dry season (dashed line; DSi =
14.33-exp 071 etitude = _0.612, p = 0.03). Sample site 13 (White Nile, Khartoum)
has been omitted from the White Nile regression as its composition suggests
that it may have been influenced by surface water, groundwater or sediments
ultimately derived from the Blue Nile, although there are too few data to draw
any firm conclusions at this point. For sample numbers, see Table 6.2.
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6: Modern surface water results

The 8%Si values for both wet- and dry-season datasets are best described by
curvilinear regressions (Figure 6.13). These curves reflect lower values in Nile
headwaters, with progressive enrichment downstream, becoming more pronounced
in the Main Nile (Figure 6.13). 8°°Si values ranged from +0.48 to +3.45%o during the
wet season and +1.54 to +4.66%. during the dry season, raising the upper limit of
reported global 5°Si values for DSi in natural waters by more than 1%.. All samples
had high 5*°Si compositions relative to the local geology and were higher in the dry
season (av. +2.79 + 0.91%.) than during the wet season (av. +2.02 + 0.72%o),
although there was less seasonal contrast in the Main Nile (Figure 6.13). 5*°Si and
DSi were negatively correlated; low Si concentrations corresponded to high 8%°Si
values, more so during the dry season (R? = 0.371; separate variance t-test, p =
0.012) than the wet season (R? = 0.058; separate variance t-test, p = 0.245) (Figure
6.14). Figure 6.15 shows a statistically strong, albeit non-causal, positive correlation
between 5*°Si and 5'®0 during the wet season (R? = 0.517; separate variance t-test,
p < 0.001), when, as identified, both isotopic parameters became cumulatively
enriched downstream (Figures 6.9 and 6.13). However, there was no statistically

significant relationship between 5%*°Si and 8'0 during the dry season.
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6: Modern surface water results

6.6 Chapter summary

To understand the modern isotope systematics in the Nile Basin, key physical,
chemical and isotopic parameters were plotted to identify relationships and trends in
the data. Physical characteristics included pH and electrical conductivity plotted
against latitude and altitude to identify downstream trends of individual sub-basins.
Downstream trends in pH were more defined during wet-season conditions and pH
values indicated waters from the Ethiopian Highlands were more acidic than those
of the White and Main Niles. Conductivity increased with distance downstream
during both seasons although there was very little seasonal variation. The White
Nile and the Blue Nile and Atbara differed in ionic composition, with the White Nile
dominant in Na* and K* ions and the Blue Nile and Atbara waters comprised of
predominantly Ca* and Mg* ions. Cation composition developed downstream into a
Na-K carbonate-dominated system, particularly rapid in the Main Nile. Cation ratios
were consistently higher during the dry-season in all sub-basins. The relationship
between conductivity and cation ratio clearly indicates that conductivity increases

with brine development.

The 62H and "0 values of all water samples plotted along local evaporative lines,
deviating from the AMWL. Dry-season samples were significantly more enriched
compared to the wet season. Sub-basin differences occurred, with generally lower
5°H and 8'0 values in the headwaters and enrichment downstream. Some high
altitude headwater sites had notably low 8°H and 580 values and unusually high d-
excess values. Similar downstream enrichment was observed in 5%Si, with higher
values in dry-season samples. 8°°Si values obtained in this thesis extend the global
upper limit of previously analysed waters by 1%.. DSi concentrations were greatest
during wet-season conditions and in the Blue Nile and Atbara catchments, declining
rapidly downstream. Negative trends between &°°Si compositon and DSi
concentrations were identified, although the relationship in dry-season sampling
was not so definitive. A significant positive relationship between §'®0 and 5°°Si was
observed in wet-season samples. Downstream trends in 8°H, %0, §°°Si and DSi
were often obscured in dry season sampling due to the composition of waters in the
Main Nile. These trends and relationships that have been identified will be used to
interpret the modern hydrological and Si cycles in the Nile Basin and assist with

deciphering palaeo-record.
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7: Lake Victoria

Chapter 7  Lake Victoria, East Africa

7.1 Introduction

The beginning of this chapter gives an account of the natural environment in which
Lake Victoria is set, descriptions of the sediment core stratigraphy and an
explanation for the age-model selection, followed by, a summary of the specific
methodologies applied to Lake Victoria sediments to extract pure diatoms for stable
O- and Si-isotope analysis. The final section of the chapter presents the results for
Lake Victoria obtained from both diatom isotope analysis and from lipid biomarker

analysis.

7.2 Study area

7.2.1 Geography

Lake Victoria is the third largest lake in the world (by surface area) at 68,800 km?
(Kendall, 1969), after the Caspian Sea and Lake Superior. It straddles the equator
in East Africa between the two branches of the Great Rift System, where its shores
are shared by three countries: Uganda, Kenya and Tanzania (Figure 7.1). Lake
Victoria is a relatively shallow lake with a mean depth of 40 m and maximum depth
of 68m (Johnson et al., 2000), located at 1134 m.a.s.| at the headwaters of the
White Nile. The basin is estimated to be only ~400,000 years old, forming as a
result of uplift along the western branch of the Rift, causing westward flowing rivers
to reverse and flow eastward into the sag between the rift valleys (Johnson et al.,
2000). The watershed directly surrounding the lake is relatively flat, not exceeding
~25m above the lake surface (Kendall, 1969), whereas the outer basin to the east
and west is enclosed by the shoulders of the rift valleys where elevations exceed
2000 meters (Figure 7.1). Due to its large surface area to volume ratio, and to its
water balance being largely controlled by rainfall and evaporation, rather than
inflows and outflows (Spigel and Coulter, 1996), it is particularly sensitive to climatic
changes; drying out completely during the past as identified by seismic refléctions
and sediment core analysis (Kendall, 1969; Johnson et al., 1996; Johnson et al.,
2000; Stager and Johnson, 2000; Talbot and Laerdal, 2000; Stager et al., 2002).
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Figure 7.1: Location map of Lake Victoria including the main tributaries,
topography and the rift system.

7.2.2 Geology

The Lake Victoria basin is largely comprised of Precambrian granitic and
metamorphic rocks (e.g. gneisses, granulites and migmatites) (Figure 7.2). Small
pockets of Cenozoic volcanic deposits, related to rift activities, are present on the

eastern and western (Virunga Mountains) borders of the basin (Schluter, 2008).
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Figure 7.2: Simplified geology of the Lake Victoria basin (modified after Furon
(1958)).

7.2.3 Climatology

The Lake Victoria Basin experiences a bimodal rainfall distribution with the “long
rains” occurring between March and May and the “short rains” between October and
December. Annual precipitation is -1250-1500 mm/yr in the plains surrounding the
lake and >2000 mm/yr in the highlands. The annual variation in rainfall is largely
governed by the north-south migration of the Inter-tropical Convergence Zone
(ITCZ) which is usually associated with intense, convective rainfall. The basin is
sensitive to converging air flows (Johnson et al.,, 2000), where the northeasterly

monsoon and southeasterly monsoon meet to form the ITCZ. In the west of the
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basin the Congo Air Boundary separates the moist, humid Atlantic airflow from the
easterly airflow sourced from the Indian Ocean (Nicholson, 1996; Tierney et al.,
2011b) (see section 3.4. and Figure 3.3). Rainfall distribution is also influenced by
the lake itself due to its circular geometry promoting the formation of a strong land-
breeze circulation creating convective rainfall and thunder storms in the west during
the night and in the east in the afternoon (Flohn and Fraedrich, 1966). Maximum
rainfall occurs in the west where the prevailing south-easterly trade winds play an
important role in displacing the centre of night-time convergence towards the west
and northwest of the basin (Nicholson, 1996; Nicholson et al., 2000; Nicholson and
Yin, 2002; Anyah et al.,, 2006). The mountains in the east (Aberdare Mountain
range, Kenya) and the west (Virunga Mountains) of the basin experience enhanced
rainfall due to orographic uplift. Estimates suggest that ~85% of water input into the
lake orignates from rainfall directly over the lake itself (Crul, 1995; Sutcliffe and
Parks, 1999; Sutcliffe, 2009). Mean annual air temperatures around Lake Victoria
range from 16-17°C (min) to 27-30°C (max) and in the highlands from 22-24°C to
<10°C (Hughes and Hughes, 1992). Evaporation rates are high, particularly over the
lake itself where it is estimated that ~90% of water loss occurs through evaporation
(Piper et al., 1986; Nicholson, 1998; Sutcliffe and Parks, 1999).

7.2.4 Hydrology

The lake catchment covers 194,000 km? and is drained by numerous rivers and
streams (Piper et al., 1986) (Figure 7.1). The Kagera, with its tributaries (Ruvuvu
and Nyabarongo) draining the highlands of Burundi and Rwanda, is the principal
river inflow. The Katonga River in the west and several small tributaries in the north-
east of the basin constituting the remainder of the major tributary inputs (Sutcliffe
and Parks, 1999). Extensive swamp systems surround the lake and border along
the lower reaches of the tributaries, in particular the Kagera River which supports a
series of papyrus swamps (1600 km? below Rusumo Falls) and lakes (Sutcliffe and
Parks, 1999). The tributary contribution to total water inputs to the lake is small at
~15%, with the remainder coming from direct precipitation over the lake (Nicholson,
1998; Sutcliffe, 2009). The only outflow is at Jinja in the north of the basin via the
Victoria Nile which marks the beginning of the White Nile, providing a steady base
flow to the Nile throughout the year. The water balance of the lake is primarily
controlied by precipitation and evaporation over the lake itself rather than by inflows

and outflows (Spigel and Coulter, 1996). Lake Victoria is monomictic; overturn of the
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water column occurs during the cooler, windier season in May-August when strong

southerly winds cause upwelling of nutrients (Talbot and Laerdal, 2000).

7.2.5 Vegetation

Terrestrial vegetation in the lowland areas (<2000m) of the Lake Victoria Basin is
predominantly woodland and savanna (Langdale-Brown et al., 1964; White, 1983).
Enhanced rainfall in the northern and western parts of the basin supports pockets of
rainforest and in the highland peripheries of the basin forested slopes exist. Large
areas of the basin are cultivated for subsidence farming (e.g. plantains, cassava,
sweet potatoes and bananas) or used for domestic grazing, creating a mosaic

pattern of natural vegetation and cultivated crops (Figure 7.3).

The fringes of Lake Victoria and the floodplains of the tributaries flowing into the
lake are characterised by wetlands and swamps, supporting a variety of submerged
and emergent macrophytes. In the lower reaches of Kagera River, a 150km stretch
is flanked by a zone of lakes and swamps up to 15km wide and dominated by
Cyperus papyrus (C4 emergent sedge) and Vossia cuspidate (C, aquatic grass)
(Figure 7.4) (Sutcliffe and Parks, 1999). Surrounding the lake itself are extensive
areas of Cyperus papyrus and Miscanthidium violaceum (C, aquatic grass) swamps
and in recent years many bays have been invaded by water hyacinth (Echhornia
crassipes) (Kendall, 1969; Sutcliffe and Parks, 1999).
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Figure 7.3: Forested area in the north-western region of the Lake Victoria
basin being cleared for cultivation (a) and typical subsistence farming
(cassava, plantain and maize in this example) in between natural evergreen

forests (b).
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Figure 7.4: Photographs of (a) the extensive Cyperus papyrus swamp along
the Katonga River (flowing into Lake Victoria from the west) and (b) of the
Cyperus papyrus swamps dominating the lower stretch of the Kagera River
just before it flows into Lake Victoria in the soutwest. Vossia cuspidata and
Eichhornia crassipes (water hyacinth) are also present in front of the papyrus.
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7.3 Lake Victoria, East Africa: previous
palaeoenvironmental studies

Nine piston cores of varying length (and age) were recovered from Lake Victoria in
1995 and 1996 (Figure 7.5), as part of the International Decade for East Africa
Lakes (IDEAL) multidisciplinary study of the lake. Coring sites were determined from
seismic reflection profiles in order to obtain long, continuous records covering the
Late Pleistocene. Cores were obtained using a modified Kullenberg corer (Kelts et
al., 1986) on board the RA/ Ibis vessel and subsequently stored at the Limnological
Research Centre (LRC) at the University of Minnesota, USA. Material from these
cores is available on request from LacCore, the US National Lacustrine Core

Facility, based at the LRC.

*Nile Riveroultct t

V9/sit’

VO&- SMC
V95-5?

V95-1P,

>6-7:

Figure 7.5: Bathymetric map of Lake Victoria, showing the core locations from
the IDEAL study in 1995 and 1996. Depth contours are in meters (from:
Johnson et al. (2000)). Core location of V95-1P is circled in red.

Prior to the IDEAL expedition in 1995, only five long sediment cores had been
collected from Lake Victoria and analysed for past climatic and environmental

changes (Figure 7.6) (Kendall, 1969; Stager, 1984; Stager et al., 1986; Talbot and
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Livingstone, 1989). All of these cores were obtained from the northern part of the
iake close to the current shoreline, and therefore may not have represented basin-
wide conditions (Johnson, 1996). Hence, the core locations of the IDEAL expedition

were spread across the basin in the offshore regions (Figure 7.5).

Figure 7.6: Cores obtained from Lake Victoria prior to the IDEAL expedition in
1995 (from Johnson (1996)). EB (Entebbe-B), P-2 and 64-4 (Pilkington Bay)
(Kendall, 1969), DC (Damba Channel)/lbis-1 (Stager, 1984; Stager et al., 1986;
Talbot and Livingstone, 1989) and Ibis-3 (Stager et al., 1986; Talbot and
Livingstone, 1989).
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Core P-2 from Pilkington Bay, 18km southeast of the Nile outlet at Jinja in Uganda,
is the best dated core based on 28 radiocarbon dates spanning the last ~15,000 "C
yr BP (Kendall, 1969), and as a result the other pre-IDEAL cores were correlated
with pollen (Kendall, 1969) and diatom (Stager, 1984; Stager et al., 1986)

assemblages.

A palaeosol in the P-2 core provided the first indication that Lake Victoria may have
dried out completely during the late Pleistocene (Kendall, 1969), which was later
confirmed by seismic profiling and from other cores, including those of the IDEAL
expedition (Johnson et al.,, 1996; Stager et al., 2002). Sedimentological evidence
from seven cores registered lake-wide desiccation of Lake Victoria during the late
Pleistocene, but only four have been dated above and below the discontinuity
(Stager et al., 2002). The timing of this discontinuity indicates that the lake dried out
at least once between 18 and 14 ka BP (Johnson et al., 1996; Stager et al., 2002;
Stager and Johnson, 2008), possibly more than once given the existence of two
palaeosols in offshore cores V95-1P and V95-2P (Johnson et al., 1996; Talbot and
Lzerdal, 2000) and three shell layers in coastal core lbis-1 (Stager et al., 2002;
Stager and Johnson, 2008). The lake began to refill from about 15 ka BP,
synchronous with the onset of the Bpolling-Allered warm phase (Stager and
Johnson, 2008), and overflowed into the Victoria Nile from about 14.2 to 14 ka BP
(Talbot et al.,, 2000; Williams et al., 2006). A short period of reduced lake level
occurred just prior to ~11.5 ka BP and possibly resuited in a brief return to closed-
basin conditions associated with the dry European Younger Dryas period (Kendall,
1969; Johnson et al., 2000; Williams et al., 2000).

Orbital forcing is likely to have been the underlying cause of tropical aridity and
weakening of the monsoons during the last glacial (Kutzbach and Street-Perrott,
1985; Prell and Kutzbach, 1987), although complex interactions between orbital
forcing, atmosphere, ocean and land surface conditions probably resulted in the
complete desiccation of Lake Victoria (Gasse, 2000; Stager et al., 2002; Kiage and
Liu, 2006; Gasse et al., 2008). Increasing insolation contributed to the abrupt filling
of Lake Victoria and overflow into the Victoria Nile, and the subsequent enhanced
northern summer monsoon between ~15 to 5 ka BP, resulting in wetter and warmer
conditions across northern Africa (see section 3.7 in Chapter 3). Superimposed on
the long-term climatic trend from Lake Victoria were millennial-scale events,
including the Younger Dryas and possibly Heinrich event (H-1) (Figure 7.7), thought
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to be induced by marine circulation disruptions (Street-Perrott and Perrott, 1990;
Bond et al.,, 1992; Bard et al., 2000), providing a link between major climatic events

in the tropics and the high latitudes (Stager et al., 1997, 2003).

stronger
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Figure 7.7: Palaeolake levels at Lake Victoria compared with the GISP2
atmospheric circulation index series (from Stager et al. 2002). Summed band
pass components from the GISP2 record thought to be related to precession
and solar variability, produce erratic pulses, or combination tones (CT), that
reached extreme lows ca. 17.5-17.0 and 15-14.5 kyr BP (upper record).
CA2=multi-species diatom records from Ibis-1 core combined through
correspondence analysis into a single curve (axis 2; Stager et al. 1997); higher
percentages of shallow-water taxa in the series lower the curve, thus
indicating relatively lower lake levels. OLD, OD, YD=Europe’s Oldest, Older,
and Younger Dryas coolings. H-1 = Heinrich event. Open and solid lines=
calendar age ranges from cores lbis-1, Ibis-3, and V95-2P for the onset and
end, respectively, of Victoria’s final desiccation. ‘Dry’ box positions bracket
proposed desiccation events.

Kendall (1969) carried out a detailed reconstruction of climatic and environmental
changes in and around Lake Victoria during the last -15,000 #C yr BP based on
several proxies including sediment water content, carbonate content, pollen and
diatom assemblages and green algae remains from three cores (P-2, 64-4 and
Entebbe-B). The pollen evidence indicated a shift from predominantly C4 savanna
grasses associated with the LGM, to semi-deciduous forest shortly after the refilling

of Lake Victoria (12,200 #C yr BP; -14 ka BP) (Kendall, 1969). At the beginning of

112



7: Lake Victoria

the Holocene, the development of moist evergreen forest (e.g. Moraceae) indicated
increased humidity and rainfall, after a decline in forest vegetation during the
Younger Dryas period (Kendall, 1969). Between the early and mid-Holocene, a
change to more seasonal rainfall caused a transition from evergreen to semi-
deciduous forest beginning at ~6,000 "C yr BP (~6.8 ka BP) , and then forest
decline started to occur by about ~3,000 ™“C yr BP (~3.2 ka BP), possibly
associated with the penetration of agricultural activity in East Africa (Clark, 1962;
Kendall, 1969).

Multiple studies of the diatom flora in both onshore and offshore cores (Kendall,
1969; Stager et al., 1997; Stager and Johnson,. 2000; Stager et al., 2003) support
the pollen evidence provided by core P-2 (Kendall, 1969), highlighting the nearly
synchronous changes in lacustrine and terrestrial environments in the northern part
of Lake Victoria (Figure 7.8) (Stager et al., 1997; Stager and Johnson, 2000).
Diatom assemblages after the desiccation event (palaeosol) represented rising lake
levels, although the presence of Thalassiosira rudolfi showed that the lake water
was still chemically concentrated (Kendall, 1969; Stager and Johnson, 2000). High
TOC and hydrogen index (HI) values in three cores (V95-2P, 3P and 7P) indicated
an increasing contribution from phytoplankton, providing evidence for rising lake
levels in a transgressive basin (Talbot and Laerdal, 2000). During the Younger
Dryas interval (~13-11.5 ka BP) water level temporarily declined and the lake may
have returned to closed conditions (Johnson et al., 2000), in response to severe
aridity (Stager et al., 1997; Stager and Johnson, 2000).
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Figure 7.8: Two microfossil records from Lake Victoria (from Stager and
Johnson (2008)). “Dry” boxes under the arrows indicate the periods during
which desiccation would most probably occurred, (a) moist forest pollen in
Pilkington Bay core P-2 (Moraceae, Urticaceae, Alchornea, Macaranga and
Trema; after Kendall, 1969). (b) second correspondence analysis axis (CA axis
2) from the diatom record of Damba Channel core Ibis-1 (Stager et al. 2003),
indicating relative lake level and/or precipitation:evaporation ratios (P:E).
Black squares = MC dates. Dotted lines indicate likely dates for the
progressive flooding of (1) Ibis-1 (2) P-2 and (3) 64-4 core sites.

High diatom productivity (elevated BSi concentrations) at the beginning of the
Holocene (-11.5 to 8.3 ka BP) was associated with maximum P/E
(precipitation:evaporation) ratios and thorough water column mixing under windy
conditions (Stager et al., 1997; Stager and Johnson, 2000; Stager et al., 2003),
during which time Late Victoria was at its largest (Kendall, 1969; Stager et al,
1986). These inferences are supported by an 8% lowering of 6180 in aquatic
cellulose at the beginning of the Holocene indicating a notable increase in
precipitation (Beuning et al., 2002). Between 9.8 and 7.5 ka BP in several of the
IDEAL cores, diatom productivity rapidly declined (as shown by low BSi
concentrations) (Johnson et al.,, 2000). Johnson et al. (1998) used a mass balance
model to estimate that internal silica cycling in Lake Victoria would only be able to
sustain itself for -40 years based on the reservoir of DSi already in the lake.
Therefore, the long-term supply of DSi to the lake is controlled by the input from the
catchment (Hecky et al.,, 1996; Johnson et al.,, 1998), as is the case for other large
tropical African lakes (e.g. Lakes Malawi and Edward) (Johnson et al.,, 2001;

Johnson et al.,, 2002; Bootsma, 2003; Russell and Johnson, 2005). Johnson et al.
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(1998) found it hard to envisage a decline in DSi from river input during the wettest
period in Lake Victoria's most recent history. In addition, a shift in the diatom
assemblage from Stephanodiscus astraea to Aulacoseira species between ~10.7
and 8.2 ka BP indicated that silica was not limited (Kendall, 1969; Stager et al.,
1997). Instead, Johnson et al. (2000) suggested that the period of minimum diatom
productivity (9.8 and 7.5 ka BP) represented maximum stratification of the water
column due to low wind strength or intense heating of the water column, which
prevented diatoms from remaining in suspension (Stager and Johnson, 2000;
Stager et al., 2003). Although not entirely synchronous, Johnson et al. (2000)
suggested a shift in diatom species at ~8.3 ka BP from Aulacoseira granulata to A.
nyassensis, identified in several cores (Stager et al.,, 1997, 2003), supported their
argument of reduced wind activity and column mixing as the latter species can
withstand prolonged sinking. Geochemical parameters (TOC, C/N, 8'°C and Hl) in
Lake Victoria were at their maximum during the interval of 10 to 4 ka BP, which
Talbot and Laerdal (2000) also suggested indicated stratification of the water
column. From the abundance of green algal remains, Johnson et al. (1998; 2000)
hypothesised that diatoms were replaced by green algae during this period of low
BSi accumulation in the lake sediments (~10 to 8 ka BP). In contrast, high
productivity in inshore cores was interpreted as reflecting water mixing from land-
lake breezes (Stager and Johnson, 2000; Stager et al., 2003). This episode of
reduced biogenic silica accumulation coincided with the 8.2 ka cooling event
documented in many archives in the North Atlantic region (Alley et al., 1997; Bond
et al., 2001; Daley et al., 2011) and increasingly around the world, including Africa
as a millennial-scale drying event (Johnson et al., 2000; Thompson et al., 2002;
Stager et al., 2003; Rohling and Pélike, 2005).

