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Su m m a r y

In this thesis, a novel computational framework is presented tha t couples 
the lattice Boltzmann method (LBM) in a nonlinear form to the discrete 
element method (DEM) for the simulation of fines migration in block cave 
mines. Fines migration is characterised by the faster movement of fine mate­
rial towards the mine draw points in comparison to larger, blocky material. 
This can result in the percolation of waste material into the fragmented ore 
body and, consequently, the reduction of the operational efficiency of the 
mine. By employing computational techniques a greater understanding of 
the kinematic behaviour of fines and ore within the cave can be developed, 
which can in turn  aid the solution of this problem.

To simulate the fines migration phenomenon using solely discrete elements 
with a wide size range would require in the order of 108 (or greater) particles 
and subsequently be intractable. Therefore, in this research the DEM is 
employed to model the dynamics of large blocks and the LBM is used to 
model the interstitial fines phase. This gives rise to a fully coupled LBM- 
DEM computational framework capable of simulating dense phase particle 
suspensions with application in a wide range of problems outside the scope 
of this work.

In the last 20 years the LBM has emerged as an alternative to conven­
tional computational fluid dynamics (CFD) methods, with advantages over 
the more traditional approaches including the ability to use a regular grid, 
high space-time resolution, full scalability on parallel computers, as well as 
efficient and robust implementation in complex fluid domains. In the context 
of this research the most significant strength of the LBM is its ability to be 
efficiently and robustly coupled to a large number of densely packed discrete 
elements.

It is proposed tha t the fines particles in the cave can be modelled as a 
non-Newtonian fluid and thus the standard LBM formulation is extended to



capture the constitutive behaviour of a bulk material. A range of constitutive 
models is investigated including the viscoelastic power law model and the vi­
scoplastic Bingham model and a numerical rheometry technique is developed 
tha t allows the calibration of the material model to experimental data  for 
different soils.

This thesis presents the issues relevant to this novel approach to fines 
migration modelling, such as fluid-solid interaction, the coupling of explicit 
schemes, and the characterisation of a bulk material as a non-Newtonian 
fluid. Extensive validation of the non-Newtonian LBM-DEM framework is 
presented for aspects of fluid flow, structural coupling and material characte­
risation. The developed framework is then applied in both two-dimensional 
and three-dimensional problems and the phenomenon of fines migration is 
investigated.
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C h a p t e r  1

In t r o d u c t i o n

Block caving is an underground mining method in which ore is allowed to 
collapse due to its own weight, in a controlled fashion, into chutes or draw 
points. This technique is usually applied to mine large orebodies tha t are too 
deep to extract economically using an open pit and also exhibit suitable rock 
mass properties. Such material properties will result in sufficient fragmenta­
tion and consequently caved material th a t can be handled and transported 
effectively. Generally, the block cave method allows for the bulk mining of 
large, relatively lower grade, orebodies. Examples of block cave mines in­
clude Northparkes copper-gold mine (Australia), Questa molybdenum mine 
(New Mexico, USA), Henderson molybdenum mine (Colorado, USA), Gras- 
berg copper-gold-silver mine (Indonesia) and the Palabora copper deposit 
(South Africa), which operated formerly as an open pit.

One of the m ajor advantages of block caving is the minimisation of the mi­
ning footprint incurred in the process of extracting minerals from the ground. 
An open cast pit is not necessary and stockpiles of waste material on the 
surface are consequently not required. Block caving can also be employed to 
extend the life of open pit mines tha t have become economically nonviable 
with surface extraction methods by continuing operations with a cave below 
the pit floor.

One of the disadvantages associated with block caving is the potential for 
surface subsidence. As ore is removed from the cave, support for the overhead 
waste is relaxed which can lead to subsidence and rupturing of the surface 
above the mine. Other problems and disadvantages include potentially pro­
hibitive mine development costs, unpredictable caving of the orebody, and
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Figure l . i :  Schematic diagram of a block cave mine highlighting the migra­
tion of waste fines into the orebody. Photo: Atlas Copco

difficulties in observing the mine performance due its size and location un­
derground.

Figure 1.1 is a schematic representation of a typical block cave mine. 
The development of the mine involves the drilling of the undercut level and 
production level tunnels followed by undercut blasting to initiate fragmen­
tation in the orebody rock above. The draw bells are then blasted from the 
production level upwards into the undercut muck pile, thereby allowing the 
extraction of ore from draw points at the bottom of the draw bells. As frag­
mented material is drawn from the block cave the support of the intact cave 
back1 is reduced until the stresses induced by gravity overcome the ultimate 
strength of the material. The fractured material is added to the top of the 
muck pile and the cave back propagates upwards. In this fashion, the rate 
and sequencing of draw is used to control the speed and location of caving. 
The drawn ore is transported to an underground comminution plant and 
then hauled to the surface for transport or further processing.

'The cave back is the lower boundary of the intact rock above the muck pile in the
cave.
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1.1 Description of the Industrial Problem
Aside from the constant challenge of maintaining stable and predictable ca­
ving, one of the primary issues tha t affects the performance of block caves 
is dilution. This occurs when material from the waste zones adjacent to the 
orebody mixes with the ore during caving and or draw, as discussed in more 
detail below. Other operational issues include air blast, water seepage and 
mud rush.

Air blast can occur when an air gap is allowed to grow between the cave 
back and the top of the muck pile. This is usually caused by resistance to 
fracturing of the cave back as draw removes the muck pile support. Sudden 
failure of the cave back over a large air gap can then blast air through the 
muck pile to the production level tunnels. Air blast potential is minimised 
by monitoring the location of the cave back and the amount of ore drawn 
from the cave to ensure no significant air gap is formed.

The presence of water in a cave in small amounts is acceptable, and can 
sometimes be advantageous, however large quantities of water can present 
problems such as poor working environment, risk of mud rush, washing out 
of potentially rich fines, and operational and handling problems in orepasses 
and chutes [82].

Mud rush in a block cave mine is a significant hazard to mine crews, 
equipment and production. Potential sources of mud in the region of a block 
cave need to be well understood so th a t appropriate measures can be taken 
to manage potential risks. Im portant factors tha t need to be considered 
are surface topography (i.e. presence of water reservoirs), ambient rainfall, 
erosion potential of material in and above the cave, geological structures and 
joints which can act as channels for directing mud into the cave region, effects 
of surface subsidence, permeability of the caved mass, and the viscosity of 
generated mud [82]. One im portant tool used for managing mud rushes is a 
water balance of the cave. If all water entering the cave from its surroundings 
is accounted for at the development level, it can be channelled and pumped 
out of the mine and the operators can be confident tha t no ‘damming’ of 
water and or mud is occurring in the caved material. Such accumulation can 
result in pressure build-up and increased chance of a mud rush.

Dilution, or more specifically the unexpected early onset of dilution, is a 
major obstacle to the profitability of a block cave. Dilution is realised when 
low grade waste material reports at the draw point along with or in extreme 
cases instead of ore. This reduces the concentration of mineralisation in the 
extracted material and thus reduces operational efficiency. Further, a cut-off 
grade is defined for the draw points of a block cave below which it is no 
longer economically viable to draw from them. Therefore, not only can high
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Figure 1.2: The three primary mechanisms of dilution in a block cave marked 
as (a) fines migration, (b) isolated draw and (c) rilling.

and unexpected levels of dilution reduce the mine efficiency it can also cause 
the unplanned closure of draw points which in turn affects the draw strategy 
of surrounding areas of the mine.

The three primary mechanisms of dilution are isolated draw (also known 
as rat-holing), rilling and fines migration. These are shown schematically 
in Figure 1.2. Isolated draw occurs when a narrow zone of the fragmented 
orebody moves towards the draw point without interacting with the sur­
rounding material. This phenomenon, which is dependent on the draw point 
spacing and range of fragmentation size creates an accelerated path for waste 
above the muck pile to travel to the draw point as marked at (b) in Figure 
1.2. Rilling, marked (c) in Figure 1.2, can occur when the attitude of the 
orebody-waste interface deviates from vertical. This creates the opportunity 
for waste to travel along the free surface of the muck pile and present unex­
pectedly at draw points. Finally, fines migration is the percolation of small 
particulate material through large blocks in the muck pile, as marked at (a) 
in Figure 1.2.

The phenomenon of fines migration during block cave operation is the 
focus of this research. As draw is undertaken the fragmented material in the 
draw zone moves towards the draw point and the voids between large blocks 
evolve. This continual changing of the void space allows smaller material (i.e.
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Figure 1.3: Graph of the relative speed of material in a block cave depending 
on the particle size and the rate of draw reproduced from A Practical Manual 
on Block Caving by Dennis Laubscher [82].

fines) to percolate into adjacent free space and subsequently move towards 
the draw point faster than its neighbouring blocks. A chart of the relative 
speed of blocks and fines for varying draw rates from A Practical Manual 
on Block Caving by Dennis Laubscher [82] is reproduced in Figure 1.3. This 
graph indicates tha t fines may travel as much as 10 m further than blocks 
of 3m3 for an average draw of 400mm per day. Percolation rates of this 
magnitude go some way to explaining the early onset of dilution.

Fines migration allows the ingress of waste into the fragmented ore, which 
is obviously undesirable due to the resultant grade reduction. A rare excep­
tion to this rule is when the mineralisation in the waste zone occurs as fines 
which, upon migrating into the fractured ore, actually increase the grade of 
drawn material. However, typical mine operation attem pts to minimise fines 
migration and dilution by maintaining even, interactive draw in the muck 
pile. This is in turn dependent on the use of the correct correct draw point 
spacing and draw strategy, resulting in a height of interaction zone (HIZ) 
above which the muck pile moves uniformly downward to the production le­
vel. Another common fines migration mitigation procedure is the breaking 
of mechanical arches of coarse blocks at draw points as soon as they are 
discovered. The reasoning for this procedure is tha t it is often possible to 
continue drawing fines from a draw point long after an arch of coarse blocks 
has formed at the same location [82].
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1.2 Current Approaches to the Problem
A review of the literature reveals very little scientific effort targeted at the 
block cave phenomenon of fines migration. Typically, the broader problem 
of dilution is discussed within the even broader context of gravity flow. On 
this topic, the handbook by Rudolf Kvapil [77] is a good reference on the 
characterisation and prediction of flow behaviour in block, sub-level and panel 
caving.

Early investigations into the gravity flow of material in cave mines utilised 
scaled physical models [77]. These experiments observed the flow behaviour 
of sand through a transparent, scaled apparatus representative of a section 
of the mine geometry. Monitoring of the flow was aided by dying the initial 
configuration into layers or cells of different colours and observing the confi­
guration as it was deformed by draw. These experiments offered insight into 
the geometry of the isolated draw zone (IDZ) above a single draw point as 
well as the interaction between neighbouring draw zones for different draw se­
quencing. One of the significant shortcomings of these physical models is the 
limitation to effectively two-dimensional (i.e. thin three-dimensional slices) 
experiments. In turn, these two-dimensional physical models suffer from the 
fact th a t they are not strictly two-dimensional due to the interaction of the 
sand and the glass faces of the apparatus.

In a complete 3D experiment the cross-sectional geometry of the draw 
zone obviously cannot be properly observed. However, despite the visibility 
problems three-dimensional scale models have been employed to investigate 
gravity flow. In these tests the undeformed sand is seeded with markers 
which are collected at the outlet as draw proceeds. Using the known amount 
of drawn material at the instant a marker is retrieved its path  through the 
draw zone is approximated. Another significant issue with scaled physical 
modelling is the difficulty in extrapolating the behaviour of fine granular ma­
terial such as river sand to blocks of 3m3 or larger as found in a cave mine. 
In addition, the use of a material such as river sand does not easily permit 
the inclusion of smaller material tha t would represent the real scale fines. 
To address the latter issue Power [107] undertook moderate-scale physical 
modelling using crushed rock with a distribution from 3 mm to 45mm, howe­
ver some recent opinion is tha t the additional insight tha t can be offered by 
physical modelling is on the decline [51].

Another early technique for investigating the gravity flow inside a block 
cave is the use of infield markers. This approach involves placing a number of 
robust coded markers, such as reinforced concrete blocks or car tyres, in the 
orebody and then recording when and where (e.g. which draw point) they 
appear at the production level. Field marker monitoring eliminates the pro­
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blem of scaling dynamic bulk material behaviour observed in physical models 
to th a t a t the field scale. As an example, field scale draw trials were underta­
ken at Ridgeway gold mine between 2001 and 2004 to improve understanding 
of the granular flow kinematics th a t influence dilution entry, assess the effec­
tiveness of interactive draw procedures, and to quantify recovery and dilution 
to improve future grade predictions [106].

More recently, Susaeta [124,125] reported on the development of a m athe­
matical model for gravity flow in cave mines based on the results of scaled 
physical modelling and infield experiments from three different sites. The 
model is defined as a function of extraction, material properties and layout 
geometry, and is able to reproduce characteristic behaviours such as isola­
ted, isolated-interactive, and full interactive draw. By quantifying the level 
of interactivity in a proposed layout and draw strategy an assessment on the 
anticipated level of dilution could then be made. This is founded on the 
widely held belief tha t dilution is minimised by even, interactive draw [124].

An attem pt at modelling gravity flow during block caving was made by 
Verduga and Ubilla [135] using numerical methods and a Mohr-Coulomb cri­
tical state model in cave geometries 100 m wide and between 50 m and 150 m 
high. This work was based on a number of assumptions, the first being tha t 
the muck pile can be modelled as a continuous medium and the change in 
particle size due to secondary fragmentation can be ignored. The gravity 
flow was also assumed to be quasi-static based on the fact tha t only six to 
eight tonnes of material is removed from the draw point at approximately 10 
minute intervals. Lastly, the Mohr-Coulomb model was assumed cohesion- 
less and the modulus of deformation was defined as a function of the minor 
principal stress and the stress path. Draw was replicated numerically by re­
laxing the support of material at the draw point until deformations became 
too large for the solution to converge. The results highlighted the influence 
th a t the internal friction of the material has on the draw zone diameter (de­
creasing with increasing friction angle) and the abutm ent stresses adjacent 
the draw point (increasing with increasing friction angle). The effect of draw 
point spacing on interactivity of flow was also investigated with a spacing of
1.2 times the isolated draw zone diameter found to result in interactive draw. 
W ithin the context of fines migration the use of a single continuous medium 
to model the muck pile renders this approach inappropriate.

Another popular computational approach to modelling gravity flow in 
block caves is the use of cellular automata. This simple technique involves 
the discretisation of the cave into a number of cells each of which hosts a 
single binary variable. In gravity flow applications this variable defines the 
absence or presence of caved material at tha t location. Alfaro and Saavedra 
[3] presented an automaton th a t is based on the propagation of voids from
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the draw point to the free surface of the muck pile. A void is introduced at 
the draw point by emptying a cell which is then filled by material from one of 
the cells directly above it using a probabilistic function. In this fashion, the 
void randomly ’bubbles’ to the top of the cave at which time a new void is 
introduced at the draw point. The shape of the resulting draw zone is tuned 
by altering the probability distribution for material dropping into the void 
below.

The attraction of cellular autom ata is tha t they are computationally in­
expensive, allowing large geometries to be analysed for long time scales. This 
simplicity is a t the expense of real physical features such as gravity, friction, 
stress and particle size which are not modelled directly but replicated using 
probabilistic rules. Therefore the prediction of a complex physical process is 
governed by the tuning of a small number of model parameters. CAVE-SIM 
[116] is a commercial code based on a parallel implementation of cellular au­
tom ata tha t can be applied to full cave geometries over their anticipated life. 
This allows param etric studies to be undertaken on the operation of the mine 
with the results compared in dollar value. On the issue of dilution cellular 
autom ata can be used to predict dilution via rilling or isolated draw however 
the removal of a real particle size distribution means th a t fines migration 
cannot be captured.

The discrete element method (DEM) [27] is a numerical scheme that 
simulates the interaction of large assemblies of distinct particles and as such 
it is well suited to gravity flow problems. The details of the method are 
discussed in more detail in Section 3.1 but at its core is the interaction of 
non-deformable particles using a soft contact model. The strength of DEM 
is tha t it incorporates the physics and kinematics of bulk material flows 
including friction, stress from contact force, particle size and shape variation. 
Unfortunately the inclusion of this physical detail is expensive, and stability 
requirements for discrete element contact limit the length of the explicit 
scheme’s time step. When implemented on contemporary computational 
hardware these factors mean th a t the number of particles and the length of 
time th a t can be simulated using DEM is subject to practical limits. Despite 
computational limits the discrete element method has been employed in the 
field of block caving to investigate caving and fragmentation, [111], swell in a 
draw column [32], dilution by rilling in a sub-level cave [115], and percolation 
in caved rock under draw [105]. More examples of DEM application in block 
caving, particularly in draw zone interaction, can be found in [68].

The work of Sellden and Pierce [115] used the discrete element method 
to simulate dilution in a sub-level cave by rilling at the brow of a draw point. 
The approximate dimensions of the cave were 27.5 m high, 24.75m wide and 
7m deep. The fine ore, coarse ore and waste material was simulated using
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two-ball clumps with equivalent radii of 0.25m, 0.5m and 0.4m, respectively. 
The model results were able to provide dilution entry points2 tha t were simi­
lar to those observed in the field but quite different to those in the literature. 
W hilst this study did utilise a distribution of particle size, i t ’s focus was 
on dilution by mass rilling rather than the migration of fines through large 
blocks.

Pierce [105] is currently the only known scientific work tha t focuses on 
the phenomenon of fines migration in block caves, which in this case is re­
ferred to as inter-particle percolation. This study used the discrete element 
method to investigate the percolation of small elements through large ele­
ments in both small scale shear tests and large scale cave draw simulations. 
The objective of the research was to determine the significant factors tha t 
influence percolation and to develop equations based on these trends for im­
plementation in REBOP (discussed below). Of particular interest was the 
hypothesis th a t regions of high shear in bulk material flows induce greater 
levels of percolation. This work is of direct relevance to the present study, in 
which simulation of fines migration is the focus, and as such it is discussed 
in more detail in Chapters 5 and 6.

From this brief review of approaches to investigating gravity flow, and 
particularly fines migration, in cave mines it can be surmised tha t physical 
modelling has reached the limit of insight it can provide, simplistic models 
based on cellular autom ata ignore many im portant physical features, and 
DEM is still computationally intractable for field scale simulations. As an 
attem pt to compromise between the relative strengths and weaknesses of CA 
and DEM, a Rapid Emulator Based on PFC  (REBOP) was created [84]. 
REBOP is a numerical tool th a t uses a set of gravity flow rules to simulate 
the development and interaction of draw zones in a block cave. These par­
ticle interaction rules are a simplification of the behaviour th a t is observed 
in discrete element models of block cave draw including collapse, erosion and 
free-surface slumping. In a REBOP analysis, the muck pile is discretised into 
a number of horizontal layers and a mass balance is used to determine how 
much material moves from a layer to voids created in the layer below. The 
growth and interaction of isolated draw zones, both with other IDZs and the 
free surface of the muck pile, is predicted. By simplifying the contact mecha­
nics of DEM into a set of rules the computational requirements are greatly 
reduced. This, like cellular autom ata, allows large geometries to be simula­
ted over the anticipated life of the mine in acceptable computational time 
frames. Also, additional rules can be incorporated into REBOP to predict 
physical phenomena such as dilution, mixing, and grade extraction. This

2The dilution entry point is the percentage of total draw at which dilution first appears.
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feature was exploited in the inter-particle percolation investigation of Pierce 
[105] through the generation of migration rules based on DEM simulations 
tha t could be added to REBOP.

The work of Carlson et al. [16] is an example of the application of REBOP 
in an industrial setting, in this case at Henderson Mine.

1.3 The Approach to this Work
A greater understanding of the kinematic behaviour of fines and ore within 
a cave during draw is integral to the solution of problems associated with 
fines migration. Other pertinent issues include the origin of the fines and 
its location within or near the muck pile, the size and shape of the fines, 
and the mathematical characterisation of the fines. Section 1.2 discussed 
the current approaches to the problem including field marker monitoring, 
laboratory scale experiments, and computational techniques such as cellular 
autom ata (CA), the discrete element method (DEM) and REBOP.

As has already been mentioned, DEM has been successfully employed to 
simulate the dynamics of large blocks in a cave during draw and to simulate 
small scale migration problems. However, the extension of this approach to 
modelling large scale migration of fines would require the simultaneous solu­
tion of elements larger than 2m  (blocks) and smaller than  20mm (fines). In 
an industrial size, three-dimensional model this method would require in the 
order of 108 particles and subsequently be intractable. This issue is elucida­
ted schematically in Figure 1.4a. It should be noted th a t the computational 
load associated with this number of particles does not present the only chal­
lenge to the DEM approach. The mass ratio of fines and blocks would also 
make stable contact difficult to achieve in regions of high contact force in the 
cave.

Considering the challenges associated with modelling fines using DEM, 
the approach of the present study is to model large cave blocks as discrete 
elements and the fines phase as an interstitial continuum. A novel computa­
tional approach is presented th a t incorporates the lattice Boltzmann method 
(LBM) in a nonlinear form for the simulation of the fines with the DEM for 
the simulation of large blocks in a fully coupled framework. The is shown 
schematically in Figure 1.4b where the spatial grid of the LBM is overlain 
on the discrete elements.

The LBM [90, 19] has emerged as an alternative to conventional compu­
tational fluid dynamics (CFD) methods tha t employ spatial and temporal 
discretisations of the Navier-Stokes equations. A key advantage of the LBM 
over traditional CFD (see [131] for a review) is its ability to be efficiently 
and robustly coupled to a large number of densely packed discrete elements.
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Figure 1.4: Issues related to the application of the DEM and LBM in fines 
migration including (a) schematic representation of the large number of small 
elements required to represent the hues and (b) the coupling of the LBM grid 
to the DEM.

The main computational obstacles in Lagrangian CFD approaches are the 
need for continuous mesh geometry adaptation to circumvent severe mesh 
distortion, and the generation of a valid mesh for dense particle flows where 
interm ittent discrete element contact is a dominant physical phenomenon. 
Since the work of Ladd [78, 79], a number of LBM fluid-solid interaction 
techniques have been developed including the immersed moving boundary 
technique by Noble and Torczynski [97]. Employing the discrete element me­
thod to account for particle-particle interactions gives rise to a fully coupled 
LBM-DEM computational framework capable of simulating dense phase par­
ticle suspensions. The explicit time stepping scheme of both LBM and DEM, 
when coupled using a dynamic time step update algorithm, makes this stra­
tegy a competitive numerical tool for the simulation of particle-fluid systems. 
Such a coupled methodology was first proposed by Cook et al. [25] in simu­
lating particle-fluid systems dominated by particle-fluid and particle-particle 
interactions.

The block cave environment exhibits a binary mixture of both large blocks 
and fine powder type particulates. It is proposed th a t the motion of the fine 
particles will be modelled as a non-Newtonian fluid and thus the standard LB
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Soil Particle Sizes Fraction Sieve Size Diameter (mm)
Boulders 12” plus > 300
Cobbles 3” - 12” 75 - 300
Gravels - Coarse 0.75” - 3” 1 9 -7 5

- Fine No. 4 - 0.75” 4.76 - 19
Sands - Coarse No. 10 - No. 4 2 - 4.76

- Medium No. 40 - No. 10 0.42 - 2
- Fine No. 200 - No. 40 0.074 - 0.42

Fines (silts and clays) Passing No. 200 < 0.074

Table 1.1: The classification of soil particles as proposed by ASTM (Unified 
Soil Classification System), reproduced from McMinn [89].

formulation for Newtonian fluids must be extended to capture the constitu­
tive behaviour of a granular medium or bulk material. In the relatively small 
volume of work dedicated to nonlinear fluids in the LBM, the power law mo­
del is the most popular choice for describing non-Newtonian behaviour. For 
example, the implementation of power law fluids within the LBM has been 
undertaken [1, 122] to investigate both pseudoplasticity (shear-thinning) and 
dilatancy (shear-thickening) behaviour. A similar approach is adopted in this 
work along with investigations of the adaptation of other constitutive models 
such as the Bingham plastic in the LBM.

The use of the term fines in this work is primarily governed by the relative 
distribution of oversize and undersize in a cave, and thus not necessarily 
quantified by one specific size grade. The American Society for Testing and 
Materials (ASTM) has proposed a system for the classification of soil particles 
based on size, which has been widely adopted. It is reproduced from [89] in 
Table 1.1. According to this system the term  fines refers to particles with 
diameter less than 0.074mm. However, in the context of this project the term  
fines is used to  refer to material within the cave which is significantly smaller 
than the dominant blocks, which have characteristic lengths in the order of a 
metre. This would incorporate at least the particle classes of gravels, sands 
and fines and any future use of the term  fines in this project should give 
consideration to this fact.

1.4 Scope of Research
The aim of this research is to develop a fully coupled LBM-DEM compu­
tational framework tha t is modified to include non-Newtonian constitutive 
models for fines. This framework is to then be applied to small and large
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scale percolation problems relevant to the phenomenon of fines migration in 
block cave mining. Both two-dimensional and three-dimensional simulations 
are considered.

This scope can be decomposed into four distinct components as follows.

1. Implement the lattice Boltzmann method for fluid flows in a commercial 
finite element-discrete element (FEM-DEM) code, Elfen, and validate 
its performance against a small number of benchmark tests.

2. Couple the newly-implemented LBM to the discrete element modelling 
features of the FEM-DEM code to facilitate hydrodynamic interaction, 
and validate the fluid-structure interaction against benchmarks and 
analytical solutions.

3. Research and implement non-Newtonian constitutive models suitable 
for the representation of granular material in the LBM-DEM frame­
work. Then, investigate the modification and calibration of these consti­
tutive models for the representation of bulk fines.

4. Apply the non-Newtonian LBM-DEM framework to investigate inter­
particle percolation and fines migration in both small and large scale 
models.

1.5 Document Layout
This thesis is divided into seven chapters. Following this introductory chap­
ter, Chapter 2 discusses the implementation of the LBM in the Elfen finite 
element code. The evolution of the LBM is discussed and the basic compo­
nents of the numerical model are outlined. Spatial discretisations (lattices), 
temporal solution schemes and existing LBM formulations are contrasted. 
The details of the Chapman-Enskog expansion are included, which shows 
how the simple kinetic formulae th a t comprise the LBM yield physical hy­
drodynamics in the macroscopic limit. Various boundary conditions and 
techniques for implementing fluid body forces are compared. Lastly, the per­
formance of the LBM implementation is tested by comparing the results of 
simple, fluid-only analyses to analytical solutions and published benchmarks.

Chapter 3 covers aspects relating to the coupling of the LBM to the 
discrete element method. A brief outline of DEM is provided, and then 
a review of LBM-DEM coupling techniques is presented. Procedures for 
mapping the evolving structural field of the DEM to the static LBM grid, 
and the coupling of their respective explicit schemes, are discussed. The 
chapter is concluded with a number of tests of the LBM-DEM framework.
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The coupling of closed form (i.e. circles/spheres) and discrete form (i.e. 
polygons/polyhedra) discrete elements is compared with empirical solutions 
and published results for quantities such as drag force and flow profile.

In Chapter 4 the characterisation of bulk materials (i.e. fines) as a non- 
Newtonian fluid is considered. The limited literature relevant to modelling 
dynamic flow of bulk materials is reviewed, with a focus on continuum mo­
dels. The evaluation of the rate of strain tensor and non-Newtonian consti­
tutive models in the LBM are discussed, including the viscoelastic power 
law and the viscoplastic Bingham model. The implementation of a power 
law model is tested against analytical solutions for both shear-thinning and 
shear-thickening behaviour. The rheometry of bulk materials is investigated 
and novel approach to calibrating the fines material properties via numerical 
experiments is demonstrated.

Two-dimensional applications of the LBM-DEM framework are presented 
in Chapter 5. The inter-particle percolation analysis conducted by Pierce 
[105] is replicated using both circular and polygonal discrete elements, and 
the migratory behaviour of the fines phase is observed. A mine-scale analysis 
of a three-bell block cave is also undertaken and the migration of fines under 
an arbitrary draw sequence is monitored.

Similarly, Chapter 6 includes three-dimensional applications of the cou­
pled framework. A scaled version of the DEM percolation analysis is presen­
ted along with a mine-scale simulation of a partial block. The percolation 
simulations investigate sensitivity to material properties while the partial 
block cave analyses investigate the influence of draw strategy The effect of 
three-dimensional void space on the mechanisms of fines migration is also 
considered.

Finally, Chapter 7 discusses the results of the fines migration analyses 
and offers concluding remarks on the coupled LBM-DEM framework. Ave­
nues for additional research, improvement and further development are also 
delineated.



C h a p t e r  2

T h e  La t t i c e  B o l t z m a n n  
M e t h o d  f o r  F l u i d  F l o w s

The lattice Boltzmann method (LBM) [90, 18, 19] has emerged as a pro­
mising numerical method for the simulation of fluid flows. It stands as an 
alternative to the more established computational fluid dynamics (CFD) ap­
proaches which involve the discretisation and solution of classical macroscopic 
equations such as Navier-Stokes. The underlying premise of the LBM is to 
construct a simplified kinetic model tha t incorporates mesoscopic1 processes 
but exhibits identical behaviour to the classical hydrodynamic equations at 
the macroscopic level [19]. The justification of this approach stems from the 
observation th a t the macrodynamics of a fluid is the result of the collec­
tive behaviour of many particles in the system, however the details of these 
microscopic interactions are not essential [66].

The solution of the discrete lattice Boltzmann equation (LBE) involves 
the explicit evolution of particle distribution functions which reside at each 
lattice node. These functions are real variables and they relate the probable 
amount of fluid ‘particles’ moving with a discrete speed in a discrete direction 
at each node at each time increment. The LBM solution progresses via a 
two stage process at each time step. Collision (also known as relaxation) 
redistributes the functions th a t arrive at each node and then streaming (also 
known as convection) propagates the redistributed functions to their nearest

1The length at which one can reasonably discuss the properties of a material or pheno­
menon without having to discuss the behaviour of individual atoms which for solids and 
liquids is typically 1 ~  10 nanometres.
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neighbour nodes.
By developing a simplified version of the kinetic equation, one avoids 

solving the full Boltzmann equation due to the reduction of the continuous 
phase space to a few discrete directions and thus the movement of each 
particle does not have to be calculated as in molecular dynamics simulations. 
The kinetic nature of the lattice Boltzmann method introduces three features 
tha t distinguish it from other numerical methods for fluid dynamics, namely
[19];

1. The LBM utilises a limited velocity set in phase space as opposed to 
a complete functional space as in traditional kinetic theory using the 
Maxwell-Boltzmann equilibrium distribution,

2. The streaming operation of the LBM in velocity space, which has been 
borrowed from kinetic theory, is linear as opposed to the nonlinear 
convection terms in macroscopic continuum approaches. When combi­
ned with the collision operation the simplified convection allows reco­
very of nonlinear macroscopic advection via multiscale analysis such as 
the Chapman-Enskog expansion (see Section 2.5),

3. The macroscopic Navier-Stokes equations can be obtained from the 
LBM in the near-incompressible limit and the pressure can be calcula­
ted using an equation of state tha t is velocity independent.

When compared to continuum based CFD approaches the lattice Boltzmann 
method offers a number of advantages. First, the LBM is traditionally im­
plemented on a regular, orthogonal grid although this is not mandatory (see 
Section 2.3). Second, the collision operator is a local process meaning tha t 
each lattice node only requires information from its own location to be re­
laxed. These first two features facilitate straightforward distribution of the 
LBM on massively parallel systems [113]. Third, in their most basic fashion 
boundary conditions can be implemented using another local nodal proce­
dure (see Section 2.6), however other conditions of improved accuracy and 
increased complexity are available. This feature allows the LBM to be em­
ployed in simulations where boundaries are complex, moving, or interacting 
or a combination of all three. In such simulations macroscopic partial diffe­
rential equations can become inadequate due to the complicated dynamics 
and associated thresholds and discontinuities. The lattice Boltzmann method 
also offers high space-time resolution and greatly reduced solution times in 
certain classes of problems [44].

As a consequence of these and other positive aspects, the LBM has found 
application in a vast array of fluid flow problems including magnetohydro-
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dynamics, multiphase and multicomponent flows, flow in porous media, tu r­
bulent flows and particle suspensions.

2.1 Evolution from Lattice Gas Automata
The lattice Boltzmann method originated as an extension of lattice gas au­
tom ata (LGA). Its development was motivated by the characteristic short­
comings of LGA such as the large noise-signal ratio, non-Galilean invariance 
and the unphysical dependence of the pressure on the velocity field. Ano­
ther limitation of LGA is tha t the transport coefficients (i.e. viscosity) tha t 
emerge from the microscopic collision operators are of a very limited range 
[119].

A lattice gas autom aton which first employed both discretised space and 
time was proposed by Hardy et al. [55]. The HPP model is the simplest 
arrangement of LGA as it uses an orthogonal grid with only four velocities. 
By using only four velocity directions, the lattice symmetry is insufficient to 
ensure the isotropy of the fourth degree tensor relating momentum flux to 
quadratic terms in the velocity (see Section 2.5). To overcome this problem, 
Frisch et al. [41] proposed the FHP-I, FHP-II and FHP-III hexagonal lattice 
gas (HLG) models, offering improvement of the collision operator to include 
deterministic and non-deterministic rules. This work was very im portant in 
the development of LGA as it recognised the importance of lattice symmetry 
in the recovery of the the Navier-Stokes equations. From these hexagonal 
lattice models, the continuous Navier-Stokes equations were derived for the 
first time.

Contemporary with this work was the description of a cellular automa­
ton [139] that could be used to simulate macroscopic fluid dynamics and the 
simulation of 3D hydrodynamics using a lattice gas model in [29]. In the 
latter, the simulations are undertaken using two different lattice geometries. 
The first is a cubic lattice with speeds of 0, 1 and y/2 and the second is a pro­
jection of the lattice gas implementation of the 4D Navier-Stokes equations 
on a face-centred hypercubic (FCHC) lattice.

The lattice gas autom aton is constructed as a simplified, molecular dy­
namic model in which space is discretised by a symmetric lattice, time is 
discretised by an explicit time-stepping scheme and velocity is discretised 
by a small number of lattice-dependent particle speeds. A set of Boolean 
variables, n* (x, t), is defined which describes the location, x, of the particles 
on the domain lattice. From the initialised occupancy state, the location 
of particles is updated a t each time step by two sequential processes, na­
mely streaming and collision. During streaming, the particles move to the 
nearest-neighbour lattice node in their velocity direction, and in collision the
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particles arriving at a node interact and change velocity according to a set 
of scattering rules. The stream-collide evolution of these particle occupation 
variables is written as,

rii (x +  a , t  +  1) =  rii (x ,t)  +  Di (n (x , t ) )  (i =  0 ,1 ,2 , . . . ,  M ) , (2.1)

in which x  is the position of the lattice node, Ci is the velocity of the particle, 
Lli is the collision operator or scattering rules, and M  is the number of velocity 
directions a t each lattice node. Note tha t the zeroth velocity which is present 
on some models indicates a ’rest’ particle which is not moving. The collision 
process in LGA can be deterministic or non-deterministic and is controlled 
by a table of scattering rules tha t conserve mass and linear momentum for 
every possible input combination. The exclusion principle is imposed which 
allows only one particle to exist at each velocity at each lattice node at any 
time [40].

Some advantages of lattice gas autom ata include intrinsic stability due 
to the presence of a Boltzmann H-theorem, straightforward implementation 
of boundary conditions via the bounce-back method and natural paralle- 
lisation due to the regular spatial discretisation and local collision opera­
tor. As already mentioned, limitations to the method do exist. As well as 
non-Galilean invariance and velocity dependent pressure, LGA simulations 
require an undesirable level of computational resources to overcome the tech­
nique’s intrinsic noise a t the microscopic scale. To obtain reasonably resolved 
densities (i.e. macroscopic, hydrodynamic variables) this noise is overcome 
by averaging the microscopic dynamic behaviour over a combination of large 
sub-regions of the lattice, long times, and numerous initial conditions [90].

2.2 Founding Principles of the LBM
Scientific phenomena in fluids and solids can be studied at different spatial 
and temporal scales. For example, a t the microscopic level a fluid can be 
viewed as a system of a large number of molecular particles interacting in 
a complicated way whereas at the macroscopic level it is described in terms 
of continuous hydrodynamic quantities such as density and velocity fields. 
In general, the macroscopic behaviour depends very little on the interaction 
details at the microscopic [22] level. The link between the two is statisti­
cal physics (i.e. the Boltzmann equation) and this is where the averaged 
mesoscopic scale of the lattice Boltzmann method is exploited.

The primary feature of the extension of lattice gas autom ata to the lattice 
Boltzmann method is to replace the Boolean particle occupation variables, 
rii (x, £), with real-valued particle distribution functions, /* (x, t) = (rii (x, t))
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[90], in which () denotes an ensemble average. In contrast to macroscopic 
fluid dynamics, the primary variables in the LBM are not velocity or density 
but these particle distribution functions, which exist at each of the grid nodes 
th a t make up the fluid domain. These functions relate the probable amount 
of fluid ‘particles’ moving with a discrete speed in a discrete direction at 
each lattice node at each time increment. The particle distribution functions 
are analogous to the continuous, microscopic density function of the Boltz­
mann equation. In this way individual particle motion is averaged and the 
inherent statistical noise of LGA can be overcome [19]. The improved lattice 
Boltzmann model preserves a number of the advantages of LGA such as the 
efficiency of local operations, discrete structure and ease of parallelisation, 
but relative to LGA it requires far fewer lattice sites [18].

W ith the Boolean occupation variables of LGA replaced with the real­
valued particle distribution functions the lattice Boltzmann equation can 
written as,

fi  (x +  ciAt, t +  At) =  fi (x, t) +  Di ( /  (x, t)) (2.2)

where A x  is the lattice spacing, A t  is the explicit time step, c = |Aa;/At| 
is the lattice speed and fi* ( / (x, t)) is the collision operator which controls 
the rate of relaxation of the particle distribution functions th a t meet at a 
node. The bounds of the index i vary depending on the spatial lattice used 
and are not included in (2.2). Note tha t in the LBM the discretisation of 
space is usually undertaken in a fashion tha t is consistent with the kinetic 
equation, so th a t the particle distribution function velocities are parallel to 
the locations of the neighbouring nodes. Therefore, the neighbours to node x  
can be defined as x  +  q A t. The discretisation of a simple fluid domain and 
the location of the particle distribution functions are illustrated schematically 
in Figure 2.1.

The LBE (2.2) is evolved by the collision and streaming processes at each 
node at each time step. Collision (also known as relaxation) redistributes 
the functions tha t arrive at each node and then streaming (also known as 
convection) propagates the redistributed functions to their nearest neigh­
bour nodes. Over a number of time steps the ordering of the streaming and 
collision operations is irrelevant.

