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Summary

The aim of this research is to provide a self-learning, computer based, decision
making tool for industry. The tool will have a knowledge of current/past rejection 
levels within the manufacturing set up, the diagnosis done by experts and will use 
this information to automatically learn a cause and effect relationship.

The work presented in this thesis constitutes an algorithm for associating belief 
values in the occurrence of a cause (or a combination of causes) with corresponding 
belief values in the occurrence of an effect (or a combination of effects).

For this research, the neural network approach was first chosen because of its 
potential advantages over the traditional rule based approach. The influence of 
network parameters such as weights, biases, learning rate, momentum term and 
mode of training, has been analysed on network training. The analysis of the 
influence of the variation of a gain value during the training and testing phase 
showed that gain is not an independent parameter as perceived before, but depends 
on the initial weight values and the learning rate value. It was discovered that the 
variation in the gain value also influences the learning speed. A coupled algorithm 
has been proposed in this thesis to change the gain value adaptively.

It has been found during this research that neural networks are probably not the best 
available techniques for learning cause and effect relationships from examples, 
particularly due to their poor extrapolation abilities on incomplete and noisy training 
data sets. A novel and efficient method has been proposed, which overcomes the 
major limitation of the poor extrapolation ability of neural networks. This was 
achieved by effectively storing prior knowledge about the cause and effect 
relationship within the network. Enhancements have also been introduced to make 
this algorithm efficient. The belief value in the occurrence of the likely causes of 
one or more given effects is determined using this method.

The algorithm developed is generic and is applicable to all manufacturing processes 
and possibly in all situations where the cause and effect relationship is complex and 
a data set associating belief values in causes and effects is available.
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Glossary of Terms

Semantically 

Constrained 

Neural Network

Rootcauses

Metacauses

Defects

Expert systems

weight

bias

gain

net input 

output

The network is constructed by associating input nodes to defect 

nodes, hidden nodes to metacause nodes and output nodes to 

rootcause nodes.

Design, process and material parameters which can be controlled 

directly.

An intermediate cause that governs the occurrence of defects and 

can be controlled by controlling one or more rootcauses.

Defect types.

These are based on a rule based architecture with backward 

chaining as a reasoning mechanism, have been developed for 

casting defect analysis.

It is a numerical value assigned to every connection 

between two nodes of consecutive layers. It indicates the 

strength of the association between two nodes.

It changes the value of the weighted sum at which the sigmoid 

function changes it’s output value from zero to one. It is 

implemented by adding a new weight having a unit input value.

It describes the slope of the sigmoid activation function.

Net input activation which is the sum of weighted inputs to a 

node.

output signal



input nodes Input to these nodes form an input to the network. These inputs

are generally filtered before presenting to a neural network as 

input.

output nodes outputs from these nodes represent the output of a network.

hidden nodes these receive inputs from a layer of nodes and their output form

an input to the nodes in the next layer of the network. Hidden 

nodes define the non-linearity of the decision surface.

layers Nodes in a network are arranged in the form of layers.

Single Layer Neural

Networks Neural Networks having only one input layer and one output

layer of neurons.

Multi Layer Neural

Networks Neural Networks having one input layer, one output layer and at

least one hidden layer of neurons.

Logistic Sigmoid

Activation Function ‘S’-shaped function that generates output for a node in a

predefined range of 0  to 1 as a function of the weighted sum.

Network Training During this stage, all the netw ork param eters are

determ ined by presenting an exam ple set of known input 

and output pairs and m inim izing the error between network 

prediction and known output during each presentation. The 

optimal values of network param eters are then used for 

testing the network.

Training Data Set for Supervised

Training Examples with inputs and associated outputs.

Network Testing The perform ance of the trained netw ork is tested on another

set of known input and output examples.

Testing Data Sets for Supervised

Training

Supervised

Training

Sim ilar to training data sets.

Training process in which adjustm ents to network 

param eters are carried out iteratively in the presence of a 

supervisor, having the knowledge of the environm ent.



Back-Propagation 

A lgorithm  

Sequential Mode 

of Learning

Batch Mode of 

Learning

Learning Rate

M omentum

Constant

Target Error

Regression

Coefficients

Example of supervised training.

W eight updating is perform ed after presentation of each 

training example.

W eight updating is done after presenting the entire set of 

training examples that constitute an epoch.

Determ ines the m agnitude of w eight change along the 

chosen direction in w eight space and therefore influences 

the training speed of a network.

A fraction which determ ines the proportion of weight 

change in the previous iteration that is added to the weight 

change in the current iteration. This improves learning 

speed.

An acceptable low value over which the sum squared error 

over the entire training set is reduced.

Independent variables which are generally determined 

using least square m inim isation techniques.

Lagrange Interpolation

Polynom ials

Reference Points

Prim ary Reference 

Points

Linear, quadratic, cubic or higher ordered polynomials 

which have some particular attributes.

1. At a given time, the value of the polynom ial at a node is 

equal to unity and zero at all other nodes.

2. Sum of all values of polynom ials equals unity.

For an nth order relationship there are (ft + l)  equidistant

reference points ranging from - 1  to + 1  along a dimension 

in the input space created by the strength of effects of a 

cause.

Reference points along the axes.



