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Abstract

Nowadays more and more people are relying heavily on software and software con­
trolled system. The failure of some software may result in serious consequences such 
as significant financial losses or substantial environmental damages. The methods for 
improving the reliability of software can be viewed as either based on traditional tech­
niques that from programs to give proofs, or on automatic techniques that from proofs 
to generate programs.

In this dissertation, we are concerned with developing theories of program extrac­
tions from proofs via realisability in order to obtain better extracted programs from 
interactive theorem provers.

Firstly, we study the domain-theoretic semantics of a Church-style typed A-calculus 
with constructors, pattern matching and recursion, and show that it is closely related to 
the semantics of its untyped counterpart. When extracting programs from proofs via 
realisability, one has the choice of extracting typed or untyped terms from proofs. Our 
result shows that under a certain regularity condition, the choice is irrelevant.

Secondly, we propose a realisability interpretation of an intuitionistic version of 
Church’s Simple Theory of Types (CST) which can be viewed as a formalisation of 
intuitionistic higher-order logic. In this way, important syntactic properties of real­
isability (e.g. being well-behaved w.r.t. substitution) can be proven elegantly on an 
abstract lambda-calculus level. Our interpretation introduces a direct realisability of 
monotone induction and coinduction.

Thirdly, we develop a prototype interactive theorem prover in Haskell to demon­
strate the usefulness of the theory described previously. In this prototype, motivated by 
the desire to facilitate the implementation of interactive proof systems with rich sets of 
proof rules, we implement a uniform system of rule schemata to generate proof rules 
for different styles of logical calculi.
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Chapter 1 

Introduction

Contents
1.1 M otivation........................................................ .............................. 1

1.2 Main Contributions............................................. ........................... 5

1.3 Overview of the Dissertation.............................. ........................... 6

1.1 Motivation
Ultimately, software problems are solved by building well-structured and comprehen­
sible programs that are guaranteed correct with respect to the specification. However, 
in general, when developing complex computer systems, no matter how well designed, 
it is natural that the resulting system still is full of errors. With rapid growth of the size 
and complexity of software programs, the importance of the reliability of these pro­
grams arises.

A ’’correct” program is one that specifies the desired behaviour of the program. 
More precisely, it produces the correct output for every possible input if the pro­
gram terminates successfully, and the program will always terminate successfully. The 
methodologies for designing reliable software can be viewed as either based on cor­
rectness proofs (i.e., giving proofs for existing programs) or on program extractions 
(i.e., from proofs to generate programs). To verify the correctness of a program em­
pirically is a long-standing and widely-used practice in the software industry. Usually, 
in order to obtain full correctness, this would involve feeding all possible values of 
its input to the certified program and proving the correctness of the respective output. 
This can be really time consuming, or even impossible. Therefore, the correctness of 
the tested program cannot be guaranteed in general.

A ’’formally correct” program is one whose correctness is verified in a mathemat­
ical approach. In order to achieve this, the intended behaviour of programs has to be
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1. Introduction

specified precisely in a mathematical way. It is well known that (abstract) algorithms 
are often hidden inside mathematical proofs. Indeed, from a fully formalised con­
structive mathematical proof, one can easily extract a computer program of such an 
algorithm together with a proof that guarantees the correctness of the program.

The research presented in this dissertation began as an attempt to provide a new 
systematic approach to synthesise correct, error-free programs from proofs, and strong 
theoretical guarantees about their correctness. We focus on the applicability of con­
structive logics and type theories to the problem of program extraction from proofs 
via realisability. There are always gaps between our thinking and our communication. 
Consider the following sentence

3x(x-x = 2) (1.1)

Can we really assert this by saying x  exists without giving the value of x but just 
thinking there is an jc ?  Even if there exists an jc ,  is it computable? The solution is 
when we assert the existence of something, we should be able to provide an algorithm 
to compute it, and a proof that the algorithm is correct. For example, to prove the 
formula (1.1), we need to find an instance of jc ,  e.g. t, and a proof P of t • t =  2. This 
computational view of existence can naturally be extended to all logical connectives. 
We are led to the Brouwer-Heyting-Kolmogorov interpretation (BHK interpretation) 
that explains the meaning of a proof of a given formula:

• A proof of P A Q is given as a pair (p, q) of proofs, where p  is a proof of P and 
q is a proof of Q.

• A proof of P V Q is given as a pair (p, q) of proofs, where either p is 0 and q is a 
proof of Q, or p  is 1 and q is a proof of Q.

• A proof of P —► Q is a construction which converts any proof of P into a proof 
of Q.

• There is no proof for _L.

• A proof of Vjc.P(jc) is a construction which converts a proof of d G D (D is the 
intended range of the variable jc) into a proof of P(d).

• A proof of 3x.P(x) is given as a pair (d,q) with d e D, where q is a proof of 
P(d).

The BHK interpretation can be developed into a methodology by which one can use 
mathematical reasoning to derive programs whose correctness is developed during the 
construction. One important feature of constructive proofs is that the executable codes
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Motivation

extracted from formalisations of proofs are functional programs. This provides a par­
ticularly elegant way of connecting program extraction with lambda calculus and its 
corresponding type theories.

The Curry-Howard isomorphism ([Cur34, How80]), also known as proofs - as 
- programs correspondence, establishes a deep connection between programs and 
proofs. It is a generalisation of the following syntactic analogy: a proof is identified 
with a X-term (in other words, a program), the formula it provides is encoded as a type 
for the program, logical rules can be represented as type inferences or programming 
constructs, and proof normalisations correspond to term reductions. This contributes 
a set of methods to extract programs from proofs so that the task of programming a 
function is cut down to reasoning from contexts.

In traditional verification of programs, the most natural way is to start with a par­
ticular specification that expresses the input-output behaviour of a desired program in 
terms of logical formulas, and then build a program by hand, finally prove that the 
program satisfies the specification. An alternative approach is instead of writing the 
program, to generate the proof of the formulas (semi-)automatically with the help of 
proof assistants. Through the power of the Curry-Howard isomorphism, a program in 
a suitably chosen (usually functional) programming language is created. The trans­
formation process from proofs to correct-by-construction programs is called program 
extraction. Very often the generating programs contain parts that are irrelevant to com­
pute the final result. How to synthesise efficient programs from proofs obeying their 
formal specifications has been a long sought after goal.

One method of program extraction is to employ a realisability interpretation. In 
1945 Kleene [Kle45] first introduced the concept of realisability with the idea of defin­
ing a relation realises A” between natural numbers n and logical sentences A. In­
tuitively, a realiser is a solution of the computational problem expressed by A. Later 
many other notions on realisability were introduced. In particular Gbdel’s functional or 
Dialectica Interpretation [Goe58, Goe90] and Kreisel’s modified realisability [Kre59] 
have a profound impact. The possibility of effectively obtaining a program and its 
verification proof is based on a sound realisability interpretation.

It is essential for people in mathematical, scientific and engineering fields to log­
ically analyse problems or present mathematical models precisely. Among all the 
formal logics that they choose to express and prove mathematical facts, first-order 
logic has a prominent place. However, it is not an expressive tool in a practice sense, 
since it is impossible to prove about higher-order objects such as sets and functions in 
first-order logic directly. Some basic and reasonable notions fall outside the scope of 
first-order logic, such as the transitive closure of a relation and the completeness prin­
ciple for the real numbers. Starting with a formal set theory to formalise e.g. abstract 
algebra in first-order logic is of course an alternative solution, especially when abbre­
viations are involved. Nevertheless, such formalisations are often quite expensive in 
terms of how much work needs to be carried out. Moreover, an additional limitation of
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1. Introduction

first-order logic lies in the expression of mathematical statements due to the missing of 
abstraction mechanisms for building predicates and functions and definition descrip­
tion mechanisms for specifying values.

The Simple Theory of Types, originating with Alonzo Church [Chu40], is a precise 
formulation of type theory which includes first-order logic. Farmer gave a detailed 
analysis of the virtues of Church’s type theory in [Far08] and characterised Church’s 
type theory as a simple, elegant, highly expressive and practical language and logic. 
In Church’s type theory, functions are treated as primitives since properties and re­
lations are expressed via functions from objects to truth values, and lambda-notation 
and lambda-conversion [Chu32, Chu41] are formulated for use in the logic. Church’s 
type theory is also called higher-order logic, since it admits unrestricted quantification 
over higher order predicates. There are two kinds of mathematical objects in Church’s 
type theory: terms and types. Terms are the terms of the X-calculus, denoting values 
including truth values. Based on atomic types, e.g. the type of individuals and the type 
of propositions (truth values), types can be built as functional types p —► cr where p 
and cr are types. Every term has been assigned to a type which denotes the kind of val­
ues it ranges over and should be consistent with the types of its subterms. In Church’s 
original formalisation it is a classical type theory since it allows nonconstructive rea­
soning principles. However, we will work on a version that is based on intuitionistic 
logic (but is still impredicative).

Eventually we are interested in specifying the operational behaviour of a machine 
when it is running a program. However, an extracted program is a collection of abstract 
expressions with no observation of its behaviour, i.e. no operational semantics. There­
fore, it is necessary to have a connection between the proof-theoretic view with the 
execution of a program. An elegant way to ensure the correctness of the behaviours of 
programs is to put denotational semantics in the middle. With denotational semantics, 
we can formalise mathematically rigorous descriptions of programming languages by 
assigning mathematical meanings to programs in terms of mathematical objects, such 
as strings, integers, booleans and functions. Aiming at this purpose, a wealth of dif­
ferent approaches are proposed. The theory of Scott domains, originally conceived by 
Scott [Sco70], is a powerful mathematical tool to give a meaning to the following two 
features of programming languages: recursion (least fixed point) and data types (e.g. 
lists, function spaces and recursive types). Instead of representing objects as elements 
of a data type in the sense of programming languages, elements of a domain are ab­
stract representations of their partial properties that contain some notions of informa­
tion. Thus, it is the input-output behaviour of programs that is finally being formalised. 
Domain-theoretic semantics provide very simple and elegant proofs of computational 
adequacy, and hence for the correctness of program extraction. Since domain theory 
combines the computational features of functions with the mathematical definition of 
function as a mapping from one domain to another, from a mathematical point of view, 
a functional language can be viewed as a description language for domain-theoretic
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Main Contributions

concepts.

1.2 Main Contributions
This section serves as a general description of the main achievements of this disser­
tation. In the next section, background information is provided, and more detailed 
explanations are given.

(1) We study the domain-theoretic semantics of a Church-style typed A-calculus 
with constructors, pattern matching and recursion, and show that it is closely 
related to the semantics of its untyped counterpart. When extracting programs 
from proofs via realisability, one has the choice of extracting typed or untyped 
terms from proofs. Our result shows that under a certain regularity condition, 
the choice is irrelevant. Furthermore, we give a soundness proof for a language 
of realisers of proofs involving inductive and coinductive definitions. The proof 
uses logical relations, which are related to Tait’s computability method and Gi­
rard’s method of reducibility candidates.

(’’Typed vs. Untyped Realizability” [BH12])

(2) We give a realisability interpretation of an intuitionistic version of Church’s Sim­
ple Theory of Types (CST) which can be viewed as a formalisation of intuition­
istic higher-order logic. Although definable in CST we include operators for 
monotone induction and coinduction (not limited to the strictly positive case 
only) and provide simple realisers for them. Realisers are formally represented 
in an untyped lambda-calculus with pairing and case-construct. We introduce 
a general notion of interpretation of one instance of the simply typed lambda 
calculus in another, and define realisability as an instance of such an interpre­
tation. In this way, important syntactic properties of realisability (e.g. being 
well-behaved w.r.t. substitution) can be proven elegantly on an abstract lambda- 
calculus level. Our interpretation introduces a direct realisability of monotone 
induction and coinduction.

(”A realisability interpretation of Church’s simple theory of types” [BH14a])

(3) In order to demonstrate the usefulness of the theory described in (2), we develop 
a prototype of the proof system in Haskell. In this prototype, motivated by the 
desire to facilitate the implementation of interactive proof systems with rich sets 
of proof rules, we implement a uniform system of rule schemata to generate 
proof rules for different styles of logical calculi. The system requires only one 
schema for each logical operator to generate introduction and elimination rules

5



1. Introduction

in natural deduction and sequent calculus style. In addition, the system sup­
ports program extraction from proofs by generating realisers for the proof rules 
automatically.

(’’Uniform Schemata for Proof Rules” [BH14b])

1.3 Overview of the Dissertation 

Chapter 2: Typed vs. Untyped Realisability
In this chapter, we introduce a natural language of realisers for inductive and coinduc- 
tive definitions, which is a typed lambda calculus with types modelling initial algebras 
and final coalgebras, and terms modelling structural recursion and corecursion. In fact, 
we study a more general calculus that allows fixed points of arbitrary type operators 
and definitions of functions by general recursion. The advantage of this generality is 
that our results will apply to all conceivable extensions of our theory of realisers of 
inductive and coinductive definitions.

We study the domain-theoretic semantics of a Church-style typed A-calculus with 
constructors, pattern matching and recursion, and compare it with its untyped coun­
terpart. We work with polymorphic types that allow fixed points of arbitrary type 
operators. A type p is interpreted as (the image of) a finitary projection (p), following 
the idea of Amadio, Bruce and Longo [ABL8 6 ]. The main result (Theorem 2.4.16) 
relates the semantics of a typed term M  with its untyped variant M~: if M  has type p, 
where p is a regular type, that is, fixed points are only taken of positive operators, then

=  M,
where [M] is the value of M  in a denotational model. The proof uses logical relations. 
We do not know whether the result also holds if p is not regular.

A similar problem was studied by Reynolds [ReyOO, Rey03] who established a 
coherence between the typed and untyped meanings of expressions based on cpo mod­
els of a version of PCF. The main differences to our work are as follows: Reynolds 
considers simple types over the base types of natural numbers and booleans while we 
allow arbitrary recursive types. On the other hand, he includes subtyping which we do 
not. Regarding the typed semantics, Reynolds interprets typing derivations in a typed 
model while we interpret terms with a typed abstraction in an untyped model.

The motivation for this study comes from program extraction from proofs via re­
alisability (see e.g. [BH08, Ber09, BS10, Berl 1] for applications in constructive anal­
ysis) where one has the choice of extracting typed or untyped terms from proofs. Our 
result shows that if the extracted type is regular, the choice is irrelevant. In fact, reg­
ularity is a harmless restriction because in the intended realisability interpretation the
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Overview of the Dissertation

types of realising terms will always be regular. In [BerlO] the soundness of a realis­
ability interpretation based on a fragment of the untyped version of our calculus was 
proven, and the calculus was shown to be computationally adequate with respect to a 
domain-theoretic semantics (the same semantics we are considering here). In [BS11] it 
was shown that the extracted programs admit a Curry-style typing. In this dissertation 
we provide the missing semantical link to Curry-style typing.

The application to realisability is also our motivation for working with Scott do­
mains (instead of arbitrary epos, as Reynolds does): the adequacy proof in [BerlO] 
uses the fact that all semantic objects can be approximated by compact ones, hence 
we have to ensure that types are interpreted in a cartesian closed category of algebraic 
domains. This is achieved by interpreting types as finitary projections. Apart from 
that, our results could also be obtained using arbitrary epos and embedding-retraction 
pairs.

Chapter 3: Church’s Simple T^pe Theory
In this chapter, we describe the basic logic of a constructive version of a type theory, 
namely Church’s Simple Type Theory. We start with the Simply Typed Lambda Cal­
culus (STLC), which is constructed freely from type atoms. And then we introduce 
the notion of an interpretation from one instances of STLC to another. One important 
aspect of this interpretation is that it preserves full j3-equality.

Slightly differing from Church’s original work, our version of CST is based on a 
particular instance of STLC where the set of base types contains a set J? of base types 
for individuals and a type of proposition o, and the constant set consists of —►, A, V, 
Vp, 3p, =p, jUp and vp. Here for Vp and 3p, p is for arbitrary types, while for jup 
and Vp, p is restricted to predicate types, i.e. types that are canonically (in any ccc) 
isomorphic to a finite product of types of the form p —► o. The constants pp and Vp will 
be interpreted as least and greatest fixed point operators for monotone arguments. In 
order to precisely express their properties we give a definition of higher-order versions 
of inclusion between predicates, which can be declared meaningfully only by predicate 
types.

From a logical point of view, the constants —> and Vp would suffice to define all 
other constant. For the logical constants including equality this was already observed 
by Church [Chu40]. Iip<t> can be defined as the infimum of all x : p such that <I>jt Cp x, 
and Vp <I> can be defined similarly. The reason why we prefer this richer set of constants 
is that they can be given simpler realisers.

In order to enable a realisability interpretation we have to deviate from Church’s 
calculus in several aspects: first our system is intuitionistic while Church’s is clas­
sical. Secondly, we dropped the choice operator since it does not appear to admit a 
realisability interpretation.

The reason why we choose Church’s type theory is that, due to its simplicity, it

7



1. Introduction

provides the necessary, but simple techniques for a realisability interpretation. Church 
presented his theory as a foundation of mathematics, but we make use of its prop­
erty that it is free to be extended. Church’s type theory is general in the sense that 
it has implicit constraints on terms and types. It can be directly extended with other 
datatypes such as Cartesian products, disjoint unions, records, and so on. Therefore 
many programming languages support a simply typed system. Also, in Church’s type 
theory axioms for set existence are no longer necessary, since lambda-notations (or 
functions) provide an explicit representation of sets. In addition, type checking is de- 
cidable in Church’s type theory.

Chapter 4: Program Extraction via Realisability
In this chapter, we give a definition of realisability RCST by extending CST to a more 
practical form. And then we give the soundness results for our realisability interpreta­
tion.

We extend CST to RCST by adding an extra base type 8 for realisers and extra 
constants nil, in/,, in/?, prL, pr^, pair, app, fun, case, rec which we call program con­
stants. We also extend the ranges of the parameters of the constants Vp, 3p, = p and 
pp, Vp to all types respectively predicate types p of RCST.

The new base type 8 will be interpreted by a Scott domain D which is essentially 
the same as the domain used in Chapter 2.

In order to prove the soundness of induction and coinduction, we replace the rules 
for monotone induction in CST by rules which we call general (co)induction. That is, 
rules expressing that jup<I> is the least fixed point of the operator <P(X) := Uycpx ̂ 0 0 -
The operator 4> (which could be easily formally defined in RCST) is monotone for arbi­
trary 4>: p —► p, hence the least fixed point exists. If 4> is monotone, then d> is the same 
as 4>. Dually, the rules for coinduction are replaced by rules expressing that vp<£ is the 
greatest fixed point of the operator <£(X) := Djo Th*s 8 eneral (co)induction
is a generalisation to higher-order logic of Mendler-style (co)induction [Men91].

Our interpretation appears to be more general than related interpretations in Is- 
abelle/HOL [Ber03b] and Coq [PM89b, PM89a] in that it covers unrestricted intu­
itionistic higher-order logic and induction is not confined to the strictly positive case.

Realisability interpretations for monotone coinduction have been given earlier by 
Tatsuta [Tat98] and Miranda-Perea [MP05]. The minor difference of Tatsuta’s inter­
pretation to ours is that he uses realisability with truth (^-realisability) whereas we 
omit the ’truth’ component, he works in second-order logic while we use higher order 
logic, and in his system the programming language is part of the ’input system’, that is, 
the formal system that is to be interpreted, while we keep the input and output systems 
apart. The major difference is that we can avoid Tatsuta’s extra condition on mono­
tone (co)induction namely that not only the operator has to be monotone, but also its
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realisability interpretation. Tatsuta shows that this extra condition is necessary in his 
system. The reason why it is not necessary in ours is that our realising system (i.e. 
output system) has rules for a certain form of non-monotone inductive and coinductive 
definitions. Miranda-Perea extracts typed terms and uses a clausular form of monotone 
(co)induction in Krivine [Kri93] system AF2 of second-order logic.

Our main motivation for using higher-order logic and monotone instead of strictly 
positive induction/coinduction is not that applications would require this greater ex­
pressive power and generality. It is more that it allows to express problems much more 
naturally and less technically, and the analysis of monotone (co)induction is much 
simpler than that of the strictly positive case. In addition, in our system, induction and 
coinduction are completely dual to each other, which is not the case in current imple­
mentations (e.g. Coq [Coq], Minlog [Min]) which are restricted to the strictly positive 
case.

Our soundness result refers to the provability ”on both sides”, i.e. if A is prov­
able then we get a term M  that provably realises A where the realisability is defined 
formally. In order to conclude that realisers also compute results we refer to the Ade­
quacy results in [BerlO] that relate formal realisability to the computation of witness.

To summarise, the main improvement in our work is that we prove soundness of 
realisability for monotone (co)induction

- without the extra condition that the realisability interpretation of the monotone 
operator in question is again monotone (these conditions are needed in [Tat98] and 
[MP05]);

- for higher-order logic (previous results are restricted to second-order logic [Tat98, 
MP05] or to a restricted form of strictly positive induction and coinduction [Ber03b, 
PM89b, PM89a]);

- w.r.t. type-free realisers for which a computational adequacy (i.e. normalisation) 
theorem has been shown earlier and once and for all (other approaches use typed re­
alisers, which means that normalisation has to be proved again if the (co)induction 
scheme changes, since then type system changes as well).

Chapter 5: Uniform Schemata for Proof Rules
In this chapter, we introduce a uniform system of rule schemata, which directly ex­
press the meaning of logical operators and which, in a uniform way, allow to derive 
the rules of different styles of proof calculi, such as sequent calculus and natural de­
duction, but also further rules that are used in interactive proof assistants. Surprisingly, 
the approach requires only one schema for each logical operator. The introduction and 
elimination rules of natural deduction as well as left and right rules in sequent calculus 
are derived automatically. Moreover, our system is able to automatically derive realis­
ers of intuitionistic proof rules, thus facilitating the implementation of proof systems 
that support program extraction from proofs, such as Coq [Coq] and Minlog [Min].

9
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We are currently developing a prototype as shown in the next chapter of such a proof 
system using rule schemata as a basis of the implementation.

Briefly, the global strategy is as follows. First we introduce rule schemata, from 
which we derive generating rules. These generating rules are different rules that cor­
respond to different styles of proving e.g. sequent calculus, or natural deduction or the 
mixture of these two. Then from generating rules we obtain the real rules in the proof 
system by instantiation and adding side formulas.

An additional advantage of rule schemata is the fact that they are built on a data 
structure of finitary sets, a generalisation of finite sets. Finitary sets have the structure 
of a monad and can therefore be very conveniently implemented and manipulated in a 
programming language that supports monads and provides a special syntax for them.

Chapter 6: Implementation
In this chapter, we describe the implementation of a prototype interactive theorem 
prover, which is an experiment with the usability of the concepts introduced in previous 
chapters. It is composed of two main parts: first, an automated proof checker for 
verifying mathematical arguments with the ability to store and replay proofs; second, 
an interactive interface for users to input logic formulas and give commands based on 
the given information, i.e. what goals remain to be proven and which assumptions are 
available to prove those goals.

We consider plain simple one-sorted predicate logic without complicated data struc­
tures in this prover. Modules with monad structures are used to provide a convenient 
framework for applying all necessary functions for different types.

Since it is very difficult to remove bugs when programs become bigger, we also 
give a precise proof for the correct behaviour of our prover before coding.

10
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A notation for arbitrary functions was not available until 250 years after the math­
ematical notation for expressions and equations was devised, when Church intro­
duced the smallest universal programming language of the world, the lambda calcu­
lus [Chu32, Chu33]. Anything that can be computed can be expressed and evaluated 
via this system. The lambda calculus is an alternative to Turing machines [Tur36] 
in the sense that both models define the same class of computable functions [Tur37]. 
However, the lambda calculus is more related to the software aspect, not caring about 
the implementation of the machine evaluating it, whereas the Turing machine is more 
related to the hardware aspect. Beyond its great influence in the area of computability 
theory, the lambda calculus has many practical applications in the formal semantics of 
programming languages.

The central concepts in the lambda calculus are function abstraction and applica­
tion by variable substitution. There are two versions of the lambda calculus, typed 
(also called Church-style) and untyped (also called Curry-style). The difference be­
tween the two styles is that in Church-style type assignment each bound variable is 
assigned a unique type, as in X x : p.Af, while in Curry-style the binding is untyped, as

11
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in Xx.M. The untyped lambda calculus has no restrictions on the function application, 
so the domain of a function is not declared inside the system. Therefore, the untyped 
lambda calculus can formalise all effectively computable functions. On the other hand, 
in the typed lambda calculus, a function can only accept the inputs of a certain given 
type. Types play an important role in the development of software systems. Type 
checking allows us to mechanically ensure the compatibility of the constructed pro­
grams and the correctness of their functions. However, typed programming languages 
are sometimes too constraining, so that untyped programming languages are taken into 
account. In addition, the typed lambda calculus provides a mathematical connection 
to proof theory via the Curry-Howard isomorphism.

This chapter contributes to a soundness proof for a language of realisers of proofs 
involving inductive and coinductive definitions. The notion of realisability will be 
discussed in more detail in Chapter 4.

2.1 Preliminaries
In this section, we will review the basic theory of Scott Domains, and give explicit 
descriptions of some of its properties. More details can be found in [SHLG94, AJ94, 
AC98].

The primary motivation for the study of domains was raised by two problems, least 
fixed points as meanings of recursive definitions, and recursive domain equations. Let 
D be some mathematical structure. Given a recursive definition on D: X  =  f ( X ) y we 
want to find an element d e D  such that if we substitute d for x in the equation, we will 
generate a valid equation s.t. d =  f(d).  That is indeed looking for a fixed point of / .  
Furthermore, we want a uniform canonical method for constructing such fixed points 
for arbitrary D and / .  However, usual mathematical structures like sets, topological 
spaces, groups, vector spaces and etc. cannot satisfy these. Apart from that, giving a 
mathematical semantics for the lambda calculus can also lead to problems. Take the 
self-application term Xx.xx as an example. If the type of the second occurrence of x  in 
xx is D and that of the whole term xx is D, then the type of the first occurrence must be 
[D —► D]. If [_ —► _] is a functor F : Cop x C —+C over some category C, again recursive 
datatypes lead us to the requirement for a fixed point that is uniform and canonical.

A partially ordered set or poset is a set P with a binary relation C which is reflexive, 
transitive and antisymmetric. If an element x e P  is above every element of A C P, then 
x  is called an upper bound. If all elements of P are above a single element x e P, then 
x  is called the least element. Lower bound and largest element are defined dually. If 
the least element x of P is no less than all elements of A C P, x  is called supremum. 
We write x  =  UA. A nonempty subset A C P is directed if for any x,y £ A there exists 
an upper bound z G A with x Q z  and y C z.

12
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Definition 2.1.1 (Scott-domain) A triple (D, C, ±) is a Scott-domain if it is

• directed complete: if A C D is directed, then UA CD

• algebraic: Vx G D.x := {xo G D | xo is compact} is directed and x =  Ux

• bounded complete: MB C D((3x G D.B C  x) => LLB G D) 

where
xo G D is compact if for every directed A CD, A has a supremum UA and xo U UA 

then xo C x  for some x G A. By Dc we denote the set of compact elements of D.
B is bounded i f  3x G D.My CB.yCx.

The reason for working with Scott domains is that all the semantic constructions 
we need are readily available, e.g. cartesian closure, solutions to recursive domain 
equations, recursive definition of functions, interpretation of types, including recursive 
types, as finitary projections. All these constructions are very elementary and do not 
require a heavy category-theoretical machinery.

By a Scott-domain, or domain for short, we mean a bounded complete co-algebraic 
dcpo with least element. We will denote the least element of a domain by _L. By 1 we 
denote the sole-element domain {Nil}, and by (D\ + . . .  +Dn) L, D x E ,  [£)—>£] the 
separated sum [AC98], cartesian product, and continuous function space of domains1. 
Note that in a coalesced sum, the bottom elements are identified if they have them, 
while in the separated sum, a new bottom element is adjoined.

Due to G)-algebraicity, every element of a domain D is the directed countable supre­
mum of compact elements.

Remark From the point of view of information, an element x CD  can be interpreted 
as a datum that might not be fully defined. Thus x C y  indicates that all the information 
represented by x is in y; the supremum of A C D is the element that contains all the 
information only from every element of A; the least element contains no information 
at all. The algebraicity clause guarantees that each element obtains all the information 
from the ones lower down in the ordering.

Lemma 2.1.2 If for F C [D —> E], there exists an /  G [D —► E] s.t. /  =  U F , then 
/(x) =  U{g(x) | g G F} for all x G D.

Proof. Since /  =  UF, we have (1) Mg G F(g C / ) ,  and (2) for any f  G [D —*■ E], if 
V g G F (g C / ') , th e n /C / '.

Therefore we can get for all x  G D and for all g G F, g (x) C f (x) , and if g (x) C f  (x ), 
then / ( x )  C f ( x ) .  That is / ( x )  =  U {g (x ) | g G F}. □

1 These domain operations should not be confused with the syntactic constructors for types which 
for simplicity we denoted by the same symbols.
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Definition 2.1.3 (Subdomain) E CD  is a subdomain of D if

(i) ± d EE.

(ii) If A C E and U^A exists in D, then U&A G E and UpA =  U^A.

(iii) If jc is compact in E, then jc is compact in D.

(iv) Vy G DCVx G E(y C jc —► By7 G £ c(;y C 3/  C jc)).

Lemma 2.1.4 Let £  C D be a subdomain of D. Then is is a domain.

Proof By verifying the four clauses of Definition 2.1.1.

1. Assume A C E is directed. Show UA eE :
Since A C D is directed, we get UA G D. By Definition 2.1.3 (ii), we get UA G E.

2. We need to show Vx G := {y G E \ y G f e y  [L x }  is directed Ax =  U ##).
Let x e E .  We have x° := (y G D | y G Dc,y C x} is directed Ax =  UDX°t since 
D is a domain.
We have x^ C xP by Definition 2.1.3 (iii), and by Definition 2.1.3 (iv) we have 
&  is bounded.
So we get Upx5 exists, and by Definition 2.1.3 (ii) we get =  UdJc  ̂ Q 
U ojP  = x G £ .

3. Assume B C E  and 3x G E.B C x. Then by Definition 2.1.1 we have UB G D. 
And then by Definition 2.1.3 (ii) we get UB G E.

□
Following [ABL8 6 ] we interpret types as finitary projections in D. Since the range 

of a finitary projection is a subdomain of D the semantics of types can be viewed as 
a domain. This approach provides an easy solution to the problem of defining the
semantics of a fixed point type: one can simply take the least fixed point of a suitable
continuous function on the domain [D —> £>].

Definition 2.1.5 (Finitary projection) / :  D —► D is a projection if

• /  is continuous,

• /  E id, i.e. Vx G D.f(x) C x,

• = i-e- Vx 6 D.f(f(x)) = f(x).

A  projection /  is finitary if the range of / ,  denoted by /(D ), is a subdomain of D.
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For / :  X  —► X  we set Fix(/) := {x E  X  | f(x) = x}.

Lemma 2.1.6 If a function / :  X  —► X  is continuous and f o  f  =  / ,  then /(X ) =  Fix(/).

Proo/ If f o f  = f ,  then /(X ) C Fix(/). Trivially Fix(/) C /(X ). Hence, /(X ) =  
Fix(/). □

Lemma 2.1.7 E is a subdomain of D if and only if there exists a finitary projection 
p  : D —> D such that E =  /?(D).

Proof. Assume £  is a subdomain of D. We have to find a projection p  s.t.
E = p(D).

We define /?: D —> D by p(x) =  Ui>{y G £  | y C jc} =  U^jy G £  | y C jc}. We show 
first that p  is a projection.

1. Obviously, p(x) C x for all jc g A  so we get p  C id.

2. We need to show p o p  =  p. We have

P(PW ) =  P(U{y€£|yCAr})
=  U {z e E  | zQ  U { y G £  |y  C x } }

Let A := U{y G £  | y Cx}, and B := U{z G £  | zCA}. We show A = 5 .

• B □ A: It suffices to show that A is an upper bound of {z G £  | z C A}. This 
is obvious.

• A Q B : It suffices to show that B is an upper bound of {y G E \ y C x}.
Let y E E s.t. yQx.  We need to show yQB.
By definition of B, it suffices to show that yQ  A. This follows by the fact 
that y C x and the definition of A.

