

 Swansea University E-Theses ___

Designing number entry user interfaces: A focus on interactive

medical devices.

Oladimeji, Patrick

 How to cite: ___
Oladimeji, Patrick (2014) Designing number entry user interfaces: A focus on interactive medical devices.. thesis,

Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42894

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42894
http://www.swansea.ac.uk/library/researchsupport/ris-support/

D esig n in g N u m b e r E n t r y U se r In te r fa c e s
a focus on interactive medical devices

Patrick Oladimeji

Submitted to Swansea University in fulfilment
of the requirements for the Degree of Doctor of Philosophy

Prifysgol Abertawe
Swansea University

College of Science
Swansea University

2014

ProQuest Number: 10821284

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10821284

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

To my parents

Contents

C ontents i

A bbreviations vii

1 Introduction 1
1.1 Data entry errors in m e d ic in e .. 3

1.2 Problem s ta te m e n t .. 6

1.3 Methodology ... 7

1.4 Thesis s tru c tu re .. 8

1.5 Research co n trib u tio n s... 9

2 Background 11
2.1 Number systems ... 11

2.2 A survey of number entry in terfaces.. 12

2.2.1 Pre 17th c e n tu r y .. 13

2.2.2 Between 17th century and early 20th century 13

2.2.3 Post 19th cen tu ry .. 17

2.3 Text entry re sea rch ... 18

2.3.1 Metrics for text entry interface e v a lu a tio n 20

2.4 Number entry interface re sea rch ... 21

2.4.1 Number entry interaction s ty le s .. 21

2.4.2 Keypad layout... 25

2.4.3 E r r o r s .. 28

2.4.4 Methods for data entry error re d u c tio n 31

i

ii CONTENTS

2.5 S u m m a ry .. 34

3 C lassifying number entry interfaces 37
3.1 A task level decomposition of number entry 38

3.2 Design space analysis using Questions, Options and Criteria . . . 39

3.2.1 C r i t e r i a ... 41

3.3 Number entry interface e x a m p le s .. 42

3.3.1 Serial digit e n t r y ... 44

3.3.2 Independent digit entry .. 45

3.3.3 Incremental number e n t r y ... 49
3.3.4 Direct number selection .. 51

3.3.5 Limitations of the classification.. 51

3.4 Summary .. 52

4 Num bers in context 55
4.1 Related W o r k ... 55
4.2 D a t a ... 57

4.2.1 Graseby 500 ... 57

4.2.2 Asena GH Syringe P u m p .. 58
4.2.3 BBraun In fu s o m a t.. 58

4.3 Distribution of numbers .. 59

4.3.1 R a n g e .. 59
4.3.2 Precision... 60

4.3.3 Differences in the distribution of numbers 62

4.4 Number changes and frequency of c h a n g e s 67

4.4.1 Differences in number changes... 68
4.5 Number changes and Dose Error Reduction System s....................... 69

4.6 S u m m a r y .. 69

5 M odelling task perform ance in number entry 71

5.1 Interfaces a n a ly s e d .. 72

5.2 Estimating s p e e d ... 72

5.2.1 Improving the interface p e rfo rm an ce 74

5.3 Method ... 74

CONTENTS iii

5.3.1 UI Model Discovery... 76
5.3.2 Path finding algorithms .. 77

5.4 Determining the optimal keystrokes for specifying numbers 78
5.4.1 Numeric keypad .. 78

5.4.2 Blocked digit w r a p ... 78

5.4.3 Independent digit w ra p ... 78
5.4.4 Arithmetic digit wrap ... 79

5.4.5 Cost as a function of number of button clicks 82
5.4.6 Cost as a function of estimated t i m e 82

5.4.7 Cost function g .. 83
5.4.8 Heuristic function h ... 84

5.5 Results and D iscussion.. 85

5.5.1 Numeric K e y p a d ... 85
5.5.2 D - p a d .. 86
5.5.3 U p-dow n... 91

5.6 Performance of numbers in c o n te x t .. 92
5.6.1 M e th o d ... 92
5.6.2 R esu lts .. 96

5.7 D iscussion.. 97
5.8 Summary .. 97

6 Interface style and error detection 99
6.1 E x p e rim e n t.. 100

6.1.1 D esig n ... 100
6.1.2 P a rtic ip an ts ..101

6.1.3 A p p a ra tu s ...101

6.1.4 P ro c e d u re ...103
6.1.5 Defining corrected e r r o r s ...104

6.1.6 R esu lts ... 104

6.1.7 Error T y p e s ... 112
6.2 D iscussion... 114

6.3 C onclusions.. 116

7 Exploring user perform ance for number entry interfaces 119

CONTENTS

7.1 The prototype u n i t ..121
7.2 Related W o r k ..121

7.3 Number entry in te r fa c e s .. 123

7.3.1 Numeric K e y p a d .. 123

7.3.2 Chevrons ...123

7.3.3 Up-down.. 123

7.3.4 D - p a d ... 124

7.3.5 Dial ...124

7.4 Pre-study A n a ly s is ..125

7.4.1 Numbers u s e d .. 125

7.4.2 Pre-Study M e th o d ...125

7.4.3 Pre-Study R e s u l t ..126
7.5 Method ... 127

7.5.1 D esig n ... 127
7.5.2 P a rtic ip a n ts ... 128
7.5.3 A p p a ra tu s ...128
7.5.4 P ro ce d u re ...129

7.6 A n a ly sis ... 130
7.6.1 Corrected E r r o r s ..131

7.7 R esu lts .. 132
7.7.1 Learning e ffec ts ... 132
7.7.2 Effect of instruction .. 133

7.7.3 Speed of number e n t r y .. 134

7.7.4 E r r o r s ... 136

7.7.5 User interface p reference...137

7.8 D iscussion..138

7.8.1 Relative preference of in terfaces.. 138
7.8.2 Types of e r r o r s ...138

7.8.3 Difference in speed prediction and study r e s u l t s140

7.8.4 Effects of interface style on number perception.......................141

7.8.5 Severity of errors com m itted .. 142
7.8.6 Incremental interfaces and varying number precision 142

7.8.7 Reuse of numbers and rehearsal e f fe c ts 144

CONTENTS v

7.9 C onclusions... 144

8 Choosing an interface 147
8.1 Evaluative fe a tu re s .. 147

8.1.1 Speed ..147
8.1.2 Error R a te ... 150

8.1.3 Error S everity ...152
8.1.4 Error D e tec tio n ... 154

8.1.5 User interface fo o tp rin t...155
8.1.6 Range and P re c is io n ..158

8.2 S u m m a ry ...160

9 Conclusion 163
9.1 Research co n trib u tio n s ..163
9.2 Generalising from this research ..165
9.3 Future w o rk ... 165

Bibliography 167

Abbreviations

Abbreviation Description Definition

ADE Adverse Drug Event page 3

ANOVA Analysis of Variance page 96

API Application Programming Interface page 76

ATM Automated Teller Machine page 2

CxC Correct by Construction page 31

DERS Dose Error Reduction Systems page 33

EEG Electroencephalography page 32

FDA Food and Drug Administration page 29

ISMP Institute for Safe Medication Practices page 31

KLM Key-stroke Level Model page 71

KSPC Key strokes per character page 20

KVO Keep Vein Open page 56

MAUDE Manufacturer and User Facility Device Expe­
rience

page 5

MSD Minimum String Distance page 20

NPSA National Patient Safety Agency page 4

QOC Questions Options Criteria page 38

RFID Radio Frequency Identification page 33

SKSS Stochastic Key Slip Simulation page 31

VTBI Volume to be infused page 33

wpm words per minute page 20

vii

viii ABBREVIATIONS

D eclara tion

This work has not been previously accepted in substance for any degree and is

not being concurrently submitted in candidature for any degree.

Signed (candidate)

Date

S ta tem en t 1

This thesis is the result of my own investigations, except where otherwise stated.
Other sources are acknowledged by footnotes giving explicit references. A bibli­
ography is appended.

Signed .. (candidate)

Date ..

S ta tem en t 2

I hereby give my consent for my thesis, if accepted, to be available for photo­
copying and for inter-library loan, and for the title and summary to be made
available to outside organisations.

Signed .. (candidate)

Date ... 5 f t ... A.p.^X... f t P. .f t...

IX

A bstract

Number entry is a crucial aspect of using many interactive systems. Tasks such
as withdrawing money from an ATM, selecting a TV channel, manually tuning
into a radio station, or setting up an infusion pump for drug delivery, all involve
entering or selecting numbers. The number entry aspects of these tasks are
usually secondary to the user’s goal. Users typically have higher level goals
which might involve a sub-task related to entering numbers. As a result, number
entry is assumed to be simple, straight forward and uninteresting.

The design of number entry interfaces dates back as early as the use of tally
sticks and counting boards although modern interfaces did not emerge until the
design of the first mechanical calculator in the 17th century. The nature of num­
bers allows interfaces to be designed that exploit the specification of individual

digits of the number as well as making incremental changes to the entire num­
ber. The diversity in interface design is not evident in current research which is
dominated by various forms of evaluations of the numeric keypad interface.

This thesis undertakes a historical review of the design of number entry in­

terfaces and then explores the design space within which they lie while proposing

a classification for the different styles of interfaces. It then evaluates several

example alternatives to the numeric keypad, specifically those in use on infu­

sion pumps in hospitals using both exhaustive simulations and usability studies.
These evaluations explore the effects of interface styles on error detection, speed,

error severity and error type. This research concludes by identifying properties
for performing relative comparisons of interfaces and uncovers design trade-offs
that will help inform decisions about the safety and dependability of number
entry interfaces.

XI

Acknowledgem ents

I would like to thank Harold, my supervisor for the very helpful and extensive
suggestions made through this research. Your seemingly tangential thought pro­
cesses were an incredible source of inspiration for a great deal of work reported
in this thesis. Thanks also to Parisa for the encouragement, advice and recom­
mendations you provided at different stages of this work. I would like to thank
Michael for the very useful feedback and sanity checks on draft versions of this
thesis and to Anna for helpful suggestions and feedback provided in designing
experiments.

Many thanks to my family, especially Wende, for graciously putting up with
a lot of early mornings an late nights. I am incredibly grateful to my parents and
uncle Ralph, for supporting and encouraging me in all my academic endeavours.

Thank you to all my friends especially Tom, Jen, Simon, Emma, Liam, Ben,
Seb and M att for keeping me in track with reality and empathising with the

challenges of the journey that is the PhD. Thanks to Sandy Gould for agreeing
on short notice to present the interact paper and to members of the UCLIC group

for their generous hospitality during my time there.

Finally, I would like to thank the CHI+MED group especially Paolo, Gerrit,

Karen, Abigail, Paul Lee and Carlos, with whom I have had various insightful

discussions tha t affected the path taken in this thesis.

This research was funded as part of CHI+MED*: Multidisciplinary Computer-

Human Interaction research for design and safe use of interactive medical devices

*http://www.chi-med.ac.uk

xiii

xiv Acknowledgements

project EPSRC Grant Number EP/G059063/1.

Copyright acknowledgem ents
Acknowledgement is due to the following, who granted permission to use their
images in this thesis:

• The Computer History Museum (h t t p : //www. computerhis tory . org/)

permitted the use of several images from their online exhibition on Calcu­
lators. These images appear in Chapter 2 to illustrate the styles of number
entry interfaces used in ancient mechanical calculators.

• Friedrich Diestelkamp of h ttp ://w w w .add ia to r.de permitted the use of
the image of the Kollektor in Chapter 2.

• Figure 2.5b is originally by R. Sull from Wikipedia. The image is licensed
and used under the Creative Commons Attribution-Share Alik3 license.

I created all other images used in this work.

Preface

Light switches are often cited as examples of simple state machines. They are
either on or off. A few months before I started this PhD, Harold Thimbleby, my
supervisor, showed me his latest toy. It was a light box he’d built using an off-the-

shelf dimmable electronic transformer* and two generic switches. The switches
looked exactly identical but had different physical properties when pressed. The
first switch, on the left, was a normal toggle switch and the other was spring
loaded, returning to an off state once released. Harold challenged me to turn on
the light box. After about half a minute of probing the light box, I managed to
turn it on. But why should such a simple device have a complicated interface? I
later learnt that the light box was a replica of the light control our postgraduate
seminar room.

I had just finished my master’s degree and was at the time doing some work
on automatically exploring interaction graphs of simple interactive systems from
programmed simulations. So I thought I’d find out exactly how complicated the
box was by writing an ActionScript simulation and discovering the user interface

model. Figure lb shows the result of my endeavours. The only detail worth

taking out of Figure lb is its apparent complexity. I quickly realised that I could
reason about the light box as a simple value entry system used to change the

intensity level of the bulb.

This research started in April 2010 as part of CHI+MED - a multidisciplinary

research project on human computer interaction for safe use and design of in­
teractive medical devices. This project provided a platform of opportunities to

^He used the Pico Wolf X 60 electronic transformer

XV

xvi PREFACE

I f t on false
D im L evel:i
Tem p Dim Level 3

[C hange Direction i

(a) (b)

Figure 1: The lightbox (a) and its internal interaction user interface model (b). Each
circle in the graph represents a state o f the lightbox and the color o f the circle represents
one o f seven levels of brightness.

engage and interact with devices in the medical context with various styles of
number entry interfaces and I decided to explore the implications of the different
styles for the design of safety critical interactive systems.

This thesis is the result of my work of exploring, analysing and discovering
number entry interfaces over three years.

Style

I have elected to write up this work in a mixture of two different but coherent
styles. I introduce and conclude the work in the active voice in order to clearly

frame and state the contributions of this research. I report the scientific research
within the body of the thesis in the passive voice.

E th ica l issues

I recruited human participants for the experiments in Chapters 6 and 7. Conse­
quently, prior to the recruitment stage of each experiment, I sought and received

ethical approval for the experiment from the Computer Science Department's
Ethics and Risk Assessment Committee in Swansea University.

Prior to the beginning of each study, each participant completed a consent
form and was told about their right to withdraw from the study without any

XVII

penalty. Each participant that partook in the experiments received a gift voucher

in return for their time.

Contributing publications

Some of the ideas and research reported here have been published in peer-

reviewed international conferences and journals. I list these publications below,
highlight my contributions and the chapters where they are reported.

1. Oladimeji, P., Thimbleby, H., Cox, A.: Number entry interfaces and their

effects on error detection. Proceedings of the 13th IFIP TC 13 international
conference on Human-computer interaction. 178-185, (2011).

M y Contribution
The concept behind this research was mine. I designed and ran the study,
implemented the user interfaces evaluated, analysed the results and wrote
the paper with some insightful feedback from the co-authors. The findings
of this paper are reported in Chapter 6.

2. Oladimeji, P., Thimbleby, H., and Cox, A. A performance review of num­
ber entry interfaces. Proceedings of the 14th IFIP TC13 Conference on
Human-Computer Interaction, in press (2013).

M y Contribution
Carlos Monroy and I designed the prototype device used in this study and
the fabrication of the physical device was overseen by Ian Culverhouse of

PDR*, Cardiff. I designed and ran the study, implemented the different
interfaces and analysed the results. I wrote the paper with feedback from
the co-authors. The findings of this paper are reported in Chapter 7.

3. Oladimeji, P.: Towards safer number entry in interactive medical systems.
In: Proceedings of the 4th ACM SIGCHI Symposium on Engineering In­

teractive Computing Systems. 329 - 332, (2012).

*http://pdronline.info/

xviii PREFACE

M y Contribution

This doctoral consortium paper contained my ideas of metrics that can be
used for performing relative evaluation of number entry interfaces. This

paper formed the foundation for Chapter 8, although the ideas have been
refined into evaluative criteria over the course of this research, particularly
in light of feedback I got during the doctoral consortium.

4. Monroy Aceves, C., Oladimeji, P., Thimbleby, H., and Lee, P. Are pre­
scribed infusions running as intended? Quantitative analysis of log files
from infusion pumps used in a large acute NHS hospital. British Journal
of Nursing, in press (2013).

M y C ontribution
I was responsible for writing the scripts that were used in analysing the
logs files for the results reported in the paper. Part of Chapter 4 reuses
this script for exploring the nature of numbers used on the Graseby infusion
pump. I presented several new ideas not presented in the paper in Chapter 4

including the analysis of logs from two other devices. I also contextualise

the predicted performance in Chapter 5 using results from this analyses.

5. Masci, P., Ruksenas, R., Oladimeji, P., et al. The benefits of formalising
design guidelines: a case study on the predictability of drug infusion pumps.
Innovations in Systems and Software Engineering, (2013), 1-21.

M y C ontribution
I facilitated the formalisation of the Asena (Alaris) interface reported in this
paper by providing simulations from which Paolo and Rimvydas base the

creation of their formal models. I also contributed to the recommendations
section in this paper. Specifically I provided recommendations for improv­
ing the chevrons interface with respect to improving speed and reducing
error based on the results of an experiment [Olall] which I conducted.

Chapter 1

Introduction

Interactive computer systems have improved over the years and despite various
technological advancements, a notion that persists in interactive devices is that
they need to be used either passively, for instance, by merely informing a deci­
sion based on a reading or feedback, or actively, by engaging the user in a more
interactive session of input - output interpretation loop. The interactive nature
of computing systems and devices, thus requires a means of communication be­
tween the user and the device. The user provides a sequence of commands for
instructing the device about how they intend to execute a task. This means of
communication can be broadly described as data entry and it may be transmitted
through different forms of user interfaces including (but not limited to) speech
based user interfaces or tangible user interfaces such as buttons or touch screen

devices. In general, data entry in interactive systems usually has a simple pur­
pose - to supply some value to an application in order to facilitate the execution
of an intended task. This makes data entry a core aspect of using an interactive
system.

Data entry itself has two components. One of them is Data, which is concerned
with the type of information supplied to the system. The other is entry, which
is concerned with how the information is supplied to the system. One type

of data is text. Text entry interfaces primarily offer character level control.
The user specifies the letters that make up the intended words. The use of

1

1. I n t r o d u c t i o n

text is ubiquitous. This is evident, for instance, in the proliferation of mobile

phones coupled with a myriad of social media applications that enable users
to share text based information and messages. Consequently, there has been
a lot of research on text entry for a variety of interactive devices in different

contexts. These range from the performances of different layouts of the typewriter
keyboard [KroOl] to that of a 12-key text entry interfaces found on millions of
mobile phones [But02, Sou03, SilOO, San04].

Another ubiquitous type of data is numeric. Number entry has been a part
of human culture since we learned to count. The cultural and economic im­
portance of numbers is evident in their presence in languages around the world.
Tally sticks were among the earliest artifacts that were used to represent numeric
quantities [Dan68], usually acting as a memory aid that had better persistence
than finger counting. After tally sticks came devices like various forms of aba­
cuses and counting boards like the Salamis Tablet [Men92, p. 300]. Much later,
starting in the mid 17th century, the advent of a series of mechanical calculators
such as Pascal’s Calculator and later, the Arithmometer, brought about a series

of different design options for interacting with numbers and designing modern
number entry user interfaces. Variants of these interfaces are still in use today
in various interactive devices - although implemented in ways that account for
technological advances both in software and hardware.

Tasks that require entering numbers are vital to the use of many interactive
devices and are consequently extremely common. For instance we enter or select
numbers at the ATM, we enter, select or modify numeric values in our microwave
ovens to specify time, and we often change the volume on our music player. While
performing any of these tasks, the user might be oblivious to the number entry
aspect of the task, after all, you only wish to withdraw some money from the
bank, warm up your food or increase the volume of music. Number entry is

usually a sub-task to achieving a more primary goal and is therefore very often
perceived as trivial.

The reader could probably think of more than one type of interface for per­

forming these tasks. For instance, an ATM might use a 12-key numeric keypad,
a microwave might use a dial and the music player might use a slider. In short,

2

1.1. Data entry errors in medicine

there are several ways a number entry interface might be designed and imple­

mented. Despite dating back many years, until recently, research has failed to
identify a classification or a review of the performance of the different styles of

interfaces that might be beneficial to designers of interactive systems.

Research on number entry has focused mainly on one type of interface: the 12-

key numeric keypad found on many telephones and calculators. The popularity
of this interface is not surprising as user interaction directly maps to the way
numbers are written in western languages. This is just like text entry where

digits in a number are specified sequentially from left to right. This makes it
very easy to learn and adopt.

There are, however, other alternative ways for designing number entry in­
terfaces, each having different context-dependent advantages and disadvantages
including consequences for speed, error, user interface footprint or user experi­
ence. Many of these factors play an important role in the dependability of a style
of interface in the safety critical context and particularly in their appropriateness
of use in such contexts.

1.1 D ata entry errors in m edicine

A context of interest in this thesis is the healthcare setting where poorly de­
signed data entry interfaces could lead to error, and errors could have severe

consequences such as death. Medication errors are the leading cause of adverse
events in hospitals with as many as 6.5% of inpatients and 27.4% of outpatients
experiencing adverse drug events (ADEs). ADEs are responsible for 4.7% of all

hospital admissions in American hospitals [Mor04, Bat95, Gan03]. The majority
of these adverse events are preventable and have been classified based on their
position in the medication process (e.g., see [Mor04, Rot05, Lis05]).

Errors occur in the following stages of the medication process:

• Prescribing/Ordering stage - (i.e., when medication is requested by the
physician or consultant)

3

1. I n t r o d u c t i o n

• Transcription stage - (i.e., when a physician’s order is transcribed by a
secretary or a nurse)

• Dispensing stage - (i.e., when medication is supplied by a pharmacist)

• Administration stage - (i.e., when medication is delivered to the patient
by the physician, nurse or the patient)

• Monitoring stage - (i.e., when the status of an administered medication is
checked by the physician, nurse or patient to ensure safe delivery)

All these stages in the medication process involve the correct perception and
specification of numbers used to specify settings such as drug doses, frequency
of therapy and duration of therapy. These can occur over a variety of contexts
ranging from a General Practitioner’s office, to a patient’s home, and on a variety
of medical devices ranging from computerised order entry systems running on PCs
to drug delivery systems running on infusion pumps.

According to a National Patient Safety Agency (NPSA) report in 2007, about
7000 medicine doses are administered each day in each hospital in England and
Wales [Age07]. Some drugs have to be administered intravenously due to the
treatment requirements of patients who need multiple intravenous drugs to be
delivered simultaneously [Keo05]. Devices such as infusion pumps, used for con­
trolled delivery of drugs in hospitals, require timely and accurate programming
in order to avoid patient harm [AgelO]. Setting up an infusion pump requires en­

tering numbers tha t correspond to the rate of infusion, the volume to be infused
(VTBI) and duration of the infusion. Many adverse incidents in hospitals have
occurred as a result of avoidable number entry errors in programming infusion

pumps, (e.g., [Vic03, W esll, ISM06]). Consequently, designers of medical devices
ought to be able to make informed design decisions on number entry interfaces
with a clear understanding of the strengths and weaknesses of a style of interface.

Tenfold medication errors are well reported in literature. They refer to nu­
meric data entry errors where the intended number is different from the tran­
scribed number by a factor of ten. Thimbleby and Cairns [ThilOb] refer to this

type of error as an out-by-ten error. Tenfold errors have been documented to

4

1.1. Data entry errors in medicine

occur during all five stages of the medication process although they are most

common during prescribing (43%) and administering (35%) [Dohl2].

Zhang et al. [Zha04b] report an example incident that they discovered in the
Manufacturer and User Facility Device Experience (MAUDE)* database, that

represents poor number entry interface design in medical devices. In this incident,

a nurse inadvertently programmed a pump to deliver an infusion at 1,301 mL per
hour instead of 130.1 mL per hour. The nurse did not realise that the decimal
point on the infusion device in question was ignored for numbers above 99.9.
This incident would have led to an overdose although the outcome is unspecified

in the paper. Another incident reported by Syed et al. [Sye06] highlights a
case involving a morphine overdose to a patient, who consequently went into
respiratory arrest, but was resuscitated. One of the many errors that occurred in
this incident was a number entry error where a nurse programmed a pump at a
concentration of 0.5 mg per mL instead of 5 mg per mL. The lower concentration
value entered into the device meant that the patient received more drug per

volume than was entered into the device.

Although errors leading to ADEs can occur at different stages of the medi­
cation process, those that occur as a result of errors in interactive number entry
are smaller and hard to estimate. It is difficult to get an accurate proportion of
medical errors that occur as a result of number entry. Vicente et al., [Vic03] es­
timated for a single device that the probability of mortality due to programming
errors has a range between 1 in 33,000 to 1 in 338,800. There is a limitation
in the quantity of data available for analysis in the medical context. This is in
part due to the voluntary nature of error reporting in the field, coupled with the

ethical and technical issues involved in potentially automating the error report­
ing process. Research also suggests that errors are under-reported for reasons

including time pressure and a culture where errors are typically associated with

punitive consequences [Res03].

Despite error rates being low, the consequences of error can be potentially

devastating. As a result, this research proceeds on the premise tha t errors will

occur and sometimes go unnoticed, however rarely.

*http://www. accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm

5

1. I n t r o d u c t i o n

1.2 Problem statem ent

The importance of safety in healthcare means that medical devices need to be

designed to have the highest degree of dependability, reliability and safety. This
means medical devices need to be designed in the best possible ways to properly
handle and manage error in order to reduce harm to patients that arise as a result
of poor interaction design.

The focus of this Thesis is the number entry aspect of data entry. Currently, a
variety of number entry interface styles are in use in medical devices without any
empirical evidence showing which design option is better and why. This research
explores the design space of number entry interfaces focusing on interfaces that
have been in use in medical devices (specifically those in use in infusion pumps).

The overall goal of this Thesis, then, is to explore different ways of designing
number entry systems, evaluate the performance of the different interface styles
and understand the trade-offs involved in choosing to implement one number
entry interface style instead of another. The motivation is to help improve the

design choices made by designers of interactive number entry systems.

I set out to achieve this goal by:

1. Exploring the design space of number entry interfaces. The design space will
be validated using instances of number entry interfaces found throughout
history, starting from early designs found on ancient calculators to more

recent designs.

2. Building a repository of simulations of different styles of number entry
interfaces to enable exhaustive analyses for predicting the performance of

the different interface styles and identify features in each interface style
that are unique to that style as well as identifying potential bottlenecks for

speed and accuracy.

3. Running user studies to evaluate the performance of a selection of the
number entry interface styles identified earlier as well as evaluating the
effects of interface style on error detection. I will run the repository of

6

1.3. Methodology

simulations on a high fidelity prototype unit built specifically for testing
number entry systems.

4. Identifying a list of criteria tha t can be used to perform a relative compar­

ison of the different styles of number entry interfaces available to improve
decision support for designers of devices that require number entry inter­
faces.

1.3 M ethodology

In this Thesis, I employ a dual approach to evaluations based on analytical
evaluation and usability studies. Where possible, I initially perform preliminary
analyses based on the user interface model discovery method [Thi07, GimlO]. I

then conduct laboratory studies to support/validate the results of the preliminary
analytical evaluation. The reason for this dual approach is to harness the strength
and relative speed of automated and exhaustive user interface model discovery
with the results obtained from running user studies including the qualitative
feedback obtained when talking to users about usability perception of interfaces.

Model discovery is a technique in interaction programming and was first de­
scribed by Thimbleby [Thi07]. The method systematically explores the user
interface of a class of interactive devices that support discrete user interactions
(usually button clicks). It involves exhaustive exploration of an interactive system
by successively stimulating all possible user actions permissible on the interface
until all possible states in the system reachable by user interaction are explored.

The model discovery process produces a graph of states in an interactive
device (nodes) connected by the user actions necessary to transition between

these states (edges). A state in this context is modelled by a set of variables

in the interactive system. The graph produced can thus be formally analysed

using graph theory algorithms such as finding the shortest paths between any
two states in the device, the most central state in the device, as well as finding
safety properties such as connectedness. In this method, one can apply network
analysis on the resulting graph to find out user strategies or quantitative usability

metrics such as the average menu depth for an interactive device [Thi09b].

7

1. I n t r o d u c t i o n

Model discovery is particularly suited to the analyses of number entry inter­

faces, specifically in the medical device domain because the range of numbers
used in medical devices such as infusion pumps is finite as I shall show in Chap­
ter 4. This makes the number of states for a typical interface discovery process

for number entry tractable. For the purposes of this Thesis, I explore the shortest
paths properties for a variety of number entry interfaces to discover the cost of
setting and changing numbers on these interfaces.

1.4 Thesis structure

In the following chapter, in order to have a view of the evolution of number en­
try, I look at different instances of interfaces built for interacting with numbers
throughout history. This review sets the scene for understanding the similari­
ties between number entry interfaces and teases out the fundamental functions
necessary for the design of different styles of number entry interfaces. I then
conduct a review of literature related to performance metrics used in data entry
research. Specifically, I explore metrics used in text entry research and highlight
the limitations of those metrics with respect to the evaluation of number entry
interfaces. I also review past and current research on the evaluation of number
entry interfaces with respect to ergonomics (i.e., keypad layout) and error. I
conclude the chapter with a review of current practices for managing numeric
errors.

Following this, I explore the design space of number entry interfaces in Chap­
ter 3 in order to create a classification of number entry interface styles. I will
use this classification to assess the performance of the different interface styles in

Chapter 5 and explore the relative task completion times for number entry using
instances from the different classes of interfaces. The results of this analysis sets

up predictions for usability evaluations performed in Chapters 6 and 7.

Chapter 6 explores the concept of the resilience of an interface based on the

likelihood of a user to detect and correct an error while using the interface. This
experiment monitored the eye fixation of users while entering numbers on two
types of interfaces. Chapter 7 expands on the experiment run in Chapter 6 in two

1.5. Research contributions

ways. Firstly, it increases the number of types of interfaces tested and secondly,

it introduces a high fidelity prototype unit on which the experiments are run.

Chapter 8 presents a list of criteria that could be used to perform relative
comparison of different number entry interfaces. These criteria would be useful
to designers for structuring the options in the design space of number entry

interfaces while also being able to understand the trade-offs between one interface
and another in a given context.

Chapter 9 presents a reflection on the results of my research with an emphasis
on research contributions as well as new research questions that show the viability
of the research area and possible future research directions.

1.5 Research contributions

This thesis makes the following contributions to research in number entry inter­
face design:

1. A classification of number entry interface styles.

2. An evaluation of the effects of number entry style on error detection.

3. An evaluation of the effects of number entry style on performance using
custom built high fidelity prototype units.

4. A set of properties for evaluating number entry interfaces and performing
relative comparisons between a number of design options.

9

Chapter 2

Background

Number entry is an important aspect of using many interactive devices. Today,
we perform many number related tasks, possibly without realising. Tasks such as
dividing up the bill in the restaurant with a calculator, or specifying an amount to
withdraw at an ATM are obvious number entry tasks. Others, such as reducing
the volume of a music player or tuning a radio station manually might not be so
obvious.

Since numbers have been an integral part of many cultures, designing inter­
faces that are used to interact with numbers either to easily manipulate digits or
for a higher order goal such as performing arithmetic has been necessary. As a
result, the design of number entry interfaces dates back to the invention of very
old devices like the Salamis counting tablet and the abacus. Later the inven­

tion of mechanical calculators brought about a variety of number entry interface
designs.

2.1 Num ber system s

The design of modern number entry interfaces is greatly influenced by the nu­
meral system used for expressing numbers. According to Menniger [Men92],

some of the earliest forms of expressing numbers include the use of finger count­
ing, tally sticks and counting boards such as the Salamis counting board or the

11

2. B a c k g r o u n d

abacus. Early system s such as the unary system of representing num bers rely on

the use of repeating symbols th a t represent predefined num eric quantities. In its

sim plest form only one symbol representing the unit quan tity is required. So. the

num ber 3 could be represented by the string Laaa \ A popular modification of

the unary system is the R om an num eral system where there are explicit symbols

for representing frequently used large quantities such as X . L , C representing 10,

50. 100 respectively. There is no need to represent zero in th is system because

the value of a w ritten num ber is derived by successively adding up the quantities

represented by each symbol.

The num eral system m ost com m on today is the positional system or the

place value notation usually expressed in base 10. In this system , a num eral in a

num ber is assigned a value which depends on the position it occupies with relation

to o ther num erals representing th e num ber. Thus, the same num eral can be

a ttr ib u ted different m eanings in different positions, for example, the 7 in 897. 75

and 730 represent seven, seventy and seven hundred respectively. This no tation

was only possible after the invention of the symbol for zero by an unknown Indian

m athem atic ian [Dan68].

2.2 A su rv e y o f n u m b e r e n t ry in te rfaces

A good understand ing of the design of num ber entry interfaces is impossible

w ithout an understand ing of th e h istory of design of calculators. Below is a

review of exam ples of the com m on types of num ber entry interfaces found in

calculating m achines th roughout history.

Figure 2.1: A n abacus

1 2

2.2. A survey of number entry interfaces

2.2.1 P re 17th century

The first forms of number entry interfaces were seen on ancient counting devices

and ancient calculators. While counting devices such as tally sticks used the
unary system of representing numbers, the abacus (see Figure 2.1) primarily used
a place value notation for representing numbers although they used a modified

unary approach for representing the digits within the numbers. For instance,

abacuses are usually split into two rows with each bead in the top row representing

a numeric quantity of 5 while each bead in the bottom region represent the unit

number. The value of each digit is obtained by adding the active beads in the
top and bottom row.

2.2.2 B etw een 17th century and early 20th century

The calculating machines [Mar92] and Origin of modem calculating machines
[Tur21] are both invaluable resources containing historical accounts and com­
prehensive reviews of calculating devices between 1642 and 1925. By the 17th
century, the use of the positional notation was well established around the world
and as a result, number entry interface designs were mainly about controlling or
specifying the digits that make up a number. Consequently, calculating machines
had interfaces made of dials, setting slides or levers. Key driven interfaces were
invented much later.

D ials, sliders and levers

This period saw the invention of Pascal’s Calculator (also known as the Pascaline)
in 1642 (Figure 2.2), and the first Thomas Machine or Arithmometer in 1820

(Figure 2.3). Dial-based number entry interfaces, such as Pascal’s Calculator

allowed number entry using a series of toothed wheels each marked with digits

0 to 9. A varying number of these wheels (typically 8) were used to specify the
digits of the number the user wishes to use in their calculations. It was common

for these dials to be operated using a stylus, such that a user would set the
intended digit by inserting a stylus at the intended number on the wheel and

then rotating the wheel until it stopped, similar to the way dial-based telephones
worked. Errors in entry could be easily corrected by simply changing the digit in

13

2. B a c k g r o u n d

V /7/ev* C enlninti^D iv< iuu\

Figure 2.2: Pascal's Calculator (1642)

the same way it was set initially. Some devices provided a dedicated m echanism

for resetting th e system . C alculators th a t used levers or sliders to set num bers,

such as the A rithm om eter or the M illionaire worked sim ilarly except the input

widget used was a slider w ith digits m arked from 0 to 9.