Secondary Reference

Points

Primary W eight 

Values

Secondary W eight 

Values

Optim isation

Algorithm

Gaussian Noise

Extrapolation

Ability

All other reference points.

W eight values associated with prim ary reference points are 

the independent param eters in the network.

W eight values associated with secondary reference points 

are linear com bination o f the corresponding prim ary weight 

values.

Gradient Descent, Q uasi-Newton, Levenberg M arquardt are 

the algorithm s used for this thesis.

Normally distributed noise using standard deviation as 20% 

throughout this thesis.

Predicting the value of unknown data points by projecting a 

function beyond the range of known data points.



Nomenclature

i (i = 1 to l )  i th input node and I is the total number of input nodes.

j  ( j  = l to m )  j th hidden node in the first hidden layer and m is the total

number of hidden nodes in that layer 

k (k = I tori') k th output node in the output layer and n is the total number of

output nodes 

Of Output signal of i ,h unit

o x,...on ...,o l Set of input signals (suffice i and I are used for input

nodes)

Set of input signals

hl ,...h j ,...,h m Set of output signals of hidden nodes in the first hidden

layer (suffice j  and m are used for hidden nodes)

Set of output signals of hidden nodes in the first hidden

layer

ol ,...ok ,... ,o n Set of output signals of output nodes in the output layer

(suffice k and n are used for output nodes) 

wtj W eight of the link from unit i to unit j

wjk W eight on the link from unit j  to unit k

anet j Net input activation for the j th unit

a, Activation value of the j th unit
j  j



Oj Output value of the j th unit

ok Network output value of the k th output unit

6j,w 0,b0J Zq Bias for the j th unit

c . Gain of the j th unit

E  Root Means Square Error signal

tk D esired output of the k th output unit

77 Learning rate value

d • Partial derivative of •

A • (n )  Weight, bias or gain correction term of • for nth training

iteration

fi Momentum term value

c (c = 0 to l)  Output belief value in a cause

( 7  = 1 to p )  Belief values for */?’ effects

Zi (i =  1 torn) Function of ( 7  =  1 to p )

Wj ( j  = 0 t o p ) Regression coefficients (in a regression analysis context) or

weights (in a neural network context)

XI Belief value in the occurrence of effect Q

X2  Belief value in the occurrence of effect

Output Value Belief value in the occurrence of the associated cause c

rij Order of the Lagrange Interpolation Polynomial (one for linear,

two or quadratic, etc.) corresponding to the j th dimension

i (i = l to n  +1) For a ‘p ’ dimensional case, T  ranges from one to total number of

reference points *q\ One-dimensional Lagrange Interpolation 

Polynomial is constructed for each reference point along each 

dimension.

, £ / ,  £2  > • • • > . Coordinates of (rij +1)equidistant reference points from = -1

to 4  =+1

xiii



(kv k2, . . . ,k j , . . . ,k p  ̂ The co-ordinates for a reference point T , corresponding to each 

dimension

q Total number of reference points

vv(. Weight variable associated with the ith reference point

C Coefficient used in the linear combination expression.
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Chapter 1

Introduction

This chapter contains an overview of the work background, scope and research 
contributions made. In addition to this it also gives an outline of the thesis.

1.1 Background

In recent times, various disciplines, including the manufacturing industry and at least 

some branches of the medical field, have come under increasing pressure to improve 

yield, productivity and profits (or reduce costs and overheads). As such, there is an 

increasing need to reduce costs and reach the desired result as quickly as possible, for 

example, in the manufacturing industry, the required result may be the manufacture of a 

batch of products which are all of optimum quality, and in a branch of the medical field, 

the required result might be the correct diagnosis of a complaint or disease in a patient 

(i.e. in both cases, to get it “right first time”).

The cause and effect relationship is complex for many manufacturing processes and in 

most cases ‘experience’ is the only factor which can help to take corrective actions. In 

the case of the manufacturing industry, manufactured products are usually tested for 

quality, and sub-standard components are rejected. When a component or set of

1



components is rejected, the fault or faults are noted and reasons for the occurrence of 

the faults are established and corrective actions are taken. In this way, the chances of 

manufacturing sub-standard components thereafter are minimised. Such a diagnosis is 

usually performed by experts in the field, who have acquired a fundamental 

understanding of the process over years of experience in analysing cause and effect 

relationships. This is a time consuming process and furthermore, when an expert leaves 

a particular industry, his expertise is also lost to that employer.

The ability to learn causal relationships from diagnostic examples is extremely useful. 

The aim of this research is to provide industry with a self learning decision making 

tool, which has the knowledge of current/past rejection levels within the manufacturing 

set up, the diagnosis done by experts and which can use this information to 

automatically learn a cause and effect relationship. This learning ability will help 

managers not only to quantify the influence of causes on defects for existing 

components but also to set up new processes, material and design parameters to 

manufacture new components. Such a tool will also help industry to retain some of the 

expertise when experienced staff either retire or leave the job.

Neural network technology represents a meaningfully different approach to using 

computers in a workplace. A neural network is used to learn patterns and relationships 

in data. Having inter-relationships in the data means that two or more factors work 

together to predict the model outcome. The data may be the result of a market research 

effort, the result of a production process given varying operational conditions, or the 

study of cause and effect relationships for different situations from health services, 

manufacture of engineering components to various social management issues. For 

example, in the manufacture of engineering components using a casting process, 

shrinkage related defects might be caused by various reasons such as, incorrect number 

and position of feeders, chills and insulation, pouring temperature of the melt etc. Often, 

one or more factors combine to develop hot spots that may lead to shrinkage defects. 