A reduction in the duration and/or intensity of wind driven mixing continued into the
mid-Holocene (Kendall, 1969; Stager et al., 1997; Johnson et al., 2000; Stager and
Johnson, 2000; Talbot and Laerdal, 2000; Stager et al., 2003). A change in the
diatom assemblages and a shift to semi-deciduous, seasonally dry forest taxa
indicated the development of more marked dry seasons (Kendall, 1969; Stager et
al., 1997, 2003). By ~5 ka BP, declining diatom abundance and a shift to pennate
diatoms indicated more extensive shallows and hence lower lake level (Stager,
1984; Stager and Johnson, 2000), together with decreasing pollen deposition
(Kendall, 1969), indicated reduced rainfall associated with a weakening summer

monsoon (Street-Perrott and Kutzbach, 1985), as recorded in many archives across
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tropical Africa (Gasse, 2000; Barker et al., 2004). Further reduction in water column
mixing associated with decreased windiness at Lake Victoria was observed from the
presence of Nitzschia fonticola (Stager et al., 1997; Stager and Johnson, 2000;
Stager et al., 2003). The pollen evidence supported a reduced lake area responding
to increased aridity by the rise in sedge and grass pollen suggesting encroachment
of swamp vegetation at inshore sites, and expansion of regional grasslands during
the late Holocene (Kendall, 1969).

7.4 Core V95-1P stratigraphy

Core V95-1P (00° 27.63'S, 33° 24.09’E) was selected for this research due to its
long and continuous record dating back to ~20 ka BP (Johnson et al., 2000).
Another obvious choice would have been the well dated, continuous sequence of
V95-2P (basal age 13,240 "C years) (Beuning et al., 1997a; Ngobi et al., 1998;
Johnson et al., 2000; Talbot and Laerdal, 2000; Beuning et al., 2002). However, due
to its popularity in the early stages of the IDEAL project it has been heavily sampled
and very little material remains (Tom Johnson and Jim Russell, pers. comm.).

Core V95-1P was collected from a depth of 65m in the north-eastern part of the lake
and had a total length of 906.5cm (Figures 7.5 and 7.9). Between the base of the
core and 714.5cm a fine silty-clay crumbly mud with a cottage cheese texture was
present. This unit was fairly uniform throughout with little evidence of organic
material. Above this unit was layer (~55cm-thick) of very fine grained mud
containing large plant macrofossils including reed stem fragments. From 686-
619.5cm a dark massive mud unit of a crumbly cottage cheese texture containing
‘crumbs’ of ~6mm were present. Scattered shells and wood fragments were found
throughout the unit. A gradual transition into the overlying unit occurred, consisting
of homogenous, massive, soft to firm mud for the remainder of the core. Between
~550-400cm sediments were described as diatomaceous muds. Based on the
sediment texture two palaeosols have been identified in V95-1P (Tom Johnson and
Jim Russell, pers. comm.), similar to V95-2P (Talbot and Lzerdal, 2000), which
indicates that the lake must have desiccated at these sites at least twice to enable
soil formation. The upper palaeosol formed between 686 to 619.5cm and the lower
palaeosol formed from the base of the core (906.5cm) to 741.5¢cm.
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Consists mainly of greenish black (5G 2/1) to olive black
(5Y 2/ 1) homogeneous clayey sapropel.
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Figure 7.9: Core description of V95-1P and stratigraphic locations of
radiocarbon dates. Stratigraphic unit descriptions were taken from the core
log provided by Tom Johnson. Colours used to differentiate between units.

7.5 Age model

The age model for the Lake Victoria core V95-1P is based on seven radiocarbon
dates (Table 7.1) (Johnson et al.,, 2000). It was deemed most appropriate to use the
structure of the original, published age-depth model (linear interpolation) for V95-1P
to enable direct comparison of data obtained in this thesis with other
palaeoenvironmental data already derived from V95-1P, which may aid
interpretation of the data presented in this thesis. Radiocarbon dates were re-
calibrated with the most recent version of CALIB (version 6.0) (Stuiver et al., 2012)
and the mid-point of the calibrated age range (1a) was used (Table 7.1). The re-
calibrated radiocarbon dates were inserted into the original age-depth model which

was formed using linear interpolation between dates to allow for varying
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sedimentation rates (Figure 7.10) (original age-model structure from Johnson et al.

(2000)).

Table 7.1: Summary of C age determinations for core V95-1P. Radiocarbon
ages were re-calibrated to calendar years using CALIB 6.0 (Stuiver et al.,
2012).

Error Calendar Calibrated dates

Depth 14C (14C Calibrated age range years BP  after Johnson et al.

(cm) date years) (10) using CALIB 6.0 (mid-point) 2000 (cal. yrs BP) Material
5 1420 70 1285 1385 1335 1304 Pollen
199 4595 75 5373 5462 5418 5304 Pollen
318.5 6700 110 7485 7658 7572 7532 Pollen
398 8380 70 9395 9479 9437 9414 Pollen
548 11635 160 13332 13660 13496 13566 Pollen
568 12180 185 13796 14259 14028 14241 Pollen
859 16760 140 19810 20130 19970 19763 Pollen

Age (cal. yrs. BP)
0 5000 10000 15000 20000

1335
100
200 5418
300 7572
§ 400 9437
g-500
Q
600
700
800

19970
900

Figure 7.10: Age-depth model for V95-1P. Dates are expressed in calendar
years BP (cal. yrs BP) (modified after Johnson et al. (2000)).
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7.6 Existing data for core V95-1P

Existing data available for V95-1P, from Johnson et al. (1998), were plotted
downcore (Figure 7.10a) using the age model formulated in section 7.5. Biogenic
silica (BSi) concentrations reflect the accumulation of diatom frustules in Lake
Victoria (Johnson et al., 1998). BSi below the upper palaeosol surface was low (4-
5%). Shortly after the palaeosol at -14.2 ka BP BSi rose to -17% before temporarily
decreasing to -10% and then maximising at 36% at -11.6 ka BP. Between -10 and
8 ka BP, BSi declined to minima values of only 3-4%. After 8 ka BP, BSi rose to
-10% and remained stable for the remainder of the record. The availability of
dissolved Si (DSi) for diatom uptake is controlled by the net supply from the
catchment (inflows minus outflows) (Hecky et al., 1996; Johnson et al., 1998), rather
than internal cycling in the lake which could only sustain itself for -40 years based

on the DSi reservoir in the lake (Johnson et al., 1998).

Lithology BSi (%) TC (%) MS (10® Sl units)

10 20 30 40 10 20 10 100 1000
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o 20000 =
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magnetic susceptibility (MS) (c) data for core V95-1P. TC represents organic
carbon as Lake Victoria sediments are carbonate free (from Johnson et al.
(1998)).
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The total carbon (TC) record for V95-1P represents total organic carbon as Lake
Victoria sediments were carbonate free (Figure 7.11b) (Johnson et al., 1998).
Organic carbon was very low (<3%) below the upper palaeosol surface, peaking
slightly at ~17 ka BP. Above the upper palaeosol surface TC rose rapidly to
between 10 and 20% for the remainder of the record. Maximum values (~22%) were
reached at 10 ka BP. High hydrogen index (HI) in V95-2P indicated that organic
matter in Lake Victoria was predominately from an algal origin (Talbot and Leerdal,
2000). The upper palaeosol was clearly marked by a peak in magnetic susceptibility
(MS) between ~16.7 and 15.6 ka BP (Figure 7.11c). After ~14.3 ka, MS remained
fairly stable between 15-25x107® S| units.

7.7 Preparation of Lake Victoria sediment samples for O-
and Si-isotope analysis of diatom silica

Sediments below the upper palaeosol surface (~620cm; 15 ka BP) had very low BSi
concentrations and were largely devoid of diatoms (Figure 7.11a). Therefore
emphasis was placed on sediments above this surface which had BSi
concentrations of between 3% and 36%. Sediment samples representing every
~500 years during the last 15 ka BP were treated chemically to remove organic
matter and carbonates, and sieved at 63, 38 and 20um (detailed methodologies can
be found in section 5.4.5 of Chapter 5). All samples were inspected by light
microscopy and assessed for their remaining sediment components. The main
contaminants remaining within the Lake Victoria samples, together with the diatoms,
were green algae (Chlorococcales), mineral grains (silts and clays) and charcoal
fragments (Figure 7.12). For many of the samples (>50%), the ratio of diatoms to
other sediment components was low, which made them unsuitable for further
analysis as it was unlikely, even if it proved possible to separate the diatoms from
the contaminants, that there would be enough diatom material for isotope analysis
(3-5mg). It was only possible to purify samples from nine depths during the last ~15
ka BP. The following section outlines the sample-specific methods used to clean-up
diatom silica from Lake Victoria, in addition to the standard techniques described in
section 5.4.5 of Chapter 5.
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50um

50um

Figure 7.12: Typical composition of Lake Victoria sediment samples after
chemical treatment to remove organic matter and carbonates: (a) large
Surirella spp. and Stephanodiscus spp. with Pediastrum simplex var.
clathratum and Botryococcus braunii (green algae); (b) large Surirella spp.
with Pediastrum simplex var. clathratum and large flecks of charcoal.
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7.7.1 Sample specific methodologies used to clean up diatom silica
from Lake Victoria for stable-isotope analysis (O and Si)

Three genera of green algae, Botryococcus, Pediastrum and Coelastrum (Figure
7.13), survived the chemical treatment and were present throughout the core above
the upper palaeosol. Botryococcus braunii and Pediastrum simplex var. clathratum
were the most abundant species, with Pediastrum boryanum, Pediastrum duplex
and Coelastrum reticulatum being less common. Sporopollenin in the cell walls of
the green algae make them resistant to the chemical digestions used in this thesis
(see section 5.4.5 in Chapter 5) (Jankovska and Komarek, 2000), and due to their
similarity in size to the diatoms (20-80um) they cannot be physically separated by
sieving. Although rarely utilised, green algae can provide additional
palaeoecological information for reconstructing past environments (van Geel, 2001).
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10um I0um
IOum IOum
10um 10um

Figure 7.13: Light microscopy images of (a) Botryococcus braunii (8.4 ka BP),
(b) Botryococcus braunii (5.8 ka BP), (c) Pediastrum simplex var. clathratum
(149 ka BP), (d) Pediastrum simplex var. clathratum (11.6 ka BP), (e)
Pediastrum boryanum (5.8 ka BP), (f) Coelastrum reticulatum (1.4 ka BP),
found in Lake Victoria sediment samples throughout the last 15 ka BP.
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Initially stronger acids (conc. nitric acid) were used to try and remove the remaining
green algae but due to the sporopollenin in the cell walls this had little effect.
Sonication was also used to see whether the green algae broke up into finer pieces
so that they could be sieved out. Again, their resistant cell structure prevented them
from disintegrating. As the densities of the green algae species were unknown, it
was considered possible that if there was a density difference or a difference in the
hydrodynamics properties between them and the diatoms then split-flow thin
fractionation (SPLITT) could be used to separate the two components. However,
using SPLITT, it soon became apparent that the spines of the Pediastrum spp.
became interlocked, causing a blockage and preventing the remainder of the
sample from flowing through the SPLITT. Eventually, differential settling was
effective at separating Pediastrum and Coelastrum spp. from the diatoms.
Pediastrum and Coelastrum appeared to be denser than the diatoms and
Brotryococcus braunii as they sank first and allowed the later to be decanted off.
This was also an efficient way to separate fine silt and clay mineral fragments and
large sponge spicules from the diatoms (Figure 7.14). Subsequently, successful
separation of the Botryococcus braunii from the diatoms came about when using
SPT, to see whether the Botryococcus braunii could be separated by density.
During the wash stages of the SPT procedure, Botryococcus braunii would float to
the top of the centrifuge tube, allowing the green alga to be decanted off, indicating
that the green alga were either significantly less dense than the diatoms of more
hydrodynamic. To overcome the problem of contamination from charcoal, sub-
samples in the >63um range were avoided for isotope analysis. With the
combination of methods and techniques available, purification of 10 individual
samples from nine different depths from core V95-1P were suitably prepared for
isotope analysis (full list of samples prepped in Appendix VII).
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Figure 7.14: Using the differential settling approach to separate remaining
sediment components (a) into mineral fraction (b); and diatom plus
Botryococcus brauniifraction (c).

7.8 Lake Victoria sediment samples for lipid analysis

Samples were selected for lipid analysis at 500 yr resolution from the base of the
core (-20 ka BP) to -1 ka BP at the top (n = 38). The methods used to identify and
quantify n-alkanes, n-alkenes and botryococcenes compounds from the total lipid

fraction are fully described in Chapter 5, sections 5.4.8 to 5.4.9.

7.9 Results

7.9.1 Purified diatom silica

Diatoms represent the largest proportion of biogenic silica (>99%) in Lake Victoria
sediments apart from the occasional sponge spicule or phytolith (Figure 7.15).
Samples were comprised of a relatively small range of diatom species with the most

abundant taxa being Stephanodiscus, Aulacoseira and Surirella spp. (Figure 7.16).

125



7: Lake Victoria

The most common size fraction of material used for isotope analysis was the 20-
38pm fraction composed of predominantly Stephanodiscus and Aulacoseira spp.
and occasional fragments of large Surirella spp. Breakage of the diatom frustules
(e.g. Figure 7.16¢c & d) may have occurred during the cleaning of the diatoms for
isotope analysis, as the remainder of the diatoms were well preserved throughout
the core and there were no signs of dissolution or diagenesis (Figure 7.17). Only
samples that were at least 97% free from contamination were chosen for isotope
analysis (see section 5.4.7 in Chapter 5). These were examined and assessed by
light microscopy and SEM. None of the analysed samples showed evidence of
contamination based on replicated samples and from the observed relationship
between 629Si and 530Si (Figure 7.18). All samples plot along the expected mass-
dependent relationship of 626i vs. 6306Si. This supports the analysis of
contamination-free samples. Overall precision (2a), based on replicate samples,
was +0.06%o0 for 629Si, £0.14%0 for 630Si and +0.38%o0 for 618). All the samples

analysed are presented in the following section (Figure 7.19).

25um

mam

25um

Figure 7.15: Light microscope images of sponge spicules (a & b), phytoliths
(c) and grass cuticles with dumbbell-shaped phytoliths (d) which are
occasionally present in Lake Victoria sediments.
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$4800 1 OkV 29 9mm x3 50k SE(L)

30um 30um 30um

Figure 7.16: The most abundant diatom taxa in Lake Victoria. SEM
photomicrographs of Stephanodiscus spp. (a & b) and Aulacoseira spp. (c &
d) and light microscope images of Surirella spp. (e-g).
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S4800 1.0kV 21,7mm x400 SE(L) 100um

Figure 7.17: SEM image of cleaned diatoms from Lake Victoria (11.6 ka BP)
showing the typical excellent preservation and purity of a diatom sample for
isotope analysis.

+0.80 n
+0.60 -

y = 0.4789x + 0.0113
+0.40 - R2= 0.9727
+0.20 T T T ! ' !

+0.40 +0.60 +0.80 +1.00 +1.20 +1.40 +1.60
530Si (%o0)

Figure 7.1s: Silicon isotope measurements of all Lake Victoria samples. Error
bars are z0.06% o for 528i and :0.14%, for 630Si (2a).
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7.9.2 Oxygen and silicon isotope analysis of diatom silica

In the analysed sediments (dated 14.9 to 1.4 ka BP), 8"®Ogiatom values varied from
+39.4 to +44.0%o, corresponding to a range of 4.6%o. during the last 15 ka BP (Table
7.2; Figure 7.19a). During the late-glacial period, from 15 to 11.5 ka BP, 8"%0iatom
values were high and reached a maximum of +44.0%. at 11.6 ka BP. At the
beginning of the Holocene (~11.5 ka BP) a sudden shift to a minimum 8"Ogiatom
value of +39.4%o occurred at 10.7 ka BP. 8'®Ogiaom Values remained low throughout
the early to mid-Holocene (11.5 to 5.5 ka BP). From the late Holocene onwards
(from 5.5 ka BP) 8'®Ogatm values began to increase and then fell again to +40.6%o
at 1.4 ka BP.

5*Sigiatom values ranged from +0.62 to +1.26%o during the last 15 ka BP, resulting in
a total variation of 0.64%. (Table 7.2; Figure 7.19b). During the late-glacial, 8*°Sigiaiom
values were high and displayed a gradual decrease of 0.30%. from 15 to 11.6 ka
BP. At the start of the Holocene, a decrease to +0.62%. occurred, representing the
lowest 8*°Sigawom values recorded. 8*°Sigiaom Values remained low and relatively
stable during the early to mid-Holocene of between +0.62 to +0.94%.. From 5.5 ka
BP onwards, 8*°Sig.0m values increased, reaching a maxima of +1.26%. at 1.4 ka
BP.

The relationship between 8 Sigiaom and 8'®Ogiom, although not directly causative
and not statistically significant (R? = 0.25; p = 0.14), shows a trend of increasing
5%Sigiatom With increasing 8'®Ogiatom (Figure 7.20).

Table 7.2: Oxygen and Silicon isotope values from Lake Victoria with
corresponding depths and calculated estimated ages.

Depth Age (cal. yr. Size Fraction 5" O4atom 5> Sigiatom 5 Slgiatom
(cm) BP) (um) (%o) (%o) (%o)
7.50 1388 20-38 +40.6 +0.61 +1.26
86.75 3057 20-63 +42.4 +0.56 +1.10
200.75 5448 20-38 +41.7 +0.40 +0.78
337.50 8020 20-38 +40.7 +0.37 +0.78
352.00 8361 20-38 +40.1 +0.48 +0.94
443.50 10655 20-38 +39.4 +0.30 +0.62
480.25 11648 20-38 +44.0 +0.43 +0.93
520.25 12730 20-38 +40.5 +0.52 +1.04
612.25 14922 <20 +43.7 +0.59 +1.24
612.25 14922 <20 +43.3 +0.60 +1.21
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+1.40
+1.20
+1.00
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g +0-e0 y =0.0678x- 1.8325
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+0.20

0.00
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5 180 diatom (% o)

Figure 7.20: 5 30sidiatom VS. 5180 diatom values from Lake Victoria sediments
during the last 15 kas-r.

7.9.3 Lipids: abundance and distribution

The hydrocarbon fraction of total lipids was identified and quantified for the length of
V95-1P core, representing the last ~21 ka BP (see Appendix VIII for full dataset).
The Carbon Preference Index (CPI), a test for n-alkane maturity and preservation,
showed that the n-alkane distributions in Lake Victoria had an odd-over-even
predominance (Figure 7.21a; Table 7.3), as expected for hydrocarbon fractions
(Meyers and Ishiwatari, 1993). The CPIl was low (1.3-2.8) between -20.7 to 11.5 ka
BP (Figure 7.21a) which may reflect an in-wash of degraded plant material from the
catchment. Abundances of n-alkanes were relatively low but consistently so
throughout the record (Table 7.3), providing further support for good preservation of
organic matter. The straight-chain hydrocarbons (n-alkanes and n-alkenes) were
dominated by mid- and long-chain homologues (Figures 7.21 and 7.22; Table 7.1).
CZ3 CXH CZ,CXH C3l and CBn-alkanes all had significant abundances. The CXand
CZ homologues were the dominant n-alkanes throughout the core, indicative of
submerged/floating aquatic macrophytes origin (Ficken et al., 2000) and a higher
plant origin (Eglinton and Hamilton, 1967) respectively, although the uppermost
sample (LV1) also had an abundance of the short-chain n-alkanes (C1 and C19)

suggesting a significant contribution from aquatic algae (Cranwell et al., 1987).
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Figure 7.22: Homologue distribution and abundance of three typical samples
from Lake Victoria representing the last -20.7 ka BP, showing n-alkanes, n-
alkenes and botryococcenes.

A n-alkane proxy, Pwax = (C27+ C2+ C31)/(C23+ C25+ C27+ C29+ C3Ji), was proposed
by Zheng et al. (2007) to distinguish between contributions from emergent/terrestrial
and submerged/floating plants, as the former have characteristic CZ and CX n-
alkane dominance and the latter maximise at C23 and CZ (Ficken et al., 2000).
During the last -20.7 ka BP at Lake Victoria, Pwa varied from 0.50 to 0.74,
signifying variations in relative contribution of organic matter (Figure 7.23a; Table
7.3). During the early part of the record (-20.7 to 19.0 ka BP), Pwax values were
relatively high (0.59 to 0.73) signifying a dominance of emergent/terrestrial plants.
From -18.5 to 16.7 ka BP, lower Pwsx values (0.58-0.61) suggest a period of
increasing contributions from submerged/floating macrophytes, followed by a return

to higher values between -16.2 and 15.7 ka BP. An abrupt shift to a near-minimal
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Puwax value (0.52) occurred from ~15.7 to 14.9 ka BP, followed by an even bigger
increase to maximum P, values (0.74) at ~14.1 ka BP. P,.x values remained high
for several millennia (~14.1 to 9.7 ka BP) indicating a large contribution from
emergent/terrestrial plants, before progressively declining through the early to late
Holocene, suggesting decreasing contributions from emergent/terrestrial plants.
Although P,.x values continued to decline during the late Holocene, they remained
fairly stable (0.59-0.63), particularly between ~5.8 and 3 ka BP. An abrupt decrease
to minimum Py, values at the top of the record (~1.4 ka) signifies a move towards
submerged and floating macrophyte dominance as highlighted by a large increase
in the C; n-alkane (Figure 7.22).

Another useful n-alkane based proxy proposed by Ficken et al. (2000) to reflect
non-emergent aquatic plant input to lake sediments is the Paq = (C23 + Cp5)/(Cs +
Cas + Cye + C31). A P,y value of greater than 0.4 signifies a important fraction of
sedimentary n-alkanes from submerged/floating plants (Ficken et al., 2000). In Lake
Victoria sediments, P,q varied from 0.36 to 0.69 during the last ~20.7 ka BP (Figure
7.23b; Table 7.3). As deglaciation proceeded (~20.7 and 19.0 ka BP), P, values
were relatively low (0.39-0.59). Shortly afterwards, P,q values gradually rose and
then declined (between ~19-15.7 ka BP) indicating a brief increase in non-emergent
aquatic plants. An abrupt increase to a value of 0.65 at 15.0 ka BP was followed by
just an abrupt decrease to minimal P, values (0.36-0.54) during the late glacial and
into the early Holocene (~14.1-8.0 ka BP), suggesting increased input from
emergent and terrestrial plants. From 7.5 ka BP onwards, P, values were high and
remained fairly stable, between 0.53 to 0.69, indicating that inputs from
submerged/floating plants were important. P..x and P,q values varied closely
together (Figure 7.23), responding in opposite directions, which reflects the similar
components (i.e. homologues) used to distinguish relative inputs from

emergent/terrestrial plants (Pwax) and submerged/floating macrophytes (Paq).
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7: Lake Victoria

Fourteen individual botryococcene compounds have been identified in the
hydrocarbon fraction of Lake Victoria sediments (Figure 7.22). Although | have not
been able to identify their structures at present, from their mass spectra and
molecular weight, the compounds (A-N; Figure 7.22) have been provisionally
identified as C3,, C33 and C,4 botryococcenes (Figure 7.24; Table 7.4). Homologues
B (Ca2Hs4), D (Ca3Heo) and G (Ca4Hss) are consistently the dominant botryococcenes
throughout the record. Botryococcenes are present in Lake Victoria sediments
above the upper palaeosol (~15 ka BP) and abundant during the Holocene period,
peaking at 15.2ug/gTOC at ~8.4 ka BP (Figure 7.23d; Table 7.3). These
botryococcenes are likely to be related to the green alga, Botryococcus braunii,
which was identified by light microscopy in high abundance in Lake Victoria
sediments during diatom purification (section 7.7).
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Figure 7.24: Total ion current showing typical distribution of botryococcenes
found in Lake Victoria (a). Mass spectra of botryococcene compounds B

(c 32n 54) (b), D (C33H60) (c), and G (c 34n 66) (d) identified in Lake Victoria.
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Table 7.4: Characteristics of botryococcenes detected in Lake Victoria

Compound Molecular Formula
letter weight (M*)

A 452 CasHsg
B 438 CaoHsy
C 454 CasHss?
E 456 CasHeo
F Unknown ?

