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Introduction

This thesis is split into two parts. The first part is concerned with the search for Kleisli (coKleisli)
objects for monads (comonads) in the category of internal categories for a monoidal category as
introduced in [2]. The second part is concerned with the construction of Eilenberg-Moore algebras
for a Morita context as in [11]. The reader should note that these two parts are related through
the theory of monads. The first part deals with the formal theory of monads in 2-categories and
the second part with the classical theory of monads in the usual category theory and extends it
from a single adjunction to a pair of adjunctions which is a particular example of a span.

The importance of these objects rest on the fact that they are universal constructions and
therefore important on their own, even though there are not too many applications or examples
inside this thesis.

This thesis is organized as follows. In Chapter 1, a revision of the definition of an internal
category is done. An internal category is the generalization of a small category within the category
of Sets, but it can exist inside any category C, with finite products and pullbacks.

Internal categories within monoidal categories have been introduced and studied by M. Aguiar
in his PhD thesis [2] as a framework for analysing properties of quantum groups. By choosing
appropriately the monoidal category 91, algebraic structures of recent interest in Hopf algebra
theory, such as corings and C-rings, can be interpreted as internal categories. Internal categories
can be organised into two different 2-categories. The first one, denoted by IntCat (1), has inter-
nal functors as 1-cells, and internal natural transformations as 2-cells. The second one, denoted
by IntCoCat(9), has internal cofunctors as 1-cells, and internal natural cotransformations as
2-cells. The difference between these two structures is that the internal functors can be thought of
as a push-forward of morphisms while the cofunctor can be understood as a lifting of morphisms
from one internal category to the other.

In Chapter 2, the necessary background to deal with monads is given, both in the classical
sense and in the formal sense; see [3] for the classical treatment and [20], [24] for the formal
theory. In the formal theory of monads the main role is played by a 2-category KL(.A), defined
over a 2-category A, which has the particular feature of having all Kleisli objects for any monad
defined in there. In [20], the authors not only provide this 2-category with all the Kleisli objects
but also they give the algorithm to get the Kleisli object out of a the monad defined there, this
last property will be exploited in this thesis.

Chapter 3, which is based on [10], contains the original results of this thesis. It starts with
a quick review of the definition of a monad in the 2-category IntCat(91). A monad (comonad)

in the 2-category IntCat(9), i.e. an internal endofunctor with two natural transformations

Ix



which satisfy the usual associativity and unitality conditions, is called an internal monad (in-
ternal comonad). We show that every internal monad (comonad) arises from and gives rise to a
pair of adjoint functors, by explicitly constructing the Kleisli internal category in IntCat(9). A
monad in the 2-category IntCoCat(90t), i.e. an internal endocofunctor with two natural cotrans-
formations which satisfy the usual associativity and unital conditions, is also called an internal
monad. Similarly as before, we show that every internal monad arises from and give rise to a pair
of adjoint cofunctors, by explicitly constructing Kleisli objects in IntCoCat(91). Both construc-
tions are based on the definition of the classical Kleisli category and the proofs that these indeed
give Kleisli objects are given along the same lines as in [24].

Further in the chapter, the bicategory Bicomod(90) is constructed and the associated bi-
category KL(Bicomod(90)) is described. This last bicategory is needed in order to construct
several bifunctors which have this bicategory or one of its duals, as a codomain. A main common
feature of these bifunctors is that they are identities on objects and are full embeddings. Now
if such a bifunctor ® : IntCat(9t) — KL(Bicomod(90)) is constructed, then any monad in
IntCat(901) can be pushed-forward into KL(Bicomod (1)), and once it is there one can use the
aforementioned algorithm to get the Kleisli object for it, which happens to be in IntCat(90).
The method just explained is used to obtain the Kleisli object for any monad and the coKleisli
object for any comonad in IntCat(9) and the Kleisli object for any monad in IntCoCat(90).

Later on, in the same chapter and based on the definition of the Kleisli object for a monad,
a new characterization of an adjunction in IntCat(90) is given. This characterization resembles
that of an isomorphism between the Hom sets for a classical adjunction between categories.

In Chapter 4, which is based on [11], a connection between functorial Morita contexts and pairs
of adjunctions is described. This correspondence is similar to that between (single) adjunctions
and monads, more precisely, between adjunctions with domain a fixed category C and the category
of Eilenberg-Moore algebras C* for a monad (F,u”,n") over C. The role of the adjunctions will
be played by the so-called category of double adjunctions and the role of CF will be played by
the category of Eilenberg-Moore algebras (A, B)"#) for a Morita context (A, B,T,T). Given this
resemblance, this thesis concludes with a Beck-type theorem for such a relation.




Chapter 1

Internal Categories in a Monoidal Category

1.1

Internal Categories

This section is based on |7] and [13]. Let A be a category with pullbacks. An internal category
7 in A consists of the following data:

i) An internal reflexive graph', i.e a diagram

i)

d
A== A, (1.1)

such that

di=1p=c-i. (1.2)

The morphisms d and c are called domain and codomain morphisms, respectively, or source
and target as in [7]; and the morphism 1 is called identity morphism. Throughout this thesis
a composition of morphisms in the category A is denoted by - and the identity morphism
for the object A is denoted by 14.

A composition m : A; x4, A} — A;, where A; x4, A; is the pullback of ¢ and 4, i.e.,

/\1 X Ao /‘1———1’2—>A] (]_3)
A Ao

We will write g-' f = m(g, f), where (g, f) is a generalized element of A; x 4, A1, understood
as a morphism with codomain A; x4, A;.

This composition satisfies the following properties,

! Henceforth referred to, only, as an internal graph.



1.1. Internal Categories

a) Compatibility with domain and codomain

c-m = c-py, (1.4a)

d-m

which, over generalized elements of .4, reads as

respectively.
b) Unitality:

m-j]r—lAl:m-jg, (15)

where j, and j, are defined by the following diagrams,

: Ay ———— A

The notation for these induced morphisms, through the pullback, will be (i -¢; 14,).
Over generalized elements these equations read:

iy f==f"day -

¢) Associativity of the composition,

m-(1a, xaom)=m-(m xa,1a,), (1.6)

where
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lAl Xpgem Al X Ag (Al XAO A])—>Al X Ao A],
m xXa, la, (A1 X4y A1) Xa, A1 — A] Xp, Ay,

and Al X Ao (A] X Aq A]) = (Al X Ag A]) X Ag Al.

The object Ay should be understood as a collection of all objects in Z, and because of that
named as the object of objects of the internal category Z. Furthermore, the object A; is named as
the object of morphisms or arrows of the internal category Z. Then ¢ assigns a codomain object
for a morphism, d assigns a domain object for a morphism and 7 assigrs an identity morphism
for an object in Ag. Furthermore, m is interpreted as a composition of morphisms with matching
domain and codomain. This explains the notation - used in 7i). In the case, A = Sets, an
internal category Z is simply a small category.

An internal category 7 is denoted by Z = (Ag, Ay, ¢, d.i,m), or shortly by Z = (Ag, A;).
Functors between internal categories Z = (Ag, A1) and J = (By, B;) are defined as follows:

A functor F = (Fo, F}) : (Ag. A1) — (Bo. By), is a pair of morphisms Fy : Ag — By and
Fy 1 Ay — B satisfying the following properties:

i) Compatibility with domain, codomain and identity, respectively:

dy - Fy = Fy-d,, (1.7a)
aw Fi = Fycg, (1.7b)
ib . Fo = Fl . ia . (17C)

These equations can be written concisely as the following serially commutative diagram,

da
Al -« ig AO
Ca
F1 FO
dp
By <=—u By
Cp
ii) Preservation of the multiplication:
Fy-mg=my- (Fy Xg, F1) (1.8)

where [} x g, I is defined through the following diagram,
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p2

A1 X Aq A, Ay

~ Fixp By Fy
~ N *
P

P1 By X By By 2 B,

|C

p1
A1 p Ao c
\ \\

B - B,

Finally, a natural transformation o : FF — G is a morphism « : Ag — Bj, such that
i)

dy-a = Fy, (1.9a)
o = Gy ; (1.9b)

i) my(a-cu; Fy) = my(Gy; - d,), where

(- co; F1),(Grya+dy) 1 Ay — By xp, Br .

For a generalized object f in Aj, this reads explicitly as:

a(ca(f)) 7 Fi(f) = Gi(f) " alda(f))

and hence it is the naturality condition for the transformation.

The following proposition can be stated:

Proposition 1.1.1. Let A be a category with pullbacks. Internal functors between fized internal
categories T = (A1, Ag), J = (B1, By) and internal natural transformations make o category
IntFunctz 7y where the composition, of o : F — G , 8: G — H, is given by

Booa=my- (8;a),

and the unit of F for this composition s F} - i,.

Furthermore, internal categories form a 2-category IntCat(.A) with objects internal categories,
1-cells internal functors and 2-cells internal natural transformations, see (1.5.1) for the definition
of a 2-Category.




Chapter 1. Internal Categories in a Monoidal Category S

1.2 Monoidal Categories

In this section the definition of a monoidal category is recalled. See |23] and [26].

A monoidal category is a sextuple (M, ®, 7, a, A, p), where 9 is a category together with a
bifunctor,

K : MxM — MM,

that it is associative up to an isomorphism, and possesses a right and left unit I, only up to
isomorphism. Explicitly, a, A and p are natural transformations

aspc:AQ(B®C) (AR B)®C
)\A[@A A )
4 AR A,

such that A\; = p;. It is required also that the following diagrams commute:

AR((BRC)®D)
A®ap c,D QA,B®C,D
AR(BR(C®D)) (A®(BRC))®D I®B)—-—————————> ARD BB
(1.10)
AQAB pPa®i3
®A,B,C&D TW:Nor-12
(A®B)R(COD) ——— > ((A®B)R®C)®D .
QA®B,C,D

The left diagram is known as the pentagonal law. If the associativity and unitality are strict,
t.e. the natural transformations «, A and p are identities, then the monoidal category is called
strict monoidal category, in this case the notation is (9, ®, I'). According to [23], every monoidal
category is equivalent to some strict monoidal category. This theorem is called the coherence
theorem for monoidal categories. Thus, in what follows, we treat monoidal categories as if they
were strict monoidal.
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Let (M, ®,1,a,A, p) and (M, &', 1',¢', N, p') be two monoidal categories, then a monoidal
functor (F,¢) : (M, ®,1,a,\, p) — (M, &, 1"/, N, p') is a functor F : M — NV, a natural
transformation

Cap: FA® FB— F(A® B)

and a map

Co:1' — FI .

Such that the following diagrams commute

FA® (FB& FC)2S pAg F(B& C) 22 F(A % (B®C))
opa,FB.FC Foa s
(FAG FB)®' FC—x F(A® B) & FC ———F((A8 B)@0)
FAg I —25 FA I'g FA—fA A
FA®'Co Fpa (03’1-‘,41 FAa
FA® FI F(ARI) FI' FA F(I ® A)

Ca,l (1.4

If the natural transformation ¢ and the map (, are isomorphisms, then the functor is called
strong monoidal functor, and if they are identities then is called strict monoidal functor.

1.2.1 Examples of Monoidal Categories

) The monoidal category (Sets, x, {x}) of Sets, where the tensor product is played by the carte-
sian product and the unit is the singleton set {x}.

¢) The monoidal category (Vect,®,k) of Vector Spaces over the field k, with the usual tensor
product and unit the field itself.

¢) The monoidal category (Modg, ®g, R) of modules over a commutative ring with unit R, with
the usual tensor product and unit the ring itself.

o) Let (M, ®, 1) be a monoidal category, then the category 9% is also monoidal with the same
tensor product and unit, i.e. (9M°,®, ) is a monoidal category.
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1.2.2 Comonoids and Comodules in a Monoidal Category

Let (9, ®,7) be a strict monodial category . A comonoid in (9M,®,7) is a triple (C, Ac,ec),
where C is an object in MM, A : C — C® C and ¢¢ : C — [ are morphisms in 91 such that
the following diagrams commute:

CRAc CQec

CewlC&C ceC C=——CRC
Ac®C Ac ec®C Z Ac (1.11)
ceC A C : cCeC A C

The property corresponding to the first diagram is usually referred to as the coassociativity of the
comonoid and the second one is referred to as the counitality of the comonoid.

A morphism of comonoids fo : (C,Ac,ec) — (D,Ap,ep), is a morphism f : C — D in
M such that the following diagrams commmute:

CoC—22% . peD I
Ac Ap © P (1.12)
¢ fo D ’ ¢ fo D

The category of comonoids in 971 is denoted by Comongy.

Let (C, Ac,ec) be a comonoid in Comongy. A left C-comodule is a pair (M, ©py), where M
is an object in 9 and “pp : M — C ® M a morphism in 9, called left C-coaction. The left
C-coaction is required to satisfy the commutativity of the following diagrams:

CeCeoM<="_ceMm M= _cem
C®Cpum Com - Cpm
CR®M<——r: Mo M

oM

The first diagram is referred to as the coassociativity of the left C-coaction and the second
one as the counitality of the left C-action.

The morphism of left C-comodules is a morphism [/ : M — M’ in 9 such that the following
diagram commute: '
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cef

CoM cCeoM
CPM CPM'
M 7 M’

The category, which has left C-comodules as its objects and morphisms of left C-comodules
as morphisms, is called the category of left C-comodules and it is denoted by M. With this
notation, a morphism of left C-comodules can also be referred to, in a simpler manner, as a
morphism in M. Symmetrically, a right C-comodule is a pair (M, p§;), where M is an object in
M, and p§, : M — M ® C is a morphism in 9, called right C-coaction. The right C-coaction
is required to satisfy the commutativity of the following diagrams:

MeC 222 vecsC M&C -8,y
7 ©5 P -
M - M®C M
Prm

A morphism of right C-comodules is a morphism f : M — M’ such that the following
diagram commute:

/ec

MeC M®C
ng P,c\:,,/
M 7 M’

The category, which has right C-comodules as its objects and right C-comodule morphisms
as morphisms, is called the category of right C-comodules and it is denoted by M. Combining
these two categories, the category of C-bicomodules, or C-comodules for short, can be constructed.
The objects are triples (M, “pyy, 05, ), where (M, ©py) is a left C-comodule and (M, p$,) is a right
C-bicomodule, such that the following compatibility condition is fulfilled:

CRp5
COM—2CoMeaC
Com ComC

MeC

M
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The morphisms of this category are morphisms f : M — M’ in 9, such that it is a left
and right C-comodule morphism. This category is denoted by “M¢. Note that a comonoid
(C,Ac,ec) is a C-comodule with coactions (C,Ac, Ag).

Consider an object (M, p$;) in M and an object (N, “py) in M. If the following equalizer
exists:

MU¢N

M
MQN—T——=MQQC®N
P5ON

then A/OJ-N is called the cotensor product.

Let us note that if there exists a morphism of comonoids fy : C — D, then there exists
an induced functor /F : M — PM between categories of left comodules. On objects, /F is
defined as /F(M,%p) = (M, (f ® M) - Spps), while on morphisms /F(h) = h. We write /A1
for /F(M, ) and h for /F(h). Similarly, fy also induces another functor F/ : M¢ — MP
between the categories of right comodules. We write M/ for F/(M, p%;) and h' for F/(h). The
combination of /F and F/ gives rise to a functor of categories of comodules /F/ : “M¢ —s PMPD,

Finally, if f : C — D is a morphism of comonoids, then for all (M, p%,) in M and (N, o)
in M, for which MO¢N and M/Op/N exist, there is a morphism ¢y : MOcN — M/Op/N in
M induced by the following commutative diagram

MOeN (1.13)
|
|

|
I

¥
M/Op/N

M®N

Remark on Notation 1.2.2.1. Let M be an object in M®, M’ an object in M and MOcM’ its
cotensor product. Then if f: N — M ® M’ is a fork for the pair of morphisms M ® “ps; and
P @M ie. (MQCop)- f=(p§; ®M')- f. Then there exists the following induced map

]\Il

|

|

| f

i

¥ M®Cppp

MOcM' M@M’-:;C — MCQM

PM® !

which will be denoted by /.
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1.3 Towards Generalization of Internal Categories

Before the definition of an internal category within a monoidal category is given, cf. [2]|, we look
at small categories as internal categories in Sets. Let Ag, A; be two objects in Sets which are part
of a internal graph as in (1.1). Note that every set, in particular Ag, is a comonoid in a unique
way, with comultiplication given by the diagonal morphism Ay, : Ag — Ag X Ao, z +— (z,7)
and unit £4, : Ag — {*}, the unique map z — x.

A morphism d: A; — A induces a unique morphism
A L5 A x Ay (1.14)

r—— (:c, d(:r)) .

With this morphism A; becomes a right Ag-comodule. Similarly, for ¢ : Ay — Aq there exists
¢: A — Ag x Aj, z — (c(z),z), making A; a left Ap-comodule. Thus (A;,¢,d) is an Ao-
comodule. With these two morphisms, the requirements (1.2), on d and ¢, are equivalent to the

following requirements for d and &:

= (Z X AO) ' AAO y (1153.)
o= (Agxi) Ay, . (1.15b)

o Ky
.

This means that 7 is a morphism of Ap-comodules.

The process of transforming requirements for ¢ and d into requirements for ¢ and d consists in
taking appropriate inclusions into cartesian products. In case one wants to recover the original re-
quirements out of the transformed ones, one can use suitable projections over the aforementioned
cartesian products.

Next, it is important and convenient to observe that A;04,A; = Ay X4, A; in Sets, where
A104, Ay is the equalizer of the parallel morphisms (A4; X ¢, d x A), the cotensor product of comod-

ules (A;,d) and (A;,¢). With this isomorphism, the requirements given by (1.4) are equivalent
to the following ones:

O

9-|
3 3
|

= (Ao xm)-(C DAOAE) ) (1.16a)

(’ITI, X Ao) : (Alond) . (116b)

It can be concluded that these equations, (1.16), describe a morphism my, : A;04,41 — A,
in “42AM40 and equations (1.15) describe a morphism i : Ag — A; in AMA as well.

Finally, the requirements given by (1.6) and (1.5) are equivalent to the following commutative
diagrams:
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A104,1)-d
(1 Ao) AIDAOAI

AIDAOm
MO py, MO ay Ar ADa, Ay A
mDAOA] m (iDAOAl)-E 2 m
104, — 1 , MO Ny — 57— A ,
(1.17)

respectively. The morphisms ¢ : A; — A4, A; and d: Ay — A;04,Ay are corestrictions of ¢

and d, respectively.
For the functors between internal categories, the equations in (1.7a,b) can be rewritten equiv-

alently for the maps d and ¢, as
dy-Fy = (FLx Fy)-d,, (1.18a)
Cp F] = (FO X Fl) +Cq - (118b)

Equations (1.8) and (1.7c) are translated, respectively, into the following commutative dia-

grams:
A0 Ay —2" B0, By Ay—L2 > B,
ma my ia ih (1.19)
A A By AIT)BI

The requirements for a natural transformation, expressed by equation (1.9), are equivalent to

the following equations:
(Bo x @)« (Fo x Ao) - Ay, (1.20a)
(1.20b)

d_b~a =
(aXBo)'(A()XG())'AAO .

Ch @ =

The equality my(a - co; F1) = my(Gy; o - d,) translates into
(1.21)

mb((aDBoFl) - &) = myp((G10p, ) - CZ) )
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The composition between natural transformations can be defined through coequalizers as

Boa=m- (a0g,f) . (1.22)

The translation of the proposition (1.1.1) will not be done yet, since the generalization can go
further in the next section.

1.4 Internal Categories in a Monoidal Category

In this section several definitions are given which will make some resonance with the requirements
for an internal category in (Sets, x,*) and which constitute the generalization of an internal
category in a monoidal category. This generalization was introduced in [2].

In Section (1.3), it was observed how the monoidal structure of the category of sets can be used
to reformulate the notion of an internal category. In particular, the pullbacks can be replaced by
particular equalizers that define cotensor products. Furthermore, the pullbacks commute with the
cartesian product. Therefore, in order to formulate the definition of an internal category inside
a monoidal category (9M,®, I), it is convenient to require that (9, R, ) satisfies the following
properties :

i) 9 has equalizers (F,e) for all parallel morphisms f || g, i.e.

E—-—->A——=8B,

in particular, those of the form,

M® py
MUOcN MIN—/—=MIUKN .
PTI®ON

The equalizer (F,e) can also be denoted by Eq(f, g).

ii) These equalizers are invariant under the tensor product in 90, i.e., the following morphism,
that always exists, must be an isomorphism

X®Eq(f,9)®@Y ——EqX®fQY,XR®gRY) .

In particular, the following is an isomorphism

o

X®(MOCN)QY (X@M)Oc(N®Y) .
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With the two previous assumptions, “M¢ can be made into a monoidal category, (M, 0¢, C),
and the following coactions can be constructed “pyo.n := “ppTeN and p§n.y = MOcpf.

At this moment, it is important to introduce the following category. Since (M¢ ,O¢,C) is a
monoidal category, the category Moncyc of monoids in “M can be constructed. The objects
of this category are triples (A, m4,u4), where A is an object in M€, m, : AcA — A and
ug : C — A are morphisms in M called multiplication and unit, respectively. These are
required to fulfill the commutativity of the following diagrams

AQgADGA -252m4, ACcA A0 | an.A
ma0cA ma usldcA - ma
AlcA - A , AOgA ——— A

Morphisms f : (A, ma,us) — (B,mp,up) in Moncyc are morphisms f: A — B in “M¢
such that |

AOgA 1251, pogB C
/ X
ma mp
A 7 B , A 7 B ,

commute.

In the case of an internal category (Ao, A1, ¢, d,i,m) in Sets, the diagrams in (1.17) describe
a monoid (A, m, i) in A°M“4. Due to this observation, ((A,ma,u4), “pa, p%, C) will be the gen-
eralization of ((A;,m,1),¢,d, Ap), as an internal category inside a monoidal one.

In what follows every object (A,ma,us) in Moncye will be called an internal category in
(M, ®, 7). The object C will be called the object of objects and A the object of morphisms, to
simplify the notation we write (A4, C) with multiplication and coactions left out.

Note 1.4.1. In [7], the author define the concept of an internal “M-valued functor, x : (A,C) —
M as a left A-module M in aM. On the other hand, a natural transformation between internal
“M-valued functors, h : x — x’ is defined as a morphism h: M — M’ of left A-modules.

Consider, on the other hand, the "dual" internal category Z*, which is obtained from the inter-
nal graph (1.1) by interchanging the roles of c and d, which in turn, gives a twisted composition
in (1.3). If the construction of an internal monoidal category is based on this "dual" internal
category, the concept corresponding to the a internal valued functor is that of a right A-module
M and it is termed in this way as an internal presheaf.
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1.4.1 Examples of Internal Categories

o) In the monoidal category (Vect,®, k), the internal categories are C-rings or C-semialgebras.

The category of comonoids Comonvyec; is usually referred to as the category of coalgebras.
The construction for internal categories within this monoidal category follows in the same lines as
in the previous sections. For each coalgebra (C, Ac,z¢), one can construct the category of comod-
ules “MC, this last category can be given the structure of a monoidal category (“M¢ O¢, C), see
[29]. Then the internal categories are monoids in “M¢ which are called C-rings or C-semialgebras,
see [9].

o) In the monoidal category (Mod}, ®g, R), the internal categories are corings.

We explain the second example in a more explicit way. In Section 1.2.1 was pointed out
that the opposite category of a monoidal category inherits the same monoidal structure. Then
Comonygoqr = Monmoa, = Algp, the category of algebras over a commutative ring, see [1].
An object in Algpy is denoted by (A, m 4, 14).

In this case, the category of C-comodules over Mod%, “(Mod}})C is seen as the category of
A-modules over Modpg, denoted by 4(Modg)a or by 4M,4. The category (Modg)4 consists of
objects (N, “xn, x4 ), where N is an object in Modg and Ay : AQN — N, x4 : N® A — N
are morphisms in Modpg such that they fulfill the requirements for a comodule in Section 1.2.2,

but with the arrows of the diagrams inverted. A morphism [ : (N, %, x%) — (N, v, x4)
in 4 Modg)a, is a morphism [ : N — N’ in Modpg such that fulfills also the requirements in

Section 1.2.2, but with the arrows of the diagrams inverted.

The category Mod% has equalizers and these equalizers are preserved by the tensor product,
as can be seen in the following dual

Proposition 1.4.1.1. The category Modg has coequalizers and these coequalizers are preserved
by the tensor product.

Proof:

Let f,g : M — N be a pair of a parallel arrows, then the coequalizer of (f,g) is the following
module,

M g N 2 Q =N/ < f(z)—g(z);z € M >

In order to show that the the second requirement is fulfilled, the previous coequalizer can be
written, in an equivalent way, as the following right exact sequence:

M1 N Q 0.
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Since the functors B® _ and _ ® C are right-exact functors [29], it follows that B R Q ® C' is
the coequalizer of the parallel arrows (B® f ® C, B ® g ® C) as required. O

Let (A, ma,ua) be an algebra in Algg. Then the monoidal category (4(Modg)a, ®4, A) can
be constructed according to [2]. Therefore, a comonoid (C,A¢,e¢) in the category 4(Modg)a,

is an internal category in Mod% . The definition of an internal category in Mody coincides with
the definition of a coring, see [12].

1.4.2 Internal Functors and Natural Transformations

Next, functors between internal categories are defined. This definition should be compared with
(1.18) and (1.19).

Definition 1.4.2.1. A functor f : (A,C) — (B, D) between internal categories is a pair f =
(f1, fo), where

i) Jo: C — D is a morphism in Comongy,
i) f1: A — B is a morphism in 90 that is also a morphism of D-bicomodules, f1 : /A — B.
iti) the following diagrams commute:

NnUOp N
—

AQcA—2L > AIOpIA BOpB C D
ma mpg uA uB
A N B ’ A fi B

Definition 1.4.2.2. Let f,g: (A,C) — (B, D) be internal functors. An internal natural trans-
formation o : [ — g : (A,C) — (B, D) is a morphism « :9C/ — B of D-bicomodules
making the following diagram commute

g1ilpa

AOC —2— AOp9C 22, BO,B

A B

CUcA

C/Op/A

BUpB

‘f alp fi

The category constructed with internal categories in (9, ®, /) as objects and internal functors
as morphisms is denoted by IntCat(91).
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1.5 2-Categories

1.5.1 Definition of 2-Categories

The aim of this section is to describe two different ways in which internal categories in (9, &, I)
can be made into a 2-category. We begin by recalling the definition of a 2-category; see [2], [23]
and [26]. The datum that forms a 2-category is A = (Ag, A1, As, -, 0, %), where

i) Ay is the collection of 0-cells, depicted as

A, B,C,..

ii) A; is the collection of I-cells, depicted as

/ h
7N 7\
A B, B C,..

iii) A, is the collection of 2-cells, depicted as

f h
/\ A
A ia B, B l’y c,...
\g/ Y

") (Ao, Aj,-) is a category, with composition depicted as

and the unit of A in Ag for this composition is

14
N
A A

This category will be referred to as the underlying category of the 2-category A.
ii’) For all 0-cells A, B, (A;(A, B), A2(A, B),0) is a category, with composition depicted as
f /
A Ta O\
NP

9 g

A B = A | fBoa B,
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and the unit of f : A — B in A;(A, B), for this composition is

f

SN
A ll B
N

f

17

The composition o : Ay x Ay — A, will be referred to as the vertical composition. Along
this thesis, the category (A;(A, B), Az(A, B),0) will also be denoted by Hom4(A, B) or

A(A, B).

iii") (Ao, Az, ¥) is a category, with composition depicted as

7N TN _
A la B ly C = A1\«
N~ S~ T
g k kg
and the unit of A € Ay under this composition is,
1A
N
A l 1],1 A
~_

1a

(O

The composition * : Ay X Ay — Ay will be referred to as the horizontal composition.