3. We show p  is continuous. Clearly, p  is monotone by its definition.
Let A C D directed. We need to show p(UA) Q Up(A). Since

/7(UA) =  Ll{y E E \ yQ  UA}
U/?(A) =  U{p(a) | a E A}

=  U {U {y  E E \ y Q a } \ a E A } ,

let b := U{U{y G E \ y C a} \ a E A}, it is to show z Q b for any z E E  s.t. z E UA.
Since every element of D can be obtained as the supremum of a directed set of
compact elements of D, we get z =  U{jc G Dc \ x C z}. Then by Definition 2.1.3
(iv), there exists some xf E Ec s.t. x Q x! C z. By Definition 2.1.3 (iv), we get
x! E Dc. Thus, by (1) we get x! C b. So x C b. Hence, b is an upper bound of 
{x EDc \x Q z}. Therefore, zQb.
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Second, we want to show that E — p(D).

1. ”C”: Let x G E. Then p(x) =  Ll{y G E | y □ x} =  x. So x  G p(D).

2. ”D ”: Assume p(x) =  x. We need to show x G £.

We get Ll{y e E \ y Q x }  =x.  By Definition 2.1.3 (ii), £ E \ y Q x }  EE,  
i.e. x G /s.

”■£=”: Trivial since p is a finitary projection. □

Lemma 2.1.8 Let p  : D —► D be a projection. If G p(D) and aUb  exists, then 
a U b e  p(D).

Proof. We need to show p(a U fc) =  a U b.
Since p(a U b) □ p(a) =  a and p(a U b) □ p(b) = b, we get p(<z U b) □ a U b. We 

get p(a U b) C a U by p  C id. Therefore, p(a U 6 ) =  a U b. □

In the following two lemmas we assume that p  : D —► £> is a projection, and 
p(D)c :=DcDp(D).

Lemma 2.1.9 The following are equivalent:

(a) p  is finitary

(b) Vx G D(A* := {a G p(D)c | a C x}) is directed and p{x) =  UAX.

(c) 3A C Dc.Vx G D(p(x) =  U{a G A | a C x}).

Proo/ • We show (fc) =» (a).

Since p is a projection on D, we get p(D) =  Fix(p) by Lemma 2.1.6.

We need to show p(D) is finitary, i.e. p(D) is a subdomain of D.

(i) Since p  C id and J_ C p(-L)» we get _L =  p(-L) G p(D).
(ii) Assume A C p(£>) and U&A exists in D. We need to show U&A G p(D), i.e. 

to show p(UpA) =  U£)A since p(D) =  Fix(p).
Letx := U/>A. Thenp(x) =  U{a G p(D)c |flL x}  Lx.
We need to show p(x) □ x, i.e. p(x) □ y for all y G A.
Since U^A =  x □ y for all y G A, we get p(x) □ p(y) =  y.

(iii) Assume x is compact in p(D). Let x E  U/jA, where A C D is directed. Then 
we get x =  p(x) C p(Uz)A) =  L_l£>p(A). Therefore Ll£>p(A) =  p(U/>A) G 
p(D). Trivially p(A) C p(D). Hence, we get x C p(y) for some y G A. 
Since p  C id, we get p(y) C y. So x C y for some y G A. So x G Dc.
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(iv) Assume y C x for some y  G Dc and x G p(D). We need to show 3/  G 
{ p ( D ) ) c { y ^ y  Qx).
Since p(x) =  UA*, we get V / G AJC()/ C p(x) =  a:).
Since A* C Dc is directed by (iii), we get y U /  for some /  G A*.

• We show (a) => (b).

Assume p(D) is finitary. We need to show Vx G D(Ax := {a G p{D)c \ a C x} is 
directed and p(x) =  UA*).

Since JL G p(D), _L G Dc and _L C jc  for all x  G A  we get X G A* y  0.

For all a, & G A*, we get a C x  and bQx .  By Lemma 2.1.8, we get a U b G A*. 
So A* is directed.

Since p(x) G p(D) C D, we get p(x) =  U{<2 G p(I>)c | U  p(x)} =  U {a  G p(D)c | 
p(a) E p(*)} 3  U{a G p(Z))c | 0 E *} =  UAx-
Therefore, p(x) =  UA*.

•  We show (c) => (a).

Since p is a projection on £>, we get p(D) =  Fix(p) by Lemma 2.1.6.

We need to show p(D) is finitary, i.e. p(D) is a subdomain of D.

(i) Since p  U id and _L U p(_L), we get _L =  p(X) G p(£>).

(ii) Assume B C p(D) and UpB exists in D. We need to show UpB G p{D), i.e. 
to show p(UoB) = UdB since p(D) =  Fix(p).
Let x  := UqB. Then p(x) =  U{a G A | a C x} for some A C Dc.
Clearly p(x) C x by p is a projection.
We need to show p(x) □ x, i.e. p(x) □ y for all y G B.
Since UpB = x □ y for all y G B, we get p(x) □ p(y) =  y.

(iii) Assume x is compact in p(D). Let x C where B C D  is directed. 
Then we get x  =  p(x) C p(U£>P) =  U/jp(B). Now p(B) C p(D) since p  is 
monotone and Udp{B) g p(D) by (b). Hence, we get x  C p(y) for some 
y G B. Since p C id, we get p(y) C y. So x C y for some y G B. So x G Dc.

(iv) Assume y C x for all y G Dc and for all x G p(D). We need to show 3 /  G 
(p(0 ) )c (y E /E * ) .
Since p(x) =  U{a € A | a C x} for some A C Dc, we get V / € {a € A | a C 
■*}(/Ep(x)=.*).
Since {a G A | a U x} C Dc is directed, for all y G Dc, we get y C y7 for 
some y  G {a G A | a U x}.
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• We show (c) => (a).

Assume p(D) is finitary. We need to show 3A C DC.Vx e  D(p{x) =  U{a G A | 
a E *})• By Lemma 2.1.9 we get Vx G D(AX := {a G p(D)c | a ^  jc} is directed 
and p(x) = UA*). Let A := p(D)c. Since p(D)c C Dc, we get 3A C Dc.Mx G 
D{p{x) =  U{a G A | a C x}).

□
Lemma 2.1.10 (Admissibility of finitary projections) If for all n, pn is a finitary pro­
jection and pn C Pn+u then Unpn is a finitary projection.

Proof Let p  := U„pn. By Lemma 2.1.2, it is easy to see that p is  a. projection.
By Lemma 2.1.9 (c), it suffices to show p(x) =  U{a G p(D)c | a C jc}.
We first show that p  is idempotent:

p { p { x f )  =  (U/j/?/j)((Ump m)(x ))  =  Urt Um ( p n { p m (•*))) =  LIn(Pn(Pn(^))) =  LIn ( P n ( x ) )

= (□ nPn)(x)=p(x).
Equation (*) easily follows from the fact that the double sequence pn(Pm(•*)) is 

increasing in m and in n. Hence, we get p(D) =  {x \ p(x) =  x}, and therefore, U{a G 
p(D)c | a L x }  =  Ll{a G Dc | p(a) = a A f l L x }  =  U {a G Dc | Un{pn{a)) = c A f l L x }  = 
U{a GDc | 3n.pn(a) =  a A f l C x }  (by compactness) =  Un( U { a GDc | pn{a) =aAaC.  
x } )  =  Un(p n(x )) =  p(x). □

Lemma 2.1.11 Let (L, □) be a complete lattice, and f u f z  : L —> L are monotone. 
Assume Vx G L(/i (x) C fi{x)). Then LFP(/j) C LFP(/2 ).

Proof First to show LFP(/i) and LFP(/2 ) exist.
If /  : L —► L is monotone, let X =  {x G L \ f (x) Q x}. Since a complete latice 

cannot be empty, L has a maximal element. Thus, X  is nonempty. Then because /  is 
monotone, if x G X, then we have /( /(x ))  C /(x), i.e. /(x) G X.

Let x E X  and xo =  HX. Then xo C x, so /(xo) C /(x) C x. Hence, /(xo) is a 
lower bound of X. But xo is the greatest lower bound, so f ( xo) C xo, i.e. xo G X. 
Then /(xo) G X. Again since xo is the greatest lower bound of X, we get xo C /(xo). 
Therefore xo =  /(xo). Clearly xo is the least fixed point of /  since every fixed point is 
inX.

Second to show LFP(/i) C LFP(/2 ).
Let LFP(y-) =  \lXi(i = 1 , 2 )  where X,- =  {x G L \ f {x)  C x}.
Since LFP(/2 ) is the greatest lower bound of X2 , then it is to show LFP(/i) C X2 . 
Since LFP(/i) is the greatest lower bound of X\, i.e. LFP(/i) C. Xi, then it is to 

showX2 CX1.
Assume x G X2 . Then fz(x) C x. Since /i(x) C fi(x), we get /i(x) C x. Then 

xGXi. □
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2.2 Types and Terms

In this and the next section we study the syntax and semantics of types and typed terms. 
Untyped terms will be introduced in Section 2.4.

Definition 2.2.1 (Types) The set of types is defined by the following grammar:

Type 9 p,cr,T ::= a \  p —► <7 |1 |  p x a  \ p + o  | fix a  .p.

where a  ranges over a set TVar of type variables. The fixed-point construction fix a.p 
binds all free occurrences of a  in p.

We work with a Church-style typed lambda-calculus with constructors, pattern 
matching and recursion which we call Language ofRealisers (LoR) because its terms 
are intended to be used as extracted programs from proofs obtained by a readability 
interpretation.

We consider only the constructors Nil (nullary), Pair (binary), and Left, Right, 
In (unary). The intention behind the first four constructors should be obvious. The 
constructor In is used to model type fixed points up to isomorphism. Many definitions 
and results could be extended to an arbitrary set of constructors.

Definition 2.2.2 (Terms) The set of (Church-style typed) terms is defined by

LoR 3 M,N,Ri ::=x | X x : p.M \ MN | recx: p.M  | C(Mi,... ,Mn) \
caseMof {C,•(£)->«,},£{i „}.

where x ranges over a set of variables Var, C is a constructor of arity n, and in 
caseAfof{C/(jc,-) —> Ri}ie{i,...,n} ^  constructors Q  are distinct and each xi is a vector 
of distinct variables whose length coincide with the arity of Q. Lambda abstraction, 
X x : p.Af, and recursion, recx: p.Af, bind all free occurrences of x  in M, and a pattern 
matching clause, C/(it/) —► R/, binds all free occurrences of Jc,- in R,-.

We introduce typing rules for LoR-terms. A type context is a set of pairs T\=  x\ : 
P i, . . .  ,xn : pn (for notational convenience we omit the curly braces) where p,- are types 
and X( are distinct variables. The set of variables {jti, . . . ,  xn} (which may be empty) is 
denoted by dom(r).

The relation T b M  : p (M is a LoR term of type p in context r )  is inductively 
defined as follows. Note that in the definition of terms (Definition 2.2.2), a case ex­
pression can have in general many clauses, but our typing rules only allow two or one
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clauses.

r  h N il: 1 r , * : p h x : p

r , x : p h M : a F ,x : T h M : T
r i -  Xx\p .M \p  —► a n - r e c * :  t .M : T

rhM:  p —> a r h N:  p
r  h MTV: <7

r h M : p T \ - N \ g 
r  h Pair(M,N): p x <j

r h M : p r h M : a
r  h Left(M): p +  <r r  h Right(M): p +  a

r h M : p  +  <J r , jc i :phL:T T , X 2 : <ThR: T 
r  h caseM of (Left(;ci) —*■ L;Right(x2 ) —>/?}: T

T h M ip x c r  T,x: p , y : c\~ N : r  
r  h caseM of {Pair(jt,y) —► N} : T

r h M : p[fixa.p/a] 
r h ln ( M ) : fixa.p

rhM: fixa.p r,x : p [fixa.p/a] \ -N: a  
r  h caseM of {In(x) —> N} : a

Note that due to these rules a term can have more than one type.

2.3 Domain-theoretic Semantics
Since we can solve the domain equations as described in Section 2.1, we now define 
a particular domain D by a recursive domain equation which we will use to interpret 
types and terms.

Definition 2.3.1 We define the Scott domain D by the recursive domain equation:

D - ( l + D  +  D + D  +  D x D + [D -* D ])±
i

: Using the constructors of LoR as names for the injections into the sum, each element in 
| D has exactly one of the following forms: _L, Nil, Left (a), Right (a), In(a), Pair(a,&),
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Fun (/), where a and b range over D, and /  ranges over continuous function from D to 
D.

It will be convenient to use the continuous functions

c a s e d , :D -  [Darity(c‘) —► D] —►... —> [Darity(c"> —>D] —>D

casef C a : = i  ^  iffl =  C‘^ >^ otherwise.

We also use an informal lambda-notation Xa.f(a) and composition /  o g to define 
continuous functions on D. We do not prove the continuity in each case since this 
follows from well-known fact about the category of Scott domains and continuous 
functions. We also let LFP: [D —► D] —► D be the continuous least fixed point operator, 
which can be defined by LFP(/) =  \Jnf n(±-)-

The following definition gives an unexpected interpretation of a type p as a finitary 
projection (p), but from this one can derive a more familiar definition as a set, namely 
the image (or, equivalently, set of fixed points) of (p). Also, (p) will be used later in 
Theorem 2.4.16, and act as a function (not only a type), providing a link between the 
two semantics.

Definition 2.3.2 (Semantics of types) Let [D —> D]1̂  be the set of type environ­
ments, i.e., functions from TVar to [D —> D].

For every type p we define (p) : [[D —> D]TVar —> [D —► D]]

it \ r t  \ xt-1 ( f  Nil if a =  Nil v(l>f(«) =  casern« Nil (=  |  ±  otherwise )

(a)f(«) =  f(o)(«)
(p +  a) C(a) =  caseLeft,Right a (Left o (p)Q (Righto (a) Q  
( pxc )£{a)  = casePair a(A ^i^2 -Pair((p)C(^i),(<T>C(^2 ))) 

( p -^ a ) f ( a )  =  casepun a (A/.Fun((cr)f o /o  (p)£))
(fixa.p)^ =  LFP(Ap.Aa.casein a (AMn((p)£[a := p](^))))

W eset||p]C:=((p>C)(D).

Note that Definition 2.3.2 is well-defined since the category of domains is Cartesian 
closed and a continuous function has a least fixed point.

We call a finitary projection if £(a) is a finitary projection for all
a  e  TVar. Our goal is to prove that if f  is a finitary projection, then (p)£ is a finitary 
projection. To achieve this, we first prove the following auxiliary lemmas.

Lemma 2.3.3
<2 G Dc => In(a) G Dc.
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2. Domain-theoretic Semantics o f a Language ofRealisers

Proof Assume x  E Dc. We need to show In(x) G Dc, i.e. to show VACD directed 
(In(jc) C UA => 3y G A.In(x) □ y).

Assume In(x) C UA where A C D is directed. Let A' :={z  | In(z) G A}. Then there 
are two cases.

easel A contains no constructor element, i.e. A =  {_L}. Thus, we get UA =  _L 3  In(x), 
which is impossible.

case2 A contains a constructor. Since we have In(x) C LIA and only elements in the 
form of the same constructor can be ordered, this constructor must be In. Hence, 
without loss of generality, we have _L ^ A and A =  (In(z) | z E A'}.

Let z,z! E A'. Then I n ^ h ^ z 7) G A. Since A is directed, we get 3y G A s.t. In(z) C y 
and In(z') C y. Thus there exists some z!' s.t. y =  In(z"). So z Q z!' G A' and z! Qz!' E A' 
since zi C Z2 iff In(zi) U In(z2 ). Therefore, A' is directed.

Now we want to show that x  C LA'.
From assumption In(.x) C UA, we get there exists some y, s.t. UA =  In(y) where 

Vln(z) E A(In(z) U In(y)) AW G D(VTn(z) G A(In(z) C J) —j► In(y) C d), and d must be 
in the form of In(<f). Thus, we get Vz G A'(z C y) AW' G D(Vz G A'(z U d') —► y C d'),
i.e. y =  UA'. Since In(x) C UA by assumption, we get In(x) C In(y). Hence, we get 
x  U y =  UA'.

Since x is compact, we get 3z  G A ' i C  z. And then we get In(jt) C In(z) and 
In(z) E A. □

Lemma 2.3.4
VC C Dc(UC exists => In(UC) =  Uln(C)).

Proof Assume UC exists. We need to show In(UC) =  Uln(C).
”C”: We need to show In(UC) C Uln(C).
Let x  be an upper bound of In(C). We need to show In(UC) C x.
We have Vy G C(In(y) C x). Then x  =  In^V) s.t. Vy G C(y C x!). Thus, UC C jV. 

So In(uC) U In ^ )  =  x .
We need to show Uln(C) C In(uC).

Since y C UC for all y G C, we get In(y) C In(UC) for all y G C, i.e. In(UC) is an 
upper bound of In(C). Therefore, Uln(C) C In(UC). □

The following lemma is used in Lemma 2.3.6.
Si

Lemma 2.3.5 (Subdomain in the term of In) If A is a subdomain of D, then In(A) U 
{_L} is a subdomain of D.

Proof Let A := In(A) U {±}.
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Assume A is a subdomain of D. We need to show A is a subdomain of D. By 
Lemma 2.1.7 it is to show there exists a finitary projection p ' : D —► D such that A =  
P'(D)-

From assumption, we get there exists a finitary projection p  : D —» D such that 
A =  p(D) by Lemma 2.1.7.

Let p'(x) := casexof (In(y) —► In (p{y))} for all x E  D and y e  A.
Now we need to show p1 is a finitary projection. By Lemma 2.1.9 (c) it suffices to 

show 3A' C Dc.Vx e D (p'(x) =  U {a E A ' \ a Q  x}).
By assumption, we get 3B C Dc.Vx E  D(p(x) =  U{a E B \ a Q  x}) by Lemma 2.1.9

Then we need to show B =  A'.
If p'(x) =  _L, we get _L =  U {a e B \ a Q  _L}.
If p'(x) = p  we get p'(ln(y)) =Jn (p(y)) =  In(U{a e B \ a C y } ) =  U{In(a) |

a e B,a C y} (by Lemma 2.3.4) =  U{b e B \ b Q  In(y)}.
It remains to show A =  //(D). By definition of p(x) we get //(D) =  In(/?(D)) U 

{J_}. Then by A =  p(D), we get //(D ) =In(/?(D))U{J_} =In(A)U{_L} =A. □

Lemma 2.3.6 If £ is a finitary projection, then (p)£ is a finitary projection.

Proof. By induction on p using Lemma 2.1.7 and 2.1.9.

• p =  l.

1. We need to show ( l ) f  is a projection, i.e. to verify clauses of Defini­
tion 2.1.5.
(a) By definition of (1)£, ( l ) f  is continuous.
(b) We need to show Vx E D. (1) f  (x) C x.

If x =  Nil, (l)C(Nil) =  Nil. Thus, Nil C Nil.
Ifx ^ N il, (1)C(x) =  _L. Thus, I L x .
Therefore, (1) f(x) L x  for all x E D.

(c) We need to show ( l ) f  o (1 )^ =  ( l ) f .
I fx  = Nil, (l)?((l)C(Nil)) =  (l)C(Nil). 
i f^ ^ N ii, (1 >C((1 >C(*)) =  (1 >C(±) =  ±  =  (1 >CW.

2. We need to show (p) f  is finitary. Then to show 3A C Dc.Vx E  D( (1) f  (x) =  
U{a e A | a C x}) by Lemma 2.1.9 (c).
Let A =  {Nil}, we get Vx E D ((l)f  (x) =  U {a e A \ a  ^x}).

• p =  a.
Since ( a ) f  (a) =  f  (a) (a) for all a  E  D, and f  (a) is a finitary projection, we get
( a ) f  is a finitary projection.

• p =  p -F cr.
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1. We need to show (p +  <r)£ is a projection, i.e. to verify clauses of Defini­
tion 2.1.5.
(a) By definition of (p +  a)£ , (p +  <j)£ is continuous.
(b) We need to show Vr G D. (p +  er) £ (*) C jc.

Ifx =  Left(fc), (p +  (j)f (Left(fc)) =  Left((p)f (b)).
By I.H. we get (p)£(fc) C ft. Thus, Left((p )£(&)) C Left(fc). 
Therefore, (p +  <j)f (Left(fc)) C Left(fc).
If * =  Right(fc), (p +  a)£(Right(&)) =  Right((p)f (b)).
By I.H. we get (p)f(fc) E b. Thus, Right((p)f (£)) C Right(fr). 
Therefore, (p +  a ) f  (Right(fc)) C Right(fc).
Otherwise, (p +  a) f  (*) =  _L □ x.

(c) We need to show (p +  <r)f o (p +  <r)£ =  (p -I- a ) f .
If x =  Left(&),

<P +  ̂ ) f« P  +  ̂ )?(Left(*)))
=  (p +  <T>?(Left«p)C(fc)))
=  Left ( ( p m p K ( b ) ) )
=  Left((p)£(b)) (by I.H.)
=  (p +  <T)C(Left(b))

If x =  Right(fc), similar to the case x = Left(b).
Otherwise, (p +  a ){ ((p+ c 7){(r)) =  (p + a )C ( l)  =  l  =  (p +  a ) { ( 4

2. We need to show (p +  a) £ is finitary.
By Lemma 2.1.9 (c), it is to show

3A C Dc.VxG D((p +  <r)f(jc) =  U{a GA | a E*})

If x  =  Left(^), we get (p +  <r)f (Left(fc)) =  Left((p)f (b)). By the induc­
tion hyposis we get

3A C Dc.VjcgD((p>C(jc) =  U{a G A \ aQx})

If x  =  Right(fc), we get (p +  a ) f  (Right(fc)) =  Right((cr)f(fc)). By the 
induction hyposis we get

3A C Dc.V;c G D((<r)f (*) =  U {a e A \ a Q  jc})

Otherwise, A =  {L}.

• p = p x <j.
Similar to the proof of p + a.
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1. We need to show (p —> is a projection, i.e. to verify clauses of Defini­
tion 2.1.5.
(a) By definition of (p —> <r)f, (p —► <r)£ is continuous.
(b) We need to show Vx g D. (p —► a) £ (x) C x.

If a =  Fun(/), to show (p —► cr)£(Fun(/)) O Fun(/). By Defini­
tion 2.3.2, we get (p —► <r)£(Fun(/)) =  Fun(g). So it is to show 
Fun(g) C= Fun(/), i.e. g O f ,  i.e. (cr)£ o f o  (p)£ O / .
By I.H. we get (cr)((f((p)(a))) O f((p)(a)). By I.H. we get (p)C(a) 
O a. Since /  is monotone/continuous, we get f((p)(a))  C f(a).  
Otherwise, (p —> a)£(a) =  _LO a.

(c) We need to show (p —> <y)£ o (p —> ct)£ =  (p —> <r)£.
Ifx =  Fun(/),

< p^a)£«p-+ (7> £(F un(/)))
=  (p-^^fCPunCs)) whereg =  (ff) ? ° / °  (P)C 
=  Fun(/i) where /i =  (a )£ o g o (p) £
=  Fun(/&) where /* =  (a) £ ° /  ° (p) £ (by I.H.)
=  (p -* a)?(Fun(/))

Otherwise, (p ff)C((p -» (*)) =  (p -» cr)£(X) =  X =  (p ->

2. We need to show (p —► cr)£ is finitary. By Lemma 2.1.9 (c), to show 
3A C Dc.Vx G D((p —► ( t )£ (x )  =  U {a e A \ a O  *}).
If x  =  Fun(/), we get (p -> <r)£ (Fun(/)) =  Fun((a)£ o f o  (p)£). By the 
induction hyposis we get

3B C Dc.\/x G D((p)£(x) =  U{fc G B | C jc})
3C C Dc.Vx G D((cr)£(x) =  U{c G C | cC ^})

Then we get /((p)£(*)) =  U/({fc G 5  | b O *}). Therefore 3C C Dc.Vx G 
D((p —> c)£(x) =  Ll{a G C | a Ex}).
Otherwise, A  =  {_L}.

• p =  fixa.p.

L e t / := Ap.Aa.caseina(Afc.In((p)£[a := p](6 ))).
Hence (fixa.p)£ =  LFP(/) =  Une^ f n(±). Therefore, by Lemma 2.1.10, it 
suffices to show that Vw./n(_L) is a finitary projection.

25



2. Domain-theoretic Semantics of a Language ofRealisers

We do a side induction on n.

n = 0: We need to show /°(-L) is a finitary projection.

Since /°(-L) =  _L and _L is a finitary projection, we get /°(-L) is a finitary pro­
jection.

n-1-1: Assume p  := / ”(-L) is a finitary projection. We need to show f (p)  is a 
finitary projection.

First to show f (p)  is a projection.

We have f (p)  =  Aa.casein a (Afc.In((p)f [a := p](b))).

By definition of casein, f (p)  is a continuous function, since by I.H. we get 
(p )f  [a := p] is a continuous function/finitary projection.

We need to show f (p)  C id.

W ehave/(p)W  =  { fo ra llx eD .

In((p)£[a := p](b)) C In(fc), since by I.H. (p)C[a :=  p ] a projection. 

Therefore, f(p)(x)  C x.

We need to show f (p)(f(p)(x))  =  f(p){x).

If jc =  In(&), since by I.H. (p )f [a := p] is idempotent, we have f (p)(f(p)(x)) = 
In((P)C[« :=p]((P>?[« :=P](*))) = In((P>?[« :=P](fe)) =/(p)W - 
Otherwise, we get f(p){f{p){x)) -  L  = f(p)(x).

Therefore, f (p)  is a projection.

We need to show f (p)  (D) is a subdomain of D.

Let A := « p ) f [ a  :=p](b) \ b e  D} =  <p>C[a :=p](D).

By I.H. (p)£[a := p] is a finitary projection. Thus, A is a subdomain of D.

By the definition o f / ,  /(p)(D ) =  In(A) U {±}. This follows by Lemma 2.3.5.

□

Now we are ready to define the semantics of LoR-terms. The leading idea in the 
[ definition of the value of a typed lambda-abstraction Xx: p.M is that the domain of the 

resulting function is (the semantics of) p. Therefore, the incoming argument a is first 
projected down to p.
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Definition 2.3.7 (Semantics of terms) For all environments f : [D —> D]TVar, »}: DVar, 
and every LoR term M  we define the value [M]»T) € D.

=  1}(x)

pflV]|?tj =  casein ( M f rj) ( * / - / ( M f rj))
P * : p.M]]f t) = Fun(Aa.jM]]?»i[j::=(p>f(a)])

[recx: =  LFP(Aa.pf]Cjj[* :=<*>?(«)])
[caseMof{Q(f,) -> R,};]]?J} =  casec, c„ (Aa.p?i]]f J} [ 3  := a]),-

Note that in the recursion case, the least fixed point exists by the Cartesian closed­
ness.

One can prove the following soundness theorem, stating that if from a context T 
we can derive LoR term M  with type p, and for every variable x G dom(r), 77 (x) is an 
element of [T(x)]f (we will write 77 G [r]£ for this), then the value of term M  is an 
element of the value of type p.

Theorem 2.3.8 (Soundness For LoR terms) Let £ be a finitary projection. If T  h M : p 
and 7} € [rj£, then p fJ f j j  e [p]?.

Proof. By induction on the definition of the relation T h M : p.

1. r  b N il: 1.
We need to show [Nil] £77 G [ l ] f .
By Definition 2.3.7, we have [Nil] £77 =  Nil.
By Definition 2.3.2, we have [ l ] f  =  {Nil, -L}. Thus, [Nil] ^ 77 G [ l ] f .

2 . T ,x : p h x : p.
We need to show [xJ^T] G [p]£.
By Definition 2.3.7, we have [x]^ 7 7  =  77 (x). By assumption, we have 77 (x) G 
[p]£. Thus, [xJ^tj G [p]£.

^ r ,x : p h A f :< 7  

Tt- Xx : p . M : p —> o
We need to show [Ax: p .M] £ 77 g [p —> a]C .
By Definition 2.3.7, we have [Ax : p.M^r j  := Fun(/) where Va G D./(a) =  

(p)C(a)].
Then it is to show Fun(/) G [p —> <r]£, i.e. Fun(/) =  (p —> <r)f (Fun(/)), by 
Definition 2.3.2, it is to show /  =  (<t)£ o f o  (p)£.
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Let arbitrary a e  D. It is to show f(a) = (a) £ (/((p) f  («)))• The right-hand side 
of above equation

(a  >?(/((p)C(a)))

=  W C (IM C»I{*:=(P>;«P>C(«))])
=  (<r)f([M]?T}[.x:=<p)C(a)])

We need to show := (p)£(a)] =  (<t)£([[M]]£j)[.x:= (p)f(a)]).
Define 7ja := 77 [x := (p)£(a)]. We have the following

r , * : p h Jlf: or A »}<, e DT,*: p ]?  =* Jja € [ff]]?- (IH1)

Since we have the assumption 77 G [T] f , in order to apply IH1, we need to show 
77a G [T ,x: p ] f , i.e. to show 7jfl(x) G [p]C.
This follows by 77a(x) =  (p)f(a) G (p)C(D) =  [ p ] f .
By IH1, we have \M$T]a £ [cr]f.
Thus, pf]]C71a =  (ff>e(M<7Ja).

^ T ,x : T b Af: T 
T I- rec x : T.Af: t

We need to show [rec x : T.AfJ^?] g [t]£ .
By Definition 2.3.7, we have [recx: t.M]]^77 =  LFP(/) where f (a)  := [AfJ^Tj [x :
=  <T>C(«)]-
Then it is to show LFP(/) G [t]£.
Define 77' := 77 [x := ( r ) f  (fc)] where b =  LFP(/). We have the following

r ,* : t h Ilf: tAJJ; € IT>: =► M t y  6 M f • (Ml)
Since we have the assumption 77 G [Fj| f , in order to apply IH1, we need to show 
77' G [ r ,x : r j f , i.e. to show 77' (x) G [ r j f .
This follows by t\'(x) =  ( t )£(&) £ (T)C(D) =  M ?-
By IH1, we have 6  H f ,  i.e. (t)C(&)] 6  M f ,  i.e. /(h ) e
tt*K-
Since b =  /(fc), we have LFP(/) G [T]]f.

5  T b M : p —> a  T b  AT: p 
T b M A f:a  

We need to show [AfA7j| ̂  17 G [cr]]£.
By Definition 2.3.7, we have two cases.
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(1) If M ?J}  =  Fun(/), then =  /([Wjft}).
We need to show /( [A ^ t j )  G [afl£, i.e. =  <<r)C(/(M f »?)).
We have the following

p f l ^ e l l p -  a U ,  (IH1)

G [[pi?. (IH2)

By IH1, we have =  (p —> <r) ̂  ([[Af]] ̂  T|), i.e. Fun(/) =  (p —►
a ) f  (Fun(/)). By Definition 2.3.2, we have /  =  ( o ) ^ o f o  (p ) f ,
i.e. /([JVflffj) =  <cf)C(/«P>C(E^V]]C»7)))- 
By IH2, we have [Affl̂ ?] =  (p)C([A^T7).
Then we get/([AT]£77) =  (<?)£(/([#]] £77)).

(2) Otherwise, [MW] £77 = _L. We need to show _L G M C - 
This follows by Definition 2.3.2.

6  n ~ M :p  r \ - N : o
T h Pair(M,A/): p x a  

We need to show [Pair(M,TV)]^T] g [ p x a ] { .
By Definition 2.3.7, we have [Pair(M,7V)]|^r7 =  Pair([Mj^rj, [W ]^).
By Definition 2.3.2, we have [p x <y]f =  (p x cr)C(D) =  Pair([p]£, [ a ] f ) U
{-L}.
Then it is to show Pair([Mj^77, [W ]^) G Pair([p]f, [cr]]f),
i.e. to show [MJ^tj G [p]£ and [WJ^tj G [<t]£.
This follows by

\ M f t \  G IpK , (IH1)

G l a K -  (M 2)

? THM :p
T b Left(M): p +  a

We need to show [Left(M)]|^r] G [p +  <r]f.
By Definition 2.3.7, we have [Left(M)J^r] =  Left([Af]]^r]).
By Definition 2.3.2, we have [p +  c ] f  =  (p +  (D) =  {(p +  o)^(a) \ a =
Left(&),fcGD}U{(p +  cr)£(a) | a =  Right(fc),fcGD}U{_L}, and (p +  a)£(a) =  
Left((p)f (b)) if a = Left(fc).
We need to show Left([MJ^tj) G {Left((p)f (6 )) | & G D} =  Left([p]]f), i.e. to 
show [MJ^jj G Qp]]C-
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This follows by

g |p]|c. (i h i )

8  T \ - M : a
r  h Right(M): p +  a

We need to show |[Right(M)]|^rj e  [p +  a ] f .
Similar to the case Left. 

g T h M :p  +  a  r , jc i :p h L :T  F,jc2 : cr I-/?: t
T h caseM of (Left(jci) —> L;Right(^2 ) —> • T

We need to show [caseM of { Left (*1) —► L; Right (*2 ) —► ^ } ^ rl £ [t]£ .
Let [case 7] be [caseMof{Left(jti) —»-L;Right(jC2 ) —►
By Definition 2.3.7, we have three cases.