It is sometimes convenient to rewrite the lattice Boltzmann equation in 
terms of the post-collision distribution function,

f t  ( X > *) =  fi  ( X > t) +  ( /  ( X > t ))  > ( 2 -3 )

then (2.2) can be simplified as,

f i  (x  +  ciAt, t  + A t)  = f t  (x, t) (2.4)
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f.(x+c.At,t)

Figure 2.1: A simple enclosed domain discretised by the lattice Boltzmann 
method showing (left) the particle distribution functions after collision which 
are (right) then streamed to their respective neighbouring nodes.

This highlights the fact that no calculations are required in the streaming
process as the post collision distribution function is simply shifted to its
relevant neighbouring node.

The macroscopic fluid variables, density p, and momentum flux, pu,

P =  ] C /»  (2-5)
i

pu =  £  fiCi (2.6)
i

can be calculated at each lattice node as velocity moments of the particle 
distribution functions. The pressure is calculated directly from the density 
using an isothermal equation of state,

V =  c2sp , (2.7)

in which cs = c/y/Z is lattice speed of sound (see Section 2.5 for more details).
It has been shown how the lattice Boltzmann equation has evolved from 

the microdynamical models of LGA. However it should be mentioned that 
the LBE can be derived directly from the continuous Boltzmann equation 
with a Bhatnagar-Gross-Krook (BGK) collision operator [4],

( 2.8 )

and a Maxwell-Boltzmann equilibrium distribution function. This is done 
using a discrete velocity set and a small Mach number expansion as detailed
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by He and Luo [58] or by discretising (2.8) using first order spatial and 
temporal finite differences [17, 15]. Although this discretisation only has first 
order convergence in space and time, it has been shown th a t the discretisation 
error has a special form which can be included in viscous terms, resulting in 
second order accuracy in both space and time.

2.3 Spatial Discretisation and Lattice Geometries
It was shown for lattice gas models [41] th a t a minimum lattice symmetry is 
necessary to ensure isotropy of the velocity tensors and recover the Navier- 
Stokes equations from the kinetic model. The same symmetry requirement 
applies to  the lattice Boltzmann method. Historically, lattices have been 
based on periodic arrays of polyhedra, but as discussed in Section 2.3.3 this 
is not mandatory.

A choice of lattices is available in two and three dimensions with increa­
sing number of velocities and therefore symmetry. However, the benefits 
of increased symmetry can be offset by the associated computational cost, 
especially in 3D.

2.3.1 2D: D2Q6, D2Q9

Options for spatial discretisation in two dimensions include six and seven ve­
locity models based on a hexagonal arrangement known as D2Q6 and D2Q7, 
respectively. These lattices differ by the presence of a rest function with null 
velocity in the latter. The rest particle distribution function acts as a mass 
reservoir at each node allowing the pressure to be evaluated independently 
from the velocity [17]. Five velocity (D2Q5) and and nine velocity (D2Q9) 
models based on a regular orthogonal arrangement, both with a rest func­
tion, are also available. However, the D2Q5 is rarely used due to its limited 
lattice symmetry.

The velocity vectors of the D2Q6 lattice are included in (2.9) and shown 
schematically in Figure 2.2a.

ci =  c ^cos 1^ ’s in ( 7r^3 (z =  1,2,3,4,5,6) (2.9)

The velocity vectors of the D2Q9 lattice are included in (2.10) and shown 
schematically in Figure 2.2b. It should be noted th a t in the literature (e.g. 
[19]) the numbering of the D2Q9 velocities is often listed as continuous in an 
anticlockwise fashion, as opposed to the hierarchical numbering of orthogonal
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(b)(a)

F igu re 2.2: Examples of LBM domain discretisations in 2D: (a) D2Q6 and 
(b) D2Q9.

followed by diagonal velocities as shown here.

( 0 (i =  0)
c. =  < , s i n ( ^ ^ ) )  (i =  1 ,2 ,3 ,4 ) (2.10)

\/2c (cos +  f )  , sin +  f j )  (i =  5 ,6 ,7 ,8 )

The D2Q9 lattice has been shown [118] to be significantly more accurate 
than the D2Q7 lattice, and as such the use of orthogonal lattices is more 
prevalent in the literature.

2.3.2 3D: D3Q15, D3Q18

The presence of orthogonal neighbours (distance of 1), diagonal neighbours 
(distance of \^2 ), and bi-diagonal neighbours (distance of y/3) on orthogonal 
lattices, in conjunction with the option of rest functions, allows a number of 
lattice options in 3D. Available lattices without a rest function include D3Q14 
and D3Q18, and examples of those with a rest function include D3Q15 and 
D3Q27.

The components of the D3Q15 lattice are listed in m atrix form as,

1
o 1 - 1 0 0 0 0 1 - 1 1 - 1 1 - 1  1 - 1

Ci =  c 0 0 0 1 - 1 0 0 1 - 1 1 - 1 - 1 1 - 1  1 ?
_  0 0 0 0 0 1 - 1 1 - 1 - 1  1 1 - 1  - 1  1

(2.5 1)
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F igu re 2.3: Examples of LBM domain discretisations in 3D decomposed to 
their orthogonal and diagonal components: (a) D3Q15 and (b) D3Q18.

and shown schematically in Figure 2.3a while the components of the D3Q18 
lattice in m atrix form are,

C; =  C

"  1 -1  0 0 0 0 1 - 1 1
0 0 1 - 1 0 0 1 - 1 - 1

1--- o 0 0 0 1 - 1 0 0 0
- 1 0 0 0 0 1 - 1 1 - 1
1 1 - 1 1 - 1 0 0 0 0
0 1 - 1 - 1 1 1 - 1 - 1 1

(2 .12)

which are shown in Figure 2.3b.
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As in 2D, an increased number of lattice directions generally improves 
the accuracy of the method. Maier et al. [86] compared the accuracy of 
the the D3Q15 and D3Q18 lattices in duct flow and found th a t the latter is 
slightly more accurate at predicting the maximum velocity in the channel. 
This comes at an increased computational expense. This is an extremely 
im portant consideration in 3D simulations where the total number of nodes 
increases as (A x)-3 and consequently the number of grid nodes required to 
discretise even modest physical domains can be considerable.

2.3.3 Irregular Grids

The spatial and temporal discretisations traditionally employed in the lat­
tice Boltzmann method are not exclusive. They are in fact a legacy of the 
evolution of the LBM from lattice gas models [20] in which the discretisa­
tion of physical space is coupled to the discretisation of momentum space. 
This is because the discrete momenta of the LGA must result in the Boolean 
population functions arriving exactly at neighbouring nodes for the collision 
process to take place.

The symmetry of the LBM is actually composed of physical symmetry 
and lattice symmetry [15]. Physical symmetry means the symmetry attached 
to the velocity space and the equilibrium distribution for velocities, including 
the combination of specific weights in equilibrium distribution functions for 
different speeds, the choice of parameters in the equilibrium distribution 
functions, and a sufficient number of moving velocity directions. The lattice 
symmetry requirements are tha t the number of lattice directions (in x space) 
and the number of lattice links are the same as those for the particle dis­
tribution functions. Due to the analysis of real-valued particle distribution 
functions in the LBM the streaming process th a t ties the two symmetries 
together is not necessary. Therefore any finite difference or finite element 
scheme can be used to solve the lattice Boltzmann equation.

Nannelli and Succi [94] discussed a general framework to extend the lattice 
Boltzmann equation to arbitrary lattice geometries and demonstrated it for 
the case of a two-dimensional Poiseuille flow.

He et al. [59] used a nonuniform grid to study the flow of fluid through a 
sudden expansion. The approach used an interpolation-supplemented lattice 
Boltzmann equation (ISLBE) to facilitate nonuniform grids. The ISLBE 
adds a third operation to the regular collide-stream process of the LBM. 
After the streaming step interpolation of the particle distribution functions is 
undertaken to reconstruct their values a t the irregular lattice positions. The 
assumption here is tha t the particle distribution functions are continuous 
in space and time, and smooth enough to be differentiated up to the order
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consistent with the interpolation. The algorithm was tested by simulating 
two-dimensional flow through a sudden expansion on a regular grid, a uniform 
rectangular grid and a nonuniform rectangular grid, and the results compared 
to experiments. The correlation of x-direction profiles at two locations in 
the channel was good between all the mesh types. Slight deviations from 
the numerical results was attributed to the asymmetry of the experimental 
apparatus (influence of gravity). The profile along the centreline was plotted 
using linear and quadratic interpolation. In the former case the error was 
significant. This is due to the linear interpolation being only first order 
accurate in terms of grid size, in contrast to the LBM which is second order 

; accurate. Lastly, the recirculation stream lines adjacent to the expansion 
were found to be less accurate using the regular rectangular grid. This is 

! because the discretisation was insufficient in regions of high velocity gradient.
In the work of He and Doolen [56], ISLBE was again used to simulate 

| vortex shedding behind a cylinder at varying Reynolds numbers. For m atters 
I of convenience, the interpolation grid was based on a polar coordinate system 
| th a t was concentric with the cylindrical obstacle in the analysis. The corre­

lation of predicted Strouhal numbers, drag and lift coefficients to benchmark 
results was very good.

Filippova and Hanel [38] proposed a local grid refinement procedure ba­
sed on a priori reduction of the grid size. The time step is also refined to 
keep constant grid speed. In order to maintain consistent viscosity the re­
laxation parameter in the refined region was modified according to (2.66) in 
Section 2.5.2. The interaction of the coarse and fine grids is then realised 
by an interpolation of the post-collision distribution functions at the nodes 
of both grids a t the interface. The mesh refinement technique was tested 
in conjunction with a fitted boundary condition in the case of flow around 
a circular cylinder in which the region in the vicinity of the cylinder was 
refined. The results were found to correlate well with benchmark results for 
drag and lift coefficients, 

j Lastly, it should be noted tha t semi-implicit schemes have been proposed 
I as a possible solution method [69, 15, 136] with potential benefits in faster
I steady state solutions and increased stability of non-Newtonian models.
1

I 2.4 The Relaxation Process
i The relaxation, or collision, process in lattice gas autom ata comprised tables 

of scattering rules tha t listed probabilities of every output state for each input 
state [41], however the computational handling of these rules was cumber­
some. Higuera and Jimenez [62] were able to simplify the lattice Boltzmann 
method by linearising the collision operator on the assumption th a t the par-
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tid e  distribution functions are never far from their equilibrium state, even in 
dynamic flows. The collision operator in (2.2) could then be written as,

( /  (x > *)) =  ~ M ij ( /  (x , t) -  f eq (x, t ) ) , (2.13)

in which M^- is the collision m atrix and f eq (x, t) is the equilibrium distri­
bution function (see Section 2.4.2) The dimensions of the square collision 
matrix are the number of lattice functions, and its components depend only 
the angle between the colliding functions. Following this im portant work, 
Higuera et al. [64] proposed an enhanced collision operator th a t was linearly 
stable.

Note th a t the collision process is local, which means th a t only the particle 
distribution functions arriving at a particular node are considered in the 
operation. This locality is param ount to the inherently parallel nature of 
the LBM. The collision operator must satisfy conservation principles a t each 
lattice node and as such (2.14) and (2.15) must hold for mass and momentum 
conservation, respectively.

] r n i =  0 (2.14)
i

y^a»Ci =  0 (2.15)
i

It is evident in (2.13) th a t the relaxation process acts on the non-equili­
brium part , of the distribution functions at a node to drive them towards 
equilibrium. It will be shown in Section 2.5 th a t the collision operator repre­
sents the action of hydrodynamic viscosity in the  lattice Boltzmann method.

2.4.1 Single-Relaxation-Time Bhatnagar-Gross-Krook Models

Prior to the advent of the lattice Boltzmann m ethod, a single-relaxation-time 
collision operator was employed by Bhatnagar e t al. [4] in conjunction with 
an appropriate Maxwellian equilibrium function to facilitate solutions to the 
continuous Boltzmann equation. The same assumption, th a t the collision 
operator relaxes the local particle distribution functions a t a single rate, can 
be applied to  the LBM and the linear collision m atrix  simplified to,

My = - L y .  (2.16)

In conjunction with an appropriate equilibrium distribution function this 
results in the lattice Bhatnagar-Gross-Krook nnodel (LBGK) tha t was pro­
posed by a number of authors [18, 17, 108]. The; LBGK collision operator is
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then written as,

Di ( /  ( x , t)) =  (fi ( x , t) -  f - q ( x , t ) ) . (2.17)

The dimensionless relaxation time r  in (2.17) controls the rate at which 
the particle distribution monotonically relaxes towards equilibrium by ope­
rating directly on the non-equilibrium function. The simplicity of this colli­
sion operator has lead to its widespread implementation in the literature. It 
should be noted th a t the relaxation time r  is subject to stability and accuracy 
constraints which are discussed in Section 2.5.2.

2.4.2 The Equilibrium Function

Application of the classical Maxwell-Boltzmann equilibrium distribution from 
kinetic theory in the LBM is impractical. Instead a discrete, truncated form 
of the Maxwellian distribution is defined as the general form of the LBM 
equilibrium function [22, 58]. This function is a small-velocity expansion of 
the Maxwell-Boltzmann distribution [78],

f - q ( x , t) = Ai +  Bi (ci • u) +  Ci (ci • u)2 +  DiU2, (2.18)

in which A i: B i , Ci and Di are adjustable coefficients.
Criteria for an appropriate equilibrium function include;

1. Dependence only on local density and velocity,

2. A form th a t leads to the macroscopic Navier-Stokes equations via the 
Chapman-Enskog analysis,

3. Admission of additional properties such as the removal of non-physical 
lattice effects.

By the multi-scale Chapman-Enskog analysis of the lattice Boltzmann equa­
tion the general form of the equilibrium function (2.18) can be tuned to meet 
the above criteria. Details of this procedure can be found in Section 2.5. The 
equilibrium functions for the D2Q9 and D3Q15 lattices can then be written 
as,

(2.19)

(2.20) 

(2 .21)

f ?  (x> t )  =  p w i 1 _  2 ?  (U U)

f l l  (X> *) = PWH 

f i l l  f a t )  =  PWIH

3 .  N \2 ^ / \1 + ^  (c, ■ u) +  ^  (c, • u) -  _  (u . u)

3 ,  . 9 /  ^ / \1 +  ^  (c, • u) +  —  (c, • u) _  _  (u . u)
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in which f j Q, and f j j j  and wi, w n  and w u i  are the functions and weights 
for the three speeds of each lattice. For the D2Q9 lattice wj = 4 /9  for i = 0, 
w u  = 1/9 for i = 1 ,2 ,3 ,4  and w m  = 1/36 for i = 5,6, 7,8. For the D3Q15 
lattice wi =  2/9 for i = 0, wjj =  1/9 for i = 1 —► 6 and w m  =  1/72 for 
i = 7 -► 14.

2.4.3 M u ltip le -R e la x a tio n -T im e  M odels

Generalised versions of the lattice Boltzmann equation are available as al­
ternatives to the LBGK model. Multiple-relaxation-time (MRT) models 
[80, 75, 49] replace the LBGK collision operator with the relaxation of a 
number of moments of the particle distribution functions at different rates.

Assuming the distribution functions can be w ritten in vector form, | fi  (x, t)), 
a transformation matrix, M, is defined to convert it to a vector of velocity 
moments |m (x , £)),

|ra (x ,t) )  =  M |/< ( x , t ) ) , (2.22)

in which |m  (x, t)) for the D2Q9 lattice is,

|?7i (x, t)) =  (/5, e, £, Jx, qXi jyi Qyi Pxxi Pxy) • (2.23)

The first three terms of this vector are the scalars of density, energy and 
energy square. The next four terms are the vectors of directional momenta 
and heat fluxes, and the last two terms are the second order tensors of stress. 
The collision process in MRT models is then written as,

Lli (x, t )  =  —M-1S [|m  (x, t ) )  — |m eq (x, t ) ) ] , (2.24)

in which S =  diag [So, 5 i , . . . ,  Sn] is the diagonal collision m atrix and |m eq (x, t ) )  

is the vector of equilibrium moments (see [80] for more details). It can be 
seen in (2.24) th a t the collision matrix operates on the non-equilibrium mo­
ments, which are then converted back to distribution functions via the inverse 
transformation matrix. In this fashion different hydrodynamic modes can be 
adjusted through the components of the collision matrix.

It is understood tha t multiple-relaxation-time LBM models exhibit in­
creased numerically stability over their LBGK counterparts [80]. Related 
benefits include the ability to tune the hydrodynamic properties such as the 
bulk viscosity and the shear viscosity [7] and the reduction of pressure oscil­
lations, particularly near the stability limit.

Due to its associated benefits, the increased com putational cost associated 
with MRT models can be considered worthwhile especially in cases involving 
extremely turbulent flows [75] and non-Newtonian constitutive models (see 
Section 4.2).
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2.5 From Mesoscopic to Macroscopic: The Chapman- 
Enskog Expansion

This section outlines the Chapman-Enskog expansion undertaken specifically 
on the D2Q9 lattice [66]. This is a multi-scale analysis of the lattice Boltz­
mann equation tha t shows how the Navier-Stokes equations are recovered 
in the near-incompressible limit with isotropy, Galilean invariance and a ve­
locity independent pressure. This is required as evidence th a t the lattice 
Boltzmann method is an appropriate tool for solving Newtonian and non- 
Newtonian fluid mechanics problems.

The analysis is started with the lattice Boltzmann equation, a lattice 
geometry, a general form of the equilibrium function and some assumptions 
on tem poral and spatial scales. The aim is to show th a t the combination 
of these ingredients can recover macroscopic equations of the same form 
as Navier-Stokes and in the process specify the details of the generalised 
equilibrium function [118].

To start, the moments of the lattice velocities are calculated to show the 
symmetric properties of the tensor J T  ( c ^ c ^ . . . )  for subsequent use in the 
multi-scale analysis. Using the D2Q9 lattice vectors listed in (2.10) the first 
four orders of the tensor are,

] [ > a  =  0, (2.25)

c /  2c Sap (i 1 ,2 ,3 ,4 ) (2 26)

E

4 c2Sa 0  (i =  5 ,6 ,7 ,8 )

^   ̂CiaCifiCij — 0, (2.27)
%

C C rC Cr — \ 2C'4ifia(3'y9 (* =  lj 2, 3, 4) (2 28)
C.aCtfC^Crf -  4c4A q̂ _ 8c4 ^  (i =  5 ,6 ,7 ,8 ) ’

in which 5 a/3 is the Kronecker delta, 5a^ d  is the fourth order analogue of the 
Kronecker delta and Aa^ o  =  5 ^ 5 ^  +  5 a j5p0 +  6ae5p7. The details of these 
identities can be found in Appendix A. It is im portant to  note th a t these 
identities will be utilised with the non-dimensionalised form of the lattice 
speed, c =  A x / A t  = 1, in order to simplify the multi-scale analysis. The 
relationship between physical and lattice units in the LBM is discussed in 
more detail in Appendix B.
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The general form of the equilibrium function f*q (x,t) (2.18) can be w rit­
ten [17] for the three speeds of the D2Q9 lattice as,

{Aq T  B 0CiaUa T  C,QCi0cCî 'LLa'LL@ T  DoUaUa (f> 0)
A 1 +  BiCictua +  CiCiaCiffUaUp +  D iU aua (i =  1 , 2 , 3 , 4 )  ,

A 2 +  B 2ciaua +  C2ciocCipuaup +  D 2u aua (i = 5 ,6 ,7 ,8 )
(2.29)

in index notation where the Einstein summation convention is used.
The general form of the equilibrium function can be considered as a small 

velocity expansion up to second order, and a simplified representation of 
the continuous Maxwell-Boltzmann equilibrium function in kinetic theory 
[108]. The coefficients (Aq, B 0, . . .  , C2, D 2) can be progressively determined 
during the multi-scale analysis of the lattice Boltzmann equation so th a t the 
macroscopic continuity and momentum equations are recovered. Due to the 
null velocity of the rest distribution it is obvious th a t B q =  Co — 0.

A continuous form of the lattice Boltzmann equation up to O  (£2) is 
obtained by undertaking a Taylor expansion of the LBE (2.2),

d  d
fi  ( x  -1- t fc j ,  t  +  6) =  / i ( x , * )  +  < ^ / i ( x , * ) c i  +  d'— / i ( x , £ )

+ l 62 x̂’ ̂ CiCi + ^
.........................................................+ 5 2 ^ / i ( x , t ) c . i  +  0 ( 5 3 ) ,

which after replacing fi  ( x ,  t)  with fi  can be substituted into (2.2) with the 
BGK collision operator (2.17),

-  -  n q).T

and then simplified to,

5 ( |  +  (c, ■ V )) /, +  i(52 ( |  +  (c, ■ V ) ) 12 U +  O (a3) =  A  (/i _  £ » ).

(2.30)
The multi-scale Chapman-Enskog expansion is then applied to (2.30) using 
a smallness parameter. To find the long-time long-wavelength dynamics, a 
scaling param eter e is introduced, defined as the ratio of the lattice spacing 
to a characteristic macroscopic length. The hydrodynamic limit requires

A , S /i , n f 1 I 1 !! r  / i  , .
a r  +  Cl' v / i J  +  25 i ¥ + C i ' v a  

+ ClCi • V V /j) +  O (<53) =  :
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e <  1 [78]. It is suggested by Hou et al. [66] tha t the small physical time 
step, can be used as the smallness parameter and thus play the role of 
the Knudsen2 number in the expansion [11, 40]. To start, the LBE particle 
distribution function is expanded about its equilibrium,

the particle distribution functions from equilibrium. Time can then be 
decomposed into convective (to) and diffusive (t\) time scales [19, 121] as 
t = to -f +  5~2t 2 which allows the differential operator,

bution functions do not contribute to the macroscopic density or momentum 
the following constraints can be defined,

which can be used in the determination of the equilibrium function coeffi-

which can be simplified using the identities in (2.25), (2.26), (2.27) and (2.28) 
to give,

p =  A q +  AAi +  4^2 T  (2Ci +  4 C2 +  D q +  AD\ +  4 .D2 ) ^ 2-

2 From kinetic theory, the Knudsen number is the ratio of the molecular mean free path 
(the average distance a fluid molecule can move without colliding with another molecule) 
to a representative physical length scale (e.g. the radius of a body in a fluid). Generally, 
it varies from high for rarified gases to low for dense fluids. Consequently, the Knudsen 
number is useful for determining whether statistical mechanics or continuum mechanics 
should be used to represent a flow problem [4].

3 It is an important assumption of kinetic theory that even in dynamic flows the micro­
scopic behaviour is never far from equilibrium [41].

f t = f ?  + S J T 1 +  P f T *  +  O  ( s 3) , (2.31)
in which f™eql and f ™eq2 represent the deviation3 in increasing order of 

d _  d d 2 d 
dt d t0 ^  dt\ ^  d t2

(2.32)

On the assumption tha t the equilibrium deviations of the particle distri-

(2.33)

(2.34)

cients. Substituting the general expression for the equilibrium function (2.29) 
into the density summation in (2.33) gives,

p = A 0 +  D 0uaua

(BiCiau a C\CiaCipuaUp) T  4 D \U au a

+4A2 +  ^ 2  (B 2ciaua +  C2ciaci(3uaup) +  4D 2u aua,
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Equating the density and velocity terms [144] then leaves,

p =  A q 4- 4j4i +  4̂ 4.2, (2.35)

0 =  2C\ 4- AC2 4~ Dq +  4D\ +  AD2. (2.36)

Similarly, substituting the equilibrium function into the momentum flux sum­
mation in (2.33) gives,

p U a  ^   ̂ ( ^ l Cia 4“ H \C ia CipU{} 4“ C \C ia CipCi^UpUry D \C 'LOLUpU
i = l —>4

4~ ^   ̂ (-d^Cia 4~ B2CiCtCipUp -(“ C2CiaCifjCijUpÛ  4~ D2Ciol'Ufj\Lp} ,
i= 5 —>8

which can again be simplified using the velocity moment identities to leave,

p = cl B l + \ B 2. (2.37)

The Taylor expansion of the LBE can be found to first order in 5 by 
substituting the equilibrium (2.31) and differential time (2.32) expansions 
into (2.30),

1 ( d _o d ,2 ,
+ 2 ( d ^  + dV  + <) (Ci' V)

{f !q + Sf r l) + 0  =  - d / T 1, (2.38)

and removing all term of O (52) and higher,

( &  +  ( c i ' V) )  / r  =  (2'39)

Using the second order expansions of equilibrium and differential time and 
removing all terms of O (53) and higher the LBE to second order in 5 can be 
found,
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and simplified using (2.39) to,

l j ‘ *  (' - s )  ( £ + ■V1) r "  - t '? "  <240>
Undertaking a summation of (2.39) over all lattice directions,

J - £ / r + v - £ / f c .  =  ± ] r / r \
 ̂ i i i

and utilising the definitions of density and momentum flux and the constraint 
on non-equilibrium functions results in,

A  +  V • (pu) =  0, (2.41)

which is the continuity equation to 0 {5 ) .  This shows th a t density fluc­
tuations relax on the timescale to via the propagation of sound waves, and 
therefore decouple from the t\ timescale evolution of the viscous stresses [78]. 
Multiplying (2.39) by q  and performing the same summation gives,

A  (pu) +  V • n ' 9 =  0, (2.42)
Ol 0

in which Heq =  JT  ici the order momentum flux tensor. Similarly, 
summing (2.40) over ?,

and using the same constraints gives the continuity equation to O  (£2),

I!-»■ <2«»
which means tha t there are no density fluctuations and the fluid is incom­
pressible a t the t\ timescale. All relaxation of density fluctuations takes place 
on the to timescale [78]. Multiplying (2.40) by Ci and summing gives,

A  (pu) +  ( i  _  T )  v  • i r * 1 =  o, (2.44)

in which n negl is the second order momentum flux tensor.

9  , 
w 0 +(c> v )  £ / ,

n e q l   __  ̂ \   ̂ nneq2
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The first order momentum flux tensor can be rewritten in index notation, 
after including the general form of the equilibrium distribution function and 
applying the identities in (2.25), (2.26), (2.27) and (2.28),

Hq/? — 2v4i£Q/g +  2 C \8 ap1QU1ue +  2 D i8 apU^u^

+ 4 A 2 ^ a /3  +  C 2 ( 4 i A a py0 — U^ILq +  2Z?28a pU~/U~f ,

which reduces to,

=  [2A\  +  4^2 +  (4C2 +  2D\  +  4i^2) ^ 2] &a(3
-\-&C2UaUp +  (2Ci — SC2 ) UauP^afd' (2.45)

In the absence of body forces, the momentum flux tensor for an incom­
pressible fluid is,

IW  =  fmau 0  +  p5a 0  -  ii ( | ^  +  ^ )  . (2.46)

In considering the form of (2.45) it can be seen tha t the first term  is similar to
the pressure term  in the the Navier-Stokes equations as in (2.46). Therefore,
to ensure a velocity independent pressure in the LBM the velocity component 
within the pressure term  in (2.45) is forced to vanish via its coefficient,

4 C2 T  2D\  +  4Z?2 =  0- (2.47)

Galilean invariance is ensured by removing the anisotropic uaup8ap term ,

2Ci -  8C2 =  0, (2.48)

and by direct comparison of (2.45) and (2.46) it can be assumed that,

8C2 =  p. (2.49)

At this stage an isothermal equation of state for the pressure is introduced 
such that,

p  =  c2sp =  2Ai  +  4^2, (2.50)

in which cs is the speed of sound on the D2Q9 lattice. Applying (2.47), 
(2.48), (2.49) and (2.50) to (2.45) gives the momentum flux tensor to O  (<$),

=  Puoiud + c2sp8 ap , (2.51)

which can then be placed in the first order momentum equation (2.42) to 
yield,
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Equations (2.41) and (2.52) are the inviscid Euler equations which have been 
derived from the LBE by a first order expansion in the smallness parameter 
5. It is subsequently apparent th a t the first order expansion is insufficient 
for extracting the viscous term s of the Navier-Stokes equations.

In order to derive a higher order momentum equation from the LBE the 
O  (£2) momentum flux tensor must be found using the same procedure as 
above. Recalling th a t H.neql =  J T  f ™eqlQCi and th a t (2.39) can be rearranged 
to define f™eql results in,

n r ; 1 =  - r
d d du

~ cs (pu 7 ) ^otp 4“ (puaup) +  (2 Bi  — 8 B 2 ) 5ap

: p 5 a 0  + 4 B J p >  + 9̂
UX^ \OXa <3Xp

(2.53)

The details of this derivation can be found in Appendix C. To maintain 
isotropy the third term  of (2.53) is removed by,

2Bi -  8B2 =  0, (2.54)

which when combined with (2.37) gives,

B 1 =  - ,  B 2 =  — . (2.55)
3 12

To remove the time derivative in (2.53) the product rule is applied, .

d d d , v
W 0 {puu) = u dT0 {pn) + W 0 i p u ) u

and then substituting the inviscid momentum equation (2.52), 

d
—  (puu) = u [-V  • (puu) -  V (ejp)] +  [-V  • (puu) -  V (c*p)] u,

to give, in index notation,

d d d d
(puau 0) =  - g ^ -  (puau0u7) -  u a g —  (c2sp) -  g^~  (cjp) u 0 . (2.56)

Substituting (2.55) and (2.56) into (2.53) gives,
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The fourth and fifth terms of (2.57) can be expanded using the product rule 
and the equation then regrouped,

n I T  =  - r
d

- - c 2 
3 s J dx. (Pu,y) q̂/3 T

dp
dxa

Up

+ P f d u p  + dua d
3 \ d x a dxp J  d x a

{pUaUpuJ

dp  
d x a

(2.58)

and the placement of (2.58) in (2.44) gives the momentum equation to second 
order in 5.

To this point, the continuity and momentum equations have been derived 
to both O  (J) and O (52) from the expanded lattice Boltzmann equation. Re­
calling the differential time expansion (2.32), the two continuity equations, 
(2.41) and (2.43)4, can be combined to yield the macroscopic continuity equa­
tion,

dp
dt

+  V • (pu) =  0. (2.59)

The first order (2.52) and second order (2.44) momentum equations can be 
combined in the same fashion,

d
-Qt  (pu) =  - V  • (puu) -  V  • (c2sp) -  S ( i  -  i )  n™91

and then the second order momentum flux tensor (2.58) introduced in index 
notation,

dt

+5 —  ( T  ~  -

d xp \  2 y 
d (  1

dxp \  2
+ p ( dup dua

d
-  - c 2 
3 s ) dx.

(yPÛ ) 5{aP

3 \ d x n dxt

3
d

u, dp 
01 dx  r

Up
dp

d x a

d xa
(,pUcxUpU (2.60)

In (2.60) it can be seen that,

dup dUa _  
dxa dxp 601(3 ’

(2.61)

lNote that the first order continuity equation contains an error term of O (52) .
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in which eap is the rate of strain tensor. Also, looking back on (2.35) and 
(2.50) a choice can be made for the coefficients A 0, A\  and A 2,

A‘- l -  <2-621

which gives a solution for the sound speed, cs = 1/3. It should be noted tha t 
these coefficients are not unique and another example can be found in [25]. 
Using (2.61) and (2.62) and ignoring the third order velocity terms on the 
basis tha t the macroscopic velocity is small compared to the lattice speed of 
sound,

Ft ^ +^  {pu° U0) = - J -  ̂ +2̂ {pve«p)■ ( 2 - 6 3 )

in which v is the kinematic viscosity,

*=K r _ 9 (2-64)
which is obviously dependent on the relaxation parameter in the BGK form 
of the lattice Boltzmann equation.

Therefore, the Navier-Stokes equations of continuity (2.59) and momen­
tum  (2.63) for an incompressible fluid have been derived from the lattice 
Boltzmann equation using the. multiscale Chapman-Enskog. analysis. All tha t 
remains is to specify the equilibrium function coefficients Do, D\  and D 2. It 
has been shown tha t A\ — ^ A 2, Bi = AB2 and C\ = 4C2 so from the symme­
tric properties of the lattice it can be assumed th a t D\ = AD2 [144]. Using
this information and (2.47) and then (2.36) gives,

Do = ~ ,  A  =  ^ ,  A  =  (2-65)

leaving the equilibrium functions for the D2Q9 lattice fully defined as in 
(2.19), (2.20) and (2.21) in Section 2.4.2.

2.5.1 The Compressibility Constraint

The Chapman-Enskog analysis of the lattice Boltzmann equation has shown 
that it recovers the Navier-Stokes equations in the near incompressible limit. 
It is im portant to note th a t the pseudo-compressibility of the LBM is not 
related to the same phenomenon in the full Navier-Stokes equations.

In the regular LBM the density fluctuation is assumed to be negligible. 
Paradoxically, slight spatial density variations are required to drive flows. As
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the density fluctuation becomes significant, compressibility errors can become 
problematic in numerical simulations. More specifically, to simulate hydro- 
dynamic flow with the regular LBM correctly, one must ensure th a t the Mach 
number is of order e and the density fluctuation is of order e2 [57]. By re­
ducing the computational Mach number information is allowed to propagate 
through the lattice while little convection has occurred (ratio of fluid speed to 
grid sound speed is very low) and the solution approaches the incompressible 
limit [119]. Recall th a t one of the starting points of the Chapman-Enskog 
analysis was a general form of the equilibrium function created using a small 
velocity expansion of the Maxwell-Boltzmann distribution.

Some effort has been dedicated to the removal of the pseudo-compressibility 
in the LBM. He and Luo [57] presented a modified version of the method for 
solving the incompressible Navier-Stokes equations, rather than just in the in­
compressible limit. In this approach, the primary LBM variables are changed 
from density distribution functions to pressure and the equilibrium functions 
are changed to include mean and fluctuating density terms. Results were 
presented for 2D Poiseuille flow and 2D Womersley flow. The velocity profile 
and pressure drop in the Poiseuille flow matched the analytical solutions very 
well. The Womersley flow results matched the analytical solution well also, 
however it was found tha t the error increased as the pressure frequency in­
creased. The incompressible LBM was compared to the regular LBM, but it 
was found th a t the modified version only offered significant improvement at 
Mach numbers above 0.2. At Mach numbers less than  0.1 the two methods 
were almost indistinguishable.

2.5.2 Accuracy and Stability

The numerical accuracy of the lattice Boltzmann method is dependent on 
the computational Mach number, M a  = u /cs. It has been shown [40] [87] 
th a t at low Mach numbers the lattice Boltzmann method can solve fluid 
dynamics problems with second order accuracy in space and time. In space, 
this means th a t the error decreases quadratically with A x  while keeping the 
ratio v (d t /d x 2) constant in accordance with the definition of viscosity in 
physical units,

I f  l \ A x 2
u =  o ( T — o ) ~a— • (2.66)3 V 2 )  A t

In time, this means tha t the error decreases quadratically with A t  while kee­
ping A x  constant. The spatial sensitivity is dependent on suitable boundary 
implementation, as discussed in Section 2.6. It is also im portant to distin­
guish between discretisation errors and compressibility errors. In general,
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there is a discretisation limit after which the compressibility errors grow and 
become dominant [118].

In the LBM, an H-theorem5 cannot be guaranteed while simultaneously 
using a form of the equilibrium functions tha t results in the correct macro­
scopic equations [19]. Therefore the method is not unconditionally stable.

Detailed stability analyses of the lattice Boltzmann m ethod have been un­
dertaken for the D2Q7 [17], D2Q9 and D3Q15 [108] lattices. They concluded 
th a t the LBM requires the mean flow velocity to be below a maximum, which 
is a function of several parameters including the lattice speed of sound, the 
relaxation time and wave number of perturbations (i.e. small Mach number 
constraint).

Sterling and Chen [119] undertook a linearised stability analysis of the 
LBM and found the linear criterion tha t requires the relaxation parameter, 
r  > 1/2. This can also be determined intuitively from (2.66) and the require­
ment of positive viscosity. As the relaxation parameter is increased from 0.5 
the maximum stable mean velocity increases monotonically to a maximum 
value after which further increment does not maintain stability.

2.6 Fluid Domain Boundary Conditions
The central issue in applying boundary conditions in the lattice Boltzmann 
method is the ability to determine a set of particle distribution functions tha t 
result in the hydrodynamic quantities desired at the boundary nodes. It is 
desirable th a t the boundary implementation procedure preserves the simpli­
city, and more importantly, the locality of the lattice Boltzmann equation so 
th a t solution and parallelisation procedure is not complicated.

As a consequence of the LBM’s evolution from LGA, many of the tech­
niques for boundary condition implementation have also been transferred 
between the methods. The primary example of this is the so called bounce- 
back condition (see Section 2.6.1) which is used to enforce the macroscopic 
no-slip condition at fluid-solid interfaces.

2.6.1 Wall Boundaries

The bounce-back technique is the simplest approach to modelling the inter­
action of fluid and solid in the lattice Boltzmann method. It enforces the 
no-slip condition at fluid-solid interfaces by reflecting particle distribution 
functions from the boundary nodes in the direction of incidence (i.e. 180 ° 
transformation). This condition can be enforced over one or two time steps,

5Boltzmann’s H-theorem dictates that any initial state evolves towards a state of higher 
entropy thus ensuring stability.
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Figure 2.4: Schematic diagram of the one-step bounce-back boundary condi­
tion at (left) time t and (right) time t +  1.

as discussed below. Two attractive features of the bounce-back condition are 
th a t the required operations are completely local and tha t the orientation 
of the boundary with respect to the grid is irrelevant. These features have 
historically lent the LBM to simulations involving complex boundary geo­
metries such as porous media flows, where spatial discretisation may prove 
challenging for other CFD approaches. The simplicity of the bounce-back 
technique is at the expense of accuracy, and it has been shown that generally 
it is only first-order in numerical accuracy [26] as opposed to the second order 
accuracy of the lattice Boltzmann equation at internal fluid nodes [19]. Ne­
vertheless, the bounce-back technique is usually suitable for simulating the 
fluid interaction at stationary boundaries.

O n e -S tep  B ounce-B ack

The one-step bounce-back boundary condition is a direct descendant of boun­
dary conditions in lattice gas models. In this approach (see Figure 2.4) the 
redirection of the post-collision distribution functions is undertaken at the 
fluid boundary nodes in place of the streaming operation.

T w o-S tep  B o u nce-B ack

The two-step bounce-back condition (see Figure 2.5) is implemented as fol­
lows. At time t the particle distribution functions at the fluid node are 
relaxed resulting in, for the case of D2Q9 lattices, three particle distribution 
functions heading toward their respective ‘wall’ nodes where they are propa­
gated during the streaming process. At time t + 1 the wall nodes are included 
in the relaxation process but only in a token manner. The magnitude of the 
particle distribution functions is unchanged by the relaxation process. The 
bounce-back condition is then enforced on all wall nodes by reversing the 
direction of all functions at these nodes. The last task in this time step is 
to propagate the functions which are pointing from the wall in the direction
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Figure 2.5: Schematic diagram of the two-step bounce-back boundary condi­
tion at (left) time t, at (middle) time t +  1 and (right) time t  +  2.

of the fluid back to the fluid node. At the start of time t +  2 the reflected 
particle distribution functions are at the node which they started (i.e. the 
fluid node) ready to be relaxed.