The vertical and horizontal composition are required to satisfy two compatibility conditions:

1. Compatibility with the unital natural transformation,

f h h-J

hef

TN TN - N
Ally B |l C=AlLxy Cc=Ally; C.

f h hef

2. The interchange law,

hef
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2-categories admit more duals than ordinary categories. By reversing all 1-cells in A one ob-
tains the opposite 2-category A°. By reversing 2-cells one arrives at the 2-category denoted by
A®. Finally, combining these two operations, one obtains A% = A%<, the 2-category with the
same O-cells as in A but with 1-cells and 2-cells reversed.

Remark 1.5.1.1. Given a 2-category A with one object A. There exists a monoidal category,
(Homa(A, A),*,1y,), where Hom 4(A, A) is the category formed by the l-cells of the type [ :
A— A

1.5.2 Examples of 2-Categories

1- The prototype example of a 2-category is the category ,Cat whose O-cells are categories,
1-cells are functors and 2-cells are natural transformations. The vertical structure is given
by the composition of natural transformations and the horizontal one is given by the usual
Godement product. This Godement product is defined as follows,let «: F — G :C — D
and 3 : H — K : C — D be natural transformations or 2-cells in ;Cat, then the
Godement product of these two natural transformations, usually denoted by [ * « instead
of B*a, is defined as

(B*a)c =Bec - Hac = Kac - Brc - (1.23)

This last equality is called Godement product equality.

Note 1.5.1. Let o : FF — G : C — D be a natural transformation in ;Cat, then for any
morphism f: A — A’ in the category C, the following diagram commutes

Ff

FA FA
a4 O 4
GA——4;—>GA'

i.e. aq - Ff = Gf-aus This equality will be referred to as the naturality of o applied
over f or just simply the naturality of a over f. This statement proves to be useful when
argumenting.
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2-

The 2-category of 2-categories, denoted by 2-Cat. The 0O-cells in 2-Cat are 2-categories
A, B, etc. The 1-cells are 2-functors, i.e. operations F' : A — B which send n-cells to
n-cells and are compatible with the compositions and units in A and B. The 2-cells are
2-natural transformations. Given 2-functors F,G : A — B a 2-natural transformation
o FF— G sends 0O-cells in A to 1-cells in B and satisfies the following property. For any
2-cell y: f —> g in A,

Ff Gf
aB aA /—\
FA | Fy FB GB = FA GA | Gy GB
\/
Fg Gy
i.e.
ag-Ff Gf-an
FA | las%Fy  GB = FA | Gy¥l,, GB ; (1.24)
ag-Fg Gg-ag

see [26]. Note that condition (1.24) includes the standard requirement ag - Ff = Gf - aa
on the underlying category (Ao, A1, ").

At this point it is convenient to make the following observation. In the usual category theory
if a natural transformation is invertible, then its inverse is necessarily a natural transforma-
tion. The same is true for 2-natural transformations, and this is proved by similar methods
as in the standard category theory.

There exists a very closed related concept to a 2-category, that of a bicategory, see [5] and
[23]. A bicategory is the same as a 2-category, but is such that for each triple

f g h
A B C D,
There exists isomorphic 2-cells
h-(g-f)

A | Grgsr B,

(h-g)-f

which are natural in [, g, h. These 2-cells are called associativity coherence isomorphisms.
There exists also another two isomorphic 2-cells, for any 1-cell f: A — B,
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lg-f [1a

7N

Al A B, AL pr B,
\f/ \f/

these 2-cells are also required to be natural in f. These 2-cells are called unit coherence
1somorphisms. These three 2-cells are required to satisfy similar commutative diagrams like
in (1.10).

The next bicategory is of particular interest in this thesis. Its construction relies on Section
1.2.2. The construction of this bicategory needs a monoidal category (9, ®, [) with equal-
izers that are preserved by ®. Then the O-cells of this bicategory are the comonoids in 90,
namely (C, Ac,ec) as in Section 1.2.2. When writing the 2 diagrams for this bicategory the
comultiplication Ac and the counit ec are left understood in order to avoid complicated
diagrams. The 1-cells for this bicategory

M
/_\.
C D

are bicomodules (M, “pyy, p%;) in “MP. The 2-cells of this bicategory

are morphisms of bicomodules f: M — N in “MP”. The composition for the underlying
category is defined by the cotensor product of comodules, i.e.

M N MOx N
TN TN TN
c c’ o= C ¢

and the unit of (C, A¢,e¢) for this composition is (C, Ac,A¢). For the vertical structure,
the composition is defined through the following 2-diagram

M M
m
C M—=D = Clgf D ,

N9 N
M” n
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and the unit of (M, %pys, p§y) for this composition is just 1p : M — M. For the horizontal
structure, the composition is defined through the following 2-diagram

M M MOo N
N 7 N
cl/f ¢ lg ¢ =cCl [Ocg B,
N N~ N~
N N’ MO N’

and the unit of (C, A¢,e¢) for this composition is 1¢ : C — C.

1.5.3 IntCat(1) as a 2-category

The aim of this section is to equip IntCat(9%) with the structure of a 2-category, whose 0-cells
are internal categories in 91, 1-cells are internal functors and 2-cells are internal natural transfor-

mations.

In order to give a horizontal and vertical structure to IntCat, let us start by giving the
following definition for a vertical composition for 2-cells. In the case of the following 2-cell diagram,

S

ST a O\

(A,C) r—s (B, D)

N

9

The vertical composition o

f
N
(A,C) | Bxa (B,D) ,
~__

)

is defined as

Ac A0pa BDDB mpg B . (125)

Bra=C COC —=——CrOp"C

The unit of f : (A,C) — (B, D), for this vertical product, is ugfo. The notation for the
vertical composition of 2-cells is not the usual one, o, because there is already a very well known
and used notation for this composition, called convolution product, and it is *.

Before we give the definition of the horizontal product, note that in the following 2-cell diagram
in IntCat (1),
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(A, C")—L~(AC) | « (B.D)—:~(B.,D) (1.26)

both ko and ahg are natural transformations.

With this observation at hand, consider the following 2-cell diagram in IntCat(90):

f h
TN T N
(A,C) Lo (E,F) 1B (BD) . (1.27)
\é/ \_k_/

The horizontal product or the Godement product ¥« of the natural transformations « and 3

hef

N
(A.C) | f*a (B,D)
\_/

k-g

is defined as,

B¥a = Bgo * hyja = kja* B[y . (1.28)

This last equality will be called the Godement product equality. The Godement product is
well-defined because of the proof of the following

Proposition 1.5.3.1. Consider the diagram in (1.27), the Godement product of internal natural
transformations o, 3 is well defined.

Proof

That the Godement product is a natural transformation is clear from the note on (1.26), the
only thing to prove is the unambiguity of the definition through the equality.

If the factorization Lemma A.2 is applied to the convolution products gy * hya = mp -
(BgoOphit) - thy - Ac and ki x 8 fo = mp - (kyaOpfBfo) - tky - Ac, then we get the upper and the
lower branch of the following diagram, respectively.
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COC —22 > CTp9C 2252 pOpE — - prOph g 222% BO, B

ACT 0 e ~ K
«

C E (ii3) B

Acl (i1) p %

CYDCCTCfDFme)FDpETFkDDkE BDDB )

k103

This diagram commutes because

1. The diagram (7) is the induced commutative diagram, according to Lemma A.6, by the left
colinearity of o, i.e. fpg-a=(F®a) (go®C)- Ac.

2. The diagram (77) is the induced commutative diagram by the right colinearity of .

3. The diagram (7i7) commutes because ( is a natural transformation.

Therefore

Bgo * hya = kia * B fo,
as required. 0

The unit for the horizontal product of the internal category (A, C) is ua.

Next we state, without proof, the following

Lemma 1.5.3.2. Consider the following 2-diagram in IntCat(90)

f

ST o O\

(A, C") ——~(A4,C) —r—> (B, D) —~ (B", D)

N

g

Then (B a)hg = Bho* ahy and ki(B*a) = k18 * ki .

With Lemma 1.5.3.2 at hand, take internal natural transformations o : f — g: (4',C") —
(A,C),B:h—k:(AC)— (B,D)and y:r — s: (B,D) — (B', D'), and compute

v¥(B*a) = ~*(Bgo* hiar)

v(ko - go) * 11(Bgo * hi)
Ykogo * 11090 * T1hicx

= (vko*710)go * T1h1«x
(v*8)go * b1 cx

= (y¥0)*a .
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Along with the aforementioned lemma, the definition of the Godement product and the associa-
tivity of the vertical product * were used. This proves the associativity of the horizontal product
X,

Proposition 1.5.3.3. The vertical and horizontal compositions, * and ¥, respectively, defined
above satisfy the interchange law.

Proof:

Consider the following 2-diagram in IntCat(90)

m\m

r—s (E, F) s—(B,D) ,

\/W

Then

*1

(0*x7)*¥(Bra) = (§x7)g0*hi(B*a)
= (690 *790) * (M * i)
= dgo* (790 * hiB) * hicx
8go * (5103 * yro) x hia
(8gg * 51/3) * (yro * hy)

= (6%0) * (vxa) .

Lemma 1.5.3.2 has been applied several times along with the definition of the Godement prod-
uct and the associativity of the vertical product. In the fourth equality, the Godement product
equality was used for the definition of vy*g. O

Finally, the proof of the compatibility of unital natural transformations with compositions is
easy and left to the reader. The results of this section are summarized in the following

Proposition 1.5.3.4. IntCat(9M) is a 2-category with 0-cells internal categories, 1-cells internal
functors and 2-cells internal natural transformations and vertical and horizontal compositions, *
and *, defined by (1.25) and (1.28), respectively.
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1.5.4 IntCoCat(90) as a 2-category

Finally, there exist another definition of functor between internal categories, which is termed
cofunctor, see [2]. The notion of a cofunctor gives rise to a completely different 2-category
IntCoCat(9M), having the internal categories in 9% as its O-cells. This section is devoted to
the description of IntCoCat(91). Since the 0O-cells are the same as in IntCat(91), we start with
the definition of 1-cells

Definition 1.5.4.1. Let (A, C) and (B, D) be internal categories in 9. A cofunctor f : (A,C) —
(B’ D) s a pair f = (fl)fO):

f=(f1,fo)
~—
(A,C) (B,D) ,

where
o) fo: D — C is a morphism in Comongy ,

o) fi: A0c/D — /B is a morphism in MPsuch that the following diagrams

O o O =
A AD'D =25 A0/ AOe/DOp B 222 BO,B cOo/D D
ma0c/D mg uaOc/D up
AQC/D B .  AQD B

N N

commute.

The definition of a natural cotransformation, for the 2-cell structure of IntCoCat(91), is given
on the next:

Definition 1.5.4.2. Let f,g: (A,C) — (B, D) be cofunctors. Then a natural cotransformation
a,

N
(A,C) | « (B,D), (1.29)

\g/

is a morphism « : D — 9B in SMP such that the following diagram
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o~ g|DDB

ADCQB ADCgDDDB — BDDB

AOe'D

mg
\\ %

B

B = DUOpB Y BUpB
commutes.
The composition of 1-cells over the following 1-cell diagram
f h h-f
TN T TN TN
(A,C) (AI,C/) (AII‘(:V//) — (A,C) (A//’C//> ,
is defined by
(h-flo = fo-ho,
(h- i = hi-(H0"C") .
The vertical product over a 2-cell diagram
f f
/l_a\ TN
(A,C)—f—(B,D) = (A,C) | Boa (B,D),
\l[i/ ~_
f” f//

is defined by

Boa=mp - (60pB) - a:D— B .

The unit cotransformation of f : (A,C) — (B, D), for this composition, is the unit of (B, D),
ug : D — B. On the other hand, the horizontal structure over a 2-cell diagram

f h h-f
SN TN N
(A,C) | a (A C) L v (A C") = (AC) | v*a (A".C")

k-g

is defined by
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’7;(1 =Tman (’YDC”A”) . C"pA“ . hl . (O{DC'}C”) . Clﬁcu . C” -—_— A” .

The unit of (A, C), for this composition, is the unit of (4,C), us : C — A.

Remark 1.5.4.3. Consider the case when the monoidal category (9M,®, 1) in IntCoCat(9) is
(Mody’, ®g, R), see Section 1.4.1. A cofunctor, in this set up, (fi1, fo) : (C,A) — (D, B) from
the A-coring C' to the B-coring D is equivalent to a commutative diagram of functors like

F

DM CM

Fo
sM

aM

MOdR

where the functor Fj is the restriction of scalars corresponding to the R-algebra morphism fj :
A — B and the unmarked arrows are forgetful functors. Therefore, a cofunctor can be identified
with a left extension of corings, [8].
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Chapter 2

Classical and Formal Theories of Monads

In this chapter the concept of a monad will be of main importance, therefore we recall it from
[26]. Let C be a category. A monad on C is a triple (F,u,n"), where F : C — C is a functor
and 4 : FF — F, nf : 1o — F are natural transformations such that the following diagrams
commute:

uF nfF

FFF FF F FF
Fu H F‘nF - “ (21)
I e FF————F

The first diagram is referred to as the associativity of the monad, and the second one as the
unitality of the monad. Dually, a comonad on C is a triple (G,4,e¢), where G : C — C is a
functor and 4 : G — GG, € : G —> 1, are natural transformations satisfying conditions dual
to those in (2.1).

In this chapter, we describe the classical and formal theories of monads and comonads, follow-
ing [18], [20], [21], [24] and [30].

Note 2.1. If o« : H — K : C — D is a natural transformation in Cat, then the notation a¢ or
aC', over an object in C, will be used indistinctively.

2.1 Monads and the Associated Category of Adjunctions

This section deals with the category of F-Adj of adjunctions associated to a monad (F,u,n") or
F-adjunctions.

Let

29



30 2.1. Monads and the Associated Category of Adjunctions

be an adjunction with domain C and codomain D, with unit n: 1o — RL and counit ¢ : LR —
1p. When the codomain D of such an adjunction is irrelevant or understood , the statement an
adjunction over C or an adjunction with domain C, will be used instead. Also, the triangular
identity eL o Ln = 1, will be referred to as the triangular identity associated to left adjoint L
and the identity Re onR = 1i as the triangular identity associated to the right adjoint R. Yet
another convention for an adjuntion like in (2.2) can be stated, whenever suitable the notation
for the unit n®* and the counit e*® will be used, in order to differentiate among units and counits
from different adjunctions.

An adjunction like (2.2) induces a monad

(RL,ReL,n) (2.3)

on C. If (F,u,nF) is a fixed monad in C, then one can consider the collection F-Adj(C) of
adjunctions L 4 R with domain C such that (RL,ReL,n) = (F,u,n"). Any such adjunction
will be denoted by (D, L - R,¢) or simply (D,L 4 R). F-Adj(C) is a category with objects
(D,L 4 R) and morphisms J : (D,L < R) — (D',L’ 4 R') given by functors J : D — D’

making the following diagram
D
R
/
C g
DI

AN

P

serially commutative (i.e. both the L and R-diagrams commute). As explained in [25], the above
requirement together with n = n* = n’ imply that

Je=¢J (2.4)

which is one of the requirements imposed on J in [21].
Within the category F-Adj(C), there are two very important objects which we describe com-
pletely. The first one is the so-called Kleisli category for the monad (F,;.n"), denoted by Cr.

The objects of the Kleisli category Cy are the same as those of the original category, i.e.

Obj(C) = Obj(Cr) . (2.5)

A morphism f%: A — A’ in Cp is given by a morphism in C

fiA—FA (2.6)
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The composition for a pair f*: A — A’ and ¢' : A’ — A" of morphisms in Cr, is defined as

g "= (par-Fg- N, (2.7)
1.6,
A—L s pp s ppan LA pan

The identity morphism for A in Cp is

(n)h:A— A, (2.8)

i.e. the morphism given by the unit n% : A — FA. That (n%5)! is a unit for the composition in
Cr follows by the unitality of the monad and the naturality of n*.

The second category is the so-called category of Filenberg-Moore category of algebras for the
monad (F, u,n7), denoted by C¥. The objects of this category are pairs (M, Fyys), where M is an
object in C and xp : FM — M is a morphism in C, called the action of the algebra or structure
map of the algebra, such that the following diagrams

. m M
FFM FM M FM
FPxm Fxm - Fxm (2.9)
FM —— M M

commute.

A morphism f : (M, Fxu) — (M’, Fxp) in this category is given by a morphism f: M — M’
in C, such that the following diagram

Ff

FM FM' (2.10)
xm Pxme
M M’
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commutes. Both of these categories belong to F-Adj(C), a fact that can be stated as a pair of
propositions:

Proposition 2.1.1. The Kleisli category Cp- is an object in F-Adj(C).
Proof (Sketch):

The adjunction over C

U

CT)CF )
F

(2.11)

is defined as follows. The functor D is defined on objects as the identity, and for a morphism
h:C— C'"inC, as

Di(h) = (n"C"- h)" . (2.12)

The functor U is defined on objects A in Cp, as Uz(A) = F A, and on morphisms f': A — A’

as
Ue(f)=pA' - Ff: FA — FA . (2.13)
It is straightforward to check that the unit of the adjunction n* can be defined as n* = n*.
The counit, €% : DxUr — 1¢,, is defined on objects
eMAFA=D;U(A) — A,
as €A = (1.4)". It is easy to check that (Dy 4 Ur,e¥) is an F-adjunction over C. O

Proposition 2.1.2. The Eilenberg-Moore Category C* is an object in F-Adj(C).
Proof (Sketch):

The adjunction over C

UF
C=—=cr

DF

b

is defined as follows. The functor DF, known as the free algebra functor, is defined on an object
C, as the pair (FC,uC), and is defined on a morphism h: C — (', as




|
|
|
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DF(h)=Fh .

The naturality of 4 implies that Fh is a morphism in C¥. The functor UF, known as the for-
getful functor, is defined on an object (M, “x ) in C*" as M, and for a morphism f : (M, xp) —
(M', Fxar) as

ur(f)=1r.

It is straightforward to check that the unit »® for this adjunction can be defined as n* = n*.

The counit €? : DFUF — 1¢r is defined on objects

EE(M, "xng) : (FM,uM) = DFUF (M, "xp) — (M, Pxag) (2.14)

as 8(M, Fxa) = Fxum. This is well-defined since the first requirement for the action Fyus, (2.9)
can be identified as a requirement for £y, to be a morphism in C¥. The proof that (DF 4 UF,eF)
is an object in F-Adj(C) is left to the reader. O

The main property of these two categories is that they are universal objects in the category
F-Adj(C).

Proposition 2.1.3. The Kleisli category Cr for a monad (F, u,n%) is an initial object in F-Adj(C).
Proof:

Let (D, L 4 R) be an object in F-Adj(C). Then the a postertori unique functor K,

Cr
Ur
Kr
Dr
)
L
is defined on objects A in Cp, as
Kr(A) =LA, (2.15)

and on morphisms ff: A — A’ as

Ke(fY=eLA - Lf:LA— LA .
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The commutativity of the left adjoint functors is checked in the following way. Let C' be an
object in C. Then KxDr(C) = K(C) = L(C). Let h : C — C’ be a morphism in C. Then

KeDp(h) = Kx(n"C' - W)t =eLC’ - L(n"C' - h) = eLC' - Ly C' - Lh = Lh ,

where the last equality comes from the triangular identity associated to the left adjoint L. Thus,
KzDp = L, as required.

On the other hand, the commutativity of the right adjoints is proved in the following way.

Let A be an object in Ci». Then RK (A) = RL(A) = F(A) = Ug(A). Let f*: A — A’ be a
morphism in Cr. Then

RKo(f") = R(eLA’ - Lf) = ReLA'- RLf = pA' - Ff = U(f1) .

Therefore, RK = U, as required.
To prove that K is unique, suppose that there is another morphism in F-Adj(C), say J :
Cr — D . Let A be in Cr. Since the functor Dy is the identity on objects, then JA = JD.A.

Furthermore, J is a morphism in F-Adj(C) hence JDyp = L, therefore JA = LA. On the other
hand, let f*: A — A’ be a morphism in Cr. The requirement JD, = L gives

JDA(f) = J((°FA"- f)t) = Lf .

Next, the property (2.4) evaluated at A’, reads J(1ra/)! = eLA’. Therefore

S = (A A FA ) = (A Fllow) " FA 1))

= J((Apa) - (T FA - )
J((1rar) ) ( TFRA" )Y
= eLA'-Lf,

where in the second equality, the definition of the composition in Cr, (2.7), was used. The previ-
ous calculation determines the definition of J on morphisms, so J = K )

Proposition 2.1.4. The Eilenberg-Moore category C¥ for a monad (F,p,n%) is a final object in
F-Adj(C).

Proof
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Let (D, L - R) be an object in F-Adj(C). The a posteriori unique functor K¥, called com-
parison functor,

—
L
UF
KF
DF
CF
is defined on objects /) in D, as
K*(D)=(RD,ReD) . (2.16)

On morphisms r: D — D', K is defined as

K®(r)=Rr:(RD,ReD) — (RD', ReD’) . (2.17)

The commutativity of the left adjoint functors is checked in the following way. Let C be an
object in C. Then KFL(C) = (RLC,ReLC) = (FC,uC) = Dg(C). Let h : C — C’" be a

morphism in C, then

K*L(h) = RLf = Ff = D*(J) ,

where the definition of the induced monad by an adjunction, (2.3), is used. Thus, K*L = D*, as
required.

On the other hand, the commutativity of the right adjoints is proved in the following way. Let
D be an object in D. Then UFK*(D) = UF(RD,ReD) = R(D). Let r : D — D’ in D be a
morphism in D. Then

UK®(r)=U"(Rr) = Rr .
Therefore, U" K = R, as required.

To prove that K7 is unique, suppose that there exists another morphism J : D — CF in
F-Adj(A). Let D be an object in D. Then J(D) = (M, xp), since UTJ = R the object M is
determined as M = RD. Before determining the action, let » : D — D’ be a morphism in D.
Due to the fact that J is a morphism in F-Adj(C), UFJ = R, hence U"Jr = Rr. Using this
behaviour of U*J on morphisms,

ReD = U"JeD = U e®JD = U e®(RD, "xur) = U" (Fxmr) = "xur-
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Thus, the action s is determined by the value ReD. Furthermore, due to this determination,

we can now conclude that Jr = Rr = K*r. This determines the definition of J on morphisms,
so J = KF. O

2.2 Comonads and the Associated Category of Adjunctions

Dual to the previous section, consider a comonad (G,d,&°) on the category D. Let usi define a
category that has, by objects, adjunctions with codomain D

C

D

such that the comonad induced on D is precisely the one given at first, v.e. (LR,LnR,e) =
(G, 8,e%). The notation for such an adjunction is (C,L - R,n), or (C,L - D) for short, leaving
the unit understood. The morphisms of this category J : (C, L 4 D) — (C', L' 4 1) are functors
J : C —> (' such that the diagram

commutes serially. Within this category there are also two universal objects, which, contirary
to the previous subsection, are going to be only slightly explained. The Kleisli category forr the
comonad (G, 6,e¢) over D and denoted by DY The objects of this category are the same ass the
original one

0bj(D) = Obj(D°) .

The morphisms in D¢ are A : A — A’ if and only if

h:GA— A,

is a morphism in D, and the composition for the pair A* : A — A’ and k% : A’ — A” is debfined
as

Kb RY = (k- Gh-64)": A — A" .
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The urit of A for this composition is

(eS)F:A— A,

since €§ : GA — A.

The second category is the category known as the Eilenberg-Moore category of coalgebras or
comodules for the comonad (G, d,e°) and denoted by Dg. The objects of this category are G-
comodules or comodules for short, (M, %)) in D such that the following diagrams

€G
GGM 2 aMm M~—2 oM
GSm Som - Com
GM~——M . M
M

commute.

A morphism in this category 7 : (M,%ys) — (M’,%pp) is such that r : M — M’ is a
morphism in D and the following diagram

GM GM’
Cop Gpppr
M ———— M

commutes.

These two categories belong also to the category G-Adj(D), and not only that but the fol-
lowing two propositions can be stated

Proposition 2.2.1. The Kleisli category D€, for the comonad (G,6,e°) over D, is an initial
object in the category G-Adj(D).

Proof: cf. 2.1.3. 0O

Proposition 2.2.2. The Filenberg-Moore category Dg, for the comonad (G,6,e°) over D, is a
final object in the category G-Adj(D).

Proof: cf. 2.1.4. a
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2.3 Formal Theory of Monads

In this section, the notation a: f — g: A — B for a 2-cell in the 2-category A, is widely used.

The formal theory of monads was developed in |20 and [30]. The following presentation makes

also use of [18] and [24].

For the formal theory of monads, let A be a 2-category, and define the 2-category of monads,

Mnd(A), as follows:

i) O-cells of Mnd(A) are (A, f,u,n’), where (f,u,n’) is a monad on A. A monad in the 2-
category A is understood as a 1-cell / : A — A, and 2-cells p : ff — [/ : A — A and

nf 14— f: A— A, depicted as

ff La
7N 7N
Alw A, Aln A,
N N
J J
such that the following diagrams
ff L g f s it

Su u I’ :\ H

[ff—f Jf——

commute. Sometimes, the shorthand notation (A, f), for such a 0-cell, is used instead.
it) 1-cells of Mnd(.A) are

(p>90) : (Aafa#f»"?f)——’(A'7h,Hh,Tlh) )

where p: A — A’ is a l-cell in A, and ¢ is a 2-cell in A,

(2.18)

(2.19)
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such that the following diagrams commute:

h
hhp —22— hpf — 1 pff

p
h f
[thp 4 pﬂf / y (2.20)
: hp m of .

i1) 2-cells of Mnd(A) are,

®:(pp) — (q.9): (A, f) — (A h),

where ® is a 2-cell in A,

p
7N
Al o A
\/
q
such that
hp —22 5 hq (2.21)
" Y
pf —7—af
commutes,

The composition of the underlying category (Mndy, Mnd,, -), see Section 1.5.1, is defined as
follows:

(p, ) (9,%) (g'p, qp © ¥p)
N T N N
(A, f) (A", f) (A", ") = (A f) (A", f") .

In order to check that (g - p, qp o ¥p) is well-defined, the pasting operation of 2-cells have to
be explained. This operation is explained over one of the most simple possible cases,
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A ! B (2.22)
N la Al N\
C - D

The pasting operation for this 2-cell composition is

h-f

A hsg B

W

k-g

In this way, more complex pasting operations can be carried out. For a more detailed expla-
nation the reader is referred to [18]. Resuming to the well-definition of (¢ - p, ¢y o ¢'p), consider

qp

A—Lt—sp— s p A A’
\
! f \fﬁ = f .|
w/ u;/ qpo %
A A A" A—p A" .

Because of this, the 1-cell (¢-p, gpovp) is well-defined. The requirement (2.21) for the composition
of 1-cells is not going to be done in order to avoid doubling the length of this chapter. The unit
of the O-cell (A, f) for the composition of this underlying category, is (14,1;): (A, f) — (A, f).