(1) If [Mj^ry =  Left((p)£(a)).
Then [case] Cry =  lL^r}[x := (p )f (fl)].
It is to show [IflC77 [x := (p)£ (a)] e [t]£ .
We have the following

Va 6 D.p#T)[* := <P)C(a)] G M f -

Since we have the assumption 77 e  [T] £, in order to apply IHI, we need to 
show Vy e  dom (r,x: p). T][x := (p)£(a)](y) e  [(F,jc : p)(y)JC.
The checking is similar to the previous one.
Applying IHI, we have [L ]^ [x  := (p)£(<*)] G [tJ£.

(2) If [M ^r]= R igh t((a )£(*)).
Then [case]] £77 =  [R]£r][;t:= (<r)£(a)].
It is to show [R]^r][x := (<r)£(a)] e  [t]£ .
We have the following

Va € := (<T>?(a)] € W ? . (IH2)

Since we have the assumption 7j e  [T] £, in order to apply IH2, we need to 
show Vy e dom (r,x: a ). r\[x := (cr)£(a)](y) € [ ( ! > :  a)(y)J£.
The checking is similar to the previous one.
Applying IH2, we have [ /? ]£ 7 7  [jc := (cr)£(a)] e  [tJ£ .

(3) Otherwise, [case]] £77 =  _L. We need to show _L e  [t]£ .
This follows by Definition 2.3.2.
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1 0  T b M i p x a  F ,x : p , y :G \ - N  : t  
r  b caseM of {Pair(x, j)  —> N} : T

We need to show [caseM of(Pair(jt,;y) —► € [t]]£.
Let [case]] 7̂] be [caseM of {Pair (x,
By Definition 2.3.7, we have two cases.

(1) If[M ]]^=Pair((p)C(a),(or)?(ft)).
Then [caseJ^rj =  lN^r][x:= (p)£(a),y:= (o)£(b)].
It is to show [iVj^rj[x:= (p)£(a),y:= (o)£(b)\ e  [ r j f .
We have the following

Va,b e D.[pV]]C7}[*:= (pK(«),y ■= W f  (*)] 6 [MIC- (Ml)

Since we have the assumption rj e  [T] £, in order to apply IHI, we need to 
show Vz € dom (r>: p , y : a ) .  r}[x := ( p ) £ ( a ) , y  := ( o ) \ ( b ) ) ( z )  e  [ ( r > : 
P>y:<*)(z) K-
The checking is similar to the previous one.
Applying IHI, we have [A ^ tjI* := (p)£(a),y := ( a ) f  (fc)] G [?]]£.

(2) Otherwise, [case] £77 =  _L. We need to show _L e  [t]£ .
This follows by Definition 2.3.2.

^  rb M ip 'f f ix a .p '/a ]  
r  b In(M ): fix a .p '

We need to show [In(M)]£rj e  [fixa.p 'Jf.
By Definition 2.3.7, we have [In(M)]]^7] =  In([M]]^7j).
Then it is to show In([Mj^7]) e  [fix a .p 'flf.
By Definition 2.3.2, we have

[fix a .p ']  C
=  LFP(Ap.Aa.casein a (A&.In((p')f [a := p](fc))))(D)
=  {In((p')f [a := fixa.p ']^)) | b e  D} U  {±} (taking p:=  fix a .p ')
=  In((p'[fixa.p7a])C(D ))u{±}

=  Indp 'Ifixa.pV allO ui-L }

We need to show In([Mj^7]) e  IndJp'Ifixa.p'/aJJQ.
This follows by

€ [p'lfixa.p'/aJK- (M!)
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2. Domain-theoretic Semantics o f a Language ofRealisers

^ 2  r h M :  fixa.p ' r ,x :  p '[fixa.p '/a] \-N:  a  
r  h caseM of (In(;c) —► N} : a

We need to show [[caseM of{In(jc) —► N}^ t ]  e  [[cr]]C.
Let [casefl^T] be [[caseM of {In ( jc )  —> A/}] £77.
By Definition 2.3.7, we have two cases.

(1) If iMj^ry =In((p '[fixa.p//a])C(a)).
Then [caseJ^rj =  [^Vj^r][x:= (p'[fixa.p'/a])£(a)].
It is to show [[7VJ ̂  ?7 [jc  : =  (p '[fixa .p '/a ])f (a)] e  [ c j f .
We have the following

Va € := (p '[fixa.p '/«])f(a)] e  H<r]]C- (M l)

Since we have the assumption 7] G [ r]  in order to apply IHI, we need to 
show

Vy G dom(r,x: p '[fixa.p '/a]).
Tf[x:= (p '[fixa .p '/a ])f (a)](y) € [[(r,x :p '[fixa.p7a])(y)l?

The checking is similar to the previous one.
Applying IHI, we have [ [A J^ jc := (p'[fixa.p'/a])£(a)] G [[ajf.

(2) Otherwise, [[case]]^7] =  _L. We need to show _L G I M I S -  
This follows by Definition 2.3.2.

□

2.4 Relating Typed and Untyped Terms
We now relate the semantics of typed terms with the semantics of untyped terms which 
are defined exactly as typed terms except that the type annotations for abstraction and 
recursion are omitted:

Definition 2.4.1 (Untyped terms)

LoR-  3 M,N,Ri ::= jc  | X xM  \ MN | recx.M | C(Mi,... ,Mn) |
caseMof{C;(xiJ -► R,};e{l,

The same provisions made in Definition 2.2.2 for typed terms apply here.

The semantics of untyped terms is straightforward. It can be defined exactly as in 
the typed case except that the type environment £ : [D —> D]TVar and finitary projec­
tions involved in typed abstraction and recursion are omitted.
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Definition 2.4.2 (Semantics of untyped terms) For every environment 7] : Var —► D 
and every LoR-  term M we define the value [M] 77 E  D.

M n  =  ij(x)

pfW]]j? = casepun ( M j)) (A /./(M tj))
P jc.M]]tj =  Fun(Aa.|[A/]]T][jc := a])

[recjc.M] 7] = LFP(Xa. p f ]  7) [x: = a])
[ [ c a s e A f o f -* R,•}/]!? =  caseCl)...,cn (M ^ l)  (A3.[/?/]]tjR  := a])i

Our main result, the Coincidence Theorem 2.4.16, only applies to terms that are 
typed w.r.t. to a restricted notion of types where fixed point types fixa.p are allowed 
only if p is positive in a.

Definition 2.4.3 (p positive/negative in a) 
a  is positive in a.
1 is positive and negative in a.
p —► <7 is positive in a  if p is negative in a  and a  is positive in a. 
p —»<7 is negative in a  if p is positive in a  and a  is negative in a. 
p +  a  and p x cr are positive in a  if p and <7 are positive in a. 
p +  a  and p x a  are negative in a  if p and a  are negative in a. 
fix]3.p is positive in a  if a  =  p or p is positive in a . 
fixp.p is negative in a  if a  =  j3 or p is negative in a.

Definition 2.4.4 (Regular types) We define regular types p as follows.
1  is regular, 
a  is regular.
p +  (T, p x <t, p —► cr are regular if p and <7 are regular, 
fix a .p  is regular if p is regular and p is positive in a .

Example 2.4.5 fix a . (a  —► a) is not regular, since a  —* a  is not positive in a .

In the following all types are assumed to be regular.
The proof of our main result uses a logical relation based on the notion of admissi­

bility. It has been used in [AJ94] and generalised in [Pit93], where it is used to prove 
properties of least fixed points.

Definition 2.4.6 (Admissible relation) A relation r C D2 is called admissible if it sat­
isfies

1. ( l , - L ) G r .

2. If (dn,d'n) e r and (dn,d'n) C (dn+ud'n+1) for all n, then Un€N{dn,d!n) E  r.
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Note that a finite relation r C D2 with (_L, _L) G r is always admissible.
Let Ad := {r C D2 | r is admissible}.

Lemma 2.4.7 Ad is a complete lattice.

Proof We know (^ (D 2), C) is a complete lattice, and if X C ^ ( D 2), then UX =  UX 
and nX =  nX. Clearly, Ad C «^(D2).

We need to show Ad is a complete lattice. It suffices to show that either every 
subset has a least upper bound or every subset has a greatest lower bound. First, we 
show that if we have a set of admissible relations, the intersection is admissible again. 
And then it follows this intersection is the greatest lower bound in Ad.

LetX C Ad. Then HX =  {(x,y) G D2 | Vr G X.(x,y) G r}.
We need to show nX is admissible, i.e. to show the following two statements hold.

• (_L,_L)GnX.

All relations r G X are admissible and every admissible r  contains (_L,±). 

Therefore, (±,_L) G HX.

• If {xn,yn) G HX and (*„,?„) C (*„+!,yn+i) for all n, then Une^(^n,y«) e HX.

Since D is a domain, Unxn and Unyn exist. Thus, U„e^(xn,y„) =  (Unxn,\Jnyn) 
exists.

Let r G X. We need to show U„eiv(xAl,yn) G r, i.e. (x,y) G r where j c  =  Unxn andy = L-Iny„.

Since X C Ad, r is admissible.

By assumption (xn,yn) G r for all n. Thus, (x,y) G r.

Therefore, I— (%n?yn) C OX.

□
To prove our main result we define a logical relation ~ J c D x D  which can intu­

itively be understood as a notion of equivalence of elements of a regular type p. We 
use the informal (second-order) lambda abstraction (Ar G Ad.) to define functions on 
the set Ad of admissible relations on D.

Definition 2.4.8, Lemma 2.4.10 and Lemma 2.4.9 below should be considered si­
multaneously, in order to guarantee that the definition is well-defined. We use the fact 
that every monotone function /  on a complete lattice L has a least fixed point LFP^(/).

Definition 2.4.8 (Logical Relation) We define a relation ~pC D x D for every regular 
type p and every family of admissible relations R G Ad1̂  (i.e. R{ct) G Ad for all
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a  e  TVar).
R

~1
R

= { (± ,1 ), (Nil,Nil)}
=  R(a)
=  {(-L,-L)>U{(Palr(«i,«2 ),Pair(i»i,*2 )) | ai ~Jj, bu a2 b2} 

P1+P2 := {(-L,X)}U{(Left(ai),Left(fci))|ai~* ii}

U{(Right(a2),Right(l>2 )) I « 2  b2)
= {(-L.-L)}U{(Rin(/),Fnn(g)) |

Va,b £ D(a fc => f (a)  g(6 ))}

= LFPAd(Ar 6  Ad.{(_L, _L)} U {(In(a),In(6 )) | a ~ f a '=r] b})

R
~ P l * P 2

R
~p->o

R
J fixa.p

Remark Logical relations [Plo73] have been used successfully to prove properties of 
typed systems. Famous examples are the strong normalisation proofs by Tait and Gi­
rard using logical relations called computability predicates or reducibility candidates. 
The crucial feature of a logical relation is that it is a family of relations indexed by 
types and defined by induction on types such that all type constructors are interpreted 
by their logical interpretations, e.g. —> is interpreted as logical implication.

Lemma 2.4.9

(1) If p is positive in Of, then Ar C  D2. is monotone in r.

(2) If p is negative in Of, then Ar C D2 p^a ' ^ is anti-monotone in r.

Proof. By induction on p.

1 . p =  l.

For (1), to show for r\ C r̂ >

For (2), to show ~ ^ a '-r2^c~^[«--ri] for ri c

By Definition 2.4.8 we have [̂a--r2]_ (Nil,Nil)}.
Proved by equality.

2. p =  a.
Since Of is not negative in Of, there is only one case.

We need to show ~ ^ a '- r i^ C ~ ^ a '-r2  ̂ for r\ C r2 .

We get ~ ^ a '-ri^= /?[of := ri](of) =  r\ and ~ ^ a _r2^= /?[of := r2](of) =  ri by 
Definition 2.4.8.
We get rd c ~ $ a ’=r  ̂ by r\ C r2.
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2. Domain-theoretic Semantics o f a Language ofRealisers

3. p = p i x p i .

For (1), to show Ar C D2. is monotone, i.e. ^ p l x ^ Q ^ p l x ^  for
n  C r2.

For (2), to show Ar C D2. is anti-monotone, i.e. ^ p l x ^ ^ p l x ^
for r\ C r2.

We get =  {(X, X)} U {(Pair(ai,a2), Pair(fci,h2)) | ai ~p | “ :=ri1 &i,a2 ~
t̂ ‘:=n]b2}, and~pj“:=r2,=  {(X,X)}u{(Pair(a1,a2),Pair(fci,fe2 )) | at ~p | “ :=n21 

fcl,a2 ~p]a _r2  ̂b2} by Definition 2.4.8.

We need to show Ar C D2. ~p, and Ar C D2. ~pja are monotone and 
anti-monotone.
For (1), since pi x p 2 is positive in a , we get pi and P2 are positive in a. By 
I.H. we get Ar C D2. ~p]a'- ^ and Ar C D2. are monotone.
For (2), since pi x p2 is negative in a , we get pi and p2 are negative in a. By 
I.H. we get Ar C D2. ~p)a'- ^ and Ar C D2. are anti-monotone.

4. p =  P i+ P 2 .
Similar to the proof of pi x p2.

5. p =  p —► a.

For (1), to show Ar C D2. is monotone, i.e. ~ p ! ^ ri^ C ~ p !^ r2̂ for
n  c  r2.

For (2), to show Ar C D2. ~ p ! ^ ^  is anti-monotone, i.e. ~p5 Q 5  <Tri  ̂
for ri C r2.

By Definition 2.4.8 we have r J ^  ~r̂ =z
{(-*->X)}u{(Fun(/),Fun(g)) | Va,£>eD(a~p[“ :=ri1 b =>• /(a )  ~ £ [a:= ri1  g(b))},

and~p!^CTr̂ =
{(-L. X)}u{(Fun(/),Fun(g)) | Va,b € D(a ~ p |a:=rj| fc =4* /(a )  ~ £ [a := ' 21 g(h))}.

For (1), assume Ar C D2. ~p^“'- ^ is anti-monotone, to show Ar C D2. r 
is monotone.
Since p —► cr is positive in a , we get p is negative in a  and a  is positive in a . 
By I.H. we get Ar C D2. is monotone.

For (2), assume Ar C D2. ~pf“'- ^ is monotone, to show Ar C D2. is
anti-monotone.
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Since p —> a  is negative in a , we get p is positive in a  and a  is negative in a. 
By I.H. we get Ar C D2. is anti-monotone.

6 . p =  fix/3.p.

For (1), to show is monotone, i.e. for r\ C r2.

For (2), to show is anti-monotone, i.e. for ri C r2.

By Definition 2.4.8 we have

~ S ^ ,|,= LFP(A»/ CD».{(±, j.)}L){(Iii(a ),lh(i>)) a ~ p '“:=riP:=/| b}), and 

~ S p . r '=  LFP(A>J -  D2 -{(-L.-L)}U{(In(a),In(fo)) | a fc}).

Let =  LFP(4>,) (i = 1 ,2 ) where d*,: £?(D2) —» ^ ( D 2) and

*,•(0  =  {(_L,X)} U {(In(a),In(£>)) | a ~*[“:=r'P :=''] *}.

By Lemma 2.1.11 with setting L := <^(D2), it is to show <Fi C <J>2 or <I>2 C d>i 
respectively for (1) and (2), i.e. to show Ar C D^Ar7 C D2. rJ^a-~r̂  are 
monotone and anti-monotone.

For (1), since fix/3.p is positive in a, we get p is positive in a  and j3. By I.H. 
we get Ar C D2.A /  C D2. rs ^ a'~r̂ '~ r̂  is monotone.

For (2), since fixj3.p is negative in a , we get p is negative in a  and /3. By I.H. 
we get Ar C D^Ar7 C D2. rJ^a’~r̂  [s anti-monotone.

□
Lemma 2.4.10 We assume R e  AdTVar. Then ~p is admissible.

Proof. By induction on p.
Trivially we have (_L, _L) in all relations. So we now focus on proofs of the second 

clause of admissibility (Definition 2.4.6).

• p =  l.

Since is a finite relation containing (_L, J_), we get is admissible.

• pi x p2.

Let (dn)neN be a chain in rv»p xp2« Then dn =  (Pair(an,^),Pair(^rt,^ ) )  where 
an Q an+h a’n E a'n+v bn E bn+u bfn C bfn+l for all n. Hence, (an,bn)neN is a 
chain in and (a'n,b'n)neM is a chain in
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Since ~ Pl and are admissible, we get U(an,bn) =  (UaniUbn) and 
u ( a n M  = ( U a 'n>u b n )  So (Pair(Ua„,Ufen),Pair(U ^,U ^)) e~piXp2.
Since (Pair(Uart,U^n),Pair(UaJl,U^Jl)) =  U(Pair(a„,aJl),Pair(^,^Jl)) =  Lid*, we 
getU dn e~*ixp2.

• P = P i+ P 2 .
Let (dn)neN be a chain in ~p1+P2. Since it is an increasing chain, then dn could 
be (1 ,-L), or (Left(an),Left(fc„)), or (Right(«n),Right(^)). w.l.g. we getd„ =  
(Left (an), Left (&„)) and an ~pt bn. Since dn C dn+1, then we have an C an+1, 

Q bn+\ for all n. Hence (an,bn)neN is a chain in ~ Pl.

Since ~ Pl is admissible, we get U(a„,&n) =  (Uan,U£n) G~pr  Hence, we have 
(Left(Uan),Left(uZ7Al)) ^~p1+p2*

Since (Left(Uaw),Left(Ufew)) =  Udn, we get Udn £~p1+P2.

• p = p a.
Let (dn)neN be a chain in Then dn =  (Fun(/„),Fun(gn)) where f n , g n  e
[D -  D] s.t. Va,b G D((a,b) E~*=> (fn(a),gn(b)) G ~g).

Hence, ( f n ( a ) , g n ( b ) ) n e N  is a chain in Since is admissible, we get 
(U/w(a),Ugn(^)) G ~ g .

Then we have Uc?n =  (Fun(/),Fun(g)) where f  = Ufn and g =  Ugn, i.e. /(a )  =  
U(/„(fl)) and g(b) =  U(gn(b)). Therefore, Udn

• fixa.p.

We have ~gxo.p= LFPAd(^) where

<I>: Ad -+ Ad
®(r) =  {U>-L)}'-j {(In(a)>In(*)) |a ~ p '“ :=rL } .

First we have to show that indeed : Ad —> Ad. Let r G Ad. We have to show 
d>(r) G Ad. The proof is similar to the proof of pi + P 2 . By Lemma 2.4.9, we 
have is monotone. Then the least fixed point exists, we have p is
admissible.

□
Definition 2.4.11 (Compatibility) Let r C D2 and p  G [D —* D]. We call r  and p  
compatible, in symbols r «  p, if

(i) Vfl,ftGD(r(fl,fc)->p(fl)=/?(fc)).
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(ii) \ /aeDr(p(a),p(a)).

(iii) \/a,b G D(r(a,b) —► r(p(a),b)).

We call R G ^ ( D 2)TVar and £ G [D —> D]1̂  compatible, in symbols /? ~  £ if R(oc) «  
£(a) holds for all a  G TVar.

To obtain an example of compatibility one may take any idempotent p  G [D —► D] 
and define r C D2 by r := {(<z,&) G D2 | p(a) = p(b)}. Then, clearly, r  «  p.

Lemma 2.4.12 If /? is admissible, £ is a finitary projection, and R «  £, then ~p «
(p)C.

Proo/ We write r «,y,- p for the notion of compatibility obtained by deleting property 
(iii) in Definition 2.4.11. Similarly, r «,-,•/ p  means compatibility where properties (i) 
and (ii) are deleted. The notions R £ and /? ^,77 £ are defined mutatis mutandis as 
in Definition 2.4.11.

We show that if R is admissible and £ (a) is a finitary projection, then:

(1) If R&i,a £, then « fif/ (p)£.

(2) If R ~ /,7  £, then ~p (p)£.

Both statements are proved by induction on p.
First we prove the statement (1).
Casel:
(i) Assume a b. We have to show (l)£(a) =  (l)£(fc).
By Definition 2.4.8, if a = b =  _L, we have (l)£(a) =  _L =  (l)£(fc) by Defini­

tion 2.3.2.
If a =  b = Nil, we have (1)£(«) =  Nil =  (l)£(fc) by Definition 2.3.2.
(ii) Let a G D. We have to show (1 )£(a) (l)£(a).
If a =  Nil. Then by Definition 2.3.2, we have (l)£(a) =  Nil and Nil Nil.
If a ^  Nil. Then by Definition 2.3.2, we have (l)£(a) =  _L and _L _L.
Case a:
L e tf l ( a )  :=  { (a o A )  I C(a)(flo) =  £(a)(fco)}.
(i) Assume a k  We have to show (a)£  (a) =  (a)£(b). By Definition 2.3.2, it 

is to show £(a)(a) =  £(«)(&).
By Definition 2.4.8, we have a ~ ^ b  = R(a)(a,b).
(ii) Let a G D. We have to show (a)£(a) (a)£(a), which follows by R «  £. 
Casep +  a:
(i) Assume a ~p+(y We have to show (p +  cr) £ (a) =  (p +  a) £ (£).
By Definition 2.4.8, if a =  b =  _L, we have (p +  cr) £ (a) =  _L =  (p +  <r)£(fc) by 

Definition 2.3.2.
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Ifa =  Left(ai) and& =  Left(&i), by Definition 2.3.2 we have (p +  a ) f  (Left(ai)) =  
Left((p)f(ai)) and (p +  (Left(fci)) =  Left((p)£ (b\)). By induction hypothesis 
(i)ofp,w ehave(p)f(fli) =  (p>f(Z?i). ThenwegetLeft((p)£(ai)) =Left((p)£(fci)).

If a =  Right(ai) and b = Right(fci), we get (p + cr) £ (Right(ai)) =  Right( (p) £ (ai)) 
and (p 4- <r)£(Right(6 i)) =  Right((p)£(&i)) by Definition 2.3.2. Again from induc­
tion hypothesis (i) of p, we get Right((p)£(<zi)) =  Right((p)£ (fci)).

(ii) Let a G D. We have to show (p 4- <r) £ (a) ~p+<T (p +  cr) £ (a).
If a = Left(ai), it is to show Left((p)£ (a\)) ~p+CT Left((p)£(ai)) by Defini­

tion 2.3.2, then it is to show (p)£(ai) ~p (p)£(ai). This follows by the induction 
hypothesis (ii) of p.

If a = Right(fci), similar to the proof of case Left(ai).
Casep x g :
(i) Assume a ~ pXOb. We have to show (p x o)£(a) =  (p x  cr)£(fc).
By Definition 2.4.8, if a =  b =  _L, we have (p x cr)£(a) =  _L =  (p x <r)£(fc) by 

Definition 2.3.2.
If<z =  Pair(ai,tf2 )>£ =  Pair(fci,fc2 ), we get (p x a) £ (Pair (a 1 ,^2 )) =  Pair((p)£ (ai), 

(<7)£(a2)) and (p x <r)£(Pair(£i,fc2 )) =Pair((p)£(fci),(a)£(fc2 ))by Definition 2.3.2. 
By induction hypothesis (i) of p, we have (p)£(ai) =  (p)£(£>i). By induction hypoth­
esis (i) of <t, we have (cr)£(<z2 ) =  (ct)£(^2)-

Then we get Pair((p)£(ai), (a)£(a2)) =  Pair((p)£(fci), (<7)£(fc2)).
(ii) Let a G D. We have to show (p x a) £(<2) ~ pXC7 (p x a)£(a).
Ifa =  Pair (a 1,02)5  by Definition 2.3.2 it is to showPair((p)£(oi), (a)£(<22)) ~px<r 

Pair((p)£(0i),(<j)£(a2)), then it is to show (p)£(ai) ~p (p)f(fli) and (a)£(o2) 
(ct)£(o2 )- This follows by the induction hypothesis (ii) of p and a.

Casep —► <t:
(i) Assume o ~ p ^ a b. We have to show (p —► c)£(a) =  (p —)► <r)£(fc).
If o =  b =  ± , then this is trivial.
If a =  Fun(/) and b =  Fun(g). By the definition of ~p_>cy (Definition 2.4.8), we 

have

Vc,d G D(c f(c) g(d)) (*)

By Definition 2.3.2, we have (p —► cr)£(/) =  Fun((<7)£ o f o  (p)£) and (p —♦
°K (g )  =  Fun«<r)f o <p)f )•

Let c 6 D. We need to show (<?)?(/( (p)?(c))) =  (<*)?(«( (p)C(c)))-
By induction hypothesis (ii) for p we have (p)£(c) ? <p>cw.
Then by (*) we have / ( ( p ) f  (c)) «((p)C(c)).
Then by induction hypothesis (i) for (7 we have

<ff>f(/((p>C(c))) =  (a)C(*(<p>C(c)))

(ii) Let a G D. We have to show (p —► <r)£(a) (p —> <r)£(a).
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If a ^  Fun(/). Then (p —> o)^(a)  =  ±.  Thus _L ~p_+a _L.
If a =  Fun(/), then, by Definition 2.3.2, we have (p —► <r)f (a) = Fim((<y)f o f o

( P K ) .
We need to show Fun((<r)£ o f o  (p)Q Fun((a)£ o f o  (p ) f ). By the defi­

nition of ~p-*cr (Definition 2.4.8), it is to show

Vc,<f 6  D(c rf => <ff>C(/«p){;(c))) ( o K ( f ( ( p K ( d m -

Assume c ~p d. By induction hypothesis (i) for p, we have (p)£(c) = (p)£(d). 
Then /((p>C(c))=/((p>f(rf)).

By induction hypothesis (ii) for cr, we have

(a )C (/« p )f  (c))) (<7>C(/«p>e(rf)))

Case fixa.p:
By Definition 2.3.2, we have (fixa.p)f =  LJnPn where
po =  Aa.-L, prt+i =  Aa.casein a (Afc.In((p)£[a := pj(fc))).
We set r := and show r pn by a side induction on n. This will be

sufficient, since, as one easily sees, because r is admissible (by Definition 2.4.8), the 
conditions (i) and (ii) of compatibility are closed under taking directed suprema of the 
right argument. Hence from r pn for all n it follows r ^  u p.

n = 0: (i) is trivial since po is constant, (ii) holds since po(a) =  _L and (_L, _L) e r 
since r is admissible, by Definition 2.4.8.

n + 1: (i) Assume r(a,b). We have to show pn+i(a) =  pn+i(b).
If a =  b =  _L, the equation trivially holds.
Now assume a =  In(c) and b =  In (d).
Then pn+i(a) =  In((p)£[a := pn](c)) and pn+i(b) =  In((p)f [a := pn](d)), and 

we have c d by the definition of r.
By the side induction hypothesis, r pn.
Hence, by the main induction hypothesis, rJ^a ~r̂ ~ iU (p )f [a := pn\, since r is 

admissible and pn is a finitary projection (see proof of Lemma 2.3.6).
It follows (p )f [a :=pn](c) =  (p )f [ a := Pn](d) and therefore pn+i{a) = pn+i(b).
(ii) Let a G D. We have to show r(pn+i(a),pn+i(a)).
If a =  _L, then pn+i (a) =  _L and r(_L, _L) holds by admissibility of r.
If a =  In(c), thenp„+i(a) =  In((p)f [a :=p„](c)).
By the side induction hypothesis, r  pn•
Hence, by the main induction hypothesis, (p )f[a  := pn], since r is

admissible and pn is a finitary projection (see proof of Lemma 2.3.6).
It follows (p)C[a :=pn](c) ~ p [a:=r] (p )f[a  :=p«](c).
Therefore p„+i(a) ~£xap p„+i(a), i.e. r(pn+i(a),p»+i(a)).
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2. Domain-theoretic Semantics of a Language ofRealisers

Second, for statement (2), we only show two interesting cases, p —> a  and fix a.p. 
Casep —► a:
Assume a b. We have to show (p —► a) f  (a) b.
If a =  b =  X, then (p —> a) f  (a) =  _L =  b. Thus _L ~p^<7 X.
If a = Fun(/) and b =  Fun(g), then by the definition of ~p-+<7, we have

Vc,d e D (c~ * d = > /(c ) ~* *(</)) (*)

By Definition 2.3.2, we have (p —> a )f(a )  =  Fun((t7 )£ 0 / 0  (p )f).
We need to show Fun((a)£ 0 / 0  (p )f ) ~p->o- Fun(g). By the definition of ~p^<7, 

it is to show

Vc,d G D(c d <<?)£(/( (p)C(c))) ~ 5 £(<*))•
n

Assume c ~p X By induction hypothesis for p, we have

( p K ( c ) ~ $ d  (IH(iii))

Then by (*) we have /((p)£(c)) ~<xg(d), and by induction hypothesis for <r, we have

( ° K ( f ( ( p K ( c ) ) ) ~ Rog(d)

Case fixa.p:
Set r := ~ fixa p and p  := (fix a.p) f . We have to show that r(a, &) implies r(p(a), &), 

i.e. r Q  where5 := {(a,&) | r(p(a),&)}.
We verify that rf is  ~m p  holds. Indeed, if (r n s)(a,b), then r(p(a),b) since

s(a,b) holds, and hence, since by Lemma 2.3.6 p  is idempotent, r(p(p((a)),b) since
s(p(a),b) holds, i.e. (rn s)(p(a),b).

Since r is the least fixed point of the operator <I> := Ar.{(X, X)} U {(In(a),In(fc)) | 
a b} we can attempt to prove the inclusion r C s by induction on d>, i.e.

Q s.
In fact we use the strong induction principle (see, for example, [Berl 1]) accord­

ing to which it suffices to show <J>(rfi.s) C s (instead of d>(s) C s). Clearly (X,X) e s.
Hence we assume a jy ^ave t0 show r(p(In(a)), In(fc)). Since p(In(a)) =  
In((p)C[ct := p](a)) andr =  0(r), wehavetoshow<I>(r)(In((p)f[a := p](<z)),In(fc)),
i .e . ,(p )C [a := p ] (a )^ [a:=rU .

By induction hypothesis, and because r f ls ~m p, (p )f [a := p](a) ^ [ a -rnsl £
I and hence (p )f[a  := p](a) b, by monotonicity (Lemma 2.4.9). □

The next theorem is the core of the proof of the Coincidence Theorem (Theo­
rem 2.4.16). For its proof we need the following auxiliary lemmas.

Let X  be a set of type variables. We define R =x R1 as Va E X(R(a)  =  R'{gc)). 
Thus, R = x R ' A Y C X = > R = y R'.
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n gt
Lemma 2.4.13 ~ T= ~ T i f  R and R! coincide on  all free type variables o f  T, i.e. 

R  = F T V ( t )  R -

Proof. By induction on T.

1 . T = l .
R  R fWe need to show

This follows by = ~ ^ =  {(_L, J_), (Nil,Nil)} (Definition 2.4.8).

2 . t  =  a.
D ^

We need to show ~ a = ~ a  •

By Definition 2.4.8, we get ^(°0» and =  Rf(&)- 

Since /? = ftv (t) w e  have ~ a= ~ a •

3. r  =  p x a.

We need to show ~Jxa=~px<r

By Definition 2.4.8, we have ~ pX(T=  {(_L,_L)} U {(Pair(<zi,<Z2 )>Pair(&i,fc2 )) | 
~p&i,02 -5 ^ 2 } ,a n d -p X<T={(X,X)}U{(Pair(ai,a2),Pair(^i,62)) |«i ~p 

&1,02 &2}-

By I.H. (i.e. ~p=~p and ~ * = ~ £ ), we have ~ pXG=~pXG-

4. T =  p +  (7.
Similar to the proof of p x (7.

5. T =  p —> <7.
n /J/

We need to show ~ p ^ a= ~ p ^G.

By Definition 2.4.8, we have ~p_>CT=  {(±,_L)} U {(Fun(/),Fun(g)) | E 

D(a /(a )  ~§ g(*))}, and ~ p _ ff=  {(-L,-L)}U {(Fun(/),Fun(g)) | Va,h
6  D (a ~p fc =» f (a)  s(i>))}.