The advantage of the two-step approach is that the boundary does not 
require the definition of fluid boundary nodes. Also, w'hen the physical boun­
dary is assumed to lie halfway between the fluid node and the wall node the 
two-step bounce-back condition is found to be second order accurate in some 
cases.

O th e r  B o u n d a ry  A ppro ach es

It has been shown that the bounce-back wall boundary transferred to the lat­
tice Boltzmann method from lattice gas models actually results in a boundary 
with a finite velocity, the magnitude of which is dependent on the relaxation 
time. A quantitative expression for this error in Poiseuille flow is given in 
[147]. However, this erroneous slip velocity decreases with the simulation re­
laxation time [96, 67] and at appropriate values of r  (i.e. less than one) based 
on other simulation criteria (e.g. simulation of practical physical viscosities) 
the actual error is quite small.

By placing the wall location in between the last row and second last 
row of nodes, it wTas shown [146] that the bounce-back condition undertaken 
over two time steps (as outlined above) maintains second-order accuracy in 
simple geometries. This was confirmed by the results of Chen et al. [20] for 
Poiseuille flow at increasing grid resolution. However, for non-conforming 
(i.e. curved, angled) boundaries, the bounce-back wall boundary has been 
shown [26, 46] to be a first order representation of a no-slip interface even 
when the wall is assumed to lie halfway in between the wall node and the 
first fluid node.
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Ziegler [146] considered the interpretation of the bounce-back method 
[26] by placing the boundary halfway between the wall nodes and first fluid 
nodes and then proposed a modified no-slip condition. In this approach the 
boundary is kept coincident with the first line of nodes and after streaming, 
the arriving functions are copied to their complimentary leaving functions 
which sets the normal velocity to zero. The remaining functions are then set 
to the average of the incoming directions which sets the tangential velocity 
to zero. The relaxation process is then applied to the fluid nodes and the 
boundary nodes followed by the streaming process. The results showed minor 
improvement over the reinterpreted bounce-back method in a Poiseuille flow 
test. An im portant drawback of this approach is th a t the orientation of 
the boundary with respect to the lattice needs to be known so th a t the 
correct distribution functions can be modified. This is obviously reduces the 
generality of the method.

Skordos [118] presented an alternative method for specifying initial and 
boundary conditions in the LBM. In this work the unknown boundary popu­
lations are calculated for the macroscopic variables specified a t th a t location 
using the gradients of flow velocity. This method requires a procedure to 
calculate the distribution functions from the macroscopic fluid variables. An 
additional term  based on the gradient of the velocity field is added to the 
collision operator to allow adjustment of the fluid viscosity independent of 
the relaxation parameter. The velocity gradients are calculated using finite 
differences. However, these finite differences introduce a cumulative error 
into the time evolution of the problem. This is overcome by using a hybrid 
method, in which the modified collision operator is used everywhere in the 
initialisation step and only at the boundaries thereafter. The reliance on 
finite differences generates some problems in this method. First, they cannot 
be evaluated at boundaries where the velocity is unknown. Second, irregular 
boundaries and coupled particles would also introduce major challenges.

Inamuro et al. [67] also recognised tha t diffuse particle reflection at boun­
daries does not generally result in a fluid velocity equal to the wall velocity at 
the interface. In response to this problem a non-slip boundary condition was 
devised th a t calculates the unknown (incoming) particle distribution func­
tions as equilibrium values of the local density and the counter-slip velocity. 
This boundary condition was tested numerically in Poiseuille and Couette 
flows and found to reproduce the analytical velocity profiles to machine ac­
curacy and to  be second order with respect to grid size. However, a significant 
drawback of the method is tha t corner boundary nodes cannot be handled 
using the general approach. Therefore, the implementation of this boundary 
condition could be problematic for practical solutions th a t contain irregular 
boundaries with few segments parallel to the computational lattice.
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Noble et al. [96] presented on the D2Q7 lattice a hydrodynamic boun­
dary condition th a t calculates the unknown particle distribution velocities at 
the boundary from the known distributions at neighbouring nodes and the 
specified velocity components. In this method it is assumed tha t adjacent 
to the boundary nodes lies fluid nodes (in the fluid) and wall nodes (outside 
the fluid). The only undefined distribution functions th a t will propagate to 
the boundary node are the two from the wall nodes. The hydrodynamic 
density and momentum at the boundary nodes is then defined in terms of 
the incoming distributions from neighbouring nodes. Because the velocity 
components a t the boundary are specified, the three unknowns (density and 
two incoming distributions) can be found using the three available equations. 
This method was tested in both Poiseuille and shear flows and found to repli­
cate the analytical solutions excellently. The results also confirmed th a t the 
LBM is indeed spatially second order accurate provided th a t the boundary 
conditions are modelled accurately.

It is immediately apparent tha t this approach is not directly applicable 
to the more accurate D2Q9 lattice because the number of incoming unknown 
particle distribution functions would increase from two to three. As such, 
supplementary rules would be required. Also, this method has only been 
developed for boundaries tha t are parallel with one of the lattice directions 
and is thus not applicable to non-aligned or irregular boundaries.

Chen et al. [20] recognised tha t enforcing the velocity at the bounda­
ries is not sufficient to ensure the momentum flux is correct. In response 
to this, and the other issues with the bounce-back scheme, they proposed a 
method based on the extrapolation of the distribution functions at the boun­
dary. This techniques assumes the existence of an additional layer of nodes 
behind the boundary and inside the wall (i.e. exterior nodes). Before strea­
ming is undertaken the incoming distribution functions at the exterior nodes 
are extrapolated from the boundary nodes and the first row of fluid nodes. 
Note tha t the distribution functions at the boundary nodes are evaluated 
from equilibrium of the prescribed velocity or pressure. These extrapolated 
functions then stream to the boundary nodes and relaxation is applied to all 
domain nodes except the exterior nodes. Numerical tests of the extrapolation 
method included Poiseuille flow, unsteady Couette flow, flow in a lid driven 
cavity and flow around a periodic array of cylinders. They showed second or­
der accuracy for the density, momentum and stress at the wall boundary. An 
associated advantage of the extrapolation method is tha t the true location 
of the boundary can be shifted with respect to the nodes whilst maintaining 
second order accuracy by simply altering the finite difference approximation. 
This is an improvement over the bounce-back approach which is only second 
order when the boundary lies halfway between the wall nodes and interior



CH. 2 THE LA TTICE BO LTZM ANN METHOD 65

Wall N od es

B oundary Location

Fluid N o d es

Boundary
Location

(a) (b)

Figure 2.6: Schematic of the unknown particle distribution functions on flow 
boundaries for (a) the D2Q9 lattice and (b) the D3Q15 lattice.

nodes and is orthogonal of the underlying lattice. However, as is the case 
with many of the modified boundary conditions, the extrapolation technique 
loses the locality of the bounce-back method by requiring information from 
a number6 of internal fluid nodes.

2.6.2 P re s su re  an d  V elocity  B o u n d aries

The application of pressure and velocity boundary conditions in the lattice 
Boltzmann method involves the inverse problem of assigning particle distri­
bution functions from the prescribed macroscopic constraint. It is apparent 
from the equation of state for pressure (2.50) in the LBM that pressure 
conditions are applied by assigning the corresponding density. Figure 2.6 
schematically illustrates the unknown particle distribution functions at flow 
boundaries for the D2Q9 and D3Q15 lattices.

Many of the bounce-back boundary condition improvements discussed 
in Section 2.6.1 can also be applied to velocity and pressure conditions. 
Zou and He [147] proposed a condition based on the bounce-back of the 
non-equilibrium function tha t can be applied to velocity, pressure and wall 
constraints. The most attractive feature of this boundary technique is that 
the required operations are local.

Consider the 2D flow boundary in Figure 2.6a. After streaming, the par­
ticle distribution functions / i ,  / 5 and / 8 are unknown due to an absence of 
lattice sites from which information can be convected. The definition of ma­
croscopic density (2.5) and momentum flux (2.6) provides three equations

6This number is dependent on the lattice geometry and the number of distribution 
functions that need to be determined.
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for the solution of these unknown functions. However, depending on whe­
ther pressure or velocity is prescribed at the boundary, another macroscopic 
quantity is unknown. The set of unknowns, summarised as follows, therefore 
requires an additional equation in order to be solved.

1. Pressure boundary: Density, p , and tangential velocity, uy, are specified 
and ux, / i ,  f 5 and are unknown.

2. Velocity boundary: Normal and tangential velocity, ux and uy, are 
specified and p, / i ,  / 5 and are unknown.

The additional equation in this boundary technique is provided by the bounce- 
back of the non-equilibrium function normal to the flow boundary. W ith the 
unknowns at each boundary node determined they are included in the colli­
sion process at the next time step.

Pressure Boundaries
Assume th a t a pressure, pin = clpin, is applied at the flow boundary in Figure 
2.6a. The definition of density (2.5) in the lattice Boltzmann method allows,

f l  +  /5 +  /8 “  Pin ~  (/o +  /2 +  /3 +  /4 +  /6 +  JV)- (2.67)

The normal velocity is assumed unknown and the tangential velocity is pres­
cribed as zero at a pressure boundary so from the definition of momentum 
flux (2.6) in the x-direction,

f l  + h  + /8  =  P in ^ x  + fz  + /6  +  / t j  (2 .68)

and the y-direction,

fs  — f& = ~ f 2 +  Ia — fe +  f j .  (2.69)

Equating (2.67) and (2.68) and rearranging gives the normal velocity,

ux = 1 -  1 /o + >  +  /4 +  2 ( /3  +  /6 + . M .  (2.70)
Pin

The bounce-back of the non-equilibrium function is now applied normal to 
the boundary as,

f i  -  / f  =  /*  -  f ? .  (2 .71)

The equilibrium functions f*g and f I 9 are then substituted into (2.71) to
solve for / 1?

f l — fzA- ^PinUx- (2.72)
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To find / 5, (2.68) is added to (2.69) and then (2.72) is substituted for f i  
which gives,

h  =  \ P inU x - \ { f 2 -  h )  +  f l .  ( 2 .7 3 )

Finally, substituting (2.73) into (2.69) solves for /s,

h  =  \ p i n U x  +  \ { f 2 -  h )  +  k -  (2 .7 4 )

Application of the the same procedure on a positive7 y-boundary allows 
the solution of the unknown normal velocity, uy, and the unknown particle 
distribution functions, /s  and fe. These results are listed in (2.75), (2.76), 
(2.77) and (2.78), respectively.

1 _  [/o +  f i  +  h  +  2 (/«  +  h  +  fs) \  ( z 7 5 )
Pin

f 2  = h  + T ^P inU y  (2.76)

h  = \ p i n U y  - \ { h -  h )  +  f i  (2.77)

f& = QpinUy +  -  ( fl  -  fs) -F /8 (2.78)

The unknown velocities and particle distribution functions at negative 
x-boundaries and negative y-boundaries can be found in a similar fashion.

At the corner node in Figure 2.6a only /o , / 2 , h  and fe> are known after 
streaming but both ux and uy can be prescribed as zero. The reduced amount 
of information at this location requires a different method of processing the 
boundary condition. The bounce-back of the non-equilibrium function is 
applied normal to the flow boundary to find / i ,

/ i  =  /3  +  ( / r - / | ?) =  / 3 ,  (2.79)

and normal to the wall to find ,

f* = h  + ( / f  -  f ? )  =  h -  (2-80)

W ith the knowledge th a t f \  =  fa the sum of momentum flux in the x- 
direction gives,

0  — A — f& ~ f i  +  «/*8 5 (2.81)

7The boundary normal is in the positive Cartesian direction.
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and using / 4  =  f 2 the sum of momentum flux in the y-direction gives,

0  =  fh +  fe ~  f i  ~  fs- (2.82)

The addition of (2.81) and (2.82) gives / 5 =  f 7 and as a consequence fg = 
f$. The remaining unknowns, and can be found from the density 
summation,

h  — f? — g \pin ~  fo ~  2 ( / 3  +  / 2  +  fe)\ ■ (2.83)

The unknown particle distribution functions at other corner nodes are 
found in the same way.

In three dimensional analyses, when using for example the D3Q15 or 
D3Q18 lattices, the number of unknown particle distribution functions at 
boundaries can become problematic because the number of macroscopic quan­
tities8 available at each node is only four (one density and three momentum). 
Figure 2.6b shows a simple problem using the D3Q15 lattice in which a wall 
boundary lies in the yz-plane. It can be seen tha t the number of unknown 
particle distributions is five, which is already greater than the number of 
equations available even for this simple boundary geometry. To be able 
to specify the unknown particle distribution functions required to enforce 
hydrodynamic boundary conditions such as velocity or pressure, additional 
information is required.

Maier et al. [8 6 ] proposed a simple technique for specifying the unknown 
distribution functions a t 3D boundaries. The first step in this approach is to 
apply the bounce-back condition to set provisional values for the undefined 
incoming particle distribution functions. This process defines the density and 
enforces the correct normal velocity at the boundary. These functions are 
then redistributed using (2.84) whilst conserving mass to achieve the desired 
tangential velocity at the wall. For the D3Q15 lattice a  = 1/4 while for the 
D3Q18 lattice a = 1 / 2 .

fi  = f i - a t v -  ci (2.84)

The redistributions are only performed on particle distribution functions tha t 
have a component tangential to the wall (e.g. f j ,  /g, / n  and / 1 3  in Figure 
2.6b). For the case of non-zero tangential wall velocity, (2.84) is modified 
by substituting v  =  p (u — u w) into the redistribution. This boundary pro­
cedure is undertaken after streaming and before collision. Non-zero normal 
wall velocity is accommodated by adding mass to  the incoming orthogonal 
distribution functions (after bounce-back) to achieve the prescribed normal 
velocity before redistribution via (2.84).

8 More importantly their respective definitions which are based on summations of the 
local particle distribution functions.
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A  similar procedure is used for applying pressure (i.e. density) boundary 
conditions. The unknown incoming distribution functions are first extrapo­
lated from their corresponding outgoing distribution functions mirrored at 
the boundary. A provisional density can then be calculated, which is then 
redistributed to achieve the desired density condition. Zero tangential velo­
city is enforced a t the boundary by applying (2.84) with v  =  pu  — CinCin • p\x 
in which is the incoming orthogonal distribution function (e.g. f i  in Figure 
2.6b).

Zou and He [147] applied their bounce-back boundary condition to the 
D3Q15 lattice and employed the tangential function redistribution discussed 
in [86]. Considering a 3D pressure boundary such as in Figure 2.6b, / i ,  f j ,
/g, / n  and / 1 3  are unknown, uy and uz can be prescribed as zero, and pin
is specified. As in the 2D case, the normal velocity, ux , must first be found. 
Equating the definition of density,

f l  +  f? +  f§ +  / l l  +  /l3 =  Pin — fo — fz  — f i  — fb — /6
— (/2 +  /s  +  /io +  f l 2 +  f u ) , (2.85)

and the definition of the x-direction momentum flux,

/ l  +  f? +  h  +  / l l  +  /l3 — Pin^x +  (/2 +  /s  +  /lO +  /l2 +  / 1 4 ) 5 (2.86)

gives the normal velocity after rearranging,

u = 1 ^ ^  ^10 ^12 (2 87)
Pin

Applying the non-equilibrium bounce-back in the normal direction, f \ —f [ 9 = 
f 2 -  f 29, then gives,

f l  = h  +  7̂PinUx. (2.88)

The non-equilibrium bounce-back is also applied to the diagonal distribution 
functions, /?, / 9, f n  and / i 3, to give in general terms,

f i  = fi+i +  ^PinUx (z =  7 ,9 ,11 ,13). (2.89)

Following Maier et al. [86], /?, /g, f n  and / i 3 are further modified using (2.84) 
to enforce the zero tangential velocity constraint in the y and z-directions,

f? =  /s  +  — pinUx +  -  [ -  { h  — h )  ~  (/s — /s)] 5 (2.90)

h  — /io +  -y^PinUx +  -  [ -  {fz ~  / i )  +  (/s ~  /e)] j (2.91)
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/ l l  — /l2 +  J^PinUx +  J  [(/3 — fa) ~  {fa ~  fa)] 5 (2.92)

/ 1 3  =  f u  +  z^PinV'x +  j  K/ 3  — fa) +  (/s ~  /e)] • (2.93)

As in the 2D implementation, all operations for the 3D non-equilibrium 
bounce-back pressure condition are local. A further advantage of this me­
thod is tha t corner can nodes can be handled in an identical fashion. The 
same procedure can be used to determine the unknown particle distribution 
functions at positive and negative x, y and z-boundaries.

Velocity Boundaries
Applying velocity boundary conditions using the non-equilibrium bounce- 
back approach is only subtly different to applying a pressure boundary. Recall 
from Section 2.6 tha t for a 2D boundary, such as tha t in Figure 2.6a, ux and 
u y are prescribed and p, fa, fa and fa are unknown. By equating the definition 
of density (2.5) and x-direction momentum flux (2.6) the nodal density can 
be found,

P = --------[fa +  fa +  fa +  2 ( /3 +  fa +  fa) ] . (2.94)
1 - u x

Applying the non-equilibrium bounce-back to find fa gives,

fa — fa +  -^Pinux. (2.95)

By adding the equations for the x-direction and y-direction momentum flux 
and incorporating (2.95) fa can be found,

fa = Qpux +  ^ Puy ~  2  {fa ~  fa) +  fa' (2.96)

and by subtracting the y-direction momentum flux equation from the x- 
direction momentum flux equation and again substituting (2.95), fa can be 
found,

h  =  \ f m x ~ \ f m y +  \  ( h  ~  f i )  + fe- (2-97)

Using the same approach for a positive y-direction boundary results in 
the definitions of p, fa, fa and fa shown in (2.98), (2.99), (2.100) and (2.101), 
respectively.

P = -------[fa +  fa +  fa +  2 {fa +  fa +  fa)] (2.98)
l - U y

fa — fa +  T̂ PinUy (2.99)
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h  =  \ p u x +  ^pUy -  i  ( / i  -  / 3 ) +  f l  ( 2 .1 0 0 )

fs  =  —2 P^x +  +  2  (Z1 — ^3) (2.101)

The application of negative x-direction and y-direction boundary condi­
tions can be derived in the same way.

Corner nodes for 2D velocity boundaries require slightly different proces­
sing to th a t for pressure boundaries. Using the corner shown in Figure 2.6a 
as an example, p, / i ,  f 4, / 5, f 7 and /g are unknown while ux and uy are 
prescribed as zero. Using the bounce-back of the non-equilibrium function 
normal to the flow boundary gives f \  =  fs  and normal to the wall gives 
f t  — fi-  The combination of the equations for x-direction momentum flux 
and y-direction momentum flux gives / 5 =  f 7 and /g =  f§- Using the density 
summation and these four equalities to attem pt to solve for / 5 and f 7 gives,

h  =  f i  =  2  \P ~  /o  ~  2 {fi  +  f 2 T  / e ) ] , (2.102)

but the nodal density, p, has not yet been determined and there are no more 
equations available. Based on the assumption of constant density along the 
boundary [147], the density is borrowed from the neighbouring node (in this 
case, p ( x , y  — 1)) and (2.102) can be solved.

It should be noted th a t Latt et al. [81] have shown th a t the velocity 
boundary condition, of Zou and He is unstable for values of r  < 0.55. This 
places constraints on the range of Reynolds numbers tha t can be simulated 
in practical applications. Also, this boundary implementation is not strictly 
mass conservative as it allows a gradual increase of the total mass in the fluid 
domain. This is not an issue as the correct particle distribution function 
differences are maintained. However, if a body force is implemented the 
additional mass will be problematic.

The 3D velocity boundary condition can be applied on the D3Q15 lattice 
by following the procedure for the pressure boundaries.

Curved Boundaries
It is im portant to note tha t the non-equilibrium bounce-back technique is 
limited to boundaries tha t are parallel to the orthogonal lattice directions, 
however other boundary-fitted approaches have been investigated.

Filippova and Hanel [38] proposed a boundary fitting concept tha t utilises 
weighted contributions from the wall node and the  fluid node to evaluate 
the population evolution at the fluid node. The weighting is based on the 
position of the actual boundary with respect to  the wall and fluid nodes
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(i.e. the ratio of distance between them). This method allows prescription 
of the no-slip condition at boundaries th a t do nott conform to the underlying 
grid with second order accuracy. The boundairy condition was tested in 
conjunction with a grid refinement procedure ini the case of flow around a 
circular cylinder and found to correlate well with benchmark results for drag 
and lift coefficients. However, improvement over the bounce-back condition 
was marginal.

An improvement to the fitted boundary techinique of Filippova and Ha- 
nel was offered by Mei et al. for 2D [91] and 3D [92] problems. They found 
the former work to be unstable in pressure driven channel flows when the 
boundary is closer to the fluid node than the wall node. In fact, a sensiti­
vity analysis of the stability to the relaxation param eter and the boundary 
location with respect to the grid found a large imstability envelope. In this 
work the fluid node evolution when the boundary is closer to the fluid node 
than than the wall node was modified which resulted in a much improved 
stability envelope. The accuracy of the method was comparable to th a t of 
its predecessor.

The non-conforming boundary condition of Bouzidi et al. [7] is similar 
to those in [38] and [91]. In this approach the iratio q is calculated as the 
distance of the boundary from the first internal fluid node. The boundary 
is handled in different ways if q < 1/2 or if q< > 1/2. The first step is 
to identify which lattice links9 connect to a boumdary node. The incoming 
distributions at the first internal node are then callculated from interpolations 
of the first two (first order) or first three (second oirder) outgoing (i.e. heading 
to the wall node) internal post collision functions. The calculated distribution 
functions are then used after the streaming of alll other nodes (i.e. they re­
enter computations after the end of the time step)). Note th a t when q =  1/2 
this approach reduces to the plain bounce-back approach. The m ethod can 
be extended to include velocity boundaries by (calculating the momentum 
transferred by the method.

Results were presented for Poiseuille flow in which the channel is orien­
ta ted  at an angle to the grid. This was done to ttest the performance of the 
boundary condition in a situation where the bouncce-back method is only first 
order accurate. The flow was driven by a body fcorce. The results show that 
the second order interpolation captures the correoct result and the first order 
interpolation is accurate to within 5%. Despite fits attractive performance, 
implementation of the second order interpolation! would be difficult in any­
thing other than a rectangular geometry especiallly if coupling of suspended

9 A link is the imaginary connection from a node to itsi neighbour in the direction of a 
particular lattice velocity.
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Figure 2.7: Schematic of the 2D implementation procedures for (a) periodic 
boundaries, and (b) Neumann boundaries.

particles is required.

2.6.3 P e rio d ic  a n d  S tre ss -F ree  B o u n d a r ie s

The periodic boundary condition uses the ou tpu t of the fluid domain as 
the input. In this way, an infinite array of th<e analysed fluid domain is 
created in the direction of the boundary normal. Pressure, and to a lesser 
extent, velocity boundary conditions are useful techniques for driving flow 
in fluid dynamics simulations because the results can be directly compared 
to experiments driven by a pressure gradient. However, it is a convenient 
feature of the lattice Boltzmann method tha t periodic flow boundaries can 
be implemented in a straightforward manner and this is evident in the much 
of the literature in the LBM and LGA utilising these conditions. In addition, 
assigning a fixed pressure to inlets and outlets to a fluid domain driven by a 
body force (see Section 2.7) can over-constrain tlhe system. In this scenario 
periodic (or stress-free, see below) conditions are more appropriate.

The schematic diagram in Figure 2.7a shows Low the periodic fluid boun­
daries are implemented [11] for use with a body force. As discussed in Section 
2.6.2, the inward facing particle distribution functions at the left boundary, 
f i ,  fa and /g, are undefined after the streaming process. The periodic condi­
tion overcomes this problem by copying these particle distribution functions 
from the corresponding node on the second last column at the opposite boun­
dary. Referring to the figure it can be seen thatt information from column 
n x — 1 is passed to the undefined functions on column 1, and likewise infor­
mation from column 2 ( / 3, / 6 and / 7) is passed to the undefined functions
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on column nx . In this way, outlet information is passed to the inlet and vice 
versa. It should be noted th a t this boundary technique implies two impor­
tan t requirements, namely tha t periodic boundaries must be defined in pairs 
and th a t these pairs must be of the same orientation and length.

As stated  in [11], this periodic condition utilises information from second 
last column, not the last column which is more traditional. This is done to 
prevent the gravitational potential (see Section 2.7) of any body forces from 
being cancelled out by the applied boundaries.

Stress-free boundary conditions can be utilised at fluid outlets to over­
come the issue of feedback [141] tha t is inherent in pressure and velocity 
boundary conditions. Enforcing either of these fluid properties to a constant 
value across an outlet has an effect on the flow behaviour upstream, which 
can be problematic in some benchmarking analyses.

Various forms of stress-free boundary conditions have been investigated 
in [2, 63, 109]. A simplified version of this condition involves the transfer of 
particle distribution functions from the column immediately before an outlet 
to the outlet column. Referring to the schematic in Figure 2.7b and assuming 
the right of the domain to be the outlet boundary, this would require the 
copying of the inward facing particle distribution functions (fa, / 6 and f f )  
from column nx — 1 to the undefined locations on column n x.

Yu et al. [141] proposed an outlet condition which extrapolated the par­
ticle distribution functions at column nx from those at column n x — 1 and 
column n x — 2. W ith reference to Figure 2.7b, the extrapolated condition is 
w ritten as,

f i (nx, y ) =  2fi  (nx - l , y ) -  fi  (nx - 2 ,y) i =  3,6,7. (2.103)

Junk and Yang [70] investigated a number of improved outflow conditions 
including the Neumann boundary condition, the zero normal shear stress 
boundary and the do-nothing boundary condition. The methods were tested 
in the problem of steady and unsteady flow past a cylinder in a channel and 
the results compared well with similar benchmarks.

2.7 Inclusion of External Forcing
In the context of simulating fines migration in a block cave adequate repre­
sentation of material body forces is paramount. Gravitational effects will 
predominantly drive the movement of fines around larger blocks th a t are 
either stationary or moving as a result of cave draw. However, many publi­
cations on the topic of the lattice Boltzmann method ignore the weight of 
the fluid as the flow regime is driven by pressure or velocity gradients tha t 
are assumed to be dominant.
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Buick and Greated [11] analysed the application of body forces in the 
lattice Boltzmann method in a detailed manner. They proposed four different 
methods, which used various combinations of modified equilibrium functions 
and macroscopic velocity definitions, and an additional operator in the LB 
equation tha t modifies the particle density functions due to the action of the 
body force.

The force term  in the continuous Boltzmann equation can be w ritten as 
Fad f / d c a. However the fluid particle velocity in the lattice form of the equa­
tion is constant resulting in an undefined derivative in this term. Therefore, 
any approach to include body forces must look to modify the fluid momen­
tum  rather than the velocity. Buick and Greated [11] used this principle to 
propose four methods for including fluid body forces in the lattice Boltzmann 
equation.

In Method 1 the equilibrium distribution function is modified to include 
a term  for the gravitational potential, —pV</>. When this modified function is 
used to derive the continuum limit of the LBE the Navier-Stokes equations 
are found with the gravity term  combined with the pressure tensor, p —► 
p +  pcf). This method is applicable only when the density gradient produced 
by the body force is sufficiently small.

If a body force G  is acting on a fluid then in every time increment there 
is a resultant change in momentum, A(pu) =  G . In Method 2 this principle 
is incorporated into the model by using a modified equilibrium distribution 
function featuring an altered equilibrium velocity, u*, calculated as,

pu* =  pu +  t G. (2.104)

The effect of this approach is to relax the particle distribution functions at 
each node towards an equilibrium momentum tha t has included the time- 
incremental change in momentum due to the body force. The fluid momen­
tum  for the time step is then calculated as an average of the value before 
and after the collision,

pv =  pu +  - G . (2.105)
2

In Method 3 an additional term  is added to the lattice Boltzmann collision 
operator,

Oi (x, t) = ~ ^  (f i  (x , t) ~  f ! q (x, *)) +  G  • Ci, (2.106)

in which D  is the problem dimensions and b is the number of lattice directions. 
The fluid momentum for each time increment is then calculated using (2.105).

In Method 4, the equilibrium function is calculated using an altered ve­
locity,

u* = u +  — , (2.107)
2  p
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and an additional term  is added to the lattice Boltzmann equation,

f i  (x +  Ci ,  t + 1) =  f t  (x, t) -  t  {fi (x, t) -  / f  (x, t)) +  2r2 r 1 • Ci‘
T (2.108) 

This can be considered a combination of Methods 2 and 3, with the coef­
ficients chosen to ensure the correct form of the Navier-Stokes equations in 
the continuum limit.

It is im portant to note tha t these methods were proposed to simulate 
gravity in the incompressible limit of a linearly varying density. In this limit 
it is required tha t G z  <C c where z is the extent of the simulation in the 
direction of G  and cs is the lattice speed of sound. These methods were tested 
in the cases of steady state stationary density gradient, steady state Poiseuille 
flow, and transient Poiseuille flow. In summary, Method 1 was found to be 
capable of simulating Poiseuille flow correct to computer accuracy. W hen a 
density gradient was present Method 1 performed less well than the others, 
even when tha t gradient was small. For Methods 2 and 3, if the fluid velocity 
was defined as in (2.107) then the models satisfied (up to second order) the 
continuity equation and an equation similar to the momentum equation. 
W ithin the incompressible limit, Methods 2, 3 and 4 were found to compare 
well with theory in situations where the nonlinear term  of the Navier-Stokes 
equations is zero. When tha t nonlinear term becomes nonzero, Method 4 
was an improvement over the other two methods.

Strack and Cook [120] outlined a body force method similar to Method
3 in which an additional, post-collision operator is included in the lattice
Boltzmann equation. If (x, t) is the post collision distribution function, 
the post-body force distribution function f f + (x, t) can be written as,

f ? + ( x , t ) = t f { x , t )  + AG-ci. (2.109)

The streaming of the post body force distribution functions is then,

f i  (x +  ciAt, t  +  At)  =  /+ +  (x, t ) . (2.110)

Similar body force approaches have been presented by Flekkpy and Herrmann 
[39] on a D2Q6 lattice and Singh and Mohanty [117] on a D3Q15 lattice.

From (2.109) the components of the body force operator in the lattice 
directions can be written as =  i4G • Ci. In order to be mass conservative 
it is required th a t J T  Fi = 0, which defines the coefficient A  as,

(2 .111)

where K  = 6  for the D2Q9 lattice and K  = 10 for the D3Q15 lattice.

A K c 2
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2.8 Flow Validation Examples
The implementation of the lattice Boltzmann method in a commercial FEM- 
DEM code was tested via a number of simple flow validation problems. The 
aim of these tests was to determine the accuracy and robustness of the code 
and also investigate the issues discussed in the preceding sections of this 
chapter. These issues include the order of accuracy, compressibility errors, 
and the range of physical problems (i.e. fluid velocities and viscosities) th a t 
could be analysed in the employed formulation.

The D2Q9 and D3Q15 lattices were employed for two-dimensional and 
three-dimensional analyses, respectively. These were selected on the basis 
th a t they offer a compromise of computational efficiency and sufficient nu­
merical accuracy.

The BGK formulation of the lattice Boltzmann equation was chosen for 
the collision process. Despite recent advances in multiple-relaxation-time 
models, the single-relaxation-time approach was selected for its proven ability 
in coupled DEM applications. The LBGK scheme is also less computationally 
intensive MRT models, which is an im portant consideration when dealing 
with large 3D problems.

Wall boundaries were enforced using the two-step bounce-back condition 
despite being shown to exhibit only first order accuracy a t boundaries th a t 
do not conform to the underlying lattice. This method does not require infor­
mation on the surface normals and it is a completely local operation. Both of 
these features are extremely convenient in modelling irregular domains such 
as those in a block cave mine. Pressure and velocity flow boundaries were 
implemented using the non-equilibrium bounce-back technique of Zou and 
He [147].

Finally, fluid body forces were included via an additional post-collision 
operation which alters the momenta of the particle distribution functions as 
outlined in Strack and Cook [120] and Buick and Greated [11].

2.8.1 Pressure Gradient from a Gravitational Body Force

The LBM body force implementation was tested using a representative gra­
vitational force and large action direction. This was done to investigate the 
performance of what is the simplest implementation discussed by Buick and 
Greated [11] and its susceptibility to compressibility errors. A square do­
main with side length of 2m was employed with a lattice spacing of 0.05 m. 
Bounce-back boundaries were applied on the top  and bottom  walls which 
results in an effective domain height of 1.95 m when the true boundary loca­
tion is considered to be halfway between the wall nodes and first fluid nodes.
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Figure 2.8: Results of the 2D body force test including (a) the relative error 
in gravity-induced pressure throughout the depth of the domain and (b) the 
transient response of the pressure distribution due to the inherent compres­
sibility of the LBM.

Periodic boundaries were employed on the left and right edges which created 
a domain of infinite width. Gravitational loading of -9.81 m / s 2 was instan­
taneously applied in the vertical direction at the start of the solution. The 
fluid density, viscosity and relaxation parameter were 1000k g / m 3, 0.01 m 2/s  
and 0.51, respectively.

The body force analysis was run for 200 s and the steady state pressure 
profile in the domain was interrogated. Figure 2.8a graphs the relative error 
in the pressure profile against the depth in the channel. Good correlation 
with the analytical solution for the pressure head, p = p G h : was attained.

The combination of the inherent compressibility of the LBM and the 
instantaneous application of the body force resulted in high frequency fluc­
tuations in the fluid pressure. This transient behaviour can be seen in Figure 
2.8b, which plots the pressure at the centre of the domain over the course of 
the solution. Viscous dissipation causes the decay of the pressure oscillations, 
but this effect could have been increased by applying no-slip walls at the left 
and right edge of the domain.

The input parameters for this analysis led to a lattice sound speed, 
cs = 34.64m/s. The applied body force and the extent of the domain result 
in G z  = 19.13m 2/ s 2. The ratio G z / c 2s — 0.016 and therefore the compressi­
bility constraint for the implemented body force, G z  <C c2, is obeyed.
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2.8.2 2D  a n d  3D  P la n e  P o iseu ille  F low

Poiseuille flow is commonly used as a benchmark for numerical fluid analysis 
as an analytical solution can be derived from the governing Navier-Stokes 
equations. The equation for the velocity profile across the width of the 
channel is,

in which /i is the dynamic fluid viscosity, Ap is the pressure difference over 
the length of the channel, L is the length of the channel and h is the height (or 
width) of the channel. The origin of the transverse coordinate in (2.116) is 
at the bottom  edge of the channel. This expression can be rewritten with the 
origin a t the centre of the channel and the driving pressure gradient replaced 
by a body force, G,

where v  is the kinematic viscosity.
The implemented LBM code was applied to the Poiseuille flow problem 

in two and three and dimensions. The model domain in 2D was a square 
with side length of 0.2m and in 3D was a cube with side length of 0.2 m.

boundaries were applied on the inlet and outlet. To maintain plane flow, 
periodic boundaries were also applied to the front and rear walls in the 3D 
case. The fluid density and kinematic viscosity used were 1000 k g / m 3 and 
le-04ra2/s .

profile of the analytical solution in (2.116). The sensitivity of the solutions 
to both the grid size and the relaxation param eter was tested. Figure 2.9a 
graphs the relative error in the maximum velocity at the centre of the channel 
for varying relaxation parameter, r ,  at a constant grid size of 0.005 m. The 
accuracy of the 2D and 3D results was quite similar, with both showing 
an increased rate of convergence for r  < 1. For r  > 1 the slip velocity of 
the bounce-back boundary condition becomes significant and the accuracy 
of the solution deteriorates. At the smallest analysed relaxation parameter, 
r  =  0.505, the computational Mach number was 0.004 and relative velocity 
error was 6.6e-04 in both 2D and 3D. The small velocity expansion of the 
Chapman-Enskog analysis was maintained and the bounce-back condition 
yielded good results when r  is in the region required for practical physical 
viscosities.

(2 .112)

(2.113)

Flow was driven by an x-direction acceleration of 0.001 m / s 2 and periodic

The 2D and 3D analyses both achieved the characteristic parabolic flow
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Figure 2.9: Results of the 2D and 3D Poiseuille flow analyses including the 
relative error in the maximum velocity for (a) varying relaxation parameter, 
r , and (b) varying grid size.

Figure 2.9b graphs the relative error in the maximum velocity at the 
centre of the channel for varying grid size and a constant relaxation parame­
ter, t  = 0.55. At a lattice spacing of 0.0025m the relative error was 1.8e-04 in 
both 2D and 3D. Both results also highlight the second order convergence of 
the LBM using the bounce-back boundary condition when the walls conform 
to the underlying lattice. This is evident in the log-log slope of 1.999 (~  
2) for both sets of data. Note that due to the assumption of the boundary 
existing halfway between the wall node and the first fluid node, the simu­
lated domain dimensions are equal to the physical dimensions less one grid 
spacing.

2 .8.3 3D R e c ta n g u la r  D u c t F low

To test the 3D LBM implementation in a three dimensional flow profile, the 
flow through a square duct was simulated. Maier et al. [86] analysed this 
problem extensively using the LBM with both the D3Q15 and D3Q18 lattices 
and a redistributed boundary condition (see Section 2.6.2). The results of this 
investigation showed that convergence to the analytical solution is dependent 
on factors such as the lattice implemented, the driving force (i.e. pressure 
boundaries or body force), and the Mach number. Monotonic convergence 
was found when using a body force with periodic boundaries and a constant
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Mach number for increasing grid resolution10. However, when using pressure 
boundaries the error was found to increase with increased grid resolution for 
certain Mach numbers. This could be overcome for the pressure boundary 
case by simultaneously reducing the Mach number a t the same rate as the 
lattice spacing and thereby ensuring the compressibility and discretisation 
errors were of the same order. Lastly, comparison of the D3Q15 and the 
D3Q18 lattices found the latter to be more accurate.

The quasi-parabolic axial velocity distribution for flow in a rectangular 
duct is given by the series approximation [138],

Ux (y, z)

in which —a <  y  <  a and —b < y < b .  The LBM cannot reproduce this flow 
profile exactly because of spatial discretisation errors [120] and it has been 
shown [86] th a t the error is greatest a t an aspect ratio of one. As the aspect 
ratio increases the flow profile tends toward two-dimensional Poiseuille flow 
and the agreement between (2.114) and the LBM improves.

To consider the worst-case geometry the duct flow problem was analysed 
for a square cross-section with height, width and length of 0.2 m. Flow was 
driven by an x-direction body force of 0.001 m / s 2 which was kept constant for 
all simulations and periodic boundaries were applied on the inlet and outlet. 
The fluid density, kinematic viscosity and relaxation param eter used were 
1000k g / m 3, le-04m 2/ s  and 0.51, respectively. Figure 2.10a is a contour plot 
of the axial velocity in the duct when a lattice spacing of 0.005 m is used. 
The characteristic quasi-parabolic flow profile is evident.