K ey d riven ca lcu la to rs

Towards the end of the 19th century, various engineers around the world invented

smaller key-driven adding m achines. These devices typically had 10 keys and were

only used for adding up a single row of num bers (since they were only able to

specify one digit).

In 1885, D orr E. Felt invented the C om ptom eter, a key driven m echanical cal­

culator with a fu ll keyboard, It had explicit keys for specifying all possible digits

ii]) to the hundred thousands place value. Figure 2.4 shows several examples.

Figure 2.3: The Thomas Machine (1820)

14

2.2. A survey of number entry interfaces

Many devices invented after the Comptometer used a similar interface that

provided a 9 x N grid of digit keys, where N is the maximum number of digits

the device permits the user to enter during a calculation. Note tha t N is usually
less than the maximum number of digits that could be displayed in the result of a

calculation. The numbers within each column of keys begins at the bottom, from
1 and up to 9. There were no zero keys and the display section of the interface
started off as zeroes. Users entered numbers by pressing on the required digit

in the column representing the intended place value, one at a time. If the user
committed an error and detected it, they could simply press the correct digit in
the same column to fix the error. In instances where the wrong place value was

entered, (i.e., the user unintentionally selects a digit in the wrong column), some
models had dedicated keys in each column that reset the digit to zero. Others
simply had a mechanism for resetting all the keys. When used for currencies,
the tens and units columns were used to denote the tenths and hundredths place
values used for pennies or cents for example. To facilitate easy demarcation,
many interfaces coloured these two columns differently from the next three.

Two improvements to this style of interface made it faster and less error
prone. A feature called multiplex keys allowed the user to simultaneously press on
multiple keys from different columns. This allowed significantly quicker number
entry on the interface. A feature called controlled keys prevented entry of the
wrong number if the key was not properly depressed*.

The Kollektor (pictured in Figure 2.5a) was invented in 1910 and was rela­
tively portable in comparison to its predecessors. It had only four keys and could

be operated using four fingers on the left hand. The keys 1, 3, 4, 5 were pro­
vided on the interface for specifying the corresponding digits. Other digits were
produced by double tapping on a combination of the four digits. For example,
2 = 1, 1 ? 6 = 3, 3 7 = 3, 47 = 3, 4 and so on. When setting multiple digits, users

had to remember to move the calculator mechanism to the next digit place to

avoid performing incremental additions on the same digit.

*The precise effect of errors that occurred due to partially depressed keys is unclear from
[Mar92]. One could argue that the feedback provided when keys are depressed is just as
important in ensuring that users are consistently aware that they have not properly activated
the key mechanism. This would have been even trickier with multiplex keying.

15

2. B a c k g r o u n d

V.v* l«Vj 1

(a) Comptometer (1890) (b) Burroughs adding and listing machine
(1912)

- ©®©0©Q®0
* 00G0OG00

©©0 ©00© 0
.©©000000
. © © © ©0000

<* ©©0 0 0 Q0 0

^SO'O'O'O'O'O':

(c) Marchant “ACRM” Calculator (1932) (d) Monroe LA5-160 Calculator (1940)

Figure 2.4- A variety o f fu ll keyboard mechanical calculators in use between 1890 and
1940.

16

2.2. A survey of number entry interfaces

(a) (b)

Figure 2.5: The Kollekt.or (a) and the Rotary Dial (b)

2.2.3 Post 19th century

Various forms of key-driven calculating m achines were produced in th e early 20th

century a lthough m ost were of th e ‘fu ll-keyboard’ variety, since they allowed the

user to work w ith num bers in m ore th an single digits. T he ro ta ry dial (see

F igure 2.5b) was the earliest interface used to en ter num bers on telephones. It

was a m echanical inpu t device w ith num bers arranged from 1 to 0 in a circular

layout. A num ber is entered by entering each digit sequentially. A digit is set by

using a finger to select the required digit on th e wheel and ro ta te the wheel to

the stop position. W hen the wheel is released, the num bers re tu rn to their home

position thanks to a spring loaded m echanism . This period also saw the design

of telephones which required num eric keypads for specifying telephone num bers

[Web 12]. Early telephones had a ro tary dial interface.

Significant advances in electronics betw een th e 1940s and 1950s led to Casio

building the first all electronic calculator in 1957. This period also saw the

developm ent of the first push -bu tton telephone sets. T he m ain difference in the

17

2. B a c k g r o u n d

interface design for calculators of th e 20th century was the reduction in size of

the num ber of keys present on the devices coupled w ith an electronic display.

This cam e with the cost th a t num ber en try had to be strictly sequential order.

It also raised the possibility of a lte rnative key layouts. F igure 2.6 shows various

interfaces w ith differing layouts.

2.3 T e x t e n t ry re se a rc h

One of the m ost comm on forms of d a ta en try is tex t entry. There has been a

lot of research on tex t en try ranging from the perform ance of different layouts

of th e typew riter keyboard [KroOl] to the layouts of 12-key tex t en try interfaces

found on millions of mobile phones [But02, Sou03, SilOO. San04]. Text en try

is a special form of d a ta en try where the words formed from the a lphabet are

from a relatively small set of valid values as defined by the vocabulary of a given

language. This has im plications for designing the layout of keyboards in text

en try interfaces (in term s of im proving speed) as well as b e tte r m anaging errors.

A list of valid words make it possible to build error correction models based on

Figure 2.6: A selection o f key driven number entry interfaces invented post-19th cen­
tury.

18

2.3. Text entry research

the similarity of an incorrect word to one in the valid set.

There are various examples of text entry interfaces in use on computer sys­
tems today. On desktop systems, these are typically different layouts of the full
alpha-numeric keyboards - the QWERTY keyboard being the most common. On

mobile devices, a common practice is to overload the numeric keypad with func­
tions for text entry due to the limited surface area available for buttons in these

interfaces [San04]. According to F itts’ Law [Fit54], there is a trade-off between

speed and the size of keys. This puts a limit on the number of buttons that can
be presented on a given surface area. This limitation means mobile devices need
to implement text entry with a set of keys much less than the alphabet they are
addressing. Consequently, researchers and designers have invented methods such
as multi-tap, chording and dictionary based methods for text entry.

The multi-tap technique was one of the earliest mobile text entry methods
and it involved tapping on a single key multiple times to cycle through the letters
attributed to that key. W ith the chording technique, users simultaneously press
several keys to specify a letter. The linguistic or dictionary based technique, is a
form of predictive text entry and is currently very popular in commercial applica­
tions. In this method, each key or area can be assigned to multiple letters of the
alphabet and a dictionary of words in the entry language is used to disambiguate
the user’s keystrokes [Mac02b]. This allows automatic text entry when there is
no ambiguity. In cases of ambiguity, the application defers correct selection to
the user from a list of suggestions based on the words obtained from the language
model [Kre89]. The dictionary based model has also been used to optimise the
order in which characters are presented in entry lists for three- or five-key text

entry keypads [San04, Mac02c].

The advent of better touch sensitive hardware has increased the surface area

of mobile devices and many text entry interfaces are now implemented as virtual
keypads with gesture control such as shape writing [Zhal2, Kri07, Dun08]. The

larger surface areas enabled by touch screen interfaces has also allowed devices
to have the full alphabet on the keyboard. Current research includes improving
language dependent error correction models, or creating optimised key layouts

for better speed, accuracy and ease of use [Oull3].

19

2. B a c k g r o u n d

2.3.1 M etrics for tex t entry interface evaluation

A popular metric for measuring the speed of a text entry interface is the number

of words a user can enter on the interface over a given period. 'This is commonly
measured as words per minute (wpm). The advent of keyboards with keys using

overloaded characters brought about different metrics for measuring other aspects
of performance of a text entry interface such as error.

A metric for measuring error rates is the minimum string distance (MSD) be­

tween the transcribed text and the presented text [SouOla]. MSD is based on the
Levenshtein distance between the presented and transcribed t<ext [Lev66]. This
distance is calculated as the minimum transformations (i.e., insertion, deletion
or substitution) needed to turn the presented text into the transcribed text. For

isinsertexample, the Levenshtein distance between the word insertion and
3 - representing the three deletion actions needed to convert between the two.
A common short-coming of the MSD metric is that it doe3s not take into ac­
count the corrected errors in a transcription process. Since it iss derived from the
transcribed text, corrections do not feature in the evaluation. Key strokes per

character (K SPC) improves on the MSD metric by incorporating the length of
characters in the inputstream of transcription. This inputstream contains all the
keystrokes that were involved in the transcription process. KSPC is a measure of
the speed of an interface with respect to how many key strokes are needed to en­
ter a character on that interface. This is 1 for full alphabet keyboards, 1.0072 for
dictionary based disambiguation and 2.0342 for multi-tap text entry on a 12-key
mobile phone [Mac02a]. KSPC also serves as a metric for evaluating error rates
in a text entry interface. Soukoreff [SouOlb] defines KSPC as the ratio between
the number of key strokes issued by the user and the number of characters in the
user’s transcribed text. KSPC however gives an indication of both the efficiency
of an interface and a sense of the number of errors a user encountered while using

the interface. It does not distinguish between the two. As a result, it is difficult
to tell whether a high KSPC value is due to high rate of error or poor interface

efficiency.

The nature of number entry tasks are different from the typical text entry
task especially in terms of the duration spent on the task as well as the length

2 0

2.4. Number entry interface research

of characters or digits involved in the task. Number entry tasks are usually

much shorter than text entry tasks and are often found as sub-tasks in text
entry. Moreover, not all number entry interfaces operate on the character level

of control. Consequently, text entry evaluation metrics are mostly not applicable
in the evaluation of number entry interfaces. For instance, the MSD metric gives
an indication of the transformations required to change a number into another.

The main limitation of this metric is that it is only applicable to number entry
interface styles that control numbers at a digit level of operation. Furthermore, no
current text entry metric gives an indication of the severity of an error, which is an

important safety factor. Secondly, number entry language models cannot be built

the same way text entry language models are built based on valid words possible
in a given language. As a result automatic error correction of numeric input is
limited to obvious syntax errors such as multiple decimal point characters. In
general, criteria used for comparative assessment and evaluation of number entry
interfaces must be generic enough to apply to all styles of interfaces as well as
exploit the numeric properties of numbers.

The rest of this chapter discusses related work in data entry tha t contextu-
alises the state of research in the design and evaluation of number entry interfaces.
Specifically, the review of research will focus on the evaluation of different as­
pects of number entry interfaces, and how data entry errors have been managed
in a variety of research areas. It concludes by highlighting the need for more
fundamental research in the classification and evaluation of different classes of
number entry user interfaces.

2.4 Num ber entry interface research

2.4.1 N um ber entry in teraction sty les

The Light Handle [New68] was a programming technique used to emulate the
effect of rotating a virtual knob on a display by using a light pen to make clockwise

or anti-clockwise rotations on the display. These rotations cause incremental
changes to a number. The direction of rotation designated the type of change

made to the number (i.e., increments or decrements) and the horizontal center

2 1

2. B a c k g r o u n d

of the rotation determines the rate at which the number changes. Slow changes

are caused on the right side of the designated input area while faster changes
were caused on the left side. In addition, the rate of change of the value was also
dependent on the speed of movement of the pen.

The Number Wheel used the notion of a sliding gesture for specifying nu­
meric values on a tablet [Tho79]. Its function is analogous to that of a wheel
whose circumference partly protrudes through an area on the surface of a tablet,
similar to a thumb wheel. The range of values in the application is defined by
points on the circumference of the thumb wheel such that lateral movements on
the circumference makes corresponding changes to the numeric value specified.
Given the analogy of a wheel, the question about how to appropriately deal with
situations where the user attem pts to turn the wheel past its full circumference
must be addressed. Thornton identified two possible ways to deal with this. The
wheel can wrap around, such that the maximum value changes to the minimum
value. On the other hand, the action could be blocked such that the wheel stops
changing the numeric value until it is moved in the opposite direction. Thornton

also identifies various parameters that can be used to specify number wheels,
including the range of values addressable by the wheel, the input and output
resolution of the wheel and the limit condition to use i.e., wrap around or stop.

In their seminal work on the human factors of interaction techniques, Foley et
al. identified Quantify as one of six types of fundamental interaction tasks [F0I8O,
Fol84]. Other interaction tasks they identified were Select, Position, Orient,
Path, and Text. They describe quantify as a task where the user specifies a
numeric value to an application. They identify two broad forms of quantifying

techniques based on discrete and continuous interactions. These techniques are

reviewed below.

• Continuous quantifying by direct interaction can be accomplished with a
physical device such as a slider, dial or a touch pad. A bounded dial may

be used to specify numeric values in the range defined by the limits of
the dial such as those found in radio volume controls. A slider may be
used in a similar way where physical limits on the widget signify the range

2 2

2.4. Number entry interface research

the user can specify to the application. These generally specify absolute

quantity. An unbounded dial or a touch pad on the other hand can be used
to specify relative quantity where user actions simply map to increments

and decrements to the numeric value in the application.

• Continuous quantifying by scale drag involves the user pointing to a value
indicator on a scale or gauge and then moving along the scale to specify the

required value. A highlighted marker may be used to indicate the currently
selected value or a numeric value may be updated on the screen as the user
moves up and down the scale. In this case, a mouse or (graphic) tablet is
used to move to the required value.

• Continuous quantifying by locator value involves a situation where the user
moves a locator along an axis and the position of a pointer on a scale is
changed accordingly. For instance the movement of a device such as a mouse
is mapped to the movement of some pointer or cursor on a scale. This is
similar to how the Number Wheel described by Thornton works [Tho79].

• Continuous quantifying by simulated stopwatch where a numeric value changes
at a constant rate when the user pushes a button. The rate of change may
be regulated by a dial and the user accepts values by releasing the button.

• Discrete quantifying by type-in where the user types in a numeric value
with a keyboard.

Mackenzie et al. [Mac94] explored the performance of pen-based numeric
entry on computers. They exploited users’ familiarity with the number arrange­
ments on a clock face and developed an interface that used the notion of gestures

and pie menus to enable number entry using a clock metaphor. In the clock

metaphor, a circle is divided into 12 sectors with the digit ‘0’ at the 12 o’ clock
position. The 10 and 11 o’ clock positions were not used. Users of the system

could stroke from an arbitrary starting point towards the position of the number
on the face of a clock. They investigated two entry methods using this interface.

One variation required the user to perform a stroke at the insertion point of the
digit, similar to handwriting. They called this the moving pie menu. A second

23

2. B a c k g r o u n d

3

Figure 2.7: Pen-based, number entry interfaces using the clock metaphor

variation utilised a stroking pad where strokes were m ade on top of each other

and the resulting digit was au tom atically appended to the end of the sequence

on the interface. They called this the pie pad. They com pared these two vari­

ation w ith handw riting and the num eric keypad. Their results showed th a t the

num eric keypad was fastest and m ost accurate with a 1.2% error rate.

In a follow-up to M acK enzie’s previous experim ent, McQueen et al. [McQ95]

com pared the pie pad and hand writing numeric input method specifically to in­

vestigate th e effects of learning on th e perform ance of both interface styles. They

found th a t p a rtic ip an ts1 en try speed changed significantly after several sessions

of the study. A lthough handw riting was initially faster, the pie pad was 24%

faster th an handw riting by the 20th session. This suggested th a t participants

were able to quickly learn how to use the new interface effectively.

A sim ilar study by Isokoski and Kaki [Iso02] com pared two numeric entry

m ethods on handheld touch pads using fingers ra ther than styluses for input.

They com pared M cQ ueen's piepad w ith a hybrid clock face design where digits

on the clock face were selected using an ‘"L" shaped gesture as shown in Figure 2.7.

The shape is form ed by first following the nearest axis and then turning towards

the num ber. T heir experim ents involved entering a series of 5-digit num bers and

results showed a significant im provem ent in error rate from the pie-pad.

Lin and Wu [Lin 13] perform ed a study to investigate the differences between

touch screen devices and physical keypads in the context of numerical typing.

They got partic ipan ts to en ter 30 random 9-digit num bers using three interfaces

24

2.4. Number entry interface research

with the calculator style numeric keypad layout. Two of the interfaces were

on a touch screen. One variation showed precise visual feedback of where the
user touched on the interface while the other showed inprecise feedback by just

inverting the selected button. The third interface was a physical numeric keypad.
Their experiment showed that touch screen keypads were as accurate as physical

keypads although participants had a slower response time on the touch screen

interface. The slower response time on the touch screen interfaces was attributed
to a slower pre-motor response time in preparing motor execution for tasks on

the touch screen interfaces.

2.4.2 K eypad layout

One of the earliest documented experiments in the design of numeric keypads
was performed by Deininger at Bell Labs [Dei60b, Dei60a]. Deininger was in­
terested in how people processed information when entering telephone numbers.
He also wanted to find out desirable design features for use in dial-based tele­
phone sets. Amongst the factors he explored was the effect of key arrangement
on the performance of users entering telephone numbers. Sixteen different key
arrangements shown in Figure 2.8 were evaluated in groups of three in an initial
study. As part of the study, participants entered between 10 and 15 telephone
numbers containing two letters and five numerals. Based on the results, four
layouts (IV-A, II-A, IV-B and I-C in Figure 2.8) found to be superior were fur­
ther compared with the then standard telephone rotary layout. Although the
results of the second evaluation showed that both the circular and rectangular
layouts were acceptable, the rectangular arrangements offered better engineering

advantages.

Further studies of the rectangular layouts showed that layout IV-A could be

made to cover a smaller area by reducing the space between the centre of two

buttons to | of an inch without causing significant change in performance. This
layout has the keys [T] [2] [3] at the top and is currently in use today in telephones.

It is different from that found on calculators which have keys [7] [8_ _9_ at the

top.

Given the two popular layout in IV-A and I-A, that is, the telephone and the

25

2. B a c k g r o u n d

a a @ ® 0G R O U P I

GRO U P I

* SIGNIFICANTLY SH O R T ER KEYING TIME tSIGNIFICANTLY MORE PREFERRED
t SIGNIFICANTLY LOWER ERROR RATE

Figure 2.8: D eininger's keypad layouts (Adapted from [DeifiOb])

G RO U P S I

G R O U P D

G R O U P IS

c

G RO UP IE

c

c

26

2.4. Number entry interface research

calculator layouts, Conrad and Hull [Con68] compared these interfaces to explore

their effect on speed and accuracy for numeric data entry. They assigned subjects

into three groups. One group worked exclusively on the calculator layout, the

second group worked exclusively on the telephone layout and the third group

alternated between the two layouts. The subjects were housewives who had no

familiarity with either the telephone or calculator layouts. Over a period of four

days, the subjects entered 8 digit codes for 30 minutes everyday. The results
showed that the group that alternated between interfaces performed worst both
in terms of speed and accuracy. In addition, the group that worked exclusively on
the telephone layout was more accurate than the group that worked exclusively on

the calculator layout although there was no significant difference in speed. Since
the subjects had no experience with either layout, the difference in accuracy
was attributed to the fact that the telephone layout conforms more to where
subjects expected numerals to be found on the keypad [Lut55]. Later research
by Rink [Rin99] supported this reasoning as people tend to recall the layout of
the telephone keypad with better accuracy than the calculator layout.

Other researchers have focused on the effect that the task being performed
has on the user’s choice of key layout. Straub and Granaas [Str93] presented 8

scenarios describing number entry tasks to 100 users and asked them to choose
one of the calculator or telephone keypad layout to perform the task. The tasks
included entering telephone numbers, personal identification numbers and per­
forming calculations. They found that users preferred to use the telephone layout

when they were performing telephone related tasks whereas the preference for the
telephone layout was lower when performing tasks related to calculations.

Later research by Marteniuk et al. [Mar96] suggested tha t the performance

difference previously found between the different configurations of the telephone
or calculator layout were as a result of the placement of the zero key. Their

study investigated the possibility that number entry task performance is affected
by both the type of task being performed and the layout configuration of the

keypad used. They devised four configurations of the numeric keypad comprising
of the calculator and the telephone layout each having two variations where the

zero key was placed at the bottom or at the top of the keypad. They used three

27

2. B a c k g r o u n d

types of tasks in their experiment including 4 digit strings, 7 digit strings and 7
digit strings formatted as North American telephone numbers. Using each of the
four interfaces, each participant entered 20 instances of the designated type of

number. Their results suggested that the performance difference found across the
four interfaces were a result of the placement of the zero key. They recommended
that the zero key be placed below the other keys in the layout.

These experiments were all based on the numeric keypad and the types of

numbers used in the research are long alpha-numeric codes, mainly in the form

of telephone numbers.

2.4.3 Errors

Numbers encapsulate a precise quantity and in safety critical environments such
as in hospitals, the accuracy and timeliness of medication delivery is essential to
reducing any risk of harm to patients. Numbers are used to specify quantities
representing drug doses, concentration, volumes, patient age or weight. The

design of the number entry interface contribute to the categories of errors that
occur in the use of medical devices.

According to Reason [Rea90, p. 9], error is a generic term to encompass all
those occasions in which a planned sequence of mental or physical activities fails
to achieve its intended outcome, and when these failures cannot be attributed to
the intervention of some chance agency. There are three main types depending
on the cognitive stage at which they occur in Norman’s Action Cycle [Nor02].
Mistakes are errors that result from failures in the planning of an action sequence,
lapses are errors resulting from failure in the storage of an action sequence and
slips are errors that result from failures in the execution of an action sequence.

Mitigating the effects of error is an important goal in the design of interactive

computer systems. There are currently two approaches to achieving reliability in
organisations [Bla06]. One method of managing error focuses on prevention and
the other focuses on resilience of a system. The prevention method implies that
the possibilities of errors in a system are predetermined and preempted in the

design of the system so that opportunities for error can be avoided. The resilience

28

2.4. Number entry interface research

approach focuses on designing systems that can cope with error for instance by

ensuring appropriate feedback that increases the likelihood that users notice and

deal with errors. In Chapters 6 , 7 and 8 , the effects of keying slips are investigated
with respect to the severity of errors they cause on different styles of interfaces.

N um ber entry error

Events involving number entry errors have been documented in literature in set­

tings ranging from finance to healthcare. In 2008, a Norwegian inadvertently sent
a large sum of money to an unintended recipient. She keyed the wrong account
number entering a twelve digit number instead of an eleven digit number [Ols08].
Unknown to her, the web interface she used discarded the last key she pressed
and her entry was still a valid account number - although one completely dif­
ferent from what she intended. This resulted in a serious financial error. In
healthcare, a missing or wrong digit in a patient identification number could lead
to a dangerous situation where the wrong patient gets and unintended medica­
tion. However, numbers in healthcare are used for things other than as patient
identifiers.

In 2009, the Food and Drug Administration (FDA) reported a fatal incident
involving an infant [FDA09]. The patient was given an overdose 10 times the
intended amount due to a missing decimal point error. Further investigation

showed that the pressure needed to activate the decimal point key on the device
was more than the pressure needed to activate the other keys.

More recently, research has focused less on the ergonomics and layout of but­
tons on the numeric keypad and more on understanding number entry error, im­
proving design to reduce the risk of error and investigating the resilience of given

design options against number entry error. By getting users to enter numbers

using the calculator style number entry interface and in conditions specifically
designed to elicit number entry errors, Wiseman et al. [Wisll] collected a repos­

itory of the different types of errors people make while transcribing numbers.
They used this error repository to build a number entry error taxonomy that

provides a classification of number entry error based on their underlying causes
at a cognitive level. Their taxonomy classifies errors based on their position in

29

2. B a c k g r o u n d

Norman’s Action Cycle [Nor02] and contains 21 types of number entry errors.

Traditional usability studies are however very expensive when running exper­
iments with a high number of variables e.g., when testing multiple interfaces each
having different ways they can be implemented. The large space complexity cou­

pled with low rate of errors in the laboratories, has led other researchers to take
mathematical approaches in exploring number entry errors. These techniques are

usually in the form of computer simulated exhaustive interface analyses.

For example, Thimbleby and Cairns [ThilOb] have shown using a variety of
quantitative mathematical techniques that the probability of ten-fold or out-by-
ten errors, which are a significant risk to patient safety [Les02, Dohl2], can be
significantly reduced by better programming. These errors are mainly caused by
missing decimal points, unintended repeated digits, missing digits or an improp­
erly parsed user input such as the entry of multiple decimal points. Thimbleby
and Cairns show that mainstream devices and programs in use in both safety
critical settings e.g., infusion pumps and non safety critical settings do not cor­
rectly support recovery from error or indeed in some cases they do not correctly

interpret a mistyped sequence of numbers. For example, keying in 1 . 2 . 3 is
interpreted by one device to mean 1.3 while in some other devices it means 1.23.
They propose a method for parsing the input stream from the numeric keypad
so that syntax errors such as multiple decimal points are correctly detected and
alerted to the user.

Following this and based on inspection and review of number entry inter­

faces in interactive systems, Thimbleby and Gimblett [HWT11] provide evidence
through various examples that suggests that a lot of data entry systems are
implemented in an ad hoc manner. For example, a good number of handheld
calculators do not detect overflow in number entry. This means performing cal­

culations with numbers that are larger than the range permissible on the display
of the device results in an error. Dividing 308,000,000 by 6,800,000,000 incor­
rectly results in 0.45. This introduces a level of unpredictability for the user
particularly when users are correcting syntax errors in the course of interaction.

These apparent ad hoc implementations could be attributed to the lack of a sys­
tematic approach in the development of dependable keyed data entry interfaces.

30

2.4. Number entry interface research

Thimbleby tackles the lack of systematic approach by introducing a design that

is correct by construction (CxC) [Jon06]. CxC means that formal methods are
used during the production of software rather than afterwards.

The Institute for Safe Medication Practices (ISMP) sets out recommenda­

tions for displaying numeric information in medical devices [Ins06]. Thimbleby

and Gimblett formalise these recommendations using regular expressions and
gave an example of how a dependable interface might be implemented using
feedback based on a traffic light system. Here data entry errors, (i.e., those that
fail the ISMP regulations) are coloured red, incomplete data specifications are

coloured yellow and correct data specifications are coloured green. This tech­
nique is however only amenable to number entry interfaces where syntax errors
are possible.

Using a similar technique, Cauchi et al. [Caul2a, Caul2b] ran simulations
that explored the effects of key slips on 28 variations of the so-called five key
number entry interface. A five key or directional pad (d-pad) interface has four

navigation style up-down-left-right buttons that are used to navigate a cursor
around the place value of numbers as well as increase and decrease selected digits.
This interface is described in more detail in Chapter 3. Cauchi et al. introduced
a method called stochastic key-slip simulation (SKSS) where one of deletion,
transposition, substitution or insertion errors are applied as transformations on
a sequence of keystrokes which are executed by a computer simulation. The
simulation essentially represents a user performing a task as defined by the keying
sequence. The resulting sequence is executed on the interface and a measure of

error is obtained by analysing the difference in the intended numeric output
and the actual output obtained based on the transformed sequence. W ith this

method, they were able to rank the different variants of a five key interface based
on their resilience to keying errors.

2.4.4 M ethods for d ata entry error reduction

In practice, there are currently different methods adopted or suggested to reduce
number entry errors or to improve the possibility of detecting number entry

31

2. B a c k g r o u n d

errors based on research in the field of coding theory, accounting and healthcare.
A review of these methods follows with a highlight of their shortcomings.

Wang et al. [Wan 11] have applied data mining techniques to detect number

entry errors using electroencephalography (EEG) data. In their study, partici­
pants performed hear and type tasks of entering a series of 9-digit numbers. Dur­

ing the study, participants wore an EEG cap that measured their brain activity.
Their initial classification of EEG samples indicated that EEG patterns recorded
before making errors may be different from those recorded before correct entry.
The potential of this research is in the predictive nature of the method which
could provide error warnings to the user as soon as they occur, thus improving
error detection rates.

D ouble data entry

Research in data entry suggests that double-entry is an effective way of reducing
data entry error although at an extra time cost [Rey92, Day98]. Double entry
is used in electronic forms for validating actions like setting or changing pass­

words where minimal visual feedback is provided to the user about data entered.
Entering passwords twice ensures that the user has entered the same (intended)
value correctly.

D ouble checking

Double checking is a policy advised by many hospital practices to reduce medi­
cation error [Ins05]. It involves the user ensuring that the data they have entered
for a medication is for the right patient, using the right drug at the right dose.

Double checking should ideally be performed by a different person from the one
who entered the data. Although research by [Jar02] showed a comparable num­
ber of medication incidents when using a single nurse as opposed to two nurses.
The main drawbacks of double checking are the extra human and time resources

required to perform an independent check [U03].

Independent double checking is also not foolproof. David [U03] cites an in­
cident where a pharmacist correctly calculated a dose requiring a volume of
0.068mL but incorrectly entered 0.68mL into the computer. Despite a second

32

2.4. Number entry interface research

pharmacist double checking the calculation and arriving at the correct value of

0.068mL, they still misread the incorrect volume due to confirmation bias. The
failure of the double checking process is also evident in the root cause analysis

of the death of a 43 year old cancer patient [Ins07]. She received, over 4 hours,
an infusion medication that she should have received over four days. The wrong

calculation that led to the overdose was independently performed by two different
nurses.

D ose error reduction system s (D ER S)

Dose error reduction systems (DERS), like Guardrails Safety Software [Esk02],
are usually installed on infusion systems to manage safe ranges for drugs installed
in the system. The infusion system is provided with contextual information about
the treatment by allowing the user to select the name of the drug that is being
infused. Some pumps have sensors that can detect the drug name from an RFID
tag embedded in the syringe. W ith the name of the drug in place, the drug
can then ensure a safe limit of treatm ent as predefined in the library. Although
DERSs detect many infusion programming errors, it has a number of limitations.
A wrong rate could still be accepted as long as it lies in a safe range. Secondly,
in the case where users select drug from a list, there could be error in the choice
of drug name from the library. This means a wrong range limit is enforced and
could have severe consequences (especially if there is an error in number entry).

Checksums

Checksums are standard error detection schemes computed from a message and
transmitted with the message. The checksum can be recomputed at a different

time to verify the integrity of the data. This method can be exploited indirectly
in certain types of number entry tasks where there is a mathematical relationship

between the different numeric values entered. For instance, while setting up an

infusion pump, it is typical to enter two numeric values representing any of rate of

infusion, volume to be infused (VTBI) or duration, of infusion. Regardless of the

two parameters an interface requires the user to enter, the device can calculate
the third parameter because there is a mathematical relationship between the

33

2. B a c k g r o u n d

three values, i.e., V T B I = rate x duration. From this relationship, it is also

possible to detect certain number entry errors if users are required to enter all

three values.

Wiseman et al. [Wisl3b] explored two interface designs that used the idea of
checksums to help users detect number entry errors. In one interface, users were

required to enter two numbers and to verify a checksum value. In the second
interface, users were required to enter two numbers as well as a checksum value.
They found that participants were significantly faster when they had to check
and verify the checksums than when they had to actively enter the checksum
value. They also found that participants noticed all errors when they had to
enter the checksum value in comparison to noticing only 36% of errors when they
had to verify the checksum value. Apart from the additional time cost involved
in entering redundant information, the use of checksums described by Wiseman
et al. could sometime results in a false positive verification of the confirmed
number. This is due to the commutativity of multiplication. For instance if rate
and duration are mixed up by the user, the relationship between the numbers

would still hold to verify the VTBI value since rate X duration — duration x rate.

2.5 Summary

The design of number entry interfaces date back to the invention of the earliest
counting devices. Despite the long tradition of humans interacting with num­
bers, the majority of research has focused on the numeric keypad interface. The
popularity of the numeric keypad is evident in its skeuomorphic adaptation in
software as well as on touch screen devices, especially in the design of calculator
interfaces.

Early research by Foley et al. [Fol80, Fol84] and Thornton [Tho79] described
design alternatives for interfaces for use in setting numbers although they present

no evaluations for these alternatives. There have also been a variety of studies
on different aspects of the numeric keypad as well as comparative studies on
variations on sequential digit entry (e.g., handwriting and gesture based systems).

To improve safety in critical environments such as healthcare, it is impor­

34

2.5. Summary

tant to study the effect of error, particularly in the context of interacting with

numbers. This chapter has reviewed methods that are currently used to abate

number entry errors in practice as well as research recommendations in the area
of reducing number entry error. Most of these methods, however, apply to only
one type of number entry interface. There are other ways a number entry in­

terface might be designed. Depending on the constraints faced by a designer,

for example, size constraint, it might be necessary to implement a different style
of number entry interface. Research is currently lacking in an exploration of
the design space for number entry interfaces. The next chapter explores the de­
sign space and proposes a classification for grouping interface styles with similar

properties..

35

Chapter 3

Classifying number entry
interfaces

A wide variety of methods exist for designing number entry interfaces. This is
partly due to the wide variety of input devices available - for example, those
described by Buxton [Bux83], Card et al. [Car90] and Mackinlay et al. [Mac90].
The ease with which the different measures sensed by these input widgets can
be mapped to numeric quantities (e.g., a slider specifies position while a dial
specifies angle) also add to the diversity of design options.

This chapter analyses the design space of number entry interfaces with respect
to the different ways a number entry interface might work irrespective of the

hardware or input widget used to achieve control on the interface. The context
of the analysis performed is centered on interfaces found on medical devices and
the design space is analysed from a high level of abstraction that deals with the

question of how numbers are selected or specified in an interactive system.

The set of input widgets tha t might be used in the design of a number entry
interface is a subset of the input widgets found in the design space of all input

devices. From the taxonomy of the design space of input devices presented by

Card et al. [Car91] and Mackinlay et al. [Mac90], input devices can be described
based on a combination of the physical properties sensed (e.g., force or move­
ment), and the dimension within which the properties are sensed (e.g., linear or

37

3. C l a s s i f y i n g n u m b e r e n t r y i n t e r f a c e s

rotary in x, y or z dimensions or the degree of freedom sensed). Consequently, the
input widgets used in the design of number entry interfaces range from buttons,
sliders, rotary dials, force encoders or touch screens.

In order to start structuring the design space of number entry interfaces, this
chapter employs a method of design space analysis presented by MacLean et
al. [Mac91] where an artifact is explored based on the space of possibilities for
the existence of tha t artifact. The method is based on Questions, Options and
Criteria (QOC). In this method, Questions are used for structuring the space of
alternatives, Options are possible alternative answers to the questions posed and
Criteria are used for evaluating or choosing between the options.