By I.H. (i.e. ~ p = ~ p , ~<j=~o-)> ~p^o=~p->o-

6 . t  =  fixa.p.
/?We need to show ~ fixo.p-  -flxo.p.

By Definition 2.4.8, we get ~gxa p= LFP(Ar C D2 .{(In(a),In(£>)) | a ~p^a' ^ 

b}), and ~Jfxa.p= LFP(Ar C D2 .{(In(a),In(h)) | a ~ p [a:=r] b}).
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2. Domain-theoretic Semantics of a Language of Realisers

'fixa.p1

□
By I.H. (i.e. ~p=~p and R = f t v (t) r ')> we have ~*xa p='

Lemma 2.4.14 (Substitution for ~p)

r  _  rt[a:=~J]
~p[*/«]— P

Proof By induction on p.

1. p =  l.
Trivial, , since there is no variable a  to be substituted.

2 . p =  a.

We need to show

For the left-hand side of the equation we have ~a[T/a]=~? •

For the right-hand side we have T̂ = /?[« :=~?](ce) = ~?.

By equality, we have ~ a[t / 0]= ~ a [“ '=~ '1-

3. p =  pi x p 2 .

We need to show ( xp2)(t/o]=~p!“ ft~fl-

For the left-hand side of the equation we have ~fPl x =~p,  [r/«] [t/«]

=  { (X ,X )}u { (P air(a i,a2),P air(h i>h2)) I ~ p 1[f/ 0] b l ' a i  ~pz[t/«] ^

We have {(-!-,_L)} U {(Pair(ai,0 2 ),Pair(hi,h2 )) I a\ ~pj“ tI b\,

a2 ~p|a’ b f\ for the right-hand side.
We have the following

r  l?[a:=~J]
r \j  T ,

P i [ r / o ]  P i

r  rt[a:=~f]
Pi[x/a\ P2

Applying IH1 and ffl2, we have ~fpi xp2)[t/a]=~p!“ ft~ ' 1

4. p = P ! + P 2 .

We need to show ~ ^ 1+p2)(f/<xl= ~ p1[̂ ~ fl-
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For the left-hand side of the equation, we have ~?p1+P2)[t/al= ~ £l[f/a]+P2|t/o] 
=  {(-L.-L)}U{(Left(ai),Left(f»i)) | ai £>i}U{(Right(a2 ),Right(£>2 )) I

a i  ~

For the right-hand side we have ~p |xpP ^=  {(-L,-L)} U {(Left(ai),Left(hi)) | 

fll ~pl“:=~tl fei} U {(Right(a2), Right(i>2 )) | a2 ~£ja,=~*l b2}.

We have the following

0H1)

0H2)

R  _  rt[a:=~J]
~ P i [ t / a ]  P i

R  _  / ? [ a : = ~ f ]
~P2[T/a] P2

Applying IH1 and IH2, we have ~ ^ 1+P2)[t/o]=~p1+ft~tl-

5. p =  p —► CT.

We need to show ^ <j)[T/a|=~£!%=~*1.

For the left-hand side of the equation we get ~ J ,_ <r)[T/o]= ~ p |t/o]_ <r[f/0|=  
{(-L,±)} U {(Fun(/),Fun(g)) \ 'ia ,be  D(a ~Jj[T/o] => /(a )  «(*>))}•

For the right-hand side we have ~ p ! ^ ~ T̂ = {(_L, _L)}

U{(Fun(/),Fun(g)) | Va,b e  D(a b => f (a)  ^ 1 “- ^ ]  g(fc))}.

We have the following

R  _  /?[a:=~?]
~p[ %/a]----P

R  _  /?[a:=~J]
r̂ a[x/a]~r̂ a

Applying IH1 and ffl2, we have ~ fp^CT)[T/a]= ~ p^T ~ T]-

6 . p =  fix a '.p .

We need to show x „,.p)[t/o]= ~ j h ^ ?I.

For the left-hand side of the equation we have 0,.p)[.r/o)= ~ £ [ «'.(p[T/«]): 

LFP(ArC D2 .{(±,-L)}U{(In(a),In(h)) \a ~ * [*/=r] b}).

(IH1)

(IH2)
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2. Domain-theoretic Semantics of a Language of Realisers

R\a-=~R]For the right-hand side we have a, T—

LFP(Ar C D2 .{(1,X)} U{(In(a),In(fc)) | a ~ p |a:=~ 'l|a':=r| b}). 
L e t s ' := S [a ':= r ] .

We need to show ~|fiT/a]=~p^a ~r' 
We have the following

rd _  R'[a:=~? ]
p[ x/a) P

R  R?Then it is to show ~ T = ~ T . This follows by Lemma 2.4.13.

(IH1)

□
Let 77 7}/ denote the following: for all x E dom(r), 77 (jc) ~f(*) Tl'{x)-
Let r  hreg M : p mean that T h M  : p has been derived using regular types only.
M~ be the untyped term obtained from the Church-style term M  by deleting the 

type information in lambda abstractions.

Theorem 2.4.15 Assume R is admissible, f  is a finitary projection, and /? ~  £. If 
r  hre* M : p and J] »)', then [A/]|̂ T) P*“]]t}'.

Proof By induction on the definition of the relation T hreg M : p.

1. r  hreg N il: 1.
We need to show [[Nil]]^ 77 [[Nil- ]]77'.

By Definition 2.3.7 and 2.4.2, we have [[Nil]]^ 77 =  Nil and [Nil- ]]77' =  Nil.
By Definition 2.4.8, we have Nil Nil. Thus, [Nil] £77 [Nil- ] 77'.

2. r , j t : p hregx : p.
We need to show [xJ^tj ~p [x- ]t77.

By Definition 2.3.7 and 2.4.2, we have [xJ^tj =  T7(x) and [x- ] t77 =  T]f(x).
By assumption, we have 77(jc) ~p 777(x). Thus, [xJ^tj p 1* i»)'-

3  r  , x : p ^ M : a  
T Y - ^ X x - . p M - . p ^ o  ' 

We have to show p .* : p.A/]] - TJ ~p_<j \Xx.M Jji]'.
By Definition 2.3.7 and 2.4.2, we have

[Ax:p.M]^77 =F un(/) where/(a) =  [M]^77[x := (p)£(tf)],
[Ax.M-  ] 777 =  Fun(g) where g (b) =  [M-  ] 777 [x: =  b].
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It is to show Fun(/) Fun(g). By definition of our logical relation (Defini­
tion 2.4.8), it is to show

Vfl, b e  D(a ~p b=> f(a)  #(*>)) (*)

By induction hypothesis for cr we have

Va.fc e  D(a ~p b => jj[x := a) p f “ ]]7]'[x := b\) (IH)

To prove (*), assume a ~jj b. By Lemma 2.4.12 (iii) we have (p )f  (a) ~-p b.
Hence := (p)C(a)] := fc].

. r,x
r  hreg rec *: t.M : t

We have to show [[rec*: [recjc-M- ]]!]'.
By Definition 2.3.7 and 2.4.2, we have

[[rec*: = LFP(/) where f (a)  =  [[M]l r̂?[* := ( t )C(a)]t
[recxM-lT]' =  LFP(g) where *(*) =  dTkf ]] r|' [jc := b\.

Now we have to show LFP(/) LFP(g).
By definition it is to show Un/ n(_L) Ung,I(±).
Since, by Definition 2.4.8, is admissible, it suffices to show that Vn.//I(±)

We do a side induction on rc.
n =  0: We need to show /°(-L) g°(-L), -L ±. This holds by Defini­
tion 2.4.8.
n + 1: Assume as side induction hypothesis, / n(-L) g"(_L),toshow / ( ”+1)(J_)

^ n+1^(X). We have

/("+1>(X) =  /CT(-L)) =  D*]|Ct|[* :=  <*>CCT(-L))].
g("+1)(X) =  g ( /(X ))  =  tM -ln 'I*  := «"(x)].

Then it is to show [M]]^r][* := ( t)£ ( f n(±))] ^M~^t}'[x := ^"(-L)]. By side
induction hypothesis, we have ( r ) f  ( / n(_L)) g"(-L) by Lemma 2.4.12 (iii).
By main induction hypothesis we have

p/]]fn[*:=  <T)ff(/*(X))] [Af-jTj'tx := g”(X)].

5 rH ** Jf:p -x r  r  hre® N : p
r  breg M N : a  

We need to show [[M/VJ t̂j §M~N~^r|,.
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2. Domain-theoretic Semantics of a Language ofRealisers

By Definition 2.3.7 and 2.4.2, we get [fAfTV]]̂ 77 =  /(fM^T?) if [[Af]]̂ ?? =  Fun(/), 
and pr/V -flT ,' =  *flprHij') if =  N j ).
Then it is to show /([A]]^t]) ^([A/'_]]r]/).

We have the following

M f j}  IM- ] r f  OHl)

[ATjri' (IH2)

By IH1 and Definition 2.4.8, we get [[AfĴ r] =  Fun(/), J A f =  Fun(g), 
and Va,fc € D(a f(a)  g(£)). Applying IH2, we have /([Af]]^)
g ( l N ~ W ) -

6 r h r̂ M : p  r h ^ N : a
r  hres Pair(Af, A) : p x a

We need to show [[Pair(Af,TV)]]^77 ~ p XC7 JPair(M_ ,Â _ )]]r]/.

By Definition 2.3.7 and 2.4.2, we have [[Pair(Af,TV) ] ]^ 77 =  P a i r ( [ [ T V ] ] ^ 77) 
and p>air(M-,AT)]]Ti' =  Pair ([[AT]] 17', [[TV-Jti').

Then it is to show PairdMfl^rj, [[TV]]̂ ry) ~ pX(T PairdfAf- ]]?]', [[TV- J77').

By Definition 2.4.8, it is to show [A fJ^ ~p [[Af- ]]^' and [[A^tj [[TV- J]r7'. 

This follows by

M cij ~p W ~ W  <mi)
[AT]]jj' 0H2)

r  hreg Af: p 
r  hreg Left(Af) :p + o  *

We need to show [Left(Af)]|^rj ~p+<y [Left(M~)]]r]/.

By Definition 2.3.7 and 2.4.2, we have [[Left(Af)]]^ 77 =  Left^A/fl^T]) and 

[[Left(T̂ f- )]] 77' =Left([[Af-]]ry/).

Then it is to show Left([Af]£77) ~p+cr Left([[Af—J|77').

By Definition 2.4.8, it is to show [AfJ^rj ~p [A/- ]?]'.

This follows by

M ( n  ~p HAHn' ohi)
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8  r  hreg Af: a
’ r  hreg Right(Af): p +  a  *

Similar to the proof of case Left.

9 r  hreg M : p  +  G  r , x x  : p h regL:r  I > 2 : g  hreg : t
r  hreg caseAf of (Left(;ci) —> L;Right(*2 ) —>/?}: T 

Let [caseAf] =  [caseAf of (Left(jci) —> L;Right(jt2 ) —»■ Z?}] 
and [caseAf- ] =  [caseAf-  of{Left(jq) —► L“ ;Right(;t2 ) —► }]|-
We need to show [caseAfJ^rj [caseAf- ]!]'.

easel By Definition 2.3.7 and 2.4.2, we have

[caseAf] ̂ !] =  [L]^!J [*i := (p)C(«)] if =  Left(*i)
[caseAf- ]!]' =  [L- ]i]'[xi := Z>] if [[AT- ]]!]' =  Left^i)

Then it is to show [L]£t][*i := (p)f(a)] [L- ]!]'[xi := Z>].
We have the following

Va,fc G D(a ~*b=> i := a] [£- ]!]'[*i := 6 ]) (IH1)

Assume a ~p fc. By Lemma 2.4.12 (iii) we have (p )f (a) ~p b.
Hence [L]Ct][*i := (p)C(a)] [L_]i]'[*i :=&].

case2 By Definition 2.3.7 and 2.4.2, we have

[caseM]^!] =  lR^r}[x2 := (g)£(a)] if =  Right(x2)
[caseAf- ] 7]' =  [Z r]!j '[ * 2 := Z>] if [Af- ]!]' =  Right(*2)

Then it is to show [Z?] 7̂7 [x2 := (a)C(a)] [Z?- ]!]'[jt2 := b\.
We have the following

Va,Z> G D ( a Z >  => [x2 := a] [fl“ ]f] '[ * 2  := b}) (ffl2)

Assume a b. By Lemma 2.4.12 (iii) we have (<r)f (a) b.
Hence := (<*)£(«)] |[R“W [*2 := &].

^  r h regA / : p x a  T ,x : p ,y : G  h reg N : T

T hreg caseAf of (Pair(jc,y) —► N} : T 
Let [caseAf] =  [caseAf of {Pair (x,y) —>ZV}] 
and [caseAf- ] =  [case M~ of {Pair (*,y) —► AT- }].
We need to show [caseAf]^!] [case Af- ]!]'.

49
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By Definition 2.3.7 and 2.4.2, we have

[caseMj^rj =  (p)£(a),y := (a)C(fc)] if =Pair(*,y)
[caseA/- ] ^ ' =  := a',y := A'] if [Af- ]]?]' =  Pair(jc,>?)

Then it is to show := {p)£(a),y := (a)£{b)] lN~W[x  :=  a>̂  :=
b>).
We have the following that Va, b,a',b' G D 

a ~ p b A a '  ~*b '  => [A^tjI* := a,y := a'] [AT]]^'!* :=fc,y :=£/] (IH1)

Assume a~p  bAa' ~ o b l.

By Lemma 2.4.12 (iii) we get (p )f (a) ~p fc, ( a ) f  (a') fc'.

Hence [[iVj^ri[x:= (p)£(a),y := (a)£(fc)] [AT]]T]/[x := a /,y :=&'].

r h regM :p '[fixa .p '/a]
’ T hre8 In(Af): fix a .p '

We need to show [[In(M)]|^ ~gxap/ pn(Af- )]Tj'.

That is, to show In([M]]^r]) ~gxa p, In(|[A/- ]?]') by Definition 2.3.7 and 2.4.2.
D

By definition of ~ fixce p/ (Definition 2.4.8), it is to show

W ~ W

We have the following

W t f n  ~p-|ta«.p7«] P*“ K  (M i)

/?[a:=~f ,1 p
We need to show ~ p, ’“p = ~ p, [flxa.p7o].

This follows by Lemma 2.4.14.

^ 2  r  breg Af: fix a .p ' T,*: p '[fixa.p '/a] hreg N : a  
T hreg caseAf of (In(;t) —> A} : c

We need to show [caseAf of (In(jc) —> N } ^ t] [caseAf-  of (In(jc) —► ̂ V- }]]^'.
By Definition 2.3.7 and 2.4.2, it is to show
[M^t][x := (p'[fixa.p'/a])C(a)] |[A/’~I1t7/[x:=  fc].
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Conclusion

We have the following

Va,b(a => [A^Tjfx := a] [ATJtj'I* := b}) (IH1)

Assume a ~p b. By Lemma 2.4.12 (iii) we get (p' f ixa.p' /a])£(a)  ~p b. 

Hence [A ]]^[x:=  (p '[fixa .p7a])f(a)] [[//“ Jri'tjc := b].

□
The above theorem (Theorem 2.4.15) yields as an immediate consequence our 

main result that if from a context T we can derive a LoR term Af with regular type 
p, and for every variable x £ dom(T), 7] (x) is an element of [T(jt)] £, then the value of 
Af and its corresponding untyped term M~ coincide up to the finitary projection (p )f .

Theorem 2.4.16 (Coincidence) If T breg M  : p and 7] £ [ r ]£  where £ is a finitary 
projection, then [Af]^17 =  ( p ) C ( 1'1)•

Proof. Given a finitary projection f, we define R(oc) := {(a,b) £ D2 | £(a)(a) = 
f(a)(fc)}. Then R & £, as explained in the example following Definition 2.4.11. 
By Lemma 2.4.15, we then have [A f]^  ~p [[Af—J77. By Lemma 2.4.12 (i), we get 
(p )f (JMJ^tj) =  (p)C(p#-]|Tf). Then, by Soundness Theorem 2.3.8 and the definition 
of (p)?(D), we have [M ]^  =  (p)C([M]Ctj). Thus, [A f]^  =  (p)C([Ar]Tj). □

If T =  0  and p is closed in Theorem 2.4.16, we have the following corollary. 

Corollary 2.4.17 If breg Af: p, then [Af] =  (p)[Af- ].

2.5 Conclusion
We have studied a domain-theoretic semantics for Church-style system LoR of typed 
lambda terms and proved that, when restricted to regular types, it is closely related to 
its untyped counterpart. The reason for studying this domain-theoretic semantics is 
that it allows for very simply and elegant proofs of computational adequacy, and hence 
the correctness of program extraction.

Our results could be easily extended to also include full second-order polymor­
phism Va.p, 3a.p as in [ABL8 6 ], but for our application, simple parametric and re­
cursive types are sufficient.

The problem of relating typed and untyped readability was also studied by Long- 
ley [LonOO]. He used a condition called (constructive) logical full abstraction to con­
nect realisability over typed and untyped structures by means of partial combinatory 
algebra.
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As future work we intend to investigate whether the requirement of regularity is 
indeed necessary for our result to hold. Furthermore, we plan to compare the Church- 
style system with a corresponding Curry-style system.
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Type theories date back in general to the 20th century. Ramified Theory of Types was 
first introduced by Russell [Rus08], and was elaborated in the momentous Principia 
Mathematica [WR13]. The original idea of Russell’s type theory is to exclude the set- 
theoretic paradoxes, which could be conducted from Frege’s Begriffschrift [Fre79], by 
postulating the vicious circle principle. This principle states that no collection can be 
introduced by a definition that depends on that collection itself, and is implemented by 
the use of a hierarchy of levels of types. Unfortunately, this theory was too weak to 
justify classical mathematics. Russell had to introduce the Axiom of Reducibility to 
crush the orders down to one. However, Russell’s type theory was never completely 
formalised, i.e. there were no formal definitions of the fundamentals types such as 
type, proposition or logic formula.

In order to deal with Russell’s paradoxes without the requirement of types, Alonzo 
Church introduced what is nowadays called the lambda calculus in [Chu33]. Later 
Kleene and Rosser found that the logical system of this lambda calculus was inconsis­
tent [KR35]. To avoid the Kleene-Rosser paradox, Church introduced the simply typed 
lambda calculus. The simple type theory of Church basically is the simply typed 
lambda calculus with the type of individuals and the type of truth values, providing a 
notion of logical formulas and a notion of provability.

Building rigorous reasoning systems for hardware and software verifications is a 
very demanding endeavour. Church’s type theory equipped with some modifications
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3. Church’s Simple Theory of Types

and enhancements has been incorporated into theorem proving systems for specifying 
and verifying the correctness of mathematical proofs. Notable developments in this di­
rection include HOL [Gor88, GM93], IMPS [FGT93], Isabelle [Pau86, Pau89, Pau94], 
PVS [ORR+96] and TPS [AINP90]. The logic of HOL is based on Church’s type the­
ory extended with equality, implication and a higher-order version of Hilbert’s choice 
operator. As types consist of type constants, type variables, and function types, HOL 
allows polymorphic types and inference rules for definitions. The IMPS system is 
an implementation of a logic based on a partial-functions-version of Church’s type 
theory, due to the fact that mathematics focus on the axiomatic method and mainly 
on functions including partial functions. Isabelle supports ML-style type inference 
with unification, and uses a polymorphic version of Church’s type theory as its logic 
language. The syntax of the logic of PVS is encoded in Church’s type theory with 
parametric theories and predicate subtyping, since PVS is designed for the specifica­
tion and proof of digital systems. TPS is the earliest automated theorem provers based 
on Church’s type theory with mating aiming to find an expansion proof [Mil87]. More 
recently, LEO-II [BPTF08], whose logic is built on Church’s type theory, implements 
an extensional higher-order resolution calculus. Satallax [BB11, Brol2], which ex­
tends Church’s type theory with extensionality and choice operators, is a system based 
on higher-order extensional tableaux.

In this chapter, we start with the Simply Typed Lambda Calculus (STLC), which is 
constructed freely from type atoms. Next, we introduce the notion of an interpretation 
from one instance of STLC to another. And then we describe the logic and semantics 
of our version of Church’s Simple Type Theory.

3.1 Simply Typed Lambda Calculus
| Although the pure typed lambda calculus has only a rather restricted collection of 
I terms and types, its powerful relatively simple extensions have been widely used, and 
! hence build up the theoretical foundations of some theorem provers. The simply typed 
f lambda calculus (STLC), constructed freely from type atoms, will be presented in this 

section. We will describe the basic logic of the STLC and a substitution operating 
on typed terms. Later, this STLC will be enriched with more types and other useful 
constructs in Section 3.3.

Syntax

The set S  of types is generated from a set of base types £8 using the function and 
product type constructors, respectively, —► and x .
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Simply Typed Lambda Calculus

Definition 3.1.1 (Types)

&  3  p , G  : : = b  \ p  —> o  \ p x a

where b  ranges over 8 3 .

The basic expressions of STLC are called t e r m s ,  given by the following definition. 

Definition 3.1.2 (Terms) We define t e r m s  inductively by the following grammar.

1 5 M ,N : : = x \ c \X x :p .M \ M N \
(M,N) | no(M) | m(M)

where x ranges over a set Var of variables, and c ranges over a set ^  of constants.

Definition 3.1.3 (Free Variables) Let M be a term. Then the set FV(Af) C Var of f r e e  

v a r i a b l e s  of M  is defined recursively as follows based on the structure of terms.

•  FV(jc) :=  { x }

• FV(c) := 0

•  F V (A jc : p M )  :=  F V (M )/{ jc}

• FV(MN) := FV(Af) U FV(N)

• FV((M,V)):=FV(M)UFV(V)

• FV(«b(Af)) := FV(Af)

• FV (^i(M )):=FV (M )

Typing Rules
A t y p e  c o n te x t , also called e n v ir o n m e n t, is a set of pairs T x \  : p \ , . . . , x n : p n (for 
notational convenience we omit the curly braces) where p i  are types and jc ,- are dis­
tinct variables. The set of variables { x \ , . . . ,  x n }  (which may be empty) is denoted by 
dom(r). Every type p,- in the context T is denoted by r(x,). Thus, in a context, each 
variable occurs at most once, i.e. if (x,pi) 6 T  and (x,p2) G T, then pi =  P2 . Also we 
denote TU { jc  : p} as (T ,x: p) which does exclude that jc  : p is already in the context
r .

In order to define the type of a term in a context we need a t y p i n g  o f  c o n s t a n t s ,  i.e., 
a set ^  of pairs c : p such that if c : p and c  : p ', then p =  p'.
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3. Church *s Simple Theory of Types

The relation T h Af: p (Af is a term of type p in context T) is inductively defined 
as follows.

r h  M : p  T h N . G  Tl- M ' . p x c  T h M i p x G
r h  (M,N): p x G  r  h 7to(M): p T\~7ti(M):G

Lemma 3.1.4 If T  h Af: p, then FV(Af) C dom(r).

Proof By induction on M.

• Af =  jc .

W e need to show  F V (jc) C d o m (r ).

We get FV(jc) =  {jc} by Definition 3.1.3, and by the typing rule for variables, we 
have { jc }  C dom(r).

• M = c.
We need to show FV(c) C dom(r).
Since FV(c) =  0  by Definition 3.1.3, we get FV(c) C dom(r).

• M = Xx \ p.M.
We need to show F V (A jc : p.M) C dom(r).
We get FV(Ajc : p.Af) =  FV(Af)/{jc} by Definition 3.1.3.
Applying induction hypothesis FV(Af) C dom(r,jc: p), we get 
FY(Af)/{jc} C dom(r,jc: p)/{x)  =  (dom(r) U  { * } ) / { jc}  =  dom(r).

• M = MN.
We need to show FV(MN) C dom(r).
We get FV(MN) = FV(M) UFV(V) by Definition 3.1.3.
We have the following induction hypothesis

r,jc: p h jc  : p r h c: p if c : p

r,jc: p h Af: g r h  M : p ^ G  Th N : p  
T \ - M N : gr h X x:p .M :p  —> g

FV(Af) C dom(r)
FV(V) C dom(r)

Applying IH1 and EH2, we get FV(Af) UFV(V) C dom(r).

(IH1)
(IH2)
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Simply Typed Lambda Calculus

• M=(M,N) .

Similar to the proof of above case.

• M =  7Uo(M).

We need to show FV(jlq(M)) C dom(r).

We get FV(^o(M)) =  FV(M) by Definition 3.1.3. Then it is to show FV(Af) C 
dom(r). This follows immediately by the induction hypothesis.

• M  =

Similar to the proof of above case.

□
Lemma 3.1.5 (Uniqueness) If T  h M : pi and F \~ M : p2, then these derivations are 
identical, i.e. pi =  P2 .

Proof. By induction on M.
The typing rules are syntax directed. Hence for a given term M , a context F and a 

type p, there is at most one typing rule that derives F b M : p.

• M = x.

Since (x,Pi) £ T  and (x,p2 ) 6 T, we get Pi =  P2 -

• M = c.

Since c has only one type, we get pi =  P2 .

• M = Xx\ p.M.

We need to show p —> G\ =  p —► 0 2 .

By induction hypothesis, applied to F,x : p b M  : <7i and : p h M : 0 2 , we 
get C7i =  C72.

• M = MN.

We need to show G\ =  0 2 .

B y  induction hypothesis, applied to T h M : p i —>• G\, T h Af: P2 —> G2, F h N : p i  
and r b W : p 2, w e  get p i  —> <7i =  P2 —»■ 02 and p i =  P2. H ence, w e have <7i =  02 .

• M=(M,N) .

Similar to the proof of above case.
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3. Church’s Simple Theory of Types

• M  = 71q(M).

We need to show pi =  P2 .

By induction hypothesis, applied to T h M : pi x G\ and T  h M : P2 x 0 2 , we get 
Pi x (Ti =  P2 x 0 2 . Hence, we have pi =  P2 .

• M = 7ti{M).

Similar to the proof of above case.

□

Substitution
Simplifying or evaluating a term involving lambda expressions requires us to encom­
pass operations of function application. Since free variable substitution may cause 
variable capture, we need a mechanism to ensure that no bound variable has the same 
name as a free variable in the term being substituted. An elementary simplification 
step, called ft-conversion, involves the substitution of a free variable of a term by an­
other term.

The a-equivalence is defined as usual. Intuitively, a-equivalence, T\ =a T2 means 
that T2 is obtained from T\ by renaming the bound variables in 7\.

We state without proof the following lemma:

Lemma 3.1.6 a-equivalence is a congruence on lambda expressions and we have that 
if M =a N t then FV(M) =  FV(N).

Definition 3.1.7 LetX,7 C Var, and Z(X) : = { M e L \  FV(Af) C X}.
A  variable substitution is a function r j : X  —> Z(7). Every variable substitution tj 

can be extended to a function r j : E(X) —> E(7) by

rj(x):= 7?W 
rj(c) :=c
rj(MN) :=  rj(M)rj(N)
»U(M,N)) := (rj(M),ij(N))

:= JH)(»j(M))
Tj(^i(M)) := it\ (Ji(M)) 
t7(Ajc: p.M)  :=  Xu! : p.t}'(M)

w here x! $ u{FV(?) (y)) \ y € FV(A.x: p.M)}  UFV(Ax: p.M)  and for jj' : X  - *  L ( Y  U 
M ) .  n 'W  =  *  and rj'(y) =  tj (y) for y £  x.

We write M[N/x] for 7] (M) where rj(x) = N  and r] (y) =  y for y ^ x .
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The meaning of 7] =a t]' is that for all x  e X, 77 ( jc )  =a

Lemma 3.1.8 If M, N e E(X), M  =a N, and 77 = a 77', then rf(M) =a V W -

Proof By induction on the definition of 77(A/). □

Definition 3.1.9 We define -equivalence as the least congruence relation =p on 
terms such that

(X x : p.M)N =p M[N/x]

We write F' h r j : F if F' h rj ( x ) : p  for all x : p e  T.

Lemma 3.1.10 If T  h M : p and F' b 7 7 : T, then F' h 77 (M ) : p.

Proof By induction on the derivation of T  h M : p. □

3.2 Interpretation of STLC
Let a formal system be a set of operations and axioms in a formal language. An inter­
pretation of a formal system 7\ in a formal system T2 is a mapping from the expressions 
of T\ to the expressions of T2 which preserves the validity of axioms. Roughly speak­
ing, interpretation is to represent T\ in T2. Interpretations are a fundamental logical tool 
to prove properties about formal systems and support mathematical reasonings. In this 
section, we will introduce the notion of interpretation in the setting of two instances of 
STLC. The results can be applied to arbitrary instances of STLC.

Let Si (i E {1,2}) be two instances of a simply typed lambda calculus given by 
base type sets &i, constant sets and typings of the constants. Let and £/ be the 
corresponding sets of types and terms.

We assume that for every variable x  in £1 we have fixed in a one-to-one fashion a 
variable x  in S2 . More precisely, let (_) be an injective function mapping from Var to 
Var, andX : = { x \ x e X }  whereX  C Var.

Definition 3.2.1 A base type substitution from S\ to S2, written as |  : Si —► S2 , is a 
function ^ : ^ 1  —» $ 2* Any base type substitution § can be extended to a function 
^ —* $ 2  by setting

$ { p - > o )  := § ( p ) - » § ( a )
£(px<x) := § (p )x £ (< j)

We also extend base type substitutions to contexts by setting £ (r) := { x : ^(p) | x  :
p e r } .
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3. Church *s Simple Theory of Types

Definition 3.2.2 A constant substitution from Si to S2, written as 0 : S\ —► S2 , is a 
function 0 : —► 1^,(0) s.t. 0(c) is a closed S2 term for all S\ constants c. Any
constant substitution 0 from Si to S2, together with a base type substitution ^ from Si 
to S2 determines a function 0% : Ei(X) —► I>2(X) as follows.

0% ( jc )  : =  x  0% (c)  : =  0 ( c )

0$(Xx:p.M) :=Xx: ^(p).O^(M) 0^(MN) := 6$(M)Q$(N)
%((M,A» := (O^MIO^N)) 0 ^ ( M ) )  := no(O^M))
0^(ki (M)) :=7Ci (0^(M))

Lemma 3.2.3 FV(^(M )) =  FV(M) where FV(M) =  {jc | jc  G FV(M)}.

Proof. By induction on M.

• M = jc .

We need to show FV (0<e ( jc )  )  =  FV ( jc )  .

From the left-hand side of the equation, we have FV(0(c ( j c ) )  =  FV(3c) by Defini­
tion 3.2.2. Then it is equal to { jc }  by Definition 3.1.3.

From the right-hand side, since FV(x) =  { j c } ,  we have FV(jc) =  { j c } .

Hence, we get { jc }  =  { j c } .

• M = c.

We need to show FV(0^ (c)) =  FV(c).
From the left-hand side of the equation, we have FV(0)e(c)) =  FV(0(c)) =  0  
by Definition 3.2.2, since 0(c) is closed for all constants c.

From the right-hand side, we have FV(c) =  0 .
Hence, we get 0  =  0 .

•  M = Xx: p.M.

We need to show FV(0^(Ajc : p.M)) =  FV(Ajc : pM) .
From the left-hand side of the equation, we have FV(0^ (Ajc : pM) )  =  FV(A3c : 
£(p).0£(M)) by Definition 3.2.2.
By Definition 3.1.3, we have FV(A3c: ^(p).O^(M)) =  FV(0^(M))/{jc}, and 
FV(Ajc : p M )  =  FV(M)/{jc}.

Then from the right-hand side, we have FV(Ajc : pM )  =  FV(M)/{x}.

Now it is to show FV(0^ (M))/{5) =  FV(M)/{3c}, i.e. FV(0^ (M)) =  FV(M). 
This follows immediately by the induction hypothesis applied to M .
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• M  = MN .

We need to show FV(0^ (MN)) = FV(MN).
From the left-hand side of the equation, by Definition 3.2.2, we get FV(0£ (MN))
= FV(0£ (m )ô  (n )).
We have FV(0  ̂(M)9%(N))= FV(6% (M)) UFV(0% (N)) and FV(MV) =  FV(M) 
UFV(W) by Definition 3.1.3.

Then from the right-hand side, we have FV(MN) = FV(M)UFV(N).

We need to show FV(0^(M)) UFV(0^(V)) =  FV(M)UFV(N).  Then it is to 
show FV(% (M)) = FV(M) and FV(0^ (N)) = FV(N).

This follows immediately by the induction hypothesis applied to M  and N.

• M = (M ,N ) .
Similar to the proof of above case.