For the pair of 0-cells (A, f) and (A’, h), the vertical structure in Mnd(.A), i.e. the composition
for the category (Mnd,;((4, f), (4", k)), Mnd,((4, f), (A’, h)),0), is defined as follows. Consider

the following 2-diagram

(p,¥) (p, )
| & TN
(A, f) —@o—>(Ah) = (A f) | Tod (A R)
NS S~
(q, 't/)) (071/))

where Wo® = ¥ o &, which is well defined because of the following equality between commutative
diagrams
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R(Tod)

hp he s pp—02 hq hp hq
@ P v o= ¢ Y
pf Y rf 7 af pf T@ed) af

This composition just defined inherits the associativity from the 2-category .A. The unit of
the 1-cell (p, ¢) for this vertical product is defined as 1(, ) = 1,.

The horizontal structure in Mnd(.A), for the category (Mndg, Mnd,, ¥) is defined as follows.
Consider the following 2-diagram,

(p, ) (', ¢) (P p,P'po¥'p)
SN TN N

Af) L@ (Ah) LT (Ak) = (Af) | T« (A" k),
~_ 7 ~__“ ~_
(9.9) (q', %) (¢-q.q'¢ 0 ¥'q)

where T#® = I'*®. Due to the lengthy calculation of the respective commutative diagram, the
proof of the well-definition of this composition is not done here. The unit 2-cell of (A, f) for this
composition is Iy, 1,) = I;,. All this provides Mnd(A) with a structure of a 2-category.

Consider the inclusion 2-functor,

Incg: A— Mnd(A) ,

defined as follows. For a O-cell B, Incs(B) = (B,1p,11;,11,). For a lcell b: B — B', is
defined as Inca(b) = (b, 1p),

(balb)
TN
(B,1p) (B, 1p)

For a 2-cell, 3:b— b : B — B', Inc4(8) = B, where

(b’lb)
TN
(BalB) l B (BI»]-B’)
\\\\\___////’
(U,ly)
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Definition 2.3.1. The 2-category A is said to admit the construction of algebras if the inclusion
functor Incy : A — Mnd(A) has a right adjoint, in which case it is denoted by

Algs : Mnd(A) —> A

For the sake of referencing, this 2-adjunction is fully displayed as

Alga

A Mnd(A) . (2.23)

Incy

Suppose that the 2-category A admits the construction of algebras. Then according to [19]
and [28], for every pair of O-cells, B and (A4, f), in A and Mnd(A), respectively, there is an
isomorphism between the following categories,

Hom (B, Alg4(A, f)) = Hommnaa)(Inca(B), (4, f)) ,

which follows by the Yoneda lemma for 2-categories. If the following notations are taken into
account, I = (f,;,1), AZ = Alga(A,[), Mg"_ = Hommuacay(Inca(_). (A, [)), then the
previous isomorphism can be read, over the 0-cell 3, as

Hom (B, A") = Alg"(B) .

The 0-cell AZ is termed as an Eilenberg-Moore object in A, because it represents the 2-functor
Alg"(_), cf. [24]. Therefore, Definition 2.3.1 can be rephrased as follows: the 2-category A
admits the construction of algebras if and only if it has Eilenberg-Moore objects for any monad
F=(f,u,n’)over A, in A.

In order to find the Kleisli objects in A, let us make the following observation. According to
[15, 1.6], the following are equivalent

) {4r
ii) o — [op
iii) reo A (e
iv) [eoop o peoon

" If Definition 2.3.1 is considered, then the 2-category A is said to have the construction of
algebras, if the following adjunction takes place
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Alg 4op

A°r Mnd(A*)

I'ﬂ,CAr)p

which can be read, due to the very previous observation applied to the 2-category 2-Cat, as

op
Incop

Mnd®(A°) A, (2.24)

Alg_oApop
Therefore, the following isomorphism of categories exists. For all, B in A and (A, f) in
Mnd”(.AP)

Homiynaer(aor) (A, f), IncGop(B)) = Homa(AlgZen (A, f), B) .

In the same way as before, in terms of the notation, F' = (f, u,n’'), Ax = Alg%m(A, f) and
Algr _ = Hommnaor(aory (A, f), Incto _), the isomorphism of categories, for the 0-cell B, reads

Algr(B) = Hom 4(Ak, B) . (2.25)

The 0-cell Ak is called a Kleisli object in A, because it represents the functor Algp(_), cf.
[24]. And saying that 4% admits the construction of algebras is equivalent for A4 having Kleisli
objects for any monad F = (f,u,n’) over A in A.

Yet again, if Definition 2.3.1 is considered, then the 2-category A is said to have the con-
struction of algebras if the following adjunction takes place

AlgAco
Ace Mnd(A%) ,
]TLCAca
which also reads as
Incf‘f’ca
Mnd“(A%®) A .
AlgSCzo

This renders the following isomorphism of categories. For all B in A and (A, g) a comonad over
A,

Hompnaco(acoy ((A, 9), IncGeo(B)) = Hom 4(Alg5(A, g), B) .

Yet again, if the following definitions are made, G = (g, 6,¢?), Acox = Alg%ea(A, g) and Coalge_ =
Hominngeo(acoy((A, g), IncGes ), then the isomorphism of categories, over the 0-cell B, reads this
time as
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Coalge(B) = Hom a(Awk, B) - (2.26)

The 0-cell A,k is known as a coKleisli object in A, because it represents the functor Coalgs( ),
cf. |24]. And saying that A admits the construction of algebras is equivalent to .4 having coK-
leisli objects for any comonad G = (g,4,¢?) over A in A.

In what follows, the 2-category Mnd”(A) is of particular importance, in order to get the
Kleisli objects in the 2-category IntCat (1), hence we describe it explicitly (with some minor
changes in the notation used for Mnd(A)).

i) The 0-cells of this 2-category are (A, f,u’,n’), i.e. monads in A,

it) The 1-cells of this 2-category are

(T‘, P) ‘ (A f) - (A/’ h) )

such that r: A — A’ is a 1-cell in A, and p is a 2-cell in A,

A . A

f h
4

A Al

such that the following diagrams commute:

rff —2L o hrf — " ppy r
mf “hr mf nhr
rf hr : rf 7 hr

iti) The 2-cells of this 2-category are

Yi(r,p)—(s,0): (A. f)——=(A",h)




Chapter 2. Classical and Formal Theories of Monads 45

where ¥ is a 2-cell in A

such that

hr ——=—hs

hZ

commutes. With this description of Mnd”(A°) at hand the algebraic Kleisli 2-functor can be
fully characterized. This Algebraic Kleisli 2-functor for a monad F = (f, u,n’) over A is

Algp(_) = HomMndap(Aop)((A, f), Incilp,,p(_)) N A — 2Cat y

which acts on O-cells B in A as

Algs(B) = Br ,

where B, = Mon”(A™)((A, f),(B,15)) is a category. The objects in this category are pairs
(r, p), where p is the following 2-cell

rf
77N
Alpr B ,
\F/
such that the following diagrams
T rnf
rff ————rf r ———7f
of p o 1) (2.27)
e r

p

commute. A morphism in By, X : (r,p) — (s,0), is a 2-cell
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ALlY B , (2.28)

such that the following diagram

rf—2 oy (2.29)

commutes.

The algebraic Kleisli 2-functor acts on 1-cells b: B — 3" in A, as

Alge(b) = b : Be — By,

where b, is a functor. This, in turn, acts on objects (r.p) as
be(r, p) = (br,bp)

and over morphisms, % : (r,p) — (s,0), as

be(Z) = 08 : (br,bp) — (bs,bo) .

The algebraic Kleisli 2-functor acts on 2-cells

B 1B B ,
N
b/

as Algr(08) = Br, where Bp : bp — V. : B — 3}, is a natural transformation such that
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Be(r, p) = Br : (br, bp) —— (b'r, b'p) .

This finishes the complete description of the algebraic Kleisli 2-functor Alge(_):.A — JCat.

2.3.1 The 2-Category KL(A)

The 2-category KL(.A) is the Kleisli completion of the 2-category A, its construction is fully
explained in [20]. The 2-category KL(A4) has by O-cells those given by the O-cells of Mnd(A),
that is to say, (A, f,u,n’). The 1-cells of KL(A), from (A, f,u/,n’) to (A’, h, u*,n*), are given
by

(p, )
7N
(A, f) (A", h)

such that p: A — A’ is a l-cell in A, and ¢ : pf — hp: A — A" a 2-cell in A. Note the
inversion in the 2-cell definition for this 2-category with that of Mnd(A), given by (2.19). This
2-cell is required to fulfill the commutativity of similar diagrams like those given in (2.20). The
2-cells of the 2-category KL(.A) differ substantially from those of Mnd(.A), and are described as
follows.

A:(pp) — (q,9): (A, [) — (A, h)

is a 2-cell in A,

such that the following diagram

pf —4— hp—"L > hhg

Af

hqf whq
hi

hhq _ hq

Haq

commutes.

The underlying categorical structure of this 2-category, (KLq(A), KL;(A),-), is defined by the
following composition
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(p; ) (9, %) (q-p,¥p 0 ¢)
7 N T . S
(A, f) (A", f) (A", f") =(A, f) (A", ") .

The unit of (A, f) with respect to this composition is (14,1;). The vertical structure of this
2-category is defined by the following 2-diagram

(p,®)

(p, o)
/l—K\ RN
(A f) (o) —= (A", h) = (A f) | NoX (A'h)
v S P
@) (9.4)

where A’ o A = p*go hA’ o A. The unit of (p, ) for this composition is 7°p : (p,p) — (p, ¢),
since n"p : p — hp.

On the other hand, the horizontal structure is given by the following 2-diagram

(p, ) (p (' p,¥'popy)
T N /_\
(A f) L X (Ah) L T (Ak) = (Af) | Tsh (A" k)

~_ 7 ~—_ 7 \_/
(¢, %) (¢, ¢") (¢-q,¢%'q0 q'v)

where T*A = p*q/q o kT'q o /q o p/A and the unit of (A, f) for this composition is 77 : (14,17) —
(14,1y), since n/ : 14 — f. This completes the definition of KL(.A).

2.3.2 Wreaths

The theory of wreaths is developed in [20]. These are considered as eztended distributive laws and
are used in this thesis to get an explicit Kleisli object from any monad on KL(.A). To begin with
let us state the following simple

Definition 2.3.2.1. A wreath is a monad in KL(A).

The complete description of a wreath in KL(.A) is the following one. A monad on the object
(A, fyu,m’), or a wreath, ((4, f),(h,)),7,5) consists, according to the previous section, of an
endo 1-cell (h,A) : (A, f) — (A, /) and two 2-cells 7 : (h,A\)-(h, A) = (h-h, Ahoh)) — (h, \) and
7 : 1a, 5y — (h, A), corresponding to the multiplication and the unit of the wreath, respectively.
The previous data has to satisfy the requirements of a monad in KL(.A). More exhaustively, (h, A)
consists of cells h: A — A and A : hf — fhin A. The last 2-cell satisfies the commutativity
of the following diagrams
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Af IA

hff fhf frh h
hf - fhoo hf 5 fho

The 2-cells in KL(A), 7 and &, are 2-cells in A, v : hh — fh and ¢ : 14 — fh, such that the
following diagrams commute

Y LN T Ry L F—A7 L tfh
vf of

Ihy Wi IhS W
IA £

fh — b Ik

The requirements for the associativity of the monad and the unitality, 7o u(h,A\) = Do (h, )7
and 7o & (h,X) = 1\ = Do (h, A)F, respectively, can be translated to the following commutative
diagrams

hhh vh fhh B oh fhh

hv fv ho fv

hfh ffh hfh ) ffh
nlh

Ah ulh Ah wlh

Jhh—f— [fh— [k [hh—f—> ffh—— fh

Having a wreath in KL(A) (0-cell in KL(KL(.A))), there is an induced composite monad in
A (0-cell in KL(A)) , cf. [20], called the wreath product. This composite can be seen as the value
over 0-cells of the following 2-functor:

Comp , : KL(KL(A)) — KL(A) . (2.30)
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This 2-functor is the left adjoint to the inclusion 2-functor Inckp(4y. This adjunction is
depicted as

Inckra)

KL(KL(A)) KL(A)

Comp 4

see [20]. That Inckra) has a left adjoint means that Algkr(4) = Comp, and, in particular,
Comp 4 has to send a monad ((4, f), (h, A), 7,7) to its Kleisli object, as it was discussed earlier.

The image of the wreath ((A, f), (h, ), 7, &) under the 2-functor Comp 4 can be written down
explicitly as (A, fh, u¢, o), where the induced multiplication u° for the composite monad is:

pué=p’ho fvou’hho fAh: fhfh — fh . (2.31)




- Chapter 3

Internal Kleisli Categories

3.1 Monads and Adjunctions in the 2-Category IntCat(90)

This chapter is based on [10]. In this chapter, Kleisli and coKleisli objects are found in the 2-
category of internal categories, that is to say, that the 2-categories IntCat®(91) and IntCat*’(901)
admits the construction of algebras. Also, Kleisli objects are found in the 2-category IntCoCat(90).
In order to do so let us begin by giving the definition of an adjunction in the 2-category IntCat(91).
Let (A, C) and (B, D) be 0-cells in IntCat(901).

Definition 3.1.1. An adjunction from (A,C) to (B, D) is the data (I,r,n,€), where | and v are
internal functors,

T

(A,C) (B,D) (3.1)

and (n,€) are internal natural transformations,

n o lae —rl,
e lr— 1(B,D) s

that fulfill the so-called triangular identities:

eloxlinp = 1, (3.3a)
riexnrg = 1, . ' (3.3b)

The shorthand notation for such an adjunction is | - r, leaving the unit and counit understood.

Remember that according to Section 2.1, the first of the triangular identities will be referred to
as the triangular identity associated to the left adjoint [ and the second as the triangular identity
associated to the right adjoint r, this referencing is by no means standard but it helps a lot when

ol
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writing.

Let us rephrase the definition of a monad, given in Section 2.3, but this time within the
2-category IntCat ().

Definition 3.1.2. A monad on the O-cell (A, C) consists of the following data (f, u,n’), where the
first component is a 1-cell in IntCat(IMN), [ = (/1, fo) : (A,C) — (A, C) and the rest of the data
is composed of 2-cells p: ff — f:(A,C) — (A, C) andn/ : 1ac) — f: (A, C) — (A,0),

f/f 1
7N /’ﬁ\

A4.C) L v (A4C) , AC) Lo (A0
\f/ \7/

such that the following diagrams

fif—2 s gy f " gy
fin M fint = [ (3.4)
ff———f ff———f

commute. The first equation is referred to as the associativity of the monad, and the second one
as the unitality of the monad.

Having given the two previous definitions, the following proposition can be stated

Proposition 3.1.3. Every adjunction | - r, from (A,C) to (B, D), induces a monad on the
internal category (A, C) given by

f = rl:(AC)— (AC),

= rely:rirl — 7l

- &'

= n: l(A,C) ——»rl .
Proof :

The first induced map is an endofunctor and the last two are natural transformations due to
Section 1.5.3, there remains only to show the associativity and the unitality.

) Associativity

Translate the associativity condition given in (3.4) by using f = vl and u = riely, then we
get the following equality
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riely * Tieloroly = miely * 1liriely (3.5)

which holds because of the following argument. Use Lemma 1.5.3.2 to factorize r, then the
equality that results is the Godement product equality of a = €lp and § = ¢, like in (1.28).

e) Unitality

Applying m to the triangular identity associated to the left adjoint | and Iy to the triangular
identity associated to the right adjoint r, the following equality can be obtained

7"16[0 * 'I]T‘glo = ]-rl = T'1€lo * T‘][]'I} . (36)

This previous equality is nothing but the commutativity of the 2 triangles in the second
diagram in (3.4), i.e. the unitality of the monad, after translation, using f = 7l, u = riely
and nf =n. m]

3.2 Explicit Construction of Kleisli Objects in IntCat(901)

In this section a Kleisli object is constructed for a given monad in IntCat(9%). The guideline
for this construction is an ad hoc variant of the Kleisli category for a monad in a category C, see
Section 2.1. The construction for the coKleisli objects will follow similarly.

3.2.1 Sweedler Notation

This subsection will introduce us to one of the computation methods for a monoidal category used
in this thesis. In order to do so, let us introduce first the Sweedler notation, cf. [16]. Consider as
in Section 1.4.1 a comonoid (C, A¢g,e¢) in the monoidal category (Vect,®, k), i.e. a coalgebra.
Let ¢ be an element in C, then the image of this element under the coaction can be written
as Ac(c) = Z(C) c) ® c(z)- In the previous expression the summation can be left out and the
expression can be abbreviated to

Ac(c) =cay B c)

where the summation is understood. With this notation the coassociativity of the coalgebra can
be displayed as

(C®Ac) - (Ac)(c) = cay®ce)n) B cyz) = ¢y ®ce) ®cE) = cayn) ®cuy@ ®cpe) = (Ac®C) - Ac
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If (M, %, p5;) is a C-comodule for the coalgebra then, for all m € M, the application of the
left C-coaction can be written as pp(m) = mi_y ® my, also p§;(m) = mp ® mpz). Then, the
compatibility condition, for m € A/, between these coactions can be written down as

mo)(-1] @ Majjo] @ M(1) = M(-1] ® Mo]j0] ® Ma][1] -

On the other hand, if (A, ma,u4) is a C-ring then, for a & b € AOcA, ma(a ® b) = ab. The
complete details for the Sweedler notation are shown doing calculations.

In [27], the author extends and justifies the use of this notation not only on monoidal cate-
gories like (Vect, ®, k), but on general monoidal categories (90, ®, [), where the objects are not
necessarily sets. The role of the elements of a set is played instead by the generalized elements of
an object A in M, which are morphisms a : X — A in 9. Such a generalized element is referred
to as a in A, where any reference to X is omitted.

As an example of the extended Sweedler notation, we list the properties of internal functors and
internal natural transformations using generalized elements. Let (A,C) be an internal category
in IntCat(9). Let also ¢ in C and a, a’ in A be generalized elements, then the following lists
can be stated.

i) For a functor, (f1, fo) : (4,C) — (B, D):

ep- folc) = eclc) (3.7a)
fole)y ® folc)y = foley) ® folew) (3.7b)
H@)-y® fila)g) = fola-) ® filai) (3.7¢)
fil@)o ® fila)y = filap) ® folay) (3.7d)
u - fo(c) = fi-ualc) (3.7¢)
fila)fi(@') = fi(ad) (3.7f)
ii) For a natural transformation, o : f — ¢ : (A,C) — (B, D):
a(c)-y®alc)o = golc)) ® alcw) (3.8a)
a(c) ®alc)y = alc) ® folce) (3.8b)
glag)aley) = alay)filag) (3.8¢)

In the forthcoming calculations to be done with generalized elements, the previous listed
properties are important. When an equality in such a calculation uses one of these properties,
the use of this property is going to be pointed out as a reference right on the top of the equality
itself. Also, in doing calculations, there will not be any reference to obvious manipulations just
for the sake of brevity.
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3.2.2 Kleisli Objects in IntCat(90)
3.2.2.1 Construction of the Kleisli objects

The proposal for the Kleisli object in IntCat(9t), for the monad (f, u,n’) over (A,C), is the
following:

i) The object of objects of the Kleisli object is the same as the object of objects of the internal
category (A, C), according to (2.5). The object of morphisms is defined as C/J: A, where
the new object of morphisms is modified by the codomain map through the monad f,
according to (2.6). Therefore, the proposed internal category that it is the Kleisli object for
the monad (f,u,n’) is (C/OcA, C), in short notation A; = C/OcA.

ii) The multiplication m; : C/OcAOcC/OcA = C/OcA/OcA — C/Oc A is defined as

my = (Cf0cm?) - (C/OcpOc fillcA) - (30cA) - (ALOcA/OCA) | (3.9)

which, over a generalized element ¢ ® aj ® aj) ® @’ in C’O:AO:C/OcA, acts as,

c®ap ®ap ®d — cq) @ plcw) fila)d . (3.10)

Compare this multiplication with the composition of morphisms in the Kleisli category Cp,
(2.7).

iif) The unit u; : C — C/Oc A is defined as

up = (C'0cn’) - 15 - Ac (3.11)

which over generalized elements c in C' acts as,

c— ¢y ®n’(c) - (3.12)
Compare this definition of the unit with the unit morphism for the composition in Cr, (2.8).

Having defined the proposed Kleisli object for the monad (f, ¢, n/), the following proposition
has to be proved:

Proposition 3.2.2.1.1. ((C/O¢A,C),my,uy) is an internal category.
Proof:

i) C/OcA is an object in MC.

First of all, C/O¢A is in “MC, since its left and right C-comodule structure maps are,
ALOcA, and C/Ocp§, respectively.
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ii)

iii)

iv)

3.2. Explicit Construction of Kleisli Objects in IntCat(90)

my is a morphism in “MC.

Let us prove that the morphism m; is in “MC, by proving that all the morphisms related
to the definition of it are in M. We begin with Ag, which according to Proposition A.4
is a morphism in °MC, also AL is a morphism in MC since it is the image of the functor
FJ and, by the same argument, so is (14)/ = 1,;. Therefore A/0cA/OcA is a morphism
in “MC, if we see it as a horizontal composition (coproduct) of morphisms in Bicomod ().

Next, according to Corollary A.5, the morphism ¢; is in “MC, then so is L?DCA. By defini-
tion, 1 and f; are morphisms in “MC, therefore so is C/Ocuc filcA. Also, by definition,
m, is a morphism in “MC and, because of this, C/Tlcm? is a morphism in M as well.
Finally, the composition of these maps, which gives the definition of my, is a morphism in
CMC, as required.

Note that the previous argumentation could have been summarized by saying that Ac,
!, u, fi and m, are morphisms in M, then take a suitable combination of vertical and
horizontal compositions in Bicomod (1) to obtain the morphism m ;. Note that this combi-
nation is inside the monoidal category (“M¢,0¢, C) which is obtained from the bicategory
Bicomod (M) by fixing the comonoid (C,A¢,€(), see Remark 1.5.1.1.

s is a morphism in M

According to the previous paragraphs Ac and 15 are morphisms in “MC also, by definition,
n’ is a morphism in M, therefore u, is a morphism in M, as required.

my 1s associative.

Let c®aj ®ap® a{O] ® aill ®a” be a generalized element in C/0cAQ-C/OrAOC/Oc A,
then

(my - (C'0eATemy))(c © ap ® ap & afy @ afy ® a”) = ey © () 1(ap)lam) f1(a')a”

3.8c cay @ pley)pla-) f1a ((1,[0])./‘1((1,')(1,”

(¢
= cay ® plc)nfoles) fifi(a) fi(a)a”
(¢

= cqy ® ple) fiplee) frfi(a) fi(a)a”

31 cy ® uleey) filules) fi(a)a'la”

= (mys- (m;8cC/OcA))(c ® ap ® ay ® ajg @ apy & a”).

In the third equality, the fact that ¢ ® a is a generalized element in C/0O¢ A, i.e. ¢® a-1 ®
ajp) = ca) ® fo(c)) ® a, was used and in the fourth one, the associativity of the monad, i.e.
pox pfo = p* fiu. The sixth equality follows from the right C-colinearity of m 4.

uy is unital.

Let ¢ ® a be a generalized element in C/T¢ A, then
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my - (AQOcup)(c®a) = cu)® M(C(z))fl(a[()])??f(a[l])
= ) ® ple)n’ (a-n)ap)

= ) ® ulee)n’ fole)a

= cn) ® uafolce)a

= c®uu(aj-1)ag)

= cQa.

In the third and fifth equality, the fact that ¢ ® a is a generalized element in C/cA was
used, and in the fourth one, the unitality of the monad, i.e. p*n/fs = 1. In the sixth
equality, the unitality of u4 was applied. On the other hand,

my - (uOcAp)(c®a) = cny ® plce)fin’(ce)a
cay ® uafolc))a

c1) ® uala-1))ag)

= cRa.

I

Here there is nothing more to add other than the unitality of the monad u * fin’/ =1, was
used in the second equality. ]
Let us propose the f-adjunction of the Kleinsli object (A, C) over the internal category (A, C).

For the left adjoint functor [ : (A,C) — (Ay, C) the following pair of morphisms is proposed:
lg:C — C as

lo = Idc (3.13)

and [, : A — Ay as

11 = (CchmA) . (Cf[]c’r)fch) ' (Lch'A) . (Aclch) . CﬁA ) (3.14)

Here the reader is compelled to check on the definition of the left adjoint functor for the Kleisli
object in (2.12). This last morphism acts upon generalized elements as

a — ai_ya) ® 7’ (a-1)2) e - (3.15)

As for the right adjoint functor r : (A7, C) — (A, C) the following pair of maps is proposed:
rg:C — C,
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ro = fo , (3.16)

andry : Ay — A

TL=mMmM4g- (/J'DCfl) “lf s (3-17)

a morphism which acts upon generalized elements as

c® ar— ulc)fi(a). (3.18)

These definitions should be compared to the definition of the right adjoint functor for the Kleisli
category, (2.13).

Before giving the unit and counit of the adjunction, let us prove the following

Proposition 3.2.2.1.2. The pairs of morphisms | and r between internal categories (A,C) and
(As,C), just defined, are indeed functors.

Proof:

i) lg is a morphism in Comonsy obviously.
ii) 4 ‘Al — Ap is in CMC,

Since Iy is the identity comonoid morphism, ‘A’ = A. The morphism “54 is in MY,
according to Proposition A.4, since “p, is a fork for the cotensor product COcA. The rest
of the morphisms involved in the definition of [; have already been proved to be in “M.

iii) Multiplicativity of [;, i.e. the following diagram commutes

ADoA 154 L cip ADLC/ O A
maA mf
A CI0eA

Let a @ a’ be a generalized element in ACcA, then
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iv)

my- (L0Och)(a®a') =

my(ai-yy ® 17 (a-11) a0 ® a0y ® 7 (a]_1)))afg)
my(a)-1a) @ 7 (ag-1)2)) o)) @ apy ® 7/ (apyz))a’)
a-ym@) © #epr-1m@)f (7 (a-1@) ae) 7’ (ag))a’
ajo-110) ® #(ap-n@ )1 (1 (apr-neie)) filepe)n’ (ap)a’
ajo)-1)(1) ® uafo(ay-12) f1(ago)n’ (ap)a’

aj-1)1) ® uafolai-1@) [1(apyo)n’ (appy)d’

a[-1)(1) ® uafola-y@)n’ (ap-1)a e’

aj-1)1) ® uafolar-n@m)n’ (- 1@ @) aod

ap-m @ wa(n’ (ap-n@)i-0)7 (a-1@)med
a1y ® 7’ (a-1y») ape’

(0a)-y) ® 7’ ((a0) -y (aa') g

li-ma(a®ad) .

In the second equality, the fact that a ® a’ is a generalized element in AQcA, i.e. aq ®
a®a =a® a’i—ll ® G‘EOJ was used. In the third equality, the right C-colinearity of m 4 was
applied along with the compatibility of coactions for A and the coassociativity of the right
(-coaction of A. In the fourth equality, the coassociativity of Ac and the multiplicativity
of f1 were used. The fifth equality follows by the unitality of the monad, i.e. px* fin/ = 1.
The sixth one is a consequence of the compatibility of the left and right C-coactions of A.
In the eighth one, that o4 is a left C-coaction for A and the coassociativity of A were
used. In the tenth equality, the unitality of us was used. The final equality, follows by the
fact that m,4 is a morphism in “M.

