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Introduction

This thesis is split into two parts. The first part is concerned with the search for Kleisli (coKleisli) 
objects for monads (comonads) in the category of internal categories for a monoidal category as 
introduced in [2]. The second part is concerned with the construction of Eilenberg-Moore algebras 
for a M orita context as in [11]. The reader should note th a t these two parts are related through 
the theory of monads. The first part deals with the formal theory of monads in 2-categories and 
the second part with the classical theory of monads in the usual category theory and extends it 
from a single adjunction to a pair of adjunctions which is a particular example of a span.

The im portance of these objects rest on the fact th a t they are universal constructions and 
therefore im portant on their own, even though there are not too many applications or examples 
inside this thesis.

This thesis is organized as follows. In Chapter 1, a revision of the definition of an internal 
category is done. An internal category is the generalization of a small category within the category 
of S e ts , but it can exist inside any category C, with finite products and pullbacks.

Internal categories within monoidal categories have been introduced and studied by M. Aguiar 
in his PhD thesis [2] as a framework for analysing properties of quantum  groups. By choosing 
appropriately the monoidal category 971, algebraic structures of recent interest in Hopf algebra 
theory, such as corings and C-rings, can be interpreted as internal categories. Internal categories 
can be organised into two different 2-categories. The first one, denoted by IntCat(971), has inter
nal functors as 1-cells, and internal natural transformations as 2-cells. The second one, denoted 
by I n tC o C a t (971), has internal cofunctors as 1-cells, and internal natural cotransformations as 
2-cells. The difference between these two structures is tha t the internal functors can be thought of 
as a push-forward of morphisms while the cofunctor can be understood as a lifting of morphisms 
from one internal category to the other.

In Chapter 2, the necessary background to deal with monads is given, both in the classical 
sense and in the formal sense; see [3] for the classical treatm ent and [20], [24] for the formal 
theory. In the formal theory of monads the main role is played by a 2-category K L(.4), defined 
over a 2-category A , which has the particular feature of having all Kleisli objects for any monad 
defined in there. In [20], the authors not only provide this 2-category with all the Kleisli objects 
but also they give the algorithm to get the Kleisli object out of a the monad defined there, this 
last property will be exploited in this thesis.

C hapter 3, which is based on [10], contains the original results of this thesis. It starts with 
a quick review of the definition of a monad in the 2-category In tC at(97t). A monad (comonad) 
in the 2-category In tC at(97 t), i.e. an internal endofunctor with two natural transform ations

ix
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which satisfy the usual associativity and unitality conditions, is called an internal monad  (in
ternal comonad). We show tha t every internal monad (comonad) arises from and gives rise to a 
pair of adjoint functors, by explicitly constructing the Kleisli internal category in In tC a t(9 ft). A 
monad in the 2-category In tC o C a t(9 J t) , i.e. an internal endocofunctor with two natural cotrans
formations which satisfy the usual associativity and unital conditions, is also called an internal 
monad. Similarly as before, we show th a t every internal monad arises from and give rise to a pair 
of adjoint cofunctors, by explicitly constructing Kleisli objects in IntCoCat(DJl). Both construc
tions are based on the definition of the classical Kleisli category and the proofs th a t these indeed 
give Kleisli objects are given along the same lines as in |24j.

Further in the chapter, the bicategory Bicomod(fUt) is constructed and the associated bi
category K L (B icom od(9Jt)) is described. This last bicategory is needed in order to construct 
several bifunctors which have this bicategory or one of its duals, as a codomain. A main common 
feature of these bifunctors is tha t they are identities on objects and are full embeddings. Now 
if such a bifunctor : In tC a t(9 fl)  — *■ K L(B icom od(9ft)) is constructed, then any monad in 
In tC at(97t) can be pushed-forward into K L(Bicom od(9Jt)), and once it is there one can use the 
aforementioned algorithm to get the Kleisli object for it, which happens to be in In tC at(9Jl). 
The method just explained is used to obtain the Kleisli object for any monad and the coKleisli 
object for any comonad in In tC a t(9 Jt) and the Kleisli object for anv monad in In tC o C a t(9 tt) .

Later on, in the same chapter and based on the definition of the Kleisli object for a monad, 
a new characterization of an adjunction in In tC at(9Jt) is given. This characterization resembles 
tha t of an isomorphism between the Horn sets for a classical adjunction between categories.

In Chapter 4, which is based on [11], a connection between functorial Morita contexts and pairs 
of adjunctions is described. This correspondence is similar to that between (single) adjunctions 
and monads, more precisely, between adjunctions with domain a fixed category C and the category 
of Eilenberg-Moore algebras CF for a monad (F, fuF,r]F) over C. The role of the adjunctions will 
be played by the so-called category of double adjunctions and the role of CF will be played by 
the category of Eilenberg-Moore algebras (*4, #)M-F for a Morita context (.4, B ,T , T). Given this 
resemblance, this thesis concludes with a Beck-type theorem for such a relation.



Chapter 1 

Internal Categories in a Monoidal Category

1.1 Internal Categories
This section is based on [7] and [13]. Let A  be a category with pullbacks. An internal category 
1  in A  consists of the following data:

i) An internal reflexive g raph1, i.e a diagram

( i . i)

such th a t

d • i =  l Ao = c ■ i . (1.2)

The morphisms d and c are called domain and codomain morphisms, respectively, or source 
and target as in [7]; and the morphism i is called identity morphism. Throughout this thesis 
a composition of morphisms in the category A  is denoted by • and the identity morphism 
for the object A is denoted by 1a -

ii) A composition m  : A\  x Aq A i —► where A\  x ^ 0 A\  is the pullback of c and d , i.e.,

Tli x a q A i  — —

pi

A

A i

A

(1.3)

We will write g-' f  =  m ( g , f ), where (g, f )  is a generalized element of A i x ^ 0 Ai,  understood 
as a morphism with codomain A\  x ^ 0 A\.

This composition satisfies the following properties,

1 Henceforth referred to, only, as an internal graph.

1



1.1. Internal Categories

a) Compatibili ty with domain and codomain

c ■ m — c ■ p \ , 
d ■ m = d ■ P2 ,

which, over generalized elements of .4], reads as

(1.4a)
(1.4b)

4 y ' f )  = c(a), 
d ( 9 - ' f ) = d(f) ,

respectively..

b) Unitality:

m -  j  i =  l Al = m  • j 2 , (1.5)

where j i and j 2 are defined by the following diagrams,

A

pi

A\

A

A

A!

A q

The notation for these induced morphisms, through the pullback, will be (i • c; 1,4,). 
Over generalized elements these equations read:

ic(f) ■' f  = f  = f  J U(f) •

c) Associativity of the composition,

m  • (U , x Aq m) = m ■ (m x Ao l ^ J , ( 1.6)

where
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U , : Ai x A q ( A l x A q A x) — > Ai x Ao A u
m x Ao l Ai : (Ai x Ao A ^  x Ao A i — > Ai x Ao A u

and A\  x ^  (A ] x Ao A\)  == (A\ x Ao A]) x Ao A\.

The object A 0 should be understood as a collection of all objects in 2 , and because of th a t 
named as the object of objects of the internal category 2.  Furthermore, the object A\  is named as 
the object of morphisms or arrows of the internal category 2.  Then c assigns a codomain object 
for a morphism, d assigns a domain object for a morphism and i assigns an identity morphism 
for an object in /10. Furtherm ore, rn is interpreted as a composition of morphisms with matching 
domain and codomain. This explains the notation •' used in ii). In the case, A = S e ts , an 
internal category 2  is simply a small category.

An internal category 2  is denoted by 2  = (A0, /l], c, d, z, m), or shortly by 2  = (/10, A\).

Functors between internal categories 2  = (Aq, A\)  and J  = (I30, B{) are defined as follows:

A functor F = (F0, Fi) : (A0. A]) — > (B 0. /?]), is a pair of morphisms F0 : A 0 — > B0 and 
F\ : A] — > B\ satisfying the following properties:

i) Com patibility with domain, codomain and identity, respectively:

db • F] — Fq ' da

Cb • Fi II rs o

ib • F0 - F i - i a

(1.7a)
(1.7b)
(1.7c)

These equations can be w ritten concisely as the following serially commutative diagram,

o

F q 

'0

ii) Preservation of the multiplication:

F i  ■ m a =  m b • ( F i  x Fq F i )  , 

where Fj x Fo F\ is defined through the following diagram,

( 1.8 )
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P2

P2
pi

1

Finally, a natural transformation a  : F  — > G is a morphism a : A q — ► Bi,  such tha t

i)

db • a  — F0 , (1.9a)
Cb • ot =  Gq \ (1.9b)

ii) m h(a ■ cfl; F}) = m h( G i \ a  ■ dH), where

(a • ca ; Fi), ( C i ; a  • da) : ^4i — > B\  Xg0 F i .

For a generalized object f  in Ai ,  this reads explicitly as:

a (ca( / ) ) - , F1( /)  =  G 1( / ) . 'a ( d 0( /) )  , 

and hence it is the naturality condition for the transformation.

The following proposition can be stated:

P ro p o s i tio n  1 .1 .1 . Let A  be a category with pullbacks. Internal functors between fixed internal 
categories 1  = (A i , A q), J  — ( F i ,F 0) and internal natural transformations make a category
I n tF u n c t ^ j )  where the composition, of a  : F  —* G , (3 : G —> H , is given by

P o a  = m b • (/?; a) ,

and the unit of F for this composition is F\ • ia.

Furthermore, internal categories form a 2-category In tC a t(^4 ) with objects internal categories,
1-cells internal functors and 2-cells internal natural transformations, see (1.5.1) for the definition 
of a 2-Category.
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1.2 Monoidal Categories
In this section the definition of a monoidal category is recalled. See [23] and [26].

A monoidal category is a sextuple (971, <g>, /, or, A,p), where 971 is a category together with a 
bifunctor,

® :9 7 tx 9 7 t— >971 ,

th a t it is associative up to an isomorphism, and possesses a right and left unit / ,  only up to 
isomorphism. Explicitly, a , A and p are natural transformations

&a ,b ,c  - A  <S> ( B  ®  C ) 

X a • I  ®  A

Pa '- A ®  I

( A & B ) ® C  , 

A ,

A ,

such th a t X} = pj. It is required also th a t the following diagrams commute:

A ® ( ( B ® C ) ® D )

a A , B ® C , D

y4 ig>(fl® (C<g>D ))

& A ® B , C , D
( (

( 1 . 10 )

The left diagram is known as the pentagonal law. If the associativity and unitality are strict, 
i.e. the natural transform ations a , A and p are identities, then the monoidal category is called 
strict monoidal category, in this case the notation is (971, <g>, I). According to [23], every monoidal 
category is equivalent to some stric t monoidal category. This theorem is called the coherence 
theorem for monoidal categories. Thus, in what follows, we treat monoidal categories as if they 
were stric t monoidal.



6 1.2. Monoidal Categories

Let (SCTl, 0 , / ,  q, A, p) and (37L, 0 ',  a ', A', p') be two monoidal categories, then a monoidal
functor  (F, C) : (371, 0 ,  / ,  a , A, p) — ► (971', 0 ',  I', a ', A', p') is a functor F : 371 — ► 37V, a natural 
transformation

and a map

cA,5  : F A  0 ' F B  —  F (4  0  B) ,

Such th a t the following diagrams commute

FA  0 '  (F F  0 ' F C ) FA®>(,b'c> F A  0 ' F ( B  0  C) F (4  0 {B 0  C))

F  A , F  B , F C

{FA  ®' F B ) » ' F C C A,B®' FC

FmA,B,C

F (A  ® B)  ®' F C   ------^  F ((4  ® B) ® C)

,  P f a

FA®' Co

F/4 0 ' F / <-4,/

F A

F p a

F(A  0  I)

I 1 0 ' Fy4

ZoS'FA

FI S '  FA

FA

F \ ,

0,4
F ( J ® A )

If the natural transformation C and the map Co are isomorphisms, then the functor is called 
strong monoidal functor , and if they are identities then is called strict monoidal functor.

1.2.1 Exam ples o f M onoidal Categories

•) The monoidal category (Sets, x , {*}) of Sets, where the tensor product is played by the carte
sian product and the unit is the singleton set {*}.

•) The monoidal category (V ec t,0 ,/c )  of Vector Spaces over the field k, with the usual tensor 
product and unit the field itself.

•) The monoidal category (M od/?, R) of modules over a commutative ring with unit R,  with 
the usual tensor product and unit the ring itself.

•) Let (371,0,1) be a monoidal category, then the category 37Iop is also monoidal with the same 
tensor product and unit, i.e. (37top, 0 , 1) is a monoidal category.
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1.2.2 Com onoids and C om odules in a M onoidal Category
Let (971, C , / )  be a strict monodial category . A comonoid in (971,®,/) is a triple (C, A c ,e c ) , 
where C  is an object in 971, A c  '■ C  — > C  ® C  and £c : C  — ► I  are morphisms in 9Jt such tha t 
the following diagrams commute:

C <» C <8 c < Ĉ c c$c
A c®C

c®c
A c

A c c
Ac

c

The property corresponding to the first diagram is usually referred to as the coassociativity of the 
comonoid and the second one is referred to as the counitality of the comonoid.

A morphism of comonoids / 0 : (C, A c ^ c )  — * ( D , & d ,£ d ), is a morphism /o : C  — > D  in 
97T such th a t the following diagrams commmute:

A c

c Jo D

( 1 . 1 2 )

C Jo D

The category of comonoids in 97t is denoted by ComonOT.

Let (C, A c ,c c )  be a comonoid in Comongj}. A left C-comodule is a pair (M , cpM), where M  
is an object in 971 and cpM '■ M  — > C ® M  a morphism in 971, called left C-coaction. The left 
C-coaction is required to satisfy the com m utativity of the following diagrams:

Ac®M

C  ® M <------  M  , M
P M

The first diagram is referred to as the coassociativity of the left C-coaction and the second 
one as the counitality of the left C-action.

The morphism of left C-comodules is a morphism /  : M  — * M '  in 97t such th a t the following 
diagram  commute:



8 1.2. Monoidal Categories

" P M "Pm'

M M'

The category, which has left C-comodules as its objects and morphisms of left C-comodules 
as morphisms, is called the category of left C-comodules and it is denoted by CM . . W ith this 
notation, a morphism of left C-comodules can also be referred to, in a simpler manner, as a 
morphism in cA i .  Symmetrically, a right C-comodule is a pair (M, p ^ ) , where M  is an object in 
97t, and p^  : M  — > A/ 0  C is a morphism in called right C-coaction. The right C-coaction 
is required to satisfy the com mutativity of the following diagrams:

(>M

M

C 0 C M 0  C M®ec

P m

P m

M  0  C

A morphism of right C-comodules is a morphism /  : M  
diagram commute:

M'  such th a t the following

M  ® C  » M ' ® C

P m P CM>

M M'

The category, which has right C-comodules as its objects and right C-comodule morphisms 
as morphisms, is called the category of right C-comodules and it is denoted by A4C. Combining 
these two categories, the category of C-bicomodules, or C-comodules for short, can be constructed. 
The objects are triples (M, °p m , p(h ) ,  where (M , cpM) is a left C-comodule and (M, p £ ) is a right 
C-bicomodule, such tha t the following compatibility condition is fulfilled:

C 0  M C 0  M  0  C

"PM c P m

M  £-------^ M  0  C
P m
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The morphisms of this category are morphisms /  : M  — * M '  in 971, such th a t it is a left 
and right C-comodule morphism. This category is denoted by °A4C. Note th a t a comonoid 
(C, A c ,£ c )  is a C-comodule with coactions (C, A c, A c).

Consider an object (M, p%f) in M c  and an object ( N , cpu)  in CM .  If the following equalizer 
exists:

M<S)c p n

M D CN ------------> M <8 N  = ------£ M ® C ® N  ,
Pm®n

then A I O c N  is called the cotensor product.

Let us note th a t if there exists a morphism of comonoids /o : C — > D, then there exists 
an induced functor ^F : °M  — > DM  between categories of left comodules. On objects, is 
defined as ^ F (M , cPm ) =  (A /,  (./* <8> M)  • cpM), while on morphisms ^F(h) =  h. We write 
for fF ( M , cpm) and ĥ for *F(h). Similarly, /o also induces another functor F* : M c  — > M D 
between the categories of right comodules. We write M*  for F*(M, pcM) and h /  for F^(h).  The 
combination of and F f  gives rise to a functor of categories of comodules : ° M C — ► DM ° .

Finally, if / 0 : C  — > D is a morphism of comonoids, then for all (Af, p^)  in M c and (TV, ° P n ) 
in M ° , for which M d c N  and M ^ D d ^ N  exist, there is a morphism i j  : M U q N  — ► in
971 induced by the following commutative diagram

M U CN

M f D DfN M  0  N

(1.13)

Remark on Notation 1.2.2.1. Let M  be an object in M c , M '  an object in ° M  and M d c M '  its 
cotensor product. Then if /  : N  — > M  <S> M'  is a fork for the pair of morphisms M  <g> °p m > and 
p% <S> M',  i.e. (M  ® cpM') • /  =  (Pm ® M')  • / .  Then there exists the following induced map

i
i
i

t- M  <g> C  <g> M'

which will be denoted by / .
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1.3 Towards Generalization of Internal Categories
Before the definition of an internal category within a monoidal category is given, cf. [2], we look 
at small categories as internal categories in Sets. Let Ao, A\  be two objects in S e ts  which are part 
of a internal graph as in (1.1). Note tha t every set, in particular /10, is a comonoid in a unique 
way, with comultiplication given by the diagonal morphism A ^  : A0 — * A0 x Ao, x  i— * {x,x)  
and unit ea0 ■ A 0 — > {*}, the unique map x  i— > *.

A morphism d : A\  — > A0 induces a unique morphism

A i - i ^ A ^ A o ,  (1.14)

x  i ► (x, d(x)) .

W ith this morphism A\  becomes a right A0-comodule. Similarly, for c : A\  — > A0 _there exists
c : A\  — > A0 x Ai, x  i— ► (c(x),x), making A\  a left A0-comodule. Thus (A i,c, d) is an A q-
comodule. W ith these two morphisms, the requirements (1.2), on d and c, are equivalent to the 
following requirements for d and c:

d - i  =  ( i x  A 0) • A ^0 , (1.15a)
c - i  = (A0 x i) • A ^0 . (1.15b)

This means th a t i is a morphism of Ao-comodules.

The process of transforming requirements for c and d into requirements for c and d consists in 
taking appropriate inclusions into cartesian products. In case one wants to recover the original re
quirements out of the transformed ones, one can use suitable projections over the aforementioned 
cartesian products.

Next, it is im portant and convenient to observe th a t AiCU0Ai =  A\ x a 0 A\  in Sets, where 
A i H a0 Ai is the equalizer of the parallel morphisms (Ai x c, d x  A\),  the cotensor product of comod
ules (A i,d) and (A ^c). W ith this isomorphism, the requirements given by (1.4) are equivalent 
to the following ones:

c -m  =  (A0 x ra) • (cCU0Ai) , (1.16a)
d • m  = (m x A0) • (AiCU0d) . (1.16b)

It can be concluded tha t these equations, (1.16), describe a morphism : A iD ^ A i — > Ai 
in a°A4 a° and equations (1.15) describe a morphism % : A0 — > A\  in a°A4 a° as well.

Finally, the requirements given by (1.6) and (1.5) are equivalent to the following commutative 
diagrams:
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A ^ A ^ A ,  /UCUom > A . D ^ A ,

m O AQA  i

. (AiOAQi)d
A \ --------------- > A i L\a0A i

m (i O AQAi)-c

a qA i - m — 1 A,D io

m

(1.17)

respectively. The morphisms c : A\  — > A q[I\aqA\  and d : A\  — ► are corestrictions of c
and J, respectively.

For the functors between internal categories, the equations in (1.7a,b) can be rew ritten equiv
alently for the maps d and c, as

db • Fl =  (Fi x Fq) • da , 
cb ■ F1 = (F0 x Fi) • ca .

(1.18a)
(1.18b)

Equations (1.8) and (1.7c) are translated, respectively, into the following commutative dia
grams:

fi n fv. fi
A jO a ' A !  ^  B xa BoB,

A

mb

Fi

A q
F0

Bo

(1.19)

The requirements for a natural transformation, expressed by equation (1.9), are equivalent to 
the following equations:

db • a  = (B0 x a) • (F0 x A 0) • A.4o , 
ch - a  = ( a x  B 0) ■ (T0 x G0) • A 4o .

(1.20a)
(1.20b)

The equality m,b(a ■ ca\ F\) =  m b(Gi\ a  • da) translates into

mb((aDu0Fi) ■ c) = m,b((G]D Boa) • d) , ( 1 .2 1 )



12 1.4. Internal Categories in a Monoidal Category

The composition between natural transformations can be defined through coequalizers as

P o q  =  m b • (oH boP) ■ (1.22)

The translation of the proposition (1.1.1) will not be done yet, since the generalization can go 
further in the next section.

1.4 Internal Categories in a Monoidal Category
In this section several definitions are given which will make some resonance with the requirements 
for an internal category in (Sets, x ,* )  and which constitute the generalization of an internal 
category in a monoidal category. This generalization was introduced in [2].

In Section (1.3), it was observed how the monoidal structure of the category of sets can be used 
to reformulate the notion of an internal category. In particular, the pullbacks can be replaced by 
particular equalizers tha t define cotensor products. Furthermore, the pullbacks commute with the 
cartesian product. Therefore, in order to formulate the definition of an internal category inside 
a monoidal category (971,0 ,/), it is convenient to require th a t (971,0,/) satisfies the following 
properties :

i) 971 has equalizers (E, e)  for all parallel morphisms /  || g, i.e.

e fE   — > A ■■■--— - £  B  ,
9

in particular, those of the form,

M<S> c p n

M U CN -------------M  0  N  £ M  0  C 0  N  .
p m ® n

The equalizer (E, e)  can also be denoted by E q (/, g).

ii) These equalizers are invariant under the tensor product in DJl, i.e., the following morphism, 
th a t always exists, must be an isomorphism

X  <S> Eq( /,  g) <S>Y — Eq( X <g> /  ® y, X  ® g <g>T) .

In particular, the following is an isomorphism

X  0  ( M H CN)  0  Y  — { X  0  M ) D C( N  0  Y)
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W ith the two previous assumptions, CM C can be made into a monoidal category, (CM C, □  c , C),  
and the following coactions can be constructed cpmucn '■= CPm ^ c ^  and w := MUcp%-

At this moment, it is im portant to introduce the following category. Since (CM C, D c, C)  is a 
monoidal category, the category M o n c ^ c  of monoids in CM C can be constructed. The objects 
of this category are triples (A, rrM, im), where A is an object in CM .C, itia '■ A D qA — > A  and 
■ua : C  — ► A are morphisms in CM °  called multiplication and unit , respectively. These are 
required to fulfill the com mutativity of the following diagrams

A O c A U o A  AChmA> A D CA

mADc A

a u A mA

mA

A

Morphisms /  : (A,?tm , im ) 
such th a t .

( B }mf 3 ,Uf}) in M o n c ^ c  are morphisms /  : A — > B  in CM ?

A U CA  ■-  ► B O c B

mA me

A B

C

A B

commute.

In the case of an internal category (A0, Ai, c, d, z, m)  in S ets, the diagrams in (1.17) describe 
a monoid (A ^m , z) in A° M A°. Due to this observation, ((/l, m.A, u-a )-, °Pa -> Pa , C) will be the gen
eralization of ((A i, m ,i) , c, J, Ao), as an internal category inside a monoidal one.

In w hat follows every object (A, mA, ua ) in M o n c ^ c  will be called an internal category in 
(971, <8>, /) . The object C  will be called the object of objects and A the object of morphisms , to 
simplify the notation we write ( A, C)  with multiplication and coactions left out.

Note 1.4.1. In [7], the author define the concept of an internal cM-valued functor , x  '■ (A , C)  — * 
CAA as a  left A-module M  in a A4. On the other hand, a natural transform ation between internal 
cA/f-valued functors, h : x  — * x' 1S defined as a morphism h : M  — ► M '  of left A-modules.

Consider, on the other hand, the "dual" internal category J*, which is obtained from the inter
nal graph (1.1) by interchanging the roles of c and d, which in turn, gives a twisted composition 
in (1.3). If the construction of an internal monoidal category is based on this "dual" internal 
category, the concept corresponding to the a internal valued functor is th a t of a right A-module 
M  and it is termed in this way as an internal presheaf.
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1.4.1 Exam ples of Internal Categories

• ) In the monoidal category (V ect, ®, k), the internal categories are C-rings or C-semialgebras.

The category of comonoids C o m o n Vect is usually referred to as the category of coalgebras. 
The construction for internal categories within this monoidal category follows in the same lines as 
in the previous sections. For each coalgebra (C, A c, sc),  one can construct the category of comod
ules CA4C, this last category can be given the structure of a monoidal category ( ° A i c , D c, C), see 
[29]. Then the internal categories are monoids in ° M C which are called C-rings or C-semialgebras, 
see [9].

•) In the monoidal category (M od  °r i  R), the internal categories are corings.

We explain the second example in a more explicit way. In Section 1.2.1 was pointed out 
tha t the opposite category of a monoidal category inherits the same monoidal structure. Then 
C o m o n Mod p̂ =  MonModfi =  A lg R, the category of algebras over a commutative ring, see [1]. 
An object in A lg fi is denoted by ( A , tiiaA1a)-

In this case, the category of C-comodules over M o d ^ , ‘"(M od^ )c is seen as the category of 
A-modules over M od/?, denoted by ^(M od/?)^ or by aM a - The category ^(M od/?)^ consists of 
objects (A, Xn ) i where N  is an object in Mod/? and \ n \ A ® N  — ► N,  Xn '■ N  ® A  — > N  
are morphisms in M od/? such th a t they fulfill the requirements for a comodule in Section 1.2.2, 
but with the arrows of the diagrams inverted. A morphism /  : { ^ \ ‘\ n ,X n ) — > (A 7, ^ v ' ,  Xn>) 
in ^(M od/?)^, is a morphism /  : N  — > N 1 in Mod/? such that fulfills also the requirements in 
Section 1.2.2, but with the arrows of the diagrams inverted.

The category M o d ^  has equalizers and these equalizers are preserved by the tensor product, 
as can be seen in the following dual

P ro p o s i tio n  1 .4 .1 .1 . The category M od/? has coequalizers and these coequalizers are preserved 
by the tensor product.

Proof:

Let f , g : M  — ► N  be a pair of a parallel arrows, then the coequalizer of ( /, g) is the following 
module,

M  —  g > N -----  — ► Q := N/  < f ( x)  -  g(x) \ x  € M  > .

In order to show tha t the the second requirement is fulfilled, the previous coequalizer can be 
written, in an equivalent way, as the following right exact sequence:

M  1 9 » N  - Q  ►O
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Since the functors B  ® _  and _  ® C  are right-exact functors [29], it follows tha t is
the coequalizer of the parallel arrows (B ® ® C, B  ® g <S> C)  as required. □

Let (A,rriA,UA) be an algebra in A lg^ . Then the monoidal category (^(M od/?)^, 0 ,4 , A)  can 
be constructed according to [2]. Therefore, a comonoid (C, A c , £ c )  in the category ^(Mod/?)^, 
is an internal category in M o d ^ . The definition of an internal category in M odjf coincides with 
the definition of a coring, see [12].

1.4.2 Internal Functors and N atural Transformations

Next, functors between internal categories are defined. This definition should be compared with
(1.18) and (1.19).

D efinition 1.4.2.1. A functor f  : ( A, C)  — > (B , D) between internal categories is a pair f  = 
( f u f o ) ,  where

i) J‘o : C  — * D is a morphism in C o m o n OT,

ii) f i  : A — ► B is a morphism in VJl that is also a morphism of D-bicomodules, f \  : ̂ AI — > B.

in) the following diagrams commute:

A D CA A ' D n f A  h ° Dh > B n n B

mA t u b  u a

A h B

UB

D e fin itio n  1 .4.2.2. Let f , g  : ( A, C)  — ► ( B , D)  be internal functors. An  internal natural trans
formation a  : /  — ► g : (A , C ) — > (B , D ) is a morphism a  : 9C f  — > B  of D-bicomodules 
making the following diagram commute

A D c C
7.C

A

P A

a so dsc  9' n °°>  B D d B
m-B

tub

B

C ' 0 DfA n , > B O d BOcUdJI

The category constructed with internal categories in (9JI, (8), I)  as objects and internal functors 
as morphisms is denoted by In tC a t(2 J t) .
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1.5 2-Categories

1.5.1 Definition of 2-Categories
The aim of this section is to describe two different ways in which internal categories in (9Ji. S', /)
can be made into a 2-category. We begin by recalling the definition of a 2-category; see [2], [23]
and [26]. The datum  tha t forms a 2-category is A  =  (*4o, A \ ,  A 2, *, °, *), where

i) Ao is the collection of 0-cells, depicted as

A, B, C , ...

ii) A \  is the collection of 1-cells, depicted as

f  h

A B ,  B  C, . . .

iii) A 2 is the collection of 2-cells, depicted as

/  h

A l a  B  , B  1 7  C  .....

9 k

i ’) (A o ,A \ ,  •) is a category, with composition depicted as

/  h h - f

A B  C = A C  ,

and the unit of A in Ao for this composition is

1A

A A

This category will be referred to as the underlying category of the 2-category A.  

ii’) For all 0-cells A, B, (A\ (A ,  B ) , A 2(A, B),  o) is a category, with composition depicted as
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and the unit of /  : A — ► B  in A i (A ,  B),  for this composition is

/
A  I 1/ B  •

/

The composition o : *A2 x -42 — > Aq will be referred to as the vertical composition. Along 
this thesis, the category (A\ (A ,  B), A 2 (A, B),  o) will also be denoted by H o m ^ (A ,B )  or 
A (A ,  B).

iii’) (A q , A 2 , *) is a category, with composition depicted as

i  h

A l a  B  | 7  C = A i

J  k  k-g

C  ,

and the unit of A 6 Ao under this composition is,

A 1 1]^ A 

1 a

The composition * : A 2 x A 2 — ► A 2 will be referred to as the horizontal composition.

