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A bstract

Number entry is a crucial aspect of using many interactive systems. Tasks such 
as withdrawing money from an ATM, selecting a TV channel, manually tuning 
into a radio station, or setting up an infusion pump for drug delivery, all involve 
entering or selecting numbers. The number entry aspects of these tasks are 
usually secondary to the user’s goal. Users typically have higher level goals 
which might involve a sub-task related to entering numbers. As a result, number 
entry is assumed to be simple, straight forward and uninteresting.

The design of number entry interfaces dates back as early as the use of tally 
sticks and counting boards although modern interfaces did not emerge until the 
design of the first mechanical calculator in the 17th century. The nature of num­
bers allows interfaces to be designed that exploit the specification of individual 

digits of the number as well as making incremental changes to the entire num­
ber. The diversity in interface design is not evident in current research which is 
dominated by various forms of evaluations of the numeric keypad interface.

This thesis undertakes a historical review of the design of number entry in­

terfaces and then explores the design space within which they lie while proposing 

a classification for the different styles of interfaces. It then evaluates several 

example alternatives to the numeric keypad, specifically those in use on infu­

sion pumps in hospitals using both exhaustive simulations and usability studies. 
These evaluations explore the effects of interface styles on error detection, speed, 

error severity and error type. This research concludes by identifying properties 
for performing relative comparisons of interfaces and uncovers design trade-offs 
that will help inform decisions about the safety and dependability of number 
entry interfaces.
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Preface

Light switches are often cited as examples of simple state machines. They are 
either on or off. A few months before I started this PhD, Harold Thimbleby, my 
supervisor, showed me his latest toy. It was a light box he’d built using an off-the- 

shelf dimmable electronic transformer* and two generic switches. The switches 
looked exactly identical but had different physical properties when pressed. The 
first switch, on the left, was a normal toggle switch and the other was spring 
loaded, returning to an off state once released. Harold challenged me to turn on 
the light box. After about half a minute of probing the light box, I managed to 
turn it on. But why should such a simple device have a complicated interface? I 
later learnt that the light box was a replica of the light control our postgraduate 
seminar room.

I had just finished my master’s degree and was at the time doing some work 
on automatically exploring interaction graphs of simple interactive systems from 
programmed simulations. So I thought I’d find out exactly how complicated the 
box was by writing an ActionScript simulation and discovering the user interface 

model. Figure lb  shows the result of my endeavours. The only detail worth 

taking out of Figure lb  is its apparent complexity. I quickly realised that I could 
reason about the light box as a simple value entry system used to change the 

intensity level of the bulb.

This research started in April 2010 as part of CHI+MED -  a multidisciplinary 

research project on human computer interaction for safe use and design of in­
teractive medical devices. This project provided a platform of opportunities to

^He used the Pico Wolf X  60 electronic transformer
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Figure 1: The lightbox (a) and its internal interaction user interface model (b). Each 
circle in the graph represents a state o f the lightbox and the color o f the circle represents 
one o f seven levels of brightness.

engage and interact with devices in the medical context with various styles of 
number entry interfaces and I decided to explore the implications of the different 
styles for the design of safety critical interactive systems.

This thesis is the result of my work of exploring, analysing and discovering 
number entry interfaces over three years.

Style

I have elected to write up this work in a mixture of two different but coherent 
styles. I introduce and conclude the work in the active voice in order to clearly 

frame and state the contributions of this research. I report the scientific research 
within the body of the thesis in the passive voice.

E th ica l issues

I recruited human participants for the experiments in Chapters 6 and 7. Conse­
quently, prior to the recruitment stage of each experiment, I sought and received 

ethical approval for the experiment from the Computer Science Department's 
Ethics and Risk Assessment Committee in Swansea University.

Prior to the beginning of each study, each participant completed a consent 
form and was told about their right to withdraw from the study without any
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Chapter 1

Introduction

Interactive computer systems have improved over the years and despite various 
technological advancements, a notion that persists in interactive devices is that 
they need to be used either passively, for instance, by merely informing a deci­
sion based on a reading or feedback, or actively, by engaging the user in a more 
interactive session of input - output interpretation loop. The interactive nature 
of computing systems and devices, thus requires a means of communication be­
tween the user and the device. The user provides a sequence of commands for 
instructing the device about how they intend to execute a task. This means of 
communication can be broadly described as data entry and it may be transmitted 
through different forms of user interfaces including (but not limited to) speech 
based user interfaces or tangible user interfaces such as buttons or touch screen 

devices. In general, data entry in interactive systems usually has a simple pur­
pose - to supply some value to an application in order to facilitate the execution 
of an intended task. This makes data entry a core aspect of using an interactive 
system.

Data entry itself has two components. One of them is Data, which is concerned 
with the type of information supplied to the system. The other is entry, which 
is concerned with how the information is supplied to the system. One type 

of data is text. Text entry interfaces primarily offer character level control. 
The user specifies the letters that make up the intended words. The use of

1



1. I n t r o d u c t i o n

text is ubiquitous. This is evident, for instance, in the proliferation of mobile 

phones coupled with a myriad of social media applications that enable users 
to share text based information and messages. Consequently, there has been 
a lot of research on text entry for a variety of interactive devices in different 

contexts. These range from the performances of different layouts of the typewriter 
keyboard [KroOl] to that of a 12-key text entry interfaces found on millions of 
mobile phones [But02, Sou03, SilOO, San04].

Another ubiquitous type of data is numeric. Number entry has been a part 
of human culture since we learned to count. The cultural and economic im­
portance of numbers is evident in their presence in languages around the world. 
Tally sticks were among the earliest artifacts that were used to represent numeric 
quantities [Dan68], usually acting as a memory aid that had better persistence 
than finger counting. After tally sticks came devices like various forms of aba­
cuses and counting boards like the Salamis Tablet [Men92, p. 300]. Much later, 
starting in the mid 17th century, the advent of a series of mechanical calculators 
such as Pascal’s Calculator and later, the Arithmometer, brought about a series 

of different design options for interacting with numbers and designing modern 
number entry user interfaces. Variants of these interfaces are still in use today 
in various interactive devices - although implemented in ways that account for 
technological advances both in software and hardware.

Tasks that require entering numbers are vital to the use of many interactive 
devices and are consequently extremely common. For instance we enter or select 
numbers at the ATM, we enter, select or modify numeric values in our microwave 
ovens to specify time, and we often change the volume on our music player. While 
performing any of these tasks, the user might be oblivious to the number entry 
aspect of the task, after all, you only wish to withdraw some money from the 
bank, warm up your food or increase the volume of music. Number entry is 

usually a sub-task to achieving a more primary goal and is therefore very often 
perceived as trivial.

The reader could probably think of more than one type of interface for per­

forming these tasks. For instance, an ATM might use a 12-key numeric keypad, 
a microwave might use a dial and the music player might use a slider. In short,

2



1.1. Data entry errors in medicine

there are several ways a number entry interface might be designed and imple­

mented. Despite dating back many years, until recently, research has failed to 
identify a classification or a review of the performance of the different styles of 

interfaces that might be beneficial to designers of interactive systems.

Research on number entry has focused mainly on one type of interface: the 12- 

key numeric keypad found on many telephones and calculators. The popularity 
of this interface is not surprising as user interaction directly maps to the way 
numbers are written in western languages. This is just like text entry where 

digits in a number are specified sequentially from left to right. This makes it 
very easy to learn and adopt.

There are, however, other alternative ways for designing number entry in­
terfaces, each having different context-dependent advantages and disadvantages 
including consequences for speed, error, user interface footprint or user experi­
ence. Many of these factors play an important role in the dependability of a style 
of interface in the safety critical context and particularly in their appropriateness 
of use in such contexts.

1.1 D ata entry errors in m edicine

A context of interest in this thesis is the healthcare setting where poorly de­
signed data entry interfaces could lead to error, and errors could have severe 

consequences such as death. Medication errors are the leading cause of adverse 
events in hospitals with as many as 6.5% of inpatients and 27.4% of outpatients 
experiencing adverse drug events (ADEs). ADEs are responsible for 4.7% of all 

hospital admissions in American hospitals [Mor04, Bat95, Gan03]. The majority 
of these adverse events are preventable and have been classified based on their 
position in the medication process (e.g., see [Mor04, Rot05, Lis05]).

Errors occur in the following stages of the medication process:

• Prescribing/Ordering stage - (i.e., when medication is requested by the 
physician or consultant)

3



1. I n t r o d u c t i o n

•  Transcription stage - (i.e., when a physician’s order is transcribed by a 
secretary or a nurse)

• Dispensing stage - (i.e., when medication is supplied by a pharmacist)

• Administration stage - (i.e., when medication is delivered to the patient 
by the physician, nurse or the patient)

• Monitoring stage - (i.e., when the status of an administered medication is 
checked by the physician, nurse or patient to ensure safe delivery)

All these stages in the medication process involve the correct perception and 
specification of numbers used to specify settings such as drug doses, frequency 
of therapy and duration of therapy. These can occur over a variety of contexts 
ranging from a General Practitioner’s office, to a patient’s home, and on a variety 
of medical devices ranging from computerised order entry systems running on PCs 
to drug delivery systems running on infusion pumps.

According to a National Patient Safety Agency (NPSA) report in 2007, about 
7000 medicine doses are administered each day in each hospital in England and 
Wales [Age07]. Some drugs have to be administered intravenously due to the 
treatment requirements of patients who need multiple intravenous drugs to be 
delivered simultaneously [Keo05]. Devices such as infusion pumps, used for con­
trolled delivery of drugs in hospitals, require timely and accurate programming 
in order to avoid patient harm [AgelO]. Setting up an infusion pump requires en­

tering numbers tha t correspond to the rate of infusion, the volume to be infused 
(VTBI) and duration of the infusion. Many adverse incidents in hospitals have 
occurred as a result of avoidable number entry errors in programming infusion 

pumps, (e.g., [Vic03, W esll, ISM06]). Consequently, designers of medical devices 
ought to be able to make informed design decisions on number entry interfaces 
with a clear understanding of the strengths and weaknesses of a style of interface.

Tenfold medication errors are well reported in literature. They refer to nu­
meric data entry errors where the intended number is different from the tran­
scribed number by a factor of ten. Thimbleby and Cairns [ThilOb] refer to this 

type of error as an out-by-ten error. Tenfold errors have been documented to

4



1.1. Data entry errors in medicine

occur during all five stages of the medication process although they are most 

common during prescribing (43%) and administering (35%) [Dohl2].

Zhang et al. [Zha04b] report an example incident that they discovered in the 
Manufacturer and User Facility Device Experience (MAUDE)* database, that 

represents poor number entry interface design in medical devices. In this incident, 

a nurse inadvertently programmed a pump to deliver an infusion at 1,301 mL per 
hour instead of 130.1 mL per hour. The nurse did not realise that the decimal 
point on the infusion device in question was ignored for numbers above 99.9. 
This incident would have led to an overdose although the outcome is unspecified 

in the paper. Another incident reported by Syed et al. [Sye06] highlights a 
case involving a morphine overdose to a patient, who consequently went into 
respiratory arrest, but was resuscitated. One of the many errors that occurred in 
this incident was a number entry error where a nurse programmed a pump at a 
concentration of 0.5 mg per mL instead of 5 mg per mL. The lower concentration 
value entered into the device meant that the patient received more drug per 

volume than was entered into the device.

Although errors leading to ADEs can occur at different stages of the medi­
cation process, those that occur as a result of errors in interactive number entry 
are smaller and hard to estimate. It is difficult to get an accurate proportion of 
medical errors that occur as a result of number entry. Vicente et al., [Vic03] es­
timated for a single device that the probability of mortality due to programming 
errors has a range between 1 in 33,000 to 1 in 338,800. There is a limitation 
in the quantity of data available for analysis in the medical context. This is in 
part due to the voluntary nature of error reporting in the field, coupled with the 

ethical and technical issues involved in potentially automating the error report­
ing process. Research also suggests that errors are under-reported for reasons 

including time pressure and a culture where errors are typically associated with 

punitive consequences [Res03].

Despite error rates being low, the consequences of error can be potentially 

devastating. As a result, this research proceeds on the premise tha t errors will 

occur and sometimes go unnoticed, however rarely.

*http://www. accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm
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1. I n t r o d u c t i o n

1.2 Problem  statem ent

The importance of safety in healthcare means that medical devices need to be 

designed to have the highest degree of dependability, reliability and safety. This 
means medical devices need to be designed in the best possible ways to properly 
handle and manage error in order to reduce harm to patients that arise as a result 
of poor interaction design.

The focus of this Thesis is the number entry aspect of data entry. Currently, a 
variety of number entry interface styles are in use in medical devices without any 
empirical evidence showing which design option is better and why. This research 
explores the design space of number entry interfaces focusing on interfaces that 
have been in use in medical devices (specifically those in use in infusion pumps).

The overall goal of this Thesis, then, is to explore different ways of designing 
number entry systems, evaluate the performance of the different interface styles 
and understand the trade-offs involved in choosing to implement one number 
entry interface style instead of another. The motivation is to help improve the 

design choices made by designers of interactive number entry systems.

I set out to achieve this goal by:

1. Exploring the design space of number entry interfaces. The design space will 
be validated using instances of number entry interfaces found throughout 
history, starting from early designs found on ancient calculators to more 

recent designs.

2. Building a repository of simulations of different styles of number entry 
interfaces to enable exhaustive analyses for predicting the performance of 

the different interface styles and identify features in each interface style 
that are unique to that style as well as identifying potential bottlenecks for 

speed and accuracy.

3. Running user studies to evaluate the performance of a selection of the 
number entry interface styles identified earlier as well as evaluating the 
effects of interface style on error detection. I will run the repository of
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simulations on a high fidelity prototype unit built specifically for testing 
number entry systems.

4. Identifying a list of criteria tha t can be used to perform a relative compar­

ison of the different styles of number entry interfaces available to improve 
decision support for designers of devices that require number entry inter­
faces.

1.3 M ethodology

In this Thesis, I employ a dual approach to evaluations based on analytical 
evaluation and usability studies. Where possible, I initially perform preliminary 
analyses based on the user interface model discovery method [Thi07, GimlO]. I 

then conduct laboratory studies to support/validate the results of the preliminary 
analytical evaluation. The reason for this dual approach is to harness the strength 
and relative speed of automated and exhaustive user interface model discovery 
with the results obtained from running user studies including the qualitative 
feedback obtained when talking to users about usability perception of interfaces.

Model discovery is a technique in interaction programming and was first de­
scribed by Thimbleby [Thi07]. The method systematically explores the user 
interface of a class of interactive devices that support discrete user interactions 
(usually button clicks). It involves exhaustive exploration of an interactive system 
by successively stimulating all possible user actions permissible on the interface 
until all possible states in the system reachable by user interaction are explored.

The model discovery process produces a graph of states in an interactive 
device (nodes) connected by the user actions necessary to transition between 

these states (edges). A state in this context is modelled by a set of variables 

in the interactive system. The graph produced can thus be formally analysed 

using graph theory algorithms such as finding the shortest paths between any 
two states in the device, the most central state in the device, as well as finding 
safety properties such as connectedness. In this method, one can apply network 
analysis on the resulting graph to find out user strategies or quantitative usability 

metrics such as the average menu depth for an interactive device [Thi09b].

7
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Model discovery is particularly suited to the analyses of number entry inter­

faces, specifically in the medical device domain because the range of numbers 
used in medical devices such as infusion pumps is finite as I shall show in Chap­
ter 4. This makes the number of states for a typical interface discovery process 

for number entry tractable. For the purposes of this Thesis, I explore the shortest 
paths properties for a variety of number entry interfaces to discover the cost of 
setting and changing numbers on these interfaces.

1.4 Thesis structure

In the following chapter, in order to have a view of the evolution of number en­
try, I look at different instances of interfaces built for interacting with numbers 
throughout history. This review sets the scene for understanding the similari­
ties between number entry interfaces and teases out the fundamental functions 
necessary for the design of different styles of number entry interfaces. I then 
conduct a review of literature related to performance metrics used in data entry 
research. Specifically, I explore metrics used in text entry research and highlight 
the limitations of those metrics with respect to the evaluation of number entry 
interfaces. I also review past and current research on the evaluation of number 
entry interfaces with respect to ergonomics (i.e., keypad layout) and error. I 
conclude the chapter with a review of current practices for managing numeric 
errors.

Following this, I explore the design space of number entry interfaces in Chap­
ter 3 in order to create a classification of number entry interface styles. I will 
use this classification to assess the performance of the different interface styles in 

Chapter 5 and explore the relative task completion times for number entry using 
instances from the different classes of interfaces. The results of this analysis sets 

up predictions for usability evaluations performed in Chapters 6 and 7.

Chapter 6 explores the concept of the resilience of an interface based on the 

likelihood of a user to detect and correct an error while using the interface. This 
experiment monitored the eye fixation of users while entering numbers on two 
types of interfaces. Chapter 7 expands on the experiment run in Chapter 6 in two
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ways. Firstly, it increases the number of types of interfaces tested and secondly, 

it introduces a high fidelity prototype unit on which the experiments are run.

Chapter 8 presents a list of criteria that could be used to perform relative 
comparison of different number entry interfaces. These criteria would be useful 
to designers for structuring the options in the design space of number entry 

interfaces while also being able to understand the trade-offs between one interface 
and another in a given context.

Chapter 9 presents a reflection on the results of my research with an emphasis 
on research contributions as well as new research questions that show the viability 
of the research area and possible future research directions.

1.5 Research contributions

This thesis makes the following contributions to research in number entry inter­
face design:

1. A classification of number entry interface styles.

2. An evaluation of the effects of number entry style on error detection.

3. An evaluation of the effects of number entry style on performance using 
custom built high fidelity prototype units.

4. A set of properties for evaluating number entry interfaces and performing 
relative comparisons between a number of design options.

9



Chapter 2

Background

Number entry is an important aspect of using many interactive devices. Today, 
we perform many number related tasks, possibly without realising. Tasks such as 
dividing up the bill in the restaurant with a calculator, or specifying an amount to 
withdraw at an ATM are obvious number entry tasks. Others, such as reducing 
the volume of a music player or tuning a radio station manually might not be so 
obvious.

Since numbers have been an integral part of many cultures, designing inter­
faces that are used to interact with numbers either to easily manipulate digits or 
for a higher order goal such as performing arithmetic has been necessary. As a 
result, the design of number entry interfaces dates back to the invention of very 
old devices like the Salamis counting tablet and the abacus. Later the inven­

tion of mechanical calculators brought about a variety of number entry interface 
designs.

2.1 Num ber system s

The design of modern number entry interfaces is greatly influenced by the nu­
meral system used for expressing numbers. According to Menniger [Men92], 

some of the earliest forms of expressing numbers include the use of finger count­
ing, tally sticks and counting boards such as the Salamis counting board or the
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abacus. Early  system s such as the  unary  system of representing num bers rely on 

the use of repeating  symbols th a t  represent predefined num eric quantities. In its 

sim plest form only one symbol representing the unit quan tity  is required. So. the  

num ber 3 could be represented by the string  Laaa \ A popular modification of 

the  unary  system  is the R om an num eral system where there are explicit symbols 

for representing frequently used large quantities such as X . L , C  representing 10, 

50. 100 respectively. There is no need to  represent zero in th is system  because 

the value of a w ritten  num ber is derived by successively adding up the quantities 

represented by each symbol.

The num eral system  m ost com m on today is the positional system  or the 

place value notation  usually expressed in base 10. In this system , a num eral in a 

num ber is assigned a value which depends on the position it occupies with relation 

to  o ther num erals representing th e  num ber. Thus, the same num eral can be 

a ttr ib u ted  different m eanings in different positions, for example, the 7 in 897. 75 

and 730 represent seven, seventy and seven hundred respectively. This no tation  

was only possible after the  invention of the  symbol for zero by an unknown Indian 

m athem atic ian  [Dan68].

2.2 A  su rv e y  o f  n u m b e r  e n t ry  in te rfaces

A good understand ing  of the  design of num ber entry  interfaces is impossible 

w ithout an understand ing  of th e  h istory  of design of calculators. Below is a 

review of exam ples of the  com m on types of num ber entry interfaces found in 

calculating m achines th roughout history.

Figure 2.1: A n abacus
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2.2. A survey of number entry interfaces

2.2.1 P re 17th century

The first forms of number entry interfaces were seen on ancient counting devices 

and ancient calculators. While counting devices such as tally sticks used the 
unary system of representing numbers, the abacus (see Figure 2.1) primarily used 
a place value notation for representing numbers although they used a modified 

unary approach for representing the digits within the numbers. For instance, 

abacuses are usually split into two rows with each bead in the top row representing 

a numeric quantity of 5 while each bead in the bottom region represent the unit 

number. The value of each digit is obtained by adding the active beads in the 
top and bottom row.

2.2.2 B etw een  17th  century and early 20th  century

The calculating machines [Mar92] and Origin of modem calculating machines 
[Tur21] are both invaluable resources containing historical accounts and com­
prehensive reviews of calculating devices between 1642 and 1925. By the 17th 
century, the use of the positional notation was well established around the world 
and as a result, number entry interface designs were mainly about controlling or 
specifying the digits that make up a number. Consequently, calculating machines 
had interfaces made of dials, setting slides or levers. Key driven interfaces were 
invented much later.

D ials, sliders and levers

This period saw the invention of Pascal’s Calculator (also known as the Pascaline) 
in 1642 (Figure 2.2), and the first Thomas Machine or Arithmometer in 1820 

(Figure 2.3). Dial-based number entry interfaces, such as Pascal’s Calculator 

allowed number entry using a series of toothed wheels each marked with digits 

0 to 9. A varying number of these wheels (typically 8) were used to specify the 
digits of the number the user wishes to use in their calculations. It was common 

for these dials to be operated using a stylus, such that a user would set the 
intended digit by inserting a stylus at the intended number on the wheel and 

then rotating the wheel until it stopped, similar to the way dial-based telephones 
worked. Errors in entry could be easily corrected by simply changing the digit in

13
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Figure 2.2: Pascal's Calculator (1642)

the same way it was set initially. Some devices provided a dedicated  m echanism  

for resetting  th e  system . C alculators th a t  used levers or sliders to set num bers, 

such as the  A rithm om eter or the  M illionaire worked sim ilarly except the  input 

widget used was a slider w ith digits m arked from 0 to  9.

K ey d riven  ca lcu la to rs

Towards the end of the  19th century, various engineers around the world invented 

smaller key-driven adding m achines. These devices typically had 10 keys and were 

only used for adding up a single row of num bers (since they  were only able to  

specify one digit).

In 1885, D orr E. Felt invented the C om ptom eter, a key driven m echanical cal­

culator with a fu ll  keyboard, It had explicit keys for specifying all possible digits 

ii]) to  the hundred  thousands place value. Figure 2.4 shows several examples.

Figure 2.3: The Thomas Machine (1820)
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Many devices invented after the Comptometer used a similar interface that 

provided a 9 x N  grid of digit keys, where N  is the maximum number of digits 

the device permits the user to enter during a calculation. Note tha t N  is usually 
less than the maximum number of digits that could be displayed in the result of a 

calculation. The numbers within each column of keys begins at the bottom, from 
1 and up to 9. There were no zero keys and the display section of the interface 
started off as zeroes. Users entered numbers by pressing on the required digit 

in the column representing the intended place value, one at a time. If the user 
committed an error and detected it, they could simply press the correct digit in 
the same column to fix the error. In instances where the wrong place value was 

entered, (i.e., the user unintentionally selects a digit in the wrong column), some 
models had dedicated keys in each column that reset the digit to zero. Others 
simply had a mechanism for resetting all the keys. When used for currencies, 
the tens and units columns were used to denote the tenths and hundredths place 
values used for pennies or cents for example. To facilitate easy demarcation, 
many interfaces coloured these two columns differently from the next three.

Two improvements to this style of interface made it faster and less error 
prone. A feature called multiplex keys allowed the user to simultaneously press on 
multiple keys from different columns. This allowed significantly quicker number 
entry on the interface. A feature called controlled keys prevented entry of the 
wrong number if the key was not properly depressed*.

The Kollektor (pictured in Figure 2.5a) was invented in 1910 and was rela­
tively portable in comparison to its predecessors. It had only four keys and could 

be operated using four fingers on the left hand. The keys 1, 3, 4, 5 were pro­
vided on the interface for specifying the corresponding digits. Other digits were 
produced by double tapping on a combination of the four digits. For example,
2 =  1, 1 ? 6 =  3, 3 7 =  3, 47 =  3, 4 and so on. When setting multiple digits, users 

had to remember to move the calculator mechanism to the next digit place to 

avoid performing incremental additions on the same digit.

*The precise effect of errors that occurred due to partially depressed keys is unclear from 
[Mar92]. One could argue that the feedback provided when keys are depressed is just as 
important in ensuring that users are consistently aware that they have not properly activated 
the key mechanism. This would have been even trickier with multiplex keying.
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(a) Comptometer (1890) (b) Burroughs adding and listing machine
(1912)
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(c) Marchant “ACRM” Calculator (1932) (d) Monroe LA5-160 Calculator (1940)

Figure 2.4- A variety o f fu ll keyboard mechanical calculators in use between 1890 and 
1940.
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(a) (b)

Figure 2.5: The Kollekt.or (a) and the Rotary Dial (b)

2.2.3 Post 19th century

Various forms of key-driven calculating m achines were produced in th e  early 20th 

century  a lthough m ost were of th e  ‘fu ll-keyboard’ variety, since they  allowed the 

user to  work w ith num bers in m ore th an  single digits. T he ro ta ry  dial (see 

F igure 2.5b) was the earliest interface used to  en ter num bers on telephones. It 

was a m echanical inpu t device w ith num bers arranged  from 1 to  0 in a circular 

layout. A num ber is entered by entering each digit sequentially. A digit is set by 

using a finger to  select the  required digit on th e  wheel and ro ta te  the  wheel to  

the  stop  position. W hen the  wheel is released, the  num bers re tu rn  to  their home 

position thanks to  a spring loaded m echanism . This period also saw the  design 

of telephones which required num eric keypads for specifying telephone num bers 

[Web 12]. Early telephones had a ro tary  dial interface.

Significant advances in electronics betw een th e  1940s and 1950s led to  Casio 

building the  first all electronic calculator in 1957. This period also saw the 

developm ent of the  first push -bu tton  telephone sets. T he m ain difference in the
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interface design for calculators of th e  20th century  was the  reduction in size of 

the  num ber of keys present on the  devices coupled w ith an electronic display. 

This cam e with the  cost th a t num ber en try  had to  be strictly  sequential order. 

It also raised the possibility of a lte rnative  key layouts. F igure 2.6 shows various 

interfaces w ith differing layouts.

2.3 T e x t e n t ry  re se a rc h

One of the  m ost comm on forms of d a ta  en try  is tex t entry. There has been a 

lot of research on tex t en try  ranging from the  perform ance of different layouts 

of th e  typew riter keyboard [KroOl] to  the  layouts of 12-key tex t en try  interfaces 

found on millions of mobile phones [But02, Sou03, SilOO. San04]. Text en try  

is a special form of d a ta  en try  where the  words formed from the a lphabet are 

from a relatively small set of valid values as defined by the vocabulary of a given 

language. This has im plications for designing the layout of keyboards in text 

en try  interfaces (in term s of im proving speed) as well as b e tte r  m anaging errors. 

A list of valid words make it possible to  build error correction models based on

Figure 2.6: A selection o f key driven number entry interfaces invented post-19th cen­
tury.
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the similarity of an incorrect word to one in the valid set.