3.1 A task level decom position of number entry

The task of number entry can be viewed as one of the following:

1. Selecting a specific value from a list of options or

2. Explicitly specifying the digits that make up an intended number.

The first option implies that the user somehow selects a number from a set of
predefined valid values in the application. This can be achieved by moving a
virtual cursor through the number line at a rate chosen by the user i.e., by
making incremental changes to the position of the cursor which in turn affects
the value of the number that is to be specified in the application or by selecting
a value from an explicitly presented finite set. The second option implies that
the user explicitly specifies the digits that make up the number they wish to

transcribe. This means the interface provides the user with some way of directly
controlling the digits tha t make up the intended number.

The brief historical review of number entry interfaces presented in Chapter 2
shows that there are a variety of ways an interface might be implemented or
designed. The list of example interfaces provided there is not exhaustive and
only accounts for a subset of the possible styles of interface that might be used

38

3.2. Design space analysis using Questions, Options and Criteria

for entering numbers. However, it provides a good sample from the space of

possibilities.

The rest of this chapter takes a structured approach towards exploring the

design space of number entry interfaces by deconstructing the design space using
the QOC method.

3.2 D esign space analysis using Questions, Op­

tions and Criteria

QOC design space analysis places an artifact in a space of possibilities and seeks
to explain the relationships tha t exist between the different alternative options
of an artifact [Mac91]. The role of Questions in this framework is structural
and generative rather than evaluative. The Criteria should help in reasoning
over the considerations involved in choosing one option in the design space over
another. In other words, the Criteria provide a framework within which the
different Options can be evaluated. The Criteria make the trade-offs between
the different options salient in the analysis.

In the case of identifying number entry interface design options, the QOC
method facilitates a structured exploration of the design space which can be ex­
panded to an arbitrary level of detail. This flexibility enables reasoning about
the design options at several levels of abstraction that might be useful for people
with different roles in a design process. For instance, while designers of the phys­
ical user interface widgets would typically be interested in dealing with options

at a high level, programmers who implement the logic of the interface would be

more interested in the lower level detail.

In light of the task of number entry introduced earlier, features of number

entry tasks that are essential to describing how the interface works are now

extracted. The design space is structured by asking the question: What does the
interface control?

There are two possible options for this question.

39

3. C l a s s i f y i n g n u m b e r e n t r y i n t e r f a c e s

1. The interface might be used to control the manner in which the individual
digits of the intended number are specified or

2. The interface might control a selection mechanism for choosing the intended
number from a set of valid values

In the first case where the interface controls how the user specifies individual
digits tha t make up the number, the question In what order are the digits speci­
fied? can be asked. For this, there are three options. The digits may be specified
from left to right, or from right to left (in both cases the digits are specified in a
restricted order), or the digits may be specified in an unrestricted order.

For each of these options, it is possible to explore methods for selecting digits
in the number in order to further structure the design space and the question
How are the digits specified? can be asked. This question also has two options.

1. The digits can be specified by providing interface widgets to directly specify
each numeral in the base in context

2. The digits can be specified by providing widgets that can be used to navi­
gate through a list of the numerals in the base in context

For the second case where the interface controls how the number is selected
from a set of valid values, the question How are the numbers selected? can be
asked. For this question, two options emerge.

1. The number can be selected directly, by providing user interface widgets
corresponding to the intended number e.g., as seen on lift panels or cash
machine user interfaces or

2. The numbers might be selected indirectly by providing widgets that helps
the user to navigate a much larger set of valid values e.g., using a dial or a

pair of buttons for traveling up and down the number line.

40

3.2. Design space analysis using Questions, Options and Criteria

3.2.1 Criteria

The criteria aspect of the analysis helps in assessing and choosing between the

Options. Six criteria are presented. These criteria are informed by standard hu­

man performance measures for evaluating user interfaces as found in literature
(e.g., [Car91, ThilOb]) and discussions with manufacturers, health care practi­
tioners and the medical device training manager in Singleton Hospital Swansea.
These criteria include the following:

• Speed. This refers to how quickly the interface can be used to complete the
given number entry task.

• Error Severity. This is a measure that quantifies the magnitude of typical
errors on an interface.

• Error Rate. How frequently errors occur while using the interface.

• Error Detection. The likelihood that keying slips would be noticed while
using the interface.

• User Interface Footprint. How many widgets are required to implement the
interface and consequently how much space does the interface occupy on
the device.

• Range and precision. The minimum and maximum value that can be spec­

ified using the interface and to what number of digits different values can
be specified.

Speed and accuracy are standard quantitative metrics used in assessing the
usability of user interfaces [Nie92, Shn04]. Accuracy is of particular importance

in the context of evaluating interfaces used in safety critical environments like
health care. Consequently, half of the criteria are related to error and different
aspects of reasoning about error.

For economic reasons related to the production and maintenance cost of de­
vices, manufacturers are interested in user interface footprint. The number of
physical widgets used in a device affects the production cost and this also affects

41

3 . C l a s s if y in g n u m b e r e n t r y in t e r f a c e s

the chances that at least one of the widgets will break down and require mainte­

nance. From a user’s point of view, portability is also important, particularly in
ambulatory care where devices are used by patients on the move. Portability of
a device restricts the size of the device which in turn defines boundaries for an
acceptable user interface footprint on the device.

The rest of the thesis seeks an informed assessment of measures that can be
used to weigh different styles of number entry user interfaces against these crite­
ria. This is achieved by performing studies that provide evidence which inform
the process of highlighting the different trade-offs that exist between different
example interfaces.

The analysis above has presented us with a design space within which number
entry interfaces lie. In the context of the interfaces found on medical devices,
these categories make it possible to compare groups of interfaces with each other.
The next section provides a review of some examples from the categories of
interfaces identified.

3.3 Num ber entry interface examples

Based on the first level options presented in the QOC analysis in Figure 3.1, two
broad categories emerge. There are digit specification interfaces whose designs
are based on the specification of digits in a number. The performance of inter­
faces in this group depends on the number of digits to be entered. This includes
both whole and fractional digits. On the other hand, there are number selection
interfaces whose designs are based on selecting a number from a list of options.
Number entry on this style of interface requires selection (either directly or indi­

rectly) from a set of valid options provided by the host application. This could
be done indirectly by scrolling through valid values where a single selection is

visible or scrolling through valid values where a range of selections are visible. It
could also be done directly, by selection from a fixed set of presented valid values.
The performance of the interface thus closely depends on the number of options

in the valid set, and the features provided by the interface to facilitate efficient
searching and selection. For interfaces based on selection of numbers from a fixed

42

3.3. Number entry interface examples

' p : R ight to Left[

Q: In w h a t o rd e r are^
digits sp e fic ied ?

O: Left to Right

■ 0 : A rbitrary

Q: How a re digits

O: Direct digit se lec tion
/(e .g . using num eric keypad)

O: Digits of the nu m b er

Q: W hat d o e s in terface
w idget contro l?

O: N um ber selec tion

i O: Increm enta l digit selec tion
(e .g . u s ing arrow keys)

Q: How a re n u m b ers
s e le c te d ?

O: Direct n u m b er se lec tion

O: Increm enta l n u m b er se lec tio n

Figure 3.1: A decomposition o f the number entry design space based on the QOC
method. This analysis segments the design space of number entry system s into two main
dimensions. Firstly, interfaces are separated into those that allow users to explicitly
specify the digits that make up a number, and interfaces that allow users to select a
number from a list o f valid values. Digit based interfaces are then further distinguished
based on the order in which they allow the specification o f digits and how digits are
selected (e.g., direct selection or increm ental selection), while number selection based
interfaces are structured based on how numbers are selected (e.g., direct selection or
increm ental selection).

43

3. C l a s s if y in g n u m b e r e n t r y in t e r f a c e s

set of options that are always displayed, e.g., the control panel representing the

different floors in a lift, the entry time could be modelled by a combination of
the Hick-Hyman law on choice reaction time [Hic52, HYM53], where the user
finds the floor they wish and F itts ’ law [Fit54] where the user selects the tar­

get button that activates the intended floor. For indirect selections where users

scroll through valid values e.g., the interfaces derivable from incremental number
selection, it is most efficient that users approach the target number as quickly as
the interface permits, but they slow down to fine-tune selection when closer to
the number.

This classification also makes it possible to group interfaces in terms of their
support for the occurrence of syntax errors. For example, all interfaces based on
number selection always have syntactically valid input, since for these interfaces,
the application presents the user with valid options from which they can choose.
For interfaces based on digit specification, especially when users can explicitly
specify decimal points, it is necessary for the designer to think of situations where
the user enters syntactically incorrect number specifications such as entering a

sequence of digits with multiple decimal points. The designer must think of
appropriate ways to block these errors and alert the user.

Based on the second level options presented in the QOC design space analysis,
four classes of number entry interfaces can be described. The next section pro­
vides concrete examples of interfaces from the different categories in section 3.2.

3.3.1 Serial digit entry

Serial digit entry refers to the class of number entry interfaces which affords the
user control of the digits making up the required number in a fixed order from left

to right. The user enters the number serially, in sequential order. This interface
style is most commonly implemented using a keypad with digits from 0 - 9

a decimal point key and a clear or backspace key. If an error is made in entry,
the user must delete all the numerals succeeding the erroneous numeral. Three
layouts are currently in use in modern interactive devices.

The calculator layout is the default layout for calculators. It comprises a grid

44

3.3. Number entry interface examples

of buttons arranged in three columns and it has the keys [Y], [§], [9] at the top.

This is also the default layout on keyboards with dedicated numeric keypads.

The telephone layout is the default layout on telephones. It is arranged in a
grid similar to the calculator layout but it has keys [T], [2], [3] at the top and

Oj at the bottom row. The single row keyboard layout is the default layout for
computer keyboards without a dedicated numeric keypad. It comprises a single

row of digits arranged from \Y\ - [9] with [o] at the end.

Apart from variations in key layout, this interface style might vary depending
on whether or not it contains a decimal point key. When a decimal point key is
absent in the layout, the interface renders a decimal point at a fixed location on

the display and the user must enter values into the interface at a fixed precision
regardless of whether or not the intended number is a fraction. For example, to
enter ‘50.5’ on such an interface, the user must execute the keystrokes 5 0 5 0
This form of interface is often used on cash registers for entering monetary values.

A serial interface might also be implemented using an incremental digit se­
lection interface as opposed to a direct digit selection interface. This might be
implemented with 4 keys. Two keys for changing the digit, one key for accepting
the digit and another for canceling the last digit entry.

3.3.2 Independent d igit entry

Independent digit entry refers to the class of number entry interfaces which afford

the user control of the digits making up the required number by specifying each
digit in any order. The user is typically able to specify each digit independently

and errors in a digit can be simply corrected by changing the digit. This is the
oldest number entry interface style as seen in interfaces like abacuses, Pascal’s

Calculator and the Arithmometer.

There are two popular variations on this interface. One variation provides

explicit control for all the digits on the interface and the other provides shared
control for the digits and distinguishes between an active digit by enabling the

user a selection mechanism that activates digits. Two examples, the up-down

45

3. C l a s s i f y i n g n u m b e r e n t r y i n t e r f a c e s

1
m m

(a) Input buttons (b) Display

Figure 3.2: The D-pad number entry system, (a) shows the four way navigation style
keys used as input and (b) shows a typical display used in the interface. The highlighted
digit will change when the up or down button is clicked.

and the D-pad*, that feature in interactive devices such as medical devices, game
pad controllers, television remote controls and combination locks, are described

below.

U p-dow n in terface

The up-down interface provides a pair of interface widgets for increasing and
decreasing each digit addressable by the host application. The number of buttons

011 this interface depends on the maximum value and the precision addressable
by the host application. For an application that allows entry of numbers up to
99.9, this interface will need six buttons, a pair for increasing and decreasing each
digit. This style of interface negatively affects the user interface footprint since
the number of buttons required to implement the interface grows logarithmically
with the maximum number allowed on the interface in the best case condition

where only whole numbers are permitted. In other words, the number of buttons
required to implement this interface is twice the number of digits permissible
011 the interface. When fractional number entry is required, an extra pair of

buttons is required for each decimal place required in the precision. The number

of buttons required for this interface can be halved by implementing a variation
where changes to the digits get wrapped around and ensuring changes made per
digit are completely independent. Some examples of the up-down interface are
shown in Figure 3.4

T h is interface is referred to as a f ive k e y interface by Cauchi et al. [Caul2a, Caul2b], with
the fifth key usually used for accepting numeric input.

46

3.3. Number entry interface examples

D irectional pad (D-pad) interface

The D-pad, also referred to as the control pad, originally emerged in the gaming

industry as a user interface widget for controlling two-dimensional characters in

video games. They were made to function similar to joy-sticks found in arcade

games and afforded control in the up - down - left - right direction. When used

as video game controllers, it is possible to hold down two adjacent buttons or
sections on the controller to move in a diagonal direction. It is commonly found

on mobile game controllers as well as TV and DVD remote controls for navigating
menu structures on these devices. The D-pad provides four keys in a navigation
style layout for changing numbers. A pair of left - right keys is used for moving
a cursor that selects a digit to edit and a pair of up - down keys is used for
making changes to the selected digit. A typical d-pad is shown in Figure 3.2.
This interface requires the same number of buttons regardless of the range and
precision required by the host application. As a result it is ideal for use in
situations where space is limited. In addition to the variations determined by the
behaviour of digits when changed around boundaries, i.e., blocking digit wrap,
independent digit wrap or arithmetic digit wrap, this interface has variations
based on the behaviour of the cursor. The designer can vary the cursor start
position, choosing either to place it in the rightmost place value or the leftmost
place value of the number.

In addition, the designer must decide what happens when a user attem pts to

move the cursor beyond the boundaries of the screen. They must decide whether
such actions are blocked or whether the cursor movement wraps around to the

opposite end of the display. Cauchi et al. [Caul2b] present results of detailed
analyses about the effect of these different configurations on error severity.

From these examples, it can be seen that independent digit interfaces are
commonly implemented by providing widgets for incrementally specifying each
digit, although in full keyboard interfaces like the Comptometer, the interface

might have individual digit keys for each place value in the number. When digits

are set incrementally, the behaviour of this style of interface varies significantly
depending on how certain features are implemented. For instance, the designer

must decide precisely how digit changes are implemented in the system, particu-

47

3. C l a s s i f y i n g n u m b e r e n t r y i n t e r f a c e s

g 7 ---- - 6 ------ 5 .------ 4 0 — -1 ----- -------- --

- 9 ------ 0 ------- 1 ------ 2 — 3 1 0 « = ^ , T - 8 7 " " C
18^ - 1 7 ----16--------- 15 14 ------12—

 - 6 — 5 — 4 — 3 — 2 . , " I 9 — 1 °— 11— 12 — 13 2 0 = ^ r - 1 8 _ 17_ _ 7 A
9 ^ 8 - 7 1 - o 2 8 ^ - 2 7 ------- 2 6 ------- 2 5 - _ 24 2 2 ------- 2T T 6 ^ 1 5

17 16— 15— 14— 13— 12 , , " " 2 9 20 ---- 21 -------22 — 23 3 0 = -29------28.____ 57 24

” 3Q___ 37 — 3 6 — - 3 S ------24 » ^ 5
29 -28— 27 26 25 24 23 22 21--------------------- " - 3 9 -------30------- 31 ------- 3 2 — 33 40— 38 38— ,37 ‘̂ ' 34x

41 ° -' - ----- 3 0 j^35

39 38— 37 36 OS 34 33 32 31 go ^ ^ T 48^ ^ ^

49 — 48— 47 46 45 44 43— 42— 41— 40 58 — 57-------56 --------55 ------ 54 m ___ 5g " ~ 52 '53-___ ^
59--------50------ 51 ----------5 2 -- 53 57.___ 56— 55

5 9 — 5 6 — 5 7 — 5 6 — 5 5 — 5 4 — 5 3 — 5 2 — 5 1 — 5 0 -----------^ -------6 7 ----------g g ----------g 5 ______^ ________________ ? Q ____ ~ 6 2 - --------

~ K„ 6 1 — 6 0 ^ 6 9 6 0 --------- 6 1 ---------- 6 2 - ^ 6 3 ^ l - C T ^ 6 8 --------- 6 7 -------- . e e ^ 6 5
6 9 — 6 8 — 6 7 — 6 6 — 6 5 — 6 4 — 6 3 — 6 2 — 61 7 2 — _ —-66 65 64 63 64 ° 7 8 - 77— 76— 7 5 _ 7 4 - . „ ^ 7 9 ~" " 73— 74

« - 7 B _ 77_ 76- 75_ 74- 73- 7 2 - 7' ' 70 J 7 9 — -7 0 ---------7 1 ----------7 2 ' ^ 73 ^ 1 " ^ ^ T 7 7 — 7 6
8 0 B 8 — 8 7 — 8 6 — 8 5 — 8 4 _ , 8 o 8 3 — S4 ^

8 f l— 8 8 — e 7 — 8 6 — 8 5 — 8 4 — 6 3 — 8 2 " ' 8 1 " “ 9 8 0 8 1 8 2 ' " 8 8 -------8 7 8 6 ^

(a) Blocked Digit Wrap (b) Independent Digit (c) Arithmetic Digit Wrap
Wrap

Figure 3.3: These graphs visualise the effects o f three variation on the digit wrapping
feature fo r independent digit interfaces. From left to right the effect of blocking digit
wrap, independent digit, wrap and arithm etic digit wrap is shown. Tin graphs highlight
the structural differences in the interaction experiences that are manifest in the different
variations. The user can change between numbers that are directly connected by a line
using one key press.

larly when the digits change from [OJ to [9j or vice versa. Three variation on this

feature are described below.

Blocked d ig it w rap

This variation disallows the change from 0 to 9 or from [9] to ft)]. This means

the user action is effectively blocked at these boundaries. Using a slider widget

to im plem ent the digit controller 011 th e interface would achieve this effect since

a slider widget has physical lim its to se tting a m inim um and maximum value.

The control of digits in th is variation are com pletely independent of other digits.

Figure 3.3a shows the upper and lower bounds of interaction in this variation of

the interface. Horizontally, in teractions are perform ed from 0 to 9 011 each decade

and the sam e is true vertically.

48

3.3. Number entry interface examples

r y

IFtc*

IFoT-'

(a) Up down (b) Number wheels (c) Combinat ion lock

Figure 3.4: Three form s o f the up-down number entry system.

In d e p e n d en t d ig it w rap

This variation allows th e digits to w rap around, th a t is, increm enting [_9j changes

it to a 0 and decrem enting [o] changes it to a _9_. T he w rapping effect does

not carry over to th e digit to the left. T he control of digits in th is variation

are also independent of o ther digits although the im plem entation of the interface

can be best visualised if one imagines tlie digits are controlled by dial w idgets

w ith continuous ro ta tion . Figure 3.3b shows the independent s tru c tu re of each

decade (or place value) in this variation. This s tru c tu re can lie d irectly com pared

to physical interfaces th a t are bu ilt w ith th is property. Exam ples are show in

Figures 3.4c and 3.4c where each wheel on the interface can be m anipulated

independently of th e o ther wheels.

A rith m e tic d ig it w rap

This varia tion allows the digits to w rap around w ith the w rapping effect carried

over to the digit to the left. This m eans one num eric value is added or removed

from the digit to the left when a digit is increased from _9_ to

from 0 to 9 respectively.

0 or decreased

3.3.3 Increm ental num ber entry

Increm ental num ber en try interfaces refer to the class of num ber en try interfaces

th a t allow the user to select a num ber from a valid set of options by providing

an indirect m echanism of selection from the list. Typically, the user navigates

th rough an ordered list of options and can go forw ard or backw ards in the list.

49

3. C l a s s i f y i n g n u m b e r e n t r y i n t e r f a c e s

The interface m ay also allow the user to control the speed of navigating through

th e list. This interface may be im plem ented using w idgets such as buttons,

sliders, dials or any widgets found in M ackinlay's [Mac90] design space of input

devices.

An exam ple increm ental interface based 011 the use of bu ttons might require

4 b u tto n s (see F igure 7.2b). Two bu ttons are used for increasing the num ber

and the o ther two are used for decreasing the number. In each case, one of the.

b u tto n s causes a change an order of m agnitude larger th an the other. A single

b u tto n w ith a pressure sensor m ight also be used where the pressure level of the

b u tto n controls the am ount of change caused to the num ber.

In general, an increm ental interface can be a zero order or position control

where there is a proportional relation between user action and numeric ou tput

such as a slider or a mouse. It can also be im plem ented as a hrst order control

where user action (such as displacem ent) is proportionally related to the rate

of change of the num eric value. In this case the m agnitude of the user action

determ ines th e m agnitude of change or the ra te of change of the ou tpu t number.

This control order might be im plem ented using a spring-loaded dial. It is also

possible for an increm ental interface to be im plem ented as a second order control.

I11 th is case, user action such as displacem ent is used to control the m agnitude of

acceleration (i.e., user action changes the rati' of change of changes in num bers).

Users m ust actively decelerate to s top numeric changes in this style of control.

A lthough second order controls are more difficult, people can become skilled at

it w ith p ractice [Jag03].

G ain and T im e-delay

I11 th e control aspect of increm ental num ber entry interfaces, two param eters

would influence the stab ility of the user interaction in a typical num ber entry task.

Gain determ ines how th e input signal is transform ed to the o u tp u t signal. I11 the

Figure 3.5: An example incremental style interface found on a?i infusion purnp.

50

3.3. Number entry interface examples

context of number entry, gain affects the speed at which the user approaches the

target number (i.e., the reference signal). Time-delay refers to the time taken
by the system to act on user input and provide feedback to the user. This is
also referred to as the latency of the system. Together, these two parameters
determine the speed of the system and stability of the system (i.e., the likelihood

that users would overshoot or undershoot targets in number entry).

When gain is low, the system responds slowly, but when it is high, the system

is likely oscillates about the target signal. Similarly, a high time-delay increases

the likelihood of oscillatory behaviour [Jag03, Doh99].

In the context of the design of number entry interfaces, then, the different
combinations of these parameters and the widgets tha t afford continuous control
make for a large set of styles of incremental number entry interfaces. A review

of these different combinations is beyond the scope of this thesis.

3.3.4 D irect num ber selection

This style of interface allows the user to select a number from a valid set of op­
tions by providing a direct selection mechanism that allows the user to choose
the required number. This interface style is feasible in situations where there
are a small set of numeric values to choose from, e.g., as seen in lift floor selec­
tion interfaces. Though this interface offers fast entry, its application is limited
to use when there is enough space on an interface to render all the different
options without the need to navigate through different screens that shows the

available options. If the range of numeric values required by the host application
is large enough to require scrolling between screens, then this interface essentially

becomes an incremental interface.

3.3.5 L im itations o f th e classification

The classification presented in this chapter is inspired from examples of number
entry interfaces found through out the history of old mechanical calculators and
a variety of number entry interfaces found on infusion pumps in use in hospitals.

Moreover, the exploration of the design space presented provides a high level de­

51

3 . C l a s s if y in g n u m b e r e n t r y in t e r f a c e s

composition of possible ways in which numeric digits, and consequently numbers

(or a string of digits) can be manipulated.

The current classification does not address issues related to the base of the
number entered. For example, it is possible for the user interface to map user

actions to manipulate a number in a base that is different from the base that
the resulting number is displayed. An interface with three buttons comes to
mind, where one button is used to append the binary digit [T], another is used
to append the binary digit |_0J and the last button is used to undo the last move
(if there is any) or reset the number back to zero. If the display of this interface
renders the numbers entered in binary, then according to this classification, the
interface would be a serial interface. If however the display renders the number
in a different base such as decimal, it is not so clear where the interface sits with
respect to this classification. It could be thought of as an incremental interface
with two types of increments, where pressing one button doubles the current
number, and pressing the other button doubles the current number and adds
one.

Similarly, this classification does not address issues related to the perceptual
representation and interpretation of numbers. It covers the active aspect of user
interaction that deals with inputting numbers on interfaces and is applicable in
discussing and analysing a myriad of existing number entry interfaces including
those found on medical devices.

3.4 Summary

The design space of number entry interfaces has been explored based on whether
the interface offers controls over digits or numbers and based on whether the
control is offered in a direct or incremental manner. This analysis led to four

groups of existing interface styles, that is, serial digit entry, independent digit
entry, incremental number entry and direct number selection.

The smallest unit of a number is a digit, which itself is a number. A sequence
of digits that are a part of a number are also numbers. This means, for instance,
that the controlling aspect of the interfaces described earlier is not limited to

52

3.4. Summary

H n
1 10 hours || 59 mins |

111 II ■ I
Figure 3.6: iPhone interface showing incremental control fo r groups o f digits.

single digits and en tire num bers. T he controls m ay be applied to digits th a t

are grouped together in twos, threes or m ore clusters and these controls may

be perform ed increm entally or directly. An exam ple is the iPhone interface for

entering tim e where control is not digit based but based 011 groups of digits which

are set incrementally. Figure 3.6 shows an exam ple.

This chap ter has presented a classification for num ber en try interfaces based

011 two m ain features. The first feature deals w ith w hat aspect of num bers a user

controls. The interface m ay be used to control the entire num ber as a whole or it

m ay be used to control p arts of the num ber. The second feature deals w ith the

m anner w ith which the interface allows control over the hrst, feature. T he num ber

or the num ber p a rt m ay be controlled increm entally or directly. A lthough there

are poten tially lim itless ways of com bining the actual inpu t w idgets th a t are used

Example Devices

Digits

Right to left direct digit selection
incremental digit selec­
tion

Left to right direct digit selection Calculators, Telephones, Mi­
crowave ovens

incremental digit selec­
tion

Kollector

Arbitrary direct digit selection Comptometer, Burrough’s Add
Lister

incremental digit selec­
tion

Millionaire, Arithmometer, Pas­
cal’s Calculator, D-pad

Number direct number selec­
tion

Lift panel

incremental number
selection

Alarm clocks, Microwave ovens,
Infusion pumps

Table 3.1: The position o f various examples o f historical and some current number
entry interfaces in the design space.

53

3. C l a s s if y in g n u m b e r e n t r y in t e r f a c e s

to implement examples from each class of interface, this grouping encompasses

all existing number entry interfaces. New interfaces can be created by composing
two or more interface styles in a single interface and by segmenting the number

into parts which are at least one digit long. These parts can then be controlled
using any of the interface styles described.

Table 3.1 shows the position of various interfaces in the design space for

number entry systems. Although there are no examples for right to left entry of
numbers, that is where the interface restricts the entry of numbers to be from
the least significant digit to the most significant digit, there is, in principle, no
reason why interfaces can not be designed in this way.

The next chapter analyses the performance of different instances of digit based

interfaces.

54

Chapter 4

Num bers in context

The design of an application or an interactive system that requires numeric input
involves the specification of ranges of valid numeric input to the (host) applica­
tion. This might involve specifying some function that translates user actions
into numbers. As seen in Chapter 3 the interface style might implicitly produce
syntactically valid numeric input as defined by the application, thus eliminating
any possible syntax errors in entry.

This chapter explores the types of numbers used in infusion therapy in hospi­
tals using logs from three different infusion devices. Specifically, it explores the
ranges, precision and typical changes of the numbers during therapy. This anal­
ysis provides the basis for selection of the numbers used in the tasks performed
in the experiment described in Chapters 6 and 7.

4.1 R elated Work

The letters of the alphabet in most languages have a varying frequency of oc­
currence in the vocabulary the language. For instance in the English language,

the letter ‘e’ has the highest frequency of occurrence [Lee99, p 181]. Letter
frequency models such as these have various applications ranging from use in se­
curity systems for decrypting certain types of cyphers or in user interface design

for building error correction models in text entry.

55

4. N u m b e r s in c o n t e x t

Similarly for numeric data, Benford [Ben38] observed that the frequency of

digits in naturally occurring numbers are not evenly distributed. Specifically,
he observed that the frequency of the first significant digit of a number closely

follows a logarithmic function that is defined on the digit. The digit 1 is more
likely to occur than digit 2 which is in turn more likely than digit 3 and so on.

This is contrary to the distribution one would expect if all the digits of numbers

had an equal probability of occurrence.

Wiseman et al. [Wisl2] explored the notion that the frequency of digits
used in infusion therapies in hospitals are not evenly distributed by analysing

58 log files taken from Graseby 500 [gra02] infusion pumps in a hospital. Their
analysis, showed that the most common digits used when setting numbers in
infusion pumps are 0, 1, 2, 5 and 9. Their analysis combined numbers set as
rate of infusion i.e. the speed at which to deliver the drug and the volume to
be infused (VTBI). Since infusion volumes tend to be delivered in preset bags of
1000, 500, 250, 125 and 50 millilitres, the frequency of the digits 0, 1, 2, and 5
are not surprising. Based on this, they provided recommendations that would

allow more efficient number entry for the set of numbers that appeared ill the
logs.

This chapter presents results from the analysis of logs from three different
infusion devices with the aim of understanding the nature of numbers used in
infusion therapy. This involves exploring features such as the typical range of
numbers entered, the precision of numbers, the range of numbers within a given
precision as well as exploring how numbers change within an infusion therapy.
For accurate results, only numbers that have been entered by a user are included
in the analysis. For instance rate values that occur after infusion has completed
and Keep Vein Open (KVO)* mode has been activated have been filtered out.

To achieve this level of accuracy, the event logs were first parsed and separated
into sets representing different infusions. The manner in which this was done
varied for each pump. For the Graseby and the Asena pumps, the beginning of a

new infusion was inferred from the log whenever a start infusion event was found
*KVO is a special mode in infusion devices that is triggered after an infusion has completed.

In this mode, the device continues to deliver medication at a predetermined low rate e.g., lmL
per hour, in order to keep the patient’s vein open for subsequent delivery of medication.

56

4.2. Data

and the volume infused attribute was 0. For the BBraun pump, there was a new

rate set event which designated tha t a user had changed the infusion rate of the
device.

4.2 D ata

The data used in this study were from three infusion devices used in Single­

ton Hospital in Swansea and the Royal Free Hospital in London. All the logs
were anonymous and did not contain any patient identifiable information. The
Graseby 500 is a volumetric infusion pump produced by Smiths Medical. It has
two 7-segment displays for showing the rate and the VTBI of an infusion and
it has an input control panel containing a numeric keypad. The Asena Syringe
pump is produced by Alaris Medical Systems. Its control panel contains four
chevron keys used for entering numbers and navigating list menu items. The
BBraun infusomat is a volumetric infusion pump produced by B.Braun Medical.
Its control panel contains a D-pad style interface (4 navigational keys) used for
number entry and navigating list menu items.

The log files contain some similar features and concepts. An event refers to
any significant change in the status of an infusion device such as when the device
is turned on or off, when it starts or stops infusion, when infusion settings are
changed or when the device alarms for any reason. An attribute is a property
representing a setting on the device at any given point (for instance when an event

occurs). An attribute may be the rate, VTBI, alarm volume or time of event.
None of the logs contained explicit information about the start or end of infusion

therapies. Where necessary, this information has been inferred retrospectively
from the log data by parsing the sequence of events for those that signify new

infusion parameters as well as the start and end of infusions. Below is a detailed

description of the settings recorded by each pump.

4.2.1 G raseby 500

The Graseby logged the most recent 200 events that occurred and maintained a
cumulative frequency of all events that have occurred on the device. W ith each

57

4 . N u m b e r s in c o n t e x t

event record, the attributes representing the device state at the time of the event

are logged. The attributes of interest to this study are all the rate values in the
logs whenever an event indicated the start of a new infusion. This pump did not
log keystroke information.

A total of 268 log files taken from 127 infusion pumps were used in the study.

The pumps were from a variety of wards and departments in the Singleton Hos­
pital in Swansea. These logs have been previously analysed by Lee et al. [Leel2b]
to explore the time and monetary costs of the events and alarms causing inter­
ruptions to the workflow of healthcare practioners. They have also been analysed
by Monroy et al. [MA13, Lee 12a] to explore the discrepancies between intended
infusions and actual infusions. The analysis in this chapter builds on the work
reported by Monroy et al. specifically by using the blocks of intended infusions
derived in their analyses. In total, the logs represented 3,681 infusions which
account for about 9,048 hours of infusion therapy.

4.2.2 A sena GH Syringe Pum p

The Asena GH syringe pump kept a log of the last 1500 events as well as the last
200 key strokes. Each event had a description which contained values where ap­
propriate. For instance a start infusion event description contained the starting
rate and VTBI. Each event also had a date attribute which had a time com­
ponent that was precise to the nearest second. The keystroke logs contained
a date accurate to the nearest second and the name of the key pressed. Sixty
files containing event logs from 60 syringe pumps in the Singleton Hospital were
analysed.

4.2.3 B B raun Infusom at

The BBraun pump kept a log of the last 1000 events as well as the last 200 key
strokes. Each recorded event had a description of the event, the value and unit
of attributes that were set during the event (e.g., for rate and volume values)

and a time attribute tha t was precise to the nearest second. The keystroke
logs contained the name of the key that was pressed, the display mode of the
pump when the key was pressed and the time of the action, precise to the nearest

58

4.3. Distribution of numbers

fa) Graseby 500

ML - i , i
0 50 100 150 200 260

(b) Asena GH

: 1°~ I I

WJLj ! 1
1 000 1 100 1.200

(c) Bbraun infusomat

Figure 4-1: These histograms show the frequency distribution o f rate values set on each
of the infusion pumps.

second. T he keystroke logs were not used in th is analysis. Ten log files contain ing

event logs from 10 infusion pum ps from the Royal Free H ospital in London were

analysed.

The next section presents details of the na tu re of num bers used in these th ree

infusion devices.

4.3 D i s t r i b u t io n o f n u m b e r s

4.3.1 R ange

G raseby

For the G raseby pum p, the ra te values ranged betw een 1 and 999. A to ta l of

705 ra te entries were ex trac ted from the logs. Fifty-six percent of these entries

ranged betw een 0 and 100 and seventy-six percent ranged betw een 0 and 200.

Figure 4.1a shows a histogram w ith a detailed d istribu tion of the values.

59

4 . N u m b e r s in c o n t e x t

A sena

The Asena pump had the smallest range with all values occurring between 0.1

and 300. A total of 5,578 rate entries were extracted from the logs and 90% of
these were less than or equal to 100. Figure 4.1b shows a detailed frequency

distribution of the values.

B Braun

The rate values entered into the Bbraun infusomat ranged between 0.1 and 1200.
A total of 1825 rate setting entries were extracted from the BBraun logs. Thirty-
six percent of these entries were of values that ranged between 0 and 100 while
83% of values ranged between 0 and 200. The histogram in Figure 4.1c shows a

detailed distribution of the values.