Compatibility of units, ¢.e. the following diagram commutes,

c—>2 ¢

ua us

A—F— Ay

Let ¢ be a generalized element in C, then

Uf - lo(C)

= cu) ®n'(c)
ey ® 0’ (c@))oua(n’ (c@)n)

= ¢y ® 0 (cym))ualee) @)

= ey ® 1 (eay@)uale)

= 1LA(C)[_1](]) Y 'r)f(?l,A(C)[_”(g))uA (C)[O]
= ;- ua(c) .
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In the second equality, the unitality of us was applied and in the fourth one, the coasso-
ciativity of A¢. And finally, the fifth equality is a consequence of the fact that uy4 is a
morphism in M, i.e. ua(c)j-1 ® ua(c)jg = ) ® ualce)).

1') rg is a morphism in Comongy by definition.

ii’) ry :"A} — A is a morphism in CMC.
According to Corollary A.5, the morphism ¢/ is in “MC, and because of the functor /F/, so
is Lf fclcAf — fcOgA! . Tt was already check that u, f; and m4 are morphisms in

CMC therefore r; : "A} — A is a morphism in CMCE, since it is a combination of compo-
sitions of morphisms in CMC.

Note the difference between proving that r, : "A} — A is a morphism in CME from
r1 : Ay — A being a morphism in “MC, this difference comes from the definition of an
internal functor in Definition 1.4.2.1.

iii’) Multiplicativity of 7, i.e. the following diagram commutes

CIOpAOCC! O A IO AT O ICIOp A 2228 AT A
my mA
CIDCA Ty A

Let ¢ ® ap) ® aj1) @ @’ be a generalized element in C/O¢ AO-C/Oc A, then

(my - (mOcr1) - 1) (c® ap) ® ap ® a’) 52 w(c) fi(ap))plam) f1(a’)

2 p(e)ularn)fifi(am) fi(@)
= wpleay)mfolcey) frfila) fi(a')
= uleay) firlee) fifila) fi(d)
= r-my(c®ag ®@ap g a) .

In the third equality, the fact that ¢ ® a is a generalized element in C/O¢cA, ie. ¢y ®
folc@)) ® a = ¢ ® aj_1) ® apg) was used, and in the fourth equality, the associativity of the
monad was used.

iv’) Compatibility of units, i.e. the following diagram commutes,

T0

C

C
ufs UA

Ay

T1
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Let ¢ be a generalized element in C, then

ua-ro(c) = uafolc)
= wlew)fin'(c@)
= neulo)
where only the unitality of the monad was required. O

Now that the proof has been given, the adjunction can be formulated by giving the unit and
counit of it. For a unit of the f-adjunction, a natural transformation

N Yac) — 7,

is needed. The composition 7/ will give:

ro-lo = fo-lc=fo,
ri-hia) = ri(a-na ® 7 (a-1e)apm)
= pla-nm)fin’(ai-ne) filag)
= fiualar-1)fi(ap)

= filua(ai=))aj))
= fl(a),

where the unitality of the monad was required in the third equality and the unitality of u,4 in the
fifth one. Therefore, vl = f and the unit can be defined as

= . (3.19)

For a counit, a natural transformation

e¥ilr — 1(Af‘C) ,

is needed. The composition [r is the following:
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lo-rg = fo,

Li(u(c) fi(a))
(u(e) fi(a))- 1(1)®77 (((e) fr(a))=1@) (1(c) fr(a)) o
= plc )[ 1) ®n ( [ 1)( 2))#(0 o]fl(a
* foleay)y ® 1 (folewy) @) 1le) fi(a)
= folc)a) ® 0’ (folc)2)) 1lc)) f1(a) -

[y - ri(c®a)

Il

The third equality follows by the hypothesis that m 4 is a morphism in M, i.e. for a gener-
alized element b ® b’ in AT A, (bb)_1)1) ® (b0')1-1j2) ® (bb')j0) = bj=1)1) ® b-1)2) B bjgd’. In the
fifth equality, the fact that fy is a morphism of comonoids was used.

Let us now define the counit e : C — C/0O¢ A as

K= (C'Och) 15 (CT0Ocua) - Ac . (3.20)

This morphism acts over a generalized element ¢ in (', as

c— cy ® fiualc) - (3.21)

Proposition 3.2.2.1.3. The morphism €%, previously defined, is a natural transformation from
Ir to l(A/.C)

Proof

i) The morphism e : ¢/ — C/O¢A is in CMC.

Since the composite morphism ¢; - (C/Oguy) - Ag is in “MC, hence if the functor F/ is
applied to it

Ff(Lf . (Cfmcu,q) . Ac) = L; : (Cfl:lcuﬁ) : Ag’v ),
the resulting morphism is in “M® as well. On the other hand, the morphism C/Og/; :

C/Oc/A7 — C/0Oc A is in M, therefore the composition of this two maps that gives £*
Ve
is in “M*“.
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ii) Naturality of the counit, ¢.e. the following diagram commutes

[2 f eK
CI0eAOC —E> Cf0e ADC 222452, ot A0/ O C

CW K

C/OcA C/OcA .

5@% /

CD(;CID(;ALE;C!D(;[C]D(;A KO CID(,*AD()C/DCC

chir

Let ¢ ® a be a generalized element in C/0O¢A, then

(mys - (C/OcAOce™) - (C'0cp3)) (c ® a) = my(c ® ag) @ apyn) ® frualape))
= ¢y ® ple) frlag) frualap))
= cq) ® ple)) fr(a)

= ¢y ® ua(p(e)) -1k f1(a)

3.8a
=" ey Q ug fole@)mles)f1(a)

=cnH® ,U(C(2))77ff0(c(3))#(0(4)).[](a)

= cq) ® uleey)oualp(ee)n)n’ foles))ulcw) f(a)

32”0(1) @ p(c@y)uafofoles))n’ folewy)ulesy) f1(a)

= ¢y ® plee) frfivalea)n’ folew)u(cs)) fi(a)
mg(cay ® frualee) ® foles) @ 0 folew)u(cs)) f1(a))
= my - (eX0chr) - (4;0cA) - (ALOcA)(c®a) .

In the second, fourth and seventh equalities, the unitality of u,4 was required. In the sixth
equality, the unitality of the monad was used instead. In the ninth equality, the right C-
colinearity of u4 was applied. O

In the previous calculation there is an equality that we want to single out for further references.
Let ¢ be a generalized element in C, then

uafolc) = uleayn’ fole) (3.22)
peqy)oyea(e(eqay)m)n’ fole))
pcay)uafofolea)n’ folcs)

= pleqy) frfivale@)n’ folew)) -

i

Once that the naturality of the counit has been proved, only the triangular identities are left
to be proved:
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1) EKlO * ll'f)K = 'LLJ'ZO,

Let ¢ be a generalized element in C. then

eflox in“(c) = mys(elo(cqy) ® in*(c))
= my(ca) ® frwalee) 2 (0 (e@) -y @0 (0 (c) =)’ (c@)o)
= my(cy ® frualeg) ® folew) & 0’ folew)n' (cs)))
= cay ® pleey) S1fruales)n’ Jolea)n’ (cs)
= ¢y @uafoley)n’ (@)
=" cq) @ ua(n’(ce))-1)n" (c@))
= cu)®1'(c2)
= wugslo(c) .

In the fifth equality, the equality given in (3.22) was used.

ii) rie® * n"rg = uaro,

Let c be a generalized element in C,

(rie® «n*ro)(c) = ma(rie®(cq)) ® n*rolc))
#(C(l)) fl'ftA(C(z))TIf/b(C(s))
UAfo(

c
= UAT()(C

I

)
) .

In the third equality, (3.22) was used.

Just as in the case of standard categories, see Proposition 2.1.1, the following can be stated.

Proposition 3.2.2.1.4. The monad induced by the adjunction

7

(4,C) (C/OcA, C)

l

is the monad which the construction of the Kleisli object started with, i.e. (f,u,n’).
Proof

i) [ =rl, as already explained it follows immediately from the construction of functors r and
.
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11) M= T’]E'Klo .
Let ¢ be a generalized element in C, then

rie“lo(c) = pleay) frfrualee)) = pleay)uafofo(e)) E p(e)pualp(c)n) = ule) -

In the last equation, the unitality of u, was applied.

iii) nf = n*, by definition. ]

3.2.2.2 Proof for the Kleisli Object

The previous section dealt with the construction of the a posteriori Kleisli object for the monad
(f.1,m’) over (A,C) in IntCat(91), and with its well-defined construction, i.e. that it is an
internal category and the induced monad over (A, C) is precisely the one we started with. In this
section, the proof that this internal category is indeed a Kleisli object is given by showing the
isomorphism of categories required in [24], through the representation of Alg, see (2.25).

According to the isomorphism of categories given by (2.25), the following 2-cell in the 2-
category 2-Cat can be constructed

Algr

/_\

IntCat() |= © ,Cat |

\/

IntCat((A;,C), )

where the following substitutions were made in (2.25) : A = IntCat(9) and Ax = (C/TcA, C).
Let (B, D) be in IntCat(90), then

©(s.p) : Algr-(B, D) — IntCat((C/O¢A4, C), (B, D)),

is a 1-cell in 4Cat, that it is to say, a functor, and is defined

i) on objects (s,0) in Algs(B, D) = (B, D) as,

(Ow.p)(s,0)), = so,
(©5.0)(s,0)), = mg-(o0ps1) s ;

ii) on morphisms ¥ : (s,0) — (¢, 7),
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@(B,D)(f) =%

where the notation 3 means that the underlying morphism ¥ : s — ¢ is the same but it
has to fulfill different requirements.

The proposal for the inverse natural transformation O is defined as follows.

i") On objects g = (g1, go) in IntCat((C/Oc A4, C), (B, D)) as,

(©5.0)(91,90)s), = golo
(©w.0)(91,9)s), = gili,
@(BvD)(glag())a = 91€Kl0.

ii’) On morphisms S : (g1,90) — (91, 96),

Ow.0)(3) = Blo .

Having defined the 2-natural transformation © and its expected inverse O, we need to prove
the following
Proposition 3.2.2.2.1. The 2-natural transformations © and © are well-defined.

Proof:

For ©;

i) On objects, the pair ((©(s,0)(s,0)),. (O(5.0)(s,0)),) is an internal functor.

Since s : (A,C) — (B, D) is already a functor then sy : C — D is a morphism in
Comongy. On the other hand, we need to stablish that mp - (¢0¢s;) - ts is part of an
internal functor:

o mp- (c0csy) - ts : *C/0cA® — B is a morphism in MP,

First, ¢, is a morphism in “M¢ then after applying the induced functor *[%, *.,* will be
a morphism in PMP. Second, ¢ : *C*/ — B, s; : *A* — B and my : BOpB — B
are morphisms in PMP by hypothesis, therefore the composite mp - (60cs;) - ¢y is in
DMP | as required.
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e The morphism mp - (600¢cs;) - ts is multiplicative.

The proof of this multiplicativity is done with generalized elements and using the
Sweedler notation as before. Let ¢ ® ajg) ® aj;) ® a' be a generalized element in
Cch'ADchD(jA, then

(mB . ((mB (e0esy) - t)Op(mp -(e0csy) - Ls)) : (CIDCLSDCA))(C(@ ap) ® ap @ a’)
= 0(0)51(0[01)0(0[1])81(a')

U(C)U(a[-l])slfl (a[O])Sl(a’)

U(C(l))a(fO(C(Z)))Slfl (a)s1(a’)

= U(C(l))slﬂ(C(Z))Slfl(a)sl(al)
= ((mg - (60cs1) - t5) - my)(c R aj @ apyy @ a’) .

w
lo |
o

In the third equality, the fact that the generalized element ¢ ® a is in C/O¢A, i.e.
ca) ® folcp) ®a =c®a-y ® ajo), was used. The fourth equality follows from the
requirement given by the first diagram in (2.27), for an object in (B, D).

e Compatibility with units.
Let ¢ be a generalized element in C, then

ugso(c) = 1s(c) = olcw)sin’ (e) = ((ms - (00cs1) - ts) - us)(c)
In the second equality, the second requirement in (2.27), for an object in (B, D), was
used.

ii) On morphisms, © 5 p)(X) is an internal natural transformation.

The proof of the naturality of §: mp - (60cs1) - ts — mp - (0'O¢s)) -ty is split into the
following two parts:

e ¥ :°C° — B s in PMP, which follows from the definition of ¥ : s — s’ being a
natural transformation.

e The naturality of 5

Let ¢ ® a be a generalized element in C/CJc A, then

(mg - ((mg - (6'Ocs)) - ty) )OpE) - (C'Ocuy) (C’chﬁfi))(cQDa) = a'(c)s}(ap))E(ap))

"2 6'(0)(ay-1))s1 (ayo)

= o'(ca))Efolez)si(a)
E(ey)a(c@)si(a)
= (mp - (E0p(mp - (60cs1) - ts)) - (L,OcA) - (AéDCA))(c ®a) .
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In the third equality, the requirement (2.29), i.e. £ *x 0 = o’ * ¥ fy, was used.
For ©:

1) On objects (g1, 90) in IntCat((Ay, C), (B, D)); (é(B‘D)(gl,go)s,é(B,D)(gl,go)g) is an object
in (B, D)g.

Clearly, (:)(B,D)(gl,gg)s = gl is a functor from (A, C) to (B, D), and é(B,D)(gl, go)s & natural
transformation from glf = glrl to gl. As far as the requirements in (2.27) are concerned,
they are translated into the following requirements, taking into account that p = re¥l,

o g1y *x gilimieXly = g1e¥ly * g1 lorolo.

Due to Lemma (1.5.3.2), it is enough to prove the equality e*lo = [yrie®ly = ¥l *
eXlgroly, but this equality is just the Godement product equality for e*%e* 1.

o 1e¥lo x gilin™ = 1y,
Due to Lemma (1.5.3.2) and to the triangular identity associated to the left adjoint /,
gi1e¥l x gilin™ = g1(e"lo x lin") = g11; = 1, as required.

ii) On morphisms G in IntCat((A,C), (B, D)); (:)(B‘D)(ﬁ) is a morphism in (B, D),

e Clearly, fl: gl — ¢'l is a natural transformation.

e The requirement (2.29) translates in this case to Slg * g16¥lg = g1*lg * Blorolo. This is
simply the Godement product equality (1.28), for Fxe¥lj. a

Once the proof that © and O are well-defined, has been done, it is natural to state the following

Theorem 3.2.2.2.2. The object (C/OcA,C) in IntCat(9M) is a Kleisli object for the monad
F=(f,pu,n') over (A,C) . That is,

=

Algr_ IntCat((C/OcA,C), ) .

Proof

i) ©: Algr_ — IntCat((C/OcA,C), ) is a natural transformation.

The following diagram must commute for any (h;, hg) : (B, D) — (B’, D’)
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Algr(h)

Algr(B, D) Alge(B', D)

G(B'D) e(B’,D’)

IntCat((A;, C), (B, D)) IntCat((A,,C), (B, D"))

IntCat((As,C),h)

Since this is a functorial diagram, its commutativity has to be proved as much for objects
as for morphisms. Let (s,o) be in Algs(B, D), then

(©51,py 0 Alge(Rh))(s,0) = (hoso,mp - (hioTphist) - ths)

(hoso,mpr - (M Oprhy) - e - (60prsy) - t5)
(hoso, h1 - mp - (¢0psy) - ts)

= h.(so,mp - (c0psy) - ts)

= (IntCat((C/OcA,C),h) 0o Ous,n))(s,0) -

In the second equality, the factorization lemma in Lemma A.2 was used.

On morphisms, let ¥ : (s,0) — (s',¢’) be a morphism in Alges(B, D), then

(B(z.py 0 Algr(R))(Z) = T
h.(X)
= (IntCat((CchA, C), h) ] e(B,D)) (2) .

Next, ©, as a 2-natural transformation, has to fulfill the requirement (1.24). Note though
that if in this requirement B = ,Cat, the equality given by (1.24) simplifies to the equality

QB(F’YX) = G’YQAX )

for any object X in the category FA. This simplified equation is verified for © and (s, o)
an object in Algr(B, D) as follows:

O .0y (Algr(7)(s,0)) = ©Os.01(50)

YSo

IntCat((C/OcA,C),v)(ms - (¢0psy) - ts, So)
= IntCat((C/Oc¢A, C),7)(Os.p)(s,0)) .

Therefore, the naturality of © is proved. That © is an isomorphism is proved as follows.
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ii) © 06 = lintcat((4,.0),_)-
e On objects, let (g1, go) be an object in IntCat((C/OcA, C), (B, D)), then

(©00)(g1,90) = O(gl, g1%lo) = (ms - (916" l0pgils) - te1, Golo) -

Since ly = 1¢, there only remains to prove that mp - (916¥l60pgils) -ty = 1. To do
so, let ¢ ® a be a generalized object in Cf ® A, then

(mg - (91e"160pgils) - tg)(c®a) = (mp-(910pg1) g (e"L0ph) - u)(c®a)
= gimy(e®lo(c) ® Li(a))
gimy(cqy ® frualee) ® ap-nym ® 1’ (a-112)ajo))
91 (cay ® ple@) fifiuales)n’ (ai-1)a)
= gi(cqy ® plee) frfivalcs)n’ folcw)a)
= g1(ca) ® uafolc))a)
= g1(cq) & ualai-y)ap)
= gi1(cRa) .
In the first equality, the factorization lemma A.2 was applied. In the second equal-
ity, the compatibility with multiplications of g; was used. In the fourth equality, the
right C-colinearity of us was applied. In the fifth equality, the fact that the generalized
element ¢(1)®c(p)®a is in COcC/Oc A was used. In the sixth equality, (3.22) was used.

e On morphisms, let 8 : (g1,90) — (g1, 95), then

©00(8) =0(Bl) =pBlo=0 .
iii) ©00 = lay, .

e On objects, let (s,0) be an object in (B, D), then

© 0 O(sy,8p,0) = é(mB (o0csy) - ts,y So)
= ((mg - (¢0cs1) - ts) - &1, solo, (mp - (00cs1) - 1s) - €¥l) -

Therefore, for the first component, if a is a generalized element in A,

(mp - (00cs1) - 15) - Lila) = olaiyw)si(n’(a-12)ap)
(0 * s11")(aj-1))s1(ajo)

= SIUA(al—l])Sl(a[o])
si(ualai-1))aj)

= si(a) .
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In the third equality, the requirement ¢ * s;7/ = 1, was used and in the fifth one, the
unitality of u4.

On the other hand, for the third component, if c is a generalized element of C,

((mp - (cOcs1) - 1) - €5l) (c) = o(eqy)sifiualer)

= U(C(l))UA(SofO(C(z)))
(
(

2 () uale(Q)y)
c)

3.2.3 CoKleisli Objects in IntCat(90)

Let (g,0,€°) be a comonad in IntCat(91) over the internal category (A, C). The coKleisli internal
category is defined as follows:

i) The object of morphisms and the object of objects are defined as (AOc9C, C) respectively,
in short notation (A9, C).

ii) The multiplication my : ADCOcAOIC =2 A0 AOIC — AOC is defined as

mg = (miDCgC) ' (AchlDCJchC) : (ADch) . (ADCQAchAc) N (323)

which, over a generalized element a & ai_]] ® a’[O] ® ¢ in AOCOcAORC, acts as,

a® aj_y ® afg) ® ¢ — agi(a')d(cy)) ® ¢y -

iii) The unit u, : C — AOGYC is defined as

ug = (e°0c9C) - 14 - Ac

which, over generalized elements c in C, acts as

cr— €%(cny) ® ¢y -
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The next propositions and theorems are given without proof since their proofs are essentially
the same as the respective ones for the Kleisli object, that is to say, mutatis mutandis. Neverthe-
less, the reference of the mate proof is given for each of the following propositions.

Proposition 3.2.3.1. ((AO9C, C'), g, uy) is an internal category.

Proof: cf. 3.2.2.1.1 )

Let us propose here in the same way as before the g-adjunction of the internal category (A, C)
over the coKleisli object (A, C), that is to say,

T

(ADCgCa C) [ (A7 C)

The internal functor [ : (A%,C) — (A, C) consists of the following pair of morphisms:

lo = 9o,
i = ma (g10c6) ¢ ,

where the last morphism acts over generalized elements, a ® ¢ in AO?C, as

a @ cr— gi(a)é(c) .

The internal functor r : (A,C) — (A9,C) is given as the following pair of morphisms,

To = 10 y
r = (ma0c?C) - (AQDce90:0C) - (AQgty) - (AQcAC) - 55

Proposition 3.2.3.2. The pairs | and r just defined are functors between the internal categories
(A9,C) and (A,C).

Proof: cf. 3.2.2.1.2 a

If the previous pair of functors has to be an adjunction then a unit and counit must be

provided. The unit n°°* : 1( 40,0y — i,

ne* . C — AOQSC

is the following morphism
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7% = (¢10cC) - 1y - (ualcC) - Ac

which over generalized elements c in C, acts as

c+— qiualca)) ® ¢y -

For the counit of the adjunction, it is clear that Ir = g, therefore the counit

co

efig=1Ir — lac) »

is taken as

oK g

(O

With the previous definition of unit and counit, the following proposition can be stated

Proposition 3.2.3.3. The following is an adjunction

T

(AO9C, C) (A,C) ,

and the comonad induced over (A,C) is the one which the construction of the coKleisli object
started with, that is to say (g.6,¢€°).

Proof: cf. 3.2.2.14. 0
Just as in Section 3.2.2.2, (AOc?C, C) being a coKleisli object means, according to [24] , that

it is a representative object for the coalgebraic functor Coalgs. According to the isomorphism of
categories in (2.26), another 2-cell in the 2-category 2-Cat can be constructed

Coalgs
IntCat(") |= o .Cat

~_ -

IntCat((A,,C), _)
where 4 = IntCat(9M) and A,.x = (AOc?C, C). Let (B, D) be an internal category in IntCat (1),
then

O(s.p) : Coalgs(B, D) — IntCat((AO:C, C), (B, D)) ,

is a 1-cell in oCat, that is to say, a functor which is defined as follows.
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i) On objects (s,0) in Coalgs(B, D), ©' is defined as,

(@,(B,D)(Sva))o = Sq,

(O5.0)(s:)), mg - ($10po) - 1y .

ii) On morphisms ¥ : (s,0) — (¢,7), © is defined as

—_

@EB,I))(i) =X .

The proposal for the inverse natural transformation o’ goes as follows.

i’) On objects k = (ki1, ko) in IntCat((Ay, C), (B, D)), ©' is defined as,

(é/(B'D)(kl’kO)s)O = koro |
(el(B,D) (kl, ko)s)l — lel ,
- EB,D)(kl, kO)a = k] nCOKTO .

ii’) On morphisms 7 : (k1, ko) — (k},k)), ©' is defined as

ézB,D) (v) =70 .
Without further ado, the following theorem can be stated,
Theorem 3.2.3.4. The morphism ©' is a 2-natural isomorphism and the object (AT 2C,C) is
a coKleusli object for the comonad G = (g,0,¢°) over (A,C), that is
Coalgs —=— IntCat((AD:9C,C), ) .
Proof: 3.2.2.2.1 and 3.2.2.2.2 )

3.3 Internal Kleisli Objects and the Formal Theory of Mon-
ads

In order to obtain the Kleisli and coKleisli objects for a monad in the 2-category IntCat (1) and
Kleisli objects for a monad in the 2-category IntCoCat(90) another tool is developed, namely
by using the properties of the bicategory KL(A), for a specific bicategory A, see [10] and [20].
Therefore, this section begins by introducing the bicategory KL(Bicomod(9)), afterwards sev-
eral locally full and faithful bifunctors ®, ® and ¥ into KL(Bicomod (97)) are defined which will
enable us to find the Kleisli and coKleisli objects mentioned above.
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3.3.1 The Bicategory of KL(Bicomod(9))

The 2-category KL(.A), for a 2-category A, and the bicategory Bicomod (1) have been already
defined, out of these constructions let us outline the bicategory KL(Bicomod(9)), in order to
have the references and concepts at hand for the theory to follow.

The 0-cells for this bicategory are monads in Bicomod(91), that is

A AlcA C
C c ., Cclma Cc , Cl|lua C
\A_/ \.A/

Remark 3.3.1.1. KLy(Bicomod(91)) = Mndy(Bicomod(91)) = IntCaty(9M) = IntCoCaty(IM).
The 1-cells for this bicategory are

(M, )
7
(C,A) (D,B)
such that

M AQcM

N 7N
C D, C | ¢ D ,

N

MUOpB

are cells in Bicomod(91) such that the following diagrams commute

AQeADM 2220 a0 Mo, B 2225 vo, BO,B
A
ma0cM MUOpmp uAny wj)ua
AlcM 3 MOpB AOcM MUOpB .
The 2-cells for this category are

(M, )

/_\L

¢,A | K (D,B)

\—’/

(M, ¢")

such that



76 3.3. Internal Kleisli Objects and the Formal Theory of Monads

M
7N
cl A D,
~___
M'0OpB

is a 2-cell in Bicomod(90), and the following diagram

¢ AQpB

AOcM MOeB —=2% M'OpBOp B (3.24)
AOcA
AOcM'OpB M'Cpmg
¢'0p B
M'OpBOpB T M'OpB

commutes.

For the underlying category of KL(Bicomod(91)), the composition over the following 1-cell
diagram

(M, 9) (N,7)

SN TN

(C, A) (CI’AI) (C",A”)

is defined as

(Ma¢) ) (N?7) = (MDC’Na(MDC”Y) ) ((bDC’N)) .

The vertical structure of KL(Bicomod(9M)) is defined over the following 2-cell diagram

(M, ¢)
AT 1 O\
(C,A) — "¢y — (D, B)

| N
(MH, ¢//>

as

NOK = (M”[]DmB) . (A/DDB) A
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The horizontal structure of KL(Bicomod(901)) is defined through the following 2-cell diagram

(M, ) (N,7)
/_\ /’\
c,A I x (A L T (€A,
\_/ \_/
(M', ¢/) (N', 7’)

as

AL = (M'DCIN'DCHTTLAH) - (M'OcT0cn A") - (M'DC/’)’) -(AO¢/N) .

3.3.2 Bifunctors

This subsection is devoted to the construction of locally full embedded bifunctors to the bicat-
egory KL(B), where B is a bicategory, see [10]. The reason for such constructions is explained
as follows. According to [20], the bicategory KL(B) is complete with respect to Kleisli objects,
that is to say, for any monad in KL(B), this bicategory has the corresponding Kleisli object.
Therefore, let us give a 2-category M(B'), for a bicategory B’, whose 0-cells are monads in B’ and
the remain structure is known but it is not necessary to be detailed. Then, if there exists a locally
full embedding bifunctor, which is the identity on 0-cells, F : M(B’) — KL(B), any monad in
M(B') will render a monad in KL(B), which has a Kleisli object. In particular, this Kleisli object
is a monad in B hence, using the identification on O-cells of F', this object can be seen as a monad
in B, i.e. a O-cell in M(B’). In summary, the 2-category M(B’) will have Kleisli objects through
the locally full embedding F.

The first bifunctor to construct with the previous characteristics is ® : IntCat(9) —
KL(Bicomod(91)). Over O-cells (A, C) in IntCat(901) it is defined as

(A, Cyma,ua) = (C,A,ma,ua) .