There are various examples of text entry interfaces in use on computer sys­
tems today. On desktop systems, these are typically different layouts of the full 
alpha-numeric keyboards - the QWERTY keyboard being the most common. On 

mobile devices, a common practice is to overload the numeric keypad with func­
tions for text entry due to the limited surface area available for buttons in these 

interfaces [San04]. According to F itts’ Law [Fit54], there is a trade-off between 

speed and the size of keys. This puts a limit on the number of buttons that can 
be presented on a given surface area. This limitation means mobile devices need 
to implement text entry with a set of keys much less than the alphabet they are 
addressing. Consequently, researchers and designers have invented methods such 
as multi-tap, chording and dictionary based methods for text entry.

The multi-tap technique was one of the earliest mobile text entry methods 
and it involved tapping on a single key multiple times to cycle through the letters 
attributed to that key. W ith the chording technique, users simultaneously press 
several keys to specify a letter. The linguistic or dictionary based technique, is a 
form of predictive text entry and is currently very popular in commercial applica­
tions. In this method, each key or area can be assigned to multiple letters of the 
alphabet and a dictionary of words in the entry language is used to disambiguate 
the user’s keystrokes [Mac02b]. This allows automatic text entry when there is 
no ambiguity. In cases of ambiguity, the application defers correct selection to 
the user from a list of suggestions based on the words obtained from the language 
model [Kre89]. The dictionary based model has also been used to optimise the 
order in which characters are presented in entry lists for three- or five-key text 

entry keypads [San04, Mac02c].

The advent of better touch sensitive hardware has increased the surface area 

of mobile devices and many text entry interfaces are now implemented as virtual 
keypads with gesture control such as shape writing [Zhal2, Kri07, Dun08]. The 

larger surface areas enabled by touch screen interfaces has also allowed devices 
to have the full alphabet on the keyboard. Current research includes improving 
language dependent error correction models, or creating optimised key layouts 

for better speed, accuracy and ease of use [Oull3].
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2.3.1 M etrics for tex t entry interface evaluation

A popular metric for measuring the speed of a text entry interface is the number 

of words a user can enter on the interface over a given period. 'This is commonly 
measured as words per minute (wpm). The advent of keyboards with keys using 

overloaded characters brought about different metrics for measuring other aspects 
of performance of a text entry interface such as error.

A metric for measuring error rates is the minimum string distance (MSD) be­

tween the transcribed text and the presented text [SouOla]. MSD is based on the 
Levenshtein distance between the presented and transcribed t<ext [Lev66]. This 
distance is calculated as the minimum transformations (i.e., insertion, deletion 
or substitution) needed to turn the presented text into the transcribed text. For

isinsertexample, the Levenshtein distance between the word insertion and 
3 - representing the three deletion actions needed to convert between the two. 
A common short-coming of the MSD metric is that it doe3s not take into ac­
count the corrected errors in a transcription process. Since it iss derived from the 
transcribed text, corrections do not feature in the evaluation. Key strokes per 

character (K SPC ) improves on the MSD metric by incorporating the length of 
characters in the inputstream of transcription. This inputstream  contains all the 
keystrokes that were involved in the transcription process. KSPC is a measure of 
the speed of an interface with respect to how many key strokes are needed to en­
ter a character on that interface. This is 1 for full alphabet keyboards, 1.0072 for 
dictionary based disambiguation and 2.0342 for multi-tap text entry on a 12-key 
mobile phone [Mac02a]. KSPC also serves as a metric for evaluating error rates 
in a text entry interface. Soukoreff [SouOlb] defines KSPC as the ratio between 
the number of key strokes issued by the user and the number of characters in the 
user’s transcribed text. KSPC however gives an indication of both the efficiency 
of an interface and a sense of the number of errors a user encountered while using 

the interface. It does not distinguish between the two. As a result, it is difficult 
to tell whether a high KSPC value is due to high rate of error or poor interface 

efficiency.

The nature of number entry tasks are different from the typical text entry 
task especially in terms of the duration spent on the task as well as the length
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of characters or digits involved in the task. Number entry tasks are usually 

much shorter than text entry tasks and are often found as sub-tasks in text 
entry. Moreover, not all number entry interfaces operate on the character level 

of control. Consequently, text entry evaluation metrics are mostly not applicable 
in the evaluation of number entry interfaces. For instance, the MSD metric gives 
an indication of the transformations required to change a number into another. 

The main limitation of this metric is that it is only applicable to number entry 
interface styles that control numbers at a digit level of operation. Furthermore, no 
current text entry metric gives an indication of the severity of an error, which is an 

important safety factor. Secondly, number entry language models cannot be built 

the same way text entry language models are built based on valid words possible 
in a given language. As a result automatic error correction of numeric input is 
limited to obvious syntax errors such as multiple decimal point characters. In 
general, criteria used for comparative assessment and evaluation of number entry 
interfaces must be generic enough to apply to all styles of interfaces as well as 
exploit the numeric properties of numbers.

The rest of this chapter discusses related work in data entry tha t contextu- 
alises the state of research in the design and evaluation of number entry interfaces. 
Specifically, the review of research will focus on the evaluation of different as­
pects of number entry interfaces, and how data entry errors have been managed 
in a variety of research areas. It concludes by highlighting the need for more 
fundamental research in the classification and evaluation of different classes of 
number entry user interfaces.

2.4 Num ber entry interface research

2.4.1 N um ber entry in teraction  sty les

The Light Handle [New68] was a programming technique used to emulate the 
effect of rotating a virtual knob on a display by using a light pen to make clockwise 

or anti-clockwise rotations on the display. These rotations cause incremental 
changes to a number. The direction of rotation designated the type of change 

made to the number (i.e., increments or decrements) and the horizontal center
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of the rotation determines the rate at which the number changes. Slow changes 

are caused on the right side of the designated input area while faster changes 
were caused on the left side. In addition, the rate of change of the value was also 
dependent on the speed of movement of the pen.

The Number Wheel used the notion of a sliding gesture for specifying nu­
meric values on a tablet [Tho79]. Its function is analogous to that of a wheel 
whose circumference partly protrudes through an area on the surface of a tablet, 
similar to a thumb wheel. The range of values in the application is defined by 
points on the circumference of the thumb wheel such that lateral movements on 
the circumference makes corresponding changes to the numeric value specified. 
Given the analogy of a wheel, the question about how to appropriately deal with 
situations where the user attem pts to turn the wheel past its full circumference 
must be addressed. Thornton identified two possible ways to deal with this. The 
wheel can wrap around, such that the maximum value changes to the minimum 
value. On the other hand, the action could be blocked such that the wheel stops 
changing the numeric value until it is moved in the opposite direction. Thornton 

also identifies various parameters that can be used to specify number wheels, 
including the range of values addressable by the wheel, the input and output 
resolution of the wheel and the limit condition to use i.e., wrap around or stop.

In their seminal work on the human factors of interaction techniques, Foley et 
al. identified Quantify as one of six types of fundamental interaction tasks [F0I8O, 
Fol84]. Other interaction tasks they identified were Select, Position, Orient, 
Path, and Text. They describe quantify as a task where the user specifies a 
numeric value to an application. They identify two broad forms of quantifying 

techniques based on discrete and continuous interactions. These techniques are 

reviewed below.

• Continuous quantifying by direct interaction can be accomplished with a 
physical device such as a slider, dial or a touch pad. A bounded dial may 

be used to specify numeric values in the range defined by the limits of 
the dial such as those found in radio volume controls. A slider may be 
used in a similar way where physical limits on the widget signify the range
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the user can specify to the application. These generally specify absolute 

quantity. An unbounded dial or a touch pad on the other hand can be used 
to specify relative quantity where user actions simply map to increments 

and decrements to the numeric value in the application.

•  Continuous quantifying by scale drag involves the user pointing to a value 
indicator on a scale or gauge and then moving along the scale to specify the 

required value. A highlighted marker may be used to indicate the currently 
selected value or a numeric value may be updated on the screen as the user 
moves up and down the scale. In this case, a mouse or (graphic) tablet is 
used to move to the required value.

• Continuous quantifying by locator value involves a situation where the user 
moves a locator along an axis and the position of a pointer on a scale is 
changed accordingly. For instance the movement of a device such as a mouse 
is mapped to the movement of some pointer or cursor on a scale. This is 
similar to how the Number Wheel described by Thornton works [Tho79].

• Continuous quantifying by simulated stopwatch where a numeric value changes 
at a constant rate when the user pushes a button. The rate of change may 
be regulated by a dial and the user accepts values by releasing the button.

• Discrete quantifying by type-in where the user types in a numeric value 
with a keyboard.

Mackenzie et al. [Mac94] explored the performance of pen-based numeric 
entry on computers. They exploited users’ familiarity with the number arrange­
ments on a clock face and developed an interface that used the notion of gestures 

and pie menus to enable number entry using a clock metaphor. In the clock 

metaphor, a circle is divided into 12 sectors with the digit ‘0’ at the 12 o’ clock 
position. The 10 and 11 o’ clock positions were not used. Users of the system 

could stroke from an arbitrary starting point towards the position of the number 
on the face of a clock. They investigated two entry methods using this interface. 

One variation required the user to perform a stroke at the insertion point of the 
digit, similar to handwriting. They called this the moving pie menu. A second
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3

Figure 2.7: Pen-based, number entry interfaces using the clock metaphor

variation utilised a stroking pad where strokes were m ade on top of each other 

and the  resulting digit was au tom atically  appended to the  end of the sequence 

on the interface. They called this the  pie pad. They com pared these two vari­

ation w ith handw riting  and the num eric keypad. Their results showed th a t the 

num eric keypad was fastest and m ost accurate with a 1.2% error rate.

In a follow-up to  M acK enzie’s previous experim ent, McQueen et al. [McQ95] 

com pared the pie pad and hand writing numeric input method specifically to in­

vestigate th e  effects of learning on th e  perform ance of both interface styles. They 

found th a t  p a rtic ip an ts1 en try  speed changed significantly after several sessions 

of the  study. A lthough handw riting  was initially faster, the pie pad was 24% 

faster th an  handw riting by the 20th session. This suggested th a t participants 

were able to  quickly learn how to  use the new interface effectively.

A sim ilar study  by Isokoski and Kaki [Iso02] com pared two numeric entry 

m ethods on handheld  touch pads using fingers ra ther than  styluses for input. 

They com pared M cQ ueen's piepad w ith  a hybrid clock face design where digits 

on the  clock face were selected using an ‘"L" shaped gesture as shown in Figure 2.7. 

The shape is form ed by first following the nearest axis and then  turning towards 

the num ber. T heir experim ents involved entering a series of 5-digit num bers and 

results showed a significant im provem ent in error rate  from the pie-pad.

Lin and Wu [Lin 13] perform ed a study  to  investigate the  differences between 

touch screen devices and physical keypads in the context of numerical typing. 

They got partic ipan ts  to  en ter 30 random  9-digit num bers using three interfaces
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with the calculator style numeric keypad layout. Two of the interfaces were 

on a touch screen. One variation showed precise visual feedback of where the 
user touched on the interface while the other showed inprecise feedback by just 

inverting the selected button. The third interface was a physical numeric keypad. 
Their experiment showed that touch screen keypads were as accurate as physical 

keypads although participants had a slower response time on the touch screen 

interface. The slower response time on the touch screen interfaces was attributed 
to a slower pre-motor response time in preparing motor execution for tasks on 

the touch screen interfaces.

2.4.2 K eypad layout

One of the earliest documented experiments in the design of numeric keypads 
was performed by Deininger at Bell Labs [Dei60b, Dei60a]. Deininger was in­
terested in how people processed information when entering telephone numbers. 
He also wanted to find out desirable design features for use in dial-based tele­
phone sets. Amongst the factors he explored was the effect of key arrangement 
on the performance of users entering telephone numbers. Sixteen different key 
arrangements shown in Figure 2.8 were evaluated in groups of three in an initial 
study. As part of the study, participants entered between 10 and 15 telephone 
numbers containing two letters and five numerals. Based on the results, four 
layouts (IV-A, II-A, IV-B and I-C in Figure 2.8) found to be superior were fur­
ther compared with the then standard telephone rotary layout. Although the 
results of the second evaluation showed that both the circular and rectangular 
layouts were acceptable, the rectangular arrangements offered better engineering 

advantages.

Further studies of the rectangular layouts showed that layout IV-A could be 

made to cover a smaller area by reducing the space between the centre of two 

buttons to |  of an inch without causing significant change in performance. This 
layout has the keys [T] [2] [3] at the top and is currently in use today in telephones. 

It is different from that found on calculators which have keys [7] [8_ _9_ at the 

top.

Given the two popular layout in IV-A and I-A, that is, the telephone and the
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calculator layouts, Conrad and Hull [Con68] compared these interfaces to explore 

their effect on speed and accuracy for numeric data entry. They assigned subjects 

into three groups. One group worked exclusively on the calculator layout, the 

second group worked exclusively on the telephone layout and the third group 

alternated between the two layouts. The subjects were housewives who had no 

familiarity with either the telephone or calculator layouts. Over a period of four 

days, the subjects entered 8 digit codes for 30 minutes everyday. The results 
showed that the group that alternated between interfaces performed worst both 
in terms of speed and accuracy. In addition, the group that worked exclusively on 
the telephone layout was more accurate than the group that worked exclusively on 

the calculator layout although there was no significant difference in speed. Since 
the subjects had no experience with either layout, the difference in accuracy 
was attributed to the fact that the telephone layout conforms more to where 
subjects expected numerals to be found on the keypad [Lut55]. Later research 
by Rink [Rin99] supported this reasoning as people tend to recall the layout of 
the telephone keypad with better accuracy than the calculator layout.

Other researchers have focused on the effect that the task being performed 
has on the user’s choice of key layout. Straub and Granaas [Str93] presented 8 

scenarios describing number entry tasks to 100 users and asked them to choose 
one of the calculator or telephone keypad layout to perform the task. The tasks 
included entering telephone numbers, personal identification numbers and per­
forming calculations. They found that users preferred to use the telephone layout 

when they were performing telephone related tasks whereas the preference for the 
telephone layout was lower when performing tasks related to calculations.

Later research by Marteniuk et al. [Mar96] suggested tha t the performance 

difference previously found between the different configurations of the telephone 
or calculator layout were as a result of the placement of the zero key. Their 

study investigated the possibility that number entry task performance is affected 
by both the type of task being performed and the layout configuration of the 

keypad used. They devised four configurations of the numeric keypad comprising 
of the calculator and the telephone layout each having two variations where the 

zero key was placed at the bottom or at the top of the keypad. They used three
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types of tasks in their experiment including 4 digit strings, 7 digit strings and 7 
digit strings formatted as North American telephone numbers. Using each of the 
four interfaces, each participant entered 20 instances of the designated type of 

number. Their results suggested that the performance difference found across the 
four interfaces were a result of the placement of the zero key. They recommended 
that the zero key be placed below the other keys in the layout.

These experiments were all based on the numeric keypad and the types of 

numbers used in the research are long alpha-numeric codes, mainly in the form 

of telephone numbers.

2.4.3 Errors

Numbers encapsulate a precise quantity and in safety critical environments such 
as in hospitals, the accuracy and timeliness of medication delivery is essential to 
reducing any risk of harm to patients. Numbers are used to specify quantities 
representing drug doses, concentration, volumes, patient age or weight. The 

design of the number entry interface contribute to the categories of errors that 
occur in the use of medical devices.

According to Reason [Rea90, p. 9], error is a generic term to encompass all 
those occasions in which a planned sequence of mental or physical activities fails 
to achieve its intended outcome, and when these failures cannot be attributed to 
the intervention of some chance agency. There are three main types depending 
on the cognitive stage at which they occur in Norman’s Action Cycle [Nor02]. 
Mistakes are errors that result from failures in the planning of an action sequence, 
lapses are errors resulting from failure in the storage of an action sequence and 
slips are errors that result from failures in the execution of an action sequence.

Mitigating the effects of error is an important goal in the design of interactive 

computer systems. There are currently two approaches to achieving reliability in 
organisations [Bla06]. One method of managing error focuses on prevention and 
the other focuses on resilience of a system. The prevention method implies that 
the possibilities of errors in a system are predetermined and preempted in the 

design of the system so that opportunities for error can be avoided. The resilience
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approach focuses on designing systems that can cope with error for instance by 

ensuring appropriate feedback that increases the likelihood that users notice and 

deal with errors. In Chapters 6 , 7 and 8 , the effects of keying slips are investigated 
with respect to the severity of errors they cause on different styles of interfaces.

N um ber entry error

Events involving number entry errors have been documented in literature in set­

tings ranging from finance to healthcare. In 2008, a Norwegian inadvertently sent 
a large sum of money to an unintended recipient. She keyed the wrong account 
number entering a twelve digit number instead of an eleven digit number [Ols08]. 
Unknown to her, the web interface she used discarded the last key she pressed 
and her entry was still a valid account number - although one completely dif­
ferent from what she intended. This resulted in a serious financial error. In 
healthcare, a missing or wrong digit in a patient identification number could lead 
to a dangerous situation where the wrong patient gets and unintended medica­
tion. However, numbers in healthcare are used for things other than as patient 
identifiers.

In 2009, the Food and Drug Administration (FDA) reported a fatal incident 
involving an infant [FDA09]. The patient was given an overdose 10 times the 
intended amount due to a missing decimal point error. Further investigation 

showed that the pressure needed to activate the decimal point key on the device 
was more than the pressure needed to activate the other keys.

More recently, research has focused less on the ergonomics and layout of but­
tons on the numeric keypad and more on understanding number entry error, im­
proving design to reduce the risk of error and investigating the resilience of given 

design options against number entry error. By getting users to enter numbers 

using the calculator style number entry interface and in conditions specifically 
designed to elicit number entry errors, Wiseman et al. [Wisll] collected a repos­

itory of the different types of errors people make while transcribing numbers. 
They used this error repository to build a number entry error taxonomy that 

provides a classification of number entry error based on their underlying causes 
at a cognitive level. Their taxonomy classifies errors based on their position in
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Norman’s Action Cycle [Nor02] and contains 21 types of number entry errors.

Traditional usability studies are however very expensive when running exper­
iments with a high number of variables e.g., when testing multiple interfaces each 
having different ways they can be implemented. The large space complexity cou­

pled with low rate of errors in the laboratories, has led other researchers to take 
mathematical approaches in exploring number entry errors. These techniques are 

usually in the form of computer simulated exhaustive interface analyses.

For example, Thimbleby and Cairns [ThilOb] have shown using a variety of 
quantitative mathematical techniques that the probability of ten-fold or out-by- 
ten errors, which are a significant risk to patient safety [Les02, Dohl2], can be 
significantly reduced by better programming. These errors are mainly caused by 
missing decimal points, unintended repeated digits, missing digits or an improp­
erly parsed user input such as the entry of multiple decimal points. Thimbleby 
and Cairns show that mainstream devices and programs in use in both safety 
critical settings e.g., infusion pumps and non safety critical settings do not cor­
rectly support recovery from error or indeed in some cases they do not correctly 

interpret a mistyped sequence of numbers. For example, keying in 1 . 2 . 3  is 
interpreted by one device to mean 1.3 while in some other devices it means 1.23. 
They propose a method for parsing the input stream from the numeric keypad 
so that syntax errors such as multiple decimal points are correctly detected and 
alerted to the user.

Following this and based on inspection and review of number entry inter­

faces in interactive systems, Thimbleby and Gimblett [HWT11] provide evidence 
through various examples that suggests that a lot of data entry systems are 
implemented in an ad hoc manner. For example, a good number of handheld 
calculators do not detect overflow in number entry. This means performing cal­

culations with numbers that are larger than the range permissible on the display 
of the device results in an error. Dividing 308,000,000 by 6,800,000,000 incor­
rectly results in 0.45. This introduces a level of unpredictability for the user 
particularly when users are correcting syntax errors in the course of interaction. 

These apparent ad hoc implementations could be attributed to the lack of a sys­
tematic approach in the development of dependable keyed data entry interfaces.
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Thimbleby tackles the lack of systematic approach by introducing a design that 

is correct by construction (CxC) [Jon06]. CxC means that formal methods are 
used during the production of software rather than afterwards.

The Institute for Safe Medication Practices (ISMP) sets out recommenda­

tions for displaying numeric information in medical devices [Ins06]. Thimbleby 

and Gimblett formalise these recommendations using regular expressions and 
gave an example of how a dependable interface might be implemented using 
feedback based on a traffic light system. Here data entry errors, (i.e., those that 
fail the ISMP regulations) are coloured red, incomplete data specifications are 

coloured yellow and correct data specifications are coloured green. This tech­
nique is however only amenable to number entry interfaces where syntax errors 
are possible.

Using a similar technique, Cauchi et al. [Caul2a, Caul2b] ran simulations 
that explored the effects of key slips on 28 variations of the so-called five key 
number entry interface. A five key or directional pad (d-pad) interface has four 

navigation style up-down-left-right buttons that are used to navigate a cursor 
around the place value of numbers as well as increase and decrease selected digits. 
This interface is described in more detail in Chapter 3. Cauchi et al. introduced 
a method called stochastic key-slip simulation (SKSS) where one of deletion, 
transposition, substitution or insertion errors are applied as transformations on 
a sequence of keystrokes which are executed by a computer simulation. The 
simulation essentially represents a user performing a task as defined by the keying 
sequence. The resulting sequence is executed on the interface and a measure of 

error is obtained by analysing the difference in the intended numeric output 
and the actual output obtained based on the transformed sequence. W ith this 

method, they were able to rank the different variants of a five key interface based 
on their resilience to keying errors.

2.4.4 M ethods for d ata  entry error reduction

In practice, there are currently different methods adopted or suggested to reduce 
number entry errors or to improve the possibility of detecting number entry

31



2. B a c k g r o u n d

errors based on research in the field of coding theory, accounting and healthcare. 
A review of these methods follows with a highlight of their shortcomings.

Wang et al. [Wan 11] have applied data mining techniques to detect number 

entry errors using electroencephalography (EEG) data. In their study, partici­
pants performed hear and type tasks of entering a series of 9-digit numbers. Dur­

ing the study, participants wore an EEG cap that measured their brain activity. 
Their initial classification of EEG samples indicated that EEG patterns recorded 
before making errors may be different from those recorded before correct entry. 
The potential of this research is in the predictive nature of the method which 
could provide error warnings to the user as soon as they occur, thus improving 
error detection rates.

D ouble data entry

Research in data entry suggests that double-entry is an effective way of reducing 
data entry error although at an extra time cost [Rey92, Day98]. Double entry 
is used in electronic forms for validating actions like setting or changing pass­

words where minimal visual feedback is provided to the user about data entered. 
Entering passwords twice ensures that the user has entered the same (intended) 
value correctly.

D ouble checking

Double checking is a policy advised by many hospital practices to reduce medi­
cation error [Ins05]. It involves the user ensuring that the data they have entered 
for a medication is for the right patient, using the right drug at the right dose. 

Double checking should ideally be performed by a different person from the one 
who entered the data. Although research by [Jar02] showed a comparable num­
ber of medication incidents when using a single nurse as opposed to two nurses. 
The main drawbacks of double checking are the extra human and time resources 

required to perform an independent check [U03].

Independent double checking is also not foolproof. David [U03] cites an in­
cident where a pharmacist correctly calculated a dose requiring a volume of
0.068mL but incorrectly entered 0.68mL into the computer. Despite a second
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pharmacist double checking the calculation and arriving at the correct value of

0.068mL, they still misread the incorrect volume due to confirmation bias. The 
failure of the double checking process is also evident in the root cause analysis 

of the death of a 43 year old cancer patient [Ins07]. She received, over 4 hours, 
an infusion medication that she should have received over four days. The wrong 

calculation that led to the overdose was independently performed by two different 
nurses.

D ose error reduction system s (D ER S)

Dose error reduction systems (DERS), like Guardrails Safety Software [Esk02], 
are usually installed on infusion systems to manage safe ranges for drugs installed 
in the system. The infusion system is provided with contextual information about 
the treatment by allowing the user to select the name of the drug that is being 
infused. Some pumps have sensors that can detect the drug name from an RFID 
tag embedded in the syringe. W ith the name of the drug in place, the drug 
can then ensure a safe limit of treatm ent as predefined in the library. Although 
DERSs detect many infusion programming errors, it has a number of limitations. 
A wrong rate could still be accepted as long as it lies in a safe range. Secondly, 
in the case where users select drug from a list, there could be error in the choice 
of drug name from the library. This means a wrong range limit is enforced and 
could have severe consequences (especially if there is an error in number entry).

Checksums

Checksums are standard error detection schemes computed from a message and 
transmitted with the message. The checksum can be recomputed at a different 

time to verify the integrity of the data. This method can be exploited indirectly 
in certain types of number entry tasks where there is a mathematical relationship 

between the different numeric values entered. For instance, while setting up an 

infusion pump, it is typical to enter two numeric values representing any of rate of 

infusion, volume to be infused (VTBI) or duration, of infusion. Regardless of the 

two parameters an interface requires the user to enter, the device can calculate 
the third parameter because there is a mathematical relationship between the
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three values, i.e., V T B I  = rate x duration. From this relationship, it is also 

possible to detect certain number entry errors if users are required to enter all 

three values.

Wiseman et al. [Wisl3b] explored two interface designs that used the idea of 
checksums to help users detect number entry errors. In one interface, users were 

required to enter two numbers and to verify a checksum value. In the second 
interface, users were required to enter two numbers as well as a checksum value. 
They found that participants were significantly faster when they had to check 
and verify the checksums than when they had to actively enter the checksum 
value. They also found that participants noticed all errors when they had to 
enter the checksum value in comparison to noticing only 36% of errors when they 
had to verify the checksum value. Apart from the additional time cost involved 
in entering redundant information, the use of checksums described by Wiseman 
et al. could sometime results in a false positive verification of the confirmed 
number. This is due to the commutativity of multiplication. For instance if rate 
and duration are mixed up by the user, the relationship between the numbers 

would still hold to verify the VTBI value since rate X duration — duration x rate.

2.5 Summary

The design of number entry interfaces date back to the invention of the earliest 
counting devices. Despite the long tradition of humans interacting with num­
bers, the majority of research has focused on the numeric keypad interface. The 
popularity of the numeric keypad is evident in its skeuomorphic adaptation in 
software as well as on touch screen devices, especially in the design of calculator 
interfaces.

Early research by Foley et al. [Fol80, Fol84] and Thornton [Tho79] described 
design alternatives for interfaces for use in setting numbers although they present 

no evaluations for these alternatives. There have also been a variety of studies 
on different aspects of the numeric keypad as well as comparative studies on 
variations on sequential digit entry (e.g., handwriting and gesture based systems).

To improve safety in critical environments such as healthcare, it is impor­
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tant to study the effect of error, particularly in the context of interacting with 

numbers. This chapter has reviewed methods that are currently used to abate 

number entry errors in practice as well as research recommendations in the area 
of reducing number entry error. Most of these methods, however, apply to only 
one type of number entry interface. There are other ways a number entry in­

terface might be designed. Depending on the constraints faced by a designer, 

for example, size constraint, it might be necessary to implement a different style 
of number entry interface. Research is currently lacking in an exploration of 
the design space for number entry interfaces. The next chapter explores the de­
sign space and proposes a classification for grouping interface styles with similar 

properties..
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Chapter 3

Classifying number entry  
interfaces

A wide variety of methods exist for designing number entry interfaces. This is 
partly due to the wide variety of input devices available - for example, those 
described by Buxton [Bux83], Card et al. [Car90] and Mackinlay et al. [Mac90]. 
The ease with which the different measures sensed by these input widgets can 
be mapped to numeric quantities (e.g., a slider specifies position while a dial 
specifies angle) also add to the diversity of design options.

This chapter analyses the design space of number entry interfaces with respect 
to the different ways a number entry interface might work irrespective of the 

hardware or input widget used to achieve control on the interface. The context 
of the analysis performed is centered on interfaces found on medical devices and 
the design space is analysed from a high level of abstraction that deals with the 

question of how numbers are selected or specified in an interactive system.