G 474 CasHes
H 470 CasHe2

I 466 CaqHsg
J 470 Ca4He2
K 466 CaqHss
L Unknown ?

M 466 CaqHsg
N Unknown ?

In addition to the n-alkanes and botryococcenes, n-alkenes were also present in the
hydrocarbon fraction in high abundance with C numbers ranging from 18 to 29
(Figure 7.22; Table 7.3), and with a high odd over even predominance. C,7.; was the
most dominant n-alkene with significant contributions of C.3.q and Cas.q n-alkenes.
Based on Zhang et al.’'s (2004) P.y proxy (Pag = (Casq + Coasq4 + Copq +
Cyclobotryococcatriene)/( Cas.1 + Cas:1 + Co7.4 + Cyclobotryococcatriene + Cyg + Caq +
Cs3)), which determines the relative contributions of aquatic algae to terrestrial and
emergent plant input, a modified version was created here based on the n-alkene
component as no cyclobotryococcatriene compounds were identified in Lake
Victoria sediments. The revised P,y formula is as follows: Pyq = (Ca3:4 + Cosq +
C27.4)/( Caa:1 + Cas:4+ Co7.4 + Co9 + Caq + Cag).

The P,q4 values in Lake Victoria ranged from 0.03 to 0.48 during the last ~20.7 ka
BP (Figure 7.23c; Table 7.3), signifying variable contributions from algae and
emergent/terrestrial plants during the past. During the earliest part of the record
(~20.7 to 16.2 ka BP), P,4 values were very low, close to zero, signifying limited
algal contributions to Lake Victoria sediments during this period. A sudden increase
in Pag to maximum values (0.48) occurred between ~16.2 to 14.9 ka BP, followed by
a rapid shift to lower values (0.09) at 14.1 ka BP. From ~14.1 to 6.6 ka BP P44
increased gradually from 0.09 to 0.29. Between ~6.1 to 3.1 ka BP P,y remained
fairly stable at around 0.23. From ~3 ka BP onwards P,4 values were higher and

fluctuating.
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Pag and Pay exhibit a significant positive correlation (R2= 0.31; p = 0.0007) (Figure
7.25), indicating a trend of increasing Pdgvalues with increasing Pagvalues (Figure
7.23). A relationship between algae and floating/submerged macrophytes is
plausible considering increased abundance of macrophytes can cause water

stagnation and encourage algal blooms.
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Figure 7.25: Pag and Pag proxies are significantly correlated (R2 = 0.31; p =
0.0007) in Lake Victoria sediments indicating a strong relationship between
algae and floating/submerged aquatic plants.

7.10 Chapter summary

Lake Victoria is the third largest lake in the world and marks the lacustrine
headwaters of the White Nile. Its large surface area and relatively shallow depth,
combined with precipitation and evaporation being the main controls on its water
balance, cause it to be very sensitive to climatic changes. Multi-proxy studies have
shown that it did dry out completely during the Late Pleistocene, at least once.
Marked variations in the climate over East Africa during the last 20 ka BP have
certainly had a major impact on vegetation and hydrology in the Lake Victoria Basin,

and therefore it is likely that Si cycling has varied in response.

Advantageously, material from pre-existing cores obtained from the IDEAL
expedition were available, together with well developed age models and existing

data (BSi, TC and MS) to assist sampling and interpretation of the data obtained in
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this thesis. V95-1P was a long, continuous core without hiatuses, although the
sediment lithology suggests periods of complete desiccation when soil formation
commenced (i.e. palaeosols). Unfortunately, diatom concentrations were low in
large parts of the core, combined with difficulties associated with separating the
diatoms from other sediment components (i.e. charcoal fragments, green algae and
clay minerals), making it impossible to achieve 500-year resolution throughout,
although analytical precision was good on the data that were obtained. It was
possible to achieve 500-year resolution for lipid biomarkers for the length (21 ka BP)
of the V95-1P core due to high organic carbon content in the majority of the

sediments.
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8 Lake Edward, East Africa

8.1 Introduction

At the beginning of this chapter, key aspects of the environmental and geographical
setting of Lake Edward are presented, followed by detailed information on the
selection of sediment cores used in this study, of their composition and
corresponding age models. A brief explanation of the sampling interval used is
followed by details of the specific methods used to extract pure diatom silica from
Lake Edward sediments and the problems that arose. Finally, the results of O- and
Si-isotope analysis of diatom silica and lipid biomarker analyses are presented.

8.2 Study area

8.2.1 Geography

Lake Edward is located on the borders of Uganda and the Democratic Republic of
Congo (DR Congo) in the western arm of the East African Rift System at an altitude
of 912m a.s.l. (Figure 8.1). The lake has a surface area of 2,325km? and a
maximum depth of 117m, with the deepest point located towards the western edge
(Leerdal and Talbot, 2002; Russell et al., 2003a). Lake Edward is bounded to the
north by the Rwenzori Mountains (>5000m), to the west by the Albertine Rift
Mountains (2500-3000m a.s.l. within 15km of the lake shoreline), to the south by the
Virunga Volcanoes (>4500m a.s.l.) and to the east by the more gently rising Kigezi
Highlands (1500-2700m a.s.l.).
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Figure 8.1: Location map of Lake Edward including major rivers and drainage

regions, topography, Queen Elizabeth National Park (QENP) and
of the West Rift.

8.2.2 Geology

The northern part of the Western Rift system is largely underlain by

boundaries

Precambrian

basement rocks (e.g. gneisses and granites) with areas around the great Rift Lakes

and associated river valleys containing Quaternary alluvial deposits

(Figure 8.2).

Neogene volcanics (e.g. alkaline basalts) can be found in the southwest of the basin

in the Virunga volcanic area and in small pockets close to Lakes

George and

Edward, where young (~50ka) volcanic craters and vents exist (Schluter, 2008).
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Figure 8.2: The geology of the northern section of the Western Rift (from
Laerdal and Talbot (2002)).

In addition to the faults surrounding Lake Edward associated with the East African
Rift System, a fault scarp with a north-south orientation, the Kasindi Fault Zone
(KFZ) (Laerdal and Talbot, 2002), is located in the centre of Lake Edward (Figure
8.9). To the west of this fault zone lies the deepest part of the lake (117m). The lake
has effectively been split into two sub-basins, with the eastern (shallow) basin being
subject to small scale faulting and that has effected sedimentary patterns in the sub-

basins (Laerdal and Talbot, 2002; Laerdal et al., 2002; Russell et al., 2003a).
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8.2.3 Climatology

Like Lake Victoria, the Lake Edward Basin exhibits a bimodal rainfall pattern with
rainy seasons occurring between October and December and again between March
and May, associated with the twice-yearly passage of the ITCZ across the equator
(Figure 3.3) (Nicholson, 1996). Lake Edward receives moisture from the prevailing
easterly Indian Ocean Monsoons whilst its close proximity to the Congo Air
Boundary (CAB) (Figure 3.3), suggests that it may also receive contributions from
Atlantic Ocean via the Congo Airstream (Russell and Johnson, 2006). Annual
rainfall is about 900mm/yr over the lake with substantially more being received in
the elevated regions surrounding Lake Edward (Viner and Smith, 1973),
accordingly, tributaries rising in these regions provide the largest sources of water
input to the lake (Russell and Johnson, 2005). Russell and Johnson (2006) estimate
that 54% of water losses from Lake Edward occurs through evaporation and the
remainder through the outflow, the Semliki River.

8.2.4 Hydrology

The catchment area of Lake Edward covers 15,840km?® The major inflows into the
lake are the Ishasha and Ntungwe Rivers in the southwest, draining the Kigezi
Highlands, the Rutshuru and the Rwindi Rivers from the Virunga Volcanoes and
several smaller rivers from the steep mountains in the DRC to the west of the lake
(Figure 8.1) (Lehman, 2002; Russell et al., 2003a; Beuning and Russell, 2004;
Russell and Johnson, 2006). Several rivers drain the Rwenzori Mountains to the
north of the basin, in particular, the Nyamugasani River. In addition, the Kazinga
Channel, a 30km-long 1km-wide drowned river valley which flows sluggishly from
Lake George (914m a.s.l.) in the east, is another primary inflow. Lake George also
receives a significant amount of runoff from the Rwenzori Mountains from its
eastern side (Russell and Johnson, 2006). The current outflow is through the
Semliki River at the northwest of the lake which flows northwards into Lake Albert
and subsequently into the White Nile. Unfortunately, there are few gauging station
data available for the Lake Edward catchment, and therefore exact inputs are
unknown, although river runoff is believed to be the most important source of water
(Lehman, 2002).
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8.2.5 Vegetation

Vegetation in the Rift Valley floor surrounding Lake Edward consists of a mosaic of
East African evergreen bushland and thicket, secondary Acacia wooded grassland,
and farmland (Figures 8.3 and 8.4) (White, 1983). Surrounding the Kazinga
Channel, in the Queen Elizabeth National Park, areas of dense Euphorbia dawei
and thicket spread down the steep slopes to the river (Figure 8.5) (Beuning and
Russell, 2004). In the highlands to the east of Lake Edward and northeast of Lake
George, forest reserves (e.g. Maramagambo, Kashoya-Kitomi and Kibale Forest)
protect large remnants of moist semi-deciduous rainforests (Figures 8.6 and 8.7). In
the mountainous regions to the north (Rwenzori Mountains), south (Virunga
Volcanoes) and west, the vegetation grades from Afromontane rainforest to
Ericaceous shrubland to afro alpine vegetation with altitude (Langdale-Brown et al.,
1964; Livingstone, 1967; White, 1983; Jolly et al., 1997; Beuning and Russell,
2004). The contrast in vegetation between the plains and the higher ground is a
reflection of the more arid climate around the lake itself compared to the highlands.
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Figure 8.3: Photograph (a) taken from the Kichwamba Escarpment looking
down onto Lake Edward across cultivated slopes and into the wooded
savanna of the Rift Valley, (b) a view over Lake George and the surrounding
plains from the steep terrain near the Mpanga River in the northeast of the
basin.
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Figure 8.4: Rift valley floor vegetation surrounding Lake Edward. Abundant
Acacia wooded grassland and thicket.

Figure 8.5: Vegetation found along the Kazinga Channel between Lakes
George and Edward, particularly thickets of Euphorbia dawei.
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Figure 8.6: General vegetation map of the Lake Edward Basin. Between the
two escarpments, in the Rift Valley, the vegetation is a mosaic of wooded
grassland, bushland and Acacia savanna (from Beuning and Russell (2004)).

Figure 8.7: Photograph of the semi-evergreen rainforest in the Maramagambo
Forest Reserve to the east of Lake Edward.
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Figure 8.8: Photograph of the Afromontane rainforest vegetation present in
the Rwenzori Mountains at between -1,700-2,300m to 3,000-3,300m.

At the mouths of tributaries entering Lake Edward, large areas of graminoid swamp
vegetation exist, including Cyperus papyrus (C4sedge) and Phragmites mauritianus
(C3 grass) (e.g. Rivers Ishasha and Ntungwe in the east and Rivers Rutshuru and
Rwindi in the south) (Hughes and Hughes, 1992). Extensive areas of swamp also
exist in the headwaters of some of the tributaries, in particular in the Kigezi
Highlands, where lakes such as Lake Bunyonyi drain (Green, 2009). In addition, the
shores of Lake George are surrounded by wetlands consisting of predominately
Cyperus papyrus, and a massive swamp (100km2) of papyrus and Ficus (fig)
extends for 20km north (14km wide) of Lake George, fed by rivers from the
Rwenzori Mountains (Hughes and Hughes, 1992; Green, 2009). Potamogeton
pectinatus is the dominant submerged macrophyte, together with Najas marina and

Vallisneria aethiopica (Hughes and Hughes, 1992).
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8.3 Lake Edward, East Africa: previous
palaeoenvironmental studies

Apart from initial investigations by the Woods Hole Oceanographic Institute (WHOI)
in the 1970’s (Hecky and Degans, 1973), very little work had been carried out on the
palaeolimnology of Lake Edward until the IDEAL expedition in 1996 began. A total
of four cores (E96-1P, E96-2P, E96-5M and E96-1P) of varying length and age was
collected from Lake Edward (Figure 8.9), which between them span the Holocene
epoch. From the sediment stratigraphy and from radiocarbon dating there was some
evidence of reworked sediments and hiatuses, particularly in the shallower cores
(Leerdal et al., 2002; Russell et al., 2003a; Beuning and Russell, 2004). Not only has
climate affected the Lake Edward basin but also tectonics have modified the
sedimentary record through tectonically induced lake level changes and also
introducing reworked deposits through seismic activity, making it difficult to separate
the two (Laerdal et al., 2002). An insight into glacial climate conditions from a slump
deposit situated within early Holocene muds, thought to be tectonically activated
and dated to 20.6 ka "C BP (Figure 8.10) (Leerdal et al., 2002; Russell et al.,
2003a). The lithological properties, geochemical composition and the presence of
iron oxides and authigenic calcite suggested that the deposit was initially formed by
sub-aerial exposure and subsequent precipitation of high-Mg authigenic calcite in
highly evaporated lake waters (Laerdal et al., 2002; Russell et al., 2003a; Beuning
and Russell, 2004). Drier conditions at Lake Edward during the LGM are consistent
with other palaeoclimate records in tropical Africa (Barker et al., 2004 and Gasse et
al., 2008 and references therein). Tectonic influences on the Holocene lake basin
seem to be minimal (Russell et al., 2003a).
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Figure 8.9: Bathymetric map of Lake Edward showing the core locations and a
cross-sectional sketch of the Lake Edward Basin illustrating the water depth
and position of the core sites (from Russell et al. (2003a)).

The long-term climate trend identified at Lake Edward, as seen in many East African
records (Gasse, 2000; Barker et al., 2004; Kiage and Liu, 2006; Gasse et al., 2008),
of an early- to mid-Holocene interval of high lake levels brought about by orbitally
forced increase in monsoon rainfall, followed by increasing aridity from -5.2 ka BP,
as the monsoon intensity declined (Russell et al., 2003a; Russell et al., 2003b;
Russell and Johnson, 2005). In addition to this long term trend several centennial-
to millennial-scale events have been identified, particularly at -4 and 2 ka BP
(Russell et al., 2003a; Russell et al., 2003b; Russell and Johnson, 2005). Several

high-resolution studies during the late Holocene have identified climatic events of
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multi-decadal duration at Lake Edward (Russell et al., 2003b; Russell and Johnson,
2005, 2007), but are not discussed here in detail due to the main focus of this

research being on orbital-scale changes.

Evidence for wet conditions in the Lake Edward basin during the early- to mid-
Holocene (from ~11.2 to 6.7 ka BP) comes largely from pollen evidence which
shows that moist semi-deciduous, lowland forest taxa (e.g. Celtis spp., Alchornea
spp., Olea spp. and Moraceae) were prominent (Figure 8.11). Higher lake levels
were inferred, as much as 12.5m based on beach shorelines between 11.2 and 9 ka
BP (Beuning and Russell, 2004). A subsequent early Holocene decline in lake level
was thought to be due to tectonic lowering of the Semliki outlet and not climatically
induced (Laerdal et al., 2002; Russell et al.,, 2003a). Beuning and Russell (2004)
estimated that an increase of 25-60% in annual precipitation compared to present
(1500-2000 vs. 1200mm/yr today) would be required to sustain the extensive moist
semi-deciduous lowland tropical forest on the Rift Valley floor. It was possibly even
wetter between ~9 and 6.7 ka BP, based on slight changes of the pollen taxa,
relatively high sedimentary sulphur concentrations (tracer for iron delivery from the
catchment) and clastic sedimentation, indicating greater runoff (Figure 8.10). BSi
concentrations also declined gradually during this period suggesting lake levels had
risen and an increase in flow at the outlet due to enhanced rainfall, resulted in
decreased residence time of DSi in the lake (Beuning and Russell, 2004). However,
Russell and Johnson (2005) emphasised that increased wetness would actually
mobilise more DSi resulting in an increase of BSi accumulation, assuming that
diatoms were the main phytoplankton. As with Lake Victoria, and some of the other
large Africa lakes (e.g. Lake Malawi (Bootsma, 2003)) the hypolimnion of Lake
Edward is too small to sustain the long-term changes seen in the BSi record.
Russell and Johnson (2005) calculated the residence time of DSi in Lake Edward to
be only 4 years and concluded, therefore, that river inputs to the lake controlled the

supply of DSi.
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8: Lake Edward

The onset of drier conditions was apparent at -5.4 ka BP at Lake Edward due to the
presence of authigenic calcite and a change in lithology from dark gray clays to
reddish carbonate mud reflecting a transition to more arid conditions (Russell et al.,
2003a; Russell and Johnson, 2005). The long-term positive trend in %Mg in calcite
was used a as proxy to identify progressively more arid conditions and a gradual
reduction in monsoon intensity (Figure 8.12) (Russell et al., 2003a; Russell and
Johnson, 2005). The Mg content of calcite rises as evaporative concentration of a
lake increases (Kelts and Hsu, 1978; Russell et al., 2003a). From 5.2 to 2 ka BP
Mg% rose gradually indicating increasing aridity, and then from -2 ka BP a slight
decrease in Mg% suggested a return to wetter conditions. The 6180 composition of
calcite also shows this long-term trend (Figure 8.12) (Russell et al., 2003b; Russell

and Johnson, 2005).

Mg (mol %) 513C (%o PDB)

-2 0 2
§ 180 (%o PDB)

Figure 8.12: Mg% and 6180and 613C in calcite for core E96-5M, Lake Edward
(from Russell et al. (2003b). The long-term trend of increasing Mg% and 6180
and 513C in calcite indicated that the lake water became progressive enriched
during the late Holocene due to evaporative concentration under drier
conditions (reduced P/E).

Ferruginous sands in core E96-2P provided clear evidence of lake low stands
between -4.0 and 2.0 ka BP, but the precise timing of these events were difficult to
establish (Russell et al., 2003a). Through high-resolution analysis of Mg% and
BSi%, a series of decadal- to centennial-scale droughts was identified during the

last 4.9 ka BP (Russell et al.,, 2003b; Russell and Johnson, 2005). The covariance
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of high-resolution Mg% and BSi% records in core E96-1P indicated that low BSi%
represented reduced lake levels, as increased alkalinity through the evaporative
concentration of dissolved carbonate would encourage the dissolution of diatom
frustules in surface sediments and the formation of inorganic Si nodules, suggesting
that BSi during at least the last ~5000 years was a water balance or drought
indicator rather than a diatom productivity measure (Russell and Johnson, 2005). A
drought event was identified at ~4.2 ka BP, which coincided with a severe drying
episode recognised in many other East African palaeoclimate records (cf. Gasse
2000). Immediately prior to 3.6 ka "*C BP, Lake George to the east desiccated and
to the north Lake Albert exhibited lake low stands (Viner, 1977; Beuning et al.,
1997c¢), indicating regional aridity in western Uganda. Although a more significant
low stand was identified at Lake Edward at ~2 ka BP from a 7% shift in Mg% in
clacite (Russell et al., 2003b; Russell and Johnson, 2005). Desiccation of Lake
George would have resulted in an abrupt termination of nutrient-rich, warm waters
flowing into Lake Edward through the Kazinga Channel (Russell et al., 2003a).
Between ~5.4 to 2 ka BP lake levels in Lake Edward were lower than present until
the water level rose shortly after ~2ka BP, possibly indicating re-establishment of
the connection between Lake Edward and Lake George through the Kazinga
Channel (Russell et al., 2003a).

In summary, the environment during the early- to mid-Holocene surrounding Lake
Edward was one of moist, tropical forest with high P/E and lake levels, in response
to enhanced monsoon rainfall driven by orbital forcing and combined with changes
in surface boundary conditions, increased soil moisture and higher sea-surface
temperatures (Kutzbach and Street-Perrott, 1985). From the mid-Holocene, drier
conditions associated with a decline in monsoon strength, resulted in declining lake
levels. Superimposed on the long-term drying trend were short, abrupt drought
events, including one at ~4 ka BP which was thought to be related to regional aridity
changes across tropical Africa (Street-Perrott and Perrot, 1993). From ~ 2 ka BP,
the climate improved, allowing lake levels to rise and the re-establishment of a
connection between Lakes George and Edward.

158



8: Lake Edward

8.4 Sediment cores and stratigraphy

Three of the cores obtained during the IDEAL expedition (E96-1P, E96-5M and
E96-2P) are used here to form a Holocene sequence (hereafter referred to as 1P,
5M and 2P) (Figure 8.9). Details of the collection and storage conditions of the core
material can be found in Leerdal et al. (2002). Material from these cores is available
on request from LacCore, the US National Lacustrine Core Facility, based at the
Limnological Research Centre (LRC) at the University of Minnesota, USA. Core
descriptions taken from Russell et al. (2003a) and Beuning and Russell (2004) are

presented in the following sections.

Due to varying lengths and therefore varying ages of all three cores, a selection of
material from each core has been used to formulate a record for the whole of the
Holocene period. Suitable core sections have been chosen for analysis based on
their sedimentary patterns in order to avoid erosion surfaces and sedimentary
hiatuses found in some of the cores (Russell and Kelts, 1999; Lzerdal et al., 2002;
Russell et al., 2003a; Beuning and Russell, 2004).

8.4.1 E96-1P

Core 1P (0*15.5’S, 2935.0'E), with a length of 706 cm was collected from 63m
water depth (Figure 8.9), the deepest part of the basin to be cored. It is composed
of alternating beds of dark calcareous sapropel and diatom ooze (Figure 8.13a).
Below 240cm the diatom ooze is well-laminated, typically on mm-scale, and
amorphous opaline silica nodules of 0.3 to 3cm diameter occasionally occur
(Russell et al., 2003a). Biogenic silica and TOC are high throughout the core, up to
~60% and ~30% respectively (Laerdal et al., 2002; Russell et al.,, 2003a). Fine
charcoal fragments are present throughout the core. 1P appears not to contain any

erosion surfaces or hiatuses (Laerdal et al., 2002).

8.4.2 E96-5M

Core 5M (021.4’S, 2942.1E) was the longest to be extracted from Lake Edward
(768.5cm) (Figure 8.13b), from a water depth of 30m to the east of the Kasindi Fault
(Figure 8.9). The base of the core to 564cm, consists of a sapropel clay with no
structure and relatively rich in diatoms (BSi: ~3-12%) (Laerdal et al., 2002; Russell et
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al., 2003a). This unit terminates at 564cm with a wavy, unconformable contact with
the overlying unit. Radiocarbon dates from either side of this contact indicate that
there is only a brief hiatus, if any (Russell et al., 2003a). From 564 to 190cm a
darker, organic-rich and diatom-depleted sapropel clay continues, containing
fragments of ostracods, fish and molluscs. This unit terminates with an upper
erosional surface and with a 6cm-thick calcareous mud containing sand-sized
mineral aggregates and cemented clay particles. Radiocarbon dates confirm that
this is a hiatus in the sediment record (Russell et al., 2003a). The upper unit from
~184cm to the top is a organic-rich and diatom-depleted clayey carbonate mud

containing fragments of ostracods and fish bones.