That is to say, the identity on 0-cells. Over 1-cells,

(/1, /o)
(4,C) (B,D) ,

as

®(f1, fo) = (C?, 1) = (C1,(C'Tcfr) - ¢f - Fpas)

where ¢ : ADcC! = A/ — C/O¢ B is a morphism in MP. Over a 2-cell,
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(1, fo)
SN

(4,C) | « (B,D),

~_

(!11 , 90)

as

(C7,¢)

N

(C,A) | ®(a) (D,B),
\_/
(C9,¢))

where ®(a) = (C¥0pa) - o) - AL and ®(a) : C/ — C“OpB is a morphism in “MP”. This
definition renders a bifunctor.

Proposition 3.3.2.1. The bifunctor ® : IntCat(91) — KL(Bicomod(9M)) is a locally full
embedding.

Proof:

First we show that the bifunctor is locally injective on objects. Let (A,C) and (B, D) be
O-cells in IntCat(90t). Take objects f,g: (A,C) — (B, D) such that

(f) = 2(g) - (3.25)

Then clearly fo = go from C/ = C9. Let u be a generalized element in A, then because of
(3.25), ai_y ® filap) = ai-1 ® g1(aj)- If me(upfo(_) ® _) is applied to the left hand side of
this equality, then

wafolap-u) filag) 2wl fi(a)-)fi(a)g = f(a) .

On the other hand, if mg(uggo(_) ® _) is applied to the right hand side of the aforementioned
equality, which is the same as mp (ugfo(_) & _) since fo = go, we obtained the morphism g,
hence we conclude that [, = g;.

That @ is locally faithful, is proved as follows. Let «: / — g and 3 : h — k be 2-cells in

IntCat(91)((A, C), (B, D)), such that ®(a) = ®(5), then

(C'Opa) - 1y - AL = (C*Opf) - 1 - AL .
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In the same way as before, we apply mp (uBgo )® ) to the left hand side and mp (uBkO( )
_) to the right hand side to obtain a = 4.

| In order to prove the local fullness, consider the following 2-cell A : (C/,¢;) — (C%, ¢,) in
KL (Bicomod(M))((C, A), (D, B)), then define the proposed internal natural transformation as

a=mp-(upglpB) - A .

Clearly a : 9C/ — B is a morphism in MP. The naturality of this morphism a(aj-1)) f1(aj) =
g1(ag)(ayy), is proved as follows. If c is a generalized element in C/ then write A(c) = ¢y ® ¢3,
where ¢ ® c; is a generalized element in CY(pB. Let a in A/l be a generalized element, then

a(ai-n) fi(ae) = usgo(ai-1r)ap-yi/1(ap)
= Usgo((a[o1€(a[1]A))[-1]>91 (GIOIE(aIIIA))IOI)“[l]X
=0 ((a[olf(a[llA))lo]>u590((a[o]€(a[1],\))[1]>a[1];
= g]((a[O]uA(a[l]A))[O)uBQO( aualap )[1])%
=0 (a[o](uA(au]A))[o]>ungo( ua(ana [1]) Qi
( Jm)

= g1(ap)9n ((uA anpy))oja ((ualap))n )a[m
= gi(ap)grualanp)ap;

= gl(aIO])UBQO(a[I])\)a[l]A

= 91(‘1[0])04(a[1}) .

In the second equality the fact that A is a 2-cell in KL(Bicomod), (3.24) , was used. The
third equality, follows by the next equality of morphisms

g (ug0pB) - (900pg1) - tg- Ba = mp- (ugOpB)- "6 g

{
Y

- (BOpug) - p3 - ¢
mp - (BOpug) - (¢10pgo) - ty - £5 -

fl
3
®

In the fourth equality the equation ae(c) = aua(c) coming from the unitality of u4 was used. In
the fifth equality, the right colinearity of m4 was used. Finally, in the sixth equality the multi-
plicativity of g; was used.
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That ®(a) = (COp(mp - (upgeOpB)- A)) iy Aé = A, follows by the next calculation, where
c is a generalized element in C/,

S(a)(c) = coy & UBQO(C(2)/\)C(2)Z\
a1y ® upgo(ca))cs
= o Qup(cyy)eip
NN o)y

Ale) .

In the second equality, the left C-colinearity of A was applied. The third equality follows from
the fact that c) ® c; is a generalized element in C9CJpB. The fourth equality uses the unitality

of ug.
O

There is another functor of bicategories for the comonads counterpart, with the required
characteristics, ® : IntCat®(9) — KL(Bicomod® (9)) and this is described as follows. Over

O-cells (A, C), & is defined as

6(A,C,mA,UA) = (C,A,mA,uA) .

Again, it is defined as the identity on 0-cells. Over 1-cells,
(fl » fO)

(4,0) (B,D)

it is defined as

B(f1,fo) = (C,¢)) = (C.(O7C) - Tus 155

where ¢ : /COcA = /A — BUOp/C is a morphism in PMC. Over a 2-cell,

(f1, fo)
N

(A»C) l a® (B,D),

~_ 7

(91, 90)

as
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(fC! ¢f)0p

N

(C,A) | T, (D.B),

~__
(°C, ¢g)*

where T, = (@0p9C) - /1, - /Ac and T, : /C — BOpC is a morphism in PMC, ® defined in
this way, is a functor of bicategories too.

Proposition 3.3.2.2. The bifunctor @ : IntCat®(9) — KL(Bicomod®(9M)) is a locally full
embedding.

Proof:

In view of the left-right symmetry between definitions of ® and 5, this proof is analogous to
that of . a

The final bifunctor to describe, ¥, has as its domain the 2-category IntCoCat(90), cf. Sub-
section 1.5.4. Therefore, this bifunctor will provide us with Kleisli objects in this 2-category.
The bifunctor, ¥ : IntCoCat(9M) — KL(Bicomod(9M)) is defined as follows. Over 0-cells in
(A,C), it is described as

\IJ(A7C7 mA,UA) = (CvAamAauA) .

Yet again, it is the identity on O-cells. Over 1-cells,

(f1, fo)
~ N\
(A4,0) (B,D) ,

it 1s defined as

(/1. Jo) = ( Dﬁf) = ( DafDﬁB “J1) s

where v; : AQc/D — fDOp B is a morphism in °MP . Over a 2-cell,

(f1.fo)
SN

(4.C) | « (B,D),

~_

(91, 90)
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as

(!D,y)

N

(€A4) L ¥(a) (D.B),

~_ 7

(“D, '79)

where U(a) = 95 - a and ¥(a) : /D — 9D0p B is a morphism in MP, As expected, ¥ is also
a functor of bicategories.

Proposition 3.3.2.3. The bifunctor ¥ : IntCoCat(9) — KL(Bicomod(9M)) is a locally full
embedding.

Proof

That the bifunctor is injective on objects and faithful is proved in a similar way as in the proof
of the Proposition 3.3.2.1. That the bifunctor is full can be proved as follows.

Let T : (/D,ys) — (D,v,) : (C,A) — (
a:f—yg:(AC)— (B, D)suchthat U(a) =

D, B) be a 2-cell in KL(Bicomod(9M)), then
[" is defined as

a=mpg- (’LLBDDB) T .
This morphism in 90 is easily seen as a morphism in “M?”. Its naturality is proved as follows. If

d is generalized element of /D, then write I'(d) = d,, & d5, where d, ® d; is a generalized element
in DO B. Let a ® d be a generalized element in AQ/D, then

gi(a®a(d)-)a(d) = gi(a® (us(d,)ds)-y) (us(dy)ds)
= gi(a @ (up(dy)y)(un(d,))0d;
= 91(a ®dy))us(dy2)d;
= g1(a®d,)up(dsi-1)ds)
= gi(a®d,)d;

((g1(a®d, )dﬁ,)[ 1]) (gi(a®d, )d')[o]
= up((q1(a®d,))_y)(91(e®d, ) ds
s((fi axd)[ lh)(fl a®d)[ IH(fl(a®d))[O]
= a((fl(a®d))[ )®(f1(a®d))[0] :
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In the second and in the seventh equalities the left colinearity of mp was applied. In the third
one, the left colinearity of up was used instead. In the fourth one, the fact that d, ® d5 is a
generalized element in 9DU0p B, i.e. dy1) ® dyz) ® dy = dy ® dy|-1) ® d5(], was used. In the sixth
equality, the unitality of ug was used. The eighth equality follows by the fact that I" is a 2-cell in
KL(Bicomod(90)), i.e. it fulfills the commutativity of the diagram in (3.24). This requirement
is translated, over the generalized element a ® d in AO:/D, to

(fl (a® d))[—l]w ® (fl (a® d))[_”:y (fl(a ® d))[O] = (gl(a ® dv))[_l] ® (gl (a& d’y))[o]d"v .

This completes the proof of the proposition. a

3.3.2.1 Reinterpretation of the Embedding Bifunctoriality

The referee assigned to [10] pointed out another interpretation of the embedding of the bifunctors
®, & and ¥. In order to write about this other interpretation some background work has to be
done before going into detail.

Consider a 2-category \A, a bicategory B and assume that there is a bifunctor F' : A — B with
the property of being locally fully faithful and identity on objects. Then there exists a 2-category
denoted by KL;(B) which can also be embedded into KL(B). Its description goes as follows.
The 0-cells are the same as those of KL(B). The 1-cells in KL(B) are pairs (Fr,y) in B, where
r is a 1-cell in \A, this pair renders a typical 1-cell in KL(B). The 2-cells in KL (B) are defined
as A : (Fr,p) — (Fs,¢) : (A, f) — (A',h), where A : Fr — Fs: A — A’ is 2-cell in B.
The previous construction provides a locally full and faithful bifunctor KL(B) — KL(B) and
because of the discussion at the beginning of this section, KL.(B) has also Kleisli objects.

Next, apply this construction to A = Comon(9) and B = Bicomod(9M). Obviously,
Comon(9M) do not have a 2-category structure but it can have one according to the bifunctor F
in order to make it locally full and faithful. We have three options

1) F : Comon(IM) — Bicomod (M), is defined by the identity on the O-cells and for 1-cells
f: C — D as the 1-cell C/ in Bicomod(9R). The 2-cells in Comon(9N) are defined, in order
to make F' locally full and faithful, as o : C/ — C9. This definition gives KL, (Bicomod (1))
as the image under ® of IntCat(911), see Section 3.3.2.

1) F: Comon®(9M) — Bicomod® (M), is defined by the identity on the O-cells and for the
l-cells f : C — D as /C? : C — D and the 2-cells, a : /C — 9C as the image under F of a®.
This definition gives KLz (Bicomod”™(90)) as the image under ® of IntCat®(9), see Section
3.3.2.

1) G : Comon™” (M) — Bicomod(9M), is defined yet again as the identity on the O-cells and
for the 1-cells f? : C — D as ‘D : C — D and for the 2-cells, a : /D — 9D as the image under
G of a®. This definition renders KL;(Bicomod(91)) as the image under ¥ of IntCoCat(90),
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see Section 3.3.2.

The relation between the alternative method suggested as before and the bifunctors developed
in Section 3.3.2 can be understood by the following commutative diagram of locally full and
faithful bifunctors, defined as the identity on 0-cells,

KLp(B)

KL(B)
M(B)

3.3.3 Wreaths in IntCat (1)

In this section the composite 2-functor Comp 4 : KL(KL(.A)) — KL(.A) is used in order to get
the explicit form of the Kleisli objects corresponding to the wreaths in KL(A). In general, these
wreaths will come from monads in the domain 2-category M(B’) of the locally full embedding
bifunctor F, see Section 3.3.2 . Then through the 2-functor Comp, the composite monad will
serve as a Kleisli object, first in the 2-category KL(.A) and then, in the domain 2-category M(B')
as already explained.

3.3.3.1 Kleisli Objects in IntCat(90)

Above, the bifunctor ¢ : IntCat — KL(Bicomod(9)) was constructed, which is a locally full
embedding. The image of a monad (f, u,n’), over (A, C), under this bifunctor is the following
wreath

A),
Cf (Cf':](/fl) Cﬁ/\f)a
Cch,u) ff Aff
C'Ocn’) - Lf'AC) . (3.26)

(2(4,C), 2(f), 2(u), @(n")) = ((C,
(
(
(

Therefore the Kleisli object for the wreath ®(f, u,n’) is given by the composite monad
over C'. This composite monad is, in particular, an internal category because it is a 0-cell in
KL(Bicomod(9M)), see Remark 3.3.1.1. The explicit form of the Kleisli object is (C,C/Oc A, u°,
(C10cn!) -1y - Ac) and pf : C/OcAOC/OcA — C/OcA is given, according to (2.31), by

(Cf80ema) - (((CT0cu!) - 1p - AY) D A) - (C'OcC!Oema) - (C/Oc((C/Ocf1) -ty - oar)OcA) .

This is nothing but the morphism m; in (3.9). The complete internal category structure is
precisely the one defined in Section 3.2.2.1, as expected.
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3.3.3.2 CoKleisli Objects in IntCat(901)

In order to get the coKleisli objects in IntCat(90), we use in this section the bifunctor & :
IntCat®(9) — KL(Bicomod®(91)). The 2-category IntCat®(9)1) has been used here be-
cause a monad in it defines a comonad in IntCat(91), through the duality. The bifunctor disa
locally full embedding, hence by using it we can obtain the coKleisli objects in IntCat(9).

Let (g,d,e%) be a comonad over (4,C), its image ®(g,d,e?) renders the following wreath in
KL(Bicomod®(9M)) :

(2(A,C), 2(9), 2(3), 2(e7)) = ((C, A),
(°C,(:0c°C) - 944 - %5),
(609C) - 9y, - yyA(”
(690c°C) 1y - Ac) (3.27)

Therefore the coKleisli object for the wreath &)(g, 6,€7) is also given by the composite monad
over C, which is an internal category and it is explicitly given by (C, AOc?C, u¢, (e90¢9C) 14-Ac))
and u¢: AORCO-AQC — AORYC, according to (2.31), is

(ma0c?C) - (AQc ((8°0c°C) - %1y -99A¢)) - (a0 COC) - (ADc((9:0¢°C) 91, -255) 0c°C)

This morphism is the same as m, in (3.23). The complete internal category structure is the same
as the one given in Section 3.2.3.

3.3.3.3 Kleisli Objects in IntCoCat(90)

The procedure developed for the both of the previous examples is extended to the case of
cofunctors. This procedure can be applied to this case also because of the existence of the
bifunctor ¥ : IntCoCat(9) — KL(Bicomod®(91)). Therefore, if there exists a monad
(f.u,m7), over (A,C), in IntCoCat(9), its image U(f, u,n’) renders the following wreath in
KL(Bicomod(M1))

(\I/(A7 C)’ \I/(f), \I}(,U,), ‘I’(Uf)) = ((C> A)’ (fCa fl)) fCﬁA " s fcﬁA ' 77f) . (328)

The Kleisli object for the wreath ¥(f, u,n/) is given, yet again , by the composite monad over
C. This composite monad is (C,/COcA, u¢,’“pa - n’), where u is given by

('[CDcTIIA) . ((/CﬁA ' [L)DCA) : (fCDc/CDcmA) . (fCDcf]DCA) . (329)
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As mentioned earlier, the conclusion that IntCoCat () admits Kleisli objects is one impor-
tant result obtained with this procedure.

3.4 String Diagrams

In Section 3.2.1 the Sweedler notation was explained in order to use it as a tool to compute
with morphisms in a monoidal category (9%, ®, /). In this section, another tool to compute with
morphisms in a monidal category is explained, the so-called method of string diagrams. Due to
Remark 1.5.1.1, that a monoidal category can be seen as a special case of a 2-category, the tool
of string diagrams applied usually to 2-categories and bicategories, can also be used in monoidal
categories. In the general case, the n-cell notation for a 2-category, used so far in this thesis, is
Poincare dual to the string notation.

The topological background on which this technique relies on will be omitted for the sake of
brevity and this thesis will only focus on the operational description of the method. The refer-
ences that are closer to the notation and depiction of diagrams are [4], [14] ,[17] . We start the
operational description by giving examples of this particular representation of morphisms in the
bicategory Bicomod(9).

Let M and N be C-comodules, then we represent the following morphisms using string dia-
grams as follows

M M M MNoM
;

Ly = , f=19 g f= . fOch= 1/ h
g

M N i N N

For a comonoid (C, A¢,€), we have that the induced comultiplication A¢ is depicted as

C

and its coassociativity as
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For a C-comodule (M, %pyy, p"f,,), the coactions are drawn as

M M

Cx~ -
f’ﬁ #Wpi}
cC M M C

For the morphism ¢; : A/OcN — M/O./N given by the commutative diagram in (1.13), the
corresponding string diagram is the following one

M N
M/ IN

There is one important property that needs to be highlighted because it will appear in all
the future calculations. This property is related to the equalizer property of MUcN under the
parallel morphisms M ® “py and p§; ® N, for C-comodules M and N. This property is drawn as

CﬁM(“‘ : (3.30)
cC N

If M is still a C-comodule and N is now a D-comodule, along with a comonoid morphism
Jo: C — D, then this equality can be translated, for the right D-comodule (M7, (M ® fy) - %),
to
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MJ N M/ N
—xf)ﬁ} Por—
- - - Lj- B

fo

M/ D N M/ D N

Finally, for a monoid (A4, m4,uy4) in M, the morphisms m,4 and u,4 are represented by

A A C

UA
mA

Just in the same way as we did for the Sweedler notation in Section 3.2.1, we omit further
details and without further ado we proceed to show the usefulness of the method of string diagrams
in action.

3.5 Binatural Maps and Adjunctions in IntCat(90)

This section is based on [10]. In [25], there are two equivalent definitions for an adjunction L 4 R,
the first one is through the existence of a unit and a counit and the other one through the bijection

Home (A, RB) = Homp(LA, B) | (3.31)

for all A in C and B in D. This requirement can be interpreted in terms of internal categories
as follows. Consider the adjunction (2.11), for the Kleisli category Cr, then as above, this gives
a bijection Hom¢(A', FB') = Home, (A, B'). On the other hand, in the previous sections, the
Kleisli object for a monad (f, 4, n’) over (A4, C) was found to be (C,C/0O¢A), hence a compari-
son between the object of morphisms C/CJ-A and the class of arrows or morphisms of a Kleisli
category Homc¢(A', FB') can be given. This provides an insight in how to manipulate adjunctions
within internal categories.

Take an adjunction [ - 7 in the 2-category IntCat(90), as in (3.1), then the left-hand side
of (3.31), can be interpreted as D"z A and the right-hand side as B0p!C. In order to get the
complete translation of this classic requirement for classical categories in terms of internal ones,
the following definition has to be stated.
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Definition 3.5.1. Let | : (A,C) — (B,D) and r : (B,D) — (A,C) be a pair of internal
functors. Then a D-C'—bicomodule map

6: D'0OcA — BOp'C (3.32)

is said to be binatural if and only if the following diagrams commute

*'DrD A
BOcA 2", BO,D'OcA -222%. o, BO,iC (3.33)
DﬁEDcA
DDDBTDc‘A mgOp!C
DOpr0cA
D¢ AQpA 5> D' A g BOpC
) 5¢ u
DO ADCA —<22 B0 OO ADeC 22282lBeh00C pey By, Ol (3.34)
D"Ocma m%DD[C
DrOcA BO,C

0

With this definition at hand, the requirement for an adjunction in IntCat(90), c.f. (3.1), can
have an equivalent characterization resembling that of (3.31).

Theorem 3.5.2. Let | : (A,C) — (B,D) and r : (B,D) — (A,C) be a pair of internal
functors. The adjunction | 4 r takes place if and only if D'OcA = BOpR'C through binatural
maps of D-C'—bicomodules.

Proof:

Suppose that [ 47 is an adjunction. We claim that the binatural isomorphism is given by

0 = (mpOp'C) - (0plhOp'C) -2 - (D'0ppS) : D'OcA — BOp'C (3.35)

and its binatural inverse is

07! = (D'Oemy) - (D"OerOen) -2 - (Pe0p'C) - BOp'C — D'OCA . (3.36)
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That 6 and #=! are D-C—bicomodule maps follows by the respective bi-colinearity of each of
their composite morphisms. The rest of the prove is done by using string diagrams. First, the
binaturality of 6 is proved by checking the commutativity of the diagrams, (3.33) and (3.34). The
proof starts by translating the upper-right branch of the commutative diagram (3.33) as a string

diagram:
BT

’_\

Ly

~Dr
PB

uF---

A

mpg

mp

Ly

- - = = Ll

Dll

[ YA

This last string diagram is the one corresponding to the left-lower branch of the diagram (3.33)
as it was required. In the first equality of the previous string calculation the associativity for mpg
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was used. The second equality follows by the naturality of £. In the third equality, the bifunc-
toriality of the cotensor product along with the associativity of mpg were used. For the fourth
equality, the multiplicativity of [; was used. Finally, for the fifth equality the right C-colinearity
of m 4 was used.

The next string diagram shows the commutativity of the second reqiirement (3.34) for the
binaturality of 8

Dr A A DA A
Dr A A - .
o | e D% —V
—-PA P4
N ) ub---f-------1 U bE-=--f---=---1 U
SO I 15C |
ce 0% Lo__
o ) o l; \ 4 “
byb---f--qu l;u/fl ®l;
lolb 0l1 —-——lLl
l
% up _ l1e A _
mpg mpg
mp mp
mp mp
B ic B ic
DA A
——\ﬁf{
L
ub------4---4u
cEe 1o e/, —
mpg
mp
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In the previous string calculation, the following steps were carried out. In the first equality,
the functoriality of the cotensor product along with the equality ug - ly = [; - us were used. In
the second equality, the multiplicativity of [; was used. In the third equality, the unitality of
u4 was used only. In the fourth equality, the associativity of mp and the multiplicativity of [;
were used one after the other. Finally, in the fifth equality, the right C-colinearity of m 4 was used.

The binaturality of #~! is proved by a mirror reflexion of the proof just given and by renaming
the involved morphisms, i.e. by changing [; for r;, € for n, mpg for m4 and so on.

The proof for the equality 6 - 7' = 1pg,:c starts by translating the left-hand side off the
equality using string diagrams:

B lC B lC D

'OB/_ ﬁB(_
te F-----¢,

by F==----1 Lr Ly F=-—=m=--4lr

T @ o7

719 o7 r e o7 .

\ / . ‘”—\PA

~PA L
ma u F------4---4u
~C
ﬂPA u F--- S
= 1 = € o ol ol =
L r-—---- ---1 Y
lm,
£ o[ £ e l
1
mp
mp ma
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B ‘C
B ‘C
= = - = L’,
oy | e
________ Ll
[T 0’77
t D~lr ~C
PB PA [D}lr -——\lpﬁ
Lo - _ lLt
L
‘mpg
mpg
B lC
B '‘C B I
I -~
ool 8
L __ - lbf
eloe o lim ug
mpg mg
B ‘c B ‘C
meg
B ‘C

This string calculation was performed as follows. In the first equality the right C-colinearity
of ms was used. In the second equality the multiplicativity of m 4 and the associativity of mp
were used at once. In the third equality, just the functoriality of the cotensor product was used

- to move the morphisms up and down. In the fourth equality, the naturality of ¢ was used. In
the fifth one, the left C-colinearity of 1 was used instead. In the sixth equality, the property in
(3.30) was used. The seventh equality follows by the coassociativity of Ac and the functoriality
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of the cotensor product, which allow us to move the strings. In the eighth equality, the triangular
identity associated to the left adjoint { was used. In the ninth equality, the property (3.30) was
used yet again. Finally, in the tenth equality, the unitality of ug was used.

The proof of the equality ~! - 6 = 1p-rj.a can be performed by a mirror reflexion on the one
just given and by renaming the involved morphisms as before. Therefore, for this proof one uses
the multiplicativity of r;, the naturality of n and the triangular identity associated with the right
adjoint r.

Conversely, suppose that there is a D-C—bicomodule isomorphism 6 : D'OcA — BOp'C
with inverse #~!. The induced unit and counit for the a posteriori adjunction are defined as

follows:

n = ma- (uaredcA) 07" (upledp'C) -y - Ac:C — A, (3.37)

e = mp- (BOpuply) 8- (D'Ocuare) tr-Ap:D— B . (3.38)

That » : nC — Ais a C-bicomodule morphism follows from the fact that the composition
t - A¢ can be mapped, using the functor "F to the following C-bicomodule morphism ™ - "Ag;
the composition 67! - (uplydp'C) can be mapped through the functor /", to the following C-
bicomodule morphism, "8~! - ("(ugly)Op'C); the previous two compositions can be composed also
with the following C-bicomodule map m, - (uam00cA) which gives the definition of n. That
e:"D — B is a D-bicomodule map follows in the same way.

Before going into the proof of the naturality of 7, the string diagrams for the binaturality of
6~! have to be drawn. For (3.33) and (3.34) we have
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B A
L ~C
—-~PA
{
B ‘A \ B B lC
_ ’CﬁA F- -
ll [ ] mB
0—] = ) B )
| s 0 (3.39)
" T)’LA 9—1
D A
DT A
DT A

respectively. The last string diagram will be used not in this form but the one after composing
with m, - (uaro0cA), which results in the following equality of string diagrams

B B ‘C
R B B €
0—1
SR 5
-1
T 1e To® 9
T
uay ’ (3.40)
Ua
ma
m 4
ma
A
A

With these string diagram equalities at hand, the naturality of n can now be proved.
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In the previous string calculation, the following steps were carried out. In the first equality,
the definition of 7 was taken. In the second equality, the property (3.30) was used. In the third
equality, (3.40) was used. The fourth equality follows by the multiplicativity of {; and the uni-
tality of u4. In the fifth equality, the multiplicativity of [, and the functoriality of the cotensor
product to move strings up and down were used. In the sixth equality, the first requirement for
the binaturality of 67!, (3.39), was used. In the seventh equality, the associativity of m,4 along
with (3.30) were used. Finally, in the eighth equality, the definition of n was applied.

The naturality of € is proved by symmetrical steps as the ones carried out.

As far as the triangular identities go, the one associated with the left adjoint [, namely elg*lin =

1, = ugly, is proved as follows. Applying the definition of the unit n and the counit ¢ in terms of
6 and 67!, we start by
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C C C
Ac ¢ ugly
Pop |
b . = = ® 1LBlO .
uply up
mpg mp
B B B

The first equality follows by the unitality of u4. In the second equality, the multiplicativity of
[, and the associativity of m4 and m g were used. In the third equality, the second requirement for
6 being a binatural map, (3.34), and the left colinearity of upz were used. For the fourth one, the
first requirement for the binaturality of 6, (3.33), was used only. For the fifth equality, the right
colinearity of u; and the unitality of u, were used. For the sixth equality the multiplicativity of
[; and the associativity of mpg were used. For the seventh, the left D-colinearity of 6 was used.
For the eighth equality, the left colinearity of u; and the coassociativity of A were used. For the
ninth equality, the left D-colinearity of #=! was used only. For the tenth one, property (3.30) was
used. For the eleventh equality, the unitality of us and the fact that 6! is the inverse for 8 were
used. For the twelfth equality, the fact that ly is a comonoid map along with the left colinearity
of up were used. For the last equality, the unitality of ug was used.