The vertical and horizontal composition are required to satisfy two compatibility conditions:

1. Compatibility with the unital natural transformation,

/  h

A '  I 1/ B  I U

T  h

c  =

2. The interchange law,
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h - f

= C  =  A i  (5*P) o (7 *0 :) C

2-categories adm it more duals than ordinary categories. By reversing all 1-cells in A  one ob
tains the opposite 2-category A op. By reversing 2-cells one arrives at the 2-category denoted by 
A co. Finally, combining these two operations, one obtains A coop = A opco, the 2-category with the 
same 0-cells as in A  but with 1-cells and 2-cells reversed.

Remark 1.5.1.1. Given a 2-category A  with one object A. There exists a monoidal category, 
( H o m ^ A ,  A), *, l li4), where H o r n A ,  A)  is the category formed by the 1-cells of the type /  : 
A — ► A.

1.5.2 Exam ples of 2-Categories
1- The prototype example of a 2-category is the category 2Cat whose 0-cells are categories,

1-cells are functors and 2-cells are natural transformations. The vertical structure is given 
by the composition of natural transformations and the horizontal one is given by the usual 
Godement product. This Godement product is defined as follows, let a : F  — > G : C — * V  
and P : H  — > K  : C — * V  be natural transformations or 2-cells in 2Cat, then the 
Godement product of these two natural transformations, usually denoted by ft * a  instead 
of P*a,  is defined as

(P  *  a ) c  =  P g c  • H a c  =  K a o  • P f c (1.23)

This last equality is called Godement product equality.

Note 1.5.1. Let a : F  — ► G : C — ► V  be a natural transformation in 2Cat, then for any 
morphism /  : A — * A' in the category C, the following diagram commutes

F A F f
F A

at a aA,

GA
G f

G A 1

i.e. OiA> • F f  = G f  ■ a  a - This equality will be referred to as the naturality of a applied 
over f  or ju st simply the naturality of a  over / .  This statem ent proves to be useful when 
argumenting.
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2- The 2-category of 2-categories, denoted by 2-C at. The 0-cells in 2 -C at are 2-categories 
A,  B, etc. The 1-cells are 2-functors, i.e. operations F  : A  — > B which send n-cells to 
n-cells and are compatible with the compositions and units in A  and B. The 2-cells are
2-natural transformations. Given 2-functors F ,G  : A  — * B  a 2-natural transformation 
a  : F  — > G sends 0-cells in A  to 1-cells in B  and satisfies the following property. For any
2-cell 7 : /  — > g in A ,

F A  I F B — G B GA  I  G' i G B

i.e.

O L B ' F f

FA  1 1 a H* F 7

ocs'Fg

G j j a A 

F A  i  G7 *1cm G B

Gg-aA

(1.24)

see [26]. Note th a t condition (1.24) includes the standard requirement ocb • F f  = G f  • a A 
on the underlying category (*4o,.4i,-)-

At this point it is convenient to make the following observation. In the usual category theory 
if a natural transformation is invertible, then its inverse is necessarily a natural transforma
tion. The same is true for 2-natural transformations, and this is proved by similar methods 
as in the standard category theory.

3- There exists a very closed related concept to a 2-category, th a t of a bicategory, see [5] and 
[23]. A bicategory is the same as a 2-category, but is such th a t for each triple

A B C D,

There exists isomorphic 2-cells

h-(g- f )

(h-g) - f

which are natural in f , g , h .  These 2-cells are called associativity coherence isomorphisms. 
There exists also another two isomorphic 2-cells, for any 1-cell /  : A — * B  ,
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A i  Xf  B  , A I  Pf B ,

these 2-cells are also required to be natural in / .  These 2-cells are called unit coherence 
isomorphisms. These three 2-cells are required to satisfy similar commutative diagrams like 
in (1.10).

The next bicategory is of particular interest in this thesis. Its construction relies on Section 
1.2.2. The construction of this bicategory needs a monoidal category (2Tt, ®. /)  with equal
izers tha t are preserved by 0 . Then the 0-cells of this bicategory are the comonoids in 9Jt, 
namely (C, A c , £ c )  as in Section 1.2.2. When writing the 2 diagrams for this bicategory the 
comultiplication A c  and the counit ec are left understood in order to avoid complicated 
diagrams. The 1-cells for this bicategory

M

C D

are bicomodules ( M , cpM , Py)  in CM D. The 2-cells of this bicategory

M

C l /  D ,

N

are morphisms of bicomodules /  : M  — > N  in CM ° . The composition for the underlying 
category is defined by the cotensor product of comodules, i.e.

M  N  MDc'N

c a c" = c c" ,

and the unit of (C, A c , £ c )  for this composition is (C, Ac, Ac). For the vertical structure, 
the composition is defined through the following 2-diagram

M.

C  1 g - f  D , 

M"
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and the unit of (M ,cPm , Pm ) f°r composition is ju st 1 m  ' M  — ► M.  For the horizontal 
structure, the composition is defined through the following 2-diagram

M  M '  M n c > N

=  C I JU&9 B  , 

N  N ’ M ' U c N '

and the unit of (C, A c ,£ c )  f°r this composition is l c  : C  — > C.

1.5.3 IntCat(9JI) as a 2-category

The aim of this section is to equip In tC a tp J t)  with the structure of a 2-category, whose 0-cells 
are internal categories in 9JI, 1-cells are internal functors and 2-cells are internal natural transfor
mations.

In order to give a horizontal and vertical structure to In tC a t ,  let us start by giving the 
following definition for a vertical composition for 2-cells. In the case of the following 2-cell diagram,

{B, D)

The vertical composition o

C4,C) I 0 * a (B ,D )

is defined as

f j * a  = C — ^ ^ C U c C  C ' U DrC  /<Dp“ > B D p B — B  . (L25)

The unit of /  : (A ,C )  — > (jB,D), for this vertical product, is u b / q. The notation for the 
vertical composition of 2-cells is not the usual one, o, because there is already a very well known 
and used notation for this composition, called convolution product, and it is *.

Before we give the definition of the horizontal product, note th a t in the following 2-cell diagram 
in I n t C a t (971),
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( A ' , C ' ) - ^ - ( A , C )  I a (B. D) — (B1, D']

9

(1.26)

both k ia  and a.h0 are natural transformations.

W ith this observation at hand, consider the following 2-cell diagram in I n tC a t (991):

f  h

(A ,C ) |  a (E ,F )  0 3  (B ,D )  .

9 k

(1.27)

The horizontal product or the Godement product f h a  of the natural transformations a  and p

[A, C) |  (B, D)

is defined as,

P*a  =  Pgo * h\Ot = k\a  * Pfo . (1.28)

This last equality will be called the Godement product equality. The Godement product is 
well-defined because of the proof of the following

P ro p o s i t io n  1 .5 .3 .1 . Consider the diagram in (1.27), the Godement product of internal natural 
transformations a, P is well defined.

Proof :

T hat the Godement product is a natural transformation is clear from the note on (1.26), the 
only thing to prove is the unambiguity of the definition through the equality.

If the factorization Lemma A .2 is applied to the convolution products * h^a = th.b ■ 
(PgoDolna)  • thg • A c and Aqa * Pfo = niB • (kia\JDp f 0) • Lkj  ■ A c, then we get the upper and the 
lower branch of the following diagram, respectively.
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C U c C

Ac

c

Ac 

C B n C

c sa Fsc  g°aFn> f o f e  — -

(•)

(ii)

c f n Ff c aDp/o F D f E

F hQ hE B s X B n D B

(Hi)

Lk F kU DkE hi □/?

B

B U d B

This diagram commutes because

1 . The diagram (i) is the induced commutative diagram, according to Lemma A.6 , by the left
colinearity of a , i.e. FpE ■ a = (F <S> a) ■ (go <S> C) - Ac-

2. The diagram (ii) is the induced commutative diagram by the right colinearity of a.

3. The diagram ( in)  commutes because p  is a natural transformation.

Therefore

Pg0 * hi a = k }a  * p f 0,
as required.

The unit for the horizontal product of the internal category (A ,C )  is u a■ 

Next we state, w ithout proof, the following

Lemma 1.5.3.2. Consider the following 2-diagram in In tC at(971)

/
I «

( A ' , C ' ) - ^ ( A , C )  r ( B , D )

□

Then (P * a)ho = (3ho * a h 0 and k\((3 * a) = k\P  * k \o t .

W ith Lemma 1.5.3.2 a t hand, take internal natural transform ations a  : /  — ► g : (A' , C') 
(A , C), P : h — > k : (A, C)  — > (£ , D) and 7  : r  — > s : (B , D ) — ► (B ' , D '), and compute

7 *(P*a) =  i*(Pgo*hia)
=  7(^0  • p o )  *  r } ( P g 0 *  / i j q )

=  l k 0g0 * ri/3p0 * 77/11 c*

=  (7^0  * n/?)0o * rihiot
=  (l*ft)Qo *
=  (7 *P)*a .
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Along with the aforementioned lemma, the definition of the Godement product and the associa
tivity of the vertical product * were used. This proves the associativity of the horizontal product 
*.

P ro p o s i tio n  1 .5 .3 .3 . The vertical and horizontal compositions, * and *, respectively, defined 
above satisfy the interchange law.

Proof:

Consider the following 2-diagram in I n tC a t (911)

f  h

I ol I 7
( A , C )  r  * ( £ , F )  s * ( 5 ,D )  ,

Then

(5 * y)*(P * a) = (6 * 7 )# 0 * h i (P *  a)

(Sg0 * 73o) * ( h P  * h a )  
fyo * ( l%  * h P )  * h a
5g0 * (siP * 7 ro) * h a  
(6(jo * s\p)  * (7 r 0 * h a )  
(5*P) * (7 *0 ) .

Lemma 1.5.3.2 has been applied several times along with the definition of the Godement prod
uct and the associativity of the vertical product. In the fourth equality, the Godement product 
equality was used for the definition of 7 *p. □

Finally, the proof of the compatibility of unital natural transformations with compositions is 
easy and left to the reader. The results of this section are summarized in the following

P ro p o s i t io n  1 .5 .3 .4 . IntC at(Q Jt) is a 2-category with 0-cells internal categories, 1-cells internal 
functors and 2-cells internal natural transformations and vertical and horizontal compositions, * 
and *, defined by (1.25) and (1.28), respectively.

□
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1.5.4 IntCoCat(97t) as a 2-category

Finally, there exist another definition of functor between internal categories, which is termed 
cojunctor, see [2], The notion of a cofunctor gives rise to a completely different 2-category 
Int CoCat (9JI), having the internal categories in Wl as its 0-cells. This section is devoted to 
the description of In tC oC at(971). Since the 0-cells are the same as in In tC at(QTl), we s ta rt with 
the definition of 1-cells

D efinition 1 .5 .4 .1 . Let (A , C) and (B , D) be internal categories in VJl. A cofunctor /  : (A , C)  — ► 
(.B , D) is a pair f  =  ( / i , /o ) ,

f  =  ( . f i J o )

(A ,C)  (B, D) ,

where

• )  fo : D — > C  is a morphism in C o m o n ^  ,

• )  f i  : ADc^D  — > ^B is a morphism in cAADsuch that the following diagrams

A n c A U c fD A° c h > A U ^ B

ttiaOc^D

A U c fD D o B
JiUpB

b u d b

A B c fD h B

C U c fD D

bt-b  u A D c f D

A B c fD

UB

S1 B

commute.

The definition of a natural cotransformation, for the 2-cell structure of In t  C o C a t (971), is given 
on the next:

D e fin itio n  1 .5 .4 .2 . Let f , g  : (A , C ) — * (23, D) be cofunctors. Then a natural cotransformation

£

(A ,C)  i  a  (B, D)  ,

9

is a morphism a  : JD —> 9B in CM °  such that the following diagram

(1.29)
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A U CSB  — 2—  A U c9DUd B ■9'â  b o d b
ADca

A U r fD

h
B D U d B cx\I\e)B

B

B U d B

commutes.

The composition of 1-cells over the following 1-cell diagram

/  h h - f

(> 4 ,0  (A', C )  (A'\  C") =  (>4,C) { A \ C " )  ,

is defined by

( h  ‘ / ) o — / o  • h 0 ,

( h - f )i =  Ai • ( / .□ c ' ' ,C")

The vertical product over a 2-cell diagram

is defined by

( A , C ) ----- / ' — *- (B, D) = (A , C ) I 0 o  a (B, D)

(3 o a = m s  • (PDd B)  • Dpg • a  : D — > B .

The unit cotransformation of /  : (A , C) — > (B , D), for this composition, is the unit of (£?, D),
ub : -D — > B.  On the other hand, the horizontal structure over a 2-cell diagram

(A ,C )  |  a  ( A \ C ' )  I 7 (A",C")  =  (A C )  |  7*« (A '.C ") :

^ ^ k • g

is defined by
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7 *a =  m A« ■ ( i O c A " )  ■ c "pA" ■ hi ■ (aO c-'C ") - c 'pc» : C"  — . -4" .

The unit of (A, C), for this composition, is the unit of (A, C), ua : C — > A.

Remark  1.5.4.3. Consider the case when the monoidal category (371,®,/) in IntCoCat(OTl) is 
(M o d /?p, <£>/?,/?.), see Section 1.4.1. A cofunctor, in this set up, ( / i , /o )  : (C'M) — > from
the A-coring C  to  the £?-coring D  is equivalent to a commutative diagram of functors like

M o d

where the functor F0 is the restriction of scalars corresponding to the 7?-algebra morphism / 0 : 
A — * B  and the unmarked arrows are forgetful functors. Therefore, a cofunctor can be identified 
with a left extension of corings, [8 ],
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Chapter 2 

Classical and Formal Theories of Monads

In this chapter the concept of a monad will be of main importance, therefore we recall it from 
[26]. Let C be a category. A monad  on C is a triple where F  : C — > C is a functor
and n  : F F  — > F, r)F : 1 c — > F  are natural transformations such th a t the following diagrams 
commute:

F F F

Fn

F F

F F

F

t] f F
F   ----- > F F

F F FM

( 2 . 1)

The first diagram is referred to as the associativity of the monad, and the second one as the 
unitality of the monad. Dually, a comonad on C is a triple (G,5, eG), where G : C — > C is a 
functor and 5 : G — ► GG, eG : G — * 1 c are natural transformations satisfying conditions dual 
to those in (2.1).

In this chapter, we describe the classical and formal theories of monads and comonads, follow
ing [18], [20], [21], [24] and [30].

Note 2.1. If a  : H  — > K  : C — ► V  is a natural transformation in Cat, then the notation a c  or 
a C , over an object in C, will be used indistinctively.

2.1 Monads and the Associated Category of Adjunctions
This section deals with the category of F -A d j of adjunctions associated to a monad (F,jj,,r]F) or 
F-adjunctions.

Let

V (2.2)

29
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be an adjunction with domain C and codomain V,  with unit q : 1 c — > RL  and counit e : L R  — > 
1 p. W hen the codomain T> of such an adjunction is irrelevant or understood , the statem ent an 
adjunction over C or an adjunction with domain C, will be used instead. Also, the triangular 
identity eL o Lq = 11  will be referred to as the triangular identity associated to left adjoint L 
and the identity Re  o q R  =  1R as the triangular identity associated to the right adjoint R. Yet 
another convention for an adjuntion like in (2.2) can be stated, whenever suitable the notation 
for the unit r)RL and the counit e ^  will be used, in order to differentiate among units and counits 
from different adjunctions.

An adjunction like (2.2) induces a monad

(RL,REL,q)  (2.3)

on C. If (F, f i ,qF) is a fixed monad in C, then one can consider the collection F-Adj(C) of 
adjunctions L H R  with domain C such that (RL,  ReL,q) = (F,/ i ,qF). Any such adjunction 
will be denoted by (V, L H R, e) or simply (V , L  H R). F-Adj(C) is a category with objects 
('D , L H R)  and morphisms J  : ('D , L H R) — * ( V , L' H R') given by functors J  : V  — > V  
making the following diagram

C
R '

serially commutative (i.e. both the L and H-diagrams commute). As explained in [25], the above 
requirement together with q = qF = q1 imply that

Je = e'J  , (2.4)

which is one of the requirements imposed on J  in [21].

W ithin the category F-Adj(C), there are two very im portant objects which we describe com
pletely. The first one is the so-called Kleisli category for the monad (F,q..qF), denoted by Cf.  
The objects of the Kleisli category Cf  are the same as those of the original category, i.e.

Obj(C) = Obj(CF) • (2.5)

A morphism J'  ̂ : A — » A' in Cf is given by a morphism in C

f  : A — * FA' . (2 .6 )
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The composition for a pair /& : A — > A' and g  ̂ : A! — > A" of morphisms in C/r, is defined as

a" ■ / b =  (/m» ■ Fg ■ f f  , (2.7)

i.e.

f  F  Q ll A "
A — F A '  F F  A" — ^  FA"

The identity morphism for A  in Cp is

: A  — * A  , (2.8)

i.e. the morphism given by the unit : A  — * FA.  T hat is a unit for the composition in 
Cf follows by the unitality of the monad and the naturality of gF.

The second category is the so-called category of Eilenberg-Moore category of algebras for the 
monad (F, /i,?7F), denoted by CF. The objects of this category are pairs (M, fx m ), where M  is an 
object in C and b\M  ■ E M  — * M  is a morphism in C, called the action of the algebra or structure 
map of the algebra, such th a t the following diagrams

/xM
F F M  — ------* F M

F  X  M X M

F M M
X M

commute.

t i f M

F M

X M (2.9)

A morphism /  : (M, fXm ) — * ( M f, fXm ') in this category is given by a morphism /  : M  — ► M'  
in C, such th a t the following diagram

F M
Ff

F M ' (2 .10)

X M X m '

M M'



32 2.1. Monads and the Associated Category of Adjunctions

commutes. Both of these categories belong to F-Adj(C), a fact that can be stated as a pair of 
propositions:

Proposition 2.1.1. The Kleisli category Cy is an object in F-Adj(C).

Proof (Sketch):

The adjunction over C

c r  y ~ ~ c F , (2 .ii)
D f

is defined as follows. The functor D F is defined on objects as the identity, and for a morphism 
h : C  — ► C'  in C, as

D F(h) =  (r)FC' ■ h f  . (2.12)

The functor UF is defined on objects A  in CF, as UF(A) = FA,  and on morphisms p  : A — * A f
as

UF{ f )  =  nA'  ■ F f  : FA  — ► FA'  . (2.13)

It is straightforward to check th a t the unit of the adjunction r\K can be defined as r f  — rjF.

The counit, eK : D FUF — * 1 cF, is defined on objects

£k 'A  : FA  =  D fUf(A) A ,

as eK*A = (I/.m)11- It is easy to check tha t (DF H UF)£K) is an F-adjunction over C. □

Proposition 2.1.2. The Eilenberg-Moore Category Cb is an object in F-Adj(C).

Proof (Sketch):

The adjunction over C

uF

D 1

is defined as follows. The functor D F, known as the free algebra functor , is defined on an object 
C, as the pair (F C , f i C ), and is defined on a morphism h : C  — ► C \  as
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D F{h) =  F h  .

The naturality  of /a implies th a t Fh  is a morphism in CF. The functor UF, known as the for
getful functor , is defined on an object (Af, *Xm) in Cb as M , and for a morphism /  : (M, 1\ m )  — * 
(A/', fX m ' )  as

U F Q )  =  /  .

It is straightforward to check th a t the unit r)E for this adjunction can be defined as 'qE = r)F. 

The counit eE : D FU F — > I qf is defined on objects

eE(M, " x m ) : ( F M , n M )  = D FU F(M, "X m ) — * (A/, " X m ) ,F t t F (  A  4 (2.14)

as s e ( M , f x m ) = f X m - This is well-defined since the first requirement for the action fxm, (2.9) 
can be identified as a requirement for f x m  to be a morphism in CF. The proof th a t (D F H U F, eE) 
is an object in F -A dj(C ) is left to the reader. □

The main property of these two categories is th a t they are universal objects in the category 
F-A dj(C ).

P ro p o s i t io n  2 .1 .3 . The Kleisli category Cf for a monad  (F, /i, r}F) is an initial object in F -A dj(C ). 

Proof :

Let (D, L H R)  be an object in F-A dj(C ). Then the a posteriori unique functor K F,

C V
L

is defined on objects A in Cf , as

K f (A) = LA  , (2.15)

and on morphisms F  : A  — > A', as

K f( F )  = eLA'  - L f  : LA  — > LA' .
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The commutativity of the left adjoint functors is checked in the following way. Let C  be an 
object in C. Then K FD F(C) — K F(C) — L(C).  Let h : C  — > C' be a morphism in C. Then

K FD F(h) =  K f {t!fC' • h f  = eL C  • L t f C '  • h) = eLC'  • L r fC '  • Lh  =  Lh  ,.

where the last equality comes from the triangular identity associated to the left adjoint L. Thus, 
K f D f = L, as required.

On the other hand, the commutativity of the right adjoints is proved in the following way. 
Let A be an object in Cp. Then R K F(A) = RL(A)  =  F(A) = UF(A). Let / fc : A  — * A' be a 
morphism in Cp. Then

R K F(f^) =  R{eLA'  • L f )  = ReLA!  • R L f  = 11A'  • F f  = UF{ f ») .

Therefore, R K F =  UF, as required.

To prove tha t K F is unique, suppose tha t there is another morphism in F-Adj(C), say J  : 
Cp — ► V  . Let A be in Cp . Since the functor DF is the identity on objects, then J  A — J  D FA. 
Furthermore, J  is a morphism in F-Adj(C) hence J D P ~  L, therefore J A = LA.  On the other 
hand, let p  : A  — * A! be a morphism in Cp. The requirement J D F =  L gives

J D FU )  = J { ( v FF A ' - ! f )  = L f

Next, the property (2.4) evaluated at A', reads J(  1 FA>f =  eLA'. Therefore

J ( f )  = j ( ( fi A ' - r ]FF A ’ - f ? )  = J ( ^ A '  - F i l p ^ - ^ F A '  ■ f f )

= J ^ l p ^ - ^ F A '  - f f )

= J ( ( l p A')*)J((riFFA> ■ f)*)
=  eLA'  • L f  ,

where in the second equality, the definition of the composition in Cp, (2.7), was used. The previ
ous calculation determines the definition of J  on morphisms, so J — K F □

P ro p o s i t io n  2 .1 .4 . The Eilenberg-Moore category CF for a monad (F,fi,r]F) is a final object in 
F-Adj(C).

Proof :
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Let ( V , L  H R)  be an object in F-A dj(C ). The a posteriori unique functor A F, called com
parison functor ,

C

CF

is defined on objects f)  in V , as

K f (D) = (R D J i e D ) . (2.16)

On morphisms r  : D  — > D \  K F is defined as

K F(r) =  W  : (RD, ReD)  — > ( R D \  ReD')  . (2.17)

The com m utativity of the left adjoint functors is checked in the following way. Let C  be an 
object in C. Then K FL(C)  =  (RLC, ReLC) = {FC,/aC) = D F(C). Let h : C  — ► G  be a 
morphism in C, then

K FL(h)  =  R L f  = F f  = D F( f )  ,

where the definition of the induced monad by an adjunction, (2.3), is used. Thus, K FL = D F, as 
required.

On the other hand, the com m utativity of the right adjoints is proved in the following way. Let 
D be an object in V.  Then UFK F(D) = U F{ R D , ReD) = R(D).  Let r : D  — ► D'  in V  be a 
morphism in V.  Then

UFK F{r) -  UF(Rf)  =  R r  .

Therefore, U FK F = R, as required.

To prove th a t K F is unique, suppose th a t there exists another morphism J  : V  —► CF in 
F-Adj(A). Let D  be an object in V.  Then J (D )  = ( M , f xm),  since U FJ  = R. the object M  is 
determined as M  = RD.  Before determining the action, let r \ D — ► D' be a morphism in V.  
Due to the fact th a t J  is a morphism in F-Adj(C), UFJ  =  /7, hence U FJ r  = R.r. Using this 
behaviour of UF J  on morphisms,

ReD  = U FJe D  = U FeBJ D  =  UFeE(RD, f Xm ) =  U f (fX m ) =  fX m -
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Thus, the action is determined by the value ReD.  Furthermore, due to this deterrmination, 
we can now conclude th a t Jr  = Rr  = K Fr. This determines the definition of J  on morphism s, 
so J  = K F. □

2.2 Comonads and the Associated Category of Adjunctions
Dual to the previous section, consider a comonad ((7, 6, eG) on the category V.  Let us; define a 
category th a t has, by objects, adjunctions with codomain T>

such tha t the comonad induced on V  is precisely the one given at first, i.e. (LR, LrjR.ee) = 
(C,d, e-G). The notation for such an adjunction is (C, L H R yrj), or (C,L H D) for shortt, lea.ving 
the unit understood. The morphisms of this category J  : (C, L H D) — > (C, L' H D') are1 functors 
J  : C — * C  such tha t the diagram

commutes serially. W ithin this category there are also two universal objects, which, contirary 
to the previous subsection, are going to be only slightly explained. The Kleisli category forr the 
comonad ((7,(5, eG) over V  and denoted by T>G. The objects of this category are the same ass the 
original one

Obj(V)  = Obj{Va ) .

The morphisms in V G are hP : A  — ► A' if and only if

h : GA  — * A' ,

is a morphism in T>, and the composition for the pair /ib : A  — * A' and $  : A' — > A"  is defefined
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The ur.it of A for this composition is

since e°A : GA — > A.

The se:ond category is the category known as the Eilenberg-Moore category of coalgebras or 
comodules for the comonad (G, <5, eG) and denoted by T>q . The objects of this category are G- 
comodules or comodules for short, ( M , gp m ) in V  such th a t the following diagrams

G G M &M G M G M

G gp m P M

G M M

P M

P M

commute.

A morphism in this category r : ( M , Gpm) — > ( M ' , GpMi) is such tha t r : M  — * M'  is a 
morphism in V  and the following diagram

G M Cr
G M '

P M JPM>

M M ’

commutes.

These two categories belong also to the category G -A d j(P ), and not only tha t but the fol
lowing two propositions can be stated

P ro p o s i t io n  2 .2 .1 . The Kleisli category V G, for the comonad (G,S,£G) over V ,  is an initial 
object in the category G -A d j(D ).

Proof : cf. 2.1.3. □

P ro p o s i t io n  2 .2 .2 . The Eilenberg-Moore category T>g , for the comonad (G,5,£G) over T>, is a 
final object in the category G -A d j(P ) .

Proof : cf. 2.1.4. □
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2.3 Formal Theory of Monads
In this section, the notation a : f  — > g : A — > B for a 2-cell in the 2-category A , is widely used.

The formal theory of monads was developed in [20] and [30]. The following presentation makes 
also use of [18] and [24].

For the formal theory of monads, let A  be a 2-category, and define the 2-category of monads , 
as follows:

i) 0-cells of M nd(M ) are (A, f .  p, r/7), where ( f ,g,r]J) is a monad on A. A monad in the 2- 
category A  is understood as a 1-cell /  : A — * A, and 2-cells g : f f  — > /  : A — » A and 
r)f : 1A — > /  : A  — ► A, depicted as

f f

f

1.

/

such tha t the following diagrams

m/
f f f f f

f f f

i — '^— * h

H  J t ) I
\

' _ x \ '

i f /

commute. Sometimes, the shorthand notation (A ,/) , for such a 0-cell, is used instead.

ii) 1-cells of M nd(^4) are

(p,ip) : (A, / , yu7 , ?7/ ) ------- ► ( A / , / i , / / h ,77h ) , (2.18)

where p : A  — ► A 1 is a 1-cell in A,  and is a 2-cell in A ,

A A1 (2.19)

A A 1
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such th a t the following diagrams commute:

39

h h p ------------ — — >  h p f ------------- — — >  p f f

PH'

hp Pf

PiT

Pfh p

(2 .20 )

Hi) 2-cells of Mnd(^4) are,

where is a 2-cell in A ,

$  : (p,y)  — > (<7/ 0 ) : ( A J )  — ► (A\h)  ,

such th a t

P

A i  $  A'

T

h p ------------- — — >■ hq (2 .21 )

commutes.

The composition of the underlying category (M ndo,M ndi, •), see Section 1.5.1, is defined as 
follows:

{ p , ip )  (q,4>) ( q - p , q < p o i p p )

( A J )  (A’J ') (A"J")  =  ( A J )  (A", J") .

In order to check th a t (q ■ p ,q p  o i/jp) is well-defined, the pasting operation of 2-cells have to 
be explained. This operation is explained over one of the most simple possible cases,
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( 2 .22 )

The pasting operation for this 2-cell composition is

h j  

[ l h * a

In this way, more complex pasting operations can be carried out. For a more detailed expla
nation the reader is referred to [18]. Resuming to the well-definition of (q ■ p, qp o ijrp), consider

A  A '  A 1
\

A A' A'

= f
qipoipp

Because of this, the 1-cell (q-p.qpo^p)  is well-defined. The requirement (2.21) for the composition 
of 1-cells is not going to be done in order to avoid doubling the length of this chapter. The unit 
of the 0-cell (A, / )  for the composition of this underlying category, is (1,4 ,1 /) : (/4, / )  — > (A, / ) .

For the pair of 0-cells {A, f )  and (A1, h) ) the vertical structure in Mnd(M), i.e. the composition 
for the category (M ndi((/1, / ) ,  ( A \  /i)), M nd2((j4, / ) ,  (A', h)), o), is defined as follows. Consider 
the following 2-diagram

(p ,<p )

( A J )  — *(A ' ,h )  =  ( A J )  I y  o<F (A',h)  

(Q:^)

where To4> =  'F o <F, which is well defined because of the following equality between commutative 
diagrams
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This composition ju st defined inherits the associativity from the 2-category A.  The unit of 
the 1-cell (p, tp) for this vertical product is defined as l(PiV?) =  l p.

The horizontal structure in M n d (.4 ), for the category (M n d o ,M n d i, *) is defined as follows. 
Consider the following 2-diagram,

(p , v ) O 'V )

M , / )  1 $  M ',/0  I r  (A",k)  = ( A j )  |  r * $  M",fc) ,

(Qi ^P) (q'-q, q'lj) o'ip'q)

where r*4> =  r*4>. Due to the lengthy calculation of the respective commutative diagram, the 
proof of the well-definition of this composition is not done here. The unit 2-cell of (A, / )  for this 
composition is l ( i>1,i/ ) =  li^ . All this provides M nd(^4) with a structure of a 2-category.