Figure 2.10b graphs the error in the duct against lattice spacing. The 
relative error in the maximum velocity at the centre of duct is plotted with 
the Z/2 norm error in the cross-sectional flow profile. This is evaluated as,

£ l 2 = ^ ^ / k ^ Z > (2115)

in which ua is the solution in (2.114). The summation in (2.115) is underta­
ken at all cross-sectional locations tha t are common to each grid resolution.

10 The lattice spacing is related to the relaxation parameter and the time step through 
(2.66). To maintain a constant Mach number at changing grid size either the relaxation 
parameter or the macroscopic velocity must be adjusted.

16a2
pV'K1 - I )  £  {<-»

(*-1)/2

cosh (kiTz/2a ) 

cosh (k7rb/2a)

cos (k7ry/2a)
jfe3 }. (2-114)
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Figure 2.10: Results of the 3D duct flow analysis including (a) a contour plot 
of the x-direction velocity and (b) a graph of the maximum velocity error 
and the L2Norm error of the velocity profile for varying grid size.

Approximately second order convergence can be seen in both in the maxi­
mum velocity error (slope 2.16) and the L2 norm error (slope 1.96) with the 
exception of the highest resolution data points.

The combination of input parameters in this investigation resulted in a 
decrease in the computational Mach number, from 0.015 to 0.0024, as the 
lattice spacing decreased. The results of Maier et al. |86] only displayed 
monotonic convergence when the Mach number was held constant, which 
may explain convergence deviation in the present result. Also, by applying 
the bounce-back boundary condition and interpreting the actual wall location 
as halfway between the wall nodes and the first layer of fluid nodes, the actual 
extents of the cross-section decrease with increasing lattice spacing. This will 
affect the rate of convergence of the solutions.

2 .8.4 3D  H ag en -P o iseu ille  Flow

The preceding benchmark simulations have all used orthogonal boundaries 
which are aligned with the lattice. However the LBM implementation of 
the present study was written to accommodate irregular, noil-orthogonal do­
mains. The availability of such boundaries, as opposed to only those parallel 
to the Cartesian axes, greatly increases the applicability of the LBM-DEM 
framework, particularly in large-scale cave simulations presented in Chapters 
5 and 6 .

The slow, incompressible, viscous flow of fluid in a circular cross-section,
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or tube, is known as Hagen-Poiseuille flow. The analytical solution for this 
flow profile can be derived from the Navier-Stokes equations in a cylindrical 
coordinate system as,

Ux ^  =  ^ 2 ~ R2] '  (2.116)

in which R  is the radius of the tube. The flow in (2.116) is driven by a 
body force however this can be modified to a pressure gradient by the simple 
relation, G  =  (1 /p) (dp/dx).

The accuracy of the bounce-back boundary condition on irregular boun­
daries was discussed at length in Section 2.6.1. At walls tha t do not conform 
to the underlying lattice directions the accuracy deteriorates from second 
order to first order. To investigate this point the flow through a 3D cylindri­
cal tube with a radius of 0.05m was simulated at increasing grid resolution. 
As in preceding examples, flow was driven by an x-direction body force of 
0.001 m / s 2 which was kept constant for all simulations and periodic boun­
daries were applied on the inlet and outlet. The fluid density, kinematic 
viscosity and relaxation parameter used were 1000k g / m 3, le-04m 2/ s  and
0.51, respectively. Figure 2.11a is a contour plot of the axial velocity in the 
tube when a lattice spacing of 0.001m is used. The characteristic parabolic 
flow profile is evident. Also shown in the figure is the approximation of the 
cylindrical boundary by the regular LBM grid a t a resolution of 101 nodes 
across the diameter.......................................................................................................

The relative error in velocity at the centre of the channel is graphed in 
Figure 2.11b for varying grid size. At a relative grid size of 0.01 the error 
in the maximum velocity is approximately 3%. It can be seen in this graph 
th a t the rate of convergence is not monotonic and th a t it is less than th a t in 
the preceding examples. From a linear fit of the data  the convergence slope 
is approximately 0.7, which is less than first order. This can be explained 
by the necessary approximations of the tubular boundary. In the coupled 
LBM-FEM framework the circular cross-section is created using finite ele­
ment facets. In this analysis the chosen finite element mesh density resulted 
in the circular cylinder being represented by a hexdecagonal cylinder. This 
geometry is then further approximated by the orthogonal structure of the 
D3Q15 lattice, which can be seen in the step-wise nature of the boundary 
in Figure 2.11a. Despite these approximations, the correlation of the analy­
tical and numerical results is good. Improvement could be achieved by an 
interpolation-supplemented grid and a polar coordinate system as discussed 
in Section 2.3.3.



CH. 2 THE LA TTICE BO LTZM ANN METHOD 84

. etocnv

0 005536

0 003021

O

0 002517

0 002014

i ' l  OE-01 -

0 10
Relative Grid Size

10

(a) (b)

Figure 2.11: Results of the 3D Hagen-Poiseuille flow analysis including (a) 
a contour plot of the x-direction velocity and (b) a graph of the maximum 
velocity error a t the centre of the tube for varying grid size.

2 .8 .5  2D F low  O ver a  B ack w ard  Facing  S tep

The problem of flow over a backward facing step is commonly used as a 
benchmark 1109, 59, 85] for numerical fluid analysis due to the availability of 
published experimental data  [76], specifically the length of the recirculation 
eddy. This flow regime adds a degree of complexity to the Poiseuille and duct 
flow problems by the characteristic recirculation th a t occurs immediately 
downstream of the channel expansion (backward step).

The backward step problem was analysed using the LBM implementa­
tion. Figure 2.12 shows the characteristic velocity profile for this problem, 
including the related nomenclature for the step height, /z, channel height, //, 
and recirculation length, X r. The Reynolds number is defined as [76],

(2.117)

where umax is the maximum velocity at the centre of the parabolic inflow.
Pressure boundaries were employed to drive the flow over the backward 

step. However, due to the difference of the inlet and outlet area the pressure 
difference tha t could be applied was subject to limits. Above the limiting 
value the flow velocity became sufficient for transition into unsteady flow. 
Therefore, higher flow velocities were achieved using a prescribed parabolic 
velocity profile at the inlet and a stress-free outlet. The fluid density, kine­
matic viscosity and relaxation parameter used were 1000k g / m 3, le-05m 2/s

V 'm ax h He = ---------
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Figure 2.12: The characteristic velocity profile for flow over a backward facing 
step including the related nomenclature for the flow geometry.

and 0.56, respectively. Note tha t the stability limit of the Zou and He [147] 
velocity boundary requires r  > 0.55 (see Section 2.6.2).

The length of the channel analysed was 2 m, but for Re > 50 the chan­
nel length was increased to 4 m to isolate the recirculation zone from outlet 
boundary effects. The expanded channel height, //, was 0.3m, and the step 
height, h, was 0.1m. The resultant channel to step ratio H / h  was 3.026. This 
value is a consequence of the lattice spacing of 0.005 m and the bounce-back 
interpretation of the boundary location as halfway between the wall nodes 
and first fluid nodes.

Figure 2.13a is a graph of the non-dimensionalised recirculation length, 
X r/ h , against Reynolds number as calculated in (2.117), and Figure 2.13b 
is a vector plot of the recirculation zone at Re = 26. The results of the 
present 2D study are plotted against the LBM results of Qian et al. [109] 
and experimental results of Kueny and Binder [76]. Good correlation between 
both sets of LBM results can be seen. At Re = 150 the numerical results 
are approximately 8% greater than the experimental value. The numerical 
over-prediction of the recirculation length may be due to the absence of 
gravitational body forces, which will have been present in the experiments.
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Figure 2.13: Results of the 2D flow over a backward facing step including 
(a) a graph of the recirculation length against Re for H / h  = 3.026 and (b) a 
velocity vector plot of the recirculation zone for Re  =  26.



C h a p t e r  3

M u l t i b o d y  St r u c t u r a l  
C o u p l i n g  w i t h  t h e  La t t i c e  

B o l t z m a n n  M e t h o d

One of the greatest strengths of the LBM is its ability to be fully coupled 
to  a large number of moving bodies. Furthermore, this coupling can be 
undertaken in both two-dimensional and three-dimensional dynamic systems 
where the transient nature of contacts and the tortuosity of the void spaces 
would make finite element discretisation for traditional CFD intractable.

The most common approach for multibody coupling with the lattice 
Boltzmann method is to utilise the discrete element method to govern the 
structural dynamics and interaction. This approach has been taken to inves­
tigate the sedimentation of particles in fluid [95, 37], fluid-induced erosion 
of cemented granular solids [24, 25], and the hydraulic transport of solids in 
turbulent flows [33]. All of these examples include multiple particle systems 
th a t are dominated by a large number of interm ittent contacts, moderate to 
high Reynolds numbers, and representative physical properties for the fluids 
and solids.

In the present study a LBM-DEM framework is created to simulate the 
phenomenon of fines migration in a block cave during draw. The DEM is 
employed to govern the dynamics of rock blocks up to  1 m  across in caves 
with dimensions in the order of 10 m. Under the influences of gravity and 
draw control these physical attributes will result in large contact forces tha t 
will need to be handled in stable fashion. The coupling of the fines phase to
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the blocks via the LBM will be problematic if the block dynamics becomes 
erratic.

In this chapter, LBM coupling approaches for moving boundaries are re­
viewed and contrasted following a brief discussion of the basics of the DEM. 
Issues related to the implementation of fluid-solid coupling are discussed in­
cluding boundary mapping techniques, cell coverage calculation, and hydro- 
dynamic force evaluation. The coupling of the explicit schemes of the LBM 
and the DEM is investigated and a dynamic sub-cycling procedure is presen­
ted. The chapter is concluded with a number of validation examples which 
qualitatively and quantitatively test the performance of the LBM-DEM fra­
mework.

3.1 The Discrete Element Method
In many lattice Boltzmann simulations of particle suspensions, the inter­
particle interaction is either ignored or approximately treated. However, 
cases where particles are densely packed and subject to large displacements, 
such as block cave dynamics, require accurate resolution of the contact of 
the distinct blocks. A rational choice is to employ the discrete element me­
thod (DEM) to account for this interaction, which necessitates a framework 
th a t efficiently couples the DEM to the LBM for application in fluid-particle 
interaction problems.

The discrete element method, which originated in geotechnical and gra­
nular flow applications in the 1970’s [27], has become a well-established nu­
merical tool capable of simulating problems of a discrete or discontinuous 
nature. In its classical form, a discrete system is considered as an assembly 
of individual objects which are treated as rigid and represented by simple 
geometric entities such as discs, spheres, ellipses and ellipsoids. Recently, 
more complex shaped elements such as superquadrics, polygons and polyhe- 
dra [52, 34] have also been introduced to more realistically represent objects 
encountered in practice.

In the context of the explicit, central difference integration scheme em­
ployed to solve the dynamic equations of the system, the m ajor computatio­
nal steps involved in the DEM at each time step consist of (global) spatial 
search, (local) interaction resolution, interaction force computation and solu­
tions of element positions and velocities. The global search aims to determine 
for each discrete element a list of neighbouring elements th a t may potentially 
interact with it. In the second step, each potential contact-target pair is lo­
cally resolved on the basis of their kinematic relationship. In the th ird step, 
the interaction forces between each contact pair are determined according to 
a constitutive relationship or interaction law (e.g. linear or Hertzian). Fi-
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F igu re 3.1: Aspects of contact interaction in the discrete element method in­
cluding (a) rheological representation of the soft contact model with damping 
and (b) the evaluation of contact overlap for two circular elements.

nally the velocities and displacements of the discrete elements are updated 
by the time integration scheme employed.

Figure 3.1a schematically illustrates the soft-contact model (when contact 
damping is employed) used to resolve interaction forces between discrete ele­
ments. It can be seen th a t the total contact force is composed of normal 
and tangential components, with both determined from the small, permis­
sible overlap between the particles. The contact overlap, and its evaluation 
for the simple case of two contacting circular elements, is shown in Figure 
3.1b. A range of interaction laws of varying complexity are available for the 
calculation of the normal contact force. Examples include linear, Hertzian, 
Winkler and power laws [53]. The linear and power laws are evaluated from 
the contact overlap1 and can be written in a general form as,

Fn  = a K N5 (3.1)

in which a  = m  = 1 for the linear model, and a  =  1 and m  is a model 
param eter for the power law. The normal stiffness is a model param eter 
for both interaction laws. The tangential contact component is calculated 
using a modified Coulomb friction model the details of which can be found 
in [54].

By taking into account inertial (G), contact (F c) and hydrodynamic (Ff) 
forces acting on a discrete element, the dynamic translational and rotational

1The Hertz and Winkler models evaluate the Fn -  5 relationship by integrating the 
surface traction as detailed in [53].
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equations can be expressed as,

777-3. -(- C V  =  F c -(- F f  777-G, ( 3 - 2 )

I ol cu) —  T c T f , (3*3)

in which c is a damping coefficient, and the term cv represents a viscous 
force th a t accounts for the effect of all possible dissipation forces existing in 
the system.

Due to the influence of the solution time step in the lattice Boltzmann
method on the physical transport properties of the fluid (i.e. viscosity),
coupling with the discrete element method must be handled carefully. This 
is discussed further in Section 3.3.

3.2 Review of Coupling Methods
The interaction of the fluid regime with suspended particles is integral to the 
coupling of the lattice Boltzmann method to the discrete element method. A 
number of techniques which vary in complexity, accuracy and computational 
cost have been developed to handle this interaction including, not exclusi­
vely, bounce-back [40, 43], link bounce-back [78, 79], dry coupling methods 
[2] and immersed boundary methods [97, 120, 103]. In addition, slight varia­
tions of each of these interaction methods have been developed for specific 
applications.

Successful coupling of the DEM to the LBM first requires adequate map­
ping of the structural elements to the lattice Boltzmann grid. This is shown 
for a circular and a polygonal element in Figure 3.2. The mapping process can 
differ slightly between coupling methods but it generally requires a number 
of different classifications on the nodes underlying the element. The termi­
nology used here, and shown in Figure 3.2, includes the the nodal classes of 
solid boundary nodes, fluid boundary nodes, and internal solid nodes. The 
solid boundary nodes lie inside the solid and define the element boundary 
in a step-wise fashion on the lattice. The interior solid nodes are all other 
nodes covered by the element. Lastly, the fluid boundary nodes are those 
nodes tha t lie outside the element which are connected to  a boundary node 
by one or more of the lattice links.

3.2.1 Bounce-Back Method

The bounce-back condition (see Section 2.6.1) has been tested in particle 
coupling problems due to its simplicity and locality of operations. Its sui­
tability was evaluated by Gallivan et al. [43] for the cases of flow past a
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Figure 3.2: The representation of discrete elements on a regular D‘2Q9 lattice 
showing solid boundary nodes (blue), fluid boundary nodes (red) and internal 
solid nodes (yellow).

periodic array of circular and octagonal cylinders on a D2Q9 lattice. Due 
to the fact the octagonal element conformed to the underlying lattice it was 
expected to yield reasonable results. The benchmark solution for the octa­
gonal cylinder was the LBM using the hydrodynamic boundary condition of 
Noble et al. [96] (see Section 2.6.1), while for the circular cylinder an implicit 
finite difference scheme was employed (because the hydrodynamic boundary 
condition (HBC) in [96] cannot readily handle non-aligned boundaries). In 
terms of computational expense it was found tha t the HBC consumed 25% of 
the solution time as opposed to 1% for the bounce-back, which is a significant 
increase.

W ith sufficient grid resolution the bounce-back condition was found to 
give good predictions of the velocity field and the drag force. The velocity 
field results for the octagonal cylinder showed sub-linear convergence with 
grid size at Reynolds number of 10. It was anticipated tha t the condition 
would be first order in the region adjacent the boundary but it was found tha t 
it in fact influences the entire field, degrading the second order convergence 
of the LBM. The convergence of drag force was also found to be sub-linear. 
However, the error in drag force for Reynolds numbers from 0.1 to 10 showed 
a constant error of 1%, which decreased with further increasing Reynolds 
number. Errors were found to reduce slightly with relaxation parameter.

Similar trends were found in the analysis of the circular cylinder however 
the maximum velocity error was considerably greater at the coarsest mesh 
density. The quantitative results for the bounce-back condition compared
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Figure 3.3: The link bounce-back method for fluid particle coupling.

very well with the benchmark solutions. However, the obstacles in these 
analyses did not move with respect to the lattice. This can result in undesi­
rable force fluctuations [78, 79] on the obstacle as it is re-mapped during the 
solution.

3.2.2 L ink B o u n ce-B ack  M e th o d

The link bounce-back method was proposed by Ladd [78, 79] as an impro­
vement to the bounce-back technique for modelling fluid-particle interaction 
with moving boundaries. As the name suggests, this method enforces the 
bounce-back condition on the links between fluid boundary nodes and so­
lid boundary nodes and assumes that the solid-fluid interface exists in the 
middle of each link. (i.e. halfway between the fluid boundary nodes and solid 
boundary nodes).

Details of the link bounce-back condition can be seen in Figure 3.3. The 
velocity of the boundary at the approximated interface is calculated from the 
solid’s translational and rotational velocities as,
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in which U p, Slp , and X p are the translational velocity, rotational velocity 
and centroid of the solid particle, respectively. Using the' boundary velocity 
at the link intersection, the bounce-back procedure for fluid boundary nodes 
is,

f v ( x ,  t  + At)  =  fi  ( x ,  t + )  -  2Wipvh • C |.  ( 3 . 5 )

Recall th a t Wi is the weighting function for for the lattice direction i (see Sec­
tion 2.4.2) and note tha t f i> refers to the distribution function in the oppo­
site direction to fi.  Similarly, the bounce-back procedure for solid boundary 
nodes is,

f i  ( x  +  a  At ,  t  +  At)  = fi> ( x  +  Ci, t+) +  2wipv\? • Ci. (3.6)

It can be seen in (3.5) and (3.6) tha t when the boundary velocity is zero, 
the link bounce-back method reduces to the one-step bounce-back technique. 
However, when the boundary is moving a portion of the incident particle dis­
tribution function proportional to the boundary velocity Vb is passed across 
the fluid-solid interface. The direction of momentum transfer is dependent on 
the node class (i.e. either fluid boundary or solid boundary) and whether the 
boundary is approaching or retreating from the boundary node. Obviously 
rearrangements of distribution functions, and subsequent momentum trans­
fer between the fluid and the solid, can only be made among pairs of opposing 
velocities.

The force exerted on the solid particle as a result of the bounce-back and 
momentum transfer is calculated from the net change at the links,

Fi/ (X + \CiAt'1 + \ = 2 (x’ *+)
- f i '  ( x  +  a  At ,  t +) -  2 Wipvh • Ci] C i ( 3 . 7 )

and the total hydrodynamic force is found by summing over all boundary 
links.

Two significant drawbacks of the link bounce-back method are the dispa­
rity between the physical and simulated boundary shape and the occurrence 
of fluctuations in the induced hydrodynamic load. The former is usually 
accounted for by the definition of a hydraulic radius for the suspended par­
ticle. The latter, in which temporal discontinuity exists in the hydrodynamic 
force imparted on moving solid obstacles, is a feature of this and many other 
lattice-based fluid-solid interaction methods [143]. As a solid particle moves 
across the grid, boundary links are switched ‘on’ and ‘off5' in a discrete man­
ner resulting in discontinuities in the total number of links th a t define the 
boundary and consequently the hydrodynamic force. The summation of force
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contributions over all boundary links does not completely attenuate this phe­
nomenon, and the problem is exacerbated as the particle velocity becomes 
large. Ladd [78] mitigated this problem by applying the time average of the 
to tal force on the particle at the previous and future time steps.

From the definition of the link bounce-back technique it can be seen tha t 
lattice nodes on either side of the particle boundary are treated identically, 
so tha t fluid fills the space both inside and outside the particle. Although 
counterintuitive, this approach is taken on the basis of computational conve­
nience. As a solid obstacle moves across the lattice, it will progressively cover 
and uncover nodes. To prevent the presence of fluid inside the moving solid 
would require the ‘b irth ’ and ‘death’ of fluid particle distribution functions 
at nodes tha t have just been uncovered and covered, respectively (see Section 
3.2.3). To avoid the creation and destruction of mass, momentum is exchan­
ged between fluid boundary and and solid boundary nodes as in (3.5) and 
(3.6) so th a t the fluid momentum at the approximated boundary matches 
the hydrodynamic no-slip condition. The fluid a t the remaining internal so­
lid nodes is relaxed to an equilibrium which mimics the rigid body motion 
of the particle. At moderate Reynolds number the internal fluid exerts a 
force equivalent to its inertial mass on the particle, which over short times is 
generally negligible [79].

As an improvement to the link bounce-back method, the continuous 
bounce back method [133, 134] was proposed. In it, a scalar is introduced 
which represents the fluid volume fraction of each cell2. Using this parame­
ter, rules are constructed which relate the particle distribution function after 
propagation to the post collision distribution. The amount of fluid reflected 
and propagated is broken up proportionally with respect to the fluid volume 
fraction. Results show reasonable reproduction of Poiseuille flow in channels 
only a couple of cells across, and also in channels a t an arbitrary angle to the 
grid. The improved boundary representation offered by the CBB reduces the 
cell requirements for adequate representation of curved boundaries, which in 
turn  results in significant computational savings. However, results for drag 
on discs and spheres in periodic arrays showed th a t the CBB has not eli­
minated the need for a hydraulic radius. It was also found th a t when the 
lattice viscosity deviates from 1/6 the predicted drag force drifted from the 
theoretical solution [134].

Chun and Ladd [23] proposed an interpolated bounce-back boundary 
condition to correct the problems associated with LBB and CBB techniques, 
particularly the discrepancy between the physical and approximated boun­

2A lattice cell is the unit area that surrounds a grid node. For example, the fluid 
boundary node cells in Figure 3.3 are coloured red.
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dary location. In the IBB, the particle distribution functions incident on a 
boundary travel a total distance of one grid spacing and are reflected from 
the true boundary location to a position inbetween grid nodes. The reflec­
ted distribution is then used, in conjunction with the nearest fluid node, to 
interpolate the unknown function at the fluid boundary node. Different inter­
polations are used if the boundary is closer to the solid boundary or the fluid 
boundary node. In this method , the equilibrium function is advected and in­
terpolated rather than the particle distribution function. Provided th a t two 
nodes are present between boundary surfaces (i.e. distance greater than Ax), 
this approach is found to be second order accurate and independent of visco­
sity. One drawback of the EIBB method is tha t it suffers from mass leakage 
in certain grid orientations. This has been corrected in mass conservative 
interpolations but they involve greater complexity and lose second-order ac­
curacy. However, in the incompressible limit this leakage is not significant 
[23].

It has been shown tha t interpolated bounce-back is only first order conver­
gent for LBGK models [36] and tha t MRT-LBM models are required to attain  
second order accuracy [46, 7]. Recently, Peng and Luo [103] undertook a 
comparison of the IBB condition and an immersed boundary condition (IBM) 
in the case of flow past a circular cylinder. Analyses were run at Re = 20 
for steady flow and Re = 100 for unsteady flow. The results showed that 
both methods were second order convergent. W ith the same resolution, the 
IBB was found to be more accurate than the IBM for drag, lift, pressure 
and recirculation length, however the latter still performed well compared 
to benchmark results. It also has the added advantage of being easier to 
implement.

3.2.3 Dry Particle Coupling Method

In all of the coupling methods based on bounce-back principles discussed thus 
far, fluid is allowed to exist inside the solid particles primarily for m atters of 
computational convenience. Aidun et al. [2] proposed an approach in which 
fluid was not perm itted to exist within solid obstacles. The absence of fluid 
nodes inside the solid obstacle, and subsequent absence of internal collisions 
with fluid from those nodes, means tha t there is no inertial force applied to 
the particle from the internal fluid. The forces acting on the solid obstacle are 
then limited to the hydrodynamic force of the particle distribution functions 
impacting it from the outside and its own body forces. The absence of the 
internal inertial force facilitates the modelling of obstacles with a solid density 
close to or less than the fluid density, which was previously not possible with 
bounce-back based coupling methods.
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In the dry coupling method of Aidun et al. many of the features of the 
LBB are employed. The boundary links are defined in the same fashion, the 
fluid-solid boundary is approximated at the middle of the links, the boundary 
velocity is calculated as in (3.4) and the same bounce-back condition (3.5) 
is applied at the fluid boundary nodes. At this point it is im portant to note 
th a t the lack of a complementary solid boundary node on each link means 
th a t the mass a t the fluid boundary node can change. The increment of 
momentum at fluid boundary nodes is then calculated as,

Spi = 2ci [fi (x, t +  At)  -  p (x, t + At)  WiVb * c i] , (3.8)

if i' is a boundary link and the corresponding force exerted on the particle 
is,

( x  +  ^Ci-At, t  + (3.9)

As the solid obstacle traverses the grid over a time step it may cover 
a node previously inhabited by fluid particle distribution functions. At this 
time, the particle assumes the momentum of the fluid node imparting a small 
force on the particle,

F (c) fx , t0 +  i  A t )  = fi  (x > *o) Ci, (3.10)
i

and the fluid a t this node is ‘destroyed’. Likewise, due to translation and 
rotation, nodes previously mapped as part, of the solid obstacle may become 
exposed as fluid nodes. Consequently, particle distribution functions must be 
‘created’ at the new fluid nodes. The density of new fluid nodes is determined 
from an average of adjacent fluid nodes using,

p (x ,to ) =  y % ( x  +  Ci<A«,«o), (3.11)
N b l t

and the macroscopic fluid velocity is enforced to be the same as the obs­
tacle boundary adjacent to it using (3.4). W ith the density and velocity of 
the fluid a t the new node known the equilibrium distribution can then be 
calculated. Since the newly created fluid node is assigned a momentum of 
p (x, to) u  (x, to)5 the equivalent amount of momentum must be removed from 
the particle as,

F ('*) (x , t0 +  i A t )  = - p  (x, t 0) u  (x, to) (3.12)
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The to tal force on the particle is found by the summation of forces over all 
fluid boundary nodes, newly covered nodes, and newly uncovered fluid nodes.

As in the LBB method the discontinuity of total force and momentum is 
still a problem in this method and it is handled in the same way by applying 
time averages of both quantities. Also, the bounce-back method applied at 
fluid boundary nodes means th a t the dry coupling method is not locally mass 
conservative, however it is on a global scale. Lastly, although it removes limi­
tations on the range of solid-fluid density ratios th a t can be simulated, ano­
ther drawback of this technique is the additional computational cost involved 
in the destruction and creation of fluid nodes, which is not insignificant.

3.2.4 The Immersed Moving Boundary Method

The immersed boundary method [104] is another coupling approach th a t has 
been applied to the lattice Boltzmann method [96, 36, 30] to solve fluid solid 
interaction problems. Historically, in immersed boundary methods the fluid 
domain is described by a Eulerian grid and the structural boundaries are 
mapped by a set of Lagrangian nodes. The regular, stationary grid of the 
LBM and the dynamic mapping of the structural field to the grid allows the 
same approach to be applied in LBM-DEM coupling. As a basic description, 
in immersed boundary methods the boundary conditions (i.e. no-slip) are 
enforced as additional body forces applied to the fluid. The hydrodynamic 
coupling between fluid and structure is therefore achieved by evaluating the 
force the flow exerts on the nodes and the reaction force the nodes exert on 
the flow [103].

An immersed moving boundary technique for LBM-DEM coupling was 
proposed by Noble and Torczynski [97]. Two objectives of the method were to 
overcome the momentum discontinuity of LBB-based techniques and provide 
adequate representation of non-conforming boundaries a t lower grid resolu­
tions. It was also im portant to retain two critical advantages of the LBM, 
namely the locality of the collision operator and the simple linear streaming 
operator, and thus facilitate solutions involving large numbers of irregular­
shaped, moving boundaries. In this method the lattice Boltzmann equation 
is modified to include a term  which is dependent on the proportion of the 
nodal cell th a t is covered by solid (see Figure 3.4a), thus improving the boun­
dary representation and smoothing the hydrodynamic forces calculated at an 
obstacle’s boundary nodes as it moves relative to the grid.

In the immersed moving boundary method the lattice Boltzmann equa­
tion is modified to include an additional collision term, Df, and can be written
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Figure 3.4: Aspects of the solid coverage weighting function in the immersed 
moving boundary method of Noble and Torczynski [97]: (a) evaluation of the 
solid coverage ratio, £s, and (b) the viscosity dependent weighting function
Bn (^m T)•

including the body force term (see Section 2.7) as,

’ A t
f i  (x +  CiAt, t +  At) = fi  (x, t) -  [1 -  B t

G _ Ci
K c 2

in which B n is a weighting function for the additional collision operator based 
on the total solid coverage ratio in each nodal cell, en. Note tha t both the 
solid coverage ratio and the weighting function are summations of all coverage 
contributions from solid obstacles th a t intersect a nodal cell such that en — 
J2s £s an(l B n = J2SB S, where £s and B s are the contributions from each 
obstacle. The additional collision term, 9 ZS, modifies the momenta of mapped 
obstacle nodes and accounts for fluid interaction with any solid obstacles 
present in the nodal cell. At its limits B n =  0 and B n = 1, corresponding 
to pure fluid and pure solid existing at the node, respectively. The simplest 
form of the weighting function is simply B n — en which gives a relationship 
directly proportional to the solid ratio.

Two forms of the additional collision operator, 9 f, were presented in 
[97] for the immersed moving boundary method. The first was based on 
the concept of the bounce-back of the non-equilibrium part of the particle 
distribution function,

fi? =  [/«' (x, t ) -  f ?  (p. u)] -  [/.: (x, t) -  f P  (p , v p) ] . (3.14)
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In (3.14) the rigid body velocity of particle, v p, at fluid boundary nodes, 
solid boundary nodes and internal solid nodes is evaluated as a combination 
of translation and rotation as in (3.4). By rewriting the non-equilibrium 
bounce-back condition [147] (see Section 2.6.2) in the x-direction, f i  — / f  =
h  ~  f t 9, as ,

A i-s  =  [/3 -  j f ]  -  [/i -  / r ], (3.15)

it can be seen th a t in the limit of pure solid, B n =  1, (3.. 14) and (3.15) are 
analogous. In the limit of pure fluid, B n = 0, the additional collision operator 
vanishes and the ordinary LBE collision is processed.

The second additional collision operator was formulated from the super­
position of the equilibrium distribution at the solid obstacle velocity and 
a term  that depends on the deviation of the current distribution from its 
equilibrium value,

t t si = f ? q (/o,vp) - / < ( x , t )  + 1 -

A t
T

[fi (x , t) -  f - q (p ,u ) ] , (3.16)

which can be substituted into (3.13) to give (ignoring the body force term),

/ ,  ( x  +  C j A t ,  t + A t )  = f i  ( x ,  t ) - - ^ r  (/* (x >f') -  / r  (x > t))

+ B n [ f i g ( p , V p ) -  f f 9 (p,u)]. (3.17)

Prom interrogation of (3.17) it can be seen th a t the additional collision ope­
rator again vanishes in the limit of pure fluid. In the limit of pure solid (3.17) 
can be rewritten as,

fi  (x +  ci At, t  +  At) =  f - q (p, v p) + 1 -

At
T

[/• (x, t) - / f 7 (p, u )], (3.18)

which can be interpreted as incrementally forcing the distribution function 
to the equilibrium value of the solid velocity at tha t node.

In testing, the non-equilibrium bounce-back operator (3.14) was employed 
with the simple weighting function equal to the solid coverage ratio, whe­
reas the superposition collision operator (3.16) required a more complicated 
weighting function,

B s (e„ r )  =
e s ( t / A t  -  1 / 2 )  

( l - e s) +  . ( r / A l - l / 2 ) ’
(3.19)

based on the dimensionless relaxation parameter. The weighting function in 
(3.19) is determined from physical intuition and empirical closure of Poiseuille 
flow [65] and is graphed in Figure 3.4b for different values of t / At .  It should
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be noted th a t this weighting function and the presented collision operators 
are not exclusive.

The to tal hydrodynamic force acting on the solid obstacle is found by 
summing the change of momenta due to the additional collision operator 
over all lattice directions a t each node and then over all fluid boundary, solid 
boundary and internal solid nodes,

f p = e b4 e ^ c>J-

The hydrodynamic torque is calculated similarly,

t p = E

(3.20)

(xn -  Xp) x B n OasCj (3.21)

in which x n—X p is the vector from the centre of rotation to the coupled node. 
Both (3.20) and (3.21) assume coordinates and momenta are in physical 
units, however if they are employed in non-dimensional lattice units (which 
is computationally more convenient) both equations require an additional 
term  of (A x )D / A t  to yield physical force and torque, respectively. The 
exchange between physical and lattice units is discussed further in Appendix 
B.

Three combinations of the additional collision operator and weighting 
function were tested and benchmarked against a simple, binary bounce-back 
of the non-equilibrium part of the distribution (i.e. similar to the link bounce- 
back approach). The combinations were:

1. Equations (3.14) and (3.19) - non-equilibrium bounce-back with t- 
dependent weighting

2. Equation (3.14) and B s = e s -  non-equilibrium bounce-back and solid 
ratio weighting

3. Equation (3.16) and B s = es - near-equilibrium superposition and solid 
ratio weighting

4. Equation (3.14) and B s = NINT (es) -  simple, binary non-equilibrium 
bounce-back.

For the test case of flow past a stationary cylinder, combinations (1), (2) 
and (3) were all found to be an improvement over the bounce-back approach 
(4). Combination (1) performed the best of the immersed moving boundary
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approaches as it appeared to give second order convergence with grid size for 
the drag force whilst the others only demonstrated first order convergence.

As an extension to the immersed boundary method of Noble and Torc- 
zynski [97], Holdych [65] altered the non-equilibrium bounce-back collision 
operator (3.14) by replacing the fluid equilibrium in the reflected direction 
with the particle equilibrium,

=  [/«' (x > t) -  f t?  (p, Vp )] -  [fi ( x ,  t) -  f t q (p, V p ) ] . (3.22)

In testing, Strack and Cook [120] found Holdych’s modified collision operator 
increased the accuracy of force and torque on a sphere in periodic Poiseuille 
flow. It also has the advantage of only requiring one equilibrium function 
calculation to process the node, as opposed to two in the original operator.

Implementation Issues of the IMB
From the review of the IMB it can be seen tha t the additional collision 
operators only require local nodal information to enforce coupling between 
the fluid and solid. Information from neighbouring nodes is not required, 
as in IBB techniques and others, and neither is the solid surface normal. 
No additional data  storage or organisation is necessary. The generality and 
locality of the IMB operations result in a coupling technique th a t can be 
applied to complex geometries as in porous media flows and also densely 
packed, evolving suspensions of particles.

By using three nodal classifications in the mapping of solid obstacles, na­
mely fluid boundary nodes, solid boundary nodes and internal solid nodes, 
the process of calculating the solid coverage ratio can be optimised. W ith 
simple geometry it can be shown tha t all internal solid nodes are always en­
tirely covered and thus have a coverage ratio of unity. The coverage ratio at 
the fluid boundary nodes and solid boundary nodes can then be calculated by 
either closed form solutions, polygonal approximations or cell decomposition 
as illustrated schematically in Figure 3.5. Obviously, closed form solutions 
(Figure 3.5a) provide an exact value for the solid coverage ratio but this 
can be at significant computational cost. In 2D, polygonal particles can 
be processed in a reasonably straightforward manner and circular elements 
can be processed at moderate cost as combinations of polygons and circular 
segments. However, in 3D attaining an exact solution, especially for sphe­
rical elements or higher order shapes such as superquadrics, is cumbersome 
and expensive. The cell decomposition. method (Figure 3.5b) takes a brute 
force approach to evaluating the solid coverage ratio. In this technique, each 
nodal cell is decomposed into n 2sub sub-cells of side length A x SUb such tha t 
A x sub = A x / n sub. An inside-outside check of the sub-cell vertices is then
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Figure 3.5: Techniques for evaluating the solid coverage ratio in 2D for the 
immersed boundary coupling method [97] including (a) an exact closed form 
solution, (b) cell decomposition and (c) polygonal approximation.

performed for the obstacle boundary and the solid coverage ratio calculated 
as the sum of the sub-cells inside the boundary. Whilst the simplest to imple­
ment, the cell decomposition method becomes prohibitively time consuming 
as n SUb is increased to improve the accuracy of the coverage ratio. Lastly, 
polygonal approximations (Figure 3.5c) of curved boundaries offer a compro­
mise between the preceding techniques. In this approach the coverage area 
is approximated as a polygon in 2D or a combination of polyhedra in 3D. In 
3D, this requires the definition of a number of generalised polyhedron com­
binations for spherical obstacles. These general shapes are then applied to 
the fluid boundary and solid boundary nodes to evaluate the solid coverage 
ratio.

It should be noted tha t as with preceding bounce-back based coupling 
techniques, the IMB of Noble and Torczynski [97] does not resolve detai­
led particle-fiuid-particle interactions, such as lubrication pressure between 
immersed particles, once particles approach within one lattice cell of one 
another. This phenomenon was investigated by Feng and Michaelides [36] in 
another immersed boundary method, and approximated by a large repulsion 
force when the distance between particles becomes less than a specified thre­
shold value. This is of particular relevance when overlap-based force such 
as those in the discrete element method are used to handle particle-particle 
and particle-wall interactions. The allowance of a small overlap, Sn, can re­
sult in nodal classification conflicts between two or more particles, where 
for example a lattice node may define the boundary of both particles. Such 
conflicts must be treated carefully, however they can be minimised by the 
introduction of a contact buffer. In the DEM, this buffer employs a contact 
radius that is marginally greater than the physical radius so tha t contact
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interaction occurs before there is any chance of nodal conflict.

3.3 Coupling of Explicit Schemes and Sub-Cycling
The coupling of the lattice Boltzmann method and discrete element method 
explicit schemes necessitates matching of their respective .critical time steps. 
Stability criteria require the DEM time step to be less than a critical value 
however however in the lattice Boltzmann method the time step is implicitly 
dependent on other solution parameters. Both time steps have the capacity 
to vary by a number of orders of magnitude and therefore the ratio between 
two time steps can be much smaller or much greater than one. Consequently, 
an efficient technique to handle any disparity in the time steps and couple 
the two explicit solution schemes is desirable.