8.4.3 E96-2P

Core 2P (0%18.9'S, 2937.1°E) is 489cm long and was collected from a water depth
of 46cm (Figure 8.9). The base to 330cm, comprises a organic-rich (TOC: ~10-
20%), finely laminated diatom ooze (BSi: ~30-42%) (alternating sub-mm laminations
with sapropelic clays) (Figure 8.13c). In the middle of this unit is a 13cm-thick
calcareous silty clay unit which has an erosional upper and lower contact and has
subsequently been interpreted as a slump deposit (Russell et al., 2003a; Beuning
and Russell, 2004). From 330 to 125cm a sapropelic clay with lenticularly laminated
diatomaceous intervals is present. This is abruptly terminated by a ferruginous sand
unit containing ostracod and plant debris (36cm-thick). Dating either side of this
erosion surface indicates a sedimentary hiatus of approx. 2000 years (Russell et al.,
2003a). Above this unit is a organic-rich calcareous mud deposit with occasional

thick black sand lenses.
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8.5 Age models

As already highlighted in the previous section, three sediment cores from Lake
Edward were used to form a complete Holocene record. An age model for each
individual core was already available (Russell et al., 2003a) (1P and 5M) and
Beuning and Russell (2004) (2P). Based on radiocarbon dates from charcoal, plant
material and wood, age-depth models were formed through linear interpolation
between individual dates, to account for varying sedimentation rates (Russell et al.,
2003a). Core chronologies were based on terrestrial material only due to a old
carbon reservoir effect resulting in large errors of ~3000-4000 "C years on aquatic
material (Laerdal et al., 2002). Age models were constructed in the same way as
those previously published but with re-calibrated radiocarbon dates with the latest
CALIB program (version 6.0) (Stuiver et al., 2012).

8.5.1 E96-1P

The core chronology for 1P was based on 6 radiocarbon dates and the age model
was constructed using linear interpolation between dates (Table 8.1; Figure 8.14).
No obvious hiatuses or erosion surfaces were present. The sediments in 1P span
from ~3400 yrs BP at the base to ~900 years BP at the top of the sequence.

Table 8.1: Summary of 'C age determinations for core E96-1P. All
radiocarbon ages were calibrated to calendar years using CALIB 6.0 (Stuiver
et al., 2012).

Error Calibrated age Calibrated dates
Depth 'C (*c range (10) using Calendar after Russell et al.
{cm) date years) CALIB6 years BP 2003a) (cal. yrs BP) Material
2 1020 40 910 976 943 932 Charcoal
146 1225 85 1065 1188 1127 1171 Charcoal
238.5 1530 70 1352 1424 1388 1410 Charcoal
486 2560 110 2486 2763 2625 2738 Charcoal
593.5 3090 60 3243 3378 3311 3279 Charcoal
7041 3220 45 3385 3472 3429 3449 %’am'"eae
ragment
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Figure 8.14: Age-depth model for E96-1P. Dates are expressed in calendar
years BP (cal. yrs. BP) (modified after Russell et al. (2003a)).

8.5.2 E96-5M

The age model for 5M is based on nine radiocarbon dates (Table 8.2), and was
constructed using linear interpolation between calibrated dates (Figure 8.15). As
identified in the sediment sequence, a hiatus occurs at ~190cm. The sediments of

5M cover the last 6100 yrs.
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Summary of 1M4C age determinations for co

re

E96-5M. All

radiocarbon ages were calibrated to calendar years using CALIB 6.0 (Stuiver

Table 8.2:
et al., 2012).

Error
Depth M4C (14C
(cm) date years)
30 895 40
60 1030 35
184.2 1770 35
195.7 2313 47
261.7 2771 48
3954 3610 50
554.2 4500 55
595.8 4800 160
755 5310 110

0
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(10) using CALIB 6

742
924
1616
2306
2837
3852
5051
5431
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years BP
800 771
967 946
1676 1646
2359 2333
2895 2866
3979 3916
5144 5098
5663 5547
6208 6098
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Charcoal
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Figure 8.15: Age-depth model for E96-5M. Dates are expressed in calendar
years BP (cal. yrs. BP) (modified after Russell et al. (2003a)).
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8.5.3 E96-2P

The age-model for core 2P was based on six radiocarbon dates (Table 8.3), and
similarly constructed using linear interpolation (Figure 8.16). A hiatus was identified
at ~125cm (Figure 8.13c) (Russell et al., 2003a). Radiocarbon dating of charcoal
fragments from either side of the erosional surface indicates an interruption in the
sediment record of ~2000 years (Russell et al., 2003a). Also, identified in 2P was a
reworked deposit towards the base of the core at ~396-409cm which was
compositionally very different from the surrounding sediments and was dated to
20,600 “C years (Lzerdal et al., 2002; Russell et al., 2003a; Beuning and Russell,
2004). It was identified as a slump deposit from the surrounding steep terrain and
may have been seismically activated (Russell et al., 2003a; Beuning and Russell,
2004). This deposit was removed from further analysis and the age model accounts
for this (Figure 8.16).

Table 8.3: Summary of '“C age determinations for core E96-2P. All
radiocarbon ages were calibrated to calendar years using CALIB 6.0 (Stuiver
et al., 2012).

Depth '“C Error Calibrated age range Calendar Calibrated dates after  Material
(cm) date ('“C (10) using CALIB6 years BP Beuning and Russell

years) 2004) (cal. yrs BP)
12 1203 42 1065 1176 1121 1139 Charcoal
36 1737 85 1539 1736 1638 1658 Charcoal
86 1950 90 1811 2002 1907 1914 Charcoal
1247 3950 70 4293 4448 4371 4415 Charcoal
128.7 5920 100 6639 6885 6762 6731 Charcoal
Gramineae
4725 9800 60 11182 11253 11218 11198 Fragment
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Figure 8.16: Age-depth model for E96-2P. Dates are expressed in calendar
years BP (cal. yrs. BP) (modified after Russell et al. (2003a)).

8.6 Existing data for Lake Edward cores

Additional data was published for the Lake Edward cores collected during the
IDEAL expedition in Laerdal et al. (2002) and Russell et al. (2003a). However, in the
initial publication of the data by Laerdal et al. (2002), age models were tentative and
were subsequently revised in succeeding publications (e.g. Russell et al. (2003a;
Russell et al.,, 2003b; Beuning and Russell, 2004; Russell and Johnson, 2005,
2007)). Russell et al. (2003a) did not publish all of the original data using the new
age models, so the inclusion here of the work by Laerdal et al. (2002) is described
for each core, rather than graphically displayed due to differences in age models
used (Laerdal et al., 2002). Data for biogenic silica concentrations (BSi) was
obtained from Jim Russell at Brown University, Rhode Island, USA for all three

cores. Therefore it was possible to plot them downcore by age using the age
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models derived for this thesis (Figure 8.17). The original downcore plots (Laerdal et
al., 2002) of total organic carbon (TOC), total organic nitrogen (TON),
carbon/nitrogen ratios (C/N), hydrogen index (HI), carbon isotope composition of
organic matter (5'3C) and BSi are presented in Appendix IX.

8.6.1 E96-1P

TOC and TON values fluctuated between 10 and 30% and 0.4 and 2%,
respectively, throughout the core (~3.4 to 0.9 ka BP). C/N values were high,
averaging 27 between 3.4 and 1.7 ka BP (706-300cm), and then they gradually
declined to between 16 and 8 during the later part of the record (~1.7 to 0.9 ka BP /
300-0cm). HI values were high (700-850) throughout the whole core and &'°C
values were low (-27%o) at the base and then rose to -23%. towards the top. BSi was
highly fluctuating between 2 and 60% (Figure 8.17).

8.6.2 E96-5M

TOC and TON varied little between 8 and 12% and 0.5 to 1%, respectively, in the
section of the core used in this thesis (6.1 to 3.9 ka BP / 390-750cm). C/N values
were also stable at 14-16. Hl was high and averaged ~500. §'*C values were steady

at -24%.. BSi was relatively low but stable, between 4 and 11% (Figure 8.17).

8.6.3 E96-2P

TOC and TON were relatively low between 5 and 8% and 0.2 to 0.4%, respectively,
throughout the core section used in this thesis (~11.2 to 6.9 ka BP / 489-134cm).
C/N ratios were fairly constant at ~15 but with occasional fluctuations to 30. Hi
values were high at ~400 to 600 and 5'*C values were very stable at ~-25%o. BSi
values were initially high between 30 and 40% and then gradually decreased to
10% by ~7 ka BP (Figure 8.17).
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Figure 8.17: BSi concentration data for Lake Edward cores, E96-1P, E96-5M
and E96-2P (after Russell et al. (2003a)), plotted against age (cal. yr BP) using
the age models from section 8.5.

8.7 Selection of Lake Edward sediment samples for stable-
isotope analysis of diatom silica (O and Si), and for lipid
analysis

Sediment samples from Lake Edward were carefully selected from a combination of
cores retrieved from the lake during the IDEAL expedition in 1996, to form a
Holocene record that avoided problems associated with discontinuous

sedimentation (e.g. hiatuses, desiccation and erosion surfaces). As already
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displayed in the previous sections, several of the sediment archives exhibited
discontinuous sedimentation or reworked deposits in sections of the cores. Through
strategic sampling from all three cores (1P, 5M and 2P) a suite of samples for
diatom isotope analysis and lipid analysis to document the Holocene period have

been chosen.

Samples from 704-137cm (~3,400-900 yrs BP) of 1P have been selected to cover
the most recent period of the Holocene (Figure 8.13a). 1P is the only core that
shows continuous, uninterrupted sedimentation, probably due to its location in the
deepest part of the basin, furthest from river inputs and the Kasindi fault (Figure
8.9). Sediments between 474 to 394 cm (~6,000-3,900 yrs BP) from core 5M were
chosen to cover the mid-Holocene period, avoiding the hiatus at 190cm. Material
from core 2P were selected from 489 to 134cm, avoiding the hiatus of 2000 years at
125cm and to span the period from ~11,100 to 6,900 yrs BP.

From microscopic observation | observed that the most significant contribution of
biogenic silica to Lake Edward sediments was from diatoms. The majority of
sediments in the selected core sections have very high biogenic silica
concentrations, up to 68% in 1P (Laerdal et al., 2002; Russell et al., 2003a), making
them particularly suitable for extracting diatoms for stable-isotope analysis. In
addition, high TOC throughout the cores (Leerdal et al., 2002) make them good for
lipid analysis. Similarly to the sampling strategy used for Lake Victoria, sediment
samples from Lake Edward were selected at intervals of approximately every 500
years (n = 21) in order to observe millennial-scale changes through the Holocene.
This sampling resolution was applied due to the analytical costs involved for isotope

analysis and the scientific priority to obtain records of long-term changes.

8.7.1 Sample specific methods used to clean-up diatom silica from
Lake Edward for stable-isotope analysis (O and Si)

Amorphous inorganic silica nodules and concretions were identified in sections with
low BSi in the sediment record of core 1P (Figure 8.13a) by Russell et al. (2003a)
and Russell and Johnson (2005), and therefore may impact on isotope signatures if
present in diatom samples used for O- and Si-isotope analysis. Through careful
sampling of core 1P, these horizons have been avoided and no evidence for

inorganic silica nodules were found in 1P samples. However, on one occasion,
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evidence for silica nodules were found in a sample from core 2P via SEM (Figure
8.18); this was the only occasion that these structures were observed and they have
not been identified in 2P before. | consider this to be a small, isolated example and
therefore it can be assumed that it will not have had a significant impact on the

isotope composition of the respective sample.

S4800 1.0kV 20.1mm x9.00k SE(L) 5.00um

Figure 8.18: Amorphous silica lepispheres (0.5-3pm-diameter) identified in a
single sample from core 2P at 7,900 yrs BP (215-219cm). Thought to be
associated with silica nodules as identified by Russell et al. (2003a) and
Russell and Johnson (2005) in core 1P.

Due to their high diatom concentrations, most of the Lake Edward samples were, in
the first instance, good to work with. The main contaminant remaining after organics
and carbonates had been removed (for methodology see section 5.4.5 in Chapter 5)
was clusters of silt- and clay-sized mineral grains together with diatom fragments,
forming aggregates of 30-50 pm diameter (Figure 8.19). This problem was
overcome by sonifying the samples for short bursts of 10 seconds at a time (to
avoid unnecessary breakages of diatom frustules), repeated 10-20 times to break
down the mineral aggregates into individual components. The samples were then

sieved at the usual 20, 38 and 63pm sieve sizes, and the resulting sub-samples
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were chosen for further clean-up procedures (e.g. differential settling and SPT)
based on the remaining contaminants. Two samples, one from 1P (~2,900 yrs BP;
531-537cm) and one from 5M (3,900 yrs BP; 394-402cm) contained mineral
aggregates that could not be broken up and therefore removed by sieving. Under
cross-polarised light, the aggregates appeared to be composed of feldspar and
quartz grains cemented together by an opaque mineral cement (possibly calcite or
amorphous silica), very dissimilar in composition to the other aggregates that were
easily broken-up. It is likely that these cemented aggregates are associated with
inorganic precipitation, possibly with the formation of Si nodules and concretions,
although this cannot be determined for certain. The cemented mineral aggregates in
these two samples formed a large proportion of the sample (50:50 diatoms to

mineral aggregates) and were therefore discounted for further analysis.
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Figure 8.19: Examples of mineral aggregates found in samples throughout the
Lake Edward cores by (a) light microscopy and (b) SEM.
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In addition to mineral aggregates, some of the Lake Edward samples also contained
a significant green algae component. In particular, in the Late Holocene record (1P),
Pediastrum boryanum (Figure 8.20) and to a lesser extent an unidentified
Botryococcus spp. (different from that found in Lake Victoria) were present.
Interestingly, the majority of Pediastrum floated to the top of the conical flask during
the organic matter removal stages and could be decanted off. Any remaining
Pediastrum in the sample were removed from the diatoms through differential
settling. Bofryococcus was removed during the wash-stages of SPT, as described

for Lake Victoria in section 7.7.1.

IOum

Figure 8.20: Light microscopic image of Pediastrum boryanum, commonly
found in abundance in the late Holocene record of Lake Edward.

Another problem encountered in Lake Edward sediments, particularly those that
were very diatomaceous, was that mats of interlocking diatom girdle bands trapped
contaminants (e.g. mineral grains, green algae) (Figure 8.21). However, this was
overcome by repeated sonication and re-sieving. And finally, due to large charcoal
fragments found in some samples, the >63pm fraction was avoided for isotope

analysis when necessary.
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54800 1 OkV 19.0mm x220 SE(L) 200um

Figure 8.21: SEM image of “mats” of interlocking girdle bands that occurred
in Lake Edward sediments and require sonication and re-sieving to
disentangle them in order to remove any contamination trapped in-between.

8.8 Lake Edward sediment samples for lipid analysis

Samples were selected for lipid analysis at a resolution of -500 years from the
length of the Holocene (n = 21). The methods used to identify and quantify n-
alkanes, n-alkenes and botryococcene compounds from the total lipid fraction are

fully described in Chapter 5, sections 5.4.8 to 5.4.9.

8.9 Results
8.9.1 Purified diatom silica

Diatoms form the largest biogenic silica component in Lake Edward sediments
(>99%) with the addition of an occasional sponge spicule or phytolith. The diatom
assemblages were dominated by a few main genera; Stephanodiscus, Surirella and

Nitzschia (Figure 8.22). Stephanodiscus spp. were dominant throughout the whole
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Holocene record. A notable shift in the diatom species composition during the mid-
Holocene, between 5.2 to 4.3 ka BP (core 5M between 565 and 455 cm) was
observed when purifying diatoms for isotope analysis. A change from a mixed
assemblage of diatom species comprised of Stephanodiscus, Aulacoseira, Suriella,
Nitzschia, Synedra and Cymbella to a composition of purely one taxon,
Stephanodiscus, occurred. Of the 21 sediment sample depths selected (500-year
resolution), 19 of the samples were successfully purified for O- and Si-isotope
analysis. Apart from some diatoms that showed signs of breakage (especially the
large Suriella spp.), thought to have incurred during the clean-up stages, the
remainder were well preserved throughout the sediments and there were no signs
of dissolution or diagenesis (Figure 8.23). The most common size fraction of
material used for isotope analysis was 20-38um but when charcoal was not present
in the larger fractions, the >63um fraction was frequently analysed. Whenever
possible, for many of the sediment sample depths, several size fractions were
analysed to check for diatom species/size effects and for contamination by problem
components (e.g. charcoal fragments). In total, including replicates and multiple size
fractions for some samples, 33 cleaned diatom samples were analysed for 5'°0 and

5%°Si (full list of samples analysed in Appendix X).
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$4800 1 OkV 19.7mm x600 SE(L)

S4800 1.0kV 19.2mm x1.80k SE(L) ' 30 Oum

Figure 8.22: SEM images of the most abundant diatom taxa in Lake Edward:
(a) Stephanodiscus spp, (b) Surirella spp. (centre) and (c) Nitzschia spp.
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S$4800 1 OkV 19.8mm x130 SE(L) 400um

Figure 8.23: SEM image of purified diatoms from Lake Edward (1.9 ka BP)
used for isotope analysis and showing the excellent preservation and purity
of a diatom sample typically found in Lake Edward.

Analytical precision (20), based on replicate samples, was 0.06%0 for 629Si,
+0.14%0 for 53°Si and +0.38%0 for 51sO. From replicated samples and from the
observed relationship of 629Si to 630Si (Figure 8.24), some samples were removed
due to erroneous results caused by potential contamination in the purified samples
(e.g. charcoal and silicate minerals) (Appendix IX for samples that were removed).
Samples (n = 3) that did not plot along the expected mass-dependent relationship
between 629Si and S30Si (Figure 8.24), were suspected to be contaminated, possibly
by small silicate minerals remaining with the diatoms. Therefore, the final dataset
(see Appendix IX) includes 26 6IsO values and 30 630Si values obtained for the
Holocene. There was no evidence for significant variations in isotope values
between size fractions; consequently, the mean value is employed for depths with

multiple sub-samples.
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Figure 8.24: Silicon isotope measurements of all Lake Edward diatom
samples. Three samples (red squares) do not plot along the expected mass-
dependent relationship between 629Si and 630Si, and therefore are suspected
to be contaminated, probably by small silicate minerals remaining with the
diatoms. These three samples have been removed from further analysis. Error
bars are *0.06%o0 for 629Si and *0.14%o for 630Si (2a).

8.9.2 Oxygen and silicon isotope analysis of diatom silica

During the Holocene, 6180datom values varied by 7.2%0 in the sediments of Lake
Edward (Table 8.4; Figure 8.25a). Early Holocene (-11.1-7.3 ka BP) 6180 datom
values were relatively low and stable, although fluctuating between +36.8 and
+38.5%0. Between -6.9 and 5.6 ka BP 6180 datomvalues increased abruptly by 4.6%o0,
from +35.4 to +40.0%0. A sudden decrease of 3.2%0 between -5.6 and 5.2 ka BP
was followed by an abrupt increase of 3.5%0 at 4.4 ka BP to +40.3%0. From -4.4 ka
BP onwards, 6180 daomvalues gradually began to increase, reaching a maximum for
the whole Holocene (+42.6%0) at -1.9 ka BP and then decreasing slightly (to +41.6

at -1.4 ka BP) before reaching +42.2%o0 at -1 ka BP.

S¥Sidiaom values varied by 1.67%0 during the Holocene, from +0.49 to +2.16%0
(Table 8.4; Figure 8.25b). During the early Holocene (-10.7 to 9.8 ka BP), they were
relatively low (+0.49 to +0.60%0) after declining from +1.07%0 at 11.1 ka BP.
Between -9.8 and 9.5 ka BP, a positive shift of 0.51 %0 occurred leading to stable
values (+0.69 - +1.00%0) lasting until -4.4 ka BP. From -4.4 to 3.4 ka BP 530Sidaom
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values increased by +1.23%o to the highest value of the entire Holocene (+2.16%o),
shortly followed by an abrupt decrease to +1.06%. at ~2.9 ka BP. During the Late
Holocene (~2.9 to 1.0 ka BP) they rose again to relatively high values, peaking at
+1.99%0 at 1.4 ka BP, followed by a small downturn to 1.92%. by ~1 ka BP.

The relationship between 8*°Sigiaom and 8'®Ogiatom, although not directly causative, is
statistically significant (R*> = 0.63; p < 0.0001). Showing a trend of increasing
5°°Sigiatom With increasing 8'®Ogiatom (Figure 8.26).

Table 8.4: Oxygen and Silicon isotope values from diatoms in Lake Edward
cores, with corresponding depths and estimated ages.

Depth Age Size fraction  5"Ogiatom 8 Sidiatom 8° Sidiatom
{cm) (cal. yr. BP) (pm) (%o) (%) (%)

40.0 991 >63 - +0.97 +1.89
40.0 991 38-63  +41.83 +1.02 +2.06
40.0 991 20-38  +42.54 +0.91 +1.80
248.3 1436 >63  +41.56 +1.07 +2.08
248.3 1436 38-63  +41.82 +1.05 +2.00
248.3 1436 20-38  +41.30 +1.00 +1.88
350.0 1945 20-38  +42.88 +0.94 +1.81
350.0 1945 20-38  +42.70 +0.89 +1.72
350.0 1945 >63 - +0.82 +1.53
350.0 1945 38-63  +42.11 +0.95 +1.81
534.0 2931 >63  +41.41 +0.64 +1.19
534.0 2931 >63  +41.31 +0.50 +0.93
702.3 3426 >63  +40.35 +1.14 +2.22
702.3 3426 >63 - +1.12 +2.10
458.4 4386 20-38  +40.31 +0.44 +0.93
562.5 5189 20-38  +36.77 +0.31 +0.69
608.8 5593 20-38  +39.98 +0.41 +0.78
137.2 6869 >63  +35.38 +0.41 +0.80
167.2 7258 20-38  +37.78 +0.48 +0.90
217.5 7908 20-38  +36.81 +0.38 +0.76
256.7 8417 >63  +38.53 +0.37 +0.71
297.0 8939 20-38  +36.94 +0.45 +0.94
338.0 9470 >63 - +0.59 +1.09
338.0 9470 20-38  +38.52 +0.49 +0.92
364.3 9810 >63  +36.56 +0.22 +0.49
364.3 9810 >63  +36.97 +0.27 +0.50
410.5 10409 >63  +38.40 +0.31 +0.57
431.5 10681 - >63  +38.14 +0.32 +0.60
466.3 11131 20-38  +38.30 +0.57 +1.12
466.3 11131 20-38  +37.95 +0.54 +1.03
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Figure 8.26. 5 siciatom VS. 6 oaiatem values from Lake Edward Holocene
sediments.

