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Abstract

Normalisation is key to  perform ance in speaker recognition. Such approaches conducted  in th e  score 
dom ain  a t t e m p t  to  alleviate in ter-speaker perturbations.  Published results using th e  conventional te s t-  
normalisation (T-N orm ) approach show large perform ance varia tions when different cohort  com positions 
are used to  derive th e  score normalisation statistics .  Tw o issues arise with th e  use of  background nor­
malisation speakers: a selection regime and its quantity. T h is  thesis illustrates th e  variability of a robust 
speaker  verification system when selecting such cohorts. An empirical investigation is conducted  on th e  
popular  T-Norm  approach with a variety of selection procedures to  com pose  th e  im postor  cohort. Prior 
knowledge is extra information th a t  can be utilised to  focus selection. T h e  quan t i ty  of  impostors is an 
im p o r ta n t  a t tr ibu te .  For example, when com puta t ional  or s to rage resources are a premium, a cohort 
conta in ing  as little as 15 models is able to  provide adm irab le  verification perform ance when a certain 
selection criterion is utilised. Results also show different perform ances with th e  individual mean and 
s tandard  deviation com ponen ts  o f  th e  distribution scaling approach  utilised by th e  T-Norm . A higher 
sensitivity is shown by th e  mean only com p o n en t  during shorter  u t te ran ce  evaluations, however, the  
degrad ing  effect of  th e  mean com p o n en t  is reduced with enhanced  train ing duration. Such results are 
in troduced  with th e  conventional T -N orm  approach, here deem ed as a trial-independent approach, as 
th e  sa m e  cohort  is applied to  all trials in a given evaluation.

T h e  trial-specific scenario is a fu rthe r  variant of T-N orm . Flere, each ta rg e t  speaker is provided with 
a personal selection of  im postor  m odels to  represent a normalisation cohort. One such procedure is 
th e  adaptive  T-Norm  (AT-Norm), known to  giving general im provem ent over th e  conventional T-Norm. 
However, a large pool of potentia l impostors is required to  supply a range of  ta rg e t  com parative impostor 
m odels for th e  potentia l variety of speaker enrolm ent.

T h e  final part  of th e  work extends on th e  investigations undertaken  on T-N orm . Improvement can 
be shown when th e  influence of  a few poorly derived ta rg e t  models conta in ing  little speaker  discrimina­
tion are reduced. Denoted as th e  speaker security measure (SSM ), th is  process highlights models o f  a 
poor en ro lm en t quality which can be addressed accordingly. Here, it is shown th a t  a simple weighting 
procedure  reduces th e  influence of poorly trained models whilst enhancing  models deem ed of  higher 
discrimination. Im provement can be shown when th e  influence of  a few poorly derived ta rg e t  models 
conta in ing  little speaker discrimination are reduced.

Very late in th is  work, NIST released, a t  th e  end o f  March 2008, a new revision of  th e  2006 evaluation 
trial keys. T h e  thesis  contains  a short epilogue presenting results on th e  lOsec-lOsec and lc o n v - lc o n v  
with th e  revised and original keys. This highlights th e  influence of d a ta b a se  correctness when conducting  
th e  sort of  evaluations central to  th e  research reported in th is  thesis.
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Chapter 1

Introduction

1.1 Background

Speech is considered as a non-intrusive biometric that can be used to distinguish people. It is a 

biometric that can express an intent or identity claim whilst providing characteristics of a person 

through their speech. A practicable application scenario is a security enhancement for telephone 

banking. In some application scenarios, speech may be the only plausible biometric. Commercially, 

this is beneficial in the ubiquitous telephony and mobile phone as microphones are readily available, 

cheap and there is no need for special signal transducers [1]. A further overview of applications is 

discussed in [2].

Like all biometrics, a key cause of concern that can lead to errors is signal degradation. Examples 

of degradation nuance are environmental acoustics (babble, car, reverberation, etc.), transmission 

channel variation, physical handset properties, speaker health and phonetic content can all be em­

bedded in the speech [1]. To quote Doddington [3] “speech is a performing art and each performance 

is unique”. Typical degradation introduces variations across sessions, referred to as inter-session 

variability and is considered a nuisance. Normalisation approaches attempt to tread the signal in 

all biometrics. Significant research has been undertaken to reduce these perturbation factors. This 

thesis is concerned with reducing these effects.

The assistance of additional sources of speaker knowledge can improve verification performance. 

Recognising people over the telephone by their speech is a trait that the majority of us use daily. 

Though the use of a ‘Caller ID’ display is a feature available on most phones today, it gives us an 

assumption of an identity before answering the call, a sense of prior knowledge1. Prior knowledge 

is discussed in [4] for use in different stages of the classifier in an attempt to reduce microphone 

miss-match between train and test utterances. The use of prior knowledge in text-independent 

speaker verification (SV) is commonly used in many systems. It allows for context dependent nor­

1Also regarded as auxiliary information from the NIST evaluation plans

1



CHAPTER 1. INTROD UCTION 2

malisation, for example, speaker gender.

Speaker recognition can be separated into two categories, identification and verification. SV at­

tempts to confirm an unknown voice against a given claim for a particular system enrolled speaker; 

a one-to-one classification. Speaker identification is an n class problem with no claim provided. A 

ranking methodology can derive an identity of the unknown speaker by, for example, the highest 

score of the enrolled speaker set. The former context is the focus of this work.

1.2 Speaker Verification

The fundamental objective of a SV trial is to conclude the validity of two independent speech 

signals (labeled A &; B) originating from the same person, asking the question Does utterance B  

come from the same person as utterance A ? One utterance is often referred to as the training 

utterance, used for enrolment to produce a target model or true speaker [3]. The second utterance 

is conventionally captured subsequently in time from an unknown person and is usually defined as 

the test utterance2. For the benefit of the reader, the overuse of the word ‘test’ can become tied to 

the actual assessment of two utterances, causing confusion over the word test. Here an assessment 

of two utterances will be known as a trial.

Utterance A  is conventionally provided with a label, albeit an assumed identity3. Utterance B  

denotes the unknown test utterance with a claim of being speaker A. Also note that the following 

experiments are conducted in accordance to the National Institute of Standards and Technology 

(NIST) evaluation protocol by performing all trials independently.

In real-world scenarios it is likely that both provided utterances have been recorded over dif­

ferent sessions under different conditions coupled with sources of degradation which are difficult to 

control. Different sources of signal degradation cause miss-matches between training and test data. 

Thomson [5] explains the ideal approach for classification is to use a matched ideology, showing 

that an impractical yet ideally matched condition arises when both training and test utterances 

originate from the same recording session as the condition of the speaker is unlikely to change in 

a short-time span. Variations in the speech are also established through the natural problem of 

speakers being unable to repeat an utterance precisely [6]. However, this is unrealistic and natural 

degradation, from such examples previously discussed, between the speech recordings is reflected 

throughout the classifier. There is major difficulty in reducing the effects of degraded signals; this 

concern leads to verification errors. Under these degrative conditions, we want to reduce these

2 The test utterance can also be referred to as the competing speaker
3An identity is usually assumed for one utterance (here being A) but is not necessary as classification can be 

done in a bilateral manner, a reversal of roles. A model of A  can be generated and evaluated against utterance B. 
The resulting scores are P (A \\b )  and P { B \ X a ) which can be fused to usually enhance performance.
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Figure 1.1: High-level speaker classifier view, generating a score. A decision is determined by the 
threshold, a score above dictates the same speaker and below states an impostor. The true (green) 
and false (red) allow the setting of the threshold from a prior evaluation.

inter-session variability. Another potential inter-session variability is the implication of the spoken 
text content may be different. This thesis focuses on ameliorating these conditions. In the previous 

paragraph, two components constitute inter-session variability, the speech content, e.g. text con­

text an pronunciation of phonetic content, whilst the other variation is introduced by, for example, 

the environment. This thesis focuses on reducing the influence of the second class. Such processing 

can be done throughout the verification process, from feature extraction through to the decision 

process where each stage invariably involves some form of normalisation. In this thesis, the focus is 

on normalisation of the score or observation, shown in Figure 1.1. Outcomes are classified into true 

and false distributions of an evaluation set of many trials, depicted in Figure 1.1 as green and red 

distributions respectively. Setting a decision threshold that dictates a true or false classification 

is difficult for any scenario. Score normalisation assists this by reducing the variability of both 

resulting true and false distributions.

Normalising against this variability is referred to by Furui [6] as one of the most difficult prob­

lems in SV. Different forms or sources of normalisation are directed towards degradation. For 

example, speech may have passed through a communications system and incurred channel degra­

dation; the handset normalisation (H-Norm) [7] approach, applied at the score level can reduce such 

effects. This implies prior knowledge about the channel which can be deduced by sub-classifiers 

or apriori information. Such knowledge can be gender, age, health [8], quantity and quality [9] of 

speech. All of which can contribute towards inter-session variability and therefore lead to degraded 

performance in the absence of any normalisation or compensation. Many of these parameters can

Same speaker
(score above threshold)

Threshold

Classifier
Observation

or Score

Score
♦

Different speaker
(score below threshold)
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be known or determined as part of the trial exercise and the use of this prior knowledge within 

the classifier is central to the work described in this thesis. Specifically, information about the 

duration of speech is used in the score normalisation approach known as T-Norm [10]. The use of 

test-normalisation (T-Norm) has become commonplace within SV systems since it was first pro­

posed in 2000 by Auckenthaler et al. [10]. Due to the availability of unspecific speaker utterances, 

this normalisation is usually achieved by applying additional sources of speaker related knowl­

edge through the medium of speaker models, considered as impostors to the target trials. This 

is deemed a method of impostor-centric normalisation. Performance gains have been shown with 

T-Norm [10, 11] when applying a evaluation-dependent cohort to generate normalisation statistics. 

In brief, this is an extension to the matched methodology introduced by few participants in NIST 

2004 and a more recent extension with an adaptive form of T-Norm (AT-Norm) [12]. For a matched 

scenario, the impostor models used to derive the normalisation statistics for T-Norm are matched 

by their enrolled quantity of speech to the target models over an evaluation. Adaptive T-Norm 

defines a personal cohort for each target in an evaluation.

For the work in this thesis, benefits of such matching are described for T-Norm and in particular 

the contributions of the mean and standard deviation are examined. Adaptive and conventional 

T-Norms are directly compared and in accordance to published results by Sturim and Reynolds [12] 

is found to give superior performances. This provides further enhancement to speaker-verification 

with well trained targets, though no publication has discussed the ramifications of AT-Norm on 

short-duration evaluations. The use of such approaches will be investigated and compared for both 

long and short-duration evaluations. In previous published work by Auckenthaler [10] and Sturim 

and Reynolds [12], the optimum number of impostor models is reported to be in the order of 50. 

Here we show that 15 for lOsec and 25 for lconv4 NIST conditions can be applied. These findings 

are believed to be new. The experimental work throughout this thesis are conducted in accordance 

with the NIST protocols, this and system configuration can be found in the appendix A for the 

convenience of the reader. In all cases, prior knowledge for the background model data for the 

background models and impostors come from NIST 2004, development on NIST 2005 and evalua­

tions on NIST 2006. A final contribution in this thesis comes from the impostor score observations 

derived from T-Norm statistics which are hypothesised to indicate the robustness of the model 

against impostor attacks, a form of model quality. This is termed as the speaker security mea­

sure (SSM). This procedure can be considered as a pre-filter, using a strategy to either alleviate 

errors or reduce the influence of such speaker models which have been derived from non-speaker 

discriminative utterances.

4Utterance with approximately 2.5 to 3 minutes of speech. This is also interchangeable to Iside or in the recent 
NIST 2008 evaluation plan, denoted as short2
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1.3 Thesis Overview

The remainder of this thesis describes the general ideology of the classifier and published approaches 

to reduce signal degradation through normalisation. Work is then applied and presented at the 

score level to enhance the robustness of decision thresholds for both short and longer duration 

tasks. Experimental trials are conducted on the annual NIST speaker recognition evaluations. 

Experimental framework configuration and protocols are discussed in the appendix A .l and A.2 

respectively. The chapter outline of the thesis is as follows:

•  Chapter 2 gives an overview of the three stages of a classification system with emphasis on 

published normalisation methods that can be applied to each module.

• The concept of cohort selection strategies in a trail-independent scenario for score normalisa­

tion is discussed, specifically for the T-Norm method is presented in Chapter 3. Experimental 

studies and results are discussed.

•  Chapter 4 investigates the trial-dependent cohorts with examinations of two approaches to 

select impostors for T-Norm cohorts. Empirical observations are discussed when the AT-Norm 

is applied and contrasted to the conventional T-Norm approach.

• Model quality measures derived from the observations of the T-Norm scores are investigated 

in Chapter 5. The resultant confidence measure has been coined as the speaker security 

measure (SSM).

•  Chapter 6 concludes the thesis and examines the potential of further investigations.



Chapter 2

Classification with Normalisation

In this chapter we follow from the general discussion of speaker verification (SV) by describing 

the classification tools used during subsequent experiment analysis. Primarily, this is concerned 

with the reduction of utterance perturbations through normalisation in the score domain that help 

reduce the effects of signal degradation. Here, the concept of using extra speaker, utterance or trial 

related information towards a SV trial is introduced under the umbrella of prior knowledge.

2.1 Speaker Verification

Speaker Verification (SV) has two possible outcomes of either true (the unknown speaker is judged 

to be the target) or false (the unknown speaker is identified as an impostor) generated by an obser­

vation classified by a pre-designed threshold 0; normally established empirically using a collection 

of development trials.

Observations concerning the claim of an unknown test speaker are derived from two hypothesis:

1. Ho test utterance is  from the hypothesis speaker

2. H\ test utterance is  n o t  from the hypothesised speaker (the alternative hypothesis)

The context of H\ is less well defined since it can potentially represent the entire space of possible 

alternatives. Again, utterance A and B are used to identify the conventional training and test 

utterances respectively.

Based on the binary hypothesis, two score are provided for a trial, P (B \X a ) is an observation 

of Ho and P(B\Xa ) denotes the score of the utterance under test (B ) for H\. X denotes the target 

(speaker) model and A denotes the alternative model. An observational likelihood score can then

7
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be derived from these two hypothesis for an enrolled speaker Aa and unknown utterance B  .

Ho is true when >  0 (2.1)
P(B \X a )

H i is true when —-— <  6 (2.2)
P{B\A a )

Furui [6] refers to this as the similarity domain normalisation. The alternative model hypothesis 

increases discrimination by reducing additive effects (e.g. duration) of different test utterances [13] 

over many trials. Often the logarithm of the likelihood is used giving the log-likelihood ratio (LLR) , 

derived as equation 2.3, to reduce the deviations of high scoring trials. These are score observations 

used for subsequent experiments and verification decisions are derived against a prior threshold 6.

A (B)t  =  \o g (P (B \ \A)) -  lo g (P (£ | W ) )  (2.3)

For a text-independent classifier, the influence of the test utterance length has been reduced through 

normalisation, using the difference from both the target model and UBM.

A classification system decision threshold is set by utilising a development set of trials with as­

sumed outcomes, denoted as ground-truth. Tailoring the threshold 9 to a specific application is 

conducted by observing numerous trials from a development set inclusive of the assumed outcome 

of each trial conducted known ground-truths. To set a threshold, scores from a development set 

can be separated into two distributions using some ground-truth, the true and false distributions 

(green and red respectively in Figure 1.1). Conventionally, a score above the threshold denotes a 

true claim and rejected if below, again highlighted in equation 2.1. Further discussion on trial 

outcomes is provided for the convenience of the reader in the appendix A.3.

It can be assumed that the classification system may only have specific knowledge of the con­

cerned speaker from the test and train utterances for a given trial. Other knowledge utilised is 

assumed not to contain information of the speakers from the trial1.

To display comparable performance among systems, a standard database is required. The NIST 

(National Institute for Standards and Technology) evaluations are used to give an interpretation of 

system performance in an application scenario under different conditions. NIST has provided a very 

successful vehicle for assessment of telephony speech, though limited by practicable and financial 

constraints of database collection. Variations of the system used to produce these results have 

been entered into the NIST evaluations of 2004, 2005 and 2006 by myself along with my colleague 

Benoit Fauve. This competitive concept using a standard database for speaker recognition has 

been in place for over a decade. This allows for comparative research of verification systems from 

across the world. For lOsec and lconv task conditions in the NIST evaluation we are expected

1This is true unless a system with continuous model adaptation is used with true outcomes
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to get approximately 30% and 16% respectively with the system used in this thesis. In contrast, 

advancements during this work have brought performances to approximately 15-20% and 2-4% 

respectively. These approximate performance values are taken from systems submitted to the NIST 

2006 evaluation. NIST evaluations are constrained to assess technology with apriori information 

which is assured to be correct, known to be determined and labelled automatically. We fall into 

the trap of assuming such prior knowledge. Throughout this thesis, no errors are assumed to be 

contaminating the prior knowledge. Further analysis of NIST labelling, with primary concentration 

in the 2006 database is discussed towards the end of this thesis.
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2 .2  Classification Framework

The SV system used in this thesis has three primary stages, separated by:

1. Feature extraction of acquired utterances

2. Model generation

3. Scoring/assessment

Depicted in Figure 2.1, this general decomposition can be applied to a large number of classifiers. 

The increasingly popular support vector machines (SVM) and traditional Gaussian mixture models 

(GMM) are two such examples. Here, for example, hypothesised scores for verification trials are 

gathered using the GMM classifier. At the initial stage, feature extraction attem pts to distil speaker

Cache of other speaker knowledge

Same speaker
(score above threshold)UBM

Classifier Threshold

A i
Feature

Extraction
ScoringModellingClaim

Score

Different speaker

O (score below threshold)
Model

J|]-[] Features o f an utterance

Figure 2.1: High-level overview of a speaker verification classifier showing the stimulus of data and 
a generalised modular illustration of the processing stages

related parameters from one or more of the supplied speech utterance’s. The speaker dependent 

information can be represented as a set of parameters commonly known as the features, extracted 

using the same parameters for both the claimant and enrolled speaker. For the GMM, features 

from a sample of speech are quantized into a vector of 1 * iV, where N  is the n order feature 

coefficient of the speech cepstra. A single vector constitutes a single window of speech, typically 

20-30 ms in duration. By sliding the window along the speech utterance, a series of vectors are 

extracted using spectra derived coefficients by a pre-defined filter bank; further transformed into 

the cepstra domain to reduce correlation between coefficients. A speech sample is now represented
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as a chronological sequence of feature vectors. For traditional SV on a frame level basis, it is usual 

to post-process the generated features by removing the redundant non-speaker information [1], i.e. 

silence.

Modelling, groups extracted features an utterance into a collection of probability density functions 

(PD F’s) . This process is also known as enrolment. Generally, an initial model is used to represent 

a background of speakers, commonly refereed to as the universal background model (UBM) 2. The 

UBM is described as collection of multi-variate Gaussian probability density functions, represented 

as a collection of means, variances and weights. These P D F ’s are constructed from a large data 

set of other speech utterances. Each Gaussian component has a dimensional order equal to the 

number of feature components extracted at the initial stage. This approach employs a cache of 

speaker knowledge, highlighted as the blue speech icons in Figure 2.1, facilitating observations for 

the alternative hypotheses as a speaker-independent model from the perspective of the ‘world of 

speech’. The UBM performs several roles, initially it is used for robust model adaptation to com­

pensate for lack of speaker-specific speech, especially for short-duration tasks. Compression of a 

large collection of utterances is also achieved in the text-independent scenario. In recent publica­

tions [15, 16, 17] the UBM has been used as an acoustic reference space to project speakers in this 

space for subsequent discrimination.