W ith reference to Figure 3.1a, the contact between two discrete elements 
can be considered as a lumped mass-spring-damper system with a resonant 
frequency [53], u n,

" - - v h 5  <m 3)
in which dFn/dSn is the instantaneous contact stiffness (which is dependent 
on the interaction law used) and M  is the equivalent mass of the contacting 
elements,

—  Mi M 2
M  = -rj 1 - - - . (3.24)

M i +  M 2 .....................................................
The resonance frequency of contact is taken into account in the evaluation 
of the critical time step such that,

— no damping
A t cr = < 2  I  2 A  ^ ____________ > (3 '2 5 )£  ( \ A  -  f 2 -  S) damping

where f  is the critical damping factor [53]. However, it has been shown 
[142] th a t (3.25) is not sufficient to guarantee a stable contact solution and 
a critical time step factor, A, is subsequently employed,

AtuEM =  AAtcr, (3.26)

with the range 0 <  A < 1 and recommended value [54] A =  0.1 ~  0.3. From
(3.26) it can be seen tha t a stable solution of the DEM can be obtained 
for any time step value less than the evaluated value, A t  ^  At^EM,  but for 
computational expediency use of the evaluated value (i.e. largest permissible) 
is desirable. This is an im portant consideration in coupling with the LBM 
time step.
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From the definition of the physical viscosity in the lattice Boltzmann me­
thod (2.66) it can be seen th a t the time step, grid size, relaxation param eter 
and viscosity are inter-related. By rearranging this expression the LBM time 
step can be written as,

A W  =  ( r  -  i )  (3.27)

In practical applications of the LBM where the physical viscosity is known 
it is usually most convenient to first select a spatial discretisation A x  tha t 
adequately describes the domain boundaries and any coupled particles. A 
relaxation parameter can then be chosen based on accuracy and stability 
considerations (see Section 2.5.2) and the LBM time step calculated using
(3.27). Therefore, with constraints on the other model parameters there is 
often little scope for adjustment of the LBM time step in coupling with the 
DEM.

In coupled simulations where A£lbm < A t^EM the solution time step 
can simply be forced to equal the LBM time step, A t  s o l  = A thBM- This 
conservatively reduces the DEM time step to less than th a t which is required 
and the solution can progress in time with enforced parity of increments and 
a one to one ratio of DEM and LBM updates.

When A tlb m  > &&DEM a sub-cycling approach to coupling the time steps 
[33] can be taken which allows the execution of a number of consecutive DEM 
time steps within a single LBM time step, as shown in Algorithm 3.1. In this 
technique, the ratio of the time steps is evaluated R s u b  — & & lbm / ^ d e m  
and then integerised N s u b  =  CEILING (R su b ) -  The new DEM time step 
is then calculated, A t^ ^ M = A tpEM /NsuB , and the resultant relationship 
between the LBM and new DEM time steps is A t  l b m  =  N su b ^d iP m -

It is im portant to note th a t during DEM sub-cycling the discrete element 
particle mapping and hydrodynamic force and torque are not updated. This 
means tha t the hydrodynamic force and torque applied to the discrete ele­
ments due to fluid interaction are constant over the number of sub-cycles, 
and th a t the fluid-solid interface (i.e. mapped discrete element boundary) 
does not move. The boundary nodes and hydrodynamic load values of the 
first sub-cycle are used for all sub-cycles. For these reasons, a practical limit 
on the sub-cycling number is required. This limit is problem dependent, but 
ideally should ensure th a t the discrete element boundary is remapped before 
crossing more than one grid cell and tha t all physical load fluctuations are 
captured.

In this work, the evolution of the DEM solution is optimised by dyna­
mically adjusting the time step depending on the state of the solution. For
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A lg o rith m  3.1 Implementation of the DEM-LBM sub-cycling procedure. 
DO 10 1=1, NUMBER_LBM_STEPS

Undertake LBM computations 
Update DEM-LBM sub-cycling number

DO 20 J=l, NUMBER_0F_SUB-CYCLES

Undertake DEM computations 
Update DEM time step

20 CONTINUE 
10 CONTINUE

example, the DEM time step may increase during periods where no contact 
pairs exist, or it may decrease when non-linear interaction laws are used and 
large contact forces exist. This ensures the maximum efficiency of the ana­
lysis but complicates the implementation of DEM-LBM sub-cycling. Conse­
quently, the sub-cycling number is also dynamically calculated. The dynamic 
updating of the DEM time step and the sub-cycling number are shown in 
Algorithm 3.1. Note tha t in the approach presented, it is possible for the 
DEM time step to change within a sub-cycle which would result in the total 
elapsed time for tha t sub-cycle to differ from the intended time. Recall tha t 
the to tal sub-cycle time is equal to the LBM time step. However, in the DEM 
the maximum change in subsequent time steps is constrained for numerical 
stability and therefore the disparity in elapsed times would be small. Never­
theless, with reference to (2.66), the deviation of the LBM time step from 
its intended value over one increment can be interpreted as a small change 
in the simulated viscosity for th a t increment.

3.4 LBM-DEM Coupling Validation Examples
The extension of the LBM-FEM implementation to a fully coupled LBM- 
DEM framework was tested qualitatively and quantitatively via a number of 
simple flow validation problems. The immersed moving boundary method 
of Noble and Torczynski [97] and later modifications by Holdych [65] were 
chosen for the hydrodynamic coupling of the LBM and the discrete elements. 
This method offers a completely local collision operation and a cell coverage 
ratio th a t results in improved boundary representation without prohibitively 
high mesh resolution.
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For circular and spherical discrete elements (i.e. closed form boundary 
expressions) a boundary tracing algorithm was used to map the particles to 
the LBM grid. The cell coverage ratio, e8i was calculated using polygonal 
approximations (see Section 3.2.4) as opposed to exact solutions or the cell 
decomposition method. Comparison of the three approaches found th a t po­
lygonal approximations offered better accuracy than the cell decomposition 
method (at realistic lattice spacing) while being the least computationally 
intensive of the three. The mapping of polygonal elements in 2D used a 
ray-cast approach which determined the intersection point of all boundary 
facets with the velocity directions of the underlying lattice. W ith the lattice- 
boundary intersection locations already known the cell coverage ratios could 
be evaluated exactly in a straightforward manner.

The performance of the LBM-DEM coupling was validated quantitatively 
using results including hydrodynamic drag, torque and flow profile. The rate 
of convergence of the predicted results was also investigated, and qualitative 
observations were made where appropriate.

3.4.1 2D Flow Past a Circular Cylinder

One of the most common validation tests for the coupling of fluid and struc­
tural fields is the flow past a circular cylinder. A search of the literature 
related to the LBM reveals a great number of publications comparing quan­
tities such as lift and drag coefficient [63, 134, 35, 93], velocity and pressure 
distribution [97], vortex shedding and Strouhal number [56].

In the present study the drag coefficient on a stationary cylindrical obs­
tacle was investigated at varying Reynolds number. A single circular discrete 
element with diameter 0.02m was placed in the middle of a channel th a t was 
2m  long and 0.3m wide. The bounce-back wall boundary condition was ap­
plied at the top and bottom  of the channel and periodic, boundaries were 
used at the inlet and outlet. The chosen channel length kept the periodic 
cylinders a distance of 100 D apart and therefore minimised any influence on 
the single-obstacle drag coefficient. The LBM domain was discretised with a 
lattice spacing of 0.002m and a relaxation param eter of 0.55 was employed. 
The fluid velocity was governed by a variable body force and the density and 
kinematic viscosity used were 1000k g /m 3 and le-04m 2/s ,  respectively.

The LBM-DEM analyses were run until steady state for Reynolds num­
bers ranging from 0.5 to 34 and the drag coefficient on the circular element 
was calculated as,

r 2Fd 
D P U L 'D '

in which Umax is the maximum velocity at the centre of the channel. Figure
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F igu re 3.6: Graph of the drag coefficient, C d , of a circular cylinder in steady, 
laminar flow at varying Reynolds number. The experimental results of Trit- 
ton [132] are included for comparison.

3.6 plots the numerical results against experimental data  [132], which was 
determined by observing the bending of quartz fibres in an air stream. It 
can be seen tha t the correlation between the numerical, and experimental 
results for inertial flows is excellent. However, when Re < 1  and Stokes flow 
is approached the numerical and experimental drag coefficient predictions 
deviate. In this flow range the viscous effects dominate pressure effects in 
the total drag coefficient, suggesting th a t the immersed moving boundary 
technique does not accurately predict the shear stress a t the fluid-solid in­
terface for very low Reynolds numbers. Similar issues with the prediction of 
the drag coefficient using the LBM have been found in the literature [134] 
in which the difference was attributed to the existence of a hydraulic radius. 
This hydraulic radius defines a hydrodynamic boundary th a t is different to 
the physical boundary due to the actual no-slip interface existing outside of 
the circular element. This issue is also discussed in Section 3.4.4.

No other publications tha t employ the LBM to  compute the drag coeffi­
cient at very low Reynolds number could be found. Therefore, the comparison 
of the Stokes flow results of the present study with other numerical predic­
tions was not possible. Nevertheless, the drag coefficient predictions in the 
low to moderate Reynolds number range were excellent, and this range is the 
focus of later applications in block cave modelling.
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F ig u re  3.7: Contour plot of the x-direction velocity for the laminar flow past 
a square cylinder at Re = 15.5.

3 .4 .2  2D Flow  P a s t  a  S q u a re  C y lin d e r

The use of the immersed moving boundary method to couple the LBM to irre­
gular, polygonal obstacles has not been previously reported in the literature. 
Consequently, this was investigated in the present study by analysing steady, 
laminar flow past a square cross-section. A single square discrete element 
with side length 0.1025m was placed in the centre of a channel with length 
and height of 3.07m and 0.82m, respectively. This resulted in a blockage ra­
tio3, B, of 1/8. The bounce-back wall boundary condition was applied at the 
top and bottom  of the channel and periodic boundaries were used at the inlet 
and outlet. The length of the channel, L = 30D, was chosen to minimise the 
interaction of the flow around the periodic column of obstacles. The lattice 
spacing, fluid density, kinematic viscosity, and relaxation param eter chosen 
were 0.005m, 1000k g / m 3, le-04m 2/s ,  and 0.55, respectively. Figure 3.7 is a 
contour plot of the x-direction velocity in the channel when a body force of 
4e-05m /s2 was used to drive the flow, resulting in a Reynolds number of ap­
proximately 15.5. The characteristic recirculation region can be seen trailing 
the square obstacle.

Figure 3.8a is a graph of the drag coefficient at low to moderate Reynolds 
number for the present investigation. This problem was investigated also by 
Breuer et al. [9] using both finite volume methods (FVM) and the LBM with 
the bounce-back wall boundary for the fluid-solid coupling. These results are 
included in Figure 3.8a for comparison. The correlation between the three 
sets of data is excellent.

The flow profile around the square obstacle was investigated by measuring 
the trailing recirculation length at varying Reynolds number, as plotted in

,!The blockage ratio relates the obstacle width to the channel width as D — D/ H.
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Figure 3.8b. The same interrogation was undertaken by Breuer et al. [9] and 
an empirical expression for the recirculation length was proposed,

L  =  -0 .065  +  0.0554i?e, (3.29)

in which L r is the recirculation length. This relationship is included in the 
graph in Figure 3.8b. The pair of symmetric vortices behind the obstacle 
emerge when the Reynolds number is sufficiently high for separation to oc­
cur at the trailing edges of the square cross-section. In the present study, this 
occurred at a Reynolds number between 3.4 and 4.7 but Breuer et al. found 
it a lower value of approximately 1.0. The recirculation length then gives a 
reasonable fit to (3.29) however the relationship in this study was found to be 
nonlinear. One possible reason for this anomaly is the influence of upstream 
and downstream obstacles tha t form part of the periodic domain. Another 
possibility is th a t the IMB coupling method is sensitive to one or more of 
the flow parameters and the true location of the hydrodynamic boundary 
differs from the physical boundary by an amount dependent on the Reynolds 
number. This is discussed further in Section 3.4.4. Unfortunately, no expe­
rimental data  could be found in the literature to further evaluate the three 
sets of data.

As the Reynolds number is increased the trailing vortices become unstable 
and an unsteady wake is formed behind the square cylinder. It has been 
reported [73] th a t this occurs at a critical Reynolds number of 54, whilst 
Breuer et al. [9] found R ecrit ~  60. In this study the transition from steady 
to unsteady flow occurred at a Reynolds number between 46.0 and 54.5, 
which strongly supports the validity of the IMB for coupling the LBM to 
immersed polygonal obstacles.

3.4.3 2D Cylindrical Couette Flow

Thus far, the validation of the LBM-DEM coupling using the immersed mo­
ving boundary method has only considered the hydrodynamic translational 
force exerted on the discrete elements. To test the prediction of the hydrody­
namic torque on an immersed object the common benchmarking problem of 
cylindrical Couette flow was analysed. In this flow geometry a circular shaft 
rotates inside a circular cavity creating an annulus of fluid th a t is subject to a 
nonlinear shear profile. This problem, for which a schematic diagram can be 
seen in Figure 3.9a, is popular in the literature as an analytical solution can 
be derived from the Navier-Stokes equations for the tangential flow profile,
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F igu re 3.8: Results of the flow past a square cylinder using the IMB cou­
pling method including graphs of (a) the drag coefficient and (b) the trailing 
recirculation length at low to moderate Reynolds number.

and the driving torque [25],

(uq - u 2)r \r \
T  =  — Airpv (3.31)

In (3.30) and (3.31) the angular velocities and radii of the inner and outer 
profiles are denoted by uq, ?q and u 2> L2, respectively.

The cylindrical Couette flow problem was analysed using an inner radius 
of 0.1m and an outer radius of 0.3m. The internal cylinder was coupled to 
the LBM fluid using the IMB method and ramped to an angular velocity 
of 0.1 rad/s while the outer boundary was handled with the bounce-back 
boundary condition and held stationary. A fluid density of 1000k g / m 3 and a 
kinematic viscosity of le-04ra2/s  was employed. Figure 3.9b is a contour plot 
of the total velocity in the annulus while Figure 3.10a graphs the analytical 
and numerical velocity profile for the analysed geometry and highlights the 
excellent correlation between the two results. The inset focuses on the region 
adjacent the inner cylinder and shows that the numerical velocity at the 
boundary (0.00987m/s) does not quite reach the theoretical value (0.01 m /s). 
This suggests the no-slip interface between the fluid and the rotating cylinder 
actually lies inside the physical boundary. This phenomenon has been found 
by other researchers [134] when coupling the LBM to moving boundaries, 
and is discussed in more detail in Section 3.4.4.
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(a) (b)

F ig u re  3.9: The cylindrical Couette flow problem including (a) a schematic of 
the flow geometry and (b) a contour plot of the total velocity in the annulus 
a t steady state.

In Chapter 4 the cylindrical Couette flow problem is extended to under­
take numerical rheometry, which forms an integral component of the cha­
racterisation of fines as a non-Newtonian fluid. As a precursor to this work 
the Newtonian case of cylindrical Couette flow was examined in more detail. 
Specifically, the convergence of the solution with increasing grid resolution 
was investigated and the performance of the different IMB collision opera­
tors was compared. Figure 3.10b graphs the relative error in the predicted 
torque based on the analytical result of 1.414e-03 N.m. Results are presented 
for two combinations of the IMB formulation, namely the superposition (SP) 
collision operator (3.16) with B n = en, and the bounce-back (BB) collision 
operator (3.14) with the relaxation parameter-dependent weighting function
(3.19). It can be seen tha t the bounce-back collision operator is almost two 
orders of magnitude more accurate in predicting the torque than the super­
position operator. Monotonic convergence can be seen for all cases except 
for the bounce-back operator ( r  =  0.6) at the highest grid resolution. For 
both bounce-back cases the rate of convergence is approximately 1.7, which 
compares well the results of Cook et al. [25] tha t attained nearly second- 
order convergence (slope 1.9) when using the IMB method at both the inner 
and outer surfaces. In this study the bounce-back boundary condition is em­
ployed on the outer wall, which does not conform to the underlying lattice. 
Consequently it could be expected to only achieve first order convergence. 
However, these results show that the use of the bounce-back condition on 
the outer wall does not dramatically deteriorate the quality of the solution.
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F igu re 3.10: Results of the cylindrical Couette flow analysis including (a) a 
graph of the numerical and analytical flow profile in the annulus highlighting 
the region adjacent the inner cylinder and (b) the convergence of the torque 
prediction with increasing grid resolution.

It could be seen in Figure 3.10a that fluid velocity at the surface of the 
inner cylinder did not reach the theoretical value. To investigate this further, 
Figure 3.11a plots the relative error in the maximum velocity for the IMB 
combinations analysed. It can be seen in this graph tha t the superposition 
collision operator is superior to both bounce-back collision operators, which 
is a reversal of the comparative torque prediction performance. All results 
display monotonic convergence however the rate, which is approximately first 
order, is much lower than tha t for the torque prediction. Nevertheless, the 
results of Cook et al. [25] also displayed first-order convergence for the maxi­
mum velocity and therefore the influence of the bounce-back boundary on 
the outer cylinder is negligible in this result.

Finally, the accuracy of the velocity profile across the annulus was inves­
tigated. Figure 3.11b graphs the L 2 norm error (2.115) for the IMB combina­
tions analysed. The error summation was only undertaken on the nodes that 
were common to each lattice (i.e. those for the coarsest grid). In this result 
it can be seen that the superposition collision operator has reverted to being 
the worst performer of the analysed combinations. It displays only first-order 
monotonic convergence which is consistent with the torque and maximum ve­
locity results. The results for the bounce-back collision operator compared 
well with those reported by Cook et al. however they did not display mono­
tonic convergence. This could be attributed to the use of the bounce-back 
wall boundary at the outer cylinder and the change in the mapped geometry
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F igu re 3.11: Convergence of the cylindrical Couette flow results with increa­
sing grid resolution including (a) the relative error of the maximum velocity 
at the surface of the inner cylinder and (b) the L2 norm error of the velocity 
profile across the annulus.

as the lattice spacing is changed. Despite this, the approximate slope of 1.55 
in log-log space compares well with the slope of 1.9 reported in [25].

3.4.4 3D F low  P a s t a  P e rio d ic  A rra y  o f S p h eres

The three-dimensional LBM-DEM coupling was first tested via the flow past 
a periodic array of spheres. This problem has been previously investigated 
by Verberg and Ladd [134] using link bounce-back (LBB) and continuous 
bounce-back (CBB) schemes (see Section 3.2.2), and Holdych [65] using a 
modified version of Noble and Torczynski’s [97] immersed moving boundary 
method. An advantage of this test problem is tha t computational require­
ments can be minimised by employing periodic boundaries on all faces of the 
domain tha t surround the single spherical element.

For a face-centred-cubic (FCC) periodic arrangement of spheres the re­
duced drag coefficient is evaluated [145] as,

C d = , (3.32)
07T p U T  UaVg

in which FD is the drag force on a single sphere, r is the sphere radius, 
and Uavg is the average x-velocity in the domain. The average velocity is
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F igu re 3.12: Contour plot of the x-direction velocity on the xy-plane at the 
centre of a sphere in a face-centred-cubic periodic array.

calculated from the uncovered cell portions in the domain,

where nx, ny and n z are the number of nodes in each direction and es is the 
solid coverage ratio of each nodal cell.

In this investigation a cubic domain with a side length of 0.2 m  was used in 
conjunction with a sphere radius of 0.062m, giving the ratio r / L  = 0.31 which 
allowed direct comparison to the results of Holdych [65] and Zick and Homsy 
[145]. Flow through the domain was driven by a body force, periodic boun­
daries were applied on all faces of the domain, and the hydrodynamic drag 
force, Fp, was evaluated using (3.20) in Section 3.2.4. The modified collision 
operator proposed by Holdych (3.22) was employed in conjunction with the 
relaxation-parameter-dependent weighting function (3.19). The fluid den­
sity and kinematic viscosity were lOOOkg/m3 and le-04m 2/s . Figure 3.12 is 
contour plot of the plot of the fluid velocity in the x-direction, showing the 
characteristic flow profile on the xy-plane at the centre of the sphere.

The reduced drag coefficient was calculated for varying grid size and Rey­
nolds number and compared to the reference value, Cp = 4.292, from Zick

(3.33)
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F igu re 3.13: Relative error in the reduced drag coefficient for flow past a 
sphere in a periodic, face-centred-cubic array for (a) varying grid size and 
(b) varying Reynolds number.

and Homsy [145]. For the grid size investigation a body force of 0.002m / s 2 
was used, resulting in an average velocity and Reynolds number of approxi­
mately 0.03m /s and 37, respectively. Figure 3.13a graphs the relative error 
of the reduced drag coefficient at varying grid size. The results of Holdych, 
which investigated Stokes flow, are included for comparison. It can be seen 
tha t the results of the present study do not display monotonic convergence 
and instead tend toward an error of approximately 3%. The same behaviour 
was found by Verberg and Ladd [134] using CBB coupling, and was explai­
ned by the fact tha t the physical diameter and the hydraulic diameter due to 
bounce-back are not equivalent. This diameter difference has been confirmed 
for the immersed moving boundary technique however the true location of 
the boundary is not easily prescribed [65].

The results of Holdych displayed super-linear convergence (slope 1.74) 
but this rate of convergence was found to decrease with further increase of 
grid resolution. The difference of these results from those of the present 
study can be attributed to a number of factors. Primarily, Holdych inves­
tigated Stokes flow and subsequently removed the quadratic velocity terms 
from the equilibrium functions to eliminate inertial contributions to the go­
verning equations. Also, Holdych employed the D3Q19 lattice and the cell 
decomposition method for cell coverage calculation, as opposed to the D3Q15 
lattice and polygonal approximation in this work.

Verberg and Ladd also reported a sensitivity of the predicted drag coeffi­
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cient to the fluid viscosity. This was investigated by varying the simulation 
Reynolds number whilst maintaining a constant grid size of 0.005 m. Figure 
3.13b plots the relative error in the reduced drag coefficient for varying Rey­
nolds number. This result shows tha t the accuracy improves at higher Rey­
nolds number with a sharp transition occurring in the range 10 <  Re < 30.

The results of this test showed reasonable prediction of the reduced drag 
coefficient for the analysed properties and geometry. In fact, the results are 
similar to those found in contemporary studies of the same problem [120]. 
However, the response of the immersed moving boundary method to grid 
resolution and Reynolds number warrants further investigation.

3.4.5 3D Flow Past a Sphere at Moderate Reynolds Number

The flow past a single sphere a t low to moderate Reynolds numbers was 
simulated in order to further investigate the three-dimensional LBM-DEM 
coupling . A single sphere of diameter 0.072 m was placed in the centre of a 
periodic domain tha t was 0.96m long and 0.24m high and wide. A lattice 
spacing of 0.004m was employed resulting in nodal dimensions of 241 long 
and 61 high and wide. The fluid density, kinematic viscosity and relaxation 
param eter were 1000k g / m 3, le-04m 2/ s  and 0.6. This analysis follows th a t of 
Strack and Cook [120], which utilised the LBM with the D3Q19 lattice and 
the immersed moving boundary method. The drag coefficient was calculated 
as,

CD = .1 Fd 2, . (3.34)
pUivg-Kr2

and the results were compared with experiments [112] and the empirical 
correlation [138] for low to moderate Reynolds number,

24 6
CD *  —  + -------=  +  0.4. (3.35)

Re  l  +

It has been reported [120] tha t at spacings greater than 30 radii the 
interaction of spheres in periodic flows vanishes. To completely eliminate the 
periodic influence on the drag of the analysed sphere the cubic domain size 
would require a side length of 1.08m (241 nodes) which would result in a 
to tal of 2e07 nodes. However, the serial implementation of the LBM-DEM 
framework in the present study is limited to approximately 4e06 nodes. This 
constraint required the reduction of the analysed domain dimensions and 
therefore the result of this investigation is only an approximation of the non­
interacting case.

The drag coefficient on the sphere for Reynolds numbers ranging from 
approximately 22 to 108 is plotted in Figure 3.14. The results of Strack and
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F igure 3.14: Graph of the drag coefficient on a single sphere in an approxi­
mation of a non-interacting periodic domain.

Cook [120], which used the D3Q19 lattice, are also plotted and shown to 
correlate very well with the present results. Both sets of numerical results 
also compare well with the experimental results of Roos and W illmarth [112]. 
Even by using an approximation of a non-interacting periodic domain, these 
results highlight the capability of the LBM-DEM framework to accurately 
predict the hydrodynamic interaction of suspended objects.
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M e t h o d

The accurate prediction of the flow behaviour of non-Newtonian fluids is of 
considerable interest to scientists and engineers across a number of disci­
plines. As an example, the lattice Boltzmann method has been applied in 
the oilfield industry to simulate the flow of non-Newtonian fluids through po­
rous media [122, 123]. This work exploits the LBM’s strength in representing 
complex structural networks in a simple and efficient manner. Additionally, 
many of the fluids used in oil recovery exhibit strong, non-Newtonian charac­
teristics [102]. Many other materials such as pastes, polymers and granular 
suspensions can exhibit non-Newtonian characteristics such as pseudoplasti­
city (shear-thinning), dilatancy (shear-thickening), yield, viscoplasticity and 
density fluctuations [39]. In the present work the deviation from Newtonian 
behaviour within the LBM must be extended to capture the constitutive 
behaviour of a granular medium or dry bulk material.

The m ajority of the literature dedicated to the LBM focuses on the ana­
lysis of Newtonian fluids in which the constitutive relationship between the 
velocity field and the stress tensor is defined by the fluid viscosity,

Ta f3 2fJ,ea/3, (4.1)



CH. 4 NON-NEWTONIAN CONSTITUTIVE MODELLING 119

where r Q/? is the deviatoric component of the fluid stress tensor, /z is the dy­
namic viscosity of the fluid and eQ(g is the rate of strain tensor. However, to 
attem pt to simulate the behaviour of a bulk material with a fluid continuum 
approach requires a deviation from Newtonian behaviour to th a t in which 
the viscosity may be strain rate dependent or subject to discontinuities such 
as tha t which occur at yield. This is necessary to adequately simulate the 
movement of fines in block cave environments using the LBM-DEM frame­
work.

The characterisation of the flow of granular materials is an area of ongoing 
research, with science as yet unable to provide an accepted, unified model for 
all regimes from quasi-static to rapid dynamic [14]. This chapter provides a 
brief discussion of the different approaches to this problem including kinetic 
models, discontinuum modelling, and continuum representations. The focus 
of this work is on the latter, as although the lattice Boltzmann method is 
built on an averaged type of (mesoscopic) kinetic model, at the macroscopic 
scale it has been shown to yield the continuous Navier-Stokes equations. A 
number of non-Newtonian continuum models are discussed including the vis­
coelastic power law, viscoplastic Bingham model, and other critical state and 
flow rule combinations. The implementation of power law and Bingham type 
fluids in the single-relaxation-time LBGK is investigated, including compu­
tational issues such as techniques for evaluating the rate of strain tensor in 
the LBM. The chapter culminates in the application of the non-Newtonian 
LBM-DEM framework in the replication of viscometry experiments for a dry 
bulk material, thereby validating the suitability of this approach in modelling 
block cave fines.

4.1 The Approaches to Modelling Granular Media
One of the significant issues relevant to the m athem atical description of gra­
nular material is the wide range of dynamism th a t is encountered in physical 
processes, from static in storage to highly dynamic in suspension transport 
(and higher still). Massoudi and Phuoc [88] presented a classification scheme 
for the level of dynamism in granular materials, as summarised below.

•  Regime A - Stationary materials in storage.

•  Regime B - Quasi-static or slow, friction dominated movement.

•  Regime C - The rapid flow regime in which particles are moving quickly 
and experiencing a large number of inter-particle contacts.

•  Regime D - Suspension induced movement such as pneumatic or hy­
draulic conveying.
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• Regime E - Chemically reactive flow regime where the particulate might 
be burnt or change phase due to other reactions.

• Regime F /G  - Dispersed particles such as pollutants or other small- 
scale waste material.

During slow flows (Regimes A and B), sometimes called Coulomb flow, the 
dominant interaction between the particles is the surface friction as grains 
slide over one another during extended contact time frames. However, in 
rapid granular flows (Regimes C and D) the particle-particle contact time is 
considered to be much shorter and as such the influence of contact friction 
is neglected, with energy dissipation being attributed to surface inelasticity. 
Although the tenets of mass and momentum equation apply to both regimes, 
the constitutive descriptions are quite different.

Despite decades of research there is still a lack of understanding of the 
flow of granular materials due to the absence of an accepted constitutive 
description th a t governs flow in various regimes and geometries [8 8 ]. The 
predominant approaches to modelling granular materials are statistical theo­
ries, continuum approaches, and discrete element methods. In statistical 
theories [61, 60], one can take a particle dynamics approach or use a modi­
fied form of the kinetic theory of gases. However, Massoudi and Phuoc [8 8 ] 
claimed tha t the kinetic theory approach is plagued with many assumptions, 
and it is best used only in the rapid flow regime, which is not the relevant 
regime in the present research. Tan et al, [127] attem pted to model granu­
lar materials using a lattice Boltzmann equation th a t had been modified to 
include the granular tem perature [50]. Simulations of an unforced granular 
gas in a square periodic domain whose tem perature and density are initially 
homogeneous and Couette flow on a square domain were undertaken with 
limited success.

In the continuum approach, it is assumed tha t the properties of the gra­
nular ensemble can be described by spatially continuous functions, and as a 
consequence can be divided infinitely without changing the m aterial’s pro­
perties. W ith respect to continuum approaches, a number of constitutive 
representations have been presented in the literature, including viscous, vis­
coelastic (i.e. power law), viscoplastic (i.e; Bingham plastic) and combina­
tions thereof such as visco-elasto-plastic (i.e Herschel-Bulkley fluids). As the 
most logical approach for application in the LBM, some of these models are 
discussed in Section 4.1.1 and Section 4.2.

DEM is a powerful tool for simulating the dynamics of granular materials, 
but for the reasons of scale discussed in Section 1.3 it is not a viable option 
for the representation of fines in this research.
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4.1.1 Continuum Models

The general principle of continuum modelling of slow flow regimes is to add 
a flow rule and an equation of continuity to the equilibrium equations and 
the yield condition of the static regime. One of the most common represen­
tations of slow soil flows is the Mohr-Coulomb critical state model, however 
no published material has been found on the implementation of this type of 
material in the lattice Boltzmann method. As an example, Karlsson et al. 
[72] undertook finite element simulations of bulk material flow in hoppers 
using an Eulerian framework, a modified fluid model and a Mohr-Coulomb 
yield criterion.

The yield surface used in this work was described as,

Note tha t rap =  aap — p5ap is the tensor of deviatoric stresses and J 3 is 
the determinant of rajg. The function g (9) describes the shape of the yield 
surface in the deviatoric plane as,

tic deformation or not and consequently a plastic flow rule is also required. 
In this work a non-associated flow rule is used which ignores dilation (volume

/  =  m p  +  g (0) q -  K  =  0, (4.2)

in which p , q and 9 are stress invariants,

(4.3)

(4.4)

9 = - a  cos 
3

27 J 3
(4.5)

2 <? '

Finally, the constants m  and K  are defined as,

6  sin <j>
(4.7)

3 — sin 0

(4.8)

in which c is the material cohesion and </> is the internal friction angle of the 
material.

The yield surface only determines whether the material is subject to plas-
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change during deformation) and subsequently maintains constant density of 
the material. The elastic behaviour of the material (i.e. when it is not de­
forming) is governed by a regularised model which uses an artificially high 
fluid viscosity to approximate the behaviour of a solid. This model was suc­
cessfully applied to the simulation of flow in hoppers, capturing the transient 
stress behaviour at the onset of discharge and steady states of mass or funnel 
flow. It can be seen tha t in its full form the Mohr-Coulomb model is signifi­
cantly complex to implement. Therefore, before attem pting to implement it 
within the LBM, a less-detailed yield stress material model was sought.

Tardos [128] presented general equations of motion for incompressible and 
compressible bulk powder flows in the slow regime using a non-Newtonian 
fluid mechanistic approach. In this work the Coulomb powder approach is 
employed, where the flow regime is governed by conservation (mass, momen­
tum) equations as in the case of fluid flow and constitutive equations are 
employed to describe the relationship between the stress and velocity fields 
(i.e. rate of deformation).

For an incompressible Coulomb powder the constitutive relationship of 
Schaeffer [114] defined the stress tensor Tap as,

Tap = p (5a 0  -  \/2 s in  4 ^ )  , (4.9)

in which eap =  \  is the rate of strain tensor and e =  y/eapea /3

is the characteristic rate of strain. Using the continuity and momentum 
equations for an incompressible fluid, and this constitutive relationship (4.9), 
Tardos [128] was able to define explicit equations of motion and stress in 
Cartesian, cylindrical, and spherical frames of reference. It is im portant to 
note tha t for this model to remain valid the domain must be in continuous 
flow (i.e. e 7  ̂ 0 ) due to the presence of the characteristic rate of strain in the 
denominator. Also, the presence of the rate of strain tensor in the numerator 
and the denominator indicates tha t the velocity field is not uniquely defined 
for a given stress distribution. This constitutive equation satisfies the von 
Mises yield criterion and a co-axiality flow rule which states th a t the principal 
directions of the stress and the rate of deformation are parallel.

For the Coulomb powder constitutive model in (4.9) an equivalent visco­
sity analogous to tha t in the Newtonian description of fluids can be defined 
when the deviatoric stress tensor of the model is compared to th a t for a 
Newtonian fluid (4.1). This equivalent viscosity would be a complex func­
tion dependent on the angle of internal friction, the average principal stress 
and the rate of deformation. Recalling tha t the dimensionless LBGK visco­
sity is dependent on only the single relaxation time (2 .6 6 ), it can be reasoned
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th a t to attem pt to replicate the constitutive relationship in (4.9) with one 
model param eter might be optimistic. This point is discussed further in Sec­
tion (4.2.2). Also, it can be seen in (4.9) tha t as the angle of internal friction 
decreases the viscous shear effects of the Coulomb powder model diminish 
to the limit of an inviscid fluid when <j> =■ 0 and sin</> =  0. Therefore, for 
friction angles less than 20° the behaviour of the Coulomb powder becomes 
increasingly fluid like, however this is acceptable as real powders generally 
exhibit friction angles greater than this [128].

The incompressible Coulomb model was compared via the calculated flow 
factor1 ( / / )  to an analytical solution for plane flow in a wedge shaped hop­
per. Correlation of the results for varying hopper half angles was quite good 
which indicates tha t the postulated constitutive model adequately replicated 
the stress distribution. However, the comparison of the predicted and analy­
tical solutions for flow rate differed significantly (by a factor of four for one 
case). This is attributed to the assumption of no wall effects in the analytical 
solution (wall friction angle, </>w = 0 ) and the incorrect imposition of the slip 
boundary condition at the hopper outlet.

A number of non-Newtonian compressible constitutive models were also 
presented and briefly discussed in this work, however it is stated th a t some 
of the assumptions in these models are controversial and not universally 
accepted. Regardless, this is outside the scope of the present research which 
employs the lattice Boltzmann method in the near incompressible limit.

Tardos et al. [129] described the rheological behaviour of powders in the 
intermediate regime which lies between the more commonly treated slow and 
rapid flow regimes. This was done by modifying the slow flow constitutive 
model in (4.9) for a simplified two-dimensional, Couette flow geometry. The 
details of the material model, which are not included here but can be found 
in [129], are based on the assumption tha t the stress field in the intermediate 
regime fluctuates around a mean value.

A rotational Couette device [126] was used as a benchmark for the inter­
mediate regime model. In this experiment the m aterial is sheared between 
two tall concentric cylinders and the gap between the cylinders is kept small 
to allow the assumption of a linear velocity profile. The applied shear rate 
is controlled by the angular velocity of the internal cylinder. An analytical 
solution of the averaged equations for the specific geometry of the Couette 
device is presented in Section 4.3.3. The velocity profile in the powder and 
the shear stress in the sheared layer was calculated and the results were com­
pared to experimental data. It was found tha t the shear stress was dependent

1The flow factor is the ratio of stable arch stress to consolidating stress for a particular 
hopper geometry.
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on shear rate (i.e. viscous) with a power law relationship and th a t the ve­
locity profile decayed exponentially away from the moving wall so th a t flow 
is actually restricted to a narrow band adjacent to the wall. These results 
indicate a type of viscoelastic power law relationship for the material, which 
is discussed further in Section 4.3.3. In the experiments, it was found tha t 
shear rate dependence was only observed when the bed was confined. In the 
unconfined bed the powder was free to dilate and thus the torque and normal 
shear rate were virtually independent of shear rate. Therefore the effect of 
gravity cannot be ignored in the annulus.

Recently, Massoudi and Phuoc [88] proposed a non-Newtonian fluid mo­
del to study the conduction in shearing flow of granular materials between 
two parallel plates. In addition to the details of their complex model, the 
paper offers a summary of other constitutive relationships discussed in the li­
terature. Only a small selection of continuous models for bulk materials have 
been presented here. A notable omission from this list is the Bingham plastic 
model [98], however this is discussed in the context of the lattice Boltzmann 
method in Section 4.2.2.

4.2 Non-Newtonian Fluid Models in the LBM
Despite the considerable amount of literature dedicated to the lattice Boltz­
mann method in the preceding two decades only a relatively small amount 
of research has investigated the incorporation of non-Newtonian fluid mo­
dels. In an early work by Flekkpy and Herrmann [39], shear thinning and 
density waves were investigated in the simple case of gravity driven flow of 
a granular suspension in a vertical pipe. In the shear thinning investigation 
the local LB viscosity was defined as a function of the local strain rate, e, 
and a threshold strain rate, eo, such th a t v =  for e <  eo, and v  =  v2 for 
e >  e0, with V\ > v2. Using this description of the viscosity the analysis pro­
duced a cross-sectional flow profile tha t was largely flat with narrow regions 
of steep velocity gradient (i.e. shear) adjacent to each wall, corresponding 
to the thinned phase. For the density wave investigation a piecewise linear 
representation of the viscosity was employed. It took the form v = i/min for 
p < pt and v =  i/Q +  a (p — ~p) for p > pu in which p is the average density, a 
is a constant and is chosen to make v a positive continuous function of the 
density. In order to generate density waves a small perturbation was intro­
duced as a 0.3% relative density difference in a small line across the pipe. It 
was found th a t the initially very weak perturbation quickly built up into a 
density wave of over 10% density difference.
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4.2.1 Viscoelastic Power Law Fluids

The implementation of power law fluids within the lattice Boltzmann equa­
tion has been undertaken [1, 110, 6, 42, 122, 8, 123, 140, 21] to investigate

viour. In a power law fluid the viscosity is defined as a continuous function of 
the characteristic rate of strain e (commonly referred to as the strain rate),

Clearly, an index of n = 1 results in a Newtonian fluid with viscosity v$. 
For a fluid with n < 1 the effective viscosity decreases with the strain rate 
and the resultant behaviour is shear-thinning. Conversely, for a fluid with 
n >  1 the effective viscosity increases with the strain rate and the resultant 
behaviour is shear-thickening.

The characteristic rate of strain is calculated as,

It is a convenient feature of the lattice Boltzmann method th a t the rate 
of strain tensor can be obtained from the momentum flux tensor [141], 
the components of which are second order moments of the non-equilibrium 
distribution functions at each node,

that removes the need for finite difference calculations of the velocity gra-

parameter, r ,  (2.66) employed in the single relaxation time LBGK model,

both shear-thinning (pseudoplasticity) and shear-thickening (dilatant) beha-

v =  v0e‘•71  —  1 (4.10)

where i/0 is a consistency constant (m 2sn 2) and n  is the power law index.

from the symmetric rate of strain (i.e. rate of shearing) tensor,

(4.11)

(4.12)

(4.13)

This is discussed in greater detail in Section 2.5 and Appendix C. This results 
in a local and explicit definition of the rate of strain tensor,

2poC2r A t
(4.14)

dients and the evaluation of neighbouring-node velocity components which 
that entails.