Consider the inclusion 2-functor,

Inc^  : A  — > M nd(.4 ) ,

defined as follows. For a 0-cell £?, In c ^ (B )  = (B, I s ,  l i B, l i fl). For a 1-cell b : B  — > B 1, is 
defined as fnc^(b) = (b, 1&),

(b, U)

For a 2-cell, : b — > 6' : B  — > S ', Inc^ (p )  =  /3, where

(Mi)

( B . la )  |  0  (S ', Is-)

(6', u o
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D efinition 2.3.1. The 2-category A  is said to admit the construction of algebras if the inclusion 
functor IncA : A  — > Mnd(M) has a right adjoint, in which case it is denoted by

AlgA : M nd(M ) > A

For the sake of referencing, this 2-adjunction is fully displayed as

A I qa

A < > M n d ( / )  . (2.23)
Inc  a

Suppose tha t the 2-category A  adm its the construction of algebras. Then according to [19] 
and [28], for every pair of 0-cells, B  and {A, f ) ,  in A  and Mnd(M), respectively, there is an 
isomorphism between the following categories,

HomA (B ,A lg A ( A , f ) )  = HomMnd{A)(IncA( B ) , { A :f ) )  ,

which follows by the Yoneda lemma for 2-categories. If the following notations are taken into 
account, F = ( / , /x,r/7), A E =  AlgA ( A J ‘), A l t f  _  = //wH»Mnd M ) ( ^ u L ) . ( ^ J ) ) ,  then the 
previous isomorphism can be read, over the 0-cell B , as

HomA (B, A e ) ^  AlgF{B ) .

The 0-cell A E is termed as an Eilenberg-Moore object in A , because it represents the 2-functor 
AlgF( _ ), cf. [24]. Therefore, Definition 2.3.1 can be rephrased as follows: the 2-category A  
adm its the construction of algebras if and only if it has Eilenberg-Moore objects for any monad 
F  =  (f,/2,7]f ) over A , in A.

In order to find the Kleisl i  objects in A , let us make the following observation. According to 
[15, 1.6], the following are equivalent

i) H r

ii) H lop

iii) r co H lco

iv) lcoop H r coop

If Definition 2.3.1 is considered, then the 2-category A op is said to have the construction of 
algebras, if the following adjunction takes place
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Alĝ op
A op > Mnd(^4op)

I T l C j ^ o p

which can be read, due to the very previous observation applied to the 2-category 2-C at, as

In c ° J op

M ndop(.4op) < A  , (2.24)
Alg°J0p

Therefore, the following isomorphism of categories exists. For all, B  in A  and (A ,/)  in 
M ndop(̂ 4op)

HomMndop{AoP) ((4 , / ) ,  I n c J op(B))  =  HomA (A lgJop( A , / ) ,  B)  .

In the same way as before, in term s of the notation, F  =  ( / ,  / / ,? /) , A k  — Alg°Jop{A, f )  and 
A lgF_  = HomMnd°p(Anr) ((A , f ), Inc°A„p_ ) ,  the isomorphism of categories, for the 0-cell B,  reads

A lgF{ B ) ^ H o m A {AK , B )  . (2.25)

The 0-cell A k  is called a Kleisli object in A , because it represents the functor AlgF( _ ), cf. 
[24]. And saying th a t A°v adm its the construction of algebras is equivalent for A  having Kleisli 
objects for any monad F  = (f,n,,r)f ) over A  in A.

Yet again, if Definition 2.3.1 is considered, then the 2-category A co is said to have the con
struction of algebras if the following adjunction takes place

AlgA CO
A co *.............> Mnd(^4co) ,

I  t ic a co

which also reads as

I  nc-^co

M nd^(A™)  < .  A
A lg c?co

This renders the following isomorphism of categories. For all B  in A  and (A ,g )  a comonad over 
A,

B om Mndro(Aro} ( (A, g), IncAr.0(B)) = HomA (Alg%„(A,  g), B)  .

Yet again, if the following definitions are made, G  =  (g , 5, e9), A cok  = A l g ^ Co(A, g) and CoalgG_  =  
^ m Mnd“ (^» )((d , g), I n c cJ(co_), then the isomorphism of categories, over the 0-cell B,  reads this 
time as
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CoalgG(B) = HomA(AcoK) B) (2.26)

The 0-cell A cok is known as a coKleisli object in A , because it represents the functor CoalgG( _ ) ) 
cf. [24]. And saying tha t A co adm its the construction of algebras is equivalent to A  having coK
leisli objects for any comonad G =  (g, 5, e9) over A in A.

In what follows, the 2-category Mnd';p(Aop) is of particular importance, in order to get the 
Kleisli objects in the 2-category IntCat(9Jt), hence we describe it explicitly (with some minor 
changes in the notation used for Mnd(A)).

i) The 0-cells of this 2-category are (A, / ,  ,rjf ), i.e. monads in A,

ii) The 1-cells of this 2-category are

such tha t r : A — * A' is a 1-cell in A, and p is a 2-cell in A,

A  1------ ► A!

f  h

such tha t the following diagrams commute:

m )  The 2-cells of this 2-category are

E : ( r , p ) --------(■*»,<r) : ( A . / ) ----------> (A ',h )
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where E is a 2-cell in A

A i  E A'  , 

T

such th a t

commutes. W ith this description of M n d op(*4op) at hand the algebraic Kleisli 2-functor can be 
fully characterized. This Algebraic Kleisli 2-functor for a monad F = over A is

a i 9 f { _ )  =  HomMndoP{A„p)((A, f ) ,  Inc°Jop(_))  : A  — ► 2C a t ,

which acts on 0-cells B  in A  as

AlgF(B) = B f ,

where B F =  M o n ° p(A OJ))((A,  f ) ,  ( B , 1 b )) Is a category. The objects in this category are pairs 
(r, p), where p is the following 2-cell

rf

A i  P B  ,

~r

such th a t the following diagrams

r

r

(2.27)

commute. A morphism in B F, E : ( r ,p) — ► (s,<r), is a 2-cell
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A i H  B  , 

s

(2.28)

such th a t the following diagram

(2.29)

commutes.

The algebraic Kleisli 2-functor acts on 1-cells b : B  — > B' in A,  as

AlgF(b) =  bF : B F — > B'F ,

where bF is a functor. This, in turn, acts on objects (r. p) as

bF(r,p) = (br,bp) ,

and over morphisms, E : (r, p) — ► (a*, cr), as

bF(E) =  bTl : (br,bp) — > (bs,bcr) .

The algebraic Kleisli 2-functor acts on 2-cells

b

B I (3 B'  , 

b'

as AlgF((3) =  j3F, where (3F : bF — > b'F : B F — > B'F is a natural transformation such tha t
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/3F(r, p) =  Pr : (6r, bp)  ► (6V, 6'p) .

This finishes the complete description of the algebraic Kleisli 2-functor AlgF(_)  : A  — ► 2C at.

2.3.1 The 2-Category KL(^4)
The 2-category KL(.A) is the Kleisli completion of the 2-category A , its construction is fully 
explained in [20], The 2-category KL(„4) has by 0-cells those given by the 0-cells of M nd(.4), 
th a t is to say, (A, f ,  p , q f ). The 1-cells of KL(.4), from (A,  f ,  p f ,r]f ) to {A', h, p h, r]h), are given 
by

(p, <p)

( A J )  (A \ h )  ,

such th a t p : A  — > A'  is a 1-cell in A,  and <p : p f  — * hp : A — > A'  a 2-cell in A.  Note the 
inversion in the 2-cell definition for this 2-category with th a t of Mnd(*4), given by (2.19). This 
2-cell is required to fulfill the com m utativity of similar diagrams like those given in (2.20). The 
2-cells of the 2-category KL(^4) differ substantially from those of Mnd(^4), and are described as 
follows.

is a 2-cell in A,

A : (p,</?) — ► (q,ip) : ( A J )  — > ( Ar, h)

P

A i  A A'  , 

hq

such th a t the following diagram

p f   —► hp — hhq

A /

hqf

hip

h h q -----------   > hq

commutes.

The underlying categorical structure of this 2-category, (K L 0(*4), K Lj (.4), •), is defined by the 
following composition
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(P,<fi) (</> V') (q-p,i/>poq<p)

( A J )  (A1, }') (A", /" )  = ( A J )  ( A " J " )  .

The unit of (A ,/)  with respect to this composition is (l/t, 1/). The vertical structure of this 
2-category is defined by the following 2-diagram

CP> 4>)

i  A 
(A, / )  (op)

\ I  A'

(p,0)

(A', A) =  (A ,/)  J, A 'o  A (A ' , h ) ,

where A' o A — pAqo AA; o A. The unit of (p, <p) for this composition is php : (p,<p) — ► (p, <p), 
since r)hp : p — > hp.

On the other hand, the horizontal structure is given by the following 2-diagram

(p ,<p ) ( p V )  (pJ W p o p J )

( A J )  I A (A' ,h)  I f  (A " , k ) = ( A J )  i  T i l  ( A",*)

( q j )  ( q ' J 1) ( q ' - q j ' q o q j )

where T*A =  pLkq'q o k T q o  p'q o p'A and the unit of (A, / )  for this composition is qs : (1,4,1 /)  — * 
(1 a , ly), since pf : 1a — * /•  This completes the definition of KL(*4).

2.3.2 W reaths
The theory of wreaths is developed in [20]. These are considered as extended distributive laws and 
are used in this thesis to get an explicit Kleisli object from any monad on KL(M). To begin with 
let us state the following simple

D efin itio n  2 .3 .2 .1 . A w reath is a monad in K L(A ).

The complete description of a wreath in KL(^4) is the following one. A  monad on the object 
( A , / , / i , p ; ), or a wreath, ( ( A , / ) ,  (A, A),  P , a )  consists, according to the previous section, of an 
endo 1-cell (A, A) : ( A , / )  — ► ( A , / )  and two 2-cells P : (A, A)- (A, A) =  (A*A, AAoAA) — * (A, A) and 
a : 1(a j ) — * (A, A), corresponding to the multiplication and the unit of the wreath, respectively. 
The previous da ta  has to satisfy the requirements of a monad in KL(A.). More exhaustively, (A, A) 
consists of cells A : A  — ► A  and A : h f  — > / A  in A.  The last 2-cell satisfies the commutativity 
of the following diagrams
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M S  f h f  S fh

hfif J  h

h f f h h f A

The 2-cells in KL(*4), v  and a, are 2-cells in A,  v  : hh — > f h  and a  : 1,4 — ► f h ,  such tha t the 
following diagrams commute

h h f —^ h f h —^ f h h — ^ f f h

vf

f h f

/ A

f f h

A  h

A  h f h

/
o7

f h f

/A

f f h

/<* f f h

A  h

Ah f h

The requirements for the associativity of the monad and the unitality, P o p(h, X) = P o (h, X)P 
and Po a(h,  X) = l(h,\) = Po (h, X)d, respectively, can be translated to the following commutative 
diagrams

hhh

hu

h f h

A h

vh

f  hh  — ^ f f h Ah

f h h  

J»

f f h

A  h

f h

ah f h h

ha

f f hh f h

A h

f h h f f h lit h

Having a wreath in K L(.4) (0-cell in K L(K L(„4))), there is an induced composite monad in 
A  (0-cell in KL(„4)) , cf. [20] , called the wreath product. This composite can be seen as the value 
over 0-cells of the following 2-functor:

C o m p ^  : KL(KL(*4)) — ► K L { A )  . (2.30)
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This 2-functor is the left adjoint to the inclusion 2-functor IncKL(^). This adjunction is 
depicted as

^n c KL (A)
KL(KL(.4)) KL(^) .

C o m p ^

see [20]. T hat IncKL{A) has a left adjoint means that AlgKL(A) — C o m p ^  and, in particular, 
C o m p ^  has to send a monad ((,4, / ) ,  (/i, A), P, a) to its Kleisli object, as it was discussed earlier.

The image of the wreath ((/I, / ) ,  (/i, A), P, a) under the 2-functor C o m p ^  can be written down 
explicitly as ( T , / / i , / / c, cr), where the induced multiplication fi° for the composite monad is:

fxc — fifh o fu o g,fhh o fXh : fhfh  — > fh (2.31)



Chapter 3 

Internal Kleisli Categories

3.1 Monads and Adjunctions in the 2-Category IntCat(SJl)
This chapter is based on [10]. In this chapter, Kleisli and coKleisli objects are found in the 2- 
category of internal categories, th a t is to say, th a t the 2-categories IntC atop(971) and IntC atC0(9Jl) 
admits the construction of algebras. Also, Kleisli objects are found in the 2-category IntCoCat(SX)T) 
In order to do so let us begin by giving the definition of an adjunction in the 2-category IntCat(97l). 
Let (A, C ) and (B, D) be 0-cells in IntCat(9Jt).

D efinition 3.1.1. An adjunction from (A ,C)  to ( B , D )  is the data (/, r, 77, e), where I and r are 
internal functors,

(A ,C )^  ̂ > (i* ,D ) , (3.1)

and (77, e) are internal natural transformations,

1 '■ 1( .4 ,C)  — * r l  , 

e : Ir — > 1 (B,d) >

that fulfill the so-called triangular identities:

d o *  hr} = 1/ , (3.3a)
T\S * rjr0 = l r . (3.3b)

The shorthand notation for such an adjunction is I ~ \ r , leaving the unit and counit understood.

Remember th a t according to Section 2 .1 , the first of the triangular identities will be referred to 
as the triangular identity associated to the left adjoint I and the second as the triangular identity 
associated to the right adjoint r , this referencing is by no means standard but it helps a lot when

51
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writing.

Let us rephrase the definition of a monad, given in Section 2.3, but this time within the 
2-category IntCat(SDl).

Definition 3.1.2. A monad on the 0-cell (A ,C ) consists of the following data ( / ,  n,rif ), where the 
first component is a 1 -cell in IntCat(9Jt), /  =  (J\, / 0) : (A, C)  — ► (A, C) and the rest of the data 
is composed of 2-cells fi : f f  — > /  : (A ,C ) — ► (A ,C ) and r]f : 1(a,c) — > /  : {A,C)  — > (A ,C ),

f f  1a

(A, C) I fi (A, C) . (A ,C )  I v > (A ,C)  ,

/  /

such that the following diagrams

i f

i f

/

(3.4)

commute. The first  equation is referred to as the associativity of  the monad, and the second one 
as the unitality of  the monad.

Having given the two previous definitions, the following proposition can be stated

Proposition 3.1.3. Every adjunction I H r, from  (A ,C ) to (B , D ), induces a monad on the 
internal category (A, C) given by

f  =

M =
T]f —

rl : (A, C)  — > (A, C)  , 
rielo : r lr l  — > rl  , 

r) • 1 ( A , C )  — > rl .

Proof :

The first induced map is an endofunctor and the last two are natural transformations due to 
Section 1.5.3, there remains only to show the associativity and the unitality.

•) Associativity

Translate the associativity condition given in (3.4) by using /  =  rl and fi — r ic /0, then we 
get the following equality
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r i£ lo * r i£lorolo = r i£ lo * r ]l]rielo , (3.5)

which holds because of the following argument. Use Lemma 1.5.3.2 to factorize r i, then the 
equality th a t results is the Godement product equality of a  —  e I q and P  = e ,  like in (1.28).

•) Unitality

Applying n  to the triangular identity associated to the left adjoint I and k  to the triangular 
identity associated to the right adjoint r, the following equality can be obtained

tieIq * rir0lQ =  l rt = n e k  * n h v  • (3.6)

This previous equality is nothing but the com mutativity of the 2 triangles in the second 
diagram in (3.4), i.e. the unitality of the monad, after translation, using f  = rl, fi = T\eIq 
and rjf = rj. □

3.2 Explicit Construction of Kleisli Objects in IntCat(97t)
In this section a Kleisli object is constructed for a given monad in IntCat(9Jt). The guideline 
for this construction is an ad hoc variant of the Kleisli category for a monad in a category C, see 
Section 2.1. The construction for the coKleisli objects will follow similarly.

3.2.1 Sweedler N otation

This subsection will introduce us to one of the com putation methods for a monoidal category used 
in this thesis. In order to do so, let us introduce first the Sweedler notation, cf. [16]. Consider as 
in Section 1.4.1 a comonoid (C, A<7,£c) in the monoidal category (Vect,®,fc), i.e. a coalgebra. 
Let c be an element in C , then the image of this element under the coaction can be w ritten 
as A c(c) =  E (r) c(i) ® c(2)- In the previous expression the summation can be left out and the 
expression can be abbreviated to

A c(c) =  C(1) ® C(2) ,

where the summation is understood. W ith this notation the coassociativity of the coalgebra can 
be displayed as

(C ®  A c) • (A c)(c) =  C (i)  ® C ( 2 ) ( 1 )  ® C ( 2 ) ( 2 )  =  C (! )  ®  C(2) ®  C(3) =  C (1) ( 1) ®  C(1) ( 2 ) ®  C(2 ) =  (A c ® C) • A c
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If Pm ) is a C-comodule for the coalgebra then, for all m  £ M, the application of the
left C-coaction can be written as ° P m {m )  — m [-\] ®  m [o]> also P%i{m ) — m [o] ®  m [i]- Then, the 
compatibility condition, for m  £ M , between these coactions can be written down as

m [ 0] [ - i ]  ®  m[o][o] ®  fn\i) =  m [-\)  ®  m [o][o] ®  ?ri[o][i] •

On the other hand, if (A, 771,4, u ^ )  is a C-ring then, for a 8  b £ A\2cA,  777.4(0, ® b) =  ab. The 
complete details for the Sweedler notation are shown doing calculations.

In [27], the author extends and justifies the use of this notation not only on monoidal cate
gories like (Vect, <8>, &), but on general monoidal categories (937,0,7), where the objects are not 
necessarily sets. The role of the elements of a set is played instead by the generalized elements of 
an object A in 937, which are morphisms a : X  — > A in 937. Such a generalized element is referred 
to as a in A, where any reference to X  is omitted.

As an example of the extended Sweedler notation, we list the properties of internal functors and 
internal natural transformations using generalized elements. Let (A ,C) be an internal category 
in IntCat(937). Let also c in C  and a, a' in A be generalized elements, then the following lists 
can be stated.

i) For a functor, ( / i , / 0) : (A ,C)  — > (B,D)\

£d • Jo(c) — e c H  (3.7a)
/o(c)(i) <8> /o(c)(2) =  /o(c(i)) ® /o(c(2)) (3.7b)

/i(a)[-i] <8>/i(a)[o] =  /o(a[-i]) ® /i(a [0]) (3.7c)

/i(a)[o] ® /i(a)[i] =  /i(a[o]) ®/o(a[i]) (3.7d)
UB-fo(c) = f \  • u A(c) (3.7e)

/i(a )/i(o /)  =  fi(aa!) (3.7f)

ii) For a natural transformation, a : f  — > g : (A, C) — * (B,D):

o:(c)[_i] (8) tt(c)[0] =  c/o(c(i)) ® o:(c(2)) (3.8a)
a(c)[0] (8> a(c)[i] =  ® f 0{c{2)) (3.8b)

^ i(a [0])Q'(a[i]) =  Q (a[_i])/i(a[0]) (3.8c)

In the forthcoming calculations to be done with generalized elements, the previous listed
properties are im portant. When an equality in such a calculation uses one of these properties,
the use of this property is going to be pointed out as a reference right on the top of the equality 
itself. Also, in doing calculations, there will not be any reference to obvious manipulations just 
for the sake of brevity.
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3.2.2 Kleisli O bjects in IntCat(97t)
3.2.2.1 C onstruction o f the Kleisli objects

The proposal for the Kleisli object in IntCat(9Jl), for the monad over (A ,C) ,  is the
following:

i) The object of objects of the Kleisli object is the same as the object of objects of the internal 
category (v4,C), according to (2.5). The object of morphisms is defined as C rO cA ,  where 
the new object of morphisms is modified by the codomain map through the monad / ,  
according to (2.6). Therefore, the proposed internal category th a t it is the Kleisli object for 
the monad ( f , n , r j s) is (C^OcA,  C), in short notation A /  = C^OcA.

ii) The multiplication m j  : C ^ D c A D c C ^ D c A  = C ^ D c A ^ D c A  — > C ^D qA is defined as

m j  =  (C f Dc m 2A) ■ ( C ' D c t n c f i D c A )  ■ ( c p c A) ■ (A fc a c A f Dc A ) , (3.9)

which, over a generalized element c®  a[0] ® apj ® a' in C f D cA D cC ^ \3 cA ,  acts as,

c ® a[0] ® a[i] ® a \— > C(i) ® /i(c(2)) /i(a )a ' . (3.10)

Compare this multiplication with the composition of morphisms in the Kleisli category Cf , 
(2.7).

iii) The unit uj  : C  — > C ^ d c A  is defined as

u f  =  (Cf U c r}f ) • i f  A c  , (3.11)

which over generalized elements c in C  acts as,

ci— > c(]) ® r}f (c{2)) . (3.12)

Compare this definition of the unit with the unit morphism for the composition in Cp, (2.8).

Having defined the proposed Kleisli object for the monad ( /,  the following proposition
has to be proved:

Proposition 3.2.2.1.1. ( (C ^n \cA ,C ) ,m f^U f)  is an internal category.

Proof:

i) CJ\2cA  is an object in CM ° .

First of all, C ^ U c A  is in °A4C, since its left and right C-comodule structure maps are, 
A qDc A, and C?\2cp% respectively.
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my is a morphism in CM F .

Let us prove tha t the morphism my is in ° M C, by proving tha t all the morphisms related 
to the definition of it are in CM ° . We begin with A c, which according to Proposition A.4 
is a morphism in CA4°,  also a £  is a morphism in CM C since it is the image of the functor 

and, by the same argument, so is (1 aY  =  1,4/• Therefore A ^ O c A ^ D c A  is a morphism 
in CM C, if we see it as a horizontal composition (coproduct) of morphisms in B icom od(9Jt).

Next, according to Corollary A.5, the morphism lj  is in CA4°,  then so is FjDcA. By defini
tion, // and /] are morphisms in CA4° , therefore so is C ^ U c p O c f iO c A .  Also, by definition, 
m,A is a morphism in CM .C and, because of this, P fQ c m J  is a morphism in °A4C as well. 
Finally, the composition of these maps, which gives the definition of m y ,  is a morphism in 
° M C, as required.

Note tha t the previous argumentation could have been summarized by saying that A c, 
//, //, / i  and m,A are morphisms in CM C, then take a suitable combination of vertical and 
horizontal compositions in Bicom od(97t) to obtain the morphism m y .  Note tha t this combi
nation is inside the monoidal category (CM C, Dc, C) which is obtained from the bicategory 
Bicomod(DJl) by fixing the comonoid (C, A c, £c)> see Remark 1.5.1.1.

u j  is a morphism in CA 4 C

According to the previous paragraphs A c and i f  are morphisms in CM ° , also, by definition, 
7}f  is a morphism in CM ° , therefore u j  is a morphism in CM ° , as required.

m.f is associative.

Let c® a(0] ® ap] ® aj0j ® aj^ ® a" be a generalized element in C ^d cA D cC ^ O c A D c C ^ 'O cA ,  
then

(m j  • (C / D cA D c m /))(c® a[o]® a[i] ® aj0] ® ajp ® a") =  c(1) ® /z(c(2) ) /i (a [0])M(a [i])/i(a'Ja"

3= C Ci) ® //(r (2))ll (n[~i})fi,/i ((l[o])J\ {(i')(in 
=  c(I) ® M(c(2))yz/o(c(3) ) / i / i  ( a j / ^ a ') ^

=  c(i) ®M(c(2))/lM(c(3)) / l / l ( a ) / l ( a > ,'
3 7 /
=  c(i) <g) At(c(2)) /i [/^(c(3)) / 1(a)a/]a//
=  (my • ( m f \ 3 c C f \3c A ) ) ( c  ®  a[0j ®  ap j  ®  a j0j ®  ajp  ® a").

In the third equality, the fact tha t c®  a is a generalized element in C^DcA,  i.e. c® a[_ij ® 
fl[0] =  C(1) ® /o(c(2)) ® a, was used and in the fourth one, the associativity of the monad, i.e. 
P * pfo = P * fiP- The sixth equality follows from the right C-colinearity of m^.

uy is unital.

Let c ® a be a generalized element in C^OqA, then
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m / • ( A f n c u f ){c® a) = C(i) <S> (̂c(2))/i(a[o])7// (a[i])

= c c(1) <2) /^(c(2))77/ (a[_1])a[o]
=  c(i) ® n(c{2))rif  f 0{ci3))a 

= C(i) ® u Af 0(c{2))a 
=  c(8>?/,i4(a[_i])a[o]
=  c ® a .

In the third and fifth equality, the fact th a t c <g> a is a generalized element in C^IUcA was 
used, and in the fourth one, the unitality of the monad, i.e. /i * r]f fo = If- In the sixth 
equality, the unitality of uA was applied. On the other hand,

771/ • (uf n c A f )(c C> a) = c(i )  <g> ^ ( c (2 ) ) / i ? 7/ ( c (3) ) a

=  C(i) <g> u Af 0(c{2))a 
= C(!) ® u 4(a[_i])a[0]
=  c  §> a .

Here there is nothing more to add other than the unitality of the monad (i* f i r f  = 1/ was 
used in the second equality. □

Let us propose the /-ad junction  of the Kleinsli object (A / ,  C)  over the internal category (A, C).

For the left adjoint functor I : (A , C) — > (Af ,  C) the following pair of morphisms is proposed:
l0 : C  — > C  as

h  = Id c  , (3.13)

and I] : A  — > A /  as

h = (C f Oc m A) ■ (C 'C W D c M ) • ( i /U cA )  • (ACD C/1) • %  . (3.14)

Here the reader is compelled to check on the definition of the left adjoint functor for the Kleisli 
object in (2.12). This last morphism acts upon generalized elements as

a i— ► fl[-i](i) ® 7?/ (a [-i](2))a [o] • (3.15)

As for the right adjoint functor r : (A /, C)  — > (A, C)  the following pair of maps is proposed: 
c0 : C — ► C,
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r 0 =  fo  , (3.16)

and r \ \  A /  — > A

(3.17)

a morphism which acts upon generalized elements as

c S a  i— > j u ( c ) / i ( a ) (3.18)

These definitions should be compared to the definition of the right adjoint functor for the Kleisli 
category, (2.13).

Before giving the unit and counit of the adjunction, let us prove the following

P ro p o s i tio n  3 .2 .2 .1 .2 . The pairs of morphisms I and r between internal categories (A ,C)  and 
(.A f . C ), just defined, are indeed functors.

Proof:

i) /0 is a morphism in C o m o n ^  obviously.

ii) : lA l —> A f  is in ° M C .

Since l0 is the identity comonoid morphism, LA l = A. The morphism cpA is in CM C\  
according to Proposition A.4, since cpA is a fork for the cotensor product CD cA.  The rest 
of the morphisms involved in the definition of li have already been proved to be in CA 4 ° .

iii) Multiplicativity of /i, i.e. the following diagram commutes

A O c A  hack  > C ^ c A O c C ^ c A

mA m f

A C f Dc A

Let a ® a' be a generalized element in AD cA,  then
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m f  • { h B c h){a ® a') = m f {ah m )  <g> rjf  (a{. m )a[Q] <S> aj_1](1) ® Vf  (a\-i](2 ))a\o])

=  m / ( fl[o][-i](i) ® ??/ ( a [0][-i](2))^[0][0] ® a[i](i) <8> r)f  (a[l]{2))a!)

=  a[o][-i]( i)( i)  ®  ^ (f l [o ] [ - i ] ( i ) (2 ) ) / i  {vf (am-i}(2))a[o}{Q})vf (a[i])a'
=  f l [ 0 ] [ - i ] ( i )  ®  ^ ( a [0 ] [ _ i ] ( 2 ) ( i ) ) / i ( 7 7 / ( a [0 ] [ - i ] ( 2 ) ( 2 ) ) ) / i ( a [ 0 ] [ 0 ] ) ^ / ( a [ i ] ) a '

=  a [ 0 ] [ - i ] ( i )  ®  u /4 / o ( a [ o ] [ _ i ] ( 2 ) ) / i ( a [ o ] f o ] ) ? 7 / ( a [ i ] ) a /

=  a [-i](i) ® u /1/o(a[_1](2))/i(a[0][o])7// (a[o][i])a/

a [-i](i) ® w^/o(a[-i](2))??/ (a[o][-i])a[o][o]a/ 
a[_i](i) ® ^/o(a[_i](2)(i))77/ (a[_1](2)(2))a[o]a/ 

a [-i](i) ® W/i(77/ (a[_1](2))[-i])r// (a[_1](2))[o]a[o]a/ 

a [-i](i) ® 77/ (a[_i](2))a[o]a/

(a a ' ) [_ i ] ( i )  ® ?7 / ( ( a a /) [ _ i ] ( 2 ) ) ( a a /)[o]

/ i  • rriA (a & a ')  .

3.8c

3.8a

In the second equality, the fact th a t a ® a' is a generalized element in A\3cA, i.e. a[0] <8> 
fl[j] <g> a/ =  a ® 0  aj0j was used. In the third equality, the right (7-colinearity of m,A was
applied along with the compatibility of coactions for A and the coassociativity of the right 
(7-coaction of A. In the fourth equality, the coassociativity of A c  and the multiplicativity 
of f i  were used. The fifth equality follows by the unitality of the monad, i.e. /z* f i r f  — If. 
The sixth one is a consequence of the compatibility of the left and right (7-coactions of A. 
In the eighth one, th a t cpA is a left C-coaction for A and the coassociativity of A a were 
used. In the tenth equality, the unitality of u A was used. The final equality, follows by the 
fact th a t m A is a morphism in aA4.

iv) Compatibility of units, i.e. the following diagram commutes,

Let c be a generalized element in C, then

3.86

U f  l0 (c)  =  C{1) ®  T]f  (C{2))

=  C(1) ® 77/ ( c (2 ) ) [ o ] ^ ( ? 7/ ( c (2) ) [ l ] )

C(l) ®  7 ; ( C( 2 ) ( 1 ) W C ( 2 ) ( 2 ) )

C(l)(l) ® r f  (C(i){2))uA(C(2)) 
u A { e ) {_ m  <S> Tj1 (piA ( c ) [_ 1](2))?v./|(c)[0] 

h • u A(c) .
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In the second equality, the unitality of uA was applied and in the fourth one, the coasso
ciativity of Ac-  And finally, the fifth equality is a consequence of the fact that u A is a 
morphism in ° M ,  i.e. iz,4(c)[_i] 0  im(c)[0] =  C(i) 0  uA(c(2))-

i’) r 0 is a morphism in C o m o n ^  by definition.

ii’) r i : rA rf  — * A is a morphism in CJAC.