8.9.3 Lipids: abundance and distribution

The hydrocarbon fraction of total lipids has been identified and quantified for the
Lake Edward Holocene record (Appendix Xl| for the full dataset). The Carbon
Preference Index (CPI), which ranged from 1.1 to 10.2, is often used as measure of
odd- over even-numbered carbon molecules in n-alkanes, where odd-numbered
chains dominate primary hydrocarbon compositions (Meyers and Ishiwatari, 1993).
Low CPI values (~1) may indicate diagenesis, although in this case, a decrease in
the abundance of n-alkanes does not parallel changes in the CPI (Figure 8.27).
Instead, the CPI responds to a sudden shift to dominance of the C23 n-alkane,
suggesting a significant input from aquatic macrophytes, which can be an important
contributor of organic matter to lake sediments (Brenner et al.,, 2006). In addition,
the presence and high abundance of n-alkenes, which are hydrocarbons with a
single bond and are less refractory than n-alkanes, in Lake Edward sediments

supports the notion that diagenesis has been limited in the majority of the record.

The dominant components of the hydrocarbon fraction were the mid- to long-chain
n-alkanes and n-alkenes (Figures 8.27 and 8.28; Table 8.5). C2, C25, C27, C2 and
C31 n-alkanes all have significant abundances. The long-chain, C2 and CX

homologues were the dominant n-alkanes in the early- to mid-Holocene period with
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a shift between ~3.9 to 3.4ka BP to mid-chain n-alkanes, with a C,; homologue
predominance for the late Holocene (Figures 8.27 and 8.28;, Table 8.5). A
dominance of long-chain n-alkanes are indicative of terrestrial higher plant origin
(Eglinton and Hamilton, 1967), whereas mid-chain n-alkanes have been identified
as being characteristic of aquatic plant macrophytes (submerged and floating)
(Cranwell, 1984; Viso et al., 1993; Ficken et al., 2000).
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Figure 8.28: Typical homologue distribution and abundance of n-alkanes and
n-alkenes for three selected samples from Lake Edward during the Holocene.

A n-alkane proxy, Pwax = (C27+ C2g+ C31)/(C23+ C25+ C27+ C29+ C31), was proposed
(Zheng et al., 2007) to distinguish between contributions from emergent/terrestrial
and submerged/floating plants, as the former exhibit characteristic C27 and C2 n-
alkanes dominance and the latter maximise at C23 and C25 n-alkanes (Ficken et al.,
2000). In the Holocene at Lake Edward, Pwax varied from 0.18 to 0.75, signifying

changes in the origin of the organic matter (Figure 8.29a; Table 8.5). At the
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beginning of the Holocene P,., values increased from 0.56 to 0.67 and remained
high and relatively stable (between 0.65 to 0.75) during the early Holocene (~11-6ka
BP) suggesting contributions largely from emergent aquatic macrophytes and
vascular land plants. At 5.6 ka BP, an abrupt shift to lower values (0.50) occurred,
suggesting a significant input from submerged/floating vegetation at that time. Just
as abrupt, Pu.x values were briefly restored to early Holocene values before
beginning to decrease persistently at ~4 ka BP. P,,, values begin to decrease
rapidly to a minimum at 2.4 ka BP, suggesting a decline in contributions from
emergent/terrestrial vegetation and a shift towards significant input from submerged
and floating macrophytes. During the late Holocene (~2.4-0.9 ka BP), P,.x values
fluctuated greatly but remained very low, indicating the predominance of
submerged/floating vegetation.

Another useful n-alkane based proxy proposed by Ficken et al. (2000) to reflect
non-emergent aquatic plant input to lake sediments is the Paq = (C23 + C2s)/(Cas +
Cas + Cy9 + Cs4). A Pyq value of greater than 0.4 signifies a important fraction of
sedimentary n-alkanes from submerged/floating plants (Ficken et al., 2000). In Lake
Edward sediments during the Holocene, P,q varied from 0.36 to 0.93 (Figure 8.29b;
Table 8.5). At the beginning of the Holocene (~11.1 ka BP) P,, values were
relatively high (0.57). Between ~10.7 to 6.1 ka BP, P, values were low and stable
(0.36-0.49), indicating a prolonged period of reduced input from non-emergent
aquatic plants. Between 6.1 ka and 5.6 ka BP, a sharp rise in P,4 values to 0.66 was
followed by an abrupt decline to minima values (0.36) at 5.2 ka BP. From ~5.2 ka
BP to 2.4 ka BP P,q values steadily increased to maximum values of 0.93, signifying
increasing contributions from submerged/floating macrophytes. From ~2.4 ka BP
onwards, P, values remained high but fluctuating. Py.x and P,q values co-vary in
the opposite direction, which reflects the similar n-alkane components used to
distinguish relative inputs from emergent/terrestrial plants (Pwax) and
submerged/floating macrophytes (Pj).
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n-Alkenes were also present in the hydrocarbon fraction and occurred in high
abundance (1-118ug/g) throughout the Lake Edward sediments (apart from ED?7;
~6.9 ka BP), with C numbers ranging from 21 to 29 and odd-over-even
predominance, with C,7.; being the dominant homologue (Figure 8.28; Table 8.5),
similar to Lake Victoria (section 7.9.3 in Chapter 7). Many studies have reported
high abundances of mid- to long-chain n-alkenes in river and lacustrine sediments
and suggest that they are algal indicators (Matsumoto et al., 1990; Zhang et al.,
2004; Theissen et al., 2005; de Mesmay et al., 2007; Xu and Jaffé, 2009). Zhang et
al. (2004) formulated the P,y proxy (Pag = (Ca1 + Cosq4 + Copq +
Cyclobotryococcatriene)/( Cas.q4 + Casiq + Ca7.4 + Cyclobotryococcatriene + Cyg + Caq +
Cs3)) to incorporate these n-alkenes and determine their relative abundance to
terrestrial and emergent plants to determine the algal contribution. As no
botryococcene compounds were found in Lake Edward, Zhang et al.’'s (2004)
formula has been modified to incorporate just n-alkene compounds: Pag = (Czs4 +
Cas:1+ C27.1)/( Caa: + Cas:4 + Copiq + Cog + Caq + Caa).

The P,q values of Lake Edward sediments range from 0.10 to 0.87, signifying
variable contributions from algae during the Holocene (Figure 8.29c). During the
early Holocene P, values were relatively low, suggesting minimal inputs from algae
and dominance by terrestrial sources. Between ~7.3 and 5.6 ka BP a shift to much
higher values (0.36-0.58) occurred, signifying increased contributions from algal
components. An abrupt transition from high (0.58) to minimal (0.07) P4 values
occurred between 5.6 and 5.2 ka BP, indicating a significant decline in contributions
from algae. From 5.2 ka BP, a progressive increase in the P,4 value, to a maximum
of 0.87 at ~2.4 ka BP occurred, indicating a period of increasing importance of algal
sources relative to terrestrial plants. From ~1.4 to 1ka BP, P,y values shifted from
maximum to almost minimal values for the whole Holocene, signifying a sudden

change from algal to terrestrial plant dominance.

The Pag and P4, records are remarkably synchronous in Lake Edward (Figure 8.29).
As was highlighted in section 7.9.3 at Lake Victoria, a relationship between algae
and floating/submerged macrophytes is highly likely as floating macrophytes are
known for their epiphytic communities (Komarek and Jankovska, 2001; Brenner et
al., 2008). Figure 8.30 shows this strong positive relationship (R? = 0.84; p <0.0001)

between P,4 and Py,.
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Figure 8.30: Pag and Pag proxies are significantly correlated (R2 = 0.84; p <
0.0001) in Lake Edward sediments.

8.10 Chapter summary

Like Lake Victoria, Lake Edward, a rift-valley lake on the Uganda-DR Congo border,
is a headwater lake of the White Nile fed by rivers that drain the mountains of
Burundi, DR Congo and Uganda. Again, similar to Lake Victoria, pre-existing
material was available for Lake Edward, obtained during the IDEAL expedition in
1996. Unfortunately, no single core spanned the entire Holocene period, rather a
combination of three cores was used and together with careful sampling,
discontinuous sedimentation intervals (i.e. hiatuses) were avoided, providing a
record for the whole of the Holocene. The sediments of Lake Edward are highly
diatomaceous and organic rich making them ideal for both diatom isotope analysis
and lipid-biomarker analysis. Although there were problematic sediment
components mixed in with the diatoms, these were eventually eliminated by a
variety of methods. Apart from a few diatom samples that could not be purified to an
acceptable level for isotope analysis, a ~500-year resolution record for both lipid
biomarkers and diatom isotope composition (O and Si) was obtained for the

Holocene at Lake Edward.
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Chapter 9 Discussion

9.1 Introduction

The first part of this chapter provides interpretations of the physical, chemical and
isotope data of the modern waters from the Nile Basin. The modern waters are then
used to help explain the palaeo-records of Lakes Victoria and Edward.
Subsequently, Si cycling dynamics in the White Nile headwaters was assessed
during the last 15 ka BP and compared to a proposed model of forest ecosystem
development, followed by comparison with other lake sediment records. In sections
9.2 and 9.3 reference to specific sampling sites are numbered in square brackets
and correspond to those presented in Table 6.1 and Figure 6.1 in Chapter 6.

9.2 Modern waters: 5'%0 and &°H

Remarkably, all surface-water samples from the Nile drainage plotted along
effectively the same evaporative line with a slope of about 5 (Figure 6.8a), implying
similar isotope systematics, including kinetic effects imparted during evaporation.
Individual sampling sites migrated seasonally up and down the LELs representing
their respective sub-basins (Figure 6.8), yielding dry-season samples that were
significantly higher in 8°H and 8'®0 than wet-season samples, as the combined
result of increased evapotranspiration and evaporation losses under conditions of

lower humidity.

The isotopically lowest values were obtained in the headwaters [samples 1-7, 25-
33] and the isotopically highest towards the Delta in Lake Qarun [48-50] (Figures
6.8 and 6.9). Progressive downstream increases in both isotope ratios along the
Nile are attributable mainly to cumulative evaporation losses from swamps and
open water bodies, such as the Sudd, the equatorial great lakes and slow moving
branches of the River Nile. This inference of evaporative enrichment is supported by
the increase in electrical conductance and precipitation of alkali metals (Na* and K*)
in downstream waters (Figures 6.3-6.7). However, the composition of the waters
also reflect the strong northwards decline in total rainfall and total number of wet
months (Figure 3.4). The downstream increase in 8'°0 was only significant during
the wet season (Figure 6.10). In contrast, the latitudinal trend was not well defined

during the dry season when water-management practices such as irrigation and use
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of dams to control seasonal flow were more prevalent, most notably along the Main
Nile (Figure 6.9). For example, waters collected from east of Lake Tana [25, 30] in
the Ethiopian Highlands had greatly enriched §'®0 values during the dry season
(Figures 6.8c and 6.9), reflecting the use of irrigation in the intensively cultivated
Fogera Plain (~500,000 ha) (World Bank, 2008), which is bounded by the Rivers
Ribb [25] and Gumara [30]. Waters sampled from the Main Nile, close to Khartoum
[41-42), were extremely enriched in '®0 compared to downstream sites (except for
Lake Qarun which is hydrologically closed) [38-40, 43-47] but had a similar
composition to the White Nile [13] upstream (Figure 6.8), indicating a possible
release of isotopically enriched waters from the Jebel Aulia Dam (~50 km south of
Khartoum) on the White Nile (Figure 3.1), shortly prior to sampling at Khartoum.

The corresponding lack of a significant altitudinal gradient in 8'®0 during the dry
season (Figure 6.10) can be explained by several factors: greater evaporative
enrichment as a result of decreased humidity (see elevated EC and high cation-
ratios downstream (Figures 6.3-6.7); active water management in the Tana
headwaters and along the Main Nile; and sampling during more than one dry
season. The altitudinal isotope gradient observed in River Nile waters during the wet
season (-2.6%. km™') was similar to the slope of rainfall samples from other tropical
regions, which varied between —2.7 + 0.3%0 km™ and —1.6 £ 0.05%o km™ (Gonfiantini
et al., 2001), as a result of progressive rainout of O following a Rayleigh adiabatic
condensation process. However, deviations from the average altitudinal gradient

were seen at sub-basin scale in the Nile drainage (not shown).

The most negative values of 8°H and 5'®0 were found at high-altitude sites in the
headwaters of the White [1-7] and Blue [25-33] Niles during the wet season (Figures
6.9 and 6.10). This is attributed to the combined effects of orographic enhancement
and the very continental location with respect to oceanic moisture sources (Indian
and Atlantic Oceans) (Figure 3.3); both these effects are associated with
progressive rainout of the heavier isotopes of hydrogen and oxygen, resulting in
isotopically depleted rainfall. Evaporative enrichment at these sites is limited by the
steep gradients of the rivers and high humidity during the wet season. In addition,
these samples displayed large d-excess values (>10%.) (Figure 6.11), indicating
that they originated from rainfall that formed in part from recycled moisture (Gat and
Matsui, 1991; Gat et al., 1994).
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It has been recently shown that precipitation during the summer rainy season in
western Ethiopia carries the isotopic imprint of recycled continental moisture
transported by south-westerly and westerly flow from the Congo rainforest and the
swamps of the Sudd (Levin et al., 2009; Kebede and Travi, 2012), supporting earlier
work by Rozanski et al. (1996) and Sonntag et al. (1979). Kebede and Travi (2012)
found that water samples from the Blue Nile Plateau had the highest d-excess
values in their Ethiopian dataset, which they attributed to recycling of moisture
through evapotranspiration and evaporation from open water, at both local and
continental scales. While vegetation-controlled vapour loss (transpiration) is
generally non-fractionating (Salati et al., 1979; Gat and Matsui, 1991; Gat et al.,
1994), evaporation from soils and surface waters produces vapour with high d-

excess values, resulting in subsequent rainfall with these characteristics.

In the northern Ethiopian Highlands during the rainy season, convective clouds tend
to form at the end of the morning as a result of daytime heating of the land, creating
rain in the afternoon (Nyssen et al., 2005). Hence, evaporation from large surface
water bodies (Gat et al.,, 1994), for example Lake Tana and its surrounding
wetlands, are likely to be a significant source of recycled water vapour, resulting in
precipitation and initial surface runoff with large d-excess values. Similarly, over
Lake Victoria (68,000 km?), the largest lake in Africa, rainfall is enhanced by a
strong nocturnal land-lake breeze (Flohn and Fraedrich, 1966); the prevailing south-
easterly trade winds play an important role by displacing the centre of night-time
convergence towards the Rwenzori Mountains in the northwest of the basin
(Nicholson et al., 2000; Yin et al., 2000; Nicholson and Yin, 2002; Okonga et al.,
2006), helping to explain the occurrence of surface waters in western Uganda with
large d-excess values. Isotope data from the IAEA-WMO station at Entebbe, on the
northern shores of the lake, confirm the occurrence of significant rainfall originating
from evaporated waters of Lake Victoria (Rozanski et al., 1996).

With the above evidence in mind, it is suggested that surface water samples from
western Uganda [1-7] and the Blue Nile [25-33] with high d-excess values represent
moisture recycled from continental source(s), including the large water bodies found
in their respective headwaters (notably Lakes Victoria and Tana), together with
contributions from large swamps such as the Sudd and the Bahr el Ghazal in South
Sudan. It is also feasible that in addition to recycled moisture evaporated from Lake

Victoria, the largest d-excess (and most depleted isotope values), found in rivers
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flowing from the glacierized peaks of the Rwenzori Mountains [1-3] reflect elevated
d-excess values developed during snow formation (Jouzel and Merlivat, 1984). The
remainder of the River Nile samples have low d-excess values (<10%.) which are

consistent with evaporative losses from surface waters (Figure 6.11).

9.3 Modern waters: DSi and 5*°Si

Dissolved Si (DSi) is ultimately derived from weathering of silicate rocks. Globally,
weathering rates are high in tropical headwaters where high relief, high annual-
mean temperatures and monsoonal rainfall facilitate rapid physical weathering and
erosion, creating freshly weathered surfaces and thereby enhancing the rate of
chemical weathering (Brady and Carroll, 1994; White and Blum, 1995; Cochran and
Berner, 1996; Gaillardet et al., 1999). In addition to the effects of bedrock
composition, topography and climate, it has been shown that higher plants
accelerate the rate of silicate weathering by improving the moisture and organic-
matter status of soils (Hinsinger et al., 2001). Interactions between plant roots and
soil microbes in the rhizosphere also expedite chemical weathering (Kelly et al.,
1998; Lucas, 2001).

The most important control on dissolved silicon concentrations in the major Nile
sub-basins is bedrock geology (Figures 3.2 and 6.12). Average DSi values were
greatest in the Blue Nile drainage, which is predominantly underlain by trap basalts,
rich in ferromagnesian minerals that are highly susceptible to chemical weathering
(Cochran and Berner, 1996; Dessert et al., 2003; Dupré et al.,, 2003). This is
highlighted in the physical and chemical compositions of the waters where low pH
values (Figures 6.1-6.2) and low concentration of alkali metals (Na* and K*) (Figures
6.6-6.7) reflects the dissolution of ferromagnesian minerals such as Mg®* during
chemical weathering. The seasonal contrast in DSi concentrations was also
greatest in the Blue Nile Basin, which has only one rainy season per year, in
contrast to the bimodal but more evenly distributed rainfall regime of the White Nile
headwaters. Given the steep, exposed topography of the Ethiopian Highlands,
flushing of DSi from soils and desorption of Si from suspended-sediment particles
can be inferred to reach a maximum during the flood season (Hall et al., 1977;
Sinada and Abdel Karim, 1984). In contrast, DSi concentrations in the White Nile
headwaters were lower and declined much more rapidly downstream, which can be

explained by a combination of: 1) quartz-rich, granitoid bedrocks that are more
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resistant to weathering; and 2) rapid silica uptake by Si-accumulating plants in the
densely vegetated equatorial catchments, and by diatom blooms and stands of
aquatic macrophytes in the chain of large lakes and swamps (Talling, 1963, 1966;
McCarthy et al., 1989). Figure 6.12 shows that the Ethiopian Highlands are the
predominant source of DSi for the Main Nile, along which DSi concentrations
decline exponentially with latitude, due to the lack of major tributary inputs after the
River Atbara.

All our water samples from the River Nile were enriched in *Si relative to expected
values for local bedrock, indicating that the light isotope ?Si had been preferentially
removed through formation of pedogenic minerals, phytoliths or diatom frustules.
Based on our current dataset alone, we cannot rule out fractionation of Si isotopes
by neoformation of amorphous silica and clays as an important process in the Si
cycle in the Nile Basin (Basile-Doelsch, 2006; Opfergelt et al., 2008). However, the
large range of 8°°Si values in surface waters and their progressive downstream
enrichment (Figure 6.13) are consistent with intense Si cycling by aquatic
ecosystems. Seasonal contrasts observed in both DSi concentrations and 5%Si
values are most readily explained by strong coupling between DSi supply and
biological demand. In general, DSi concentrations were lowest during the dry
season, when soil moisture and runoff in the catchments were reduced, inhibiting
the mobilisation of Si from soils and sediments, and limiting the available DSi for
biological uptake. The reduction in DSi concentrations during the dry season
corresponded to a rise in 8°°Si values (Figure 6.14), indicating that biological
demand for DSi exceeded supply. This was particularly apparent in the headwater
lakes, and will be discussed in detail later. In contrast, wet-season DSi
concentrations were higher and the corresponding 5*°Si values were less enriched.
This suggests that increased mobilization of Si from the catchments occurred during
the rains, when an influx of turbid floodwaters would also tend to inhibit diatom
productivity (Talling et al., 2009), thereby decreasing biological uptake of the light
isotope 2Si compared with the dry season. Engstrém et al. (2010) observed similar
isotope variations in DSi in a river in northern Sweden, where a combination of
seasonal discharge from snowmelt, vegetation changes and lacustrine diatom

productivity significantly affected the DSi transport in the basin.

The lowest DSi concentrations were found in the headwater lakes or their outflows

(e.g. Lakes Victoria, Albert and Tana) and in the lower reaches of the Nile [45-47], in
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association with elevated 5°Si values (Figures 6.12 and 6.14). Once again, this
inverse relationship (low DSi, high 8*°Si) can be attributed to the balance between
DSi supply and demand. Immediately surrounding the headwater lakes are
extensive wetland areas containing known Si-accumulator plants such as Cyperus
papyrus, Phragmites and other emergent macrophytes that are likely to take up
significant amounts of Si (Gaudet, 1977; McCarthy et al., 1989; Hodson et al., 2005;
Struyf et al., 2007; Struyf and Conley, 2009; Schoelynck et al., 2010). Si extraction
by accumulator plants and diatom blooms during the dry season would significantly
reduce the amount of DSi in the lake waters, driving up 8°°Si values. In the lower
reaches of the Nile, low DSi concentrations and strongly enriched 5*Si values also
reflect an excess of demand over supply. The Main Nile lacks major tributary inputs
for the last ~2700 km of its course through the Eastern Sahara. Terrestrial
vegetation is greatly reduced by the hyperarid climate, which also limits the supply
of DSi along this stretch, resulting in a rapidly diminishing stock as Si is taken up by
Si-accumulating organisms such as diatoms. Storage of floodwaters in reservoirs
behind large dams sited along the Main Nile (e.g. Jebe! Aulia, Merowe and Aswan)
had a similar effect to that of the headwater lakes, since they hold back the flux of Si

downstream and enhance uptake of soluble Si by aquatic organisms.

Several anomalous sites in the White Nile headwaters [3 & 4, 7] displayed low DSi
concentrations (Figure 6.14). Their corresponding 5°°Si values were also very low,
although still greatly enriched relative to the expected 5*°Si signature of the local
bedrock (—0.10 to —0.07%.: André et al. (2006)) (Figure 6.14). These rivers drain the
Rwenzori and Virunga Mountains, respectively. It is suggested that bare rock
surfaces, thin soils and sparse vegetation cover on the upper slopes of these
mountains retard chemical weathering (Moulton et al., 2000) and Si biocycling
(Georg et al., 2006a), resulting in a combination of low DSi concentrations and

depleted 5*°Si values.

Si biocycling appears to be most intense in the Blue Nile Basin, particularly during
the dry season, as the difference between the expected 5%°Si composition of the
local rock (basalt: ~0.29%0 + 0.08%. (Savage et al., 2011)) and the river waters is
greater than in the White Nile Basin (Figure 6.12). Several factors may account for
this large fractionation. Sampling was undertaken at the end of the dry season,
immediately before the rains began, when it is likely that the supply of DSi was at its

lowest whilst biological demand was at its peak. The 5%°Si value of the outflow from
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Lake Tana [35] was already significantly enriched relative to the expected range of
values for basalt and to the Blue Nile further downstream [34], indicating that a large
proportion of this enrichment occurred in the headwaters. It seems likely that
towards the end of the dry season, availability of DSi within the Tana catchment was
very limited, causing the 5%°Si values of river waters to rise as biological demand
persists.

Although the positive correlation observed between 8'®0 and 8°°Si during the wet
season (Figure 6.15) is not directly causal, both isotope ratios evolved in parallel
due to cumulative downstream losses of the light isotopes ®O through evaporation
and ?%Si through biological uptake, respectively. In contrast, during the dry season,
anthropogenic impacts on the hydrological cycle and intense local biocycling of Si
obscured any general trend. When outliers clearly affected by water-management
practices (i.e. irrigation and major reservoirs) were removed [sites: 25, 13 & 41], a
similar positive trend to the wet season was observed, although with higher values
of both 8°°Si and 80 (updated regression not shown: R? = 0.023, p = 0.622).
However, the trendline is still not significant after the removal of these three outliers;
it is likely that the isotope values of other samples from the Main Nile were affected
by human activity to a less obvious degree. Based on the wet-season dataset alone,
Si supply from the Nile headwaters (represented by 5°°Si) appears to be strongly
linked to catchment hydrology (represented by 8'0), which is not surprising given
that mobilisation of DSi from soils and sediments is primarily dependent on rainfall

and runoff.