Enrolment is conducted by adapting the UBM using the speaker-specific feature vectors, to produce 

a speaker-specific model (training of the target model A ), also referred to as a target model. A 

speaker model can be created independently of a background model, using the same approach for 

generating a UBM, though adaptation of a background model shows better performance [18] . The 

approach of modelling by adaptation used here is called Maximum A Posteriori (MAP) [18, 19] 

introduced through the HMM for speech recognition. This procedure updates the well-trained pa­

rameters of the UBM, resulting in a speaker-specific model.

We have discussed the method of background model generation and speaker adaptation, the third 

stage of SV is to verify an unknown test utterance with its claim to an enrolled speaker (our target 

model). For this process, we have a UBM, created from a large collection of different speakers and 

a target model for an enrolled individual. To check the validity of a claim the feature vectors of the 

test speech signal is compared to both UBM (denoting H i)  and the speaker model (Ho). Utterance 

B is scored against the target model Xa and results in an observation of B  given A^, P(B\X a ) 

also deemed a similarity score Details of the scoring process can be found in [19]. As previously 

mentioned, the second role of the UBM provides the alternative hypothesis score, P ( B \ \ u b m ) 

through the same scoring method. An LLR can then be computed using both these observations, 

subsequently compared to a predefined threshold 9.

2 Universal background model is interchangeable with background model, anti-speaker [4], world model [10] or 
general model [14]
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Conventionally, a single policy is undertaken when scoring a trial by creating a model of the 

training utterance Xa and examining the generated model against the test utterance B , resulting 

in P(B\X a )- The converse of this procedure is the bilateral. Here, a model is created using the test 

utterance Ab for which its model is examined against the training utterance A, to give P(A\Xb ). 

Preliminary examinations have been conducted on the fusion of score outputs from both policies or 

dismissal of the recessive score, providing greater performance increase across different evaluations. 

This thesis only considers the single perspective for analytical clarity, though the bilateral approach 

can be applied to all experimental results discussed, usually with greater robustness.

The closest component in the UBM to which the test feature vector matches is used as an ac­

cumulated similarity metric for H\. As UBM adapted speaker models are used here, the same 

PDF component in the UBM is compared in the target model. If no adaptation has taken place 

for the same component in the speaker model, the differential score is zero. If the component has 

been adapted, a similarity measure is given. The higher component deviation from the UBM, the 

greater the similarity score. Similarity metrics can be swayed when degradation is embedded in 

the utterance, causing features and in-turn models to be susceptible, enhancing unwanted variation 

in the test stage on the similarity metrics, making scoring less robust. These distortion can be 

reduced using a variety of normalisation approaches.

2.3 Normalisation

The assistance of additional sources of speaker knowledge can improve verification performance 

to help overcome the need of speaker-dependent decision thresholds with a single evaluation spe­

cific threshold. The use of prior knowledge3 in text-independent SV is commonly used through 

many normalisation approaches in verification systems. For example, in the Gaussian mixture 

model (GMM) framework, some lack-of-speech properties are reduced by enrolling a specific speaker 

through an adaptation process from a pre-generated, well trained representation of the world, e.g. 

the UBM. Enrolled speakers are represented as models of which are projections of usually only the 

training utterance. A speaker-independent model assists in several ways, aligning text-independent 

speaker utterances via adaptation, utterance compression and more recently exploited as an acous­

tic reference space for subsequent discrimination through an SVM [21]. For the text-independent 

scenario, the time-sequence information is also reduced4. However, Stapert [22] attempts to retain 

time-sequence information by fusing such characteristics into the speaker models.

3 Prior knowledge can also be interchangeable with auxiliary information [20]
4A  form of short-term time-sequence information can be included through the delta feature approach and its 

derivatives
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Prior knowledge from other speakers and their speech can enhance the background data set to 

assist with the degenerative variance between the two supplied utterances for a trial by removing 

unwanted variables. Gender, for example, is a simple binary filter, utilizing prior knowledge; if the 

test utterance was spoken by the opposite gender to the claimed target, it can be quickly rejected. 

For a given trial, the umbrella of prior knowledge can be broken down into three sub-categories:

1. P rim ary: The finite amount of speaker-specific utterances supplied for the trial (an assump­

tion is made that no further model adaptation is applied after a successful verification). This 

includes the correct labelling of the primary utterances.

2. Secondary: Practicable utterance specific information, e.g. gender and microphone, supplied 

with or derived in an online manner from the two utterances under examination. A sub-set of 

such pre-labelled knowledge is assumed to be correct and provided with the NIST evaluation 

utterances.

3. O ther: Additional material from other sources prior to the considered trial. Our knowledge 

of speech.

The question we pose is, how do we make best use of this knowledge to compensate for the discussed 

variability’s to aid classification?

Ferrer et al. [20] recently published the use of prior knowledge, here called auxiliary information 

by combining such information as length of utterances, gender, nativeness, etc. of a given speaker 

through a combinatorial mechanism to aid the decision making. Here a data-driven approach is 

utilised to estimate a weighting regime for score level fusion of the speakers extra knowledge. Pub­

lished results showed that for the NIST evaluations, native or non-native English speaker scoring 

gave good enhancement for combination with other classifiers.

A variety of established normalisation methods endeavour to compensate for unwanted signal 

degradation between two utterances under trial, enhancing the speaker-specific content. During 

this thesis, discussed approaches for unwanted signal compensation can use combinations of prior 

knowledge from the three derived sub-categories.

Unwanted non-speaker signals are preserved from the recorded utterance through to all stages 

of the classifier with unwanted preservation in the computed score observation. With the large 

variation among and during recording sessions due to the nature of the changing voice and other 

degradation effects, the need to normalise out these session variability’s is just. Much research has 

been conducted at different stages of the SV system in an attempt to suppress/normalise forms of 

non-speaker descriptive signals.
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Filtering methods can be used at the signal level during feature extraction to reduce both slow 

and fast varying convoluted signals from the utterance. Cepstral Mean Subtraction (CMS) and 

RASTA [23] attempt to reduce these convoluted effects. CMS is a simple form of normalisation 

is to remove the d.c. line component from a recording session. Derivatives of the cepstra, denoted 

as delta and its second derivative double-delta may also be applied to the features to account for 

short time-base transitional events along the chronological axis of the feature vectors. However, 

some of these extra features can add perturbations onto the features for different conditions, shown 

by Fauve et al [24]. Kuhn et al. [25] generates eigenvoice based vectors to model variation between 

different speakers, ported from the field of face recognition. A data-driven method to obtain or­

thogonal basis vectors which represent the most important components of inter-speaker variation 

between a development set of speakers. A linear combination of voice components from a variety 

of speakers where each component obtained through principal components analysis transformation 

where eigenvoice 0 represents the mean component. Removing a number of the upper principal 

components provides model compression. Kenny et al. applies this eigenvoice vector to normalise 

the target models via a common reference position and assists with sparse training data [26].

Nuisance attribute projection (NAP) [15] and factor analysis [26] are two examples that apply 

normalisation to the modelling stage of the now popular GMM-SVM hybrid system. Models gener­

ated with the addition of either approach are now normalised models and treated as input features 

to a subsequent classifier, the SVM. This second classifier discriminates models (the normalised 

model is also referred as a GMM supervector) in the normalised acoustic domain with normalised 

features. This two-stage classifier known as GMM supervector linear kernel SVM-GSL [24, 17] 

shows large performance gains on long-task durations. Fauve et al. [24] has shown negative per­

formance for NAP on short-duration task evaluations due to the nature of their session variability 

and unpredictable phonetic content. Short utterance variability is also acknowledged by Li and 

Porter [27]. NAP weights the feature components by their relevance of contribution to the speaker 

information within the speech signal. Low weights are given to the nuisance feature coefficients. 

NAP is an example of performing degenerative signal compensation at the modelling phase for dis­

crimination through a two-tier GMM and SVM (SVM-GSL) classification system. An alternative 

is factor analysis, similarly to NAP, this method applies noise compensation to the speaker models. 

It is postulated that each speaker-specific model is an additive of both speaker and channel related 

information and can hence be separable. The state-of-the-art trend that has developed during the 

work presented here appears to move the concentration of utterance normalisation to the modelling 

or speaker enrolment domain. In this thesis however, the investigation into impostor-centric score 

normalisation concentrates on selection approaches such as the state-of-the-art adaptive T-Norm. 

Such approaches discussed here for use in score normalisation could possibly be adapted to assist 

with such data-driven approaches as NAP.

Speaker model synthesis [28] and Feature mapping [28] are other methods applied at the modelling
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level to reduce, for example, channel variability by building channel dependent models and mapping 

the Gaussian components from the UBM to that of the specific channel model during the scoring 

routine. This is similar to a collection of speaker-independent models used in cohort normalisation 

in section 2.3.

For conventional GMM scoring, the input test utterance for a given trial has not been normalised 

in contrast to the target model. The SVM-GSL accounts for this by discriminating both the train­

ing and test models in the model domain. Differentiation on a normalised model-to-model basis 

alleviates much unwanted signal perturbation embedded on the test utterance. Normalisation for 

both test and train is not possible with a traditional GMM classifier approach5. Different sources of 

prior information can be modelled in different systems for each target speaker and then combined 

at the score level through some weighting function during a trial.

Score normalisation is the final form of compensation applied to a classifier prior to making a 

decision. Zero normalisation (Z-Norm), handset normalisation (H-Norm) and test normalisation 

(T-Norm) with subsequent extensions have been used to enhance the robustness of the decision 

threshold by reducing the variability of resulting true and false distributions. Normalising the 

scores, emitted from a classification system can assist with these variations. Applying a score nor­

malisation method is made prior to making a decision is made.

Two score distributions are the produce of an evaluation. A development set has coupled with it 

a ground-truth for each conducted trial. These distributions display the separable nature of the 

evaluation as binary outcomes of true, target claims and false, impostor claims. These methods 

attempt to bias and scale these distributions to enhance performance. Discussions by [11] state 

that research has focused on adjusting the impostor based distribution, with a side-effect of adjust­

ing the true distribution simultaneously. This is a practicable, application driven constraint as the 

availability of target speech can be a rarity, though an abundance of impostor speaker models can 

be available to any given trial. This is an impostor-centric approach.

Score normalisation but primarily test normalisation (T-Norm) and its derivatives applied on the 

GMM classifier is the main focus of this thesis.

The methods discussed to reduce unwanted signals at the model and scoring stage use other knowl­

edge category of available speech (described in Chapter 1.1) to derive normalisation statistics. 

Although many of these techniques can be applied at various stages throughout the classification 

system, it is difficult to predict the contribution of normalisation to downstream from methods 

such as score normalisation when techniques further upstream, such as NAP are applied. It would 

be interesting to observe the contribution of different normalisation approaches when combinations 

are configured, highlighting the usefulness of such methods. It is also important to note that these 

methods can be applied independently at all stages with varying effectiveness on the reduction

5Unless performing direct model-to-model comparison, for which the SVM approach contributes



CHAPTER 2. CLASSIFICATION WITH NORMALISATION 16

of signal degradation. An example of concatenating normalisation approaches are presented by 

Barras and Gauvain [29] where it was found that assistance of both feature warping and T-Norm 

gave enhanced robustness.

2.4 Score Normalisation

From herein, the traditional GMM framework for SV will be the primary focus for modelling and 

scoring and used as a template for describing the stages of score normalisation and application to 

subsequent experiments.

The hypothesis of factor analysis shows that the speech signal is a combination of speaker and 

channel related information that can be separated into two vectors. This is wholly analogous to 

other normalisation techniques by generalising on the channel related information to other forms 

of non-speaker signals.

Based on the discussion of hypothesis testing in section 2.1, the given model for Ho is well defined 

and can be easily estimated from the given claimed speaker-specific speech. However, hypothesis H i 

has no specific criteria to construct an alternative model other than any information that originate 

from either trialled utterances. A landmark for SV was the introduction of the speaker-independent 

background model, popularly referred to as the universal background model (UBM) was introduced 

by Carey et al. [14] as the general model in the hidden Markov model (HMM) classifier to obviate 

the need for an absolute threshold. Gravier and Chollet show that the stability of a threshold when 

applying either Z-Norm or H-Norm is greater [30].

Preceding the institution of score normalisation for SV, the impostor cohort normalisation [31, 32] 

approach substituted the UBM as the alternative hypothesis (although the UBM is still used to pro­

vide the template model for speaker adaptation). A cohort of N  UBM adapted speaker-dependent 

models replace the single speaker-independent model that encompasses the world of speakers. Equa­

tion 2.4 illustrates that some function / ( . )  can represent a statistic, e.g. maximum, average, etc., 

to represent an alternative hypothesis score from the N  available speaker-dependent models.

P (B I =  { / ( p (p l^x)> p (S|A/2) , . . . ,  P(B |A ,„ )} )  (2.4)

Cohort normalisation with a tailored speaker set deemed to provide better performance over the 

traditional UBM similarity normalisation [31, 19]. It is interesting to note that if the cohort con­

tained the target speaker, given a large AT, the average of the cohort would absorb the influence of 

the target. Strictly speaking, the speaker under test (the target) should not be represented as one of 

the cohort models as this would violate the hypothesis H\. Applying a maximum statistic criteria
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would surly violate the alternative hypothesis if the target speaker was chosen as the maximum 

score.

It has been shown that scores from multiple UBM’s can be used to represent the alternative hypoth­

esis; again tailored and trained to specific application scenarios. Gender is a category that could be 

exploited by generating independent male and female UBM ’s for subsequent speaker-specific adap­

tation and scoring. Secondary type prior knowledge (defined in Chapter 1.1) constitute different 

channels, genders or other practicable information that can be applied.

Applicably, when conversing over a mobile network, each person could likely have different handsets, 

displaying miss-matched signal perturbations. These ambient characteristics can provide distor­

tions, impeding speaker discriminative information. A process to reduce such effects is the use of 

handset normalisation (H-Norm) [7, 19, 33], even after applying several standard linear channel 

compensation approaches (e.g. CMS and RASTA).

H-norm is one method from a family of normalisation approaches that operate in the score domain; 

applied at the final stage of classification prior to making a thresholded decision; attempting to 

reduce unwanted signals between the two utterances of a trial.

Score normalisation is key to performance, establishing a shared decision threshold between speaker 

trials by removing the influence of variability between utterances. An enhanced discriminative 

threshold can be found by altering both true and false distributions for an evaluation by altering 

the individual trial scores. This is achieved by modifying individual hypothesised scores to a com­

mon scale, helping to reduce the effects of mismatch between training and test utterances. The 

basis of general score normalisation is to centre the impostor distribution by applying equation 2.5 

on each trial.

S{Xa \B) =  ~  (2.5)
V x a

Where /z denotes the statistical mean of scores derived from a set of speaker models from cohort 

I. a  represents the statistical standard deviation from a set of speaker models I  with A(B) (equa­

tion 2.3) dictates the log likelihood ratio of a trial. The resulting true and false score distributions 

are simultaneously scaled and biased when applying equation 2.5 to each trial of an evaluation. 

This is an impostor-centric approach to score normalisation, originally introduced to the SV do­

main by Li and Porter [27]. It is a form of distribution scaling where one of the distributions are 

aligned. Aligning the false distribution through utilising the impostor models by score normalisa­

tion is considered as impostor-centric scaling [13]. Large variances were observed by Li and Porter 

for both impostor and target scores and hence reduction of such variation by focusing on normalis­

ing these scores for a set of trials. The impostor models are generated from a development corpus, 

different to the corpus of evaluation. This approach was applied in 1997 by Finan et al. [32] in the 

text-dependent SV mode to set a single threshold for all speakers.



CHAPTER 2. CLASSIFICATION WITH NORMALISATION 18

Applications such as speaker diarization can produce an abundance of speaker-specific speech with 

possible normalisation through a target-centric approach. Such scaling is the complementary pro­

cess to impostor-centric normalisation, aligning the true distribution of the two-class problem. Gen­

erating normalising statistics by using an arrangement of models generated by the same speaker 

of the target. Utilising the normalisation based on an impostor based cohort is guided by two 

factors, highlighted in [1]. First, psudeo-impostors are more readily available in most application 

scenarios where target-specific based cohorts would be difficult to collect through lack of target 

speech. Auckenthaler [13] describes the instance of the ever changing voice, especially with illness 

can effect the target score, causing high false rejection rates in the target-centric case. Speech 

verification within a scenario where a system can continuously utilise an abundance of target spe­

cific information would reduce this effect somewhat. Secondly, the false score distribution for an 

evaluation represents the largest deviation. Li and Porter demonstrated this when scoring speakers 

at the segment level, with a train of scores being the resultant of an utterance. They observed 

that the variance of impostor scores over segments varies widely and this variability could be help 

stabilise, i.e. normalise the parallel target scores on a segmental level. They also state that the 

accumulation of scores becomes optimal if the distribution becomes Gaussian.

The score normalisation procedures discussed in this thesis can be applied to any classifier (e.g. 

HMM, GMM, SVM) that produces a score based on some observation. These are primarily data- 

driven techniques, widely used in established normalisation procedures such as Z-Norm and T- 

Norm. Sources with groups of variability, for example, utterances with common duration signa­

tures, can be used to reduce score miss-match between both training and test utterances.

Popular normalisation procedures published to carry out score normalisation will be discussed 

in the following sections.

2.5 Z-Norm

Zero-Normalisation (Z-Norm), derived from Li and Porter observations [27] attempts to align 

between-speaker differences by producing statistical parameters for each speaker-specific model, 

using a cohort of widely available impostor utterances to align the impostor scores to zero. For a 

cohort of E  impostor utterances, are scored on each enrolled speaker model, e.g. A a to generate a 

series of likelihoods, shown in equation 2.6.

(2 .6)



This is a speaker dependent process where the mean and standard deviation statistics are 

extracted from this impostor distribution of scores which are fixed for all subsequent trials conducted 

on the speaker-specific model These model normalisation statistics can be generated off-line 

during speaker training for each speaker and are applied for each trial using equation 2.7.

C*   f ^ i m p o s t o r s  /•<-> 7̂ ^
^ Z - N o r m  Z  )

2.6 H-Norm

Using a variety of capture devices to record a speaker over different sessions can yield convoluted 

non-speaker signal characteristics between utterances. An issue raised by attributes of different 

handsets or microphones. Utilizing secondary type prior knowledge, handset normalisation (H- 

Norm) attempts to remove speaker-independent d.c. offsets from the target scores. Impostor 

utterances from different labelled handset types are used on an adapted speaker model to generate 

handset-dependent constant scaling parameters, i.e. mean and standard deviation per handset type 

for normalisation. Statistics for an electret and carbon button handset type for a specific speaker 

model is shown in equation 2.8. Similar to Z-Norm, normalisation statistics are calculated ‘off-line’.

{ju(CARB), a (C A R B ),  fi(E L E C ),cr(E L E C )}  (2.8)

Analogous to Z-Norm, the statistics are traditionally applied on a likelihood score with equation 2.9. 