• M  = 7Cq(M).

We need to show FV(0^ (tco(M))) = FV(jto(M)).
From the left-hand side of the equation by Definition 3.2.2 we get FV(0^ (7Tq(M))) 
=  FV(*b(0€(Af))).
We have FV(^b(0^(M))) =  FV(0^(Af)) and FV(^b(M)) =  FV(M) by Defini­
tion 3.1.3. Then from the right-hand side, we have FV(nb(Af)) =  FV(Af).

We need to show FV (0<e (M)) =  FV (M).

This follows immediately by the induction hypothesis applied to M.

• M  =  7l\ (M).
Similar to the proof of above case.

□
Let r j : X  —> la(Y)  and T}': X —> E2 OO, for every variable substitution rj of Si, we 

set ri'(x) =  T}(x).
The mapping 0  ̂ commutes with variable substitutions in the following sense.

E i(x )  5— -Z2(y)

o

El ( X) — 12(?)
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3. Church’s Simple Theory of Types

Lemma 3.2.4 0g o rj =  (0% o rj') o 0%.
I

Proof By induction on Af.

• M = x.
We need to show 6%(rf(x)) =  (0g o T]')(0% (jc)).

From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have
9{(W(x)) = =  %(*)'(*)) = (#{ 0 »?')(*)•
From the right-hand side, we have (0^ oj]/)(0^(x)) = (6% o rj')(x) by Defini­
tion 3.2.2. Then by Definition 3.1.7, we have (6£ o rj')(3c) =  (6% o ri')(x). 
Hence, we get (0g o rj’)(x) = (ei oii')(x).

•  M = c.

We need to show 0£ (ff(c)) =  (0% o 7]')(0g (c)).
From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have
%(W(c)) =  0£(c) =  0(c).
From the right-hand side, we have (0% o 7]')(0^ (c)) =  (0% o rj')(0(c)) by Defini­
tion 3.2.2. We have (0% o 7]/)(0(c)) = 0(c) since 0(c) is closed for all constants 
c. Hence, we get 0(c) = 0(c).

• M = Xx: p M .
We need to show 0  ̂(r[(Xx: p.M)) =  (0£ o T]')(0g (Xx: p.M)).
From the left-hand side of the equation, by definition 3.1.7 and 3.2.2, we have 
%(rj(Ax\p .M))  =  6${Xx!:p.r?(M)) =  Xx! : %{p).6( (rf{M)).

From the right-hand side, by Definition 3.1.7 and 3.2.2 we get (0% o T}')(0^ (Xx : 
p .M ) )  =  (0^ot}')(Xx: «(p).e4(a#)) = ■ Up)- (^° 'n ' ) ' ( ^ (M) )) .

Now it is to show Xx?: ^(p).0^(i]'(M)) = X5? : ^(p).(0^orf,),(0^(M)))y i.e. to 
show 0$(t\'(M)) =  (0% o7]')'(0^(M))).
This follows by the induction hypothesis

% (rp(M)) = (0zon»)(0z (Af)) (IH1)

• M = MN.
We need to show 0% (r[(MN)) =  (0% o rj')(0g (MN)).
From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have 
9( m M N ) )  = 6^(rf(M)rj(N)) =  %(t)(A*))%0?M).
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From the right-hand side, we have (0£ ° 777) (0<* (MN)) = (0go 7]') (6^ (M)0^ (N)) 
=  ( ( ^ or?/) ( ^ ( M) ) ( ( ^ o7?/) ( ^ W ) )  by Definition 3.1.7 and 3.2.2.

We need to show 0g(ff(M))0g(rf(N)) = ((0% ° t\')(0^(M))((0^ ° t]')(0^(N))), 
i.e. to show 0 ^(77(Af)) =  (0^ o 7]/)(0 ^(Af)) and

These follow by the induction hypotheses

e4 (rf(M)) = (e4o7]>)(e4 (m)) (mi)

0? (AO) = W ^ y ) ( ^  W )  (m2>

• M =  (M,N).
We need to show 04 (rj((M,N))) = (04 o tj')(0£ ((M,N))).
From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have 
94mM,m = 0̂ ((7?(M),7?(Ar))) = <05(tj(Af)),0£(t}(lV))>.
From the right-hand side, we get (0«e ° 7]/)(0 <e((Af, N))) =  (0^ ori')((0^(M), 
0$(N))) =  ( ( ^ W ) ( ^ ( M ) ) , ( 0 5 ott7) ( ^  W ))  by Definition 3.1.7 and 3.2.2. 
Now it is to show

{04(lj(M)),64mN))) = { ( 0 ^ ( % ( M ) ) , ( e ^ f j ( e 4(N))),
i.e. e4(Tj(M)) = (e4 oT,')(e4(M)) and 9f (rj(N)) = (9^ n r)(0i (N)).
These follow by the induction hypotheses

0^r \ (M) )=j0^W)(0^(M) )  (IH1)

( n W )  =  (0 ^ 0 (0  ̂W )  dH2)

• M  =  7Lq(M).
We need to show 0  ̂(77 (^(M ))) =  (0^ o 77')(0^ (^b(Af))).
From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have 
04(M*>(M))) = e4(7to(rj(M))) = no(94(ri(M))).
From the right-hand side, by Definition 3.1.7 and 3.2.2 we have 
( 6 4 o t } ' ) ( 0 4 (jco(M))) =  (04 or] ' ) (Ko(04 (M))) =  nn({94 oT)') (04 (A f))).

Now it is to show 7to(0^(rj(M))) = 7io((0| o iql)(0^(M)))t i.e. it is to show 
04(1J(M)) = ( 0 ^ ) ( 0 f (M)).
This follows by the induction hypothesis

0f  (MM)) = (9i oM)(0i  (M)) (IH1)
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•  M =  7Ci(M).

We need to show = (Og o jj/)(9^(7Ui (M))).
From the left-hand side of the equation, by Definition 3.1.7 and 3.2.2, we have 
%(T)(7ti(M))) =  e^Ki(fj(M))) =
From the right-hand side, by Definition 3.1.7 and 3.2.2 we have

(M))) = (0i or\')(nl {9i {M))) =  o jj')(0? (M))).

Now it is to show 7ii(0^(rj(M))) = K\((Og oj]')(0g(M))), i.e. it is to show

This follows by the induction hypothesis

0 ^ ( r f m = W W ) ( 0 ^ ( M ) )  (IH1)

□
Definition 3.2.5 (Interpretation) An interpretation of Si in S2 , written (£, 0 ): Si —> S2 

consists of a base type substitution t; : Si —> S2 and a constant substitution 6 : Si —> S2 

such that whenever c q p ,  then \~2 0 (c ) : £ (p).

Theorem 3.2.6 (Interpretation) Assume (£, 0) is an interpretation of Si in S2 . If T hi 
M : p, then £(T) h2 0^(M): £(p).

Proof By induction on the derivation of T h 1 M : p.

• T,x: p hi x: p
We need to show £ (T ,x: p) l~ 2  0£ ( jc )  : (p).
By Definition 3.2.1 we have <j;(r,x: p) =  £ (r) U ( jc  : £(p)}.
By Definition 3.2.2 we have 0£ ( jc )  : £ (p) =  jc  : ^ (p).
Hence we get (T,jc : p) (~2 0% (x): £ (p).

• r  hi c : p if c : p
We need to show £ (T) l~2 0£ (c ): h, (p). This follows from Definition 3.2.5.

r , j c : p h i A f : a  
Th i  Ax:p .M:p  —> cr

We need to show ^ (T) h2 0£ (Ax: p M ) : <!; (p —> a).
We have 0^(Ax : p.M) : %(p —► <r) =  Ax : ^(p).0^(Af) : §(p —> a)  =  Ax : 
^ (p ).0 |(A /): <§(p) —► §(<7) by Definition 3.2.2 and 3.2.1.
We need to show £ (T) l~2 0£ (M ): § (c).
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This follows by the induction hypothesis

§(T ,*:p )h 2 e5(Af):S(a) OHl)

T h i M : p —̂ a  T h i i V : p
T h i M i V : a  

We need to show t; (T) h2 (M N): (a).
By Definition 3.2.2 it is to show ^ (T) h2 0% (M)O^ (.N) :  £ (a).
We have the following induction hypothesis

£ (T) \~2 0% (Af) : % ( p  —> &)  O H l)

^ (r)h 2 e4(Af):^(p) (IH2)

By IH1, IH2 and Definition 3.2.1, we have § (r)  h2 0f (M)9( (N) : 4(a).

T h i M - .p  T h i N : a  
r i -1  (M,N) : p x a  

We need to show § (r) h2 6^( (M,N)) : £(p  x a).

We have e4 «Jf,W>) :£(p x a) = (64(M),0^(N) ) : §(p x <7) =  {e^(M) ,^(N) ) : 
£ (p) x £;(<t) by Definition 3.2.2 and 3.2.1.
We have the following induction hypothesis

$(r)f-2 ^ (M ):$ (p ) OHl)
|(T ) h 2 0i ( N) :S ( o )  (DH2)

By IH1 and IH2, we have £ (T) b2 6^((M,N)): ^(p x a).

Thi M:  p x <7 
r h i  7to(M):p

We need to show ^ (T) b2 0£ (^o(M)): ^ (p).
By Definition 3.2.2 we have 6^(7to(M) ) : £(p) =  ^o(0^(Af)): £(p).
We have the following induction hypothesis

£ (T) \~2 0% (M ): ^ (p x a) OHl)

By IH1 and Definition 3.2.1, we have £ (r)  b2 0^(7to(M) ) : £(p).

Thi M :p x a  
F l-i ^i(Af): cr

We need to show t; (T) h2 0  ̂(n\ ( M) ) : ^ (p).
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3. Church ’s Simple Theory of Types

By Definition 3.2.2 we have 6^(k\(M)) : £(p) =  K\(Q^(M) ) : £(p).

We have the following induction hypothesis

€ ( r ) h 2 ^ (M) :€(px<7)  OHl)

By IH1 and Definition 3.2.1, we have £ (r) l~ 2  0 |(tti(M )): £(p).

□
One important aspect of an interpretation is that it preserves full j3-equality. To this 

end, we start with a definition of congruence.

Definition 3.2.7 Let ~ i be a binary relation on Si terms. We inductively defined a 
congruence on S\ generated by —i as follows.

• If Af ~ i N, then Af N.

• If Af Af, then X x : p.Af « i X x : p.N.

• and Af Af', then MN » i  M'N'.

• If M  » i  Mf and Af « i  Af', then (M ,A f) « i (M',N').

• then flb(Af) 7ib(Af).

• If M  Af, then TZ\ (Af) ~ i n\ (Af).

The next two lemmas explain why our interpretation respects /3-equality.

Lemma 3.2.8 Let ~ 2  be a congruence on S2 terms. Let (§, 0 ): Si —► S2 be an inter­
pretation.

If 0  ̂ respects ~ i and ~ 2 > i.e. for all Af, N  if Af N, then 0«c (Af) ~ 2  (A'"), then
0  ̂ respects ~ i and ~ 2 , i.e. for all Af, N  if Af ^ 1 N  then 0% (Af) ~ 2  0£ (N).

Proof. We assume 0% respects and ^ 2 , to show for all Af, N  if Af ^ 1  N, then 
0«e(Af) 0%(N).

By induction on ^ 1.

• M  « i  N.

We need to show 0<e(Af) ^ 2  This follows by Definition 3.2.7 and the
assumption that if Af Af, then 0  ̂(Af) ^ 2  0§ (Af).

• X x : p.M X x : p.N.

We need to show 0% (Xx: p.M) ^ 2  0% ( h x : p.Af).
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By Definition 3.2.2, it is to show Xx : £(p).Qg(M) ~2 : ^(p).O^(N). By
Definition 3.2.7, it is to show 0%(M) ^ 2  0%(N).
This follows by the induction hypothesis

0£(M)^2%(AO (IH1)

• MN  » i  M'N'.
We need to show 0% (MN) 9^ (.M'N' ).
By Definition 3.2.2, it is to show 9^(M)9^(N) « 2  9^(M,)9^(N'). By Defini­
tion 3.2.7, it is to show 6£ (M) ^ 2  (Af) and 6% (M') ^ 2  ^  (N').
These follow by the induction hypotheses

%(M) ^ 2  e^(N) (IH1)
e^ ( M ' ) ^2^ (N ' )  (IH2)

•  (M ,A f) « i (M',N').
We need to show 9^((M,N)) ~ 2  0 | ((Af7,N7)).
By Definition 3.2.2, it is to show (0  ̂(Af), 9% (N)) ^ 2  (Af;), 0  ̂(N7)). By Def­
inition 3.2.7, it is to show 0£ (Af) ~2 0£ (AQ and 0% (M') ~2 0£ (Af7).
These follow by the induction hypotheses

0  ̂(Af) ~ 2 0§ (N) (IH1)
0§(M/) « 2 ^ ( ^ ')  (IH2)

•  7lo(M) «1  7Tq(N).

We need to show 0̂  (nb(Af)) ^ 2  0<* (^o(Af)).
By Definition 3.2.2, it is to show ^o(0,p (Af)) ^ 2  By Definition 3.2.7,
it is to show 0£ (M) ~ 2  0£ (W).
This follows by the induction hypothesis

0$(M)«2 0*(AO (IH1)

• K\(M) 7Ci(N).

We need to show 0  ̂(k\ (Af)) ^ 2  9% (ft\ (A f)).
By Definition 3.2.2, it is to show %\ (9% (Af)) « 2  tfi (0^ (N)). By Definition 3.2.7, 
it is to show 0£ (Af) ~ 2  0£ (AQ.
This follows by the induction hypothesis

0£ (Af) 9$ (N) (IH1)
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3. Church’s Simple Theory of Types

□
Lemma 3.2.9 Every interpretation 0% : S\ —> S2 respects /3-equality.

Proof. By Lemma 3.2.8 it suffices to show that 0% respects the relation generating =p.
Hence, we first have to show 9^( (kx : p.M)N) =p 9^(M[N/x]). The left hand 

side is equal to (Ajc : £(p) .9^(M))9^(N) by Definition 3.2.2. By Definition 3.1.7 and 
Lemma 3.2.4, the right hand side is equal to 9^(M)[9^(N) /5c\. Hence both sides are 
ft-equality. □

3.3 Church’s Simple Theory of Types (CST)
While in a general STLC there is no restriction on base types and constants, Church’s 
type theory uses particular logical constants such as negation, disjunction, universal 
quantifier and a description or selection operator. From these constants, one can define 
the other logical operators. Church also introduced propositional, quantificational, 
functional extensionality, infinity, descriptions and choice axioms. Church remarked 
that one may introduce an axiom of Boolean extensionality (p = q D  p  =  q \  although 
it was excluded in his type theory.

In this section, CST, a particular instance of Simple Theory of Types according 
to Church, is presented. We assume two kinds of base types: a set of base types for 
individuals and the type of propositions (or truth values). We also assume a specific 
set of constants and their typings. The rest is the same as in STLC.

Basic Logic
The types are those of STLC, but with the restriction that the set &  of base types 
contains a set J? of base types for individuals and the proposition type o. They are 
given by the following grammar.

Definition 3.3.1 (Types)

&  B p , o  b \ p -> a  \ p x o

where
& B b : : = i e  J \ o

Predicate types are types that are canonically (in any ccc) isomorphic to a finite 
product of types of the form p —► o. The inductive definition is below.

Definition 3.3.2 We define predicate types inductively as follows.

• o is a predicate type.
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Church's Simple Theory of Types (CST)

• if p and <r are predicate types, then p x a  is a predicate type.

• if p is arbitrary and <r is a predicate type, then p —> <r is a predicate type.

The set of constants contains at least logical conjunction, disjunction, implication, 
universal and existential quantifiers, equality, the least and greatest fixed points.

Definition 3.3.3 (Constants) We assume a set ^  of typed constants c : p that requires 
logical constants A, V, — Vp, 3p, =p, Pp and vp as a minimum.

A ,V ,—- 
Vp,3p

= P
Pp,V p

o —> o —► o
(p->o)->o
p ^ p ^ o

( p ^ p ) ^ p

In Vp, 3p and =p the type p is arbitrary while for pp and Vp, p is restricted to predicate 
types.

Note the overloading of the symbol —* which we use at the same time as the func­
tion type constructor and the constant for implication.

The constants pp and vp will be interpreted as least and greatest fixed point oper­
ators. In order to precisely express their properties we need higher-order versions of 
inclusion between predicates, which can be declared meaningfully only by predicate 
types.

Definition 3.3.4 For every predicate type p we define the in c lu s io n  o p e r a t o r  C p : p —> 
p —> o  inductively as follows.

P̂X<T
Qp-+o

C Q :=Xx,y: o . x —>y
= Xx,y : p x cr. 71q ( x )  C p 7lo(y) A n\(x) C a  m ( y )  

= Xx,y: p —> a.V w : p.xu C a  yu

Definition 3.3.5 For every predicate type p define a m o n o t o n ic i t y  predicate, 

monop : (p —► p) —> o

monop := X& : p —► p . Vx,y : p.x Qp y —> &x C p  Oy

Church introduced a proof calculus which we will also do, but later. We first look 
at the semantics in domain-theoretical style.

Models of CST
For CST there are two obvious choices of models: the classical set-theoretic model 
and an interpretation into constructive type theory. In both cases the models can be
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3. Church ’s Simple Theory of Types

| extended to the realisability interpretation of CST, which will be discussed in detail 
later (Chapter 4). We will extend CST to the realisability interpretation of CST by 
adding an extra base type 8 for realisers and extra constants nil, in^, in/?, prL, pr^, pair, 
app, fun, case, rec with the following typing

n il: 8
in^ins.pr^pr* . 8 ^ 8

pair, app: 8 —> 8 —> 8
fun: (5 —► 5) —► 8 

case: 8 -► (5 8) -> {8 -► 8) -> 8
rec : (5 —> 5) —► 8

We sketch the type-theoretic interpretation only very briefly since, although it is 
useful for the constructivist to know that the systems have an entirely constructive 
interpretation, the point of realisability is that it smoothly links a fragment of classical 
mathematics to computation.

In the type-theoretic interpretation the types of CST are interpreted as types in the 
type theory. The base type o is interpreted as the type of propositions and the base 
types i e /  are interpreted as some inhabited types. Product and function types are 
interpreted type-theoretically. Constants are interpreted as inhabitants of their types. 
The prepositional constants —►, A and V are interpreted type-theoretically as function, 
product and sum types. The quantifiers Vp and 3p are interpreted as dependent product 
and dependent sum (II- and E-types). The extension of the type-theoretic model to 
realisability would be difficult, since it requires to interpret the constant fun by 8 as a 
type that contains its own function space.

In the classical model types are interpreted as sets in the following way: the base 
type o is interpreted as the set {0,1} of boolean values (0 stands for false and 1 for 
true); the base types i €  /  are interpreted as some nonempty set. Product and function 
types are interpreted as Cartesian product and set-theoretic function space. Constants 
are interpreted as elements of their types. The prepositional constants — A and V 
are interpreted as the corresponding boolean functions of implication, conjunction and 
disjunction. The quantifiers Vp and 3p are interpreted as minimum and maximum 
functions. Hence, if p is interpreted as an infinite set, quantifiers of type p are in no 

| reasonable sense computable.
 ̂ The classical model of CST can be extended to a model of the realisability inter­
pretation of CST by interpreting the extra base type 8 as an element of Scott domain D 
obtained as the solution to the recursive domain equation (as mentioned in Section 2.3)

D ~ ( l + D + D  +  D + D x D + [ D ^ D ] ) ±

where +  and x denote the domain-theoretic separated sum and product, and [D —> D] 
denotes the continuous function space.

70



Church's Simple Theory o f Types (CST)

There seems to be a mismatch with the interpretation of types in CST. First, the 
type 8 is interpreted as a domain while the types in CST are interpreted as plain sets. 
Second, the type of fun is (5 —> 5) —> 5, which requires fun to map all set-theoretic 
functions / :  D —> D to an element fun(/) G D, while fun(/) is defined only for con­
tinuous / .

In order to solve this problem we slightly generalise the notion of a classical model 
by interpreting types as objects in the cartesian closed category of quasi-domains and 
continuous functions. By a quasi-domain we mean a topological space whose 70- 
collapse is a Scott domain. Quasi-domains may also be defined order-theoretically as 
those quasi-orders whose order-collapse (identifying points x and y such that x < y 
and y < x) is a Scott domain. It is easy to see that the continuous function space with 
the pointwise topology is the exponential in the category of quasi-domains. Every 
classical model of CST in the previous sense can be viewed as a model in the new 
sense by endowing plain nonempty sets with the trivial topology. Note that nonempty 
trivial topological spaces have the one-point domain as To collapse and all set-theoretic 
functions between such spaces are continuous.

Semantics
We will begin by defining a model in order to give semantics for CST.

Definition 3.3.6 A pre-model := (Db)be3§ where for each base type b G D& is
a quasi-domain. We require additionally that D0 ={0,1} (0,1 representing falsity and 
truth) considered as a quasi-domain with the trivial topology.

Definition 3.3.7 (Semantics of types) Given pre-model we inductively define a 
quasi-domain [p J for every type p

|M |:=D*
IP -* <t] := [BpH -  M l  
Jp x a ]  := [p] x M

Note that a quasi-domain is given as the meaning for base types, and the meaning 
of function types is provided by a continuous function space.

Definition 3.3.8 A model j f t  is a pre-model <MP together with a value [cj G Jp] for
every constant c : p.

In the following, we consider a model j f t  with the constant values defined as fol­
lows.

For M M M  : 1(0,1} -  {0,1} {0,1}], [[VpiPp]] : [(M  -  {0,1}) -
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3. Church’s Simple Theory of Types

{0 , 1 }] and J=p]]: [flpj -» [pj -► {0 , 1 }], we define

=  1 and b =  1

=  0  and b =  0

=  1 and b = \

P pKp )

=  min{p(m) | m G Jp]}
if 3m G Jp].p(m) =  1

=  /  1
0  o.w.

=  max{p(m) \ m G Jp]} 
= m = n

In order to give a definition of JjUp] and JVp], we first define predicates Qp: Jp] 
Jp] —► {0 , 1 } inductively as follows for every predicate type p

So
SpXCT
Sp-»<7

=  Xx,y G { 0 ,1 } .*  J—>]y

=  Xx,y G Jp x  a]. no(x) Qp no(y) Ja] m(x) tfi(y) 
=  Xx,y G Jp -> a].jVp](Aw G Ip ].* (w ) Say(w ))

It is easy to see that J c p] =  Cp> and gp is a partial order.
Obviously we have that Qp is a complete lattice, where the supremum U/Jt/ and 

infimum of any family objects exist (jc,- G Jp]). Therefore by Tarski’s theorem 
[Tar55] for a ^jp-monotone function g : Jp] —► Jp], the least and greatest fixed points 
LFP(g) and GFP(g) respectively exist, and

LFP(g) := f ] {x  | x  € DpJ, gx £ p x} GFP (g) := |J{x \ x e  [[p]], jc Qp gx\

Now we define [[/tpj : [Jp]| -> Jp]] -> Jp] and [vp]]: [[pj -> [p]] -> Jp] as fol- 
lows.

IPpK/) :=LFP(A_xe UpD. |J  f(y))
ŷ =px

IIvp l ( / ) := GFP(Ajc e  JpJ. f |  f(y))
xQPy

Note that Xx G Jp]. UyCpX/Cy) is monotone, since if x  increases then y increases 
because Qp is a partial order. Then the union becomes bigger. Similarly, Xx G
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UpJ. r\xcpyf(y)  is monotone, since if x increases then y decreases. Then the intersec­
tion becomes bigger. In addition, every function from (Jp]] to Jp] is continuous, since 
p ranges over predicate types which means they all end up with o, then the topology is 
trivial.

Given a context T, let 77 be an environment mapping from dom(r) to Jr(x)]. We 
write 77 [= r  if for every i, 77 ( jc,•) G Jp,] where jc ,- G dom(r).

Definition 3.3.9 (Semantics of terms) For every derivation T  h M : p, if 7] |= F, then 
we define the value jAf]r 7] G Jp].

I*]]r f7 := V(x)
H r ?) := M

[Ax : p.M'fl} := Xa e  flp]].[[M]]r ’*:pT,[;t := a]

p / f l f  i? := p # f  Tf ip l f  n)

[^ (M )]r 7, := Sb(|[A/]]r j,) 
p i(M )lr T, := jr1([M]]r i,)

where Jc] G Jp] for each constant c : p.

A term of type o in a context T  is called T-formula. The formula is true if its value 
is 1 .

Let T be {xi : p i , ... : p„}, and the proof context A a finite set of terms A,- such
that T b A t : o.

Definition 3.3.10 We define

• J?,T) (=r A := jA]r r, =  1

• A |=r A := 7] 7] |= T A jft \  77 |=r A) => j f t , 77 |=r A)

We can omit the model J t  if it is clear from the context.

Lemma 3.3.11 If T  h M : p, 77 \= T, and M =a M \  then jM] r 77 =  jM ']r 77.

Proof By induction on M. □

Semantically, the significance of the free variables of a term is that they delineate 
the only part of the variable substitution on which the value of the term depends. This 
is captured by the following lemma.

Lemma 3.3.12 (Coincidence) If T b M : p, 77 [= r ,  77' f= r ',  and Vjc G FV(Af), 77 (x) =  
77;(x)Ar(x) =  r'(x), then jAf] r 77 =  JMJ^tj'.
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Proof. By induction on the derivation of T b M : p.

•  T , j c : p  b x : p
We need to show Jx]]r T] =  I*]1* 17'.
By Definition 3.3.9 it is to show 77( jc )  =  T]'(x). This follows by the assumption.

• T b c  : p if c: p
We need to show Jc]]r r] =
By Definition 3.3.9 both left- and right-hand side of above equation are equal to
M -

r , jc :p  b M : a
T b  X x :p .M :p  —> a

We need to show \X x : p.M])r rj =  \X x : p.AfJ^Tj'.
It is to show Xa G := a] = Xa e  := a] by
Definition 3.3.9.
We have the following induction hypothesis

(IH1)

Let 7]o := Tj[x := a] and t]q := 77' [jc  := a].
Before applying IH1, we need to show 1) 77 [jc  := a] [= (F,jc : p), 2) 77' [jc  := a] \=
( F , j c  : p), and 3) Vy G FV(M), 77[x := a](y) = T]f[x := a](y) A (T,x : p)(y) =
(F', x : p)(y). Let a G Jp].
For 1), it is to show V/. 17 [jc  := a] ( jc ,-) G [[(F, jc  : p ) ( jc / ) ] ]  where jc ,- G dom (r,x : p). 
If jc ,  G dom(r), then 77 [jc  := a](jc,-) =  77 ( jc ,-) g  |[r(jc,-)]] by the assumption 77 f= F. 
If jc ,- =  jc ,  then 17 [jc  := a](jc) =  aG [pj. Thus, 77 [jc  := a](jc,-) G J(r,jc: p)(jc,-)J.
For 2), similar to the proof of 1).
For 3), clearly jc  G FV(Af). Hence if y = jc ,  then we have 77 [jc  := a] ( jc )  =  a =  
77' [ jc  := a] ( jc )  and ( T , jc  : p)(jc )  =  p =  ( F , jc  : p)(jc). If y /  jc ,  then by assumptions 
we have 77[x := a]{y) =  77(y) =  r]'(y) = T]'[x := a](y) and (T ,*: p)(y) =  T(y) =  
r (y )  =  (r',jc:p)(y).
By IH1, we have Xa G [[pfl.jAfJ^PTjfx; := a] =  Xa G |[p]].[[M]]rV’;,c:p77/[jc:=a].

T b  Af: p —> a  r b W : p  
r b M W : a  

We need to show [AfiV]]r 77 =
By Definition 3.3.9 it is to show |[Af]]r 77([[Af]]r 77) =  [Mj^Ty'dfATj^Tj').
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This follows by the induction hypotheses

M r Ji =  M S '  (M l)

m rn =  M r Tj' 0H2)

r i - M : p  r i - N : a
F\- (M,N): p x a

We need to show [[(Af, Â )J|r 7] =  [[(Af,^)]]1̂ ?]7.
By Definition 3.3.9 it is to show (jAf]]r 77, jÂ ]]r T7) =  (fAfJ^rj',

This follows by the induction hypotheses

p / f j }  =  M r T}' (IH1)

i N f v  =  M r 7j' (IH2)

Tl- Af: p x a  
r i -7to(M)\p

We need to show [[̂ o(Af)]]r r7 =  [[^(Af)]]1̂ ?]'.

By Definition 3.3.9 it is to show 7io([[Af]]r 7j) =
This follows by the induction hypothesis

[M fjj =  p f f V  (IH1)

T h M : p x a  
T h ^ i(M ): a

We need to show |[7Ti(Af)]|r 7] =  j 7Ti (Af)]1̂ ' .
By Definition 3.3.9 it is to show î([[Af]]r r]) =  ^([[Af]1*?]').

This follows by the induction hypothesis

[Mfr? =  (IH1)

□
We write F[x: p] for extending the context T by x : p, and if x e  dom(T), replace 

the type of x  in T  by p.
The next two lemmas show that if two terms are j3-equivalent, then the values of 

these two terms are identical.

75



3. Church's Simple Theory of Types

Lemma 3.3.13 If T[x : a] b Af : p, r  \~ N  : g , and 77 |= F, then ^M[N/x]Jr ri =
p v fij] .

Proof. By induction on Af.

• M = x.
We need to show |x[Af/jt]]]r 77 =  [jcĴ ^ 77 [x := [W]]r 77].

From the left-hand side of the equation we get [[x[Af/jc]]]r 7j =  [Njr t7 by Defini­
tion 3.1.7.
From the right-hand side we get [jt]1̂ ^ 7][x := [Af]r Tj] = r)[x := [[Â]]r T7]( jc )  = 
[[7V]]r r7 by Definition 3.3.9.
Hence, we have [[//]] r r] =  [iV]]r Tj.

• Af =  y where x ^  y.
We need to show fty[N/x]1r ri =  ^ y ^ x:â r][x := jÂ Jr r]].
By Definition 3.1.7 and 3.3.9, it is to show Tj(y) =  rj(y). This follows by equal­
ity.

• M = c.
We need to show [c[7//jt]]]r T7 = [c]r tx:<Tlrj[jc := [̂ V]]r Tj].
By Definition 3.1.7 and 3.3.9, both left- and right-hand side of above equation 
are equal to [cJr T].

• M = Xz\p.M'.
We can always find a term Ay : p.Af such that Xy : p.Af =a Xz : p.Af' where 
x ^ y  andy ^ FV(N).
Then to show [[(Ay: p.M)[N/x]§r ri =  [Ay: p . M ^ x:a r̂j[x := [N]r 77].
We get [(Ay : p.M)[N / x ^ r \  =  A a e  [p j . [[Af [TV/jc]]]r,:y:p 77 [y := a\ by Defini­
tion 3.1.7 and 3.3.9 from the left-hand side of the equation.
From the right-hand side, by Definition 3.3.9 we get [Ay : p .AfJ|r ^: 77 [jc :=  
M r t?] =  Aa e  [pfl.p/]]1̂ ’̂  T][x := [AT]r ry][y := a].
By Lemma 3.3.12, we get [Af]]r Tj =  lN^r,y:prf [y := a].
Now it is to show [Af[N/;t]]]r,y:p77[y := a] = ^ M ^ x:â y:pT][x := [iVjr,;y:̂ r][y := 
a]]\y:=a}.
We have the following induction hypothesis

[tfA]Jr«Tjo =  M r<'[rtr,f?o[* := M r»JJo] (M l)
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Let r 0 := T, y : p and rjo := T]\y := a].
By IH1, we have §M[N/x\lr,y:prf\y := a] = l M ^ x:(Ĵ y:p rf[x := |[Â]]r,;y:/37][y := 
a]]\y:=a\.

• M  =  Mi M2 .
We need to show [(MiM2 ) [N/x]^r rf = [MiM^]1̂ *^ 7] [x := [Â ]]r 7]].
From the left-hand side of the equation, by Definition 3.1.7 and 3.3.9, we get 
[(M1M2 )[7VA]lr  7] =  lMx[Nlx}{M2[Nlx})fr] =  [M i[^A]lr T}([M2 [AfA]fjj).