Neural networks can be trained to predict whether hot spots are likely to be formed for 

given process conditions. They have generally excelled when an unknown non-linear 

relationship exists between explanatory factors (e.g. defects or input data) and the 

outcome (causes or output data). Neural networks discover this non-linear relationship
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during a training phase when the input and output data are repeatedly presented to the 

network. The output data is compared with the results calculated by the neural network 

and the difference, or the error, is processed via a mathematical procedure, which 

adjusts the value of network parameters (such as weights, biases etc) in order to 

minimise this error. However, neural networks have a few limitations which were 

discovered during this research, and because of these it is difficult to use this technique 

as a robust tool by end users in a foundry environment or any other manufacturing 

industry to analyse cause and effect relationships.

This research focuses on three major issues regarding cause and effect relationships.

• Quantifying the influence of one cause (or a combination of causes) on the 

occurrence of one effect (or a combination of effects) by studying past 

diagnostic examples.

• For analysing a cause and effect relationship, a fundamental understanding of 

the variation of belief values in the occurrence of a cause, given a set of 

symptoms or effects, is necessary. This research focuses on characterising this 

belief variation.

• Developing a robust algorithm that will take advantage of the ‘learning from 

example’ paradigm of neural networks and at the same time overcoming the 

inherent problems associated with this technique.

1.2 Scope of Work and Research Contributions

The main research activities, in order to develop a robust tool for analysing ‘cause and 

effect’ relationships, were as follows:

•  Define the diagnostic problem so that computer based models can be effectively 

developed.

• Discover some of the practical limitations in generating training data sets in a 

manufacturing environment.
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• Compare two approaches, the first being the most widely used rule based 

approach, and the second approach i.e. the network based approach to analyse 

‘cause and effect’ relationships.

• Compare the defect-metacause-rootcause type of representations for the causal 

knowledge over rule-based representaion of causal relationships.

• Study the applicability of neural network techniques for the diagnostic problem 

and also analyse the effect of neural network parameters on the performance of 

training using the back propagation algorithm.

• Compare neural network models with regression analysis techniques in order to 

find out the similarities and dissimilarities between both approaches.

• Develop a robust tool for quantifying cause and effect relationships by retaining 

the advantages of neural network and regression analysis techniques and 

overcoming their limitations.

Research contributions made during the above activities are summarised as follows:

• The “cause and effect” relationship for casting processes is a complex subject. 

The rejection data for a given casting component and time frame, normally 

indicates a pattern, which has a few defects occurring at significantly high 

proportions and some occurring at significantly low proportions. The diagnostic 

problem, therefore, was defined as recognising the patterns in the rejection data, 

and correspondingly, associating those patterns with a combination of causes. 

The belief values in the occurrence of these effects are associated with the 

corresponding belief values in the occurrence of the causes based on a known set 

of training examples.

• A network based approach was chosen due to its potential advantages over the 

rule based approach for automatically quantifying cause and effect relationships 

using past diagnostic examples.

• Most of the application oriented papers on neural networks have implied that 

neural networks operate like a “magic black box”, which can simulate the 

“learning from example” ability of our brain with the help of network 

parameters such as weights, biases, gain, hidden nodes etc. There are very few 

publications, or textbooks, which give a physical interpretation for various
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parameters used in the network, and in particular, most of the publications in the 

literature recommend a unit value for gain. The influence of the variation of gain 

value during training and testing phase has been analysed. Equations for weight, 

bias and gain updation were derived. It was discovered that for the back 

propagation algorithm, gain is not an independent parameter as perceived before, 

but depends on the initial weight values and learning rate value. A variation in 

the gain value results in faster training. A coupled algorithm has been proposed 

for the first time to adaptively adjust the learning speed of each node within the 

network.

• It has been recommended that neural networks, or Semantically Constrained 

neural networks, are not suitable for learning cause and effect relationships from 

examples because of their poor extrapolation abilities on incomplete and noisy 

training data sets.

• A novel and efficient method has been proposed for the first time, which uses 

the advantages of both neural network and regression analysis techniques while 

overcoming their limitations. This method overcomes the major limitation of the 

poor extrapolation ability of neural networks by effectively storing prior 

knowledge about cause and effect relationship within the network. 

Enhancements have also been introduced to make this algorithm efficient. The 

belief value in the occurrence of likely causes of one or more given effects is 

determined using this method.

• An international patent application (PCT / GB2002 / 003805) has been made to 

protect this invention. On the advice of UWS Ventures Ltd, a wholly owned 

subsidiary of the University of Wales Swansea, which is responsible for 

protecting its intellectual property, the contents of this thesis are to be treated in 

strict confidentiality.

• Recognising the academic potential of this work, EPSRC has also awarded a 

three-year research funding in collaboration with Rolls Royce Pic to further 

develop this innovation.

1.3 Outline of the Thesis
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The thesis is subdivided into seven chapters, including the introduction and conclusion 

chapter. The following is a summary of each.