4.3.2 Precision

The precision of a number refers to the position of the rightmost significant digit
in the numbers entered into the devices. For example a value of 34 is precise to
the Units, 300 is precise to the Hundreds and 50.5 is precise to the Tenths.

From Figure 4.2, it can be seen that the majority of values entered into these
devices are whole numbers. It also shows the percentage distribution of the

precision of rate values entered into the infusion pumps. For each pump, over
80% of numbers were precise to the units, tens or hundreds. A further break
down of the distribution of numbers for each pump shows variation of precision

for different ranges in numbers.

A sena

For the Asena pump, numbers precise to the hundredths place value only ranged

between 0 - 10, with majority of values occurring between 0 and 2. There is
a similar distribution for the tenth place value with the exception of an outlier

value where 100 is entered to one decimal place.

6 0

4.3. Distribution of numbers

H A s e n a GH

E G ra s e b y 500

| B B raun In fu so m a t

T h o u s a n d s H u n d re d s T e n s Units T e n th s H u n d re th s

Figure 4-2: The percentage o f numbers entered into each device to a precision level
shown on the x axis.

(a) Hundreds (b) Tens (c) Units (d) Tenths (e) Hundredths

Figure 4-3: Frequency distribution o f the precision o f numbers entered in the Asena
GH pump.

G raseby

Analysis of the distribution of precision of numbers from the Graseby shows
that about 1% of numbers were entered to the precision of two decimal places
although the range was not as clearly confined as the Asena. Occurrences of
numbers precise to the units, tens and hundreds had a wide range although most

(a) Hundreds (b) Tens (c) Units (d) Tenths

Figure 4-4'- Frequency distribution o f the precision o f numbers entered in the Graseby
500 pump.

61

4. N u m b e r s in c o n t e x t

ill ill
(a) Hundreds (b) Tens (c) Units

Figure f .5 : Frequency distribution o f the
infusornat pump.

(d) Tenths (e) Hundredths

precision o f numbers entered in the BBraun

values occurred between 0 and 200.

B B rau n

The B B raun pum p had the highest proportion of num bers (20%) entered to a

precision of ten th s or hundredths.

4.3.3 D ifferences in the distribution of numbers

The d istribu tion of the num bers entered into the' three devices analysed in this

study show a snapshot of typical ra te settings used as program m ing param eters

in these devices. T he apparen t differences might be due to the following:

Different, sources. The log d a ta were obtained from different NHS tru sts,

therefore, the differences in the num bers m ight reflect the differences in

th e practices across these sites.

D ifferent types of devices. T he logs analysed were from two different types

of infusion devices. One device, the Asena GH, was a syringe pum p. In a

syringe pum p, drug is placed in a syringe and the syringe is driven by an

in ternal m otor which controls the precision of the delivery of the drug. The

two o ther devices (G raseby 500 and BBraim infusornat) were volum etric

pum ps. Volum etric pum ps control the flow rate of drugs placed in a bag

above th e pum p using perista ltic or cassette m echanism s to m anage to ra te

a t which drug is delivered to a patien t [Pox04]. According to the M edicines

and H ealthcare Produces Regulatory Agency (MHRA) [Med 13], volum etric

infusion pum ps are the preferred choice for high volume drugs at medium

G2

4.3. Distribution of numbers

3
3r<

33-3O
33
-32

33
32
3

~ 3

-S’ -c

63

4. N u m b e r s in c o n t e x t

Figure f . l : The number changes that occurred on the Asena syringe pump and their
frequencies. The x-axis are source numbers while the y-axis are target numbers. Initial
changes are coloured blue. Subsequent changes that are increments are colou,red green
while changes that are decrements are coloured red. The illative frequencies of the
change is encoded in the size of the circles. Bigger circles represent changes in numbers
that occur more frequently.

64

4.3. Distribution of numbers

65

4. N u m b e r s in c o n t e x t

6 6

4.4. Number changes and frequency of changes

and large flow rates. Syringe pumps are preferred when delivering low

volumes at low flow rates. These preferences are evident from the range

of the values seen in the logs as the two volumetric pumps have higher
maximum rates (1000 and 1200) than the syringe pump (200).

D ifferent w ards an d th e rap ie s . The logs analysed were obtained from differ­

ent pumps and even the pumps from the same hospital are potentially used
in a variety of wards over a time period. Different wards in each hospital

use different therapies depending on the condition of the patients in the
ward or departments. Pumps used in the surgical ward might often be set
to deliver drugs as quickly as possible to cater for a patient in an emergency
situation. This requires using high rates.

A m oun t of availab le d a ta . The pumps log information at different level of
detail and have different policies for the amount of log history they keep. In
addition, the frequency at which the logs are downloaded from the pumps
in different trusts could also cause differences in the snapshot captured by
the logs and consequently what data is available for analysis.

4.4 Num ber changes and frequency of changes

Figures 4.6, 4.7, 4.8, 4.9 show an overview of how numbers change based on the
analyses from three infusion pumps. Two types of number changes are identified.

There are changes where numbers are set from zero to the target number. These
will be referred to as initial changes and there are changes where numbers are
set from non-zero values to the target numbers. These will be referred to as

subsequent changes.

For the BBraun pump, 94% (N=1721) of all rate entries were initial changes.

Figures 4.9 shows tha t most numbers lie along the y-axis where y = 0. The

most frequently set value was 125. The graseby pump had 45% (N=186) initial
changes with a most frequently set value of 100. Finally, the Asena pump had

68% initial changes with a most frequently set value of 0 to 2.

67

4 . N u m b e r s in c o n t e x t

The low number of subsequent changes in the BBraun logs could be due to a

feature that allows users to explicitly start a new therapy. When this feature is

activated, all pump settings such as rate, volume to be infused and duration are
cleared and set to zero when a therapy is completed. The user has to enter new
values when starting a new therapy. Another possibility is that users made less
error on this device and did not need to make subsequent changes to the values

that they entered.

4.4.1 D ifferences in num ber changes

The visualisation of the number changes found in the logs of the three devices
highlight some features that are worth discussing. For the Asena pump, Fig­
ure 4.7 shows that the value 200 is a prominent source and target for changes
of numbers. Further discussions with the medical devices training manager in
the hospital where this pump is used suggested that this rate is typically used to
deliver antibiotics from a syringe over a relatively short period. For instance, a
50ml syringe set at a rate of 200ml per hour would deliver drug for 15 minutes.
It also emerged that 200ml per hour is the maximum rate allowed on this device
and could also be used to deliver a bolus to the patient.

There is a similar trend visible in the changes found in the Graseby logs as
the value 999 seems to be the source and target of many changes in the logs (see

Figure 4.8b). This value can be used as a short “flush” to clear any drug that
remain in the infusion line when medication is being changed. In some cases,

this rate can be used to deliver drug to a patient as quickly as possible in order
to replace lost fluids in an emergency.

This trend was not evident in the BBraun logs, potentially due to the lower

number of files analysed from the device.

68

4.5. Number changes and Dose Error Reduction Systems

4.5 Num ber changes and D ose Error R eduction

System s

As discussed in Chapter 2, Dose Error Reduction Systems are installed on many

modern infusion devices to put predefined limits to the dose values set for ther­

apies. They work by allowing the user to select the name of the medication

used in the therapy from a list in a predefined drug library. These systems then
enforce soft and hard limits which have been predefined for each drug in the
library to catch high severity errors in infusion therapies. Breaching a soft limit

usually triggers a warning that alerts the user about the limits. Interactions that
attem pt to breach a hard limit are blocked and alerted to the user.

When a drug has been selected and the details about the patient have been
entered, some devices automatically calculate a default value, which is dependent
on the parameters of of the patient and the type of drug chosen from the drug
library. The user then needs to make changes to a default value which is specific
to the dose value in the prescription chart.

Setting numbers from a non-zero value has implications for the performance of
different interfaces. These performance differences will be investigated in Chap­
ter 5 where the task times for changing and setting different number combinations
are explored.

4.6 Summary

From the logs of the infusion pumps, most numbers entered into the BBraun
pump are initial changes (i.e., they are set from a value of zero). This is different

for the other two pumps. The number of tasks that are based on subsequent

changes to a number (rather than setting new numbers) has implications for

the performance of the interface. Sometimes only small adjustments are needed
when making changes to a number. This is especially true for treatment regimes
where the patient has to be constantly monitored to see how they respond to

medication. An example is in the delivery of medication such as insulin, where
blood glucose levels determine the rate of drug delivery. In such cases, the serial

69

4. N u m b e r s in c o n t e x t

style interface does not offer the most efficient interaction since users first have

to clear some preceding digits or all the numbers before entering or updating the

number.

The next chapter analyses at a keystroke level, the time cost of changing

between any pair of numbers in the range 0-99 for different interfaces. The
numeric tasks visualised in Figures 4.6, 4.8a and 4.9a are also used in the next

chapter to estimate the time costs of performing those tasks on a variety of
interfaces.

70

Chapter 5

M odelling task performance in
number entry

Based on the interface classes identified in Chapter 3, this chapter presents a
quantitative analysis of task performance (with respect to speed) for number
entry interfaces that offer digit level control. It uses the Key-stroke Level Model
(KLM), developed by Card et al. [Car83, Car80], to estimate the task completion
time for an expert user to perform a series of number entry tasks.

Card et al. presented KLM as a simple model for predicting the time it takes
a user to perform a task on an interactive computer system. The model estimates
time, based on a user’s low level key press operations which constitutes time taken
to press a button (K), time taken to point to a target (P), time taken to move the
hand to the keyboard or other device (H), time taken for mental preparation (M)

and the time taken for the system to respond (R). The Keystroke-Level Model
only deals with the time aspect of performance and is not suited to analyses of

performance pertaining to errors, learning curve, or fatigue.

Errors can be modelled and analysed using methods such as stochastic key
slip simulation (SKSS), where user actions are simulated and injected with errors

with varying probabilities [Caul2a, Caul2b]. SKSS proceeds on the assumptions
that errors will eventually happen and perform analyses on the effects of error as

71

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

error rate or probability is varied. Since KLM predicts time, KLM can also be
used in conjunction with other error modelling techniques, (e.g., for predicting
the cost of error recovery).

While errors are a very important aspect of the design of interactive systems,
particularly those related to the design of safety critical interactive systems, the

principal purpose of this chapter is a predictive evaluation of the speed of num­
ber entry interfaces. Other dimensions pertaining to errors and subjective user
preference are evaluated empirically and reported in chapters 6 and 7.

5.1 Interfaces analysed

Chapter 3 introduced different styles on number entry interfaces. For an inde­
pendent digit style interface whose digits are controlled incrementally, there are
variations on how the wrap around feature on the digits might behave. Perform­
ing usability studies for all the variations would be very expensive.

In order to reduce the space of possible variations of interfaces discussed in
Chapter 3, this chapter conducts initial evaluations of the performance of seven
interfaces. It analyses, one variation of the numeric keypad interface and three
variations (arithmetic, digit wrap and blocked digit wrap) of the D-pad and the
Up-down interfaces as described in section 3.3.2).

5.2 Estim ating speed

Correct number entry on digit based interfaces such as the numeric keypad, is

straightforward. It requires the entry of the digits that make up the number by
successively pressing on the corresponding key on the keypad. On interfaces like
the up-down or the d-pad, digits may be entered in any order although it might

be more efficient to perform digit entry in a specific order and it would probably
be common that people enter numbers from the most significant digit to the
least significant digit - a reflection of the way numbers are spoken in western
languages.

72

5.2. Estimating speed

For digit based interfaces, the time required to enter a number is a function

of the number of digits in the intended number. For whole numbers, the speed

of entry is a function of the logarithm of the intended number. For fractional
numbers, the speed of entry is a function of the number of decimal places and

the logarithm of the whole part of the number.

The following definitions will be used in the rest of the chapter for consistency

in referring to various aspects of the definitions of performance in the different

interfaces.

S(d) represents the cost of entering a single digit d

a or/3 are used to represent numbers to enter {a,/3 E Z+}

m represents the number of digits in a or (3

C (a ,/3) represents the cost of changing a to (3

oti represents the ith digit in a where ao is the rightmost digit in a

g represent cost function used in the A star algorithm

h represents the heuristic function used in the A star algorithm

In general, if £ is the number of decimal places in a , and m is defined as
[log10o;] -f- 2r, then the cost of number entry on an independent digit interface
can be expressed as:

m
C (0 ,a) = y] 5 (a j) (5.1)

i = 1

6 can be further expanded into two components that account for the time Sk
to select a key on the interface and the number of key presses kn required to set

the required digit. In general, Sk is a target selection task and can be modelled

by F itts ’ law [Fit54]. For the numeric keypad, kn can be approximated by a
constant value per user as it represents button activation time. For instance the
button activation approximation value (K = 200ms), from the Keystroke-level

model can be used. For the up-doum and d-pad, kn can be approximated as a

function of average number of key presses required to set any digit from [o]. If
Pd represents the probability that digit d will occur in a given number, then the
mean cost of setting an arbitrary digit on an independent digit interface that

73

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

allows digit wrap around can be approximated using:

9
min(|10 — i\,i) (5.2)

i — 1

This value is about 3.22 if all non-zero digits had an equal probability (|) of

occurrence. More precise values can be obtained by using a probability distribu­
tion that closely models the context of analysis. For general purpose numbers,
the probability distribution of digits in numbers as presented by Benford [Ben38]
can be used. For more specific contexts, such as predicting the performance of
interfaces for use in infusion pump therapies, relevant probability distributions

should be derived from frequency analyses of log data, for instance as suggested
in [Wisl3a] or as shown in Chapter 4.

5.2.1 Im proving th e interface perform ance

Part of the aim of this analysis is to highlight aspects of the design of these number
entry interfaces where performance can be improved. From this deconstruction,

one can improve entry speed by improving key selection time Sk- This can be
achieved by increasing button size to enable faster target acquisition. Another
way to improve the performance by reducing the time and effort required to set
a digit kn. This can be achieved by using widgets such as dials or sliders for digit
selection.

5.3 M ethod

Since the purpose of this analysis was to discover how quickly, with respect to
time, a given interface allows a user to enter numbers, the following question
summarises the aim of the chapter: For any two pairs of numbers a and /3 in a

range defined, how long would it take a user to change a to (3 on an interface?

Given a graph representation of an interface, such as the one implicitly spec­
ified in a programmatic implementation of the interface, the path in the graph

joining a to (3 is a function of the cost of changing a to (3 on that interface. As
an example, in order to change 0 to 35 on the interface described in Section 3.3.2,

74

5.3. Method

which blocks digit wrapping, multiple paths might be taken. Figure 5.1 shows a

state transition diagram where nodes represent all the possible numbers that can

be set on the interface and the edges represent discrete button clicks that change
one number to the other. For this interface, edges along the same row or column
can be navigated using the same button. Paths through this interface can be

traced by connecting the edges in the graph. The source and target nodes in this
trace represent a and 3. Each corner in the paths signify a button change on this

interface. Button changes should be minimised to optimise the task completion
time. Figures 5.1b and 5.1c shows two equally optimal ways to change 0 to 35,
since they both only require one button change. Figure 5.Id shows a less optimal
path, which requires three button changes.

0 1 2 3 4 5 6 7 8

18

, 2 _ 3 — 4 — 5 6 7 8

10 11 12 13 14 15 16 17
9

19

o — ■

10 11
12 13 14 15

|
16 17 18

9

19

20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 36 30

40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 56 59 50 51 52 53 54 55 56 57 56 59

60 61 62 63 64 65 66 67 68 69 60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79 70 71 72 73 74 75 76 77 78 79

80 61 82 83 84 85 86 87 88 89
80 81 62 83 84 85 86 87 88 88

(a) (b)

0

10
1

1

11

2

12

3

13

4

14

5

15

6

16

7

17

8

18

9

19

1
0

i o - 11-

2

12—

3

13
j

4

14

5

15

6

16

7

17

8 (

18

5

19

20

1
30 —

21 22 23 24 25 26 27 28 29 20 21
22 23

I

24 25 26 27 28 29

3 1 - 32 — 33 — 34 — 35 36 37 38 39 30 31
32 33 — 34— 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59 50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 87 68 69 60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79 70 71 72 73 74 75 76 77 78 79

8980 81 82 83 84 85 86 87 88 89 80 81 82 83 84 85 86 87 88

(c) (d)

Figure 5.1: (a) shows a state transition diagram for an interface that offers independent
digit control with digit wraparound blocked. The interface visualised here allows entry
of integers between 0 and 89. (b), (c) and (d) are different paths from 0 to 35 on this
interface.

75

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

The user interface model discovery process will be used to extract the graph

representation of each interface and the A star algorithm will be used to find the
path between two nodes, i.e., the source and target numbers, in the graph.

5.3.1 UI M odel D iscovery

The model discovery process extracts a graph that represents an interactive sys­
tem by systematically exploring the state space of the system. This is done by
stimulating the actions of a user on the system while keeping track of the states
encountered in the process and stopping when the state space is exhausted.
A generic application programming interface (API) is presented by Gimblett
and Thimbleby [GimlO] and various applications of the method are presented
in [Thi09b, Thi09a, GimlO].

Some important features are crucial to accurate model discovery. The discov­
ery process must have an accurate view of state in the interactive system and it
must have the ability to set the state in the system correctly and must have the
ability to perform actions on the user interface.

For the numeric keypad, the discovery process could perform digit click actions
for all digits 0 - 9 as well as a backspace key to delete the last digit clicked. The
decimal point key could not be clicked. The state on this interface was defined
by the value property on the interface.

The up-down interface could perform four actions. Unit up and Unit down
were used to increase and decrease the digits at the units place value and ten-up
and ten-down were used to increase and decrease the digits at the tens place
value. Similar to the numeric keypad, state on this interface was defined by the
value property on the interface.

The d-pad interface could perform four actions. Left and right buttons moved
a cursor left or right to select a place value, while up and down buttons increased
or decreased the selected digit. The state on this interface was defined by the
cursor position and the value property on the interface.

For all variations of interfaces tested, the maximum value allowed was 99 and

the highest precision allowed was the units.

76

5.3. Method

5.3.2 P a th finding algorithm s

Path finding is a method in graph theory used to find a path between any two

nodes in a graph (if one exists). It is commonly used in network analysis to find

a route between two locations and also used in the design of artificial intelligence
for games, for instance in helping a game character navigate around obstacles.
One of the most common path finding algorithms is Dijkstra’s algorithm [Dij59,

Cor09]. For a given graph with non-negative edge weights, this algorithm finds
the lowest cost path between any two nodes contained in the graph. Starting from

a source node, Dijkstra’s algorithm recursively traverses adjacent nodes starting

with the node tha t has the least cost path from the current node. The algorithm
keeps track of the path costs between the source node and all subsequent nodes
traversed until the target node is found. Dijsktra’s algorithm is guaranteed to
find a shortest path for any two nodes that exist in a graph. It however runs
slowly for large graphs due to its time and space complexity. A more efficient
algorithm is the A star path finding algorithm.

T h e A star A lg o rith m

The A star algorithm improves on Dijkstra’s algorithm by using a heuristic func­
tion as well as the path cost so far to estimate how far the current vertex is
from the source [Har68]. The A star algorithm has two main components. A cost
function is used to calculate the cost incurred in traveling from the source node
to the current node while traversing the graph and a heuristic function is used
to estimate the cost of traveling from the current node to the target node. The
heuristic function allows the customisation of search through a graph by allowing

us to create functions that specify how the algorithm perceives proximity to the

goal state during the search process.

For the purposes of the evaluation in this chapter, two different cost functions

will be explored. Cost will be defined as a function of the number of button clicks
required and as a function of time required. To help define these functions, the

next section describes mathematical functions that can be used to obtain the costs
of specifying numbers on the different variations of interfaces in the analyses.

77

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

5.4 D eterm ining the optim al keystrokes for spec­

ifying numbers

As a prerequisite to running the A star algorithm, 4 mathematical functions for
use in defining the heuristic function for A star are presented. One function will be

used for the numeric keypad and 3 functions for each variation of the independent

digit interface.

5.4.1 N um eric keypad

For the numeric keypad, the number of keystrokes required to specify a number is
a function of the number of digits in the number. Hence the cost can be derived

as specified in equation 5.1.

5.4.2 B locked digit wrap

For the blocked digit wrap variation, changes in any digit in the number is com­

pletely independent of other digits and increments to digits are capped at [§]
while decrements are capped at _0_. Consequently, the cost of changing n to f3
on this variation of the interface style is the sum of the cost of changing each
subsequent digit in a to the corresponding digit in (3. In other words, it is the
sum of the absolute difference in the digits of a and (3.

(5.3)
1 = 0

5.4.3 Independent d igit wrap

For this variation, changes in any digit in the number is also completely inde­

pendent of other digits and changes to digits wrap around such that a [_9j when
increased becomes J3_ and a _0_ when decreased becomes [9]. The wrap around
feature means that setting a high number when the digit is [o] can be achieved
by navigating backwards through the digit lists. For instance setting an [§] can

be achieved from a [o] by pressing down twice on the digit. This reduces [o] to
1~9~| and then to [8]. The optimal cost, 6(d) of setting a digit d on this style of

78

5.4. Determining the optimal keystrokes for specifying numbers

interface is therefore the smaller of incrementing to that digit or decrementing

to that digit.

5(d) = min(d, 10 — d)

Therefore, the cost C(a,J3) of changing a to /3 can be defined as:

m
C (a,0) = £ < S (k - A I) (5.4)

*=0

5.4.4 A rith m etic digit wrap

For the arithmetic variation, the digits wrap around and the wrapping effect
causes a change to the digit to the left (i.e., the effect of changes on a place value
carries over to the place value to the left whenever a digit is decreased from [o]
or increased from [§]). Interaction on this variation of the interface performs
incremental changes to the entire number. Consequently, increasing the units
place value ten times is equivalent to increasing the tens place value once. This
arithmetic behaviour allows the definition of the cost of changing a to (3 to be a
function of the difference between a and (3. Intuitively, the cost can be thought
of as the sum of the number of unit changes required to change a to /?, which is
essentially the numerical difference between a and j3.

If C(a,f3) is the total number of unit steps between a and /?, then

C (a , j3) = a — (3

= a — (3 — 0

= (a — (3) — 0

- C (a - / 3 ,0)

Hence C(a, (3) = C(a — (3,0)

In general, the problem of the cost of changing a to f3 can be rewritten to the
cost of changing 0 to | (3 — a | if a < (3 or the cost of changing | a — (3 | to 0 if

a > (3.

The cost of entering a number a from an initial value of zero, can be repre­
sented as the sum of entering the individual digits that make up a. Initially, it

79

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

can be observed that the cost 8(d) setting a single digit d on this interface is:

i d if d < 5
6(d) = {

I 11 — d otherwise

The first condition stipulates that for digits d up to 5, one can simply increase
the place value d times. For digits greater than 5 however, there is a more

efficient entry strategy that becomes feasible as a result of the wrap around
feature of the digits on the interface. Hence, similar to the wrap around variation
in Section 5.4.3 one can decrease the digit from [o] to get to the higher numbers
(i.e., those greater than 5). However for this variation, it is necessary to account
for the action needed for correcting the carry over effect that occurs whenever

the digit wraps around, hence 11 — d as opposed to 10 — d. To calculate the cost
of entering a number, two utility functions Sc and S f are defined. Listings 5.1
show JavaScript implementations for Sc and Sf. For a given number a, these
functions return another number that is rounded up or down to the next higher
place value. For instance:

5 C(343) 350

COCO

to 340

S c(350) 1 o o 5/(340) 300

OOto I o o

OOCO

to
4 -> 300

It has been already been established that the cost of changing /3 to a is the

same as the cost of changing /? — a to 0 where a < (3 . Therefore to calculate
the cost of changing /3 — a to 0, a recursive function C(f3 — a, 0) which evaluates
Sf(/3 — a) and Sc(/3 — a) until both functions no longer change the value in the
parameter is defined. Listing 5.2 shows a JavaScript implementation for the cost

function. This process creates a graph from node (3 —a to node 0 with each node
in the graph leading to two other nodes. The paths in the graph are weighted
and indicate the cost of traveling between the adjoining nodes. The total cost of

changing (3 — a to 0 is thus defined as the path within the graph with the least
cost.

80

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1
2
3
4
5
6
7

8

5.4. Determining the optimal keystrokes for specifying numbers

/ * *

* @ p a r a m x i n t e g e r

* @ r e t u r n s i n t e g e r

* /
function nextceil(x) {

var m = numDigits (x) , i, ceil, pow = Math.pow(10, m - 1);
for (i = 0; i < m; i++) {

pow = Math.pow(10, i);
ceil = Mat h . ce i l(x / pow) * pow;
if (ceil !== x) {

return ceil ;
>

>
return x ;

>

/ * *
* O p a r a m x i n t e g e r

* @ r e t u r n s i n t e g e r

* /
function nextfloor(x) {

var m = n u m D i g i t s (x) , i, floor, pow = Math.pow(10, m - 1);
for (i = 0; i < m; i++) {

pow = Math.pow(10, i);
floor = Ma th . fl o or (x / pow) * pow;
if (floor !== x) {

return floor ;
>

>
return x;

}

Listing 5.1: A JavaScript implementation of function Sc and S f

function cost(x) {
var nextc = nextceil(x), nextf = n e x t f 1 o o r (x);
if (x === nextc I I x === nextf) {

var d = digit(x, numDigits(x) - 1);
return Math.min(ll - d, d) ;

>
return M a t h .m i n (c o s t (M a t h .abs (x - nextc)) + cost(nextc) , cost
(Math.abs(x - nextf)) + c o s t (n e x t f));

}

Listing 5.2: JavaScript function for calculating the number of clicks required to change
x to 0

81

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

Let x = (3 — a

f i f x == Sf (x) ot x = = S c(x)

C(x , 0) = < mm(C(x — Sf(x)) + C(Sj(x) , 0), otherwise

C(Sc(z) - z) + C(Sc(r)),0)

For the interfaces analysed in this chapter, the functions defined above give
a quantitative representation of the number of button clicks needed to change

between any two numbers. In order to perform Key-stroke Level Model analyses,

it is necessary to determine the sequence of buttons clicked on the interface in
the course of changing between the numbers. This sequence of button presses
were obtained by path finding using different cost functions.

5.4.5 Cost as a function o f number of button clicks

One can reason about the performance of an interface in terms of the number of
clicks required to complete a given task. Discrete key clicks of user interactions

give a very good indication of the number of §tcps required to perform or carry
out a task on a user interface. The functions defined in the previous section are
used for calculating the cost function with respect to number of clicks required
to set the values.

5.4.6 Cost as a function o f estim ated tim e

Another way to reason about interface performance is in terms of the optimal time

required to complete a given task. This value cannot simply be obtained from the
optimal number of clicks required to complete a task because the time required to
click a button varies depending on the button. For instance, button acquisition

takes time. This means it costs more time to click on two different buttons than
it does to click twice on the same button. This detail is lost when thinking of
performance in terms of number of button clicks alone. It is straightforward to
estimate the time required to enter a number given a finite number of clicks.

Using KLM to estimate the performance component in the cost function,
produces time optimised paths through the graph that are different from those

82

1
2
3
4
5
6
7
8
9

10
11
12
13
14

5.4. Determining the optimal keystrokes for specifying numbers

/ * *
* c a l c u l a t e KLM c o s t f o r p e r f o r m i n g a s e q u e n c e o f a c t i o n s
* @param a c t i o n s A r r a y o f s t r i n g s
* /

function klmcost(actions) {
var point = 1100, click = 200;
if (factions || actions.length === 0)

return 0;
var score = click, action = actions [0];
if (actions.length > 1 && action !== a c t i o n s [1]) {

score += point ;
}
return (score / 1000) + klmcost(actions.slice (1)) ;

}

Listing 5.3: JavaScript code for calculating estimated time

generated when the search is optimised for least number of button clicks. Using
optimised time as a cost function allows the discovery of number entry interaction
strategies that are different from those that appear to be intuitively optimal with
respect to the number of clicks required to specify numbers. These strategies are
arguably closer to what a non-expert user of the interface might use since figuring
out the optimal keying sequence takes mental preparation as well as time required
to acquire different buttons.

Using the A star algorithm, the rest of this chapter explores the time cost of

entering numbers on a variety of key based number entry interfaces as well as
the cost of changing numbers within a given range.

5.4 .7 C ost function g

In the A star algorithm, g is used to calculate the cost of traveling from the source

to the current position in the graph. As such, g is defined over a sequence of

edges traversed so far (in our case actions performed so far). Simply, g returns
a KLM estimation of the time taken to execute the sequence of actions between

the source node and the current position in the graph.

83

M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

I 2.0

li 11 \ IE I1 i i ^ ^ i i i |
Keypad D-pad D-pad D-pad Digit Up-down Up-down Up-down

Arithmetic Blocked Wrap Arithmetic Blocked Digit Wrap
Digit Wrap Digit Wrap

■IIIU
Keypad D-pad D-pad D-pad Digit Up-down Up-down Up-down

| O p tim ise d c lic k s

! O p tim ise d tim e

O p tim ise d c lic k s

O p tim ised tim e

D-pad D-pad Digit Up-down Up-down Up-down
Blocked Wrap Arithmetic Blocked Digit Wrap

Digit Wrap Digit Wrap

Figure 5.2: (Above) A comparison o f the number of keystrokes required to change be­
tween any numbers in the range o f 0 - 99 fo r all interfaces, when task strategy was
optimised fo r m inim um number o f clicks versus minimum elapsed time. (Below) A
comparison o f mean tim e required to change between any two numbers when task strat­
egy is optimised fo r least keystrokes versus least time.

5.4.8 Heuristic function h

The heuristic function provides an estimate of the cost from the current state to
the goal state, i.e., from the current number to the intended number. The heuris­
tic function essentially determines the strategy that the analysis appears to use
while exploring the performance of the interfaces. The accuracy of the path that

the analysis discovers is dependent on the accuracy of the heuristic function in

predicting the distance to the goal state. The heuristic functions used in the A star
algorithm are based on those defined in Section 5.4.5 for calculating the number
of clicks needed to change a to (3. However instead of simply using the number
of clicks, the function is updated with the KLM functions for estimating time

to acquire buttons and time to activate buttons. Listing 5.3 shows a JavaScript
function for estimating time given a sequence of actions.

84

5.5. Results and Discussion

5.5 R esults and D iscussion

The A star algorithm was run for all 7 interfaces for numbers ranging from 0-99.

This was used to find a path between all pairs of numbers within this range as

stipulated by the cost and the heuristic functions. For each interface, the cost
of setting a fresh number, i.e., setting a number from zero, and the mean cost of

setting a number from any other number is reported. Figure 5.2 shows the mean
costs (both keystrokes and time) of changing between any numbers for the range

between 0 - 99. Figures 5.3 and 5.4 shows detailed averages of cost of changing
from each number in the range to the other numbers and Figures 5.5 to 5.11
shows an adjacency matrix representing the cost of changing between any two

numbers in the range.

5.5.1 N um eric K eypad

For the numeric keypad, there was no difference between the strategies uncovered
when the task performance was explored for optimal number of keystrokes or
optimal time. In both cases, the average number of clicks required to change zero
to any other number was 1.9 with a mean time of 2.4 seconds and the overall
mean number of clicks need to change any numbers from any other number was
3.5 clicks with a mean time of 3.6 seconds. The numeric keypad in this analysis
uses a clear digit action rather than a clear number action for error correction.

Figure 5.3 shows the relationship between the mean cost of changing a number
to any other number and the number of digits of the source number. The longer
a number is, the further away it is from any other number. An extra digit in the

input sequence increases the task time by 200ms. This can be seen, for instance,
in the step increase for mean time costs for numbers above 9.

The all-pairs costs shown in Figure 5.5 shows that performance on this inter­

face is symmetrical about the diagonal. This means that the cost of changing a to
/3 on this interface is the same as the cost of changing /3 to a. The main diagonal

simply shows that there is no cost involved when a = (3. The ten lighter square
grids spanning the diagonals show that the cost of changing between values that

lie in the same decade (tens group) is the same.

85

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

(b) Mean duration to change numbers to any other number

Figure 5.3: This shows averages for cost of number entry on 7 interfaces. The costs
are keystroke optimal. 5.3a shows average number• of clicks for each number on the
x-axis to all other numbers within the range 0 - 99 and 5.3b shows a time estimate of
cost based on the optimal keystrokes.

(a) Mean number of clicks to change numbers to any other number

■ K eypad

■ D -pad A rithm etic

■ D -pad B locked Digit W rap

■ D -pad Digit W ra p

■ U p-dow n A rithm etic

■ U p-dow n Blocked Digit W ra p

■ U p-dow n Digit W ra p

■ Keypad

■ D -pad A rithm etic

■ D -pad B locked D ig t W rap

■ D -pad Digit W ra p

■ U p-dow n A rithm etic

■ U p-dow n Blocked Digit W ra p

■ U p-dow n Digit W rap

5.5.2 D-pad

The arithmetic variation of the D-pad interface required an average of 8.7 clicks
to change zero to any other number with a mean time of 5.2 seconds. The overall
mean distance between any two numbers was 6.8 clicks over 4.6 seconds. When

task strategy was optimised for time, the mean number of keystrokes to change
zero to any number increased to 9 although the time required dropped to 4.9
seconds. The overall distance between all pairs was 7 clicks lasting for a duration

of 4.2 seconds.

Figure 5.6 shows that the performance of this arithmetic variation of the D-
pad interface is symmetrical about the diagonal. The light diagonal bands in the

8 6

5.5. Results and Discussion

■ K eypad

■ D -pad A rithm etic

■ D -pad B locked D igit W ra p

■ D -pad D igit W ra p

■ U p-dow n A rithm etic

■ U p-dow n B locked D igit W ra p

■ U p-dow n D igit W ra p

(a) Mean number of clicks to change numbers to any other number

■ K eypad

■ D -p a d A rithm etic

■ D -p a d B locked Digit W ra p

■ D -p a d Digit W ra p

■ U p-dow n A rithm etic

■ U p-dow n B locked Digit W ra p

■ U p-dow n Digpit W ra p

0 5 10 15 20 85 3 0 35 4 0 45 50 63 60 “ 7 0 75 80 “ 90 85

(b) Mean duration to change numbers to any other number

Figure 5.4: The costs here are time optimal. 5.4a shows average number of clicks for
each number on the x-axis to all other numbers within the range 0 - 9 9 and 5.4b shows
a time estimate of costs.

matrix show that the cost of changes made between two numbers are a function

of how numerically close the numbers are as well as how many digits they share
in common. Figure 5.6b shows a visible difference in cost by highlighting points

in the matrix where the arithmetic feature becomes beneficial to use. This point
occurs beyond the seventh unit of every decade. Instead of pressing repeatedly 011
the up key, it becomes more cost effective to move the cursor to the left, increase

the digit, move the cursor right (to return to the initial position) and decrease

the digit to 9 or 8.