Recalling the relationship between the fluid viscosity and the relaxation
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the shear-dependent viscosity change is enforced by modifying the relaxation

in which To is the Newtonian relaxation parameter corresponding to the visco­
sity consistency constant, j/q. Therefore, equations (4.15), (4.14), (4.11) and 
(4.10) define the local, non-Newtonian fluid viscosity a t each lattice node 
using only the local strain rate (which is evaluated using only the particle 
distribution functions) at the same location.

Aharonov and Rothman [1] implemented the power law model outlined 
above on a D2Q6 lattice using a collision matrix instead of the BGK collision 
operator. The rate of strain tensor was calculated from the hydrodynamic 
velocity field using finite difference approximations and the model was used to 
simulate the flow of shear-thinning (n =  0.56) and shear-thickening (n = 3.0) 
fluids through a simple porous structure. The calculated flux was compared 
to an analytical solution and the relationship to the driving pressure gradient 
was found to match within 1% for the shear-thickening case.

Rakotomalala et al. [110] used a D2Q9 lattice in conjunction with the 
power law model and determined the flow profile between two infinite pa­
rallel plates for indices from 0.33 to 5.0. The results were compared to the 
analytical solution for this problem and found to correlate well for the range 
of power investigated.

Boek et al. [6] repeated the porous media simulations undertaken by 
Aharonov and Rothman using a LBGK model and a modified relaxation 
param eter as shown in (4.15). Channel flow velocity profiles were reprodu­
ced to within 2% of the analytical solution and the flux-pressure gradient 
relationship of a generalised Darcy law was reproduced to within 3%.

From interrogation of (4.10) it can be inferred th a t in regions of vani­
shing strain the shear-thinning viscosity approaches infinity while the shear- 
thickening viscosity approaches zero. According to (4.15) this corresponds to 
the relaxation parameter approaching infinity or 0.5 for the shear-thinning 
and shear-thickening cases, respectively. Conversely, at regions of high strain 
the shear-thinning viscosity becomes very small and the relaxation param eter 
approaches 0.5, while in the shear-thickening case the viscosity and relaxa­
tion param eter approach infinity. Recall from the LBM stability discussion in 
Section 2.5.2 th a t stability decreases as r  —► 0.5 whilst accuracy decreases for 
r  >  1.0. Therefore, the accurate and robust simulation of power law fluids 
using the continuous relation in (4.10) and the LBGK model can become 
problematic a t the extremes of low and high strain. Gabbanelli et al. [42] 
overcame this problem by introducing a truncated power law model which

param eter [110, 6] to,

(4.15)
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imposes lower and upper limits on the variable viscosity based on limits on 
the lower bound (e0) and upper bound (e^) of the characteristic rate of 
strain. The truncated power law model then modifies (4.10) as,

so tha t the viscosity is constant in the lower and upper ranges but dependent 
on the rate of strain in the middle range. An analytical solution for flow in 
a plane channel was presented for the truncated power law. model, including 
the locations of the transition between ranges. The correlation between the 
numerical results using a D3Q19 lattice and analytical results was good, and 
the convergence of the of the velocity profile was found to be first order. The 
rate of convergence was reasoned to be due to the first order finite difference 
scheme employed to calculate the components of the rate of strain tensor, 
however the wall boundary implementation used (and any associated errors) 
was not discussed and may have affected the rate of convergence.

Boyd et al. [8] investigated the rate convergence of the continuous power 
law model for the typical problem of flow in a parallel channel, and the re­
sults compared to those of Gabbanelli et al. [42]. To eliminate wall boundary 
effects a second order, sub-grid accurate scheme was employed and errors due 
to finite difference calculation of the rate of strain tensor were removed by cal­
culating the components directly from the momentum flux tensor (4.14). The 
results were found to be second order convergent and subsequently highlight 
another benefit of calculating the rate of strain components directly from the 
local particle distribution functions.

Sullivan et al. [122] investigated power law fluids in the LBM within the 
context of non-Newtonian flow through porous media which is commonly en­
countered in oil recovery processes when surfactants and particle suspensions 
are driven through rock formations. A truncated power law model (4.16) was 
employed and an under-relaxation parameter, A, was introduced to limit the 
change of the BGK relaxation parameter in subsequent time steps. Using 
the local relaxation parameter at the previous time step, r t_i, and the mo­
dified relaxation param eter for the current time step, rt , from (4.15) the 
under-relaxed relaxation time was calculated as,

(4.16)

Tt =  n - 1  +  A ( r t -  r , _ i ) . (4.17)

W ith A < 1 excessive change in the relaxation param eter over short times is 
limited and the stability of the solution is subsequently increased. A sensiti­
vity analysis of the under-relaxation parameter found th a t the steady state
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solution remained unchanged for A =  0.1 ~  1.0, and tha t a value of 0.1 was 
generally suitable. This power law model was tested in 2D flows through 
a lattice-conforming structural network and in 3D flows through a cylinder 
filled with spherical particles. The 2D results showed the logarithmic re­
lationship between flux and driving gradient to be within 1% of the input 
power when n  =  0.5 and n = 0.7. As in previous results [42] the error was 
found to increase with decreasing n  (i.e. as the material becomes more shear 
thinning). This is attributed to the inability of a discrete field to accurately 
describe the velocity in the region of high shear adjacent the walls. The 3D 
results showed a significant dependence on the grid resolution. W ith the 
number of nodes across a sphere diameter at 13 the error in the logarithmic 
flux-force relationship was 22% for n  =  0.5. This reduced to 0.6% for n  =  0.7, 
1.9% for n = 0.6 and 4.1% for n = 0.5 when the resolution was increased 
to 26 nodes across a sphere diameter. Interestingly, despite the error in the 
low resolution case the logarithmic relationship was still found to be linear, 
which can be interpreted as the simulation of a less shear-thinning fluid tha t 
th a t specified.

Sullivan et al. [123] continued this work by comparing the results of the 
lattice Boltzmann power law model with experimental results. The experi­
mental geometry was created by filling a 46 mm diameter cylinder with 5 mm 
diameter glass beads and the numerical structural field was reconstructed 
from a magnetic resonance image (MRI) of the apparatus. The experimental 
(from MRI data) and numerical velocity fields were compared qualitatively 
and quantitatively and excellent agreement was found between the two. The 
average difference in velocity in a node-by-node comparison was found to  be 
approximately 4% when the mesh resolution resulted in the particle diameter 
equalling 27 nodes.

Recently, Yoshino et al. [140] simulated power law fluids using what was 
termed a lattice kinetic scheme of the LBM. In this approach the relaxation 
param eter is set to unity and the fluid viscosity is controlled by including 
the deviatoric stress tensor in the equilibrium functions. This method was 
found to be more accurate than those preceding in which the non-Newtonian 
behaviour is included by varying the relaxation parameter. However, this 
benefit is offset somewhat by additional implementation complexity and the 
inability to calculate the rate of strain tensor components directly from the 
particle distribution functions. Chen et al. [21] studied porous media flow of 
power law fluids using a gray lattice Boltzmann model. In this method the 
structural field is not directly simulated, instead its influence is included by 
adding a probabilistic component of bounce-back to each lattice node. This 
is done to allow the simulation of larger porous structures, however it is not 
particularly relevant to this work as the structural field is directly simulated
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using the discrete element method.

4.2.2 Bingham Plastics

A popular approach in the mathematical modelling of bulk materials is to 
employ a viscoplastic non-Newtonian fluid [88]. In viscoplasticity, a yield 
stress (which in bulk materials is often related to the repose angle, friction 
angle and cohesion) is defined below which the material does not deform. 
Above the yield stress the material flows in a manner similar to viscous 
materials a t a rate proportional to the magnitude of the post-yield stress. 
This is in contrast to the viscoelastic power law models discussed in Section
4.2.1 in which the material stress and strain are related by a continuous 
function.

The Bingham plastic [98] model is one of a class of non-Newtonian ma­
terials known as yield stress fluids, which also includes the Caisson and 
Herschel-Bulkley models. These materials behave as a solid below a cha­
racteristic yield stress and then deform plastically (i.e. flow) once the stress 
state  exceeds the yield stress. In the Bingham model the plastic deforma­
tion is governed by a linear viscosity whereas in the Herschel-Bulkley fluid 
the viscosity can be defined as shear-thinning or shear-thickening. The most 
common examples of Bingham plastics are dense particulate suspensions and 
slurries but others include paint, silica, margarine and ketchup. Examples of 
Herschel-Bulkley fluids include drilling fluids and plastic propellant doughs.

As an example of bulk material classification as a Bingham plastic, Or and 
Ghezzehei [99] presented experimental data for the strain-stress behaviour 
of Millville silt loam (29% sand, 55% silt, 16% clay) in a parallel plate,
rotating rheometer. A good fit to the Bingham model was found at different
water contents (0.28kg/kg and 0.34kg/kg), however the transition from static 
to viscous behaviour was continuous rather than singular as in the ideal 
model. The experimental results also found tha t the yield stress decreased 
with increasing moisture content.

The constitutive equations for the Bingham plastic model are listed in 
Taylor and Wilson [130] as,

rap = 2 ea/3, \rap\ > Ty,  (4.18)

e a/g 0, | |  Si 7j/j

in which ry is the yield stress and v  is the plastic viscosity. It can be seen in
(4.19) tha t the rate of strain (i.e. the deformation) is zero when the stress 
is below the yield stress, which indicates tha t in this regime the material 
behaves as a solid. In (4.18) in can be seen tha t in the plastic regime the
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F igu re 4.1: The regularised Bingham plastic model of Papanastasiou [101] 
for different values of regularisation parameter, m, and an arbitrary value of 
0.01 for the yield stress and viscosity.

material stress increases linearly with the rate of strain. It is worth noting 
tha t the Bingham model in (4.18) is not dissimilar in form from the Coulomb 
powder of Schaeffer [114] in (4.9). The main differences between the two 
are tha t the yield strength of the Bingham model is constant whereas it is 
pressure dependent in the Coulomb powder, and the Bingham model contains 
a shear viscosity where the Coulomb powder does not [128].

The discontinuity in the Bingham plastic constitutive relationship means 
it can be difficult to solve in numerical schemes. To combat this problem, 
Papanastasiou [101] proposed a regularised version of the Bingham model,

which allows a continuous approximation of the discontinuous model. The 
regularisation parameter, m, is introduced to control the exponential growth 
of stress. As it is increased the approximation of th e ' regularised model 
converges to the ideal Bingham model, as shown in Figure 4.1. In practice 
the regularised model treats regions of unyielded material as a fluid with 
artificially high viscosity and in this fashion approximates the behaviour of 
a solid. Once yield has been reached the fluid viscosity is reduced to the 
constant plastic zone value and Newtonian flow is permitted.

W ithin the context of the lattice Boltzmann method only a handful of

(4.20)



CH. 4 NON-NEWTONIAN CONSTITUTIVE MODELLING 131

articles have been published on the implementation of Bingham plastics. 
Ginzburg and Steiner [?] used a Bingham plastic model in the LBM to si­
mulate the injection of liquid metal in casting. To overcome the numerical 
instability of the ideal model the regularised model of Papanastasiou was 
employed, and the momentum flux tensor was used to calculate the rate of 
strain tensor directly. The relaxation parameter, r ,  was then adjusted in 
a similar fashion to the power law model. Results were presented for 2D 
and 3D injection analyses, however it was found tha t the Bingham fluid was 
susceptible to numerical instability at the threshold change of viscosity, even 
with the regularisation model.

Vikhansky [136] addressed this instability by presenting an implicit scheme 
for solving the ideal (i.e. without regularisation) Bingham fluid in the LBM. 
In this work the collision process is solved iteratively so th a t the stress and 
the rate of strain satisfy the constitutive equation of the material a t the same 
time. Results were presented for 2D channel flow and flow around a circular 
obstacle, however the implicit nature of this method does not fit within the 
explicit nature of the LBM-DEM framework in the present work and as such 
it is not a feasible option.

The recent work by Wang and Ho [137] implemented a regularised Bin­
gham plastic model in the single-relaxation-time LBGK model on a D2Q9 
lattice. This is the same approach as tha t used in the coupled LBM-DEM 
framework of the present study. The regularised Bingham model (4.20) was 
employed in a slightly different form,

The rate of strain effects of this Bingham model were included in the lat­
tice Boltzmann equation by direct inclusion in the equilibrium distribution 
functions, rather than modifying the relaxation param eter after calculating 
the characteristic rate of strain. Using the equilibrium functions, (2.19),
(2.20) and (2 .2 1 ), in Section 2.4.2 the modified equilibria for the distribution 
functions of the D2Q9 lattice are written as,

r a p  =  Ty [ 1 -  exp (-m e)]  +  juea/3, 

which results in an apparent viscosity, 77, for the model,

(4.21)

77 =  f J L  +  K ,

with the regularised component, k , defined as,

k = [ 1  — exp (—m e ) ] .

(4.22)

(4.23)
e

(4.24)
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This allows the collision process to relax the fluid towards a state  th a t already 
includes information from the rate of strain tensor, and is similar to the 
approach taken by Yoshino et al. [140] in simulating power law fluids. In 
the continuum limit these equilibrium functions, via the Chapman-Enskog 
analysis, result in the momentum equation for a regularised Bingham plastic,

<9 (pua) <9 (piiaUp)
d t <9 X/-

+
<9dp

8 xr dx
2r — 1 

6
+  AC ^ci/3• (4.27)

The resulting scheme is proposed to be more stable and efficient than the me­
thods which use the alteration of the relaxation parameter to incorporate the 
strain rate effects. It should be noted tha t direct methods cannot be used to 
calculate the velocity gradients present in (4.25) and (4.26) from the momen­
tum  flux tensor. This is due to the presence of anti-symmetric components 
and more importantly, because the equilibrium functions are modified in this 
approach and they are required to calculate the non-equilibrium functions in 
the momentum flux tensor. Pressure driven channel flow and velocity driven 
flow through a channel expansion were presented for varying Bingham and 
Reynolds numbers in 2D and the results compared favourably with those in 
the literature.

A robust implementation of the Bingham plastic model in the LBM would 
facilitate the straightforward extension to a Herschel-Bulkley fluid. As in the 
Bingham plastic, this model behaves as a solid below the yield stress howe­
ver the post-yield viscosity is nonlinear rather than Newtonian. This allows 
further material nonlinearity via shear-thinning or thickening in the plastic 
zone. Burgos et al. [13] and Burgos and Alexandrou [12] have reported the 
implementation of this type of yield stress fluid in finite, element computa­
tions, however the only known attem pt at this fluid in the context of the 
LBM is the implicit approach in [136].
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4.2.3 The Stress Tensor in the Lattice Boltzmann M ethod

The accurate determination of the rate of strain tensor (4.12) is integral to 
the implementation of non-Newtonian fluids within the LBM and other CFD 
methods. The most intuitive approach to calculating the velocity gradients 
th a t form the components of this tensor is to calculate them  directly from 
the macroscopic velocities at the grid points using a finite difference method. 
This technique is further simplified in the LBM due to the data  existing on 
a regular orthogonal grid. As mentioned in Section 4.2.1 it is also possible in 
the LBM to extract the rate of strain tensor from the momentum flux tensor, 
HaP (4.13), the components of which are second order moments of the non­
equilibrium distribution functions at each node. This results in a local and 
explicit definition of the rate of strain tensor, eap (4.14), tha t does not require 
information from neighbouring nodes to evaluate the velocity gradients. This 
is in contrast to finite difference methods which require information from one 
node or two nodes in each orthogonal direction for first order and second 
order schemes, respectively. Therefore, the locality of direct evaluation of 
the rate of strain tensor is particularly convenient at nodes adjacent to wall 
boundaries and discrete elements where the data  required for finite difference 
methods may not exist.

The accuracy of the calculation of the rate of strain tensor using the 
LBM momentum flux tensor was tested in a two-dimensional Poiseuille flow 
problem. Errors due to compressibility and the chosen boundaries were in­
vestigated, and the results were compared to the exact evaluation of e^p. A 
y-direction body force was used to drive the flow of a Newtonian fluid through 
a channel 0.5m wide and 0.7m high with a lattice spacing of 0.005m. The 
body force was varied between 9.81e-07ra/s2 and 9.81e-03m/s2 to  vary the 
computational Mach number. The bounce-back wall boundary condition was 
applied on the walls and periodic boundaries were used on the inlet and out­
let. The fluid density and viscosity were 1000k g /m 3 and le-05ra2/s ,  and the 
Mach number sensitivity analysis was run with r  =  0.51 and r  =  0.60. This 
was done to isolate the errors due to the slip velocity of the bounce-back wall 
boundary condition (see Section 2.6.1).

The characteristic parabolic profile for plane Poiseuille flow exhibits a 
maximum at the centre of the channel. At this location the rate of change 
of the velocity profile is zero and consequently the rate of strain is also zero.

The analysed parameter space resulted in a range of Mach numbers bet­
ween 0.005 and 50 and the characteristic rate of strain (4.11) was evaluated 
across the channel width for each simulation. As expected, the accuracy of 
the strain prediction was found to deteriorate with increasing Mach num­
ber. At M a  =  50 the direct evaluation of strain (4.13) deviates considerably



CH. 4 N O N-NE W TO N IA N  CONSTITUTIVE MODELLING 134

1.0E+02

10

1.0E+00

0.8

1.0E-02
<n
*o  0  6  «
ra£
z  0 4

1.0E-04

1 0E-060 2

—  Analytical

■ Ma=Q 005
00 1.0E-08

0 30 0 0.1 0 2 0 4 0.5 1.0E-03 1.0E-02 1 0E-.O1 1.0E+00 1.0E+01 1.0E+02
Channel Position (m) Mach Number (u/cs)

(a) (b)

F igure 4.2: The direct evaluation of the characteristic rate of strain in the 
LBM using the momentum flux tensor, including (a) the strain profiles across 
the channel at M a  = 0.005 and M a  =  50, and (b) the error at the channel 
centre and the L2 norm error across the channel for varying Mach number.

from the exact result at both the channel edges and centre despite the solu­
tion still displaying good reproduction of the velocity profile. Conversely, at 
M a  < 0 . 5  the correlation between the direct evaluation from the LBM and 
the exact solution is excellent. The characteristic strain profiles for these 
two extremes are graphed in Figure 4.2a along with the exact solution for 
comparison. The consequences of breaching the compressibility constraint of 
the LBM (M a  << 1) are clearly evident.

Figure 4.2b graphs the strain error at the centre of the channel and the 
Lo norm error across the channel for all simulations. A number of interes­
ting points can be drawn from the plotted response. The relative error in 
the characteristic rate of strain at the centre of the channel was calculated 
by comparing the numerical results to the exact value of zero. The rate 
of convergence was found to be second-order with Mach number, which is 
consistent with the small velocity expansion of the equilibrium functions dis­
cussed in Section 2.5. It can also be seen tha t the error at the centre of the 
channel is the same for both r  =  0.51 and r  =  0.60. This suggests tha t the 
increased slip velocity at the bounce-back wall boundaries does not affect the 
strain evaluation at the centre of the channel.

The comparison of the L2 norm error across the channel was particularly
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interesting. For both r  =  0.51 and r  =  0.60 it can be seen th a t the error 
reduces monotonically to a value of approximately 0.033 after which further 
reduction of Ma has no influence. This limited convergence behaviour can 
be explained by the reduction of the combined boundary and compressibility 
error (with decreasing umax and consequently Ma) until the discretisation 
error in the channel becomes dominant. The rate of convergence (slope 1.85 
for r  =  0.51 and slope 1.62 for r  =  0.60) is not second order due to the 
combination of the second order compressibility error with the boundary 
error which is only first order with respect to umax [147]. For r  =  0.51 the 
convergence is closer to second order (until the minimum error is reached) 
because of the smaller contribution from boundary slip error. This error, 
which is due to the presence of a slip velocity when using the bounce-back 
condition, is O  ( r 2)which also explains why the magnitude of the error is 
significantly less for r  =  0.51 at the same Mach number. This shows how 
the boundary error influences the strain evaluation despite not affecting the 
prediction at the centre of the channel.

Despite the intricacies of convergence for the calculation of the rate of 
strain using the direct LBM method, these results have shown th a t its accu­
racy is excellent when the compressibility constraint is obeyed.

4.3 Non-Newtonian Validation Examples
The truncated power law model [42] and the Bingham plastic model of Wang 
and Ho [137] discussed in this chapter were implemented in the LBM-DEM 
framework. These constitutive relationships formed the basis of the charac­
terisation of fines as a non-Newtonian fluid.

The direct evaluation method (4.14) was employed to calculate the rate 
of strain tensor, eajg, from the momentum flux tensor, Hap- A first-order 
finite difference scheme was also implemented to allow comparison of the two 
methods. The viscoelastic behaviour of the power law model was included 
in the LBM by adjustment of the local relaxation param eter (4.15) and an 
under-relaxation param eter (4.17) was added [122]. This parameter, A, limits 
the change of the relaxation parameter in successive time steps and thereby 
increases stability and allows the solution of problems th a t initiate with zero 
strain2 (i.e. started from rest).

The implemented power law model was tested for dilatant (shear-thicken­
ing) and pseudoplastic (shear-thinning) flows in two and three dimensions. 
The flow velocity and strain profiles were interrogated and compared to ana­

2 Zero strain at the onset of a shear-thinning simulation would result in the prescription 
of a high viscosity throughout the domain which can adversely affect the result.
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lytical solutions. Qualitative comments on the results were made where ap­
propriate.

The implemented Bingham plastic model was tested for the case of plane 
flow in a two-dimensional channel using the finite difference m ethod to cal­
culate the rate of strain tensor. This was necessary because the model im­
plementation requires the rate of strain tensor for the definition of the equili­
brium function, but the equilibrium function is required for the direct method 
of strain evaluation. Even in this trivial flow geometry the Bingham model 
was found to be unstable. The response to induced strain in the domain was 
erratic even at small velocity gradients. This issue could possibly be over­
come by initiating the solution with an initial velocity field and consequently 
a continuous rate of strain profile. However this approach would not be able 
to overcome the problem in block cave applications because the fines regime 
is interm ittently at rest due to the nature of draw sequencing.

Consequently, the power law model was solely used to further investigate 
the characterisation of fines in the LBM-DEM framework. Following the va­
lidation tests, this was extended by applying the non-Newtonian LBM-DEM 
framework to numerical rheometry of real bulk materials and comparing the 
response to experimental results.

4.3.1 Viscoelastic Flow in a 2D Plane Channel

The two-dimensional validation of the viscoelastic power law model was un­
dertaken by simulating flow through a plane channel. This flow geometry is 
analogous to the Newtonian case of plane Poiseuille flow.

The fluid domain analysed was 0.5m wide, 0.75m high and the lattice 
spacing used was 0.005m. Flow in the channel was driven by a y-direction 
body force of -9.81e-04m/s2 and periodic boundaries were used on the inlet 
and outlet. The bounce-back boundary condition was used on the channel 
walls, which were aligned with the lattice and therefore able to maintain the 
second-order accuracy of the solution [8].

Both pseudoplastic (shear-thinning) and dilatant (shear-thickening) flows 
were investigated using an index range of 0.2 < n  < 3.0. The initial viscosity 
and relaxation parameter were set at 1.0e-04m2/s  and 0.51, respectively. 
These parameters are used at the start of the analysis to  calculate the LBM 
time step but as the solution progresses they are both overwritten by the 
values calculated by the power law. The truncation limits, rmin and rmax, 
were set at 0.5001 and 10.0, respectively, and the consistency constant, vo, 
was chosen as 1.0e-04ra2/s . The under-relaxation parameter, A, was set at 
0 .01 .

It can be shown [5] th a t the analytical solution for the flow of a power
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Figure 4.3: The results of the viscoelastic channel flow in 2D for the power 
range 0/2 < n < 3.0, including (a) the numerical and analytical velocity 
profiles across the channel, and (b) the normalised characteristic rate of strain 
across the channel as calculated using the direct method and a first-order 
finite difference approximation.

law fluid in a plane channel is,

uy(x) 2n +  1
Uq n +  1

1 -
2 Id

w

( l + l / n )

(4.28)

in which u0 is the mean channel velocity. This is calculated as the quotient 
of the volumetric flow rate and the channel width, w.

Figure 4.3a graphs the velocity profiles of the validation analyses against 
their respective analytical solutions. It can be seen that the correlation bet­
ween the numerical and analytical results is good over the power range, 
0.2 < n < 3.0. The shear-thinning results (n < 1.0) demonstrate a plug-type 
flow profile with a flat section in the channel centre where the shear strain 
is low and therefore the viscosity is high. Conversely, adjacent the walls the 
shear strain is high resulting in a low viscosity and a region of high velocity 
gradient. In the shear-thickening results (n > 1.0) the high shear regions 
near the channel walls result in an increase in the viscosity and the low shear 
at the channel centre acts to reduce the viscosity. The combination of these 
effects results in the sharp velocity profile evident in the graph.

The error in the velocity profile was found to be less than 1% for all cases 
analysed. However, it should be noted that this error was found to increase
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as n deviated further from the Newtonian value of 1.0, particularly in the 
shear-thinning regime. Recalling tha t the accuracy of the LBM deteriorates 
for 7~ ^  1.0, the increasing error in the shear—thickening simulations can be 
attributed to the increase in the relaxation param eter due to the power law 
model. The growth of errors in the shear-thinning case can be explained 
by the presence of compressibility errors. As the fluid becomes more shear- 
thinning the maximum velocity of the central plug increases. The time step, 
which is calculated using the initial viscosity and relaxation parameter, does 
not change and therefore the increasing velocity results in an increase in the 
computational Mach number. As n gets smaller this effect grows leading to 
a greater deviation from the analytical velocity profile.

In all of the analyses the influence of the truncation bounds, rmin and 
Tmax5 was monitored. The good correlation of the velocity profiles indicate 
tha t the bounds maintained stable solutions but at the same time did not 
restrict the viscoelastic tendencies of the fluid. In fact, it was found th a t 
for the range of powers analysed neither the lower or upper limit on the 
relaxation param eter was reached. For this reason the flow profiles could 
be compared solely with the viscoelastic analytical solution (4.30). If the 
bounds had been reached in sections of the channel the analytical profile in 
those locations would be Newtonian, and the solution for the width of the 
channel would be a combination of the two [42].

Figure 4.3b compares the normalised characteristic rate of strain in the 
channel as evaluated using the direct method and a first-order finite diffe­
rence approximation. The correlation of the results is excellent. This and 
the velocity result demonstrate th a t a simple extension of the LBGK model 
can be employed to simulate fluids whose viscosity increases or decreases in 
regions of high shear.

4.3.2 Viscoelastic Flow in a 3D Tube

The three-dimensional validation of the viscoelastic power law model was 
undertaken by simulating flow through a cylindrical tube. This flow geometry 
is analogous to the Newtonian case of Hagen-Poiseuille flow.

The flow model geometry used in this analysis was identical to th a t re­
ported in Section 2.8.4. The radius of the tube, R , was 0.1m, the lattice 
spacing was 0.002m, and the flow was driven.by an x-direction body force 
of 0.01 m /s 2. Periodic boundaries were used on the inlet and outlet and the 
bounce-back boundary condition was applied to the channel walls. The vis­
coelastic parameters employed were the same as those in the 2D analysis in 
Section 4.3.1.
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The analytical solution for the axial velocity profile can be derived as,

An index range of 0.3 < n < 3.0 was analysed to investigate both pseu­
doplastic and dilatant flows in 3D. Figure 4.4a graphs the velocity profiles of 
the validation analyses against their respective analytical solutions. In this 
graph it can be seen tha t the flow profile characteristics for varying n were 
the same as in the 2D analyses. The shear-thickening cases result in a tri­
angular flow profile across the tube diameter while the shear-thinning cases 
result in a flat, plug-flow profile. Excellent correlation between the analytical 
and numerical results is evident for 0.5 <  n < 3.0, with the velocity error 
typically less than 1%. However, for the case of n = 0.3, fluctuations can be 
seen in the velocity profile and the error increases to approximately 8%. This 
deviation of the numerical and analytical results can be explained by both the 
approximation of the cylindrical boundary, as discussed in Section 2.8.4, and 
the first-order accuracy of the bounce-back condition on non-aligned boun­
daries, Figure 4.4b is a contour plot of the x-direction velocity in the tube 
for n  =  0.3. In this figure it can be seen th a t the boundary approximations, 
in combination with a highly shear-thinning fluid, result in a fluctuating, or 
noisy, flow profile.

The error in the 3D velocity profile for highly shear-thinning fluids could 
be reduced by decreasing the lattice spacing, using a closed-form description 
of the tube boundary (as opposed to a faceted approximation), or employing 
a interpolation-supplemented lattice. Nevertheless, the results of the inves­
tigation show how non-Newtonian, viscoelastic fluids can be simulated using 
an LBGK model with relatively minor modifications.

4.3.3 Cylindrical Couette Flow Rheometry

Classical soil mechanics generally focuses on the material response up to 
the point of failure and as such only small strains of a quasi-static nature 
are considered. However, the movement of fines within a block cave is in­
term ittently dynamic and the resultant displacements and strains are large. 
In such a loading state, constitutive models such as Mohr-Coulomb are no 
longer valid and an alternative approach is required for the characterisation

(4.29)

which can be normalised by the mean velocity, uq, to,

r \  (1+1/n)
(4.30)
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F igu re 4 . 4 : The results of the viscoelastic flow in a 3D tube for the power 
range 0.3 < n < 3.0, including (a) the numerical and analytical velocity 
profiles across the diameter, and (b) a contour plot of the x-direction velo­
city in the tube for n = 0.3, showing the noise induced by the boundary 
approximation.

of bulk materials as a continuum. Therefore, a fluid mechanistic approach 
has been employed in the present study to simulate block cave fines as a 
non-Newtonian fluid.

At the most basic level, continuum models for soils assume a linear stress- 
strain relationship. As an example, Tardos [128] offered evidence suggesting 
tha t granular materials exhibit quasi-Newtonian flow characteristics when 
the angle of internal friction is low (i.e. less than 20 degrees for powders). 
In reality though, a viscous component of the deformation is usually evident 
and consequently many studies suggest tha t the soil response can be assu­
med to be both as solid (elastic) and as fluid (viscous) depending on the 
loading characteristics. As discussed in Section 4.1.1, Tardos [128] presented 
a Coulomb powder model for the frictional flow of powders and Tardos et al.
1129] used a rotational Couette rheometer to show a power-law relationship 
between stress and strain for granular materials. In addition, Ghezzehei and 
Or [45] and Or and Ghezzehei [99] carried out the rheological classification 
of a soil using a rotating, parallel plate apparatus. They found, for varying 
water contents, a viscoplastic Bingham model response for Millville silt loam 
(29% sand, 55% silt, 16% clay) with a well defined yield point. It should be 
noted tha t these results were presented for low strain rates (<  0.02s-1 ).

A search of the literature highlights tha t the rheological classification of
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soils is a limited field. Published experimental data  from rheometry is par­
ticularly lacking. However, the recent work of Davison et al. [28] presented 
experimental results aimed at characterising sand as a non-Newtonian fluid. 
The motivation for these tests was to develop a material model th a t could 
be employed in conjunction with computational fluid dynamics to simulate 
an auger working in sand.

The bulk material tested was well-graded Leighton Buzzard sand which 
exhibited 83% of the grains lying within the 300iim  size range and a bulk 
density of 2000A:^/m3. Direct shear box tests were undertaken and an ap­
proximate Newtonian viscosity of 3e06Pa.s was determined from the induced 
shear stress and an assumed shear zone thickness. This corresponds to a dy­
namic viscosity of 1500ra2s -1 , which is several orders of magnitude higher 
than tha t for the fluids discussed (to this point) in this work.

To further improve the realism of the numerical sand model the viscous 
component of its behaviour was considered. This was done by measuring the 
nonlinear deformation of the sand at different strain rates, otherwise known 
as rheometry. Some examples of non-Newtonian rheometry tests include the 
falling ball test, rotating parallel plate test, rotational vane test, and cylin­
drical Couette flow test. Davison et al. [28] used the latter to determine 
the viscous response of the sand and found distinct pseudoplastic, viscoe­
lastic behaviour. A power law best fit of the experimental results provided 
a consistency constant, /xo, of 333.6Pa.sn and a power, n, of -0.14. This 
is clearly a highly shear-thinning response, which might be expected for a 
cohesionless soil such as dry sand. It is also consistent with the results of 
Tardos et al. [129] which tested glass beads of various size in a cylindrical 
Couette rheometer.

The viscoelastic sand model was applied to auger simulations using an 
implicit finite volume solver. To aid stability and convergence the power law 
viscosity was truncated to a minimum of 1 Pa.s  and a maximum of 1000P a.s, 
which is identical to the approach taken in the present LBM formulation. The 
simulations were undertaken with no-slip boundaries a t the auger-fluid in­
terface and the driving force and torque was calculated by integrating the 
stress distribution on the external faces of the auger elements. The beha­
viour of the non-Newtonian and Newtonian material models was tested and 
the shortcomings of the latter were made apparent. Using the Newtonian 
model resulted in shear force predictions th a t were larger than the power law 
model by a factor of 105. Also, the Newtonian response lacked a velocity 
boundary layer, outside which the sand was minimally affected by the auger. 
Consequently a much greater, and unrealistic, amount of material was was 
raised by the auger.

The work of Davison et al. [28] and Tardos et al. [129] served as motivation
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for application of the non-Newtonian LBM-DEM framework to numerical 
rheometry of bulk materials. This novel approach allows the characterisa­
tion of particulates, such as fines, as viscoelastic fluids with a strain-rate 
dependent response tha t can be calibrated against experimental results as 
they become available. As in these previous studies, a cylindrical Couette 
rheometer was used to undertake the numerical experiments.

The cylindrical Couette rheometer is comprised of an inner cylinder (bob) 
which is rotated inside a larger cylinder (cup), creating an annulus inside 
which the test material is placed. This apparatus is shown schematically in 
Figure 4.5a. The interpretation of the induced radial velocity profile in the 
annulus is dependent on the geometry of the rheometer and the nature of 
material being tested. For example, if the annulus is sufficiently narrow in 
comparison to the radius of the bob, (R c — Rb) < R &, the velocity profile can 
be assumed linear and therefore the rate of strain is constant [31]. The flow is 
therefore approximately equivalent to linear Couette flow (Figure 4.5b) and 
the rate of strain is calculated as,

U b R b  / A  O l \Cre = (4-31)

in which Ub is the angular velocity of the bob. In this fashion the strain 
induced in the test material is controlled by the speed at which the bob is 
driven.

The shear stress on the surface of the bob is independent of the nature of 
the material being tested and can be evaluated from the torque, T, required 
to drive the bob,

Tre = 2 ^ h '  ( 4 ' 3 2 )

where h is the height of the rheometer. The instantaneous viscosity, 77, can 
then be calculated,

t} = —  (4.33)
^rd

using the shear stress and the average velocity gradient (i.e. the rate of 
strain).

For reasons of computational expediency, the numerical rheometry using 
the non-Newtonian LBM-DEM framework was undertaken in two dimen­
sions. If the height of the rheometer is sufficiently greater than the diameter 
of the bob the effect of the ends on the induced strain and shear becomes 
negligible. Consequently, the physical flow reduces to a 2D arrangement indi­
cating th a t this is a fair modelling assumption. The influence of gravity was 
not directly included, but the plane strain nature of the 2D analysis means
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Figure 4.5: Details of the cylindrical Couette rheometer, including (a) a 
schematic representation of the apparatus, and (b) the approximation of the 
velocity profile when the annulus is sufficiently narrow.

that the numerical geometry was suitably confined. This is in accordance 
with the results of Tardos et al. |129|, which found tha t the experimental 
viscoelastic response was dependent on the prevention of dilation of the test 
material. The radius of the of the bob, R b, and the radius of the cup, 7?c, 
used in the numerical experiments was 0.04m and 0.05m, respectively, as 
shown in Figure 4.6a. A lattice spacing of 5e-04m was employed, resulting 
in 21 nodes across the annulus, as can be seen in Figure 4.6b.

The numerical rheometry model was first applied in an attem pt to re­
plicate the experimental results of Davison et al. [28] for Leighton Buzzard 
sand. The consistency constant, c0, and the power law index, n, were set 
at 0.1668m2sn~2 and -0.14, respectively. The density, initial viscosity and 
relaxation parameter used were 2000 k g / m 3, 0.005ra2/s , and 0.6. The trun­
cation of the power law was effected by incorporating limits on the strain- 
dependent relaxation parameter, =  0.51 and Tm a x  = 1.5, which corres­
ponded to Umin — 1 P a s  and iimax =  lOOPa.s. Note that using a maximum 
of lOOOPa.s would have resulted in a large maximum relaxation parame­
ter which could potentially deteriorate the accuracy of the solution. This 
point is particularly im portant when the slip velocity of the bounce-back 
wall boundary, which is O  ( r 2), is considered.

The numerical experiment was run for a range of strain rates between 4 s _1 
and 80s-1 and the instantaneous viscosity was calculated for each case using

v = o)R

Stationary 
Cup Radius

Rotating 
Bob Radius
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Figure 4.6: The 2D numerical rheometry undertaken using the non-
Newtonian LBM-DEM framework, including (a) the geometry of the bob 
and cup, and (b) the discretisation of the annnlus with the LBM grid.

(4.31), (4.32), and (4.33). Figure 4.7 plots the results of the non-Newtonian 
LBM-DEM framework alongside the best fit of the experimental data [28]. 
The correlation of the numerical and experimental results is excellent. At 
higher strain rates it can be seen tha t the LBM marginally overestimates 
the viscosity. This is due to the lower truncation limit, Trnin = 0.51, being 
reached in the annulus and the consequence is tha t the model does not quite 
reach the level of shear-thinning required to match the experiments. This 
could be addressed by further reducing the lower truncation limit but that 
would act to reduce the stability of the material model in asymmetrical flows.

Contour plots of the total velocity in the annnlus when the bob is driven 
at 1 rad/s  and 15rad/s  are included in Figures 4.8a and 4.8b, respectively. At 
low strain rate the velocity profile is relatively uniform but at high strain rates 
it can be seen tha t a thin shear band of high velocity material exists adjacent 
the bob surface. The same shear zone was observed in the experiments 
undertaken by Tardos et al. [129].