• Chapter Two. Computer Aided Defect Analysis: In this chapter, two approaches 

have been explored for undertaking the diagnosis of defective castings: The rule- 

based approach and the neural network based approach. The diagnostic problem 

is defined and research goals are identified for this thesis. The chapter also 

summarises previous work done in this area.

• Chapter Three. Introduction to Neural Networks: The basic structure and

function of neural networks has been introduced in this chapter. The back 

propagation algorithm  - one of the most w idely used algorithm s for 

neural network training has been described and the effect of various 

network param eters (such as weights, biases, gain, learning rate, 

momentum term, sequential and batch modes of netw ork training) on the 

perform ance of the network have been studied in detail. W eight and bias 

update expressions were derived.

• Chapter Four. Effect o f Gain on the Learning Abilities o f Neural Networks: The 

slope of the activation function determines the range over which the output 

values of a neural network are changed from zero to one for a given set of 

weighted inputs. In a feed forward neural network algorithm, this slope is 

directly influenced by a parameter referred to as ‘gain’. In this chapter, the 

influence of the variation of ‘gain’ on the learning abilities of a single and multi 

layer neural network is analysed. Also, the influence of adaptive gain variation 

is analysed and equations have been developed to adaptively select a gain value 

for each node during each epoch. The results of the simulation are also discussed 

for sequential as well as batch modes of training.

• Chapter Five. Neural Networks as a Regression Analysis Tool: In this chapter, 

neural network based models are related with regression analysis models, and 

their advantages and limitations for analysing cause and effect relationships are 

compared.
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• Chapter Six. New Algorithm fo r Causal Analysis using Multi-Dimensional 

Lagrange Interpolation Polynomials: An efficient algorithm has been presented 

in this chapter, which retains the advantages of neural networks and overcomes 

its limitations in learning the input-output mapping function in the presence of 

noisy, limited and sparse data. The belief values in the occurrence of likely 

causes of one or more given effects are determined using this method. Sample 

calculations of the proposed algorithm have been compared with neural network 

solutions for four representative cases.

• Chapter Seven. Conclusions and Future Work: The original research 

contributions are summarized and recommendations made for the continuation 

of the work through future research.
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CHAPTER 2

Computer Aided Defect Analysis

The diagnosis of defective castings has always been a center of attention in the 
manufacturing as well as the research community. Based on a knowledge representation 
scheme, most diagnostic systems are classified into two categories. The first, perhaps 
the most widely used, is a rule-based approach. This computer-aided technique, which 
aroused some interest in the late eighties and early nineties, is known as an ‘expert 
system’ which is also referred to as knowledge based systems [1-5]. The second 
approach i.e. the network-based approach, has received greater attention. Recently, 
Ransing and Lewis [6-13] have proposed a diagnostic algorithm based on the defect- 
metacause-rootcause type of representation for the causal knowledge. Such a network 
based causal representation has certain definitive advantages over rule-based 
representation of causal relationships. These approaches have been discussed in this 
chapter so as to define the diagnostic problem and identify research goals for this thesis.

2.1 Introduction

In any Intelligent Diagnostic System, the causal representation determines the ability of 

the system to effectively diagnose and also justify its diagnosis. In casting processes, 

most of the expertise has been gained, over a period of years, by trial and error. In the 

late seventies the focus of research for improving die casting quality was greatly on the 

experimental side. Statistical techniques such as design of experiments, factorial 

analyses, and statistical quality control techniques were used to analyse the relationships



between causes and defects [14-16]. The influence of design, process and material 

parameters on the quality of castings was correlated with these analyses. With ever 

increasing pressure to reduce design cycle time, traditional analysis techniques need 

constant research and improvement. The interest in developing intelligent 

diagnostic systems for m anufacturing process such as casting is ever increasing. 

Computational tools are used to assist with the design of components and 

manufacturing processes. Many computer-aided techniques have emerged to improve 

the casting quality. In this chapter, the author explores the applicability of computer 

methods to assist a process engineer in decision making to either improve process 

design or to solve a manufacturing problem.

The aim of this work is to develop a set of algorithms, which would impart a decision 

making ability in computer programs for the following specialised topics.

1. On-line diagnosis

2. Identify potential trouble making parameters for new prototypes based on the 

current rejection trends.

3. Like humans, learn from past mistakes, success stories and other examples and also 

explain or justify results.

4. Perform the computer simulation of a casting process. If a defect is predicted then 

automatically improve the design until the casting is simulated as being defect free.

Clearly, the objective is to extend the current abilities of computer programs a step 

further towards intelligent decision making. In the late eighties, expert systems were 

expected to achieve this task. Apparently, the initial enthusiasm for expert systems 

research seems to have subsided. With rule-based systems, the success lies in the 

formulation of rules. For a causal analysis, the author feels that a rule-based approach 

has many limitations. Also, it can be argued that expert systems do not give any new 

information to an expert user. Therefore, it was decided to investigate other algorithms,
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which would use techniques such as neural networks i.e. traditional and semantically 

constrained neural networks and provide new information, even to an expert user.

This chapter takes a fresh look at various diagnostic paradigms and argues that network 

based paradigms can offer a better tool to aid decision-making at the production level. 

Section 2 summarises the approach used for defect analysis and other diagnostic 

approaches reported in the literature along with the diagnostic network topology known 

as the Semantically Constrained Neural Network. Thus, network topology has been 

used as a starting point for this research. Section 3 summarises the causal representation 

in a defect-metacause-rootcause form with sample examples. Finally, the last section 

refines the objective of this research.