We get \MxM2f ^ T \ [ x  := [JV]r J?] =  l M i f ^ :â r][x := Q̂V]]r t7] (HA/2]]r[jc:<Tl[x 
:= [iVj T}]) from the right-hand side, by Definition 3.3.9.
Then it is to show that [[Mi[A,/^]]r Tj([M2 [Af/j:]]]r t)) =  [MiJr lr<7ljj[;t:= [A']1'?)]
(lM2f ^ ff]r}[x:= p v ftj]).
This follows by the induction hypotheses

[Mi =  [MiJr I*:<fljj[.x := iNfri]  (IH1)

lM2[N/x]fr) = [M zfl^ n  [x := [iv f  tj] (ffl2)

•  M =  (Mi ,M2).
We need to show l(M\,M2)[N /x]lr ri =  J(Mi,M2 )]]r tJc:<T̂7][jc := [A^t]].
From the left-hand side of the equation we get [[(Mi,M2 )[N/jc]]]r 77 =  l(M\[N/x], 
M2 [7Vr/jc])J|r r7 =  (§Mi[N/x]§r rf, §M2 [N /x]§r r]} by Definition 3.1.7 and 3.3.9.
From the right-hand side, by Definition 3.3.9, we get [(Mi,M2 )]]r ^:̂ 77[̂  := 
M r n] = m ¥ [x:o]ri[x--= m r r}UM2¥ [x:G]ri[x--= M r r?]>.
Now it is to show ([[Mi[̂ V/jc]]]r rj, §M2[N/x]]lr ri) =  ([[Mi]]r [Jc:<T]77 [jc : =  jjÂ]]r 77], 
jM2l r ^ ] 7 ] [ x := M r T7]).
This follows by the induction hypotheses

[Mi[iVA]lr Tj =  p /] r T}] (IH1)

iM2[N/x]fi} = lM2f W r i [ x  := [ tf f i j]  (ffl2)

• M =  7Cq(M).
We need to show J^o(M)[AT/jc]]|r Tj =  p^) (M )^x:a r̂][x := [Â]]r rj].
From the left-hand side of the equation, by Definition 3.1.7 and 3.3.9, we get 
^ ( M ) [ ^ A ] f  77 =  lKo(M[N/x])Fri = no(lM[N/x]fT}).
From the right-hand side we get [[tc o (M)] ]r f-r : 17 [jc : =  [ [N ]]r 77] =  TCo( [[Mjr ^ :^  17 [jc 
:= |[7V]]r  77]) by Definition 3.3.9.
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We need to show 7io([M[A//x;]]]r T7) =  ^o(|[ M ^ x:a r̂f[x := [WF7?])- 
This follows by the induction hypothesis

lM[N/x]fri  =  [A ff ̂  7} [x := [iv fjj] (IH1)

• M = K\{M).

We need to show J^i(M)[7V/^]]]r rj =  := [[Â F7?]*
From the left-hand side of the equation, by Definition 3.1.7 and 3.3.9, we get
lid (M)\N/x]fri  =  l7n(M[N/xmr T] =  * i (W \N /x] lr ri)-
From the right-hand side we get [fti ( M ) F ^  t}[x := |[W]]r 7]] =  K\ ([ A f F ^  77 [x 
:= [M r  77]) by Definition 3.3.9.

We need to show Ki(lM[N/x]1r,q) = n i ( l M ^ x:°^ri[x := [pvF7?])- 
This follows by the induction hypothesis

[[M[JV/x]]]r 7j =  l M f W r ] [ x  := [JVfjj] (IH1)

□
Lemma 3.3.14 If T h M , N : p, then M =p N => [M]]r r7 =  [W]]r T7.

Proof By induction on the definition of /3-equivalence. We only look at the interesting 
case, namely j3-conversion.

Let M  be (Xx : p.T\)T2, and N  be 7i [T2/x], where T2 has the type p.
Then it is to show \ (X x : p .T \)T^r \  =  J7\ P^/jcJF7?-
From the left-hand side of the equation by Definition 3.3.9 we get [[(A* : p.Ti)T2̂ r  

T] = [A * :p .7 iF 7?(|p2F7?) =  (Xa e  [ [ p M ^ iF ^ n f c ^ a lX K F 7?) =  l T { f ^ ’Pr}[x
:= parf?].

On the right-hand side, by Lemma 3.3.13 we have [[7\ p i /^ lF 7? =  p i F ^  77 [jc := 
KF77].

Thus, [7i]r,Jc:pT?[̂  := P 2F 7?] =  J7 i]]r ^ :^ 7 7  [jc := P 2F 7?] since T,x : p = r[x :
| P]. □

\ Proof Calculus and Soundness
Denotational semantics is concerned with abstracting away from irrelevant details in 
order to focus on the aspects that are of interest to the user of the semantics. Therefore, 
it is natural to ensure a semantics is reasonably or sufficiently abstract for the need of 
the user. Soundness of a deductive system is the property that whenever a formula A 
of the language T  upon which the deductive system is based is derivable from a set A
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of formulas of that language, the formula is a consequence of that set. In other words, 
any model making all formulas in A true makes A true as well.

We start with constructing a deductive system. An intuitionistic proof calculus for 
CST, which is suitable for program extraction, is given in Table 3.1. It derives sequents 
of the form A h r A, where A is a finite set of T-formulas and A is a T-formula, where 
by a T-formula we mean a term M  such that T h M : o.

Remarks. 1. In order to enable a realisability interpretation we had to deviate from 
Church’s calculus in several aspects: first our system is intuitionistic while Church’s is 
classical. Secondly, we dropped the choice operator since it does not appear to admit 
a realisability interpretation. There are other realisability interpretations where ver­
sions of choice are realisable, e.g. Krivine’s countable choice in classical second-order 
logic [Kri03], Raffalli and Ruyer’s choice axiom in higher-order logic [RR08], Oliva 
and Streicher study the connection between Krivine’s work and modified realisabil­
ity [OS08].

2. From a logical point of view, the constants —> and Vp would suffice to define all 
other constants. For the logical constants including equality this was already observed 
by Church [Chu40]. Furthermore, we could have defined equality, following Church, 
as

(x=p y) := V p :p -> o .p * -* p y .

More formally
=p := Xx,y: p.Vp : p -> o.px-+ py.

jUp<P can be defined as the infimum of all jc : p such that < $ jc Cp x, and vp d> can be 
defined similarly. The reason why we prefer this richer set of constants is that they 
can be given simpler realisers as the ones extracted from the impredicative definitions 
above. For example, Tatsuta [Tat98] (in his theory of H D V2) extracted the realiser 
from the impredicative definition of Vp. However, the realiser of the coclosure rule 
for coinduction is simply the identity in our case, but Tatsuta has a more complicated 
A-term (Xxr.r(Xp.m(Xxrs.s(po, r))x(poxpi)) on page 353). More details will be given 
in the next chapter (Lemma 4.2.7).

3. In CST, the rules for p p  and v p  are restricted to monotone operators. In the 
next chapter, we will consider an extension of CST that has rules for pp<t> and vpd> for 
arbitrary operators <£.

4. In the following we will tacitly use the following derived rules that state that 
P -equality implies equality and equals can be replaced by equals in any context.

T\~A ,B : p A _ B A hr A = p B A hr M[A/x\
A hp A = p B  ̂ A hp M[B/x]
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Table 3.1: Proof Calculus for CST

r b  A,A: o A Hr A T\~B\o  0 A _  D   use-------------------------- -— —--------------- B A = r B
A, A hr  A AhpZ?

A l~r A A h r #  + A hr  A A Z? _ AhpAAB
AhpAAB A A h r  A ' A hr B Ar

A hp A r h B : o  /+ F h A : o  A h r #  w+
A hr  A V 5  V/ Abr AVfl Vr

A hr  A V 5  A,Ahr C A,flbr C
Ahr C v

A, A hr i? + A hr  A —> Z? A hr  A
A hr  A —> B A hr  B

A M x  vj xfresh Ahr VpM__T ^ N 'P  v-
AhpVpA/ p Ah r MN p

A\-r MN  r h N : p  Ahr 3PM A.Afchp^pC n_
A hp 3PM p A hp C p

A, pA  hp,p:p->o pB  A hp A = p B  A hp PA
A hp A = p B pftesh Ahp PB  =

A hr.i:p Ax  =<y Bx
— ri ;---------- -— ext x freshA hr  A = p^cyB

T h <1>: p —> p T h A : o A h r monop (<I>) A h r <l>(Af) Cp Af------------;----- :-------------- Clrt ------------------1--------------------------------- ----- Indo
A hr  3>(jup3>) Cp jup<J> A hr  jup >̂ Cp Af

T h <I>: p —»p T h A : o  A h r monop (<I>) A h r M Cp <J>(Af)----------------------    —  Cocln  Coin
A hr  Vp̂ > Cp 3>(vp<I>) Ahr M C p Vp(4>)

Now we give two examples to demonstrate inductive and coinductive definitions. 
Later in the next chapter we will give the realisability interpretation of these two ex­
amples.

Example 3.3.15 (Inductive Natural Numbers)
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Consider the typing context r+  := {0,1: i, +  : i —► i —► i, — : i —> 1} and let A+ 
consist of the formulas stating that (+, — ,0) is an Abelian group. Formally, the terms 
0,1, + , — are variables, but we like to view them as constants and the assumptions A+ 
as axioms. We will write M — N  as a shorthand for M  +  (—N ).

We define the set of natural numbers as an inductive predicate. Set 4> := Xp : l —>
o . X x : i .x =i 0 Vp(x — 1), and define N := A more readable notation for the
definition of N would be

N* =  x = , 0 v N(jc- 1 ) .

Example 3.3.16 (Coinductive Fibonacci Numbers)
Continuing the previous example, we give a definition of a coinductive predicate 

FIB := where

:= Xq : I —> I —► o.Xx,y : l .NxAqy  (x+y).

This becomes more readable if a similar notation as for N is used:

FIB x y = N x A FIB y {x+ y)

Informally, FIBxy states that there exists a Fibonacci sequence of natural numbers 
starting with x,y.

Lemma 3.3.17 If A hp A, then T h A : o  and VB £ A (r h B:o).

Proof By induction on the structure of the relation A hp A.

r h  A,A: o•  -------------   use
A, A bp A

We have r  b A,A : o, which means T b A : o A VB £ (A,A)(r b B : o).

A bp A T b B : o
Abr B P 

We need to show T b B : o A VB' € A(T b B' : o).
Since we have T b B :o ,  this follows by the induction hypothesis

r b A : o A VB7 £ A(r bB/ :o) (IH1)

A bp A A bp B
•  - - - - - - - -     A +AbpAAB

We need to show T b A A B : o A VB' £ A(T b B' :o).
We have the following induction hypothesis

r  b A : o A VB7 £  A(r bB':o) (IH1)
rb Bi oA VB 'e  A(rbB/ :o) (IH2 )
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3. Church*s Simple Theory of Types

By the uniqueness of derivations, from T b A : 0  and T b B : 0 , we have T  b 
A A B : 0 . Then by IH1, we have T b A AB : o A VB' £ A(T h B; : o).

A br AAB 
A h r A A/

We need to show T h A : o A VB' £ A(T h B ' : 0 ).
We have the following induction hypothesis

T b A A B : 0  A VB' £ A(T b B ': o) (IH1)

By the uniqueness of derivations, from T h A A B : 0 , we have T h A : 0 . Then by 
IH1, we have T  h A : 0  A VB' £ A(T h B ' : 0 ).

A bpA AB
# Ahr B Ar

We need to show T h B : 0  A VB' £ A(T h B ': 0 ).
We have the following induction hypothesis

r h A A B : 0 AVB7£ A ( r h B ' : 0 ) (IH1)

By the uniqueness of derivations, from T  h A A B : 0 , we have T h B : 0 . Then by 
IH1, we have T  h B : 0  A VB' £ A(T h B ': 0 ).

A hp A r  h B : 0  ,• -----   v,
Ahr AVB 1

We need to show T h A V B : 0  A MB' £ A(T h B ': 0 ).
We have the following induction hypothesis

T h A : 0  A VBr £ A(T \~ B' \o) (IH1)

By the uniqueness of derivations, from T h A : 0 , we have T  h A V B : 0 . Then by 
IH1, we have T h A V B: 0  A VB' £ A(T b B ': 0 ).

T bA  : 0  AbpB ,• -------------------- ±—  v+
AbpAVB

We need to show T  b A V B : 0  A VB' £ A(T b B ': 0 ).
We have the following induction hypothesis

T b B : 0  A VB' £ A(T b B ': 0 ) (IH1)

By the uniqueness of derivations, from T b B : 0 , we have T b A V B : 0 . Then by 
IH1, we have T b A V B : 0  A VB' £ A(T b B ': 0 ).
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Al-r AVB A,A hr C A,Bhr C
Ahr C

We need to show T  h C : o A MB' E A(r h B' \o). 
We have the following induction hypothesis

F\~AMB:oAMB' E A(F\~ B':o) 
T\~C:oAMB'e  (A ,A )(rh5':o) 
T\-C:oAMB' e (A,B)(FhB':o)

(IH1)
(ffl2)
(ffl3)

By the weakening rule, it is safe to apply IH2 and IH3. Then by IH2, we have 
F\~C:oAMB' EA(F\~B' :o).

# A, A hpB +
Ahr A ^ B

We need to show F h A —> B : o A MB' E A(F h B' :o).
We have the following induction hypothesis

Now we need to show F h A —> B : o.
By the uniqueness of derivations, it is to show T,A h B : o. It follows by the 
weakening rule and IH1. By IH1, we have MB' E A(T h B' : o).

A hp A —► B A hp A
* Ahr B ^

We need to show T h B : o A MB' E A(T h B' : o).
We have the following induction hypothesis

By the uniqueness of derivations, from T  h A —» B : o and T  h A : o, we have 
T h f i ro .  Then by IH1, we have T  h B : o A MB' E A (T h B' : o).

T)r B :o A MB1 E (A,A)(T h & :o) (IH1)

T h A —>• B : o A MB' E A(T h B7: o) 
T h A : o A MB' E A(T h B7: o)

(IH1)
(IH2)

# A h r ^:p MX  

A hr MPM p 
We need to show T h MpM : o A MB' E A(T h B' : o). 
We have the following induction hypothesis

T , r : p h  M x : o A MB' E A(r, x : p h B7: o) (IH1)
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From VpAf we know there exists some x  that has the type p. Thus from T we 
can derive r , jc : p. So it is safe to apply IH1. By the uniqueness of derivations 
and the weakening rule, from T,x: p\~ M x : 0 , we have T b VpAf: o.
Since the x  in (T, x : p) is generated from the application with Af, it has no effects 
on A. Then by IH1, from VB' E A(r,x : p h 5 ' : o ) ,  we have VB' E A(T b B ': 0 ).

A br  VpM T \ ~ N : p w_
Abr AfrV p

We need to show T b Af/V: o A VB' E A(T b B ' : o).
We have the following induction hypothesis

T b VpAf: o A VB' E A (T b B ' :o )  (IH1)

By the uniqueness of derivations, from T b VpAf : 0  and V \~ N : p, we have 
T b Af//: 0 . Then by IH1, we have T b MAT: 0  A VB' E A(T b B ': 0 ).

A bp Af/V T b W : p  3+
A br  3pAf p

We need to show T b 3pM : 0  A VB' E A(T b B ': 0 ).
We have the following induction hypothesis

T b M N : 0  A VB' E A(T b B ': 0 ) (IH1)

By the uniqueness of derivations, from T  b MN : 0  and T b / /  : p, we have 
r  b VpAf: 0 . Then by IH1, we have T b =3pAf: 0  A VB' E A(T b B ': 0 ).

Abp3pAf A,Mx\~r^c:p C _̂
AbpC p

We need to show T b C : 0  A VB' E A(T b B ': 0 ).
We have the following induction hypothesis

r b 3pAf: 0  A VB' E  A(r b B7: 0 ) (IH1)
T,jc : p b C : 0  A VB7 E (A,Afx)(T,jc : p b B ' : o )  (ffl2)

By the weakening rule it is safe to apply IH2. By the uniqueness of derivations, 
from T b 3pAf: 0  and T ,x : p b C : 0 , we have T b C : 0 . Then by IH1, we have 
T b C : 0  A VB' E A(T b B ': 0 ).

A ,pA  \~r,p:p-+o p B  +
= + p  freshAbr A = p B

We need to show T  b A —p B : 0  A VB' E A(T b B ': 0 ).
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We have the following induction hypothesis

T,p : p -> o h pB : o AMB' G (A,pA)(T,p : p ^  0  b P ' : 0 ) (IH1)

By the weakening rule it is safe to apply IH1. By the uniqueness of derivations, 
from T , p : p —> o h p B : 0 , we have T h A =p B : o. Since p  has no effects on A, 
by IH1, we have MB' G A(r h P ' : 0 ).

 ̂ A h r A =p B A hp PA
* A hr  PP  =

We need to show T  h PP  : 0  A VP' G A(r h P ' : o).

We have the following induction hypothesis

r  h A =p P : o A MB' G A (r h P ' : o) (IH1)
r  h PA : o A VP' G A(r h P7: o) (ffl2)

By the uniqueness of derivations, from T h A = p P : o  and r  h PA : o, we have 
r  h P B : o. Then by IH1, we have T h PB : o A MB' G A(T h B' :o).

Ahr s:PA x = a Bx
•  — r~,----- :------------ -—  ext x  freshA hr  A = p— P 

We need to show T h A =p->a P : 0  A MB' G A(T h P ' io ) .

We have the following induction hypothesis

T , x : p h Ax =a B x :o A  MB' G A(r,;t : p h P ' : o )  (IH1)

Since x is generated for applications with A and P, it has no effects on A. Thus
it is safe to apply IH1. By the uniqueness of derivations, from T , x : p h Ax —a 
B x : 0 , we have T h A =p^ a  B : o.

Then by IH1, we have T h A = p^  P : 0  A MB' G A(T h  P ' : 0 ).

# r i - 0 : p - > p  ri-A:o q
A l~r <t>(pp<t>) c p ppO p 

We need to show T h <f>(jUpd>) Cp Pp<t>: 0  A VP G A (rh  B:o).

This follows by the assumptions and the definitions of fip and Cp.

A h r  monop (<£) A h r Cp M
* A h r pp<*> Cp M

We need to show T h Pp<£ Cp M : o AMB e  A(T h P : 0 ).
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We have the following induction hypothesis

T b monop (<&): o A Vfl e  A(T b B : o) (IH1)
r  b <1>(M) Cp M : <? A Vfl e  A (r b B : o) (ffl2)

By the uniqueness of derivations, we have T  b jUp4> Cp M :o. Then by IH1, we 
have T  b pp& Cp M : o A MB e  A ( T  b5:o) .

rb<I>:p—>p T b A : o  ^ ,K ^  Cocl,
A br  Vp4> Cp <J>(vp<I>) ” P 

We need to show T b Vp<J> Cp d>(vpd>): oA\/B e  A(rh Bio).

This follows by the assumptions and the definitions of Vp and Cp.

A bp monop (<£) A bp M C p  <I>(M)
* AI-rMCp vp(<I>) 01p

We need to show T b M C p  vp (<£): o A VB e A ( r h B : o).

We have the following induction hypothesis

T b monop(<I>) :oA \/Be  A(T \- B:o)  (IH1)
r  b M C p  <1>(M) : o A e  A(T b B : o) (ffl2)

By the uniqueness of derivations, we have T  b M C p  Vp(<l>): o. Then by IH1, 
we have F b M C p  yp(<I>) :oA \ /Be  A(Tb B:o).

□
Theorem 3.3.18 (Soundness) If A bp A, then A |=p A.

Proof By induction on the structure of the relation A bp A.

T b  A,A: o•  — -——r-------- use
A, A bp A

We need to show A,A |=p A. Then by Definition 3.3.10, that is, assume 77 (= F 
and J t ,  T] |=p (A,A), to show J t ,  77 |=p A.

From the assumption M , 77 |=p (A, A) we get J f ,  rj |=p A.

. A b r A  rhg:o p A = f B
A b p B H P

We need to show A f=p B. Then by Definition 3.3.10, that is, assume 77 |= T and 
77 |=p A, to show 77 [=p B, i.e. to show jBjr 77 =  1.
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We have the following induction hypothesis

A h r  A 0H1)

By Definition 3.3.10 we have rj |=r A.
That is, [[A]]r Tj =  1. By Lemma 3.3.14 we get [[fi]]r Tj =  1 since A =p fi.

A l~r A A hp B
•  - - - - - - - - - ------------------- - ------ A +A h r A A  5  A

We need to show A |=r A AB. Then by Definition 3.3.10, that is, assume t] h r  
and J t ,  tj | = r  A, to show rf h r  A A  fi, i.e. to show JA A  fi]]r 7j =  1 . That is 
to show [A]]r 7j =  1 and [fi]]r 7j =  1.
We have the following induction hypothesis

By Definition 3.3.10 we have rf h r  A and t j  h r  B.
That is, [A frj =  1  and [ f i ] ] r T j  =  1 .

AhrAA.fi
A h r A 1

We need to show A h r  A. Then by Definition 3.3.10, that is, assume t j  h  r  and 
t j  h r  A, to show jft ,  t j  h r  A, i.e. to show [A]]r t j  =  1 .

We have the following induction hypothesis

By Definition 3.3.10 we have t j  h r  A A f i .

That is, [A AfiJr Tj =  1, i.e. [A]]r Tj =  1 and [[fi]]r Tj =  1.

Ahr AAfi 
Ahr fi Ar

We need to show A h r  B. Then by Definition 3.3.10, that is, assume t j  h  r  and 
J t ,  t j  h r  A, to show rj h r  B, i.e. to show [fi]]r Tj =  1.
We have the following induction hypothesis

A |=rA 
A |= rfi

(IH1)
(ffl2)

A h rA A f i (IH1)

A h rA A f i

By Definition 3.3.10 we have ^ , t j  h r  A A f i .

That is, JA AfiJr Tj =  1, i.e. JA]]r Tj =  1 and [fi]r 7j =  1.

(IH1)
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A hp A r  h B : o ,  ---------------------v tAhpAVB '
We need to show A [=r A y  B. Then by Definition 3.3.10, that is, assume 77 |= r  
and J Z ,  77 |=r A, to show J Z ,  rj |=r A V B, i.e. to show [[A V B^r 7] =  1.
We have the following induction hypothesis

A |=r A (IH1)

By Definition 3.3.10 we have JZ, 7] |=r A.
That is, |[A]]r ry =  1. Thus, JA V 5jr r] =  1.

T h A : o A hp B 4 /+
Ah r AMB Vr

We need to show A |=r A MB. Then by Definition 3.3.10, that is, assume 77 |= F 
and J Z , 77 f=p A, to show J Z , 77 |=r A V B, i.e. to show [A V Z?]r 7] =  1.
We have the following induction hypothesis

A ^ r S  (IH1)

By Definition 3.3.10 we have J Z ,  77 |=r B.
That is, [B]]r jj =  1. Thus, [[A VSjr T7 =  1.

AhpAVB A, A br C A,Bbr C
AI-r C v

We need to show A |=r C. Then by Definition 3.3.10, that is, assume 7] |= T and 
J f ,  7] |=p A, to show J Z , 7] |=p C.
We have the following induction hypothesis

A |=r  A V Z? (IH1)
A, A [=r  C (ffl2)
A,B [=r C (ffl3)

By Definition 3.3.10 we have

(7 7 1= T A JZ, 77 |=r A) =>■ J Z ', 77 |=r A V B 
(77 \= r  A jZZ, 77 |=r (A)-A)) => J Z , 77 |=r Z3 
(77 |= r A ^ , 7 7  \=r (A,B)) => ^ , T 7 \=rC

Before we apply IH2 or IH3, we need to show J Z , 77 f=r (A,A) or JZ,r\ \=r 
(A,5). That is to show J Z ,  77 |=p A or J Z ,  77 |=r 5, i.e. [A]]r 77 =  1 or p?]r 77 =  1. 
Then to show [A V5 j r 77 =  1. This follows by J Z , 77 |= rAM B.
By IH2, we have J Z ,  77 f=r C.
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# A, A +
A hr  A-+B

We need to show A f=r A —> B. Then by Definition 3.3.10, that is, assume 77 |= F 
and ./#, rj h r  A, to show j f i , rf |=r A —► 5, i.e. to show [[A —> B] r 77 =  1. That 
is, assume |[A]]r r] =  1, to show p?]r T] =  1.
We have the following induction hypothesis

A, A h r #  (IH1)

Before applying IH1, we need to show JZ,  77 |=r (A, A) first. We have 77 |=r
A by assumption, then it is to show |=r A, i.e. jA]]r T] =  1. This follows
by the assumption.
By IH1, by Definition 3.3.10 we have (77 |= F A r y  |=r (A,A)) = > ^ , 7 7  |=r#- 
That is, p?]r T7 =  1.

A h r A —> B A hr A
Ahr B

We need to show A |=r B. Then by Definition 3.3.10, that is, assume 77 |= F and
J Z , 77 |=r A, to show JZ, rj |=r B, i.e. to show [Bjr ?] =  1.
We have the following induction hypothesis

(Ml)
(M2)

By Definition 3.3.10, from IH1, we have |=r A —>■ B. That is, [A —► 
Bjr 7] =  1, i.e. if [A]]r r] =  1, then [[B]]r r] =  1. [[A] r 77 =  1 holds by IH2. Thus, 
[S lr 7J =  1 .

A h r ro  Mx , - ,• ---------- v+ x  fresh
A hr  VPM 9

We need to show A |=r VpAf. Then by Definition 3.3.10, that is, assume 7] |= T
and JZ, 77 h r  A, to show JZ,77 |=r VpAf, i.e. to show [[VpAf]]r r] =  1. That is,
HYpUM1̂  = i e - to show Va e =  !•
We have the following induction hypothesis

A h r s:PMx (M l)

Before applying IH1, we need to show a) 77 [jc  := a] f= ( T , jc  : p) and b) JZ, 77 [jc  := 
a] H>:p A first. Let a G [p].
For a), it is to show Vf.77 [ jc  := a] ( j c / )  G [[(F,j c  : p)(jc/)] where jc / G dom(r,Jc: p). 
If jc,- G dom(r), then 77 [jc  := a] (x/) = 77 ( jc ,- )  G jr(x/)]| by 77 \=T. If j c/ =  j c ,  then 
7][x := a](x) = a G [pj. Thus, 7][x:=a](xi) G [(T ,*: p) (*/)].

A [=rA->B
A hr A
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For b), it is to show VA E A ( ^ ,  7] [ jc  := a] |=r,rp i*e. [[A]]r,*:p7] [ jc  := a] =  1. 
By Lemma 3.3.13, it is to show |A[A//jc]]]r Tj =  1 where [[A7]]1̂  =  a.  Since x 
is fresh, it is to show [A]]r 7] =  1 for all A E A. This follows by the assumption 
JZ,ri |=rA.

From IH1, we have ( 7] [ jc  : =  a] | =  (T,x : p) 7] [ jc  : =  a] (=r,x:p A) = >  7] [x : =

a] \=r̂ c:p Mx by Definition 3.3.10. That is, we have

[[Mx]]r ’*:p 7] [r :=  a] =  1 
= » p f] |r ,*:pr/[jc :=  a](p:^r,x:p'q[x :=  a]) =  1 
= >  [ 7 7  [ j c  : =  ( a )  =  1

=*\M\A!/x}fr){a) = 1 
=>p/fj](a) =  l

Ahr VPM r h AT: p w_
* A hr  MN 9

We need to show A \=rMN. Then by Definition 3.3.10, that is, assume 77 |= r  
and , rj |=p A, to show 7] |=p MN , i.e. to show [[MiV]]r 77 =  1.

We have the following induction hypothesis

A |=r VpM  (IH1)

From IH1, we get M ,r\  [=r VpM by Definition 3.3.10. That is [VpM]]r 77 =  1,
i.e. VaE Jp]].|[M]lr 77(a) =  1. Then by T h N : p  and 7] |= T, we get [AfJr 77 E [[pj. 
Thus, we get [Af]]r 77([[/V]]r 77) =  1, i.e. §MN^r 7] =  1 by Definition 3.3.9.

# A hr MN r \ ~ N : p g+
A hp 3pM 9

We need to show A |=p 3pM. Then by Definition 3.3.10, that is, assume 77 |= F 
and 7] |=r A, to show 77 \=r 3pAf, i.e. to show [3pM]]r 77 =  1. That is, 
[3 p]][[Af]]r 77 =  1, i.e. to show 3a E [[p].[[M]]r 77(a) =  1.

We have the following induction hypothesis

A \=rMN (IH1)

Then we get M,v\  |=pM/V by Definition 3.3.10. That is, [MN])r T7 =  1, i.e.
jAf]r 77([[N]]r T7) =  1. Then by Definition 3.3.9, from T h N : p and 77 \= T, we
get M r 77 E i p l  Thus, we get 3a E JpJ.|[M]]r 77(a) =  1.

(by Definition 3.3.9) 
(by Definition 3.3.9) 

(by Lemma 3.3.13) 
(by x  fresh)

90



Church’s Simple Theory of Types (CST)

A h r 3 PM A-M xhr^ C 3 - * fresh
AI-pC p

We need to show A \=r C. Then by Definition 3.3.10, that is, assume 77 |= F and 
rj f=r A, to show , 77 |=r C, i.e. to show jC]]r T] =  1.

We have the following induction hypothesis

A f=r 3pM  (IH1)
A,Afx |=r>:p C (ffl2)

Then by Definition 3.3.10 we have

Vrfir f  N rA  , t]' \=r A) => Tf' \=r 3pM
Vj)"(r}" 1= ( r , x : p) \=r -̂.p (A,Mt)) =!> N r*.P C

Let tj' := 77, and 77" := tj[jc := a].
From * ^ ,7 7  |=r 3pAf, we get p pM] r 77 =  1, i.e. P PJ[[M]]r T7 =  1, i.e. 3a G
M - W f t l  (a) =  1 -
Before applying IH2, we need to show a) rj [x : =  a[ \= (r,jc : p) and b ) ^ ,  77 [x := 
a] l=r>:p (A,Afx) first. Let a G [[p].
For a), it is to show Vi. 77 [jc  := a] ( jc ,- )  e  [[(F,j c  : p)(jv/)J where jc,- G dom(r,jc: p). 
If Xi G dom(r), then r}[x \= a](xi) =  77(jc ,- )  G Jr(x,-)]] by the assumption 77 |= F.
If jc,- = j c ,  then 77 [x := a](x) =  a G [[p]. Thus, 77 [ jc  := < z ]( jc ,- )  G |[(r,jc: p)(jc,-)j.

For b), it is to show §A,Mx'$r’x'p'n[x := a\ =  1, i.e. [[A]]rrX :p77[jc  := a] =  1 and 
[[Afjc]]r,*:p 77 [jc  := a] =  1 which is equal to [[M] r , * :p 77 [jc  := a]([[jcjr ^ 77[x := a]) =  
1, i.e. pf]]r ’*:P 77[jc  := a] (77 [jc  := a]( jc ) )  =  1, i.e. [x := a](a) = 1. Since

jc  is fresh, then by Lemma 3.3.13 it is to show [A]]r 77 =  1 and |[M]]r T7 (a) =  1. It 
follows by the assumption J t ,  77 \=r A and IH1.

From M , 77 [ jc  :=  a] |=r>:p C (from IH2), we get [[C]]r ’*:p77 [ jc  :=  a] = 1. Since jc  

is fresh, by Lemma 3.3.13, we get HCjr 77 =  1.

A,pA l~r,P:p->o pB ^
= + p  freshA bp A =p B

We need to show A |= r  A = p B. Then by Definition 3 .3 .10, that is, assume 77 |= F 
and 77 |=p A, to show , 77 [=r  A = p B, i.e. to show [A = p Bjr 77 =  1. That 
is, for every p  G [p —► 0 ], assume [[pAj^Tj =  1, to show [[p£]]r 77 =  1.