Following the successful replication of the Leighton Buzzard sand res­
ponse, a number of other material models were tested with the numerical 
rheometer. A lack of suitable experimental data meant tha t the additio­
nal materials could not be calibrated to physical samples and therefore the 
response could only be discussed qualitatively. Table 4.1 summarises the vis­
coelastic power law properties tha t were used for Material A, B and C. All
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Figure 4.7: The results of the numerical rheometry of Leighton Buzzard 
sand undertaken using the non-Newtonian LBM-DEM framework, with the 
experimental results [28] included for comparison.
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Figure 4.8: Contour plots of the total velocity in the cylindrical Couette 
rheometer for Leighton Buzzard sand driven at (a) 1 rad/s,  and (b) 15rad/s.
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Material n vo (m 2sn 2) Train Tmax Tin vin (m 2/ s )
A 0.3 0.3336 0.51 1.7 0.60 0.0416
B 0.1 0.3336 0.51 1.7 0.60 0.0416
C 0.3 0.0833 0.505 0.6 0.51 0.0416

Table 4.1: The viscoelastic power law properties of the three materials tested 
in the numerical rheometer.

materials used a bulk density of 1000 k g /m 3 and an under-relaxation para­
meter, A, of 0.01. The aim of these param eter combinations was to achieve a 
response th a t was less shear-thinning than the sand model and more repre­
sentative of a cohesive bulk material.

Figure 4.9 graphs the instantaneous viscosity of Materials A, B and C 
against strain rate and the LBM sand response is included for comparison. 
The higher power of M aterial A (n = 0.3) results in a more gradual reduc­
tion in the viscosity as the the strain rate increases. The larger consistency 
constant for Materials A and B (0.3336ra2sn~2) resulted in the high-strain 
viscosity being greater than th a t for the sand model. This can be interpre­
ted as an increase in the cohesion of the material being tested. Material 
C exhibits a higher and constant viscosity than the others due to the lo­
wer truncation limit, rmjn =  0.505, being reached even at moderate levels of 
strain. The result is a material response th a t is approximately rigid due to 
high viscosity a t low. strains, and then. Newtonian (i.e. constant viscosity) af­
ter a threshold value of strain is reached. The characteristics of this response 
are similar to those of a Bingham plastic, which behaves as a solid below its 
yield stress and as a Newtonian fluid above it.

The transitional behaviour of the material responses was investigated fur­
ther by plotting the shear stress (4.32) against the strain rate (4.31) for the 
materials tested. This is shown in Figure 4.10 and, again, the sand response 
is included for comparison. The flat gradient of the curve for Leighton Buz­
zard sand is a result of the highly shear-thinning nature of the material model 
and the low viscosity th a t is achieved at high strain rate. Conversely, the 
gradient for Material C is much greater due to the larger high-strain viscosity. 
Approximate asymptotes of the stress-strain response for- the four materials 
are also included in the graph which allow an interesting observation to be 
made. W ith the assistance of these high-strain asymptotes it can be seen 
th a t the response of the pseudoplastic material models is similar to the cha­
racteristic response of a regularised Bingham plastic (See Figure 4.1). The 
y-intercept of the asymptotes is equivalent to the yield stress of the ideal Bin­
gham model (i.e. not regularised) and the gradient is equivalent to the plastic
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Figure 4.9: Graph of the instantaneous viscosity against strain rate for Ma­
terials A, B and C, as tested in the numerical rheometer.

viscosity. The rate at which the material response tends to the asymptote 
is analogous to the effect of the regularisation parameter, m, which smooths 
the stress-strain discontinuity at the yield point of the ideal Bingham model. 
As an example, Material B tends to the asymptote faster than Material A 
due to the lower power index, n, and therefore the corresponding Bingham 
interpretation is that Material B has a higher regularisation param eter than 
Material A. At the scale shown, Material C displays an almost ideal-Bingham 
response with a yield stress of just under 100Pa and a plastic viscosity of 
approximately 30 Pa. s.

The results of the numerical rheometry experiments have provided qua­
litative and quantitative support for the hypothesis tha t the LBM can be 
used to model bulk materials as a non-Newtonian fluid. Unfortunately, a 
lack of experimental data in the literature means that numerical rheometry 
of Materials A, B and C undertaken in this section cannot be directly compa­
red to physical material samples. However, Or and Ghezzehei [99] presented 
rheometry results for Millville silt loam (29% sand, 55% silt, 16% clay) which 
was tested using a rotating parallel plate apparatus. At water contents of
0.28kg/kg  and 0.34kg/kg  a well defined yield stress was found and therefore 
both sets of data were interpreted as Bingham plastics. For the sample with 
the lower water content, the yield stress was found to be 350 Fa and the 
plastic viscosity was evaluated as approximately 6e04 Pa.s. For the higher 
water content sample the yield stress was 800 Pa and the plastic viscosity was
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Figure 4.10: Graph of the shear stress against strain rate for Materials A, B 
and C, as tested in the numerical rheometer.

approximately 4e04Pa.s. This and other similar results [45] highlighted the 
sensitivity of the Bingham parameters to the amount of water in the sample. 
Regardless, it is apparent tha t viscosities determined in these experiments 
are several orders of magnitude larger than those found for Materials A, B 
and C. The reason for this is that the experiments are Only undertaken up 
to a maximum strain rate of 0.02s-1 and in this range the gradient of the 
stress-strain curve is high. On closer inspection though it can be seen that 
at the maximum strain rate the gradient is still decreasing. It can there­
fore be assumed that the plastic viscosity over a test range in the order of 
100s-1 would be significantly lower and, when water content is also taken 
into account, of similar scale to tha t of Materials A, B and C.

a LBM S a n d  

x M aterial A 

o  M aterial B 

□ M aterial C



C h a p t e r  5

T w o -D i m e n s i o n a l  A p p l i c a t i o n s  
o f  t h e  LBM -D EM  F r a m e w o r k

The preceding chapters of this thesis have outlined the incremental develop­
ment of a computational framework th a t is capable of simulating fines migra­
tion in a block cave. Chapter 2 discussed the implementation of the lattice 
Boltzmann method within a commercial finite element code, with special 
consideration given to the accuracy and stability of the model in large scale 
problems. Chapter 3 then addressed the coupling of the LBM to the discrete 
element method, including particle mapping techniques and the matching of 
explicit solution schemes. Finally, Chapter 4 dealt with the extension of the 
framework to include non-Newtonian fluids and the characterisation of bulk 
materials using a complex material model. The successful amalgamation of 
these features then allowed the modelling of fines percolation and migration 
to be undertaken.

Prior to the extension of the LBM-DEM framework to three dimensions, 
moderate and large scale applications were undertaken in two dimensions. 
The use of 2D models allows large physical domains to be simulated over 
moderate time periods due to the comparatively low number of lattice nodes, 
and therefore computational resources, required. However, it also simplifies 
the representation of the actual cave geometry and limits the mechanics of 
block dynamics and fines migration to a plane. The interaction of multiple 
adjacent draw zones in a cave requires a 3D model layout, and it is fair to 
assume tha t the inter-particle percolation th a t occurs during migration is 
also a 3D phenomenon with fines moving in all three Cartesian directions to
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Figure 5.1: Schematic representation of the discrete element contact buf­
fer applied to circular elements. The hashed circles represent the contact 
boundaries and the solid circles represent the physical boundaries.

occupy evolving voids.
Another limitation of 2D fines migration simulations is the very low per­

meability of the structural, discrete element field. At steady state the poro­
sity (portion not filled with blocks) of the cave is less than 10% when circular 
elements are used, and the well-developed network of block-block contacts 
forms a barrier impermeable to fines percolation. To overcome this problem 
a contact buffer was incorporated into the discrete element contact which 
would allow neighbouring blocks to engage in contact before they were phy­
sically touching. The contact buffer for circular elements is introduced as a 
reduction of the original boundary radius, as shown schematically in Figure
5.1, while the contact radius remains unchanged. This simple modification 
allowed the porosity of the 2D structural field to be adjusted via a single 
contact parameter.

Despite the limitations of 2D modelling it can still be employed to provide 
insight into the kinematics of fines migration. In this chapter, the results of a 
moderate scale percolation analysis and a large scale cave migration analysis 
are presented.

5.1 R eplication of DEM  Percolation Tests
The two-dimensional LBM-DEM framework was first applied to replicate 
fines percolation analyses undertaken using the discrete element method. As 
discussed in Section 1.2, Pierce [105] used the commercial code PFC3D to 
investigate the percolation of small elements through large elements in both
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Figure 5.2: The method of shear induction in the small scale percolation tests 
[105]. The strain rate was governed by the period of the angular deformation.

small scale shear tests and large scale cave draw simulations. The objective 
of the research was to determine the significant factors tha t influence perco­
lation and to develop equations based on these trends for implementation in 
REBOP.

The small scale DEM tests were themselves a replication of experiments 
undertaken by Bridgewater et al. [10]. These tests measured the shear- 
induced percolation of spheres of various sizes in a bed subjected to angular 
deformation. Figure 5.2 shows the deformation induced in the bed in the 
DEM experiments. The top of the bed was seeded with smaller elements and 
the time required for them to reach the bottom  was investigated for various 
factors including fines size distribution, shearing rate and shear orientation 
with respect to gravity.

The salient results of the small scale percolation tests are listed as follows.

1. The rate of percolation increased for lower strain rates. The slower 
rearrangement of large particles allowed more time for small particles 
to fall into interm ittent void spaces.

2. The rate of percolation decreased as the size of the smaller particles 
was increased towards the size of the larger particles. The rate of 
percolation also decreased when using a statistical distribution for the 
size of the smaller particles. These are largely intuitive results.

3. The orientation of the shearing direction with respect to gravity did 
not have a significant effect on the rate of percolation.

Pierce also undertook a large scale cave analysis using DEM to test the hy­
pothesis tha t the shear induced by draw was a primary cause of fines migra­
tion/percolation. The analysis was performed in 3D in a quarter symmetry
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model measuring 19.25m along each base edge and 42m high. Draw was 
undertaken by prescribing the exit velocity of particles at the 14 m circular 
outlet at the bottom  of the domain. The domain was filled with two-ball 
clumps with an equivalent radius of 0.75m. A layer of small spherical par­
ticles with a radius five times smaller than the large particles was also placed 
across the vertical centre of the cave. A picture of the cave model is repro­
duced from [105] in Figure 5.3a and the migration results after 2.9% and 
4.9% of the total volume has been removed are included in Figure 5.3b. The 
results of the cave draw analysis showed the most significant percolation of 
fines inside the draw zone. However, it appears in the results tha t a signifi­
cant amount of percolation still occurs in the domain extremities where the 
larger particles do not move significantly.

(a) (b)

Figure 5.3: Pictures reproduced from [105] showing (a) the quarter-symmetry 
cave draw model and (b) the relative movement of fines and their initial 
neighbours after (above) 2.9% of material has been drawn and (below) 4.9% 
of material has been drawn.
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5.1.1 Percolation Through Circular Discrete Elements

After reviewing the work of Pierce, the cave draw analysis was replicated 
in an approximate fashion using the 2D LBMdDEM framework. The model 
domain, as shown in Figure 5.4a, measured 20 m in width and 24m high and 
the outlet length was 7 m. The physical diameter of the 1100 discrete element 
blocks was normally distributed between 0.55m and 0.65m. This is inclusive 
of a radial contact buffer of 0.025m, meaning th a t the contact diameter of 
the particles ranged between 0.6m and 0.7m. A Hertzian contact penalty 
was employed, in conjunction with normal, tangential and rotational contact 
damping ratios of 0.6, 0.3 and 0.3, respectively, and a friction coefficient of 
0 .2 .

The fines domain was meshed with a D2Q9 lattice and a spacing of 0.05 m 
resulting a grid size of 401x481 and approximately 1.9e05 nodes. The re­
solution with which the discrete elements were represented by the grid can 
be seen in Figure 5.4b. The LBM fines were modelled with a shear-thinning 
power law model and the parameters of M aterial C listed in Table 4.1 in 
Section 4.3.3. A gravitational body force of 9 .81ra/s2 was applied to the 
discrete elements and the fines. The draw of blocks and fines from the cave 
was simulated by the interm ittent deactivation of discrete elements from the 
outlet. Atmospheric pressure boundary conditions were applied at the in­
let and outlet of the LBM domain, and the walls were handled using the 
bounce-back condition.

The cave draw model was run for a period of seven interm ittent draws 
and a total solution time of 20 s, during which 5% of the block material was 
removed from the domain. The total kinetic energy of the discrete elements 
was monitored to ensure th a t the cave was a t steady state before the next 
draw was undertaken. Figure 5.5a is a contour plot of the y-direction dis­
placement of the blocks at the conclusion of the simulation and Figure 5.5b 
highlights the deformation of the block layers. The movement of the blocks 
shows the emergence of a distinct draw zone which is orientated slightly to 
the right of vertical. Also of interest is the presence of a slip plane on the 
lower right side of the draw zone (see Figure 5.5a), where blocks move toward 
the draw point past a ridge of stationary material.

The movement of the fines phase during draw can be interrogated via the 
LBM velocity field. For example, Figure 5.6a plots the y-direction velocity 
of the fines after the first draw has taken place. The contour plot shows the 
movement of fines within the draw zone, which is induced by the collapse 
of blocky material into the draw point. Looking at the velocity distribution 
in more detail, Figure 5.6b is a vector plot of the fines’ to tal velocity in 
the region just above the draw point. This picture highlights a channel of
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Figure 5.4: The 2D LBM-DEM cave draw analysis showing (a) the analysis 
domain and DEM blocks and (b) the LBM grid overlaid on a section of the 
domain.

preferential fines flow, characterised by the consistently larger vectors, in 
which the material is moving faster than that adjacent to it. Interrogation 
of the results showed tha t these channels vary in location throughout the 
solution, as they are dependent on the movement of blocks in the region and 
the constant evolution of void spaces.

The rate of movement of the fines phase is indirectly governed by the rate 
of strain induced by draw. This is because the truncated power law model 
employed to characterise the fines as a non-Newtonian fluid alters the model 
viscosity by an amount dependent on the local rate of strain. Figures 5.7a 
and 5.7b plot the characteristic rate of strain in the LBM fines at two times 
during the first draw. The strain is induced by the relative movement of 
blocks as they collapse into the draw point. At 0.05s after draw the strain 
is localised to immediately above the draw point but at 0.15 s after draw the 
region of strain can be seen to have branched to the left and right edges 
of the draw zone. The latter result indicates regions of high shear at the 
interface of the draw zone and the stationary blocks in the cave, which is 
an intuitive result. These regions of high shear lead to pseudoplastic failure 
of the fines (i.e. localised viscosity reduction) which promotes accelerated
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movement with respect to the adjacent blocks and fines. This result supports 
the hypothesis th a t regions of high shear lead to increased percolation of fines.

On their own, the displacement results for the blocks and the velocity 
results for the fines provide a good description of the draw zone but they 
do not quantify the amount of fines migration tha t occurred in the analysis. 
Instead, a post-processing technique th a t determined the relative movement 
of the fines and the blocks was required, which led to the development of 
a procedure called migration tracing. The migration trace is undertaken by 
first seeding the cave in its original configuration with a number of infini­
tesimal markers. These markers are placed in the voids between discrete 
elements which are filled with fines. The movement of these markers in the 
fines regime is then calculated by applying a finite difference scheme to in­
tegrate the fines velocity field both spatially and temporally as the solution 
progresses. The migration trace outputs the path of each marker over the 
course of the solution. This can be compared with the movement of adjacent 
blocks and the relative movement of the two can be quantified.

For this analysis three rows of twelve markers were placed in the cave as 
shown in Figure 5.8a, with Row 1 closest to the draw point, Row 2 in the 
middle and Row 3 at the top. The blocks th a t neighbour each marker in 
their original location are also shown. Figure 5.8b plots the results of the 
migration trace by showing the path of the markers and the final location 
of their neighbouring blocks. The contour scale indicates the y-direction 
displacement of the blocks in metres. In this figure, the amount of percolation 
th a t has occurred during draw is evidenced by the difference in the final 
location of the blocks and the markers. It can be seen th a t the amount of 
migration in Row 1 immediately above the draw point is minimal despite the 
movement of fines and blocks being greatest in this region. This result cannot 
be directly compared with the work of Pierce because migration information 
is only provided for the seam of fines at the middle of the domain. In the 
LBM-DEM analysis migration can be seen at both the middle and top rows 
of markers. At Row 2, the fines have moved on average 200% the distance 
of the blocks (i.e. twice as far) and at the top row the fines have moved 
approximately 150% the distance of the blocks. This compares well with 
the predictions of Pierce, which show the fines moving approximately 150% 
the distance of the blocks in the centre, of the domain. On all three rows 
significant migration can be seen at the edge of the draw zone, in particular 
on the right side. This is caused by the shear thinning of the material model 
in the bands of high strain rate. The movement of fines outside the draw 
zone was found to be minimal. The results of this investigation support the 
hypothesis th a t fines migration is greatest in regions of high shear in the 
cave.
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Figure 5.5: The y-direction displacement of the discrete element blocks at the 
end of the analysis including (a) a contour plot of the vertical displacement 
and (b) the deformation of the original layers.
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Figure 5.6: The velocity of the LBM fines including (a) a contour plot of the 
y-direction velocity 0.2s after the first draw and (b) a vector plot of the total 
velocity 1.0s after the first draw.
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Figure 5.7: Contour plot of the characteristic rate of strain in the LBM fines 
a t (left) 0.05s after the first draw and (right) 0.15s after the first draw.
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Figure 5.8: Trace of the spatial fines migration throughout the 2D percolation 
analysis showing (a) the trace markers and their initial neighbouring blocks 
and (b) the relative movement of the markers and their neighbour blocks at 
the end of the analysis.
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5.1.2 Percolation Through Polygonal Discrete Elements

To improve the representation of the cave blocks, the percolation test was 
then repeated using polygonal discrete elements in place of circular elements. 
Polygons offer angularity tha t cannot be achieved with single discs, however 
due to the added complexity in contact detection and resolution they are 
more computationally expensive. Four-sided elements were used in this ana­
lysis, with the size and shape normally distributed. The method of draw 
control was changed from instantaneous element deactivation to support re­
laxation over a period of one second. This provided a niore realistic repre­
sentation of the draw point excavation process. Also, the contact buffer was 
not used in this analysis because it was not implemented for polygonal ele­
ments. All other features of the simulation were identical to those described 
in Section 5.1.1.

The final configuration of the blocks can be seen in Figure 5.9a, which 
is a contour plot of their y-direction displacement. The displacement of the 
blocks clearly indicates the extents of the draw zone, and it can be seen tha t 
the use of polygons has resulted in a narrower draw zone than th a t which was 
predicted with circular discrete elements. The movement of the polygonal 
blocks was also found to be more stochastic than the circular ones and the 
settling time after draw was also greater for the polygonal blocks.

The fines velocity in the y-direction 0.15 after the completion of the se­
venth and last draw can be seen in Figure 5.9b. The narrower draw zone 
highlighted by the block displacement is also evident in the plot of fines velo­
city. In this figure the zone of fines movement is shown to be much narrower 
than th a t found using circular elements, and as a consequence of the block 
movement it is noticeably biased to the right of the domain. .

Figure 5.10a is a contour plot of the characteristic rate of strain in the 
LBM fines 0.5s after the completion of the seventh and final draw. As in the 
circular element analysis, the regions of highest shear can clearly be seen on 
the left and right edges of the draw zone.

Finally, Figure 5.10b plots the results of the migration trace for the poly­
gonal element analysis. The comparison of the final location of the markers 
and the blocks shows almost no percolation of the fines through the blocks. 
This result was not entirely unexpected as the contact buffer for increasing 
2D porosity has not been used in this analysis. In fact, close inspection of 
the structural field revealed some regions where the blocks had packed in way 
th a t resulted in effectively zero porosity. This problem could be overcome 
by implementing the contact buffer for polygons, which is considerably more 
complex than for circular elements, but this would still not overcome the 
inherent limitations of 2D analyses.
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Figure 5.9: Results of the 2D percolation analysis using polygonal discrete 
elements showing (a) a contour plot of the y-direction displacement of the 
blocks at the end of the analysis and (b) a contour plot of the y-direction 
velocity of the fines 0.1s after the completion of the last draw.
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Figure 5.10: Results of the 2D percolation analysis using polygonal discrete 
elements showing (a) a contour plot of the characteristic rate of strain in the 
LBM fines 0.5s after the completion of the last draw and (b) the results of 
the migration trace.
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5.2 Field Scale Block Cave Analysis
Following the cave percolation analyses the two-dimensional LBM-DEM fra­
mework was applied in a field-scale cave simulation. A geometry was created 
tha t included some of the relevant features of an actual cave, as shown in 
Figure 5.11. The three-bell cave measured 35m wide and 20m high and the 
outlet draw points were 3.5m wide and spaced at 8.5m centres. The profile of 
the pillars and the rugosity of the cave walls were chosen arbitrarily. Circular 
discrete elements with a normally distributed diameter range between 0.46 m 
and 0.56m were employed to represent the cave blocks. This is inclusive of 
a radial contact buffer of 0.02 m, meaning tha t the contact diameter of the 
particles ranged between 0.50m and 0.60m. As an additional, arbitrary fea­
ture to the model, a vertical seam of smaller elements was included in the 
cave. These particles were assigned a physical diameter range between 0.36 m 
and 0.46m and the same radial contact buffer of 0.02 m. The seam of smal­
ler particles can be seen above the right pillar in Figure 5.12. The discrete 
element contact properties used in the analysis were identical to those in the 
percolation analyses.

The LBM fines grid spacing used was 0.05 m resulting in a grid size of 
427x711. The implementation of the LBM allowed the basic rectangular 
domain to be optimised so th a t only the nodes inside the cave boundary 
were processed. This trimming of the LBM domain resulted in a to tal of 
approximately 2.5e05 nodes. The LBM fines were again modelled with a 
shear-thinning power law model and the parameters of Material C in Table
4.1. A gravitational body force was applied to the discrete elements and the 
fines and atmospheric pressure boundary conditions were applied a t the inlet 
and outlet of the LBM domain.

The three-bell cave analysis was run for seven draws and a to tal time 
of 20s. The draw of blocks and fines from the cave was handled by the 
interm ittent relaxation of the supports over a period of one second at each 
outlet. The draw sequencing was chosen randomly to be left, middle, right, 
left, middle, middle, left as shown in Figure 5.11. This resulted in three 
draws from both the left and middle draw points and one from the right one.

As in the percolation analyses the behaviour of the cave blocks and fines 
during and after draw was interrogated by displacements and velocities. Fi­
gure 5.12 is a contour plot of the y-direction displacement of the discrete 
element blocks a t the conclusion of the simulation. Of greatest interest in 
this figure is the interactive zone tha t can be seen above the left pillar, bet­
ween the left and middle draw points. This interaction has resulted in the 
material above the pillar descending further in the cave than  th a t directly 
above the draw points, which is a common gravity flow phenomenon. The
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influence of the cave wall roughness is evident in the limited block move­
ment adjacent the walls. Also, the seam of smaller blocks appears to have 
influenced the shape of the draw zone above the middle draw point as a 
discontinuity in the block displacement can be seen on the right edge of the 
seam.

Figures 5.13 and 5.14 are contour plots of the y-direction fines velocity 
at the end of the first draw and second draw, respectively. In the first plot, 
a relatively narrow band of fines movement can be seen extending from the 
draw point into the cave a t an angle of approximately 45° to the right. In the 
second plot the draw is more evenly distributed throughout the draw zone 
above the draw point. However, the seam of smaller blocks can be seen to 
influence the movement of fines a t the right hand side of the draw zone by 
restricting the speed of the fines in this area. This suggests tha t, intuitively, 
the migration of fines is reduced in regions of smaller blocks where the void 
space is smaller.

Figures 5.15 and 5.16 plot the characteristic rate of strain in the LBM 
fines at the end of the first and second draws, respectively. The effect of 
the channel of fines movement above the left pillar (see Figure 5.13) can be 
seen in the first plot. A band of high shear has been generated in the same 
location, which would promote increased migration due to the shear-thinning 
characteristics of the material model. The second plot shows regions of high 
shear in the draw zone above the middle draw point.

The migration trace of the three-bell cave analysis was undertaken using 
three rows of markers (24 at the top, 22 a t the middle and 20 at the bot­
tom). The results of the fines migration trace for this example can be seen 
in Figure 5.17. Unlike the percolation analysis reported in Section 5.1.1, 
minimal migration can be seen in the three-bell cave at the top and middle 
rows. Instead, the greatest amount of migration in this analysis can be seen 
in the bottom  row above the left and middle draw points, which undergo the 
largest amount of draw. In these areas the fines moves approximately 150% 
the distance of the blocks. This result is again in contrast to the percola­
tion analysis in which minimal migration was seen directly above the outlet. 
The differences in the qualitative results could be attributable to a num­
ber of differences in the two analyses such as cave geometry, draw technique 
(relaxation rather than deactivation) and material properties.

The quantitative and qualitative outcomes of the two-dimensional ana­
lyses have highlighted the potential of the coupled code for application in 
fines migration investigations. However, due to the three-dimensional nature 
of the percolation phenomenon, it is probable th a t 3D analyses would be 
better suited to capture fines migration behaviour in a block cave.
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Velocity in Y

Figure 5.13: Contour plot of the y-direction velocity of the hues at the end 
of the first draw. The movement of fines appears to be in a band strongly 
biased to the right.
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Figure 5.14: Contour plot of the y-direction fines velocity at the conclusion 
of the second draw, showing the restriction caused by the smaller blocks.
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Figure 5.15: Contour plot of the characteristic rate of strain in the fines at 
the end of the first draw. The channel of fines movement (see Figure 5.13) 
has resulted in a band of high shear.
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Figure 5.16: Contour plot of the characteristic rate of strain in the fines at 
the end of the second draw.
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Figure 5.17: Results of the migration trace for the three-bell cave analysis.
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F r a m e w o r k

Upon completion of the expansion to three dimensions the LBM-DEM fra­
mework was applied in moderate scale percolation and migration problems 
similar to those described in Chapter 5. The analysis of 3D problems neces­
sitated careful consideration of the computational requirements due to  the 
serial nature of the framework code. In general the size of problem th a t could 
be reliably analysed was constrained by memory. W hilst three-dimensional 
lattices contain a much greater number of nodes than their 2D counterparts, 
in making the transition from D2Q9 to D3Q15 they also increase the num­
ber of floating point values a t each node from nine to fifteen. This limitation 
was partially mitigated by employing 64-bit hardware which increased the 
available memory from 2GB to 4GB.

The three-dimensional problems presented in this chapter include a repli­
cation of the percolation analysis undertaken by Pierce [105] and the simula­
tion of a block cave section with two draw points. Almost all of the analysis 
techniques described in Chapter 5 are carried over to these problems and 
the results are again interpreted in terms of displacements and velocities of 
the blocks and the fines. The 3D nature of the results, particularly the fines 
phase, required some new post-processing techniques to aid the visualisation 
of the analysis outcomes.
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6.1 Replication of DEM Percolation Tests
As in Chapter 5 the cave draw analysis undertaken by Pierce was replicated in 
an approximate fashion. The aforementioned memory constraints meant tha t 
the linear dimensions of the model were approximately three times smaller 
than the original analysis. The quarter-symmetry model domain, as shown 
in Figure 6.1a, measured 6m in width and depth and 12 m high. The circular 
outlet at the bottom  of the domain had a radius of 2.5 m. The domain was 
filled with 2000 spherical discrete element blocks whose diameter was nor­
mally distributed between 0.55m and 0.65m. Due to the naturally occurring 
void space between the 3D blocks the contact buffer was not required to in­
crease the permeability of the structural field. To govern the DEM contact 
between the blocks, a Hertzian penalty was employed, in conjunction with 
normal, tangential and rotational contact damping ratios of 0.6, 0.3 and 0.3, 
respectively. The block density was 2000£;g/ra3 and the friction coefficient 
for block-block contact was 0.1 and for block-wall contact was 0.3.

The fines domain was meshed with a D3Q15 lattice and a spacing of 
0.05m. This resulted in a grid size of 121x121x241 an d ’a to tal of approxi­
mately 3.5e06 nodes. Figure 6.1b plots the wire frame of the LBM grid over 
the discrete elements, indicating the resolution with which they were repre­
sented by the lattice. A body force of 9.81ra/s2 was applied to thie discrete 
elements and the fines to simulate gravity. Boundary conditions a t the walls 
were handled using the bounce-back condition and at the inlet and outlet 
they were modelled using atmospheric pressure constraints.

The LBM fines were modelled with a shear-thinning power law model, and 
in this analysis the influence of the fines material properties was investigated. 
Two material types were tested and the fines migration behaviour of each was 
compared. The first analysis employed the parameters of M aterial C as listed 
in Table 4.1 in Section 4.3.3. The parameters of the second analysis included 
an initial viscosity, and relaxation parameter, Tjn, of 0.0833ra2/ s  and 
0.55, respectively. In conjunction with the lattice spacing this resulted in 
a LBM time step of 5e-04s. The consistency constant, vo, and the power 
law index, n, were set at 0.1668m 2sn~2 and 0.3, respectively. The power law 
truncation limits on the relaxation parameter were set a t Tmin =  0.51 and 
Tmax — 1-5. The bulk density of both material types was lOOOkg/m3.

The second set of fines material properties used in this investigation are 
from here on referred to as Material D. The objective of the parameters 
chosen for this material was to create a material with a plastic viscosity tha t 
was lower than the value of 30 Pa.s for Material C, yet not as low as the 
almost cohesionless Leighton Buzzard sand. To enable a direct comparison 
of the viscoelastic response of these three materials, Material D was tested
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Figure 6.1: The 3D LBM-DEM cave draw analysis showing (a) the domain 
and DEM blocks and (b) the LBM grid overlaid on a section of the domain.

in the numerical rheometer described in Section 4.3.3. Figure 6.2 graphs 
the instantaneous viscosity of the three materials against strain rate. In 
comparison to Material C, it can be seen tha t at high strain the viscosity 
of Material D is lower at approximately 23 Pa.s. It it is also evident that 
the transition to the ultimate viscosity is more gradual in Material D than 
Material C.

As in the 2D analyses, 5% of the block volume was removed from the 
domain. This was achieved by lowering the support at the cave outlet a 
total of 4.5m over a period of 9s within a total solution time of 10s. Due to 
differences in the initial viscosity and relaxation parameter, Material C and 
D required LBM time steps of 2e-04s and 5e-04s, respectively. Consequently, 
the explicit sub-cycling number was different for each solution, as shown in 
Figure 6.3. In this graph it can be seen tha t the larger.LBM time step of 
Material D generally necessitates a larger sub-cycling number to maintain 
synchronisation with the DEM time step. The ability of the coupled frame­
work to dynamically update the sub-cycling number, as the DEM time step 
changes with the state of the structural field, is also evident.
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Figure 6.2: Graph of the instantaneous viscosity against strain rate for Leigh­
ton Buzzard sand, Material C, and Material D, as tested in the numerical 
rheometer.
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Figure 6.3: Graph of the sub-cycling number, which relates the time step 
of the LBM and DEM explicit schemes, throughout the solution for both 
Material C and D.
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F igure 6.4: Results of the 3D percolation analysis showing contours plot of 
the y-direction displacement of the blocks at the end of the analysis for (a) 
Material C and (b) Material D.

Figures 6.4a and 6.4b are contour plots of the y-direction displacement 
of the blocks at the end of the simulation. The draw zone, within which 
material is moving toward the outlet, can be seen. At the top of the domain 
the draw zone has reached the outer boundaries, which is a consequence of 
the computational limitations of the serial LBM-DEM framework. Ideally, 
the ratio of the domain dimensions and the block diameter would be greater, 
thereby allowing the draw zone to remain isolated from the domain bounda­
ries. The most obvious observation tha t can be made from these figures is 
tha t neither solution is at equilibrium. At the end of both analyses blocks 
are continuing to collapse into the draw point, meaning th a t less than the 
intended 5% of material has been drawn from the model. This phenomenon 
is more pronounced for Material C than D, and can be explained by the dif­
ference in high-strain viscosity of the two. The plastic viscosity of Material 
C is higher than tha t of Material D, meaning tha t the resistance to block 
movement caused by the fines is greater. This is exacerbated in both cases 
by mechanical resistance to block movement at the domain outlet, which is a 
consequence of the outlet radius being equivalent to only five block diameters.
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The interrogation of the fines velocity is more difficult in 3D than  2D 
and therefore post-processing techniques are required th a t are more compli­
cated than basic contour plots of the visible surfaces. In fact, an array of 
visualisation tools, including cut planes, single and multiple isosurfaces, and 
moving slices, is required to adequately gain insight into the 3D movement of 
fines. As an example, Figures 6.5a and 6.5b plot the y-direction velocity of 
the fines for Material C and D, respectively, on the yz-plane. These contour 
plots were captured after 3.55 (approximately 35% of draw) with the location 
of the cut plane 0.3m from the front boundary of the domain. From compa­
rison of these figures it can be seen th a t a greater amount of fines is moving, 
some with greater velocity, with Material D. This can be explained, like the 
greater movement of blocks, by the lower plastic viscosity of the material 
model which has undergone more thinning under shear.

The difference in fines movement for the two materials can also be high­
lighted by an isosurface plot, as shown in Figures 6.6a and 6.6b. The isosur­
faces in these figures display the regions of material th a t have a y-direction 
velocity of -0.3m /s ,  and as expected a greater amount of fines movement can 
be seen for M aterial D. An im portant advantage of the isosurface plot is tha t 
it is able to highlight channels of preferential fines flow at an instant throu­
ghout the entire domain. This performs the same role as the to tal velocity 
vector plots in two dimensions. The regions of preferential flow are a major 
contributor to the percolation of fines through the blocks in the cave. The 
random size and distribution of these channels, particularly in Figure 6.6b, 
highlight the stochastic nature of the fines migration phenomenon.

The relative movement of the fines and blocks in the two percolation 
analyses was investigated using the migration tracing procedures described 
in Section 5.1.1. The domain was seeded with three rows of ten markers 
which ran diagonally from the centre to the corner furthest from the outlet. 
Row 1, which was closest to the draw point, was placed one quarter of the 
way up the domain while Row 2 and Row 3 were placed one half and three 
quarters of the way up, respectively. Figure 6.7a plots the migration trace 
results for Material C and Figure 6.7b plots- the migration trace results for 
Material D. Both figures show the initial and final location of the blocks 
th a t neighbour each marker as well as the path of the fines markers. The 
y-direction displacement of the blocks in metres is shown in the contour.

From the results of the trace for Material C it can be seen th a t some 
migration exists at third and fourth markers on Row 1. In this area, which 
is coincident with the edge of the draw zone, the fines move approximately 
150% of the distance of the blocks. There is only minimal fines movement 
outside the draw zone on Row 1. Significant fines percolation can be seen 
on Row 2 inside the draw zone, especially directly above the outlet. At
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Figure 6.5: Contour plot of the y-direction fines velocity midway through 
the cave draw for (a) Material C and (b) Material D. The slice of the fluid 
domain is located 0.3m from the front boundary.
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Figure 6.6: Isosurface plot of the y-direction fines velocity midway through 
the cave draw for (a) Material C and (b) Material D. The velocity magnitude 
of the isosurface is -0.3m /s.
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the first marker the fines has moved approximately 250% the distance of 
the neighbouring block which suggests tha t a wide channel of fines flow 
exists at this location. At the third marker the fines has descended twice 
as much as the block despite both moving considerably less than  at the first 
marker. Interestingly, migration can also be seen at the eighth and ninth 
markers, which are well outside the draw zone. Lastly, only a small amount 
of migration can be seen at Row 3. This is possibly a consequence of the 
small amount of block movement and relatively even draw a t this height.

The results of the migration trace for Material D display similar charac­
teristics to those for M aterial C but the amount of percolation is generally 
greater. On Row 1, the first and second markers move further than for Ma­
terial C due to the greater amount of draw. However, they do not move 
further than their neighbouring blocks and therefore there is no migration. 
The same percolation can be seen on the edge of the draw zone- and the third 
and fourth markers however the relative movement is actually less than it 
is for Material C. Again, only negligible migration can be seen outside the 
draw zone. On Row 2, the same migration above the outlet can be seen, with 
the fines moving approximately 250% the distance of the blocks at the first 
and third markers. Although the magnitude of fines and block movement 
is greater for M aterial D the relative movement is approximately the same. 
At the eighth and ninth markers the percolation seen in Material C is again 
evident but in greater magnitude. Despite being outside the draw zone, the 
rearrangement of blocks and the evolution of voids has allowed a channel 
of fines flow to be created. This in turn has allowed significant migration 
to occur, which is significant because a t this location the amount of block 
movement is minimal. At Row 3 percolation can be seen at the second and 
sixth markers, both of which are inside the draw zone. At these locations the 
fines move approximately 250% the distance of the blocks. At other locations 
on this row migration is negligible.

It should be noted th a t the analysis of Material C and D employed the 
same initial structural field. The similar characteristics of the migration 
traces for the two materials suggest th a t the arrangement of the discrete 
element blocks and voids has a strong influence on the behaviour of fines 
during draw. This acts in conjunction with the fines materials properties 
to govern the magnitude and location of migration in the cave. The results 
of the percolation analyses also suggest tha t definitive rules governing the 
level of migration throughout the domain do not exist. W hilst migration 
typically occurred inside the draw zone, a number of exceptions to this ob­
servation were found. No migration was found at some locations within the 
draw zone whilst migration was found at a small number of locations outside 
the draw zone. This suggests, perhaps intuitively, th a t fines migration is a
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Figure 6.7: Fhe results of the migration trace for (a) Material C and (b) 
Material D, in the 3D percolation analysis. The y-direction displacement 
[m] of the neighbouring blocks is shown in the contour.

highly stochastic phenomenon which is sensitive to subtle differences in the 
arrangement of blocks within the cave. Nevertheless, general trends can be 
seen in these results tha t are consistent with the work of Pierce [105], which 
showed greatest migration inside and on the fringes of the draw zone.

6.2 P artia l Block Cave Analysis
Following the three-dimensional percolation analyses the LBM-DEM frame­
work was applied in a moderate-scale cave simulation. The computational 
limitations of the serial code implementation were of even greater significance 
in this investigation due to the physical size of a fully developed block cave. 
Figure 6.8a is a schematic representation of a well developed block cave, sho­
wing the development and production level tunnels and the caved ore body. 
It is clear from this picture tha t the linear dimensions of the mine can be of 
the order of hundreds of metres and therefore, even if distributed computing 
is available, the model domain must be chosen carefully. In addition, the

k
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Figure 6.8: Schematic representation of a block cave including (a) the extents 
of a well-developed mine showing the tunnel network and the caved ore body, 
and (b) an array of draw bells showing the section A-A that is used in the 
partial block cave analysis.

best location within the cave for capturing fines migration is not an auto­
matic choice, and requires a degree of engineering judgement. Figure 6.8b 
is a schematic diagram of an array of draw bells at the production level. In 
this investigation the model domain was chosen to follow the section A-A, 
thereby incorporating the interaction of two adjacent draw points. By choo­
sing a domain tha t includes the draw bell outlet the removal of blocks can 
be controlled and the region of greatest block dynamics, and therefore void 
evolution, is captured.