According to Corollary A.5, the morphism tf  is in CM ° , and because of the functor so 
is JJj : — ► ^C^Dc^AC It was already check that //, f x and m A are morphisms in
CM .C, therefore r x : rA Tj  — * A is a morphism in CA4C, since it is a combination of compo
sitions of morphisms in CM.C.

Note the difference between proving that r x : rA Tj  — > A is a morphism in CM °  from 
r x : A f  — > A being a morphism in cA /l°, this difference comes from the definition of an 
internal functor in Definition 1.4.2.1.

h i’) M ultiplicativity of r x, i.e. the following diagram commutes

C ’ n c A U c & U c A  Cf a c A f D c fC^DcA  ■ - 1 — AOc A
rider:

m A

C f Dr:A A

Let c 0  a[0] 0  ap] 0  a' be a generalized element in C ^O cAO cC ^O cA,  then

(m f  • {tAAc Vi ) • ij)  (c 0  a [0] 0  a[i] 0  a)  3=8 /i(c)/i(a[0])jLt(ap])/i(a')

=C M(c)M(a[_ i])/1/ i ( a [0]) /i(a /)
=  ^ (c (i))^ /o (c (2 ))/i/iW /i(a ')

=  M(c(i))/iAt(c(2) ) / i / i ( a ) / i ( a /)
=  r x • m.f ( c  0  <7.[0] 0  ap] 0  a )  .

In the third equality, the fact tha t c 0  a is a generalized element in C^dc-A, i.e. cp) 0  
/o(c(2)) 0  a =  c 0  aj_i] 0  a[0] was used, and in the fourth equality, the associativity of the 
monad was used.

iv’) Compatibility of units, i.e. the following diagram commutes,

C c
U f a a

A f  fi ** A
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Let c be a generalized element in C, then

u A -ro{c) = u Af Q(c)

= M(C(l))/l^(C(2))
=  T\  • U f ( c )  ,

where only the unitality of the monad was required. □

Now th a t the proof has been given, the adjunction can be formulated by giving the unit and 
counit of it. For a unit of the /-adjunction, a natural transformation

r f  : 1 (a .c) — > r l ,

is needed. The composition rl will give:

ro • lo — fo • l c  — fo ,

n - / i ( a )  =  r\ (a[_i](i) ® ?77(a (_i](2))a [o])

— ) ) / i  77/ ( a [ - i ] ( 2) ) / i  ( ° [ o ] )

= / iwi4(fl[-i])/i(a[o])
=  / i  (W/t (aj_ i] )a[0])

=  f i ( a) >

where the unitality of the monad was required in the third equality and the unitality of u A in the 
fifth one. Therefore, rl = f  and the unit can be defined as

rf  = rjf . (3.19)

For a counit, a natural transform ation

' \ a / . C )eK : Ir — > 1,

is needed. The composition Ir is the following:
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• ro — fo ,

li-ri(c<g>a) =  / i ( / i ( c ) / i ( a ) )

=  ( M ( c ) / i ( a ) ) [ - i ] ( i )  <8> 77/ ( ( / z ( c ) / i ( a ) ) [ _ i ] ( 2 ) ) ( M ( c ) / i ( a ) ) [ 0 ]

=  /^(c)[_i](i)  0  7]/ ( / / ( c ) [_ i ](2))M (c)[o ] / i ( a )

3= a / o ( c ( i ) ) ( i )  ®r}f (fo(c(i)h))li(c(2))h(a)
=  / o ( c ) ( i )  0 ^ ( / o ( c ) (2))M (c(3)) / i ( a )  •

The third equality follows by the hypothesis that m,A is a morphism in ° M ,  i.e. for a gener
alized element b 0  b' in AE\CA, (66')[_i](i) 0  (bb')[-ij(2) 0  (bb')[0] =  6(-i](i) 0  fy-i](2) 0  b^b' . In the
fifth equality, the fact th a t / 0 is a morphism of comonoids was used.

Let us now define the counit eK : C  — > C JD cA  as

eK = { C 'O c f i )  ■ i f  ■ (Cf Oc uA) ■ A c ■ (3.20)

This morphism acts over a generalized element c in C, as

ci— > c(1) ® f i U A { c {2))  • (3-21)

P ro p o s i t io n  3 .2 .2 .1 .3 . The morphism eK, previously defined, is a natural transformation from 
Ir to 1 (Af!Q

Proof:

i) The morphism eK : CJ — ► C ^ n c A is in ° M C.

Since the composite morphism i f  • (C^HcUa ) ■ A c  ls In ° M C, hence if the functor F? is 
applied to it

F>(l,  ■ ( C f a c u A) ■ A c )  =  4  • (C ' O c u fA ) • A fc  ,

the resulting morphism is in cA /l°  as well. On the other hand, the morphism C ^ d c J i  '• 
— > C ^ d c A  is in CM ° , therefore the composition of this two maps that gives z K 

is in c M P .
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ii) N aturality of the counit, i.e. the following diagram commutes

c f a c A a c c  c tU cAU cC c,a°AaceK, c f a c A a c c f a c c
c i a c/ i 7 Y I J

C ’ U c A C ' D c A

a LOcA
C D c C ' D c A  ^ r + C f n c fC f n c ALf Uc A £ K D c h r i

C Jn c A n c C f D c C

Let c 0  a be a generalized element in C ^UcA,  then

( m f  • (C f Uc A U C£K) ' (Cf n c pcA))(c 0  a) =  m f (c 0  a [0] 0  a[1](i) 0  f \ u A(a[}]i2)))

=  C(1 C ) / i ( c ( 2 ) ) / i ( a [0] ) / i ^ ( a [ i ] )

=  C(1 ® M ( C ( 2 ) ) / l W

=  C(1 ® u A ( / / ( c ( 2)) [ - 1] ) / i ( c ( 2) ) [0] f i  (a)
3.8a
=  r‘(l ^ u Af Q(ci2))fi(c{3))J\(a)

=  C0 ®  P{c{2))lf h(c{z))p{c{4))h(a)

=  C0 ®  p(c(2 ))[0 }UA{p{ci2]) {l])pf f Q{c(3))iJ.{c{4)) f l {a)
3.8 b- 
=  C(1 ®  p ( c i2))uAj Qf 0(c{3))r}f J0(cw )p(c i5))J\(a)

=  C(i ®l*(c(2 ) ) f i f i u A(c{3))rif fo{c{4))fj,(c(5)} f 1(a)

= rnf (c(i) 0  /iw^(c(2)) 0  /o(c{3)) 0  ^/o(c(4))Mc(5))/i W)

=  77iy • (eKn c h r i )  ■ ( i fU cA )  • ( A qU]c A ) ( c 0  a) .

In the second, fourth and seventh equalities, the unitality of u,A was required. In the sixth 
equality, the unitality of the monad was used instead. In the ninth equality, the right C- 
colinearity of u A was applied. □

In the previous calculation there is an equality th a t we want to single out for further references. 
Let c be a generalized element in C, then

u Afo(c) = fi(c{l))rjf f 0(ci2)) (3.22)

= /4qi))[o]^(//(qi))[i])V/o(c(2))
=  p.(c{l))uAfofo(ci2))r}f fo(c{3))
= p{c(i)) f if iUA{ci2))r}f f 0{ci3)) .

Once th a t the naturality  of the counit has been proved, only the triangular identities are left 
to be proved:
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i) eKl0 * lxr f  = Ufl0,

Let c be a generalized element in C. then

£Kl0 * lirjK(c) = m f (£Kl0{c{])) ®liriK{ci2)))
= rnf (c{1) 0  J \ u A(c{2)) 0  (7// (c(3))[_iJ(i) 0  Vf W i c('s))[o})

3=“ 771/(c(i) 0  f \UA (c(2)) 0  /o(C(3)) 0  Vf fo(C(4)W {C(5)))
=  C‘(i) 0  M(^‘(2 ) ) / l  / l ( c (3) ) r/7 / o  (c-( 4)) r/7 ( c (5))

=  C(1) 01 M /o (C (2 )V (C (3 ) )

3= “ C(1) 0  Wi4(?7/ ( c (2)) [_ l ])77 / (C(2))[0]

=  C(1) 0 7 y / ( c (2))

=  uf l0(c) .

In the fifth equality, the equality given in (3.22) was used.

ii) r 1£K * r]KrQ =  u Ar0,

Let c be a generalized element in C,

{rX£K * rjKr0)(c) = (c{l)) 0  r)Kr0(c{2)))

=  K c ( l ) ) f l  h  U A ( 0(2)) I 1 j o  ( 0(3))

=  W/\/o(c)

=  u W c )  •

In the third equality, (3.22) was used.

Just as in the case of standard categories, see Proposition 2.1.1, the following can be stated. 

P ro p o s i t io n  3 .2 .2 .1 .4 . The monad induced by the adjunction

(A, C) * , { C t a c A ,C )  ,

is the monad which the construction of the Kleisli object started with, i.e. (f,/i,r)f ).

Proof:

i) /  =  rl, as already explained it follows immediately from the construction of functors r and 
I.
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ii) /i =  ri£Kl0 .

Let c be a generalized element in C, then

r ]£Klo(c) =  n(c(i ) ) f i f i u A(c(2)) = /i(c(])) ^ /o /o ( c (2)) = 6 n(c)\o]UA(n(c)\i]) =  At(c) .

In the last equation, the unitality of u/\ was applied.

iii) rjf = r/K, by definition. □

3.2.2.2 P roof for the K leisli Object

The previous section dealt with the construction of the a posteriori Kleisli object for the monad 
over ( A , C )  in IntCat(97t), and with its well-defined construction, i.e. tha t it is an 

internal category and the induced monad over (A, C)  is precisely the one we started with. In this 
section, the proof th a t this internal category is indeed a Kleisli object is given by showing the 
isomorphism of categories required in [24], through the representation of AlgF, see (2.25).

According to the isomorphism of categories given by (2.25), the following 2-cell in the 2- 
category 2-Cat can be constructed

A lgF

IntCat(STl) j =  © 2Cat

where the following substitutions were made in (2.25) : A  = IntCat(97l) and A k  = (C^DcA, C). 
Let {B, D) be in IntCat(DJl), then

e (B.o) : AlgF(B, D ) — > I n tC a t ( ( C 'C M , C), (B,  D)),

is a 1-cell in 2Cat, th a t it is to  say, a functor, and is defined

i) on objects (5 , cr) in AlgF( B , D )  = ( B , D ) F as,

(®(£,D)(s,&))Q =  $0 , 
( ® ( b , d ) ( s , c t ) ) 1 =  m B  ■ ( a D D S i )  -

ii) on morphisms S  : (s,cr) — *
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0(£,D)(S) = E ■

where the notation E means th a t the underlying morphism E : .s — ■» t is the same but it 
has to fulfill different requirements.

The proposal for the inverse natural transformation 0  is defined as follows.

i’) On objects g =  (pi, po) in IntC at((C ^D c>4, C), (B, D)) as,

(@(B,D)(^i) 9o)s)0 — dolo >

{ Q ( b ,d ) ( 9 u  9 o ) s )  i — P i^ i  ,

©(b,d)(Pi,#o)ct =  9i£Kk  ■

ii’) On morphisms (3 : (p i,p0) — > (p'i,0o)»

0 (B,D) {P)  =  P k  ■

Having defined the 2-natural transformation 0  and its expected inverse 0 , we need to prove 
the following

P ro p o s itio n  3 .2 .2 .2 .1 . The 2-natural transformations 0  and 0  are well-defined.

Proof :

For 0 :

i) On objects, the pair ((Q{b,d)(s,  o’))  r  (0(a .o )(s,o '))o) is an internal functor.

Since s : (A ,C)  — * {B ,D)  is already a functor then s0 : C  — * D is. a morphism in 
Comongjt. On the other hand, we need to stablish that m e ■ (crdc-Si) • is is part of an 
internal functor:

•  m.B • (crDc-si) • ls '■ sC f \ J c A s — ► B is a morphism in DM ° .

First, l8 is a morphism in CA4C, then after applying the induced functor SF 5, slss will be 
a morphism in DM D. Second, a : sC sf — > B, sj : SA S — > B  and m e : B D ^B  — * B 
are morphisms in DA 4 °  by hypothesis, therefore the composite m e ■ (crdcs'i) • ts is in 
dA4d , as required.
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• The morphism m B • (o d cS i)  • ts is multiplicative.

The proof of this m ultiplicativity is done with generalized elements and using the 
Sweedler notation as before. Let c 0  af0] ® ap] ® d  be a generalized element in 
C f n c A D c C ^ n c A,  then

( m D • ({m B • (o-DcSi) • is)UD{mB •(o-Dc'Si) • O )  • {C'f Uc tsUc A)^ (c 0  a[0] 0  apj 0  a')

=  a ( c ) s i ( a [ o ] ) c r ( a [i ] ) s 1 ( a ' )

3= c <7(c)o-(a[_i])si/i(a[0])51(a/)

=  c r ( c ( l ) ) c r ( / o ( c (2) ) ) - s l / l ( a ) 5 l i a ')

= a (c (1))s i^ (c (2))s1/ 1(a )s1(a/)

=  ( K  ■ ((tDc’Si) • ts) • m /)(c  0  a[0] 0  a[i] 0  a') .

In the third equality, the fact th a t the generalized element c 0  a is in C ^ D c A ,  i.e. 
C(i) 0  /o(c(2)) 0  cl = c 0  a[_i] 0  a[o], was used. The fourth equality follows from the 
requirement given by the first diagram in (2.27), for an object in (B, D ) F.

• Compatibility with units.

Let c be a generalized element in C, then

u Bs0(c) = l a(c) =  a{c{l))sir}f (c^)) =  ( (m B • ( e d c s i )  • i8) * u f )(c) .

In the second equality, the second requirement in (2.27), for an object in (£ , D )F, was 
used.

ii) On morphisms, 0 (£,d)(^ )  is an internal natural transformation.

The proof of the naturality  of £: m B • (aD cSi) ■ ia — ► m B • (cr'DcSj) • ls> is split into the 
following two parts:

• E : S'CS — > B  is in DM D, which follows from the definition of E : s — ► s' being a 
natural transformation.

•  The naturality  of E-

Let c 0  a be a generalized element in C^UcA,  then

(m B ■ ( (m B • (o-'Dc-si) • ts/ ) n DE) • (Cf n CLs>) • (Cf n c pcA)) (c 0  a) =  a '(c )s i(a [0])E(a[i]) 

3= c <j/(c)E(a[_]])s] (a[0])
=  ^(C(l))S/o(C(2))5](a)
=  S (c(1))(7(C(2))si(a)

=  ( m B • (E n D(m B ■ (oO cSi) ■ O )  • (l8̂ c A) • (A fc Uc A ) ) ( c ®  a) .
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In the third equality, the requirement (2.29), i.e. E * a = a' * E/o, was used.

For 0 :

i) On objects (gi,g0) in In tC a t( (A /,  C), (B, D)); (9{b ,d)(9i ,9o)s,Q(b ,d)(9i ,9o)<t) is an object 
in (B,  D) f .

Clearly, 0(b,z?)(<7i, go)» — gl is a functor from (A, C) to (B, D), and Q(b ,d){9i , go)a a natural 
transformation from gif  =  girl to gl. As far as the requirements in (2.27) are concerned, 
they are translated into the following requirements, taking into account tha t g  =  ri£Kl0,

• gi£Klo *  g\lir\£Klo =  g\£Kk  *  g^Kkr0lQ.

Due to Lemma (1.5.3.2), it is enough to prove the equality ekIq * l \ri£KlQ =  eKl0 * 
£kIoTqIo, but this equality is just the Godement product equality for £K*£Kl0.

• gi£Kk  * g\l\r)K =  1 g l ,

Due to Lemma (1.5.3.2) and to the triangular identity associated to the left adjoint /, 
gi£Klo * g\l\rjK =  g\{sKlQ * l \gK) = gAi = 19/, as required.

ii) On morphisms p  in In tC a t((A y , C), (B,  D)); 0 ( b .d)(P) is a morphism in (B , D ) F

•  Clearly, pi : gl — > g'l is a natural transformation.

• The requirement (2.29) translates in this case to @Iq * g\£Klo =  g[eKlo * PIqTqIq. This is 
simply the Godement product equality (1.28), for P*£Kl0. □

Once the proof tha t 0  and 0  are well-defined, has been done, it is natural to state the following

T h e o re m  3 .2 .2 .2 .2 . The object (Gallic A, C) m  In tC at(9Jt) is a Kleisli object for the monad  
F = ( / ,  g, 77̂ ) over (A , C) . That is,

AlgF_ ----- - — ► IntC at((C / Dc A ,C )J_ )  .

Proof :

i) © : AlgF_  — ► I n tC a t( (C / Dc A, C), _ ) is a natural transformation.

The following diagram must commute for any (hi, h0) : (B, D) — > (B ' , D')
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AlgF( B , D ) ---------------------- ► AlgF( B \  D')

( B , D )

In tC a t((v 4 /, C), (B,  D))
I n t C a t ( ( / 4  f , C ) , h )

In tC a t( (A /,  C), (£?', D'))

Since this is a functorial diagram, its com m utativity has to be proved as much for objects 
as for morphisms. Let (s,cr) be in AlgF( B , D), then

(©(£',D') 0 AlgF(h)) (s ,a )  =  (h0sQ, m B< ' (h ia \JD>h,iSi) ■ Lhs)
= (h0s0, m B> ' (hi\JDihi) • Lh • (crD ^si) • ls) 
=  (h0s0, /i! • • (ctDd si) • ta)

=  h*(s0, m B ■ (o-Dd Si) • i8)
-  ( ln tCa . t ( (C f n c A ,C ) ,  h) o ©(/i|D)) (s, <j) .

In the second equality, the factorization lemma in Lemma A.2 was used.

On morphisms, let E : (s,cr) — ► (s/, o-7) be a morphism in AlgF(B, D ), then

(0(B',D') ° AlgF{h)){E) = /i]E
= h+(S)
-  (ln tC at((C / Dc A ,C ) ,/ i ) o 0 (SiD))(E) .

Next, 0 ,  as a 2-natural transformation, has to fulfill the requirement (1.24). Note though 
th a t if in this requirement B  =  2̂ a t ,  the equality given by (1.24) simplifies to the equality

a s ( F 'y X )  = GyaAx  ,

for any object X  in the category FA.  This simplified equation is verified for 0  and (5 ,(7) 
an object in AlgF( B , D) as follows:

Q i B ' . D ' )  ( A / g F ( 7 ) ( s ,  < t ) )  =  0 ( s / , d / ) ( 7 5 o )

=  7-50

=  I n t C a t ( ( C f \3c A, C ) ^ ) ( m B • (oO ^si) • ta,so)
-  I n tC a t( ( C / n c A ,C ) ,7 ) ( e (B.D)(5,a)) .

Therefore, the naturality of 0  is proved. T hat 0  is an isomorphism is proved as follows.
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i i )  O  O O  =  l l n t C a t ( ( ^ / ,C),_)-

• On objects, let (g\,go) be an object in In tC a t((C ^D c7 l, C), (B, D)), then 

(0  o Q)(gu go) = Q(gl,gi£Kl0) =  (mB • (gi£Kl0B Dg1l1) ■ igl,g0l0) .

Since /0 =  1 c, there only remains to prove tha t m g • (gi£Klo^D9ih)  ■ 0/ — 9\- To do 
so, let c 0  a be a generalized object in C* <8 A, then

( m B • ( g i e % D Dgih)  • igt ) (c® a)  =  ( m B ■ (giODg}) ■ ig • {£Kl0B Dll ) • t/)(c®  a)
= g \m f (£KlQ(c) <g> h(a))

=  0 i " v ( c (i) <8> f ] u A(c(2)) ® U[-i](i) (8) 77/ (a[_i](2))afo]) 

=  9\ (c(i) S  / i(c(2) ) / i / i u /i (c(3))r// (a[_ 1]) a [0])

= 0i(c(i) & M (c(2))/i/i^(c(3))^/ /o(c(4))a)
=  9 i ( c ( i ) ® u Afo(c(2))a)

=  g i ( c(i) ® uA{a[-i])a[Q])
= pi (c g  a) .

In the first equality, the factorization lemma A.2 was applied. In the second equal
ity, the compatibility with multiplications of g\ was used. In the fourth equality, the 
right C-colinearity of u A was applied. In the fifth equality, the fact that the generalized 
element ® q 2) 0 a  is in C O c C ^ O c A  was used. In the sixth equality, (3.22) was used.

• On morphisms, let /? : (p i, Po) — * {9i,9o)i then

e  o 6(0) = 0(0/o) = pi0 = ( i .

iii) 0  o 0  =  l Algp_ .

•  On objects, let (s,cr) be an object in (B , D )B, then

0  o 0 ( s i ,  So, a) =  0 ( m B • (o-DcSi) • So)

=  ( (m B ■ (gOcSi) • is) • h,  s0lo, (m B • (oO cSi) • is) • £ % )  ■

Therefore, for the first component, if a is a generalized element in A,

( m B  • ( c r D c S i )  • ls ) • U  ( a )  =  c r ( a [_ i ] ( i ) ) s i ( r 7 / ( a [_ 1](2) ) a [o])

=  (<7 * si77/ )(a[_i])si(a[0])
=  (a[_ij )si (a[0j)

=  si(a) .
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In the third equality, the requirement a  * Sigf =  l s was used and in the fifth one, the 
unitality of u A-

On the other hand, for the third component, if c is a generalized element of C,

((m 7i • (c-CbSi) • ls) • eKlo){c) = o-(c(i))si/iIm (c2)
=  cr(c(i))uA(s0fo(c{2)))

3=  a i c ^ U A i a i c ) ^ )

= °{c) •

• On morphisms, let E : (s,<r) — ► (s',cr'), then

0 o © (E )  =  0 (E )  =  E /0 =  E .

□

3.2.3 CoK leisli O bjects in IntCat(SDT)
Let (g} 8, e9) be a comonad in IntC at(97I) over the internal category (A , C). The coKleisli internal 
category is defined as follows:

i) The object of morphisms and the object of objects are defined as (A U c 9C , C)  respectively, 
in short notation (A9,C).

ii) The multiplication m.g : AU\c9 C U c  A [ lc g C  =  A\2cgAU\cgC  — > A \Jc9C  is defined as

m g = (m 2AUc gC ) • (ADc giUc 5DcgC) • {ADCL2g) • (AD c gA D c gA c )  , (3.23)

which, over a generalized element a 0  aj_^ 0  a[0j 0  c in A\3cgC\3cA\2cgC , acts as,

a 0  aj_j] 0  aj0] 0  c i— > agi{a)5(c^))  0  C(2) •

iii) The unit : C  — > A U c 9C  is defined as

i i g  =  ( e 9O c g C )  • i g • A c  ,

which, over generalized elements c in C, acts as

c S 9( C { 1 ) )  0 C(2 )
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The next propositions and theorems are given without proof since their proofs are essentially 
the same as the respective ones for the Kleisli object, that is to say, mutatis mutandis. Neverthe
less, the reference of the mate proof is given for each of the following propositions.

P ro p o s i tio n  3 .2 .3 .1 . (( /lD c9CY, C), m g,'ng) is an internal category.

Proof: cf. 3.2.2.1.1 □

Let us propose here in the same way as before the ^-adjunction of the internal category (.4, C ) 
over the coKleisli object (y45,(7), th a t is to say,

(A D c 9C 1C ) ± = = ^ ( A , C )  .

The internal functor I : (A 9, C)  — ► (A, C) consists of the following pair of morphisms:

lo = 9o )
C =  m A - (g i D c S ) • tg ,

where the last morphism acts over generalized elements, a ® c in A D c9C , as

a ® c i— > gi(a)S(c) .

The internal functor r  : (A ,C)  — > (A9,C)  is given as the following pair of morphisms, 

r0 = 1 c  ,
n  =  ( m An c sC) ■ (AO ceen c 3C) ■ {AOCig) ■ ( /O c A c )  • f A .

P ro p o s i tio n  3 .2 .3 .2 . The pairs I and r just defined are functors between the internal categories 
( A ' , C )  and (A, C ) .

Proof: cf. 3.2.2.1.2 □

If the previous pair of functors has to be an adjunction then a unit and counit must be 
provided. The unit r foK : 1 (A9 ,c) — * TU

rjcoK : C  — > A U c 9C

is the following morphism
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» r K =  (s iD c 'C )  • i9 ■ (uAOc C) ■ A c  ,

which over generalized elements c in C, acts as

c i— ► g i U A {c{l)) <g> c(2) .

For the counit of the adjunction, it is clear th a t Ir =  g, therefore the counit

e coK : g  =  l r  — > 1 {A>C) ,

is taken as

croK — c9

W ith the previous definition of unit and counit, the following proposition can be stated 

Proposition 3.2.3.3. The following is an adjunction

( A n c ° C , C ) ± = = = z ( A , C )  ,

and the comonad induced over {A ,C)  is the one which the construction of the coKleisli object 
started with, that is to say (g<6,e9).

Proof : cf. 3.2.2.1.4. □

Just as in Section 3.2.2.2, C)  being a coKleisli object means, according to [24] , tha t
it is a representative object for the coalgebraic functor CoalgG. According to the isomorphism of 
categories in (2.26), another 2-cell in the 2-category 2-Cat can be constructed

CoalgG

IntCat(Stn) |  = ©' 2Cat ,

IntC at((A s, C). _)

where A  = IntCat(97t) and A coK = ( A D c 9C, C).  Let (B, D) be an internal category in IntCat(97l), 
then

&{BtD) : CoalgG( B , D) — > IntCat((ADc 5C, C), (B, D)) ,

is a 1-cell in 2Cat, tha t is to say, a functor which is defined as follows,



74 3.3. Internal Kleisli Objects and the Formal Theory of Monads

i) On objects (s,cr) in CoalgG(B, D), 0 ' is defined as,

( ® ( B :V ) ( S ’ a ) ) 0 =  s °  ’

(9(i?.0)(A'’,7))i =  ■ (*iO Da) ■ is .

ii) On morphisms £  : (s,cr) — > ( ,̂ 7"), O' is defined as

®(7i,/;)(^) =  £  •

The proposal for the inverse natural transformation O' goes as follows, 

i’) On objects k  =  (k i ,ko)  in IntCat((j4s , C), (B, D)), O' is defined as,

(®(b,d)(^ii^o).s) 0 =  k0r0 ,

( ® { B , D ) ( k  u k o ) s ) l =  ,

®'(B,D){kh ko)* =  M C°*r0 •

ii’) On morphisms 7  : (ki,ko) — > [S defined as

©(£,D) (7) =  7r o •

W ithout further ado, the following theorem can be stated,

Theorem  3 .2 .3.4. The morphism O' is a 2-natural isomorphism and the object (A\3c9C ,C )  is 
a coKleisli object for the comonad G = (g,$, es) over (A,C) ,  that is

CoalgG_ ~ > IntCat((ADc90, C), _ )  .

Proof: 3.2 .2 .2.1 and 3.2 .2 .2.2 □

3.3 Internal Kleisli Objects and the Formal Theory of Mon
ads

In order to obtain the Kleisli and coKleisli objects for a monad in the 2-category IntCat(9Jt) and 
Kleisli objects for a monad in the 2-category IntC oC at(911) another tool is developed, namely 
by using the properties of the bicategory KL(M), for a specific bicategory A , see [10] and [20]. 
Therefore, this section begins by introducing the bicategory KL(Bicomod(9Jl)), afterwards sev
eral locally full and faithful bifunctors 4>, 4> and 'F into KL(Bicomod(9JI)) are defined which will 
enable us to find the Kleisli and coKleisli objects mentioned above.
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3.3.1 The B icategory of KL (B icom od (9ft))
The 2-category KL (A)>  for a 2-category A , and the bicategory Bicomod(lDT) have been already 
defined, out of these constructions let us outline the bicategory KL(Bicomod(97t)), in order to 
have the references and concepts at hand for the theory to follow.

The 0-cells for this bicategory are monads in Bicomod(9JI), th a t is

A A D CA C

C C C i  m A C  |  UA

Remark  3.3.1.1. K Lo(Bicom od(911)) =  Mndo(Bicomod(97l)) =  IntCato(3H) =  IntCoCato(9tt).
The 1-cells for this bicategory are

(M ,0)

(C}A)  (D y B ) ,

such th a t

M

C

A D CM

M U d B

are cells in B icom od (971) such th a t the following diagrams commute

A O c A O c M  AOc*> A D c M D d B  *°dH> M D d B D d B

A U CM M U

MOpmg

B

M
uaOcM

A U CM

MdpiiB

m u d b

The 2-cells for this category are

(C\A)  I a  ( D ,B )

such tha t
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i t

C I A  D , 

M 'D d B

is a 2-cell in Bicomod(9Jt), and the following diagram

A D CM

>4DcA

A D c M 'D d B

M 'U d B U d B

M O c B  - A° dB> M ' a DB a DB

M'Domg

(3.24)

M 'U d B

commutes.

For the underlying category of KL(Bicomod(9JI)), the composition over the following 1-cell 
diagram

(V  7 )

(C ,A)  (C1, A') (C", A")

is defined as

{M, 4>) ■ (N,7 ) = ( Ma a N, (MDcn)  ■ (<pnc -N))

The vertical structure of KL (Bicom od (931)) is defined over the following 2-cell diagram

( M , 0 )

I A
(C, A) —  ^ (D, B)

I A7

as

A 'o  A =  • (A'Dd B)  • A
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The horizontal structure of KL(Bicomod(9JI)) is defined through the following 2-cell diagram

A *r =  { M 'U c 'N 'U c " m An) • ( M ' U c T U c A " )  • ( M ' U a i )  • (ADc'AO .

3.3.2 Bifunctors

This subsection is devoted to the construction of locally full embedded bifunctors to the bicat
egory K L (B), where B  is a bicategory, see [10]. The reason for such constructions is explained 
as follows. According to [20], the bicategory K L (B) is complete with respect to Kleisli objects, 
th a t is to say, for any monad in K L (B), this bicategory has the corresponding Kleisli object. 
Therefore, let us give a 2-category M (B1), for a bicategory B \  whose 0-cells are monads in B'  and 
the remain structure is known but it is not necessary to be detailed. Then, if there exists a locally 
full embedding bifunctor, which is the identity on 0-cells, F  : M(B')  — > K L (B), any monad in 
M(Z3') will render a monad in K L ($ ), which has a Kleisli object. In particular, this Kleisli object 
is a monad in B  hence, using the identification on 0-cells of F, this object can be seen as a monad 
in B', i.e. a 0-cell in M (B1). In summary, the 2-category M (5') will have Kleisli objects through 
the locally full embedding F.