The handset type is supplied as a secondary type prior knowledge which can be used to select the 

appropriate normalisation statistics for a trial. An example of carbon button handset normalisation 

is shown with equation 2.9. The carbon button statistics can be replaced with statistics of the 

appropriate handset. As with Z-Norm, each target model is supplied with a personal set of H- 

Norm statistics for each considered handset.

Starget -  n (C A R B )
a (C A R B ) K ’

Wu et al. has generated impostor cohorts by matching emotional states of target speakers. 

Similarly to H-Norm, termed ‘Emotion-dependent score normalisation’ or E-Norm, this approach 

has proven effective [34] in reducing miss-match from the two trial utterances.

2.7 D-Norm

The distance normalisation [35, 36] (D-Norm) approach determines a normalisation statistic at the 

scoring stage. This approach does not employ additional data and hence does not require the need
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of utterances as stimuli to generate distributions from where, for example T-Norm gathers nor­

malisation statistics. The D-Norm could advantageously replace data-driven approaches in some 

real-world applications scenarios when little or no additional data is available. In contrast, for a 

data-driven approach, the greater the amount of training data for a speaker, the larger the dis­

tance on average are the impostor scores generated from this model and hence less similarity (a 

greater score). By applying a model-to-model differential entropy distance calculation, the ‘dis­

tance’ between a target and background model can be applied to normalise the score distribution. 

This becomes important when applications gather utterances of different lengths over evaluations 

where different thresholds are required between tasks of different training duration; compensated 

by applying this normalisation approach. Although reports show that small gain is achieved, in the 

NIST domain, this is not as crucial as the evaluation tasks are primarily separated into categories 

by their training and test utterance duration. However as discussed in later chapters, some sub­

sets of training utterances contain unexpected duration’s, for which the application of the D-Norm 

approach could naturally overcome. The results reported by Ben et al. [35] show comparative, 

though slightly worse results to the Z-Norm approach. This process is not examined in detail in 

this thesis as we have an abundance of impostor utterances to generate normalisation statistics 

using data-driven approaches which are reported to give better performance.

2.8 T-Norm

In the NIST evaluations of 2006, approximately 58% of participating institutions applied the pop­

ular test-normalisation (T-Norm) approach to their systems in one form or another. T-Norm [10] 

was proposed to easily set a speaker-independent threshold by reducing the effect between test 

utterance scores over different trials. This is achieved through scaling and biasing the true and 

false score distributions over an evaluation.

An impostor score is defined as a LLR ratio by equation 2.10, similarly to the LLR of a tar­

get, illustrated previously by equation 2.3. Here, a cohort of impostor models of N  quantity are 

used resulting in N  scores to derive statistics for normalisation, highlighted in equation 2.11. A 

similar process to Z-Norm though focusing on the test utterance instead of the training utterance. 

In contrast to Z-Norm, the test normalisation statistics are computed in an ‘online’ manner at test 

time for each trial.

A(B)In =  log(B(B|A/„)) -  log(P(B|At,BM)) (2.10)

A(B)h „ =  {A(B)/ l ,A(B),2 . . .A (B ) /„ } (2 . 11)
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O T -N o rm  = ---------T T rm -------T-------

During UBM normalisation, the UBM is used to bias the test score for a target model. The 

influence of the biasing UBM score during T-Norm is cancelled as the bias from both target like­

lihood and cohort mean include the UBM scores. Proof of this is explained by Navratil et al [11]. 

With the UBM influence reduced (though its influence from adaptation is still required to compen­

sate for lack of speaker-specific speech), the biasing and scaling results from only the N  impostors 

observations are present.

An interesting hypothetical scenario discussed by Navratil [11] depicts when the T-Norm method 

becomes redundant if both true and false distributions are identical and Gaussian. In real-world 

applications, this scenario would be unlikely. Similarly to the observation that H-Norm is to Z- 

Norm, HT-Norm is a variation of T-Norm where impostor models are selected by a criteria of 

handset type from where the speech was captured. Normalisation statistics are produced using the 

same approach to T-Norm with chosen impostors being specifically matched to the attribute of the 

speaker handset used. Concatenation of score normalisation can also be applied, examples of this 

are the use of both Z-Norm and T-Norm, resulting in ZT-Norm or TZ-Norm [37]. The order of 

‘Z’ or ‘T ’ reflects the sequence of the conducted normalisation approaches. ZT-norm is reported to 

give optimum results with approximately 3% enhancement over standard T-Norm. Utterance level 

T-Norm is the direct equivalent of T-Norm in the text-dependent scenario. Recently, Toledano et 

al [38] introduced the phoneme-level T-Norm to the text-dependent scenario and later discussed 

the state-level T-Norm. This is analogous to normalising numerous segments of feature vectors 

along an utterance in the text-independent scenario.

A C ohort for T -N orm

The duration of an utterance used to train a model can vary, reflecting the nature of an adapted 

model. Valid for both target models and impostor models that represent the cohort. The higher 

duration of speech given for training, the greater potential of UBM adaptation to a specific-speaker 

model. Considering this variation between models, the distance between model components of 

a target and impostor can be observed loosely as a quality measure. Models trained with more 

speech duration tend to give a higher overall similarity measure during a trial, where the com­

ponents in the model have received greater adaptation. The scores generated by short utterance 

trained speakers have low scores between speakers and high scores with well trained speakers. 

Figure 2.2 demonstrates this with the use of one sample test utterance, common to a pool con­

taining 600 T-Norm impostor models. The similarity scores for 600 individual T-Norm impostor
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Figure 2.2: The x-axis resembles a group of 600 speakers, divided into three equal groups of 200 
speaker models, highlighted in groups from the lOsec, 30sec and lconv conditions. The increase 
of training utterance length is from left to right on the x-axis. The similarity scores from trials of 
these speakers against the same test utterance is shown in the y-axis, illustrating the variability of 
the score metric prior to score normalisation (or world normalisation)

models are speaker models trained with three different utterance durations of approximately 10, 
30 and 150 seconds (lconv) of speech shown as sequential blocks of 200 models along the x-axis 

respectively. The scores are generated from an independent set of test utterances to generate scores 

for all 600 T-Norm models. The similarity scores generated increase with models of higher speech 

adaptation, on average showing an increasing trend with more training material used to generate 

a speaker/impostor model. This is similar to the reported results by Pelecanos et al. [39] where 

the variance of impostor scores increases when more training data is applied to the models. The 

model will eventually saturate with enough speaker-dependent data, however, utterances from the 

shorter duration tasks are primarily considered in this thesis. This highlights the idea proposed 

in [11, 40] to select impostor models that are representative (based on the duration of speech used 

for speaker training) of the hypothesised model, empirically found to show enhanced robustness 

with short-duration tasks (i.e. a lOsec test).

Selecting the impostors to generate normalisation statistics is an intriguing attribute of the T- 

Norm. As an example of scores generated by a cohort, Figure 2.3 shows the variability of a fixed 

T-Norm cohort with 10 different test utterances, identified along the x-axis. In Figure 2.3, we can 

observe that for a fixed cohort of the same 600 models as previously described (depicted by the red 

scatter crosses), T-Norm presents a large diversity of impostor-centric scores given different test 

utterances. Changes for both mean and standard deviation can be observed. Test utterance 3 is 

of particular interest. Demonstrating a low variety of scores for all impostors with the particular
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Figure 2.3: LLR scores using the same target model against a multitude of test utterances (x-axis). 
The same 600 T-Norm models are used for each test utterance, with scores (y-axis) depicted by 
red crosses. All trials are assumed impostors.

test utterance. It was observed that the contents of the test utterance contained little speaker- 

discriminate information, with a few repeated gestures of “m m m m m ”. From the assumption of 

impostors utterances being tested against impostor models, a resulting high score would result in 

an error. This model would likely give false acceptances if used in a real trial. As we assume that 
these tests should generate a false, low score, then these high scores are dubious. Figure 2.4 shows 

50 detection error trade-off (DET) [41] curves of the lOsec-lOsec evaluation from NIST 2005 by 

selecting different impostor cohorts from a pool containing 600 male and female impostors. Subsets 

comprise of 200 10 second, 30 second and 2.5 minutes of utterance duration from the NIST 2004 

evaluation database. We can observe the variability of performance in Figure 2.4 when selecting 

in impostor cohort can have a detrimental effect. Different training and test conditions, including 

lconv4w-lconv4w will also be investigated in subsequent chapters.

The motivation of this thesis originates from the intriguing degree of sensitivity presented in Fig­

ure 2.4, utilising different compositions of impostors to represent a cohort through the T-Norm 

approach. An investigation of this phenomena will now be illustrated empirically and its ramifica­

tions discussed when specific impostors are not carefully selected.
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Figure 2.4: This is the general configuration of the DET plot where the x-axis represents the False 
Alarm probability and the miss probability is represented by the y-axis and used for all forthcoming 
DET illustrations. The profile shows 50 DET plots for 50 different selected impostors from a mixed 
pool



Chapter 3

Trial-independent Cohorts for T-Norm

Reynolds [19] informs of two issues that arise with the use of background speakers, a selection regime 

and its quantity. In this chapter we follow these observations with score domain normalisation, in 

particular using the T-Norm approach, discussed in the previous chapter. For the impostor-centric 

approach, Reynolds suggests that the ideal number of background speakers should be as large as 

possible to better model the imposter population, but practical considerations of computation and 

storage dictate a small set of background speakers. This is an implementation criterion [19], the 

more similar the models, the smaller the ratio of required models becomes. Similarly, Doddington 

et al. also states that the impostor population should model the target population [3]. This chapter 

examines the theme of specific cohort selection of impostor models for test-normalisation over all 

trials of an evaluation. Here, denoted as trial-independent selection. Trial-dependent cohorts will 

be discussed in Chapter 4.

3.1 Introduction

The foundation of T-Norm has been established for speaker verification (SV) in Chapter 2. Here 

we shall investigate selection procedures of impostors to compose a cohort.

Primarily, we can ask, what prior knowledge can we exploit to address selection? For example, 

Auckenthaler et al. [10] shows that this can be achieved by discriminating between utterances of 

different durations are easily obtainable, gender is another. Conventional T-Norm sets to use some 

broad speaker specific criteria to perform selection [19]. Gravier et al. [4] shows the application 

of prior-knowledge through handset information into the classification system through the z-norm 

normalisation approach, with either handset or gender information. In the NIST evaluations, gen­

der, handset type, coding characteristics are other sources of prior information are available.

We can denote two umbrellas for cohort selection, trial-independent and Trial-dependent. Trial- 

independent (or target speaker-independent) selection is the conventional T-Norm strategy, using

25
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a fixed set of impostors for all trials over an evaluation condition. Experimental results rendered 

in section 2.3 used a trial-independent approach to perform normalisation. Trial-specific selection 

supplies an independent set of cohorts to each speaker model, introduced by Sturim &; Reynolds 

as the adaptive T-Norm (AT-Norm) [12], discussed further in Chapter 4. Reynolds [19] postulated 

that two issues that arise with the use of background speakers, the amount of speakers to use and 

its composition. When selecting a subset of models to obtain normalisation statistics, computa­

tional efficiency is a constraint along with the availability of a realistic and finite cohort. Varying 

this finite number leads to a selection of a subset of E  impostors. Selective criteria including, 

random h  general set, matched and its converse miss-matched are denoted as trial-independent 

approaches whilst trial-dependent strategies constitute adaptive selection (data-driven) or model 

distance (model to model) selection. The goal of a trial-dependent selective T-Norm strategy is to 

identify a set of impostor speakers that represent similar characteristics of a target speaker. These 

conditions can, for example, be the similarity between speakers based the utterance duration. 

Ideally the number of background speakers should be as large as possible to better approximate the 

background population, but practical considerations of computation and storage dictate a smaller 

set of background speakers. This is an implementation criterion.

Impostor-centric normalisation coined in [13] is used to align the scores of the impostor distri­

bution, which will be the focus here to generate the normalisation statistics. As discussed in 

section 2.4, the cohort composition with the inclusion of the target model would violate the LLR 

hypothesis H\. Empirically, this in not true; for a large enough score normalisation cohort as its 

influence would be drowned among other models.

Apriori selection can be done from knowledge of qualitative measures, e.g. gender, age, envi­

ronmental noise, transmission channel/coding or quantitative duration of utterances (or number of 

target-specific utterances). Variation in the test and training utterances constitute between speaker 

differences, e.g. utterance length. Speaker differences can also occur between different recording 

sessions. This can be reduced in applications over different sessions. After a successful verification 

has occurred the target model can be further adapted, becoming more representative of the par­

ticular speaker. This can assist the adaptation of a persons voice through age and of course collect 

more speaker specific data to enhance their models. Further adaptation is illustrated in Figure 3.1 

by increasing the availability of speaker specific speech. For mean-only MAP adaptation, more 

components can be influenced for potentially greater discrimination. Beginning with the UBM in 

Figure 3.1, this simply illustrates the diversity a speaker model when the UBM mean components 

are adapted with utterance durations of 10 seconds, 30 seconds and 2.5 minutes. For a target and 

impostor cohort, it seems logical to use models that produce similar observational score statistics. 

Conceptually comparing like with like. Consider a large pool P  of 600 impostor models for T-Norm, 

divided into 3 groups of approximate duration; 10 second speech duration for a speaker (lOsec), 30
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Figure 3.1: A simplified two-dimensional illustration of a mean only MAP adaptation process when 
more target-specific, speech is utilised. Both axis in each picture is an arbitrary feature dimension.

seconds of speech (30sec) and 2.5 minutes of speech (lconv). During the discussion of experimental 

results, colours are representative of the speech duration of a speaker, red for lOsec impostors, 

green for 30sec and blue for lconv. Evaluations concerning the whole pool of 600 impostors will 

be depicted as black. All impostor speaker models from pool P are taken from the NIST 2004 

evaluation database. For the duration of the thesis, terminology matched and miss-matched will be

Selection Pool P

1Osec 30sec 1conv
(approx. 10 seconds) (approx. 30 seconds) (approx. 2.5  m ins)

200 400 600
Impostor model ID

Figure 3.2: The selection pool P  containing defined subsets of impostors models based on their 
approximate training duration, 10 seconds (lOsec), 30 seconds (30sec) or 2.5 minutes (lconv/lside) 
of speech with the all pool scenario consisting of the 600 impostors is represented by the x-axis. 
The y-axis is unity.

used to describe the relationship between impostor and target models. A matched cohort scenario 

considers characteristics of a selected cohort (e.g. duration) to match that of a target model or 

evaluation (e.g. lOsec impostor T-Norm models are matched to the lOsec-lOsec or lOsec-lconv
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NIST evaluations). A miss-matched situation arises when the selected cohort has different criteria 

to that of the training condition of the target and/or evaluation, e.g. utterances of 30sec or greater 

are miss-matched impostor models to the training duration of a lOsec-lOsec or lOsec-lconv NIST 

evaluation. Similarly, the lconv models are matched for a lconv-lconv or Iconv-lOsec evaluations. 

Dunn et al. [42] applied this approach to the H-Norm in 2000 when matched and miss-matched 

coder characteristics were used to generate the score normalisation statistics. It was found that a 

fully matched coder cohort gave overall better performance than a miss-matched cohort.

System performance will be illustrated through the detection error trade-off (DET) curve with 

the aid of two important interpretations. The equal error rate (EER) shows performance when 

both false alarm and miss probability are equal with respect to the system performance, i.e. no 

trade-off. The second parameter is the detection cost function (DCF) , defined for the NIST proto­

col to evaluate a specific application scenario when the ratio of a ‘cost for false alarm(i.e. accepting 

an impostor) is 10 times greater than the cost of rejecting/missing a target. Further discussion 

of these attributes can be found in [41] with a simplified discussion in the appendix A. Best per­

formance is depicted by low EER and low DCF. Protocols for development and evaluation with 

system configuration can be found in the appendix A.

Initially, we shall investigate the composition of the 50 verification curves briefly described in 

Chapter 2, for further discussion, a further breakdown is illustrated in Figure 3.3. The arrows 

on Figure 3.3 highlight three performance curves of interest. The same NIST 2005 lOsec-lOsec 

evaluation has been undertaken for all 50 outputs, where each plot is T-Normed from a cohort of 

50 models, acquired from pool P. Three plots of interest are depicted by C \ , C 2 and C3  with their 

cohort composition shown in Table 3.1. C\ displays best performance from this random selection, 

containing a majority of matched lOsec models, i.e. a greater influence of a matched cohort. The 

declining inclusion of matched models within the cohort, yields less performance, shown by C2 and

C3.
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Figure 3.3: 50 DET plots of 50 randomly selected impostors from a mixed pool. Again, this is the 
general configuration of the DET plot where the x-axis represents the False Alarm probability and 
the Miss probability is represented by the y-axis.
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D E T  p lo t id % o f lO sec % o f  30 sec % o f l c o n v
Ci 87 12 1
c 2 61 9 30
C3 7 2 91

Table 3.1: Composition of cohort by percentage of models used in three significant performance 
scenarios for the lOsec-lOsec NIST 2005 evaluation using 200 matched (lOsec) &; miss-matched 
combinations (30sec & lconv). C\ has higher density of lOsec impostors, matched to the training 
condition of the trial, giving enhanced robustness.

For this lOsec-lOsec evaluation a large contribution of high miss-matched seriously degrades 

performance when T-Norm is applied. This is manifested by the poor performance of C3 with an 

EER of 40%. UBM normalisation (not shown here) has 31% EER, greater performance than 

the T-Norm cohort with high miss-match of selected models. Not all of these profiles shown in 

Figures 3.3 and 2.4 was collected by randomly selecting impostors. Several impostor cohorts con­

tained intentional assortments, with a majority of either matched or miss-matched were engineered 

to illustrate the large variability and danger of selection with the lOsec-lOsec short duration task.

The highlighted regions on Figure 3.3 show different system operation characteristics, illustrating a 

range of threshold points, depicted to assist the narrative during experimental analysis. Setting a 

high score decision threshold in region 1 allows applications with high security, e.g. door access to 

reduce the number of impostor acceptance errors. The equal trade-off or ‘equal error rate’ (EER) 

resides in region 2 where an equal probability is given to both target (miss) errors and impostor 

(false alarm) errors. The third region manipulates thresholds for a high acceptance criteria, the 

converse of high security, e.g. surveillance, where the probability of missing a target is lowered and 

the acceptance of impostors is increased by setting a lower decision threshold.

3.2 Experimental Outline

SV experiments outlined in this thesis share many common configuration parameters from a con­

ventional GMM based classifier, detailed in appendix A.I. Primarily we will be concerned with a 

variety of lOsec and lconv test and training configurations from the 2005 NIST evaluation. Con­

centrating on compositions of the T-Norm impostor cohort, the recently described model pool P  

will be used.

Experimentation will begin with a true random selection of cohorts over different evaluation condi­

tions. The match and miss-match selection by exploitation of utterance duration prior knowledge 

and the quantity of models to approximate the score distribution will also be investigated. Com­

binations of these shall also be illustrated.
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3.3 Random ise

Figure 3.3 show the degree of variability for the lOsec-lOsec evaluation with a variety of T-Norm co­

horts, albeit engineered with extreme scenarios. To show statistical significance of a random cohort, 

we shall investigate the consequences by randomly selecting 50 impostors from pool P illustrated in 

Figure 3.4(a), 3.4(b), 3.4(c) and 3.4(d) respectively for the lOsec-lOsec, lOsec-lconv, Iconv-lOsec 

aad lconv-lconv 2005 NIST conditions. Though not a logical approach in an application scenario,

(c) Iconv-lOsec (d) lconv-lconv

Figure 3.4: An illustration of the effects of 50 cohorts containing 50 impostor models, selected at 
raidom for different evaluation conditions in NIST 2005

it is plausible to use a random procedure to select impostors for T-Norm with sub-optimal results.