The set of input widgets tha t might be used in the design of a number entry 
interface is a subset of the input widgets found in the design space of all input 

devices. From the taxonomy of the design space of input devices presented by 

Card et al. [Car91] and Mackinlay et al. [Mac90], input devices can be described 
based on a combination of the physical properties sensed (e.g., force or move­
ment), and the dimension within which the properties are sensed (e.g., linear or

37



3. C l a s s i f y i n g  n u m b e r  e n t r y  i n t e r f a c e s

rotary in x, y or z dimensions or the degree of freedom sensed). Consequently, the 
input widgets used in the design of number entry interfaces range from buttons, 
sliders, rotary dials, force encoders or touch screens.

In order to start structuring the design space of number entry interfaces, this 
chapter employs a method of design space analysis presented by MacLean et 
al. [Mac91] where an artifact is explored based on the space of possibilities for 
the existence of tha t artifact. The method is based on Questions, Options and 
Criteria (QOC). In this method, Questions are used for structuring the space of 
alternatives, Options are possible alternative answers to the questions posed and 
Criteria are used for evaluating or choosing between the options.

3.1 A task level decom position of number entry

The task of number entry can be viewed as one of the following:

1. Selecting a specific value from a list of options or

2. Explicitly specifying the digits that make up an intended number.

The first option implies that the user somehow selects a number from a set of 
predefined valid values in the application. This can be achieved by moving a 
virtual cursor through the number line at a rate chosen by the user i.e., by 
making incremental changes to the position of the cursor which in turn affects 
the value of the number that is to be specified in the application or by selecting 
a value from an explicitly presented finite set. The second option implies that 
the user explicitly specifies the digits that make up the number they wish to 

transcribe. This means the interface provides the user with some way of directly 
controlling the digits tha t make up the intended number.

The brief historical review of number entry interfaces presented in Chapter 2 
shows that there are a variety of ways an interface might be implemented or 
designed. The list of example interfaces provided there is not exhaustive and 
only accounts for a subset of the possible styles of interface that might be used
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for entering numbers. However, it provides a good sample from the space of 

possibilities.

The rest of this chapter takes a structured approach towards exploring the 

design space of number entry interfaces by deconstructing the design space using 
the QOC method.

3.2 D esign space analysis using Questions, Op­

tions and Criteria

QOC design space analysis places an artifact in a space of possibilities and seeks 
to explain the relationships tha t exist between the different alternative options 
of an artifact [Mac91]. The role of Questions in this framework is structural 
and generative rather than evaluative. The Criteria should help in reasoning 
over the considerations involved in choosing one option in the design space over 
another. In other words, the Criteria provide a framework within which the 
different Options can be evaluated. The Criteria make the trade-offs between 
the different options salient in the analysis.

In the case of identifying number entry interface design options, the QOC 
method facilitates a structured exploration of the design space which can be ex­
panded to an arbitrary level of detail. This flexibility enables reasoning about 
the design options at several levels of abstraction that might be useful for people 
with different roles in a design process. For instance, while designers of the phys­
ical user interface widgets would typically be interested in dealing with options 

at a high level, programmers who implement the logic of the interface would be 

more interested in the lower level detail.

In light of the task of number entry introduced earlier, features of number 

entry tasks that are essential to describing how the interface works are now 

extracted. The design space is structured by asking the question: What does the 
interface control?

There are two possible options for this question.
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1. The interface might be used to control the manner in which the individual 
digits of the intended number are specified or

2. The interface might control a selection mechanism for choosing the intended 
number from a set of valid values

In the first case where the interface controls how the user specifies individual 
digits tha t make up the number, the question In what order are the digits speci­
fied? can be asked. For this, there are three options. The digits may be specified 
from left to right, or from right to left (in both cases the digits are specified in a 
restricted order), or the digits may be specified in an unrestricted order.

For each of these options, it is possible to explore methods for selecting digits 
in the number in order to further structure the design space and the question 
How are the digits specified? can be asked. This question also has two options.

1. The digits can be specified by providing interface widgets to directly specify 
each numeral in the base in context

2. The digits can be specified by providing widgets that can be used to navi­
gate through a list of the numerals in the base in context

For the second case where the interface controls how the number is selected 
from a set of valid values, the question How are the numbers selected? can be 
asked. For this question, two options emerge.

1. The number can be selected directly, by providing user interface widgets 
corresponding to the intended number e.g., as seen on lift panels or cash 
machine user interfaces or

2. The numbers might be selected indirectly by providing widgets that helps 
the user to navigate a much larger set of valid values e.g., using a dial or a 

pair of buttons for traveling up and down the number line.
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3.2.1 Criteria

The criteria aspect of the analysis helps in assessing and choosing between the 

Options. Six criteria are presented. These criteria are informed by standard hu­

man performance measures for evaluating user interfaces as found in literature 
(e.g., [Car91, ThilOb]) and discussions with manufacturers, health care practi­
tioners and the medical device training manager in Singleton Hospital Swansea. 
These criteria include the following:

• Speed. This refers to how quickly the interface can be used to complete the 
given number entry task.

• Error Severity. This is a measure that quantifies the magnitude of typical 
errors on an interface.

• Error Rate. How frequently errors occur while using the interface.

• Error Detection. The likelihood that keying slips would be noticed while 
using the interface.

• User Interface Footprint. How many widgets are required to implement the 
interface and consequently how much space does the interface occupy on 
the device.

• Range and precision. The minimum and maximum value that can be spec­

ified using the interface and to what number of digits different values can 
be specified.

Speed and accuracy are standard quantitative metrics used in assessing the 
usability of user interfaces [Nie92, Shn04]. Accuracy is of particular importance 

in the context of evaluating interfaces used in safety critical environments like 
health care. Consequently, half of the criteria are related to error and different 
aspects of reasoning about error.

For economic reasons related to the production and maintenance cost of de­
vices, manufacturers are interested in user interface footprint. The number of 
physical widgets used in a device affects the production cost and this also affects
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the chances that at least one of the widgets will break down and require mainte­

nance. From a user’s point of view, portability is also important, particularly in 
ambulatory care where devices are used by patients on the move. Portability of 
a device restricts the size of the device which in turn defines boundaries for an 
acceptable user interface footprint on the device.

The rest of the thesis seeks an informed assessment of measures that can be 
used to weigh different styles of number entry user interfaces against these crite­
ria. This is achieved by performing studies that provide evidence which inform 
the process of highlighting the different trade-offs that exist between different 
example interfaces.

The analysis above has presented us with a design space within which number 
entry interfaces lie. In the context of the interfaces found on medical devices, 
these categories make it possible to compare groups of interfaces with each other. 
The next section provides a review of some examples from the categories of 
interfaces identified.

3.3 Num ber entry interface examples

Based on the first level options presented in the QOC analysis in Figure 3.1, two 
broad categories emerge. There are digit specification interfaces whose designs 
are based on the specification of digits in a number. The performance of inter­
faces in this group depends on the number of digits to be entered. This includes 
both whole and fractional digits. On the other hand, there are number selection 
interfaces whose designs are based on selecting a number from a list of options. 
Number entry on this style of interface requires selection (either directly or indi­

rectly) from a set of valid options provided by the host application. This could 
be done indirectly by scrolling through valid values where a single selection is 

visible or scrolling through valid values where a range of selections are visible. It 
could also be done directly, by selection from a fixed set of presented valid values. 
The performance of the interface thus closely depends on the number of options 

in the valid set, and the features provided by the interface to facilitate efficient 
searching and selection. For interfaces based on selection of numbers from a fixed
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' p :  R ight to Left[

Q: In w h a t o rd e r  are^ 
digits sp e fic ied ?

O: Left to Right

■ 0 :  A rbitrary

Q: How a re  digits

O: Direct digit se lec tion  
/(e .g . using num eric  keypad)

O: Digits of the nu m b er

Q: W hat d o e s  in terface 
w idget contro l?

O: N um ber selec tion

i O: Increm enta l digit selec tion  
(e .g . u s ing  arrow  keys)

Q: How a re  n u m b ers  
s e le c te d ?

O: Direct n u m b er se lec tion

O: Increm enta l n u m b er se lec tio n

Figure 3.1: A decomposition o f the number entry design space based on the QOC  
method. This analysis segments the design space of number entry system s into two main  
dimensions. Firstly, interfaces are separated into those that allow users to explicitly 
specify the digits that make up a number, and interfaces that allow users to select a 
number from  a list o f valid values. Digit based interfaces are then further distinguished  
based on the order in which they allow the specification o f digits and how digits are 
selected (e.g., direct selection or increm ental selection), while number selection based 
interfaces are structured based on how numbers are selected (e.g., direct selection or 
increm ental selection).
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set of options that are always displayed, e.g., the control panel representing the 

different floors in a lift, the entry time could be modelled by a combination of 
the Hick-Hyman law on choice reaction time [Hic52, HYM53], where the user 
finds the floor they wish and F itts ’ law [Fit54] where the user selects the tar­

get button that activates the intended floor. For indirect selections where users 

scroll through valid values e.g., the interfaces derivable from incremental number 
selection, it is most efficient that users approach the target number as quickly as 
the interface permits, but they slow down to fine-tune selection when closer to 
the number.

This classification also makes it possible to group interfaces in terms of their 
support for the occurrence of syntax errors. For example, all interfaces based on 
number selection always have syntactically valid input, since for these interfaces, 
the application presents the user with valid options from which they can choose. 
For interfaces based on digit specification, especially when users can explicitly 
specify decimal points, it is necessary for the designer to think of situations where 
the user enters syntactically incorrect number specifications such as entering a 

sequence of digits with multiple decimal points. The designer must think of 
appropriate ways to block these errors and alert the user.

Based on the second level options presented in the QOC design space analysis, 
four classes of number entry interfaces can be described. The next section pro­
vides concrete examples of interfaces from the different categories in section 3.2.

3.3.1 Serial digit entry

Serial digit entry refers to the class of number entry interfaces which affords the 
user control of the digits making up the required number in a fixed order from left 

to right. The user enters the number serially, in sequential order. This interface
style is most commonly implemented using a keypad with digits from 0 - 9

a decimal point key and a clear or backspace key. If an error is made in entry, 
the user must delete all the numerals succeeding the erroneous numeral. Three 
layouts are currently in use in modern interactive devices.

The calculator layout is the default layout for calculators. It comprises a grid
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of buttons arranged in three columns and it has the keys [Y], [§], [9] at the top. 

This is also the default layout on keyboards with dedicated numeric keypads. 

The telephone layout is the default layout on telephones. It is arranged in a 
grid similar to the calculator layout but it has keys [T], [2], [3] at the top and

Oj at the bottom row. The single row keyboard layout is the default layout for 
computer keyboards without a dedicated numeric keypad. It comprises a single 

row of digits arranged from \Y\ - [9] with [o] at the end.

Apart from variations in key layout, this interface style might vary depending 
on whether or not it contains a decimal point key. When a decimal point key is 
absent in the layout, the interface renders a decimal point at a fixed location on 

the display and the user must enter values into the interface at a fixed precision 
regardless of whether or not the intended number is a fraction. For example, to
enter ‘50.5’ on such an interface, the user must execute the keystrokes 5 0 5 0
This form of interface is often used on cash registers for entering monetary values.

A serial interface might also be implemented using an incremental digit se­
lection interface as opposed to a direct digit selection interface. This might be 
implemented with 4 keys. Two keys for changing the digit, one key for accepting 
the digit and another for canceling the last digit entry.

3.3.2 Independent d igit entry

Independent digit entry refers to the class of number entry interfaces which afford 

the user control of the digits making up the required number by specifying each 
digit in any order. The user is typically able to specify each digit independently 

and errors in a digit can be simply corrected by changing the digit. This is the 
oldest number entry interface style as seen in interfaces like abacuses, Pascal’s 

Calculator and the Arithmometer.

There are two popular variations on this interface. One variation provides 

explicit control for all the digits on the interface and the other provides shared 
control for the digits and distinguishes between an active digit by enabling the 

user a selection mechanism that activates digits. Two examples, the up-down
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1
m m

(a) Input buttons (b) Display

Figure 3.2: The D-pad number entry system, (a) shows the four way navigation style 
keys used as input and (b) shows a typical display used in the interface. The highlighted 
digit will change when the up or down button is clicked.

and the D-pad*, that feature in interactive devices such as medical devices, game 
pad controllers, television remote controls and combination locks, are described 

below.

U p-dow n in terface

The up-down interface provides a pair of interface widgets for increasing and 
decreasing each digit addressable by the host application. The number of buttons 

011 this interface depends on the maximum value and the precision addressable 
by the host application. For an application that allows entry of numbers up to 
99.9, this interface will need six buttons, a pair for increasing and decreasing each 
digit. This style of interface negatively affects the user interface footprint since 
the number of buttons required to implement the interface grows logarithmically 
with the maximum number allowed on the interface in the best case condition 

where only whole numbers are permitted. In other words, the number of buttons 
required to implement this interface is twice the number of digits permissible 
011 the interface. When fractional number entry is required, an extra pair of 

buttons is required for each decimal place required in the precision. The number 

of buttons required for this interface can be halved by implementing a variation 
where changes to the digits get wrapped around and ensuring changes made per 
digit are completely independent. Some examples of the up-down interface are 
shown in Figure 3.4

T h is  interface is referred to as a f ive  k e y  interface by Cauchi et al. [Caul2a, Caul2b], with 
the fifth key usually used for accepting numeric input.
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D irectional pad (D-pad) interface

The D-pad, also referred to as the control pad, originally emerged in the gaming 

industry as a user interface widget for controlling two-dimensional characters in 

video games. They were made to function similar to joy-sticks found in arcade 

games and afforded control in the up - down - left - right direction. When used 

as video game controllers, it is possible to hold down two adjacent buttons or 
sections on the controller to move in a diagonal direction. It is commonly found 

on mobile game controllers as well as TV and DVD remote controls for navigating 
menu structures on these devices. The D-pad provides four keys in a navigation 
style layout for changing numbers. A pair of left - right keys is used for moving 
a cursor that selects a digit to edit and a pair of up - down keys is used for 
making changes to the selected digit. A typical d-pad is shown in Figure 3.2. 
This interface requires the same number of buttons regardless of the range and 
precision required by the host application. As a result it is ideal for use in 
situations where space is limited. In addition to the variations determined by the 
behaviour of digits when changed around boundaries, i.e., blocking digit wrap, 
independent digit wrap or arithmetic digit wrap, this interface has variations 
based on the behaviour of the cursor. The designer can vary the cursor start 
position, choosing either to place it in the rightmost place value or the leftmost 
place value of the number.

In addition, the designer must decide what happens when a user attem pts to 

move the cursor beyond the boundaries of the screen. They must decide whether 
such actions are blocked or whether the cursor movement wraps around to the 

opposite end of the display. Cauchi et al. [Caul2b] present results of detailed 
analyses about the effect of these different configurations on error severity.

From these examples, it can be seen that independent digit interfaces are 
commonly implemented by providing widgets for incrementally specifying each 
digit, although in full keyboard interfaces like the Comptometer, the interface 

might have individual digit keys for each place value in the number. When digits 

are set incrementally, the behaviour of this style of interface varies significantly 
depending on how certain features are implemented. For instance, the designer 

must decide precisely how digit changes are implemented in the system, particu-
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(a) Blocked Digit Wrap (b) Independent Digit (c) Arithmetic Digit Wrap
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Figure 3.3: These graphs visualise the effects o f three variation on the digit wrapping 
feature fo r  independent digit interfaces. From left to right the effect of blocking digit 
wrap, independent digit, wrap and arithm etic digit wrap is shown. Tin graphs highlight 
the structural differences in the interaction experiences that are manifest in the different 
variations. The user can change between numbers that are directly connected by a line 
using one key press.

larly when the  digits change from [OJ to [9j or vice versa. Three variation on this 

feature are described below.

Blocked d ig it w rap

This variation disallows the change from 0 to 9 or from [9] to ft)]. This means 

the user action is effectively blocked at these boundaries. Using a slider widget 

to  im plem ent the  digit controller 011 th e  interface would achieve this effect since 

a slider widget has physical lim its to  se tting  a m inim um  and maximum value. 

The control of digits in th is variation are com pletely independent of other digits. 

Figure 3.3a shows the upper and lower bounds of interaction in this variation of 

the interface. Horizontally, in teractions are perform ed from 0 to 9 011 each decade 

and the sam e is true  vertically.
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r y

IFtc*

IFoT-'

(a) Up down (b) Number wheels (c) Combinat ion lock

Figure 3.4: Three form s o f the up-down number entry system.

In d e p e n d en t d ig it w rap

This variation  allows th e  digits to  w rap around, th a t  is, increm enting [_9j changes 

it to  a 0 and decrem enting [o] changes it to  a _9_. T he w rapping effect does 

not carry  over to  th e  digit to  the  left. T he control of digits in th is variation 

are also independent of o ther digits although the  im plem entation of the interface 

can be best visualised if one imagines tlie digits are controlled by dial w idgets 

w ith continuous ro ta tion . Figure 3.3b shows the  independent s tru c tu re  of each 

decade (or place value) in this variation. This s tru c tu re  can lie d irectly  com pared 

to  physical interfaces th a t  are bu ilt w ith  th is property. Exam ples are show in 

Figures 3.4c and 3.4c where each wheel on the interface can be m anipulated  

independently  of th e  o ther wheels.

A rith m e tic  d ig it w rap

This varia tion  allows the  digits to  w rap around w ith the  w rapping effect carried 

over to  the  digit to  the  left. This m eans one num eric value is added or removed 

from the  digit to  the  left when a digit is increased from _9_ to  

from 0 to  9 respectively.

0 or decreased

3.3.3 Increm ental num ber entry

Increm ental num ber en try  interfaces refer to  the  class of num ber en try  interfaces 

th a t  allow the  user to  select a num ber from a valid set of options by providing 

an indirect m echanism  of selection from the  list. Typically, the  user navigates 

th rough  an ordered list of options and  can go forw ard or backw ards in the  list.
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The interface m ay also allow the user to control the speed of navigating through 

th e  list. This interface may be im plem ented using w idgets such as buttons, 

sliders, dials or any widgets found in M ackinlay's [Mac90] design space of input 

devices.

An exam ple increm ental interface based 011 the  use of bu ttons might require 

4 b u tto n s  (see F igure 7.2b). Two bu ttons are used for increasing the num ber 

and  the o ther two are used for decreasing the number. In each case, one of the. 

b u tto n s  causes a change an order of m agnitude larger th an  the other. A single 

b u tto n  w ith  a pressure sensor m ight also be used where the pressure level of the 

b u tto n  controls the  am ount of change caused to  the num ber.

In general, an increm ental interface can be a zero order or position control 

where there is a proportional relation between user action and numeric ou tput 

such as a slider or a mouse. It can also be im plem ented as a hrst order control 

where user action (such as displacem ent) is proportionally  related to the rate  

of change of the  num eric value. In this case the m agnitude of the user action 

determ ines th e  m agnitude of change or the ra te  of change of the  ou tpu t number. 

This control order might be im plem ented using a spring-loaded dial. It is also 

possible for an increm ental interface to be im plem ented as a second order control. 

I11 th is case, user action such as displacem ent is used to control the m agnitude of 

acceleration (i.e., user action changes the rati' of change of changes in num bers). 

Users m ust actively decelerate to s top  numeric changes in this style of control. 

A lthough second order controls are more difficult, people can become skilled at 

it w ith  p ractice [Jag03].

G ain  and  T im e-delay

I11 th e  control aspect of increm ental num ber entry  interfaces, two param eters 

would influence the  stab ility  of the  user interaction in a typical num ber entry task. 

Gain determ ines how th e  input signal is transform ed to  the  o u tp u t signal. I11 the

Figure 3.5: An example incremental style interface found on a?i infusion purnp.
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context of number entry, gain affects the speed at which the user approaches the 

target number (i.e., the reference signal). Time-delay refers to the time taken 
by the system to act on user input and provide feedback to the user. This is 
also referred to as the latency of the system. Together, these two parameters 
determine the speed of the system and stability of the system (i.e., the likelihood 

that users would overshoot or undershoot targets in number entry).

When gain is low, the system responds slowly, but when it is high, the system 

is likely oscillates about the target signal. Similarly, a high time-delay increases 

the likelihood of oscillatory behaviour [Jag03, Doh99].

In the context of the design of number entry interfaces, then, the different 
combinations of these parameters and the widgets tha t afford continuous control 
make for a large set of styles of incremental number entry interfaces. A review 

of these different combinations is beyond the scope of this thesis.

3.3.4 D irect num ber selection

This style of interface allows the user to select a number from a valid set of op­
tions by providing a direct selection mechanism that allows the user to choose 
the required number. This interface style is feasible in situations where there 
are a small set of numeric values to choose from, e.g., as seen in lift floor selec­
tion interfaces. Though this interface offers fast entry, its application is limited 
to use when there is enough space on an interface to render all the different 
options without the need to navigate through different screens that shows the 

available options. If the range of numeric values required by the host application 
is large enough to require scrolling between screens, then this interface essentially 

becomes an incremental interface.

3.3.5 L im itations o f th e classification

The classification presented in this chapter is inspired from examples of number 
entry interfaces found through out the history of old mechanical calculators and 
a variety of number entry interfaces found on infusion pumps in use in hospitals. 

Moreover, the exploration of the design space presented provides a high level de­
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composition of possible ways in which numeric digits, and consequently numbers 

(or a string of digits) can be manipulated.

The current classification does not address issues related to the base of the 
number entered. For example, it is possible for the user interface to map user 

actions to manipulate a number in a base that is different from the base that 
the resulting number is displayed. An interface with three buttons comes to 
mind, where one button is used to append the binary digit [T], another is used
to append the binary digit |_0J and the last button is used to undo the last move 
(if there is any) or reset the number back to zero. If the display of this interface 
renders the numbers entered in binary, then according to this classification, the 
interface would be a serial interface. If however the display renders the number 
in a different base such as decimal, it is not so clear where the interface sits with 
respect to this classification. It could be thought of as an incremental interface 
with two types of increments, where pressing one button doubles the current 
number, and pressing the other button doubles the current number and adds 
one.

Similarly, this classification does not address issues related to the perceptual 
representation and interpretation of numbers. It covers the active aspect of user 
interaction that deals with inputting numbers on interfaces and is applicable in 
discussing and analysing a myriad of existing number entry interfaces including 
those found on medical devices.

3.4 Summary

The design space of number entry interfaces has been explored based on whether 
the interface offers controls over digits or numbers and based on whether the 
control is offered in a direct or incremental manner. This analysis led to four 

groups of existing interface styles, that is, serial digit entry, independent digit 
entry, incremental number entry and direct number selection.

The smallest unit of a number is a digit, which itself is a number. A sequence 
of digits that are a part of a number are also numbers. This means, for instance, 
that the controlling aspect of the interfaces described earlier is not limited to
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H n
1 10 hours || 59 mins |

111 II ■ I
Figure 3.6: iPhone interface showing incremental control fo r groups o f digits.

single digits and en tire  num bers. T he controls m ay be applied to  digits th a t  

are  grouped together in twos, threes or m ore clusters and these controls may 

be perform ed increm entally or directly. An exam ple is the  iPhone interface for 

entering tim e where control is not digit based but based 011 groups of digits which 

are  set incrementally. Figure 3.6 shows an exam ple.

This chap ter has presented a classification for num ber en try  interfaces based 

011 two m ain features. The first feature deals w ith  w hat aspect of num bers a user 

controls. The interface m ay be used to  control the  entire num ber as a whole or it 

m ay be used to  control p arts  of the num ber. The second feature deals w ith  the  

m anner w ith which the interface allows control over the  hrst, feature. T he num ber 

or the  num ber p a rt m ay be controlled increm entally  or directly. A lthough there  

are poten tially  lim itless ways of com bining the actual inpu t w idgets th a t  are used

Example Devices

Digits

Right to left direct digit selection
incremental digit selec­
tion

Left to right direct digit selection Calculators, Telephones, Mi­
crowave ovens

incremental digit selec­
tion

Kollector

Arbitrary direct digit selection Comptometer, Burrough’s Add 
Lister

incremental digit selec­
tion

Millionaire, Arithmometer, Pas­
cal’s Calculator, D-pad

Number direct number selec­
tion

Lift panel

incremental number 
selection

Alarm clocks, Microwave ovens, 
Infusion pumps

Table 3.1: The position o f various examples o f historical and some current number 
entry interfaces in the design space.
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to implement examples from each class of interface, this grouping encompasses 

all existing number entry interfaces. New interfaces can be created by composing 
two or more interface styles in a single interface and by segmenting the number 

into parts which are at least one digit long. These parts can then be controlled 
using any of the interface styles described.

Table 3.1 shows the position of various interfaces in the design space for 

number entry systems. Although there are no examples for right to left entry of 
numbers, that is where the interface restricts the entry of numbers to be from 
the least significant digit to the most significant digit, there is, in principle, no 
reason why interfaces can not be designed in this way.

The next chapter analyses the performance of different instances of digit based 

interfaces.
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Chapter 4

Num bers in context

The design of an application or an interactive system that requires numeric input 
involves the specification of ranges of valid numeric input to the (host) applica­
tion. This might involve specifying some function that translates user actions 
into numbers. As seen in Chapter 3 the interface style might implicitly produce 
syntactically valid numeric input as defined by the application, thus eliminating 
any possible syntax errors in entry.

This chapter explores the types of numbers used in infusion therapy in hospi­
tals using logs from three different infusion devices. Specifically, it explores the 
ranges, precision and typical changes of the numbers during therapy. This anal­
ysis provides the basis for selection of the numbers used in the tasks performed 
in the experiment described in Chapters 6 and 7.

4.1 R elated Work

The letters of the alphabet in most languages have a varying frequency of oc­
currence in the vocabulary the language. For instance in the English language, 

the letter ‘e’ has the highest frequency of occurrence [Lee99, p 181]. Letter 
frequency models such as these have various applications ranging from use in se­
curity systems for decrypting certain types of cyphers or in user interface design 

for building error correction models in text entry.
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Similarly for numeric data, Benford [Ben38] observed that the frequency of 

digits in naturally occurring numbers are not evenly distributed. Specifically, 
he observed that the frequency of the first significant digit of a number closely 

follows a logarithmic function that is defined on the digit. The digit 1 is more 
likely to occur than digit 2 which is in turn more likely than digit 3 and so on. 

This is contrary to the distribution one would expect if all the digits of numbers 

had an equal probability of occurrence.

Wiseman et al. [Wisl2] explored the notion that the frequency of digits 
used in infusion therapies in hospitals are not evenly distributed by analysing 

58 log files taken from Graseby 500 [gra02] infusion pumps in a hospital. Their 
analysis, showed that the most common digits used when setting numbers in 
infusion pumps are 0, 1, 2, 5 and 9. Their analysis combined numbers set as 
rate of infusion i.e. the speed at which to deliver the drug and the volume to 
be infused (VTBI). Since infusion volumes tend to be delivered in preset bags of 
1000, 500, 250, 125 and 50 millilitres, the frequency of the digits 0, 1, 2, and 5 
are not surprising. Based on this, they provided recommendations that would 

allow more efficient number entry for the set of numbers that appeared ill the 
logs.

This chapter presents results from the analysis of logs from three different 
infusion devices with the aim of understanding the nature of numbers used in 
infusion therapy. This involves exploring features such as the typical range of 
numbers entered, the precision of numbers, the range of numbers within a given 
precision as well as exploring how numbers change within an infusion therapy. 
For accurate results, only numbers that have been entered by a user are included 
in the analysis. For instance rate values that occur after infusion has completed 
and Keep Vein Open (KVO)* mode has been activated have been filtered out.