2.2 Proposed Approach for Defect Analysis

In a majority of foundry plants, the data available on the number of castings poured, 

along with the number of castings being considered as accepted or rejected as defectives 

before and after machining, is usually carefully recorded. This data is encoded for each 

type of defect, for each day, week and month of a manufacturing campaign. This 

information is available for all casting components.

An assessment of a large number of data sets for defective castings for different time 

spans, revealed that a large proportion (50 to 80%) of all defective castings produced 

contain two or three types of defects. Also, a number of defect types are either not found 

at all, or in very small numbers. In other words, a number of defects are conspicuous by 

their absence or contribute to only a tiny proportion of defectives in the manufacturing 

campaign. However, this information is also considered as significant, mainly because 

of the close interactions between causes and defects. The non-occurrence of particular 

defects actually helps in eliminating the possibility of the occurrence of some causes 

that are also common to the defects occurring at significant proportions.
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Thus, it can be stated that the rejection data for a given casting and time frame, normally 

indicates a pattern, which has normally few defects occurring at significantly high 

proportions and some occurring at significantly low proportions.

The diagnostic problem, therefore, was defined as recognising patterns in the rejection 

data and identifying a corresponding combination of causes. In a casting process, the 

causal relationship is highly inter-linked. It is observed that a combination of defects 

generally occurs as a result of a combination of causes. The following observation may 

be made.

A certain combination of defects generally occurs as a result of a combination of 

assignable causes. The reduction in the belief value in an assignable cause, due to the 

non-occurrence or the partial occurrence of a related defect, depends on -

1. The relative occurrence of a defect w.r.t. other defects and

2. The assignable cause under consideration.

The following sub-section explores various diagnostic tools available in the literature 

and analyses them in a way that could implement the proposed approach for the defect 

analysis.

2.2.1 Rule Based Approach

The casting process, being rich in experience and expertise, is a suitable vehicle for 

expert system application. Rule based, deterministic expert systems associated with 

backward chaining as a reasoning mechanism, have been developed for casting defect 

analysis [1, 5]. In these intelligent casting defect analysis applications, the handling of 

uncertainty [4] in the rules is considered through certainty factors as used in MYCIN

[17] - one of the earlier and commercially successful expert systems. Many other expert 

systems were developed for casting analysis [1-5].
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The rule based expert systems currently developed are essentially based on a rule based 

architecture [18] and either recognise a single defect or diagnose the causes of a single 

defect. The structure of rules in such expert systems follows a particular form that is 

represented as:

IF Condition 1 and Condition 2 and Condition3...

AND Symptom 1 and Symptom 2 and Symptom 3...

THEN Cause 1 (x%)

Where, x is the certainty factor.

Condition 1, Condition 2 etc. could be the operating conditions such as pouring 

temperature range, the composition of certain constituents in the metal or the type of 

melting furnace used etc. The main advantage of this representation, apart from its 

simplicity, is that the diagnostic system can explain the potential outcome. In other 

words, the inference mechanism and knowledge storage is explicit and transparent to 

the user, and hence, it is easy to explain its logic. It is quite convenient to use expert 

system shells for developing such applications where the reasoning process, i.e., 

programs for handling uncertainty have already been developed and the knowledge 

engineer only needs to formulate appropriate rules to capture the expertise in a 

particular field.

In manufacturing processes such as casting, injection moulding or even machining 

processes, such as auto-turning, a large number of defects (ranging from 10 to 20) can 

occur in significantly high proportions as a result of various combinations of prevailing 

process conditions. Also, a number of defects can occur in significantly low 

proportions. Generally, the causal relationship is highly complex and inter-linked i.e. 

each cause influences a number of defects and each defect is influenced by a large 

number of causes. A comprehensive rule base would then require a large number of 

rules leading to other computational problems such as efficiency of the computation, 

consistency in the rules etc. This can be better explained by an example. Figure 2.1 

shows a cause and effect relationship between two defects A, B and three causes C, D, 

E.
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Defects Causes

Figure 2.1 Complex cause and effect relationship.

For the example shown in Figure 2.1, the rule-based system would generate a large 

number of rules, because of the following reason. The defect A may occur if any of the 

causes i.e. C, D or E are occurring. Causes C, D and E may also occur together in any 

combination, and, every combination of causes may influence the occurrence of every 

combination of defects. The degree of influence of each cause (or a combination of 

causes) on the occurrence of each defect (or a combination of defects) is also different 

and this information needs to be stored in the rule base.

To overcome the problem of generating a large set of rules, a hypothetical function may 

be imagined in a manner that would take care of all possible permutations and 

combinations of causes and defects with a fraction indicating their degree of 

occurrences. The structure of this rule may be represented as:

IF C[c] & D[d] & E[e]

(A function (F ) which will automatically generate values ’a ’ and ’b ’based on ’c \  ’d ’and ’e’.)