(a) 10sec-10sec (b) lOsec-lconv

DET T-Norm quantity50 | from l to600

'  0 10.20.5 1 2 5 10 20 40 60  80 90 95 98 99
Fa lse  Alarm probability  (in %)

DET. T-Norm quantity50| froinl to600

0.10.20.5 1 2  5 10 20 40 60 80 90 95 98 99
Fa lse  Alarm probability (in %)

DET: T-Norm quantitySOI from l to600

' ” 0.10.20.5 1 2 5 10 20 40 60 80 90 95 98 99
False  Alarm probability  (In %)

DET T-Norm quantitySOI froini to600

0.10.20.5 1 2  5 10 20 40 60 80 90 95  98 99
False  Alarm probability (in %)

As expected, variability is a issue with different cohorts in all task conditions, though higher 

variability is shown with targets trained on short utterances. For the lOsec short utterance enrol- 

nent, the maximum deviation between the extremes of the EER is 3.1% for lOsec-lconv testing 

aid 4% for lOsec-lOsec trials. Similarly, for both the Iconv-lOsec and lconv-lconv evaluations, the
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difference in EER is approximately 0.5% and 0.7%. It has been shown here that the test utterance 

duration contributes to overall SV performance (i.e. the relative performance of the lOsec-lconv 

giving a performance range between 24.99% to 28.14% EER is of greater robustness than the lOsec- 

lOsec which provides performance in the range of 32.59% to 36.57%). We can observe that the 

performance variability from the lOsec trained targets show higher sensitivity towards the contents 

of the T-Norm impostor cohort, contrast to well trained lconv targets.

3.4 Matching Cohorts through Prior Knowledge

As discussed earlier in Chapter 1.1, prior knowledge is a tool that we can exploit which may en­

hance the application of T-Norm by selecting impostors for its normalisation cohort. This section 

emphasises on applying prior knowledge to compose an impostor cohort for T-Norm.

Since the NIST 2004 evaluations, the idea of matching T-Norm cohorts has been known. Here, 

this supposition will be investigated by applying matched and miss-matched speakers (defined in 

introduction of this chapter) to different evaluation scenarios. The makeup of pool P  encompasses 

impostor models from three conditions of training, defined by the amount of target-specific data. 

For certain evaluations we have possible matched and miss-matched impostors that resemble the 

target models. For the lOsec and lconv training conditions we shall investigate the effect of the 

T-Norm when applying 200 impostors from the three cohort categories, lOsec, 30sec and lconv. 

We shall use all 200 same-conditioned impostors as the normalisation cohort to provide a greater 

Gaussian approximation from the available models for a more stable statistical representation. The 

results are presented as a performance measure between experiments based on their EER and DCF, 

accompanied by the tradition DET plots.

For the lOsec-lOsec performance depicted by Figure 3.5, the matched cohort provides best re­

sults when applying T-Norm, with an EER of 32.39% and DCF of 0.09. For a cohort composition 

of 200 miss-matched lconv impostors, a drop of approximately 8% EER and 10% for the DCF is 

illustrated. From the performance attributes shown on the DCF vs EER plot, the all pool cohort 

provides close performance to the lOsec cohort for both EER and DCF, though at both extremes of 

the DET curve 3.5(b) the all pool performance is lacking. From observations of Auckenthaler [13] 

(and the artificial DET plots shown in the appendix, Figure A .2) it is intuitive to state that a decent 

performance increase is provided by the all pool cohort comes from the influence of the standard 

deviation component. If a straight line was plot from the two extremes of the all pool DET plot, 

the performance would be close to that of the miss-matched lconv pool, where the mean of both 

the true and false score distributions become closer, ideally illustrated in Figure A.2(a). The close 

intersection of the all pool and lOsec measures shown in the plot is a positive contribution from
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the change in variance to both true and false score distributions. For high-acceptance applications 

that reside with low Miss probability and high false probability, the matched impostors provide su­

perior robustness. The scenario to consider is no prior knowledge is available for a specific selection 

criteria would be an all pool cohort. However, this can encompass longer computation and also, as 

shown in this short duration scenario, inferior results. If prior knowledge is available, it should be 

utilised.
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Figure 3.5: An illustration of matched and miss-matched for the lOsec-lOsec NIST ‘2005 evaluation 
performance, depicted by DCF vs EER (a) (x-axis and y-axis respectively), with the DET plot (b) 
for matched and miss-matched cohorts.

Similar performance attributes are illustrated with the lOsec-lconv condition (Figure 3.6 with 

categorised impostor cohorts by their duration). Again the target-matched lOsec cohort provides 

best outcome. Applying more test data (2.5 minutes over lOsec) the EER of the matched cohort 

gives an overall 8% enhancement, though the high miss-matched lconv cohort only provides a 2% 

improvement over the short duration test utterances. The all pool composition shows similar results 

to the lOsec cohort with a deviation of 1.2% for the EER from the matched cohort. Yet again, on 

both extremes the high acceptance (region 3 of the DET curve) and high security (region 1 of the 

performance curves) the matched cohort prevails. So far, this is true for both lOsec target training 

conditions.

The lconv training scenarios tell a different story. Increasingly, the greater training data had an 

unexpected effect. For the Iconv-lOsec scenario illustrated by Figure 3.7, all cohort combinations 

of the all-pool, matched and miss-matched have similar portrayals. Primarily, linear characteristics 

are shown for each plot with negligible differences between either cohort, though 30sec miss-matched 

cohort gives approximately 1% advantage in both EER and DCF.

Figure 3.8 displays better system performance with increased utterance duration for both test 

and train, the lconv-lconv does not require a specific cohort for meaningful enhancement. Again,
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Figure 3.6: A depiction of scores from the lOsec-lconv NIST 2005 evaluation performance, depicted 
by DCF vs EER (a)(x-axis and y-axis respectively) and DET plot (b) for matched and miss-matched 
cohorts.
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Figure 3.7: An illustration of scores for matched and miss-matched cohorts for the Iconv-lOsec 
NIST 2005 evaluation performance, depicted by DCF vs EER (a) (x-axis and y-axis respectively) 
and the DET plot (b).

linear plot characteristics are shown with a tolerance of less than 0.5% EER between them.

From the matched cohorts experiments, we can see that the short-duration tasks require some 

prior knowledge to be applied for better performance when selecting the normalisation cohort for 

T-Norm. With a low quality lOsec mode, the sensitivity of T-Norm is shown. Observations catered 

from the lOsec training conditions show similar degradation to that observed by Dunn et al. [42] 

when H-Norm statistics were applied to miss-matched training and test utterances. The use of the 

lconv cohorts shows high detrimental performance in the lOsec scenario, comparable to the high 

variability of performance of the low bit rate encoding of the MELP coder displayed in [42]. From
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Figure 3.8: An illustration of scores for the lconv-lconv NIST 2005 evaluation performance when 
applying matched and miss-matched normalisation cohorts for T-Norm, depicted by DCF vs EER 
(a) (x-axis and y-axis respectively) and the DET plot in (b).

the reported variation between evaluation conditions of the lOsec and lconv, the reported GSM 

coder in [42] of lower compression displays lesser variation with miss-matched H-Norm cohorts, 

vaguely analogous to the lconv training scenario of higher speaker information and relative insen­

sitivity to miss-matched cohorts for T-Norm.

With all of pool P, a variety of matched and miss-matched models provide decent performance 

at the EER and chosen DCF. It is interesting from these experiments to observe the lack of sen­

sitivity for the long duration task with higher-quality models with respect to the cohort chosen. 

This suggests that a component within the T-Norm approach degrades the performance with spe­

cific models during the short duration task. It has been observed by Fauve et al. [24] that the 

features designed for utterance durations of 2.5 minutes (lconv) are suboptimal for that of lOsec. 

Such features, coupled with score normalisation domain ramifications could of course be a path of 

investigation, though it will not be considered in this work. The configuration of T-Norm has been 

shown to follow a condition specific requirement.

Following the observations of published impostor quantities and for completeness, we shall examine 

the effect of modifying the quantity of impostors to populate the cohort.

3.5 Impostor Cohort Q uantity

Mixed observations have been published by Roland [10] using a quantity of 50, commented by 

Navrati and Ramaswamy [11] to use 100 impostor models and Sturim and Reynolds [12] including 55 

nodels to their cohort. Here, we shall attem pt to clarify the requirement by investigate the outcome

DET: T-Norm. ran g e  -1:600
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when the quantity of impostors that define a cohort changes over different task durations. The 

following normalisation cohort experiments will focus on the short-duration task with confirmation 

in the longer-task evaluations. We shall begin the cohort size investigation by initially concentrating 

on the lOsec-lOsec condition of NIST 2005; also comparing the matched and miss-matched T-Norm 

sets to determine if the size of the cohort influences performance. It is hypothesised that a once a 

set of impostor models reaches a certain threshold, further increase of the impostor set would not 

provide change to the statistical mean or standard deviation. The range of cohort sizes considered 

are 10, 25, 50, 100, 150 and the full 200 for each of the utterance-duration defined impostor sets.
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Figure 3.9: An illustration of performance by changing the quantity of models whilst confining to a 
matched lOsec within the cohort. Subfigures show lOsec-lOsec NIST 2005 evaluation performance, 
depicted by DCF vs EER (a)(x-axis and y-axis respectively) and DET plot (b).

Figure 3.9 depicts a collection of performance plots for a matched cohort T-Norm with the 

lOsec-lOsec evaluation when changing the quantity of impostor models to generate the normali­

sation statistics. For this condition, the best EER is provided with 50 T-Norms as reported by 

Auckenthaler and similarly by Sturim and Reynolds, though the DCF of both cohorts of size 25 

and 50 give marginally better EER. Once 100 models are used, the change in performance becomes 

negligible. It is to be noted that here, only one collection per size is considered and as we have 

shown from the random test, an error factor of approximately 4% is expected when selecting a cer­

tain combination of impostors for a given cohort. Of course, some poorly derived impostor models 

could influence a small selection of impostors.
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Figure 3.10: An illustration of performance by changing the quantity of models within the co­
hort, whilst miss-matching to a 30sec cohort. Figures show lOsec-lOsec NIST 2005 evaluation 
performance, depicted by DCF vs EER (a) (x-axis and y-axis respectively) and DET plot (b).
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Figure 3.11: An illustration of scores by changing the quantity of models within the cohort, whilst 
miss-matching to a lconv cohort. Figures show lOsec-lOsec NIST 2005 evaluation performance, 
depicted by DCF vs EER (a) (x-axis and y-axis respectively) and DET plot (b).



3.5. IMPOSTOR COHORT QUANTITY 39

For the same evaluation condition but substituting for a 30sec miss-matched cohort, Figure 

3.10 a tolerance of approx 1% EER and 1.5% DCF when changing increasing from a population 

size of 50 to 200, though 200 is marginally better. There is just under 3% EER between the best 

choice from the lOsec and 30sec cohorts.

For the highly miss-matched T-Norm set, shown in Figure 3.11, the DCF has less than a 1% change 

between the higher capacity cohorts. The cohorts below 100 show poor performance in the high 

security domain and maximised the cost function to 100%. There is approximately 9% difference 

in EER robustness between this miss-matched and the lOsec matched cohort.

C oh ort 
q u a n tity  (k)

E E R  for lO sec E E R  for 3 0sec E E R  for lc o n v
m in  % m ax % m in % m ax % m in  % m ax %

10 31.4 34.7 34.4 37.9 41.3 44.7
25 31.2 33.8 33.5 37.5 40.05 44.3
50 31.2 33.55 33.4 36.5 39.9 44.1
100 31.2 33 33.3 36.2 40.4 44.2
150 31.2 33 33.3 36.3 40.1 43.5
200 31.39 31.39 33.75 33.75 40.6 40.6

Table 3.2: This table illustrates the range of performance provided by the minimum and maximum 
EER from the lOsec-lOsec NIST 2005 data set when 50 evaluations are performed per size/matching 
combination

Exhibiting only one performance curve for the lower cohort sizes does not provide statistical con­

fidence. Table 3.2 shows the maximum and minimum EER for the lOsec-lOsec evaluation with 

different cohort quantities. In general, this illustrates the more models the less deviation. However, 

highlighted by the minimum EER for the matched scenario, there are cases when the cohorts of less 

quantity provide better performance, indicating an impostor model, or sub-set of, providing unre­

liable observations to the normalising distribution. In the all pool case, selection is limited causing 

unreliable models to be used to in the normalisation distribution, for models of lOsec training, 

unreliability of models is greater as little speech is available to a given speaker.
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Figure 3.12: The conventional DCF vs. EER is shown in (a) and DET performance plot in (b). 
Here a collection of performance plots for a matched and miss-matched T-Norm evaluation of 
lOsec-lOsec are shown with different amounts of impostor models used to generate the represent 
the normalisation cohort. The red - lOsec matched, green =  30sec miss-matched, blue - lconv 
miss-matched and black =  all 600 models.

Figure 3.12 demonstrates the combination of previously discussed results into a single illustra­

tion. The red plots show the outcome when using a matched T-Norm cohort and the green and blue 

highlight the miss-matched 30sec and lconv cohorts respectively. Generally from Figure 3.12(a), 

we can observe that an increase above 100 models in the T-Norm cohort generally do not effect 

EER performance. All distributions show a decrease of DCF when the cohort volume is lower or 

equal to 50. The all pooling 600 T-Norms have moderate performance, slightly better than the 

miss-matched 30sec condition. There is a trade-off between efficiency and performance regarding 

the quantity of impostor models used, but for the lOsec trained models, we can deduce that the 

size of the cohort should generally not be less than 100 for robust performance.
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Figure 3.13: The conventional DCF vs. EER is shown in (a) and DET performance plot in (b). 
A collection of performance plots for a matched and miss-matched T-Norm evaluation of lOsec- 
lconv rather than the lOsec-lOsec evaluation of Figure 3.12. Different amounts of impostor models 
used to generate the statistics, red =  lOsec matched, green - 30sec miss-matched, blue =  lconv 
miss-matched and black =  all 600 models.

Similarly to the lOsec-lOsec condition, the general rule of selecting a sub-set of matched impos­

tors that is greater than or equal to 50 applies. This gives similar performance when applying a 

mixed set of 600 models (performance dictated by label (__600) on Figure 3.13(a)). On an efficiency 

basis, a reduction in computation of 91.7% is shown for a matched cohort of 50 impostors over the 

all pool P. There is a certain sensitivity when selecting impostors for the lOsec training conditions.
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Figure 3.14: The conventional DCF vs. EER is shown in (a) and DET performance plot in (b). A 
collection of performance plots for a matched and miss-matched T-Norm evaluation of Iconv-lOsec 
with different amounts of impostor models used to generate the statistics, red =  lOsec matched, 
green = 30sec miss-matched, blue - lconv miss-matched and black - all 600 models.

However, the necessity of the matching rule is reduced with the lconv training conditions. By 

examining the Iconv-lOsec results first, depicted by Figure 3.14 as described in the same condition 

for the previous experiment, the use of either matched or miss-matched conditions do not provide 

meaningfully better results. A 1% deviation is shown when transferring between matched, miss- 

matched or the all pool cohort.
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Figure 3.15: The conventional DCF vs. EER is shown in (a) and DET performance plot in (b). 
A collection of performance plots for a matched and miss-matched T-Norm evaluation of lconv- 
lconv rather than the Iconv-lOsec evaluation of Figure 3.14. Different amounts of impostor models 
used to generate the statistics, red =  lOsec matched, green =  30sec miss-matched, blue = lconv 
miss-matched and black =  all 600 models.

For the lconv-lconv condition, the choice of quantity of impostors from 25 to 200 does not 

show the same detrimental trend. Whilst applying only 25 models for normalisation can further 

increase the computational efficiency with negligible performance loss. Again 10 T-Norms provides 

worst results with any of the matched or miss-matched cohorts. It is interesting to note that the 

all pooled 600 T-Norms (the black plot) again shows good EER but similarly a poorer DCF from 

the degradation in the high security region of the DET plot.

3.6  T -N orm  C om p on en t Analysis

Attributes from the matched/miss-matching experiment for obtaining impostor statistics influence 

the final verification performance, some combinations hindering while others are equal or better 

than the baseline UBM-LLR. Naturally, cohort size is an important factor too, providing smoother 

distribution statistics with a higher gross of impostors. Though, contrary to this observation, the 

matching/miss-matching criteria is an interesting situation where, as an overall performance, the 

statistical parameters derived from the all pool scenario shows poorer results over the matched 

scenario.

Certain impostor models could cause this, though within each of the impostor cohort combina­

tions shown, the statistical significance from one of the contributing components, i.e. mean or 

standard deviation, may provide a detrimental influence.



CHAPTER 3. TRIAL-INDEPENDENT COHORTS FOR T-NORM 44

With the conventional statistics, we shall investigate the contribution of the different T-Norm 

components from the distribution scaling equation 2.5. We ask the question, during test normalisa­

tion, does either component (i.e. the mean and/or standard deviation) degrade performance? We 

have conformed to a publication from Auckenthaler et al. [10], a cohort size threshold of greater 

than or equal to 50 is required for decent performance with the lOsec training condition and here, 

found that generally 25 or more for the lconv training condition. We have observed in Figure 3.9 

that an odd taper in both the high security and high acceptance domains of the DET plot when 

using an all pool scenario which should, conceptually lead to a better impostor approximation. We 

have seen that a cohort quantity below a certain threshold also shows this phenomena, though only 

in the high security region. Initially we shall investigate the component contribution with a cohort 

of 200 models for the three defined impostor pools.

We shall first summarise the breakdown of the distribution scaling approach when applied to 

T-Norm. Recall from Chapter 2, the LLR for both target and impostor contain the UBM biasing 

influence. For each target LLR score, derived in equation 2.3, there exists a train of impostor LLR 

scores illustrated in equation 2.11. The mean and a standard deviation statistics for normalisation 

are derived from the impostor train.1

T-Norm (repeated for completeness)

S t - N orm  —
A(B)T -  n{ A( B) h N} 

<4 A (B)n...„}
(3.1)

Zero mean

S T -N o rm o n lym ea n  —
A ( B ) t  — 0 (3.2)

Unity standard deviation

St - N orm SD  —
A ( B ) T - M{ A ( i3 ) / l J V }

(3.3)

To investigate the contribution of the statistical contributions from the distribution equation 

over various conditions, we shall reduce both the influence of the mean and standard deviation 

independently. First, this is achieved by setting the mean to an artificial zero for all trials (equa­

tion 3.3). The second scenario consists of unity standard deviation across all trials (equation 3.2). 

Conventional T-Norm and UBM normalisation will also be illustrated. For the following exper­

iments, beginning with lOsec-lOsec, we shall derive the UBM score as the baseline (no specific 

impostor influence). Conventional T-Norm is also used.

1This could be replaced with a train of utterances from the same target providing the availability of such speech.
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Figure 3.16: Influence of different T-Norm components using pool P for lOsec-lOsec NIST 2005, 
Red =  T-Norm with unity standard deviation, Green =  T-Norm without mean component. Blue =  
conventional T-Norm and magenta =  UBM LLR. Figures show lOsec-lOsec NIST 2005 evaluation 
performance, depicted as DCF vs EER (a) (x-axis and y-axis respectively) and the conventional 
DET plot (b).