We have the following induction hypothesis

A,pA [=r,p:p-^o P #  (IH1)
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Then by Definition 3.3.10 we have

f=r  (A,pA)) = > ^ , 77' |=p pB  

Let r\' := 7][p:= q] and r '  := r , p  : p —► o.
Before applying IH1, we need to show a) rf \p := #] |= ( r , p : p —► o) and b ) ^ ,  7] 
[p •= ?] Nr,p:p^ 0 (A,pA) first. Let ? € [p —»o}.
For a), it is to show Vi.7] [p := q\ (pi) G [(r , p : p —> o) (p,-)] where pi G dom(r, p : 
p —> o). If pi G dom(r), then rj\p:=q] (pi) = 7] (p/) G |jr(pt-)]] by the assumption 
77 t== r .  If pi = p, then 7] [p := $](p) =  <7 6  [[p -> oj. Thus, 77[p := ^(p,-) G 
l(r,p:p->0)(p/)]] .
For b), it is to show [A,pA]]r ’p:p_>07j[p := <7] =  1, i.e. [[A]]r,/> :p—̂ ^77 [p := q] =  1 
and [[pA]r ’p:p_'07][p := #] =  1. Since p is fresh, then by Lemma 3.3.13 it is to 
show [A fij =  1 and [pA]]r 7] =  1. It follows by the assumptions M , 77 A 
and [pA]]r 7] =  1.
From J£,  t j  [p := #] |= r> p:p_^0 p £  (from IH1), we get ^ p B ^ p:P^0fq [p:=q] = 1. 
Since p is fresh, by Lemma 3.3.13, we get |[pB]]r 7j =  1.

A hr  A = p B A hr  PA
# Ahr FB =

We need to show A |=r PB. Then by Definition 3.3.10, that is, assume 77 |= F 
and , tj \=r A, to show 7] |=r PB, i.e. to show [P5]]r 7j =  1.
We have the following induction hypothesis

A |=rA =p B (IH1)
A [=r PA (IH2)

By Definition 3.3.10, from IH1, we have |=rA —p B. That is, [A —p 
5 ] r 77 =  1, i.e. if JPA]]r 77 =  1, then [[PB]]r 7] =  1 for every P G [[p —► oj. 
[PA]r 7i =  1 holds by IH2. Thus, [PB]]r 7] =  1.

.  A hr^p A x = a Bx
•  — 1 ^— ext x freshA hr A = p ->(7 B

We need to show A |=r A =p-><r B. Then by Definition 3.3.10, that is, assume 
77 |= T and J t ,  rj f=r A, to show 77 [=r A =p->a i*e. to show [A =p-><j 
B f n  =  1. That is, for every p  e  (p —► a) —► o, assume |[pAjr 7j =  1, to show 
Ip flfj}  =  1 .
We have the following induction hypothesis

A |=r>:p Ax = 0  Bx  (IH1)
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Then by Definition 3.3.10 we have

^ r f i r f  N r* A rf N r  A) ^  * ^ 5  rf  N r  Ax =a Bx 

Let tj' :=  77[jc :=  a] and F' :=  T,jc : p .

Before applying IH1, we need to show a) 77 [jc  := a\ |= (r,jc: p) and b ) ^ ,  rj [x := 
a] Nr>:p A first. Let a £ Jp].
For a), it is to show \/i.rj[x :=  a](xt) £  I (r ,j c : p ) (*,)]] where jc,- £  d om (r ,jc : p ) . 
If jc/ £  d om (r), then 77 [jc :=  a](jc,-) =  rj (jc,-) £  (JF(jc,-)]] by the assumption tj \= T.
If xi =  x t then t j [x  :=  <z](jc) =  a £  JpJ. Thus, r j [ x a ] ( x i )  £  [[(F,jc : p)(jc,-)]j.

Forb), it is to show [[A]] r »;c:P 77 [jc  : =  «] =  1. Since jc  is fresh, then by Lemma 3.3.13 
it is to show [[A]r 77 =  1. It follows by the assumptions rj |=r A.
From  rj [jc :=  a] |=r>:p Ajc = a  B x  (from  IH 1), w e get [Ajc = a  B x ^ r ,x :p Tj [jc :=  
a]  =  1. That is, for every q  £  G  —> 0 , i f  l q A x ^ r ,x : p r j [ x  :=  a] =  1, then ^ q A x \ \ r,x:P 

77 [jc :=  <3] =  1. It equals to for every p  £  (p  —► cr) —► 0 , i f  ^ p A ^ riX:pTj [x  :=  d \  =  1, 
then Jp2?]]r ’*:p77 [jc :=  a] =  1. S ince jc is fresh, by  Lem m a 3 .3 .13 , it equals to i f  
^ p A f T j  =  1, then f t p B f ' T j  =  1.

# n - 0 : p ^ p  r h A : o  q
A l-r <J>(pp<I>) c p  ppcj> P

We need to show A |=r ^ (P p^) Cp Pp<I>. Then by Definition 3.3.10, that is, 
assume rj [= F and J t , r j  [=r A, to show Jt ,x j  (=r <&(pp<&) c p pp<I>, i.e. to 
show [d>(ppd>) Cp P p ^ f r j  =  1 .
By the definition of [Pp], we have [^(Pp^)]]1̂  =  [Pp<I>]]r 77. Then since [Cp 
] is a partial order, we have [3>(Pp<I>)]]tj [Cp]] [pp<I>]]r T7, i.e. [<J>(pp<I>) Cp 
ppd>]]r T7 holds.

A hp monop (<I>) A hp d>(M) Cp Af
* A hr  lip<& Cp M  Mp

We need to show A f=p Pp^ Cp Af. Then by Definition 3.3.10, that is, assume
77 |= F and tj |=r A, to show J t , tj \=r Pp<£ Cp Af, i.e. to show [ppO Cp
Af]r 77 =  1 .
This follows by the Tarski’s theorem.

r h < £ : p —>p T h A :o „ ,• ----------     ;-----   Codp
A h r Vp<I> Cp <D(vp >̂)

The proof is dual to the Cip case.

A hp monop (4>) A hp Af Cp <£(Af)
* A h r M C p Vp(<P) 0,p

The proof is dual to the Indp case.
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□

3.4 Conclusion
Firstly we have studied the simply typed lambda calculus (with products), and intro­
duced the notion of an interpretation from one instance of the simply typed lambda 
calculus to another. Every interpretation respects /3-equality.

And then we have described a particular instance of the simply typed lambda cal­
culus, called CST, where the set of base types contains a set J? of base types for 
individuals and the proposition type o, and the constant set consists of the constants 
A, V,^,Vp,3p,=p,^ip, and Vp.

Our deductive system of CST is different from Church’s original one in several 
aspects: first, we used natural deduction while Church used a Hilbert style calculus; 
second, our calculus is intuitionistic while Church’s is classical; third, we dropped the 
choice operator in order to enable a realisability interpretation.
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One method of program extraction is to employ a realisability interpretation. In 1945 
Kleene [Kle45] first introduced the concept of realisability with the idea of defining a 
relation *7z realises A” between natural numbers n and logical sentences A. Later many 
other notions on realisability were introduced. In particular Godel’s functional or Di- 
alectica Interpretation [Goe58, Goe90] and Kreisel’s modified realisability [Kre59] 
have a profound impact. Originally intended to be a contribution to Hilbert’s pro­
gram, the Dialectica interpretation showed that the consistency of Peano Arithmetic 
is reduced to that of Godel’s system T, a quantifier-free theory based on finite types. 
In contrast to the Dialectica Interpretation, modified realisability also established a 
correspondence between Peano Arithmetic and System T, but treated logical implica­
tion differently. In addition, Kleene and Vesley [KV65, Tro73] introduced a notion of 
function realisability for the purpose of providing a classically understood model for 
Brouwerian Intuitionism. The possibility of effectively obtaining a program and its 
verification proof is based on a sound realisability interpretation. A historical account 
of realisability is presented in [VO02].

After nearly three decades of research, program extraction constitutes a fruitful 
area with an established theory and incorporations in several proof assistants. We 
give a brief overview of some proof systems supporting program extractions. In Sec­
tion 4.3, we will elaborate more details on this. The first theorem provers that sup­
port program extraction are Nuprl [CAA+8 6 ] which is based on Martin-Lof type
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theory, and the PX system [HN87], based on Feferman’s theory of functions and 
classes [Fef79], which provides an optimising method of extracting untyped LISP 
programs from proofs of specifications. An interesting method of program extrac­
tion is implemented in PhoX [Raf04] which uses second-order formulas to define data 

; types. The program extraction facilities of the Coq system [PM89b, PMW93, Let03],
I based on a variety of type theory, Calculus of Inductive Constructions [CPM90] can 

transform Coq proofs and functions into OCaml, Haskell and Scheme. A distinguish 
characterisation of Minlog [BBS+98] is that the logical language in use is minimal 
first order logic. There has also been some work on program extraction in the Isabelle 
system [Ber03c] which is based on simply-typed, minimal higher order logic. Addi­
tionally, based on the Curry-Howard correspondence, some constructively typed lan­
guages, e.g. Agda [BDN09, FS11] and Epigram [MM04], allow program extractions 
in a way. Their type checkers ensure the correctness of extracted programs at compile 
time. Chuang in his PhD thesis gives a concrete example of applying Agda’s program 
extraction machinery to solve exact real number computation problem in [Chul 1].

In this chapter in order to implement program extractions, CST described in Chap­
ter 3 is extended by some extra datatype and new constants. Hence, the realisability is 
applied to the full CST, and it is untyped.

4.1 Realisability Interpretation
We will begin our exploration of realisability by extending CST to a system RCST 
that contains an untyped rudimentary functional programming language. We will give 
a realisability interpretation of CST in RCST and prove a soundness result.

As mentioned previously in Section 3.3, we extend CST to RCST by adding an 
extra base type 8 for realisers and extra constants nil, in^, inr> prL, pr^, pair, app, fun, 
case, rec with the following typing

n il: 8
inLjin/^pr^pr* : 8 -> 8

pair, app: 8 —> 8 —> 8 
fun: (5 —► 5) —► 8 

case: 8 -► {8 -> 8) -+ (8 -► 8) -> 8 
rec: (5 —► 5) —► 8

where 8 is interpreted as a Scott domain D obtained as the solution to the recursive 
domain equation

I
[ D ~ ( 1 + D + D  +  D + D x D+[D^D] )_ l
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We also extend the ranges of the parameters of the constants Vp, 3p, = p and /ip, 
vp to all types respectively predicate types p of RCST.

We define =§ as the least congruence relation on terms such that

case (ini, M) Mi M2 =$ M\M 
case (iyirM)Mi M2 =s M2M  

prL(pairMiM2) = s Mi 
prR (pair Mi M2) = 5  M2 

app (funM) N =g MN 
appM(recM) =$ rec M

and define =  as the least congruence relation containing =p and =$.
Note that the case expression here is a special instance (with two clauses) of the 

case expression (caseMof{C,(Jc/) —> Ri}ie{i,...,n}) *n Chapter 2 .
For better readability we use the notations

caseM of {(in/,*) —► Mi; (in/?jc) —> M2} := cascM (X x: 5 .Mi) (Xx : 5.M2)
Xgx.M := fun {Xx: 8.M)
M -N := appMN

Hence

case(in^M) of{(in/,jt) —> Mi; (in/?*) —► M2} =  Mi[M/jc] 
case (in/?M) of{(in/,jt) —►Mi; (in/?jc) —>M2} =M 2 [M/x]

(Xsx.M)-N = M[N/x]

The logical rules of RCST are the same as those of CST (with p ranging over 
RCST types of course), except for the rule ft and the rules for pp and vp.

The P rule is replaced by the rule

Ahr A r h
A hp B

We replace the rules for monotone induction, Clp and Indp, by rules expressing that 
jup<J> is the least fixed point of the operator <J>(X) := (j£c^<I>(y). The operator 4> 
(which could be easily formally defined in RCST) is monotone for arbitrary <I>: p —> p, 
hence the least fixed point exists. If <I> is monotone, then is the same as <E>. Dually, 
the rules for coinduction are replaced by rules expressing that vpd> is the greatest fixed 
point of the operator d>(X) := DyDpX^W- This general (co)induction is a generali­

97



4. Program Extraction via Realisability

sation to higher-order logic of Mendler-style (co)induction [Men91].

Ahr M Cp pp3> A ,Y C p M  hr &(Y) Cp M
ClGp — -— = £ ------   v y  IndGp Y fresh

A hr 3>(Af) Cp jUp<I> A hr pp4> Cp M

A hr  V p ^ C p M  A , M C p 7 h M C p < D ( y )
^ ^ CoclGp---- — -----= ± -----------=E— CoiGp Y  fresh

A hr Vp<£ Cp 3>(Af) A hr M Cp vp<I>

Definition 4.1.1 (Realisability Interpretation) We define an interpretation (r,R) of 
CST in RCST where the base type substitution

r(o) := 8  ^  o 
r(i) := i

and the constant substitution (for the sake of readability we write Vx: p. A for Vp (Xx: 
p.A) and 3 x : p.A  for 3p(Xx: p.A))

R (~0 = XA,B: S  —>o.Xd: 8 .Va: 8 .Aa —> B(d■ a)
R(A) = XA,B:5-> o.Xd: 8.3a,b : 8 .d =§ pmiabAAaABb

R (v) = XA,B\ S  —»o.Xd : 8.3a: 8 .(d =$ in^tf AAa) V (d = 5  in/?a ABa)

R(Vp) II "I T 8  —> o.Xd : 8 .Vx: r(p).Axd

R(3 p) =  X A : r(p) 8  —► o.Xd : 8.3tx: r(p).Axd

R (= p ) — X A,B : r(p) .X d: 8 . d = 5  nil A A =T(P) B

R(Mp ) =  Pr (p)

R(vp) =  Vr(p)

According to Definition 3.2.2 the type substitution r  and the constant substitution 
R induce a mapping Rr from CST terms to RCST terms. For notational simplicity we 
denote this mapping again by R.

Remark The definition of R(c) becomes more comprehensible when we apply it to
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arguments.

R(A -> B) d = Va : 8 . R(A) a -> R (B) (d • a)
R(AAB)d = 3a,b : 5 .d =§ pakab AR(A)a AR(B)b 
R(A\JB)d = (3a : 8 .d=$  in£,a AR(A)a) V (3b : S.d=$ inRbAR(B)b) 

R(Vx: p.A)d = V3c: r(p).R(A)</
R(3x : p.A)d  =  33c: r(p).R(A)d 
R(A =p B)d = d =s nil A R(A) = r(p)
R(jLlp <!>*) d =  P r^ & x d  

R(vp <J>x) d =  vr(p)<E>;td

Example 4.1.2 (Realisers of natural numbers)
Let us continue with Example 3.3.15.
Recall that we define the set of natural numbers as an inductive predicate. Set 

& := Xp : i —> o .X x : i . x = t 0 \/ p(x — 1 ), and define N := p t^ 0 <P. A  more readable 
notation for the definition of N would be

Njc£ * = , 0 V N ( jc- 1 ) .

As an example of a proof by induction we show that the natural numbers are closed 
under addition:

A+ b r+ Vx,y: i . N x A N y —► N(x+y)

Setting P(x) := X y : i . N(x+y), the formula to be proven is equivalent to Vx: I . Nx —► 
N Qi->0 P{x). Hence, it suffices to show &P(x) C t^ 0 P(x) under the extra assump­
tion Nx. Unfolding the definition of <I> and using proof by cases (V“), this amounts 
to proving N(x +  0) and Vy : i .N(x +  (y — 1 )) —> N(x +  y), which is easy, given the 
assumptions A+ and Nx.

The realisability interpretation of natural numbers is

R(N x)d = lA ^ s^ o R i ty x d

where R(<J>) =  Xp : i —► 8  —► o.Xx : i.Xd : 8 . (d =$ in^nil Ax = t 0) V (3b : 8 .d =§ 
inRbAp(x— 1 )b).

In a more readable notation:

R(Nx)d =  (d = 5  in^nil Ax =  0) V (3b: 8 .d =§ inRbAR(N(x— 1))&).

Hence, a natural number n:  I is realised by the numeral n : 5, where 0 := in^ nil, 
/i+ 1 := inRit.
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4. Program Extraction via Realisability

An element d : 8  realises the closure of natural numbers under addition, i.e. the 
formula Vx,y: i.Nx A Ny —> N(x+y), if for all i and all a, b: 8

R(Nx)aAR(Ny)& —> R(N(x+y))(d- (pairafc)).

which says that d adds natural numbers in unary notation.

Example 4.1.3 (Interpretation for Fibonacci Numbers)
Let us continue with Example 3.3.16.
Recall that we define a coinductive predicate FIB := vl_>l_>0xP where 

:= Xq : I —► I —► o.X x ,y : i .NxAqy{x+y).

A more readable notation would be

FEBxy =  NxAFIBy(x-l-y)

As an example of a proof that uses coinduction we show

A+ hr+ FIB 11.

We show more generally, that FIB holds for any two natural numbers, i.e. Q C 
FIB where Q := Xx,y: I . Nx AN y. By coinduction, it suffices to show Q CM l^ 0 
which is easily done using the previously proven fact that natural numbers are closed 
under addition.

The interpretation of Fibonacci numbers is

R(FYBxy)d = Vi_n_>$_>oR 0 P)xy</

where R('P) =  Xq: i —> i —► 8 ^ o . X x , y : i .X d : 8 .3a ,b : 8 .d=$  pairafcAR(Nx)aA 
qy(x+y)b.

In more readable notation

R(FIB jry) d =  R(N*)(prt </) AR(FIBy (jc+y))(pr*«i).

which says that d is a stream of natural numbers in unary notation where the head 
realises Nx and the tail realises FIBy (x+y).

Let us compare the given realisability interpretation of equality with the realisabil­
ity interpretation of Leibniz equality.

Definition 4.1.4
=p:=  XA,B : p.Vp : p —> o.pA  —> pB

Lemma 4.1.5
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Realisability Interpretation

(a) A = Lp B ^> A = p B

(b) R (=p)A B / «-* \/q : r(p) 8  o.Va: S .q A a —* qB ( f a )

(c) ( 3 / :S .R ( 4 ) A B / ) ~ A = L p)B 

Proof (a) By the rules = + and =~.

(b) By the definition of realisability.

(c) => : ^
Assume R(=p)A 5 / and p  : r(p) —► o, we need to show pA  —► pB.
Then by (b) we get V#: r(p) —> 5 —► o.Va : S . q A a ^  qB( f-  a).
Let q\= X x \  r(p)A,a : S.px.  Then we get pA —► pR.

Assume A =^(p) It is easy to see that for f  Fun(Aa : 8 .a) we have 
R(=\)ABf .

□
Definition 4.1.6 (Realisability for sequents) Realisability for a sequent A bp A is de­
fined as follows.

Let A := {B\ , ... ,Bn} and T := {xi : pi , . . .  : pk}. Then a : 8  realises A bp A if
a realises the formula Vjci : p i ... Vjc* : Pk.Bi AZ?2 A... AZ?„ —> A.

Hence,

R(A bpA)a = Vxi: r (p i) . . .Vx* : r(pk) M b : 8 .R(Bi A... ABn)b-+ R(A)(a• b). 

We write A bp A for a derivable sequent in RCST.
Note that the statement that a term M  realises a sequent A bp A is equivalent to 

the derivability of R(A) b ^ u r  R(A) (M • pairn(&i,... ,bn)) and F' b M  : 5, where 
T' := {at : 8 \ i e { l , . . .,«}}, r  (T) =  {xi : r ( p i ) , r ( p * ) } ,  R(A) := {R(R/)fc/1 
i £ {1 , . . .  ,n}} with fresh variables bu and pairn is defined as pair2 (&i,&2 ) =  pairfci ^2 . 
pairn(6 i , • • •, bn) =  pair (pair^j (bi, . . . ,  bn-i)) bn.

The following Soundness Theorem for realisability interpretation states that from 
a proof of a formula one can extract a program provably realising it.

Theorem 4.1.7 (Soundness) If A bp A, then there exists some term M  of type 8  such 
that R(A bp A)M  is provable.

Proof By induction on the derivation of A bp A.
It suffices to show that each rule is realisable, i.e., for a rule

Ai bpj A\ ... An bpw An 
A bp A
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4. Program Extraction via Realisability

to show that there is a term e : 8  such that for all a\ ,.. .  ,an : 8  realising the premises, 
e • a\ •... • an realises the conclusion.

Note that if the proof contexts A and A/, and the typing contexts T  and T/ are all 
the same respectively, it suffices to find a realiser of the formula A\ A . . . A An —► A.

Non-logical rules (equality, induction and coinduction) will be proved separately 
in later theorems (Theorem 4.1.8, Theorem 4.2.10 and Theorem 4.2.11).

T h A , A : o
use

A, A h r A
We need to show R(A,A) h j ^ u r  R(A) Af.

By Definition 4.1.6, we have R(A,A) =  R(A) U {R(A)x}. We set Af := x.

.  AtrA----rh1 2 0  s
Ah r B p

We need to show R(A) h jg ^ p  R(R) Af.

We have the following induction hypothesis

R(A) ^ ( r ) u r R(A)Mo (M l)

By Lemma 3.2.9, we have R(A) =  R(#).
Hence, we have R(A) h j ^ u r  R(B) Afo, by j35 rule, so we set Af := Mo.

A hp A A h rR  ,
•  - -- - - - - -     A +Ahr AAB

We need to show R(A) h j^ u p  R(A AZ?) Af.

It is to show R(A) h j ^ u r  R(A) (prLAf) A  R(B) {prRM ) by Definition 4.1.1.

We have the following induction hypothesis

R(A)hJ(r)u r R (A)Mi (IH1)

R(A) ^ (r ) u r R ( * ) M 2 (IH2)

We set Af := pairAfi M2. Thus, Afi =  prLAf and M2 = pr^Af.
By IH1, IH2 and Rule A + , we get R(A) h j ^ u r  R(A)(prLM) AR(B)(pr/?Af).

Ahr AAB 
A hr  A A/

We need to show R(A) h j^ ^ p  R(A) Af.

We have the following induction hypothesis

R(A) h j^ u p  R (A AR)Afo (IH1)
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Realisability Interpretation

We have R(A A B)Mq =  R(A) (prLMo) A R(£) (pr^Mo) by Definition 4.1.1.

We set M  := prLA/o. By Rule Af ,  we get R(A) h j ^ urv R(A) Af.

A I - p A A B  
A h r B Ar 

We need to show R(A) h j ^ u r  R(B)M.

We have the following induction hypothesis

R(A)h;:( r )u rR(AA£)Mo (M l)

We have R(A A B)Mq = R(A) (prLAfo) A R(J5) (prRMo) by Definition 4.1.1.

We set M  := PtrMq. By Rule Ar , we get R(A) HJ(r)ur R(B)M.

AI-pA r h f i : o .
•   - -------------------------------------

A h r  A V 2? 1

We need to show R(A) h [ ^ u r  R(A V B)M.

It is to show R(A) h j ^ ur, (3a : 8 . M =§ in^a A R(A)a) V (3b : 8 . M =$ inRb A 

R (B)b) by Definition 4.1.1.

We have the following induction hypothesis

R(A) ^ ( r ) u r R(A)Mi

We set M  := miMi- By Rule V+,  we get R(A) h | ^ u r  (3a : 8 .M =$ inLa A 

R(A)a) V (3b: 8 .M = 5 inRb AR(B)b).

9 r h  A : o A h r B +
A h r A V B r 

We need to show R(A) h j ^ u r  R(A V B)M.

It is to show R(A) l~J(r)ur : =$ in^a A R(A)a) V (3b : 5 .M  =$ inRb A
R (B)b) by Definition 4.1.1.

We have the following induction hypothesis

R(A) K(r)ur *(B)M2 (IH1)

We set M := inRM2. By Rule V+,  we get R(A) h ^ u r  (3a : 8 . M =$ inLa A 

R(A)a) V (3& : 8 .M =$ inRb AR(B)b).
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4. Program Extraction via Realisability

m Ahr AV£ A,Ahr C A,£hr C
A \~r C

We need to show R(A) h j ^ ur, R(C) M.

We have the following induction hypothesis

R(A) hJ(r)up R(AVB)M0 

R C A j ^ ^ h ^ u p ^ R t C j M !  
R(A),R(5)yhJ(r)u r~5 R(C)M2

0H1)
(ffl2)

0H3)

From IH1, we have R(A V £)Mo =  3 a : 8 . (Mo =g in^a A R(A)<z) V (Mo = 5  inRa A 
R(2?)a) by Definition 4.1.1.

We set M  := caseMo of{(in^3c) —> M\ \ (in/?3c) —> M2}. Without loss of general­
ity, we assume Mo := in^a for some a : 5 such that R(A)a. Then M = M\ [a/x\. 
Hence, by IH2, we get R(A) h j ^ ur, R(C)M.

# A, A hr  B +
Aht A ^ B

We need to show R(A) h^r ûr, R(A —► B)M.

It is to show R(A) h j ^ u r  V<z : 5.R(A)a —> R (B)(M-a) by Definition 4.1.1.

We have the following induction hypothesis

We set M := X$xM q. Thus M • a =  Mo [a/3c]. By Rule —>+ and V+, we get 
R(A) h j(r)up Vci: 5.R(A)a R(B)(M-a).

# AhrA — A h r A 
A hp 5

We need to show R(A) h j ^ up R(B)M.

We have the following induction hypothesis

From IH1 we get R(A —► R) =  Va : 5.R(A)a —> R(R) (Mo ■ a) by Definition 4.1.1. 

We set M : =  Mo • Mi. By Rule V-  and — we get R(A) h j ^ up R(5)M.

R(A),R(A)7hJ(r )u P > ? :5  R(B)M0 (IH1)

R(A) H;(r)ur R ( A ^ B ) M 0 

R(A) l-J(r)un R (A)Ml
(M l)
(IH2)
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Realisability Interpretation

A l~rjc'D Mx , - ,• -----  r i ------v+ a: fresh
AbrVpM p 

We need to show R(A) b j ^ u r  R(VpA) M.

It is to show R(A) b jg ^ p  V3c: r(p).R(A)xM by Definition 4.1.1.

We have the following induction hypothesis

R(A) Hj(r)^:r(p)ur R(Ajc)Mo (IH1)

We set M  := Mq. Since R(Ajc) =  R(A)jc, by Rule we get R(A) b j ^ u r 
Vx : r(p).R(A)xM.

AhrVpM T h N : p w_
* Abr  MN  p

We need to show R(A) b^r ûp R (MN) K.

It is to show R(A) b j ^ up R(M)R(N)K by Definition 3.2.2.

We have the following induction hypothesis

R(A)b;(r)upR(VpM)tfo 0H1)

We have R(VpM)^b =  Vx: r(p).R(Af)3c£o by Definition 4.1.1.
We set K := K0, by Rule V“(p), we get R(A) b j ^ u r  R(M)R(N)K.

A br MN T b N : p  3+
A br  3 PM p

We need to show R(A) b j^ ^ p  R(3pM) K.

It is to show R(A) b j ^ up 33c: r(p).R(M)xK by Definition 4.1.1.

We have the following induction hypothesis

R(A)b;(r)upR(MA0*o 0H1)

We have R(MN)Ko =  R(M)R(N)Kq by Definition 3.2.2.

We set K := K0i by Rule 3+(p), we get R(A) b j(r)ur 3x : r(p).R(M )*£.

.  A h r  3PM-  A’M* h r> :p C  fresh
Abr C p

We need to show R(A) b R ( C )  K.
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4. Program Extraction via Realisability

We have the following induction hypothesis

R(A) ^(nun R(3pM)£i 
R(A),R(Mx)y h^( r ) - :5 u ri5 r;5  R fC )^

(IH1)

(IH2)

We have R(3pM)£i =  3 x : r{p).R{M)xK\ by Definition 4.1.1, and R(Afx)y =  
R(M)jcy by Definition 3.2.2.
We set K := Kq, by Rule 3~(p), we get R(A) R(C) K.

Theorem 4.1.8 The rules for equality are realisable.

Proof. (= +) : We show e  := X a : 8 .Xb : 5.nil is a realiser.

Assume /  realises A,pA \~r,p-.p̂ o pB, that is, (1) Vp : r(p) —► 8  —> o.\/a,b 
(R(A)a A R(pA)b —> R (pB)(f  •a-b )), to show Va (R(A)a —► R(A =p B) (e  •
f - a ) i

Hence, assume R(A)a, to show R(A =p B)nil. By the definition of R(=p), it is 
to show R(A) = r (p) R(B)>
Let p Xx : r (p).Xa : 5.R(A) = r(p) x. Then we get R{pA)b =  R(A) = r(p) 
R(A). Hence, the premise of (1) holds. Therefore, R (pB)(f  -a-b) = R(A) = r(p)

(= ) : We show e := X f i , fa : 8 . fa is a realiser.
Assume / i  := Xa : 5.nil realises A h r A = p B and fa realises A hp PA , that is, 
for all a, (1) R(A)3 -> R(A =p B) [fa • a) and (2) R(A)a -► R(PA) {fa • a), it is to 
show Va.R(A)a —»R(/>B)(e -fa- fa- a).
Hence, assume R(A)a, to show R {PB){e • fa • fa • a).
That is to show R{P)R{B){fa • a).

From (1) we have R(A =p B)nil, i.e., R(A) = r(p) R(^)- From (2) we have 
R{PA){fa.a), i.e. R(P)R(A) ( / 2 • a).
By Rule = “ , we obtain R(P)R(B) {fa ■ a) as required since R(P)R(A) {fa - a) =p 
{Xp: r{p).R{P)p{fa-a))R{A).

(ext) : We show e := X a : 8 .Xb : 5.nil is a realiser.

Assume f  := Xa: 5.nil realises A hp^p Ax =G Bx.
That is, (1) Vjc : p.Va (R(A)a —> R(Ax =G Bx){f  -a)), to show Va(R(A)a —>• 
R(A = p— B){e • f  -a)). Hence, assume R(A)<z, to show R(A =p->o B)nil.

□

R (£).
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Induction and Coinduction

By the definition of R(=p^<y), it is to show R(A) = r (p—X7) i.e. to show
R(A) =r(p)->r(a)

From (1) we have V x : p.R(Ax =a Bx)nil, i.e. \fx : r(p).R(A)x=t{a) R (B)x. 

Therefore, by Rule (ext) at type r(p), we have R(A) = r (p)-*r(<y) R(^)-
□

4.2 Induction and Coinduction
The proof of the soundness for induction and coinduction hinges on the fact that the 
realisability of an inclusion can be expressed by an inclusion. To this end we introduce 
image and inverse-image operations. The realisability interpretation of higher type 
inclusion Cp can then be expressed as a composition of ^ r(p) and these image and 
inverse-image operations.

Definition 4.2.1 For every predicate type p we define terms Imp, Imp : 8  —► r(p) —> 
r(p) as follows.

Im^ := X d : S .X p: 8  —> o.Xb: 83a  : 8 . p a A d a = §  b 
Imp^tf := X d : 8 .Xp : r(p) —> r(a).Xx:r(p).Jm0 d(px)
Impx<7 := X d : S.Xp : r(p) x r(cr).(Imp (prLrf)^b(p),Im<T(pr/?<i)^i(p))

Im“ := X d : S.Xp : 8  —► o.Xa : 8 .p(d-a)
Imp_+a := A d : 5 .A p: r(p ) —► r(cr).A;c: r(p).Im ^d(pjt)

Impxo •= M  8  • r (P) x r(a).(Imp (prLJ)^o(p),Im“ (p r^d )^ /?))

Lemma 4.2.2 For every predicate type p, provably in RCST the following are equiv­
alent for all A , B : r(p) and d : 5

(a) R(ACp J3)d

(b) A C r(p)Imprfi?

(c) ImpdA Cr(p) B 

Proof. By induction on p.

• p = o.
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4. Program Extraction via Realisability

First, to show R(A CQ B)d +-> Im0dA Cr^  B.

R(A C0 B)d 
=o R(A -► B)d 
=0 R(^)R(A)R(B)d
=o Vm : 8 .Aa —»■ B(d • a)
=o Vm: 8. (3a: 8 . A a A d - a = 0 u) —*Bu  

=o Vm : S . lm odA u  —► Bu  

= 0 Im0d A C s^ 0 B  

—o ImodA Qr(p) B

Then to show R(A C0 B)d =Q A Cr(0) Im“ dB.

R(A C0 B)d 
=o R(A -*• B)d 
=o R(-+)R{A)R(B)d 
=o Vm : 8 .Aa —> B(d • a)

=o Vm : 8 .Aa —> Im“ <iBM 
=<>A C5 ^ 0 Im“ </£ 

o A —r(o)

• p = p ^ G .
First, to show R(A Cp_>a B)d <-> Imp^ a dA Cr(p_ ^  B,

R(A Q:P—>g B)d 
=o R(Vx: p.Ax Ca Bx)d 
= o  R(Vp)R(A*: p.Ajt C CT Bx)d 
= o  R(Vp)(A3c: r(p).R(Ax Ca Bx))d 
= o  Vm : r(p). (Xx : r(p).R(Ax C c  Bx))ud  

=o Vm : v(p).R(Qa)(Au)(Bu)d 
=o Vm : r(p).R(Ajt CG Bx)d 

= o  Vm : r(p).Im <yJ(AM) (Bu)
=o Vm : r(p). (Imp^ CT<iA)M Cr^  5 m 

= o (Imp_,(yC?A) 5

(By Definition 3.3.4)

(By Definition 4.1.1) 

(Let u : = d a )  
(By Definition 4.2.1) 

(By Definition 3.3.4) 

(By Definition 4.1.1)

(By Definition 3.3.4)

(By Definition 4.1.1) 
(By Definition 4.2.1) 
(By Definition 3.3.4) 

(By Definition 4.1.1)

(By Definition 3.3.4)

(By Definition 4.1.1) 

(By = p )

(By I.H.)