The first bifunctor to construct with the previous characteristics is $  : IntC at(U Jl) — > 
K L (B icom od(9Jl)). Over 0-cells (A ,C)  in In tC a t(9 Jl) it is defined as

(C..4) I A (C './V ) I  r  (C " ,A ”)

( M \  <p’)

as

$ (/! , C, m A, u A) =  (C, A, m.A, u A) .

T hat is to say, the identity on 0-cells. Over 1-cells,

(A,C) CB , D )

as

3(/i,/o) = (C’ A i )  =  {C>,(ClQch) ■ i Jf CPAf)

where — > C ^ D c B  is a morphism in CM .D. Over a 2-cell
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(/l./o)

( A , C )  I a  (B,  D)  ,

{f iu no)

as

{Cf ,

[C, A)  I $ (a) ( D , B )  ,

where $ (a )  =  (C^D/jO:) ■ i{ ■ and <F(a) : C J — > C (JD o B  is a morphism in CM ° .  This
definition renders a bifunctor.

Proposition 3.3.2.1. The bi functor $  : IntCat(2Jt) — > KL(Bicomod(31i)) is a locally full  
embedding.

Pr oo f :

First we show tha t the bifunctor is locally injective on objects. Let {A , C)  and { B , D )  be 
0-cells in IntCat(97t). Take objects f , g  : ( A , C)  — * ( B , D )  such that

H f )  = *(g) (3.25)

Then clearly j 0 =  g0 from CJ  — C g. Let a be a generalized element in /t, then because of 
(3.25), a[_!] 0  /i(a[o]) =  fl[-i] ® #i(a[o])- If ^ s ( ^ b /o ( _ )  ® _ )  is applied to the left hand side of 
this equality, then

3.7c
UAf o ( ( i [ - i ] ) f i { a [ 0]) =  Wa ( / i (a ) [_ i ] ) / i (o . ) [0 ]  =  / i M  .

On the other hand, if m B {uBgo(_) ® _ )  is applied to the right hand side of the aforementioned 
equality, which is the same as mB(uBfo{_)  ® _ ) since f 0 =  g0, we obtained the morphism g \ ) 
hence we conclude tha t J\ = g\.

T hat $  is locally faithful, is proved as follows. Let a  : /  — * g and (3 : h — * k be 2-cells in 
IntCat(9Dl)((i4, C), (B, D )), such th a t $ (a )  =  $(/?), then

( C * n Da)  -Lg - A fc  = (C ka D0 ) -Lk - A hc
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In the same way as before, we apply m B (uBgo(_)® _ )  to the left hand side and 
_ )  to the right hand side to obtain a  = p.

In order to prove the local fullness, consider the following 2-cell A : (C^,<pf) — > (C5,</>5) in 
KL(Bicomod(97t))((C, A), (D , £?)), then define the proposed internal natural transform ation as

a  =  m B • ( u Bg QU D B )  • A .

Clearly a  : 9C f  — > B  is a morphism in DM D. The naturality  of this morphism a(fl[_i])/i(a[o]) =  
<7i(a[0] ) a ( a [ i ] ) ,  is proved as follows. If c  is a generalized element in C * then write A(c) =  c \  <S> c^, 
where c \  (g> c-x is a generalized element in C 9[JdB.  Let a in be a generalized element, then

a ( a [ - i ] ) / i ( a [o]) =  W B p o ( f l [ - i ] A ) f l [ _ i ] A / i ( f l [ o ] )

= us ^o((tt[o]^(a[i]A))[-i])^i^a[o]£(a[1]Aj j [0] j a U]-x

— 9i ( ( a [o ]^ (« [ i ]A ) )[o ] )^ s^ o ((a [o ]^ (a [ i]A ))[ i] )a [ i ]X

= 9i ((a[o]W/i(a[i]A))[o])wB^o((a[o]W/i(a[i]A))[i])afl^

=  9\ (a[o](w/i(a[i]A))[o])w/jpo((w/»(a[i]A))[i])a[i]A 

=  9i ia[o])9i ((^ /i(a [i]A))[o]^/i((^/i(a[i]A))[i]))a[i]A

— 5,l(a [0])5'l^^(^[l]A)^[i]A 
= 9i(a\o))uB9o{a\i}\)aii}\
=  9 \ ( a [ o ] ) » ( « [ i ] )  •

In the second equality the fact th a t A is a 2-cell in KL(Bicom od), (3.24) , was used. The 
third equality, follows by the next equality of morphisms

m B • (u b U d B )  • { g o U D g i )  • i g • cp A =  m B ■ (u b D d B )  • Dp B • g\

= 9\
m B • ( B U d u b ) • P b ' 9\

m B • ( B D d u b ) ■ ( g ^ D 9 o )  ■ Lg • PCA •

In the fourth equality the equation a e ( c )  =  a u A ( c ) coming from the unitality of u A was used. In 
the fifth equality, the right colinearity of m A was used. Finally, in the sixth equality the multi- 
plicativity of g-[ was used.
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T hat $ (a )  =  • (usgo^D B)  • A)) • ig • A £ =  A, follows by the next calculation, where
c  is a generalized element in C^,

$ ( < a ) ( c )  — c ( i )  <X ub{Jo(^(2)a ) ^’(2)a 

=  CA(1) ®  u Bgo{cX(2 ))c'X

=  CA O  ( c A [ _ i ] ) CA[0]

=  C \ ® c - X

=  M e )  .

In the second equality, the left C-colinearity of A was applied. The third equality follows from 
the fact tha t c\ <g> c-x is a generalized element in C 9\3d B. The fourth equality uses the unitality 
of u B-

□

There is another functor of bicategories for the comonads counterpart, with the required 
characteristics, $  : I n tC a tC0(97t) — * K L (B ico m o d 0p(9Jl)) and this is described as follows. Over
0-cells (A ,C ), 4> is defined as

$ ( A , C , m A, u A) =  {C, A , m A, u A) .

Again, it is defined as the identity on 0-cells. Over 1-cells,

( / i J o )

(>4,C) {B, D) ,

it is defined as

$ ( / i , / o )  = ( ;C , $’,)  = yc. ( / i aDfc) ■ h, ■ ’fa) ,

where : ^CDcA = * A B H d^C is a morphism in DM ° .  Over a 2-cell,
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op

(C,A)  i  Ta ( D , B ) ,

(°c,<i>gr

where Ta — ( o O ^ C )  • f  ig • c  and TQ : ?C — > B D d9C  is a morphism in DA i c . $  defined in 
this way, is a functor of bicategories too.

Proposition  3.3.2.2. The bifunctor $  : IntC atC0(97l) — ► KLfBicomod^fOJl)) is a locally full 
embedding.

Proof :

In view of the left-right symmetry between definitions of $  and 4>, this proof is analogous to 
th a t of 4>. □

The final bifunctor to describe, 4/, has as its domain the 2-category IntC oC at(971), cf. Sub
section 1.5.4. Therefore, this bifunctor will provide us with Kleisli objects in this 2-category. 
The bifunctor, 'I' : IntCoCat(97t) — > KL (Bicom od (971)) is defined as follows. Over 0-cells in 
(j4 ,C ), it is described as

m A, u A) =  ( C , A , m A, u A) .

Yet again, it is the identity on 0-cells. Over 1-cells,

( f i Jo )

(A ,C )  (B, D) ,

it is defined as

where 7 f  : AOc^D  — > ^DOd B  is a morphism in CM °  . Over a 2-cell,

( / i , /o )

(A, C)  I a  ( B , D ) ,

(ffi. So)
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as

(fD, 7 /)

(C, A) I  $ ( Q) (D. B)  ,

(gD, 7S)

where U'(a) =  gDf>B • ol and 'l'(a ) : B'J — > 9D D p B  is a morphism in CM ° .  As expected, 'I' is also 
a functor of bicategories.

Proposition 3.3.2.3. The bifunctor T : IntCoCat(OJl) — > KL(Bicomod(fUT)) is a locally full 
embedding.

Proof :

T hat the bifunctor is injective on objects and faithful is proved in a similar way as in the proof 
of the Proposition 3.3.2.1 . T hat the bifunctor is full can be proved as follows.

Let T : — ► (9D, yg) : (C, A)  — ► (D ,B)  be a 2-cell in K L(B icom od(9Jt)), then
ot : /  — > g : (A , C) — ► (B, D) such th a t 'l'(a) =  T is defined as

a  =  m B • (u b U d B )  • T .

This morphism in 9JI is easily seen as a morphism in CJ A D. Its naturality is proved as follows. If 
d is generalized element of then write T(d) = d1 0 > d7, where d1 0  d7 is a generalized element 
in gD d DB. Let a 0  d be a generalized element in Adc^D,  then

0i(a<g>a'(cO[_1])a(cO[o] g} (a 0  (uB(d7)d7)[_i])(ufl(d7)d7)[0] 
gi (a 0  (u/j(d7 ))[_i]) (it/?(d7 ))[0]d7 

9 \{a 0  d7(i))uB(d7(2))d7 

9\ (n 0  d7 )u q (d7j_]])d7[oj 
gi(a (8) d7 )d7

u fi((p i(a  <8) d ^ ) ^ )  (pi(a 0  d7)d7) [0] 

wfi((flfi(a 0  d7) ) [_1]) (pi(a 0  d7) ) [0]d7

( ( / i  (a 0  d)) (_lh ) ( /i  (a 0  d)) [_1]. ( /j ( a 0 d ))| 

a ( ( / 1( a 0 d ))[_1]) 0 ( / 1( a 0 d ))[Q] .
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In the second and in the seventh equalities the left colinearity of was applied. In the third 
one, the left colinearity of ub was used instead. In the fourth one, the fact th a t d7 g> d7 is a 
generalized element in 9D O p B , i.e. d7(i) g> d7(2) ® d7 =  g?7 0  d7[_q <g> d7[0], was used. In the sixth 
equality, the unitality of ub was used. The eighth equality follows by the fact th a t T is a 2-cell in 
K L (B icom od(37t)), i.e. it fulfills the com m utativity of the diagram in (3.24). This requirement 
is translated, over the generalized element a ® d in AOc^D,  to

( / i ( a ®  fiO) (_ 1]7 ® { f i ( a ® d ) ) [_1]. ( f l ( a ® d ) ) [Q] = (gx(a ® rf7) ) [_1] ® (gi(a 0  d7 ) ) [0]d7 .

This completes the proof of the proposition. □

3.3.2.1 R einterpretation of the Em bedding B ifunctoriality

The referee assigned to [10] pointed out another interpretation of the embedding of the bifunctors 
0 , <4> and T. In order to write about this other interpretation some background work has to be 
done before going into detail.

Consider a 2-category ^4, a bicategory B  and assume th a t there is a bifunctor F  : A  — ► B with 
the property of being locally fully faithful and identity on objects. Then there exists a 2-category 
denoted by K L F(B) which can also be embedded into KL(#). Its description goes as follows. 
The 0-cells are the same as those of K L (B). The 1-cells in KLF(#) are pairs (F r, ip) in B, where 
r  is a 1-cell in A , this pair renders a typical 1-cell in KL(#). The 2-cells in KLF($) are defined 
as rjhA : (Fr,tp) — ► (Fs,'ip) ■ (^ > /)  — > where A : Fr  — ► Fs : A — > A' is 2-cell in B.
The previous construction provides a locally full and faithful bifunctor KLF(B) — * K L (B )  and 
because of the discussion at the beginning of this section, K L F{B) has also Kleisli objects.

Next, apply this construction to A  = Comon(971) and B  =  Bicomod(9Jl). Obviously, 
Comon(!DT) do not have a 2-category structure but it can have one according to the bifunctor F  
in order to make it locally full and faithful. We have three options

f) F  : Comon(97l) — ► Bicomod(nJl), is defined by the identity on the 0-cells and for 1-cells 
/  : C  — ► D  as the 1-cell C f  in Bicomod(9tt). The 2-cells in Comon(9Jt) are defined, in order 
to make F  locally full and faithful, as a  : C* — ► C 9. This definition gives KLF(Bicomod(9Jl)) 
as the image under $  of IntCat(97t), see Section 3.3.2.

f) F  : C o m o n C0(DJt) — ► B ico m o d °p(2Jl), is defined by the identity on the 0-cells and for the
1-cells /  : C  — * D  as IC op : C  — > D  and the 2-cells, a  : — > 9C  as the image under F  of a co.
This definition gives K L ^(B ico m o d °p( ^ ) )  as the image under $  of I n tC a tco(97t), see Section 
3.3.2.

f) G : Com oncoop(9Jl) — * B icom od (371), is defined yet again as the identity on the 0-cells and 
for the 1-cells J'op : C  — > D  as : C  — > D  and for the 2-cells, o c J D  — * 9D  as the image under 
G of a co. This definition renders KLG(B icom od (371)) as the image under T of IntC oC at(371),
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see Section 3.3.2.

The relation between the alternative method suggested as before and the bifunctors developed 
in Section 3.3.2 can be understood by the following commutative diagram of locally full and 
faithful bifunctors, defined as the identity on 0-cells,

KL f ( B ) ---------- >KL (B)

3.3.3 W reaths in IntCat(SDT)
In this section the composite 2-functor Comp^ : KL(KL(M)) — > KL(M) is used in order to get 
the explicit form of the Kleisli objects corresponding to the wreaths in KL(«4). In general, these 
wreaths will come from monads in the domain 2-category M (S')  of the locally full embedding 
bifunctor F , see Section 3.3.2 . Then through the 2-functor Comp, the composite monad will 
serve as a Kleisli object, first in the 2-category KL(*4) and then, in the domain 2-category M (B1) 
as already explained.

3.3.3.1 Kleisli O bjects in IntCat(SEft)

Above, the bifunctor $  : IntC at — ► KL (Bicomod (9Jt)) was constructed, which is a locally full 
embedding. The image of a monad ( /,  /i,//7), over (A ,C ), under this bifunctor is the following 
wreath

(3>(.4,C),$(/),3>(m), *(*/)) = ((CM).
(CO (Cl O c f i )  ■ i f  ■ cp m ),

( c ' D c r i  • c f  • A 7.
( C 'C W ) -  Lr & c )  . (3.26)

Therefore the Kleisli object for the wreath 4>(/, n,r)f ) is given by the composite monad 
over C. This composite monad is, in particular, an internal category because it is a 0-cell in 
KL (Bicom od (931)), see Remark 3.3.1.1. The explicit form of the Kleisli object is (C, C^DcA,  /F, 
( C fU c r f )  - i f  • A c) and /F : C^lUcAIIlcC^DcA — * Gallic A is given, according to (2.31), by

( O D c m ,)  • ( ( ( C 'C b / / )  • cf  ■ A fJ ) n c A) ■ (C 'D p C 'D cm .O  • ( C 'D ^ t C 'd c / i )  • c, ■ cpA, ) D c A) .

This is nothing but the morphism m j  in (3.9). The complete internal category structure is 
precisely the one defined in Section 3.2.2.1 , as expected.
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3.3.3.2 CoK leisli O bjects in IntCat(QJl)

In order to get the coKleisli objects in IntCat(SUl), we use in this section the bifunctor $  : 
IntC atc0(97l) — ► KL (B icom od077 (9Jt)). The 2-category IntC atra(97t) has been used here be
cause a monad in it defines a comonad in IntCat(97t), through the duality. The bifunctor $  is a 
locally full embedding, hence by using it we can obtain the coKleisli objects in IntCat(9Jt).

Let (g,5, e9) be a comonad over (A ,C) ,  its image $(# , 5, e9) renders the following w reath in 
K L(Bicom odop(97I)) :

( $ ( A , C ) M 9 ) ,  $ ( < 5) ,  $ ( * * ) ) =  ( ( C M ) .

(»C, (ffiQc 9C) ■ %  ■ 9pcA),
(SUc 9C) ■ 99ig ■ " A c ,
(e9O c 9C)- , ,g - A c )  . (3.27)

fiI
; Therefore the coKleisli object for the wreath <£(g, S, e9) is also given by the composite monad
! over C, which is an internal category and it is explicitly given by (C, A\3cgC, uc, (e9\3c9C ) ' i a-A c))
I and n c : A U c 9C n c A U c gC  — ► A U c 9C, according to (2.31), is

( m AO c 9C) ■ (T lD c  ((S9D c gC) ■99ig ■99A c ) ) • {mAU c 9C a c 9C) ■ ( / i n c ( ( s j D c ’ C )  ■ %  ■ 9pcA) D c 9C) .

This morphism is the same as m g in (3.23). The complete internal category structure is the same 
as the one given in Section 3.2.3.

3.3.3.3 Kleisli O bjects in IntCoCat(97t)

The procedure developed for the both of the previous examples is extended to the case of 
cofunctors. This procedure can be applied to this case also because of the existence of the 
bifunctor 'I' : IntCoCat(9Jt) — ► KL(Bicom od°p(9JI)). Therefore, if there exists a monad 
( ) ,  over (A .C) ,  in IntCoCat(97l), its image ^ ( / , //, r]*) renders the following w reath in 
KL(Bicomod(9Jl))

(* (/! , C),  # ( / ) , 'H v ) ,  9 W ) )  = ((C, A),  (fc , A ), fcpA ■ p, fcpA ■ r,1) . (3.28)

The Kleisli object for the wreath ^ ( / ,  ^ , 77̂ ) is given, yet again , by the composite monad over 
C. This composite monad is (C, ^CDcA,  /ic, ^°Pa • gf ), where fjc is given by

(fC U c m A) ■ {(t<:pA ■ p )U CA) ■ (fC D c fC a c m A) ■ {<CUchUcA)  . (3.29)
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As mentioned earlier, the conclusion tha t In tC oC at(O lt) admits Kleisli objects is one impor
tan t result obtained with this procedure.

3.4 String Diagrams

In Section 3.2.1 the Sweedler notation was explained in order to use it as a tool to compute 
with morphisms in a monoidal category (9ft, <g>, I). In this section, another tool to compute with 
morphisms in a monidal category is explained, the so-called method of string diagrams. Due to 
Remark 1.5.1.1, th a t a monoidal category can be seen as a special case of a 2-category, the tool 
of string diagrams applied usually to 2-categories and bicategories, can also be used in monoidal 
categories. In the general case, the n-cell notation for a 2-category, used so far in this thesis, is 
Poincare dual to the string notation.

The topological background on which this technique relies on will be omitted for the sake of 
brevity and this thesis will only focus on the operational description of the method. The refer
ences tha t are closer to the notation and depiction of diagrams are [4], [14] ,[17] . We start the 
operational description by giving examples of this particular representation of morphisms in the 
bicategory B icom od(9Jl).

Let M  and N  be C-comodules, then we represent the following morphisms using string dia
grams as follows

M

M

M

N

M

> I
ljw = . / =  '' f  , g -  f  = , f U c h = f ') O

' 9

M'

M M'

N  N '

For a comonoid (C, Ac;,£), we have th a t the induced comultiplication A c  is depicted as

C C

and its coassociativity as
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C  C

c c c c c c

For a C-comodule ( M , cpM, p%j), the coactions are drawn as

M  M

C M  M  C

For the morphism i f  : M D c N  — > M ^ U j N  given by the commutative diagram in (1.13), the 
corresponding string diagram is the following one

M  N

if ----------

There is one im portant property th a t needs to be highlighted because it will appear in all 
the future calculations. This property is related to the equalizer property of M d c N  under the 
parallel morphisms M  ® cpN and p ^  0  N,  for (7-comodules M  and N.  This property is drawn as

M N M N

~c c ~
\ P m Pajy — (3 .3 0 )

M  C N M  C N

If M  is still a C-comodule and N  is now a C-comodule, along with a comonoid morphism 
Jo : C  — > C, then this equality can be translated, for the right C-comodule (M^, (Af 0  / 0) ■ p £ ), 
to
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M 1 N N

~PM

Lf 

fo

M f D N

DPns—

M f  D N

Finally, for a monoid (A, ra^, u^) in CM C, the morphisms m A and ua are represented by

A A C

A

rnA

A

u A

Just in the same way as we did for the Sweedler notation in Section 3.2.1, we omit further 
details and without further ado we proceed to show the usefulness of the method of string diagrams 
in action.

3.5 Binatural Maps and Adjunctions in IntCat(97t)
This section is based on [10]. In [25], there are two equivalent definitions for an adjunction L H R, 
the first one is through the existence of a unit and a counit and the other one through the bijection

IIomc{ A , 1113) ^  IIomv {LA , B) , (3.31)

for all A in C and B  in T>. This requirement can be interpreted in terms of internal categories 
as follows. Consider the adjunction (2 .11), for the Kleisli category CF) then as above, this gives 
a bijection H omc(A ' ,FB ' )  =  HomcF(A', B'). On the other hand, in the previous sections, the 
Kleisli object for a monad ( /,  over (A ,C ) was found to be (C, C^CdcA), hence a compari
son between the object of morphisms and the class of arrows or morphisms of a Kleisli
category Homc(A ', F B ')  can be given. This provides an insight in how to manipulate adjunctions 
within internal categories.

Take an adjunction / H r  in the 2-category In tC at(9Jt), as in (3.1), then the left-hand side 
of (3.31), can be interpreted as D rD c A  and the right-hand side as B\JDlC. In order to get the 
complete translation of this classic requirement for classical categories in terms of internal ones, 
the following definition has to be stated.
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D e fin it io n  3 .5 .1 . Let I : (A ,C )  — » ( B , D )  and r : (B , D ) 
functors. Then a D - C — bicomodule map

6 : D rUc A — > B U DlC  ,

(A,C)  be a pair of internal

(3.32)

is said to be b inatural i f  and only i f  the following diagrams commute

P%rOCA BUd 6
B rU c A ra > B U d D tUc A B U d B U d 1C

DprBOc A

D\T\q B t[I\c A

DUdt^ cA

Drn c A B c A DrOcmA DrU c A B U d 'C

(3.33)

D TO c A a c A B U DlC a c A U c C BaDUB‘°ac‘' aD%  B O DB U DB a D'C  (3.34)

Drnc mA

DrUc A B U nlC

W ith this definition a t hand, the requirement for an adjunction in In tC at(97t), c.f. (3.1), can 
have an equivalent characterization resembling tha t of (3.31).

T h e o re m  3.5 .2 . Let I : {A,C)  — > (B , D ) and r : (B ,D )  — > (A,C) be a pair of internal 
functors. The adjunction I H r takes place i f  and only if  Dr\3cA  =  B D ^ C  through binatural 
maps of D -C —bicomodules.

Proof:

Suppose tha t / H r  is an adjunction. We claim th a t the binatural isomorphism is given by

e =  (m Bn D‘c ) ■ ( e n Dh n Dlc )  ■ if ■ ( d tn D ~PcA) : d to c a  — . b d d‘c  , (3.35)

and its binatural inverse is

0~' =  (DrD c m A) ■ (DTO c r ln c ri) ■ i2 ■ (°pBU DlC) : B O D‘C  — » D 'O c A (3.36)
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T hat 9 and 9~l are D -C —bicomodule maps follows by the respective bi-colinearity of each of 
their composite morphisms. The rest of the prove is done by using string diagrams. First, the 
binaturality of 6 is proved by checking the commutativity of the diagrams, (3.33) and (3.34). The 
proof starts by translating the upper-right branch of the commutative diagram (3.33) as a string 
diagram:

B 7 A

pDs r
B r A

B 7 A

P a

h

m B

m B

B lC

f i D l r
. P b

m B

DP b

‘PCA

m.B

B lC

h r  i

m B

 1P a

m n

B {C

B r A

DP b

r 1 o

e <» h

i,i

----- J a

h

m B

m B

B r A

B lC

D ~  r
P b  , -----

o n

m A

h

m B

B

B r A

r
PB , -----

P a

t'l

£

lc

r\

m A

m B

B

-----J a

h

lC

This last string diagram is the one corresponding to the left-lower branch of the diagram (3.33) 
as it was required. In the first equality of the previous string calculation the associativity for m e
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was used. The second equality follows by the naturality of e. In the third equality, the bifunc- 
toriality of the cotensor product along with the associativity of m g were used. For the fourth 
equality, the multiplicativity of li was used. Finally, for the fifth equality the right C-colinearity 
of m A was used.

The next string diagram shows the com m utativity of the second requirement (3.34) for the 
binaturality of 9

D r A A
Dr A A

I'l

£

u B

B

£

B

<> u

B

D r A A

-------

O li<\ <' h

J
rnB

m B

D r A A

-----J a

‘m A

h

m B

Dr A A

m A

= Li

Pa

h

m B

B lC B lC B lC
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In the previous string calculation, the following steps were carried out. In the first equality, 
the functoriality of the cotensor product along with the equality ub • lo = h  • ua were used. In 
the second equality, the multiplicativity of /i was used. In the third equality, the unitality of 
ua was used only. In the fourth equality, the associativity of m g and the multiplicativity of l\ 
were used one after the other. Finally, in the fifth equality, the right C-colinearity of m A was used.

The binaturality of 0 1 is proved by a mirror reflexion of the proof ju st given and by renam ing 
the involved morphisms, i.e. by changing l\ for rq, e for rj, mB  for m A and so on.

The proof for the equality 6 • 9 1 =  1 b d d lc  starts by translating the left-hand side off the 
equality using string diagrams:

B lC
D

PB

£  <>

rq

m A

B lC
B  lC

D
Pb

Pa

h

~^P a

lm ‘A

<h

m D

DPb

B  lC B B
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B lC

B lC

This string calculation was performed as follows. In the first equality the right C-colinearity 
of nriA was used. In the second equality the multiplicativity of rriA and the associativity of 
were used at once. In the third equality, just the functoriality of the cotensor product was used 
to move the morphisms up and down. In the fourth equality, the naturality of e was used. In 
the fifth one, the left C'-colinearity of rj was used instead. In the sixth equality, the property in 
(3.30) was used. The seventh equality follows by the coassociativity of Ac  and the functoriality



94 3.5. Binatural Maps and Adjunctions in IntCat(97t)

of the cotensor product, which allow us to move the strings. In the eighth equality, the triangular 
identity associated to the left adjoint I was used. In the ninth equality, the property (3.30) was 
used yet again. Finally, in the ten th  equality, the unitality of ub was used.

The proof of the equality 9~l ■ 9 = l o rDc A can be performed by a mirror reflexion on the one 
just given and by renaming the involved morphisms as before. Therefore, for this proof one uses 
the multiplicativity of rq, the naturality  of 77 and the triangular identity associated with the right 
adjoint r.

Conversely, suppose tha t there is a D -C —bicomodule isomorphism 9 : DrQ c A  — > BH\d1C  
with inverse #_1. The induced unit and counit for the a posteriori adjunction are defined as 
follows:

77 =  wia • (uArQU cA)  • 9 1 • ( u b I q P d 1C)  • q • K c  : C  — ► A  . (3.37)

s = rriB • (B U dub Iq) • 9 • (//□c'U/iT’o) • ir • A d • D — > B . (3.38)

T hat 77 : rLC  — * A is a C-bicomodule morphism follows from the fact that the composition 
ii ■ A c  can be mapped, using the functor r/F , to the following C-bicomodule morphism r/q • r/A c\ 
the composition 9~l • (u b Iq̂ d 1̂ ') can be mapped through the functor rF , to the following C- 
bicomodule morphism, r9~ 1 • (r(uBlo)F\DlC); the previous two compositions can be composed also 
with the following C-bicomodule map m,a ■ (uAr0\I\cA) which gives the definition of 77. T hat 
e : lrD — ► B  is a D-bicomodule map follows in the same way.

Before going into the proof of the naturality of 77, the string diagrams for the binaturality of 
9~l have to be drawn. For (3.33) and (3.34) we have
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B  lA

]

B  lA
B  B 'C

1-1

D P b
i-1

9

B B  lC

(3.39)

D r A

respectively. The last string diagram will be used not in this form but the one after composing 
with rriA • (uaToDc A),  which results in the following equality of string diagrams

B  B lC
B  B  lC

i-i

(3.40)

A
A

W ith these string diagram equalities a t hand, the naturality  of 77 can now be proved.
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A A

A

 Pa

r\U

Lrl

1

m A

A

A
: C

i-l

A

nC

h

o  r 0

o  u A

A

tP

~ct

m n

A
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A

A

 P a

~c

c ~
P a

m B
1-1

A

Pa

UBIq ° °PA I

m A

A

A

A A

In the previous string calculation, the following steps were carried out. In the first equality, 
the definition of 77 was taken. In the second equality, the property (3.30) was used. In the third 
equality, (3.40) was used. The fourth equality follows by the multiplicativity of £1 and the uni- 
tality  of u a - In the fifth equality, the m ultiplicativity of li and the functoriality of the cotensor 
product to move strings up and down were used. In the sixth equality, the first requirement for 
the binaturality of #_1, (3.39), was used. In the seventh equality, the associativity of via along 
with (3.30) were used. Finally, in the eighth equality, the definition of 77 was applied.

The naturality  of e is proved by symmetrical steps as the ones carried out.

As far as the triangular identities go, the one associated with the left adjoint I, namely £lo*l\r) = 
11 =  u BlQ} is proved as follows. Applying the definition of the unit 7/ and the counit e in terms of 
9 and 9~l , we start by
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I'lrl

Ub

lr0-l

B

c c

Ua

ub

lT-Q-1o Ub Iq

m A



Chapter 3. Internal Kleisli Categories 99

-----

o UA
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C

m B DzPb ___

B

P b
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C

- l

B

C

- l

B

C C C

ub Iq

A,

k
Ub Iq

m B

B

uB

B

= <> u b Iq

B

The first equality follows by the unitality of u a - In the second equality, the m ultiplicativity of 
/] and the associativity of m.A and m g were used. In the third equality, the second requirement for 
8 being a binatural map, (3.34), and the left colinearity of ub were used. For the fourth one, the 
first requirement for the binaturality of 6 , (3.33), was used only. For the fifth equality, the right 
colinearity of uu  and the unitality of ua were used. For the sixth equality the m ultiplicativity of 
l\ and the associativity of m s  were used. For the seventh, the left D-colinearity of 6 was used. 
For the eighth equality, the left colinearity of ub and the coassociativity of Ac; were used. For the 
ninth equality, the left D-colinearity of 9~l was used only. For the tenth one, property (3.30) was 
used. For the eleventh equality, the unitality of ua and the fact th a t 9~] is the inverse for 9 were 
used. For the twelfth equality, the fact th a t Iq is a comonoid map along with the left colinearity 
of ub were used. For the last equality, the unitality of ub was used.