Initially, all of pool P represents the cohort. This demonstrates the breakdown of the T-Norm 

from its conventional form with traditional world model approach performances, illustrated in 

Figure 3.16. Here, the conventional T-Norm approach is represented as the blue curve, showing 

the ‘tilt’, observed by Auckenthaler et al. [10] against the world model LLR. It is interesting to 

see the that the T-Norm with only the standard deviation component is similar and slightly better 
than the world of speech components as this T-Norm composition embodies the UBM LLR within 

the target score; in addition to the standard deviation. A additional 0.5% is supplied to the EER 

performance. There is greater negative impact on the mean-only T-Norm composition with an 
approximate 5% EER loss in the derivation with only the standard deviation.
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Figure 3.17: Influence of different T-Norm components for lOsec-lOsec NIST 2005 using only 
matched share of pool P, Red =  T-Norm with unity standard deviation, Green =  T-Norm with­
out mean component, Blue =  conventional T-Norm and magenta =  UBM LLR. Figures show 
lOsec-lOsec NIST 2005 evaluation performance, depicted as DCF vs EER (a)(x-axis and y-axis 
respectively) and DET plot (b).

As previously shown, it was beneficial to attem pt a matched impostor-to-target situation to 

obtain greater robustness. It is logical to carry out this observation to the T-Norm component 

analysis, where Figure 3.17 shows that the overall performance is slightly enhanced in the EER 
domain with the standard deviation only approach, though this time following the trend of the 

conventional T-Norm (highlighted in Figure 3.17(b)). Again, the mean component appears to 

hinder the T-Norm with just over 1% EER loss to the standard deviation only condition.
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Figure 3.18: Scores depicting the influence of different T-Norm components for lOsec-lOsec NIST 
2005 using only miss-matched 30sec share of pool P, Red =  T-Norm with unity standard deviation, 
Green =  T-Norm without mean component, Blue =  conventional T-Norm and magenta =  UBM 
LLR. Figures show lOsec-lOsec NIST 2005 evaluation performance, depicted as DCF vs EER (a)(x- 
axis and y-axis respectively) and the conventional DET plot (b).

When analysing the miss-matched scenarios, a reduction of performance was expected as pre­

viously shown during matching and miss-matching experiments. The baseline UBM score has the 

same characteristic does not change from previous experiments (no impostor cohort influence). It 

is surprising to show that the standard deviation scenario provides virtually the same results as the 

lOsec matched and all pool scenario for the EER attribute. There is a variation of approximately 

0.04 DCF. It is intriguing to observe an almost static performance level using a miss-matched set 
with the target LLR and only the standard deviation statistic of the impostors. Finally we shall see 

if this attribute carries forward to a highly miss-matched cohort of lconv impostors. It is hypoth­

esised that the large variation of lconv impostor scores, as seen in Figure 2.2 with a performance 

shown in Figure 3.18 would cause larger statistical miss-match.
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Figure 3.19: The influence of different T-Norm components for lOsec-lOsec NIST 2005 using only 
miss-matched lconv share of pool P, Red = T-Norm with unity standard deviation, Green =  T- 
Norm without mean component, Blue =  conventional T-Norm and magenta =  UBM LLR. Figures 
show lOsec-lOsec NIST 2005 evaluation performance, depicted as DCF vs EER (a)(x-axis and y-axis 
respectively) and DET plot (b).

As previously illustrated, the lconv miss-matched scenario causes performance degradation with 
conventional T-Norm, with the mean-only T-Norm following the poor performance trend. However, 

the standard deviation only T-Norm again surprisingly enhances on the baseline of the UBM 

(magenta on Figure 3.19). This unexpected result highlights a problem with the distribution scaling 

approach used for T-Norm when not taking care with T-Norm selection. There is around a 10% 

EER loss when conducting conventional T-Norm with highly miss-matched impostors, illustrating 

that the mean as the culprit of performance degradation at the EER with respect to the short- 

duration task.

For future investigation, the use of other statistical measures, such as median or mode could 

provide more robust influence when performing such impostor-centric score normalisation.

3.7 C o m p o n en t  Analysis with Random Select ion

To provide confidence of the results with the different T-Norm parameters, the previous results will 

be repeated with 50 random selections of impostors; similar to that in section 3.3.
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Figure 3.20: Scores of 50 plots per illustration with randomly chosen impostors under different task 
conditions represented as a DCF vs. EER plot and DET plot where the blue illustrates conventional 
T-Norm configuration, the single magenta in each graph represents UBM normalisation; green 
shows the T-Norm with only the standard deviation component and the red plots shows the T- 
Norm with only the mean component.
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The red profiles show the peformance of the impostor-centric scaling with only the mean com­

ponent. The green plots depict the performance with the world normalised score, scaled by the 

standard deviation. The blue profile illustrates the conventional T-Norm approach, a fusion of the 

mean and standard deviation components. The lOsec training conditions show that the variety 

of scores are when different T-Norm equation configurations are applied showing the higher sen­

sitivity of the individual T-Norm normalisation components when short training data is used for 

enrolment. This is less variable when different test utterance durations are applied. This sensitivity 

is reduced when target models are trained with greater amounts of speech, depicted by the lconv 

training conditions in Figures 3.20(e)- 3.20(h). The deviation of the mean for the short-duration 

lOsec trained models display the poor performance result as explained in section 3.6. Again, the 

short-duration models with cohorts of alternate contents, the T-Norm with only the standard devi­

ation approach shows consistency at the EER with a variety of cohort compositions. It is observed 

that the general nature of the standard deviation only approach shows a less scattered performance 

nature in shorter enrolments, Figures 3.20(a) to 3.20(d). This approach appears to be more robust 

to the composition of the impostor normalisation cohort than the mean only configuration. It 

appears that the mean statistic has greater variation in both the EER and DCF, especially in the 

short duration evaluations. However, the mean only component is depicted in 3.20(e) to 3.20(h) 

provides similar EER performance though degraded DCF with longer target enrolment.

From these results, it appears that the mean component is highly sensitive and is a degrative 

contribution to the T-Norm. This is emphasised greater in the shorter enrolment evaluations.

3.8 Component Analysis with Different Cohort Size

Figure 3.21 a, b and c displays the different T-Norm configurations with the equivalent DCF vs EER 

plot shown by Figure 3.21(d). It is intuitive to view the degrading performance of the mean-only 

T-Norm configuration when greater miss-match is applied (figure 3.21(b)). There is little change 

when applying the standard-deviation only concept to any matching combination, illustrated in 

Figure 3.21(c). The miss-matched lconv (blue) degraded performance shown on Figure 3.21(a), 

must be a result of the degraded effect of the impostor mean contribution.
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Figure 3.21: Short task evaluation illustrating, (a) the variability of T-Norm when changing both 
size (from 10 to 200) and match condition. Figure (b) highlights the variability caused by the mean 
only component and (c) demonstrating the small deviation when only using the standard deviation 
only component. The composition of the DCF vs. EER performance is shown in (d). The colours 
are representative of the cohort composition from pool P where red, green and blue represent 
impostors trained on lOsec, 30sec and lconv durations. The black profile shows conventional UBM 
normalisation performance.
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Figure 3.22: lOsec-lconv task witli colours being representative of a selected cohort composition 
from pool P, Figure 3.2. Figure (a) depicts the variability of T-Norm when changing both size 
(from 10 to 200) and match condition, (b) mean only component, and (c) the standard deviation 
only component. The composition of the DCF vs. EER performance is shown in (d). Again, red, 
green and blue represent impostors trained on lOsec, 30sec and lconv durations. The black profile 
shows conventional UBM normalisation performance.

The lOsec-lconv NIST 2005 evaluation provides further uncertainty to the viability of the mean 

for short-task durations. A divergence of approx. 17% EER is displayed by the mean component 

with different matched conditions; influenced by the conventional T-Norm with an approximate 

14% EER deviation. Again the standard deviation only scenario has less than a 1% EER change. 

The best overall performance is supplied by the matched lOsec impostors with conventional T- 

Norm; a difference of 1.23% EER in favour of the standard deviation only approach and 0.01 DCF 

enhancement with the conventional T-Norm approach. Here, the conventional T-Norm appears to 

provide a linear DET curve, indicating that the true and false distributions are following a Gaussian 

trend. The lconv training evaluations for both lOsec and lconv show a different story; results shown 

in Figures 3.23 and 3.24 respectively. The Iconv-lOsec demonstrates negligible performance (less 

than 1% EER and 0.01 DCF) between the different combinations of T-Norm and the conventional 

UBM-LLR. It is clearer to see the straightening of the DET curve is a contribution of the standard
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deviation scaling contribution. A 0.05% difference resides between the best EER performance of 

21% provided by the conventional T-Norm and the equivalent standard deviation only setup.
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Figure 3.23: Iconv-lOsec evaluation illustrating, (a) the variability of T-Norm when changing both 
size (from 10 to 200) and match condition, (b) mean only component and (c) the standard deviation 
only component. The composition of the DCF vs. EER performance is shown in (d). Colours are 
representative of the cohort composition from pool P. Figure 3.2, red, green and blue represent 
impostors from lOsec, 30sec and lconv durations. The black profile shows conventional UBM 
normalisation performance.
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Figure 3.24: lconv-lconv evaluation illustrating, (a) the variability of T-Norm when changing 
both size (from 10 to 200) and match condition, (b) mean only component and (c) the standard 
deviation only component. The composition of the DCF vs. EER performance is shown in (d). 
Colours are representative of the cohort composition from pool P, Figure 3.2, where red, green 
and blue represent impostors trained on lOsec, 30sec and lconv durations. The black profile shows 
conventional UBM normalisation performance.

3.9 Discussion

In this chapter we have discussed the sensitive nature of the T-Norm approach. Arbitrarily choosing 

different impostor models as a general T-Norm set for all trials, it observed that the EER can range 

around 13%, highlighting the variability of selection. Limiting the T-Norm selection using prior 

knowledge, with formulation of a matched target to impostor approach gives better performance. 

In the short-duration task, there is a high degree of sensitivity for the lOsec models target in 

relation to the mean component of the T-Norm. Where as the scaling characteristic of the standard 

deviation for short-duration trained evaluations has greater benefit for EER peformance. From 

results examined in this chapter, it appears that the mean component is highly sensitive and is 

a degrative contribution to the T-Norm, especially in evaluations with short training utterances.
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Substituting the T-Norm approach with a new statistic in place of the mean may be beneficial for the 

low trained target models. However, it is not so for the lconv case, by showing greater robustness 

with a diversity of cohorts when using the T-Norm approach. The all pool configuration, consisting 

of a mixture of 600 models give admirable results in general over all task durations. However, in 

applications with limited resources, using such a large cohort is difficult to consider.

Poor performance of the conventional T-Norm approach for the lOsec training task may be 

caused by suboptimal features to represent the utterances. Fauve et al. [24] shows a suboptimal 

performance through the SVM approach when the same features are applied on different evaluation 

conditions. Also, the current MAP adaptation approach with a lack of training data may contribute 

to the unreliability of the impostor models.

It has been shown in the literature [43] that these techniques perform better for a similarity 

domain when the cohort is selected in a trial-dependent way. The next chapter will investigate this 

by conducting T-Norm with trial-dependent cohorts. Approaches to provide a target-dependent 

cohort of impostor models have been published for T-Norm by Sturim & Reynolds [12] coined, 

adaptive T-Norm (AT-Norm) and also a Kullback-Leibler measure by Ramos-Castro et al. [40] 

which will be discussed in the following chapter. It would appear that the benefit of matching a 

subset of impostor through the T-Norm approach, the aphorism “there’s no data like more data” 

only holds true in finite cohorts with non-detrimental impostors.

All the work conducted here could be extended to a bilateral scoring approach with likely en­

hanced performance.



Chapter 4

Trial-dependent Selection for T-Norm

As discussed in section 3.5, performance of the lOsec-lOsec evaluation with a matched impostor 

cohort of 200 speakers (also highlighted in Table 3.2) can show a surprisingly degradative perfor­

mance over a smaller sub-set of impostors to represent a cohort. This suggests an obtrusion by 

certain impostor models on the normalising statistics. Removing the influence of such hindering 

models provides more robust normalisation statistics. This chapter furthers the discussions of T- 

Norm cohort selection approaches from the previous chapter by selecting a cohort of impostors 

independently, for each target model.

4.1 Trial-dependent T-Norm
i

Finan el al. [32] discuss impostor cohort selection approaches in the text-dependent speaker verifi­

cation (SV) domain using models constructed with VQ templates. Using a distance metric between 

a true and false score development distribution to investigate the size of normalisation cohort for 

all target models in subsequent trials. As shown in the previous chapter, one approach is to select 

models that best represent the targets modelled on a certain duration described by the evaluation 

condition. An automatic option comes from an enhancement to traditional T-Norm, introduced 

by Sturim &; Reynolds in 2005 [12]. This is known as the adaptive T-Norm  (AT-Norm) approach 

to set a more robust decision threshold and also assists with computational performance in the 

scoring stage. Here, each target is tied to a sub-set of impostor models, selected through a de­

rived criteria; subsequently used for T-Norm with trials assessed with the particular target model. 

Consequently providing a further robustness with scoring by discarding impostors that hinder the 

statistical make-up of the normalising cohort. Selective score normalisation approaches such as, 

adaptive T-Norm  and Kullback-Leibler T-norm  (KL-TNorm) [40] are used to provide an automated 

target-specific selection process. These approaches are shown to give enhanced results over the fixed 

trial-independent (or target/speaker-independent) cohort of impostors applied to all target models 

of an evaluation.

57
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Again the same impostor-centric normalisation method is applied, modifying the individual 

hypothesised scores to a common trial scale, in an attem pt to reduce effects of environmental 

mismatch between target model and test utterance.

4.2 Adaptive  T-N orm  (AT-Norm)

AT-Norm, is a data-driven approach, utilising an additional pool of speech utterances as passive 

data (or data drivers1) to generate a score distribution of false trials. The resultant distribution is 

assumed to only contain false outcomes, as the data-drivers (extra data for a data-driven approach) 

are assumed to originate from the pool of other prior knowledge, described in Chapter 2, where the 

utterances are different, to that of the target and impostor models. Again, the size of the potential 

T-Norm impostor cohort is E. The pool of data-drivers are of N  quantity. The target-specific 

model is scored against all of pool N,  deriving a collection of scores, perceived as a 1-dimensional 

vector of size N.  The same pool of passive data is then scored against each impostor model in 

the T-Norm cohort, again resulting in a 1-dimensional vector of size N  for each impostor model. 

In total, we have one target vector of N  coefficients and E impostor vectors of the same order, 

depicted in Figure 4.1.
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Figure 4.1: Adaptive T-Norm selection process with E impostors, illustrated as red vectors derived 
by N scores, represented by the number of vector coefficients, here depicted as five red N dimensional 
vectors.

To select impostors, a vector distance metric is used to observe the proximity of each impostor 

to the target. Sturim &; Reynolds apply the L — Norm, to select (equation 4.1).

N
D{T — Ie)L—Norm = ^  \ {Tn -  In)\ (4.1)

72 —  1

lrrhe utterances provide stimuli to  the im postor and target models to drive out a score
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To gather a relevant subset of E  imposter models for a given target, the impostors are ranked by 

a nearest neighbour criteria. The closest E  impostor models are then tied to the particular target 

model. This selection method is repeated for each enrolled model during training. This approach 

is deemed adaptive as a subset E  from the impostor pool has been tailored to the particular target 

model. During all subsequent real trials, the test-normalisation mean and standard deviation 

statistics for a given target model are only generated by the subset of impostors, chosen through 

the adaptive selection procedure.

The experimental trend reported by Sturim &; Reynolds in [12] depicts a general performance 

increase when selection has occurred with an impostor cohort, usually containing models that is 

considered to match the target under trial. Again, matched to their training utterance duration 

(NIST training condition). They also show that a pool of impostors containing a selection of 

training conditions (NIST lconv, 3conv and 8conv) show slightly worse performance than a matched 

impostor cohort. From experiments conducted here in the development and evaluation trials showed 

this is not true, as some models, especially in the lconv task tended to include some 30sec based 

models and forcing a matching criteria deteriorated results by approximately 1% EER.

One disadvantage of an adaptive approach for selecting speaker-specific impostors is the ap­

plication of the in-situ adaptation of speaker models. When a speaker model has been verified as 

a true speaker for a given trial, the model can be enhanced by further adaptation using the test 

utterance as a continuum of training data. When the model has been further adapted, re-selection 

would logically be required. Though for the evaluation-dependent cohorts, this was found not to 

significantly degrade the performance with well-trained targets and lOsec impostor normalisation 

cohort. This is true for both AT-Norm and the following approach.

4.3 KL T-Norm

Ramos-Castro et al. [40] describes another approach to selecting target-dependent T-Norm. Here, 

a distortion measure is generated between target and impostor models using the Kullback-Leibler 

(KL) divergence criterion. Similarly to AT-Norm, the KL approach apples a proximity ranking 

methodology to select a subset of appropriate T-Norm impostors. The KL-TNorm takes a non- 

empirical approach to select the cohort by only utilising a divergence criteria between the target 

and each impostor. A model to model comparison by measuring the distance between the Gaussian 

components of a target model to their equivalent Gaussian component in each impostor. The KL 

divergence observes the distortion of two probability density functions.

D ( f \ * h  /  (7) (42)
The correspondence of fi =  f j  is assumed when i =  j  as both GMM distributions come from 

the same UBM and no MAP adaptation has taken place on the i th component. Furthermore,
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diagonal co-variances are used per mixture component. The computation of the divergence metric 

for speaker models can be represented by equation 4.3.

(4.3)

The advantage of this method is that no extra data is required to stimulate the impostor cohort and 

target model for selection. Experimental approaches to the KL-TNorm approach proved unsuc­

cessful and from the published results in [40], the KL selection approach over their baseline results 

show less relative enhancement than the AT-Norm [12] approach. From this, we shall therefore 

conduct a further analysis of T-Norm on the adaptive selection approach.

4.4 Experiments with the Adaptive T-Norm (AT-Norm)

Published results by Sturim and Reynolds [12] show positive enhancement to SV when selecting 

impostors for evaluations with longer-duration. Although, it was reported that negligible change is 

shown in the short-duration task, lOsec-lOsec, it is postulated that no results have been presented 

when the selection pool includes models trained on low amounts of speech to provide a performance 

gain in these conditions. This will be examined in this chapter along with the standard lconv 

conditions for a comparison of relative enhancement. The same impostor pool P  applies with the 

passive data-drivers obtained from the test utterances used in the NIST 2004 evaluations.

Impostor selection experiments based on the procedure described in section 4.2 is presented 

with the use of an example lOsec target model from the NIST 2005 lOsec-lOsec evaluation. The 

blue plot on Figure 4.2 shows the accumulated distortion measure of E  impostor models to a single 

lOsec. trained target model when scored against N  passive-utterances, where E  is 600 and N  is 

approximetly 500. The x-axis represents the impostor model identity (representative of the order 

is described by Figure 3.2) and the y-axis represents the accumulated scores of the N  data-drivers. 