The blocked digit wrap variation, like the numeric keypad, produced the same

results for both strategies. O11 average, it required 10 clicks to change zero to any
other number with a predicted mean duration of 5 seconds. The mean number

4

3

2

87

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

(a) cost as number of keystrokes (b) cost as predicted duration

Figure 5.5: A m atrix diagram showing relative cost of changing between all pairs of
numbers in the range in the analysis fo r the numeric keypad.

(a) cost as number of keystrokes (b) cost as predicted duration

Figure 5.6: The relative costs o f changing between numbers fo r the arithmetic variation
of the D-pad interface.

5.5. Results and Discussion

(a) cost as number of keystrokes (b) cost as predicted durat ion

Figure 5.7: The relative costs of changing between numbers on the D-pad interface
when digit wrap is not allowed.

of clicks between any pair of numbers was 7.5 lasting for 4.5 seconds. Note that,
on average when setting fresh numbers, this variation requires more number of
clicks than the arithmetic variation but requires less time. This is because when
digit wrap is blocked, the user is forced to set each digit explicitly by continuous
increments or decrements. This means the user typically performs monotonic

changes to each digit successively. This requires more keystrokes, but means
that the user is performing clicks on the same button, rather than using two

buttons to change the same digit. In the standard KLM, switching buttons, is
equivalent to clicking on the same button 5 times. The way this variation works

essentially ensures that users employ a time optimal strategy.

Similarly, the digit, wrap variation for this interface produced the same results

when explored with both strategies. It required an average of 6 keystrokes to

set a number, with an average task time of 4.2 seconds. The overall distance

between all pairs was also 6 keystrokes lasting 4.1 seconds.

89

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

(a) cost as number of keystrokes (b) cost as predicted duration

Figure 5.8: The relative costs of changing between numbers on the D-pad interface
when independent digit wrap is allowed.

(a) cost as number of keystrokes (b) cost as predicted duration

Figure 5.9: A visualisation of the all-pairs cost for the arithmetic variation of the
up-down interface.

90

5.5. Results and Discussion

(a) cost as number of keystrokes (b) cost as predicted duration

Figure 5.10: A visualisation of the all-pairs cost for the variation of up-down interface
where digit, wrap is blocked.

5.5.3 Up-down

W hen a m inim um clicks s tra tegy was used, th e arithm etic varia tion of th is in­

terface required an average of 7.4 clicks to change zero to any num ber in a m ean

tim e of 4.7 seconds. Changes betw een any pairs on num bers were 5.8 clicks on

average and lasting 4.2 seconds. W hen a m inim um tim e s tra tegy was used, av­

erage num ber of clicks to set a new num ber increased to 7.5 clicks b u t m ean

tim e required dropped to 3.5 seconds. A lthough overall num ber of clicks between

num bers rem ained the same, the m ean tim e required dropped to 3.1 seconds.

T he click op tim al stra tegy for th e block digit, wrap variation of th is interface

required 9 clicks to set any new num bers in a duration of 5.1 seconds while the

overall changes between any pair of num bers in the range required 6.1 clicks in

4.4 seconds. T im e optim al s tra teg y required 9 keystrokes to set new num bers in

3.8 seconds. T he overall d istance betw een pairs was 6.6 clicks lasting 3.3 seconds.

T he click optim al s tra tegy for the digit, wrap variation required 5 clicks to

set new num bers as well as to change any num ber to any num ber, in 4 seconds.

The tim e optim al s tra tegy required 5 keystrokes to set new num bers lasting an

average of 3.1 seconds. Overall, th e m ean num ber of keystrokes required to

91

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

(a) cost as number of keystrokes cost as predicted duration

Figure 5.11: A visualisation of the all-pairs cost for the variation of the up-down
interface with digit, wrap around.

change between number pairs within the interface was 5.2 clicks in 3.1 seconds.

5.6 P e r fo rm a n c e o f n u m b e rs in c o n te x t

Chapter 4 presented analysis of logs from three medical devices to understand the
nature of numbers used in infusion therapy and the way those numbers change.
The analyses showed that depending on the device, numbers are often changed
between non-zero values rather than being set from an initial value of zero. The
performance of the d-pad. up-down and the numeric keypad interfaces are fur­

ther evaluated with respect to time and in the context of those numbers that
featured in the logs. This analysis would give some insight into the comparative

performance of the different interfaces when used to enter the same numbers.

5.6.1 M ethod

For every different number change found in the logs, a corresponding task time
was predicted for each one of the three interfaces (dpad, updown and keypad).
The task times were predicted using a time optimal strategy in the A star algorithm

92

D
-p

ad

U
p-

D
ow

n

ke
yp

ad

5.6. Performance of numbers in context

o o o o o o o o o0 0 0 0 0 0 0 0 0
1 I I I I I I I I I

g
©
■"g

©
- g

g©-g3
- g
gSigg-sg

g
g

- g

gg
g
g

~ g

a
0)uct

gg
g
g

g
-©

“g
g
g ,g

~ g

g g

-2 e
3g 3

- g o
~ g^ A

g g g g
fc g

~ g
g
g

g g
g g gJ3 05 3
g ' g 3

g
g

©

g
©

" g
I

g

<

g
3
©

~ gig
g

"g
gi

" g

•g

_ g
"g

>---1

g
g
g

r'*’ig

g
- g

g
gg
g
©

* <s>cc
I

g
g

B
cq
cq

■g
g
g

~ g

gi
■ g

g
- g

g

-2 § 5̂ gg
g - g

g
g

•e-i
g
g

~ g

- g

g

- p g

I I

gggg

ggg
- g

*g ~g ~g

g gg g
g

-©
3sg

o g-g
s£-*g ©

'§> "g
3 gg.

u n e jg g s p u o o a s u| aiuj) > jse i

9 3

01

D
-p

ad

U
p-

D
ow

n

k
ey

pa
d

5. M o d e l l i n g t a s k p e r f o r m a n c e in n e m b e r e n t r y

A q e se jQ s p u o o e s w ew.ii >)s b i

94

D
-p

ad

U
p-

D
ow

n

ke
yp

ad

5.6. Performance of numbers in context

gg-g

gg
"g
2ggggg
"g-g
COg
g~.gg-gg

-Cl
ggg

• g

2g

~gg
&g-Sfi
g-g
gg-g

3

g ~

«©_ Ol■ g ~g g g -g
© H ©glQJ g

oC " g
_g
g 2

g
g~g1©,g

3 g

<
g

"ggg
g5

§* -g
gf

© - g

g-g

2 5o -gg 02

21 g
g g

*2, ^
CO *— g g

COg

g ^
-§ g
2 ^ Ct -

"<r-
*g ~gg
2 £ g *tift eg j t o

- C «t g

CO CO
g gj3 - g

’ g " g
g g>
g g
gg g

g 0

g cg

g g
<
t o g£*«>gt o

~gg
CO g
tog-g
CO cog
g jg gg g
0 -gg g

o “ c o ’- (C " ’ i r " O J

s u e iv ‘s p u o o a s u | e iu n > |se i

95

5. M o d e l l i n g t a s k p e r f o r m a n c e in n u m b e r e n t r y

Cc rnb ined Logs

D-pad Up-Down

iH initial changes

subsequent changes

Keypad

Figure 5.15: Mean predicted task time for the three interfaces grouped by the type of
number being set. Error bar's show standard deviation.

w ith functions defined earlier in th is chapter. This study was a repeated measures

design and the independent variable was th e interface style with three levels: the

different prediction functions run for each of the three interfaces.

5 .6 .2 R e s u l t s

In itia l n u m b er changes

For all num bers set from zero, a one-way repeated m easures ANOYA with Greenhouse-

Geisser correction found a s ta tis tica lly significant effect of interface style on pre­

dicted tim e F (1 .5 ,394 .3) = 295.78, p < 0.001. Post-hoc analysis using multi­

ple t-tests (p < 0.001) showed the d-pad was slower th an the keypad t(264) =

15.84, p < 0.001 and the d-pad was slower th an the up-down f (264) = 29.25, p <

0.001. There was no significant different between the up-doum and the keypad

£(264) = —2.55, p = 0.011.

S ubsequen t n u m b er changes

A one-way repeated m easures ANOYA with Greenhouse-Geisser correction found

a s ta tis tica lly significant effect of in terface style on predicted tim e for subsequent

num ber changes F (l . 27, 889.33) = 309.55, p < 0.001. Post-hoc analysis using

m ultiple t-te sts showed a significant difference between all pairs (p < 0.001). The

96

5.7. Discussion

d-pad was slower than the up-down £(696) = 24.64, p < 0.001, the d-pad was

faster than the keypad £(696) = —7.59, p < 0.001 and the up-down was faster

than the keypad £(696) = —25.11, p < 0.001.

Figure 5.15 shows the mean and standard deviation for all interfaces and

for both initial and subsequent number changes. Figures 5.12, 5.13, 5.14 show
details predicted task times for each number changes that featured in the BBraun,
Graseby and Asena logs.

5.7 Discussion

The results show that for all the different number distributions from the different
devices, the up-down interface has the mean predicted fastest entry time when
making changes to a number and the task time is comparable to the keypad when
setting new numbers. These results could be due to the nature of numbers used in
infusion therapy as well as the nature of number changes made during therapies.
These changes might be further informed by the therapies the devices are used
to manage.

Other factors that might be responsible for this result are the generic KLM
values used in the prediction of time for the different interfaces. This issue will
be revisited later in Chapter 7 where the inter key durations observed during the
experiments are contrasted with the generic KLM values used in the prediction.

The numeric keypad is probably the most popular number entry interface. It

is the interface tha t users are most familiar with. Consequently, in practice, it is
probably the fastest interface. However, based on this analysis, in the context of

medical devices, and the types of numbers entered into infusion pumps, indepen­

dent digit interfaces are sometimes faster. This finding means that new designs of
independent digit interfaces can offer faster number entry for the medical context.

5.8 Summary

Using a mathematical approach, this chapter has provided generic functions that

model the cost of changing between any two numbers on the numeric keypad

97

5. M o d e l l in g t a s k p e r f o r m a n c e in n u m b e r e n t r y

and six variations of independent digit interfaces. It also introduced the novel

concept of discovery strategies used in the exploration of tasks in different varia­

tion of number entry interfaces. These strategies were implemented as heuristic
functions in the A star search algorithm and have been explored based on optimal
number of clicks and optimal time taken to complete task.

In some cases, such as for the numeric keypad and the variation of the inde­
pendent digits interface tha t blocks digit wrap, the different strategies produce
the same path through the graph. This has implications for consistency and ease
of learning. In these cases, regardless of user intent (i.e., less clicks or less time),
the optimal route for performing the task is the same. When there is a difference
between the results of these two strategies, the user is faced with an interface
that has ambiguous ways of achieving the same goal.

This chapter presented a two-part analysis. First, the performance of chang­
ing between all pairs of numbers within the range 0-99 was explored to provide
a restricted, but generic view of the relative performance of different variations
of the interfaces tested. This analysis showed that the numeric keypad is fastest

when setting new numbers. This is followed by the digit wrap, arithmetic and
blocked digit wrap variations of the up-down and d-pad interfaces. When making
changes between numbers however, the up-down interface appears to perform
better than the numeric keypad. This highlights the efficiency in easily making
changes to a number on this interface.

A second analysis, explored relative performance of the interfaces based on
the numbers entered in three different types of infusion pumps. Unlike the first
analysis, this one did not include number pairs which are unlikely to occur in
the healthcare setting. The result of this showed that the up-down interface had
the quickest mean speed of entry when making changes between numbers and

performs the same as the numeric keypad when entering new numbers.

Chapter 6

In terface style and e rro r
de tec tio n

The purpose of any number entry interface is to accurately select or set a numeric
value. Chapter 3 introduced a four part classification for number entry interfaces.
Two of these are based on specifying digits that make up a number and the other
two are based on choosing a number from a set of options. This chapter evaluates
number entry interfaces with respect to their effect on error detection.

Number entry is perceived to be a very simple and mundane task — yet
numerical drug dosing errors account for a significant portion of adverse drug
events in hospitals, particularly in paediatrics [JanlO. Vic03]. Number entry
errors can be as a result of a combination of user errors and poor interaction
design. Hardware defects such as key bounces 011 keypads have been reported as

a source of error in medical device programming [ISM06, VaiOG]. A key bounce
occurs when physically pressing a key once causes a repeat of the same key: this

is different from a double keying error where a user accidentally presses the same

key twice [VaiOG].

I11 many user interfaces, number entry is implicit; for example, adjusting

sound levels by rotating an unmarked dial, or moving a scroll bar adjusts a hidden
number but the user copes because of direct feedback (direct manipulation).

99

6 . I n t e r f a c e s t y l e a n d e r r o r d e t e c t io n

Unfortunately, errors are inevitable when using interactive systems and these

can be in the form of mistakes, slips or lapses [Rea90]. Sometimes, errors are

detected by users and corrected. When errors go undetected, the consequences
can be very serious. In a safety critical and dependable system, it is important
that users realise when they commit errors and correct the errors. The differences
in the design of number entry user interfaces place different demands on users in

terms of what part of the user interface they focus most of their attention on and
as a result whether they notice that an error has occurred and correct the error.

This chapter reports an experiment that investigates the effect of interface
design on number entry user error detection. The findings show that the incre­
mental interface produces more accurate inputs than the serial interface. It also
presents a classification of error types that have implications for number entry
interface designers, particularly in safety critical domains where accuracy needs
to approach 100%.

6.1 Experim ent

Because interaction on the incremental interface requires users to monitor how
the value on the display changes based on what key the user is interacting with, it
was hypothesized that users will more likely detect and correct errors when using
an incremental interface as opposed to when using a serial interface. It was also
anticipated that users will pay more visual attention to the display than to the
input when using the incremental interface and pay more visual attention to the
input than to the display when using the serial interface. Finally, it was expected

that there will be types of errors that are unique to each class of interface.

6.1.1 D esign

The experiment was a within-subject repeated measures design. Each partici­
pant used both number entry interfaces. The number entry interface was the

independent variable and it had two levels: the incremental and serial interfaces.

The order in which the interfaces were tested was counterbalanced for all partic­
ipants. The dependent variables were the number of uncorrected errors, number

1 0 0

6.1. Experiment

of corrected errors, total eye fixation time on the input and display part of the

interface and task completion times.

6.1.2 Participants

Twenty-two participants from the University College London psychology pool
for participants were recruited for this experiment. There were 12 female and 10

male participants aged between 18 - 55 years. All the participants were regular

users of computers. None of the participants was prone to repetitive strain injury
and one participant was dyslexic.

6.1.3 A pparatus

A computer with an integrated Tobii eye-tracker was used to present the instruc­
tions and the number entry interfaces. Participants interacted with the computer
using a mouse to click on “keys” on the interface. Based on the properties of num­
bers analysed from Asena pump logs in Chapter 4, 100 numbers were generated
randomly for the experiment with the following constraints:

• all numbers were between 0 and 10

• all numbers had a decimal point

• all numbers had at least one significant digit after the decimal point

• all numbers were unique

The two number entry interfaces used in the experiment were implemented
in HTML and Javascript. Whenever an interface button was clicked, a scaling

transformation was applied to the button to provide additional visual feedback

that the button was clicked.

Serial digit entry interface

The serial interface was based on the Graseby 500 infusion pump (see Figure 6.1).
It allowed number entry using a full numeric keypad in the telephone style layout.

6. I n t e r f a c e s t y l e a n d e r r o r d e t e c t i o n

1 2 3

4 5 6

7 8 9

■ 0 C

s
Figure 6.1: The serial interface used in the experiment.

This interface had a decimal point key and a cancel key for deleting the rightmost
character on the display. This interface allowed a maximum of 5 characters in its
display buffer which may include only one decimal point. If the user clicks the
decimal point more than once in a trial, only tin1 first decimal point is registered
in the buffer and subsequently on t he display. Any other decimal point entries
are ignored until the entire buffer is cleared or the currently registered decimal

point is deleted.

In c rem en ta l n u m b er en try in te rface

The incremental interface was based on the Asena GH Syringe pump (see Figure
6.2). It had four keys. Two of the keys increased the value displayed and the
other two keys decreased the value. For each of the two sets of keys, one key
caused a bigger change while the other caused a smaller change (usually a factor
of 10 smaller). This interface allowed two modes of interaction. The user could
press the keys or press and hold the keys. Pressing the keys changed the displayed
value as specified above. Pressing and holding the keys changed the displayed

value at a rate dependent on the duration the key was held down for. Typically,
users were expected to press and hold for faster changes to the number. This
interface always displayed a decimal point and all numbers were rendered to a
precision of two decimal places.

A key bounce was triggered for the 84th. 88th, 92nd and 97th trial for both
interfaces. Once a user corrects a key bounce error, the key bounce was no
longer triggered for tha t trial. Mouse actions were logged to obtain accuracy and
performance data on the number entry tasks. Both interfaces had an Enter key

102

6.1. Experiment

to commit the number entry task.

6.1.4 Procedure

All participants were tested individually. Before starting each session of the
experiment, the eye tracker was calibrated for the participant. The participant

was then briefed about the stages and purpose of the experiment before starting.

The experiment itself was in two parts: one for each interface. Prior to each

part of the experiment, the participant got a training session where they could
enter 10 numbers and get familiar with the interface. When the participant was

comfortable with how the interface worked, they were allowed to proceed to the
experiment. The participants could perform the training session as many times
as they wanted and they were encouraged to ask questions to clarify how the
interface worked during the training session.

For the experiment, each participant was required to enter 100 numbers using
both interfaces in the order defined by the experimenter. The participants were
instructed to enter the numbers as quickly and as accurately as possible. An
instruction on the right half screen showed what number the participant should
enter. The participant had to click a ‘Next' key to confirm their entry. Doing
this triggered the display of the next instruction. The process of number entry

and confirmation of entry was repeated until all 100 numbers had been entered
using the first interface. The participant was allowed a break of up to 5 minutes
before proceeding to the second half of the experiment. The interface was then
switched and the participant went through the training session for that inter­

face and proceeded to enter the same set of 100 numbers. At the end of the
experiment, each participant was given a gift voucher in return for their time.

\ / ^ m

Figure 6.2: The incremental interface used in the experiment

103

6 . I n t e r f a c e s t y l e a n d e r r o r d e t e c t io n

6.1.5 D efining corrected errors

Corrected errors for each participant on the serial interface were calculated as

the total number of times they pressed the ‘Cancel’ button. For the incremental
interface, the corrected errors for each participant were calculated as the num­

ber of times the participant overshot or undershot the target number. In the
incremental interface, overshooting the target number was sometimes intentional
especially when entering numbers efficiently using a mixture of continuous and
discrete actions. For instance, entering the value ‘5.9’ efficiently means slightly

overshooting the target number using the continuous (hold-down) interaction in
order to reach ‘6’, for instance, and refining the value with a down click (a dis­
crete action) to obtain the target number. This type of intentional overshooting

did not count as a corrected error. To distinguish between intentional and un­
intentional overshooting on the incremental interface, the number of overshoots
in a task were first determined for all numbers used in the experiment. This was
then compared to the number of oscillations demonstrated by a user for the given
trial as recorded by the experiment. The difference between these two numbers
was used as the number of corrections per trial.

6.1.6 R esu lts

Three participants were excluded from the analyses due to problems encountered
while calibrating the eye-tracker.

To check for learning effects on the interfaces over the experiments, the trials

Serial Incremental
Mean SD Mean SD

Block 1 1.65 0.35 9.35 3.54
Block 2 1.64 0.23 9.10 3.03
Block 3 1.71 0.33 8.72 3.83
Block 4 1.61 0.49 8.09 3.35
Block 5 1.85 0.72 8.53 3.82

Table 6.1: The mean entry time per trial block with corresponding standard deviations
for the serial and incremental interfaces.

104

6.1. Experiment

8
C
o

o

8O
o

o8
2 3 51 4

8
o
'T

O
8CD

Oc

8

8
O

2 3 4 51

(a) Serial (b) Incremental

Figure 6.3: Box-plot of mean trial time by each participant for each block on the serial
and incremental interfaces.

for each participant were split into 5 blocks; each block had twenty trials. A two-
way repeated measures ANOVA showed a significant main effect of interface style
on speed F (l , 18) = 99.22. p < 0.001 , but no significant main effect of trial block
on speed F(2 .74, 49.45) = 2.54, p -- 0.072. There was no significant interaction

effect of interface style on trial blocks F(3 .02 ,54.35) = 2.36, p = 0.081. Table 6.1
shows the mean and standard deviations for the experiment blocks and Figure 6.3
shows the distribution of participant times for each block.

Further investigation was carried out to explore the trend of entry time in

3 54 54

(a) Serial (b) Incremental

Figure 6.4: Mean trial time per block. Each line represents a participant.

105

6. I n t e r f a c e s t y l e a n d e r r o r d e t e c t i o n

more detail with respect to obtaining more context around the outlier values

present in Figure 6.3. Detailed results are shown in Figure 6.4. No further
investigation was carried out since no participant was consistently an outlier
across all blocks on both interfaces.

Effect of key bounce on e rro r

All key bounce errors were stimulated in the 5th block of the experiment trials.
A Friedman test showed a significant main effect of trial block on uncorrected

error for the serial interface y2(4) = 31.06. p < 0.001. Post hoc analysis using
Wilcoxon test with Bonferroni corrections showed a significant difference between
errors made between blocks 5 and 1, Z = —3.06. p = 0.002. between blocks 5
and 3, Z = —3.16. p = 0.002 and between blocks 5 and 4, Z — —3.35, p = 0.001.
Figure 6.5a shows detailed differences between blocks.

The trial blocks also had a significant main effect on uncorrected error for tin1
incremental interface \ 2(4) = 23.47, p < 0.001. Post hoc analysis using Wilcoxon
test with Bonferroni corrections showed a significant difference between blocks 5

and 1, Z = —3.13, p = 0.002 and between blocks 5 and 3, Z = —3.13, p - 0.002.
Figure 6.5b shows the distribution of participant errors per block and Table 6.2

o

00

CO

o

2 3 51 4

o

CO

o

2 51 3 4

(a) Serial (I)) Incremental

Figure 6.5: The distribution of total uncorrected errors by each participant for each
block on the serial and incremental interfaces.

106

6.1. Experiment

shows the m ean and s ta n d a rd deviation for partic ipan t error per block.

Serial Increm ental
M ean SD M ean SD

Block 1 0.79 1.87 0.47 1.39
Block 2 1.05 2.20 0.37 0.76
Block 3 0.58 1.43 0.32 0.95
Block 4 0.74 1.82 0.68 2.11
Block 5 2.42 2.27 1.37 2.36

Table 6.2: The mean total error’s per trial block with corresponding standard deviations
for the serial and incremental interfaces.

Further investigation was carried out to explore the consistency of the outliers

in F igure 6.5. This was done to find out if there were p artic ipan ts th a t consis­

ten tly had more errors th an o ther p a rtic ip an ts for each block. Figure 6.6 shows

th a t one p a rtic ipan t (the sam e person on bo th interfaces) consistently com m itted

m ore uncorrected errors th an the o thers. T his partic ipan t shall be referred to as

P 5 from here on. T he po ten tia l bias in troduced by P 5 011 the results ob tained

thus far was investigated by rerunn ing the analysis w ithout tria ls from P 5 .

A Friedm an test showed a significant m ain effect of trial block 011 uncorrected

error for the serial interface \ 2(4) = 28.18, p < 0.001. Post hoc analysis using

W ilcoxon test w ith Bonferroni correction showed a significant difference for errors

m ade betw een blocks 5 and 1, Z = —2.95, p = 0.003. betw een blocks 5 and 3,

10-T 10-1

(b) Incremental(a) Serial

Figure 6.6: The number of uncorrected errors per participant for each block. A line
represents a single participant.

107

6 . In t e r f a c e s t y l e a n d e r r o r d e t e c t io n

CO

eg

o

51 2 3 4

(a) Serial (b) Incremental

Figure 6.1: The distribution of the number of errors made by participants during each
trial block on the serial and incremental interfaces. The data used in this distribution
excludes data from P5.

Z = —3.03, p = 0.002 and between blocks 5 and 4, Z = —3.22, p = 0.001, with
block 5 having more error in each case.

Similarly, a Friedman test showed that the trial blocks also had a significant
main effect on uncorrected error for the incremental interface y2(4) = 21.44, p <
0.001. Post hoc analysis using Wilcoxon tests with Bonferroni correction showed
a significant difference between errors made on blocks 5 and 1, Z = —3.05, p =
0.002 and on blocks 5 and 3, Z = —3.05, p = 0.002, with block 5 having more
error in each case. Figure 6.7 shows the distribution of errors committed without
data from P5.

U ncorrected Errors

A total of 95 uncorrected errors were made in the experiment. P5 was responsible
for 53 of those errors. A Wilcoxon Signed Ranked test showed a significant

main effect of interface style on total uncorrected error, Z = —3.11,p = 0.002.
The total uncorrected errors on the incremental interface was significantly lower
(mean=3.21, sd=7.2) than those on the serial interface (mean=5.58, sd= 8 .88).
To explore the potential bias that P5 had on the difference between the two

108

6.1. Experiment

§

o
CO

o
CM

o

o

Serial Incremental

(a) Data including P5

Serial Incremental

(b) Data excluding P5

Figure 6.8: A comparison of the distribution of number of errors made on each inter­
face.

interface styles, a Wilcoxon test was carried out with this participant excluded
from the dataset. The test showed that the total uncorrected errors on the
incremental interface (mean=1.61, sd=1.85) was significantly lower than those
on the serial interface (mean=3.61, sd=2.38), Z = —2.94, p = 0.002. Figure 6.8
shows the median values for the different interfaces as well as the differences in

the distributions of the datasets.

A Wilcoxon signed-rank test also showed a significant main effect of interface

style on uncorrected error when the dataset included only the first four trial

blocks, Z = —2.06, p — 0.039. When P5 was excluded from this dataset, interface
style did not have a significant main effect on uncorrected error, Z = —1.8, p =
0.072. Figure 6.9 shows the detailed distributions of total uncorrected errors
committed by participants in the first four blocks of the experiment.

C orrected Errors

A Wilcoxon signed-rank test showed a significant main effect of interface style

on corrected error. The number of corrected errors per participant on the in­
cremental interface (mean = 74, sd = 17.31) was significantly greater than
the number of corrected errors in the serial interface (mean = 7.1, sd = 9.6),

109

6 . I n t e r f a c e s t y l e a n d e r r o r d e t e c t io n

o
o

I I
Serial Incremental

(a) Data including P5

Figure 6.9: The distribution of total uncorrected errors by each participant for the
first four blocks of trials. These represent the uncorrected errors committed out of the
context of the stimulated key bounce error.

Z = -3.73, p < 0.001.

Severity of Errors

The severity of error, measured as the absolute difference between the intended
value and transcribed value, was higher on the serial interface (mean=70.91,
sd= 166.94) than on the incremental interface (mean=0.93, sd=1.41).

V isual A ttention

For both interfaces, a paired t-test found a significant main effect of area of

interest (on the interface) on fixation duration. The total visual fixation duration
on the input of the serial interface (mean — 271.16s, sd = 80.01), was significantly
greater than the total fixation duration on the display of the device (mean =

26.28s, sd = 19.31), £(17) = 13.35,p < 0.001. Conversely, the total fixation
duration on the input of the incremental interface (mean = 185.82s, sd = 87.78)
was significantly lower than the fixation duration on the display (mean = 553.47s,

sd = 276.25), £(17) = 7.34,p < 0.001.

(b) Data excluding P5

1 1 0

6.1. Experiment

N um ber o f glances at instruction

Analysis of fixation data from the eye-tracker using a paired t-test also showed

that participants made significantly more glances at the instruction when us­
ing the incremental interface (mean=2.70, sd=1.13) than when using the serial
interface (mean=1.85, sd=0.82), t{ 17) = 3.04, p = 0.007.

Speed o f entry

A paired t-test showed a significant main effect of interface style on entry speed.
The incremental interface (mean = 8.8s, sd = 3.31) was significantly slower than

the serial interface (mean = 1.69s, sd = 0.36), £(18) = 9.96, p < 0.001.

Speed accuracy trade off

For the incremental interface, it was found tha t the mean speed of entry and the
number of errors per participant were strongly correlated {Pearson's r(16) =
0.55, p = 0.018). For the serial interface, the correlation between speed and error
was not statistically significant {Pearson's r(16) = 0.29, p = 0.232). Figure 6.10

shows a scatter plot of speed and errors for both interfaces.

6 .0 - j

5 .0 -

4 .5 -
£
§ 4 .0 -
Q) 3 .5 -
O 3 .0 -

s 2 .5 -
E3 2 0 -
z 1 .5 -

0 .5 -

0 .0 0

O © D O

© <

Mean task time in seconds

(a) Incremental Interface

® o o
o o

o
o

o o o
1.5 1.6 1.7 1.8 1 .9 2 .0 2.1

Mean task time in seconds

(b) Serial Interface

Figure 6.10: Scatter plots of the mean speed and number of errors for the incremental
and serial interfaces.

I l l

6. I n t e r f a c e s t y l e a n d e r r o r d e t e c t i o n

Missing decim al

■ S er ia l

i In crem en ta l

Skipped T ransposition W rong digit Missing digit

7

m

Figure 6.11: The distribution of the error types that occurred on the serial and incre­
mental interface in the course of the experiment.

6.1.7 Error Types

K eystroke logs from all partic ipan ts were analysed for this section. Below, a

selection of th e uncorrected error types th a t occurred in during the experim ent

is reported . Based on a different experim ent. W isem an et al. have developed

a taxonom y of num ber en try errors [W isll] and have independently reported

and classified these errors. As well as reporting error types, the prevalence of

certain error types between the two num ber entry interface styles is reported.

T he frequency of each error type is shown in Figure 6.11. For each error type, the

severity of the error is quantified by reporting the mean and s tandard deviation

of the difference between the intended num ber and the transcribed num ber.

M issing D ecim al P o in t E rro rs

This error occurs when a decim al point is absent from the transcribed num ber

bu t is present in the instruction. There were 28 instances of this error on the

serial interface and none on the increm ental interface. On average, this error

changed the intended num ber by 260.77 (sd=240.85).

T ran sp o sitio n E rro rs

Transposition errors occur when the user swaps two adjacent digits in a num ber.

For instance, instead of entering 5.84, a user m ight en ter 5.48. The m ajority of

these were com m itted on the increm ental interface w ith 22 instances and only 5

112

6.1. Experiment

instances on the serial interface. The dyslexic participant committed no transpo­

sition errors. Most of the transposition errors occurred after the decimal point.

In our data, a special case of the transposition error occurred when the decimal
part of the transcribed number was exactly 10 times more or less than the decimal
part of the intended number. For example, instead of entering 7.4, a participant

entered 7.041. Although one participant (P5) committed 17 of these errors, the

potential causes make it a concern for further investigation.

It is possible that the display of the numbers on the incremental interface was
responsible for this error: the display always shows two digits after the decimal
point. For instance if the numeric value is 7.4, the display shows 7.40 [. It may
be confusing that the 40 after the decimal point is perceived to be greater than
4. It is important to note that this participant did not commit any transposition
errors on the serial interface. It seemed that the incremental interface had an
effect on their transcription of numbers specifically for numbers of the form d.Od
where d is a numeric digit. In other words, the interface design might have
affected their perception of numbers of a certain format. Transposition errors
were more serious on the incremental interface. On average this error changed
the intended number by 0.54 (sd=0.35) on the incremental interface compared
to 0.31 (sd=0.18) on the serial interface.

W rong D igit Errors

Wrong digit errors occur when one of the digits in the transcribed value is in­
correct. This error was more common in the incremental interface. The most

serious cases of the wrong digit error happened whenever the whole number part
of the number is wrong. For instance a participant entered 4.87 instead of 5.87.

Wrong digit errors were more serious on the serial interface but more frequent
on the incremental interface with 15 occurrences on the incremental and only

three cases on the serial interface. On average, this error changed the intended
number by 0.81 (sd=1.27) on the serial interface compared to 0.28 (sd=0.40) on

the incremental interface.

113

6 . I n t e r f a c e s t y l e a n d e r r o r d e t e c t io n

M issing D igit Error

This refers to instances of errors where one digit from the intended value is
missing from the transcribed value. For instance a participant entered 0.3 instead
of 0.43. On average, this error changed the intended number by 3.36 (sd=8.92).

The incremental interface was free of this error.

6.2 D iscussion

One participant (P5) was responsible for 56% of all errors committed in the exper­
iment. Excluding this participant from the analysis still resulted in a significant
main effect of interface style on uncorrected error. Excluding this participant as
well as constraining the analysis to the first four trial blocks, which had no key
bounce error stimulation, resulted in no significant main effect of interface style

on uncorrected error.

This shows that the key bounce introduced in the last block of the experiment

had an effect on uncorrected error on both interfaces. The uneorrected errors Were
however not limited to the key bounce? errors introduced in the last block of the
experiment. The uncorrected errors that occurred in the first four blocks for the
incremental interface were less than those that occurred on the serial interface.
This suggests that the experimental manipulation alone might not be responsible
for the significant difference in uncorrected error between the two interfaces.

The relative accuracy of the incremental interface comes with a slower data
entry speed, although analysis of the speed of entry and number of errors for this
interface showed a significant linear relationship which is contrary to the classic

speed accuracy trade-off typical of many target acquisition tasks [Zha04a]. A
potential reason for the linear relationship between speed and error rate observed

on the incremental interface could be the increase in the likelihood that the longer
time spent scrolling through numbers introduces more opportunities for error to

occur.

The higher level of visual attention paid to the display of the incremental
interface is another possible reason for its higher accuracy since placing visual

114

6.2. Discussion

attention on the display gives the user a better chance or detecting and correcting

any errors.

A third reason could be that participants expect to make errors using this in­

terface. Indeed, the results show a significantly higher number of corrected errors
on the incremental interface in comparison to the serial interface. Some partic­

ipants had a number of tries overshooting and undershooting for the intended

number before precisely setting the number. Some deliberately overshoot the
intended value and correct the error in a few clicks because that is the optimal
way to enter the intended number.