THEN A [a] & B[b]

Where a, b, c, d, e are fractions between 0 and 1, which correspondingly indicate the 

non-occurrence and occurrence for defects A, B and causes C, D and E.
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In a rule based architecture, with a backward chaining reasoning mechanism, a number 

of questions needs answering before diagnosing each defect. The handling of 

uncertainty can be done through certainty factors. However, the creation of such a 

generalised function using a rule-based approach requires the knowledge of the degree 

of influence of the related cause (and/or a combination of causes) on the occurrence of 

each defect (and/or a combination of defects). In the authors’ experience, generating 

such a probability distribution for the entire relationship is extremely difficult, if not 

impossible. Another practical problem is that it is very difficult, even for manufacturing 

personnel, to precisely quantify the causal relationship. This is because of the fact that 

different experts, depending upon their knowledge and experience, give different 

opinions on the degree of influence of a cause (and/or a combination of causes) on the 

occurrence of a defect (and/or a combination of defects). The causes of defects interact 

with each other in unclear and fuzzy ways. The crisp quantification of a relationship, via 

probability values or certainty factors, is very difficult.

The objective of this thesis is to generate the proposed function F that satisfies the 

following requirements.

1. The function should not require the probability distribution as input to the system.

2. However, based on past examples, it should automatically extract the probability 

distribution.

3. The function is generated and changed adaptively for every new example. It should 

then continue to correct itself for every new example.

4. It should also predict the correct output for any new example.

5. Last but not least, the function should also account for the occurrences, non

occurrences and partial occurrences of defects as well as causes for each example.

Unfortunately, the rule-based approach is unable to adapt or learn from past trends or 

examples. Therefore, it cannot generate such a function F. Hence, the rule-based expert 

systems are unable to implement the approach for defect analysis explained in the 

previous section.

A neural network, which is a network-based approach, has certain advantages over the 

rule-based approach. The main advantage of a neural network is that it can adapt and
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learn from past examples and then be used to quantify highly inter-linked relationships. 

Therefore, this approach has been explored for the diagnostic problem. The following 

sub-section introduces the network-based approach.

2.2.2 Neural Networks - A Network Based Approach

A network is developed by connecting layers of nodes with linkages in a particular way. 

Generally, the concepts or facts are associated with these nodes and the relations 

between them are categorised with the help of linkages. Neural Networks is an example 

of network based systems.

For a casting process, a foundry manufactures daily a large number of castings and, 

provides a solution to manufacturing process problems, or studies any rejections that 

might have occurred. In other words, valuable information is generated within the 

foundry every time a casting is poured. Researchers have attempted to exploit this 

information via neural network techniques. Recently, neural network technology has 

gained more popularity because, unlike the rule-based approach this technology offers a 

convenient computational tool that can adapt, learn and then also be used to quantify 

complex and highly inter-linked causal relationships. This ability makes the field of 

diagnosis a potential application for neural networks. The diagnostic knowledge, which 

the neural network learns, is stored in terms of weights, i.e. numerical values associated 

with the links connecting the network nodes and hence, is one of the most important 

variables in a network. A weight represents the strength of the association 

between network nodes.

Smith and her co-investigators [21-22] have done considerable research in this 

direction. Smith et. al. have shown that the back-propagation neural network can be 

successfully applied for quality control applications. Neural networks were also used for 

the diagnosis of hydraulic forging presses [23]. Martinez et. al. [24] have investigated 

its application to relate process conditions to the probable quality rating of casting. This 

predictive analysis was done for a slip casting process. Spelt et. al. [25] have used 

neural networks for classifying power plant sensor data and coupled this with an expert
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system for diagnostic purposes. Zhang and Huang have presented a state-of-the-art 

survey of neural network applications in manufacturing. These include applications of 

neural networks for engineering design, process planning, in solving scheduling 

problems, process modelling and control, in monitoring and diagnosis and quality 

assurance [27].

The semantically constrained neural network has a modified three layered ‘feedforward’ 

network architecture, proposed by Ransing and Lewis [13]. Generally, a traditional 

neural network consists of layers of nodes, with each node in a layer being connected to 

every node in the next layer. In a semantically constrained neural network, the network 

topology is constrained to a defect-metacause-rootcause relationship, and thereby, the 

connectivity of the nodes becomes constrained with defect nodes to form an input layer, 

metacause nodes to form a hidden layer and rootcause nodes to form an output layer. A 

rootcause is a design, process or material parameter, which may be controlled to 

minimize the occurrence of defective castings. A metacause is defined as a scientific 

rationale that governs the occurrence of defects and is influenced by controlling one or 

more rootcauses. The constrained connectivity differs from that of the traditional neural 

network. In this new network, a node is connected to a node in the next layer only if a 

causal relationship exists.

For the benefit of readers who are unfamiliar with these concepts, metacauses and 

rootcauses are briefly explained later in this chapter. The limitations of using a 

semantically constrained neural network have been outlined in Chapter 5 of this thesis.

2.3 Traditional Representation of Causal Relationship

The most common way of representing a causal relationship is via a “cause and effect” 

diagram, which is a list of causes for a particular defect. For a pressure die casting 

process, the cause and effect relationship for a defect “gas holes” is illustrated in Figure 

2.1. This process involves the injection of molten metal into a die cavity under pressure. 

The metal cools inside the die thereby achieving the desired geometry within a given 

tolerance. The causes for defects range from process, material to design parameters.
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Such a list can be generated via brain storming’ sessions involving production personnel 

and machine operators and quality control staff. Other sources of information are also 

available such as handbooks, scientific papers etc. It is also important to first 

characterise a defect nomenclature followed in a particular foundry as the ’shop floor’ 

names for casting defects could change from one foundry to other. For example, a 

production supervisor might identify a particular defect as Incomplete Fill, whereas, an 

engineer might refer to this as a misrun or a mismake. Webster [26] has used defect 

images in the expert system in order to enable the user to identify the defects whilst 

using the expert system. A pictorial representation of defects is always a better way. 