There is a clear three-step trend with a majority of the lOsec impostors giving closest proximity, 

whils-t 30sec domain (model IDs 201 to 400) miss-matched impostors have less similarity and more so 

with lconv impostors. The three steps are representative of the three domains of residing impostors 

from pool P  lOsec, 30sec and lconv trained models. All but one of the lconv impostors (models 

indexied from 401 to 600) demonstrate high similarity to the lOsec trained target. This outlier was 

found to be a poorly trained lconv model, where most feature vectors samples have been filtered 

by thie speech detector. The red plot indicates the ranked proximity to the lOsec target model, 

agairn the three ‘steps’ can be seen. Figure 4.3 now extends to show the impostor proximity over 

all 10)sec targets for the lOsec-lOsec evaluation in NIST 2005. The colours are representative of 

models trained with an approximation of utterance duration, representative of pool P  (described in 

Chapiter 3). The x-axis represents the impostor model ranking from 1 to 600 where index 1 is the
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l j  too

Figure 4.2: The x-axis shows 600 impostor mod­
els, in the lOsec, 30sec and lconv ID configu­
rations rated through distortion measures from 
a single target model represented on the y-axis 
in the lOsec-lOsec evaluation, the red plot indi­
cates the model distances in a ranked order. This 
ranked order is shown for over 250 targets in Fig­
ure 4.3.

Ranked T-Norm impostor model ID

Figure 4.3: The impostor ranking for each 
target model used in the lOsec-lOsec evalua­
tion is shown by an arbirary ID on the y-axis. 
The colour represents the impostor model ori­
gin from within pool P. Here, the x-axis rep­
resents the ranked cohort order of the impos­
tor models that have been adapted towards 
each target. Impostor models with the left 
most rank represents close resemblance (bet­
ter matching) to the target, whilst the right­
most. impostors are deemed miss-matched.

closest to the target model. The target model is identified by the y-axis, in the order supplied by 

the NIST training index. The ranked impostors depicted in Figure 4.2 by the red plot, represents a 

single row of ranked impostors in Figure 4.3. For AT-Norm, we can select the number of impostors 

to use from 1 to all 600. For example, if the AT-Norm criteria was to select the 50 closest impostors 

to the target ID’s; impostors ranked 1 through to 50 would be linked to the appropriate target 

model. For all lOsec targets, 98.56% of the impostor models originate from the lOsec portion of 

pool P. Selecting all 600 impostors would give the same result when using the all pooled T-Norm 

cohort as shown in the previous chapter. Here, approximately 10% of the 30sec impostor models 

are collected within the first 200 indexed models (models between 180 and 200), indicating that 

around 10% of the lOsec models are considered more of a miss-match to evaluations containing 

targets of lOsec training.

It was found that applying the initial 75 of the ranked impostor for T-Norm gave increased 

performance over the matching approach in the evaluation-specific scenario; the AT-Norm ranked 

impostors approach for the NIST 2005 lOsec-lOsec is shown in Figure 4.4. A decrease in EER and 

DCF of approximately 2% is shown over the matched, evaluation-specific lOsec cohort.
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Figure 4.4: lOsec-lOsec NIST 2005 performance with AT-Norm with 75 impostors, presented by 
DCF vs. EER in (a) and the DET performance (b)

Figure 4.4(b) shows that the adaptive approach towards model selection gives a greater linearity 

of the performance curve. The adaptive approach has proportionally tightened the variance of both 

true and false distributions. Specifically providing a matching in the AT-Norm is no longer required 

as this approach established a matched scenario automatically for the majority of targets.
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(a) Range 25-200 (b) Range 5-50

Figure 4.5: lOsec-lOsec NIST 2005 performance with AT-Norm, presented by EER vs DCF with a 
coarse range between 25 and 200 in (a) and a finer resolution with low impostor quantities in (b)

Figure 4.5 shows the outcome of the AT-Norm approach when the selection parameter E  is 

varied coarsely from 25 to 200 in 25 increments and in a finer resolution of between 5 and 50 
in steps of 5. The result og 200 models, shown in Figure 4.5(a) gives improved performance of 

approximately 0.9% for the EER by replacing the aforementioned poor 10% lOsec impostors with 

30sec impostors. Decreasing the size of the cohort generally gives a trend of increasing performance. 

Supplying 75 impostors to each target model provided best overall performance, followed closely 

by a cohort of 25. It is interesting to observe the scattered nature of the AT-Norm in the short 

duration task. Supplying a cohort size of between 15 and 50 (shown in Figure 4.5(b)) has a minimal 

deviation of 0.3% in the EER and a small 1.5% variation in the DCF. A cohort of just 15 models 

gives a surprisingly admirable result, which would certainly be beneficial in real-world applications.
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Figure 4.6: lOsec-lOsec NIST 2006 performance with AT-Norm, presented by EER vs DCF with a 
coarse range between 25 and 200 in (a) and a finer resolution with low impostor quantities in (b)

To show confidence in the results, Figure 4.6 presents experimental observations on the NIST 

2006 evaluation set. Linear characteristics are evident when the classifier when AT-Norm has been 

applied, indicating equalised variance for both true and false distributions. Again, low compositions 

of adaptively selected impostor cohorts show more robust results decreasing from a quantity of 200. 

The straightened DET curve reported in the NIST 2005 evaluation is also evident here.

From these results, it is shown that the adaptive method on a lOsec trained evaluation assists the 

performance of SV with cohorts as low as 15. Now, the same procedure will be applied to the longer 

task duration evaluation of lconv-lconv. Similarly to Figure 4.2, Figure 4.3 shows the proximity of 

the impostor models to a single target, trained with a lconv utterance. Here, we can see that the 

lOsec impostor domain is being primarily rendered the furthest from the target model, complying 

with the matching ideology of the evaluation-specific cohort selection. Of course, in an application 

scenario, impostor searching with the adaptive algorithm could be reduced by initially constricting 

the selection pool, in this case disregarding the lOsec impostor pool. However, one target model 

depicted in Figure 4.8 bears close resemblance to a short-utterance trained model by selecting a 

majority of the personal cohort from the lOsec domain. Here it was found that although a large 

amount of speech was provided, only 3055 feature vectors were extracted, where a lconv utterance 

should consist of around 13000 feature vectors. It was found to be a recording of the expected 5 

minutes duration though the content of speech was approximately 20 seconds. It seems that the 

caller hung up after a total of 34 seconds of telephone conversation. As previously mentioned, 

Sturim Sz Reynolds showed that applying a matching criteria gives better selection results quoting
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Example of ranked selection range =1:600
Furthest from targetC losest to target

200 300 400 500
R a n k e d  T - N o r m  im p o s to r  m o d e l  ID

Figure 4.7: 600 impostor model distortion mea­
sures from a single target model in the lconv- 
lconv evaluation, the red plot indicates the model 
distances in a ranked order

Figure 4.8: The impostor ranking for each 
target model (y-axis) in the lconv-lconv eval­
uation. The colour represents the impostor 
model origin from within pool P

“Ideally, the pool of cohort models P should be large enough to provide a representative coverage of 

T-Norm models from which to draw”. Though as we can see from Figure 4.3, many lconv targets 

utilise the 30sec models and fewer lOsec impostors. Contradicting Stirum & Reynolds’ matched 

observations due to the nature of a subset of target models. This can be caused by unexpected lack 

or increase of the enrolment speech duration of a speaker and is discussed further in Chapter 5. For 

a true evaluation, it would appear that a broader set of models trained with a variety of utterance 

durations would be beneficial to surround the assumed training utterance duration. This would 

account for lconv models with lower or greater than the count of feature vectors that would normally 

constitute a lconv model. Sturim & Reynolds showed that the AT-Norm selection approach did 

not select pure matched impostors, unless forced through matched pools.

For both lOsec and lconv models, the notion of a matched impostor criteria has been carried 

over from t ie evaluation-specific to the speaker-specific, adaptive selection approach. Though some 

models are observed to reside in the thought to be miss-matched domain, indicating a reduction in 

the amount of utterance duration assumed to train the target models. These models can be consid­

ered as being under-trained in the lconv task. The term model quality could be applied to question 

the validity of these targets. Again, the three-step trend still illustrates a form of demarcation of 

the imposter by their utterance duration. With the longer-duration task, shown in Figure 4.9, the 

AT-Norm dearly outperforms the conventional evaluation-specific T-Norm. Linearity is enhanced 

and an increased anti-clockwise tilt towards lower Miss probabilities (observed by Auckenthaeler 

et al. [10]) s shown. This suggests a further constriction of the false score distribution (artificially 

described ii appendix A.3). Lower selective cohort quantities again provide enhanced performance.
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Figure 4.9: AT-Norm (cyan) applied on the lconv-lconv evaluation from NIST 2005 with illustra­
tions of miss-matched, matched, all pool and basic UBM normalisation.

When the AT-Norm cohort size increases above 50 using impostor models, the contribution of the 

normalisation statistics decreases. For the NIST 2006 evaluations shown in Figure 4.10, an increase
D et T N o rm  r a n g e  = 1 :6 0 0  DCF vs EER 1:600
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(a) AT-Norm with 15 im postors per target (b) DCF vs. EER with cohort quantity  ranging be­
tween 5-50

Figure 4.10: lconv-lconv NIST 2006 performance with AT-Norm (cyan), presented by DET per­
formance with a coarse optimum of just 15 models (a) and the EER vs DCF with different ranges 
of impostors provided to each target in (b)

can again be seen with the EER for the lconv-lconv scenario. In contrast to the NIST 2005 evalua­

tions, it was found that a lower cohort size of just 15 impostor models gave the best balanced results 

for EER and DCF. This could of course be an influence of this particular evaluation database.
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4 .5  C om p on en t  Contribution with Adaptive T-N orm  (AT-Norm)

In Chapter 3.6, the lOsec-lOsec evaluations highlighted the high performance contribution provided 

by the standard deviation component of the T-Norm. Here we shall determine if this contribution 

holds true once the models have been tailored to each target. First, the lOsec-lOsec task, showing 

the AT-Norm performance with a selection of E  25 with component substitution. Figure 4.11
DCF v sE E R I 600 D et T N o rm  r a n g e  = 1 :6 0 0

a TNorm

aTNorm only mean

6 0 0  (ALL)

 a T N o rm  on ly  m e a n

p
CL

F a ls e  A la rm  p ro b ab ility  (in % )

(a) Range 5-50 im postors per target (b) 25 im postors for AT-Norm (cyan)

Figure 4.11: lconv-lconv NIST 2005 performance with AT-Norm and distribution scaling compo­
nent substitution, presented by EER vs. DCF in (a) with different T-Norm components and the 
DET performance for 25 impostors in (b)

shows the lconv-lconv AT-Norm performance of 25 impostor models with component substitution. 
For both the lOsec and lconv AT-Norm scenarios, the AT-Norm approach now outperforms all 

combinations of the impostor-centric approach.
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(b) 25 im postors for AT-Norm

Figure 4.12: lOsec-lOsec NIST 2005 performance with AT-Norm and distribution scaling component 
substitution, presented by EER vs. DCF (a) and the DET performance in (b)
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4.6 Discussion

In this chapter, approaches to tailor score normalisation statistics through impostor selection has 

been presented. By supplying each target with its own cohort of impostors using the AT-Norm 

selection process, a general enhancement to both long and short duration tasks with a minimum 

contribution of 2% in both EER and DCF was demonstrated. Concurring with results reported 

by Sturim &; Reynolds, the AT-Norm approach enhances the setting of a more robust decision 

threshold. From results presented in this chapter, this method also applies enhanced performance 

of approximately 2% to the shorter-duration task over the baseline T-Norm, this is believed to be 

previously unpublished. The reported use of matched pools for cohort selection with the AT-Norm 

is not required and as demonstrated by the lconv trained target experiments; not all target models 

for a specific condition select impostors that originate from the assumed matched pool. For the 

short-duration task, lower sized cohorts give best performance gain and secondly, would greatly 

reduce with trial stage computation. However, more computation is required at target enrolment 

to select the appropriate impostor models, though this can be processed in an off-line manner. The 

selection pool needs to be of adequate size and as shown, of training duration variety which to 

extract impostor models. This was highlighted by Sturim and Reynolds in [12]

For future investigation, the possibility of further enhancement could be achieved by providing 

a specific cohort size E  to each target, E t • Each target may provide more robust model statistics, 

not only when the described adaptation approach is applied, but also a customised quantity of 

impostor models may be assigned to each target. In an unrelated target-centric application, an 

AT-Norm selection pool could be evolved by tailoring speaker-specific models during the lifetime 

of a system, by possibly replacing or growing the impostor cohort pool.

An interesting investigation would be to investigate the performance of the aforementioned, Z- 

Norm, TZ-Norm or the ZT-Norm procedure whilst utilising the trial-dependent ‘adaptive’ approach 

discussed in this chapter.

As demonstrated, the tailoring of an impostor cohort to a given target model gives better SV 

performance. Though, in both the lOsec and lconv tasks, the nature of a few target models showed 

false characteristics of originating from other task durations. This was demonstrated by target mod­

els that select a majority of impostors considered as being of a miss-matched nature. This question 

of the target model quality will be discussed in the following chapter based from observations of 

the accumulated impostor model scores generated in the AT-Norm selection process.



Chapter 5

From Model Normalisation to Model 
Quality

T-Norm impostor models assessed against different test utterances provides a range of scores, as 

illustrated earlier in Figure 2.3. The cohort can be seen to generally surround the target score 

over different trial conditions, especially with lOsec target models. Here, the test utterances are 

considered impostor to both the target and the T-Norm cohort (termed, unfortunately as impostor 

models). For clarification, in this image we have three sources of information, the target model, 

the impostor test utterances (stimuli) and the normalisation impostor model cohort used during 

T-Norm. Under closer examination of these scores, a few impostor models from the normalisation 

cohort over a set of trials was found to give an unexpected average of high scores. Thus, these few 

models are hypothesised to always give high scores; in a range of what would be expected from a 

true target trial, not an impostor trial. Conversely, if a target model displays a high degree of false 

alarms/acceptances, its reliability, or in this context, its security should be questioned before use in 

subsequent evaluations. In this chapter the measure of a speaker security to a model is discussed, 

labeled as the speaker security measure (SSM), which can be used as a pre-filter, similar to a gender 

detector, to gain additional knowledge of a given speaker through confidence of individuality against 

other speaker.

5.1 Introduction

A speaker population can be characterized to contain 1 sheep and goats’. Where the sheep are 

usually well behaved and dominate the population, where the goats refer to speakers that incur 

abnormally high amounts of errors and determine overall system performance [3]. Here, the goal 

is to (sort the sheep from the goats’.

The use of quality measures can assist classification by attempting to obtain additional information

71
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about the trial at hand [9], applied with an appropriate action to enhance robustness. Quality anal­

ysis can be applied to different stages of the classifier. For example, an initial ‘goodness criteria’ at 

the raw signal level through a speech to background noise measure, i.e. SNR. There are a variety 

of automated assessment procedures to generate such measures. Many approaches are published in 

the literature to evaluate end-to-end voice quality. Perceptual evaluation of speech quality (PESQ) 

is once such approach which integrates knowledge of the human auditory perception into the scoring 

procedure. This measure considered state-of-the-art [44]. Here we investigate a targets reliability, 

postulated from observations from model selection approaches for score normalisation, discussed 

earlier in this thesis. This gives an insight into the reliability of a speaker, analogous to the alterna­

tive hypothesis (Hi)  as described in Chapter 2. Koolwaaij et al. [45] concludes that the operation 

in a real-world application would require an indication of the quality of a newly trained speaker, 

allowing the system to request re-enrolment or insist on a further contribution of target-specific 

speech. Motivation from observations on the derived scores through data-driven cohort selection 

approaches has led to the following work. It is believed that the examination of false scores, gen­

erated by assessments of target models against impostors utterance through intentional false trials 

may yield a measure, descriptive of a target model’s quality. If a system can predict the target 

models that give high errors, the goats, the enrolment procedure can be modified dynamically in 

an attempt to reduce the errors generated during subsequent trials. One possible procedure is 

the requirement of additional target-specific speech, though in evaluations such as NIST and some 

application scenarios, e.g. forensics, this may not be possible.

The quality assessment of target models is not a new area of research. Recently, Richiardi Sz 

Drygajlo [9] discuss measures derived from a speech segmentation process in the time domain. A 

quality measure per vector is derived and can be subsequently used as a weighting factor during 

target enrolment. Quality measures could also be derived on a feature level, where each feature is 

assigned a confidence weighting, briefly noted in [46]. A quality measure could also be derived from 

additional secondary prior information about the training utterances. Richiardi &; Drygajlo [9] 

defines a quality measure as “a measurable indicator of a factor impacting the classifier behaviour, 

which exhibits a dependency relationship with the classifier output scores and/or classifier deci­

sions. ” Such measures have also been applied at the scoring stage through some score fusion 

function of the test and/or train speech utterance together with the LLR could also be achieved 

in the decision process [46, 47]. Weighing factors based on the generated model and signal quality 

criteria could be used to modify the resultant score. The general system described in [46] generates 

quality measures to bias the scores for both the model and a the raw test utterance. Koolwaaij 

et al. [45] obtains indirect measurements by observing the mean and standard deviation from the 

contribution of both the true utterance scores and impostor based scores obtained from the target 

model. A weighting regime is applied to subsequent trials. In the method proposed here, we only 

consider the impostor derived scores. Thompson [5] examines the reliability of a speaker prior
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to the model adaptation by examination at the cepstra level. Intra-speaker variation measured 

through error analysis over short periods between recording sessions in an attempt to classify a 

speaker as either a sheep or a goat, consequently rejecting or applying a weighting function in later 

trials.

Model quality assessment is usually applied at the enrolment stage. Other measures can be cal­

culated from the raw signal or at feature level. Following in the theme of this thesis, these types 

of measures can be considered as a secondary form of prior information, an extra component of 

information that describes the training utterance or model.

As previously discussed, a problem in certain applications is the lack target-specific speech, leading 

to the use of impostor-centric statistics for score normalisation. A logical approach would be to 

derive an error analysis of a target through data-driven means, similarly reported by Koolwaaij et 

al, using utterances assumed to originate from the same target speaker. W ith the high-security 

application scenario undertaken by NIST, the availability of extra target specific material is un­

available.

Here, it is hypothesised that any model trialled against an assumed impostor utterance should 

generate a false observation. These false target scores should fall below a predefined decision 

threshold during an evaluation resulting in a ‘true alarm’/rejection outcome. For a collection of 

assumed impostor utterances, the statistical mean of an observed target should also give a low 

average score. If not, it could be deemed a target model of poor quality as many impostor utter­

ances have, on average shown similarity to many other speakers and is likely to generate a high 

proportion of errors in the false acceptance domain in later trials. The measure described in this 

thesis could be used to algorithmically reject target models that are likely to cause these errors 

within the classifier.

5.2 Target quality by false alarm analysis

In general for a data-driven approach there are two categories of data that can be used to deter­

mine the confidence of a speaker model, utterances originating from impostors or the target under 

consideration. Respectively able to derive a confidence of a target’s security against impostor at­

tempts or a target’s acceptance of utterances from the same speaker. Impostor-centric T-Norm 

attempts to reduce inter-speaker variations to both target and test utterances by utilising speech 

that is not of the target, normalising on the false score distribution. This approach is usually 

taken due to the lack of target-specific and the abundance of impostor speech. The model quality 

approach described here is applied with the same limited target speech constraint. However, in
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some applications where target utterances are common, the latter approach may be accomplished. 