To achieve this level of accuracy, the event logs were first parsed and separated 
into sets representing different infusions. The manner in which this was done 
varied for each pump. For the Graseby and the Asena pumps, the beginning of a 

new infusion was inferred from the log whenever a start infusion event was found
*KVO is a special mode in infusion devices that is triggered after an infusion has completed. 

In this mode, the device continues to deliver medication at a predetermined low rate e.g., lmL 
per hour, in order to keep the patient’s vein open for subsequent delivery of medication.
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and the volume infused attribute was 0. For the BBraun pump, there was a new 

rate set event which designated tha t a user had changed the infusion rate of the 
device.

4.2 D ata

The data used in this study were from three infusion devices used in Single­

ton Hospital in Swansea and the Royal Free Hospital in London. All the logs 
were anonymous and did not contain any patient identifiable information. The 
Graseby 500 is a volumetric infusion pump produced by Smiths Medical. It has 
two 7-segment displays for showing the rate and the VTBI of an infusion and 
it has an input control panel containing a numeric keypad. The Asena Syringe 
pump is produced by Alaris Medical Systems. Its control panel contains four 
chevron keys used for entering numbers and navigating list menu items. The 
BBraun infusomat is a volumetric infusion pump produced by B.Braun Medical. 
Its control panel contains a D-pad style interface (4 navigational keys) used for 
number entry and navigating list menu items.

The log files contain some similar features and concepts. An event refers to 
any significant change in the status of an infusion device such as when the device 
is turned on or off, when it starts or stops infusion, when infusion settings are 
changed or when the device alarms for any reason. An attribute is a property 
representing a setting on the device at any given point (for instance when an event 

occurs). An attribute may be the rate, VTBI, alarm volume or time of event. 
None of the logs contained explicit information about the start or end of infusion 

therapies. Where necessary, this information has been inferred retrospectively 
from the log data by parsing the sequence of events for those that signify new 

infusion parameters as well as the start and end of infusions. Below is a detailed 

description of the settings recorded by each pump.

4.2.1 G raseby 500

The Graseby logged the most recent 200 events that occurred and maintained a 
cumulative frequency of all events that have occurred on the device. W ith each
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event record, the attributes representing the device state at the time of the event 

are logged. The attributes of interest to this study are all the rate values in the 
logs whenever an event indicated the start of a new infusion. This pump did not 
log keystroke information.

A total of 268 log files taken from 127 infusion pumps were used in the study. 

The pumps were from a variety of wards and departments in the Singleton Hos­
pital in Swansea. These logs have been previously analysed by Lee et al. [Leel2b] 
to explore the time and monetary costs of the events and alarms causing inter­
ruptions to the workflow of healthcare practioners. They have also been analysed 
by Monroy et al. [MA13, Lee 12a] to explore the discrepancies between intended 
infusions and actual infusions. The analysis in this chapter builds on the work 
reported by Monroy et al. specifically by using the blocks of intended infusions 
derived in their analyses. In total, the logs represented 3,681 infusions which 
account for about 9,048 hours of infusion therapy.

4.2.2 A sena GH Syringe Pum p

The Asena GH syringe pump kept a log of the last 1500 events as well as the last 
200 key strokes. Each event had a description which contained values where ap­
propriate. For instance a start infusion event description contained the starting 
rate and VTBI. Each event also had a date attribute which had a time com­
ponent that was precise to the nearest second. The keystroke logs contained 
a date accurate to the nearest second and the name of the key pressed. Sixty 
files containing event logs from 60 syringe pumps in the Singleton Hospital were 
analysed.

4.2.3 B B raun Infusom at

The BBraun pump kept a log of the last 1000 events as well as the last 200 key 
strokes. Each recorded event had a description of the event, the value and unit 
of attributes that were set during the event (e.g., for rate and volume values) 

and a time attribute tha t was precise to the nearest second. The keystroke 
logs contained the name of the key that was pressed, the display mode of the 
pump when the key was pressed and the time of the action, precise to the nearest
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Figure 4-1: These histograms show the frequency distribution o f rate values set on each 
of the infusion pumps.

second. T he keystroke logs were not used in th is analysis. Ten log files contain ing 

event logs from 10 infusion pum ps from the  Royal Free H ospital in London were 

analysed.

The next section presents details of the  na tu re  of num bers used in these th ree  

infusion devices.

4.3 D i s t r i b u t io n  o f  n u m b e r s

4.3.1 R ange

G raseby

For the G raseby pum p, the  ra te  values ranged betw een 1 and  999. A to ta l of 

705 ra te  entries were ex trac ted  from the  logs. Fifty-six percent of these entries 

ranged betw een 0 and 100 and  seventy-six percent ranged betw een 0 and 200. 

Figure 4.1a shows a histogram  w ith a detailed  d istribu tion  of the  values.
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A sena

The Asena pump had the smallest range with all values occurring between 0.1 

and 300. A total of 5,578 rate entries were extracted from the logs and 90% of 
these were less than or equal to 100. Figure 4.1b shows a detailed frequency 

distribution of the values.

B Braun

The rate values entered into the Bbraun infusomat ranged between 0.1 and 1200. 
A total of 1825 rate setting entries were extracted from the BBraun logs. Thirty- 
six percent of these entries were of values that ranged between 0 and 100 while 
83% of values ranged between 0 and 200. The histogram in Figure 4.1c shows a 

detailed distribution of the values.

4.3.2 Precision

The precision of a number refers to the position of the rightmost significant digit 
in the numbers entered into the devices. For example a value of 34 is precise to 
the Units, 300 is precise to the Hundreds and 50.5 is precise to the Tenths.

From Figure 4.2, it can be seen that the majority of values entered into these 
devices are whole numbers. It also shows the percentage distribution of the 

precision of rate values entered into the infusion pumps. For each pump, over 
80% of numbers were precise to the units, tens or hundreds. A further break 
down of the distribution of numbers for each pump shows variation of precision 

for different ranges in numbers.

A sena

For the Asena pump, numbers precise to the hundredths place value only ranged 

between 0 - 10, with majority of values occurring between 0 and 2. There is 
a similar distribution for the tenth place value with the exception of an outlier 

value where 100 is entered to one decimal place.
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4.3. Distribution of numbers

H  A s e n a  GH 

E G ra s e b y  500 

|  B B raun In fu so m a t

T h o u s a n d s  H u n d re d s  T e n s  Units T e n th s  H u n d re th s

Figure 4-2: The percentage o f numbers entered into each device to a precision level 
shown on the x  axis.

(a) Hundreds (b) Tens (c) Units (d) Tenths (e) Hundredths

Figure 4-3: Frequency distribution o f the precision o f numbers entered in the Asena  
GH pump.

G raseby

Analysis of the distribution of precision of numbers from the Graseby shows 
that about 1% of numbers were entered to the precision of two decimal places 
although the range was not as clearly confined as the Asena. Occurrences of 
numbers precise to the units, tens and hundreds had a wide range although most

(a) Hundreds (b) Tens (c) Units (d) Tenths

Figure 4-4'- Frequency distribution o f the precision o f numbers entered in the Graseby 
500 pump.
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ill ill
(a) Hundreds (b) Tens (c) Units

Figure f .5 :  Frequency distribution o f the 
infusornat pump.

(d) Tenths (e) Hundredths 

precision o f numbers entered in the BBraun

values occurred between 0 and 200.

B B rau n

The B B raun pum p had  the  highest proportion of num bers (20%) entered to a 

precision of ten th s or hundredths.

4.3.3 D ifferences in the distribution of numbers

The d istribu tion  of the  num bers entered into the' three devices analysed in this 

study  show a snapshot of typical ra te  settings used as program m ing param eters 

in these devices. T he apparen t differences might be due to  the  following:

Different, sources. The log d a ta  were obtained from different NHS tru sts, 

therefore, the  differences in the num bers m ight reflect the  differences in 

th e  practices across these sites.

D ifferent types of devices. T he logs analysed were from two different types 

of infusion devices. One device, the  Asena GH, was a syringe pum p. In a 

syringe pum p, drug  is placed in a syringe and the syringe is driven by an 

in ternal m otor which controls the  precision of the delivery of the  drug. The 

two o ther devices (G raseby 500 and BBraim  infusornat) were volum etric 

pum ps. Volum etric pum ps control the  flow rate  of drugs placed in a bag 

above th e  pum p using perista ltic  or cassette m echanism s to  m anage to  ra te  

a t which drug is delivered to  a patien t [Pox04]. According to  the  M edicines 

and  H ealthcare Produces Regulatory Agency (MHRA) [Med 13], volum etric 

infusion pum ps are the  preferred choice for high volume drugs at medium
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Figure f . l :  The number changes that occurred on the Asena syringe pump and their 
frequencies. The x-axis are source numbers while the y-axis are target numbers. Initial 
changes are coloured blue. Subsequent changes that are increments are colou,red green 
while changes that are decrements are coloured red. The illative frequencies of the 
change is encoded in the size of the circles. Bigger circles represent changes in numbers 
that occur more frequently.
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4.4. Number changes and frequency of changes

and large flow rates. Syringe pumps are preferred when delivering low 

volumes at low flow rates. These preferences are evident from the range 

of the values seen in the logs as the two volumetric pumps have higher 
maximum rates (1000 and 1200) than the syringe pump (200).

D ifferent w ards an d  th e rap ie s . The logs analysed were obtained from differ­

ent pumps and even the pumps from the same hospital are potentially used 
in a variety of wards over a time period. Different wards in each hospital 

use different therapies depending on the condition of the patients in the 
ward or departments. Pumps used in the surgical ward might often be set 
to deliver drugs as quickly as possible to cater for a patient in an emergency 
situation. This requires using high rates.

A m oun t of availab le d a ta . The pumps log information at different level of 
detail and have different policies for the amount of log history they keep. In 
addition, the frequency at which the logs are downloaded from the pumps 
in different trusts could also cause differences in the snapshot captured by 
the logs and consequently what data is available for analysis.

4.4 Num ber changes and frequency of changes

Figures 4.6, 4.7, 4.8, 4.9 show an overview of how numbers change based on the 
analyses from three infusion pumps. Two types of number changes are identified. 

There are changes where numbers are set from zero to the target number. These 
will be referred to as initial changes and there are changes where numbers are 
set from non-zero values to the target numbers. These will be referred to as 

subsequent changes.

For the BBraun pump, 94% (N=1721) of all rate entries were initial changes. 

Figures 4.9 shows tha t most numbers lie along the y-axis where y =  0. The 

most frequently set value was 125. The graseby pump had 45% (N=186) initial 
changes with a most frequently set value of 100. Finally, the Asena pump had 

68% initial changes with a most frequently set value of 0 to 2.
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The low number of subsequent changes in the BBraun logs could be due to a 

feature that allows users to explicitly start a new therapy. When this feature is 

activated, all pump settings such as rate, volume to be infused and duration are 
cleared and set to zero when a therapy is completed. The user has to enter new 
values when starting a new therapy. Another possibility is that users made less 
error on this device and did not need to make subsequent changes to the values 

that they entered.

4.4.1 D ifferences in num ber changes

The visualisation of the number changes found in the logs of the three devices 
highlight some features that are worth discussing. For the Asena pump, Fig­
ure 4.7 shows that the value 200 is a prominent source and target for changes 
of numbers. Further discussions with the medical devices training manager in 
the hospital where this pump is used suggested that this rate is typically used to 
deliver antibiotics from a syringe over a relatively short period. For instance, a 
50ml syringe set at a rate of 200ml per hour would deliver drug for 15 minutes. 
It also emerged that 200ml per hour is the maximum rate allowed on this device 
and could also be used to deliver a bolus to the patient.

There is a similar trend visible in the changes found in the Graseby logs as 
the value 999 seems to be the source and target of many changes in the logs (see 

Figure 4.8b). This value can be used as a short “flush” to clear any drug that 
remain in the infusion line when medication is being changed. In some cases, 

this rate can be used to deliver drug to a patient as quickly as possible in order 
to replace lost fluids in an emergency.

This trend was not evident in the BBraun logs, potentially due to the lower 

number of files analysed from the device.

68



4.5. Number changes and Dose Error Reduction Systems

4.5 Num ber changes and D ose Error R eduction  

System s

As discussed in Chapter 2, Dose Error Reduction Systems are installed on many 

modern infusion devices to put predefined limits to the dose values set for ther­

apies. They work by allowing the user to select the name of the medication 

used in the therapy from a list in a predefined drug library. These systems then 
enforce soft and hard limits which have been predefined for each drug in the 
library to catch high severity errors in infusion therapies. Breaching a soft limit 

usually triggers a warning that alerts the user about the limits. Interactions that 
attem pt to breach a hard limit are blocked and alerted to the user.

When a drug has been selected and the details about the patient have been 
entered, some devices automatically calculate a default value, which is dependent 
on the parameters of of the patient and the type of drug chosen from the drug 
library. The user then needs to make changes to a default value which is specific 
to the dose value in the prescription chart.

Setting numbers from a non-zero value has implications for the performance of 
different interfaces. These performance differences will be investigated in Chap­
ter 5 where the task times for changing and setting different number combinations 
are explored.

4.6 Summary

From the logs of the infusion pumps, most numbers entered into the BBraun 
pump are initial changes (i.e., they are set from a value of zero). This is different 

for the other two pumps. The number of tasks that are based on subsequent 

changes to a number (rather than setting new numbers) has implications for 

the performance of the interface. Sometimes only small adjustments are needed 
when making changes to a number. This is especially true for treatment regimes 
where the patient has to be constantly monitored to see how they respond to 

medication. An example is in the delivery of medication such as insulin, where 
blood glucose levels determine the rate of drug delivery. In such cases, the serial
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style interface does not offer the most efficient interaction since users first have 

to clear some preceding digits or all the numbers before entering or updating the 

number.

The next chapter analyses at a keystroke level, the time cost of changing 

between any pair of numbers in the range 0-99 for different interfaces. The 
numeric tasks visualised in Figures 4.6, 4.8a and 4.9a are also used in the next 

chapter to estimate the time costs of performing those tasks on a variety of 
interfaces.
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Chapter 5

M odelling task performance in 
number entry

Based on the interface classes identified in Chapter 3, this chapter presents a 
quantitative analysis of task performance (with respect to speed) for number 
entry interfaces that offer digit level control. It uses the Key-stroke Level Model 
(KLM), developed by Card et al. [Car83, Car80], to estimate the task completion 
time for an expert user to perform a series of number entry tasks.

Card et al. presented KLM as a simple model for predicting the time it takes 
a user to perform a task on an interactive computer system. The model estimates 
time, based on a user’s low level key press operations which constitutes time taken 
to press a button (K), time taken to point to a target (P), time taken to move the 
hand to the keyboard or other device (H), time taken for mental preparation (M) 

and the time taken for the system to respond (R). The Keystroke-Level Model 
only deals with the time aspect of performance and is not suited to analyses of 

performance pertaining to errors, learning curve, or fatigue.

Errors can be modelled and analysed using methods such as stochastic key 
slip simulation (SKSS), where user actions are simulated and injected with errors 

with varying probabilities [Caul2a, Caul2b]. SKSS proceeds on the assumptions 
that errors will eventually happen and perform analyses on the effects of error as
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error rate or probability is varied. Since KLM predicts time, KLM can also be 
used in conjunction with other error modelling techniques, (e.g., for predicting 
the cost of error recovery).

While errors are a very important aspect of the design of interactive systems, 
particularly those related to the design of safety critical interactive systems, the 

principal purpose of this chapter is a predictive evaluation of the speed of num­
ber entry interfaces. Other dimensions pertaining to errors and subjective user 
preference are evaluated empirically and reported in chapters 6 and 7.

5.1 Interfaces analysed

Chapter 3 introduced different styles on number entry interfaces. For an inde­
pendent digit style interface whose digits are controlled incrementally, there are 
variations on how the wrap around feature on the digits might behave. Perform­
ing usability studies for all the variations would be very expensive.

In order to reduce the space of possible variations of interfaces discussed in 
Chapter 3, this chapter conducts initial evaluations of the performance of seven 
interfaces. It analyses, one variation of the numeric keypad interface and three 
variations (arithmetic, digit wrap and blocked digit wrap) of the D-pad and the 
Up-down interfaces as described in section 3.3.2).

5.2 Estim ating speed

Correct number entry on digit based interfaces such as the numeric keypad, is 

straightforward. It requires the entry of the digits that make up the number by 
successively pressing on the corresponding key on the keypad. On interfaces like 
the up-down or the d-pad, digits may be entered in any order although it might 

be more efficient to perform digit entry in a specific order and it would probably 
be common that people enter numbers from the most significant digit to the 
least significant digit - a reflection of the way numbers are spoken in western 
languages.
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For digit based interfaces, the time required to enter a number is a function 

of the number of digits in the intended number. For whole numbers, the speed 

of entry is a function of the logarithm of the intended number. For fractional 
numbers, the speed of entry is a function of the number of decimal places and 

the logarithm of the whole part of the number.

The following definitions will be used in the rest of the chapter for consistency 

in referring to various aspects of the definitions of performance in the different 

interfaces.

S(d)  represents the cost of entering a single digit d 

a  or/3  are used to represent numbers to enter {a,/3 E Z+} 

m  represents the number of digits in a  or (3 

C (a ,/3 )  represents the cost of changing a to (3

oti represents the ith digit in a  where ao is the rightmost digit in a 

g  represent cost function used in the A star algorithm 

h  represents the heuristic function used in the A star algorithm

In general, if £ is the number of decimal places in a , and m  is defined as 
[log10o;] -f- 2r, then the cost of number entry on an independent digit interface 
can be expressed as:

m
C (0 ,a) =  y ] 5 ( a j) (5.1)

i = 1

6 can be further expanded into two components that account for the time Sk 
to select a key on the interface and the number of key presses kn required to set 

the required digit. In general, Sk is a target selection task and can be modelled 

by F itts ’ law [Fit54]. For the numeric keypad, kn can be approximated by a 
constant value per user as it represents button activation time. For instance the 
button activation approximation value (K =  200ms), from the Keystroke-level 

model can be used. For the up-doum and d-pad, kn can be approximated as a 

function of average number of key presses required to set any digit from [o]. If 
Pd represents the probability that digit d will occur in a given number, then the 
mean cost of setting an arbitrary digit on an independent digit interface that
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allows digit wrap around can be approximated using:

9
min(|10 — i\,i) (5.2)

i — 1

This value is about 3.22 if all non-zero digits had an equal probability ( |)  of 

occurrence. More precise values can be obtained by using a probability distribu­
tion that closely models the context of analysis. For general purpose numbers, 
the probability distribution of digits in numbers as presented by Benford [Ben38] 
can be used. For more specific contexts, such as predicting the performance of 
interfaces for use in infusion pump therapies, relevant probability distributions 

should be derived from frequency analyses of log data, for instance as suggested 
in [Wisl3a] or as shown in Chapter 4.

5.2.1 Im proving th e interface perform ance

Part of the aim of this analysis is to highlight aspects of the design of these number 
entry interfaces where performance can be improved. From this deconstruction, 

one can improve entry speed by improving key selection time Sk- This can be 
achieved by increasing button size to enable faster target acquisition. Another 
way to improve the performance by reducing the time and effort required to set 
a digit kn. This can be achieved by using widgets such as dials or sliders for digit 
selection.

5.3 M ethod

Since the purpose of this analysis was to discover how quickly, with respect to 
time, a given interface allows a user to enter numbers, the following question 
summarises the aim of the chapter: For any two pairs of numbers a and /3 in a 

range defined, how long would it take a user to change a to (3 on an interface?

Given a graph representation of an interface, such as the one implicitly spec­
ified in a programmatic implementation of the interface, the path in the graph 

joining a  to (3 is a function of the cost of changing a  to  (3 on that interface. As 
an example, in order to change 0 to 35 on the interface described in Section 3.3.2,
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which blocks digit wrapping, multiple paths might be taken. Figure 5.1 shows a 

state transition diagram where nodes represent all the possible numbers that can 

be set on the interface and the edges represent discrete button clicks that change 
one number to the other. For this interface, edges along the same row or column 
can be navigated using the same button. Paths through this interface can be 

traced by connecting the edges in the graph. The source and target nodes in this 
trace represent a and 3. Each corner in the paths signify a button change on this 

interface. Button changes should be minimised to optimise the task completion 
time. Figures 5.1b and 5.1c shows two equally optimal ways to change 0 to 35, 
since they both only require one button change. Figure 5.Id shows a less optimal 
path, which requires three button changes.
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Figure 5.1: (a) shows a state transition diagram for an interface that offers independent 
digit control with digit wraparound blocked. The interface visualised here allows entry 
of integers between 0 and 89. (b), (c) and (d) are different paths from  0 to 35 on this 
interface.
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The user interface model discovery process will be used to extract the graph 

representation of each interface and the A star algorithm will be used to find the 
path between two nodes, i.e., the source and target numbers, in the graph.

5.3.1 UI M odel D iscovery

The model discovery process extracts a graph that represents an interactive sys­
tem by systematically exploring the state space of the system. This is done by 
stimulating the actions of a user on the system while keeping track of the states 
encountered in the process and stopping when the state space is exhausted. 
A generic application programming interface (API) is presented by Gimblett 
and Thimbleby [GimlO] and various applications of the method are presented 
in [Thi09b, Thi09a, GimlO].

Some important features are crucial to accurate model discovery. The discov­
ery process must have an accurate view of state in the interactive system and it 
must have the ability to set the state in the system correctly and must have the 
ability to perform actions on the user interface.

For the numeric keypad, the discovery process could perform digit click actions 
for all digits 0 - 9 as well as a backspace key to delete the last digit clicked. The 
decimal point key could not be clicked. The state on this interface was defined 
by the value property on the interface.

The up-down interface could perform four actions. Unit up and Unit down 
were used to increase and decrease the digits at the units place value and ten-up 
and ten-down were used to increase and decrease the digits at the tens place 
value. Similar to the numeric keypad, state on this interface was defined by the 
value property on the interface.

The d-pad interface could perform four actions. Left and right buttons moved 
a cursor left or right to select a place value, while up and down buttons increased 
or decreased the selected digit. The state on this interface was defined by the 
cursor position and the value property on the interface.

For all variations of interfaces tested, the maximum value allowed was 99 and 

the highest precision allowed was the units.
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5.3.2 P a th  finding algorithm s

Path finding is a method in graph theory used to find a path between any two 

nodes in a graph (if one exists). It is commonly used in network analysis to find 

a route between two locations and also used in the design of artificial intelligence 
for games, for instance in helping a game character navigate around obstacles. 
One of the most common path finding algorithms is Dijkstra’s algorithm [Dij59, 

Cor09]. For a given graph with non-negative edge weights, this algorithm finds 
the lowest cost path between any two nodes contained in the graph. Starting from 

a source node, Dijkstra’s algorithm recursively traverses adjacent nodes starting 

with the node tha t has the least cost path from the current node. The algorithm 
keeps track of the path costs between the source node and all subsequent nodes 
traversed until the target node is found. Dijsktra’s algorithm is guaranteed to 
find a shortest path for any two nodes that exist in a graph. It however runs 
slowly for large graphs due to its time and space complexity. A more efficient 
algorithm is the A star path finding algorithm.

T h e  A star A lg o rith m

The A star algorithm improves on Dijkstra’s algorithm by using a heuristic func­
tion as well as the path cost so far to estimate how far the current vertex is 
from the source [Har68]. The A star algorithm has two main components. A cost 
function is used to calculate the cost incurred in traveling from the source node 
to the current node while traversing the graph and a heuristic function  is used 
to estimate the cost of traveling from the current node to the target node. The 
heuristic function allows the customisation of search through a graph by allowing 

us to create functions that specify how the algorithm perceives proximity to the 

goal state during the search process.

For the purposes of the evaluation in this chapter, two different cost functions 

will be explored. Cost will be defined as a function of the number of button clicks 
required and as a function of time required. To help define these functions, the 

next section describes mathematical functions that can be used to obtain the costs 
of specifying numbers on the different variations of interfaces in the analyses.
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5.4 D eterm ining the optim al keystrokes for spec­

ifying numbers

As a prerequisite to running the A star algorithm, 4 mathematical functions for 
use in defining the heuristic function for A star are presented. One function will be 

used for the numeric keypad and 3 functions for each variation of the independent 

digit interface.

5.4.1 N um eric keypad

For the numeric keypad, the number of keystrokes required to specify a number is 
a function of the number of digits in the number. Hence the cost can be derived 

as specified in equation 5.1.

5.4.2 B locked digit wrap

For the blocked digit wrap variation, changes in any digit in the number is com­

pletely independent of other digits and increments to digits are capped at [§] 
while decrements are capped at _0_. Consequently, the cost of changing n to f3 
on this variation of the interface style is the sum of the cost of changing each 
subsequent digit in a  to the corresponding digit in (3. In other words, it is the 
sum of the absolute difference in the digits of a and (3.

(5.3)
1 = 0

5.4.3 Independent d igit wrap

For this variation, changes in any digit in the number is also completely inde­

pendent of other digits and changes to digits wrap around such that a [_9j when 
increased becomes J3_ and a _0_ when decreased becomes [9]. The wrap around 
feature means that setting a high number when the digit is [o] can be achieved 
by navigating backwards through the digit lists. For instance setting an [§] can 

be achieved from a [o] by pressing down twice on the digit. This reduces [o] to 
1~9~| and then to [8]. The optimal cost, 6(d) of setting a digit d on this style of
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interface is therefore the smaller of incrementing to that digit or decrementing 

to that digit.

5(d) =  min(d, 10 — d)

Therefore, the cost C(a,J3) of changing a  to /3 can be defined as:

m
C (a,0) =  £ < S (  k - A I )  (5.4)

*=0

5.4.4 A rith m etic  digit wrap

For the arithmetic variation, the digits wrap around and the wrapping effect 
causes a change to the digit to the left (i.e., the effect of changes on a place value 
carries over to the place value to the left whenever a digit is decreased from [o] 
or increased from [§]). Interaction on this variation of the interface performs 
incremental changes to the entire number. Consequently, increasing the units 
place value ten times is equivalent to increasing the tens place value once. This 
arithmetic behaviour allows the definition of the cost of changing a  to (3 to be a 
function of the difference between a  and (3. Intuitively, the cost can be thought 
of as the sum of the number of unit changes required to change a  to /?, which is 
essentially the numerical difference between a  and j3.

If C(a,f3) is the total number of unit steps between a  and /?, then

C (a , j3) = a  — (3

= a  — (3 — 0

=  (a — (3) — 0

-  C ( a - / 3 ,0)

Hence C(a, (3) =  C(a — (3,0)

In general, the problem of the cost of changing a  to f3 can be rewritten to the 
cost of changing 0 to | (3 — a  | if a  < (3 or the cost of changing | a — (3 | to 0 if

a > (3.