The other triangular equality, the one associated with the right adjoint r, is done symmetri
cally as this one. This concludes the proof. □

3.5.1 A lternative P roof of the Characterization of A djunctions

In [6], G. Bohm suggested another proof of the characterization of adjunctions in In tC a t(9 Jt) 
using the locally full embedding bifunctor 4> : In tC a t(9 Jt) — > K L(B icom od(97I)). This proof 
requires the following introduction.



102 3.5. Binatural Maps and Adjunctions in In tC a t(9 J t)

Let B be a bicategory, and consider the following pair of 1-cells in KL(jB)

( A , I )
(*.*)

(3.41)

In particular, I is a 1-cell in B. Suppose further tha t in B, k is a right adjoint to /,

(3.42)
k

A * . ;  A' ,
I

with unit v : I a — * kl and counit £ : Ik -=—» 1 a>- Then there is a bijective correspondence 
between adjunctions (/,</?) H ( r , '0) and isomorphic 2-cells

9: f r  — ► kh  , (3.43)

satisfying the following equalities

Qo fiJr = kg!1 o (kh^h) o (kipkh) o ( i/ fkh)  o f 0  , (3.44a)
kfj,h o9h = Q o ^ r o f i j )  . (3.44b)

In this section Theorem 3.5.2 is restated and reproved using the above characterization of 
adjunctions.

T h e o re m  3 .5 .1 .1 . Let I : (A ,C)  — > {B ,D)  and r : (B ,D )  — ► (A , C ) be a pair of internal 
functors. The adjunction I H r takes place if  and only if DrC\cA = through binatural
maps of D -C — bicomodules.

Proof:
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The bicategory B is taken as the bicategory Bicomod(9Jl). Then, due to the locally full 
embedding <3> : IntCat(9H) — > KL(Bicomod(97t)), constructed in Section 3.3.2, an adjunction

(3.45)

(A ,C )  « -r . . . ; (B ,D ) ,

in IntCat(97t) can be taken to be an adjunction in KL(Bicomod(9H)),

(Dr,<t>r)
( C , A ) < >: (D, B)

(3.46)

On the other hand, C l H lC  in Bicom od(97t), with unit q • A c : C  — ► C l\JclC  and counit 
l0 • l!;1 : lC \ J c C l — > D, where £ : C U c(7 — > C  is an isomorphism.

Then according to [6], there is a bijective correspondence between adjunctions (Cl,<j>i) H 
(Dr ,4>r) in KL(Bicomod(9Jl)), or because of $  between adjunctions / H r  in IntCat(97t), and 
isomorphic 2-cells

6 : DTUCA — > B U DlC  ,

satisfying the following equalities in Bicomod(97l)

e ■ (DrncmA) = (msdo'C) • (BOD(k ■ i)0DBOD‘C) ■ (BOD‘cac(h ■ i‘, ■ cpi)aD‘c) 
■(BaD‘C D c ADc( i ,  ■ A c)) • ( 6Dc A)  , (3.47a)

( m B0 D‘C) ■ ( B U C6) =  6 ■ ( DTn c m A) ■ ( ( ( DTD c r 1) ■ £  ■ Df a ) n c A) . (3.47b)

These two equations are equivalent to the binaturality requirements for 9 in (3.33) and (3.34), 
respectively. □
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3.6 Kleisli Objects Induced by Mates under Adjunctions
The following construction is based on [18]. Let

(3.48)

( A , C ) < - r > ( B ,D )  , {A ' ,C'y  :-r/- > (£ ',  D')
i v

be a couple of 2-adjuntions in the 2-category IntC at(97l) and also let (h i , h 0) : (A, C) — * (A '. C') 
and (ki,ko)  : {B ,D )  — > (B ' ,D ')  be two internal functors. Then, because of Proposition 3.1 in 
[18], there is a bijection between the 2-cells, A : I'h — > kl and v : hr — > r'k. This bijection is 
given through the following 2-diagrams

{ A , C ) -------------   <-(/!', <7')----------  *■ (A' , C )  (3.49)

(B ,D ) k

( A , C ) ----------- » ( / l , C ) -----------  » ( A ' , C )  (3.50)

( . B , D ) k

If the pasting operation is carried out according to (2.22), then this bijection looks like 
A i— * r'ke o r ' \ r  o rfhr  and v \— > e'kl o Vvl o I'hrj.

Consider an adjunction / H r  with the same domain and codomain (A ,C ) for the second 
adjunction in (3.48) and for the first adjunction consider instead the composition of adjunctions 
11 H r r ,  with unit and counit rirjlo * rj and e * /i£r0, respectively, see [25]. In this set up, take 
h = 1(a,c) and k = l^ .c )-  Finally, if the right adjoint r is part of a monad R = (r, i i ,r f)  then the 
bijectivity in (3.49) gives a natural transformation 5 : I — > //, out of fi : r r  — > r.

On the other hand, if the first adjunction is taken now as the identity adjunction on (A, C), 
and for the second one the same adjunction / H r as before, then the bijectivity in (3.49) gives a 
natural transform ation e 1 : I — > 1 (a ,c )> °f rf  '• l (A,c)  — * r ■ This procedure can be summa
rized, according to [22], in the following
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Proposition  3.6.1. Let r : ( A ,C )  — > (i4,C) be an endomorphism that is part of a monad, i.e. 
f{ = { r ,n ,r f ) ,  and let I be the left adjoint of r. Then there is a comonad structure induced on I, 
under mating, i.e. L = ( l ,5 ,e l). The explicit formula for the comultiplication and the counit is 
5 = cIqIq * Ii/iIqIo * l\ri7]lo * ^77 and el = s * l ir f  respectively, where e and rj are the counit and the 
unit of the adjunction, respectively. This type of adjunction is denoted by L H R. □

Note: This proposition was w ritten using the coopposite dual principle over the corresponding 
proposition in [22 ].

W ith an adjunction of this type, there are two induced internal categories, according to the 
previous sections, ( (C r[JcA, C )m T, ur) and ( (ADc'C ,  C), mi, u{), the Kleisli and coKleisli objects, 
respectively. This section finishes with an adaptation of Theorem 2.14 in [22],

Theorem  3.6.2. Let L H R. be an adjunction over (A, C), where L =  (l ,S ,e l) is the comonad 
induced by mating the monad R  = (r,pi,rf), then there exists an internal isomorphism between 
the induced Kleisli and the coKleisli objects, that is to say, ( C rU c A , C )  =  (A \3c lC, C) .

3.7 Example

See [10]. In this section the monoidal category tha t will be used to give an example of adjunctions 
is the monoidal category (M odjf, R), see Section 1.4.1. In this section the tensor product 
<S>n will be taken unadorned g . Let us make the following

D efinition 3.7.1. Let A be an R.-algebra. An  /l-coring twisting datum  is

(3.51)

( v ^ = ^ c ,  e ) ,

where, according to 1.4*1, C comes with a coring structure over A, (C, A c ,e c )  and V  is an A- 
coring (D, A p , <?£>). Also I and r are A-coring morphisms, i.e. morphisms of comonoids in a M a - 
Finally, 6 : D 1 — > TC is an isomorphism of D -C —comodules.

The definition given above is the same as an adjunction I H r with domain (C, A) and codomain 
(D ,A ) ,  in IntC at(M od^), where the bicomodule property is equivalent to th a t of the binatu- 
rality.

The coring twisting datum  in (3.51), through the adjunction I H r, induces a Kleisli adjunction 
from (C, /4) to (A ri <S>a A), which in turn, induces an A-coring twisting datum  as follows
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(3.52)

(ce i = = ; c ,  e )  .T

where I = (ep • 9 1 0 ,4  C )  • A c  and r = 9 ■ r and 9 =  lc- The ,4-bimodule Cg is the coring C, but 
with twisted structure given by

A 9C = (9 ■ r <S>a  C) ■ A c  , (3.53a)
eec  = eD - r 1 . (3.53b)

In the same way, the coring twisted datum  in (3.51), through the adjunction I H r, induces 
a coKleisli adjunction from (D 0 ,4  irA ,A )  to (D ,A ), which in turn, induces an ,4-coring twisting 
datum  as follows

(V  --  l'- > V 9 , 9')

where the coring V 9 is the coring D  with the following twisted structure

A 9d = ( D ^ a 9 - 1 •/) ■ A d , (3.54a)
eeD = ec  • 9 . (3.54b)

The process of inducing twisted coring structures does not go indefinitely since, as explained in 
[20], the completion of a  2-category for Kleisli objects consists of only one step, hence this process 
of inducing twisted structures has to stop after one step. In particular, Cg = C and (Cg)9 = C.



Chapter 4 

Morita Contexts and Double Adjunctions

This chapter is based on [11]. In this chapter, the category of double adjunctions for a pair of 
categories is defined, afterwards the category of Morita contexts on a pair of categories is defined. 
Altogether it will be the theoretical basis for the development of an adjunction between these two 
categories, given a resemblance to the interaction between single adjunctions and monads. This 
resemblance will finally lead us to a Beck-type theorem at the end of this chapter.

4.1 Double Adjunctions

In this section, the category of double adjunctions is given, this will be the first and one of the 
most im portant definitions for the whole of the chapter. W ithout further ado, let A  and B be 
two categories, the objects of the category of double adjunctions over A  and B, Adj(A ,B), are 
defined as follows

where the U s  and H’s are adjunctions, the shorthand notation (£, L a H R a, Lb H Rb) will be used 
quite frequently. The morphisms in this category are F  : (£ , L a H R a, Lb H Rb) — > (£', L'a H 
R'a, L'b H R'b), where F : CJ — ► £  is a functor such th a t the following diagram commutes

107
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A  (4.2)

Ca F

B

The respective diagram for the L ’s is not required to commute, but there exist natural trans
formations

a  =  (saFL'a) o (LaV'“) : La — > FL'a , (4.3a)
0  =  (sbFL'b) o (LbV'b) : Lb — -> FL'b , (4.3b)

such tha t the following properties hold

{Raa) o j f  = v 'a , eaF =  ( F s '“) o (aR'a) , (4.4a)
(R b0)  o r)6 =  n’b , =  (F£ 'k) o (0 R'b) . (4.4b)

4.2 Morita Contexts

Let A  and B  be categories, then the objects of the category of Morita contexts, denoted by 
M or(^4, B) are defined as follows

( ,4 ,£ ,T , f , e u ,e v) , (4.5)

which is a short notation for monads (A ,i iA,r]A) and (j5 ,/ub ,?7s ) over A  and B , respectively. The 
functors T  and T, on the other hand, deserve a detailed look. The functor T  : B  — > A  is called 
an A -B  bialgebra functor  provided the natural transformations A : A T  — > T  and p : T B  — > T  
fulfill the following requirements
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A A T
h a t

A T T
rjAT

A T

AX

A T T T

for A : A T  — > T, and for p : T B  — ► B

T B  ----   T B B

PB

T T B

7
T B - —   T

T

Last but not least, the compatibility condition

A T B

Ap

A T

XB T B

T

is also required.

A natural transform ation a  : T  — * T ', such th a t the following diagrams commute
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A T  ^  A T ' T B  — ^ T B (4.9)

A'

T V T V

is called an A-B  bialgebra morphism.These definitions are the ingredients of a new category called 
a^ b -

In a similar fashion, the functor T  : A  — > B has to be a B -A  bialgebra functor through the 
natural transform ations A : B T  — > T  and p : T A  — ► T.

Finally, the natural transform ation ev : T T  — > A has to be an A-A  bialgebra morphism and 
ev : T T  — > B  a B -B  bialgebra morphism along with the requirement tha t the following diagrams

__  /  6 t  rri f—»
T T T -----------»* T B T B T

T \
T T (4.10)

e v T pT

A T T T T A

^  Tev  ^
T T T -----------** T A T A T

TA
T T (4.11)

e vT prr

B T T T T B
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commute. The morphisms for this category are

T = (<̂ 1, ^ 2, <̂ 3, ^ 4) : ( A , B , T , T , e v , e v ) — ► (A', B', T', ev \ e v )  , (4.12)

where the definition of each of the ip's goes as follows, ipi : A  — > A 1 is a morphism of monads , 
th a t is to say, it is a natural transform ation such th a t the following diagrams commute

where tpi is the Godement product as in (1.23). In the same way, <p2 ’■ B  — > B' is a morphism 
of monads over B.

Remark 4.2.1. A morphism of monads ip : (F,p,F,r]F) — ► (F ' , p F' ,r)F>) over the category C, 
corresponds to the 1-cell (1 c,'p) in the 2-category M n d (2C a t) , see (2.18).

The natural transform ation </?3 : T  — > T '  has to be a morphism ĉ>3 : T  — > ^ 1 ^ 2  in aF b , 
i.e. the following diagrams commute

T

A T  A T '

ViT1

A T  
\ '

V

<P3 13T B    > T B
T'w

T 'B '  

p '

'■p 3 T

(4.14)

T

In a similar way, : T  — > T  has to be a morphism : T  — ► ^2T'^ 1 in b J~a - The final 
requirement for the morphism <p = (v^i»Vp2i ^ 4) is the com m utativity of the following diagrams
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V53*VJ4 ,r p r p  ---------------- r p / r p t

A A'

^  <̂ 4*̂ 3 ^rprp ----------- *" rplrp l (4.15)

B <P2 B'

4.3 Adjunction between M or ( A , B )  and A dj ( A , B )

4.3.1 The Left Adjoint

In order to construct the left adjoint, a shared codomain category for the a posteriori double 
adjunction, corresponding to any given Morita context, has to be constructed. Due to the fact 
tha t the construction of this codomain category is lengthy, it is to be done on its own. Let 
(A, £ , T, T, ev, ev) be a M orita context. The definition of the Eilenberg-Moore category for a 
Morita context

(a , b Y a , B ) (4.16)

goes as follows. The objects of this category, the so-called Eilenberg-Moore algebras (for a Morita 
context), are

(4.17)

such that

i) (A/, ''Vm) is an object in A A ,

ii) (A, b X n ) is an object in B B ,

iii) v : T N  — > M  is a morphism in A a ,

iv) w - .T M  — > N  is a morphism in B B ,

and they fulfill the following requirements:
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and

e . v M  A A If

T T M ------------** A M T B N
t b x n

T N (4.18)

T w p N

T N M T N M

^  e v N  n  a r
T T N -------------- B N

Tv

T M

XN

N

T A M --------------T M

p M

(4.19)

T M N

The bar notation over morphisms will be omitted whenever is possible in order to avoid compli
cated expressions.

The morphisms for the category of Eilenberg-Moore algebras are described as follows:

( / ,  g) : ((M , a X m ) ,  (N, uX n ) , v , w ) — » ({M \ \ M'), liXN>),v', w') , (4.20)ji /I . \ - / — n

such th a t

i) /  : (M, \ m ) — * (M 1, "VmO is a morphism in A a ,

ii) g : (N, X n ) — * (N 1, X n >) is a morphism in B  ,

and also they fulfill the following requirements:
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T N
T g

T N ' T M
T f

T M 1 (4.21)

M M ' N N'

The short notation (M ,N )  for an object in (A ,B ) A ’B) proves to be helpful. The identity mor
phism for an object (M, N )  in (A, B)^a~b  ̂ is l(j\/,yv) =  (1m)1/v), as expected. The composition of 
morphisms ■ ( / ,#  ) is done componentwisely, i.e. ( / '  ■ f , g '  • g).

Once the Eilenberg-Moore category for a Morita context has been described, the definition of 
the left adjoint functor

r : M o r ( A ,£ )  — * A dj(M ,£) , (4.22)

can be given without further ado. Over objects, it is described as

r(A , B ,T ,  T, ev, ev) =  ((A. B ){A B], Da H Ua,D b H Ub) (4.23)

This object can be represented as the following diagram

A

D a

(A ,B ){A'B)

B
D b

The description of the adjunctions goes as follows. For the first one, Da H Ua, Da is defined 
over objects, X  in A , as

D a(X ) = {(AX,  g.AX ) ,  (TX,  XX) , e v X,  pX)  , (4.24)
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and over morphisms h : X  — > X '  in A , as

Da(h) = (A h ,T h )  : ( A X , T X )  — > ( A X ' , T X ' )  . (4.25)

At this point, the following proposition is needed.

P ro p o s i t io n  4 .3 .1 .1 . The functor D a : A  — > (A, B)^a'b  ̂ is well-defined. 

Proof:

First, it has to be checked th a t ( ( A X , p AX) ,  ( TX,  XX) ,  evX,  p X)  is an Eilenberg-Moore alge
bra. T hat (AX, p, AX )  is in A a is clear since this part of the functor is the free algebra functor 
for the monad A as defined in the proof of Proposition 2.1.2. That ( TX,  XX)  is an object in 
B B can be deduced from the property of T  being a left B-algebra functor applied to X.  T hat 
e v X  : T T X  — > A X  is a morphism in A A is deduced from the fact th a t ev is a left A-algebra 
morphism evaluated in X.  T hat p X  : T A X  — ► T X  is a morphism in B B follows from the 
compatibility condition imposed on the B-A-bialgebra functor T  evaluated on X. The diagrams 
in (4.18) are translated to the following ones

^  evAX . i

T T A X ------------► A A X

TpX txAX

T T X ---------v--- ^ A X* * evX

-  T X X  -
T B T X ------------* T T X

pTX evX

T T X  y  ̂A X-1 x y v  evX

Both these diagrams commute, the first one because ev is, in particular, a right A-algebra 
morphism evaluated at X ,  and the second one because this diagram is part of the requirements 
for a M orita context, namely the second diagram in (4.10) evaluated at X.  The com m utativity of 
the remaining diagrams in (4.19), can be proved in a similar way. The first one commutes because 
it corresponds to the first commutative diagram in (4.11), the second one commutes because it 
corresponds to the fact tha t T  is a right A-algebra functor.

Second, we have to check th a t ( Ah , Th)  : ( A X , T X )  — ► ( A X ' , T X ' )  is a morphism of 
Eilenberg-Moore algebras. T hat Ah  : A X  — * A X '  is a morphism in A a follows from the 
naturality of fiA, and th a t T h  : T X  — > T X '  is a morphism in B B follows from the naturality  of 
A. On the other hand, the diagrams in (4.21) are translated to the following ones
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T T X  — T f x >

e v X e v X '

A X Ah A X '

T l

pX

X
T A h

TA X '

?>X'

T X Th T X '

These last diagrams commute because of the naturality of ev over h and because of the natu
rality of p over h ) respectively. □

The functoriality of D a follows componentwisely from the functoriality of A and T.  This com
pletes the definition of D a.

On the other hand, the definition of Ua goes as follows. Let (A4, N)  be an object in (A,  
then

(4.26)

and for morphisms, ( f , g )  : (M,  N)  — > (AI1, N '),

v aQ ‘H) = J  . (4.27)

where /  : M  — > M 1 is a morphism in A. The proof of Ua being well-defined and a functor, is 
clear.

P ro p o s i tio n  4 .3 .1 .2 . D a and Ua form an adjunction, D a H Ua.

Proof:

The unit of the adjunction

r f aDa : l A — > UaDa , (4.28)

is defined on objects as

r)u°D‘ X  : X - ^ t - ^ A X
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The counit of the adjunction

eD‘u'  : —  1m ,b)m.b) , (4.30)

is defined on objects as

s D‘u°(M, N )  : ( AM,  T M )  {Axm'W > (M , N)  . (4.31)

Note th a t ( A M , T M )  stands, as a short notation, for ( { A M , AX M ) , { T M , \ M ) , e v M , p M ) .  T hat 
the morphism (aXm, w)  '■ (A M , T M ) — ► ( M , N )  is a morphism in (A ,B )^A'B  ̂ is proved as follows. 
The morphism a \ m  '• A.M — > M  is a morphism in A A since this is the definition of the counit for 
usual Eilenberg-Moore adjunction, corresponding to the monad A, (2.14). Second, w : T M  — * N  
is a morphism in B n , by hypothesis. Hence, there remains only to prove the com mutativity of the 
diagrams in (4.21), but once they are translated they are nothing but the first diagram in (4.18) 
and the second diagram in (4.19), respectively, whose com m utativity holds by hypothesis.

Now th a t the unit and the counit have been defined, let us proceed to prove the triangular 
identities for the adjunction. The first of them, the one associated to the left adjoint D a, is

£ d « u ° D a o  D a r ) uaDa =  1  D a .

In order to prove such a statem ent, let X  be an object in A, then the composition can be 
broken down to

D aTf aDOX  =  D nr}AX  = (Ar]AX , f r i AX )  ,

and

s D°uaD aX  = s Daua((A X, p, AX ) , { T X , \ X ) , e v X , p X ) = {pAX , p X )  ,

and finally 1d°x — (1 a x , Ifx )-  The composition now looks like

(pAX , p X )  • ( / V X T y X )  =  (pAX  • ArjAX , p X  • TrjAX )  = ( U x A f x )  »

where the equality holds, first because of the unitality of the monad A,  and second because of T  
being a right /1-algebra functor.
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The triangular identity associated to the right adjoint Ua is

(Ja£Dau° o f aDaUn = l ua .

Let (M, N)  be an object in A A, then the composition can be broken down to

r]uaDaUa{M , N) = r f a° a M  = r)AM  ,

and

U“eD‘u‘ ( M ,N )  = U'‘(aXm,w) = \ m  , 

and also 1 ya( M^N)  — 1 u a{M,N) — 1m- All together it looks like,

aXm  ' — 1m >

which holds since ( M , ax m ) is in *AA. □

The next proposition is stated w ithout any proof since it is similar to the one just given. 

P ro p o s i t io n  4 .3 .1 .3 . D b and Ub form an adjunction, Db H Ub.

The unit and counit of the adjunction D b H Ub are given for the sake of completeness and 
referencing:

r f bDbY  =  r]BY  : Y  — ► B Y  , (4.32a)

eDbu\ M , N )  =  {v , b x n ) : { T N , B N ) — ^ ( M , N ) .  (4.32b)

The functor T : M o r ( A, B)  — > Adj(^4, B) is defined over morphisms f  : (A, B . T , T )  — ► 
(A', B ' , T ,, T /) as follows. The image of the morphism f  under the functor T has to be a functor 
such th a t r(v?) : (A ,B )A ' 'B') — > (A, B Y A>B\  In order to construct such a functor, let us state 
the following proposition.

P ro p o s i t io n  4 .3 .1 .4 . Let f  : {C,F,(jlf ,r]F) — * (C, F ' , iif>, ijF') be a morphism of monads, then 
there exists a functor ^ H  : Ch — > Cb between their Eilenberg-Moore categories of algebras.

Proof: (Sketch)

Define ^ H  over objects { N , f>X n )  in CF> as ( N , f ' x n  ■ f N ) -  Define ^ H  over morphisms h : 

(N>f ' x n )  — ► ( N \ f 'xn>) as
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□

Resuming with the construction of the functor, T(</?) is defined over an object ( { P , a 'x p ),  

{Qi B' xo) , r , s )  in (A, as

r{ip)(P,Q)  =  ( ( P / 'x p  • tpiP),  (0 , B'xq  • ^ 20 ) , r  • tpsQi s <p4P)

On a morphism (p, (7) : ((P, ^ ' x p ) ,  (Q, b 'x q ),  r, s) — ► ((P ', *'xp')> (<9'» S XQ')> r '>s') it; is defined
as

r(</?)(p,9) =  (p,<7) ,

where (P, 9 ) : ( (P ,A'xp 1 (Q, ■ V^Q), r • <p3Q, s • <p4P) — > ( ( P ' / ‘XP' • (<3'» *
V2 Q'), r'-tpsQ'i s ''^PaP') is a morphism in (.4, B Y a,b\  The notation means, for example, th a t the 
underlying morphism p : P  — > P' remains the same but not the requirements over it, i.e. the bar 
notation corresponds to p fulfilling the requirements for the M orita context (A7, B \  T', T ' , ev ', ev') 
while the notation corresponds to the requirements for the M orita context (A, P , T, T, ev, ev) 
instead. W ithout further ado, let state the following

P ro p o s i t io n  4 .3 .1 .5 . r(<p) is well-defined and it is a functor.

Proof:

First, on objects, we need to prove th a t ((P, A\ p  ■ <Pi P ), (Q , b X q  ' ^ 2Q), t  • '■PzQ, s • 994P ) is an 
object in (A., B fiA'B\

The object (P, ^ x p  • <piP) is in A A because it is the image of the functor ^ P ,  see Proposition 
4.3.1.4. (Q, b 'x q  ’ ^ 2 Q) is an object in B B because is the image under the functor ^ P . The next 
thing to  get through is th a t r  • <p3Q : A T Q  — > A P  is a morphism in A A. This requirement is 
translated to the outer most diagram in

A T Q  Av3Q » AT'Q  ^  A P

X Q

V \ V Q (■i i )

X'Q (in)

TQ
<P3 Q T'Q

tpiP

(i) A 'T 'Q  A,r > A 'P

X P

P
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This diagram was broken down already in order to help to write the argument for its commuta
tivity.

The diagram in ( z )  commutes because y>3 : T  — > is a  morphism in & T , in turn, ( zz)  com
mutes because of the naturality of i f i over r, and finally, ( zzz)  commutes because r : T ' Q  — > P  
is in A A>. T hat s • ^ 4P  : T P  —* Q is a morphism in J3B, is proved similarly.

It remains to show the com m utativity of the diagrams in (4.18) and (4.19). Starting with the 
first diagram in (4.18), this is translated to the following one

T T P

TtpiP

vP
A P

v\P

^ . t psT'P ^  ev 'P ai  r~t
r p r f ,  p  -----------------------^  p i  p i  p   >  A ' P

T s (Hi) T ' i (ii) X P

TQ <faQ T'Q P

which commutes because in (z) the expression ip$T'P ■ Ti f ^P is the definition of (^3 * <̂ 4)(P ), 
then this diagram corresponds to the first one in (4.15) for the requirements of a morphism of 
M orita context. In turn, (zz) commutes because this diagram is the first requirement in (4.18) for 
the Eilenberg-Moore algebra (P, Q).  Finally, (zzz) commutes because of the naturality of </?3 over s.

Resuming with the second diagram in (4.18), this can be translated to the following one

T B Q  T^ Q > T B 'Q

pQ

TQ

B 'Q

(i) T 'B 'Q

p'Q

T b>XQ

(ii)

XQ

(in

'PzQ T Q

TQ

vzQ

T'Q

r

- p

which commutes because the inner diagrams commute. The one corresponding to (z) commutes 
because the morphism ip^B'Q • T( f 2Q is equal, through the Godement equality of (<̂ 3 * r i KQ) ,  
(1.23), to T '(f2Q • ^pj,BQ\ if this morphism is substituted back in (z), it gives the requirement 
(4.14) for a morphism of M orita contexts. In turn, (zz) commutes because of the naturality of 
y?3 over B'xQ and finally, (zzz) commutes because it is the second requirement in (4.18) for the 
Eilenberg-Moore algebra (P, Q).
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The requirements for the diagrams in (4.19) are sorted out similarly.

The fact th a t the functor T(<p) is well-defined on morphisms is proved as follows. T hat P : 
(P, A'xp 'ip \P )  — > (P A'xp’ -if \P ')  is a morphism in A A follows from the properties of the functor
^ H .  Likewise, <?: (Q , b 'x q  ' V2 Q) — ► (Q ' , B>XQ' ' T 2 Q') is a morphism in B b . Furthermore, take 
the first diagram in (4.21) and translate it to

T Q Tq
T Q 1

¥>3 Q'

T 'Q  — T'Q'

(ii)

P<

The diagram (i) commutes because of the naturality of ip$ over q, and (ii) commutes because 
(p,q) is a morphism of Eilenberg-Moore algebras for the M orita context (A', B ' ,T ' ,T ' ) .  The sec
ond diagram in (4.21) commutes by similar arguments as the previous one. Therefore, (P, q) is a 
morphism of Eilenberg-Moore algebras for the M orita context (A, P , T, T, ev, ev).

On the other hand, it is clear th a t r(c/p)( l ( / 3 ) =  r(y>)(Tp,Tg) =  (1^ ,1 q ) =  lp (<p)(p,Q)- Also,

let (p', q') • (p, q) be a composition of morphisms, therefore T(p)(p'  ■ p, qf - q) = (p' ■ p,q' ■ q) = (p'

, q') ■ (P, Q) = r(<p)(p/, q') • T((p)(p,q) . This completes the proof of the proposition. □

It remains to check the interaction of the functor r(<p) with the right adjoints. In order to do
so, let (P, Q)  be an object in (A,  B Y A',B>\  then

Ua . r(<p)(P,Q) =  Ua(P,Q)  = P  = U'a(P, Q) ,

therefore Ua - T(<p) =  U 'a , and the same is true about the P 6’s. This finishes the proof th a t T 
is well-defined on morphisms. Once this part has been finished, one can proceed to check the 
functoriality of T. Let us s ta rt with p  — I B T — (I A, \  B , I 7 1, I f ) ,  then

rUrf, 1„, It, 1 \ M), (N, \ N ) , v ,  w) = ((M, AXu • 1 a M ) ,  (TV, b X n  ■ UN) ,  v  ■ 1TN, w  ■ 1 f  M)
=  { ( M , a x m ) , ( N , b x n ),  v , w ) ,

which means tha t r ( l ÂBTf)) = ^t (abt t ) -

Consider the following composite <p' • (p. If T is applied to this composite and evaluated at 
((P> A Xp), (Qi B" x o ) ir i s ), then the following calculation can be performed
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T{<p' ■ p ) ( P , Q )  =  ( ( P , a " x p  ■ ( p i  ' ' P i ) P ) , ( Q , ' 1" x q  ■ ( p '2 ' V 2 ) < 3 ) , r  • (<p'3 • p 3)<?, s  • (p't  • p 4) P )

=  ( ( P , A X p  ■ v' lP ■ V i P ) ,  { Q , B X q  ■ P 2Q  ■ V>2 Q ) , r  ■ p'3Q  ■ p 3Q , s  • P4 P  ■ P i P )

= V(ip){ (P ,  A "X p  • p \ P ) ,  (Q, B"x q  ■ p'2Q ) , r -  y'Q, s - p ' 4P )

=  r ( ^ ) i \ p ' ) ( P , Q )  .