From section A-A shown in Figure 6.8b a 3D, partial block cave geometry 
was created. The profile of the domain was similar to that used in the the 
2D cave analysis however due to computational limitations only a thick slice 
of the draw bells could be incorporated. The geometry and dimensions of 
the 3D model can be seen in Figure 6.9a. The two-bell cave measured 15 m 
wide, 10m high and 2m deep and the outlet draw points were 2.5m wide and 
spaced 5.5m apart. The profile of the pillars and the rugosity of the cave 
walls were chosen arbitrarily. The cave blocks were modelled using circular 
discrete elements with a normally distributed diameter range between 0.40 m 
and 0.50m. The block density and discrete element contact properties used 
in this analysis were identical to those in the 3D percolation analyses, and 
the contact buffer was not employed.
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Figure 6.9: The 3D LBM-DEM partial block cave analysis showing (a) the 
domain and DEM blocks and (b) the LBM grid overlaid on a section of the 
domain.

The fines domain was meshed with a D3Q15 lattice and a spacing of 
0.05m. This resulted in a grid size of 301x201x41 and a total of approxi­
mately 2.5e06 nodes. Optimisation, or trimming, of the orthogonal domain 
reduced the number of processed nodes to 1.9e06. Figure 6.9b plots the wire 
frame of the LBM grid over the discrete elements, indicating the resolution 
with which they were represented by the lattice. A body force of 9 .81ra/s2 
was applied to the discrete elements and the fines to simulate gravity. Boun­
dary conditions at the walls were handled using the bounce-back condition 
and at the inlet and two outlets they were modelled using atmospheric pres­
sure constraints.

In the 3D percolation analyses in Section 6.1 the sensitivity to fines pro­
perties was investigated by comparing the migration results of Material C 
and D. In this investigation, however, the fines properties are kept constant 
and the shear-thinning power law model is employed solely with the para­
meters of Material D. Instead of testing the response to different material 
properties, the partial block cave model was used to investigate the effect of 
draw strategy on percolation. Two analyses were undertaken with the first 
employing isolated draw and the second employing interactive draw. A total 
of six draws was executed in both analyses over a total solution time of 9 s. 
As in previous fines migration and percolation models the draw of blocks 
and fines from the cave was handled by the interm ittent relaxation of the
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supports over a period of one second at each outlet
The draw sequencing in the isolated investigation featured three conse­

cutive draws from the left draw point followed by three from the right draw 
point. This can be seen in Figure 6.10, which includes contour plots of the 
y-direction displacement of the blocks after the first three draws and at the 
end of the simulation. After the first three draws a distinct draw zone can 
be seen above the left draw point, and by repeatedly drawing from the same 
location a shear plane is created between the draw zone and the surrounding 
material. In the interactive investigation the material draw was alternated 
between the left and right draw points for a to tal of six draws. Figure 6.11 
plots the y-direction displacement of the blocks in the interactive analysis af­
ter three draws and six draws. By alternating the draw location the relative 
movement between the draw zone and the surrounding material is minimised, 
potentially limiting the possibility of fines migration. It can be seen th a t for 
both analyses the final configuration of the structural field is similar despite 
utilising different draw strategies.

The shape of the draw zone in each analysis can also be interpreted from 
the velocity of the the fines during draw. Figure 6.12 includes two isosurface 
plots of the y-direction velocity of the fines in the isolated draw analysis. The 
images are captured at t  = 2.2s which is in the middle of the second draw 
and at t  = 6.8s which is in the middle of the fifth draw, and the velocity 
magnitude shown is a t t = —0.3m /s . Comparison of the fines velocity at 
the two times in the figure shows a considerably narrower draw zone at 
t = 2.2s, which suggests th a t any fines percolation during this draw would 
be limited to a narrow band above the draw point. Figure 6.13 includes the 
same y-direction velocity isosurface plots for the interactive draw analysis. 
At t = 2.2s it can be seen tha t the movement of fines in the draw zone is 
considerably less than a t t = 6.8s. This is most probably due to the block 
velocity during this draw being less than is typical, and it is further evidence 
of the stochastic nature of block movement in the cave. At t =  6.8s the fines 
velocity indicates the existence of an average-sized draw zone above the left 
draw point, however a considerable amount of fines movement can also be 
seen above the right draw point. This indicates th a t either a small number of 
blocks have collapsed into the right draw point or th a t some fines percolation 
is occurring, or both are occurring simultaneously.

Figures 6.14 and 6.15 plot the characteristic rate of strain in the LBM 
fines for the isolated and interactive drawsr respectively. The two contour 
plots for each analysis were captured at t  = 2.2s and t  — 6.8s on a cut 
plane at the centre of the domain thickness. The timing of the rate of strain 
contour plots was chosen to correspond with the velocity isosurfaces included 
in Figures 6.12 and 6.13. At the instants-shown the regions of highest shear in
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Figure 6.10: Contour plots of the y-direction displacement of the discrete 
element blocks in the isolated analysis after (a) three draws from the left 
draw point and (b) three draws from the right draw point.
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Figure 6.11: Contour plots of the y-direction displacement of the discrete 
element blocks in the interactive analysis after (a) three alternating draws 
starting from the left draw point and (b) three more alternating draws star­
ting from the right, draw point.
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the fines are present within their respective draw zones. No significant shear 
band is evident at the interface of the draw zone and the adjacent stationary 
material. These results suggest that any migration of fines within the cave 
would be limited to within the draw zone, because the magnitude of the local 
strain rate directly influences the pseudoplasticity (i.e. shear-thinning and 
failure) of the material model.

Finally, a migration trace of the 3D partial block cave results was un­
dertaken to investigate the relative movement , of the fines and blocks under 
different draw strategies. The domain was seeded with a row of thirteen mar­
kers positioned 4.25m above the outlets and a row of fifteen markers position 
6.75m above the outlets. Figure 6.16a plots the migration trace results for 
the isolated draw analysis and Figure 6.16b plots the migration trace results 
for the interactive draw analysis. Both figures show the initial and final lo­
cation of the blocks th a t neighbour each marker as well as the path  of the 
fines markers. The y-direction displacement of the blocks in metres is shown 
in the contour.

The fines migration results for the isolated draw analysis confirm th a t for 
this partial cave geometry the greatest amount of percolation occurs within 
the draw zones. On Row 1, there is limited relative movement above the left 
draw point except a t the fifth marker where the fines move approximately 
200% the distance of the neighbouring block. More significant percolation 
can be seen above the right draw point on Row 1 between the eighth and 
eleventh markers, with the greatest value being directly above the outlet at 
the tenth marker. Directly above the pillar it can be seen th a t the amount 
of percolation is negligible. This is particularly interesting as this location 
corresponds to the interface between moving draw zones and stationary ad­
jacent material. It was suspected th a t significant migration would be seen 
in this area for the isolated draw analysis. The trends from Row 1 can also 
be seen in Row 2. Above the left draw point the migration of fines appears 
biased to the left of the cave, with percolation ranging from approximately 
150% to 250% relative fines movement seen at the second to fifth markers. 
Percolation above the right draw point is evident at the ninth to thirteenth 
markers and appears more symmetrical with respect to the draw zone and 
outlet. At the eleventh marker the fines moves approximately 250% the dis­
tance of the neighbouring block. As on Row 1, no migration occurs at the 
seventh and eight markers above the pillar.

Comparison of Figures 6.16a and 6.16b show that the fines migration re­
sults for the interactive draw analysis are very similar to those for the isolated 
draw analysis. This is contrary to the intuitive assumption th a t the isolated 
draw investigation would have revealed greater fines migration. Considering 
the similarity of the results, it is possible th a t the chosen model domain was
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not ideal for capturing the subtle differences in block kinematics th a t lead 
to fines percolation. Also, in this example it appears th a t the percolation of 
fines is dominated by the highly dynamic collapse of blocks into the outlet. 
A model with greater extents in all Cartesian directions, particularly height, 
may have captured more significant differences in percolation at locations 
more remote from the outlet. Alternatively, a partial LBM domain could 
be placed within a much larger DEM model at a location of interest away 
from the draw points to investigate the migration in th a t area. However this 
approach would require free surface boundaries on the fines phase which have 
not been investigated in the present study.
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Figure 6.12: Isosurface plots of the y-direction velocity of the fines phase in 
the isolated analysis at (a) t =  2.2s during the second draw and (b) t = 6.8s 
during the fifth draw. The velocity magnitude of the isosurface is -0 .3m /s.
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Figure 6.13: Isosurface plots of the y-direction velocity of the hues phase 
in the interactive analysis at (a) t = 2.2s during the second draw and (b) 
t = 6.8s during the fifth draw. The velocity magnitude of the isosurface is 
-0.3m /s.
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LBM Strain Rate

(a)

LBM Strain Rate

(b)

Figure 6.14: Contour plots of the characteristic rate of strain in the fines 
phase in the isolated analysis at (a) t =  2.2s during the second draw and (b) 
t =  6.8s during the fifth draw.
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LBM Strain Rate

LBM Strain Rate

Figure 6.15: Contour plots of the characteristic rate of strain in the fines 
phase in the interactive analysis at (a) t =  2.2s during the second draw and 
(b) t = 6.8s during the fifth draw.
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Figure 6.16: The migration trace results of the 3D partial cave investigations 
for (a) the isolated draw analysis and (b) the interactive draw analysis.



C h a p t e r  7

C o n c l u s i o n  a n d  F i n a l

R e m a r k s

This thesis has presented the development and application of a novel compu­
tational framework which couples the lattice Boltzmann method (LBM) in 
non-Newtonian form to the discrete element method (DEM). The research 
and development of this framework covered a number of distinct issues rela­
ted to the LBM, each of which was reviewed and tested in a detailed manner. 
These issues include the incorporation of the LBM within a commercial finite 
element code (FEM) and the investigation of the accuracy and stability of 
the method, the hydrodynamic coupling of the LBM to a dynamic multibody 
structural field (DEM) and the simultaneous solution of explicit schemes, and 
the extension of the fluid model to non-Newtonian flows and the calibration 
of constitutive models to represent the dynamic behaviour, of a bulk material.

The developed LBM-DEM framework was applied in the simulation of 
fragmented orebody dynamics in underground block cave mines. Specifi­
cally, the phenomenon of fines migration was investigated in both 2D and 
3D analyses of moderate to large scale. Fines migration is characterised by 
the movement of fines, which is usually waste material, at a rate th a t is 
greater than  the surrounding blocks of ore. This relative movement of fines 
and blocks is undesirable as it results in the early presentation of waste at 
the draw point which in turn  reduces the product grade and the efficiency of 
the mine. Therefore, the objective of computational simulation is to provide 
insight into the kinematics and interaction of blocks and fines within the cave 
and in doing so improve understanding of the percolation phenomenon.
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The implementation and application of the non-Newtonian LBM-DEM 
framework were both predominantly successful. The research and implemen­
tation of the framework resulted in a computational tool th a t was efficient 
and robust in solving physical problems. Subsequently, the application of the 
framework to fines migration analyses allowed the investigation of real-world 
variables such as geometry, material properties, and mine sequencing. The 
simulation results could be interrogated to show features encountered in the 
field, such as the displacement and velocity of blocks and fines, isolated and 
interactive draw, and the stochastic nature of muck pile dynamics.

The results of the implementation and application undertaken in this 
study are presented as closing remarks to this thesis. Where appropriate, the 
strengths and limitations of this novel computational approach are highligh­
ted. Finally, the aspects of this work tha t either deserve further investigation 
or present an opportunity for continued development are summarised.

7.1 Discussion of Results
The implementation of the LBM within the finite element code Elfen was 
discussed in Chapter 2. The multiscale analysis and Chapman-Enskog ex­
pansion were presented, which demonstrated how the simple kinetic formulae 
th a t comprise the LBM yield physical hydrodynamics in the macroscopic li­
mit. This derivation also highlighted the theoretical convergence behaviour 
of the method along with constraints on stability and accuracy. These nu­
merical characteristics were then tested by comparing the results of simple, 
fluid-only analyses to analytical solutions and published benchmarks.

The second order convergence of the LBM was demonstrated in conjunc­
tion with the convergence behaviour of the popular bounce-back boundary 
condition. It was shown th a t when the wall boundary is parallel with one of 
the velocity directions the bounce-back method is second order convergent, 
but this reduces to first order for non-aligned boundaries. The accuracy of 
this wall boundary technique is im portant as its simplicity and adaptability 
render it by far the most convenient (and, incidentally, popular) approach.

The inherent compressibility of the LBM was also shown by monitoring 
the pressure waves induced in a confined fluid domain due to an impulsive 
body force. However, this analysis also demonstrated the effectiveness of 
viscous dissipation in attenuating the transient pressure oscillations.

Chapter 3 treated the coupling of the LBM to the discrete element mo­
delling functionality of Elfen. From the hydrodynamic coupling techniques 
reviewed, the immersed moving boundary method [97] was chosen due to the 
convenience offered by the locality of operations and the ability to handle par­
tially covered cells. A number of techniques for mapping discrete elements
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to the LBM grid and calculating the cell coverage ratio were presented.
As the number of discrete elements in a coupled simulation increases and 

the porosity of the LBM domain decreases the computational cost of the 
mapping and coverage calculations reaches the same order of magnitude as 
the pure-fluid operations. Therefore, the optimisation of these processes is 
worthwhile, as discussed in Section 7.2.4.

Also presented in this chapter was a sub-cycling algorithm which allowed 
the dynamic coupling of the LBM and DEM explicit schemes. In testing and 
large scale applications this algorithm was shown to be robust and flexible 
in matching the time steps of the two numerical methods depending on their 
respective stability criteria. However, the appropriate limits of this coupling 
algorithm requires further investigation as during sub-cycling the mapping 
and hydrodynamic load of the discrete element field remains constant. At 
overly long sub-cycling intervals these approximations may become proble­
matic, particularly when a large number of discrete element contacts are 
present.

In testing and validation, the coupling of closed form (i.e. circles/spheres) 
and discrete form (i.e. polygons) elements was compared with empirical so­
lutions and published results. In low to moderate Reynolds number flows 
the drag force prediction for circles, polygons and spheres was found to be 
excellent. In addition, the 3D results showed th a t the force predictions re­
main good even in approximated fluid domains and at coarse grid resolution. 
This im portant result allows the reduction of computational requirements by 
minimising the mapping resolution required. At very low Reynolds numbers 
approaching the Stokes regime it was found tha t the drag predictions devia­
ted slightly from experimental and analytical results, and this aspect of the 
IMB method deserves further investigation.

Finally, the problem of cylindrical Couette flow was employed to test the 
hydrodynamic torque prediction when the IMB and bounce-back methods 
were used on the inner and outer cylinders, respectively. The results showed 
super-linear convergence, and the excellent torque and velocity predictions 
provided a solid foundation for the application of this geometry in numerical 
rheometry.

The modelling of the dynamic flow of bulk materials (i.e. fines) is a 
limited field and an area of ongoing research, however it formed an im portant 
aspect of this study. Chapter 4 considered the characterisation of block 
cave fines as a continuum with non-Newtonian constitutive properties. An 
integral component of constitutive modelling is the rate of strain tensor and 
it is a convenient feature of the LBM tha t the deformation gradients th a t 
comprise this tensor can be calculated directly and locally from the particle 
distribution functions at each node. This technique was evaluated in simple
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flow geometries and the results highlighted the influence and relationship of 
compressibility, discretisation and boundary errors. This investigation also 
showed th a t when the employed LBM parameters, are representative of actual 
simulation requirements the direct strain evaluation method performs very 
well.

A viscoelastic power law and a regularised, viscoplastic Bingham model 
was implemented in the LBM-DEM framework, however the Bingham model 
was found to be prohibitively unstable. Conversely, the power law model was 
tested in 2D and 3D validation simulations and found to be capable of repro­
ducing the characteristics of shear-thinning and shear-thickening behaviour 
over a range of exponents.

The power law model was then employed to propose a novel technique 
for numerical rheometry which was used to calibrate the computational ma­
terial model to experimental results for a specific sand. The correlation of 
the numerical and experimental results, both of which used the rotational 
Couette geometry, was excellent. Following the successful replication of a 
cohesionless material the numerical rheometer was then used to characterise 
a number of other synthetic bulk materials, however a lack of available ex­
perimental data  to calibrate against meant tha t specific soil properties could 
not be attained. Instead, the synthetic materials were broadly classified by 
their degree of pseudoplasticity and their high-strain viscosity.

It was also found in the results of the numerical rheometry th a t when 
certain model parameters were used the stress-strain response of the power 
law model and the regularised Bingham model was similar.’ From the graph of 
shear stress against strain rate for the power law rheometry results, estimates 
of an equivalent yield stress and plastic viscosity could be made. This is 
particularly convenient as it facilitates the simulation of yield-stress materials 
in an approximate fashion without the need for an implemented Bingham 
model. Extension of the numerical rheometer to 3D would be a worthwhile 
additional exercise, as it would allow the investigation of the influence of 
gravity and confining pressure in the rotational Couette rheometer, which 
has been reported to affect the shear-thinning response of materials.

Initial applications of the non-Newtonian LBM-DEM framework were un­
dertaken in two dimensions, the results of which were presented in Chapter 5. 
The DEM percolation tests conducted by Pierce [105] were replicated using 
both circular and polygonal discrete elements, and the migration of the fines 
phase between the blocks was observed. In addition, a large-scale analysis 
of a three-bell block cave was undertaken and the fines migration induced 
by an arbitrary sequence of draws was monitored. The investigation of a 
number of physical mine features such as block size distribution, cave geo­
metry, and draw interactivity was undertaken. The analysis results included
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information on the velocity and displacement of the fines and blocks, both of 
which highlighted the extents of the active draw zone at all times. However, 
the quantification of fines migration requires data on the relative movement 
rather than absolute movement of the two phases. This information was 
attained via the development of a migration tracing procedure, which des­
cribed the paths of fines markers and their neighbouring blocks throughout 
the solution.

The 2D results successfully demonstrated the existence of fines migration 
in the high shear regions inside and on the edge of the draw zone. Also, 
migration was only rarely found outside the draw zone, which is in contrast 
to the DEM results of Pierce th a t showed significant percolation in the same 
regions.

The polygonal element analyses provided promising results despite the 
low permeability of the structural field caused by the absence of the contact 
buffer. The dynamics of the polygons appeared to be more stochastic than 
th a t of the circular blocks, which is an intuitive outcome. The use of po­
lyhedral elements in 3D simulations would not require a contact buffer to 
artificially increase the permeability of the structural field and therefore this 
is a recommended extension of the LBM-DEM coupling. However, known is­
sues related to edge-edge and vertex-facet contact would need to be overcome 
in this scenario.

Finally, Chapter 6 included the results of three-dimensional fines migra­
tion applications of the coupled framework. A scaled version of the DEM 
percolation analysis was presented which investigated the effect of fines ma­
terials properties on the level of migration. A moderate scale simulation of a 
two draw bell section of a mine was also undertaken, and it was used to test 
the sensitivity of migration to different draw strategies.

The successful execution of these analyses showed th a t non-Newtonian 
fluid-solid systems could be solved robustly using a serial implementation on 
desktop hardware. The ability to solve 3D problems is im portant as fines 
migration is a 3D phenomenon, and the evolution of voids and movement of 
fines in all Cartesian directions must be captured. However, the investigation 
of 3D models indicated the massive computational resources th a t large-scale 
cave models would require. Even with a parallel processing implementation, 
the choice of domain would have to be made with a degree of care and 
engineering judgement.

The results of the DEM percolation replication showed, as in the 2D 
analyses, th a t migration is predominantly limited to within the draw zone. 
However some exceptions to this rule were found, which is indicative of fines 
migration being a stochastic process tha t is dependent on the random evolu­
tion of voids in the cave. As expected, reduction of the pseudoplastic viscosity
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(i.e. interpreted cohesion) of the material model resulted in a greater amount 
of fines migration. In addition, this investigation was used to highlight the 
effectiveness of the dynamic sub-cycling algorithm. The trace of the explicit 
time step throughout both solutions clearly showed the dynamic adjustment 
of the sub-cycling factor as the DEM time step changed with changes in the 
state  of the structural field.

The draw sensitivity investigation undertaken with the two bell partial 
block cave analysis did not show a significant difference in the amount of 
migration. This is despite the two draw strategies being deliberately cho­
sen to result in isolated and interactive draw of material. Some possible 
explanations for the similarity of the results include:

1. The length of the solution and the number of draws undertaken was 
not large enough,

2. The model domain was not large enough, as the most significant mi­
gration in both analyses was dominated by the collapse of blocks into 
the draw point,

3. The model domain focused on the wrong area inside the cave, and 
other areas would have better captured the subtle differences in fines 
migration between these draw sequences.

Nevertheless, the results of the 2D and 3D migration analyses highlight the 
potential for this novel approach to be applied in an industrial context. It has 
been shown tha t a non-Newtonian continuum model can be used to simulate 
the dynamic behaviour of a bulk material. Further, a technique for calibra­
tion of the fines material model to experimental data  has been presented. 
In the context of applications, the potential to investigate physical mining 
influences such as cave geometry, block shape and size and draw strategy 
has been shown. Most importantly, the results of the 2D and 3D analyses 
have revealed migration trends for the geometries, material properties and 
operational sequences analysed. By executing an extensive programme of 
numerical experiments the influence of these and other relevant block cave 
factors on the migration of fines could be isolated.

7.2 Opportunities for Further Research
Notwithstanding the demonstrated potential of the LBM-DEM framework 
in fines migration applications, some issues with this approach have been 
identified. Therefore, scope exists for further research and development in 
this field, as outlined below.
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7.2.1 Simulation of a Partially Filled Fines Phase

In the percolation analyses undertaken in this research the model domain is 
initiated with all of the void space between the blocks filled with fines. In 
practice this is not always the case, particularly at the onset of caving when 
prim ary fragmentation results in predominantly large blocks being present 
in the cave. As draw proceeds the amount of fines at a location within the 
muck pile changes and is governed by many factors including the proximity of 
external sources and the generation of fines by secondary fragmentation. The 
la tter is dependent on the rock mass properties and the stress distribution 
in the muck pile and is particularly difficult to quantify.

The simulation of empty voids could be investigated by using a multi- 
component lattice Boltzmann model or a single component model th a t is 
bounded by a free-surface constraint. Multiphase and multicomponent lat­
tice Boltzmann models have been reported in the literature [19], however 
the additional inclusion of a moving structural field has not been undertaken 
to date. The work of Pan et al. [100], which investigated two-phase flow 
through a static porous medium, could form the basis for this approach but 
extending it to include moving elements would be more complex.

The use of a single fines phase tha t is bounded by a free surface would 
be more efficient than a multiphase or multicomponent approach as it would 
not require LBM computations for the empty voids tha t are occupied only 
by air. Some examples of free-surface applications in the LBM include in the 
simulation of injection moulding [47], metal casting [48] and liquid foaming 
[74]. The greatest challenge in applying this approach to fines migration 
problems would be the robust handling of the free surface interactions with 
the discrete element field. W ith this challenge overcome, the LBM-DEM 
framework could be used to solve problems in which only pockets of fines 
exist a t specified locations in the cave.

7.2.2 Parallelisation of LBM Computations

The size of the cave domain tha t can be modelled with the LBM-DEM frame­
work is limited by the serial processing architecture employed in implemen­
tation. This was particularly evident in the 3D fines migration applications 
presented in Chapter 6. The extension of the framework to distributed pro­
cessing [71, 113], taking advantage of the inherently parallel nature of the 
LBM, would increase the size of the domain th a t could be modelled. The 
parallelisation of the moving structural field would not be necessary as it 
was found in the 2D and 3D applications tha t the computational require­
ments of the DEM were significantly less than th a t of the LBM. It should be 
noted th a t the simulation of significantly larger domains would transfer the
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computational bottleneck to the post-processing of results, bu t this could be 
overcome by utilising distributed visualisation techniques.

7.2.3 Non-Newtonian Fluids with MRT-LBM Models

The single-relaxation-time LBGK collision process, in conjunction with a 
viscoelastic power law model, was successfully applied to characterise the 
dynamic behaviour of fines. However, the relationship between the relaxa­
tion param eter, r ,  and the lattice spacing, time step, and non-Newtonian 
material properties could make param eter selection difficult for certain ap­
plications. The use of multiple-relaxation-time models [80], particularly in 
the context of non-Newtonian constitutive modelling [47], offers a greater 
number of model parameters which can be used to tune the hydrodynamic 
behaviour in isolation from the spatial and temporal discretisation. This 
avenue of research, with the objective of robustly implementing additional 
non-Newtonian models such as Bingham and Herschel-Bulkley, would be 
worthwhile.

7.2.4 Novel Approaches to DEM Mapping

In the fines migration applications of the LBM-DEM framework the LBM do­
main is almost entirely filled with blocks. In .this scenario, the computational 
expense of mapping the discrete elements to the grid becomes significant and 
of approximately the same order of magnitude as the LBM computations. 
This presents an opportunity for improved efficiency via a novel mapping 
technique using graphics hardware. In fact, GPU algorithms have been em­
ployed to perform image-based solutions of the LBM [83], and the extension 
image-based mapping and area calculation is a viable option.

7.3 Other Applications of the LBM-DEM Framework
As a final remark, it should be mentioned tha t the LBM-DEM framework 
developed in this study has the potential for application in other problems 
related to block caving. For example, water seepage and mush rush could 
be investigated with only minor modifications to the existing code. Also, 
the implementation of a turbulence model [141] would act as a basis for the 
investigation of air movement in the development and production tunnels, 
with emphasis on the phenomenon of air-blast’.
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A p p e n d i x  A

C a l c u l a t i o n  o f  V e l o c i t y  
M o m e n t  T e n s o r s  f o r  t h e  D2Q9 

L a t t i c e

The velocity moment tensors of the lattice used in the lattice Boltzmann 
method have the form JA  ( . . . )  and are used extensively in the multi­
scale Chapman-Enskog analysis of the lattice Boltzmann equation. Here, the 
velocity moment tensors for the D2Q9 lattice are derived using the following 
non-dimensional lattice velocities,

C 0 (i =  0)
- =  ( CoS ( l f c H ) lS in ( l f c l ) ) )  (j, =  1 ,2 ,3 , 4 )  ) ( A . ! )

( ^ ( c o s ( = f c a  +  f ) , s i n ( l f c a  +  | ) )  (i =  5 ,6 ,7 ,8 )

which are listed in component form in Table A .l' for ease of reference in the
following calculations.

Ignoring the null velocities of the rest particle distribution function, the

Co Cl C2 C3 C4 C5 . c6 c? C8
Clx 0 1 0 -1 0 1 -1 -1 1
C \y 0 0 1 0 -1 1 1 -1 -1

Table A .l: The non-dimensional velocity vectors of the D2Q9 lattice.
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first order tensor is calculated as,

^ia  — C l X  +  C \y  +  C2x +  C2y +  CSx +  Csy  +  C4X +  C^y

i
+C 5x +  Cqy  +  Cqx +  CQy • +  C jx +  C jy  +  Cgx +  C8y

=  0  +  04 -1  +  0  +  0  +  1 - 1  +  0  +  0 - 1  +  1  +  1 - 1  +  1  

- 1 - 1 + 1 - 1

=  0. (A.2)

The second order tensor can be calculated in two stages as,

^   ̂ CiaCiP ^ l x ^ l x  +  C \x C \y  +  C \y C \x +  C \y C \y  +  ^ 2 x Q 2 x  +  ^ 2 x ^ 2 y
i = l —>4

+ Q 2yC2x +  C2y C 2y  +  Cqx CQx +  ^3x^3 y  +  ^3j+3x +  CQy CQy 

+ C 4 X^4x +  04a; C4  y  +  C4 y C4 X +  C^yC^y 

=  (1) (1) +  (1) (0) +  (0) (1) +  (0) (0) +  (0) (0) +  (0) (1)
+ (1) (0) + (1) (1) + ( - 1) ( - 1) + ( - 1) (0) + (0) ( - 1) 
+ (0) (0) +  (0) (0) +  (0) ( - 1) +  ( - 1) (0) + . ( - 1) ( - 1)

=  4. (A.3)

^   ̂ QqCi/3 Cqx Cqx  +  Cqx Cqy  +  ^5i+5x +  CQy CQy +  CqxQjx +  Cqx Cqy

z=5—+8.............................................................................................................................................................................
-\~CQyCQx +  CQy CQy +  C fx C lx  +  C7 x C7y  +  C7 y C7x +  C7 y C7y

3~Cqx Cqx +  Cgx C8y +  CQyCQx +  CQy CQy

=  (1) (1) + (1) (1) + (1) (1) + (1) (1) + ( - 1) ( - 1) + ( - 1) (1)
+ (1) ( - 1) + (1) (1) + ( - 1) ( - 1) + ( - 1) ( - 1) + ( - 1) ( - 1)
+ ( - 1) ( - 1) + (1) (1) + (1) ( - 1) + ( - 1) (1) + ( - 1) ( - 1)

=  8 . (A.4)

Looking at (A.3) it can be seen th a t the Only contributions to the tensor occur 
when a — (I. In addition, looking at (A.4) it can be seen th a t four contribu­
tions are made to the components of the tensor when a  = (3. W hen a  ^  (3
the net contribution to the components of the tensor is zero. W ith this in­
formation the two equations can be generalised as (with the non-dimensional 
grid velocity reintroduced as c),

(A.5)
n '

2 5 2<5a(s ( i  =  1 , 2 , 3 , 4 )  

4c2Sap (i  =  5 , 6 , 7 , 8 )
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To list all of the components of the third order tensor,

-\-C4yC4 X^4y T  CtyĈ yĈ x T  Ĉ yĈ yĈ y

C5xQ>xQ)X +  Ĉ x^5x^5y T  QixQjyQjx +

"i- ̂ 8y C$X Cgy ~t“ CgyCgyCgx T  CgyCgyCgy (A.7)

would be cumbersome. Instead, the tensor components can be derived by 
reasoning. In (A.9) the only nonzero terms occur when a  = (3 = 7  however 
their sum is zero for each component. For example, c^Ci^Cia; +  QxQxQx +  
C3XC3xC3xTc4XC4xC4x = 1 + 0+ 0—1 =  0. Therefore, the to tal tensor components 
in (A. 10) are zero when a  = (3 = 7 . When the indices are not equal, the 
sum of the component contributions is also zero. Therefore, the third order 
tensor of velocity moments is zero,

is obviously the most laborious to write in component form. It can be 
reasoned tha t the only contributions to the tensor from (A.9) occur when 
a  = (3 — 7  =  6 . The contributions from (A. 10) are more difficult to deter­
mine from direct interrogation, and therefore they have been summarised in 
a 2D m atrix with their tensor index in subscript,

(A.8 )

Lastly, the fourth order tensor,

+ C4yC4yC4xC4y +  C4yC4yC4yC4x +  C4yC4yC4yC4y 

^   ̂ CiaQ.pCi'yCid Q>xQ)xQ)xQ>x+  QjxQixQjxQjy +  QixQixQiyQix +
z = 5 —>8

3~CgyCgyCgX +  Cgy Cgy Cgy Cgx +  Cgy Cgy Cgy Cgy , (A.IO)

4llll O1112 O1121 4ii22
O12II 4i212' 41221 O1222

O2III 42112 42121 O2122

42211 02212 02221 42222

(A .ll)
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which is clearly symmetric. At this point the generalised isotropic fourth 
order tensor is introduced,

(A.12)

in which ai, a 2 and ag are constants. Applying (A.12) with ai =  a 2 =  a3 = 4 
gives,

4 (8ap8yQ +  Say5po +  8 ad8Pi) ~

12m i O1 1 1 2  O1 1 2 1  4h22.
0l211 4i212 4i221 .O1222

O21II 42112 42121 O2122

42211 O2212 O222I 122222

(A.13)

which only differs from (A.13) by the term  —8 ^ 8 apy0 . W ith this information, 
the components of the fourth order tensor can be summarised as (with the 
non-dimensional grid velocity reintroduced as c),

E 2c4<5a/W (i = 1 ,2 ,3 ,4 )
C icC i^a e  i 4 5 4 AqW, _  8 5 ^  (* =  5 , 6 , 7 , 8 ) ’ (A.14)

These results show tha t odd orders of the tensor are zero and th a t the 
second and fourth order tensors are symmetric. Sufficient symmetry of the 
chosen lattice is essential for the LBE to be able to  capture the viscous terms 
of the Navier-Stokes equations [41].



A p p e n d i x  B

T h e  R e l a t i o n s h i p  Be t w e e n  
La t t i c e  a n d  P h y s ic a l  U n it s  in 

t h e  LBM

When coding the lattice Boltzmann method the variables are often reduced 
to a non-dimensionalised lattice system of units. This is done for reasons of 
computational convenience, as the spatial discretisation can be reduced to an 
integer array and the temporal counter reduced to an algebraic count. The 
equations and variables in this document are predominantly listed in physical 
units, however the relationship between the two systems is summarised in 
Table B .l.
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A p p e n d i x  C

D e r i v a t i o n  o f  t h e  M o m e n tu m  
F l u x  T e n s o r  t o  O (A2) in  t h e  

C h a p m a n - E n s k o g  A n a l y s i s

The momentum flux tensor to G (S 2), n ne91, is evaluated in the Chapman- 
Enskog analysis of the lattice Boltzmann equation,

n ne9l = ^ / ne,lCiC. ( c  x)

i

using the definition of the non-equilibrium distribution from (2.39),

f r 1 =  ~ T { w 0 + (Ci'v)) /r> ( c ' 2 )

and the generalised equilibrium functions (2.29),

{A0 T  B 0ciaua -P CoCiaCipuaup -P DQUaua (i — 0)
A-i T  B iciaua -P CxCiaCipUotUp -p D lUaua (i 1 ,2 ,3 ,4 )

A-2 ~p B 2CiQUa  -p C2CiaCip'UiQl'LLfj ~p •Z^'Uq.'Uq, (i — 5, 6, T, 8)
(C.3)

listed in Section 2.5. Noting th a t intuitively Bo = Co = 0, (C.3) can be
substituted into (C.2) which is in turn  substituted into (C .l),

f^Q.^ T ^   ̂CjgCjp  ^  "P (Mg “P D q U q U q
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- \-A \  +  B i d e u e  d -  C \ d ^ ^ x 9Ue +  D \U qU q

d - A 2  +  B^CiqUq +  C^Ci^u^dQUQ  +  D2UQUQ) ,

and then expanded remembering th a t cqq =  Oy

y r n e q l _
a/3 ~  T

/  d  A d  „  d
/  I A \ do&i{5 “1“ A \ da ^ ip d y “1“ B 1 „ dofii^iQ^Q

• “T „ \  o t o  O x ~ O t o -.2=1—>4 •'2 = J

D a ^ a
Qg* C'iQ'UjQ “1“ 0 \ ^  da^'ip^'i'y '̂y^'id^d

d i

r, d  r, $~LO\ da.C,i(5dnjC,iQH,Qd<p'Ui(j) “1“ D \ ^  da^'ip'^d^d
d t 0

_a
d x ~

2 = 5 —>8

d
TDi-^-daC-ipC-i-yUQUe j +  ^   ̂ | A ^-^d a ^ iP  +  'dadpC’i'y

dx~

„ a _ „ a
B 2~p^!~dgC jpC jd'U 'O  " h  B 2~q ^ ~ d a d p d 'y C iQ 'U '6

d t 0

n  d  n  8
~\~02 r \ ,  d a d p C ,i')'Uj'y d 9'Uj9 d ’" ^ 2  o  da^iP^i'y^id‘̂ 'd̂ i<f>̂ '4> Oto OX̂ y

r, & r, d X
d - -£^2 dat'ip'U'9'U'O d -  -£^2 r j  da^iP^vy'^B'^'Q J

1-0 arr7 ' " J

The lattice identities derived in Appendix A can then be applied to (C.4),

(C.4)

y r n e q l  _
a/3 ~  T

d  d  d
2 A \~ ^ —5a^ d"' 2 B \ — fiaP'yO'U'd d “ . 2 C \  - r —  &ap'y6u 'yu 9

O t o  O X .y  O t o

d  d  d
+ 2 D i - ^ —5a^ueU e  d -  4^ 2^ —  5ap  +  B 2 — — u #  ( 4A a jg70 —  8 6 ^ 0 )  

OX 0 C/Co Ox^
^ ^  ~

d -C 2 ^ — u 7u e  ( 4 A q/370 — 8Sap79) +  4:D2-^— 5a pU0U0 
oto Oto

which can be expanded and regrouped,

n r ; 1 =  - r
d  d

( 2 A i  +  4 A 2 )  — - 5a p  +  ( 2 B i  — 8 B 2) - r — ^ a / 3 7 0 ^ 0at0
5 ^  ^

d -  ( 2 C i  —  8 C 2 )  -r jj-S a p ^ u ^ u e  +  A B 2 - r ^ - u e 5olp 51Q +  4 ^ 2^ - 140̂ ^

5 (9 (9
+4jB2a ^ " ^ Q7(̂  ^ 2~QX~Ud^a6^ ^  ^2 -Q j-U'yu9$apfij9

a a _
d-4 C 2 ^— u ^ u e d a y S p o  +  4C 2-r—u 7U0dQ,0^7 

Oto Oto
a

d -  ( 2D i  +  4 . D 2 )  -^—Sa pU 9Ue 
Oto

(C.5)
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It has been shown in (2.50) and (2.48) in Section 2.5 th a t 2Ai +  4A 2 =  <?s 
and 2Ci — 8C2 =  0. Using this information along with Kronecker delta index 
changes, (C.5) can be simplified to,

K T  =  - T
d _

d tr

du du-
(c2sp) Sap +  (2 B i — 8B 2) ^ " ^ a /3 +  4B 2 -— -̂6 ap +  4f?2

dx-
dup
d x a

. 0  dua d d d
+4 i?2—----K 4 C 2 ^—ueU0dap +  4C2-^—u aup +  4 C2~^—upua

oxp  ulq ulq ozq

d
+  (2-Di +  4D2) T— SapUeUQ

OZq

=  — T
Wo ^  S a 0  + {2Bl ~  m )  t e t 6aP + 4 8 2  ( £  +  W g

d u d d
+ 4 B 2 ~Q^Sap +  &C2 T^-uaup •+ (2D \ ' +  4£>2 +  4C2) -^-SapueUg

d t d t r

and again using 2Di +  4L>2 +  4C2 =  0 from (2.47) and 8C2 =  p from (2.49) 
in Section 2.5,

■pi-negl
ol/3 7""

d d du-r\

(CsP) <W +  7^7 ( / M c U g )  +  (2Bi -  8 B 2) g^T^ag +  i B 2 ^ - S ag

+ 4B2 ( ' ^  +  ^
dxp

7

(C.6)

Finally, the time derivative in the first term  of (C.6) can be removed by 
rearranging (2.41) in Section 2.5,

dp_
d t0

d
d xa {pUa)5

which leaves,

K T  = - T
d d

— C o
dut du-

dx-
(pu-y) Sap +  (puaup) +  (2 B i — 8 B 2 ) Sap +  4 B 2 ~ ^ - 5 ap

0 • d x a dx-

+ 4B 2 ( | ^  +  ^
d x a dxp

(C.7)