This oscillatory behaviour could also be explained as artifacts of the gain and
time-delay parameters of the incremental interface. The design of this interface
encourages the user to adopt the interface widgets that give the system a high
gain value (i.e., holding down the double chevron buttons to cause larger changes
to the number). The user thus appears to use a strategy with a high likelihood
of missing their targets, while all they might have been trying to achieve was to
get closer to the target number as quickly as possible.

For the incremental interface, the visual attention placed on the input was
significantly lower than that on the display. This supports the original supposi­
tion, as the interaction on the incremental interface requires the user to monitor
how the value on the display changes based on what key the user is pressing.
The input part of the incremental interface requires little visual attention and is
only used to switch direction and precision of change. However, despite the high

attention paid to the display of this interface, the mode of interaction introduced
errors that were less likely on the serial interface (e.g., the wrong digit errors and
the transposition errors).

The results also show that the visual attention placed on the input in the

serial interface was significantly higher than the visual attention ori the display.
This could be because participants did not feel the need to verify their entry. It

is possible th a t most participants trusted the visual feedback they got from the
labels on the keys and felt little need for an extra mode of feedback by checking

the display.

115

6 . I n t e r f a c e s t y l e a n d e r r o r d e t e c t io n

By design, the numbers specified on a serial interface require parsing to obtain

a numeric value valid in the application space. As a result, serial interfaces are
prone to syntax errors. Rather than alert users to errors, this parsing process

often produces incorrect and unpredictable results whenever the user commits a
syntax error [ThilOb, ThilOa].

Syntax errors are however impossible on an incremental interface since the
application guides the user through a valid range of numeric values. It is also
plausible that numbers are perceived as a string of characters when using a serial
interface whereas using an incremental interface forces users to be aware of the

numeric values and the relative order of numbers.

In a safety critical context like healthcare, the incremental interface is safer.
It allows better error detection and the severity of errors is much lower than
on the serial interface. The missing decimal point and the missing digit errors
are the most serious errors and they were both more likely to occur on the serial
interface. Overall, the results suggest that the errors on the incremental interface
have a much lower deviation from the intended number.

The information access cost (IAC) for participant revisiting the instructions
in the experiment was low as the instruction for each trial was presented on
the same monitor directly alongside the interface. Analysis of the eye-tracking
data showed that participants glanced at the instructions at an mean rate of
about two times per trial for the serial interface and about three times for the
incremental. In practice, information about parameters for programming an
infusion pump could be presented at different locations which could encourage
the users to adopt a perceptual motor strategy (attributed to a low IAC) or a
memory intensive strategy (attributed to a high IAC) [Bacl2]. These different
strategies are likely to introduce different types of errors and the effects of these

strategies were not explored in this experiment.

6.3 Conclusions

P5 committed the most transposition errors. Identifying users in the real world
who are like P5 would be useful to better manage errors in practice. Identification

116

6.3. Conclusions

could take the form of routine number entry tests. Alerting these types of users

to the existence of these types of errors might be useful during training and
might be enough to reduce the occurrences of such error. Similarly identifying
user interfaces that afford better error detection would inform better design in a

safety critical context. Further research would explore these avenues.

There are significant differences in the error rates for the two experimental
conditions of number entry: number entry interface styles do affect error rates

and, by implication, medical outcomes. This effect is particularly crucial and
significant when there are hardware defects such as bounced keys present on a
device. The speed of the serial interface comes at a price: errors are more likely
to go undetected due to significantly less visual attention on the interface and
undetected errors like the missing decimal or missing digit are more likely to have

serious outcomes typically producing numbers out by a large factor (10 or more)
from the intended values. In a medical context, such errors can be fatal. The
result suggests that it should be a priority to research number entry styles and
their relation to error rates, behaviour and performance. There is a wide variety
of number entry styles in medical devices (where errors cause adverse events),
clearly with no or little empirical justification; we now see useful progress can
be made to provide sound guidance for designers of safety critical number entry
systems.

117

Chapter 7

Exploring user performance for
number entry interfaces

In the context of evaluating number entry for interactive devices, running exper­
iments on desktop computers have many advantages, one of which is the relative
ease of software deployment. Input widgets like mice and keyboards found on
most computers are however very different from the specialised widgets found on
real world interactive medical devices such as infusion pumps. These, like many
other medical devices, are often operated by buttons on a membrane keypad. One
of the reasons why membrane keypads feature in the design of medical devices
is the ease with which they can be cleaned. Buttons on membrane keypads are

not physically separate, therefore, there are no ridges or gaps where dirt could

be trapped.

The indirect user experience encountered while using a mouse to interact with
an on screen simulation of an interactive device is different from the experience a

user has when directly interacting with a physical device with buttons. In order

to bridge this user experience gap, we designed and built a bespoke prototype

device with the specific aim of testing multiple configurations of number entry

interfaces.

119

7. E x p l o r i n g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y i n t e r f a c e s

m B

© a

_) ©

o) ©

(e)

Figure 7.1: The prototype device built to run number entry experiments.

120

7.1. The prototype unit

7.1 The prototype unit

The prototype device constituted three main parts: the display, the front panel

and the housing. The display in the unit was a USB touch enabled monitor.

The monitor was a 7-inch iMo* display with a resolution of 800 by 480 pixels.

A removable front panel served as the input interface to the prototype and the
housing held the display and front panel together.

The front panel was powered by an Arduino board which was wired to the

user interface input components on the unit. Figure 7.1b shows the rear of the
front panel. There were two variations on the front panel. The first variation
had a blank set of 4 x 4 membrane keypads. The keys of the membrane keypad
could easily be marked by sliding in any desired cut-out labels as shown in Fig­
ure 7. Id. The second variation of the front panel had a dial. The dial, pictured
in Figure 7.1e was a 24 step rotary encoder with tactile feedback on each step. It
also had a select switch which could be activated by pushing on the dial. Both
front panels had a set of generic buttons laid out in a 3 x 2 grid. Part of the front
panel could be covered up with a plastic card to hide it during an experiment.

As shown in Figure 7.1c, there was a clamp fitted on the rear of the device
which enabled it to be securely fitted to a pole. The device had a dimension of
223mm x 282mm x 65mm.

The rest of this chapter presents the results of an empirical evaluation of 5
different number entry user interfaces using this prototype device. The aim was

to explore the performance difference across these interfaces with the intent of

providing quantitative summary of trade-offs involved in choosing to implement
one of the styles of interface over another.

7.2 R elated Work

The layout of the numeric keypad has been studied by many researchers. Early
research by Deininger [R.L60] in the design of telephone keypads explored the

performance differences of 16 layout configurations and the effect of keying be­

*http://www.displaylink.com/

1 2 1

7. E x p l o r in g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y in t e r f a c e s

haviour of users on the keying entry speed. This experiment found that the en­

try speed was dependent on the participant’s strategy for reading the numbers.
Participants who memorized the numbers before starting the keying sequence,
performed significantly better than those who referred back to the number during
entry.

Further experiments on the effect of keypad layout by Conrad and Hull [Con68]
initially suggested that the telephone keypad layout with 1, 2, 3 at the top was

more accurate than the calculator layout with 7, 8, 9 at the top. Marteniuk et.
al[Mar96] later found that performance differences between different keypad lay­
outs based on the two popular telephone and calculator layouts were as a result

of the placement of the zero key, suggesting that the zero key be placed below
the other keys.

Number entry interfaces can often be implemented in a variety of ways. For
instance an independent digit entry interface such as the d-pad interface can be
implemented in as many as 28 different ways. By running simulated trials of users
making keying slips while entering numbers, Cauchi et al., [Caul2b] discovered

that the differences in the implementation can have effects on the severity of error
i.e., by how much an undetected error deviates from the intended number.

With a few exceptions, research in number entry has so far been based on
the numeric keypad, usually testing the performance of different layouts. The
serial interface offers very quick number entry and its performance scales well as
the size of the number to be entered increases. Numbers used for tasks such as
infusion therapy in hospitals are from a well defined range with rules governing the
allowed precision of numbers above certain thresholds. For instance, precision of
numbers used for rate settings in a critical care unit might be two decimal places
for numbers below 10 and only one decimal place for numbers that are between
10 and 100.

Based on the classification presented in Chapter 3, 5 example number entry

interfaces : 1 instance of serial digit entry (numeric keypad), 2 instances of
independent digit entry {up-down and d-pad) and 2 instances of incremental
entry {chevrons and dial), were implemented and evaluated. With the exception
of the dial interface, which was based on a microwave oven, all the interfaces

1 2 2

7.3. Number entry interfaces

presented below are found in real world medical devices.

7.3 Num ber entry interfaces

Since previous research has explored the performance effects of different layout

configurations of the serial interface, only one instance of the serial interface is

evaluated in this study.

7.3.1 N um eric K eypad

This interface allowed number entry using a 12-key numeric keypad in the tele­

phone style layout (see Figure 7.2a). It had a decimal point and a cancel key.
The decimal point key appends at most, one decimal point to the number on the
display. The cancel key deletes the rightmost character on the display.

7.3.2 C hevrons

This interface utilised four buttons in a single row. The two buttons on the left
(i.e., the upward facing chevron buttons) increased the value displayed, while
the buttons on the right (i.e., the downward facing chevron buttons) decreased
the displayed value. Within each pair of buttons, the double chevron buttons
caused a change ten times greater than the single chevron buttons. This interface
allowed two modes of interaction. The user could press the buttons or they could

press and hold the buttons. Pressing the buttons changes the displayed value as
specified above. Pressing and holding the buttons changes the displayed value at

a rate dependent on the duration of hold. Users were expected to press and hold

for faster changes to the number.

7.3.3 U p-dow n

This interface had eight buttons arranged in two rows and four columns. The top

row buttons were used to increase the number and the bottom row buttons were
used to reduce the number. Each column corresponds to a place value in the
resulting number. For our set up, the rightmost column matched the hundredth

123

7. E x p l o r i n g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y i n t e r f a c e s

place value and was used to increase or decrease the value by 0.01. This in ter­

face worked using the arithm etic configuration described in section 3.3.2. This

basically m eans the effect of decreasing a digit from 0 or increasing a digit from

9 is carried over to the digit to the left.

7.3.4 D-pad

This interface had four bu ttons arranged in a navigation style: up, down, left and

right. T he left and right b u ttons moved a cursor on the screen which selected a

place value in the num ber. The up and down b u ttons increased or decreased the

selected digit. Similar to the up-doum , th is interface worked using the arithm etic

configuration.

7.3.5 Dial

This was a 24 step dial interface w ith unrestric ted continuous ro ta tions in both

clockwise and anti-clockwise directions. Users entered num bers on th is interface

oooo
< § > < § > #oooooooo oooooooo

(a) Numeric Keypad (b) Chevrons (c) Up-Down

0(000<§>o®oo@oooooo
(d) D-pad

- : X - I

(e) Dial (f) Prototype

Figure 1.2: The prototype unit and the different configuratioiis of interfaces used in
our setup.

7.4. Pre-study Analysis

by turning the dial left or right to decrease or increase the number. Quicker turns

on the dials caused bigger changes to the number.

7.4 Pre-study Analysis

Chapter 5 presented a method for evaluating the performance of interfaces that

allow digit-level control of numbers. This method was used to explore the per­
formance of the key based interfaces and estimated task completions times using
the Keystroke-Level Model (KLM) for user performance [Car80]. Although KLM
is a model for predicting error free expert performance, the predictions were used

as the best-case performance achievable by users of these interfaces. Moreover,
it was expected that the relative ranking produced by this analysis would be
maintained in the results of the experiment.

7.4.1 N um bers used

The numbers used for the study were randomly selected from interaction logs
analysed in Chapter 4. All 30 numbers used in the experiment had a decimal
part and ranged from 0.26 to 83.3. A third of the numbers had a precision of 2
decimal places.

7.4.2 P re-S tudy M ethod

Based on software simulations of the interfaces described in Section 7.3, the
user interface model of each interface was exhaustively explored using the model
discovery technique presented by Thimbleby and Gimblett [Thi07, GimlO]. The
user interface model discovery process produces a graph whose nodes represent

the states in an interactive system and edgeg represent the user actions necessary

to transition between the states.

To reduce the number of states produced by the model discovery process,

the numbers addressable by the interfaces were restricted to a range covered by
those used in the experiment. Using the same method described in Chapter 5,
for each button based interface, the optimal keying sequence for entering each

125

7. E x p l o r in g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y in t e r f a c e s

number used in the experiment were determined by searching for a shortest path
from 0 to N , where N was the intended number. A JavaScript implementation

of the A star path finding algorithm was used, with cost functions that prioritised
estimated time of execution over number of button clicks required to enter a
number. The task completion times were estimated using the Keystroke-Level

Model for expert performance [Car80]. A value of 1100ms was used for the time
(P) taken to point to a button and a value of 200ms was used for the time (K)
taken to click a button. The time (M) taken for mental preparation was not
included in the prediction of task time. The analysis focuses on the execution
time of the of each task. Consequently, the prediction presented in the next
Section does not include the initiation time, (i.e., the time elapsed before the
task is started) or the commit time, (i.e., the time taken to click the enter button

to confirm the task).

Due to the nature of the method presented in Chapter 5, the time estimate
for the chevrons interface utilised discrete key clicks rather than the continuous
press and hold action. The time estimate for the dial interface was performed

completely differently. Given that there are 24 steps in the rotary encoder used
in the dial, to estimate the time T^a/ required to enter a given number N on the
dial interface, the following expression was used:

lO tx 10 0 , (A —10) x lOt i f AT "> 1 0
r p _ I 2 4 24 1 — U
-‘- d ia l — \ , T

Axniot otherwise

Note that t is the time to perform one step rotation on the rotary encoder.
The value for t was set as 200ms, the same as the value P taken to click a button.

7.4.3 P re-Study R esult

The analysis produced the estimates displayed in Table 7.1. The predictions
show that the up-down interface is fastest with a slight performance edge over
the numeric keypad interface and the chevrons interface is slowest. The next
section describes a user study that was designed and run in order to validate

these predictions.

126

7.5. Method

Interfaces Numeric keypad Chevrons Up-Down D-pad Dial
Time(ms) 4875 9545 4660 6954 7855

Table 7.1: An approximation of the task completion times for the different interfaces
using the Keystroke-Level Model.

Based on error types reported in Chapter 6 and those reported by Wiseman et

al. [Wisll], the following types of errors were expected to occur on the interfaces.

1. M issing decim al and m issing digit errors, where users omit the decimal
point and digit(s) in a number, were expected on the numeric keypad;

2. D igit added errors, specifically where an extra ‘O’ is added to the left of
the fractional part of a number, (e.g., entering 7.05 for 7.5 as reported in
[Olall]) were expected on the chevrons and dial interfaces.

Although there are no reported empirical evaluations that report the types of
errors that the up-down and d-pad interfaces exhibit, wrong digit errors, where
users mistype one or more digits in the presented number, (e.g., entering 1.95 for
1.85), were expected.

7.5 M ethod

7.5.1 D esign

The experiment was a two-way, mixed design. The within subjects independent

variable was the type of number entry interface, and it had five levels: the five

interfaces tested. The between subject independent variable was the instruction
given to the participant: one group was instructed to enter the numbers as quickly

as possible (the speed group) and the second group was instructed to enter the
numbers as accurately as possible (the accurate group). The order in which

the interfaces were presented to the participants was randomized. The primary
dependent variable was the speed of entry of correct numbers. Other dependent

variables were the number of incorrect entries, the number of corrected errors.

127

7. E x p l o r in g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y in t e r f a c e s

7.5.2 Participants

There were 33 participants, 17 in the speed condition and 16 in the accurate con­

dition. There were 22 females with 11 in the speed condition. Three participants
were left handed. The participants ranged in age from 18-43 with a mean age

of 23.5 years (SD=4.86). The participants were undergraduate and postgrad­

uate students in Swansea University. Participants were randomly allocated to
conditions.

Prior experience w ith interfaces

All participants were familiar with the numeric keypad and reported using it on
interfaces such as calculators, cash machines and telephones. Five participants
(15%) were familiar with the chevrons interface with experience using it in digital
stop watches and alarm clocks, eight (24%) had prior experience with the up-
down interface on medical devices and games, nine (27%) had prior experience
with the d-pad interface on remote controls and game controllers and 19 (58%)
had prior experience with the dial interface on microwave ovens and temperature
controls.

7.5.3 A pparatus

The experiment was run on the unit described in section 7.1. W ith the two

front panels of the prototype, it was possible to configure 5 types of number
entry interfaces; 4 interfaces were configured using the membrane keypad and
one using the dial. The different configurations are shown in Figure 7.2.

A pole was used to mount the prototype unit and the unit itself was con­

nected to a laptop computer (a 15 inch macbook pro running OSX Lion). The

laptop was used to display the instruction for the next trial. Instructions were
displayed as numbers in the middle of the screen using a white font color on a
black background and a font size of 20px. A total of 30 numbers were used in

the experiment. Ten numbers were used in a practice session and 20 were used in
the experiment. All the numbers used ranged between 0 - 100, all had a decimal
part and they were selected from medical device logs of infusion pump settings.

128

7.5. M e t h o d

Figure 7.3: The setup for the experiment showing the prototype mounted on a pole and
the laptop computer that displayed the instruction.

T he software for the experim ent was im plem ented in JavaScrip t and HTML.

For these interfaces, each keystroke or user action causes a change in the num eric

value being entered. As a result, for all the tria ls in the experim ent, all keystrokes

were logged w ith a tim estam p and the corresponding num eric value a fte r each

keystroke. This allowed la ter analyses of the value change stream for every trial.

7.5.4 Procedure

Each study session lasted about 45 m inutes and all partic ipan ts were tested in­

dividually. Each partic ipan t was informed th a t th e experim ent involves en tering

num bers using 5 different num ber en try interfaces. Before the experim ent s ta rted ,

a short pre-experim ent questionnaire was used to collect dem ographic inform a­

tion abou t the age, gender, handedness and w hether or not the p a rtic ip an t was

dyslexic.

T he study itself was in 5 parts: one for each interface. Each p a rt was divided

into a practice session followed by an experim ent session. P a rtic ipan ts were

random ly assigned to a speed or accuracy group. T he speed group were in structed

to en ter the num bers in th e instruction as quickly as possible and the accurate

group were in structed to en ter the num bers as accurately as possible. The order in

which the users encountered the interface was random ised. All s tu d y instructions

were displayed on the com puter. The in struction was a num ber displayed in the

129

7. E x p l o r in g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y in t e r f a c e s

center of the computer screen. The next instruction was automatically displayed

once the participant confirmed entry of the current trial. A message was displayed
to signify the end of a session after a participant entered all the numbers required
of that session.

Before starting each part of the experiment, the participants watched a video
showing them how to use the interface they were about to test. They then
had a training session were they could try out using the interface by entering

10 numbers. When they were confident with how the interface worked, they
were allowed to proceed to the experiment. The participants were encouraged to
repeat the training session if required.

The experiment session involved entering 20 numbers. The same 20 numbers
were used for all the interfaces although the order in which the numbers were
encountered was randomised. Participants successively entered the numbers dis­
played in the instruction.

After the experiment, participants were taken through a short post-experiment

semi-structured interview to find out prior experience with the interfaces they
experienced during the study and their relative preference for the interface styles.
Participants were given a gift voucher in return for their time.

7.6 Analysis

The speed of entry recorded for each interface was separated into three con­

stituent parts: the initiation time, the execution time and the commit time. The

initiation time referred to the time elapsed between the display of the instruc­
tion and the participant’s first key press. The execution time is the time elapsed
between the participants first key press and the last key press involved in setting
the required number. The commit time is the time elapsed between the last key
press in setting the required number and the key press for confirming the task.

From the data collected, it was possible to analyse both corrected and un­

corrected errors. Uncorrected errors were trials for which the user transcribed
and confirmed a wrong number. The experiment elicited a total of 57 uncor­

130

7.6. Analysis

rected errors, committed by 20 different participants. Only interface 4 was free

of uncorrected errors.

7.6.1 C orrected Errors

Corrected errors were keying slips that the user recovered from before confirming
the transcribed number. These might be seen as instances of unremarkable errors

described by Furniss et al. [Furll]. In other words, minor errors that are quickly
corrected and recovered from. The experiment elicited a total of 833 corrected
errors. Instances of corrected errors were spread amongst all participants ranging

between 7 to 49 with a mean of 25.24 corrected error per participant. Corrected
errors were determined by looking for patterns in the user’s input sequence for
every trial. Since keystrokes and values were logged for every trial, it was possible

to analyse exactly how each participant entered the presented number.

D e term in in g C o rrec ted E rro rs

For the numeric keypad, detecting corrected errors from the key stroke logs was
straight forward because there was a dedicated key (the ‘C button) for deleting
the last character on the display. This signified an intention to correct an error.

For the chevrons, up-doum, d-pad and dial interfaces, the value change stream
from the experiment logs were analysed. The value change stream is a list of

0 5 10 15
time m seconds

Figure 7.Jf : Graph showing the value change stream of a trial. The peaks and troughs
ore identified by the circle spots. In this case the target number was 2 f . 9 - highlighted
by the horizontal line in the middle of the graph. The trial visualised here contained
three corrected errors.

131

7. E x p l o r in g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y in t e r f a c e s

timestamped values that are caused by user actions on the interface. When

the value change stream for each trial is visualised, see for instance Figure 7.4, a
graph with peaks and troughs representing the number of times a user overshoots

and undershoots their target number during the keying sequence is obtained. By
analysing the value changes over time and counting the turning points in the
graph produced, i.e., the points when the user action on the interfaces changes
from increments to decrements and vice versa, the number of corrected errors
a user had while entering a number can be obtained. These turning points can
be captured by matching the following regular expression on the input stream:

(u+d+)\(d+u+) where u captures any increment action and d captures any decre­
ment action. In some cases, the optimal key sequence for entering a number
contains exactly one turning point. For instance to enter 4.99 it would be quick­
est to increase the number to 5 and then reduce it to 4.99. These cases were
accounted for and were not counted as corrected errors in the analysis.

The d-pad had a virtual cursor whose position could be changed by the user
to select a digit on the screen. Cursor movements do not directly change the

value of the number on the display. They signify an intention of the magnitude
of change the user would like to effect on the displayed number. In addition to
analysing the value change stream, these cursor movements were analysed for
slips by checking the input stream for instances where at least one left key is
immediately followed by at least one right key or vice versa. This was captured
using the regular expression: (l+r+)\(r+l+) where I and r are left and right key

presses respectively.

7.7 R esults

7.7.1 Learning effects

The improvement of speed of entry was investigated over all trials in the ex­
periments. The trials for each participants were split into 4 blocks, each block
consisting of 5 trials. A two-way repeated measures ANOVA showed a significant

main effect of interface style on entry speed F (2.06,66.1) = 397.84,p < 0.001.
There was no significant main effect of trial block on entry speed F (3,96) =

132

7.7. Results

Entry Accuracy Entry Speed (in ms)
Speed Group Accurate Group Speed Group Accurate Group
Mean SD Mean SD Mean SD Mean SD

Numeric Keypad 0.29 0.77 0.06 0.25 1906 423 2266 466
Chevrons 0.65 1.17 0.19 0.54 13355 3122 14471 2691
Up-down 0.65 1.69 0.38 0.62 3990 745 4783 1210
D-pad 0 0 0 0 5231 908 5911 1213
Dial 0.94 1.92 0.44 0.81 9072 1211 10276 2024

Table 7.2: A summary of the mean, standard deviation for the speed and accuracy of
entry between the groups.

2.64, p — 0.54. Similarly, there was 110 in teraction effect betw een interface style

and tria l blocks F (4 .7 4 ,151.86) = 1.003,;; = 0.416.

7.7.2 Effect o f instruction

Table 7.2 shows m eans and s tan d ard deviations for each group across the five

interfaces. T here was a significant effect of group on en try speed F (l ,3 1) =

4.23,;; = 0.048. A lthough m ore error was expected in the speed group, a M ann-

W hitney te s t showed no significant effect of group on num ber of undetec ted error

Speed Group
Accuracy Group

- 1 i i i i i i i i r
Number pad Chevrons Up-down D -pad Dial

■ Speed Group ;
■ Accuracy Group!

LO

Number pad Chevrons Up-down D -pad D ial

(a) Entry Accuracy (b) Entry Speed

Figure 7.5: The distribution of the entry accuracy and entry speed by group.

133

7. E x p l o r in g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y in t e r f a c e s

on any of the interfaces. Figure 7.5 shows the distribution of participant accuracy

and speed in the different groups. Since there was no significant difference in
errors between the groups, both groups were combined for the rest of the analysis.

We next summarise the results of the speed of entry, the number of un­
corrected errors and the number of corrected errors that occurred during the
experiment on the different interfaces. For all the results below, except the user

interface preference statistic, post-hoc tests were conducted using multiple t-
tests with Bonferroni corrections in order to find out which interfaces differed
significantly from the others. For the user interface preference, post-hoc test was
conducted using multiple Wilcoxon Signed-Rank tests.

7.7.3 Speed o f num ber entry

Initiation tim e

A one-way repeated measures ANOVA with Greenhouse-Geisser correction found

a statistically significant effect of interface style on initiation time F(3.31,105.85)
= 200.08, p < 0.0001. Post-hoc analysis showed that the dial interface had sig­
nificantly less initiation time than all other interfaces, and the numeric keypad
had significantly less initiation time than the chevrons, d-pad and up-down in­
terfaces. The dial interface had the shortest initiation time while the chevron
interface had the longest initiation time. Table 7.3 shows the mean initiation
time for all interfaces.

Initiation Time Execution Time Commit Time Total
Mean SD Mean SD Mean SD Mean SD

Numeric Keypad 1286 339 2080 474 730 223 4096 821
Chevrons 1535 433 13896 2931 1005 291 16436 3231
Up-down 1469 392 4374 1061 970 323 6813 1531
D-pad 1463 354 5561 1105 1017 389 8040 1571
Dial 167 51 9655 1740 910 282 10732 1861

Table 7.3: A summary of the mean and standard deviation for the initiation, execution
and commit times for the various interfaces. Time is reported in milliseconds.

134

7.7. Results

Interfaces Chevrons Up-down D-pad Dial
Numeric Keypad p < 0 . 0 0 1 p < 0 . 0 0 1 p < 0 . 0 0 1 p < 0 . 0 0 1

Chevrons - p < 0 . 0 0 1 p < 0 . 0 0 1 p < 0 . 0 0 1

Up-down - - p < 0 . 0 0 1 p < 0 . 0 0 1

D-pad - - - p < 0 . 0 0 1

Table 7.4: A summary of all pairs of interfaces and the significance scores of the post-
hoc analysis for execution time.

Execution tim e

A one-way repeated measures ANOVA with Greenhouse-Geisser correction found
a statistically significant effect of interface style on speed of entry F(1 .69,54.02) =
425.5, p < 0.001. Post-hoc test showed that the speed of entry of all the interfaces
tested were significantly different for all pairs at the 0.001 level. The numeric
keypad had the shortest execution time while the chevrons interface had the
longest. Table 7.3 shows the mean execution times for all the interfaces.

Com m it tim e

A one-way repeated measures ANOVA with Greenhouse-Geisser correction found
a statistically significant effect of interface style on commit time F(2 .84,90.83) =
24.35, p < 0.0001. Post-hoc analysis showed that the numeric keypad had a sig­
nificantly shorter commit time than all other interfaces and the dial had signif­
icantly shorter commit time than the chevrons interface. The results also show
that the d-pad interface had the longest commit time. Table 7.3 shows the mean
commit time for all the interfaces.

Corrected Errors Uncorrected Errors
Mean SD Mean SD

Numeric Keypad 0 . 8 8 1.08 0.18 0.58
Chevrons 6.48 3.86 0.42 0.94
Up-down 2.73 2.74 0.52 1.28
D-pad 3.09 2.38 0 0

Dial 12.06 5.53 0.70 1.24

Table 7.5: A summary of the mean and standard deviation for the corrected and un­
corrected errors for the various interfaces.

135

7. E x p l o r in g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y in t e r f a c e s

o
CM

O

to

o

DialD-padNumber pad Chevrons Up-down

CO

CM

O

Number pad Chevrons Up-down D-pad Dial

(a) Corrected Errors (b) Uncorrected Errors

Figure 7.6: Distribution of corrected and uncorrected errors on all interfaces.

7.7.4 Errors

We analysed both uncorrected errors and corrected errors. Uncorrected errors
were trials for which the user transcribed and confirmed a wrong number whilst

corrected errors were determined as described in Section 7.6.1.

U ncorrected errors

A Friedman test showed a significant effect of interface style on uncorrected errors
X2(4) = 20.44, p < 0.001. Post-hoc tests using Wilcoxon signed-rank test showed

that the d-pad had less errors than the up-down Z=-2.97, p = 0.03 and the d-pad
had significantly less errors than the dial, Z = -3.13, p = 0.02. The experiment
elicited a total of 57 uncorrected errors, committed by 20 different participants.
Only the d-pad interface was free of uncorrected errors. Table 7.5 shows the
mean uncorrected errors on each interface.

Corrected errors

A Friedman test showed a significant effect of interface style on corrected errors
x 2(4) = 91.92 , p < 0.001. Post-hoc tests using Wilcoxon signed-rank test showed

significant differences for all pairs of interfaces at a 0.01 level, with the exception

136

7.7. Results

Interfaces Chevrons Up-down D-pad Dial
Numeric Keypad p < 0.001 p < 0.001 p < 0.001 p < 0.001
Chevrons - p < 0.001 p < 0.001 p < 0.001
Up-down - - p = 0.34 p < 0.001
Dial - - - p < 0.001

Table 7.6: A summary of all pairs of interfaces and the significance scores of the post-
hoc analysis for corrected errors.

of the up-down and d-pad interfaces which did not differ significantly. Table 7.5

shows the mean corrected errors on each interface. The experiment elicited a total
of 833 corrected errors. The dial interface had the highest number of corrected

errors while the numeric keypad had the least number of corrected errors.

Numeric Keypad Chevrons Up-down D-pad Dial
Mean Rank 4.81 1.69 3.50 2.44 2.56

Table 7.7: Mean ranks for interface preference.

7.7.5 U ser interface preference

At the end of the experiment, each user ranked the interfaces in order of prefer­
ence. A score of 1 was assigned to the lowest preference while a score of 5 was
assigned to the highest preference. There was a statistically significant difference
in the preference rating for the user interfaces x2(4) = 73.8, p < 0.0001. The

numeric keypad was most preferred with a mean rank of 4.81 and the chevrons
interface was the least preferred with a mean rank of 1.69. Post-hoc test showed
no significant difference in preference ratings between the up-down and dial, d-
pad and dial and chevrons and five key. Tables 7.7 and 7.8 show the mean ranks
for all interfaces and the detailed significance scores between all pairs.

Interfaces Chevrons Up-down D-pad Dial
Numeric Keypad p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

Chevrons - p < 0.0001 p = 0.008 p = 0.003
Up-Down - - p < 0.0001 p = 0.013

D-pad - - - p = 0.82

Table 7.8: Significance scores of the post-hoc analysis for preference ratings for all
interface pairs.

137

7. E x p l o r in g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y in t e r f a c e s

7.8 D iscussion

7.8.1 R elative preference of interfaces

Since all participants had prior experience using the numeric keypad, it was not
surprising that it was rated highest amongst the interfaces tested. This preference

rating is also reflected in the speed exhibited by the interface. It was however
surprising tha t the dial was not rated significantly worse than up-down and d-pad

interfaces considering the number of corrected errors that occurred on the dial.
One possible reason for this could be the significantly shorter initiation time for
the dial. In addition, the simplicity of the interface which is based on increasing
and decreasing the displayed number means the user has to do little thinking
while executing the task. This was articulated by one participant, who said:

“Dial was easier to turn the numbers. No need to move your hands
from button to button. ”

7.8.2 T ypes o f errors

The types of errors made during the study spanned across seven classes of errors
previously reported in separate studies by Wiseman et al. [Wisll] and Oladimeji
et al. [Olall]. A summary of all errors is provided in Table 7.9 and Figure 7.7
shows detailed distribution of error types by interface style.

The most common type of error was the Digit Added error. Thirteen different
participants made this error on three different interfaces. This error also occurred

Error Type Frequency Interfaces Example
Digit Added 32 chevrons, up-down and dial 4.05 for 4.5
Wrong Digit 7 chevrons, up-down and dial 60.5 for 62.5
Missing Decimal 3 numeric keypad 249 for 24.9
Out by ten 3 numeric keypad and up-down 1.11 for 11.1
Missing Digit 1 numeric keypad 6.5 for 62.5
Skipped 4 numeric keypad, chevrons, up-down and dial ° for 62.5
No clear reason 9 chevrons, up-down and dial 56.7 for 3

Table 7.9: Frequency of errors made during the experiment.

138

7.8. Discussion

13

| N u m eric K ey p a d

H Dial

| C h ev r o n s

| U p -D ow n

Digit A dded Missing Digit W rong Digit W rong Decimal O therMissing Skipped
Decimal

Figure 7.7: The types of undetected errosr and how frequently they occurred on each
interface. Note that the D-pad interface is absent from this graph because it had no
undetected errors.

in the experiment, reported in Chapter 6 which investigated the effect of interface
style on error detection. While this error is classified here as a member of the
Digit Added error type, the nature of the error makes it different from what the
error type suggests. Based on the numerals that compose the intended number
and the transcribed number, the error type suggests that an extra digit has been
added to the number. This extra digit in the case of errors in this experiment,
is always zero. From a different point of view, however, this error appears to
involve the inability to correctly understand the difference between the tenths
and hundredths part of a number. It is possible that certain people mix up

numbers matching the pattern. Indeed one participant transcribed 4.05 for 4.5
and in another trial transcribed 2.5 for 2.05. Over 50% of all unnoticed errors

were of this form.

Despite making this error on the chevrons, up-down and dial interfaces, par­

ticipants did not commit this error on the num eric keypad. This could be because
number entry on the num eric keypad is a more direct transcription process of key­

ing a sequence of digits that make up the intended number. Analysis of keystroke
logs show that an instance of this error occurred on the d-pad interface although
it was noticed and corrected bv the participant.