Therefore, T : M or(*4,B) — * A d j(A , B) is a functor.

4.3.2 The Right Adjoint

This section is devoted to the construction of the right adjoint

T  : A d j(A ,B) — + M or(A , B) , (4.34)

of r .

On objects T  is defined as

Y (£, La H R a, Lb H R h) = (RaLa, R bLb, RaLb, R bLa , R aebLa) RbeaLb) . (4.35)

On morphisms F  : (£ , La H R a, L b H R b) — > (£ ', L'a ~\ R!a, L'b H #[,), T is defined as

T (F) =  (R aa , /2a/?, fl6a) . (4.36)

According to this, the following proposition can be stated.

P ro p o s i t io n  4 .3 .2 .1 . The functor T  : A dj(A , B) — > M or(A , B) is well-defined.

Proof:

f) Over objects.

The monad (RaL a, R aeaL atrja) on A  is just the monad induced by an adjunction (2.3), and 
so is ( RbLb) R b£bL b,r]b). T hat (R aLb, R aeaLb, RaebLb) is an A -B  bialgebra functor is proved as 
follows. Take the first diagram in (4.6) and represent it with the proposed Morita context, to 
obtain
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R aL aR aLaR aLb  > R aLaR aLb

RaLaRaeaLh R aea Lb

RaB aRaBb R aea Lb Rn.Bb

this diagram commutes because is the result of applying the functor R a to the naturality  of ea over 
eaL\}. Now take the second diagram in (4.6) and represent it with the proposed M orita context, 
to obtain the following diagram

R aL b r'°R°Lb> R aL aR aL b

Raea Lb

this diagram commutes because is the triangular identity associated to the right adjoint R a ap
plied to the functor Lb.

These two examples exhaust the arguments required to prove all of the details for the well- 
definition of the functor T  over objects. Nevertheless, the arguments are given for the reader to 
know the procedure of the proof. For example, the two diagrams in (4.7) commute because of the 
naturality of eb over eb and the triangular identity associated to the left adjoint L{,, respectively. 
The compatibility condition (4.8) is fulfilled because of the naturality of ea over eb. T hat T  is a 
morphism in qF a follows similarly.

On the other hand, the properties required for ev : T T  — ► A  and ev : XT — > B  given by 
(4.10) follow from the naturality  of eb over ea and the naturality  of eb over eb, respectively. The 
final requirements in (4.11) follow in a similar way.

f) Over morphisms.

Consider </?i =  R a(x. The first requirement in (4.13), translates to the following diagram

I) I I ) I RaLaRaOl D  T D  T? T I   D  T E?1 T t T) T? T / D / T 1   E?1 T > Ef* T '•'-aLaB.a L a r ta L a H a r  L a r t a L a rCa L a

RaeaLa

Ra^a R aOL
R aF L'a = R!aL’a
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which commutes because of the following calculation

Raa  o RaeaLa =  R aeaFL'a o RaLaR.an 
=  R a(Fe,a o ocR'a)L'a o  R aL aR aot 
= R aF efaL'a o R aaR!aL'a o R aLaR aa 
= R!ae'aL'a o R aoiR'aLra o R aLaRaa .

The first equality follows from the naturality of sa over a , the second one is a consequence of 
the second equality in (4.4a), and the fourth one is the requirement for F to commute with the 
right adjoints, i.e. R aF  =  R!a. Note that the previous diagram was written down with all the 
details, but in the remaining ones we will omit any reference to the equalities over the /?’s.

The second requirement in (4.13) translates to the following diagram

1a

/?' V

whose com mutativity property is nothing but the first equality of (4.4a).

The case f 2 =  R-b/3, is just a mutatis mutandis of the previous case.

T hat if3 : T  — ► is a morphisms in .4^ 5 , is equivalent to the commutativity of the
following two diagrams

f? T f? T R g L g R a P ^  p  j  q / t /

Ra£aLb

Ra^l

RaLbR bLb R!aL’bRbLb

Ra £ Lb

Ra^b RaP

Rq LbRbP

R'i'hL’

K U b
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Let us check the com m utativity of the first one;

R!as'aL'b o R aaR'aL'h o R aL aR ap  =  R aFe'aL'h o R aaR!aL'b o R aLaR a/3 
=  R a(F s>aL'boaR 'a)L'b o R aLaR n0  
=  R aeaFL'b o R aLaRaP .

The two first equalities are self-explanatory, and for the third and final one the second property 
in (4.4a) was used. For the com m utativity of the second diagram,

° K ^ R b P  0 RaPRbLb = RaFe'bL'b o R aFL'bR hp  o R aP R bL b 
= R aF s /bL b o R aPR!bL'b o R aLbR bp  
= R a(Fe,bopR!b)L'b o R aLbR bp  
= R aebFL'b o RaLbR bP 
= R aP o RaebLb .

To derive the second equality the naturality of P over LbR.bP was used and to derive the fourth 
one, the second property in (4.4b) was used. Finally, for the fifth equality, the naturality of eb 
over LbR bp  was used.

T hat </?4 : T 7T, is a morphism in b ^Fa is proved in a similar way.

On the other hand, the first condition in (4.15), translates to the following commutative 
diagram

D  r  D  r  /?.Q L b / ? b a ^  D r  D /  J  /  ^  p /  T /  p !  T /I*'aLJbii,bLia fi'aLJb*i'b*-Ja r laL/br ibL/a

Ra£bLa

F aL a R aa R'aK

The next calculation proves its commutativity:

R!ae,bL'a o R aPR!bL'a o R aL hR ba  = R aFe,bL'a o R apR!bL'a o R aLhR ha  
= (R a{Fe'bL'a o PR!b)L'a) o R aLbR ba  

=  R aebFL'a o R aL bR ba  
=  R a(ebFL'a o L fc/ 4 a )  

=  Ra( a o £ bLa) 
= R aa  o R aebL a .
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The third equality follows from the second property in (4.4b), and in the fifth one the naturality 
of eb over a  was used. The second condition in (4.15) is proved similarly. □

Now tha t the well-definition of T  has been proved, it only remains to show tha t 'T(l{c,La-\Ra,Lb-^Rb)) 
I t {c,La-\Ra,Lb-{Rb)- This last equality follows easily from the next calculation, X (l£) =  (R.al£ a, R.blLh, 
t f a U 6, RbU a )  =  (1 RaLai 1 RbLb, 1 RaLb, 1 RbLa)- For the compatibility with composition, T ( F  • F )  =
T ( F1) • T (F ), we have th a t

(Raa ' \  R bp \  R,ba ’) = ( /? > ',  R’bft\ R'aP \  /? > ')  • (Raa,  R,bp, R.ap, R,ba)
= (R a(Fa' o a), Rb(Fd' o p), R a(F f3' o (J), Rb(F a ’ o a)) .

Therefore, the equality tha t has to be fulfilled is ot" =  Fa' o a , where a" =  zaFF'L"a o Larj"a. A 
similar equality takes place for P " . This equality is verified as follows:

eaFF'U'a o L ari'a =  (Fe'a o aR'a)F 'L” o Larj,a
=  F£'aF 'L ^o a R 'aF 'L ^o  L ar]"a 
= F£,aF'L"a o aR!aF'L"a o LaR'aa' o Larja 
= F e,aF'L"a o FL'aR'aa' o aR'aL'a o L a, fa 
= Fa' o Fz'aL'a o aR'aL'a o Larj>a 
= F a ' o eFL'a o Lar]'a

rp I= t  Of o a  .

The first equality follows by the second property in (4.4a), and the third one by the first prop
erty in (4.4a) for r f a. For the fourth equality, the naturality of a  over R'aa' was used and for 
the fifth one, the naturality of e'a over a' was required. Finally, for the sixth equality yet again 
the second property in (4.4a) was used and the definition of a  was applied for the seventh equality.

This completes the proof of the functoriality of T.

4.3.3 The U nit and the Counit of the Adjunction
The two previous sections give the background to propose an adjunction

M or(A , B) "— ; A d jM , B) , (4.37)

whose unit and counit are defined w ithout any further ado. Let us begin by giving the unit of 
this adjunction,

^ : lMorCA.s) ► Y r
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First, in order to define this unit over an object (A, B , T , T )  in M or(.4 , # ),

u ( A , B ,  T, T ) :  (A, B,  T,  T)  —  T r(A , B,  T,  T)  ,

Tr(/1, B , T , T )  has to be characterized. From the previous sections

T ( A , B , T , f , e v , e v )  =  { (A ,B ) (A'B\ D a H U", D b H Ub) .

Therefore, we need to construct the object T  ( (A ,B )(A,B\  D a H U“, D b H Uh) . For the part
involving the monad on A,  we have

{UaD a, UneDaua D(\  r f a°a) = (A . ,^ \r ] A) .

Note th a t this result resembles the statem ent in Proposition 2.1.2, th a t is to say, the monad in
duced by the adjunction D a H Ua is one of the monads th a t constructs precisely this adjunction, 
in this case (A, fiA,r]A).

For the part involving the monad on B ,

(UbDbM beDiubD b,riubDi) =  (B , p B,riB) ,

in a similar way.

For the part corresponding to T,

(UaD b,U a£D°uaDb,U aeDt>uhDb) ,

where

UaD bY  =  Ua(TY, B Y )  = T Y  ,
(j« t D°v«D bY  = u “e‘>‘^ ( ( T Y , X Y ) , { B Y , n BY ) ,p Y ,e v Y )  = U“(X Y ,m iY )  = \ Y  , 

Uae DbubD bY  = UaeD"ub{(TY, \ Y ) , ( B Y , p BY ) , p Y , e v Y )  = Ua( p Y , p B¥ )  = p Y  .

Therefore,

(U“D b, U‘>eDbu“ D b, UaeDbvb D b) =  (T,X,p)  .

For the part corresponding to T,  we can obtain in a similar way

(UbD “, Ubt DbubD a,U heD°u° D a) =  (T, X, p)  .
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For the part corresponding to ev,

Ua£DhuhDa ?

then for X  in A ,

Ua^DbubD °x  = u aeDbu\ ( A X , i i AX ) , ( T , X ) , e v X , p X )  = Ua{ e v X , \ X )  = e v X  .

T hat is to say,

Uae°bubD a =  ev .

For the part corresponding to ev, we can get in a similar way that

UbeDauaDb = ev .

All this is summarized by saying tha t TT(A, £ , T, T, ev, ev) = (A, B, T , T , e v , e v ) .  Therefore, 
the unit of the adjuncion is nothing but the identity natural transformation for M o r (A,B) .  For 
the object (A, B , T, T,  ev , ev),

v(A,  B,  T,  T , ev, ev) = l (j4ifli7Vf) = (1.4, I s ,  l r ,  I f )  • (4-38)

In order to define the counit,

C : TY — > lAdj(^,S) ,

the value of the functor TY has to be determined over the object (£,  La H R a, Lb H Rb) in 
A d $ (A ,B ) .  In order to do so, the functor T  is applied first, to obtain

Y (£, L a H R a, Lb H Rb) = (R aL a, RbLb, RaLb, RbLa, R a~bLa, Rb£aLb) ,

and then the functor T,

T (R aL a, R bLbt R aLb, R bL a, RaebL a, R benLb) = ((A,  B Y RbL- RbLb\  Ubw )
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Thus, for an object ( £ ,  L a H R a , Lb H Rb) ,  the counit can be given as 

? (£ ,  La H R a . L(, H flj) : ((A  D am H [/£,, H I/*,) > (£,  L„ H f la , L6 H f l6) ,

where K 1* is a morphism in A dj(.4 , # ), th a t is to say, a functor K m : £  — ► (A }B Y RaLa,RbLb\  
This functor is defined over objects as

K m Z  =  ( (RaZ,  R a ^ Z ) ,  {RbZ, R bebZ), R aebZ, R be‘ Z)  ,

and over morphisms z : Z  — > Z '  it is defined as

K ^ z  =  (Raz, R hz) .

This definition should be compared with tha t of the comparison functor K F defined in Propo
sition 2.1.4, for a monad Before resuming the description of the adjunction let us
state and prove the following

P ro p o s i t io n  4 .3 .3 .1 . is well-defined, and it is a functor.

Proof:

The functor K m is well-defined on objects.

T hat ( R aZ , R ae(lZ )  is an object in A RaLa is proved by translating the diagrams in (2.9) for 
the monad given by R aL a. The resulting diagrams commute because of the naturality of e a over 
e aZ  and because of the triangular identity associated to the right adjoint R a, respectively.

T hat (RbZ,  Rb€bZ)  is an object in J3RbLb follows by similar arguments.

The com mutativity of the diagrams in (4.18) for an Eilenberg-Moore category are fulfilled. For 
example, the first diagram, when translated, looks like R a£aZ  • R ae bL a R aZ  =  R a£bZ  • R aLbRb£aZ  
and this is nothing but applying the functor R a to the naturality of e b over e aZ .  The second 
diagram is translated to R ae aZ  • R ae bL aR aZ  =  R as bZ  • R aLbRbSaZ  which holds since it is the 
functor R a applied to the naturality of e b over e bZ .

The pair of diagrams in (4.19) are proved similarly, i.e. the first one because of the functor 
Rb  applied to the naturality of e a over ebZ  and the second one because the functor Rb has been 
applied to the naturality of ea over e aZ .

The functor K m is well-defined on morphisms.
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In order to prove this statem ent let z : Z  — > Z'  be a morphism in £ . Then Rnz is a morphism 
in j \ RaLa because of the naturality of ea over 2 . T hat R^z is a morphism in B RhLb follows in the 
same way.

It remains to show tha t the maps fulfill the requirements given in (4.21). Let us start with the 
first one, which translates to R asbZ' • R aLbRbZ = Raz • RaebZ. This equality holds because it is 
the result of applying the functor R a to the naturality of eb over 2 . And the second requirement 
in (4.21) also holds, because it is the result of applying the functor Rb to the naturality of ea over 2 .

The functoriality of K m .

Let Z  be an object in C and \ z  its unit, then K ^ f i z )  = (Ra^ZiRb^z)  — (l/?az, l/?6z) — 
1 { R a z , R b z )  =  l/c^tz)- Let z' • 2 be a composite in £ , therefore K L R { z '  • z )  = (R.a(z' • 2 ), R b ( z '  • 2 )) =  
{Raz'\ R bz') • (Raz,  R bz) = K ™ { z ' )  • K ^ z ) .  □

After the proof of this proposition, it only remains to check the commutativity with the right 
adjoints. First,

• K ^ Z  =  U^{RaZ, RbZ) = RaZ ,

and the same argument can be applied to Rb. Therefore, the counit can be defined as

C (£ ,L a H Ra>Lh H Rb) = K w (4.39)

The naturality of the counit is proved as follows. Let F  : (£ , La H R a, Lb H Rb) — > , L'a H
R'a) L'b H R'b). We need to show tha t the following diagram of underlying functors

r r ( £ ;) - rT(/"-- > r r ( £ )

£ c

commutes.

Since it is a diagram of functors, the commutativity has to be proved for objects and for 
morphisms. Let Z' be an object in £ ,  then
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( r T F  • CC')Z' =  r r F ({R ’aZ \ R'ae'aZ’), (R'bZ', R!be'bZ'), R'ae'bZ', R!be'aZ')
= T(Raa, Rb0, Ra0, Rba){(R ’aZ', R'as'aZ '), (R!bZ \ R'be'bZ'), R’ae’bZ', R'be,aZ')
=  (R'aZ \ R '^ Z ' ■ RaaR'aZ% (R'hZ R !be'bZ' ■ Rb0R'aZ'),

R'ae'bZ' ■ Ra0R'bZ \ R!belaZ' ■ RbaR!aZ’)
=  (RaF Z \ RaFe'aZ' ■ RaaR'aZ'), (RbF Z \ RbFe'bZ' ■ Rb0R'aZ'),

RaFe'bZ' ■ Ra0RbZ \ RbFs’aZ' ■ RbaR'aZ') 
=  (RaFZ\ RaeaFZ'), (Rt F Z R bebZ'), RacbFZ', R.beaFZ')
= (CC ■ F)(Z') .

In the first three equalities just the definitions of the involved functors are used. In the fourth 
equality, R ns are substituted by the RF's,  and in the fifth equality, the second equalities of (4.4a) 
and (4.4b) were used.

Over morphisms, the calculation goes as follows:

( r r F - ( £ ' ) z  = T TF (R 'az,R 'bz)
T{Raa , R b@, R aP, R hOi)(R'az , R!bz) 

( K ^ K z )

(R aF z , R bFz)
(cC- F) ( z )  .

This completes the proof of the naturality  of the counit.

Let us proceed to prove the triangular identities for the adjunction (4.37). In order to do so, 
let us begin with the triangular identity associated to the left adjoint T,

(T  o IV =  lp (4.40)

Let (/l, B , T , T )  be an object in M o r b y  breaking down the composition, we have

fV(A, B , T , T )  = r ( U ,  1 e, I t ,  I f )  =  I ^ s ^ . b )  .

On the other hand,
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Cr(A, B,  T,  f )  = <((A, B ){A'B), D a H Ua, Db H f/6) ,

which amounts to the following functor

K DU : ( A B ) 1-4'8’ —  (A,B)(D°i"''Dtub) ,

where £)“[ /“ =  A.  Let ((M , m ). (W, BXn ) , v , w ) be an object in (.A, B)(a'b\  then

K DU((M,  \ M), (N,  bX n ), u>) =  ((C/“(M. N ) , U aea{M, N)) ,  (Ub(M,  N),  Ubeb(M , /V)),
Ua£b( M , N ) l Ubea( M, N) )

= ( (M,  U*(aX m ^ ) ) ,  (N,  Ub(v, bx n )), Ua(v, b x n ) .  Ub(Ax M,w))  
= ( ( M , AXm) , ( n , DXn) , v , w)  ,

and for morphisms, (f , g  ) in ( A, B) (A,B)

K DU(f>9) =  ( U a ( f , g ) , U b( f , g ) )  =  ( f  , g)  .

Thus K DU = 1(^tB){A,B). All this am ounts to the following conclusion,

which is the required equality.

Let us prove the triangular identity associated to the right adjoint T, namely

r c o / / r  =  i T . (4.4i)

Let (£ , L a H R a, Lb H Rb) be a double adjunction, then breaking down the composition, we 
have first

v Y ( £ ,  L a H R a, Lb H Rb) — v (R aLa, R.bLb, R aLbi Rb^a, Ra£bIja- Rb£aLb)

(  1 Ra La ) 1 RbLb 1 1 Ra Lb 5 1 RbLa ) •
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On the other hand,

TC(C ,L a H R a, L b H R b) = T ( K ° u : ( A t D a H [ / a ,£>6 H Ub) - ^ ( C , L a H R a, Lb H Hi,))
=  ([/“a , t/°^ , [ /‘a ) ,

where a  is the composite

n°„a irD a u a k d u  r
D a   -► D aR aL a = D “UaK DU La - ---------- — ^  K DUL C

and similarly for (3. The first component for T ( ( C ,L a H R a, L b H Rb) over the object Z  in C 
comes out as

Uaa Z =  UaeDauaK DULaZ  • UaDar)aZ
= UaeDau°({RaLaZ, R aeaLaZ ), (RbLbZ, RbebLbZ ), R asbLaZ , R bebLaZ ) -U a(RaL a laZ, R aLbrjaZ)  
= Ua(R aeaL nZ , R beaL aZ)  • R aLarjaZ  
= RaeaLaZ  ■ RaLar f Z

Ra^-LaZ

In the previous calculation several definitions given in this section where used. The only equality 
highlighted is the fifth one, where the triangular identity associated to the left adjoint La was used.

On the other hand, 0  =  £°bubK DUL b o D br)b = 1 Rhi h. Hence,

TC(£, L„ H Ra, L b H fl6) =  (U‘a, Ua0, U‘0, Uba) = ( l RbLa, \ RbLb, l RbLb, l RbU) .

Substituting the components of the composition,

(i ftaXo > ® ( l / i aLoi l /?bLb, l /?aLb) 1 R b L a )  ( l / ? aLa t f/?bLb5 l/?a.Lb) l /?bLa) •

where the last result was the one looked for in (4.41). In summary, one can state the follow
ing proposition which holds since the unit of the adjunction (4.37), v, is the identity natural 
transform ation, see [25].

P ro p o s i t io n  4 .3 .3 .2 . (T ,T ) is an adjoint pair, and T is full and faithful. □
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4.4 Moritability
In this section, the necessary and sufficient conditions for the functor K 1* : £  — * {A, S Y RaLa'HbLb') 
to be an equivalence of categories are given, this equivalence renders a Beck-type theorem for a 
categorical M orita context. In order to do so, let us begin by giving the following definition which 
becomes im portant in the development of the theory to come.

D efin itio n  4 .4 .1 . Let (£. La H /?.a, Lb H Rb) be an object in Adj(M, B). The pair (/?,a, /?,{,) is said 
to be moritable if and only if the functor K M is an equivalence of categories.

Also it is convenient to give the following

P ro p o s i tio n  4 .4 .2 . Let (A, B , T .T )  be an object in M or(*4,B) and (/,<?) a morphism in (A , B)(A,B1. 
Then ( f , g )  is an isomorphism in (A ,B)^A'B  ̂ if  and only if f  and g are isomorphisms in their 
respective categories.

Proof:

If ( f , g)  is an isomorphism in (A,  then so is Ua( f , g)  =  / ,  since functors preserve iso
morphisms. Obviously, the same result applies to g.

Suppose th a t for the morphism ( / ,# )  in ( A .B Y A'B\  f  and g are isomorphisms, and let f ~ l 
and g~l be their respective inverses. Since (/,<?) is a morphism in (A, B f A’B\  it fulfills the 
requirements given in (4.20) and (4.21). Take the first requirements in each pair, and compose 
them as showed

r 1 • ( AX M ‘ • / ! /  =  / •  \ m )  ■ A f - '  , r 1 • (»' ■Tg  = f - V )■ T q ' 1 .

Then a \ m  ■ A f  1 =  /  1 • a x m > and v -T g  1 =  /  1 • v ' , which gives the fulfillment of the first 
requirements for the inverses. The same can be done for the second requirements. Therefore, 
( /  \ g ~ l ) is in { A ,B ) {A'B).

□

We continue with the following

P ro p o s i tio n  4 .4 .3 . Let (R a, Rb) be a moritable pair. Then any morphism z in £  such that R az 
and RbZ are isomorphisms is an isomorphism.

Proof:

Since R az and RbZ are isomorphisms in A  and B, then, by Proposition (4.4.2)

(.Raz , R bz ) = K mz

is an isomorphism in (A, B Y A'B\  Since K m is an equivalence of categories, it reflects isomor
phisms, therefore 2 in £  is an isomorphism.
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□

Let us give, in order to proceed, another

D efin itio n  4 .4 .4 . The pair (Ra, Rb) is said to reflect isomorphisms i f  for z in C such that R az 
and RbZ are isomorphisms, it can be concluded that z is also an isomorphism.

In order to analyse the functor K 1*  : C — > ( j ^ ^ y R^Lâ RbLb) m0re deeply, the existence of 
certain colimits in the category C has to be supposed. Let ( M , N )  be an object in ( A , B Y a,b\  
and consider the following diagram in £ ,

LaR.aLaM  [jaRaLbN LbRbhaM  LbRbLbN (t)

This diagram will be referred to as the diagram of type J for the object (or corresponding to) 
(A/, N). The colimit of such a diagram is a universal cocone like the following one

LaM U N (4.42)

3 M N 3*MN

Now if we consider the morphism ( / ,  g) : ( A f  N )  — * (M ', N')  in (^4, J3 y R°La'RbLb) anci consider 
also the following diagram,

L aR aLaM

La n.a La f

TaRaTaAT'

LaR aLbN

La Ra Lbg

LaRaLbN1

LbRbLaM

Lh Lo f  

LbRbLaM1

LbRbLbN

L hRb Lbg

LbRbLbN'

m'n M ' N ‘

m ' n '
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then since (JM>N>, is a universal cocone for a diagram of type it is also a cocone for
the very previous diagram. For example, begin with j aM,N, ■ L aRaLaXM'  = j aM>N< • s a L a M ' , therefore 
j aM,N, • LaRaLaXM' 1 L aR aL af  =  j aM,N, • e aL aM '  - L aR aL af , and so on.

On the other hand, ( f , g)  : ( M , N )  — » (AT, A ') is a morphism in ( A }S)^RaLa'RbLb\  hence the 
previous equality can be substituted by the following one - L aRaLaXM  — jM'N> 'La f -£a L a f t l ,
because /  is a morphism in A RaLa and because of the naturality of sa over Laf .  This proce
dure can be continued with all the morphisms involved in the previous diagram. In summary, 
(Jm'n' , j aM'N> ■ Laf , j bM>N> • Lbg) is a cocone for the diagram of type } corresponding to (M, N) .  There
fore, there exists a unique morphism j fg : JMN —> JM>N' such th a t the bottom pair of diagrams 
commute

L aR aL aM  L aR aL bN  LbR hLaM  LbRbLbN

LbN ‘M N

3fg
m 'n '

(4.43)

The previous procedure allows one to define a functor

J  : (A , B ) {RaLt"RbLb) — ► £  , (4.44)

which, over objects ( M , N )  in (A,  B ) i<RaLa'RbL^  and morphisms (J,g)  : (A/, Af) — > (M ' , N ') is 
defined as

J ( M , N )  = J mn , (4.45a)

J ( 7 ,9) = ]„ , (4.45b)

respectively. It is indeed a functor. For a sketch proof, consider I(m .n ) — (1m A n ), then j \ M\N 
makes the double rectangle commute in a diagram like (4.43), i.e., j \ M\N • j aMN = ] aMN • L0\ m and
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s o T h e r e f o r e ,  by uniqueness, j iKflN = 1 Jmn. Also, by uniqueness J ( f , g ' )  • J ( f , g )  = 
J ( f  f , g '  • g). Once the functor J  has been defined, the following lemma can be stated.

L em m a 4 .4 .5 . Let (Colim,F,ji) be the colimit of the functor F  : I  
following diagram in C

C, and consider the

Fi Fi

7 i 7j

C olim F

C

such that r • 7 * =  s ■ y i} for all i in I. Then, r = s.

This lemma helps to prove the following

P ro p o s i tio n  4 .4 .6 . The functor J  : (^4^ S Y RaLa'RbLb̂  
functor K m : C — > {A, B Y RaLa'RbLb\

Proof:

i) The unit of the adjunction

£  is left adjoint to the comparison

V,K J  . -I   T S  LR j

I ' 1

has to be a morphism in (A^JSYRaLa'RbL^  for any object (M , N ) in the same category. First, 
compute the image of the functor K m J  on ( M, N )

K LRJ { M ,  N)  — K LRJmn — {(RqJmni  F a£a Jmn) 1 (FbJMNi Jmn) 1 F-a^ Jmn 1 Fb£a Jmn) ■

Because of this, the definition of the unit qKJ(M,  N)  is the following

VKJ(M,  N)  = (R af MN ■ i ' M ,  RbJi„  ■ r,hN ) (4.46)

This proposal has to be a morphism in [A^JSYRaLa,RbLb\  th a t is to say, it has to fulfill the 
requirements in (4.20) and (4.21). For example, the first requirement for F ajl ,N ■ gaM  to be an
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object in A RaLa is translated to the following diagram

RaLaM  > R aL aR aLaM  R°UR°’“\  R aL aR aJMN

l XM R . a £ a J M N

M tfM RaLaM RajaMN R n J  a

This diagram commutes because of the following calculation,

RaSaJMN • R aLaR af MN • R a L t f M  = R a j  M N

R a j  m n

R i a1 LaJ m n

R i a1 LaJ m n

R i a1 1<Um n  

R a j  m n

R aeaLaM  • R aLanaM  
R a h aM  
1 naLaM
R aeaLaM  • r]aRaLaM  
R„L ,r"l‘ x m  -VaR „ L J l

X m  ii f  M  ■ RaLa

where in the first equality, the functor R a was applied to the naturality of ea over j ^ N. In the 
second equality, the triangular identity associated to the left adjoint L a was used. In the fourth 
one, the triangular identity associated to the right adjoint R a was used. In the fifth equality, the 
property of the cocone was used, in particular, that of j ^ N being a cofork. And finally, in the 
sixth equality, the naturality of r]a over RaLaXM was used.

The fact th a t RbjbMN • r fN  is an object in B RbLb is proved similarly.

On the other hand, the requirement given by the first diagram in (4.21) renders, after trans
lation, the following diagram

RaLbN  > RaLbRbLbN  R‘ ,-bRi3»»> RaLbRbJ MN

Rat Jmn

M
T ] a M

R aLaM RaJMN R aR

which commutes because of the following calculation,



Chapter 4. M orita Contexts and Double Adjunctions 139

Ra& J mn ' Ra Fb R-bj mn R aLbV N  ==  R i b1 va.J m n R aebL bN  • R aL bghN
= R  j b 

1 va J M N R a U bN
= R  i b1 O.J MN 1 RaLbN
= R  i b1 La J M N R aeaLbN r]aR aL bN

—  R ' d j  m n R aLav • rjaRaLbN
= R i a1 l/a J  MN r)aM  • v .

In the first equality, the functor R„ was applied to the naturality of eb over j bUN. In the second 
equality, the triangular identity associated to the left adjoint Lb was used. In the fourth equality, 
the triangular identity associated to the right adjoint R a was used instead. In the fifth equality, 
the cocone property was used, in particular, tha t of j aMN and j bMN being a push-out. And finally, 
in the sixth equality, the naturality  of r}a over v was used.

The requirement given in the second diagram in (4.21), is proved similarly. Pu tting  together 
all of this proves th a t the unit is well-defined.