9.4 Modern waters: summary

Stable isotopes of H, O and Si in surface waters from the Nile Basin were used as
tracers for the hydrological and Si cycles, respectively. Physical and chemical
characteristics of surface waters supported the inferences made from the isotopic
data. Large seasonal shifts in H- and O-isotope compositions reflected changes in
water balance. During the dry season, lower humidity favoured evaporative
enrichment of surface waters and cumulative downstream losses from swamps and
open water bodies. The Main Nile showed the greatest evaporative enrichment, due
to the year-round arid climate and lack of rainfall or tributary input for 2700 km
downstream from its confluence with the Atbara. Seasonal changes in DSi

concentrations and Si isotopes provide useful information on Si cycling under
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different climate regimes in the Nile Basin. This study has increased the global
upper limit of 8°Si for dissolved Si in natural waters by more than 1%o.. Contrasting
geology in the headwaters of the White and Blue Nile is clearly reflected in pH
values, cationic composition and DSi concentrations. The highest levels of DSi (and
low pH and relatively high Mg?* concentration) in the Blue Nile headwaters were due
to the basaltic bedrock and steep, easily erodible, sparsely vegetated slopes of the
Ethiopian Highlands. Low DSi concentrations and correspondingly enriched Si-
isotope values are found in the headwater lakes and in the Main Nile where
depletion of Si by aquatic organisms (notably diatoms and macrophytes) is thought
to be important. Extensive downstream enrichment of Si isotopes and depletion of
DSi during both wet and dry seasons in the River Nile imply active Si biocycling.
The heavy isotope *Si is enriched in surface waters during the dry season due to a
reduction in mobilisation of DSi from the catchment relative to aquatic demand.
Localized anthropogenic impacts on the isotope composition of surface waters are
identifiable with respect to both the hydrological and Si cycles, especially during the
dry season and along the Main Nile where irrigation and retention of stored
floodwaters behind large dams are most prevalent. Nevertheless, modern seasonal
variations of DSi and 8%Si in the River Nile indicate that the Si flux from large
tropical rivers to the oceans is not constant and is likely to be highly variable on

Quaternary time scales.

9.5 Modern waters: Implications for interpreting the
Quaternary palaeorecord

The modern seasonal water isotope data suggest that changes in rainfall induced
by orbital forcing would have had synergistic impacts on the water and Si cycles in
the Nile Basin. The isotopic composition of diatom silica reflects the aqueous
environment in which the frustules formed (Leng and Barker, 2006; Leng and
Swann, 2010). Therefore, diatoms can be used as tracers for the hydrological
(6"Ogiatom) and Si (3°°Sigaom) cycles. In the tropics, 8"®0gawom primarily reflects
changes in moisture balance (P/E ratio) (Barker et al., 2001; Polissar et al., 2006;
Barker et al., 2007; Hernandez et al., 2010; Barker et al., 2011; Hernandez et al.,
2011), and as shown in the modern data (section 9.2), 5'®0,. responds to
seasonal variations in P/E. 8 Sigaom, although a relatively new isotopic proxy,
applied hitherto mainly to marine diatoms, has shown great promise for tracking

changes in continental Si cycling (Street-Perrott et al., 2008; Swann et al., 2010).
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Modern seasonal variations of DSi and 5*°Si in the River Nile indicate that the Si
flux from large tropical rivers to the oceans is not constant and is likely to be highly
variable on Quaternary time scales. Coupled measurements of the O- and Si-
isotope compositions of freshwater diatom frustules preserved in sediment records
have the potential to clarify the relationship between water balance and Si cycling
under different climate regimes. In the following sections, based on the modern
isotope systematics of the Nile Basin, depleted 5'®Ogiaiom Values are interpreted as
indicating reduced evaporative enrichment resulting from a more humid climate
(increased P/E). Low 8*°Sigiatom Values are used to infer an enhanced supply of DSi

relative to the demand from siliceous aquatic organisms.

9.6 Palaeoenvironmental interpretation of Si cycling in the
Lake Victoria basin

During the LGM, tropical Africa was much drier and cooler than today (Gasse, 2000;
Barker et al., 2004; SchefuP et al., 2005; Weijers et al., 2007; Tierney et al., 2008;
Gasse et al., 2008 and references therein) in response to orbitally-induced changes
in monsoon strength (Kutzbach and Street-Perrott, 1985), enabling the major
lowering of lake levels and even complete desiccation of several of the large lakes
(Johnson et al., 1996; Beuning et al., 1997b; Talbot and Lzerdal, 2000; Stager et al.,
2002), and reduced flow of the River Nile (Adamson et al., 1980; Talbot et al., 2000;
Williams et al., 2006). At Lake Victoria, in cores V95-1P and V95-2P, two palaeosols
and a peak in magnetic susceptibility (Figure 9.1i) testify the desiccation as the lake
must have completely dried out to enable soil formation, estimated to have occurred
between ~18 and 17 ka BP and again sometime between 15.9 and 14.2 ka BP
(Talbot and Livingstone, 1989; Talbot and Laerdal, 2000; Stager et al., 2002). The
pollen assemblage, including the presence of Afromontane coniferous tree
Podocarpus, and open vegetation of regional grasslands, indicated cooler and
reduced moisture conditions during the deglaciation (Kendall, 1969; Livingstone,
1975). Limited terrestrial vascular plant input observed in the lipid data between ~21
and 15 ka BP supported an open/sparse landscape (Figure 9.1e-g).
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9: Discussion

Figure 9.1 (previous page): Temporal variations in Lake Victoria sediments of
biogenic silica concentrations (BSi%) (Johnson et al., 1998) (a), oxygen
isotope values of diatom silica (5'®Ogiatom) (b), silicon isotope values of diatom
silica (5*°Sigiatom) (C), total carbon concentration (Total C%) (Johnson et al.,
1998) (d), biomarker proxies to distinguish contributions from; terrestrial and
emergent aquatic plants (P,.) (e), non-emergent aquatic macrophytes
(submerged/floating) (P.g) (f), algae (P.g) (g). Total abundance of
botryococcene compounds (h), magnetic susceptibility (Ngobi et al., 1998) (i),
with equatorial insolation (scale reversed) for June (boreal summer) (Berger
and Loutre, 1991) (j).

Insolation changes alone could not account for the abrupt events observed at Lake
Victoria or elsewhere in tropical Africa during the deglaciation (Kutzbach and Street-
Perrott, 1985). Instead, it has been suggested that the “drying events” recorded at
Lake Victoria were entirely synchronous with the North Atlantic ice-rafting Heinrich
event 1 between ~18 and 15 ka BP (Stager et al., 2002), when maxima ice-rafting
occurred at the onset and end of the interval (Elliot et al., 1998; Bard et al., 2000),
corresponding to the two palaeosols observed at Lake Victoria; creating a link
between high latitude and tropical climates (Stager et al., 2002). An increase in
submerged/floating aquatic macrophytes (Figure 9.1e&f), combined with a peak in
organic carbon (Figure 9.1d) and the presence of lacustrine-type sediments in the
intervening period (~17 to 16 ka BP) support a temporary climate amelioration for
~2000 years, enabling at least a shallow water body to exist (Talbot and
Livingstone, 1989; Talbot and Laerdal, 2000).

Between 15.7 and 14.2 ka BP, a considerable shift in all the measured proxies
occurred suggesting a major change in the climate and environment of the Lake
Victoria basin at that time (Figure 9.1). The transformation coincided with the abrupt
onset of the East African Humid Period (EAHP) at ~15 ka BP when insolation
reached a threshold coupled with feedback mechanisms associated with surface
boundary conditions, increased soil moisture and sea-surface temperature changes,
resulted in enhanced monsoon conditions until ~6 and 5 ka BP (Street-Perrott et al.,
1990; Kutzbach et al., 1996; Kutzbach and Liu, 1997). Rapid filling of Lake Victoria
occurred, and shortly after 14.2 ka BP overflow into the White Nile began (Talbot et
al., 2000; Wiliams et al., 2006). Climate amelioration resulted in the gradual
development of semi-deciduous open forest vegetation around Lake Victoria during
the late-glacial (Kendall, 1969), corresponding to an increasing dominance of
terrestrial vascular plant input (Figure 9.1e-g). As the lake filled, inputs from aquatic

non-emergent vegetation (Figure 9.1f) became less important, presumably due to
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rising lake levels and the resulting increase in water column depth. Productivity from
plankton must have been high in the lake to allow the accumulation of large
quantities of BSi and TC (organic carbon) (Figure 9.1a&d), in stark contrast to the

earlier deglaciation period.

As the climate improved at ~15 ka BP, 5°°Sigiatom Was high (Figure 9.1c) signifying
that DSi was in demand by aquatic biota, corresponding to high productivity of BSi
(Figure 9.1a). Initially, after the dry climatic conditions associated with the North
Atlantic H1 event, and as the lake began to fill, mobilisation and availability of silica
would have been low relative to the biological demand. As the climate improved,
due to orbital forcing, the basin rapidly filled (Johnson et al., 2000; Talbot and
Laerdal, 2000; Stager and Johnson, 2008), dissolving soil phytoliths from a
transgressed basin which was previously vegetated by grasslands (Kendall, 1969;
Stager et al., 1997; Johnson et al., 1998; Johnson et al., 2000), and are known Si
accumulators (Blecker et al., 2006), resulting in a short-lived influx of TSi (ASi and
DSi). In parallel, forest development in the catchment would have provided an
increasing supply of DSi through increased silicate-rock weathering and dissolution
of stored soil phytoliths, resulting in the progressive decline in 8*°Sigiaom Values
through the late-glacial (Figure 9.1c). The fact that BSi concentrations increased
(Figure 9.1a) as 8*°Sigaom decreased (Figure 9.1c) during the late glacial signifies a
significant supply of DSi to the lake, as was observed in the modern data (Figure
6.14). 6180diamm also declined rapidly after the basin was transgressed (Figure 9.1b),
responding to the enhanced rainfall and the overflow of the lake at the White Nile
outlet, causing a freshening of the lake water and lowering evaporative enrichment.
An abrupt rise in 8"Ogiom at ~11.6 ka BP (Figure 9.1b) marked the termination of
the brief dry, cold European Younger Dryas period which resulted in a sudden drop
in tree pollen taxa and a shift in diatom assemblages responding to reduced
humidity and lake level decline at Lake Victoria (Kendall, 1969; Stager et al., 1997;
Stager et al., 2002).

During the early Holocene, the Lake Victoria basin was at its wettest (Kendall, 1969;
Stager et al., 1986; Beuning et al., 2002; Stager et al., 2003) and most productive
(maxima BSi and TC accumulation; Figure 9.1a&d), in response to enhanced
monsoon rainfall particularly in boreal summer and autumn (Tierney et al., 2011a).
Lake levels were at their maximum and catchment vegetation, for the first time,

consisted of moist evergreen tropical rainforest (Kendall, 1969). Both 5"®00istom and
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5% Sigatom Were at their lowest values for the whole record, signifying humid
conditions (high P/E) and a profusion of DSi in the basin, respectively (Figure
9.1b&c).

Through the early to mid-Holocene, 8"®0gistom and 8> Sigiatom remained low indicating
the persistence of wet and humid conditions (high P/E), together with large amounts
of TSi from the catchment preventing the enrichment of 5% Sigiatom- Interestingly, BSi
accumulation was at its lowest between ~10 and 8 ka BP (Figure 9.1a), signifying
that diatom productivity had declined (Johnson et al., 1998; Stager and Johnson,
2000). However, the cause of this decline is of interest with regards to the silicon
and other nutrient cycles, as 8*°Sigiaom is also low indicating that DSi was not limiting
(Figure 9.1c¢). Kendall (1969) also postulated that DSi concentrations were greatest
in the early Holocene due to a change in the dominant diatom species from
Stephanodiscus astraea, which requires only low Si:P concentrations (Kitham et al.,
1986; Kilham and Kilham, 1990), to Melosira (Aulacoseira) species which need
elevated levels of DSi but have low P requirements (Kilham et al., 1986; Stager et
al.,, 2003). In addition, Johnson et al. (1998) proposed that DSi would have been
plentiful during the early Holocene due to increased runoff from the catchment. As
DSi was clearly not limited, | am led to believe that there must have been some
other limiting nutrient which prevented the accumulation of BSi between ~10 and 8
ka BP.

With the catchment at its most vegetated and hosting a closed evergreen forest
(Kendall, 1969), the landscape would have been very stable and erosion limited.
The magnetic susceptibility data imply that soil erosion rates were very low and
stable throughout the more vegetated conditions of the last 14 ka BP (Figure 9.1i).
Phosphate, which is tightly bound to soil particles would not have been easily
mobilised from the catchment (Goldman and Horne, 1983; Smil, 2000; Kochian,
2012). It is therefore hypothesised that the supply of P from the catchment became
limited due to a densely vegetated and stable catchment which prevented the
erosion of soil bound P (Haberyan and Hecky, 1987). In addition, stratification of the
water column, as suggested by Stager and Johnson (2000) and Johnson et al.
(2000), would have prevented replenishment of P from bottom sediments, resulting
in a reduced supply of P from in and around the lake causing diatoms to be
outcompeted by other phytoplankton, such as green algae or cyanobacteria

(Johnson et al., 1998; Johnson et al., 2000). Coincidentally, the lowest diatom
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productivity occurs with a peak in the total abundance of botryococcene biomarkers
(Figure 9.1h), suggesting that the green algal species Botryococcus braunii may
have outcompeted diatoms between 10 and 8 ka BP due to its ability to survive in
oligotrophic systems (Jankovska and Komarek, 2000; Smittenberg et al., 2005).
This episode of reduced biogenic silica accumulation coincided with the 8.2 ka
cooling event documented in many archives in the North Atlantic region (Alley et al.,
1997; Bond et al., 2001; Daley et al., 2011) and increasingly in African archives
(Gasse, 2000; Thompson et al., 2002; Stager et al., 2003; Barker et al., 2004; Kiage
and Liu, 2006). Although there is limited evidence from other proxies that it affected
the Lake Victoria basin (Figure 9.1).

After ~8 ka BP, diatom production resumed again, but at lower levels compared to
those of the early Holocene (Figure 9.1a). A major shift in diatom species from
Aulacoseira granulata to A. nyassensis in several of the Lake Victoria cores (Stager
et al., 1997; Stager and Johnson, 2000), combined with a steady progression to a
semi-deciduous, seasonally dry forest suggested a change in wind regime and
increasing seasonality (Kendall, 1969; Stager et al., 1997). An increase in P input
from the catchment, indicated by the rapid change to A. nyassensis which have the
highest P requirements of the Aulacoseira species (Kilham et al., 1986), may have
encouraged diatom productivity to increase again. The lipid data indicate a gradual
decline in the relative importance of emergent/terrestrial higher plants during the
mid-Holocene supporting a change in vegetation to a more open forest (Figure 9.1e-
f). The change in forest composition does not appear to have altered the intensity of
Si cycling immediately, as 5%Sigiatom remained low until the last 5 ka BP.

During the late Holocene, 8"®Ogaom gradually increased, signifying evaporative
enrichment of lake waters in response to a reduction of rainfall associated with the
decline of the EAHP (Tierney et al., 2011a). Pollen evidence also suggested drier
conditions indicated by a decline in forest taxa from ~3.5-3.0 ka "“C BP (~3.7 ka BP)
and related to an increase in grassland expanse (Kendall, 1969). However, it is
difficult to differentiate between climatic and human-induced vegetation changes,
and it is likely that from ~ 3 ka BP iron-age settlers had an impact on modifying the
vegetation through deforestation and cultivation in East Africa (Clark, 1962; Kendall,
1969; Kiage and Liu, 2006). The stability of lipid biomarkers during the late
Holocene until ~3.5 ka BP (Figure 9.1e-g) suggests only subtle changes in the plant

composition in and around Lake Victoria up until that time.
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After 3.5 ka BP, biomarker proxies (Figure 9.1e-g) indicate a shift in vegetation
types towards submerged/floating aquatic vegetation (Figure 9.1f) corresponding to
a decline in lake level associated with increased aridity (Stager et al., 2003). At the
same time 8*°Siyom increased whilst BSi accumulation remained steady (Figure
9.1a&c), suggesting that the DSi supply was declining. This was likely for several
reasons: a reduction in the mobilisation of DSi from the catchment as a result of
decreased rainfall, a decline in bedrock weathering by deep rooted plants in
response to changes in vegetation composition, a gradual depletion of stored soil
phytoliths, and an increased uptake of Si by emergent (e.g. papyrus and Typha) and
submerged/floating (e.g. Nymphaea) aquatic macrophyte species (Kendall, 1969).
An increase in P,, and P, (Figure 9.1f&g) and a small increasing trend in
botryococcene concentrations (Figure 9.1h) suggest that aquatic macrophytes and
non-diatom algae or cyanobacteria, such as B. Braunii and Pediastrum simplex as
identified Kendall (1969), may have been more important, benefitting from lower

lake levels and a modest increase in P supply with eroded topsoil.

9.7 Palaeoenvironmental interpretation of Si cycling in the
Lake Edward basin

After the arid conditions of the LGM as identified by a slump deposit dated to 20.6
ka "*C BP with high-Mg content in calcite indicating formation in evaporated waters
(Leerdal et al., 2002; Russell et al., 2003a; Beuning and Russell, 2004), the early
Holocene climate in the Lake Edward basin was much wetter (Russell et al., 2003a).
All of the measured parameters during the early Holocene were relatively constant
(Figure 9.2b-f), indicating that the climate and environmental conditions were stable
and unchanging at Lake Edward (Leerdal et al., 2002; Russell et al., 2003a).
8"80giatom Was low throughout the early to mid-Holocene suggesting P/E was high
(Figure 9.2b), and that it was much wetter than today (Beuning and Russell, 2004).
This is supported by the pollen data which portrays a moist semi-deciduous, lowland
rainforest surrounding Lake Edward during at least 11.2 and 6.7 ka BP (Beuning
and Russell, 2004). It was hypothesised by Beuning and Russell (2004) that it was
wettest between ~9 and 6.7 ka BP. However, the 8'®0g.tom values obtained here are
not significantly different from those obtained at the start of the Holocene (Figure
9.2b), and therefore do not necessarily support wetter conditions between 9 and 6.7
ka BP. Tropical rainforest vegetation would have enhanced silicate-rock weathering
(Lucas et al., 1993; Drever, 1994; Alexandre et al., 1997; Kelly et al., 1998; Lucas,
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2001), promoting the availability of DSi, and elevated runoff from the catchment
would have enabled the mobilisation of DSi into the lake, resulting in low 8*°Sigiatom
(Figure 9.2c). Diatom production was high during the early Holocene as identified by
high BSi accumulation (Figure 9.2a), although it gradually declines tracking the
decrease in boreal summer insolation (Figure 9.2g). The lipid biomarker profiles
support an environment dominated by terrestrial/emergent vascular plants relative
to submerged/floating aquatic plants (Figure 9.2d-f), perhaps reflecting higher lake
levels during the early Holocene (Beuning and Russell, 2004).

Towards the end of the mid-Holocene at ~5.6ka BP, a distinct shift in almost all of
the measured proxies (apart from 8*°Sigiaiom) (Figure 9.2) indicated an abrupt, short-
lived drying event which likely caused a decline in lake level resulting in shallower
and more concentrated lake waters (i.e. increased 8'®Ogiaiom and submerged/floating
aquatic vegetation (Figure 9.2b&e) and a temporary decline in terrestrial/emergent
plants (Figure 9.2d). Although this event had been identified by a peak in TOC, TON
and high HI (Leerdal et al., 2002; Russell et al., 2003a), it has not been identified as
a specific climate event. Similarly, an abrupt decrease in precipitation at ~5.7 ka BP
was identified in a high resolution diatom study from Lake Victoria (Stager et al.,
2003) and an abrupt cooling event at ~5.2 ka BP in the Kilimanjaro ice cores
(Thompson et al., 2002). These events corresponded with many of the tropical
African lakes completely drying up or experiencing significant lake level decline at
the end of the Mid-Holocene due to a combination of decreasing insolation and
other types of forcing (solar, volcanic), reinforced by feedbacks within the climate
system (e.g. changes in soil moisture availability, surface albedo and atmospheric
circulation) (Gasse, 2000).

Figure 9.2 (next page): Temporal variations in Lake Edward of biogenic silica
concentrations (BSi%) (Russell et al.,, 2003a) (a), oxygen isotope values of
diatom silica (8" Ogiatom) (b), silicon isotope values of diatom silica (5**Sigiatom)
(c), biomarker proxies to distinguish contributions from; terrestrial and
emergent aquatic plants (P,..) (d), non-emergent aquatic macrophytes
(submerged/floating) (P.q) (e), algae (P.g) (f). Equatorial insolation (scale
reversed) for June (boreal summer) (Berger and Loutre, 1991) (g).
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During the late Holocene, all measured proxies (Figure 9.2b-f) progressively
changed, associated with a transformation in lithology at ~5.2 ka BP from dark grey
clays to reddish carbonate mud. Inception of precipitation of authigenic calcite
implies increasing evaporative concentration of the lake water (Kelts and Hsti, 1978;
Russell et al., 2003a; Russell and Johnson, 2005), consistent with the gradual
increase in 8'®Ogiaom Values, signifying a progressive reduction of monsoon rainfall
as a result of declining insolation forcing (Figure 9.2b). Similarly, an increase in the
ratio of biomarkers derived from submerged/floating aquatic macrophytes and algae
and a corresponding decline in those representing terrestrial/emergent vegetation
(Figure 9.2d-f), supporting reduced lake levels and moisture availability in response
to a decrease in P/E (Russell et al,, 2003a; Russell et al., 2003b; Russell and
Johnson, 2005). Unfortunately, there are limited pollen data for Lake Edward during
the late Holocene (Beuning and Russell, 2004). However, evidence from the
Rwanda/Burundi Highlands to the south, and Lake Albert and the Rwenzori
Mountains to the north suggested a shift towards grassland pollen types (e.g.
Poaceae and Cyperaceae), (Livingstone, 1967; Beuning et al., 1997c; Marchant and
Taylor, 1997), probably similar to the wooded savanna found in the Queen Elizabeth
National Park today, in response to drier conditions across equatorial Africa during
the Late Holocene (Gasse, 2000; Barker et al., 2004; Kiage and Liu, 2006).