139

7. E x p l o r i n g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y i n t e r f a c e s

I A ctua l (N o Errors)

| A ctual (In c lu d in g Errors)

P redicted

N u m b er Pad C h evron s DialU p -D o w n F ive key

Figure 7.8: A comparison of the actual and the predicted performance for each interface

7.8.3 Difference in speed prediction and study results

It was expected that there would be absolute differences in the prediction of re­
sults and the actual study results since the participants that took part in the
study were not expert users of all the interfaces. It was also expected that the
participants’ keying sequence for entering the numbers would not be the same
as the time-optimal keying sequence used in the KLM analysis in section 7.4.2.
For the numbers used in the experiment, the prediction expected the up-down

interface to be marginally faster than the numeric keypad. Participants' familiar­
ity with the num eric keypad however meant that their performance was superior
on this interface in comparison to the other interfaces. For the num eric keypad,

up-doum and d-pad, participants actually outperformed the KLM model predic­
tion. In the case of the num eric keypad, they performed the task in less than
half the predicted time. This could be due to the mean inter-key duration of
554ms observed in the experiment for the numeric keypad in contrast to the
standard estimates used in the prediction model (1300ms for pointing and se­
lecting buttons or 200ms for selecting an already acquired button). The nature
of the data logged during the experiment makes it impossible to separate these

two parameters, since participants were not explicitly timed for target acquisition
and selection.

The relative ranking in performance for the interfaces were preserved in the
actual experimental data. In contrast to the num eric keypad, up-down and d-pad

interface, the observed times for the chevrons and dial interfaces were higher than
the predicted time. This difference in prediction could be due to the corrected

140

7.8. Discussion

error rates on the chevrons (mean=6.48) and dial (mean= 12.06) interfaces which

were higher than the corrected error rates on the other interfaces. As a result,
users spent a good portion of time correcting those errors which increased the
task completion time and in some cases the frustration of users as evident in
remarks during the post study interview:

“With the dial and the chevrons, you don’t really know when it switches
to higher changes. I tend to stop just before I reach the value I want
so that I can increase in one step changes. ”

“For chevrons and dial, really had to time it right and let it go at the
right time otherwise could be annoying. ”

The corrected errors alone do not account for the deviation between the pre­
diction and the recorded performance of the chevrons and dial interface. Another

contributing factor is the strategy users develop to reduce the error rates. In the
case of the chevrons interface, users employed discrete click interactions rather
than the faster press and hold interaction, and for the dial, users made slower
but more careful turns. Figure 7.8 shows that the cost of correcting an error is
larger on both these interfaces in comparison to the others.

7.8.4 Effects o f interface sty le on num ber perception

The different styles of interfaces had an effect on how numbers were perceived

by the users. When users entered numbers on the serial interface (the numeric

keypad) or the independent digit interface (up-down or d-pad), they were more
likely to think about the numbers as a sequence of digits without thinking much

about the the numeric quantity of the number as a whole. Whereas, using an
incremental interface such as the chevrons or dial, participants were more likely
to concentrate more on the number as a whole. In the post experiment interview,

one participant commented that:

141

7. E x p l o r in g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y in t e r f a c e s

Interface Total Errors Error Severity
Low Severity Medium Severity High Severity

Numeric Keypad 4 0 3 1
Chevrons 11 10 1 0
Up-down 16 13 3 0

D-pad 0 0 0 0
Dial 21 16 5 0

Table 7.10: The severity of undetected errors committed on each interface.

For the number pad, up-down and the d-pad key, I did not think

of the number as a whole, just entered them digit by digit but for the
chevron and dial, I had to understand the number. ”

7.8.5 Severity o f errors com m itted

The types of errors committed were closely related to the interface used to enter
the number and consequently the severity of error, (i.e., the deviation of the
intended number from the transcribed number or the ratio between the intended

and the transcribed number). Theoretically, the numeric keypad and the up-

down interfaces have the potential for producing the largest deviations from the
intended number based on keying slips. This is due to the possibility of missing
decimal points and missing digits on the numeric keypad and the possibility of
wrong place value on the up-doum interface. Three levels of error severity were
defined based on the errors committed in our experiment. Low error severity
referred to those errors where the ratio between the intended number and the
transcribed number is at most 2, medium error severity refers to when the ratio
is at most 10 and high error severity refers to when the ratio is greater than 10.

Table 7.10 shows a summary of all errors committed and their severity.

7.8.6 Increm ental interfaces and varying number preci­

sion

As is typical of setting up some infusion devices used in hospital critical care, the

set of numbers used for the study required that numbers below 10 were precise to
two decimal places while numbers from 10 and above were precise to one decimal

142

7.8. Discussion

place. This factor meant that the display of incremental interfaces would only

render numbers to the appropriate precision. As a result of this, button functions

changed modes when the precision of numbers change on the display. For instance
on the chevrons interface, when users change the value 9.99 to 10.0, the double
chevron button changes meaning from ‘increase by a tenth’ to ‘increase by a

unit’. Similarly on the dial interface, one turn on the dial changes meaning
from ‘increase by a hundredth’ to ‘increase by a tenth’. The implementation of

the chevrons interface was based on a medical device. It was also evident that
some participant found the hold-down mode of the chevrons very difficult and
challenging to predict. In this mode, the longer the buttons were held down, the

larger the increments made to the number. This mode change was confusing for
some users. A participant remarked during the interview that:

“For chevrons, the increments were very confusing. The same button
did two jobs and the mode changes are confusing. Sudden changes
were very confusing . . . for example you could go from 30 - 60 in a
very short time span and then going back restarts the counter and

climbs up rapidly.”

Another one said:

“Chevrons, seem to jump quite a lot, took too long to get to intended
number. Same problem with dial. It goes in sequential order* rather
than control individual digits. ”

As in Chapter 6, the incremental interfaces in this experiment exhibited os­
cillatory behaviour in the process of number entry. This is because the gain

parameter of each button on the interface depends on duration of interaction
and the current numeric value being manipulated. If the user glances away, or

is distracted from the display of the interface for as little as 500ms, the meaning

they have attributed to interaction with a button could change by a factor of

treferring to moving through the number line

143

7. E x p l o r in g u s e r p e r f o r m a n c e f o r n u m b e r e n t r y in t e r f a c e s

ten causing a sudden jump on the number line. This is evident from participant

comments in the interview.

The feature of varying precision described in this section is a requirement in
infusion pumps used in critical care and intensive therapy units where low dose

settings are common. It remains a design challenge to create an incremental in­
terface that supports this form of varying precision in a way that is not confusing
to the user.

7.8.7 R euse o f num bers and rehearsal effects

The numbers used in the experiment were repeated for all interfaces encountered
by each participants. It is possible that the recurrence of the numbers could
have increased the participants’ familiarity with the numbers used in the trials
which would cause quicker number entry time. This has been mitigated in the
design of the experiment by randomising the order in which the numbers were
presented to the participants as well as randomising the order in which the inter­
faces are presented. Analysis of learning effects also shows that trial blocks had
no significant main effect on entry speed. It is also reasonable to expect that the
outcome of rehearsal effects would manifest in the initiation times of the trials.
This is because one would expect that reading a number more than once would
improve the more times it is done. Analysis of the initiation times showed that
interface style had an effect on initiation time. Based on the pairs of interfaces
that differed significantly from the others (i.e., the dial and the keypad), this
difference could be as a result of the ease of selecting manipulating the dial (this
task was always the same for all numbers) and the users’ familiarity with the

numeric keypad interface.

7.9 Conclusions

Number entry is a very old art and it is a crucial aspect of the use of many
interactive computer systems. The study presented in this chapter explored the
performance of a variety of styles of interfaces and the data collected from the

experiment conducted supports the following conclusions:

144

7.9. Conclusions

1. The 12-key numeric keypad is fastest , followed by the up-down, d-pad, dial

and chevrons.

2. Errors vary per interface as does the type of error. Although the numeric

keypad had the least occurrences of undetected errors, it had the most
severe errors. This makes it a high-risk interface for safety critical contexts
like healthcare. The d-pad interface had no undetected error.

3. Dials are perceived as easy to use by participants because of the easy inter­
action involved in turning them as opposed to successively pushing mem­
brane keys on a keypad.

An error involving the wrong transcription of numbers with one non-zero digit
in its decimal part was seen to occur on all but the numeric keypad interface.
Future research would explore the potential causes of such error and investigate
ways to prevent them from occurring in the course of use.

145

Chapter 8

Choosing an interface

The question of what type interface to choose arises in the design and devel­
opment of many systems. The solution is typically dependent on the context
of use and the factors and aspects of the design that are most highly rated or
prioritised by the specification of the system. This chapter starts by identifying

features for performing relative comparative analyses of number entry interface
options. The purpose of these features are to facilitate easy perception of the
trade-offs and risks involved in choosing certain interfaces instead of another. It
completes the QOC design space analysis that was started in Chapter 3 by using
the identified features as criteria which can be used to evaluate different options
from the design space.

8.1 Evaluative features

8.1.1 Speed

The speed of entry simply refers to the time cost of entering a number using an

interface. This has been evaluated analytically for different interfaces in Chap­
ter 5 and empirically in two different user studies in Chapters 6 and 7. The
factors that affect the speed of interfaces from the different classes are identified

below. A summary of the results obtained from the evaluation is presented below

147

8. C h o o s i n g a n i n t e r f a c e

while highlighting the properties of the different interface which influence speed.

Serial digit entry interfaces

Interfaces from this group are based on the specification of the digits of a num­

ber. They allow digit entry in a predefined and restricted order, from the most
significant to the least significant digit. They can be consequently very fast in­
terfaces since the speed is dependent on the number of digits in the number and
how quickly each digit can be specified.

Since the order of digit entry is restricted, making changes to digits in a
number can be cumbersome depending on the error correction model used. Errors
can be corrected using a clear digit key, which deletes one number at a time or
they may be corrected using a clear key, which deletes all the numbers on the
interface. Despite the speed, results from the analysis conducted in Chapter 5
shows that the numeric keypad, a serial digit entry interface, is theoretically not
the fastest interface for entering numbers in infusion tasks. Although number
entry is efficient on this interface style, error correction is inefficient.

Independent digit entry interfaces

These interfaces are also based on specifying the digits of a number although they
allow digit specification in an arbitrary order. As a result, for certain types of
numbers (e.g., numbers in infusion tasks), these styles of interfaces can be faster
than the serial interface since the user does not have to specify all the digits in
the number. This is possible because the digits usually start at an initial value
of zero. So, the time cost to the user for entering a value of 1 is the same as

that for entering a value of 100 since both cases require only one key press in the
corresponding place value. This is different from serial interfaces where cost is

proportional to the logarithm of the number.

Digit errors can be corrected easily as these interfaces allow independent

control of digits in a number. Chapter 5 shows that this style of interface is
theoretically best suited for entering infusion rates although it can be less efficient
than a serial interface when entering large numbers with mainly non-zero digits.

148

8.1. Evaluative features

Possible im provem ents
Changing the way digits are selected on this interface by implementing dynamic
drop-down lists on touch screen devices could improve the speed of entry of this

interface. Using dials for changing digits could also improve the digit selection

time.

Increm ental number entry interfaces

In comparison to other interface styles, these are usually slower because the

interaction is based on making incremental changes to a number usually in the

form of using predefined actions that are mapped to set values. This can also be
seen as travelling up and down a number line which spans a range and precision
defined by the application.

Possible im provem ents
Based on experiments run in Chapters 6 and 7, high frequency of overshooting
and undershooting target numbers contributes to the slow speed of entry on
incremental interfaces. Improving the speed of this interface thus, would require
the user to have complete and active control on the amount of change caused to
the number. This would reduce the error rate and can be achieved by the use
of controllers like self-centering dials or spring-loaded dials with which users can
control the amount of incremental changes on the number.

Speed can also be improved on this interface by having more widgets for
making bigger value changes to the required number. This shows a trade off
between speed and user interface foot print.

D irect number selection interfaces

The speed of these interfaces depends on how quickly a user might identify a

number from a set of options as well as how quickly they can select that option.
This is a search and select task. The search aspect of the entry would be affected

by the number of items in the selectable set as well as the provision of any
logical structure to the presentation of options, for example, sorting the options
in increasing order. In addition, the size of the widgets used to represent the

149

8. C h o o s i n g a n i n t e r f a c e

items in the set affects the selection time. This selection time can be predicted

using F itts’ Law [Fit54].

8.1.2 Error R ate

Error rate refers to how frequently errors occur while using the interface. Two
types of errors have so far been analysed. On the one hand there are corrected
errors which are noticed and rectified by the user. On the other hand there are

uncorrected errors which are undetected by the users. These two components of
error inform the perceived error rate of a user interface. Table 8.1 summarises

the total number of corrected and uncorrected errors committed by participants
on the five interfaces tested in Chapter 7.

Numeric Keypad Chevrons Up-down D-pad Dial
Corrected Errors 29 214 90 102 398

Uncorrected Errors 6 14 17 0 23

Table 8.1: The total corrected and uncorrected errors recorded on each interface in
Chapter 7.

The impact of the error rate of an interface should be assessed in relation to
the error detection on the interface. The relationship between the corrected errors
and the uncorrected errors on an interface suggests how well errors are detected
and consequently rectified on that interface. Results from the experiment are
used to estimate the percentage of all error instances that go undetected. In
practice, the absolute number of errors would determine the real impact of the

error rates of the different styles of interfaces and the overall number of errors
would vary dependent on context. In general, reducing the impact of error rate
of the different interfaces would be achieved by improving error detection on the

interfaces.

Serial digit entry interfaces

The results from Chapter 7 show that the serial interface has the least number

of corrected errors. The low number of keystrokes needed to enter numbers on
this interface style provides less opportunity for committing errors. Also people’s

150

8.1. Evaluative features

familiarity with interfaces such as the numeric keypad reduces the chances for

occurrences of error on this interface. However, the ratio of corrected errors to
uncorrected errors on this interface showed that about 17% of all errors commit­

ted were not corrected. These errors were due to missing decimal points, wrong
digits and missing digits.

Independent digit interfaces

Independent digit interfaces exhibit more corrected error than serial interfaces
but less than incremental interfaces. The higher number of keystrokes required
to set numbers containing non-zero digits means there are more opportunities for
error when using this interface. Users can make key slips when selecting a place
value in the number or they can make a slip when setting the digit itself. Since

these interfaces typically require successively clicking the same button to select
the required digit, issues of time-delay between button activation and interface
feedback are likely to increase the chances of error.

On the up-down interface, experiment results showed that 16% of errors com­
mitted were not corrected. The majority of these errors were due to instances
where an extra zero was added before a digit that follows a decimal point. The
d-pad interface had more corrected errors than the up-down. The d-pad was
however the only interface clear of uncorrected error.

Increm ental interfaces

Incremental interfaces exhibited the most corrected error as many users of this
interface oscillated about the target number a few times before selecting the
number. Using well calibrated gain and time-delay parameters when designing

this style of interface would improve the stability of this style of interface.

On the dial interface 5.5% of all errors were uncorrected and on the chevrons

6% of all errors were uncorrected. Most of these errors were instances of the digit
added and wrong digit errors described in Chapter 7.

151

8 . C h o o s i n g a n i n t e r f a c e

8.1 .3 Error Severity

Error severity provides a quantitative measure for assessing the level of risk that
can be attributed to an undetected error on an interface. It is formally defined
as the ratio of the intended value to the transcribed value in a number entry

task [ThilOb, O la ll, Caul2a]. This ratio tells us, for instance, by how much the

intended value is bigger or smaller than the transcribed value.

A particular class of errors is order of magnitude errors. This class describes
errors where the ratio of the transcribed to the intended number is a factor of
ten. To simplify the comparison process, these are assessed at a coarse level of
low, medium and high severity signifying when an error is out by a factor r where
1 < r < = 2 for low severity, 2 < r <= 10 for medium severity and 10 < r for
high severity. The severity of error presented below are those derivable from a

single key-stroke action.

Serial digit entry interfaces

The numeric keypad is the most com]non serial digit entry interface. Errors
on interfaces such as the numeric keypad are usually in the high severity level.
Keystrokes on this interface have a direct mapping to the digits of the intended
number. One keystroke is used to set each digit in the number and digits have
to be entered sequentially. Where x is the current number, each subsequent digit
keystroke d changes x by 9x + d. This is a change of at least 900% over the
current number. The actual level of error severity is dependent on the position
within the number, at which the keying slip occurs. A keying error thus results
in one of missing digit, missing decimal point, wrong digit, added digit or added
decimal point.

A missing decimal on this style of interface results in the specification of a
number which is an order of magnitude larger than the intended number. The

specific order of magnitude is dependent on the precision (the number of decimal
places) of the intended number. For instance, if the user wishes to enter a number
1.55 and they do so without the decimal point, then the transcribed number

is one hundred-times more than the intended number. Similarly a missing or

152

8.1. Evaluative features

added digit, depending on where it occurs in the transcribed number can cause

big changes to a number.

Possib le im provem ents
Reducing the severity of error on serial interfaces can be obtained by reducing the

severity of errors that could occur as a result of an undetected single keystroke
error or by increasing the likelihood tha t users of the interface would notice any
key slip errors.

In the first case, the digit selection mechanism can be changed from direct
digit selection to incremental digit selection. This change trades off speed of
entry for accuracy. In addition to reducing the severity of error caused by a
single key stroke, such a design separates digit selection from digit confirmation.
This explicit confirmation could improve the user’s ability to detect error. This
design, however, deviates from the norm of implicit digit confirmation on selection
present in numeric keypad serial interfaces.

Independent digit entry interfaces

These interfaces make changes to digits in a number in any order. This means
one-step keying errors are limited to those possible by discrete one step increments
in a chosen place value. For interfaces like the up-down or those that allow direct
access to digits on a number, the user could erroneously set the wrong place
value by setting the thousands place value instead of the hundreds place value.
However the possibility of this one-step place value error is reduced in instances

of this interface style such as the d-pad, where an explicit step is required to
manipulate a cursor that selects the digit (or place value) the user wishes to edit.

Wrong digit errors could also occur as a result of a one step keying slip on

this style of interface although the severity of this type of error is usually less

than other digit based errors.

Increm ental and direct entry interfaces

Incremental and direct number selection interfaces are not prone to digit based

error since they allow number entry based on selection of a number from a set

153

8 . C h o o s i n g a n i n t e r f a c e

of options. This interaction style means that the severity of key-slip induced

number entry errors on these interfaces are usually much lower than for digit

based interfaces.

8.1 .4 Error D etection

This refers to the ability of users of an interface to notice key slip errors wThenever
they occur in the course of interaction. The likelihood of error detection is affected
by the user’s ability to accurately interpret the current state of a system based on
the different modes of feedback the system is delivering to the user. The primary

mode of feedback used in the design of number entry interfaces is visual. The
detection of errors thus requires tha t the user pays attention to the part of the

interface where feedback is provided.

Serial digit entry interfaces

Chapter 6 shows that errors are more likely to go undetected when using a se­
rial style interface like the numeric keypad than when using incremental style
interfaces. This is because the numeric keypad does not encourage the user to
check the display after digit selection, probably because of the implicit feedback
in searching for and selecting the required digit. Errors such as added digits or
missing digits are consequently likely to go undetected.

Possible im provem ents
To improve error detection rates for the numeric keypad (e.g., on a touch screen

interface), one can implement a reactive keypad interface which allows serial digit
entry by dragging and dropping digits from the input part of the interface to the
display. Digits are appended to the end of the display when they are dragged

from the keypad over to the display area. Similarly, digits already on the display
of the interface can be removed by dragging them out of the display. This design
also has the advantage that syntax errors caused by keying multiple decimal
points can be blocked by updating the keypad interface to remove the decimal
point once one has been entered.

154

8.1. Evaluative features

Independent digit interfaces

These interfaces encourage the user to pay attention to the display because the
user interaction is based on selecting a digit and then making incremental changes

to the digits. Once the user acquires a button, there is no visual feedback involved

in looking at the buttons used to change the digits. The user needs to check the
screen to ensure and confirm that the digit they are setting changes correctly.
Despite this visual attention, the experiments reported in Chapters 6 and 7 show

that interfaces of this style are not error free. Errors such as wrongly transcribing
the decimal part of number might still go unnoticed.

Possible im provem ents
Error detection can be improved on this interface style by providing feedback
that highlights the digit tha t is affected by user interaction. This impact can
be further emphasized by highlighting all the digits succeeding the one that is
currently being edited. The visual cue might give the user some perception of
the magnitude of changes they are making.

Increm ental interfaces

The interaction for these interfaces are based on number selection. As a result,
the controls used to navigate the number line require very little visual attention.
W hat is most important here is tha t the user visually monitors the changes to
the number and is able to predict and make corresponding adjustments to the
rate at which the number changes. For input widgets such as dials, the user

does not even need any additional visual attention on the input widget after it

has been acquired. Changes are performed with clockwise and anti-clockwise
turning actions. Like the independent digit interfaces, wrong transcriptions of

the decimal part of a number might also go unnoticed.

8.1.5 U ser interface footprint

This refers to the number of input widgets required to implement an interface.

This feature is responsible for the amount of space that the interface covers on a

device. This feature will be assessed based on the minimum number of widgets

155

8 . C h o o s i n g a n i n t e r f a c e

needed to implement a style of interface as well as how the minimum required
widget is affected by an increase in the range and precision of the interface. An

interface with a fixed footprint would not be affected by a change in the range
or precision of numbers in the host application. An interface that is affected by

such changes would be referred to as having a variable footprint. This feature
would be of interest to interface designers who are trying to minimise the cost of
producing or maintaining a device or application.

Serial digit entry interfaces

The numeric keypad has a fixed user interface footprint. It requires a minimum
of ten keys, 0 - 9 , for operation. This variation would permit entry of whole
numbers or entry of fractional numbers to a fixed precision (see section 3.3.1).
A cancel key and a decimal point key might be added to the interface to allow
error correction and entry of numbers to an arbitrary precision.

Possible im provem ents
A simple modification can be made to this interface to improve the interface

footprint by implementing an incremental digit selection mechanism. This would
require three or four keys. Two keys for setting the required digit using up and
down arrows and one key for moving a cursor to the right ready to set another
digit. An optional decimal point key may be provided to allow the specification
of numbers to an arbitrary precision.

The user interface footprint can be further reduced by the use of four-way
joystick, like those found on laptops, to change digits and to move a virtual cursor.
This variation trades off the speed of entry for a smaller interface footprint.

These changes mean the digit selection on the interface would work just like
the d-pad, although the order of digit specification would be strictly sequential
(i.e., as the digits appear in the number).

Independent digit entry interfaces

When implemented without a cursor, this style of interface generally has a vari­
able footprint. It requires a digit controller for each place value up to the max­

156

8.1. Evaluative features

imum value accessible by the interface. These controllers range from a pair of

up-down keys as found in the up-down interface described in section 3.3.2 to the
full digit row of keys found in early calculating machines such as the Comptome­
ter.

Adding a cursor to the display reduces the number of keys needed to im­
plement the interface to 4 as featured in the D-pad interface which has a fixed

footprint.

Possible im provem ents
The number of keys used in the d-pad can be reduced to two keys if the digits and
the cursor movements on the interface wrap around. This improvement trades
off speed of entry for a smaller user interface footprint.

The footprint can be further reduced by implementing the interface on a
touch screen and controlling the digits with touch gestures such as swiping up or
down to control digits and swiping left or right to control the cursor or simply
activating the digits to be edited by touching them.

Increm ental num ber entry interfaces

These interfaces have a fixed footprint because they can be implemented with
a minimum of two buttons, one each for increasing and decreasing the number,

or a dial. Control of the magnitude or speed of changes to the number can
be provided on the interface with additional buttons although these need not
change the footprint for instance, by using force sensitive buttons to allow the
user control over the amount of change that occurs.

D irect number selection interfaces

These have a variable footprint tha t is dependent on the size of the set of numbers

to choose from. Consequently, these are only feasible when entering numbers from

a small sized set.

157

8 . C h o o s i n g a n i n t e r f a c e

8.1.6 R ange and Precision

The range refers to the minimum and maximum numeric value that can be spec­

ified using an interface. Range can be limited by external factors in the envi­
ronment where the application will be used. For example, the rate value on an

infusion pump would be limited to the minimum and maximum speed at which
the hardware of the pump permits reliable and accurate delivery of medication.
From a different point of view, range can be limited by the size of the number
that can be written out on the display of the device or by the maximum number
that can be held in the memory of the application. This limitation can be found
on some calculators where, for instance, the display only permits entry of 8 digits.

The precision refers to the position of the rightmost significant digit in the
numbers entered into the devices. Similarly to the range feature, precision can
be limited by factors in the environment that affect the way the interface works.
For example limits to the speed of infusion posed by the mechanical aspects of
the device flow mechanism would restrict the interface to entry of numbers with a

certain amount of precision. For example as seen in Chapter 4, the Asena pump
did not permit entry of numbers bigger than 10 to a precision of 2 decimal places.

Range together with precision have an impact on the set of values that can
be entered in an application. This consequently has an effect on the speed of
entry of an interface and the footprint of the interface. These are reviewed for
different classes of interfaces below.

Serial interface

The nature of serial number entry interfaces requires that the digits in the number
are specified sequentially. As seen in Chapter 5, the speed of entry on serial

interfaces is a logarithmic function on the length of the number to be entered.
As a result, changes to the range and precision of the numbers have minimal
effect on the interface. When an application only requires low precision values,
there is no need for a decimal point key.

158

8.1. Evaluative features

Independent digit interfaces

In the variation of this style that provides separate controls for each keys (e.g.,
the up-down), the number of keys on the interface is affected by the range and

precision of the interface. This is because extra set of controls are needed for each

place value in the maximum range of the numbers. Here, the interface footprint
is negatively affected by an increase in the range or precision of the numbers that

can be entered into the application.

For variations such as the d-pad, which provide a shared digit controller, but
give the user the ability to select the active digit, changes in range and precision

has no effect on interface footprint. The same mechanism for digit selection can
be used to select amongst an arbitrary number of digits.

Possible im provem ents
The negative effect of arbitrary range and precision can be mitigated by creat­
ing a touch sensitive implementation of this interface as previously described in
Section 8.1.5.

Increm ental interfaces

Interfaces of this style typically provide ways for the user to navigate through
the range of valid values in the application at a variable precision that can be
selected by the user. An increase in range or precision does not negatively affect
user interface footprint, although, as discussed in Section 8.1.1, speed of entry for
large numbers on an incremental interface can be slow. If the designer intends
to preserve the mean speed of entry, then they need to increase the footprint of

the interface by providing more ways for the user to control the magnitude and
speed at which changes to the number occur.

D irect number selection

Changes in range and precision have a negative impact on the footprint for in­

terfaces of this style. Since these interfaces present options for users to select,
an increase in the range increases the number of options which consequently

increases the footprint of the interface.

159

8. C h o o s i n g a n i n t e r f a c e

8.2 Summary

The evaluations of criteria for the interfaces show several trade-offs that are
highlighted below. Firstly, there is a trade-off between entry speed and severity

of error on the interfaces. The faster an interface is, the higher the chances of
severe errors occurring. This has been observed in the experiments reported in

Chapters 6 and 7 with the faster interfaces producing the most severe errors
although not necessarily the highest number of errors. Conversely, the slower an

interface is, the more likely errors are to be detected and the less severe errors
are likely to be. This can be seen, for instance, in the d-pad and up-down - two
variations of the independent digit interface. The extra keystroke needed on the
d-pad to move an on screen cursor reduces the speed of entry. This reduction
in speed might be responsible for the lower severity of errors and better error

detection.

There also exists a trade-off between user interface footprint and speed. Typ­
ically, a reduction in user interface footprint results in a reduction in speed of

entry. Similarly an increase in speed results in an increase in user interface
footprint. In certain interfaces (e.g., those offering direct number selection, or
the up-down interface), an increase in the range and precision of numbers to
be addressed by the application requires an increase in space to implement the
interface.

This chapter has presented a set of criteria for use in comparing classes of
number entry interfaces. Some of these are not independent of each other such
that a change in one has an impact on the other. In the process of choosing an

interface, a primary criterion should be selected at the beginning of the process

based on factors that are considered to have the highest priorities in the context
of the application.

For example, in the design of general calculators, users would be required
to have the ability to perform calculations with numbers of arbitrary range and
precision, and so might be primary criteria. This consequently limits the options

in the design space to interfaces tha t are not negatively impacted by an arbitrary
range and precision (e.g., the numeric keypad or the d-pad interface). To choose

160

8.2. Summary

between these two options, the designer might then specify that users must be

able to perform calculations as quickly as possible - a criterion that positively
favours the numeric keypad.

A second scenario might involve the design of a portable medical device which

requires input of numbers having a small range and a low precision. A typical
primary requirement for this application would be the user interface footprint.
This limits the interface options to any incremental number selection interface or
the d-pad. The designer can then further reduce the design options by prioritising

one of speed or accuracy.

In any of the two scenarios, the designer may also apply QOC to further ex­
plore new variations on the interface styles and then perform usability evaluations
to validate an option.

161

Chapter 9

Conclusion

Number entry is a very fundamental form of interaction task that requires the

specification of numeric values to an application. It occurs obviously in simple
everyday devices like calculators, timers, televisions and mobile phones and more
critically in contexts like healthcare, finance and a different modes of transporta­
tion.

This research was motivated by data entry error in the use of interactive
medical devices and the seemingly ad hoc manner with which number entry in­

terfaces are currently designed and implemented. In an attem pt to mitigate these
problems and improve decision support for the design of devices like interactive
medical devices, this Thesis has taken a structured approach to exploring differ­
ent ways a number entry interface can be designed and explored the performance

of different styles of interfaces both in terms of speed and accuracy, using an an­
alytical model based technique as well as traditional laboratory studies. Below

is a summary of research contributions.

9.1 Research contributions

Based on a historical review I conduct in Chapter 2 and a series of number entry

interfaces currently encountered in interactive devices, I presented a classifica­
tion of number entry interfaces in Chapter 3. This classification explores two

163

9 . C o n c l u s i o n

main dimensions and helps in structuring the examples of interfaces evaluated in

Chapters 5, 6 and 7. Prior to this research, number entry interfaces have been
generally referred to under a single group. This is probably as a consequence or
effect of the popularity of the number keypad. This classification allows struc­
tural reasoning about the design options for number entry interfaces and it would

encourage and inspire research for designing new interfaces.

In Chapter 5, I introduced a novel method of exploring task strategies of an
interactive system using different heuristic functions in the A star path finding
algorithm and I presented four functions for use in deriving the cost for changing
numbers on a variety of interfaces. I used these functions to calculate the number
of clicks required to change between any two integers and I also used them as
the basis for heuristic functions used to implement two strategies for performing
number entry tasks. A first strategy was based on minimising the number of
clicks required to complete the? task while the second strategy was based on
minimising the time required to complete a task. Task time was estimated using
the keystroke level model of performance. The analysis showed that the sequence

of action derived by these strategics differ for variations of some interfaces. This
variation in task sequence has implications for consistency in interaction design.

In Chapter 6, I conducted an experiment to investigate the effects of interface
style on error detection. This experiment tracked the eye fixations of partici­
pants while they entered numbers using the ubiquitous numeric keypad and the
chevrons interface found on some medical infusion pumps. The results show that
the type of interface used has an effect on the participant’s detection of errors
that occur on the interfaces. The effect on error detection is due to the change
in user behaviour tha t occurs when using the interfaces. The amount of visual

attention the users place on the display of the interface when using the chevrons
interface is significantly more than the amount of attention they place on the
input. Conversely, users rarely look at the display when using the numeric key­
pad. In addition, this experiment elicited error types that showed the effects of

interface style on error type.

In Chapter 7, I built on the experiment in Chapter 6 and ran an experiment
to evaluate the performance of five different styles of interfaces on a custom built

164

9.2. Generalising from this research

prototype device. This chapter showed that the speed of entering numbers are

affected by the style of interfaces and the error types discovered in Chapter 6
were reproduced.

9.2 Generalising from this research

The motivation of this research was the seemingly avoidable occurrence of data
entry errors in interactive medical devices. Consequently, the interfaces eval­

uated are taken from examples of medical devices that are currently in use in
hospitals. Also, unlike other number entry experiments conducted to date, the
type of numbers used the experiments reported are numbers within the range
and precision found in typical infusion therapies. Limiting the range this way
makes the tasks encountered in the experiments relevant to the medical context.

The relative performances of the user interfaces tested, with respect to speed
of entry and the types of errors that occur on each type of interface, are transfer­
able to other domains. Error rates may however not apply to other domains and
indeed, there is no evidence that these error rates can be found in the medical
context. The error rates observed in the laboratory studies were produced by

generic users who had no specialist knowledge of the healthcare context. Error
rates in practice would differ due to a different user skill level and the context in
which the number entry task is performed.

9.3 Future work

This research has provided foundation for more work to be carried out in the de­

sign and evaluation of number entry interfaces. I highlight the following avenues

where future work could follow.

• The design and evaluation of new number entry interfaces specifically those

tha t exploit the use of touch screen hardware and multi-touch technology
could be explored. Since users rarely look at the display when using the

numeric keypad, a useful adaptation of this layout on the touchscreen in­

165

9 . C o n c l u s i o n

terface might require the user to drag the digits onto the display, thus
encouraging a higher visual attention on the display of the interface.

• Exploring the effect of skill and context on performance of different inter­
faces. This would investigate whether skilled users such as nurses, who get
equipment training significantly differ, with respect to speed and accuracy,
from non-skilled users similar to those used for the experiments in this

research.

• An aspect of number entry that has not been explored here is the different
ways of representing numbers. These could be static or animated cues that
add information about the type of numbers that a user is setting. This
would be particularly useful when a task involves setting up more than one

number and might reduce the chances of mixing up numbers.

Prior to the beginning of this work in April 2010, a review of literature showed
a very restricted view of research in number entry which was then limited to
the numeric keypad. This was perhaps due to the perception of number entry

tasks as trivial or secondary. This research has shown that the design space
of number entry interfaces is not limited to the numeric keypad and that the
various options within the design space have different trade-offs and should be

explored and empirically evaluated especially when designing interfaces for the
safety critical context.