The other triangular equality, the one associated with the right adjoint r, is done symmetri-
cally as this one. This concludes the proof. O

3.5.1 Alternative Proof of the Characterization of Adjunctions

In [6], G. Bohm suggested another proof of the characterization of adjunctions in IntCat(90)
using the locally full embedding bifunctor ® : IntCat(9t) — KL(Bicomod(9)). This proof
requires the following introduction.
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Let B be a bicategory, and consider the following pair of 1-cells in KL(B)

(3.41)
(A f) =—=(4',h)
(L)
In particular, [ is a 1-cell in B. Suppose further that in B, k is a right adjoint to [,
(3.42)

A

with unit v : 14 — kl and counit ¢ : [k = 1. Then there is a bijective correspondence
between adjunctions ({, p) - (r,%) and isomorphic 2-cells

6: fr— kh, (3.43)

satisfying the following equalities
foulr = ku"o (khCh)o (kgkh)o (vfkh)o f6 , (3.44a)
kubobh = Goulro fy . (3.44b)

In this section Theorem 3.5.2 is restated and reproved using the above characterization of
adjunctions.

Theorem 3.5.1.1. Let | : (A,C) — (B,D) and r : (B,D) — (A,C) be a pair of internal
functors. The adjunction | 4 r takes place if and only if D'OcA = BOR'C through binatural
maps of D-C—bicomodules.

Proof :
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The bicategory B is taken as the bicategory Bicomod(91). Then, due to the locally full

embedding ® : IntCat(91) — KL(Bicomod(9M)), constructed in Section 3.3.2, an adjunction

(3.45)

r

(4,C) (B,D) ,

in IntCat(901) can be taken to be an adjunction in KL(Bicomod(90)),

(3.46)
(D’"‘¢1‘)

(D, B)
(CL.¢1)

On the other hand, C! 4 'C in Bicomod (), with unit ¢, - A¢ : C — C'O¢'C and counit
lp - %' '}COcCY — D, where ¢ : CO,C — C is an isomorphism.

Then according to [6], there is a bijective correspondence between adjunctions (C',¢;) -

(D", ¢,) in KL(Bicomod(91)), or because of ® between adjunctions [ 4 r in IntCat (1), and
isomorphic 2-cells

6: D'O-A — BOpR'C

satisfying the following equalities in Bicomod(907)

6-(D'Ocma) = (mpOp'C)- (BOp(l - §)0pBOp'C) - (BOp'COc(l: -+ ¢ - %54)0p'C)
-(BDDICD(;ADc'(Ll . Ac)) . (HDcA) , (3.47&)

(ms0p'C) - (BOcH) = 8- (D'Toma)- ((D'Dery) - o] - %85)0cA) . (3.47b)

These two equations are equivalent to the binaturality requirements for 6 in (3.33) and (3.34),
respectively. O
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3.6 Kleisli Objects Induced by Mates under Adjunctions

The following construction is based on [18]. Let

(3.48)

(B,D) , (A,C) (B',D")

be a couple of 2-adjuntions in the 2-category IntCat(9) and also let (hy, ko) : (A,C) — (A, C")
and (k1, ko) : (B, D) — (B’, D) be two internal functors. Then, because of Proposition 3.1 in
[18], there is a bijection between the 2-cells, A : I'h — kl and v : hr — r'k. This bijection is
given through the following 2-diagrams

Loaren

(A,C) (A, 01— o) (3.49)
/ “\ \“/
1(5.0) D) ’
U9 _A0) (A, C" (3.50)
\“/ / “\
l(8',01) D)

If the pasting operation is carried out according to (2.22), then this bijection looks like
A— r'keor’ Aron'hr and v — €'kl o l'vlio l'hn.

Consider an adjunction ! 4 r with the same domain and codomain (A, C) for the second
adjunction in (3.48) and for the first adjunction consider instead the composition of adjunctions
Il 4 rr, with unit and counit r1nly * n and ¢ * liery, respectively, see [25]. In this set up, take
h=1c) and k = 1(,4 ¢)- Finally, if the right adjoint i is part of a monad R = (r, ¢, 7") then the
bijectivity in (3.49) gives a natural transformation ¢ : { — I, out of p : rr —> 7.

On the other hand, if the first adjunction is taken now as the identity adjunction on (A4, C),
and for the second one the same adjunction | 47 as before, then the bijectivity in (3.49) gives a
natural transformation €' : | — Lia,c), out of 0" : 14 ¢y — 7. This procedure can be summa-
rized, according to [22], in the following
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Proposition 3.6.1. Let r : (A,C) — (A, C) be an endomorphism that is part of a monad, i.e.
R = (r,u,n"), and let | be the left adjoint of r. Then there is a comonad structure induced on [,
under mating, i.e. L = (I,6,¢"). The explicit formula for the comultiplication and the counit is
6 = elgly * lyploly * Lyrinly * Ly and €' = < x 110" respectively, where € and n are the counit and the
unit of the adjunction, respectively. This type of adjunction is denoted by L - R. O

Note: This proposition was written using the coopposite dual principle over the corresponding
proposition in [22].

With an adjunction of this type, there are two induced internal categories, according to the
previous sections, ((CTO¢ A, C)m,,u,) and ((AOC'C, C), my, w), the Kleisli and coKleisli objects,
respectively. This section finishes with an adaptation of Theorem 2.14 in [22],

Theorem 3.6.2. Let L. 4 R be an adjunction over (A,C), where L = (l,6,€') is the comonad
induced by mating the monad R = (r,u,n"), then there ezists an internal isomorphism between
the induced Kleisli and the coKleisli objects, that is to say, (C"OcA,C) = (AQC, C).

3.7 Example

See [10]. In this section the monoidal category that will be used to give an example of adjunctions
is the monoidal category (Mod%?,®g, R), see Section 1.4.1. In this section the tensor product
®p will be taken unadorned &. Let us make the following

Definition 3.7.1. Let A be an R-algebra. An A-coring twisting datum s

(3.51)

(D—=c, 9) ,

where, according to 1.4.1, C comes with a coring structure over A, (C,Ac,ec) and D is an A-
coring (D,Ap,ep). Alsol and r are A-coring morphisms, i.e. morphisms of comonoids in 4 M 4.
Finally, 8 : D' — "C is an isomorphism of D-C—comodules.

The definition given above is the same as an adjunction | 4 r with domain (C, A) and codomain
(D, A), in IntCat(Mod%), where the bicomodule property is equivalent to that of the binatu-
rality.

The coring twisting datum in (3.51), through the adjunction [ 4 r, induces a Kleisli adjunction
from (C, A) to (A,; ®4 C, A), which in turn, induces an A-coring twisting datum as follows



106 3.7. Example

(3.52)

(Co=—=c, 7)

where [ = (ep - 071 ®4C)-Ac and 7 =0 -r and § = 1. The A-bimodule Cy is the coring C, but
with twisted structure given by

Al = (0-1®40) Ac (3.53a)
el = ep-07". (3.53b)

In the same way, the coring twisted datum in (3.51), through the adjunction [ 4 r, induces
a coKleisli adjunction from (D ®a4 A, A) to (D, A), which in turn, induces an A-coring twisting
datum as follows

(D—=7", ¢)

where the coring D? is the coring D with the following twisted structure

A = (D®Rs071-1)-Ap (3.54a)
el = ec-0. (3.54b)

The process of inducing twisted coring structures does not go indefinitely since, as explained in
[20], the completion of a 2-category for Kleisli objects consists of only one step, hence this process
of inducing twisted structures has to stop after one step. In particular, Cz = C and (C)? = C.
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Morita Contexts and Double Adjunctions

This chapter is based on [11]. In this chapter, the category of double adjunctions for a pair of
categories is defined, afterwards the category of Morita contexts on a pair of categories is defined.
Altogether it will be the theoretical basis for the development of an adjunction between these two
categories, given a resemblance to the interaction between single adjunctions and monads. This
resemblance will finally lead us to a Beck-type theorem at the end of this chapter.

4.1 Double Adjunctions

In this section, the category of double adjunctions is given, this will be the first and one of the
most important definitions for the whole of the chapter. Without further ado, let A and B be
two categories, the objects of the category of double adjunctions over A and B, Adj(A, B), are
defined as follows

(4.1)

A
R
L,
Ry
%
B

where the L’s and R’s are adjunctions, the shorthand notation (£, L, 4 R, Ly 4 Rp) will be used
quite frequently. The morphisms in this category are F : (£, L, = Rq, Ly 4 Ry) — (L', L
R,, Ly, 4 Ry), where F': L' — L is a functor such that the following diagram commutes

107
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(4.2)

The respective diagram for the L’s is not required to commute, but there exist natural trans-
formations

a = (g°FL)o(Lan'®): Ly — FL, | (4.3a)
B = (FLy) o (L") : Ly — FL (4.3b)

such that the following properties hold

(Rea)on® =n"* |, €*F = (F¢%)o(aR)) , (4.4a)
(ReB)on® =n" ,  &'F=(F") o (BR;) . (4.4b)

4.2 Morita Contexts

Let A and B be categories, then the objects of the category of Morita contezts, denoted by
Mor (A, B) are defined as follows

(A,B,T.T,ev,év) , (4.5)

which is a short notation for monads (A, u*,n*) and (B, u®,n®) over A and B, respectively. The
functors T' and ’f, on the other hand, deserve a detailed look. The functor T : B — A is called
an A-B bialgebra functor provided the natural transformations A : AT — T and p: TB — T
fulfill the following requirements



Chapter 4. Morita Contexts and Double Adjunctions 109

A A
AAT —22 s AT T—"T AT (4.6)
A A h A
| AT ————T T

for A\: AT — T, and for p: TB — B

B 7B
TB~—*__ TBB TR~ T (4.7)
f
E p pB p =
|
| T<—7—TB . T
F

Last but not least, the compatibility condition

ATB—22—1Tp (4.8)
Ap P
AT T

is also required.

A natural transformation o : T —— T", such that the following diagrams commute
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AT AT
A A
T——T"

4.2. Morita Contexts

TB—2E 7R (4.9)
p o
y—

is called an A-B bialgebra morphism.These definitions are the ingredients of a new category called

AFB.

In a similar fashion, the functor f : A — B has to be a [3-A bialgebra functor through the
natural transformations A: BT — T and p: TA — T.

Finally, the natural transformation ev : TT —> A has to be an A-A bialgebra morphism and
el : TT — B a B-B bialgebra morphism along with the requirement that the following diagrams

L

evT 4
AT 3 T

FIT —=—7A

&T P

~)

>)

TBF —2— 7T (4.10)
oT ev

T —= A

~ T ~

TAT T (4.11)
T év

TT B

ev
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commute, The morphisms for this category are

¢ = ((placp279031¢4) : (Aa BaTa ’]/;7 ev)éb) E— (AI) B',T’,?',ev', éi)l) ) (4'12)

where the definition of each of the ¢’s goes as follows, ¢; : A — A’ is a morphism of monads,
that is to say, it is a natural transformation such that the following diagrams commute

AA—2 L pp (4.13)
1a
“A ”Al 7 T)A,
A — A A - A

where ¢ x; is the Godement product as in (1.23). In the same way, ¢, : B — B’ is a morphism
of monads over B.

Remark 4.2.1. A morphism of monads ¢ : (F,u",n") — (F',u",n"') over the category C,
corresponds to the 1-cell (1¢, ¢) in the 2-category Mnd(;Cat), see (2.18).

The natural transformation @3 : T — T” has to be a morphism @3 : T — ,, T, in 4Fp,
i.e. the following diagrams commute

A I3
AT —2— AT TB—2"—>TB (4.14)
A AT o T'B'
1~ 1~
T—0 T . T——T

In a similar way, ¢y : T — T’ has to be a morphism ¢y : T — Wf’m in gF4. The final
requirement for the morphism ¢ = (@1, s, ¥3, 4) is the commutativity of the following diagrams



112 4.3. Adjunction between Mor(A, B) and Adj(A, B)

Tf e T//fv T\T pares ff/Tl (4.15)
A Y1 AI ’ B w2 B/

4.3 Adjunction between Mor(A4, B) and Adj(A, B)

4.3.1 The Left Adjoint

In order to construct the left adjoint, a shared codomain category for the a posterior: double
adjunction, corresponding to any given Morita context, has to be constructed. Due to the fact
that the construction of this codomain category is lengthy, it is to be done on its own. Let
(A,B,T,T,ev,év) be a Morita context. The definition of the FEilenberg-Moore category for a

Morita context

(A, B)AP) (4.16)

goes as follows. The objects of this category, the so-called Eilenberg-Moore algebras (for a Morita
context), are

((Ma AXM)a(N> BXN);Uyw) ) (417)

such that

i) (M, %) is an object in A4,

ii) (N,Bxy) is an object in B? |
iii) ¥: TN — M is a morphism in A4,
iv) w: TM — N is a morphism in B2,

and they fulfill the following requirements:
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T8

TFM —— AM TBN — > TN (4.18)
Tw Ars oN v
TN — Mo TN ——— M
and
FrN —X— BN FAM g (4.19)
Ty xn 2y
TM—= N M — N

The bar notation over morphisms will be omitted whenever is possible in order to avoid compli-
cated expressions.

The morphisms for the category of Eilenberg-Moore algebras are described as follows:

(71§) : ((Mv AXM)) (Nv BXN)’va) - ((MlvAXM’)v (N,v BXN’)vﬁ,am/) ) (420)

such that

i) f: (M, *n) — (M',“xpr) is a morphism in A4,

ii) g: (N,Bxy) — (N',Bxn/) is a morphism in B

and also they fulfill the following requirements:
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TN —2 TN M —L s T (4.21)

-~

The short notation (M, N) for an object in (A, B)(*? proves to be helpful. The identity mor-
phism for an object (M, N) in (A, B)“®) is 1 n) = (1m, Ln), as expected. The composition of
morphisms (f’,¢’) - (f,g ) is done componentwisely, i.e. (f'-f,g - g).

Once the Eilenberg-Moore category for a Morita context has been described, the definition of
the left adjoint functor

I : Mor(A, B) — Adj(A, B) , (4.22)

can be given without further ado. Over objects, it is described as

T(A,B,T,T ev,év) = (A.B)*B) p* 4 ue Db 4 U?b) . (4.23)

This object can be represented as the following diagram

S

(A, B)AB)

Uﬂ.
/
/

A
B

The description of the adjunctions goes as follows. For the first one, D* 4 U%, D* is defined
over objects, X in A, as

D(X) = ((AX, u*X),(TX,2X),evX,5X) , (4.24)
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and over morphisms h: X — X' in A, as

D%(h) = (Ah,Th) : (AX,TX) — (AX',TX') . (4.25)

At this point, the following proposition is needed.

Proposition 4.3.1.1. The functor D* : A — (A, B)4B) is well-defined.
Proof:

First, it has to be checked that ((AX, u*X), (?X,XX), evX, pX) is an Eilenberg-Moore alge-
bra. That (AX,u*X) is in A” is clear since this part of the functcr is the free algebra functor
for the monad A as defined in the proof of Proposition 2.1.2. That (?X,’)\\X) is an object in
BB can be deduced from the property of T being a left B-algebra functor applied to X. That
evX : TTX — AX is a morphism in 4A is deduced from the fact that ev is a left A-algebra
morphism evaluated in X. That pX : TAX — TX is a morphism in BB follows from the
compatibility condition imposed on the B-A-bialgebra functor T evaluated on X. The diagrams
in (4.18) are translated to the following ones

TTAX —22%— AAX TBTX TTX
ToX pAX oTx evX
TTX —AX . TTX —0— AX

Both these diagrams commute, the first one because ev is, in particular, a right A-algebra
morphism evaluated at X, and the second one because this diagram is part of the requirements
for a Morita context, namely the second diagram in (4.10) evaluated at X. The commutativity of
the remaining diagrams in (4.19), can be proved in a similar way. The first one commutes because
it corresponds to the first commutative diagram in (4.11), the second one commutes because it
corresponds to the fact that Tisa right A-algebra functor.

Second, we have to check that (Ah,Th) : (AX,TX) — (AX'.,TX') is a morphism of
Eilenberg-Moore algebras. That Ah : AX — AX'is a morphism in A* follows from the
naturality of u*, and that Th : TX — T X' is a morphism in B2 follows from the naturality of
A. On the other hand, the diagrams in (4.21) are translated to the following ones
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TTh

TTX TTX' TAX TAX'
evX ev X’ pX px’
AX ——— AX' TX —F—Tx'

These last diagrams commute because of the naturality of ev over h and because of the natu-
rality of p over h, respectively. O

The functoriality of D® follows componentwisely from the functoriality of A and T. This com-
pletes the definition of D“.

On the other hand, the definition of U goes as follows. Let (M, N) be an object in (A. B)(45),
then

US((M, “xm), (N, Bxn),5,0) = M, (4.26)

and for morphisms, (f,g): (M, N) — (A, N'"),

vef.g)=f, (4.27)

where f : M — M’ is a morphism in A. The proof of U being well-defined and a functor, is
clear.

Proposition 4.3.1.2. D® and U® form an adjunction, D* - U®°.

Proof:
The unit of the adjunction

nv*P" 14 — UD™ (4.28)

is defined on objects as

A
X X e Ax (4.29)
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The counit of the adjunction

e”V": DU — 1 apyam (4.30)

is defined on objects as

€2°U (M, N) : (AM, TM) 2 (M, N) | (4.31)

Note that (AM,TM) stands, as a short notation, for ((AM, %), (TM, AM),evM,5M). That
the morphism (Fxa7, W) : (AM,TM) —> (M, N) is a morphism in (A, B)(4-B) is proved as follows.
The morphism %y : AM — M is a morphism in A” since this is the definition of the counit for
usual Eilenberg-Moore adjunction, corresponding to the monad A, (2.14). Second, W : TM — N
is a morphism in B”?, by hypothesis. Hence, there remains only to prove the commutativity of the
diagrams in (4.21), but once they are translated they are nothing but the first diagram in (4.18)
and the second diagram in (4.19), respectively, whose commutativity holds by hypothesis.

Now that the unit and the counit have been defined, let us proceed to prove the triangular
identities for the adjunction. The first of them, the one associated to the left adjoint D¢, is

arra ana
eP’V"D%o DV " = 1pa .

In order to prove such a statement, let X be an object in .4, then the composition can be
broken down to

D" X = D*n* X = (An* X, Tn*X) |

and

2" DX = P ((AX, p*X), (TX,3X), evX, pX) = (u* X, pX) |

and finally 1p.x = (14x,15y). The composition now looks like

(WX PX) - (A* X, T X) = (* X - Ap* X, pX - T X) = (Lax, lpy) »

where the equality holds, first because of the unitality of the monad A, and second because of T
being a right A-algebra functor.
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The triangular identity associated to the right adjoint U?® is

UGED v OT)UuDaUa = lUn .

Let (M, N) be an object in A%, then the composition can be broken down to
B PUS(M,N) =00 M =M
and
U“EDQUG(M, N) — Uu.(AYM,E) — AXM ’
and also 1y« (M, N) = lyem,ny = 1. All together it looks like,

Axnm o ntM =1y,

which holds since (M, *x ) is in A% ]

The next proposition is stated without any proof since it is similar to the one just given.
Proposition 4.3.1.3. D° and U® form an adjunction, D* + U°.

The unit and counit of the adjunction Db 4 U® are given for the sake of completeness and
referencing:

'Y = Y :Y — BY | (4.32a)
eP’U"(M,N) = (v,%%y): (TN, BN) — (M,N) . (4.32b)

The functor I' : Mor(A, B) — Adj(A, B) is defined over morphisms ¢ : (A,B.T,TIA“) —
(A", B", T, f') as follows. The image of the morphism ¢ under the functor I' has to be a functor
such that ['(p) : (A, B)4"E) — (A, B)4B). In order to construct such a functor, let us state
the following proposition.

Proposition 4.3.1.4. Let ¢ : (C, F,u*,n") — (C, F', u" ,n"') be a morphism of monads, then
there exists a functor ,H : C*" — C¥" between their Eilenberg-Moore categories of algebras.

Proof:(Sketch)

Define ,H over objects (N, F'ywn) in CF" as (N,F'xn - pn). Define »H over morphisms h
(Nal' XN) - (Nl»b XN’) as

SHR) =h: (N, xn - on) — (N "'xn - o) (4.33)
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O

Resuming with the construction of the functor, I'() is defined over an object ((P,*xp),
(@, Fxq),r,s) in (A, B)A"E) as

F(@)(Pv Q) = ((Pv A’XP ' /‘PIP)i (Q’ BIXQ ! (»OZQ)’T ' 903st ) ()04P) .

On a morphism (7,7) : ((P,*xp), (@, %Xq), . s) — (P, *xp), (@, Bxq), 7', ¢') it is defined
as

—

C()(p.9) = (P, 9) ,

where (P, ¢) : (P,*xp - 01P),(Q.%xq - 92Q),7 03Q,5- 9aP) — ((P',*xp - 01 P), (@', Fxq -
©a@'), 7" 03Q", 8"+ p4 P') is a morphism in (A, B)(4B), The notation — means, for example, that the
underlying morphism p : P — P’ remains the same but not the requirements over it, i.e. the bar
notation corresponds to p fulfilling the requirements for the Morita context (A’, B',T",T', ev', ev’)
while the notation < corresponds to the requirements for the Morita context (A, B, T, T, ev, €v)
instead. Without further ado, let state the following

Proposition 4.3.1.5. I'(y) is well-defined and it is a functor.

Proof:

First, on objects, we need to prove that ((P,"xp- ¢ P), (Q, B’XQ < £2@), 7 3@, s s P) is an
object in (A, B)(4B),

The object (P, 4’xp - 1 P) is in A* because it is the image of the functor ,,, H, see Proposition
4.3.14. (Q,Bq - ¢2Q) is an object in BB because is the image under the functor ,, /. The next
thing to get through is that r - ¢3Q : ATQ — AP is a morphism in A%, This requirement is
translated to the outer most diagram in

ATQ 282 AT/ —4 -~ Ap

1 T'Q (i) p1 P
AQ 0 AT'Q———AP
NQ (i) A p

TQ »3Q re T P
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This diagram was broken down already in order to help to write the argument for its commuta-
tivity.

The diagram in (1) commutes because @3 : T — , T is a morphism in 4F, in turn, (i) com-
mutes because of the naturality of ¢, over r, and finally, (47¢) commutes because r : T'Q — P
is in A%, That s-¢4P : TP — Q is a morphism in B?, is proved similarly.

[t remains to show the commutativity of the diagrams in (4.18) and (4.19). Starting with the
first diagram in (4.18), this is translated to the following one

TTP = AP
T4 P (i) w1 P
T p 317 P T p ev' P AP

Ts (iil)  T's (id) Axp

TQ ¢3Q T r P

which commutes because in (i) the expression c,ogf’P - T4 P is the definition of (i3 * ¢4)(P),
then this diagram corresponds to the first one in (4.15) for the requirements of a morphism of
Morita context. In turn, (i2) commutes because this diagram is the first requirement in (4.18) for
the Eilenberg-Moore algebra (P, Q). Finally, (1) commutes because of the naturality of 3 over s.

Resuming with the second diagram in (4.18), this can be translated to the following one

o B’
l'p2Q
—_—

TBQ TRQ L2 TQ
¢aB'Q (i1) »3Q

Q W  T'B'Q TP, TQ

/Q (i) r

!
TQ ¥3Q Td T P

which commutes because the inner diagrams commute. The one corresponding to (¢) commutes
because the morphism ¢3B'Q - Tpo@ is equal, through the Godement equality of (@3 * 2)(Q),
(1.23), to T'p2@Q - w3 BQ; if this morphism is substituted back in (z), it gives the requirement
(4.14) for a morphism of Morita contexts. In turn, (i7) commutes because of the naturality of
@3 over Z'y, and finally, (44i) commutes because it is the second requirement in (4.18) for the
Eilenberg-Moore algebra (P, Q).




Chapter 4. Morita Contexts and Double Adjunctions 121

The requirements for the diagrams in (4.19) are sorted out similarly.

The fact that the functor I'(¢) is well-defined on morphisms is proved as follows. That P
(P,Axp -1 P) — (P',%xp:-p1P') is a morphism in A4 follows from the properties of the functor

o H. Likewise, q: (@Q,%%q - 2Q) — (@', B'xq - ¢2Q’) is a morphism in BE. Furthermore, take
the first diagram in (4.21) and translate it to

Tq

TQ TQ'
©3Q (%) ©3Q’
TQ—>TQ
T (1) r!
P——— P

The diagram (z) commutes because of the naturality of 3 over ¢, and (i) commutes because
(7,G) is a morphism of Eilenberg-Moore algebras for the Morita context (A’, B',T',T'). The sec-

ond diagram in (4.21) commutes by similar arguments as the previous one. Therefore, (5, E) is a
morphism of Eilenberg-Moore algebras for the Morita context (A, B,T,T,ev, év).

On the other hand, it is clear that I'(¢)(1(pq)) = T'(¢)(1p,1g) = (17:, 1:;) = Ipy(p) Also,
let (P/,q') - (P,9) be a composition of morphisms, therefore T'(0)(p" - p,¢' - q) = (¢ - p,q - q) = ('
q') - (E, E) =T(o)(7.q')  T(p)(P,q) . This completes the proof of the proposition. O

It remains to check the interaction of the functor I'(p) with the right adjoints. In order to do
so, let (P, @) be an object in (A, B){4"5") then

U*-T(e)(P,Q) =UP,Q) =P =U"PQ) ,

therefore U - T'(¢) = U’®, and the same is true about the U%’s. This finishes the proof that T
is well-defined on morphisms. Once this part has been finished, one can proceed to check the
functoriality of I'. Let us start with ¢ = YVaprs) = (14,1p,17,15), then

(14,15, 17, 15)((M, AXM)» (N, BXN)aU»w)=((M, AXM - 1aM), (N, BXN 1pN),v-1pN,w- 15M)
:((]W’AXM)v(N7BXN)vU:w) )

which means that I'(1 4 g 7)) = lpa 5 177)

Consider the following composite ¢’ - . If I is applied to this composite and evaluated at
" " 99 99
((P,""xp), (@Q,B"xq), T, 5), then the following calculation can be performed
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L' o)(P,Q) = ((P, A”XP (@1 01)P), (@, " xq - (93 92)Q),7 - (& - ¢3)Q,5 - (£ ©a) P)
= (P, "xp- <P1P ©1 )a(Q o b @ 02Q), T D5Q - 930, s+ g4 P - g P)
= T(@)((P,"xp @1 P). (Q, % 'xq ¢hQ), - £4Q. 5 ¢4 P)
= T(p)Ne)(PQ) .

Therefore, I : Mor(A, B) — Adj(A, B) is a functor.

4.3.2 The Right Adjoint

This section is devoted to the construction of the right adjoint
T : Adj(A,B) — Mor(A4,B) , (4.34)
of I.

On objects T is defined as

T(‘Ca Lu = Rm Lb . Rb) = (Ru,Lm R[,Lb, R(),Lb-, RbLua R(LEbLa, RbEaLb) . (435)

On morphisms F : (£, L, 4 Re, Ly 4 Ry) — (L', L, A R., Ly 4 R;), T is defined as

T(F) = (Rea, Ry, Rof3, Roat) . (4.36)

According to this, the following proposition can be stated.

Proposition 4.3.2.1. The functor T : Adj(A, B) — Mor(A, B) is well-defined.
Proof
1) Over objects.
The monad (RgLg, [2,6%Lg,nm*) on A is just the monad induced by an adjunction (2.3), and
so is (RyLp, Ree®Ly,n®). That (RyLy, Ree®Ly, Rac®Ly) is an A-B bialgebra functor is proved as

follows. Take the first diagram in (4.6) and represent it with the proposed Morita context, to
obtain
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Ra€®LaRoLy

R, LoR, LR, Ly R.L.R.Ly
RalgRae® Ly Rae®Ly
RaLaRuLb Rac®Ly Rn,Lb )

this diagram commutes because is the result of applying the functor R, to the naturality of ¢* over
e*Ly,. Now take the second diagram in (4.6) and represent it with the proposed Morita context,
to obtain the following diagram

n%Ra Ly
—

RaLb RaLaRaLb

Rae®Ly
RoLy

Ra Lb

this diagram commutes because is the triangular identity associated to the right adjoint R, ap-
plied to the functor L.