Reduced lake levels would have encouraged large areas of submerged/floating
aquatic macrophytes to form in marginal shallows around Lake Edward, as seen by
an increase in P,q proxy during the late Holocene (Figure 9.2e). Synchronous with
this increase in submerged and floating macrophytes was an increase in the algal
contribution to organic matter (Figure 9.2f). A strong correlation between P, and
P.g proxies (R? = 0.84 (Figure 8.30) suggests that they are related. Aquatic
macrophytes are often associated with epiphytic communities (Brenner et al., 2006),
particularly diatoms and green alga Pediastrum (Komarek and Jankovska, 2001), as
for example in Lake Nkunga, Mt Kenya, where Pediastrum is found living in stands
of water lilies (Nymphaea) (Street-Perrott et al., 2007). It was noted during the
preparation of diatoms for isotope analysis, that green algae, in particular
Pediastrum, made an appearance in Lake Edward sediments from ~4 ka BP
onwards, coinciding with an increase in algae as identified by an increase in the Pqq
proxy (Figure 9.2f). Although not conclusive, it appears that the increase in algal
signature in organic matter during the late Holocene is indicative of increasing

predominance of green algae in response to aquatic macrophyte expansion. High
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HI and C/N ratios may indicate that organic matter formed in waters with severe
nitrogen deficiency due to lake stratification (Laerdal et al., 2002), which would have
favoured the dominance of cyanobacteria or green algae over diatoms (Hecky and
Kling, 1987). It has already been suggested that on short time scales BSi%
represents water balance changes rather than diatom productivity (Russell et al.,
2003b; Russell and Johnson, 2005), and therefore may not be representative of
diatom production over the long-term. Undoubtedly though, diatom productivity was
high during the late Holocene with BSi concentrations reaching ~60% dry weight at
times during the last 3.5 ka BP (Figure 9.2a).

Brenner et al. (2006) suggested that the proliferation of submerged macrophytes in
Florida lakes was due to increased P loading due to human settlement and forest
clearance. With a decrease in catchment biomass, from either human activity
(evidence lacking for this at Lake Edward), or from climate-driven changes during
the late Holocene, one would expect increased erosion resulting in the mobilisation
of P from soils. Further evidence for P loading in Lake Edward during the late
Holocene is from a change in the diatom assemblage to a single genus of
Stephanodiscus from the mid- to late Holocene transition (section 8.9.1, Chapter 8).
Stephanodiscus spp. dominate when Si:P ratios are low (Kilham et al., 1986; Kilham
and Kilham, 1990), and outcompete other diatom species during low light conditions
(Kilham et al., 1986), which may have occurred when aquatic macrophytes
developed in marginal shallows around the edge of Lake Edward as it shrank. Lake
Albert to the north, which relies heavily on inflow from Lake Edward via the Semliki
River (Beuning et al., 1997c), also had low DSi (and possibly relatively high P)
between ~5 ka BP and present reflected by a diatom assemblage consisting of
Stephanodiscus rotula and Nitzschia bacala (Hecky and Degans, 1973; Harvey,
1976; Richardson et al., 1978). Reduced DSi in Lake Edward would explain the
enrichment of 5% Sigatom during the late Holocene (Figure 9.2c). The change from
tropical rain forest to wooded grasslands, as inferred for the late Holocene pollen
assemblages at Lake Edward, would have drastically changed Si cycling dynamics
in the catchment. A reduction in terrestrial biomass and Si accumulator plants
associated with the disappearance of tropical rainforest would have reduced
silicate-rock weathering and the stock of available Si (Struyf et al., 2010). In
addition, decreased precipitation would have reduced annual runoff and mobilisation
of DSi from the catchment, as seen during the LGM in Lakes Kivu and Tanganyika
(Haberyan and Hecky, 1987). Furthermore, the expansion of aquatic macrophytes
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(Figure 9.2e), many of which take up significant quantities of Si (Schoelynck et al.,
2010), would have further depleted the supply of DSi available in the lake water,
resulting in elevated 8*Sigiaiom during the late Holocene (Figure 9.2c).

A peak in 5*°Sigiaom to maximum values occurred during the late Holocene at ~3.4
ka BP (Figure 9.2¢), indicating that DSi was limited. This may represent a cessation
in the flow of nutrient-rich waters from Lake George, which desiccated prior to ~4.0
ka BP (Viner, 1977). Refilling of its basin was estimated to have begun from 3.6 ka
“C BP (~3.9 ka BP) (Viner, 1977), but re-establishment of its outflow to Lake
Edward via the Kazinga Channe! may not have occurred until after 2 ka BP (Russell
et al., 2003a). 5"®0giatom does not seem to register this event at 3.4 ka BP (Figure
9.2b), which may indicate that the inflow from Lake George does not have a
freshening effect on Lake Edward waters. In fact, 8'®Ogq0om decreases slightly
supporting a decline in the inflow of concentrated warm waters from Lake George.
The modern water data support this inference as the Kazinga Channel waters were
enriched in "0 and electrical conductance was higher than other river inputs (e.g.
Rivers Ishasha and Ntungwe) (Tables 6.1 and 6.2). From ~ 2 ka BP, amelioration of
the climate as identified by a slight decline in 8'®Ocaie (Russell and Johnson, 2005)
and 5" 0giaom (Figure 9.2b), resulted in a lake level rise at Lake Edward (Russell et
al,, 2003a; Russell and Johnson, 2005), and reconnection with Lake George
through the Kazinga Channel. Simultaneously, biomarkers representing
terrestrial/emergent vegetation increased (Figure 9.2d) and submerged/floating
aquatic macrophytes and algae declined (Figure 9.2e&f), also supporting a lake
level rise and climate recovery in the basin, but not nearly reaching early Holocene
conditions.

9.8 Long-term trends of Si cycling in the headwaters of the
White Nile since the LGM

Figures 9.1 and 9.2 strongly suggest that on multi-millennial time scales orbital
forcing controlled the hydrological balance (8'®Ogiaom) and Si cycling (5*°Sigiatom) in
both the basins of Lakes Victoria and Edward. As originally hypothesised, variation
in the climate, driven by insolation changes, influenced hydrology and vegetation
which in turn affected the dynamics of biogeochemical Si cycling. Although not
directly causal, the strong positive relationship between 8"™®Ogigom and 8*°Sigistom
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(Figures 7.20 and 8.26) provides further support that hydrology and Si cycling are
responding to the same controlling mechanism of orbital forcing.

During periods of minimum seasonality of insolation (i.e. the LGM and the late
Holocene), the climate in the headwaters of the White Nile was dry and P/E ratios
were low, as shown by enriched 5"®Ogiaom Values (Figures 9.1b and 9.2b). In
contrast, during the early to mid-Holocene, enhanced monsoons, due to an increase
in boreal-summer insolation resulted in high P/E ratios, and therefore low 8'®Ogitom
values. Similarly, at Lake Challa, at the foot of Mount Kilimanjaro, Barker et al.
(2011) found that 8"®Ogiaem values during the last 25 ka BP exhibited a smooth

evolution coinciding with the precessional-driven monsoons.

These long-term variations in P/E ratios since the LGM at Lakes Victoria and
Edward have produced major changes in the vegetation as identified from the lipid
biomarker proxies (Figures 9.1e-g and 9.2d-f) and from pollen data (Kendall, 1969;
Beuning and Russell, 2004), for the respective lakes. During deglaciation (~21 to 15
ka BP), plant biomass was diminished and consisted of dry regional grasslands
(Kendall, 1969). Commencement of the EAHP at ~15 ka BP, as insolation reached
a critical threshold (Kutzbach and Street-Perrott, 1985; Prell and Kutzbach, 1987,
enabled the.development of moist semi-deciduous forests during the late glacial
(Kendall, 1969). By the start of the Holocene, insolation and precipitation were at a
peak, sustaining evergreen tropical rainforest both at Lake Victoria and Lake
Edward (Kendall, 1969; Beuning and Russell, 2004). Towards the end of the mid-
Holocene seasonality of insolation over the Northern Hemisphere declined, and a
gradual change in vegetation to drier species occurred (e.g. wooded savanna).
Reduced P/E resulted in lower lake levels which encouraged the expansion of
submerged/floating aquatic macrophytes (Figures 9.1f and 9.2e) and associated
algal epiphytic communities (Figures 9.1g and 9.2f).

The evolution of Si cycling, as traced by 3*Sigam and driven by orbital forcing
during the last 20 ka BP in the basins of Lakes Victoria and Edward (Figures 9.1
and 9.2), is analogous to the conceptual model proposed by Struyf et al. (2010) for
temperate forest development (Figure 9.3). According to this model the “developing
forest” state is similar to that of the late glacial at Lake Victoria when semi-
deciduous forests began to colonise the basin in response to increased moisture
from the enhanced summer monsoon (Kutzbach and Street-Perrott, 1985).
Gradually, as the forest developed, a soil stock of ASi would have formed and the

210



9: Discussion

export of biologically reactive TSi into the lakes would have increased with time, as
is identified in the progressive decline in §*Sigiaom values through the late glacial. By
the start of the Holocene vegetation was well established and both basins hosted
evergreen lowland rainforests which stimulated silicate-rock weathering through
their deep roots creating a high turn-over of Si and a large stock of soil ASi
(Cochran and Berner, 1996; Kelly et al., 1998; Hinsinger et al., 2001; Lucas, 2001;
Brantley et al., 2011). Dissolution and mobilisation of ASi through runoff would have
been high and eventually reached an equilibrium as exhibited by the low and stable
5°°Sigiatom Values during the early to mid-Holocene (comparable to the “climax forest”
state in Figure 9.3). In the late Holocene, as P/E declined in response to decreased
insolation (high 8"®Ogaom) (Figures 9.1b and 9.2b), rainforest gradually gave way to
open savanna grasslands (Kendall, 1969) with a shallower rooting depth, causing a
decline in terrestrial biomass (Figures 9.1e and 9.2d) and deep rooted vegetation,
resulting in greatly reduced Si cycling in the catchment (equivalent to “early
deforestation” and “climax cultivated” scenarios in Figure 9.3). Combined with
reduced runoff and a declining ASi soil stock, decreased export of TSi into the lakes
would have caused a decrease in DSi supply relative to demand from diatoms,
causing a progressive increase in 5°°Sigiatom Values (Figures 9.1c and 9.2c). The
expansion of aquatic macrophytes (Figures 9.1f and 9.2e) in response to lower
lakes levels would have further depleted DSi availability as many aquatic
macrophytes and wetland species are known to be Si accumulators (Gaudet, 1977;
Struyf et al., 2005; Schoelynck et al., 2010).

The temporary increase of TSi export exhibited during the “early deforestation”
scenario (Figure 9.3) is similar to what would be expected when Lake Victoria
began to refill shortly after 15ka BP (Johnson et al., 2000; Talbot and Lzerdal, 2000;
Stager and Johnson, 2008). As surrounding land was flooded by the rising waters of
the lake and new shorelines were created, mobilisation of a large pool of grass
phytoliths in the surrounding soils resulted in a large influx of DSi (McLachlan,
1970).
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9: Discussion

9.9 Summary: Si cycling at Lakes Victoria and Edward

On glacial / interglacial time scales, variation in the riverine Si flux from the White
Nile, as observed from 8 Sigitom, Will have had a significant impact on the Si supply
to the Mediterranean Sea. The similarity of the two lake records (Figures 9.1 and
9.2) during the Holocene epoch (the only timeframe for which they overlap), clearly
indicates that they were responding to the same external forcing mechanism,
identified as orbital forcing. It is likely therefore, that other lakes will have undergone
the same forcing and consequently similar biogeochemical Si cycling dynamics,
ultimately impacting on the export of Si to the oceans and affecting the regulation of
CO; in the atmosphere. The evidence obtained in this thesis indicates that the
riverine flux of Si to the oceans would have been lower during glacial periods, in
contradiction to Froelich et al. (1992) who suggested the dissolved Si flux to the

oceans during glacial periods increased.

Compared to other §®Oga0m records in East Africa, 5'®Ogaom Values at Lakes
Victoria and Edward are enriched compared to Lake Rutundu on Mount Kenya
(Street-Perrott et al., 2008) but similar to those obtained at Lake Challa at the foot of
Kilimanjaro (Barker et al., 2011) for the same time interval. These &'®Ogiatom records
reflect changes in moisture balance as well, and therefore, it is likely that the lower
values exhibited at Lake Rutundu (~3085m asl) reflect progressive rain-out of '®0
due to the altitude-effect (Dansgaard, 1964). Lake Victoria had slightly higher
8'"%0giatom Values than Lake Edward (Figures 9.1 and 9.2), reflecting the dominant
control of precipitation and evaporation on water balance at Lake Victoria as an
atmosphere-dominated lake (Street-Perrott and Harrison, 1985; Piper et al., 1986;
Spigel and Coulter, 1996; Nicholson, 1998).

Based on the current knowledge of biological fractionation between the uptake of
DSi to produce diatom silica (fractionation factor: -1.1%0; (De La Rocha et al., 1997;
Varela et al., 2004)), the range of 5%°Sigatom Values obtained at Lake Victoria during
the last 15 ka BP (+0.62 to +1.26%0) (Figure 9.1) are consistent with a Rayleigh
model (closed system). This is not surprising given its vast size (>68,000 km?) and
dominance of precipitation and evaporation in controlling the water balance relative
to inflows and outflows (Spigel and Coulter, 1996). Lake Edward on the other hand,
had a larger range of 8 Sigiatom values, +0.49 to +2.16%o (Figure 9.2), implying that
Lake Edward represented a steady state model (open system). Although there are
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only two other records that have determined 5*°Sigawm from lake sediments on
glacial / interglacial time scales, in Lake Rutundu, Mount Kenya (Street-Perrott et
al., 2008) and Lake El'gygytgyn, northeast Siberia (Swann et al., 2010), 5**Sigitom
values are higher in equatorial Lakes Victoria and Edward. This is not surprising as
it is likely that Si cycling was enhanced in these large lowland tropical lakes,
resulting in more of a demand for Si by diatoms relative to the supply, which
resulted in higher §*Sigiaom values.

From results obtained in this thesis and from the 5% Siyuom record obtained in
Siberia (Swann et al., 2010), | hypothesise that the underlying control on global Si
cycling (and therefore the riverine flux of Si) on glacial / interglacial time scales was
from northern hemisphere changes in insolation, which modified climate
(temperature and hydrology) and vegetation, and consequently continental Si
cycling dynamics. As seen in this thesis, in both modern waters and from diatom
silica, Si cycling was greatest during drier intervals as a result of 1) decreased
silicate-rock weathering within the catchment, 2) reduced mobilisation of Si from the
catchment by surface runoff, and 3) more efficient utilisation of Si by aquatic biota.
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Chapter 10 Conclusions

This final chapter presents the major findings of the thesis. Firstly, a summary of the
main results from the modern waters sampled along the River Nile, followed by the
main findings of the palaeo-record from Lakes Victoria and Edward in the
headwaters of the White Nile. Finally, from the outcomes of this thesis, future work
and research directions are suggested to help develop the field of continental
biogeochemical Si cycling further.

10.1 Main findings: Modern waters

Seasonal variations in hydrology and Si cycling in the Nile Basin were investigated
using stable isotope (H, O and Si) compositions and dissolved Si (DSi)
concentrations in surface waters. Physical and chemical characteristics of surface

waters supported the findings made from the isotope data.

Main findings from physical and chemical compositions:

¢ Progressive increase in the precipitation of Na and K carbonate minerals
and electrical conductance northwards and downstream signified
progressive evaporative enrichment of waters which was enhanced during
the dry season under conditions of lower humidity.

¢ Contrasting geology of the headwater sub-basins was apparent in pH values
and cation composition, where waters from the Ethiopian Highlands were
less alkaline and had highly concentrated Mg waters as a result of easily
erodible ferromagnesian minerals in the basaltic terrain.

Main findings about the hydrological cycle from H- and O-isotopes:

e Large seasonal shifts in 8°H and 3'®0 compositions reflected changes in
water balance.

e During the dry season, lower humidity favoured evaporative enrichment of
surface waters and was reflected in higher 8°H and 8'®0 values.

e Cumulative downstream losses from swamps and open water bodies, were
identified by progressive downstream enrichment of 3°H and &'°0 values.

¢ The Main Nile showed the greatest evaporative enrichment, due to the year-
round arid climate and lack of rainfall or tributary input for 2700 km

downstream from its confluence with the Atbara River.
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This was the first (sub)continental study to investigate seasonal changes in Si

cycling along the length of a river using Si isotopes. Seasonal changes in DSi

concentrations and Si isotopes provided useful information on Si cycling under

different climate regimes in the Nile Basin.

Main findings from Si-isotopes and DSi concentrations:

This study has increased the global upper limit of 5°°Si for dissolved Si in
natura! waters by more than 1%o, extending the range from between -0.17
and +3.40%o to -0.17 and +4.66%c.

Contrasting geology in the headwaters of the White and Blue Nile were
clearly reflected in DSi concentrations. The highest levels of DSi in the Blue
Nile headwaters were due to the basaltic bedrock and steep, easily erodible,
sparsely vegetated slopes of the Ethiopian Highlands.

Low DSi concentrations and correspondingly enriched Si-isotope values are
found in the headwater lakes and in the Main Nile, where depletion of Si by
aquatic organisms (notably diatoms and macrophytes) are thought to be
important.

Extensive downstream enrichment of Si isotopes and depletion of DSi during
both wet and dry seasons in the River Nile imply active Si biocycling. The
heavy isotope *Si was enriched in surface waters during the dry season due
to a reduction in mobilisation of DSi from the catchment relative to aquatic
demand.

Localized anthropogenic impacts on the isotope composition of surface
waters were identifiable with respect to both the hydrological and Si cycles,
especially during the dry season and along the Main Nile where irrigation

and retention of stored floodwaters behind large dams are most prevalent.

Overall conclusion:

Modern seasonal variations of DSi and 6%Si in the River Nile indicated that the

Si flux from the River Nile to the Mediterranean Sea is not constant and is likely

to be highly variable on Quaternary time scales.

216



10: Conclusions

10.2 Main findings: palaeo-records of Lakes Victoria and
Edward

The results of the modern water sampling in the Nile Basin were used to help
interpret the palaeo-record of lacustrine sequences from Lakes Victoria and Edward
in the White Nile headwaters. Using O- and Si-isotope analysis of diatom silica as
tracers of the hydrological and Si cycles, respectively, and lipid-biomarker analysis
to track changes in aquatic and terrestrial ecosystems, Si cycling in the White Nile
headwaters was reconstructed for the last 15 ka BP.

Main findings:

e Si cycling was greatest during the early to mid-Holocene (~11.5 to 5.5 ka
BP) at both Lakes Victoria and Edward when the enhanced summer
monsoon (low 8" O0giatom values), driven by orbital forcing, enabled the
proliferation of water-bodies and vegetation in the catchment, which in turn
accelerated silicate-rock weathering and the mobilisation of TSi in surface
runoff, providing a plentiful supply of DSi for diatom productivity (low
5%Sigiatom Values).

¢ In contrast, during drier conditions (e.g. the last glacial and late Holocene)
(high 5"®Oviatom values), Si cycling was reduced in response to decreased
boreal summer insolation. Reduced biomass and a decline in deep-rooted
vegetation to stimulate silicate-rock weathering, combined with a declining
soil stock of ASi and reduced run-off in the catchment resulted in biological

demand for Si exceeding the supply which caused high 5*°Sigaom Values.

The above findings overturn the original research hypothesis. At the beginning of
this thesis it was proposed that the flux of Si from the River Nile to the
Mediterranean Sea would have been greatest during drier intervals when a sparsely
vegetated environment would have allowed erosion of soils and the transfer of TSi
into rivers and lakes. However, it appears that DSi was actually reduced during drier
intervals as a result of reduced continenta! Si cycling, quite the opposite to what was
originally hypothesised in this thesis and presented by Froelich et al. (1992). The
simultaneous smooth response of all the measured proxies (5" Ogatom, 6°°Sidiatom:
Pwax, Paq, Payg) to insolation changes during the last ~15 ka BP at both lakes clearly
identifies orbital forcing as the controlling factor of long-term changes in hydrology
and Si cycling in the White Nile headwaters.
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10.3 Future work

Due to the novelty of Si-isotope analysis on solutions at NIGL, financial and time
constraints meant that it was only possible to analyse half of the water samples for
Si isotopes. Analysis of the remaining waters would enhance the understanding of
continental Si cycling further by providing a more in-depth view of individual
catchments and sub-basins within the Nile system. Furthermore, it is essential to
obtain samples from the Sudd and the Bahr el Ghazal swamps in South Sudan
which likely play an important role in both the hydrological and Si cycles. It was not
possible to sample these regions during the time of fieldwork due to political
instability. In addition to Si-isotopes, measurement of Ge/Si ratios on waters would
provide further useful information on Si cycling dynamics in the catchment by
determining whether the DSi had been cycled through the soil-plant system or come

straight from silicate-rock weathering before being exported into rivers and lakes.

In terms of the palaeoenvironmental research carried out in this thesis, work is
ongoing to identify the structures of the botryococcene compounds found in Lake
Victoria with the possibility of linking them to a specific species of Botryococcus.
Further analysis of O- and Si-isotope composition of diatoms in other Nile-fed
sediments along the length of the River Nile would enhance this research further,
enabling a transect of downstream sites in order to track Si cycling at specific time-
slices during important climate intervals (e.g. LGM, EAHP and late Holocene). On a
global scale, further catchment and large, downstream studies are required to test
the hypothesis that global continental Si cycling is controlled by northern
hemisphere insolation changes, as identified here in the Nile Basin and in northeast
Siberia by Swann et al. (2010). It would also be beneficial to extend the time scale
over several glacial \ interglacial cycles. If it was found that all fluvial systems were
responding to the same long-term forcing, such that global riverine fluxes of Si were
reduced during drier periods, this would have significant implications for the marine
Si budget and therefore the global C cycle. Important regions for future work would
be in volcanic regions, particularly in the tropics where silicate rock weathering is
high. Other regions which may be important are the Siberian Traps, the volcanic
regions of Alaska and the Pacific Northwest of the USA.
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10.4 Summary

Overall, this research has been a success. The findings suggest that continental
biota do have an important role in the giobal biogeochemical cycle of Si and have a
significant impact on controlling the flux of Si to the oceans on glacial \ interglacial
time scales. Although fieldwork was logistically challenging on occasion, it was still
possible to obtain a respectable collection of water samples from the Nile Basin.
There were times during the preparation of sediment samples when it was difficult to
isolate diatoms from other sediment components for isotope analysis, to the point
where it became impossible to purify diatoms in large parts of the Lake Victoria
core. Careful selection of sediment samples with high initial diatom concentration
and an assessment of the other sediment components in future will aid this. The
combination of proxies used in this thesis combined with previously published data
has resulted in achieving the main aim of reconstructing Si cycling in the Nile Basin
during the last 15 ka BP.
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Appendix Il

Full _equipment list and laboratory consumables for chromatographic
separation of Si.

Stand/carousel to hold 10ml disposable Bio-Rad® Bio-Spin chromatography
columns

10ml disposable Bio-Rad® Bio-Spin chromatography columns
Bio-Rad® cation-exchange resin 50W-X12 (200—400 mesh) in H+ form
Savillex® collection vials and lids

Teflon® waste collection beakers

Pipette tips

Pipettors (various; 1-5ml, 100-1000puL, 40-200pL)

pH papers

250ml squeezy HDPE bottles with caps for acid/reagent solutions
30ml squeezy HDPE bottle with cap

2-3 1L HDPE containers for cleaning pipettes

Hotplate

Millipore Milli-Q® Integral water purification system

Person protection equipment

Class 100 clean lab and fume hoods
Acids/Reagents

Romil-UpA™ HCI, HNO3, HF
Romil-SpA™ HCI
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Appendix lll.

Full procedure for chromatographic separation of Si

Column chemistry for Si isotopes

Use ultra-pure acids (i.e. double-distilled, UpA).