166

Bibliography

[Age07] Agency, N. P. S. Safety in doses: medication safety incidents
in the NHS. In: The fourth report from the Patient Safety
observatory. URL http://www.nrls.npsa.nhs.nk/EasySiteWeb/
getresource.axd?AssetID=61392. (Last Accessed July, 2013).
[cited at p.4]

[AgelO] Agency, N. P. S. Reducing harm from ommitted and delayed medicines in
hospital URL http://w w w .nrls .npsa .nhs.uk/a lerts/?entryid45=
66720. (Last Accessed July, 2013). [cited at p.4]

[Bacl2] Back, J., Cox, A., and Brumby, D. Choosing to interleave: Human
error and information access cost. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’12. ACM,
New York, NY, USA. ISBN 978-1-4503-1015-4, page 16511654. doi:10.
1145/2207676.2208289. URL http :/ /doi.acm .org/10 .1145/2207676.
2208289. [cited at p. 116]

[Bat95] Bates, D. W., Cullen, D. J., Laird, N., Petersen, L. A., Small, S. D.,

Servi, D., Laffel, G., Sweitzer, B. J., Shea, B. F., Hallisey, R., Van-
der Vliet, M., Nemeskal, R., Leape, L. L., Group, A. P. S., Leape,

L. L., Servi, D., Laird, N., Bates, D., Hojnowski-Diaz, P., Petersen,
L. A., Petrycki, S., Vander Vliet, M., Cotugno, M., Patterson, H., Shea,

B. F., Hickey, M., Kleefield, S., Cooper, J., Cullen, D. J., Kinneally, E.,
Nemeskal, R., Sweitzer, B. J., Small, S. D., Demonaco, H. J., Clapp,
M. D., Hallisey, R., Gallivan, T., Ives, J., Porter, K., Thompson, B. T.,

167

B i b l i o g r a p h y

Laffel, G., Hackman, J. R., and Edmondson, A. Incidence of adverse

drug events and potential adverse drug events. JAMA: The Journal of
the American Medical Association, volum e 274, no. 1:(1995) pages 29

—34. [cited at p.3]

[Ben38] Benford, F. The law of anomalous numbers. Proceedings of the American
Philosophical Society, volum e 78, no. 4:(1938) pages 551-572. ISSN
0003-049X. doi: 10.2307/984802. URL h t tp : / /w w w .js to r .o rg /s ta b le /

984802. ArticleType: research-article / Full publication date: Mar. 31,
1938 / Copyright 1938 American Philosophical Society, [cited at p.56, 74]

[Bla06] Blatt, R., Christianson, M. K., Sutcliffe, K. M., and Rosenthal, M. M.
A sensemaking lens on reliability. Journal of Organizational Behavior,

volum e 27, no. 7:(2006) pages 897-917. ISSN 0894-3796. doi:10.1002/
job.392. URL h t t p : / /d o i .w iley . com/10. 1002/job .392. [cited at p.28]

[But02] Butts, L. and Cockburn, A. An evaluation of mobile phone text input
methods. Aust. Comput. Sci. Commun., vo lum e 24, no. 4: (2002) pages

55-59. doi:http://doi.acm .org/10.1145/563997.563993. [cited at p.2, 18]

[Bux83] Buxton, W. Lexical and pragmatic considerations of input structures.
SIGGRAPH Comput. Graph., volum e 17, no. 1:(1983) pages 31-37.
ISSN 0097-8930. doi:10.1145/988584.988586. URL h t tp : / /d o i .a c m .
o rg /1 0 .1145/988584.988586. [cited at p.37]

[Car80] Card, S. K., Moran, T. P., and Newell, A. The keystroke-level
model for user performance time with interactive systems. Commun.

ACM, volum e 23, no. 7:(1980) pages 396-410. doi:10.1145/358886.
358895. URL h t t p : / / p o r t a l . a c m .o rg /c i ta tion.cfm?id=358895.

[cited at p.71, 125, 126]

[Car83] Card, S. K., Newell, A., and Moran, T. P. The Psychology of Human-
Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA

(1983). ISBN 0898592437. [cited at p.71]

[Car90] Card, S. K., Mackinlay, J. D., and Robertson, G. G. The design space
of input devices. In: Proceedings of the SIGCHI Conference on Human

168

Bibliography

Factors in Computing Systems, CHI ’90. ACM, New York, NY, USA.

ISBN 0-201-50932-6, pages 117-124. [cited at p.37]

[Car91] Card, S. K., Mackinlay, J. D., and Robertson, G. G. A morphological
analysis of the design space of input devices. ACM Trans. Inf. Syst.,

volum e 9, no. 2:(1991) pages 99-122. ISSN 1046-8188. doi: 10.1145/
123078.128726. URL h t t p : / / d o i . acm. o rg /1 0 .1145/123078.128726.
[cited at p.37, 41]

[Caul2a] Cauchi, A. Differential formal analysis: evaluating safer 5-key number
entry user interface designs. In: Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing systems, EICS ’12.
ACM, New York, NY, USA. ISBN 978-1-4503-1168-7, pages 317-320.

[cited at p.31, 46, 71, 152]

[Caul2b] Cauchi, A., Gimblett, A., Thimbleby, H., Curzon, P., and Masci,
P. Safer “5-key” number entry user interfaces using differential for­
mal analysis. In: Proceedings of HCI 2012 The 26th BCS Conference
on Human Computer Interaction, volume 26. Birmingham, UK, pages
29-38. [cited at p.31, 46, 47, 71, 122]

[Con68] Conrad, R. and Hull, A. J. The preferred layout for numeral
data-entry keysets. Ergonomics, vo lum e 11, no. 2:(1968) pages
165-173. ISSN 0014-0139. doi:10.1080/00140136808930953. URL h t tp :
/ / w w w .tandfonline. com /d o i/ab s/1 0 .1080/00140136808930953.

[cited at p.27, 122]

[Cor09] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction
To Algorithms. MIT Press, third edition edition (S ep tem b er 2009).

ISBN 9780262032933. [cited at p.77]

[Dan68] Dantzig, T. Number: The Language of Science. Plume Book (Ja n u a ry

1968). ISBN 9780452288119. [cited at p.2, 12]

[Day98] Day, S., Fayers, P., and Harvey, D. Double data entry: What value,
what price? Controlled Clinical Trials, vo lum e 19, no. 1:(1998) pages

15-24. ISSN 0197-2456. [cited at p.32]

169

B i b l i o g r a p h y

[Dei60a] Deininger, R. L. Desirable push-button characteristics. IRE Transac­

tions on Human Factors in Electronics, volum e H FE -1, no. 1: (1960)
pages 24-30. ISSN 0099-4561. doi:10.1109/THFE2.1960.4503262.
[cited at p.25]

[Dei60b] Deininger, R. L. Human factors engineering studies of the design and
use of pushbutton telephone sets. Bell System Technical Journal, vol­

um e 39: (1960) pages 995-1012. [cited at p.25, 26]

[Dij59] Dijkstra, E. W. A note on two problems in connexion with
graphs. Numerische Mathematik, volum e 1, no. 1:(1959)
pages 269-271. ISSN 0029-599X, 0945-3245. doi:10.1007/
BF01386390. URL h ttp ://w w w .m endeley .com /research/a-note-on-
tw o-prob lem s-in -connexion-w ith-graphs/, [cited at p.77]

[Doh99] Doherty, G. and Massink, M. Continuous interaction and human control.
In: Proceedings of 18th European Conference on Human Decision Making
and Manual Control. Loughborough, pages 80-96. [cited at p.51]

[Dohl2] Doherty, C. and Donnell, C. M. Tenfold medication errors: 5 years ex­
perience at a university-affiliated pediatric hospital. Pediatrics, volum e
129, no. 5. ISSN 0031-4005, 1098-4275. doi:10.1542/peds.2011-2526.
[cited at p.5, 30]

[Dun08] Dunlop, M. D. and Montgomery Masters, M. Investigating five key
predictive text entry with combined distance and keystroke modelling.
Personal Ubiquitous Comput., volum e 12, no. 8:(2008) pages 589-

598. ISSN 1617-4909. doi:10.1007/s00779-007-0179-7. URL h t t p : / / d x .
d o i . o rg /1 0 . 1007/s00779-007-0179-7. [cited at p. 19]

[Esk02] Eskew, J. A., Jacobi, J., Buss, W. F., Warhurst, H. M., and DeBord,

C. L. Using innovative technologies to set new safety standards for the
infusion of intravenous medications. Hospital Pharmacy, volum e 37,
no. 11:(2002) pages 1179-1189. [cited at p.33]

[FDA09] FDA. Summary of medsun reports describing adverse events: Large
volume infusion pumps and issues resulting in over-infusion. In: Med-

170

Bibliography

Sun: Newsletter 33. URL http ://w w w .accessdata .fd a .gov /scr ip ts/
cdrh/cfdocs/medsun/news/newsletter. cfm?news=33. (Last accessed

July, 2013). [cited at p.29]

[Fit54] Fitts, P. M. The information capacity of the human motor system in con­
trolling the amplitude of movement. Journal of Experimental Psychol­

ogy, volum e 47, no. 6:(1954) pages 381-391. ISSN 0022-1015(Print).
doi:10.1037/h0055392. [cited at p.19, 44, 73, 150]

[Fol80] Foley, J. D., Chan, P., and Wallace, V. L. The Human Factors of Graphic
Interaction: Tasks and Techniques. Technical report (D ecem ber
1980). URL http://www.dtic.mil/cgi-bin/GetTRDoc?Location=

U2&doc=GetTRDoc .pdf&AD=ADA136605. [cited at p.22, 34]

[Fol84] Foley, J., Wallace, V., and Chan, P. The human factors of computer
graphics interaction techniques. IEEE Computer Graphics and Appli­
cations, volum e 4, no. 11:(1984) pages 13-48. ISSN 0272-1716. doi:
10.1109/MCG. 1984.6429355. [cited at p.22, 34]

[Furll] Furniss, D., Blandford, A., and Mayer, A. Unremarkable errors: low-
level disturbances in infusion pump use. In: Proceedings of the 25th
BCS Conference on Human-Computer Interaction, BCS-HCI ’11. British
Computer Society, Swinton, UK, UK, page 197204. URL h t t p : / / d l .
a cm .o rg /c ita t io n .cfm?id=2305316.2305353. [cited at p.131]

[Gan03] Gandhi, T. K., Weingart, S. N., Borus, J., Seger, A. C., Peterson, J.,

Burdick, E., Seger, D. L., Shu, K., Federico, F., Leape, L. L., and Bates,

D. W. Adverse drug events in ambulatory care. The New England journal
of medicine, volum e 348, no. 16:(2003) pages 1556-1564. ISSN 1533-

4406. doi: 10.1056/NEJMsa020703. PMID: 12700376. [cited at P.3]

[GimlO] Gimblett, A. and Thimbleby, H. User interface model discovery. In:
Proceedings of the 2nd ACM SIGCHI symposium on Engineering in­
teractive computing systems - E IC S’10. Berlin, Germany, pages 145
- 154. doi:10.1145/1822018.1822041. URL h ttp :/ /p o r ta l .a cm .o rg /

c i ta t io n . cfm?id=l822018.1822041. [cited at p.7, 76, 125]

171

B i b l i o g r a p h y

[gra02] Model 500 and micro 505 volumetric infusion pump : Instruction manual
(2002). [cited at p.56]

[Har68] Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on

Systems Science and Cybernetics, vo lum e 4, no. 2:(1968) pages 100—

107. ISSN 0536-1567. doi: 10.1109/TSSC. 1968.300136. [cited at P.77]

[Hic52] Hick, W. E. On the rate of gain of information. Quarterly Journal of
Experimental Psychology, volum e 4, no. 1:(1952) pages 11-26. ISSN

0033-555X. [cited at p.44]

[HWT11] Harold W. Thimbleby, A. G. Dependable keyed data entry for interac­
tive systems. ECEASST, volum e 45. [cited at p.30]

[HYM53] HYMAN, R. Stimulus information as a determinant of reaction time.
Journal of experimental psychology, volum e 45, no. 3:(1953) pages
188-196. ISSN 0022-1015. PMID: 13052851. [dted at P.44]

[Ins05] Institute For Safe Medication Practices. Lowering the risk of medica­
tion errors: Independent double, checks. ISMP Canada Safety Bulletin,
vo lum e 5, no. 1. [cited at p.32]

[Ins06] Institute For Safe Medication Practices. ISM P’s list of error-prone ab­
breviations, symbols, and dose designations. URL http://www.ism p.

o rg /to o ls /a b b re v ia t io n s / . (Last accessed July, 2013). [cited at p.31]

[Ins07] Institute For Safe Medication Practices. Fluorouracil incident root cause
analysis. URL h t t p : I f www. ism p-canada. org /dow nload/reports/

F luorouracilIncidentM ay2007.pdf. (Last accessed July, 2013).
[cited at p.33]

[ISM06] ISMP. Double key bounce and double keying errors. In: Medica­
tion Safety Alert! Acute Care Edition. URL http://w w w .ism p.org/
n e w s le tte rs /a c u te c a re /a r t ic le s /2 0 0 6 0 1 1 2 .asp. (Last accessed

July, 2013). [cited at p.4, 99]

172

Bibliography

[Iso02] Isokoski, P. and Kaki, M. Comparison of two touchpad-based methods

for numeric entry. In: CHI ’02: Proceedings of the SIGCHI confer­
ence on Human factors in computing systems. ACM, New York, NY,
USA. ISBN 1-58113-453-3, pages 25-32. doi:http://doi.acm .org/10.
1145/503376.503382. [cited at p.24]

[Jag03] Jagacinski, R. J. and Flach, J. Control theory for humans: quanti­
tative approaches to modeling performance. Routledge (2003). ISBN
9780805822922. [cited at p.50, 51]

[JanlO] Jani, Y. H., Barber, N., and Wong, I. C. K. Paediatric dosing errors
before and after electronic prescribing. Quality and Safety in Health

Care, vo lum e 19, no. 4: (2010) pages 337 -340. [cited atp.99]

[Jar02] Jarman, H., Jacobs, E., and Zielinski, V. Medication study supports
registered nurses ’ competence for single checking. International journal
of nursing practice, volum e 8, no. 6:(2002) pages 330-335. ISSN 1322-
7114. PMID: 12390586. [cited at p.32]

[Jon06] Jones, C., O ’Hearn, P., and Woodcock, J. Verified software: a grand
challenge. Computer, vo lum e 39, no. 4:(2006) pages 93-95. ISSN
0018-9162. doi:10.1109/MC.2006.145. [cited at P.3i]

[Keo05] Keohane, C. A., Hayes, J., Saniuk, C., Rothschild, J. M., and Bates,
D. W. Intravenous medication safety and smart infusion systems: lessons

learned and future opportunities. Journal of infusion nursing: the official
publication of the Infusion Nurses Society, vo lum e 28, no. 5:(2005)
pages 321-328. ISSN 1533-1458. URL h ttp ://w w w .neb i .n lm .n ih .gov /

pubmed/16205498. PMID: 16205498. [cited at p.4]

[Kre89] Kreifeldt, J. G., Levine, S. L., and Iyengar, C. Reduced keyboard de­
signs using disambiguation. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, volum e 33, no. 6:(1989) pages
441-444. ISSN 1541-9312,. doi:10.1518/107118189786759642. URL

h t t p : / / p r o . sagepub. com /content/33/6/441. [cited at p.19]

173

B i b l i o g r a p h y

[Kri07] Kristensson, P. O. and Zhai. S. Learning shape writing by game play­
ing. In: CHI ’07 Extended Abstracts on Human Factors in Comput­
ing Systems, CHI EA ’07. ACM, New York, NY, USA. ISBN 978-
1-59593-642-4, pages 1971-1976. doi:10.1145/1240866.1240934. URL
h ttp ://do i.acm .org /10 .1145 /1240866 .1240934 . [cited at p. 19]

[KroOl] Kroemer, K. H. Keyboards and keying an annotated bibliography of the

literature from 1878 to 1999. Universal Access in the Information Society,
vo lum e 1, no. 2:(2001) pages 99-160. ISSN 1615-5289. [cited at p.2 , 18]

[Lee99] Lee, E. S. Essays about computer security. Centre for Communications

Systems Research Cambridge, © Cambridge, [cited at p.55]

[Leel2a] Lee, P., Monroy Aceves, C., Oladimeji, P., and Thimbleby, H. Are
prescribed infusions running as intended? In: Third National Infusion
and Vascular Access Society Conference. London, [cited at p.58]

[Leel2b] Lee, P. T., Thompson, F., and Thimbleby, H. Analysis of infusion
pump error logs and their significance for healthcare. British Journal of

Nursing, volum e 21, no. 8:(2012) pages S12-S22. [cited at p.58]

[Les02] Lesar, T. S. Tenfold medication dose prescribing errors. The Annals of
Pharmacotherapy, volum e 36, no. 12:(2002) pages 1833-1839. ISSN
1060-0280. URL http://w w w .ncbi.nlm .nih.gov/pubm ed/12452740.

PMID: 12452740. [cited at p.30]

[Lev66] Levenshtein, V. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady., volum e 10, no. 8:(1966) pages

707—710. [cited at p.20]

[Linl3] Lin, C.-J. and Wu, C. Reactions, accuracy and response complexity of nu­
merical typing on touch screens. Ergonomics, volum e 56, no. 5: (2013)
pages 818-831. ISSN 0014-0139. PMID: 23597044. [cited at p.24]

[Lis05] Lisby, M., Nielsen, L. P., and Mainz, J. Errors in the medication process:
frequency, type, and potential clinical consequences. International Jour­
nal for Quality in Health Care, volum e 17, no. 1:(2005) pages 15-22.

ISSN 1353-4505, 1464-3677. [cited at P.3]

174

Bibliography

[Lut55] Lutz, M. C. and Chapanis, A. Expected locations of digits and let­
ters on ten-button keysets. Journal of Applied Psychology, vo lum e 39,

no. 5:(1955) pages 314-317. [cited at p.27]

[MAI3] Monroy Aceves, C., Oladimeji, P., Thimbleby, H., and Lee, P. Are
prescribed infusions running as intended? quantitative analysis of log

files from infusion pumps used in a large acute NHS hospital. British
Journal of Nursing. In press, [cited at p.58]

[Mac90] Mackinlay, J., Card, S. K., and Robertson, G. G. A semantic
analysis of the design space of input devices. Hum.-Comput. Inter­
act., vo lum e 5, no. 2:(1990) pages 145-190. ISSN 0737-0024. doi:
10.1207/sl5327051hci0502&3_2. URL h t tp : / /d x .d o i .o rg /1 0 .1 2 0 7 /
sl5327051hci0502&3_2. [cited at p.37, 50]

[Mac91] MacLean, A., Young, R. M., Bellotti, V. M., and Moran,
T. P. Questions, options, and criteria: Elements of design
space analysis. Human-Computer Interaction, volum e 6, no. 3-
4: (1991) pages 201-250. ISSN 0737-0024. doi: 10.1080/07370024.
1991.9667168. URL h t t p : //www. tan d f o n l in e . co m /d o i/ab s/10.1080/
07370024.1991.9667168. [cited at p.38, 39]

[Mac94] MacKenzie, I. S., Nonnecke, B., Riddersma, S., McQueen, C., and
Meltz, M. Alphanumeric entry on pen-based computers. Int. J. Hum.-
Comput. Stud., vo lum e 41, no. 5:(1994) pages 775-792. ISSN 1071-

5819. [cited at p.23]

[Mac02a] MacKenzie, I. S. KSPC (keystrokes per character) as a characteristic of
text entry techniques. In: Mobile HCI ’02: Proceedings of the f th Inter­
national Symposium on Mobile Human-Computer Interaction. Springer-

Verlag, London, UK. ISBN 3-540-44189-1, pages 195-210. [cited at p.20]

[Mac02b] MacKenzie, I. S. and Soukoreff, R. W. Text entry for mobile comput­
ing: Models and Methods, Theory and practice. Human-Computer Inter­

action, vo lum e 17, no. 2-3: (2002) pages 147-198. ISSN 0737-0024.

175

B i b l i o g r a p h y

doi:10.1080/07370024.2002.9667313. URL h ttp ://w w w .tand fon line .

com/doi/abs/10.1080/07370024.2002.9667313. [cited at p.19]

[Mac02c] MacKenzie, S. Mobile text entry using three keys. In: Proceedings of
the second Nordic conference on Human-computer interaction, NordiCHI
’02. ACM, New York, NY, USA. ISBN 1-58113-616-1, pages 27-34. doi:
10.1145/572020.572025. URL h ttp ://d o i.acm .o rg /1 0 .1 1 4 5 /5 7 2 0 2 0 .

572025. [cited at p.19]

[Mar92] Martin, E. The Calculating Machines: Their History and Development.
MIT Press (May 1992). ISBN 0262132788. [cited at p.13, 15]

[Mar96] Marteniuk, R. G., Ivens, C. J., and Brown, B. E. Are there
task specific performance effects for differently configured numeric
keypads? Applied Ergonomics, volume 27, no. 5:(1996)
pages 321-325. ISSN 0003-6870. doi: 10.1016/0003-6870(96)00024-
5. URL http://www.sciencedirect.com/science/article/B6VlW -
3VTWBKX-4/2/c9607cbl9034cf78a312f79552c6fbc4. [cited at P.27, 122]

[McQ95] McQueen, C., MacKenzie, S. I., and Zhang, S. X. An extended study
of numeric entry on pen-based computers. In: Proceedings of Graphics
Interface ’95. Toronto, pages 215-222. URL http://w w w .yorku.ca/
mack/GI95. html. [cited at p.24]

[Medl3] Medicines and Healthcare Products Regulatory Agency. In­
fusion Systems. Technical report (December 2013). URL
h t tp : / / www. mhra. gov. uk/home/groups/dt s - iac/documents/
publication/con007322.pdf. [cited at p.62]

[Men92] Menninger, K. Number Words and Number Symbols: A Cultural History

of Numbers. Dover Publications (May 1992). ISBN 9780486270968.
[cited at p.2, 11]

[Mor04] Morimoto, T., Gandhi, T. K., Seger, A. C., Hsieh, T. C., and Bates,

D. W. Adverse drug events and medication errors: detection and clas­
sification methods. Quality and Safety in Health Care, volume 13,
no. 4:(2004) pages 306-314. ISSN , 2044-5423. [cited at p.3]

176

Bibliography

[New68] Newman, W. M. A graphical technique for numerical input. The Com­

puter Journal, vo lum e 11, no. 1: (1968) pages 63-64. ISSN 0010-

4620, 1460-2067. doi:10.1093/comjnl/11.1.63. URL h t tp : / / c o m jn l .
o x fo rd jo u rn a ls .o rg /c o n te n t/1 1/1/63. [cited at p.2i]

[Nie92] Nielsen, J. Finding usability problems through heuristic evaluation. In:
CHI ’92: Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, New York, NY, USA. ISBN 0-89791-513-5,

pages 373-380. [cited at p.41]

[Nor02] Norman, D. A. The design of everyday things. Basic Books (A ugust
2002). [cited at p.28, 30]

[Olall] Oladimeji, P., Thimbleby, H., and Cox, A. Number entry interfaces and
their effects on error detection. In: Proceedings of the 13th IFIP TC 13
international conference on Human-computer interaction - Volume Part
IV , INTERACT’l l . Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-
642-23767-6, page 178185. Conference, [cited at p.xviii, 127,138, 152]

[Ols08] Olsen, K. A. The $100,000 keying error. Computer, vo lum e 41,
no. 4:(2008) pages 108-107. ISSN 0018-9162. doi:10.1109/MC.2008.135.
[cited at p.29]

[Oull3] Oulasvirta, A., Reichel, A., Li, W., Zhang, Y., Bachynskyi, M., Ver-
tanen, K., and Kristensson, P. O. Improving two-thumb text en­

try on touchscreen devices. In: Proceedings of the SIGCHI Confer­
ence on Human Factors in Computing Systems, CHI ’13. ACM, New
York, NY, USA. ISBN 978-1-4503-1899-0, pages 2765-2774. doi:10.

1145/2470654.2481383. URL h ttp ://d o i.acm .o rg /1 0 .1 1 4 5 /2 4 7 0 6 5 4 .

2481383. [cited at p.19]

[Pox04] Poxon, I. Infusion pumps - how to pick the best pump for the delivery of
fluids. (Ju ly 2004). URL h ttp ://w w w .n u rs in g tim e s .n e t/in fu s io n -
p u m p s-h o w -to -p ick -th e -b es t-p u m p -fo r-th e -d e liv e ry -o f-

f lu id s /2 0 0 1 2 5 . a r t i c l e , [cited at p.62]

177

B i b l i o g r a p h y

[Rea90] Reason, J. Human Error. Cambridge University Press (1990).
[cited at p.28, 100]

[Res03] Resar, R. K., Rozich, J. D., and Classen, D. Methodology and rationale
for the measurement of harm with trigger tools. Quality and Safety in
Health Care, volum e 12, no. suppl 2:(2003) pages ii39-ii45. ISSN ,

2044-5423. [cited at p.5]

[Rey92] Reynolds-Haertle, R. A. and McBride, R. Single vs. double data entry
in CAST. Controlled Clinical Trials, volum e 13, no. 6:(1992) pages
487-494. ISSN 0197-2456. [cited at P.32]

[Rin99] Rinck, M. Memory for everyday objects: where are the digits on numer­
ical keypads? Applied Cognitive Psychology, volum e 13, no. 4:(1999)
pages 329-350. ISSN 1099-0720. [cited at P.27]

[R.L60] R.L. Deininger. Human factors engineering studies of the design and use
of pushbutton telephone sets. Bell System Technical Journal, volum e 39,
no. 4:(1960) pages 995-1012. [cited at p. 121]

[Rot05] Rothschild, J. M., Keohane, C. A., Cook, E. F., Orav, E. J., Burdick, E.,
Thompson, S., Hayes, J., and Bates, D. W. A controlled trial of smart
infusion pumps to improve medication safety in critically ill patients*.
Critical Care Medicine, volum e 33, no. 3: (2005) pages 533-540. ISSN
0090-3493. [cited at p.3]

[San04] Sandnes, F. E., Thorkildssen, H. W., Arvei, A., and Buverud, J. O. Tech­
niques for fast and easy mobile text-entry with three-keys. In: HI CSS

’04■' Proceedings of the Proceedings of the 37th Annual Hawaii Inter­
national Conference on System Sciences (HICSS’Of) - Track 9. IEEE
Computer Society, Washington, DC, USA. ISBN 0-7695-2056-1, page

90286.2. [cited at p.2, 18, 19]

[Shn04] Shneiderman, B. and Plaisant, C. Designing the User Interface: Strate­
gies for Effective Human-Computer Interaction (4th Edition). Pearson
Addison Wesley (2004). ISBN 0321197860. [cited at p.4i]

178

Bibliography

[SilOO] Silfverberg, M., MacKenzie, I. S., and Korhonen, P. Predicting text

entry speed on mobile phones. In: CHI’OO: Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, New York,

NY, USA. ISBN 1-58113-216-6, pages 9-16. doi:http://doi.acm .org/10.
1145/332040.332044. [cited at p.2, 18]

[SouOla] Soukoreff, R. W. and MacKenzie, I. S. Measuring errors in text entry
tasks: an application of the levenshtein string distance statistic. In: CHI
’01: CHI ’01 extended abstracts on Human factors in computing sys­
tems. ACM, New York, NY, USA. ISBN 1-58113-340-5, pages 319-320.

[cited at p.20]

[SouOlb] Soukoreff, R. W. and MacKenzie, I. S. Measuring errors in text en­
try tasks: an application of the levenshtein string distance statistic. In:
CHI’01: CHI’01 extended abstracts on Human factors in computing sys­
tems. ACM, New York, NY, USA. ISBN 1-58113-340-5, pages 319-320.

doi:h ttp ://do i.acm .org/10.1145/634067.634256. [cited at p.20]

[Sou03] Soukoreff, R. W. and MacKenzie, I. S. Metrics for text entry research:
an evaluation of MSD and KSPC, and a new unified error metric.
In: CHI’03: Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM, New York, NY, USA. ISBN 1-58113-
630-7, pages 113-120. doi:http://doi.acm .org/10.1145/642611.642632.

[cited at p.2, 18]

[Str93] Straub, H. R. and Granaas, M. M. Task-specific preference for

numeric keypads. Applied Ergonomics, vo lum e 24, no. 4:(1993)
pages 289-290. ISSN 0003-6870. doi: 10.1016/0003-6870(93)90465-
L. URL h ttp : / /w w w .s c ie n c e d ire c t .c o m /s c ie n c e /a r t ic le /p i i /

000368709390465L. [cited at p.27]

[Sye06] Syed, S., Paul, J. E., Hueftlein, M., Kampf, M., and McLean, R. F. Mor­
phine overdose from error propagation on an acute pain service. Cana­
dian Journal of Anesthesia/Journal canadien d ’anesthsie, vo lum e 53,

no. 6: (2006) pages 586-590. ISSN 0832-610X. [cited at p.5]

179

B i b l i o g r a p h y

[Thi07] Thimbleby, H. Press On: Priciples of Interaction Programming. The
MIT Press, first edition (2007). [cited at p.7, 125]

[Thi09a] Thimbleby, H. Contributing to safety and due diligence in safety-critical
interactive systems development by generating and analyzing finite state
models. In: Proceedings of the 1st ACM SIGCHI symposium on Engi­
neering interactive computing systems, EICS ’09. ACM, New York, NY,
USA, pages 221-230. [cited at p.76]

[Thi09b] Thimbleby, H. and P a tr ic k O ladim eji. Social network analysis and in­
teractive device design analysis. In: Proceedings of the 1st ACM SIGCHI
symposium on Engineering interactive computing systems - EICS’09.
Pittsburgh, PA, USA, pages 91-100. doi:10.1145/1570433.1570453. URL
h t t p : / / p o r t a l . acm. o r g /c i ta t io n . cfm?id=1570453. [cited at p.7, 76]

[ThilOa] Thimbleby, H. Interactive systems need safety locks. In: Informa­
tion Technology Interfaces (IT1), 2010 32nd International Conference
on. ISBN 1330-1012, pages 29-36. [cited at p.116]

[ThilOb] Thimbleby, H. and Cairns, P. Reducing number entry errors: solv­
ing a widespread, serious problem. Journal of the Royal Society In­
terface, volum e 7, no. 51:(2010) pages 1429-1439. ISSN 1742-

5689. doi:10.1098/rsif.2010.0112. PMID: 20375037 PMCID: 2935596.
[cited at p.4, 30, 41, 116, 152]

[Tho79] Thornton, R. W. The number wheel: A tablet based valuator for interac­
tive three-dimensional positioning. In: Proceedings of the 6th annual con­
ference on Computer graphics and interactive techniques, SIGGRAPH
’79. ACM, New York, NY, USA. ISBN 0-89791-004-4, pages 102-107.
[cited at p.22, 23, 34]

[Tur21] Turck, J. A. V. Origin of Modem Calculating Machines: A Chronicle of
the Evolution of the Principles that Form, the Generic Make Up of the
Modem Calculating Machine. The Western society of engineers (1921).

[cited at p. 13]

180

Bibliography

[U03] U, D. Double-Checking: does it work? ISMP Medication Safety Alerts,

vo lum e 56, no. 3:(2003) pages 167-169. [cited at p.32]

[Vai06] Vaida, A. J., Grissinger, M., Urbanski, B., and Mitchell, J. F.
PCA drug libraries: Designing, implementing, and analyzing CQI
reports to optimize patient safety. URL h ttp ://w w w .ism p .o rg /

profdevelopm ent/PC A D rugLibrariesforw ebce.pdf. (Last accessed

July, 2013). [cited at p.99]

[Vic03] Vicente, K. J., Kada-Bekhaled, K., Hillel, G., Cassano, A., and Orser,
B. A. Programming errors contribute to death from patient-controlled
analgesia: case report and estimate of probability. Canadian Journal of
Anesthesia, vo lum e 50, no. 4:(2003) page 328332. ISSN 0832-610X.

[cited at p.4, 5, 99]

[Wanll] Wang, S., Lin, C.-J., Wu, C., and Chaovalitwongse, W. A. Early de­
tection of numerical typing errors using data mining techniques. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, vo lum e 41, no. 6:(2011) pages 1199-1212. ISSN 1083-4427.
[cited at p.32]

[Webl2] Webster, J., Eslambolchilar, P., and Thimbleby, H. From rotary tele­
phones to universal number entry systems: can the past re-shape the

future? In: Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, UbiComp ’12. ACM, New York, NY, USA. ISBN 978-1-

4503-1224-0, pages 596-597. [cited at p.17]

[Wesll] Westbrook, J. I., Rob, M. I., Woods, A., and Parry, D. Errors in the

administration of intravenous medications in hospital and the role of
correct procedures and nurse experience. BMJ Quality &; Safety, doi:

10.1136/bmjqs-2011-000089. [cited at p.4]

[Wisll] Wiseman, S., Cairns, P., and Cox, A. A taxonomy of number entry

error. In: Proceedings of the 25th BCS Conference on Human-Computer
Interaction, BCS-HCI ’11. British Computer Society, Swinton, UK, UK,

pages 187-196. [cited at p.29, 112, 127, 138]

181

B i b l i o g r a p h y

[Wisl2] Wiseman, S., Cox, A., and Brumby, D. Designing for the task: what
numbers are really used in hospitals? In: Proceedings of the 2012 ACM
annual conference extended abstracts on Human Factors in Computing
Systems Extended Abstracts, CHI EA ’12. ACM, New York, NY, USA.

ISBN 978-1-4503-1016-1, pages 1733—1738. [cited at p.56]

[Wisl3a] Wiseman, S., Cox, A. L., and Brumby, D. P. Designing devices with
the task in mind: which numbers are really used in hospitals? Human
factors, vo lum e 55, no. 1:(2013) pages 61-74. ISSN 0018-7208. PMID:

23516794. [cited at p.74]

[Wisl3b] Wiseman, S., Cox, A. L., Brumby, D. P., Gould, S. J., and O’Carroll,
S. Using checksums to detect number entry error. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’13. ACM, New York, NY, USA. ISBN 978-1-4503-1899-0, pages 2403 -

2406. [cited at p.34]

[Zha04a] Zhai, S., Kong, J., and Ren, X. Speed-accuracy tradeoff in fitts ’ law

tasks: On the equivalency of actual and nominal pointing precision. Int.
J. Hum.-Comput. Stud., volum e 61, no. 6:(2004) page 823856. ISSN
1071-5819. doi:10.1016/j.ijhcs.2004.09.007. URL h t tp : / /d x .d o i .o r g /
1 0 .1 0 1 6 /j. i j h c s .2004.09.007. [cited at p. 114]

[Zha04b] Zhang, J., Patel, V. L., Johnson, T. R., and Shortliffe, E. H. A cognitive

taxonomy of medical errors. J. of Biomedical Informatics, volum e 37,
no. 3:(2004) pages 193-204. ISSN 1532-0464. doi:http://dx.doi.org/10.
1016/j.jbi.2004.04.004. [cited at p.5]

[Zhal2] Zhai, S. and Kristensson, P. O. The word-gesture keyboard: reimagining
keyboard interaction. Commun. ACM, volum e 55, no. 9:(2012) pages

91-101. ISSN 0001-0782. doi:10.1145/2330667.2330689. URL h ttp :
/ / d o i . acm .org /10 .1145/2330667.2330689. [cited at p. 19]

182