Let us proceed to show th a t the unit is indeed a natural transformation. For such a proof, let 
(/>#) : (M, N )  — > (M ', N')  be a morphism in (A, s Y RaLa R̂bLb), then the following diagram must 
commute

(A/, A) (AT, N')

^ â MN ^a ̂

( R a J  MN i R b J M N ) ( Raj fg i Rbj fg ) ( R a J  M' N1 1 R b J M ' N ' )

The next calculation shows tha t the com m utativity is fulfilled,

• VaM ' ■ / ,  R bj bM,N, ■ qbN '  • g) =  (RJ°M,N, ■ R„Laf  ■ r f M,  R bj bM,N, ■ R bL bg ■ VbN)

=  ( R a i l ,  ■ R J u n  ■ t i " m ,  R i t i i ,  ■ R m I n  • r /'J / v ) •

In the first equality, the naturality  of r)a over /  was applied in the first component and the na t
urality of r f  over g was used in the second Component. In the second equality, the properties of 
com m utativity of the map j fg were used.

ii) The counit of the adjunction
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e JK : J K m  — > 1 £ ,

has to be a morphism in C  for any object Z  in the same category. Following the same procecdure 
as before, let us first compute the image of the functor J K m  over Z,

J K W Z  =  J ( ( R aZ . R ae aZ ) ,  ( R bZ , R bebZ ), R ae bZ ,  R beaZ )  =  J RbZRbZ = :  J „ . z .

In order to construct the counit, let us note tha t (Z ,  e aZ ,  ebZ )  is a cocone for a diagranm of 
type I  corresponding to the object ( R aZ ,  R b Z ) .  It is worth to display the cocones to discuss s the 
statem ent just made

L aR aL aR aZ  L aR aL b R b Z  L b R b L aR aZ  LbR-b^bR-bZ

JK

The map eaZ  is a cofork for the first parallel vertical arrows because of the naturality ofof ea 
over eaZ. The pair [eaZ, ebZ)  is a cocone for the first push-out because of the naturality ofof ea 
over ebZ  and it is also a cocone for the second push-out because of the naturality of eb over £' s aZ. 
And finally, the map sbZ  is a cofork for the right parallel vertical arrows because of the naturafality 
of eb over £bZ.

Since (Z, £aZ, £bZ)  is a cocone, there exists, because of the property of colimits, a uniciique 
arrow, termed £JK which makes the bottom  triangular diagrams commute. This unique arrovow is 
the definition of the counit over the object Z

£ j k Z  : J RmZ — > Z . (4.4.47)

In order to check for the naturality of the counit, let 2 : Z — > Z ' be a morphism in £ , tl then 
the diagram
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J r*.
JR,

J r, (4.48)

eJKZ e J K Z >

Z'

m ust commute. This diagram can be doubly embedded in the following one.

R + Z

3 R * zJ R , z

R . Z ' y

Consider the following calculation,

-  eaZ' • LaR az 
=  eJKZ'  • j aR̂ z, • LaR az 

= ZJKZ ' - j R . * - j aR.Z •

The first equality follows since (Z, £aZ, z hZ) is a cocone for the diagram of type J corresponding 
to the object (R aZ, R^Z). The second equality follows because of the naturality of ea over 2 . The 
third equality follows also because (Z 7, £aZ', ebZ') is a cocone for the object (R aZ ' , RbZ ' ) . And 
finally, the fourth equality follows because of the commutative property for the map j Jg, which in 
this case is j RtZ.

Likewise,

z - e JKZ - j l z = eJKZ ' - j R. , - j l z
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Then if Lemma 4.4.5 is invoked, the following equality must hold independently of z and
ibJ R+Z)

z - e JKZ  = EJKZ ' - j RtZ .

This is the com m utativity requirement for the diagram in (4.48), i.e. tha t the counit is a natural 
transformation.

Hi) The triangular identity associated to the left adjoint J.

The following identity has to be proved,

eJKJ oJr)KJ =  1 j  .

In order to prove it, let us break down the composition evaluated on the object ( M, N )  in
(A,  j3)(R“L«’RbLb)' p irst ?

nKJ(M,  N)  =  (Raf m  ■ V“M, RbJbm  ■ 7f N )  .

Then the functor J  applied to it looks like,

LaM  LbN

J  R* Jmn

On the other hand, the diagram associated to eJK J(M,  N) ,  reads
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L J L Ja l ' a u MN L f j U b J  A

MN

If the last two diagrams are glued one after another, then the resulting diagram can be written 
down as

L , M  > Jk 3MN

L a  L t a j f r f N  ' L a ? 7°  M

L ( i  R ( i  J M N

e JKJ J r ) KJ{ M , N )

1
^  J M N  7~

e J m n  e J m n

L bN

Lb R-bJMN ’La77̂ /V

LfjRbJm n

But eaJMN ■ LaR aj aMN ■ Lar]aM  = j aMN • eaL aM  • L ar f M  = j aMN, using the naturality of ca over 
and the triangular identity associated to the left adjoint La, respectively. Likewise, ebJMN ■ 

L bRbjbMN ■ LbrfN  =  j bMN.

This means th a t the following diagram commutes, 

L nM U N

MN

, K J

There is, though, another morphism which makes the previous diagram commute, 1 j MN. Due to 
the universality of the colimit, eJK J  • , N)  =  1 j(M , N) ,  as it was required.

iv) The triangular identity associated to the right adjoint K m .

The following identity has to be proved
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T / L R - J K  _ „ K J  Ts' L R  _  1
Jti  £  0  Tj J \ = 1 - K L R .

In order to do so, let Z  be an object in £ , then breaking down the composition we first compute

vkjk lrz  =  v ^ [ ( R aZ 1R aeaZ ) , ( R bZ , R hel’Z ) ,R aEbZ , R be,lZ) 

=  [Raj'Lz ■ VaRaZ, RiJn.z ■ VbRl,Z) .

On the other hand,

Z — (Ra£JKZ, R beJKZ)

Therefore, bringing the composition back,

K w eJKZ ■ r j ^ K ^ Z  =  (RaeJKZ, R beJKZ) ■ ( R J l z ■ naR«Z, R bj l z ■ r,bR.bZ )  

=  (R aeJKZ  ■ Raj (R.z ■ VaRaZ, R beJKZ  ■ R bj bR_z ■ VbRbZ) 
=  (RaeaZ  ■ r f  R aZ , R bebZ  -ijhRhZ)

=  1 K LRZ •

The third equality follows because (Z, eaZ , ebZ)  is a cocone for the diagram of type \ corresponding 
to the object (R aZ , R bZ). The fourth equality holds because of the triangular identities associated 
to the right adjoints R a and R b. This completes the proof of the proposition.

□

For the next proposition, the following definition and lemma are needed.

D efin itio n  4 .4 .7 . The pair (Ra, R b) converts colimits into coequalizers , if and only if for any 
object (M , N ) in (A, B Y RaLa'RbLb'), the coforks,

RaeaLaM Rajlfu
R aL aRaLaM   ......... > R aL aM -------- R aJMN ,

RaLaRaL“XM

R bL bR bL bN  *  ? R bL bN ------^  > R bJMN ,
R b L bRbLbXN

are coequalizers.
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L e m m a  4 .4 .8 . The following commutative diagram

Ra£aLaM RaL°\M
R aL aR„LaM  i  RaL aM ----------- ------ * M

RaLaR«L*XM \  I

R°3mn
RajaMN V° ̂I

Y
R a d  m n

exits, where R cJ mn ’ is a unique arrow.

Proof:

First, RaLaXM is a coequalizer for the parallel arrows R aeaLaM  and R ad>aRaLaXM , since it is a 
split coequalizer with the additional morphisms (jjaR aL aM,r)aM). Since j ^ N is part of a colimit 
for (M , N ), R (ljMN is, in particular, a cofork for the same parallel arrows. Therefore, there must 
exist a unique arrow from M  to R adMN th a t makes the triangle commute.

On the other hand, according to the following calculation

R aj aMN 1 r f M  • RaLaXM = R ajaMN * RaT a RaL° x m  • r)a R a L a M

= RaJaMN- R aeaLaM  - r f  RaLaM  

~  Raj%s ‘
R a j  M N  i

where the first equality follows from the naturality of ga over RaLaXM- The second equality is just 
the cofork property of RajtiN■ the third equality, the triangular identity associated to the right 
adjoint Ra was used.

The unique arrow induced by the coequalizer must be then R ^ mn ' VaM.
□

A similar statem ent can be w ritten for RbjbMN ■ r f N .

P ro p o s i t io n  4 .4 .9 . The pair of functors (Ra, Rb) converts limits into coequalizers i f  and only if 
J  is full and faithful.

Proof:

If (Ra, Rb) converts colimits into coequalizers, then R u3mn ' rlaM  and RbjbMN ' rlbN  are isomor
phisms, using Lemma 4.4.8, and so is r]JK(M,  N)  using Proposition 4.4.2. Note th a t this argument 
can be reversed, giving the necessity part of the proof. □

W ith all this background preparation at hand, the following Beck-type theorem for double 
adjunctions can be stated.
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T h e o re m  4.4 .10 . Let  (C , L a H R a, Lb H Rb) be a double adjunction. Then the pair (Ra)Rb) is 
moritable if and only if the category C has colimits for the diagrams of type t  and the pair (R a, Rb) 
reflects isomorphisms and converts colimits into coequalizers.

Proof:

Suppose tha t ( R a ,R b )  is moritable, then the adjunction

k r l

(,A , B Y RaLa'R M  ' C

is an equivalence adjunction, hence the unit r]KJ is an isomorphism, i.e. J is full and faithful 
according to [25]. By Proposition 4.4.9, the pair (Ra)Rb) converts colimits into coequalizers and 
reflects isomorphisms by Proposition 4.4.3. Then it only remains to show the existence of colimits 
of diagrams such as (4.4).

Since K 1*  is part of an equivalence then it is essentially surjective, that is for an object (A/, N) 
in (̂ 4 , J3 )(Ra.La,RbLb)

K m Z  =  { ( R aZ , R aeaZ ) 1( R bZ , e l' Z ) , R ae \ R be li) =  ( « ,  f ,  w)

for an object Z  in C. Consider the cocone (Z, £aZ,  e bZ )  for the object (R aZ , R b Z ), which can be 
represented by the following diagram

La Ra La Ra Z  LaRaLbRbZ LbRbLaRaZ  LbRbLbRbZ

(4.49)

If the functor K 1̂  is applied to the whole of the previous diagram, the new diagram can be 
obtained,



C hapter 4. M orita Contexts and Double Adjunctions 147

R* L a Ra F̂a Ra Z  R* FjaRaF-'bFtbZ R * L b R b L aR aZ  R*FjbRbFjbFtbZ

R*LaRaEbZ
R+£a LaRaZ

(4.50)

Remember th a t R * stands for (Ra_,  R b_), i.e. strictly speaking we should have obtained a pair 
of diagrams, one for each component.

The object { ( R aZ ,  R b Z ) ,  ( R ae aZ ,  Rb£aZ ) ,  [ R as bZ ,  R b£bZ ) )  is a cocone for this diagram, since 
it is the image of the cocone ( Z ,  e aZ ,  e bZ )  under the functor K m . This is the proposed colimit for 
the diagram (4.50). In order to show this property, let (M ' , N ') be an object in (A ,B)^RaLa'RbLbi 
such tha t ((A/', N 1), (f a, ga), (f b, gb)) is a cocone for the diagram (4.50). If the proposed object is 
a colimit, there must exist a morphism (fc, k') in ( A ) J3YRaLa,RbLb\  such th a t the following diagram 
commutes

( R aL aR aZ ,  R b L aR aZ )  ( R aL bR b Z ,  R bL b R bZ )

(4.51)

We claim th a t

(k. k') =  ( / “ ■ naR aZ ,  g b ■ i f  R b Z )  . (4.52)

First, we are going to prove the com mutativity of the diagram and the uniqueness of (&, k') 
and after th a t th a t (k,k' )  is well-defined, th a t is to say, {k,k' )  is a morphism in (A^ B Y RaLa,RbLb\
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For the com m utativity of the previous diagram, let us start with the left triangle. That 
(k,k' )  • (Ra£aZ, R b£aZ)  =  (f a)ga), is shown in this way

f a ■ rjaR aZ  • R asaZ  = f a ■ R aL aR aeaZ  • r]aR aLaR aZ  
= f a • R a£aLaR aZ  • 7f R aLaR aZ

= f a • 1 Ua^aRaZ

=  r  •

In the first equality, the naturality of ga over R,a£aZ  was used. In the second equality, the fact 
th a t f a is a cofork was used. In the third equality, the triangular identity associated to the right 
adjoint R a was used. As far as k! goes,

gh - r f RbZ  ■ RbEaZ  =  gb • R,,LbR h£aZ  ■ rf R bLaRaZ  
=  <f ■ RbebLaliaZ  nbHbL J l aZ  

=  9“ ■

In the first equality, the naturality of gb over RbeaZ  was used. In the second equality, the 
fact th a t {ga, gb) is a push-out was used. Finally, in the third equality, the triangular iden
tity associated to the right adjoint R b was used. Following the same lines, one proves that 
(/c,/c') • [RaebZ ) R,bebZ) = ( j b, gb).

In order to prove th a t (fc, k') is unique, suppose that there exists another pair of maps, (A;, A:'), 
such th a t the com mutativity of the triangles takes place, i.e.

( f a, ga) = (k~k')-{RaZaZ , R b£aZ)  , 
(.f \ g b) =  ( k , k ' ) - (Ra£bZ , R b€bZ) .

In particular,

then,

r  = k- Raeaz ,
gb =  k' • R bsbZ  ,

f a ■ r f R aZ  = k • R a£aZ  • tf R aZ  =  k , 
gb ■ v bR bZ  = k' ■ RbebZ  ■ vbRbZ  =  k  ,
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which gives the same definition for (fc, fc;) in (4.52). In the previous calculation, the triangular 
identities associated to the right adjoints Ra and Rb were used respectively.

Therefore, ( (RaZ, RbZ ), (R asaZ , Rb£aZ), (R aebZ , Rb£bZ))  is a colimit for the diagram in (4.50). 
Since K m is an equivalence it reflects colimits, hence (Z, £aZ, ebZ)  is a colimit for the diagram in
(4.49).

In order to finish the proof, it remains to show th a t ( f a • r f R aZ , g b • rjbRbZ) is a morphism in 
(.4 , B y R*L°-<Rbi b) t

First, th a t f a-r}aR aZ  is a morphism in A RaLa means th a t the following diagram must commute

R n L nR n Z RaLaria RaZ
R a L a R a L a R a Z

RaLaf a R aLaM '

R aeaZ R a  Lo,Xm 1

R n Z i fR-aZ RaLaRaZ f a M '

Note tha t the part corresponding to the action RaLaXM under K LR( Z ), which is denoted by 
K LR( Z ) n aLaXM, is R ae a Z .  The com m utativity follows from the following calculation,

RaLaXM'  • R a L af a • R a L ar}a R a Z  =  f a • R ae aL a R a Z  • R a L ar f R a Z

= r
= r  • r f R a Z  . R ae a Z  .

In the first equality, the fact th a t f a is in A RaLa was used. In the second equality, the triangular 
identity associated to the left adjoint L a was used. Finally, in the third equality, the commuta
tivity of k  in (4.51) was used. T hat g b - r f R b Z  is a morphism in A RbLb follows along the same lines.

The first requirement in (4.21) for a morphism of Eilenberg-Moore algebras can be translated
to

RaLhR,,Z '4 *> RaLhRi,LbRhZ  > R aLbN '

R ae Z

RaZ rja R aZ RaZ a RaZ r M '

Note tha t K R L ( Z ) V =  R ae bZ .  The com mutativity follows from the following calculation
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v' • R aL bgb • R aL br]bR bZ  = f b • RaebLbR bZ  • R aLbr)bR bZ

f b
f b • R aeaLbR bZ  • r]aR aLbR bZ  

f a ' RaLaRa£bZ  ' R(iLbR bZ  
f a • r f  RaZ  ■ RaebZ  .

In the first equality, the fact tha t ( f b,gb) is in ^j[)}^YRaLa’RbLb') was used. In the second equal
ity, the triangular identity associated to the left adjoint L b was used and in the third equality, the 
triangular identity associated to the right adjoint R a was used instead. In the fourth equality, the 
fact th a t ( f a, f b) is a push-out was used. Finally, in the fifth equality, the naturality of r f  over 
R asbZ  was used. The second requirement in (4.21) is done similarly.

For the converse part of the proof, since the pair (Ra, Rb) converts colimits into coequalizers the 
functor J  is full and faithful, according to Proposition 4.4.9, i.e. the unit qKJ is an isomorphism. 
Therefore if the counit is an isomorphism as well, the proof will be completed. In order to do so, 
let us look at the definition of the counit on Z,

^aR a^aR a^

LtaRa£a Z £a L aR aZ

LaRaZ

R . Z

z

If the functor R a is applied to this diagram, then we obtain
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R aLaIlaLaR aZ

Ra.L0.Ra.£a Z R a £a L a R a Z

R aLaR aZ

Ra J  iR „ e a Z

It can be noted th a t since (R a, Rb) converts colimits into coequalizers, R aj%,z 1S a coequalizer. 
On the other hand ,R aeaZ  is a split coequalizer with the pair (rjaR aLaR aZ t rjaR aZ). Therefore, 
R aeJKZ  must be an isomorphism. By the same arguments, Rb£JKZ  must be an isomorphism too. 
The pair ( Ra, Rb) reflects isomorphisms, hence eJKZ  is an isomorphism. □

4.5 Example

4.5.1 Categories w ith Binary Coproducts
The following example is based on [11]. Let us look at a special case of the Eilenberg-Moore 
constructions when the categories involved contain binary coproducts. Suppose th a t the categories 
A  and B have binary coproducts. Suppose further th a t (A, B,  T, T, ev, ev) is a Morita context 
th a t preserves binary coproducts, i.e. A, B , T  and T  preserve binary coproducts. The following 
monad (Q ,iiQ,r)Q) can be defined on the product category A  x B, where the endofunctor Q is 
defined as

Q( X,  Y)  = ( A X  +  7T , B Y  +  T X )  , (4.53)

and the natural transform ations are defined over the object (X, Y)  in A  x B  as

fjtQ( X t Y)  = (nA + e v ) X +  ( \  + p) Y  : ( A A X  + A T Y  + T B Y  +  7 T X ,

B B Y  +  B T X  +  T A X  +  T T Y )  — > ( A X  + T Y , B Y  +  T X )  , (4.54a)

77q( X , Y )  = lxy • (r]A,r}B) : (X,  Y)  — > ( AX,  B Y )  — > ( A X  +  TY,  B Y  + T X )  . (4.54b)
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Here lxy  is a short notation for the canonical injection ( AX,  B Y )  — * ( A X  4- TY,  B Y  +  T X )  and 
(fiA +  ev ) X  : A A X  +  T T X  — ► A X  and (A +  p)Y  : A T Y  +  T B Y  — > T Y  are defined by the 
colimit of the following diagrams

A A X  * A A X  + T T X *  T T X  , A T Y ----------> A T Y  +  T B Y  -*--------T B Y

jiA X +  e.vX evX

A X T Y

The morphisms (fiB +  e v )Y  and (A +  p)Y  are defined in a similar way.

In this case the Eilenberg-Moore category for the Morita context ( A , B , T ,  T)  is isomorphic 
to the Eilenberg-Moore category of algebras for the monad (Q ,/iQ,?7Q), i.e. (A ,B)^a'b  ̂ =  ( A x B ) Q.

On the other hand, consider a double adjunction (£,  L a H Ra) Lb H Rb) such that £  has binary 
coproducts and these coproducts are preserved by the functors Ra and Rb. Then there exists an 
adjunction

A  x B r  R\ 1 > £  . (4.55)

The left adjoint L + is defined on objects ( X , Y )  as L aX  +  L&T, and for morphisms (h . k ) : 
(X, Y)  — > (X ', Y' )  as Lah +  Lbk : LaX  -f LbY — > LaX '  + LbY'. The right adjoint R * is defined 
on objects Z  in £  as (RaZ, RbZ) and on morphisms 2 : Z  — * Z' as (R az , Rbz) : (RaZ, RbZ) — > 
(RaZ ' , R bZ').

The monad on A x  B  defined by the adjunction L + H R* is just the monad (Q,/^Q,??Q) 
corresponding to the Morita context (RaLa) R hL b) R aLb, RbLa), and due to the isomorphisms of 
Eilenberg-Moore categories the moritability of (Ra, R b) corresponds to the monadicity of /?.*.



Appendix

A Structural Properties of IntCat(9Jt)

This section collects some technical results concerning the 2-category IntCat(971).

Remark A .I. Consider the following diagram in a category C th a t has equalizers for all parallel 
arrows

where /  is a fork of the upper parallel arrows h and k, e' is an equalizer for the lower parallel 
arrows h' and k ' . Suppose also tha t the right square diagram^commutes serially. Then r • f  is 
a fork for the lower parallel arrows and induces a morphism r • / ,  through the equalizer e', such 
th a t

e' • r  • /  =  r  • /  .

The previous remark helps to write the proofs to come where the category C is taken to be 
our usual monoidal category I) with ^-preserved equalizers.

The first lemma to be stated is needed, in particular, to prove tha t the composition of functors 
in IntC at(O Jl) is a functor, but here it is singled-out for the sake of referencing. This lemma is 
term ed as the factorization lemma.

153
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L em m a A .2 . Let C* be comonoids in 9JI, i = 1 , 2 . 3. Assume that f 0 : C\ — > C2 and go : C2 — > 
C3 are comonoid morphisms. Take objects Mi and in M Ct and C,M .} i — 1,2,3, respectively. 
I f  the following morphisms are defined

Pi : — > M 2 in M p 2 ,

p2 : SN\ — > N 2 in ° 2M  ,

qi : M f — ► M3 in M. "3 , 

q2 : 9N 2 — > N:i in ° 3M  ,

then the following composition

MxDct Ni L9f M3DClN3

is equal to

»  ̂ r-, LJ  f  t  P l ^ C 2 P2
A W c t  N i  — *  AZ/Dc/ATi — > m 2d 2n 2 A/fD(73W2 n-° 2̂  M3D3N3 .

Proof:

We prove first th a t <71 • Pi : M\*  — ► M3 is a morphism in A4C3. In order to do so, consider 
the following diagram

Mi ® C3 — P'®C3 » M2 ® C3 — 1,1'803 > M3 ® C3

Mi®g

Mi 0  C2

Cl
Pm\

M i

(0

Pl®C2

Mi®/

Mi 0  Ci («)

p i

M 2® c/

M2 0  C2

c 2
P m 2

M n

(iii)

91

C3
Pm33

M,

iy) The diagram denoted by (z) commutes because of the bifunctoriality of the tensor product 0 .
2) The diagram denoted by (n) commutes because pi : M {  — > M 2 is a morphism in A4C2.
3) Finally, the diagram given by (in)  commutes because qi : M f — ► M3 is a morphism in M ° 3.

From the com m utativity of the previous three diagrams, the commutativity of the outer most 
diagram follows, which is the required property.
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T h at q2 • p2 : 9* — ► A/3 is a morphism in C3Ad follows by symmetrical arguments.

To show the equality of morphisms, consider the following diagram

M iD cj Af;

lf

M { a cj N i

PlDc2P2

MoD

(iii)

c2N 2

M] 0  Ni -------------£ M] 0  Cl 0  yVj----------------> M] 0  C2 0  A]
Pm, W/V1

p,®P2 (0

m 2 0  /V2
M2<glC2pN2

Pi ®C'2 ®p2

PCM2®N*
M 2 0  C2 0  A 2

In the inner diagram denoted by (n), is the induced map by ji  over tj, hence it commutes 
by definition. The inner diagram denoted by (i) commutes serially because pi : A// — > M 2 is a 
morphism in A 4°2 and p2 : IN  — * N 2 is a morphism in C2M .  On the other hand, the morphism 
j i  is the morphism associated to the cotensor product corresponding to the upper parallel pair 
of morphisms, i.e. it is in particular a fork for the parallel upper arrows. Then, by Remark A .l, 
l2 • (p1D c2p2) =  (pi ® p 2) ’Ji- But Li =  ji  • hence

i 2 • ( p iD c 2P2 ) • =  (Pi & P 2 ) • h  ■

Also, if the following diagram is considered
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M 2U}c2N 2

M |D C3W 2

9 i D cq 92

m 3d C3^3

M 2®C2pN AloffiaiXiN?
m 2 ® yv2  £ a /2 ® c 2 ® n 2 —  > m 2 % c3 ® /v2

2

91 092

M 3 ® N 3
Mz®cZpt,

910C3092

Pm3V>N3
m 3 ® c 3 ® yv3

a similar conclusion as before can be achieved, namely 3̂•(<7l□ c 2<3,2) •^  =  (Qi<S>Q2 ) 'L2 - Furthermore, 
if the previous two diagrams are glued together, the next diagram can be drawn

M\C\cx N\

„  M l ® Cl CNj  M i Q / Q N !  ,  # _  . . M , ■ i » ,Mi (*5 yVi — > Mj x» x yVj-------  ̂a/i <x a/j------  ̂a/j x> C73 x /Vi
(>2 , 8*1

Az/D c/yv,
JI

piQc2P2

m 2d C2/v2

A /|D c3W 2

<•2

J2

P10P 2

M 2 <%) N 2

91 □<?■> 92

MaD

9 1 092

C3 A3 --- 7:---► M3 <g> A3

M 2 0 C2pAf2

PCM2V>N 2

P l0 O 20 p 2 P10C3(0P2

M3&C3pN

9i0C30g2

A /3 ® c 3 % n 3
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Combining the two previous results, we obtain • ( q i ^ a to )  ' Lg • iP i^c2P2 ) ' — {qi .® Q2 ) •
(pi ®P2 ) • J-i- On the other hand, if the internal arrows of this last diagram are removed and some 
others are added, the following diagram can be obtained

M id c i  Ni

Lgf

M f f a C3,jfN ,

qiP\Oc3q2P2

a u d c3N 3

3 3

.T , ,  ^  w  M x® g - f ® N x „ ,  ^
M i ®  N \  S M i  ®  C i ®  A^i — L- ^ — *  M i  ®  C 3 ®  M

q\-p\®q2P2

M3 ® 7V3
M3®°3pN

qi'Pl<®C2®q2p2

M3 (8 ) C3 ® A3

Then t3 • ( ^ i P iD c a ^ )  • =  (<7i ■ ® <72 • P2) ■ as before.

Therefore,

• ( < 7 i p i D c 3 < 7 2 P 2 )  • =  t 3  • ( < 7 i D c 2 < 7 2 )  • ^  • ( p i D c 2 P 2 )  • C  ,

and since t3 is an equalizer

(9iPiOc3W 2) • =  (<7id c'2<72) • ^  • (piDc’2P2) • ,
as required. □

P ro p o s i t io n  A .3. Lei M, /V be objects in CM ° . Then the map l : M Dc’A  —> M i s  in UM U.CkaC

Proof:

Consider the following diagram,

M U C N

cpMnc N

C  ® M DCW

M ® /V
M ®°PN

Pm®N

(0

M ® C ® /V

cpm®c®n

C®t
C<S>M<S>cp n

C  ® M  ® N  = = = = = £  C  ® M ®  C ®  A
C®pg®N
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where the inner diagram (i) commutes serially because of the bifunctoriality of & and because 
M  is an object in CM .C. The map i is an equalizer and so is C  ® l , due to the preservation of 
equalizers through the tensor product. In view of Remark A. 1 , (cPm®N) -  l = ( C®l ) ' ( cp m ^ c N ) .  
This means th a t i is a morphism in CM .  T hat l is a morphism in M c  is proved similarly. □

P ro p o s i tio n  A .4. Let r  : R  — > M  0  N  in CA 4° be a fork for the cotensor product (A /d cA , l). 
Then r : R  — ► M D c N ,  the induced morphism by the equalizer l, is in CM C.

Proof:

Consider the following diagram

C  ® M U C N

M ® CPN

Pm ®N

C ® M ® c pN

C®Pm®N

M  N

CP M®C®N

% C  ® M  <g'C ® N

Because of Remark A .l, ( ° p m  <B> N)  • l = (C ® l) • (cp M^ c N ) .  Since r is a fork for the upper 
parallel arrows, t • r = r. Therefore,

('°pM <S> N) ■ r = (C  <g> /,) • (cpMDc N)  • f  .

The morphism r is in °A4, i.e. ( ° p m  ® N)  • r  =  (C ®  r) ■ cpR. Due to the bifunctoriality of the
tensor product C  ® r  =  (C ® l) • (C ® r), hence

(CPm ® A) • r  =  (C ® r) • cp/? =  (C 0  t) • (C 0  r) • cpR .

Therefore, (C  ® t) • (cpmDc1V) • r  =  (C ® j.) • (C ® r ) ■ but C  ® l is a coequalizer, then

(% D c iV )  • r = (C ® r) • °pR ,

which means th a t r  is a morphism in c Af. T hat f  is a morphism in M °  follows by similar 
arguments. □
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C o ro lla ry  A .5. For a morphism of comonoids, f 0 : C  — ► D, the morphism ij  : M D qN  
M f n Df N  is in CM ° .

□

L em m a  A .6 . Let C, D be comonoids in A i .  Take the following comodules: a right C-comodule 
R, left C-comodule S, right D-comodule T, left D-comodule U, and assume that there exists a 
comonoid morphism  / 0 : C  — ► D. Consider the following commutative diagram in VJl,

R ® S T ® U

Suppose that h and k are forks for R d c S  and T d o U , and r and s are morphisms in DA i D. Then 
there exists an induced commutative diagram

R O c S  R / a D>S rD° '  > t o d u

M

Proof:

Consider the following diagrams

N

R ® S
ft0 CPS

R ® C ® S

and
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R U CS

R®cPs R®f®S
R f n DkS?---- :------* R ® S  : . = Z R ® C ® S  "■■■ ■ -> R ®  D ® S  .

These diagrams commute. First, because the morphism h is the one induced by the fork h over 
the equalizer L\. Secomd, because the morphism lj is the one induced by the morphism l\ over 
the equalizer j .  These diagrams can be glued together thus giving the following one:

M

T U d U

N

R®cps

Pr ®S
R ® C ® S

(0

T ® Dpu

R ® f ® S

p%®U

R ®  D ® S

r®D®n

T ®  D ® U

The square diagram corresponding to (i) commutes because of the colinearity of the morphisms 
r and s. Due to Rem ark A .l, (r ® s) • j  = l2 • (HDds). Finally, (ii) commutes because k is the 
morphism induced by the equalizer l2 over the morphism k.

All of this together amounts to

l2 • (rD fls) * i f  - h = (r ® s) • j  • i f  -h = (r ® s) ■ Li - h = {r ® s) • h = k • g = l2 - k  • g , 

which immediately leads to  the conclusion of the lemma. □
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