The cost of entering a number a  from an initial value of zero, can be repre­
sented as the sum of entering the individual digits that make up a. Initially, it
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can be observed that the cost 8(d) setting a single digit d on this interface is:

i d  if d < 5
6(d) = {

I 11 — d otherwise

The first condition stipulates that for digits d up to 5, one can simply increase 
the place value d times. For digits greater than 5 however, there is a more 

efficient entry strategy that becomes feasible as a result of the wrap around 
feature of the digits on the interface. Hence, similar to the wrap around variation 
in Section 5.4.3 one can decrease the digit from [o] to get to the higher numbers 
(i.e., those greater than 5). However for this variation, it is necessary to account 
for the action needed for correcting the carry over effect that occurs whenever 

the digit wraps around, hence 11 — d as opposed to 10 — d. To calculate the cost 
of entering a number, two utility functions Sc and S f  are defined. Listings 5.1
show JavaScript implementations for Sc and Sf. For a given number a, these
functions return another number that is rounded up or down to the next higher 
place value. For instance:

5 C(343) 350

COCO

to 340

S c(350) 1 o o 5/(340) 300

OOto I o o

OOCO

to
4 -> 300

It has been already been established that the cost of changing /3 to a is the 

same as the cost of changing /? — a  to 0 where a < (3 . Therefore to calculate 
the cost of changing /3 — a  to 0, a recursive function C(f3 — a, 0) which evaluates 
Sf(/3 — a)  and Sc(/3 — a)  until both functions no longer change the value in the 
parameter is defined. Listing 5.2 shows a JavaScript implementation for the cost 

function. This process creates a graph from node (3 —a  to node 0 with each node 
in the graph leading to two other nodes. The paths in the graph are weighted 
and indicate the cost of traveling between the adjoining nodes. The total cost of 

changing (3 — a  to 0 is thus defined as the path within the graph with the least 
cost.
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/ *  *

*  @ p a r a m  x  i n t e g e r

*  @ r  e t u r n s  i n t e g e r  

* /
function nextceil(x) {

var m = numDigits (x) , i, ceil, pow = Math.pow(10, m - 1); 
for (i = 0; i < m; i++) { 

pow = Math.pow(10, i); 
ceil = Mat h . ce i l( x  / pow) * pow; 
if (ceil !== x) { 

return ceil ;
>

>
return x ;

>

/ *  *
*  O p a r a m  x  i n t e g e r

*  @ r e t u r n s  i n t e g e r  

* /
function nextfloor(x) {

var m = n u m D i g i t s ( x ) , i, floor, pow = Math.pow(10, m - 1); 
for (i = 0; i < m; i++) {

pow = Math.pow(10, i); 
floor = Ma th . fl o or ( x / pow) * pow; 
if (floor !== x) { 

return floor ;
>

>
return x;

}

Listing 5.1: A JavaScript implementation of function Sc and S f

function cost(x) {
var nextc = nextceil(x), nextf = n e x t f 1 o o r (x ); 
if (x === nextc I I x === nextf) {

var d = digit(x, numDigits(x) - 1); 
return Math.min(ll - d, d ) ;

>
return M a t h .m i n (c o s t (M a t h .abs (x - nextc)) + cost(nextc) , cost 
(Math.abs(x - nextf)) + c o s t (n e x t f ));

}

Listing 5.2: JavaScript function for calculating the number of clicks required to change 
x to 0
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Let x = (3 — a

f  i f  x  == Sf (x) ot  x  = =  S c( x )

C(x , 0) =  < mm(C(x  — Sf(x))  +  C(Sj(x) ,  0), otherwise 

C(Sc( z ) - z )  +  C(Sc(r)),0)

For the interfaces analysed in this chapter, the functions defined above give 
a quantitative representation of the number of button clicks needed to change 

between any two numbers. In order to perform Key-stroke Level Model analyses, 

it is necessary to determine the sequence of buttons clicked on the interface in 
the course of changing between the numbers. This sequence of button presses 
were obtained by path finding using different cost functions.

5.4.5 Cost as a function o f number of button  clicks

One can reason about the performance of an interface in terms of the number of 
clicks required to complete a given task. Discrete key clicks of user interactions 

give a very good indication of the number of §tcps required to perform or carry 
out a task on a user interface. The functions defined in the previous section are 
used for calculating the cost function with respect to number of clicks required 
to set the values.

5.4.6 Cost as a function o f estim ated tim e

Another way to reason about interface performance is in terms of the optimal time 

required to complete a given task. This value cannot simply be obtained from the 
optimal number of clicks required to complete a task because the time required to 
click a button varies depending on the button. For instance, button acquisition 

takes time. This means it costs more time to click on two different buttons than 
it does to click twice on the same button. This detail is lost when thinking of 
performance in terms of number of button clicks alone. It is straightforward to 
estimate the time required to enter a number given a finite number of clicks.

Using KLM to estimate the performance component in the cost function, 
produces time optimised paths through the graph that are different from those
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/ * *
* c a l c u l a t e  KLM c o s t  f o r  p e r f o r m i n g  a s e q u e n c e  o f  a c t i o n s
* @param a c t i o n s  A r r a y  o f  s t r i n g s  
* /

function klmcost(actions) {
var point = 1100, click = 200; 
if (factions || actions.length === 0) 

return 0;
var score = click, action = actions [0]; 
if (actions.length > 1 && action !== a c t i o n s [1]) { 

score += point ;
}
return (score / 1000) + klmcost(actions.slice (1)) ;

}

Listing 5.3: JavaScript code for calculating estimated time

generated when the search is optimised for least number of button clicks. Using 
optimised time as a cost function allows the discovery of number entry interaction 
strategies that are different from those that appear to be intuitively optimal with 
respect to the number of clicks required to specify numbers. These strategies are 
arguably closer to what a non-expert user of the interface might use since figuring 
out the optimal keying sequence takes mental preparation as well as time required 
to acquire different buttons.

Using the A star algorithm, the rest of this chapter explores the time cost of 

entering numbers on a variety of key based number entry interfaces as well as 
the cost of changing numbers within a given range.

5.4 .7  C ost function  g

In the A star algorithm, g is used to calculate the cost of traveling from the source 

to the current position in the graph. As such, g is defined over a sequence of 

edges traversed so far (in our case actions performed so far). Simply, g returns 
a KLM estimation of the time taken to execute the sequence of actions between 

the source node and the current position in the graph.
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I 2.0

li 11 \ IE I1 i i ^  ^  i i i |
Keypad D-pad D-pad D-pad Digit Up-down Up-down Up-down

Arithmetic Blocked Wrap Arithmetic Blocked Digit Wrap
Digit Wrap Digit Wrap

■IIIU
Keypad D-pad D-pad D-pad Digit Up-down Up-down Up-down

| O p tim ise d  c lic k s  

! O p tim ise d  tim e

O p tim ise d  c lic k s  

O p tim ised  tim e

D-pad D-pad Digit Up-down Up-down Up-down 
Blocked Wrap Arithmetic Blocked Digit Wrap

Digit Wrap Digit Wrap

Figure 5.2: (Above) A comparison o f the number of keystrokes required to change be­
tween any numbers in the range o f 0 - 99 fo r all interfaces, when task strategy was 
optimised fo r  m inim um  number o f clicks versus minimum elapsed time. (Below) A 
comparison o f mean tim e required to change between any two numbers when task strat­
egy is optimised fo r  least keystrokes versus least time.

5.4.8 Heuristic function h

The heuristic function provides an estimate of the cost from the current state to 
the goal state, i.e., from the current number to the intended number. The heuris­
tic function essentially determines the strategy that the analysis appears to use 
while exploring the performance of the interfaces. The accuracy of the path that 

the analysis discovers is dependent on the accuracy of the heuristic function in 

predicting the distance to the goal state. The heuristic functions used in the A star 
algorithm are based on those defined in Section 5.4.5 for calculating the number 
of clicks needed to change a  to (3. However instead of simply using the number 
of clicks, the function is updated with the KLM functions for estimating time 

to acquire buttons and time to activate buttons. Listing 5.3 shows a JavaScript 
function for estimating time given a sequence of actions.
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5.5 R esults and D iscussion

The A star algorithm was run for all 7 interfaces for numbers ranging from 0-99.  

This was used to find a path between all pairs of numbers within this range as 

stipulated by the cost and the heuristic functions. For each interface, the cost 
of setting a fresh number, i.e., setting a number from zero, and the mean cost of 

setting a number from any other number is reported. Figure 5.2 shows the mean 
costs (both keystrokes and time) of changing between any numbers for the range 

between 0 - 99. Figures 5.3 and 5.4 shows detailed averages of cost of changing 
from each number in the range to the other numbers and Figures 5.5 to 5.11 
shows an adjacency matrix representing the cost of changing between any two 

numbers in the range.

5.5.1 N um eric K eypad

For the numeric keypad, there was no difference between the strategies uncovered 
when the task performance was explored for optimal number of keystrokes or 
optimal time. In both cases, the average number of clicks required to change zero 
to any other number was 1.9 with a mean time of 2.4 seconds and the overall 
mean number of clicks need to change any numbers from any other number was
3.5 clicks with a mean time of 3.6 seconds. The numeric keypad in this analysis 
uses a clear digit action rather than a clear number action for error correction. 

Figure 5.3 shows the relationship between the mean cost of changing a number 
to any other number and the number of digits of the source number. The longer 
a number is, the further away it is from any other number. An extra digit in the 

input sequence increases the task time by 200ms. This can be seen, for instance, 
in the step increase for mean time costs for numbers above 9.

The all-pairs costs shown in Figure 5.5 shows that performance on this inter­

face is symmetrical about the diagonal. This means that the cost of changing a  to 
/3 on this interface is the same as the cost of changing /3 to a. The main diagonal 

simply shows that there is no cost involved when a = (3. The ten lighter square 
grids spanning the diagonals show that the cost of changing between values that 

lie in the same decade (tens group) is the same.
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(b) Mean duration to change numbers to any other number

Figure 5.3: This shows averages for cost of number entry on 7 interfaces. The costs 
are keystroke optimal. 5.3a shows average number• of clicks for each number on the 
x-axis to all other numbers within the range 0 - 99 and 5.3b shows a time estimate of 
cost based on the optimal keystrokes.

(a) Mean number of clicks to change numbers to any other number

■  K eypad

■  D -pad  A rithm etic

■  D -pad  B locked  Digit W rap

■  D -pad  Digit W ra p

■  U p-dow n A rithm etic

■  U p-dow n Blocked Digit W ra p

■  U p-dow n Digit W ra p

■  Keypad

■  D -pad  A rithm etic

■  D -pad  B locked D ig t W rap

■  D -pad  Digit W ra p

■  U p-dow n A rithm etic

■  U p-dow n Blocked Digit W ra p

■  U p-dow n Digit W rap

5.5.2 D-pad

The arithmetic variation of the D-pad interface required an average of 8.7 clicks 
to change zero to any other number with a mean time of 5.2 seconds. The overall 
mean distance between any two numbers was 6.8 clicks over 4.6 seconds. When 

task strategy was optimised for time, the mean number of keystrokes to change 
zero to any number increased to 9 although the time required dropped to 4.9 
seconds. The overall distance between all pairs was 7 clicks lasting for a duration 

of 4.2 seconds.

Figure 5.6 shows that the performance of this arithmetic variation of the D- 
pad interface is symmetrical about the diagonal. The light diagonal bands in the
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■  K eypad

■  D -pad  A rithm etic

■  D -pad  B locked  D igit W ra p

■  D -pad  D igit W ra p

■  U p-dow n A rithm etic

■  U p-dow n B locked  D igit W ra p

■  U p-dow n D igit W ra p

(a) Mean number of clicks to change numbers to any other number

■  K eypad

■  D -p a d  A rithm etic

■  D -p a d  B locked  Digit W ra p

■  D -p a d  Digit W ra p

■  U p-dow n A rithm etic

■  U p-dow n B locked  Digit W ra p

■  U p-dow n Digpit W ra p

0 5 10 15 20  85 3 0  35 4 0  45 50  63 60  “  7 0  75 80  “  90  85

(b) Mean duration to change numbers to any other number

Figure 5.4: The costs here are time optimal. 5.4a shows average number of clicks for 
each number on the x-axis to all other numbers within the range 0 - 9 9  and 5.4b shows 
a time estimate of costs.

matrix show that the cost of changes made between two numbers are a function 

of how numerically close the numbers are as well as how many digits they share 
in common. Figure 5.6b shows a visible difference in cost by highlighting points 

in the matrix where the arithmetic feature becomes beneficial to use. This point 
occurs beyond the seventh unit of every decade. Instead of pressing repeatedly 011 
the up key, it becomes more cost effective to move the cursor to the left, increase 

the digit, move the cursor right (to return to the initial position) and decrease 

the digit to 9 or 8.

The blocked digit wrap variation, like the numeric keypad, produced the same 

results for both strategies. O11 average, it required 10 clicks to change zero to any 
other number with a predicted mean duration of 5 seconds. The mean number

4

3

2
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(a) cost as number of keystrokes (b) cost as predicted duration

Figure 5.5: A m atrix diagram showing relative cost of changing between all pairs of 
numbers in the range in the analysis fo r  the numeric keypad.

(a) cost as number of keystrokes (b) cost as predicted duration

Figure 5.6: The relative costs o f changing between numbers fo r  the arithmetic variation 
of the D-pad interface.
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(a) cost as number of keystrokes (b) cost as predicted durat ion

Figure 5.7: The relative costs of changing between numbers on the D-pad interface 
when digit wrap is not allowed.

of clicks between any pair of numbers was 7.5 lasting for 4.5 seconds. Note that, 
on average when setting fresh numbers, this variation requires more number of 
clicks than the arithmetic variation but requires less time. This is because when 
digit wrap is blocked, the user is forced to set each digit explicitly by continuous 
increments or decrements. This means the user typically performs monotonic 

changes to each digit successively. This requires more keystrokes, but means 
that the user is performing clicks on the same button, rather than using two 

buttons to change the same digit. In the standard KLM, switching buttons, is 
equivalent to clicking on the same button 5 times. The way this variation works 

essentially ensures that users employ a time optimal strategy.

Similarly, the digit, wrap variation for this interface produced the same results 

when explored with both strategies. It required an average of 6 keystrokes to 

set a number, with an average task time of 4.2 seconds. The overall distance 

between all pairs was also 6 keystrokes lasting 4.1 seconds.
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(a) cost as number of keystrokes (b) cost as predicted duration

Figure 5.8: The relative costs of changing between numbers on the D-pad interface 
when independent digit wrap is allowed.

(a) cost as number of keystrokes (b) cost as predicted duration

Figure 5.9: A visualisation of the all-pairs cost for the arithmetic variation of the 
up-down interface.
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(a) cost as number of keystrokes (b) cost as predicted duration

Figure 5.10: A visualisation of the all-pairs cost for the variation of up-down interface 
where digit, wrap is blocked.

5.5.3 Up-down

W hen a m inim um  clicks s tra tegy  was used, th e  arithm etic  varia tion  of th is  in­

terface required an average of 7.4 clicks to  change zero to  any num ber in a m ean 

tim e of 4.7 seconds. Changes betw een any pairs on num bers were 5.8 clicks on 

average and  lasting 4.2 seconds. W hen a m inim um  tim e s tra tegy  was used, av­

erage num ber of clicks to  set a new num ber increased to  7.5 clicks b u t m ean 

tim e required dropped  to  3.5 seconds. A lthough overall num ber of clicks between 

num bers rem ained the  same, the  m ean tim e required dropped to  3.1 seconds.

T he click op tim al stra tegy  for th e  block digit, wrap variation  of th is interface 

required 9 clicks to  set any new num bers in a duration  of 5.1 seconds while the 

overall changes between any pair of num bers in the  range required 6.1 clicks in 

4.4 seconds. T im e optim al s tra teg y  required 9 keystrokes to  set new num bers in 

3.8 seconds. T he overall d istance betw een pairs was 6.6 clicks lasting  3.3 seconds.

T he click optim al s tra tegy  for the  digit, wrap variation  required 5 clicks to 

set new num bers as well as to  change any num ber to  any num ber, in 4 seconds. 

The tim e optim al s tra tegy  required 5 keystrokes to  set new num bers lasting  an 

average of 3.1 seconds. Overall, th e  m ean num ber of keystrokes required  to
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(a) cost as number of keystrokes cost as predicted duration

Figure 5.11: A visualisation of the all-pairs cost for the variation of the up-down 
interface with digit, wrap around.

change between number pairs within the interface was 5.2 clicks in 3.1 seconds.

5.6 P e r fo rm a n c e  o f  n u m b e rs  in c o n te x t

Chapter 4 presented analysis of logs from three medical devices to understand the 
nature of numbers used in infusion therapy and the way those numbers change. 
The analyses showed that depending on the device, numbers are often changed 
between non-zero values rather than being set from an initial value of zero. The 
performance of the d-pad. up-down and the numeric keypad interfaces are fur­

ther evaluated with respect to time and in the context of those numbers that 
featured in the logs. This analysis would give some insight into the comparative 

performance of the different interfaces when used to enter the same numbers.

5.6.1 M ethod

For every different number change found in the logs, a corresponding task time 
was predicted for each one of the three interfaces (dpad, updown and keypad). 
The task times were predicted using a time optimal strategy in the A star algorithm
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Cc rnb ined Logs

D-pad Up-Down

iH  initial changes 

subsequent changes

Keypad

Figure 5.15: Mean predicted task time for the three interfaces grouped by the type of 
number being set. Error bar's show standard deviation.

w ith  functions defined earlier in th is chapter. This study  was a repeated measures 

design and the  independent variable was th e  interface style with three levels: the 

different prediction functions run for each of the  three interfaces.

5 .6 .2  R e s u l t s  

In itia l n u m b er changes

For all num bers set from zero, a one-way repeated  m easures ANOYA with Greenhouse- 

Geisser correction found a s ta tis tica lly  significant effect of interface style on pre­

dicted tim e F (1 .5 ,394 .3 ) =  295.78, p < 0.001. Post-hoc analysis using multi­

ple t-tests  (p <  0.001) showed the  d-pad was slower th an  the keypad t(264) =  

15.84, p  <  0.001 and  the  d-pad was slower th an  the up-down f (264) = 29.25, p < 

0.001. There was no significant different between the up-doum  and the keypad 

£(264) =  —2.55, p = 0.011.

S ubsequen t n u m b er changes

A one-way repeated  m easures ANOYA with Greenhouse-Geisser correction found 

a s ta tis tica lly  significant effect of in terface style on predicted  tim e for subsequent 

num ber changes F ( l . 27, 889.33) =  309.55, p <  0.001. Post-hoc analysis using 

m ultiple t-te sts  showed a significant difference between all pairs (p < 0.001). The
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d-pad was slower than the up-down £(696) =  24.64, p < 0.001, the d-pad was 

faster than the keypad £(696) =  —7.59, p < 0.001 and the up-down was faster 

than the keypad £(696) =  —25.11, p < 0.001.

Figure 5.15 shows the mean and standard deviation for all interfaces and 

for both initial and subsequent number changes. Figures 5.12, 5.13, 5.14 show 
details predicted task times for each number changes that featured in the BBraun, 
Graseby and Asena logs.

5.7 Discussion

The results show that for all the different number distributions from the different 
devices, the up-down interface has the mean predicted fastest entry time when 
making changes to a number and the task time is comparable to the keypad when 
setting new numbers. These results could be due to the nature of numbers used in 
infusion therapy as well as the nature of number changes made during therapies. 
These changes might be further informed by the therapies the devices are used 
to manage.

Other factors that might be responsible for this result are the generic KLM 
values used in the prediction of time for the different interfaces. This issue will 
be revisited later in Chapter 7 where the inter key durations observed during the 
experiments are contrasted with the generic KLM values used in the prediction.

The numeric keypad is probably the most popular number entry interface. It 

is the interface tha t users are most familiar with. Consequently, in practice, it is 
probably the fastest interface. However, based on this analysis, in the context of 

medical devices, and the types of numbers entered into infusion pumps, indepen­

dent digit interfaces are sometimes faster. This finding means that new designs of 
independent digit interfaces can offer faster number entry for the medical context.

5.8 Summary

Using a mathematical approach, this chapter has provided generic functions that 

model the cost of changing between any two numbers on the numeric keypad
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and six variations of independent digit interfaces. It also introduced the novel 

concept of discovery strategies used in the exploration of tasks in different varia­

tion of number entry interfaces. These strategies were implemented as heuristic 
functions in the A star search algorithm and have been explored based on optimal 
number of clicks and optimal time taken to complete task.

In some cases, such as for the numeric keypad and the variation of the inde­
pendent digits interface tha t blocks digit wrap, the different strategies produce 
the same path through the graph. This has implications for consistency and ease 
of learning. In these cases, regardless of user intent (i.e., less clicks or less time), 
the optimal route for performing the task is the same. When there is a difference 
between the results of these two strategies, the user is faced with an interface 
that has ambiguous ways of achieving the same goal.

This chapter presented a two-part analysis. First, the performance of chang­
ing between all pairs of numbers within the range 0-99 was explored to provide 
a restricted, but generic view of the relative performance of different variations 
of the interfaces tested. This analysis showed that the numeric keypad is fastest 

when setting new numbers. This is followed by the digit wrap, arithmetic and 
blocked digit wrap variations of the up-down and d-pad interfaces. When making 
changes between numbers however, the up-down interface appears to perform 
better than the numeric keypad. This highlights the efficiency in easily making 
changes to a number on this interface.

A second analysis, explored relative performance of the interfaces based on 
the numbers entered in three different types of infusion pumps. Unlike the first 
analysis, this one did not include number pairs which are unlikely to occur in 
the healthcare setting. The result of this showed that the up-down interface had 
the quickest mean speed of entry when making changes between numbers and 

performs the same as the numeric keypad when entering new numbers.



Chapter 6

In terface  style and  e rro r  
de tec tio n

The purpose of any number entry interface is to accurately select or set a numeric 
value. Chapter 3 introduced a four part classification for number entry interfaces. 
Two of these are based on specifying digits that make up a number and the other 
two are based on choosing a number from a set of options. This chapter evaluates 
number entry interfaces with respect to their effect on error detection.

Number entry is perceived to be a very simple and mundane task — yet 
numerical drug dosing errors account for a significant portion of adverse drug 
events in hospitals, particularly in paediatrics [JanlO. Vic03]. Number entry 
errors can be as a result of a combination of user errors and poor interaction 
design. Hardware defects such as key bounces 011 keypads have been reported as 

a source of error in medical device programming [ISM06, VaiOG]. A key bounce 
occurs when physically pressing a key once causes a repeat of the same key: this 

is different from a double keying error where a user accidentally presses the same 

key twice [VaiOG].

I11 many user interfaces, number entry is implicit; for example, adjusting 

sound levels by rotating an unmarked dial, or moving a scroll bar adjusts a hidden 
number but the user copes because of direct feedback (direct manipulation).
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Unfortunately, errors are inevitable when using interactive systems and these 

can be in the form of mistakes, slips or lapses [Rea90]. Sometimes, errors are 

detected by users and corrected. When errors go undetected, the consequences 
can be very serious. In a safety critical and dependable system, it is important 
that users realise when they commit errors and correct the errors. The differences 
in the design of number entry user interfaces place different demands on users in 

terms of what part of the user interface they focus most of their attention on and 
as a result whether they notice that an error has occurred and correct the error.

This chapter reports an experiment that investigates the effect of interface 
design on number entry user error detection. The findings show that the incre­
mental interface produces more accurate inputs than the serial interface. It also 
presents a classification of error types that have implications for number entry 
interface designers, particularly in safety critical domains where accuracy needs 
to approach 100%.

6.1 Experim ent

Because interaction on the incremental interface requires users to monitor how 
the value on the display changes based on what key the user is interacting with, it 
was hypothesized that users will more likely detect and correct errors when using 
an incremental interface as opposed to when using a serial interface. It was also 
anticipated that users will pay more visual attention to the display than to the 
input when using the incremental interface and pay more visual attention to the 
input than to the display when using the serial interface. Finally, it was expected 

that there will be types of errors that are unique to each class of interface.

6.1.1 D esign

The experiment was a within-subject repeated measures design. Each partici­
pant used both number entry interfaces. The number entry interface was the 

independent variable and it had two levels: the incremental and serial interfaces. 

The order in which the interfaces were tested was counterbalanced for all partic­
ipants. The dependent variables were the number of uncorrected errors, number
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of corrected errors, total eye fixation time on the input and display part of the 

interface and task completion times.

6.1.2 Participants

Twenty-two participants from the University College London psychology pool 
for participants were recruited for this experiment. There were 12 female and 10 

male participants aged between 18 -  55 years. All the participants were regular 

users of computers. None of the participants was prone to repetitive strain injury 
and one participant was dyslexic.

6.1.3 A pparatus

A computer with an integrated Tobii eye-tracker was used to present the instruc­
tions and the number entry interfaces. Participants interacted with the computer 
using a mouse to click on “keys” on the interface. Based on the properties of num­
bers analysed from Asena pump logs in Chapter 4, 100 numbers were generated 
randomly for the experiment with the following constraints:

•  all numbers were between 0 and 10

• all numbers had a decimal point

•  all numbers had at least one significant digit after the decimal point

• all numbers were unique

The two number entry interfaces used in the experiment were implemented 
in HTML and Javascript. Whenever an interface button was clicked, a scaling 

transformation was applied to the button to provide additional visual feedback 

that the button was clicked.

Serial digit entry interface

The serial interface was based on the Graseby 500 infusion pump (see Figure 6.1). 
It allowed number entry using a full numeric keypad in the telephone style layout.
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Figure 6.1: The serial interface used in the experiment.

This interface had a decimal point key and a cancel key for deleting the rightmost 
character on the display. This interface allowed a maximum of 5 characters in its 
display buffer which may include only one decimal point. If the user clicks the 
decimal point more than once in a trial, only tin1 first decimal point is registered 
in the buffer and subsequently on t he display. Any other decimal point entries 
are ignored until the entire buffer is cleared or the currently registered decimal 

point is deleted.

In c rem en ta l n u m b er en try  in te rface

The incremental interface was based on the Asena GH Syringe pump (see Figure 
6.2). It had four keys. Two of the keys increased the value displayed and the 
other two keys decreased the value. For each of the two sets of keys, one key 
caused a bigger change while the other caused a smaller change (usually a factor 
of 10 smaller). This interface allowed two modes of interaction. The user could 
press the keys or press and hold the keys. Pressing the keys changed the displayed 
value as specified above. Pressing and holding the keys changed the displayed 

value at a rate dependent on the duration the key was held down for. Typically, 
users were expected to press and hold for faster changes to the number. This 
interface always displayed a decimal point and all numbers were rendered to a 
precision of two decimal places.

A key bounce was triggered for the 84th. 88th, 92nd and 97th trial for both 
interfaces. Once a user corrects a key bounce error, the key bounce was no 
longer triggered for tha t trial. Mouse actions were logged to obtain accuracy and 
performance data on the number entry tasks. Both interfaces had an Enter key
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to commit the number entry task.

6.1.4 Procedure

All participants were tested individually. Before starting each session of the 
experiment, the eye tracker was calibrated for the participant. The participant 

was then briefed about the stages and purpose of the experiment before starting.

The experiment itself was in two parts: one for each interface. Prior to each 

part of the experiment, the participant got a training session where they could 
enter 10 numbers and get familiar with the interface. When the participant was 

comfortable with how the interface worked, they were allowed to proceed to the 
experiment. The participants could perform the training session as many times 
as they wanted and they were encouraged to ask questions to clarify how the 
interface worked during the training session.

For the experiment, each participant was required to enter 100 numbers using 
both interfaces in the order defined by the experimenter. The participants were 
instructed to enter the numbers as quickly and as accurately as possible. An 
instruction on the right half screen showed what number the participant should 
enter. The participant had to click a ‘Next' key to confirm their entry. Doing 
this triggered the display of the next instruction. The process of number entry 

and confirmation of entry was repeated until all 100 numbers had been entered 
using the first interface. The participant was allowed a break of up to 5 minutes 
before proceeding to the second half of the experiment. The interface was then 
switched and the participant went through the training session for that inter­

face and proceeded to enter the same set of 100 numbers. At the end of the 
experiment, each participant was given a gift voucher in return for their time.