These two examples exhaust the arguments required to prove all of the details for the well-
definition of the functor T over objects. Nevertheless, the arguments are given for the reader to
know the procedure of the proof. For example, the two diagrams in (4.7) commute because of the
naturality of e® over € and the triangular identity associated to the left adjoint Ly, respectively.
The compatibility condition (4.8) is fulfilled because of the naturality of €2 over ®. That T is a
morphism in gF4 follows similarly.

On the other hand, the properties required for ev : TT — Aand & : TT — B given by
(4.10) follow from the naturality of ® over €% and the naturality of € over €’ respectively. The
final requirements in (4.11) follow in a similar way.

1) Over morphisms.

Consider ¢, = R,a. The first requirement in (4.13), translates to the following diagram

RolaRalg S2kf% B [ R,FL! = RyL R.L. 2Rl p P RIL = RUL'R.L

a"a a"a
= /
Rae%L, R L,

RoL, R.FL. = R.L.

1

Roa
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which commutes because of the following calculation

Roao Rye®Ly = Rue®F L, o RylaRov
= Ry(Fe“oaR,)L o R,L,R.x

= R,Fe"Ll o RaR, L, o RyL,R,cx
= R\e"™L o R,aR,L] o RyL,R0 .

The first equality follows from the naturality of £€* over «, the second one is a consequence of
the second equality in (4.4a), and the fourth one is the requirement for F' to commute with the
right adjoints, i.e. R,F" = R]. Note that the previous diagram was written down with all the
details, but in the remaining ones we will omit any reference to the equalities over the R’s.

The second requirement in (4.13) translates to the following diagram

I

R.L,

RLL

)

whose commutativity property is nothing but the first equality of (4.4a).

The case 2 = R0, is just a mutatis mutandis of the previous case.

That ¢3 : T — ,,T,, is a morphisms in 4Fp, is equivalent to the commutativity of the

following two diagrams

ReLoRofB RoBRyLy
RyLoRoLy —— RoL,R, Ly RoLyRyLy —"> R/ L} Ry Ly
RaaR;Lé R;L;’Rbﬁ
a / / / / I r/ I
Rae Lb . RaLaRaLb RaEbLb Ra th b
RQE’GLZ R:l&"bLz
/ / ! I
RaLb R.0 RaLb ) RaLb Ra0 RaLb

|
i
|
|
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Let us check the commutativity of the first one;

R.e“L! 0 RaaR.L! 0 RuLoRafl = RaFe®L,o0 RyaR.L, o RaLoRaf
= R, (F¢“LyoaR,)L,o R,L,R.0
= R *FLyoR,L,R.f3 .

The two first equalities are self-explanatory, and for the third and final one the second property
in (4.4a) was used. For the commutativity of the second diagram,

R.e®L, o RLL,R,B o RyBRyLy = RGFe®Lj o R,FL,RyBo0 R,BRyLy
a b a’™b b b

R,Fe"®L} o R,BR, L}, o RyLyRyf
R, (Fe"® o BR,)L}, o R,LyRy0
R.e®FL} o RyLyRy3

= R,B0R,L, .

To derive the second equality the naturality of [ over L,R,/3 was used and to derive the fourth
one, the second property in (4.4b) was used. Finally, for the fifth equality, the naturality of &
over LyRp/3 was used.

That ¢4 : T — ,,T,,, is a morphism in gF, is proved in a similar way.

On the other hand, the first condition in (4.15), translates to the following commutative
diagram

Ra Ly Rpcx R.OBR, L,
R{I,LP)RI)La s Ra LbR;)IJ:l R:IL;JRLL;
Rae®Le RieLy,
R
RaLa Rga RaLa

The next calculation proves its commutativity:

Re®L! o RBR,L, o RyLyRyee = R,Fe®L) o R,BR,L. o R,LyRycx
(Ro(Fe"®Ll, 0 BR,)L,) o RyLyRocx
RueFL o R,LyRyx

R,(e*FL’ o LyRyax)

Ra(a0€’Ly)

Ry, 0 ReeL, .
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The third equality follows from the second property in (4.4b), and in the fifth one the naturality
of e® over o was used. The second condition in (4.15) is proved similarly. O

Now that the well-definition of T has been proved, it only remains to show that Y(1(z 1, +R.,Ls4Rs)) =
1 (£, La-Ra, Ly-R,)- This last equality follows easily from the next calculation, T(1z) = (RulyL,, Rely,,
Roly,, Relr.) = (\gora, 1ry1ys LRoLy» 1R,1, ). For the compatibility with composition, Y(F' - F) =
Y(F") - Y(F), we have that

(Rua”> Rbﬁ”a Raﬂ//a Rb()t”) ; (R;O{/, R[/)ﬂla R:;ﬂ/> R;“"/) : (Ra”» Rb/ﬁa Ra,ﬁ, Rb()/,)
(Ro(Fa' o), Ry(FB 0 3), Ro(F3 0 3), Ry(Fo' o)) .

Therefore, the equality that has to be fulfilled is o = Fa' o a, where o = *FF'L" o Lyn"*. A
similar equality takes place for §”. This equality is verified as follows:

e*FF'L!oLn" = (FeoaR,)F'L)oLmn"
— FEF'L" o aR,F'L" o Ly
— Fe“F'L"oaR.F'L" o LyR.a' o Ly
= Fe®F'Lo FL R, ol Ll o Ly
= Fd&' oFe“L oaR, L o L™

= Fd'oeFL,oL.,n*

~ )
= Faoa.

The first equality follows by the second property in (4.4a), and the third one by the first prop-
erty in (4.4a) for n”*. For the fourth equality, the naturality of o over R, o’ was used and for
the fifth one, the naturality of ¢’* over o’ was required. Finally, for the sixth equality yet again
the second property in (4.4a) was used and the definition of & was applied for the seventh equality.

This completes the proof of the functoriality of T.
4.3.3 The Unit and the Counit of the Adjunction

The two previous sections give the background to propose an adjunction

Y

Mor (A, B) Adj(A,B) | (4.37)

whose unit and counit are defined without any further ado. Let us begin by giving the unit of
this adjunction,

v IMor(a,8) — YT .
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First, in order to define this unit over an object (A, B, T, f) in Mor(A, B),

v(A,B,T,T): (A, B,T,T) — YT(A,B,T,T) ,

YI'(A, B, T, ’f) has to be characterized. From the previous sections

T(A,B,T,T,ev,év) = (A, B)*P) D*4U* D" 4U") .

Therefore, we need to construct the object T ((A4,B)(4:5) D 4 U, D* 4 U®). For the part
involving the monad on A, we have

(UaDa’ Ua&.D"'U“Da’nU“D“) — (A,/,LA,T]A) )

Note that this result resembles the statement in Proposition 2.1.2, that is to say, the monad in-
duced by the adjunction D* 4 U* is one of the monads that constructs precisely this adjunction,
in this case (A, u*,n*).

For the part involving the monad on B,

(UbDb, UbeDbUbDb,nUbDb) — (B,,uB, 7713) ,

in a similar way.
For the part corresponding to T,

(Uan, UaED"U"' Db, Uaé_D"U" Db) ,

where
veD’y = UXTY,BY)=TY ,
UV DY = U V*((TY,AY), (BY,uPY), pY,&0Y) = US(AY ,&0Y) = AY
Ue®V DY = U™ ((TY,AY),(BY,uY), pY,60Y) = U*(pY ,uBY) = pY .
Therefore,

(Uan, UaeD“U“ Db, UaanUb Db) — (r]ﬂ7 )\’p) .

For the part corresponding to i‘\, we can obtain in a similar way

(UI)D(L’ U()SDhUbDa, UI)E.D”U" Da) - (f,’):’ b\) '
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For the part corresponding to ev,

UaED"U"Da
then for X in A,

Uee?" DX = Uoe? " ((AX, 1w X), (T, ), e0X, pX) = U*(eX, 3X) = evX .

That is to say,

bbb
Use?V" D =ev .

For the part corresponding to €v, we can get in a similar way that

(/bED“U“Db — é.’;/' )

All this is summarized by saying that YT'(A, B, T, T, ev,év) = (A, B, T, T, ev, év). Therefore,
the unit of the adjuncion is nothing but the identity natural transformation for Mor(A, B). For
the object (A, B,T, T, ev, €v),

v(A,B,T,T,ev,é0) =1, 57 = (14,15, 17, 17) . (4.38)

In order to define the counit,

¢ : 'Y — 1agjua8)

the value of the functor I'Y has to be determined over the object (£,L, 4 R,,Ly, 4 R,) in
Adj(A, B). In order to do so, the functor T is applied first, to obtain

T(La [Ja = Rm Lb . Rb) = (RaLm R(,Lb, RaLb-, Rb[/aa Rabea, RbEaLb) )

and then the functor T,

T(RyLa, RyLb, RaLy, RoLa, Ra€® Lo, Ryc®Ly) = ((A, B)felefele) Do que Db A UL .
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Thus, for an object (£, L, 1 R,, Ly 1 Ry), the counit can be given as

KLR

(L, Lo 4 Rg, Ly 1 Ry) : ((A, B)(RalesRele) pa 4 ya Db 4 U?)

(L,Ly 4 Rey, Ly 1 Ry)

where K2 is a morphism in Adj(A, B), that is to say, a functor K“* : L — (A, B)(Fala:RsLs),
This functor is defined over objects as

K™Z = ((RoZ, Rye®Z), (RyZ, Rye®Z), Ree®Z, Rye®Z) |

and over morphisms z : Z — Z’ it is defined as

K%z =(R,z,Rpz2) .

This definition should be compared with that of the comparison functor K* defined in Propo-
sition 2.1.4, for a monad (F,u7,n"). Before resuming the description of the adjunction let us
state and prove the following

Proposition 4.3.3.1. K** is well-defined and it is a functor.
Proof:

The functor K'** is well-defined on objects.

That (R,Z, R,z*Z) is an object in A" is proved by translating the diagrams in (2.9) for
the monad given by R,L,. The resulting diagrams commute because of the naturality of * over
€*Z and because of the triangular identity associated to the right adjoint R,, respectively.

That (RyZ, Rye®Z) is an object in BfLs follows by similar arguments.

The commutativity of the diagrams in (4.18) for an Eilenberg-Moore category are fulfilled. For
example, the first diagram, when translated, looks like R,e?Z - Rye®LoRoZ = R,e*Z - R LyRye®Z
and this is nothing but applying the functor R, to the naturality of ¢® over €2Z. The second
diagram is translated to R,e%Z - R,e®LoR,Z = R,e*Z - R,LyRye®Z which holds since it is the
functor R, applied to the naturality of €® over €°Z.

The pair of diagrams in (4.19) are proved similarly, i.e. the first one because of the functor
R, applied to the naturality of €% over €2 and the second one because the functor R, has been

applied to the naturality of % over ¢*Z.

The functor K“* is well-defined on morphisms.
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In order to prove this statement let 2z : Z — Z’ be a morphism in £. Then R,z is a morphism
in ARale because of the naturality of % over z. That R,z is a morphism in B™Le follows in the
same way.

It remains to show that the maps fulfill the requirements given in (4.21). Let us start with the
first one, which translates to R,e?Z’ - RyLyRyz = R,z - R.e?Z. This equality holds because it is

the result of applying the functor R, to the naturality of €® over z. And the second requirement
in (4.21) also holds, because it is the result of applying the functor Ry to the naturality of €* over z.

The functoriality of K*2.

Let Z be an object in £ and 1z its unit, then K**(1z) = (Rulz, Rolz) = (lp.z,lr,z) =
1(r.z,R,2) = lxir(z). Let 2’- z be a composite in L, therefore K*(2'-2) = (Ra(2' - 2), Ry(2' - 2)) =
(Ro?', Rp2') - (Raz, Rpz) = K (2') - K*(z). O

After the proof of this proposition, it only remains to check the commutativity with the right
adjoints. First,

Us K97 = U (RoZ, RyZ) = RoZ

and the same argument can be applied to IR,. Therefore, the counit can be defined as
C(L,L, 4 Ry, Ly, 4 Ry) = KI% (4.39)

The naturality of the counit is proved as follows. Let F : (£, L, 4 Ry, Ly 4 Ry) — (L', L,
R., L, 4 R,). We need to show that the following diagram of underlying functors

T (F)

rY(L) I'Y(L)
¢L! (L
L £ L

commutes.

Since it is a diagram of functors, the commutativity has to be proved for objects and for
morphisms. Let Z’ be an object in £', then
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(TYF-¢LZ' = TYF((R,Z',R.e"Z'),(R,Z',Rye"Z"), R,e"Z', Rye"*Z")
= T(R.a, RB, R.B3, Rea)((R,Z', R.e™Z"), (RyZ', Rie"Z"), Rie" Z', Ry Z")
= (R.Z',R.e"Z'-R,aR.Z"),(R,Z', Rie"Z' - RyBR.Z'),
R.e®Z'- R.BR,Z', Ry Z' - RyaR. Z")
= (R,FZ' R,Fe"Z' - R,aR.Z"),(R,FZ' Ry,Fe®Z' - RyBR.Z'"),
R,Fe®Z' - R,BR,Z', RyFe"Z' - RyaR.Z')
= (R,FZ' Ree®FZ'),(RyFZ' Rye®Z"), Roe® F 7', Rye® F Z)
= (CL-F)(Z') .

In the first three equalities just the definitions of the involved functors are used. In the fourth
equality, R"’s are substituted by the RF’s, and in the fifth equality, the second equalities of (4.4a)
and (4.4b) were used.

Over morphisms, the calculation goes as follows:

(TTF-¢L)z = TYF(R.z Rz)
= F(Ruaa R()Bv R(L/Bu Rba)(_ﬁz—z’ ﬁ,l;;)

= (R'zR )
= (R, Fz RbFz)
= ((L-F)(2) .

This completes the proof of the naturality of the counit.
Let us proceed to prove the triangular identities for the adjunction (4.37). In order to do so,

let us begin with the triangular identity associated to the left adjoint T',

(ToTv=1r . (4.40)

Let (A, B.T, f) be an object in Mor(A, B), by breaking down the composition, we have

FV(A) B,T, j:) = F(].A, ].B7 ].'[‘, Lj“) = T(A,B)(A'B) .

On the other hand,
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(T(A, B,T,T) = {((A, BB D4 U, D4 UY

which amounts to the following functor
U . (A, B)(A’B) SN (A,B)(DUUE’DbUb) ’
where DU = A. Let ((M,*xu), (N, Bxn),v,w) be an object in (A, B){(*B), then
KPY((M,*m), (N, Bxn),v,0) = (UM, N),U%*(M,N)), (UM, N),U* (M, N)),
U’ (M, N) U'e"(M, N))

= ((M,U*("x, ), (N, U°(@, X n)), U (@, PXy)- U (*Xas, 0))
((M? XM))(Na XN)) v, )1

and for morphisms, (f,g) in (A, B)M5),

KDU( ‘g) (Ua( —g‘), Ub(7§)) = (f,g) :

Thus KV = 14 gya.s. All this amounts to the following conclusion,

T(.A,B)(AvB) . T(.A,B)(A’B) = T(A’B)(A,B) )

which is the required equality.

Let us prove the triangular identity associated to the right adjoint YT, namely

YCovT =1y . (4.41)

Let (£,L, 4 Ra, Ly 1 Ry) be a double adjunction, then breaking down the composition, we
have first

VY(L,Lo 4 Ry, Ly A Ry) = v(RoLa, RyLy, RoLy, RyLa, Re® L. Ryc®Ly)

= (lRaLa’ 1RbLb» 1RHL1,7 leLa) .
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On the other hand,

Y¢(L, Lo A Ra, Ly 4 Ry)=T(K?V: (A, B)BeleRsla) pa 4 ye Db 4 ) — (L, Ly 4 Rq, Ly - Ry))
= (U, U*B,UB,U%) ,

where & is the composite

pr—2" . DeR,L, = DUK™L, <~

and similarly for 8. The first component for Y¢(L, L, < Ra, Ly + Ry) over the object Z in £
comes out as

UsaZ= U™V K™ L,Z - U*D*°Z
=U%""""(RaLaZ, Rae®LoZ), (R Lo Z, Rie® Ly Z), Raz®LoZ, Rie®LaZ) - U(Ro Lo Z, RaLy1)* Z)
=U%R.,c*L.Z, Re®L,Z) - R,L.n*Z
= Rue®[aZ - RoLan®Z
=R,1,.. 72

= 1R,L.2Z -

In the previous calculation several definitions given in this section where used. The only equality
highlighted is the fifth one, where the triangular identity associated to the left adjoint L, was used.

On the other hand, 3 = """ K?Y[, o Dbn® = 1g,,. Hence,

Y¢(L, Lo 7 Ra, Ly 4 Ry) = (U%&, U%B,U°B,U%) = (1p, 1., 1RyLy» 1Rl 1RyLa) -

Substituting the components of the composition,

(YRoLas 1RyLys LRaLys 1RyLa) © (LRoLas 1oLy 1RoLys 1RyLe) = (1RoLas 1RyLys LRaLys 1RoLG) -

where the last result was the one looked for in (4.41). In summary, one can state the follow-
ing proposition which holds since the unit of the adjunction (4.37), v, is the identity natural
transformation, see [25].

Proposition 4.3.3.2. (I', T) is an adjoint pair, and T is full and faithful. 0O
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4.4 Moritability

In this section, the necessary and sufficient conditions for the functor K : £L — (A, B)(Fala.fsLs)
to be an equivalence of categories are given, this equivalence renders a Beck-type theorem for a
categorical Morita context. In order to do so, let us begin by giving the following definition which
becomes important in the development of the theory to come.

Definition 4.4.1. Let (L. L, - R,, Ly - Ry) be an object in Adj(A, B). The pair (Rg, Ry) 1s said
to be moritable if and only if the functor K'* is an equivalence of categories.

Also it is convenient to give the following

Proposition 4.4.2. Let (A, B, T, f) be an object in Mor(A, B) and (f,g) a morphism in (A, B)(45).
Then (f,g) is an isomorphism in (A, B)P) if and only if f and g are isomorphisms in their
respective categories.

Proof:

If (f,3) is an isomorphism in (A, B)*B) then so is U%(f,g) = f, since functors preserve iso-
morphisms. Obviously, the same result applies to g.

Suppose that for the morphism (f,3) in (A.B)*®)| f and g are isomorphisms, and let f-!
and ¢! be their respective inverses. Since (f,g) is a morphism in (A, B)?) it fulfills the
requirements given in (4.20) and (4.21). Take the first requirements in each pair, and compose
them as showed

f“l-(AXMf~Af:f~AXM)-/\f‘1 , f_l-(1)'A7’g=f-1))-7"g'1 )

Then 4xp - Af ' = f~1-Axpp and v - Tg™! = f~' -4/, which gives the fulfillment of the first
requirements for the inverses. The same can be done for the second requirements. Therefore,

(F g7 is in (A, B)A8),
O

We continue with the following

Proposition 4.4.3. Let (R,, Ry) be a moritable pair. Then any morphism z in L such that R,z
and Ryz are isomorphisms is an isomorphism.

Proof:

Since R,z and Ryz are isomorphisms in A and B, then, by Proposition (4.4.2)

(Ryz, Ryz) = K¥z .

is an isomorphism in (A, B)“®). Since K* is an equivalence of categories, it reflects isomor-
phisms, therefore z in £ is an isomorphism.
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Let us give, in order to proceed, another

Definition 4.4.4. The pair (R,, Ry) is said to reflect isomorphisms if for z in L such that R,z
and Ryz are isomorphisms, it can be concluded that z is also an isomorphism.

In order to analyse the functor K% : L — (A, B)(flalafels) more deeply, the existence of
certain colimits in the category £ has to be supposed. Let (M, N) be an object in (A, B)4-5),
and consider the following diagram in £,

[Ja Ra [Ja ]\/{ [/a R,a LbN Lb RbIJaM [JbRb[/bN (1)

Lav ePLo M Lyw

LoRatayp|le® LaM et Ly N || Ly Folbxy

LM LyN

This diagram will be referred to as the diagram of type i for the object (or corresponding to)
(M, N). The colimit of such a diagram is a universal cocone like the following one

LyN
Jun

Now if we consider the morphism (f,g) : (M, N) — (M’, N') in (A, B)(flaLa:RsLe) and consider
also the following diagram,

L M (4.42)

LoR,L M LR,y N LyRy Lo M LyR,LyN
LaRaLof LoRaLsg LyRoLaf LyRbLbg
LoR,L M’ L,R,LyN' LyRy L, M’ LyRyLyN'

Lav’ Lyw'

La.RaL"'XMI EOLGMI EbLbN' LbRbLbXNI

LoM’ LN’

a .
YUY J?\/I’N'

JM'N'
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then since (Jyw', j%r, 35,) is @ universal cocone for a diagram of type 1, it is also a cocone for
the very previous diagram. For example, begin with ;2 , - L,loypp = 52, , - €2L,M’, therefore
3%+ Lafaloxp - LaRoLof = 5%, - €L, M’ - LoaR,L,f, and so on.

On the other hand, (f,3) : (M, N) — (M’, N) is a morphism in (A.B)Rele:Rolo) hence the
previous equality can be substituted by the following one 7%, . Lo f-Lo"etexp = j% - Lof-€“L, M,
because f is a morphism in 4%Ls and because of the naturality of ¢* over L,f. This proce-
dure can be continued with all the morphisms involved in the previous diagram. In summary,
(Jawts 38 Lafy 38ne - Lg) is & cocone for the diagram of type I corresponding to (M, N). There-
fore, there exists a unique morphism j, : Jywy — Jpn such that the bottom pair of diagrams
commute

LoRoLoM LoRoLoN LyRyLo M Loy LyN

Lav ebLaM €Ly N Lyw
LQR“L‘IXM e L M ¢ EbLbN LbRbbeN

L M LyN .
L.f - / Lyg
IMN IMN
~.
S~
e I pan LyN’
|
| /
4]]9/
i JM/'NI
Y
']M’N'
(4.43)
The previous procedure allows one to define a functor
J i (A, B)RelaBele) _ p (4.44)

which, over objects (M, N) in (A, B)(Fatafole) and morphisms (f,g) : (M,N) — (M',N') is
defined as

J(M7 N) = Juv , (4.45&)
J(F9) = Ju s (4.45b)

respectively. It is indeed a functor. For a sketch proof, consider 1arny = (1, 1n), then ji 1,
makes the double rectangle commute in a diagram like (4.43), i.e., j1,,1y * Jon = Jen * Lalas and
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so is 15,,,. Therefore, by uniqueness, j,,1y = ls,y. Also, by uniqueness J(f,7) - J(J,g) =
J(TT, 7 - G). Once the functor J has been defined, the following lemma can be stated.

Lemma 4.4.5. Let (ColimF,~;) be the colimit of the functor F : I — C, and consider the
following diagram in C

such that r-v; = s, for alli in I. Then, r = s.
This lemma helps to prove the following

Proposition 4.4.6. The functor J : (A, B)felafole) . [ is left adjoint to the comparison
functor K% : £ — (A, B)(BaLa:RsLs),

Proof .

1) The unit of the adjunction

T]KJ . l(AAB)(RnLa.RhLb) — KLRJ 5

has to be a morphism in (A, B)(fata:Rols) for any object (M, N) in the same category. First,
compute the image of the functor K**J on (M, N)

KLRJ(M, N) = KLRJMN = ((RaJMN7 Ra5a-]MN), (RbJMN7 RbEbJMN), RasbJMNv RbEaJMN) .

Because of this, the definition of the unit n*/(A, N) is the following

n'*'(M,N) = (Rajiy - 1"M, Rojy - 0"N) . (4.46)

This proposal has to be a morphism in (A, B)(fala:Rolo)  that is to say, it has to fulfill the
requirements in (4.20) and (4.21). For example, the first requirement for R,j%, - n°M to be an
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object in Afele is translated to the following diagram

oLaRailyy

RuLoM —222"Y R L.R.LM — RuLaRaJsn
Ralay Rae*Iyn
M R.L. M RoJun

n*M Rajisn

This diagram commutes because of the following calculation,

Roe®Jyun - RaLoRojnn - RaLla)®™M = Rgjpn - Ra€®LoM - Ry Lon*M
= Ra]'/(\l/w ) RalLaM
= Rajzm ’ 1Ra LM
= Rujun: Ra€®LoM -n*Ro L, M
= Rujun- RuLaRaLaXAI n*R,L M
= Rajo - n*M - Feloyy,

where in the first equality, the functor R, was applied to the naturality of €* over ji .. In the
second equality, the triangular identity associated to the left adjoint L, was used. In the fourth
one, the triangular identity associated to the right adjoint R, was used. In the fifth equality, the
property of the cocone was used, in particular, that of ;¢ being a cofork. And finally, in the
sixth equality, the naturality of n® over felay,, was used.

The fact that R,j%, - n°N is an object in Bfes is proved similarly.
On the other hand, the requirement given by the first diagram in (4.21) renders, after trans-

lation, the following diagram

RaLyn® N RaLyRyjfyn
_—

R,LyN RoLyRyLyN Ry LyRyJyun
v Rae®Jpn
M ———z—= RuLoM —— = Rudun

which commutes because of the following calculation,
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Ra€"Juw - RaLyRyjty - RaLen”N = Rgjt. - Ree"LyN - RyLyn®N
Raju - Ralr,N

Rajun - 18, LsN

Rajl - Rag®LoN - 1°RyLyN
Rojun * RaLav - n*RoLyN

= Rojyn 1M -v .

In the first equality, the functor R, was applied to the naturality of ¢ over j¢,. In the second
equality, the triangular identity associated to the left adjoint I, was used. In the fourth equality,
the triangular identity associated to the right adjoint R, was used instead. In the fifth equality,
the cocone property was used, in particular, that of j%, and j¢, being a push-out. And finally,
in the sixth equality, the naturality of n* over v was used.

The requirement given in the second diagram in (4.21), is proved similarly. Putting together
all of this proves that the unit is well-defined.

Let us proceed to show that the unit is indeed a natural transformation. For such a proof, let

(f,9) : (M, N) — (M’, N') be a morphism in (A, B)(Relefsls) then the following diagram must
commute

(M, N) V9 (M',N')

(Ra3han n® M, Roghy 1" N) (Raj® s n®M" Roj® i mP N')

(RaJMN)RbJMN) (RaJM’N’a RbJM’N’)

(Rajfg.Ruisg)
The next calculation shows that the commutativity is fulfilled,

(Raj%mr - m°M' - [, Rojlns PN - g) = (Rajlmi - Ralaf - 1°M, Rejl i - RyLyg - n°N)
= (Rajfg . Ra].lltm ) nan ijfy ) ijﬁ/m : leN) .