(By Definition 4.2.1) 

(By Definition 3.3.4)
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Induction and Coinduction

Then to show R(A Cp^ a B)d = 0 A Cr p̂^ a  ̂Imp^ a dB.

R(A Cp—><y B)d 
—0 R(Vjc : p A x  Qa Bx)d 
=o R(Vp)R(Ax: p A x  C a Bx)d 
—o R(Vp)(A3c: r(p).R(Ajt Cff Bx))d 
=o Vm : r(p). (Xx : r(p).R(Ajc C a Bx)) ud 

=o Vm : r(p).R(C0 )(Au)(Bu)d 
=o Vm : r(p). R(Ax C c Bx)d 

=0 Vu:r(p).Au  Cr^  Im“ d(Bu)

=o Vm : r(p).Au Cr((y) (Im~_0 dB)u 

~~o A C.r(p—*o) Imp^ Q d B

•  p  =  p  X  G.

First, to show R(A Cpxa B)d Impx^dA C.r^pXO) B.

R(A Cpx<y J?)rf
=o R(^o(A) Cp ^o(5) A 7Ti (A) C a jti(B))d (By Definition 3.3.4)
= 0 R(A)R(^o(A) Cp ^o(B))R(^i(A) CCT 7Ti (£))</
= 0 R(^o(A) Cp 71q(B)) (prLd)

A R(^i (A) CCT 7Ti (5)) (pr/jd) (By Definition 4.1.1)

= 0 Imp (prLd) Kq(A) Cr(p) tiq(B)

A ImCT (pr^ d) (A) Cr((y) m (B) (By I.H.)

= 0 7Co((Imp (prLJ) 710(A),Im^ (prRd) 7Ti(A))) Cr(p) no(B)

A7Ti((Imp (prLd ) 7tb(A),Ima (prRd ) 7Ti(A))) Cr((y) %x(B) (By =p)

= 0  7lb(ImpxGdA) Cr(p) 7tb(B)

A 7Ti(ImpXcr<iA) Cr(c7) 7Ti(Z?) (By Definition 4.2.1)

=o (ImpxadA) Cr(px<y) B (By Definition 3.3.4)

(By Definition 3.3.4)

(By Definition 4.1.1) 

(By =p)

(ByLH.) 

(By Definition 4.2.1) 

(By Definition 3.3.4)
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4. Program Extraction via Realisability

Then to show R(A CpxG B)d —0 A QT(pxG) ImpX<7 dZ?.

R(A Cpxo B)d
=o R(fio(A) Qp 71q(B) A %\ (A) C0 m (B))d (By Definition 3.3.4)
= 0 R(A)R(^o(A) Cp flb(R))R(jri(A) C CT n\{B))d 
=o R(«b(A) Cp 710(B))  (prLd)

AR(^i(A) Qg 7C\(B)) (prRd) (By Definition 4.1.1)

= 0  flb(A) Q r(p) Imp (prLd) no(B)
A it\ (A) C r(<T) Im" (pr^ d) Tt\ (B) (By I.H.)

= 0  A Cr(p^CT) Imp_>a dB  (By Definition 3.3.4)

Lemma 4.2.3 For every predicate type p and every d : 6 , Imp d and Imp d are mono­
tone, i.e.

(a) hr \/d : 5.VA,£ : r(p).A Qr(p) & “ * ImpdA Qr(p) ImpdB

(b) hr \/d : 8 .VA,B: r(p).A Cr^  B —* Imp dA Qr(p) Imp dB 

Proof. By induction on p.

• p = 0 .

□

(a) A Cr^  B

^  A C^—vo B 
=> Vm : S.Au CQ Bu

(By Definition 4.1.1) 

(By Definition 3.3.4) 

(By Definition 3.3.4)=> Vm : 8 .Au  —► Bu

=> Vm : 5.(3a : 8 . A a A d a = s  u) 
(3b : 8 . B b A d b = g  u) (Chosen u \—a and b := a)

=>• Vm : S.JmodAu  —> JmodBu  

=> Vm : 5-Imo^AM Co ImodBu 

=> ImcdA C5_̂ o ImcdB

(By Definition 4.2.1) 

(By Definition 3.3.4) 

(By Definition 3.3.4) 

(By Definition 4.1.1)=> Imc dA C r(o) Im0dB

110



Induction and Coinduction

(b) a c t{o) b

=>ACs^ 0 B (By Definition 4.1.1)

=> Vm : 8 . A a C0 Ba (By Definition 3.3.4)

\/a : 8 .Aa —► Ba (By Definition 3.3.4)

=>Vu:8 A ( d ‘u)^>B(d-u)  (Chosen a : = d u )
=> Vm : 8 . Jm~ dAu  —> Im~ dBu  (By Definition 4.2.1)

=> Vm : 5.1m~dAu CQ Im~ dBu  (By Definition 3.3.4)

=> Im“ dA Q$-+0 Im“ dB  (By Definition 3.3.4)

=> Im“ dA C r(o) Im“ dB  (By Definition 4.1.1)

•  p  =  p  —> <T.

(a) A Cr(p̂ <y) B

^  A Qr(p)—>r(cr) B
=>• Vm : r(p ).A u C Bu (By Definition 3.3.4)

=>• Vm : r(p).Im CT<iAM ^ r (cr) (By I.H.)

=» Imp^CT<iA Qr(p_><7) Im p ^ d #  (By Definition 3.3.4)

(6 ) A CT(p_̂ 0j B

^  ^  —r(p)->r(cr) B

=> Vm : r(p).Au ^ r(cr) B m (By Definition 3.3.4)

=> Vm : r(p).Im^dAM ^ r(<y) Im^di^M (By I.H.)

=> Imp^^^A Qr(p^o) Imp^KjdB (By Definition 3.3.4)
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(a) A ^ r(pxa) B
=> 7io(A) Cr(p) 7to(B) A %\(A) Cr(ff) 7t\(B) (By Definition 3.3.4)

=» Imp (prLd) TGo(A) Cr(p) Imp (prLd) Tib(B)

A Im^ (pr*d) 7t\ (A) Cr(<T) Im^ (pr*d) %\ (B) (By I.H.)

=> Tib((Imp (prL J)7to{A),Ima (pr*d)TTi(A)))

—r(p) no((Imp (prLd)7Co(B),Ima (pr*d)nx(B)))
A 7Ti ((Imp (prL </) Tib (A), Im^ (pr* d) %\ (A)))
Cr(<y) ^i((Imp (prLd)Tio(B),Imo-(prRd)nx(B))) (By = p)

=> Tib(ImpxadA) Cr(p) Tio(ImpX<y(iB)

TTi(ImpxCT^) —r(<x) TTi(ImpX(y<iB) (By Definition 4.2.1)

=> Im p x a ^  —r(px<t) Im pxa^^ (By Definition 3.3.4)

(£) ^  (pxCT)-®
=> ^b(A) c r(p) ^b(B) A TTi (A) Cr((J) TTi (£) (By Definition 3.3.4)

=> Imp (prLd) T5o(A) ^r(p) Imp (prLd) 7Cq(B)
AIm“ (pr*d) KX(A) Cr((T) Im“ (prRd) K\(B) (By I.H.)

=> ^b«Imp (prLJ)TCo(A),Im“ (pr*</)TTi(A)))

—r(p) ^b((Imp (prLrf)Tio(B),Im~ (pr*</)TTi(£)))

ATTi((Imp (prLJ)TZb(A),Im~ (pr*d)tti(A)))

—r(<y) tfi((Imp (prLd) Tib(B),Im“ (prRd) nx{B))) (By =p)

=>• Tib(ImpxadA) —r(p) ^b(Bttpxa^^)
TTi(ImpxadA) Cr(CT) 7Ti(ImpxadB) (By Definition 4.2.1)

=> ImpXGdA Cr(px<y) Jm~x c dB  (By Definition 3.3.4)

□
Definition 4.2.4 For every predicate type p we define a closed term idp of type 8  such 
that

id*, := fun(Aa : 8 . a)
idp_><j != id<j
idpXc7 := pair (idp, ida )
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Intuitively, idp is just a name for what will be used later as realisers of the closure 
and coclosure rules.

Lemma 4.2.5 For every p  : r(p), Im“ idp p = r(p) P is provable in RCST for every 
predicate type p.

Proof. By induction on p.

• p = o.

Imo id0p
= r(o) X a : 8 .p(ido-a)

= r(o) • fi'PQ

=r(o) P

(By Definition 4.2.1) 
(By Definition 4.2.4 and =p)

•  p = p ^ G .

Im p^ ^ id p-^ p

= r(p-*<r) h x : r(p). Im” idp^ c (px) 
=r(p->o) *-x: r(p).Im ” idCT (px) 

= r(p-*<r) ' r(p)~Px
=r(p—»T) P

(By Definition 4.2.1) 
(By Definition 4.2.4) 

(By I.H.)

• p =  p x cr.

Imp x o * d p x o P  

=r(p—»cr) ^ p  (Prt idpx<7)71i)(p), 
Im^(prRidpX(T)wi(p))

=r(p—cr) (Imp idp 7H)(p),Im” idff (p)) 
“r(p—><r) («<)(P)-̂ 1(P)>
= r(p->cr) P

(By Definition 4.2.1) 
(By Definition 4.2.4 and =^) 

(ByI.H.)

Lemma 4.2.6 If T h : p, then h f R(A Cp B)idp R(A) Qr(p) R(#)-

Proof. Immediate by Lemma 4.2.2 and 4.2.5.

□

□
The following lemma is a part of the soundness theorem for induction and coin­

duction. It shows that the closure and coclosure rules are realisable.
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Lemma 4.2.7 If T  h 3>: p —> p where p is a predicate type, then

(a) l-J(r) R(<I>(|tp<I>) Cp H p < t > ) i d p

(b) l-J(r) R(vp4> Cp 4>(vp4>))idp

Proof Assume T h <I>: p —> p, where p is a predicate type. Clearly r(p) is a predicate 
type as well. Furthermore, by Theorem 3.2.6, r(T) b R(4>): r(p) —*• r(p).

(a) By Lemma 4.2.6, it is to show R(<I>)(pr(p)R(4>)) Qr(p) Pt(p)&(&)- 

This follows by applying the closure rule Clr(p) to R(d>).

(b) By Lemma 4.2.6, it is to show vr(p)R(<I>) C  r(p) R(<I>)(vr(p)R(d>)).

This follows by applying the coclosure rule Coclr(p) to R(d>).

□
Note that this lemma states that closure and coclosure rules are realised by the iden­

tity. As pointed out in Section 3.3, the realiser of the coclosure rule given in Tatsuta’s 
theory of TIDV2 [Tat98] is more complicated {Xxr.r(Xp.m{Xxrs.s(pQ,r))x{pQxp\)) on 
page 353).

We give the definition of composition operations which will be used later in the 
soundness proof for induction and coinduction.

Definition 4.2.8 We define composition operations op : 8  —► 8  —► 8  for every predicate 
type p by

oG := Xd, e : 8. f\m(Xa : 8. d • (e • a))
Op— 1= 0(j
Opxo := Xd,e : 8 .pak{{prLd) 0p(prLe),(prRd)0 o{pTRe))

Note that we use infix notation for representing composition operations.
We also set &p:= Xx,y : p.x  Cp yA y  Cp x.

Lemma 4.2.9 In RCST the following are provable:

(a) Imp d (Imp ex) ^ r(p) Imp (d op e)x

(b) Im“ d (Im“ ex) = r(p) Im“ (eop d)x 

Proof. By induction on p.
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• p = o.

(a) Jmod(lmoex)
=r(o) he : 83 b  : 8. (Jmc ex)b Ad-b =$ c (By Definition 4.2.1)
=r(o) Ac • S 3 b  : 8 3 a :  S . x a A e a  = $  b A d -b = $ c

(By Definition 4.2.1)
~ r(o) A c : 8 3 a  : 8 .xa A d  ■ (e a) = §  c (By = 5)

= r ( o )  Ac : S 3 b  : 8 3 a :  8.xaA(fun(Xa : 8. d -  (e-a))) a = 5  c
(By =p)

= r(o) Ac: 8 3 b  : 8 3 a :  8.xaA{doQe) - a=g c (By Definition 4.2.8) 
= r(0) Im<, (do0 e)x (By Definition 4.2.1)

(b) Im~ d (Im“ ex)
= r(o) Xa : 5.1m“ ex{d-a) (By Definition 4.2.1)
= r(0) Xa: 8.x{e- (d-a)) (By Definition 4.2.1)
= r(0) Xa : 5.x(fim(Aa :8.e- {d-a)))-a (By =p)
=r(0) X a : 8.x((eo0d)-a)

=r(o) Imo {eo0d)x

•  p = p ^ G .

(a) Imp - + c  d (Imp-̂ CT ex)
=r(p—Kj) Xy :r{p).lma d{{lmp-,(jex)y)
==r(p—xr) Ay ' r{p).lm<jd{lma e{xy))
~r(p—><j) Ay - r{p).Jma (doa e) {xy)
= r(p—kt) Ay - r(p).1m0 ( d o p ^ e )  {xy)

= r(p->cr) fttlp^o{dOp—KJe)x

{b) Jmp_a d{Jmp_Gex)

= r(p—><t) Ay: r{p).Jm-d{{Jm-_0 ex)y)
= r(p—><t) Ay: r(p).Im “ d (Im" c {xy))
= r(p—►cr) Ay: r(p).Im “ {eo0 d) {xy)
=r(p-cr) Ay : r(p).Im “ {eop^ a d) {xy)
= r(p—►cr) Bnp—kt {eOp—>(jd)x
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•  p = p x a .

(a) Imp x d (Imp x a ex)
=r(pxcr) (Imp (prLd) 7ro(Impxaex),

Im<7 (pr^d) ^i(ImpX<7 ^^)) (By Definition 4.2.1)
= r(pxa) (Imp(PrLd) flb«tap (prLe ) ( p r fie)7Ti(x))),

Ima (prfid) 7Ci((Imp (prt e) ^b(x),Im<!(prpe)rti(x)>))
(By Definition 4.2.1)

=r(pxa) (Imp (prLd) (Imp (prLe) ^o(x)),
Im<7 (pr*d) (Im<7 (pr*e) %\(*))) (By =p)

~r(px<7) (Imp((prL</)op {prLe))no{x),
Im<7 ((prRd) 0(7 (pr^c)) (x)) (By I.H.)

= r(pxcr) (ImpprL(dOpXGe)ltQ(x),
\mapTR(dOpX(je)Tt\(x)) (By Definition 4.2.8 and =p)

= r(p x G) Imp x a {d Op x a e) x  (By Definition 4.2.1)

(b) lmp ya d(Im-y(Jex)

=r(px<7) ^ p  (Prid)7tb(tapxffex),
Im^ (pr^ d) K\ (Imp x G ex)) (By Definition 4.2.1)

~r(px<7) (tap (prLd) ^((Im p (p^e) ^(x^Im ,, (prp e) (x))),
Im" (prfirf) Jti((lmp (prLe)ab(x),Im^ (prs e) Wi(x)»)

(By Definition 4.2.1)
=r(px<r) (tap (piLd)(Im~ (prLe)jCo(x)),

t a CT (prRd) (Ima (prfle) 7ti(x))) (By =fi)

=r(px<r) (tap ((prLe)op (prLd))zo(x),
t a “ ((prfie)oCT (ptf/d)) m(x)) (By I.H.)

=r(px<r) (tapp rL(eopxad)nb(x),
ImGprR(eOpxcd) Tt\{x)) (By Definition 4.2.8 and =jg)

= r(pX(7) ImpX(7 {eopx(Jd)x (By Definition 4.2.1)

□
Theorem 4.2.10 Monotone induction is realised by the term

Ip := Am,s : 5 .rec(A /: 8.sop (m- f ))
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for every predicate type p.

Proof. It suffices to show that the closed term Ip realises the formula 

V<I>: r(p) —* r(p).Vm : 5.R(monop4>)m —>
VM: r(p).Vs : 8.R(0(M) C p M)s -+ R(pp3> Cp M)(Ip • m • 5).

Hence, we assume R(monop<£)m and R(4>(M) Cp M)s.
By Lemma 4.2.2, from the assumptions we have

(a) VA,£: r(p).Va : 8.A C r(p) Imp ^  3>(A) C r(p) Imp (m-a) (3>(R))

(b) <I>(M) Cr(p) Imp sM

Let /  := rec(A/ :  8.sop (m • / ) ) ,  by Lemma 4.2.2, it is to show Pp^> Qr(p) ^ p  fM .  
We will use the general induction rule IndGp to prove, so we assume

(c) ? C r(p)Imp /M .

We have to show <J>(7) Qr(p) Imp fM .
From assumptions (c) and (a) we have <£(y) Qr(p) Imp (m • / )  (<I>(M)).
By assumption (b) and Lemma 4.2.3 (b) we get

Imp (m• / )  (3>(M)) Cr(p) Imp (m • / )  (Imp sM).

By Lemma 4.2.9 (b) we get

bnp (m• / )  (Imp sM) = r(p) Imp (sop (m • f ) )M.

Applying transitivity of Cr(p), we have

$ (? )  —rfp) Imp (sop (m f ) ) M .

Since /  = 5  sop (m- / ) ,  we have d>(F) ^r(p) bnp /M . □

Theorem 4.2.11 Monotone coinduction is realised by the term

l£° := Am,s : 5 .rec(A /: 8. (m- f ) o p s) 

for every predicate type p.

Proof It suffices to show that the closed term Ip° realises the formula

V<I>: r(p) —> r(p).Vm : 5.R(monop^>)m —►
VM: r(p).Vs: S.R(M Cp 3>(M)).s -> R(M Cp vp<I>)(I™• m • 5)

Hence, we assume R(monop®)m and R(M Cp d>(M))s.
By Lemma 4.2.2, from the assumptions we have
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(a) VA,£ : r (p).Va : 8. Imp a A Cr(p) B —> Imp (m • a) (<£(£)) 4>(A)

(b) Imp sM  Cr(p) <J>(M)

Let /  := I ' 0 • m • s, by Lemma 4.2.2, it is to show Imp f M  Qr(p) vp®- 
We will use the general coinduction rule CoiGp to prove, so we assume

(c) Imp f M C r{p)Y

We have to show Imp f M  Qr{p) 3*00-
From assumptions (c) and (a) we have Imp (m • / )  (<£(Af)) Cr(p) <P(7).
By assumption (b) and Lemma 4.2.3 (a) we get

!mp (m • / )  (Imp sM) Cr(p) Imp (m • / )  (<I>(M))

By Lemma 4.2.9 (a) we get

Imp (m ■ / )  (Imp sM) ~ r(p) Imp ((m• / ) op .s)M 

Applying transitivity of Qr(p)> we bave

Imp ((m / ) o pi)M  Cr(p)

Since /  =$ (m • / )  op 5 , we have Imp f M  Q r(p) ^ 0 0 -  ^

In the following two examples, for better reading, we re-state the details of previous 
examples.

Example 4.2.12 (Extracting Program for Addition)
Consider the typing context r+  := { 0 ,1 :1 , +  : 1 —> 1 —> 1 , — : 1 —> 1} and let A+ 

consist of the formulas stating that ( + ,—,0) is an Abelian group. Formally, the terms 
0,1, +  , — are variables, but we like to view them as constants and the assumptions A+ 
as axioms. We will write M — N  as a shorthand for M  +  (—N ).

We define the set of natural numbers as an inductive predicate. Set <I> := Xp : 1 —> 
o . X x : 1 .x =1 0 Vp(x — 1 ), and define N := Pi^o3>. A more readable notation for the 
definition of N would be

Ni  =  * = , 0 v N(jc- 1 ) .

As an example of a proof by induction we show that the natural numbers are closed 
under addition:

A+ \~r+ Vjc,y : 1 .NxANy —> N(x+y)

Setting P(x) := X y : 1 . N(x+y), the formula to be proven is equivalent to Vx: 1 . Nx —> 
N Cj_ ,0  P(x). Hence, it suffices to show <f>P(x) Ct_+0 P(x) under the extra assump­
tion Nx. Unfolding the definition of 4> and using proof by cases (V- ), this amounts
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to proving N(jc +  0) and Vy : I .N(x +  (y -  1)) —> N(x+y), which is easy, given the 
assumptions A+ and Ni.

The realisability interpretation of natural numbers is

R(Nx)d =  p ^ g ^ R ^ x d

where R(<£) =  Xp : i —> 8 —> o.Xx : i.Xd : 8. (d =g in^nil Ajc =t 0) V (36 : 8.d =$ 
in/?6 A/?(jt — 1)6).

In a more readable notation:

R(Njt)d =  (d =g inz,nil Ax = 0) V (36 : 8.d =g in/? 6  AR(N (jc— 1))6).

Hence, a natural number n: 1 is realised by the numeral n : 6 , where 0 := in/, nil, 
n + 1 := in/?w.

An element d  : 8 realises the closure of natural numbers under addition, i.e. the 
formula Vx,y: i .Nx  A Ny —► N(x+y), if for alljt,y : 1 and all a ,6 : 8

R(Nx)a AR(Ny) 6  —> R(N(x+y))(d- (paira6 )).

which says that d adds natural numbers in unary notation.
We define adding n for a fixed n as

add[/i] := rec(Xg f.Xgm. casern (Xga.n) (Xgm'.inR(f-m'))).

Thus, the base and step cases are add[«] (in*, nil) =  n and add[n] (in/? m) = in/? (add [n] m) 
respectively. Therefore, the addition program (the realiser) is

add := Asp.add[prLp] • (prRp).

Example 4.2.13 (Extracting Program for Fibonacci Numbers)
Continuing the previous example, we give a definition of a coinductive predicate 

FIB := vl_n _+0xP where

'P := X q : 1 —► 1 —► o. Xx,y : 1 .NjtA#y(jt+y).

This becomes more readable if a similar notation as for N is used:

FIB xy = Njc A FIBy {x+ y)

Informally, FIBxy states that there exists a Fibonacci sequence of natural numbers 
starting withx,y.

As an example of a proof that uses coinduction we show

A+ bp+ FIB 11.
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We show more generally, that FIB holds for any two natuiral numbers, i.e. Q 
FIB where Q := Xx,y : I . Nx  A Ny. By coinduction, it suffiices to show Q ¥ Q,
which is easily done using the previously proven fact thatt natural numbers are closed 
under addition.

The interpretation of Fibonacci numbers is

| R(FIBxy)d = v ^ ^ s ^ R f f l x i y d

! where R('F) =  X q : i —> I —> 5 —»o. Xx,y : i .Xd: 83a ,b :  <8.d =$ pakabAR(Nx)aA
| qy(x+y)b.

In more readable notation
I
| R(FIBjcy)<i =  R(Njc)(prL<i) AR(FIBy(^-H-y))(pr/j<i).

I which says that d is a stream of natural numbers in unairy notation where the head 
realises Nx  and the tail realises FIBy (x+y).

The Fibonacci program realising that FIB contains all {pairs of natural numbers is

Fib := rec(X§f .Xgp.pair(prLp) ( /•  (pair(pr^p) (add/?)))).

4.3 Related Work
Coq is a proof assistant with the program extraction mechamism for higher-order logic. 
In 1985, Coquand introduced the first version of a logical ssystem, called the Calculus 
of Constructions [CH8 8 , Coq85]. There is one drawback tco this approach: it is impos­
sible to give direct inductive definitions. Later in 1989 Cojquand and Paulin-Mohring 
extended it with primitive inductive definitions. As a resultt, the Calculus of Inductive 
Constructions, a higher-order typed lambda calculus with cdependent types, is used by 
Coq as the logical language. It is in fact a pure type systeim with subtyping, and has 
Martin-Lof-style inductive definitions. Coq 8  is based on ai weaker calculus called the 
Predicative Calculus of Inductive Constructions [BCHPMC04] by making the universe 
(or sort) Set become predicative in order to be compatible with classical choice.

Paulin-Mohring [PM89b, PM89a] provided a realisatbility interpretation, in the 
sense of Kleene, for the Calculus of Constructions and prcoved the correctness of ex­
tracted programs. As the system grew up and several limitaations popped up, Letouzey 
completely redesigned Coq’s extraction mechanism to hamdle any Coq terms, ensure 
the correctness of the extraction, and guarantee that the exttracted terms produced are 
typable. It assigns different types to terms representing dlata and terms representing 
properties of the data. Since the latter cannot be used in tlhe definition of data, a.k.a. 
computationally irrelevant, there is no need to extract themi. It is very important to re­
move the logical parts in proofs with regard to the size of the extracted program and the
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speed of implementing the extraction. Miquell [Miq07] presented another extraction 
mechanism of Coq based on Krivine’s realisaibility model of classical second-order 
arithmetic.

Following Paulin-Mohring’s work, based o>n Krivine’s realisability theory [Kri93, 
KP90] and the framework of Pure type System [Bar91, Bar92], Bemardy and Las- 
son [BL11] constructed a logic from the programming language of its realisers with 
syntactic definitions of parametricity and realis.ability.

Berghofer [Ber03b] presented a generic fraimework for program extraction and in­
stantiated it to Isabelle/HOL, aiming at demonstrating that Isabelle is suitable as a 
basis for program extraction. He also showed applications of a program extraction 
framework in Isabelle/HOL to realistic examples including the induction principle for 
natural numbers. However, as Isabelle is based! on a classical logic, only the construc­
tive parts of terms are considered in the extraction.

The underlying logic of the Minlog system is the Theory of Computable Func­
tionals (TCF) [Sch93, SW12]. The difference; between TCF and other type theories 
lies in that TCF emphasises partial continuous functionals. Minlog treats computable 
functionals as constants, and infinitary free algebras as base types. Not only ML-style 
type parameters, but also predicative, predicate; variables for comprehension terms are 
allowed. In Minlog, terms with same normal forms are identical. Therefore, Minlog 
supports inductive and coinductive definitions land program extractions from classical 
and constructive proofs. Hou [Hou06] implermented a coinductive proof for the cor­
rectness of a corecursive program for the average function with regard to the signed 
digit stream representation in Minlog. Berger, Miyamoto, Schwichtenberg and Seisen- 
berger gave an overview of Minlog and explaiined its program extraction mechanism 
in [BMSS11]. The program extraction procedure of Minlog is based on Kreisel’s mod­
ified realisability, which from every constructive proof M  of a formula A with compu­
tational content a term [AfJ can be extracted to) ’’realise” A. Other program extraction 
methods like Dialectica Interpretation have been implemented in Minlog. Applica­
tions of program extraction from proofs via reallisability, including exact real numbers, 
are presented in [Ber09] and [BS12]. In additiion, Miyamoto, Nordvall Forsberg and 
Schwichtenberg extended Minlog to support striictly positive nested inductive and coin­
ductive definitions in [MNFS13].

Since the Nuprl system is based on constructive type theory, a proven correct pro­
gram can be extracted from a proof of its specification (theorem statements). Nuprl 
can formalise and verify induction principles as lemmas within the type theory that 
yield extracts that are recursion schemes optimiised for both readability and efficiency. 
Caldwell presented the extraction o f’’efficient” recursion schemes from proofs of well- 
founded induction principles in [Cal02].

121



4. Program Extraction via Realisability

4.4 Conclusion

i We have studied a realisability interpretation of an intuitionistic version of Church’s 
Simple Theory of Types described in Chapter 3.
I The Soundness Theorem of realisability is split into three steps: First one shows 
that from a formal proof of a formula A one can extract a lambda-term and a formal 
proof that it realises A. Then one shows that formally proven formulas are true in a 
domain-theoretic model. Finally, one shows that for so-called E-formulas A, which are 
formulas whose potential realisers contain observable information (essentially finite 
lists, or trees), if it holds in the domain-theoretic model that a lambda-term M  realises 
A, then M  reduces w.r.t. a lazy operational semantics to a canonical term (e.g. numeral) 
that realises A (computational adequacy).

j  In this dissertation we have carried out only the first two steps. The last step will 
be an interesting future work. We will sketch how our realisability interpretation can 
be used to extract programs from proofs. Since most of the methods and results shown 
later can be taken over from [BerlO], we will be rather brief and will only comment in 
detail on the changes and additions necessary.

First, we define two classes of formulas.

Definition 4.4.1 (Non-computational formula) A T-formula A is called non-computa- 
tional if it does not contain the constants V, v p , f ip , and for all occurrences of Vp, 3p 
in A and x : p G T, p  is an object-type, that is, p contains only base types from J?.

Definition 4.4.2 (E-formula) A T-formula A is called L-formula if (a) it does not con­
tain the constants —> and v p , (b) for all occurrences of Vp, 3p, in A and x : p £ T, p is 
an object-type, and (c) for all occurrences of pp, p is of the form a  —► o where <7 is an 
object type.

The pathway to extracted programs is now as follows:
(1) Given a proof of a sequent A h r A in CST we extract, using the Soundness 

Theorem (Theorem 4.1.7), a closed term M provably realising the sequent.
(2) If the formulas in A are non-computational, then the formula A A is equivalent 

to the assertion that it is realised by some trivial term nil' built from nil by pairing and 
(dummy) lambda-abstraction. Hence we can derive A hp R(M • nil') A.

(3) Let P be the /3-normal form of M  ■ nil'. P will be closed and contain only 
program constants. Let us call such a term P a program.

(4) If the assumptions A are true in some standard classical model (see Section 
3.3), then in that model the value JP] of P will realise A.

(5) If A is a E-formula, then JPJ will be a data, that is a finite combinatorial object 
built from nil by left and right injections and pairing (numerals are examples of data). 
We can identify a data with the canonical program built from nil, inp, in/?, pair defining 
it.
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(6 ) Now we can employ a Computational Adequacy Theorem ([BerlO] Theorem 11) 
according to which a program P denoting data reduces to that data in a suitable lazy 
big-step semantics.

(7) Since the big-step semantics is denotationally correct we know that the data 
[P] realises A and can be computed from P.

The steps (1-7) amount to a proof of the following theorem:

Theorem 4.4.3 (Program extraction for data) Let T b A : o be a finite set of non- 
computational formulas. Then from a proof of A bp A, where A is a E-formula, one 
can extract a program P with the property that P reduces to some data realising A. 
Furthermore, a proof that A implies that d realises A is extracted.

Theorem 4.4.3 can be easily generalised to the situation where the proven formula 
is an implication between E-formulas:

Theorem 4.4.4 (Program extraction for data functions) Let A be a finite set of non- 
computational formulas. Then from a proof of A bp A —> B, where A and B are E- 
formulas, one can extract a program P with the property that for any data d realising 
A, P d reduces to some data realising B. Furthermore, a proof of A, Datad bp d.s 
R(A) d —> R(P) (P • d) is extracted, where Data: 8 —> o is a closed term defining of the 
property of being data.

Remark on applications. Theorems 4.4.3 and 4.4.4 cover most applications of pro­
gram extraction, but they can be generalised to considerably larger classes of formulas. 
This will be the subject of further work.

Example 3.3.15 is covered by Theorem 4.4.4 since NxANy —> N(x +  y) is an 
implication between E-formulas.

The program extracted from Example 3.3.16 is an infinite stream (see Example 4.2.13). 
In order to compute with it we need to extract finite data from that stream. For exam­
ple, we can access its n-th element. To this end we define inductively (using slightly 
informal notation)

FTB'jtyz =  (z=i OANx) V FIB7y(jt+y) (z — 1)

and prove Vz : i .Nz —► Vr,y : I .FIBjcy —► FIB'xyz by induction on N. Combining 
this with Example 3.3.16 we obtain Vz : i . Nz —> FIB' 11 z, which is covered by Theo­
rem 4.4.4. The extracted program would, given a natural number n in unary notation, 
read off the nth element of the infinite stream of Fibonacci numbers. Note that mem- 
oization takes place here: if we compute first the 100th Fibonacci number, then 100 
additions of natural numbers will be carried out, but if we later compute the 99th num­
ber, the (partially computed) stream will only be looked up without performing any 
additions. We could of course prove directly (without detour through the coinduc-
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