\ /  ^  m

Figure 6.2: The incremental interface used in the experiment
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6.1.5 D efining corrected errors

Corrected errors for each participant on the serial interface were calculated as 

the total number of times they pressed the ‘Cancel’ button. For the incremental 
interface, the corrected errors for each participant were calculated as the num­

ber of times the participant overshot or undershot the target number. In the 
incremental interface, overshooting the target number was sometimes intentional 
especially when entering numbers efficiently using a mixture of continuous and 
discrete actions. For instance, entering the value ‘5.9’ efficiently means slightly 

overshooting the target number using the continuous (hold-down) interaction in 
order to reach ‘6’, for instance, and refining the value with a down click (a dis­
crete action) to obtain the target number. This type of intentional overshooting 

did not count as a corrected error. To distinguish between intentional and un­
intentional overshooting on the incremental interface, the number of overshoots 
in a task were first determined for all numbers used in the experiment. This was 
then compared to the number of oscillations demonstrated by a user for the given 
trial as recorded by the experiment. The difference between these two numbers 
was used as the number of corrections per trial.

6.1.6 R esu lts

Three participants were excluded from the analyses due to problems encountered 
while calibrating the eye-tracker.

To check for learning effects on the interfaces over the experiments, the trials

Serial Incremental
Mean SD Mean SD

Block 1 1.65 0.35 9.35 3.54
Block 2 1.64 0.23 9.10 3.03
Block 3 1.71 0.33 8.72 3.83
Block 4 1.61 0.49 8.09 3.35
Block 5 1.85 0.72 8.53 3.82

Table 6.1: The mean entry time per trial block with corresponding standard deviations 
for the serial and incremental interfaces.
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Figure 6.3: Box-plot of mean trial time by each participant for each block on the serial 
and incremental interfaces.

for each participant were split into 5 blocks; each block had twenty trials. A two- 
way repeated measures ANOVA showed a significant main effect of interface style 
on speed F ( l ,  18) =  99.22. p < 0.001 , but no significant main effect of trial block 
on speed F(2 .74, 49.45) =  2.54, p -- 0.072. There was no significant interaction 

effect of interface style on trial blocks F(3 .02 ,54.35) =  2.36, p = 0.081. Table 6.1 
shows the mean and standard deviations for the experiment blocks and Figure 6.3 
shows the distribution of participant times for each block.

Further investigation was carried out to explore the trend of entry time in

3 54 54

(a) Serial (b) Incremental

Figure 6.4: Mean trial time per block. Each line represents a participant.
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more detail with respect to obtaining more context around the outlier values 

present in Figure 6.3. Detailed results are shown in Figure 6.4. No further 
investigation was carried out since no participant was consistently an outlier 
across all blocks on both interfaces.

Effect of key bounce  on e rro r

All key bounce errors were stimulated in the 5th block of the experiment trials. 
A Friedman test showed a significant main effect of trial block on uncorrected 

error for the serial interface y2(4) =  31.06. p < 0.001. Post hoc analysis using 
Wilcoxon test with Bonferroni corrections showed a significant difference between 
errors made between blocks 5 and 1, Z  =  —3.06. p  = 0.002. between blocks 5 
and 3, Z = —3.16. p  = 0.002 and between blocks 5 and 4, Z  — —3.35, p = 0.001. 
Figure 6.5a shows detailed differences between blocks.

The trial blocks also had a significant main effect on uncorrected error for tin1 
incremental interface \ 2(4) = 23.47, p < 0.001. Post hoc analysis using Wilcoxon 
test with Bonferroni corrections showed a significant difference between blocks 5 

and 1, Z = —3.13, p  = 0.002 and between blocks 5 and 3, Z  = —3.13, p - 0.002. 
Figure 6.5b shows the distribution of participant errors per block and Table 6.2

o
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o
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o
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o

2 51 3 4

(a) Serial (I)) Incremental

Figure 6.5: The distribution of total uncorrected errors by each participant for each 
block on the serial and incremental interfaces.
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shows the  m ean and s ta n d a rd  deviation for partic ipan t error per block.

Serial Increm ental
M ean SD M ean SD

Block 1 0.79 1.87 0.47 1.39
Block 2 1.05 2.20 0.37 0.76
Block 3 0.58 1.43 0.32 0.95
Block 4 0.74 1.82 0.68 2.11
Block 5 2.42 2.27 1.37 2.36

Table 6.2: The mean total error’s per trial block with corresponding standard deviations 
for the serial and incremental interfaces.

Further investigation was carried  out to  explore the  consistency of the  outliers 

in F igure 6.5. This was done to  find out if there  were p artic ipan ts  th a t consis­

ten tly  had more errors th an  o ther p a rtic ip an ts  for each block. Figure 6.6 shows 

th a t one p a rtic ipan t (the  sam e person on bo th  interfaces) consistently  com m itted  

m ore uncorrected  errors th an  the  o thers. T his partic ipan t shall be referred to as 

P 5  from here on. T he po ten tia l bias in troduced  by P 5  011 the  results ob tained  

thus far was investigated  by rerunn ing  the  analysis w ithout tria ls from P 5 .

A Friedm an test showed a significant m ain effect of trial block 011 uncorrected 

error for the  serial interface \ 2(4) =  28.18, p  <  0.001. Post hoc analysis using 

W ilcoxon test w ith Bonferroni correction showed a significant difference for errors 

m ade betw een blocks 5 and 1, Z  =  —2.95, p =  0.003. betw een blocks 5 and 3,

10-T 10-1

(b) Incremental(a) Serial

Figure 6.6: The number of uncorrected errors per participant for each block. A line 
represents a single participant.
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Figure 6.1: The distribution of the number of errors made by participants during each 
trial block on the serial and incremental interfaces. The data used in this distribution 
excludes data from P5.

Z  =  —3.03, p = 0.002 and between blocks 5 and 4, Z = —3.22, p =  0.001, with 
block 5 having more error in each case.

Similarly, a Friedman test showed that the trial blocks also had a significant 
main effect on uncorrected error for the incremental interface y2(4) =  21.44, p < 
0.001. Post hoc analysis using Wilcoxon tests with Bonferroni correction showed 
a significant difference between errors made on blocks 5 and 1, Z  =  —3.05, p = 
0.002 and on blocks 5 and 3, Z  = —3.05, p = 0.002, with block 5 having more 
error in each case. Figure 6.7 shows the distribution of errors committed without 
data from P5.

U ncorrected Errors

A total of 95 uncorrected errors were made in the experiment. P5 was responsible 
for 53 of those errors. A Wilcoxon Signed Ranked test showed a significant 

main effect of interface style on total uncorrected error, Z = —3.11,p =  0.002. 
The total uncorrected errors on the incremental interface was significantly lower 
(mean=3.21, sd=7.2) than those on the serial interface (mean=5.58, sd= 8 .88). 
To explore the potential bias that P5 had on the difference between the two
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Figure 6.8: A comparison of the distribution of number of errors made on each inter­
face.

interface styles, a Wilcoxon test was carried out with this participant excluded 
from the dataset. The test showed that the total uncorrected errors on the 
incremental interface (mean=1.61, sd=1.85) was significantly lower than those 
on the serial interface (mean=3.61, sd=2.38), Z  = —2.94, p = 0.002. Figure 6.8 
shows the median values for the different interfaces as well as the differences in 

the distributions of the datasets.

A Wilcoxon signed-rank test also showed a significant main effect of interface 

style on uncorrected error when the dataset included only the first four trial 

blocks, Z  =  —2.06, p — 0.039. When P5 was excluded from this dataset, interface 
style did not have a significant main effect on uncorrected error, Z  = —1.8, p =
0.072. Figure 6.9 shows the detailed distributions of total uncorrected errors 
committed by participants in the first four blocks of the experiment.

C orrected Errors

A Wilcoxon signed-rank test showed a significant main effect of interface style 

on corrected error. The number of corrected errors per participant on the in­
cremental interface (mean =  74, sd =  17.31) was significantly greater than 
the number of corrected errors in the serial interface (mean =  7.1, sd =  9.6),
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(a) Data including P5

Figure 6.9: The distribution of total uncorrected errors by each participant for the 
first four blocks of trials. These represent the uncorrected errors committed out of the 
context of the stimulated key bounce error.

Z =  -3.73, p < 0.001.

Severity of Errors

The severity of error, measured as the absolute difference between the intended 
value and transcribed value, was higher on the serial interface (mean=70.91, 
sd= 166.94) than on the incremental interface (mean=0.93, sd=1.41).

V isual A ttention

For both interfaces, a paired t-test found a significant main effect of area of 

interest (on the interface) on fixation duration. The total visual fixation duration 
on the input of the serial interface (mean — 271.16s, sd =  80.01), was significantly 
greater than the total fixation duration on the display of the device (mean = 

26.28s, sd =  19.31), £(17) =  13.35,p < 0.001. Conversely, the total fixation 
duration on the input of the incremental interface (mean =  185.82s, sd =  87.78) 
was significantly lower than the fixation duration on the display (mean =  553.47s, 

sd =  276.25), £(17) =  7.34,p < 0.001.

(b) Data excluding P5
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N um ber o f glances at instruction

Analysis of fixation data from the eye-tracker using a paired t-test also showed 

that participants made significantly more glances at the instruction when us­
ing the incremental interface (mean=2.70, sd=1.13) than when using the serial 
interface (mean=1.85, sd=0.82), t{ 17) =  3.04, p = 0.007.

Speed o f entry

A paired t-test showed a significant main effect of interface style on entry speed. 
The incremental interface (mean =  8.8s, sd =  3.31) was significantly slower than 

the serial interface (mean =  1.69s, sd =  0.36), £(18) =  9.96, p < 0.001.

Speed accuracy trade off

For the incremental interface, it was found tha t the mean speed of entry and the 
number of errors per participant were strongly correlated {Pearson's r(16) =
0.55, p = 0.018). For the serial interface, the correlation between speed and error 
was not statistically significant {Pearson's r(16) =  0.29, p =  0.232). Figure 6.10 

shows a scatter plot of speed and errors for both interfaces.
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Figure 6.10: Scatter plots of the mean speed and number of errors for the incremental 
and serial interfaces.
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Missing decim al

■  S er ia l 

i In crem en ta l

Skipped T ransposition W rong digit Missing digit

7

m

Figure 6.11: The distribution of the error types that occurred on the serial and incre­
mental interface in the course of the experiment.

6.1.7 Error Types

K eystroke logs from all partic ipan ts were analysed for this section. Below, a 

selection of th e  uncorrected error types th a t occurred in during the experim ent 

is reported . Based on a different experim ent. W isem an et al. have developed 

a taxonom y of num ber en try  errors [W isll] and have independently  reported 

and classified these errors. As well as reporting error types, the prevalence of 

certain  error types between the  two num ber entry  interface styles is reported. 

T he frequency of each error type is shown in Figure 6.11. For each error type, the 

severity of the  error is quantified by reporting the mean and s tandard  deviation 

of the  difference between the  intended num ber and the  transcribed  num ber.

M issing D ecim al P o in t E rro rs

This error occurs when a decim al point is absent from the transcribed  num ber 

bu t is present in the  instruction. There were 28 instances of this error on the 

serial interface and none on the  increm ental interface. On average, this error 

changed the  intended num ber by 260.77 (sd=240.85).

T ran sp o sitio n  E rro rs

Transposition  errors occur when the user swaps two adjacent digits in a num ber. 

For instance, instead of entering 5.84, a user m ight en ter 5.48. The m ajority  of 

these were com m itted  on the increm ental interface w ith 22 instances and only 5
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instances on the serial interface. The dyslexic participant committed no transpo­

sition errors. Most of the transposition errors occurred after the decimal point. 

In our data, a special case of the transposition error occurred when the decimal 
part of the transcribed number was exactly 10 times more or less than the decimal 
part of the intended number. For example, instead of entering 7.4, a participant

entered 7.041. Although one participant (P5) committed 17 of these errors, the

potential causes make it a concern for further investigation.

It is possible that the display of the numbers on the incremental interface was 
responsible for this error: the display always shows two digits after the decimal
point. For instance if the numeric value is 7.4, the display shows 7.40 [. It may 
be confusing that the 40 after the decimal point is perceived to be greater than 
4. It is important to note that this participant did not commit any transposition 
errors on the serial interface. It seemed that the incremental interface had an 
effect on their transcription of numbers specifically for numbers of the form d.Od 
where d is a numeric digit. In other words, the interface design might have 
affected their perception of numbers of a certain format. Transposition errors 
were more serious on the incremental interface. On average this error changed 
the intended number by 0.54 (sd=0.35) on the incremental interface compared 
to 0.31 (sd=0.18) on the serial interface.

W rong D igit Errors

Wrong digit errors occur when one of the digits in the transcribed value is in­
correct. This error was more common in the incremental interface. The most 

serious cases of the wrong digit error happened whenever the whole number part 
of the number is wrong. For instance a participant entered 4.87 instead of 5.87. 

Wrong digit errors were more serious on the serial interface but more frequent 
on the incremental interface with 15 occurrences on the incremental and only 

three cases on the serial interface. On average, this error changed the intended 
number by 0.81 (sd=1.27) on the serial interface compared to 0.28 (sd=0.40) on 

the incremental interface.
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M issing D igit Error

This refers to instances of errors where one digit from the intended value is 
missing from the transcribed value. For instance a participant entered 0.3 instead 
of 0.43. On average, this error changed the intended number by 3.36 (sd=8.92). 

The incremental interface was free of this error.

6.2 D iscussion

One participant (P5) was responsible for 56% of all errors committed in the exper­
iment. Excluding this participant from the analysis still resulted in a significant 
main effect of interface style on uncorrected error. Excluding this participant as 
well as constraining the analysis to the first four trial blocks, which had no key 
bounce error stimulation, resulted in no significant main effect of interface style 

on uncorrected error.

This shows that the key bounce introduced in the last block of the experiment 

had an effect on uncorrected error on both interfaces. The uneorrected errors Were 
however not limited to the key bounce? errors introduced in the last block of the 
experiment. The uncorrected errors that occurred in the first four blocks for the 
incremental interface were less than those that occurred on the serial interface. 
This suggests that the experimental manipulation alone might not be responsible 
for the significant difference in uncorrected error between the two interfaces.

The relative accuracy of the incremental interface comes with a slower data 
entry speed, although analysis of the speed of entry and number of errors for this 
interface showed a significant linear relationship which is contrary to the classic 

speed accuracy trade-off typical of many target acquisition tasks [Zha04a]. A 
potential reason for the linear relationship between speed and error rate observed 

on the incremental interface could be the increase in the likelihood that the longer 
time spent scrolling through numbers introduces more opportunities for error to 

occur.

The higher level of visual attention paid to the display of the incremental 
interface is another possible reason for its higher accuracy since placing visual

114



6.2. Discussion

attention on the display gives the user a better chance or detecting and correcting 

any errors.

A third reason could be that participants expect to make errors using this in­

terface. Indeed, the results show a significantly higher number of corrected errors 
on the incremental interface in comparison to the serial interface. Some partic­

ipants had a number of tries overshooting and undershooting for the intended 

number before precisely setting the number. Some deliberately overshoot the 
intended value and correct the error in a few clicks because that is the optimal 
way to enter the intended number.

This oscillatory behaviour could also be explained as artifacts of the gain and 
time-delay parameters of the incremental interface. The design of this interface 
encourages the user to adopt the interface widgets that give the system a high 
gain value (i.e., holding down the double chevron buttons to cause larger changes 
to the number). The user thus appears to use a strategy with a high likelihood 
of missing their targets, while all they might have been trying to achieve was to 
get closer to the target number as quickly as possible.

For the incremental interface, the visual attention placed on the input was 
significantly lower than that on the display. This supports the original supposi­
tion, as the interaction on the incremental interface requires the user to monitor 
how the value on the display changes based on what key the user is pressing. 
The input part of the incremental interface requires little visual attention and is 
only used to switch direction and precision of change. However, despite the high 

attention paid to the display of this interface, the mode of interaction introduced 
errors that were less likely on the serial interface (e.g., the wrong digit errors and 
the transposition errors).

The results also show that the visual attention placed on the input in the 

serial interface was significantly higher than the visual attention ori the display. 
This could be because participants did not feel the need to verify their entry. It 

is possible th a t most participants trusted the visual feedback they got from the 
labels on the keys and felt little need for an extra mode of feedback by checking 

the display.
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By design, the numbers specified on a serial interface require parsing to obtain 

a numeric value valid in the application space. As a result, serial interfaces are 
prone to syntax errors. Rather than alert users to errors, this parsing process 

often produces incorrect and unpredictable results whenever the user commits a 
syntax error [ThilOb, ThilOa].

Syntax errors are however impossible on an incremental interface since the 
application guides the user through a valid range of numeric values. It is also 
plausible that numbers are perceived as a string of characters when using a serial 
interface whereas using an incremental interface forces users to be aware of the 

numeric values and the relative order of numbers.

In a safety critical context like healthcare, the incremental interface is safer. 
It allows better error detection and the severity of errors is much lower than 
on the serial interface. The missing decimal point and the missing digit errors 
are the most serious errors and they were both more likely to occur on the serial 
interface. Overall, the results suggest that the errors on the incremental interface 
have a much lower deviation from the intended number.

The information access cost (IAC) for participant revisiting the instructions 
in the experiment was low as the instruction for each trial was presented on 
the same monitor directly alongside the interface. Analysis of the eye-tracking 
data showed that participants glanced at the instructions at an mean rate of 
about two times per trial for the serial interface and about three times for the 
incremental. In practice, information about parameters for programming an 
infusion pump could be presented at different locations which could encourage 
the users to adopt a perceptual motor strategy (attributed to a low IAC) or a 
memory intensive strategy (attributed to a high IAC) [Bacl2]. These different 
strategies are likely to introduce different types of errors and the effects of these 

strategies were not explored in this experiment.

6.3 Conclusions

P5 committed the most transposition errors. Identifying users in the real world 
who are like P5 would be useful to better manage errors in practice. Identification
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could take the form of routine number entry tests. Alerting these types of users 

to the existence of these types of errors might be useful during training and 
might be enough to reduce the occurrences of such error. Similarly identifying 
user interfaces that afford better error detection would inform better design in a 

safety critical context. Further research would explore these avenues.

There are significant differences in the error rates for the two experimental 
conditions of number entry: number entry interface styles do affect error rates 

and, by implication, medical outcomes. This effect is particularly crucial and 
significant when there are hardware defects such as bounced keys present on a 
device. The speed of the serial interface comes at a price: errors are more likely 
to go undetected due to significantly less visual attention on the interface and 
undetected errors like the missing decimal or missing digit are more likely to have 

serious outcomes typically producing numbers out by a large factor (10 or more) 
from the intended values. In a medical context, such errors can be fatal. The 
result suggests that it should be a priority to research number entry styles and 
their relation to error rates, behaviour and performance. There is a wide variety 
of number entry styles in medical devices (where errors cause adverse events), 
clearly with no or little empirical justification; we now see useful progress can 
be made to provide sound guidance for designers of safety critical number entry 
systems.
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Chapter 7

Exploring user performance for 
number entry interfaces

In the context of evaluating number entry for interactive devices, running exper­
iments on desktop computers have many advantages, one of which is the relative 
ease of software deployment. Input widgets like mice and keyboards found on 
most computers are however very different from the specialised widgets found on 
real world interactive medical devices such as infusion pumps. These, like many 
other medical devices, are often operated by buttons on a membrane keypad. One 
of the reasons why membrane keypads feature in the design of medical devices 
is the ease with which they can be cleaned. Buttons on membrane keypads are 

not physically separate, therefore, there are no ridges or gaps where dirt could 

be trapped.

The indirect user experience encountered while using a mouse to interact with 
an on screen simulation of an interactive device is different from the experience a 

user has when directly interacting with a physical device with buttons. In order 

to bridge this user experience gap, we designed and built a bespoke prototype 

device with the specific aim of testing multiple configurations of number entry 

interfaces.
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Figure 7.1: The prototype device built to run number entry experiments.
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7.1. The prototype unit

7.1 The prototype unit

The prototype device constituted three main parts: the display, the front panel 

and the housing. The display in the unit was a USB touch enabled monitor. 

The monitor was a 7-inch iMo* display with a resolution of 800 by 480 pixels. 

A removable front panel served as the input interface to the prototype and the 
housing held the display and front panel together.

The front panel was powered by an Arduino board which was wired to the 

user interface input components on the unit. Figure 7.1b shows the rear of the 
front panel. There were two variations on the front panel. The first variation 
had a blank set of 4 x 4 membrane keypads. The keys of the membrane keypad 
could easily be marked by sliding in any desired cut-out labels as shown in Fig­
ure 7. Id. The second variation of the front panel had a dial. The dial, pictured 
in Figure 7.1e was a 24 step rotary encoder with tactile feedback on each step. It 
also had a select switch which could be activated by pushing on the dial. Both 
front panels had a set of generic buttons laid out in a 3 x 2 grid. Part of the front 
panel could be covered up with a plastic card to hide it during an experiment.

As shown in Figure 7.1c, there was a clamp fitted on the rear of the device 
which enabled it to be securely fitted to a pole. The device had a dimension of 
223mm x 282mm x 65mm.

The rest of this chapter presents the results of an empirical evaluation of 5 
different number entry user interfaces using this prototype device. The aim was 

to explore the performance difference across these interfaces with the intent of 

providing quantitative summary of trade-offs involved in choosing to implement 
one of the styles of interface over another.

7.2 R elated Work

The layout of the numeric keypad has been studied by many researchers. Early 
research by Deininger [R.L60] in the design of telephone keypads explored the 

performance differences of 16 layout configurations and the effect of keying be­

*http://www.displaylink.com/
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haviour of users on the keying entry speed. This experiment found that the en­

try speed was dependent on the participant’s strategy for reading the numbers. 
Participants who memorized the numbers before starting the keying sequence, 
performed significantly better than those who referred back to the number during 
entry.

Further experiments on the effect of keypad layout by Conrad and Hull [Con68] 
initially suggested that the telephone keypad layout with 1, 2, 3 at the top was 

more accurate than the calculator layout with 7, 8, 9 at the top. Marteniuk et. 
al[Mar96] later found that performance differences between different keypad lay­
outs based on the two popular telephone and calculator layouts were as a result 

of the placement of the zero key, suggesting that the zero key be placed below 
the other keys.

Number entry interfaces can often be implemented in a variety of ways. For 
instance an independent digit entry interface such as the d-pad interface can be 
implemented in as many as 28 different ways. By running simulated trials of users 
making keying slips while entering numbers, Cauchi et al., [Caul2b] discovered 

that the differences in the implementation can have effects on the severity of error
i.e., by how much an undetected error deviates from the intended number.

With a few exceptions, research in number entry has so far been based on 
the numeric keypad, usually testing the performance of different layouts. The 
serial interface offers very quick number entry and its performance scales well as 
the size of the number to be entered increases. Numbers used for tasks such as 
infusion therapy in hospitals are from a well defined range with rules governing the 
allowed precision of numbers above certain thresholds. For instance, precision of 
numbers used for rate settings in a critical care unit might be two decimal places 
for numbers below 10 and only one decimal place for numbers that are between 
10 and 100.

Based on the classification presented in Chapter 3, 5 example number entry 

interfaces : 1 instance of serial digit entry (numeric keypad), 2 instances of 
independent digit entry {up-down and d-pad) and 2 instances of incremental 
entry {chevrons and dial), were implemented and evaluated. With the exception 
of the dial interface, which was based on a microwave oven, all the interfaces
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presented below are found in real world medical devices.

7.3 Num ber entry interfaces

Since previous research has explored the performance effects of different layout 

configurations of the serial interface, only one instance of the serial interface is 

evaluated in this study.

7.3.1 N um eric K eypad

This interface allowed number entry using a 12-key numeric keypad in the tele­

phone style layout (see Figure 7.2a). It had a decimal point and a cancel key. 
The decimal point key appends at most, one decimal point to the number on the 
display. The cancel key deletes the rightmost character on the display.

7.3.2 C hevrons

This interface utilised four buttons in a single row. The two buttons on the left 
(i.e., the upward facing chevron buttons) increased the value displayed, while 
the buttons on the right (i.e., the downward facing chevron buttons) decreased 
the displayed value. Within each pair of buttons, the double chevron buttons 
caused a change ten times greater than the single chevron buttons. This interface 
allowed two modes of interaction. The user could press the buttons or they could 

press and hold the buttons. Pressing the buttons changes the displayed value as 
specified above. Pressing and holding the buttons changes the displayed value at 

a rate dependent on the duration of hold. Users were expected to press and hold 

for faster changes to the number.

7.3.3 U p-dow n

This interface had eight buttons arranged in two rows and four columns. The top 

row buttons were used to increase the number and the bottom row buttons were 
used to reduce the number. Each column corresponds to a place value in the 
resulting number. For our set up, the rightmost column matched the hundredth
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place value and  was used to  increase or decrease the value by 0.01. This in ter­

face worked using the arithm etic  configuration described in section 3.3.2. This 

basically m eans the  effect of decreasing a digit from 0 or increasing a digit from 

9 is carried over to  the  digit to  the  left.

7.3.4 D-pad

This interface had four bu ttons arranged in a navigation style: up, down, left and 

right. T he left and right b u ttons  moved a cursor on the  screen which selected a 

place value in the num ber. The up and  down b u ttons  increased or decreased the 

selected digit. Similar to  the  up-doum , th is interface worked using the  arithm etic  

configuration.

7.3.5 Dial

This was a 24 step  dial interface w ith unrestric ted  continuous ro ta tions in both  

clockwise and anti-clockwise directions. Users entered num bers on th is interface

oooo
# < § > < § > #oooooooo oooooooo

(a) Numeric Keypad (b) Chevrons (c) Up-Down

0(000<§>o®oo@oooooo
(d) D-pad

- : X  - I

(e) Dial (f) Prototype

Figure 1.2: The prototype unit and the different configuratioiis of interfaces used in 
our setup.



7.4. Pre-study Analysis

by turning the dial left or right to decrease or increase the number. Quicker turns 

on the dials caused bigger changes to the number.

7.4 Pre-study Analysis

Chapter 5 presented a method for evaluating the performance of interfaces that 

allow digit-level control of numbers. This method was used to explore the per­
formance of the key based interfaces and estimated task completions times using 
the Keystroke-Level Model (KLM) for user performance [Car80]. Although KLM 
is a model for predicting error free expert performance, the predictions were used 

as the best-case performance achievable by users of these interfaces. Moreover, 
it was expected that the relative ranking produced by this analysis would be 
maintained in the results of the experiment.

7.4.1 N um bers used

The numbers used for the study were randomly selected from interaction logs 
analysed in Chapter 4. All 30 numbers used in the experiment had a decimal 
part and ranged from 0.26 to 83.3. A third of the numbers had a precision of 2 
decimal places.

7.4.2 P re-S tudy M ethod

Based on software simulations of the interfaces described in Section 7.3, the 
user interface model of each interface was exhaustively explored using the model 
discovery technique presented by Thimbleby and Gimblett [Thi07, GimlO]. The 
user interface model discovery process produces a graph whose nodes represent 

the states in an interactive system and edgeg represent the user actions necessary 

to transition between the states.

To reduce the number of states produced by the model discovery process, 

the numbers addressable by the interfaces were restricted to a range covered by 
those used in the experiment. Using the same method described in Chapter 5, 
for each button based interface, the optimal keying sequence for entering each
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number used in the experiment were determined by searching for a shortest path 
from 0 to N , where N  was the intended number. A JavaScript implementation 

of the A star path finding algorithm was used, with cost functions that prioritised 
estimated time of execution over number of button clicks required to enter a 
number. The task completion times were estimated using the Keystroke-Level 

Model for expert performance [Car80]. A value of 1100ms was used for the time 
(P) taken to point to a button and a value of 200ms was used for the time (K) 
taken to click a button. The time (M) taken for mental preparation was not 
included in the prediction of task time. The analysis focuses on the execution 
time of the of each task. Consequently, the prediction presented in the next 
Section does not include the initiation time, (i.e., the time elapsed before the 
task is started) or the commit time, (i.e., the time taken to click the enter button 

to confirm the task).