In the first equality, the naturality of n* over f was applied in the first component and the nat-
urality of 7° over g was used in the second component. In the second equality, the properties of
commutativity of the map j,, were used.

i1) The counit of the adjunction
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e JKY" — 1,
has to be a morphism in £ for any object Z in the same category. Following the same procecdure

as before, let us first compute the image of the functor JK“? over Z,

JKZ = J((RaZ, Rae®Z), (RyZ, Roe®Z), RoeZ, Rye®Z) = Jp, 20yz = Jiuz -

In order to construct the counit, let us note that (Z,e%Z,£%Z) is a cocone for a diagranm of

type  corresponding to the object (R,Z, RyZ). It is worth to display the cocones to discusss the
statement just made

LoRoLoR.Z LoRoLyRyZ LyRyL R Z LyRyLyRyZ
|

LoRqebZ O LoaRaZ

€@ Ly Ry Z LyRye® 2
LoaRae®Z || LaRaZ

YLy Ry Z|| Ly Ry=t2Z

L R.Z LyRyZ

The map €%Z is a cofork for the first parallel vertical arrows because of the naturality ofof ®
over €2Z. The pair (¢%Z,e°Z) is a cocone for the first push-out because of the naturality ofof &®
over €*Z and it is also a cocone for the second push-out because of the naturality of €® over &' e2Z.

And finally, the map £°Z is a cofork for the right parallel vertical arrows because of the naturalality
of &b over e°Z.

Since (Z,e°Z,€%Z) is a cocone, there exists, because of the property of colimits, a uniaique
arrow, termed €’ which makes the bottom triangular diagrams commute. This unique arrovow is
the definition of the counit over the object Z

EJKZ : JR,Z — Z . (4.4.47)

In order to check for the naturality of the counit, let 2z : Z — Z’ be a morphism in £, tl then
the diagram
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LS (4.48)
EJKZ EJKz/
Z r z'

must commute. This diagram can be doubly embedded in the following one.

L,R,Z LyRyZ

LoRaz LyRypz

Consider the following calculation,

22 jn, = 2.2

€*Z"  LoRyz

€2 3 . LyRez
— EJKZ/ ’jn.z 'j;.Z )

The first equality follows since (Z,¢2Z,€Z) is a cocone for the diagram of type 1 corresponding
to the object (R,Z, RyZ). The second equality follows because of the naturality of ¢* over z. The
third equality follows also because (Z',£%Z’,¢Z") is a cocone for the object (R,Z', RyZ'). And
finally, the fourth equality follows because of the commutative property for the map j,, which in
this case is jg,,.

Likewise,

JK :b _ JK 7l -b
2 €52 Jur,=€"Z" " jrJnz -
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Then if Lemma 4.4.5 is invoked, the following equality must hold independently of j& , and

b
JR.z>

z2-eMZ =7 gp.. .

This is the commutativity requirement for the diagram in (4.48), i.e. that the counit is a natural
transformation.

i11) The triangular identity associated to the left adjoint J.

The foilowing identity has to be proved,

e®Jodn" =1, .

In order to prove it, let us break down the composition evaluated on the object (M, N) in
(A, B)(flala.RoLls) - Birst,

(M, N) = (Rajy - 1“M, Rojby - 1" N) -

Then the functor J applied to it looks like,

L. M LyN
LaRajdyy-Lan® M \ / Lo Rojyn-Lon® N
LaRaJMN JMN Ll)RbJMN .
|
- JnEI (M, N)
TRy l ik, JMN
JR.Inan

On the other hand, the diagram associated to ¢’ J(M, N), reads
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If the last two diagrams are glued one after another, then the resulting diagram can be written
down as

jK/IN j?le
LaM JMN LbN

LaRajfyy-Lan®M K J.JnkI (M,N) LyRojey-Lan®N
L.R,J J LyRyJ
attadMN “a g o MN b Tnin bifthJ mn

But €*Jun - LoRajen - Lan®M = 3% - €*L M - L,n*M = j¢,., using the naturality of % over
j%, and the triangular identity associated to the left adjoint L,, respectively. Likewise, €’Jyy -
LoRsjoy - Len®N = joyy.

This means that the following diagram commutes,

Lo M LyN

There is, though, another morphism which makes the previous diagram commute, 1;,,,. Due to
the universality of the colimit, e’*J - Jn*/ (M, N) = 1,(M, N), as it was required.

) The triangular identity associated to the right adjoint K*“*.

The following identity has to be proved
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KLREJK o 77KJ}(LR — IKLR .

In order to do so, let Z be an object in £, then breaking down the composition we first compute

N"K®RZ = 1" ((RaZ, Rae“Z), (RoZ, Roc®Z), Rue®Z, Ryc" Z)
= (RaJi.. 1" RaZ, Rojp., - "R Z) .

On the other hand,

K™ 7 = (Rye™ 7, Rye™ Z) .

Therefore, bringing the composition back,

K%z g K7 = (Ree’™Z, Ree’  Z) - (Roj%. , - n*RaZ, Roj , - 1P R Z)
= (Rue’™Z - R,j% , -1*RuZ, Ree’* Z - Rojt , 1" ReZ)
= (Rae®Z -n°RoZ, Re®Z - n°RyZ)
= (1r.z,1r,2)

lgtrz .

The third equality follows because (Z,2Z,£%Z) is a cocone for the diagram of type t corresponding
to the object (R,Z, RyZ). The fourth equality holds because of the triangular identities associated
to the right adjoints R, and R,. This completes the proof of the proposition.

O

For the next proposition, the following definition and lemma are needed.

Definition 4.4.7. The pair (R,, Ry) converts colimits into coequalizers, if and only if for any
object (M, N) in (A, B)FelaBole) the coforks,

Rqe®L, M RﬂjX/lN
RyLoR,L M Ry LM —M R T
RaLuRaLaXM
Rycb Ly N R, i
RyLyRyLyN ———= R,L,N MY Ry Jun s
Ry LyBoloyy

are coequalizers.
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Lemma 4.4.8. The following commutative diagram

Roe®Lo M Ralay .
R,L,R.,L.M R,LLM —————— M ,
RQLQR“L“‘XM |
| .
Rai% "M
Rajin | oM

Y
RoJhw

exits, where R,jynv - n*M is a unique arrow.

Proof:

First, faley,, is a coequalizer for the parallel arrows R,e®L,M and R,L,%"x,, since it is a
split coequalizer with the additional morphisms (n®R,L,M,n*M). Since j,, is part of a colimit
for (M, N), R,j%, is, in particular, a cofork for the same parallel arrows. Therefore, there must
exist a unique arrow from M to R,J.y that makes the triangle commute.

On the other hand, according to the following calculation

Ra‘.jx'uv ' naM : RGLGX/\I = Raj;\l/”v ‘ RrLLrJ,RaLﬂXM ' naRaL(LM
Raj®y - Ra€®LaM - 1 RyLoM
Rojun - 1ro LaM

= Raj)t\lm )

where the first equality follows from the naturality of n® over e%ey,,. The second equality is just
the cofork property of R,j5,. In the third equality, the triangular identity associated to the right
adjoint R, was used.

The unique arrow induced by the coequalizer must be then R,j{, - n°M.

A similar statement can be written for R,j%, - n°N.

Proposition 4.4.9. The pair of functors (R,, Ry) converts limits into coequalizers if and only if
J s full and faithful.

Proof:
If (R,, Rp) converts colimits into coequalizers, then R,j2, - nM and R,j%, - n®N are isomor-

phisms, using Lemma 4.4.8, and so is n”* (M, N) using Proposition 4.4.2. Note that this argument
can be reversed, giving the necessity part of the proof. : 0

With all this background preparation at hand, the following Beck-type theorem for double
adjunctions can be stated.
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Theorem 4.4.10. Let (£,L, 14 Ry, Ly, - Ry) be a double adjunction. Then the pair (R4, Ry) s
moritable if and only if the category L has colimits for the diagrams of type 1 and the pair (R,, Ry)
reflects isomorphisms and converts colimits into coequalizers.

Proof:
Suppose that (R, Rp) is moritable, then the adjunction

RL

(A, B)(RaLa»RbLb)

is an equivalence adjunction, hence the unit n*’ is an isomorphism, i.e. J is full and faithful
according to [25]. By Proposition 4.4.9, the pair (R,, Rs) converts colimits into coequalizers and
reflects isomorphisms by Proposition 4.4.3. Then it only remains to show the existence of colimits
of diagrams such as (4.4).

Since K ® is part of an equivalence then it is essentially surjective, that is for an object (A, N)
in (A, B)(RaLabeLb)

K™ Z = ((RaZ, Rat®Z), (RyZ,€"Z), Rag”, Rpe®) = (M, "Loxr), (N, ePoxn), v, w)

for an object Z in £. Consider the cocone (Z,e%Z,€%Z) for the object (R,Z, RyZ), which can be
represented by the following diagram

L,R,L R, Z L,R,LyRyZ LyRyL,R,Z LyRyLyRyZ

LoRac?Z
LoRae®Z||e®LaRaZ

LyRye®Z
ePLyRyZ| | LyRpebZ

" L.R.Z LyR,Z
2z A

(4.49)

If the functor K'“* is applied to the whole of the previous diagram, the new diagram can be
obtained,
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R.LoR,LoRoZ R.L,R,LyRvZ R.LyRyLoR.Z R.LyRyLyRyZ

R*LbRbEaZ

RuLoRaebZ
Rue®LyRyZ| | Ry LyRpebZ

R.LoRae®*Z||Rue®*LaRaZ

R.L,R.Z R.LyRyZ

R.e® R.ebZ

R.Z
(4.50)

Remember that R, stands for (R, _, R,_), i.e. strictly speaking we should have obtained a pair
of diagrams, one for each component.

The object ((RoZ, RoZ), (Ra€%Z, Rye®Z), (Rae®Z, Rye®Z)) is a cocone for this diagram, since
it is the image of the cocone (Z,e°Z,€Z) under the functor K*?. This is the proposed colimit for
the diagram (4.50). In order to show this property, let (M’, N’) be an object in (A, B)(Fala:RsLs)
such that ((M’, N'), (f%,9%), (f* g°)) is a cocone for the diagram (4.50). If the proposed object is
a colimit, there must exist a morphism (k, &) in (A, B)(Rale:Rels) gych that the following diagram
commutes

(ReLo RoZ,RyL R, Z) (RoLyRyZ, Ry Ly Ry Z)

(Rag®Z,Rye®Z) (Rog® Z,Rpe? Z)

(RaZ, Ry Z)
(k,‘k’)
(M'% N')
(4.51)
We claim that
(kK'Y= (/" n*RaZ,g" 1" ReZ) . (4.52)

First, we are going to prove the commutativity of the diagram and the uniqueness of (k, k')
and after that that (k, k) is well-defined, that is to say, (k, k) is a morphism in (A, B)(BeleRole),
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For the commutativity of the previous diagram, let us start with the left triangle.

4.4. Moritability

That

(k k') - (Rae®Z, Rpe®Z) = (f*, g%), is shown in this way

[N RoZ - Rye®Z

= % R,L,Ruc®Z - 1°RyLoRoZ
= [ Ree®LoRoZ  1°RuloRuZ
= f* 1p,LeR.Z

= fo.

In the first equality, the naturality of n* over R,e®Z was used. In the second equality, the fact
that f¢is a cofork was used. In the third equality, the triangular identity associated to the right

adjoint R, was used. As far as k' goes,

¢ n°R,Z - Rye*Z

= 9{7 ' R[)L!)Rbfaz ' anbLaRuZ
9% Roe®LoRaZ - 1) RyLo RoZ

73

=g

In the first equality, the naturality of n® over R,c®Z was used. In the second equality, the
fact that (g%, g®) is a push-out was used. Finally, in the third equality, the triangular iden-
tity associated to the right adjoint R, was used. Following the same lines, one proves that

(k, k') - (RaeZ, Rye®Z) = (f°, gb).

In order to prove that (k, k') is unique, suppose that there exists another pair of maps, (k, k'),
such that the commutativity of the triangles takes place, i.e.

(/% g% =
(f°, 9%
In particular,
fa
g
then,
fa ) naRaZ

A

(k, k') - (Ree®Z, Rye®Z) |
(k, k') - (Rag®Z, Ryc®2) .

= k-R,*Z
k' Rye’Z |

k-R.°Z -n°RoZ =k ,

= kK Re’Z ntR,Z =k ,
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which gives the same definition for (k,k’) in (4.52). In the previous calculation, the triangular
identities associated to the right adjoints R, and R, were used respectively.

Therefore, ((RoZ, RyZ), (Rae®Z, Ry Z), (Rae®Z, Rye®Z)) is a colimit for the diagram in (4.50).
Since K® is an equivalence it reflects colimits, hence (Z,e%Z,¢%Z) is a colimit for the diagram in
(4.49).

In order to finish the proof, it remains to show that (f%-7°R,Z,¢*-n°R,Z) is a morphism in
(A’ B)(RaLuthLb)_

| First, that f*-n®R,Z is a morphism in .A%s means that the following diagram must commute

RoL R 7 Teke™RZ_p 1 R.L,RZ — ekl R L M
Rqe*Z Ralay, .,
R.Z s R,L.R.Z - M

Note that the part corresponding to the action «*sy,, under K**(Z), which is denoted by
K" (Z)Ratay,,, is Rae®Z. The commutativity follows from the following calculation,

RQLGXM’ ) RaLafa : RaLaT]aRaZ

f% Rue®LoRuZ - RaLan®RaZ
= fo
= f*.0°R.Z R.°Z .

In the first equality, the fact that f® is in A%k was used. In the second equality, the triangular
identity associated to the left adjoint L, was used. Finally, in the third equality, the commuta-
tivity of k in (4.51) was used. That g®-n°R,Z is a morphism in A% follows along the same lines.

The first requirement in (4.21) for a morphism of Eilenberg-Moore algebras can be translated

to
RyLyRy 7~k b 1 Ry Ly RyZ —2% L R [N’
Roe"Z v’
R,Z rz " RaleRaZ 7o M’

Note that KRL(Z), = R.e®Z. The commutativity follows from the following calculation
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V' RoLyg® - RoLyn®RyZ = f*- Roe’LyRoZ - RoLyn®RyZ

= f° R.e®LyRyZ - n*RyLyRoZ
= f% R,L,R.e*Z n°R,Ly,R,Z
= fa . naRaZ i RaEbZ )

In the first equality, the fact that (f?, g%) is in (A, B)(RalaRsls) was used. In the second equal-
ity, the triangular identity associated to the left adjoint L, was used and in the third equality, the
triangular identity associated to the right adjoint R, was used instead. In the fourth equality, the
fact that (f¢, f%) is a push-out was used. Finally, in the fifth equality, the naturality of 7® over
R.e°Z was used. The second requirement in (4.21) is done similarly.

For the converse part of the proof, since the pair (R,, R,) converts colimits into coequalizers the
functor J is full and faithful, according to Proposition 4.4.9, i.e. the unit n*’ is an isomorphism.
Therefore if the counit is an isomorphism as well, the proof will be completed. In order to do so,
let us look at the definition of the counit on Z,

L,R,L,R,Z

LoRae®Z||e*LaRaZ

If the functor R, is applied to this diagram, then we obtain
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RoL RoLo R Z

RaLoRae®Z||Rae®LaRaZ

R.,L,R,Z
Rejg.z
Rae®Z Ra ']R. z
RoelK 7
R.Z

It can be noted that since (R,, Rp) converts colimits into coequalizers, R,j% , is a coequalizer.
On the other hand,R,e%Z is a split coequalizer with the pair (n*R,L,R.Z,n*R.,Z). Therefore,
R,e’% Z must be an isomorphism. By the same arguments, Rye’*Z must be an isomorphism too.
The pair (R,, R;) reflects isomorphisms, hence £ Z is an isomorphism. O

4.5 Example

4.5.1 Categories with Binary Coproducts

The following example is based on [11]. Let us look at a special case of the Eilenberg-Moore
constructions when the categories involved contain binary coproducts. Suppose that the categories
A and B have binary coproducts. Suppose further that (A, B,T,T,ev,€v) is a Morita context
that preserves binary coproducts, i.e. A, B, T and T preserve binary coproducts. The following
monad (@, 9, 7n?) can be defined on the product category A x B, where the endofunctor @ is
defined as

Q(X,Y)=(AX +TY,BY +TX) , (4.53)

and the natural transformations are defined over the object (X,Y) in A x B as

(u* +ev)X + (A +p)Y : (AAX + ATY + TBY + TTX,
BBY + BTX + TAX +TTY) — (AX + TY,BY +TX) , (4.54a)

pe(X,Y)

1P(X,Y) = ey (007 (X,Y) — (AX,BY) — (AX + TY,BY +TX) . (4.54b)
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Here 1y is a short notation for the canonical injection (AX, BY) — (AX +TY,BY + fX) and
(u* +ev)X : AAX +TTX — AX and (A + p)Y : ATY + TBY — TY are defined by the
colimit of the following diagrams

AAX AAX + TTX TTX ATY ATY + TBY TBY
JAX ILAXI- ev X o X AY ’\Y‘i pY 5%
AX

The morphisms (12 + év)Y and (A+p)Y are defined in a similar way.

In this case the Eilenberg-Moore category for the Morita context (A, 3,7, T ) is isomorphic
to the Eilenberg-Moore category of algebras for the monad (Q, u?,1?), i.e. (A, B)*B) = (Ax B)?.

On the other hand, consider a double adjunction (£, L, 4 R,, Ly - Rp) such that £ has binary
coproducts and these coproducts are preserved by the functors R, and R,. Then there exists an
adjunction

AxB L. (4.55)

Ly

The left adjoint L, is defined on objects (X,Y) as L,X + LpY, and for morphisms (h, k) :
(X,Y) — (X",Y') as Loh+ Lyk : Lo X + LyY — L, X'+ LyY'. The right adjoint R, is defined
on objects Z in L as (R,Z, RyZ) and on morphisms z: Z — Z’ as (Ryz, Ryz) : (R, Z, RyZ) —
(RoZ', RyZ").

The monad on A x B defined by the adjunction L, - R, is just the monad (Q,u?,n%)
corresponding to the Morita context (R,L,, RyLsy, RyLy, RyL,), and due to the isomorphisms of
Eilenberg-Moore categories the moritability of (R,, R}) corresponds to the monadicity of R,.




Appendix

A Structural Properties of IntCat(9)

This section collects some technical results concerning the 2-category IntCat(90).

Remark A.1. Consider the following diagram in a category C that has equalizers for all parallel
arrows

hl
B A=t B

where f is a fork of the upper parallel arrows h and k, €' is an equalizer for the lower parallel
arrows h' and &’. Suppose also that the right square diagram commutes serially. Then 7 - f is
a fork for the lower parallel arrows and induces a morphism r - f, through the equalizer €', such
that

e-r-f=r-f.

The previous remark helps to write the proofs to come where the category C is taken to be
our usual monoidal category (M, ®, /) with ®-preserved equalizers.

The first lemma to be stated is needed, in particular, to prove that the composition of functors
in IntCat(90) is a functor, but here it is singled-out for the sake of referencing. This lemma is
termed as the factorization lemma.
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Lemma A.2. Let C; be comonoids in M, i = 1,2,3. Assume that fo: C; — Cy and go : Cy —
Cy are comonoid morphisms. Take objects M; and N; in M and ©M, i = 1,2,3, respectively.

If the following morphisms are defined

pr: M — Myin M© |
pz . le —_— Ng inC2M )
¢ M§ — Ms in M

(7)) IgNQ — N3 inCEM y
then the following composition

q1p10c;g2p2

M3DC3 N3

MO¢, Ny —— M0, 9/ Ny

s equal to

q10c, 92

M30O3 Ny .

Lt D L
MOc, Ny —— M{ 06, IN, 2225 M0, N, —2— MO, %N,

Proof:

We prove first that ¢, - p; : Mlgf — Ms is a morphism in M3, In order to do so, consider
the following diagram

M, 8 Cs Ll M2®Cs——m&—>M3®C3

Mi1®g (@) M2®y
M; & Cy 5Cs M; ® Cy
Mef (i4) P38,
M; ® C (i) A
pfjl
M, - M, - M;

1) The diagram denoted by (i) commutes because of the bifunctoriality of the tensor product ®.
2) The diagram denoted by (ii) commutes because p; : M/ — M, is a morphism in M2,
3) Finally, the diagram given by (ii¢) commutes because q; : My — Mj is a morphism in M3,

From the commutativity of the previous three diagrams, the commutativity of the outer most
diagram follows, which is the required property.
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That go - ps : 9/ M; — My is a morphism in “3M follows by symmetrical arguments.

To show the equality of morphisms, consider the following diagram

MUc, N
\
M@y, Mi& [N
y (id) M, ® N, - MRCILON, ——— M @ C, ® N,
/'Mll 63Ny
Ji
MO, /Ny
P1®p2 (%) P1QC2®p2
piUc, p2 (44)
M2®CZPN2
M,O¢, Ny —— My ® Ny = M, ® C; ® Ny
PM22®N2

In the inner diagram denoted by (ii), ¢ is the induced map by j; over ¢, hence it commutes
by definition. The inner diagram denoted by (i) commutes serially because p; : le — My is a
morphism in M®? and p, : /N — N, is a morphism in “2M. On the other hand, the morphism
J1 1s the morphism associated to the cotensor product corresponding to the upper parallel pair
of morphisms, i.e. it is in particular a fork for the parallel upper arrows. Then, by Remark A.1,

to - (p10c,p2) = (p1 ® p2) - 1. But ¢; = ji - ¢y, hence

o (MOcyp2) 1y = (P1&p2) 11 -

Also, if the following diagram is considered
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M2DCz N2

tg

MZ0

q1 DCa q2

ngNQ

M,Oe, Ny

A. Structural Properties of IntCat(901)

)
M2®CZPN2 A
2Q9® N2
MQ®N2 = AIQ@CQ@NQ——-—-)AJQ@C';g@NQ
pM22®N2
J2
q109q2 719C3®q2
M3®CSPN3
= M3 ® Ny 2 My Cy @ Ny
C3
/'M3®N3

a similar conclusion as before can be achieved, namely t3-(q10¢,92) -ty = (¢1®¢2)-t2. Furthermore,
if the previous two diagrams are glued together, the next diagram can be drawn

MOc, My
\
M:®1pn M ®fRN M ®g&N
o My 00 Ny = "My o Oy ¢ NELEE g 60 0 0o N EEEBD AL 00 Oy % N
/ pM]‘®N1
Ji
M{Oe, /Ny
p10c,p2 P1®p2 P10C28p2 p1®C3®P2
M,Oe, Ny
X\
M N M2®02PN2
L 3 P
4 2® 2 S ~ MQ@CQ@NQWQAIQ@CJ@]Vé
/ Priy @2
J2
MO, N,
q1®4q2 71RC3®q2
g10c; 02
i M3gC3pp, '
M3DC'3N3 3 M3®N3 Alg@Cg XNJ

C
PM33®N3
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Combining the two previous results, we obtain ¢3 - (10¢,q2) - tg - (110¢,p2) - ¢t = (1 ® ¢2) -
(p1 ® p2) - t1. On the other hand, if the internal arrows of this last diagram are removed and some
others are added, the following diagram can be obtained

M,0¢, N,
\
AL ®C1pN Mi®q- fON
tgf M; ® N; : Mi®C,®N; 189 [OM, M ®Cs ® N;
Pf}] @M
MO, 9N,
q1-01q2p2 q1-p19C2Q®g2p2
qamBc;q2m2
M3®CSPN3
]WgDCSN;; ) /W3®N3 M3®C3®N3
P;%@Ns
Then t3 - (1p10¢,q2p2) - tgf = (g1 - P1 @ G2 - p2) - 11 as before.
Therefore,
3+ (1 0cs2p2) - tgr = b3+ (100, q2) - g - (mUc,p2) - ¢f
and since ¢3 is an equalizer
(1p10c3q2p2) - tgr = (10c¢,92) - tg - (11 0c,p2) - ¢y s
as required. m]

Proposition A.3. Let M, N be objects in SMC. Then the map ¢ : MOcN — M ®N is in SMC.

Proof

Consider the following diagram,

. M®CpN
MOCN AM®N MCxXN
PG ®N
ComOcN Cpm®N (1) Com@CON
COM®pN

C® MOCN COM®N COIMRPICRN

Ce C®p$,®N
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where the inner diagram (i) commutes serially because of the bifunctoriality of ® and because
M is an object in “MC. The map ¢ is an equalizer and so is C ® ¢, due to the preservation of
equalizers through the tensor product. In view of Remark A.1, (ppy @ N)-v = (C®1) - (“ppTcN).
This means that ¢ is a morphism in “M. That ¢ is a morphism in M is proved similarly. O

Proposition A.4. Let r: R — M ® N in “MC be a fork for the cotensor product (MOcN, ).
Then 7 : R — MOcN, the induced morphism by the equalizer ¢, is in CMC.

Proof:

Consider the following diagram

R
. M® N
MOCN M®N = MeC®N
P ®N
CpomOcN Spm@N Cou®@CEN
CeM®CpN
C® MOCN ; COAIMOIN—/————=2COIMKIKCN
co CRp5ON

Because of Remark A.1, (Yo @ N) -t = (C ®1) - (“op0cN). Since r is a fork for the upper
parallel arrows, ¢ - ¥ = r. Therefore,

(“pm @ N)-7=(C®¢)- (puOcN) - 7 .

The morphism r is in M, i.e. (opy @ N)-r = (C®7)-pr. Due to the bifunctoriality of the
tensor product C ® r = (C ® ) - (C ® 7), hence

Com®N)-r=(C®r)-%r=(C®) (C®F) pr .
Therefore, (C® 1) (Cop0cN) 7= (C®1) - (CQ®F) - pr, but C ® ¢ is a coequalizer, then

(“emOcN) -7 = (C®F) - Spn ,

which means that 7 is a morphism in “M. That 7 is a morphism in M follows by similar
arguments. U
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Corollary A.5. For a morphism of comonoids, fo : C — D, the morphism vy : MOcN —
MIOp! N is in CMC.

Lemma A.6. Let C, D be comonoids in M. Take the following comodules: a right C-comodule
R, left C-comodule S, right D-comodule T, left D-comodule U, and assume that there exists a
comonotd morphism fo: C — D. Consider the following commutative diagram in M,

T®S

R®S TRU
h k
M N

Suppose that h and k are forks for ROcS and TOpU, and r and s are morphisms in PMP. Then
there exists an induced commutative diagram

ROcS —— RIOp!Ss —22 = TO,U
3 k
M 7 N
Proof:
Consider the following diagrams
M
-\ \
h
R&Cps
ROcS — R®S RRC®S
p5®S

and
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ROcS

j e
L1
Lf \
R®%ps R®f®S

R/OpIS R®S RRC®S———

J pg®S

R®DgS

These diagrams commute. First, because the morphism h is the one induced by the fork h over
the equalizer ;. Second, because the morphism ¢, is the one induced by the morphism ¢; over
the equalizer j. These diagrams can be glued together thus giving the following one:

R®F
RIOp/S— > R®S——=ReC®S —. ReD®S
7 p5®S
g
rOps r®s (%) r& s
T®Ppy
TOpU TRU TRDIKU

L2

D®U
i (i) or
k

The square diagram corresponding to (i) commutes because of the colinearity of the morphisms
r and s. Due to Remark A.1, (r®s)-j = ta- (rOps). Finally, (i7) commutes because k is the
morphism induced by the equalizer ¢ over the morphism k.

All of this together amounts to

Lg‘(TDDS)'Lf'il:(T®S)'j'Lf'il=(7"@8)‘1,1"}.1,=(T‘@S)‘h=k'g=L2'i{:"g ,

which immediately leads to the conclusion of the lemma. a
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