Similarly to the selection approach during AT-Norm, the application of such data scored against a 

speaker model must derive some target model characteristic; in this case, a speaker’s relationship 

to impostors.

Here, a collection of many target to impostor scores is used to derive a targets statistical rele­

vance to other impostors. A collection of such scores is presented as a train of scores, represented 

in equation 5.1. Where E  is the number of I  impostor utterances and T  represents the target 

model. Here, each score P (T \In) in equation 5.1 is normalised by the UBM. Further investigation 

could apply other score normalisation approaches such as T-Norm. No target reference score exists 

without deriving a true speaker score from utterances assumed to be spoken by the target speaker.

Here, the quality is deemed measurable from the average ‘resistance’ of a target model to a subset 

of E  impostor utterances drawn from a pool of utterances. In essence this measure is similar to the 

mean derived for the Z-Norm statistics. Also, SSM observations can be extracted practically during 

the AT-Norm selection procedure, as the same approach is undertaken to derive score observations 

for cohort selection. The term speaker security measure (SSM) denotes a measurement of a target 

models resistive nature to impostor attempts, calculated through equation 5.2. The negative sign 

relates to a natural concept of good and poor quality, respectively with high and low scores. For 

the duration of this chapter, the potential of the SSM approach is discussed.

{ P (T |/1) ,P (T |/2) . . . , P ( T | / E)} (5.1)

S S M (T )  =  - S e I L f T I A  (5.2)

A  high-level diagram of the SSM is shown in Figure 5.1. Where a model of speaker A is assessed 

through the SSM approach in parallel with the conventional classification. A weighting regime can 

then be applied to the classifier outcome with the derived quality measure. If an SSM observation 

is deemed low against a certain criteria, this model could give many false acceptances in subsequent 

trials. This may assist the setting of a lower, robust threshold. This approach can be deemed as a 

pre-filter to the verification trial, similar to gender or handset labelling approaches for utterances. 

This approach aims to provide extra knowledge to assist with making a decision for verification. On 

a side note, the prior knowledge such as gender is information provided with the NIST evaluations 

and have not been deduced within the classifier used throughout this thesis.

A high score could deem a target to be more robust against false acceptance errors. Prelimi­

nary experiments conducted on the SSM will now be discussed.

W ith all target models, the same data-pool of impostor utterances can be used for assessment to 

define a distribution of a target population. This is demonstrated here with the lOsec and lconv
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Figure 5.1: High-level speaker classifier view, generating a score. This is weighted with the data- 
driven SSM approach applied to each target model.

targets used in the NIST 2005 evaluations. In Figure 5.2, the SSM is demonstrated against 274
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Figure 5.2: SSM measure given per target model, 
illustrated by the x-axis are trained on lOsec ut­
terances. The y-axis represents the derived SSM 
score. The ranked target SSM is shown by the 
red plot

Figure 5.3: SSM measure derived from the lconv 
trained targets, identified on the x-axis. The y- 
axis represents the derived SSM score. The rank­
ing of these scores is depicted by the red curve

male, lOsec targets from the NIST 2005 evaluation and 274 male lconv targets in Figure 5.3. Each 

target, depicted by the blue ‘+ ’ markers, is scored against approximately 1000 impostor utterances. 

The x-axis depicts the target model ID and the y-axis relates to a the SSM quality observation. 

High SSM measurements are thought to give an indication of a poor model. For the lconv models 

from the same evaluation database, a few targets can be seen to show low scores (bottom-right 

of Figure 5.3), indicating potentially false acceptance errors to assumed impostors. A majority 

of models surrounds the zero score. SSM’s above zero can be deemed more resilient to impostor
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utterances. The targets perception of a true trial is still unknown, though this could of course 

be established with an adequate supply of target utterances. These averaged scores are ranked 

by order of their SSM, shown as the red plot in Figures 5.2 and 5.3, high to low to give us an

indication of the robustness of a target model against a volume of impostors. A high rank (e.g.

rank of 1) relates to a high SSM score.

Target models which reside in the low SSM domain and have only been assessed against im­

postor utterances. These can be deemed of poor similarity in real verification trials and could 

either be rejected immediately or weighted accordingly; similar to approaches described in [47, 9]. 

Derivation of an enhance weighting procedure could be an avenue of investigation; One hypothesis 

could be to derive optimum weighting parameters through some calibration procedure by utilising a 

data-driven approach with a large database of trials. Female targets trained on the same condition 

display similar distributions characteristics to the male population.

Koolwaaij et al. [45] reports that quality can only be derived from the behaviour of a model not 

on the model directly. A measure on the model directly would be difficult without a pre-defined 

reference scale of model quality. A simple yet coarse quality estimate can of course relate to the 

duration of target speech and hence the number of feature vectors used during enrolment. Fig­

ure 5.4 presents the lOsec target SSM against the number of feature vectors used to train the target. 

The lconv target training scenario is depicted in Figure 5.5. When applying the SSM approach 

described in this chapter, we can see in the lOsec task, that models of low feature vector content 

are ranked low, hence poor quality. One logical observation of a speaker-dependence model quality
Male ranking vs number of feature vectors
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Figure 5».4: Number of features (x-axis) vs. SSM 
score (y/-axis) for the male and female target 
models Itrained with lOsec utterances

Figure 5.5: Number of features (x-axis) vs. SSM 
score (y-axis) for the male and female target 
models trained with lconv utterances. Distinc­
tive, outlying goats are highlighted with a red 
circle

can be th e  duration of speech used to enrol a speaker, usually governed by the number of feature 

vectors msed, assuming that the content of the feature vectors is useful speaker-dependent informa­
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tion. A negative correlation can be seen for both lconv and lOsec tasks, where models trained with 

a quantity as low as 21 vectors show low speaker-discrimination characteristics through the SSM 

approach. A speaker model of low speaker-discrimination is of course going to show a similarity to 

other speakers, hence the low SSM score to flag under trained speaker models.

For the lconv models, a less defined negative correlation can be seen. Target models can be 

seen to reside outside the general score range when the SSM and feature vector norm are shown in 

the bottom right-hand corner in Figure 5.5. These poor models contained high amounts of feature 

vectors but with low mean quality scores indicating a goat. Only a minor subset of models from 

both genders were found to reside in this outlying region and three models can be seen to do so 

in Figure 5.5. Manual analysis of these speakers revealed a content of approximately 20 seconds 

of speech in the conversation with silence manifesting the remaining 5 minutes of the utterance. 

Application of the CMS normalisation together with the speech non-speech detection threshold has 

allowed a large quantity of silence features (approx. 25000) for use in speaker adaptation.

AT-Norm would possibly remove impostor models that display goat attributes from a general tar­

gets normalisation cohort. However, targets that display goat characteristics would likely include 

equivalent goat impostor models into their personal impostor cohort.
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5.3 A subjective assessment of target quality

An examination through subjective listening tests of target utterances found to exhibit unusually 

high likeness to impostors through the SSM approach is now described. Attempting to reveal some 

insight to account for a targets high false acceptance rate.

SSM score observations from the lOsec models taken from both of the SSM ranking extremes, 

shown on Figure 5.2 are manually characterised and presented in Table 5.1. Few models from the 

centre of the distribution are also assessed on reference utterances expected in the lOsec task.

The first column in Table 5.1 indicates the utterance used to generate a target model. The derived 

SSM rank from the target subset is given in the second column, where a high ranking measure corre­

sponds to model trained with low quantities of feature vectors; an utterance containing 21 features 

provides the lowest SSM score. The third column depicts the number of feature vectors obtained 

from the utterance for model training. These models are divided into three subsets, categorised 

through manual subjective assessment. Poor utterances contain far less the expected 10 seconds 

of speech and such low speech duration and subjectively does not appear to have distinguishable 

speaker content. Comments to the particular utterances from the subjective listening tests are 

given in the last column. It is obvious that as the duration of speech increases, the utterances and 

hence the trained models can be labeled good. Models trained with around 2000 feature vectors give 

high SSM scores and hence a greater rank, indicating the most well trained models from this target 

cohort. The content of speech applied to these models in general had a variety of speech context 

During a trial, it is expected that such poorly trained models, e.g. jecv.B would always produce 

low scores, however this is not the case as enrolled model bears resemblance to other speakers, i.e. 

impostors, hence high likelihoods when scored against other speakers.
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Thus far, it seems that the content of speech within an utterance is related to the number of fea­

ture vectors extracted. However, as seen in the lconv scenario, few models trained with relatively 

large quantities of feature vectors still portray poor models by providing high SSM scores. The 

range of trial scores from the NIST 2005 evaluation can be seen in the score distribution, generated 

for both lOsec and lconv tasks in Figure 5.6 and 5.7 . Without appropriate quality detection, the 

threshold may need to be set higher to counter the score deliverance from the poor models.

2500

2000

1500

1000

500

0

Figure 5.6: lOsec true and false score distribu­
tion. Score plotted on the x-axis and cumulative 
quantity of models depicted on the y-axis. No­
tice different y-axis cumulative range.

Figure 5.7: lconv true and false score distribu­
tion. Score plotted on the x-axis and cumulative 
quantity of models depicted on the y-axis. No­
tice different y-axis cumulative range.

A poorly trained model, enrolled with utterance jecv.B  are provides scores between 0.45 and 1.16, 

all of which are scores from impostor trials, score normalised with T-Norm. It was found that 

model jeni.B , trained with a duration of lOsec speech, delivered between 0.12 and 1.25 for true 

trials and between 0.02 and 1.0 for the false trials. Thus a high threshold would be required to 

overcome the large overlap of trial scores given by the poor and well trained model. Model quality 

measures could be preliminary used to filter speakers that generate such overlap which are known 

to be poorly enrolled. For the lOsec target models, computational overhead to apply the quality 

measure approach can be avoided with common sense logic to dictate the viability of a target model, 

e.g. models trained with only 21 vectors would unlikely be able to represent a specific speaker and 

could be acted on appropriately prior to some measure of quality.

During the score stage of a trial, an alternative approach to a model weighting or dismissal proce­

dure could be to employ a recursive feedback loop to tune the speech detector, allowing more speech 

data through to enrolment. Though in the case of utterance jecv.B  (an utterance found to contain 

very little speech), applying such a tuning procedure could further corrupt the speaker model by
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allowing more non-speech distortion into the model. This approach could result in degraded models 

residing in the outlying region, shown in Figure 5.5.

In Figure 5.5, the SSM has highlighted lconv models that could potentially provide many false 

acceptances, even though many feature vectors are used for training. The SSM is particularly 

suited to highlighting the general speaker-related content of the training utterance and hence the 

validity of a target model. Errors filtered from the speech detection stage and the feature level 

have been identified through the speaker model and could be appropriately compensated.

5.4 Experimental Observations with the SSM

This section investigates the potential of the SSM through a simple confidence-weighting of trial 

scores from certain models, an approach similarly applied by Koolwaaij et al. [45]. The SSM is 

applied to the target models from the lOsec and lconv tasks in the 2005 NIST evaluation. For 

confidence in the proposed model quality measure, the same protocols are applied to the same 

conditions of the NIST 2006 evaluations.

Here, a simple exponential weighting function is used to perform the score biasing. Exponents from 

1 to 10 were investigated, revealing that an exponent with an power of 3 delivered best performance. 

The gain of EER and NIST DCF is minimal, 0.03% and 0.005 respectively, though the false alarm 

region error rate can be seen to have improved in both lOsec and lconv evaluations. This results 

is expected as the approach highlights models that cause high amounts of false alarms. For the
2500
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Figure 5.8: lOsec true and false score distribution 
with applied quality weighting. Notice different 
y-axis cumulative range to system with no SSM 
pre-filter in Figure 5.6.

Figure 5.9: lconv true and false score distribu­
tion with applied quality weighting. Notice dif­
ferent y-axis cumulative range to system with no 
SSM pre-filter in Figure 5.7.

lOsec task, by contrasting the conventional score distribution in Figure 5.6 and the SSM weighted 

scores illustrated in Figure 5.9, a decrease in the overall amplitude of the false distribution can be 

seem when the SSM procedure has been applied. The variance of the distribution has increased
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slightly with a mean shift, though 110 divergence of means is shown between the true and false 

distributions. I11 Figures 5.8 and 5.9, two notches can be seen around the zero score in both the 

lOsec and lconv false distributions when the SSM has been applied. However, the results display
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Figure 5.10: lOsec NIST 2005 evaluation perfor- Figure 5.11: lconv NIST 2005 evaluation per- 
mance with applied quality weighting. Blue rep- formance with applied quality weighting. Blue 
resents conventional T-Norm, the black profile represents conventional T-Norm, the black pro- 
includes SSM file includes SSM

the use of sub-optimal weighting approaches, though this does illustrated the potential effectiveness 

of the SSM model quality information when applied in the score domain.

This approach has two benefits, with the abundance of impostor examples, where scores can be 

simply generated. Secondly, the measures can be derived off-line in training from any classifier that 
can derive a verification score between two utterances. However, during a scenario where continuous 

speaker adaptation is applied after a successful verification, the SSM observations would require re­
computation. Such model quality observations are palatable for surveillance application, however, 

this is not viable in the NIST cost domain. Generating SSM observations 011 target models scored 

against a collection of target specific utterances would likely provide greater enhancement in the 

security application domain (region 1) concentrated on by the NIST speaker recognition evaluations.

To display confidence in this approach, the SSM is also applied to the same task conditions in 

the NIST 2006 data set. The performance of the lOsec task from the NIST 2006 evaluations, il­

lustrated in Figure 5.14 do not benefit from the weighting of the SSM. Target model SSM scores 

shown in Figure 5.15 do not deviate. Included on Figure 5.14 is the conventional T-Norm mea­

sure without the mean component. This normalisation approach, from results for the lOsec task 

presented in Chapter 3 usually provide some distinguishable enhancement, though here, only a 

minor EER improvement can be seen. The lconv task from the NIST 2006 evaluation presents a 

slight improvement with the addition of the SSM process, similar to the false alarm enhancement 

in the NIST 2005 scenario. A 60% relative improvement can be seen on the Miss probability when 

considering high false acceptances. This of course is not a rational operating point increase as
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Figure 5.12: DET performance plot showing
lOsec task performance with NIST 2006 evalu­
ation.
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Figure 5.14: DET performance plot showing
lconv NIST 2006 evaluation performance with 
applied quality weighting.
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Figure 5.13: Number of feature vectors (x-axis) 
vs. SSM scores (y-axis) to derive the speaker 
with the lOsec task from NIST 2006.

Ranking vs number of feature vectors
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Figure 5.15: Number of feature vectors (x-axis) 
vs. SSM scores (y-axis) for each target from the 
lconv NIST 2006 training set.

only around 10% of impostors are discarded. These NIST 2006 results support our findings on the 

2005 development set when poor target models are present. The potential for discarding extreme 

circumstances of poor models has been shown. From SSM evaluations discussed here, only 0.5% to 

1% of such models exist and in the NIST 2006 lOsec-lOsec task. Further experiments are required 

to examine the potential for such a model quality measure with optimum weighting parameters.

A recent hypothesis from the speaker verification community expresses concern over the viability 

of the NIST 2006 evaluations. Trials have been shown to exhibit labelling inconsistencies between 

genders, where impostor trials have been wrongly labeled as male speakers when in fact they are 

female speakers, deriving lower scores and hence better performance.
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5.5 Discussion

These experimental results have determined if the produced trial scores can give further infor­

mation and subsequent confidence from a speaker utterance. Some speaker models are derived 

from utterances that can be degraded or overwhelmed with non-speaker information, subsequently 

providing poorly adapted models. Such outlying target models can be a source of decision error. 

The potential for the SSM model quality observation to counter such models has been examined in 

this chapter. The SSM approach can be a convenient way of predicting extreme false acceptance 

errors supplied by poorly adapted target models. Observations are gathered from a collection of 

tailored false alarm trials as the SSM data-driven approach has, in this scenario, an abundance of 

impostor utterances. A collection of target utterances could also be applied to ascertain a targets 

distinctive nature among other speakers. Of course, an approach to avoid such poor models would 

be to simply discard such models that fall below a pre-defined threshold. However, analysis of 

the SSM shows that some erroneous utterances of expected feature vector quantity can exhibit 

poor characteristics. Here, the SSM scores have been derived from the GMM classifier, though any 

classifier that generates a score between two utterances could be used to generate SSM observations.

In this approach, the enrolled speaker confidence is analysed through their derived model, however, 

the test utterance has not been examined which could also give errors. This could be overcome 

by conducting bilateral scoring along with a parallel SSM approach. Bilateral scoring is a reversal 

of roles of both trial utterances where the test utterance is employed in model enrolment and the 

training utterance is considered as the test utterance. Further work is necessary with this approach 

to ascertain the confidence in a test utterance. The D-Norm approach, discussed in section 2.7 may 

assist with models trained on extremes of utterances for a given task, potentially providing a non 

data-driven approach for deriving a model quality measure.

To ascertain the viability of the SSM, a simple weighting approach is applied to illustrate the 

potential score compensation of poorly derived target models. Performance enhancement is neg­

ligible in the NIST cost domain and the EER in all short and longer utterance tasks. However, 

there is an increase of performance in the low Miss probability domain where lower score thresholds 

are set for surveillance type applications. The SSM has been shown to be a potential pre-filtering 

approach that can be deemed for further examination.



Chapter 6

Conclusion and Future Work

In this chapter, points discussed throughout this thesis and final thoughts are brought together 

with an overview of potential avenues for further work.

6.1 Conclusion and discussion

Normalisation is key to performance in speaker verification (SV), attempting to reduce the effects 

of degrative signal perturbations and speaker differences. Approaches such as test-normalisation 

(T-Norm) have become commonplace in SV to reduce signal perturbations and was used by over 

half of the competitors in the most recent international speaker recognition trials conducted by 

NIST. This work has focused towards understating the impostor-centric observations and their 

ramifications on SV, primarily, when the popular score normalisation approach T-Norm is applied. 

Selection of the normalising cohort in the score domain is known to enhanced performance and 

this thesis has been primarily attempting to exploit the use of prior knowledge through enhance 

selection. Due to the availability of impostor utterances, the impostor-centric route is applied to 

gather normalisation statistics. However, as discussed in Chapter 2.3 a target-centric approach 

may produce extra informative normalisation parameters.

The trial-independent cohort selection scenario was discussed in Chapter 3 and was found to give 

greater enhancement for a given trial when composing a cohort of similar characteristics to that 

of general set of concerned target speakers. Here we have described the different impact of se­

lection under different task conditions where shorter durations are prone to higher variability in 

performance without some form of impostor selection. Impostor cohort compositions with random 

selection procedures illustrated a high variability of system performance. However, exploiting some 

prior-knowledge in the form of a target’s average training duration allowed the matching of the 

impostor cohort with a reduction in decision errors. However, deliberate misuse of prior knowledge 

can lead to a poor selection of impostors found to degrade robustness by approximately 8% at the 

EER in the lOsec-lOsec task. Several impostor cohorts contained intentional assortments, with a
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majority of either matched or miss-matched were engineered to illustrate the large variability and 

danger of selection, especially in the lOsec-lOsec task. Here we have shown that when applying 

such selection approaches in a trial-independent manner, as few as 15 impostors can be used in 

lOsec evaluations providing admirable results. W ith lconv utterance enrolment, it was found that 

a cohort containing in the region of 25 impostor models could be utilised for T-Norm.