Due to the nature of the method presented in Chapter 5, the time estimate 
for the chevrons interface utilised discrete key clicks rather than the continuous 
press and hold action. The time estimate for the dial interface was performed 

completely differently. Given that there are 24 steps in the rotary encoder used 
in the dial, to estimate the time T^a/ required to enter a given number N  on the 
dial interface, the following expression was used:

lO tx  10 0  , ( A —10) x lOt i f  AT "> 1 0
r p  _  I 2 4  24  1 —  U
-‘- d ia l  —  \  , T

Axniot otherwise

Note that t is the time to perform one step rotation on the rotary encoder. 
The value for t was set as 200ms, the same as the value P  taken to click a button.

7.4.3 P re-Study R esult

The analysis produced the estimates displayed in Table 7.1. The predictions 
show that the up-down interface is fastest with a slight performance edge over 
the numeric keypad interface and the chevrons interface is slowest. The next 
section describes a user study that was designed and run in order to validate 

these predictions.
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Interfaces Numeric keypad Chevrons Up-Down D-pad Dial
Time(ms) 4875 9545 4660 6954 7855

Table 7.1: An approximation of the task completion times for the different interfaces 
using the Keystroke-Level Model.

Based on error types reported in Chapter 6 and those reported by Wiseman et 

al. [Wisll], the following types of errors were expected to occur on the interfaces.

1. M issing decim al and m issing digit errors, where users omit the decimal 
point and digit(s) in a number, were expected on the numeric keypad;

2. D igit added errors, specifically where an extra ‘O’ is added to the left of 
the fractional part of a number, (e.g., entering 7.05 for 7.5 as reported in 
[Olall]) were expected on the chevrons and dial interfaces.

Although there are no reported empirical evaluations that report the types of 
errors that the up-down and d-pad interfaces exhibit, wrong digit errors, where 
users mistype one or more digits in the presented number, (e.g., entering 1.95 for 
1.85), were expected.

7.5 M ethod

7.5.1 D esign

The experiment was a two-way, mixed design. The within subjects independent 

variable was the type of number entry interface, and it had five levels: the five 

interfaces tested. The between subject independent variable was the instruction 
given to the participant: one group was instructed to enter the numbers as quickly 

as possible (the speed group) and the second group was instructed to enter the 
numbers as accurately as possible (the accurate group). The order in which 

the interfaces were presented to the participants was randomized. The primary 
dependent variable was the speed of entry of correct numbers. Other dependent 

variables were the number of incorrect entries, the number of corrected errors.
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7.5.2 Participants

There were 33 participants, 17 in the speed condition and 16 in the accurate con­

dition. There were 22 females with 11 in the speed condition. Three participants 
were left handed. The participants ranged in age from 18-43 with a mean age 

of 23.5 years (SD=4.86). The participants were undergraduate and postgrad­

uate students in Swansea University. Participants were randomly allocated to 
conditions.

Prior experience w ith interfaces

All participants were familiar with the numeric keypad and reported using it on 
interfaces such as calculators, cash machines and telephones. Five participants 
(15%) were familiar with the chevrons interface with experience using it in digital 
stop watches and alarm clocks, eight (24%) had prior experience with the up- 
down interface on medical devices and games, nine (27%) had prior experience 
with the d-pad interface on remote controls and game controllers and 19 (58%) 
had prior experience with the dial interface on microwave ovens and temperature 
controls.

7.5.3 A pparatus

The experiment was run on the unit described in section 7.1. W ith the two 

front panels of the prototype, it was possible to configure 5 types of number 
entry interfaces; 4 interfaces were configured using the membrane keypad and 
one using the dial. The different configurations are shown in Figure 7.2.

A pole was used to mount the prototype unit and the unit itself was con­

nected to a laptop computer ( a 15 inch macbook pro running OSX Lion). The 

laptop was used to display the instruction for the next trial. Instructions were 
displayed as numbers in the middle of the screen using a white font color on a 
black background and a font size of 20px. A total of 30 numbers were used in 

the experiment. Ten numbers were used in a practice session and 20 were used in 
the experiment. All the numbers used ranged between 0 - 100, all had a decimal 
part and they were selected from medical device logs of infusion pump settings.
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Figure 7.3: The setup for the experiment showing the prototype mounted on a pole and 
the laptop computer that displayed the instruction.

T he software for the  experim ent was im plem ented in JavaScrip t and HTML. 

For these interfaces, each keystroke or user action causes a change in the  num eric 

value being entered. As a result, for all the  tria ls in the  experim ent, all keystrokes 

were logged w ith a tim estam p  and the  corresponding num eric value a fte r each 

keystroke. This allowed la ter analyses of the  value change stream  for every trial.

7.5.4 Procedure

Each study  session lasted  about 45 m inutes and all partic ipan ts  were tested  in­

dividually. Each partic ipan t was informed th a t  th e  experim ent involves en tering  

num bers using 5 different num ber en try  interfaces. Before the  experim ent s ta rted , 

a short pre-experim ent questionnaire was used to  collect dem ographic inform a­

tion abou t the  age, gender, handedness and w hether or not the  p a rtic ip an t was 

dyslexic.

T he study  itself was in 5 parts: one for each interface. Each p a rt was divided 

into a practice  session followed by an experim ent session. P a rtic ipan ts  were 

random ly assigned to  a speed or accuracy group. T he speed group were in structed  

to en ter the  num bers in th e  instruction  as quickly as possible and  the  accurate  

group were in structed  to  en ter the  num bers as accurately  as possible. The order in 

which the  users encountered the  interface was random ised. All s tu d y  instructions 

were displayed on the  com puter. The in struction  was a num ber displayed in the

129



7. E x p l o r in g  u s e r  p e r f o r m a n c e  f o r  n u m b e r  e n t r y  in t e r f a c e s

center of the computer screen. The next instruction was automatically displayed 

once the participant confirmed entry of the current trial. A message was displayed 
to signify the end of a session after a participant entered all the numbers required 
of that session.

Before starting each part of the experiment, the participants watched a video 
showing them how to use the interface they were about to test. They then 
had a training session were they could try out using the interface by entering 

10 numbers. When they were confident with how the interface worked, they 
were allowed to proceed to the experiment. The participants were encouraged to 
repeat the training session if required.

The experiment session involved entering 20 numbers. The same 20 numbers 
were used for all the interfaces although the order in which the numbers were 
encountered was randomised. Participants successively entered the numbers dis­
played in the instruction.

After the experiment, participants were taken through a short post-experiment 

semi-structured interview to find out prior experience with the interfaces they 
experienced during the study and their relative preference for the interface styles. 
Participants were given a gift voucher in return for their time.

7.6 Analysis

The speed of entry recorded for each interface was separated into three con­

stituent parts: the initiation time, the execution time and the commit time. The 

initiation time referred to the time elapsed between the display of the instruc­
tion and the participant’s first key press. The execution time is the time elapsed 
between the participants first key press and the last key press involved in setting 
the required number. The commit time is the time elapsed between the last key 
press in setting the required number and the key press for confirming the task.

From the data collected, it was possible to analyse both corrected and un­

corrected errors. Uncorrected errors were trials for which the user transcribed 
and confirmed a wrong number. The experiment elicited a total of 57 uncor­
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rected errors, committed by 20 different participants. Only interface 4 was free 

of uncorrected errors.

7.6.1 C orrected Errors

Corrected errors were keying slips that the user recovered from before confirming 
the transcribed number. These might be seen as instances of unremarkable errors 

described by Furniss et al. [Furll]. In other words, minor errors that are quickly 
corrected and recovered from. The experiment elicited a total of 833 corrected 
errors. Instances of corrected errors were spread amongst all participants ranging 

between 7 to 49 with a mean of 25.24 corrected error per participant. Corrected 
errors were determined by looking for patterns in the user’s input sequence for 
every trial. Since keystrokes and values were logged for every trial, it was possible 

to analyse exactly how each participant entered the presented number.

D e term in in g  C o rrec ted  E rro rs

For the numeric keypad, detecting corrected errors from the key stroke logs was 
straight forward because there was a dedicated key (the ‘C button) for deleting 
the last character on the display. This signified an intention to correct an error.

For the chevrons, up-doum, d-pad and dial interfaces, the value change stream 
from the experiment logs were analysed. The value change stream is a list of

0  5 10 15
time m seconds

Figure 7.Jf : Graph showing the value change stream of a trial. The peaks and troughs 
ore identified by the circle spots. In this case the target number was 2 f . 9 -  highlighted 
by the horizontal line in the middle of the graph. The trial visualised here contained 
three corrected errors.
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timestamped values that are caused by user actions on the interface. When 

the value change stream for each trial is visualised, see for instance Figure 7.4, a 
graph with peaks and troughs representing the number of times a user overshoots 

and undershoots their target number during the keying sequence is obtained. By 
analysing the value changes over time and counting the turning points in the 
graph produced, i.e., the points when the user action on the interfaces changes 
from increments to decrements and vice versa, the number of corrected errors 
a user had while entering a number can be obtained. These turning points can 
be captured by matching the following regular expression on the input stream: 

(u+d+)\(d+u+) where u captures any increment action and d captures any decre­
ment action. In some cases, the optimal key sequence for entering a number 
contains exactly one turning point. For instance to enter 4.99 it would be quick­
est to increase the number to 5 and then reduce it to 4.99. These cases were 
accounted for and were not counted as corrected errors in the analysis.

The d-pad had a virtual cursor whose position could be changed by the user 
to select a digit on the screen. Cursor movements do not directly change the 

value of the number on the display. They signify an intention of the magnitude 
of change the user would like to effect on the displayed number. In addition to 
analysing the value change stream, these cursor movements were analysed for 
slips by checking the input stream for instances where at least one left key is 
immediately followed by at least one right key or vice versa. This was captured 
using the regular expression: (l+r+)\(r+l+) where I and r are left and right key 

presses respectively.

7.7 R esults

7.7.1 Learning effects

The improvement of speed of entry was investigated over all trials in the ex­
periments. The trials for each participants were split into 4 blocks, each block 
consisting of 5 trials. A two-way repeated measures ANOVA showed a significant 

main effect of interface style on entry speed F (2.06,66.1) =  397.84,p < 0.001. 
There was no significant main effect of trial block on entry speed F (3,96) =
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Entry Accuracy Entry Speed (in ms)
Speed Group Accurate Group Speed Group Accurate Group
Mean SD Mean SD Mean SD Mean SD

Numeric Keypad 0.29 0.77 0.06 0.25 1906 423 2266 466
Chevrons 0.65 1.17 0.19 0.54 13355 3122 14471 2691
Up-down 0.65 1.69 0.38 0.62 3990 745 4783 1210
D-pad 0 0 0 0 5231 908 5911 1213
Dial 0.94 1.92 0.44 0.81 9072 1211 10276 2024

Table 7.2: A summary of the mean, standard deviation for the speed and accuracy of 
entry between the groups.

2.64, p — 0.54. Similarly, there  was 110 in teraction  effect betw een interface style 

and  tria l blocks F (4 .7 4 ,151.86) =  1.003,;; =  0.416.

7.7.2 Effect o f instruction

Table 7.2 shows m eans and s tan d ard  deviations for each group across the  five 

interfaces. T here was a significant effect of group on en try  speed F ( l ,3 1 )  =  

4.23,;; =  0.048. A lthough m ore error was expected in the  speed group, a M ann- 

W hitney  te s t showed no significant effect of group on num ber of undetec ted  error

Speed  Group 
Accuracy Group

- 1 i i i i i i i i r
Number pad Chevrons Up-down D -pad Dial

■  Speed Group ;
■  Accuracy Group!

LO

Number pad Chevrons Up-down D -pad D ial

(a) Entry Accuracy (b) Entry Speed

Figure 7.5: The distribution of the entry accuracy and entry speed by group.
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on any of the interfaces. Figure 7.5 shows the distribution of participant accuracy 

and speed in the different groups. Since there was no significant difference in 
errors between the groups, both groups were combined for the rest of the analysis.

We next summarise the results of the speed of entry, the number of un­
corrected errors and the number of corrected errors that occurred during the 
experiment on the different interfaces. For all the results below, except the user 

interface preference statistic, post-hoc tests were conducted using multiple t- 
tests with Bonferroni corrections in order to find out which interfaces differed 
significantly from the others. For the user interface preference, post-hoc test was 
conducted using multiple Wilcoxon Signed-Rank tests.

7.7.3 Speed o f num ber entry  

Initiation tim e

A one-way repeated measures ANOVA with Greenhouse-Geisser correction found 

a statistically significant effect of interface style on initiation time F(3.31,105.85) 
=  200.08, p < 0.0001. Post-hoc analysis showed that the dial interface had sig­
nificantly less initiation time than all other interfaces, and the numeric keypad 
had significantly less initiation time than the chevrons, d-pad and up-down in­
terfaces. The dial interface had the shortest initiation time while the chevron 
interface had the longest initiation time. Table 7.3 shows the mean initiation 
time for all interfaces.

Initiation Time Execution Time Commit Time Total
Mean SD Mean SD Mean SD Mean SD

Numeric Keypad 1286 339 2080 474 730 223 4096 821
Chevrons 1535 433 13896 2931 1005 291 16436 3231
Up-down 1469 392 4374 1061 970 323 6813 1531
D-pad 1463 354 5561 1105 1017 389 8040 1571
Dial 167 51 9655 1740 910 282 10732 1861

Table 7.3: A summary of the mean and standard deviation for the initiation, execution 
and commit times for the various interfaces. Time is reported in milliseconds.
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Interfaces Chevrons Up-down D-pad Dial
Numeric Keypad p < 0 . 0 0 1 p < 0 . 0 0 1 p < 0 . 0 0 1 p < 0 . 0 0 1

Chevrons - p < 0 . 0 0 1 p < 0 . 0 0 1 p < 0 . 0 0 1

Up-down - - p < 0 . 0 0 1 p < 0 . 0 0 1

D-pad - - - p < 0 . 0 0 1

Table 7.4: A summary of all pairs of interfaces and the significance scores of the post- 
hoc analysis for execution time.

Execution tim e

A one-way repeated measures ANOVA with Greenhouse-Geisser correction found 
a statistically significant effect of interface style on speed of entry F(1 .69,54.02) =  
425.5, p < 0.001. Post-hoc test showed that the speed of entry of all the interfaces 
tested were significantly different for all pairs at the 0.001 level. The numeric 
keypad had the shortest execution time while the chevrons interface had the 
longest. Table 7.3 shows the mean execution times for all the interfaces.

Com m it tim e

A one-way repeated measures ANOVA with Greenhouse-Geisser correction found 
a statistically significant effect of interface style on commit time F(2 .84,90.83) =  
24.35, p < 0.0001. Post-hoc analysis showed that the numeric keypad had a sig­
nificantly shorter commit time than all other interfaces and the dial had signif­
icantly shorter commit time than the chevrons interface. The results also show 
that the d-pad interface had the longest commit time. Table 7.3 shows the mean 
commit time for all the interfaces.

Corrected Errors Uncorrected Errors
Mean SD Mean SD

Numeric Keypad 0 . 8 8 1.08 0.18 0.58
Chevrons 6.48 3.86 0.42 0.94
Up-down 2.73 2.74 0.52 1.28
D-pad 3.09 2.38 0 0

Dial 12.06 5.53 0.70 1.24

Table 7.5: A summary of the mean and standard deviation for the corrected and un­
corrected errors for the various interfaces.
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Figure 7.6: Distribution of corrected and uncorrected errors on all interfaces.

7.7.4 Errors

We analysed both uncorrected errors and corrected errors. Uncorrected errors 
were trials for which the user transcribed and confirmed a wrong number whilst 

corrected errors were determined as described in Section 7.6.1.

U ncorrected errors

A Friedman test showed a significant effect of interface style on uncorrected errors 
X2(4) =  20.44, p < 0.001. Post-hoc tests using Wilcoxon signed-rank test showed 

that the d-pad had less errors than the up-down Z=-2.97, p =  0.03 and the d-pad 
had significantly less errors than the dial, Z = -3.13, p =  0.02. The experiment 
elicited a total of 57 uncorrected errors, committed by 20 different participants. 
Only the d-pad interface was free of uncorrected errors. Table 7.5 shows the 
mean uncorrected errors on each interface.

Corrected errors

A Friedman test showed a significant effect of interface style on corrected errors 
x 2(4) =  91.92 , p  <  0.001. Post-hoc tests using Wilcoxon signed-rank test showed 

significant differences for all pairs of interfaces at a 0.01 level, with the exception
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Interfaces Chevrons Up-down D-pad Dial
Numeric Keypad p < 0.001 p < 0.001 p < 0.001 p < 0.001
Chevrons - p < 0.001 p < 0.001 p < 0.001
Up-down - - p = 0.34 p < 0.001
Dial - - - p < 0.001

Table 7.6: A summary of all pairs of interfaces and the significance scores of the post- 
hoc analysis for corrected errors.

of the up-down and d-pad interfaces which did not differ significantly. Table 7.5 

shows the mean corrected errors on each interface. The experiment elicited a total 
of 833 corrected errors. The dial interface had the highest number of corrected 

errors while the numeric keypad had the least number of corrected errors.

Numeric Keypad Chevrons Up-down D-pad Dial
Mean Rank 4.81 1.69 3.50 2.44 2.56

Table 7.7: Mean ranks for interface preference.

7.7.5 U ser interface preference

At the end of the experiment, each user ranked the interfaces in order of prefer­
ence. A score of 1 was assigned to the lowest preference while a score of 5 was 
assigned to the highest preference. There was a statistically significant difference 
in the preference rating for the user interfaces x2(4) =  73.8, p < 0.0001. The 

numeric keypad was most preferred with a mean rank of 4.81 and the chevrons 
interface was the least preferred with a mean rank of 1.69. Post-hoc test showed 
no significant difference in preference ratings between the up-down and dial, d- 
pad and dial and chevrons and five key. Tables 7.7 and 7.8 show the mean ranks 
for all interfaces and the detailed significance scores between all pairs.

Interfaces Chevrons Up-down D-pad Dial
Numeric Keypad p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

Chevrons - p < 0.0001 p = 0.008 p = 0.003
Up-Down - - p < 0.0001 p = 0.013

D-pad - - - p = 0.82

Table 7.8: Significance scores of the post-hoc analysis for preference ratings for all 
interface pairs.
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7.8 D iscussion

7.8.1 R elative preference of interfaces

Since all participants had prior experience using the numeric keypad, it was not 
surprising that it was rated highest amongst the interfaces tested. This preference 

rating is also reflected in the speed exhibited by the interface. It was however 
surprising tha t the dial was not rated significantly worse than up-down and d-pad 

interfaces considering the number of corrected errors that occurred on the dial. 
One possible reason for this could be the significantly shorter initiation time for 
the dial. In addition, the simplicity of the interface which is based on increasing 
and decreasing the displayed number means the user has to do little thinking 
while executing the task. This was articulated by one participant, who said:

“Dial was easier to turn the numbers. No need to move your hands 
from button to button. ”

7.8.2 T ypes o f errors

The types of errors made during the study spanned across seven classes of errors 
previously reported in separate studies by Wiseman et al. [Wisll] and Oladimeji 
et al. [Olall]. A summary of all errors is provided in Table 7.9 and Figure 7.7 
shows detailed distribution of error types by interface style.

The most common type of error was the Digit Added error. Thirteen different 
participants made this error on three different interfaces. This error also occurred

Error Type Frequency Interfaces Example
Digit Added 32 chevrons, up-down and dial 4.05 for 4.5
Wrong Digit 7 chevrons, up-down and dial 60.5 for 62.5
Missing Decimal 3 numeric keypad 249 for 24.9
Out by ten 3 numeric keypad and up-down 1.11 for 11.1
Missing Digit 1 numeric keypad 6.5 for 62.5
Skipped 4 numeric keypad, chevrons, up-down and dial ° for 62.5
No clear reason 9 chevrons, up-down and dial 56.7 for 3

Table 7.9: Frequency of errors made during the experiment.
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13

|  N u m eric  K ey p a d  

H  Dial 

|  C h ev r o n s  

|  U p -D ow n

Digit A dded Missing Digit W rong Digit W rong Decimal O therMissing Skipped
Decimal

Figure 7.7: The types of undetected errosr and how frequently they occurred on each 
interface. Note that the D-pad interface is absent from this graph because it had no 
undetected errors.

in the experiment, reported in Chapter 6 which investigated the effect of interface 
style on error detection. While this error is classified here as a member of the 
Digit Added  error type, the nature of the error makes it different from what the 
error type suggests. Based on the numerals that compose the intended number 
and the transcribed number, the error type suggests that an extra digit has been 
added to the number. This extra digit in the case of errors in this experiment, 
is always zero. From a different point of view, however, this error appears to 
involve the inability to correctly understand the difference between the tenths 
and hundredths part of a number. It is possible that certain people mix up 

numbers matching the pattern. Indeed one participant transcribed 4.05 for 4.5 
and in another trial transcribed 2.5 for 2.05. Over 50% of all unnoticed errors 

were of this form.

Despite making this error on the chevrons, up-down and dial interfaces, par­

ticipants did not commit this error on the num eric keypad. This could be because 
number entry on the num eric keypad is a more direct transcription process of key­

ing a sequence of digits that make up the intended number. Analysis of keystroke 
logs show that an instance of this error occurred on the d-pad interface although 
it was noticed and corrected bv the participant.
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Figure 7.8: A comparison of the actual and the predicted performance for each interface

7.8.3 Difference in speed prediction and study results

It was expected that there would be absolute differences in the prediction of re­
sults and the actual study results since the participants that took part in the 
study were not expert users of all the interfaces. It was also expected that the 
participants’ keying sequence for entering the numbers would not be the same 
as the time-optimal keying sequence used in the KLM analysis in section 7.4.2. 
For the numbers used in the experiment, the prediction expected the up-down 

interface to be marginally faster than the numeric keypad. Participants' familiar­
ity with the num eric keypad however meant that their performance was superior 
on this interface in comparison to the other interfaces. For the num eric keypad, 

up-doum  and d-pad, participants actually outperformed the KLM model predic­
tion. In the case of the num eric keypad, they performed the task in less than 
half the predicted time. This could be due to the mean inter-key duration of 
554ms observed in the experiment for the numeric keypad in contrast to the 
standard estimates used in the prediction model (1300ms for pointing and se­
lecting buttons or 200ms for selecting an already acquired button). The nature 
of the data logged during the experiment makes it impossible to separate these 

two parameters, since participants were not explicitly timed for target acquisition 
and selection.

The relative ranking in performance for the interfaces were preserved in the 
actual experimental data. In contrast to the num eric keypad, up-down and d-pad 

interface, the observed times for the chevrons and dial interfaces were higher than 
the predicted time. This difference in prediction could be due to the corrected
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error rates on the chevrons (mean=6.48) and dial (mean= 12.06) interfaces which 

were higher than the corrected error rates on the other interfaces. As a result, 
users spent a good portion of time correcting those errors which increased the 
task completion time and in some cases the frustration of users as evident in 
remarks during the post study interview:

“With the dial and the chevrons, you don’t really know when it switches 
to higher changes. I  tend to stop just before I  reach the value I  want 
so that I  can increase in one step changes. ”

“For chevrons and dial, really had to time it right and let it go at the 
right time otherwise could be annoying. ”

The corrected errors alone do not account for the deviation between the pre­
diction and the recorded performance of the chevrons and dial interface. Another 

contributing factor is the strategy users develop to reduce the error rates. In the 
case of the chevrons interface, users employed discrete click interactions rather 
than the faster press and hold interaction, and for the dial, users made slower 
but more careful turns. Figure 7.8 shows that the cost of correcting an error is 
larger on both these interfaces in comparison to the others.

7.8.4 Effects o f interface sty le on num ber perception

The different styles of interfaces had an effect on how numbers were perceived 

by the users. When users entered numbers on the serial interface (the numeric 

keypad) or the independent digit interface (up-down or d-pad), they were more 
likely to think about the numbers as a sequence of digits without thinking much 

about the the numeric quantity of the number as a whole. Whereas, using an 
incremental interface such as the chevrons or dial, participants were more likely 
to concentrate more on the number as a whole. In the post experiment interview, 

one participant commented that:
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Interface Total Errors Error Severity
Low Severity Medium Severity High Severity

Numeric Keypad 4 0 3 1
Chevrons 11 10 1 0
Up-down 16 13 3 0

D-pad 0 0 0 0
Dial 21 16 5 0

Table 7.10: The severity of undetected errors committed on each interface.

For the number pad, up-down and the d-pad key, I  did not think 

of the number as a whole, just entered them digit by digit but for the 
chevron and dial, I  had to understand the number. ”

7.8.5 Severity o f errors com m itted

The types of errors committed were closely related to the interface used to enter 
the number and consequently the severity of error, (i.e., the deviation of the 
intended number from the transcribed number or the ratio between the intended 

and the transcribed number). Theoretically, the numeric keypad and the up- 

down interfaces have the potential for producing the largest deviations from the 
intended number based on keying slips. This is due to the possibility of missing 
decimal points and missing digits on the numeric keypad and the possibility of 
wrong place value on the up-doum interface. Three levels of error severity were 
defined based on the errors committed in our experiment. Low error severity 
referred to those errors where the ratio between the intended number and the 
transcribed number is at most 2, medium error severity refers to when the ratio 
is at most 10 and high error severity refers to when the ratio is greater than 10. 

Table 7.10 shows a summary of all errors committed and their severity.

7.8.6 Increm ental interfaces and varying number preci­

sion

As is typical of setting up some infusion devices used in hospital critical care, the 

set of numbers used for the study required that numbers below 10 were precise to 
two decimal places while numbers from 10 and above were precise to one decimal
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place. This factor meant that the display of incremental interfaces would only 

render numbers to the appropriate precision. As a result of this, button functions 

changed modes when the precision of numbers change on the display. For instance 
on the chevrons interface, when users change the value 9.99 to 10.0, the double 
chevron button changes meaning from ‘increase by a tenth’ to ‘increase by a 

unit’. Similarly on the dial interface, one turn on the dial changes meaning 
from ‘increase by a hundredth’ to ‘increase by a tenth’. The implementation of 

the chevrons interface was based on a medical device. It was also evident that
some participant found the hold-down mode of the chevrons very difficult and
challenging to predict. In this mode, the longer the buttons were held down, the 

larger the increments made to the number. This mode change was confusing for 
some users. A participant remarked during the interview that:

“For chevrons, the increments were very confusing. The same button 
did two jobs and the mode changes are confusing. Sudden changes 
were very confusing . . .  for example you could go from 30 - 60 in a 
very short time span and then going back restarts the counter and 

climbs up rapidly.”

Another one said:

“Chevrons, seem to jump quite a lot, took too long to get to intended
number. Same problem with dial. It goes in sequential order* rather
than control individual digits. ”

As in Chapter 6, the incremental interfaces in this experiment exhibited os­
cillatory behaviour in the process of number entry. This is because the gain 

parameter of each button on the interface depends on duration of interaction 
and the current numeric value being manipulated. If the user glances away, or 

is distracted from the display of the interface for as little as 500ms, the meaning 

they have attributed to interaction with a button could change by a factor of

treferring to moving through the number line
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ten causing a sudden jump on the number line. This is evident from participant 

comments in the interview.

The feature of varying precision described in this section is a requirement in 
infusion pumps used in critical care and intensive therapy units where low dose 

settings are common. It remains a design challenge to create an incremental in­
terface that supports this form of varying precision in a way that is not confusing 
to the user.