Cleaning 1.8ml of Bio-rad AG 50W-X12 resin in 10ml Bio-rad columns (individual

columns)

Rinse resin over several days with MQ-e to remove fines. Shake resin in water and
allow to settle, decant off supernatant (20-30 washes). Transfer resin into 1.5 M HCI
solution to squeeze into columns. Shake resin in HCI solution before use to make
sure that resin is in liquid form in order to squirt directly into resin reservoir without

air bubbles forming in the column.

Volume Concentration Chemical
3ml 3M HCI
3ml 6 M HCI
3mi 7™ HNO;
3ml 10M HCI
3mil 6M HCI
3mil 3M HCI

Fill MQ-e
3ml MQ-e

Check pH of column with the last drop of MQ-e coming off the resin. pH should be

neutral (4-7).

~100 ml 3 M HCI (UpA)
~100 ml 6 M HCI (UpA)
~50 ml conc. HCI (UpA)

~ 50 ml 7 M HNO; (UpA)

Chemicals required for cleaning a batch of 16 columns:
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Column Chemistry

Do not allow the column to dry-out at anytime; channels may form in the resin and

allow cations to move through the column into the collection beaker.

Final concentration of 0.75, 1.5 or 3 ppm

Volume Molarity Chemical Collect
(ml)
Load
X - Sample Yes
Wash in
1 - MQ-e Yes
Elute 1 . MQ-e Yes
1 . MQ-e Yes
Samples
Final concentration of 0.75, 1.5 or 3 ppm
Column Sample Si Conc. Load Steps (ml)
# (ppm) (ml)
1 Blank (1) 0
2 Blank (2) - 0
3 NBS-28 (1) 13 1
4 NBS-28 (2) 13 1
5
6
7
8
9
10
1
12
13
14
15
16

Notes

Additional mlI’s
required (directly into
beaker)

0
0
0.33
0.33

Include two standards (NBS-28) and two blanks ((MQ-e) in a batch of 16.
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Dilution calculations for sample load onto chromatography columns

The known initial Si concentration is inputted into the spreadsheet in column B with
the final required Si concentration selected in column D (preferably 3ppm). The
elution amount is fixed at 3ml (column C). The sample load (column A) depends on
columns B and D and is determined using the formulas in columns E-H. Dilution
factor (column F) cannot be <1 and the addition of Milli-Q water cannot be negative
(column G). Once these criteria are met, the green text (in this case row 5 (sample
load = 3ml)) highlight the minimum sample load required to obtain a final solution of
3ppm Si, and the corresponding final dilution required (column G).

A B [ D

Final
Elution with  required Si
Sample Initial Si  Milli-Q water conc. (3,1.5

1 load (ml) cobc. (ppm) (ml) or 0.75ppm)
2

3 1 6
4 2 6
6 3 6
6 4 6
75 6
e 6 6
9 7 6
10 8 6
"9 6
12 10 6
13 1 6
14 12 6
15 20 6

Conc. after column
chemistry (ppm)

={B3*A3) (C3+A3)
=(B4*A4) (C4+A4)
=<B5*A5>(C5+A5)
=(B6*A6) (C6-A6)
={B7*AT7)(C7i-A7)
=(B8*A8) (C8-A8)
=(B9*A9) (C9-A9)
=(B10*A10)'(C10+A10)
=(B11*A 11)'(C11TA 11)
=(B12*A12) (C12--A12)
=(B13*A13y(C13+A13)
=(B14*A14) (C14-A14)
=(B15*A15) (C15-A15)
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Dilution factor

={E3/D3)
=(F4/D4)
=(E5 D5)
KE6D6)
=(E707)
=(E8D8)
=<E9 D9)
=(E10D10)
=(E11 D II)
=CE12T512)
=(B13D13)
=(E14D14)
={E15D15)

Additional mis required of

Milli-Q water

A(CJ»A3>  F3MC3»A3)
=((C4>Ad) F1)-(C4+Ad)
-<(C5-A5)*FSMC5-AJ)
+((C6-A5)+FSy(C6~A6)
-((CT-A7)»FXCr'-A7)
~((CS-AF)*FJ>-(CS-At;
*((C9-A9)* F9)-(C9-A9)
=((C10-A10)*F10)-(C1(KA10)
-((C11-AU)*F11HC11-All)
-((C12-A12)*F12HC12-A12)
“((C13-A 13)*F 13)-(C13-A 13)
—{(C14-A 14)F14><C14-A 14)
~((C15-A13)*F15HC1S-A15)

Final volume (ml)

=G3-C3-A3
=G4-C4-A4
=G5+C5fA5
=G6-K76-A6
=G7-C7*A7
=G8-C8-A8
=GSMT9-A9
=GICH:I(>AIO
=G11-C11*A1 1
=G12-rC12-A12
=G13-rC13-rAI3
=G14C14-rAl4
=G15-C15-A15
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Appendix IV.

Detailed method for purifying diatoms from lake sediments

Add samples to conical flasks for the first two steps. In this case, 500ml flasks were
used to accommodate the large amounts of initial material (5-10g). Some samples
were split over two flasks.

Wear personal protective equipment at all times (lab coat, goggles, gloves etc).

Essential steps towards diatom purification:
Removal of carbonates

1.

5.

6.

Gradually add 10% HCI to the wetted sample. On average samples required
about 150ml of solution per flask. Carbonate-rich samples may need more
reagent/time to react. Once reaction has subsided add flasks to 75C water
bath for 2 hours until reaction is complete.

Keep swirling and washing sides down with 10% HCI every 30-45 minutes
whilst in the water bath to expose sample surface area to acid.

Once reaction is finished, top up conical flask with ~500ml deionised H,O
and allow to settle overnight.

Decant supernatant and top up with ~500ml deionised H,O and allow to
settle overnight.

Decant supernatant and top up with ~500ml deionised H,O and allow to
settle overnight.

Decant supernatant to a minimum.

1000m| 10% HCI solution: add 100ml of analytical grade HCI to 900ml deionised

H20.

Removal of organics

1.

w N

o

8.

Slowly add ~100ml conc. H,0, to each flask to cover sediment, leave for
~45 minutes to allow initial reaction to subside before putting into a water
bath at 80C.

Swirl flasks every 45 minutes to agitate sediment.

Once reaction has slowed (2-3 hours), add a further 100ml conc. H,O,
If after a day in the water bath (~ 8 hours), the reaction is still going, top
samples up with deionised H,O and leave overnight.

Decant supernatant and begin again with conc. H,0, (repeat steps 1-4).
Decant supernatant and top up with ~500ml deionised H,O and allow to
settle overnight.

Decant supernatant and top up with ~500ml deionised H,O and allow to
settle overnight.

Decant supernatant to a minimum.

N.B. Some samples had cloudy supernatant even after settling overnight.
Supernatants were checked under the microscope before decanting to make sure
there were no diatoms.
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9. Add ~100ml conc. HNOj; to each flask. Most organic matter will have been
removed by H,O, so only a small reaction should occur.

10. Place flasks in a water bath at 75T for 2 hour s until reaction has ended.
Swirling flasks every ~45 minutes and washing sides down with HNO,.

11. Top up flask with ~500m| deionised H,O and allow to settle overnight.

12. Decant supernatant and top up with ~500ml deionised H,O and allow to
settle overnight.

13. Decant supernatant and top up with ~500ml deionised H,O and allow to
settle overnight.

14. Decant supernatant to a minimum.

Sieving at 63, 38 and 20 pm

1. Sit a 100mm diameter stainless steel/brass 63 um sieve on top of a 1 litre
Pyrex beaker and sieve sample with deionised H,O from a wash bottle.
Depending on remaining sample size after removal of organics and
carbonates, several litre beakers may be required and will need to settle
overnight. Set aside >63 um fraction.

2. Similarly, sit a 100mm diatom stainless steel/brass 38 um sieve on top of a 1
litre Pyrex beaker and sieve <63 um fraction with deionised H.O from a
wash bottle. Allow <38 um fraction to settle overnight and set aside >38 um
fraction.

3. Again, sit 100mm diameter stainless steel/brass 20 um sieve on top of a 1
litre Pyrex beaker and sieve <38 um fraction with deionised H,O from a
wash bottle. Allow <20 pm fraction to settle overnight and set aside >20 ym
fraction.

4. After sieving, there should be a >63, 38-63, 20-38 and <20 um fraction for
each sample. Keep samples wet at all times.

Occasionally 125 ym stainless steel/brass sieves and 10 yum mesh fabric were used
for certain samples to enable further separation from contaminants.

Optional additional purification steps:
If removal of organics and carbonates, followed by sieving does not successfully
purify diatoms, further steps may be required to achieve this.

Differential settling
Suitable for separating silt/clay minerals from diatoms.

1. Using a small (~50ml) plastic container with screw lid, add chosen size
fraction to container and add deionised H,O. Screw lid tightly and gentle
shake/tilt container back and forth to mixed sample. Allow to stand for 10-20
seconds and decant diatoms (supernatant). Repeat several more times until
most diatoms have been decanted. The residue that sinks to the bottom is
the contaminant.
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After sieving and
using differential
settling, diatoms
(top) and mineral
grain components
(bottom) were

Remaining composition of a

sample  after removal of

organics and carbonates.

Heavy liquid separation (SPT)

Suitable for separating components which have distinct specific gravities (e.g.
diatoms and mineral grains). A series of steps which gradually lower the specific
gravity of a solution in very small increments allows various components to sink
whilst diatoms float.

Methodology adapted from Snelling and Swann (2009) Sample preparation of
Antarctic Marine diatoms for isotope analysis. NIGL, BGS, Keyworth.

Equipment

Test-tubes (10-15 ml) made of polystyrene not polypropylene

Pipette Pasteur (3 ml)

Pipette (1 ml)

Variable volume pipettors 1-5ml and 100-1000pL

Sodium polytungstate (SPT) (available from Sometu-Europa http://www.sometu.de/)
Cellulose nitrate membrane filters (1 pm and 0.45 pm sized filters are necessary for
SPT recycling)

Sample preparation
1. Place sample in test tubes and label as “A”.
2. Syphon off solution, leaving sediment only.
SPT: 1st separation
3. Make up heavy liquid solution using Sodium Polytungstate (SPT) powder to
achieve a specific gravity of 2.25-2.3 (Diatom s.g. is approx. 2.1).
4. Ensure SPT powder is fully dissolved, solution should be transparent.
Add 4 ml of SPT to samples and shake to combine.
6. Centrifuge samples at 2500 rpm for 20 minutes.

o
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7. Label a second set of tubes with the sample number followed by ‘B’.

The diatoms should be concentrated at the top of the liquid.

9. Add a small amount of water and use a 3 ml pipette to mix the diatom float to
break up any lumps.

10. Pipette off the float taking some of the SPT and water and add to tube ‘B’.

11. Add a little more water and pipette off the remaining liquid to the top of the
residue.

12. Add a further 4 ml of SPT to the residue tube, shake and centrifuge for 20
mins at 2500 rpm.

13. Remove any evident diatoms following stages 9-11 and add to ‘B’.

Stages 12-13 may not be necessary.
Check to see if any diatoms are “floated”. If none, this stage is not necessary.

®

Making new SPT: Dissolve SPT granules in deionised H,O according to packet
instructions. Using a magnetic stirrer make sure all SPT is dissolved. Density can be
increased by putting on a hotplate (<105C) and all ow to evaporate, stirring
continuously. Allow to stabilise at room temperature and use a hydrometer to
measure the density (a measuring cylinder is suitable for the height required to
accommodate hydrometer). Once desired specific gravity is achieve, it is ready for
use. Long term storage should not be in glassware.

SPT: 1st clean-up
14. Add 5 mls of water to residue test tube “A”, shake and centrifuge for 5 mins
at 1500 rpm.
15. Syphon liquid into the SPT waste beaker.
16. Add 10 mls water to residue (“A”), shake, centrifuge for 5 mins at 1500 rpm.
17. Syphon liquid down sink and archive “A”.
18. Top the test tube “B” up with water to ¢. 12 ml and shake.
19. Centrifuge for 5 mins at 1500 rpm.
20. Diatoms should sink to bottom. Syphon liquid into SPT waste beaker.

SPT: 2nd separation
21. Add 4 m| of SPT to “B” and 0.15 ml of water. Shake until sample mixed.
22. Centrifuge for 20 mins at 2500 rpm.
23. Label a set of tubes as “C".
24. Collect diatoms as directed at 8-11 but into tube ‘C’.
25. Repeat steps 14-17 for residue “B".
26. Repeat steps 18-20 for “C".

SPT: 3rd separation
27. Repeat steps 21-25 but add 0.3 ml of water to SPT, Residue will be in test
tube “C” and diatoms in test tube “D”.
28. After 3rd SPT, add water to “D” to c. 10 ml. Centrifuge for 5 mins at 1500
rem.
29. Syphon solution water into SPT waste beaker.
30. Repeat step 28-29.
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31. Repeat step 28 with solution going into sink.

Several more SPT clean-up stages with SPT may be required by adding increasing
increments of water to slowly decrease the specific gravity.

SPT recycling
1. Sieve SPT from waste beaker through 1 um cellulose nitrate membrane filter
paper into a clean beaker.
2. Repeat Step 1 using 0.45 um filter.
3. Place SPT solution on a hotplate (max temperature should be 105C),
continuously stirring. Once volume has been reduced to at least 2.3 g/ml,
SPT can be reused.

Sonication

In some samples, mineral aggregates existed, preventing them from being sieved
through the appropriate sieve fraction. To break up the mineral aggregates but not
damaging the diatoms, it was found that short repeated exposures in a sonication
bath broke up the aggregates and through re-sieving, mineral grains could be
isolated from the diatoms.

1. Put sample in a ~50 ml plastic container with a sealed lid and add ~30ml|
deionised H,0.

2. Put sample container in ultrasonic bath with container lid above waterline (to
avoid any infiltration or sample loss). Switch on for 10 seconds. Repeat this
10-20 times. Depending on diatom fragility this may need to be reduced.

3. After sonication, sieve sample again at the appropriate size fractions.

Additional treatments of HNO,/H,0,

Samples with resistant organic matter may require additional treatments of HNO; or
H,0,. Return sample to conical flask and repeat treatment with the above removal
of organics procedure.

SPLITT

Some samples underwent split-flow thin fractionation (SPLITT) which uses gravity to
separate two components based on their specific gravity and hydrodynamic
properties through laminar flow (Rings et al., 2004). Simply, samples are
transported in deionised water through a narrow channel under a constant flow rate
and particles are split towards two outlets. A detailed methodology can be found in
Rings et al. (2004). Analysis was carried out at the Environment Centre at Lancaster
University. For samples in the 20-38 ym and 38-63 pm range inlet flows of 8-10
ml/min were used for samples and 12-15 ml/min for deionised water.
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Appendix V.

Diatom slide preparation

Permanent slides were made of the final purified diatom samples sent for isotope
analysis. The following method is adapted from: http://www.geog.ucl.ac.uk/about-
the-department/support-services/laboratory/laboratory-methods/lake-sediment-
analysis/diatom-slide-preparation

Diatom slides are usually made up by allowing the diatom suspension to settle out
on a cover slip overnight, as described below. This produces an even spread of
diatoms over the cover slip but it can take up to two days.

Equipment

Hotplate

Round glass coverslips 19mm diameter
Glass slides

3 ml pipettes for each sample

Naphrax diatom mountant

Rigid metal tray

Deionised water

Procedure
1. Dilute the cleaned diatom suspension to a suitable concentration. The
suspension should nearly be totally clear. Fine particles in suspension
should be just visible when the suspension is held up to the light.

2. Place coverslips on a metal tray in a position where they will not be

disturbed, away from dust sources and air currents.

3. Using a 3 ml pipette, place up to 0.5ml of well mixed diatom suspension on
each coverslip, cover the tray to keep off dust and leave to dry. This may
take up to two days.

Once coverslips are dry, heat a hotplate in a fume cupboard to 130°C.

5. Place 1 drop of Naphrax on a glass slide and invert the cover slip with the
dried diatoms over the drop.

6. Heat the slide on the hotplate for 15-20 minutes to drive off the toluene in the

Naphrax.

7. Allow the slide to cool and then check that the cover slip does not move
when pushed with a fingernail. If it does move then the slide will need to be
heated a little longer.

o
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Appendix VL.

Lipid extraction from lake sediments

Sample preparation

Weigh a known amount (~1g) of freeze-dried sediment and mix with general
purpose grade sand and sandwich within the ASE cell by filters (cellulose filters,
19.8 mm) at each end.

Lipid extraction
The total lipid fraction was extracted using a Dionex accelerated solvent extractor
(ASE 200) using the following methodology:

Pressure 1500 psi
Heat 5 minutes
Temperature 100

Static 20 minutes
Flush 60%
Purge 60 seconds
Cycle 1

Solvent A (dichloromethane) 90%
Solvent B (methanol) 10%

Extract clean-up

1.

2.

Label a round-bottom glass flask (rbf) with sample number and decant total
lipid extract, extracted by the ASE, into the rbf.

Reduce the volume of dichloromethane (DCM)/MeOH extract using a rotary
evaporator (~170-200 mBar, water bath ~40°C).

Transfer the reduced extract to a pre-weighed 3.5ml glass vial with DCM and
rinse rbf repeatedly with DCM until all extract has been transferred to the
vial.

Take to dryness at ~60T under a gentle stream o f nitrogen gas, and re-
weigh vial to determine amount of residue (total extract).

Separation of Neutral and Acid fractions (Ficken et al., 1998)

1.
2.
3.

o

Re-dissolve residue in 1ml (DCM)/isopropanol (2:1 v/v).

Label and weigh two 7ml vials with “Neutrals” and “Acids”.

Wash a 3ml aminopropyl (HN,) Bond Elut® 500mg column with DCM twice
and discard solvent. Do not allow the column to dry-out.

Wash column with DCM/isopropanol (2:1 v/v) once and discard solvent,
again do not allow to dry-out.

Place empty neutral vial under column once wash stage has completed.
Add total extract onto column, washing out 3.5ml vial with additionat DCM /
isopropanol (2:1 v/v) and allow to penetrate column, but ensuring column
does not dry-out.

Elute neutral fraction with ~6ml of DCM/isopropanol (2:1 v/v).
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10.

After last drop of neutral fraction, set aside neutral vial and replace with acid
vial.

Elute the acid fraction with ~6ml of freshly made 2% acetic acid in ether,
once again ensuring column does not dry out. Squeeze last drop of acid
fraction using pipettor.

Dry both neutral and acid fractions at ~60C un der a gentle stream of
nitrogen gas, and re-weigh vials to determine amount of neutral versus acid
fraction.

Acid methylation

1.

N O

9.
10.
11.

Add 50ml methanol (CH3;0H) to a large (>150ml) rbf and slowly pipette a
couple of drops of Acetyl Chloride (CH3COCI) into the flask, swirling after
every few drops. Add a total of 2.5ml CH3;COCI to make 5% CH3;COCI.

Add ~100uL Toluene to the acid fraction in the 7ml vial.

Add 1.5ml 5% CH3;COCI to the acid fraction and leave at 60°C overnight with
the cap loosely fitted.

Remove from the hotplate and add ~1-2ml hexane/ether (5:1 v/v) to the 7ml
vial.

Add ~1ml 0.1N KCI/CH.CI, to vial.

Srew lid to vial and shake vigorously and leave to seperate

Transfer top part (organic fraction) into a 3.5ml vial.

Add ~1-2ml hexane/ether (5:1 v/v) to the 7ml vial again and repeat steps 7-
8.

Repeat steps 7-9.

Repeat steps 7-8.

Dry sample at ~60C under a gentle stream of ni trogen gas.

Neutral fraction separation (hydrocarbons and polars)

1.
2.

3.

o

|

Weigh two 7ml vials and label one “alkanes” (hydrocarbons) and one “polar”.
Clamp glass columns (~15ml) and create a pad at the base of the column
were extracted cotton wool about 2cm thick.

On top of the cotton wool add a 3cm-thick layer of freshly activated alumina
(aluminium oxide). Alumina kept dry in a drying oven.

Add a few drops of DCM to the neutral fraction residue in the 3.5mi vial to re-
dissolve and add a small amount of alumina to absorb the DCM and neutral
fraction.

Place “alkanes” 7ml vial beneath the column.

Pour the neutral fraction onto the column and add hexane/DCM (9:1 v/v)
solution to column until 7ml vial is filled.

Once the alkanes vial is filled, replace with the “polar” vial and add
methanol/DCM (1:1 v/v) to the column until all solution has drained through
column and the vial filled.

Dry sample vials at ~60TC under a gentle stream of nitrogen gas.

Weigh both alkanes and polar vials.
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De-sulphurisation

1.
2.
3.
4

5.

6.

In a beaker, add HCI to copper turnings to clean.

Rinse well with deionised H,0, twice.

Rinse with methanol 2-3 times and decant.

Rinse with DCM 2-3 times and decant and allow to dry by shaking turnings.
Copper should be bright and shiny and stored in an air tight jar until use.
Add a small amount of DCM to “alkanes” vials and add a small amount of
the activated copper to absorb sulphur. Continue adding more copper until it
no longer turns dull/black.

Leave overnight.

Urea adduction of the n-alkane fraction

1.

U

N

10.
11.

12.
13.

14.

15.
16.

In a solution bottle, make a saturated solution of urea in methanol by adding
urea crystals to methanol until no more dissolves and a layer of urea
remains at the bottom, and set aside.

Add 1-2ml DCM to the copper turnings in the alkanes vial to pipette-off
sample and put into a 15ml glass centrifuge tube, repeat twice.

Add 50% of the volume of DCM of acetone to the tube and shake.

Add 1ml of saturated solution of urea in methanol and continue to shake.
Evaporate solvent under a stream of nitrogen gas without heating.

Extract the non-adducted hydrocarbons by adding 10ml hexane to the
mixture.

Sonicate for 30 seconds and centrifuge for 10 minutes at 1500 rpm.

Once centrifuged, pipette off the solvent without disturbing the urea crystals
into a rbf.

Add another 10ml hexane to the centrifuge tube and repeat steps 7-8 a
further two times.

Reduce solvent (~30ml) by rotary evaporation.

Transfer the non-adduct fraction in hexane (4 x 2ml) to a glass centrifuge
tube.

Repeat the adduction procedure again on the non-adduct fraction.

Filter the hexane washings through a small plug of cotton wool in a pipette
and collect in vial labelled “N-A”.

To remove the adducted hydrocarbons (n-alkanes) from the urea crystals,
dissolve both urea plugs (from initial adduction process and that from the
repeat) in deionised water (10ml) and combine.

Extract the solution with hexane (2 x 10ml).

Evaporate the combined hexane extracts and take to dryness under a
stream of nitrogen in “AD” labelled vials.

Standard solution (n-Css alkane)

1.
2.

Add 25mg of hexatriacontane to 100ml hexane to form a standard solution.
Add a known amount of standard solution (typically 100 uL) to each fraction
prior to analysis by GC-MS by syringing into vials and transferring to mass
spectrometer vials.
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Appendix IX

Appendix IX.

Geochemical characteristics of Lake Edward cores.

Published in Lasrdal et al. (2002) but age-depth relationships have been
subsequently changed so attention should be drawn to core depths rather than core
chronology. N.B. Labelled ages to the left are in radiocarbon years. Vertical
turquoise line represents core sections that were used in this thesis.
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