Currently, this facility has not been incorporated into the code, as the main objective 

was to analyse a defect and cause relationship. In short, generating a simple cause and 

effect diagram itself is a time consuming task and needs to be done carefully which 

involves participation from all levels.

2.3.1 Re-analysis of the Causal Representation

Once the cause and effect diagram is generated for all defects, the next task is more 

intellectual and demanding i.e. the interpretation and compilation of these “cause and 

effect” diagrams. This is important because a single cause can influence the occurrence 

of a large number of defects e.g. the gate velocity in a pressure die casting process 

influences the occurrence of porosity, mismake, shrinkage and hot cracks. The next task 

is to identify the underlying metacauses. The concept of metacauses has been developed 

in trying to answer the question such as why and how a cause influences the occurrence 

of a defect? For example, consider a defect mismake. Mismakes are in general an 

incomplete formation of the casting shape. These are usually in the form of small holes 

or pieces missing from casting sections.

A number of causes can influence the occurrence of mismakes e.g. gate design, die 

temperature, metal temperature, filling time or fluctuation in nitrogen pressure to name 

but a few. If we ask a question, how does the fluctuation in nitrogen pressure influence 

the occurrence of mismakesl Nitrogen pressure controls the injection pressure.
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Therefore, any fluctuations might lead to the loss o f pressure during the solidification of 

melt. This will obviously lead to an incomplete formation of the casting shape 

producing a defective casting with a mismake. There are other causes which can also 

trigger the loss o f pressure during solidification of melt such as slug length -  less, fast 

shot set point, pressure rise time during second stage or gate thickness -  less to name 

but a few. A foundry engineer would agree that once there is a loss o f pressure during 

solidification, triggered by whichever cause, it is likely that defects such as mismakes, 

cold shuts or dimensional inaccuracy will occur. We define the loss o f pressure during 

the solidification as a metacause. Metacauses are the scientific rationale, which capture 

the physics behind the occurrence of defects. The second category of causes is defined 

as rootcauses. Rootcauses are the process, design and material parameters which 

influence the occurrence of metacauses e.g. gate design, die temperature, metal 

temperature, filling time etc. unlike metacauses, rootcauses are those causes, which can 

be controlled or altered directly.

Such a representation of causes in a defect-metacause-rootcause form is generic. For 

example, in a sand casting process one of the metacauses can be identified as Gas 

pressure > metal pressure. This means that during pouring and the onset of 

solidification the gases generated in the mould and/or the entrapped air are unable to 

escape. This causes an increase in the back pressure of the molten metal, which can lead 

to the formation of defects such as gas defect, misrun and cold shuts, scars seams and 

plates etc. In this manner, each of the metacauses gives a scientific rationale for the 

causal relationships. Among the rootcauses, the process parameters could involve any 

parameter that increases the moisture, or wetness, in the sand mould, e.g. improperly 

dried cores, broken or disturbed core wash, high moisture in the sand or improper 

mulling/mixing whereas the design parameters will involve design decisions such as 

inadequate venting, number of gates and their locations etc.

For the example shown in Figure 2.1, the process parameter slow approach is shown 

related to the formation of gas holes. The term slow approach is related to the plunger 

velocity. If the ‘slow approach’ is too short, then turbulence occurs within the melt in 

the feed system, which in turn leads to the entrainment of gases in the liquid metal 

giving rise to gas holes. Similarly, all other subsequent causes resulting in gas holes

18



were analysed and five independent scientific rationales were identified which governed 

the occurrence of gas hole defects. The occurrence of any one of these scientific 

rationales can result in the formation of the defect gas holes. All the process and design 

parameters, which can influence the scientific rationales, were listed. The expression of 

knowledge in such a form not only gives a better understanding of the process but also 

enables an efficient computer aided diagnosis to be made. The expansion of a defect gas 

hole represented in this heirarchical form is shown in Figure 2.2.

Consider another example, where an improper investment shell mould build can cause a 

pin hole defect as shown in Figure 2.3. However, a scientific analysis of the 

relationships would reveal that improper shell build might induce too low a dip weight 

which may cause a pin hole defect. There are a number of process design and material 

parameters, which may induce too low a dip weight. It is therefore likely that the pin 

hole defect will occur if there is too low a dip weight irrespective of which process, 

design or material parameter has caused it. Such a classification makes the causal 

relationship more transparent and provides an insight into the physics of the underlying 

relationship. Figure 2.4 shows the defect-metacause-rootcause relationship for the cause 

and effect relationship of Figure 2.3.

The interconnection among the defects, metacauses and rootcauses are represented by a 

three tier structured graph similar to that shown in Figure 2.2 or Figure 2.4. It can be 

observed that rootcause -  metacause -  defect relationships are highly inter-linked. This 

implies that one defect is associated with more than one metacause, which itself is 

associated with more than one rootcause. Also, a defect and one rootcause is associated 

with more than one metacause.