7.8.7 R euse o f num bers and rehearsal effects

The numbers used in the experiment were repeated for all interfaces encountered 
by each participants. It is possible that the recurrence of the numbers could 
have increased the participants’ familiarity with the numbers used in the trials 
which would cause quicker number entry time. This has been mitigated in the 
design of the experiment by randomising the order in which the numbers were 
presented to the participants as well as randomising the order in which the inter­
faces are presented. Analysis of learning effects also shows that trial blocks had 
no significant main effect on entry speed. It is also reasonable to expect that the 
outcome of rehearsal effects would manifest in the initiation times of the trials. 
This is because one would expect that reading a number more than once would 
improve the more times it is done. Analysis of the initiation times showed that 
interface style had an effect on initiation time. Based on the pairs of interfaces 
that differed significantly from the others (i.e., the dial and the keypad), this 
difference could be as a result of the ease of selecting manipulating the dial (this 
task was always the same for all numbers) and the users’ familiarity with the 

numeric keypad interface.

7.9 Conclusions

Number entry is a very old art and it is a crucial aspect of the use of many 
interactive computer systems. The study presented in this chapter explored the 
performance of a variety of styles of interfaces and the data collected from the 

experiment conducted supports the following conclusions:
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1. The 12-key numeric keypad is fastest , followed by the up-down, d-pad, dial 

and chevrons.

2. Errors vary per interface as does the type of error. Although the numeric 

keypad had the least occurrences of undetected errors, it had the most 
severe errors. This makes it a high-risk interface for safety critical contexts 
like healthcare. The d-pad interface had no undetected error.

3. Dials are perceived as easy to use by participants because of the easy inter­
action involved in turning them as opposed to successively pushing mem­
brane keys on a keypad.

An error involving the wrong transcription of numbers with one non-zero digit 
in its decimal part was seen to occur on all but the numeric keypad interface. 
Future research would explore the potential causes of such error and investigate 
ways to prevent them from occurring in the course of use.
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Chapter 8

Choosing an interface

The question of what type interface to choose arises in the design and devel­
opment of many systems. The solution is typically dependent on the context 
of use and the factors and aspects of the design that are most highly rated or 
prioritised by the specification of the system. This chapter starts by identifying 

features for performing relative comparative analyses of number entry interface 
options. The purpose of these features are to facilitate easy perception of the 
trade-offs and risks involved in choosing certain interfaces instead of another. It 
completes the QOC design space analysis that was started in Chapter 3 by using 
the identified features as criteria which can be used to evaluate different options 
from the design space.

8.1 Evaluative features

8.1.1 Speed

The speed of entry simply refers to the time cost of entering a number using an 

interface. This has been evaluated analytically for different interfaces in Chap­
ter 5 and empirically in two different user studies in Chapters 6 and 7. The 
factors that affect the speed of interfaces from the different classes are identified 

below. A summary of the results obtained from the evaluation is presented below
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while highlighting the properties of the different interface which influence speed. 

Serial digit entry interfaces

Interfaces from this group are based on the specification of the digits of a num­

ber. They allow digit entry in a predefined and restricted order, from the most 
significant to the least significant digit. They can be consequently very fast in­
terfaces since the speed is dependent on the number of digits in the number and 
how quickly each digit can be specified.

Since the order of digit entry is restricted, making changes to digits in a 
number can be cumbersome depending on the error correction model used. Errors 
can be corrected using a clear digit key, which deletes one number at a time or 
they may be corrected using a clear key, which deletes all the numbers on the 
interface. Despite the speed, results from the analysis conducted in Chapter 5 
shows that the numeric keypad, a serial digit entry interface, is theoretically not 
the fastest interface for entering numbers in infusion tasks. Although number 
entry is efficient on this interface style, error correction is inefficient.

Independent digit entry interfaces

These interfaces are also based on specifying the digits of a number although they 
allow digit specification in an arbitrary order. As a result, for certain types of 
numbers (e.g., numbers in infusion tasks), these styles of interfaces can be faster 
than the serial interface since the user does not have to specify all the digits in 
the number. This is possible because the digits usually start at an initial value 
of zero. So, the time cost to the user for entering a value of 1 is the same as 

that for entering a value of 100 since both cases require only one key press in the 
corresponding place value. This is different from serial interfaces where cost is 

proportional to the logarithm of the number.

Digit errors can be corrected easily as these interfaces allow independent 

control of digits in a number. Chapter 5 shows that this style of interface is 
theoretically best suited for entering infusion rates although it can be less efficient 
than a serial interface when entering large numbers with mainly non-zero digits.
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Possible im provem ents
Changing the way digits are selected on this interface by implementing dynamic 
drop-down lists on touch screen devices could improve the speed of entry of this 

interface. Using dials for changing digits could also improve the digit selection 

time.

Increm ental number entry interfaces

In comparison to other interface styles, these are usually slower because the 

interaction is based on making incremental changes to a number usually in the 

form of using predefined actions that are mapped to set values. This can also be 
seen as travelling up and down a number line which spans a range and precision 
defined by the application.

Possible im provem ents
Based on experiments run in Chapters 6 and 7, high frequency of overshooting 
and undershooting target numbers contributes to the slow speed of entry on 
incremental interfaces. Improving the speed of this interface thus, would require 
the user to have complete and active control on the amount of change caused to 
the number. This would reduce the error rate and can be achieved by the use 
of controllers like self-centering dials or spring-loaded dials with which users can 
control the amount of incremental changes on the number.

Speed can also be improved on this interface by having more widgets for 
making bigger value changes to the required number. This shows a trade off 
between speed and user interface foot print.

D irect number selection interfaces

The speed of these interfaces depends on how quickly a user might identify a 

number from a set of options as well as how quickly they can select that option. 
This is a search and select task. The search aspect of the entry would be affected 

by the number of items in the selectable set as well as the provision of any 
logical structure to the presentation of options, for example, sorting the options 
in increasing order. In addition, the size of the widgets used to represent the
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items in the set affects the selection time. This selection time can be predicted 

using F itts’ Law [Fit54].

8.1.2 Error R ate

Error rate refers to how frequently errors occur while using the interface. Two 
types of errors have so far been analysed. On the one hand there are corrected 
errors which are noticed and rectified by the user. On the other hand there are 

uncorrected errors which are undetected by the users. These two components of 
error inform the perceived error rate of a user interface. Table 8.1 summarises 

the total number of corrected and uncorrected errors committed by participants 
on the five interfaces tested in Chapter 7.

Numeric Keypad Chevrons Up-down D-pad Dial
Corrected Errors 29 214 90 102 398

Uncorrected Errors 6 14 17 0 23

Table 8.1: The total corrected and uncorrected errors recorded on each interface in 
Chapter 7.

The impact of the error rate of an interface should be assessed in relation to 
the error detection on the interface. The relationship between the corrected errors 
and the uncorrected errors on an interface suggests how well errors are detected 
and consequently rectified on that interface. Results from the experiment are 
used to estimate the percentage of all error instances that go undetected. In 
practice, the absolute number of errors would determine the real impact of the 

error rates of the different styles of interfaces and the overall number of errors 
would vary dependent on context. In general, reducing the impact of error rate 
of the different interfaces would be achieved by improving error detection on the 

interfaces.

Serial digit entry interfaces

The results from Chapter 7 show that the serial interface has the least number 

of corrected errors. The low number of keystrokes needed to enter numbers on 
this interface style provides less opportunity for committing errors. Also people’s
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familiarity with interfaces such as the numeric keypad reduces the chances for 

occurrences of error on this interface. However, the ratio of corrected errors to 
uncorrected errors on this interface showed that about 17% of all errors commit­

ted were not corrected. These errors were due to missing decimal points, wrong 
digits and missing digits.

Independent digit interfaces

Independent digit interfaces exhibit more corrected error than serial interfaces 
but less than incremental interfaces. The higher number of keystrokes required 
to set numbers containing non-zero digits means there are more opportunities for 
error when using this interface. Users can make key slips when selecting a place 
value in the number or they can make a slip when setting the digit itself. Since 

these interfaces typically require successively clicking the same button to select 
the required digit, issues of time-delay between button activation and interface 
feedback are likely to increase the chances of error.

On the up-down interface, experiment results showed that 16% of errors com­
mitted were not corrected. The majority of these errors were due to instances 
where an extra zero was added before a digit that follows a decimal point. The 
d-pad interface had more corrected errors than the up-down. The d-pad was 
however the only interface clear of uncorrected error.

Increm ental interfaces

Incremental interfaces exhibited the most corrected error as many users of this 
interface oscillated about the target number a few times before selecting the 
number. Using well calibrated gain and time-delay parameters when designing 

this style of interface would improve the stability of this style of interface.

On the dial interface 5.5% of all errors were uncorrected and on the chevrons 

6% of all errors were uncorrected. Most of these errors were instances of the digit 
added and wrong digit errors described in Chapter 7.
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8.1 .3  Error Severity

Error severity provides a quantitative measure for assessing the level of risk that 
can be attributed to an undetected error on an interface. It is formally defined 
as the ratio of the intended value to the transcribed value in a number entry 

task [ThilOb, O la ll, Caul2a]. This ratio tells us, for instance, by how much the 

intended value is bigger or smaller than the transcribed value.

A particular class of errors is order of magnitude errors. This class describes 
errors where the ratio of the transcribed to the intended number is a factor of 
ten. To simplify the comparison process, these are assessed at a coarse level of 
low, medium and high severity signifying when an error is out by a factor r where 
1 < r  < =  2 for low severity, 2 < r <= 10 for medium severity and 10 < r for 
high severity. The severity of error presented below are those derivable from a 

single key-stroke action.

Serial digit entry interfaces

The numeric keypad is the most com]non serial digit entry interface. Errors 
on interfaces such as the numeric keypad are usually in the high severity level. 
Keystrokes on this interface have a direct mapping to the digits of the intended 
number. One keystroke is used to set each digit in the number and digits have 
to be entered sequentially. Where x  is the current number, each subsequent digit 
keystroke d changes x  by 9x + d. This is a change of at least 900% over the 
current number. The actual level of error severity is dependent on the position 
within the number, at which the keying slip occurs. A keying error thus results 
in one of missing digit, missing decimal point, wrong digit, added digit or added 
decimal point.

A missing decimal on this style of interface results in the specification of a 
number which is an order of magnitude larger than the intended number. The 

specific order of magnitude is dependent on the precision (the number of decimal 
places) of the intended number. For instance, if the user wishes to enter a number 
1.55 and they do so without the decimal point, then the transcribed number 

is one hundred-times more than the intended number. Similarly a missing or
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added digit, depending on where it occurs in the transcribed number can cause 

big changes to a number.

Possib le im provem ents
Reducing the severity of error on serial interfaces can be obtained by reducing the 

severity of errors that could occur as a result of an undetected single keystroke 
error or by increasing the likelihood tha t users of the interface would notice any 
key slip errors.

In the first case, the digit selection mechanism can be changed from direct 
digit selection to incremental digit selection. This change trades off speed of 
entry for accuracy. In addition to reducing the severity of error caused by a 
single key stroke, such a design separates digit selection from digit confirmation. 
This explicit confirmation could improve the user’s ability to detect error. This 
design, however, deviates from the norm of implicit digit confirmation on selection 
present in numeric keypad serial interfaces.

Independent digit entry interfaces

These interfaces make changes to digits in a number in any order. This means 
one-step keying errors are limited to those possible by discrete one step increments 
in a chosen place value. For interfaces like the up-down or those that allow direct 
access to digits on a number, the user could erroneously set the wrong place 
value by setting the thousands place value instead of the hundreds place value. 
However the possibility of this one-step place value error is reduced in instances 

of this interface style such as the d-pad, where an explicit step is required to 
manipulate a cursor that selects the digit (or place value) the user wishes to edit.

Wrong digit errors could also occur as a result of a one step keying slip on 

this style of interface although the severity of this type of error is usually less 

than other digit based errors.

Increm ental and direct entry interfaces

Incremental and direct number selection interfaces are not prone to digit based 

error since they allow number entry based on selection of a number from a set
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of options. This interaction style means that the severity of key-slip induced 

number entry errors on these interfaces are usually much lower than for digit 

based interfaces.

8.1 .4  Error D etection

This refers to the ability of users of an interface to notice key slip errors wThenever 
they occur in the course of interaction. The likelihood of error detection is affected 
by the user’s ability to accurately interpret the current state of a system based on 
the different modes of feedback the system is delivering to the user. The primary 

mode of feedback used in the design of number entry interfaces is visual. The 
detection of errors thus requires tha t the user pays attention to the part of the 

interface where feedback is provided.

Serial digit entry interfaces

Chapter 6 shows that errors are more likely to go undetected when using a se­
rial style interface like the numeric keypad than when using incremental style 
interfaces. This is because the numeric keypad does not encourage the user to 
check the display after digit selection, probably because of the implicit feedback 
in searching for and selecting the required digit. Errors such as added digits or 
missing digits are consequently likely to go undetected.

Possible im provem ents
To improve error detection rates for the numeric keypad (e.g., on a touch screen 

interface), one can implement a reactive keypad interface which allows serial digit 
entry by dragging and dropping digits from the input part of the interface to the 
display. Digits are appended to the end of the display when they are dragged 

from the keypad over to the display area. Similarly, digits already on the display 
of the interface can be removed by dragging them out of the display. This design 
also has the advantage that syntax errors caused by keying multiple decimal 
points can be blocked by updating the keypad interface to remove the decimal 
point once one has been entered.
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Independent digit interfaces

These interfaces encourage the user to pay attention to the display because the 
user interaction is based on selecting a digit and then making incremental changes 

to the digits. Once the user acquires a button, there is no visual feedback involved 

in looking at the buttons used to change the digits. The user needs to check the 
screen to ensure and confirm that the digit they are setting changes correctly. 
Despite this visual attention, the experiments reported in Chapters 6 and 7 show 

that interfaces of this style are not error free. Errors such as wrongly transcribing 
the decimal part of number might still go unnoticed.

Possible im provem ents
Error detection can be improved on this interface style by providing feedback 
that highlights the digit tha t is affected by user interaction. This impact can 
be further emphasized by highlighting all the digits succeeding the one that is 
currently being edited. The visual cue might give the user some perception of 
the magnitude of changes they are making.

Increm ental interfaces

The interaction for these interfaces are based on number selection. As a result, 
the controls used to navigate the number line require very little visual attention. 
W hat is most important here is tha t the user visually monitors the changes to 
the number and is able to predict and make corresponding adjustments to the 
rate at which the number changes. For input widgets such as dials, the user 

does not even need any additional visual attention on the input widget after it 

has been acquired. Changes are performed with clockwise and anti-clockwise 
turning actions. Like the independent digit interfaces, wrong transcriptions of 

the decimal part of a number might also go unnoticed.

8.1.5 U ser interface footprint

This refers to the number of input widgets required to implement an interface. 

This feature is responsible for the amount of space that the interface covers on a 

device. This feature will be assessed based on the minimum number of widgets
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needed to implement a style of interface as well as how the minimum required 
widget is affected by an increase in the range and precision of the interface. An 

interface with a fixed footprint would not be affected by a change in the range 
or precision of numbers in the host application. An interface that is affected by 

such changes would be referred to as having a variable footprint. This feature 
would be of interest to interface designers who are trying to minimise the cost of 
producing or maintaining a device or application.

Serial digit entry interfaces

The numeric keypad has a fixed user interface footprint. It requires a minimum 
of ten keys, 0 - 9 ,  for operation. This variation would permit entry of whole 
numbers or entry of fractional numbers to a fixed precision (see section 3.3.1). 
A cancel key and a decimal point key might be added to the interface to allow 
error correction and entry of numbers to an arbitrary precision.

Possible im provem ents
A simple modification can be made to this interface to improve the interface 

footprint by implementing an incremental digit selection mechanism. This would 
require three or four keys. Two keys for setting the required digit using up and 
down arrows and one key for moving a cursor to the right ready to set another 
digit. An optional decimal point key may be provided to allow the specification 
of numbers to an arbitrary precision.

The user interface footprint can be further reduced by the use of four-way 
joystick, like those found on laptops, to change digits and to move a virtual cursor. 
This variation trades off the speed of entry for a smaller interface footprint.

These changes mean the digit selection on the interface would work just like 
the d-pad, although the order of digit specification would be strictly sequential 
(i.e., as the digits appear in the number).

Independent digit entry interfaces

When implemented without a cursor, this style of interface generally has a vari­
able footprint. It requires a digit controller for each place value up to the max­
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imum value accessible by the interface. These controllers range from a pair of 

up-down keys as found in the up-down interface described in section 3.3.2 to the 
full digit row of keys found in early calculating machines such as the Comptome­
ter.

Adding a cursor to the display reduces the number of keys needed to im­
plement the interface to 4 as featured in the D-pad interface which has a fixed 

footprint.

Possible im provem ents
The number of keys used in the d-pad can be reduced to two keys if the digits and 
the cursor movements on the interface wrap around. This improvement trades 
off speed of entry for a smaller user interface footprint.

The footprint can be further reduced by implementing the interface on a 
touch screen and controlling the digits with touch gestures such as swiping up or 
down to control digits and swiping left or right to control the cursor or simply 
activating the digits to be edited by touching them.

Increm ental num ber entry interfaces

These interfaces have a fixed footprint because they can be implemented with 
a minimum of two buttons, one each for increasing and decreasing the number, 

or a dial. Control of the magnitude or speed of changes to the number can 
be provided on the interface with additional buttons although these need not 
change the footprint for instance, by using force sensitive buttons to allow the 
user control over the amount of change that occurs.

D irect number selection  interfaces

These have a variable footprint tha t is dependent on the size of the set of numbers 

to choose from. Consequently, these are only feasible when entering numbers from 

a small sized set.
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8.1.6 R ange and Precision

The range refers to the minimum and maximum numeric value that can be spec­

ified using an interface. Range can be limited by external factors in the envi­
ronment where the application will be used. For example, the rate value on an 

infusion pump would be limited to the minimum and maximum speed at which 
the hardware of the pump permits reliable and accurate delivery of medication. 
From a different point of view, range can be limited by the size of the number 
that can be written out on the display of the device or by the maximum number 
that can be held in the memory of the application. This limitation can be found 
on some calculators where, for instance, the display only permits entry of 8 digits.

The precision refers to the position of the rightmost significant digit in the 
numbers entered into the devices. Similarly to the range feature, precision can 
be limited by factors in the environment that affect the way the interface works. 
For example limits to the speed of infusion posed by the mechanical aspects of 
the device flow mechanism would restrict the interface to entry of numbers with a 

certain amount of precision. For example as seen in Chapter 4, the Asena pump 
did not permit entry of numbers bigger than 10 to a precision of 2 decimal places.

Range together with precision have an impact on the set of values that can 
be entered in an application. This consequently has an effect on the speed of 
entry of an interface and the footprint of the interface. These are reviewed for 
different classes of interfaces below.

Serial interface

The nature of serial number entry interfaces requires that the digits in the number 
are specified sequentially. As seen in Chapter 5, the speed of entry on serial 

interfaces is a logarithmic function on the length of the number to be entered. 
As a result, changes to the range and precision of the numbers have minimal 
effect on the interface. When an application only requires low precision values, 
there is no need for a decimal point key.
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Independent digit interfaces

In the variation of this style that provides separate controls for each keys (e.g., 
the up-down), the number of keys on the interface is affected by the range and 

precision of the interface. This is because extra set of controls are needed for each 

place value in the maximum range of the numbers. Here, the interface footprint 
is negatively affected by an increase in the range or precision of the numbers that 

can be entered into the application.

For variations such as the d-pad, which provide a shared digit controller, but 
give the user the ability to select the active digit, changes in range and precision 

has no effect on interface footprint. The same mechanism for digit selection can 
be used to select amongst an arbitrary number of digits.

Possible im provem ents
The negative effect of arbitrary range and precision can be mitigated by creat­
ing a touch sensitive implementation of this interface as previously described in 
Section 8.1.5.

Increm ental interfaces

Interfaces of this style typically provide ways for the user to navigate through 
the range of valid values in the application at a variable precision that can be 
selected by the user. An increase in range or precision does not negatively affect 
user interface footprint, although, as discussed in Section 8.1.1, speed of entry for 
large numbers on an incremental interface can be slow. If the designer intends 
to preserve the mean speed of entry, then they need to increase the footprint of 

the interface by providing more ways for the user to control the magnitude and 
speed at which changes to the number occur.

D irect number selection

Changes in range and precision have a negative impact on the footprint for in­

terfaces of this style. Since these interfaces present options for users to select, 
an increase in the range increases the number of options which consequently 

increases the footprint of the interface.
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8.2 Summary

The evaluations of criteria for the interfaces show several trade-offs that are 
highlighted below. Firstly, there is a trade-off between entry speed and severity 

of error on the interfaces. The faster an interface is, the higher the chances of 
severe errors occurring. This has been observed in the experiments reported in 

Chapters 6 and 7 with the faster interfaces producing the most severe errors 
although not necessarily the highest number of errors. Conversely, the slower an 

interface is, the more likely errors are to be detected and the less severe errors 
are likely to be. This can be seen, for instance, in the d-pad and up-down - two 
variations of the independent digit interface. The extra keystroke needed on the 
d-pad to move an on screen cursor reduces the speed of entry. This reduction 
in speed might be responsible for the lower severity of errors and better error 

detection.

There also exists a trade-off between user interface footprint and speed. Typ­
ically, a reduction in user interface footprint results in a reduction in speed of 

entry. Similarly an increase in speed results in an increase in user interface 
footprint. In certain interfaces (e.g., those offering direct number selection, or 
the up-down interface), an increase in the range and precision of numbers to 
be addressed by the application requires an increase in space to implement the 
interface.

This chapter has presented a set of criteria for use in comparing classes of 
number entry interfaces. Some of these are not independent of each other such 
that a change in one has an impact on the other. In the process of choosing an 

interface, a primary criterion should be selected at the beginning of the process 

based on factors that are considered to have the highest priorities in the context 
of the application.

For example, in the design of general calculators, users would be required 
to have the ability to perform calculations with numbers of arbitrary range and 
precision, and so might be primary criteria. This consequently limits the options 

in the design space to interfaces tha t are not negatively impacted by an arbitrary 
range and precision (e.g., the numeric keypad or the d-pad interface). To choose
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between these two options, the designer might then specify that users must be 

able to perform calculations as quickly as possible - a criterion that positively 
favours the numeric keypad.

A second scenario might involve the design of a portable medical device which 

requires input of numbers having a small range and a low precision. A typical 
primary requirement for this application would be the user interface footprint. 
This limits the interface options to any incremental number selection interface or 
the d-pad. The designer can then further reduce the design options by prioritising 

one of speed or accuracy.

In any of the two scenarios, the designer may also apply QOC to further ex­
plore new variations on the interface styles and then perform usability evaluations 
to validate an option.
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Chapter 9

Conclusion

Number entry is a very fundamental form of interaction task that requires the 

specification of numeric values to an application. It occurs obviously in simple 
everyday devices like calculators, timers, televisions and mobile phones and more 
critically in contexts like healthcare, finance and a different modes of transporta­
tion.

This research was motivated by data entry error in the use of interactive 
medical devices and the seemingly ad hoc manner with which number entry in­

terfaces are currently designed and implemented. In an attem pt to mitigate these 
problems and improve decision support for the design of devices like interactive 
medical devices, this Thesis has taken a structured approach to exploring differ­
ent ways a number entry interface can be designed and explored the performance 

of different styles of interfaces both in terms of speed and accuracy, using an an­
alytical model based technique as well as traditional laboratory studies. Below 

is a summary of research contributions.

9.1 Research contributions

Based on a historical review I conduct in Chapter 2 and a series of number entry 

interfaces currently encountered in interactive devices, I presented a classifica­
tion of number entry interfaces in Chapter 3. This classification explores two
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main dimensions and helps in structuring the examples of interfaces evaluated in 

Chapters 5, 6 and 7. Prior to this research, number entry interfaces have been 
generally referred to under a single group. This is probably as a consequence or 
effect of the popularity of the number keypad. This classification allows struc­
tural reasoning about the design options for number entry interfaces and it would 

encourage and inspire research for designing new interfaces.

In Chapter 5, I introduced a novel method of exploring task strategies of an 
interactive system using different heuristic functions in the A star path finding 
algorithm and I presented four functions for use in deriving the cost for changing 
numbers on a variety of interfaces. I used these functions to calculate the number 
of clicks required to change between any two integers and I also used them as 
the basis for heuristic functions used to implement two strategies for performing 
number entry tasks. A first strategy was based on minimising the number of 
clicks required to complete the? task while the second strategy was based on 
minimising the time required to complete a task. Task time was estimated using 
the keystroke level model of performance. The analysis showed that the sequence 

of action derived by these strategics differ for variations of some interfaces. This 
variation in task sequence has implications for consistency in interaction design.

In Chapter 6, I conducted an experiment to investigate the effects of interface 
style on error detection. This experiment tracked the eye fixations of partici­
pants while they entered numbers using the ubiquitous numeric keypad and the 
chevrons interface found on some medical infusion pumps. The results show that 
the type of interface used has an effect on the participant’s detection of errors 
that occur on the interfaces. The effect on error detection is due to the change 
in user behaviour tha t occurs when using the interfaces. The amount of visual 

attention the users place on the display of the interface when using the chevrons 
interface is significantly more than the amount of attention they place on the 
input. Conversely, users rarely look at the display when using the numeric key­
pad. In addition, this experiment elicited error types that showed the effects of 

interface style on error type.

In Chapter 7, I built on the experiment in Chapter 6 and ran an experiment 
to evaluate the performance of five different styles of interfaces on a custom built

164



9.2. Generalising from this research

prototype device. This chapter showed that the speed of entering numbers are 

affected by the style of interfaces and the error types discovered in Chapter 6 
were reproduced.

9.2 Generalising from this research

The motivation of this research was the seemingly avoidable occurrence of data 
entry errors in interactive medical devices. Consequently, the interfaces eval­

uated are taken from examples of medical devices that are currently in use in 
hospitals. Also, unlike other number entry experiments conducted to date, the 
type of numbers used the experiments reported are numbers within the range 
and precision found in typical infusion therapies. Limiting the range this way 
makes the tasks encountered in the experiments relevant to the medical context.

The relative performances of the user interfaces tested, with respect to speed 
of entry and the types of errors that occur on each type of interface, are transfer­
able to other domains. Error rates may however not apply to other domains and 
indeed, there is no evidence that these error rates can be found in the medical 
context. The error rates observed in the laboratory studies were produced by 

generic users who had no specialist knowledge of the healthcare context. Error 
rates in practice would differ due to a different user skill level and the context in 
which the number entry task is performed.

9.3 Future work

This research has provided foundation for more work to be carried out in the de­

sign and evaluation of number entry interfaces. I highlight the following avenues 

where future work could follow.

•  The design and evaluation of new number entry interfaces specifically those 

tha t exploit the use of touch screen hardware and multi-touch technology 
could be explored. Since users rarely look at the display when using the 

numeric keypad, a useful adaptation of this layout on the touchscreen in­
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terface might require the user to drag the digits onto the display, thus 
encouraging a higher visual attention on the display of the interface.

• Exploring the effect of skill and context on performance of different inter­
faces. This would investigate whether skilled users such as nurses, who get 
equipment training significantly differ, with respect to speed and accuracy, 
from non-skilled users similar to those used for the experiments in this 

research.

• An aspect of number entry that has not been explored here is the different 
ways of representing numbers. These could be static or animated cues that 
add information about the type of numbers that a user is setting. This 
would be particularly useful when a task involves setting up more than one 

number and might reduce the chances of mixing up numbers.

Prior to the beginning of this work in April 2010, a review of literature showed 
a very restricted view of research in number entry which was then limited to 
the numeric keypad. This was perhaps due to the perception of number entry 

tasks as trivial or secondary. This research has shown that the design space 
of number entry interfaces is not limited to the numeric keypad and that the 
various options within the design space have different trade-offs and should be 

explored and empirically evaluated especially when designing interfaces for the 
safety critical context.
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