Further investigation led to the dissection of the T-Norm approach, observing that the standard de­

viation only approach rather than the normal mean and standard deviation, generally gave superior 

performance. From empirical analysis, it is observed that the mean component suffered from high 

sensitivity with certain combinations of targets and impostors with increased verification errors. 

This effect is reduced when the mean component was removed from the normalisation procedure. 

This was found to be a contribution from a small contingent of poorly enrolled target speakers 

that delivered abnormal scores when normalised against the T-Norm mean (highlighted through 

the SSM approach). Removing these then renders the conventional T-Norm (including mean) the 

appropriate approach.

Trial-dependent cohorts can further reduce verification errors by supplying each target with a 

specific cohort of impostors, selected during the enrolment process. Such cohorts can be generated 

through the adaptive T-Norm (AT-Norm) approach. This can alleviate the effects of poorly derived 

target models by normalising against a personal cohort of similarly characterised impostors, e.g. 

normalising a poor target using poorly trained impostors. AT-Norm provides better performance 

and enhanced computation efficiency at test time by further reducing the number of impostors to 

supply a personal normalising distribution. A disadvantage lies at training time to gather score 

observations to performing the selection procedure through testing. As this can be performed ef­

fectively off-line, real-time operation is not hindered. The pool must also be large enough with a 

variety of impostor attributes to accommodate a decent selection approach. AT-Norm has been 

shown to give superior performance over a trial-independent approach in all trial conditions.

As shown in this thesis, scores can be utilised for many aspects of the classifier, from discrimi­

nation of target models to a data-driven approach for setting a decision threshold for subsequent 

trials. Observations from the T-Norm approach led towards the speaker security measure (SSM) 

discussed in Chapter 5. Essentially, the statistics gathered by the impostor cohort for T-Norm is 

hypothesised to describe further informative measures of a speaker’s viewpoint for a given speaker 

over a collection of impostor attacks. SSM observations can describe the confidence of an enrolled 

model against a large collection of impostor attempts. The SSM approach can reveal, on rare occa­

sions, speaker models trained with a high proportion of feature vectors with little speaker-specific 

content, likely to be prone to false acceptance errors. This has shown to be of possible benefit in 

evaluations where poorly trained speaker models are present.
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The correlation between the number of feature vectors in an utterance and the confidence of the 

speaker model can usually be a good indicator for a subsequent score weighting regime. The SSM

can be applied in tandem to enrolment for highlighting potentially troublesome target speakers.

Preliminary results show promise to detecting such poorly derived models. From observations of the 

SSM investigation, it was found that this approach coupled with conventional T-Norm performed 

similarly to the standard deviation only T-Norm procedure discussed in Chapter 3.6. Where the 

SSM appeared to remove the degrading effect of the mean component. Further investigation high­

lighted the few poorly enrolled target models that contributed to the mean degradation during 

the evaluations. However, conclusions drawn for the proposed SSM approach must be taken with 

care since only a preliminary investigation has been conducted on observing the resilient influence 

toward impostor attempts.

6.2 Further work

Two themes have been presented in this work, foremost of which is score normalisation with analy­

sis concentrating on the T-Norm approach. A preliminary investigation of target model confidence 

has also been discussed. Strategies towards further work on approaches discussed in this thesis are 

presented here.

Many combinations of the approaches discussed in this thesis could be performed. One exam­

ple for further investigation is bilateral scoring; this can be applied with score or decision fusion. 

The integration of other useful prior knowledge towards model selection for T-Norm is another 

avenue to consider.

Further normalised score observations could also be collected from other classifiers. For example, 

the popular SVM with GMM supervectors could be used, providing the benefit of pre-normalised 

scores for selection. This can of course be performed with any classifier that produces a score based 

on an observation. However, it is difficult to predict the usefulness of sequential normalisation meth­

ods such as T-Norm in the score domain when some utterance degradation is combatted at earlier 

stages. The selection procedures that utilise prior information could also be transposed to other 

forms of normalisation, for example, a speaker specific impostor cohort for Z-Norm. Approaches 

developed during this research can now compensate for utterance miss-match during earlier stages 

of the classifier, e.g. in the modelling or speaker enrolment domain. There are several areas within 

the classification system where compensation to signal perturbations can be applied. Gravier et 

al. [4] shows experimental results with the introduction of prior knowledge at different stages of 

the classification system. They concluded that a system benefits performance by introducing prior
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knowledge early in the classification system. It is observed that current state-of-the-art trends 

seem to support this by moving prior information toward the beginning of the classification chain, 

highlighted by Kenny et al. [15] &; Fauve et al. [24]. The ramifications of adaptive features from 

observations by Fauve et al. [24] coupled with different sequential score normalisation could also 

be considered.

The introduction of the SSM approach has shown advantageous results by weighting target mod­

els of low speaker discrimination. Simple weighting approaches presented in this thesis could be 

superseded with other functions which could possibly provide better model quality demarcation. 

On a note of computational efficiency, the optimum number of features or data-drivers to provide 

a confidence in the SSM scores needs to be considered. The precise nature of the SSM has yet to 

be fully understood and suggests further investigation.

The recent work by Ferrer et al. [20] in March 2008 leads to a different strategy of introducing SSM 

type information through a score fusion manner. This could be achieved with the aid of the FoCal 

toolkit, developed by Brummer et al.1.

The statistics gathered by the impostor cohort for T-Norm usually contain a variety of infor­

mative measures, scores of which can be considered as utterance coordinates among a cohort of 

assumed impostor speakers. This approach is rising in popularity and is commonly termed anchor 

models [48], where a speaker is represented by a cohort in a speaker related reference space.

These observations lead to many avenues to future work.

1 FoCal Bilinear Toolkit available at http://niko.brummer.googlepages.com/focalbilinear, as of March 2008



Chapter 7

Epilogue

In late March 2008, NIST released an updated 2006 speaker recognition evaluation key, describing 

a list of trials with associated ground-truths that were deemed ‘bad’ and should be removed. As 

the final part of the experimental work presented in this thesis, results using this new key are 

presented.

Despite of trial errors in the original NIST 2006 results, a large leap in performance is evident 

from a variety of submitted systems from previous NIST evaluations. This illustrates the ability of 

state-of-the-art systems by demonstrating a high robustness against a sub-set of null trials.

7.1 Invalid Trials of the 2006 NIST Evaluation

Throughout this work, labelling of the speech utterances provided by NIST, in terms of utterance 

identity with ground-truth (primary) and prior knowledge (secondary, for example, gender), is 

assumed to be correct. However, in any large database like these of NIST, errors are likely to exist. 

In practice, such primary labelling errors would be difficult to detect and can impact on true system  

performance. Such primary utterance labelling errors can come about in many ways, one of which is 

when an individual wishes to claim two identities during the period of collecting speech. This could 

be a genuine mistake or produced with malignant intent, one possible hypothesis is financial gain. If 

this were the case, it can be postulated that a trial of a target model and test utterance are deemed 

as a false trial, when in truth, both target and test utterance, although labelled as different speakers 

are in fact the same person. In this scenario, an incorrect false decision is likely. A less serious case 

of deliberate error in the secondary case could be miss-labelling of the handset if it, for example, 

has been changed over a period of speech collection. Any other secondary labels also falls into this 

category. The use of pre-filters to highlight such errors become important. These errors are more 

sensitive to well tuned systems, e.g. statistical data-driven approaches that are dependent on a 

criterion of data as background knowledge for classifier construction. Usually, evaluations are likely 

to overestimate the accuracy of a data-driven classifier due to database tuning. This is usually comes

89
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from assembling a classifier from development sets which contain common characteristics across the 

databases. However, with labelling errors in the original NIST 2006 database, the evaluation leads 

to a degradation in performance and the revised keys lead to improved performance.
C o n d itio n G en d er N u m b er  o f  

bad  tr ia ls
T otal num ber  

o f  tr ia ls
% o f  tr ia ls  
rem oved

lOsec-lOsec Male 511 15013 3.29%
Female 563 18540 2.76%

lconv-lconv Male 1194 23292 5.02%
Female 1786 30673 5.64%

Table 7.1: This table illustrates the reduction in trials between the NIST 2006 new and old key, 
bad trials refer to the removed trials.

Table 7.1 presents a break down of invalid and missing trials from the revised NIST 2006 

ground-truth key. This illustrates an approximate total reduction in the number of trials for the 

lOsec-lOsec and lconv-lconv evaluation is 3% and 5% respectively. This is a high proportion of 

trials to have been subject to poor labelling. The DCF and EER performances are given in Table 7.2 

for both lOsec-lOsec and lconv-lconv NIST 2006 evaluations. The total number of trials using the 

revised key is also provided. W ith the removal of such trials, the lOsec-lOsec NIST 2006 evaluation 

performance, illustrated in figure 7.1, has little change. Although, the removal of ambiguous trials 

from the lconv-lconv evaluation, depicted in figure 7.2, shows a very different trend. Here, the 

performance has increased significantly at the NIST DCF operation point from 0.087 to 0.062 with 

an approximate 1.5% EER reduction when a total of 2980 male and female trials are removed. The 

sharp decrease of performance in high acceptance region (region 1) of figure 7.2 is a result of the 

invalid database labels which has been increase significantly with the new key. It is interesting to 

observe, that by chance, the gain provided in the lconv-lconv evaluation with the removal of the 

bad trials is not shown in the lOsec-lOsec task. This is based on the trial configuration derived by 

NIST.



7.1. INVA LID TRIA LS OF THE 2006 NIST EVAL UATION 91

1 0 se c -1 0 se c  NIST 2006  with new and  old g round-tru th  keys 1co nv -1conv  NIST 2006  with new  and old g round -tru th  keys

 Old Key for 2006
 New  Key for 2006

2

F a lse  Alarm probability (in %)

yy
 Old Key for 2006
 New Key for 2006

98

95

90

80

60

1  40

5

2
1

0.5

0.2
0.1

0 T5.20.5 1 2 5 10 20 40  60  80  90 95 98 99
F a lse  Alarm probability (in %)

Figure 7.1: DET performance plot showing the Figure 7.2: Performance of the lconv-lconv
lOsec-lOsc NIST 2006 evaluation performance NIST 2006 evaluation performance with revised
with revised and original decision keys. and original decision keys, represented by a DET

plot.

C o n d itio n K ey source % E E R D C F T ota l n u m b e r  o f tr ia ls
lOsec-lOsec Old 29.16 0.0896 33553

New 29.18 0.0886 32550
lconv-lconv Old 17.08 0.087 53966

New 15.54 0.062 51068

Table 7.2: This table illustrates the performance at the DCF and EER with the revised and original 
keys for the lOsec-lOsec and lconv-lconv NIST 2006 evaluations

B  LIBRARY
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7.2 Final Thoughts

Over the period of the work presented in this thesis, technology has improved by such an extent, 

the accuracy of database labelling has been drawn into question. This comes to the fore in system  

development through error analysis. This issue has been highlighted here when using the SSM to 

detect extreme miss-labeled utterances in terms of expected utterance duration. This illustrates 

the difficulty and importance of large representative databases. As the performance of systems 

improves, database labelling errors become more significant. System error rates fall with system  

improvements, hence miss labeled errors become a more significant percentage of the total errors 

and more easily identified. The lower numbers makes label checking more viable, for example, when 

errors rates fall below 10%, the number of human-based checks required reduces to x. However, 

this is only one class of error, where the two utterances from the same speaker, labeled as different 

people has been deemed false through a trial, when truly, they are the same person. To avoid such 

bad trials, the labelling of the utterances is critical. The derivation of the revised ground-truth key 

reflects advancements in technology, from a standpoint of being able to question the database. The 

state-of-the-art systems have helped to highlight a number of labelling errors.
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A .l Classifier configuration

Research and development is primarily conduced on the NIST 2005 and 2006 evaluations. The 

NIST 2004 dataset will be used to represent the source of ‘other’ prior knowledge and is also used 

to build both UBM and normalisation cohorts. Specifically, the normalisation cohorts are gathered 

from the training utterances of the dataset.

Features are extracted in the same manner from both the claimant and the target speaker in 

which the target features are used in the modelling process. A single vector constitutes of a win­

dow of speech, typically 20-30 ms in duration. By sliding the window along the speech signal with 

50% overlap, a series of vectors are extracted using cepstral derived coefficients from a Mel-scale 

filter bank, producing a chronological sequence of feature vectors. Traditionally in the GMM, the 

features of a speech sample are quantized into a vector of 1 * 16, where a 16th order feature vector 

represents a windowed section of the speech spectra. Appended to the 16 baseline extracted fea­

tures are 16 delta components the baseline energy and delta energy coefficients. A post-process to 

removing the silent elements is conducted with a tri-Gaussian speech detector with a zero mean, 

unity variance normalised distributions. The alpha threshold component of the speech detector is 

set to zero. All features are further processed to remove linear utterance characteristics through 

cepstral mean subtraction (CMS). No further conditioning or gender dependent optimisation’s have 

been applied to the features.

The GMM classifier is used with 1024 model components trained on the test set of the NIST 

2004 data set. The initial background codebook is generated by applying VQ, specifically through 

the Linde-Buzo-Gray (LBG) algorithm. Approximately 1000 feature utterances, each containing 

an average speech duration of 2.5 minutes. The expectation maximisation (EM) algorithm (high­

lighted in [19]) to 10 iterations is used to monotonically increase the likelihood of the codebook until 

the training data applied converges. Speaker-specific modelling is applied with mean only Maxi­

mum A Posteriori (MAP) [18, 19] adaptation with a fixed relevance factor of 16. Utterance scoring
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is conduced using a fast-scoring routine, indexing the closest 5 ranked components for each trial. 

Score normalisation T-Norm impostor cohorts have been acquired from the NIST 2004 database. 

The default pool of 600 models contains 3 sets of 200 models based on the utterance duration. 200 

are trained on 10 second speech duration (abbreviated to lOsec), 30 seconds of speech (30sec) and 

approximately 2.5 minutes of speech (lside). The composition of the cohort is modified accordingly 

during the course of this thesis.

A.2 NIST evaluation database

The National Institute for Standards Technology (NIST) conducts annual speaker recognition evalu­

ations, allowing world class institutions to compete using large-scale databases over different speech 

conditions. Primarily, conditions are combinations of utterance durations and handset capture de­

vices in both training and testing data. Each condition ideally has a different decision threshold 

and is usually set by conducting development trials on previous years with the supplied ground 

truth. Also note that, in accordance to the NIST protocol, all trials are performed independently 

where no unsupervised adaptation has been conducted between trials. The evaluation plans for the 

NIST speaker recognition trials for years 2004, 2005 &; 2006 can be found at [49]. The lconv-lconv  

is the required task to be undertaken for system submission. There are combinations of different 

speaker trials, defined by duration for both training and test data. These conditions have slightly 

varied over the three previous years. The 10 and 30 second utterances are excerpts from a selection 

of lconv conversations. The lconv utterances consist of approximately 5 minutes of a conversation 

from both parties with silence replacing the speech of one speaker with roughly 50% speech from 

each speaker. One goal with this scenario, though not considered here, is to separate the individual 

speakers during verification. Utterances are split into genders and verification between two utter­

ances are likely to use different handsets. The primary conditions chosen for experimentation are 

the 10 second training and 10 second testing conditions, denoted as lOsec-lOsec and the lconv- 

lconv condition. The hyphen separates the condition of the trial to training-test type.

The formality of the data for a standard Speaker Verification (SV) evaluation shall now be dis­

cussed. The speaker data is split into two categories, a development and evaluation set. The 

utterances contained within each set is assumed independent from each other. The development 

set allows for closed loop system enhancement through experimentation. For a true evaluation, the 

evaluation data must be deemed as unobserved data, i.e. has no ground-truth from which we can 

draw conclusions or prior knowledge. This satisfies the application scenario of a real trial where 

no ground-truth is available to validate the decision provided by the ASR. No feedback is supplied 

from the NIST 2006 database. To generate the experimental evaluations for these experiments, 

the ground-truth is available, though this is only used to generate the true and false distributions
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to illustrate system performance. The experimental results show in this thesis are collected using 

data sets from the NIST speaker recognition evaluation from years 2004 &: 2005. The 2006 NIST 

database will be used to validate the results.

All attributes of the system are to be considered as default, unless otherwise stated.

A .3 U nderstanding results as a function o f  th e  error rate

Threshold
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Figure A.l: Example of true and false score distributions from an evaluation

Figure A.l depicts an example of the and distributions from a group of trials. Verification 

uses error rates to determine the performance of a system. Two types of errors can occur, False 

Acceptance (FA) and False Rejection (FR). Possible verification outcomes are shown in Table A.l, 

red denotes an error in verification whilst green states a successful verification. These errors are 

the metric used to judge performance of a speaker classifier. FA consists of accepting wrongfully, 

a claim by an impostor. The latter wrongfully rejects a valid user. Both of these errors are used 

to set a threshold. Setting the threshold to low will accept many impostors therefore having a 

high FA. Setting the threshold high, and the true speaker will have a higher rejection rate. This 

is a balance of application based influence; a convenience (low FR) and security (high FA), both 

having different uses in various applications therefore making the threshold setting an important 

factor when deploying as an application. Again this is an application specific threshold setting. 

Practically the threshold is usually set using a development corpus (where the trial ground-truth is 

known) by logging the frequency of each error. Large development sets are required to give confident 

performance statistics. Detection Error Trade-off (DET) curves is another means to represent the 

error statistics as graphical representations on a ’normal deviate scale’ [41], In the Figure A .l, the 

two types of errors, FA and FR are shown as the filled regions or blue and red respectively. To

Ealse. Alarm 
Probability
Impostor Scor< 

Di'stributibn)
Target Scorc^ 
Distribution

-4 -2

False Rejections

4

False Alarms Score



AI>PENDIX A . A PPENDIX 96

obtain a DET curve we plot the FA vs. FR on the normal deviate scale. An example of ideal DET 

curves are shown in Figure A.2, courtesy of Roland Auckenthaeler.
A ccep t R eject

True speaker A ccep ta n ce  P ro b a b ility M issed  P ro b a b ility
Im p ostor F alse A larm True a la rm /F a lse  A ccep ta n ce

Table A.l: Interpreting the outcome of a trial

SV performance can be visualised through the use of the detection error trade-off (DET) [41] 

curves, allowing observations on a systems variation and assist to set an applicable threshold. 

Navrati and Ramaswamy [11] show that the more Gaussian the true and false distributions display, 

the greater linearity of the DET curve. This is also ideally explained by Alvin et al. [41]. The 

tilt observed by Auckenthaeler et al. [10] is shown by the greater variance constriction of the false 

distribution when T-Norm is applied, illustrated in Figure A.2 (b) and (c).

By synthetically modifying attributes of the true and false distributions, its effect in the DET 

performance measures shown in Figure A.2. This illustration helps identify the changes in the DET 

plot, provided for the convenience and to assist to the reader. The true (target) distribution is 

usually considered a positive score offset to the false (impostor) distribution. Plot (a) describes 

the fundamental goal to provide robust verification by separating out the resulting true and false 

distributions from an evaluation with equivalent consequence in the opposite DET plot. The 

outcome of scaling the true and false distributions show a pivoting of the DET curve, shown 

respectively by sub-plots (b) and (c).
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Figure A.2: Artificial DET Performance Curves, courtesy of Roland Auckenthaeler
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