2.3.2 Neural Networks Based on Defect-Metacause-Rootcause Relationship [13]

In a semantically constrained neural network, the connectivity among the network nodes 

is constrained as per the defect-metacause-rootcause diagram. This knowledge 

representation scheme matches very closely with the architecture of a three-layered feed 

forward neural network. The network is constructed by associating input nodes to defect
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nodes, hidden nodes to metacause nodes and output nodes to rootcause nodes. The 

nodes are connected to the nodes in the next layer only if a causal relationship exists. 

This is possible because the concept of a metacause is assigned to every hidden node.
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Figure 2.1: Cause and Effect Diagram for a defect “Gas Hole” for a 

Pressure Die Casting Process.
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Shot sleeve diameter 

Shot sleeve length

Gate thickness -  less 

Gate area- small

Quantity of the die lubricant -  more

Mixing ratio of the die lubricant

Fast shot set point

Tolerance between plunger and 
shot sleeve

Sleeve temperature

Plunger wear -  excessive

Piston velocity during the first stage 

Vfelt temperature -  high 

Die lubricant type 

Mixing ratio of the die lubricant 

Slow approach is too short

Figure 2.2: Defect-Metacause-Rootcause Representation for a defect 

“Gas Holes” for a Pressure Die Casting Process.
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Dewax Cracks 

Delamination 

Pin Holes

Casting cracks 

Fired cracks 

Shell burn on 

Rough Surface

Recrystallisation 

Strain Bands 

Inclusions

IMPROPER 
SHELL BUILD

Figure 2.3: An Example of a List of Defects caused by “Improper Shell Build” for an
Investment Casting Process.

Dewax Cracks

Delamination

Pin Holes

Casting cracks

Fired Cracks

Shell bum on

Rough Surface

Recrystallisation

Strain Bands

Inclusions

Changed 
Robot Program

Too high 
Temperature

Too low humidity 

Too low dip weight 

Variable Viscosity

Incomplete 
Wet Out

Too thick shell 
thickness

Too high MoR 

Too high Creep

Variable Thermal 
Expansion

Improper 
Shell Build

Figure 2.4: An Example of a List of Defects caused by “Shell B u ild ’ with metacauses
for an Investment Casting Process.
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Cuts or washes 

drops

dirt, slag and other 
inclusions

erosion scab

expansion defects

gas defect

metal penetration

misruns and cold  
shuts

rough surface

shot metal or cold  
shots

scars seam s and 
plates

stickers

sand : m ulling or 
m ixing - im proper

Figure 2.5: An Example of a List of Defects caused by the cause “Sand: Mulling or 

Mixing -  Improper” for a Sand Casting Process.
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Cuts or w ashes 

drops

dirt, slag and other 
inclusions

erosion scab

expansion defects

gas defect

m etal penetration

m isruns and cold  
shuts

rough surface

shot m etal or cold  
shots

scars seam s and 
plates

stickers

Figure 2.6: An Example of a List of Defects caused by the cause “Sand: Mulling or 

Mixing -  Improper” with metacauses for a Sand Casting Process.

2.4 Input and Output of Network Models

As described in the second section of this chapter, the rationale behind the diagnosis is 

to identify a pattern in the rejection data (comprising the number of castings rejected 

under each defect type) and subsequently map the pattern onto a combination of causes, 

or a possible list of causes. As the cause and effect relationship is highly inter-linked, 

the occurrence and non-occurrence of defects determine the occurrence and non

occurrence of causes. Similarly, for a semantically constrained neural network, as the 

defect-metacause-rootcause relationship is highly inter-linked, the occurrence and non

occurrence of defects determine the occurrence and non-occurrence of metacauses, 

which in turn decide the occurrence and non-occurrence of rootcauses. The activations

zones o f  w eaknesses

optimal water or 
binder exceeded

hot strength - low

flow ability  \  m ouldability

gas pressure > m etal 
pressure

degree o f  com paction  

sand collapsability

sand : m ulling or 
m ixing - improper
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for all the nodes are scaled from 0 to 1. A value of zero corresponds to the non

occurrence of the nodes and a value of one corresponds to the occurrence of the node 

and the fractions denote the strength of occurrence of the corresponding node.

The rejection data consists of the number of defective components for each defect type. 

A component showing two defect types is counted under both defect types. The defect 

type with the maximum number of components is assigned a unit value and the rest of 

the defect types were proportioned accordingly to the scale zero to one. In this way, the 

relative strength of each defect is calculated. This forms an input vector to the network. 

The activations in the output nodes, each corresponding to a particular cause, would 

generate the diagnostic output for the network model.

The authors’ objective for this research is to elicit the diagnostic process and 

particularly, understand the cause and effect relationships as follows:

1. To investigate whether any physical insight can be sought in the way neural 

networks would map rejection patterns to a combination of causes.

2. To study whether a neural network ‘learning by examples’ paradigm could be used 

to automatically quantify causal linkages.

3. To discover the function F as described in the second section of this chapter.

2.5 Conclusion

The “cause and effect” relationship in castings is highly complex and non-linear. The 

rejection data for a given casting and time frame, normally indicates a pattern, which 

has a few defects occurring at significantly high proportions and some occurring at 

significantly low proportions. The diagnostic problem, therefore, was defined as 

recognising the patterns in the rejection data and correspondingly associating them with 

a combination of causes.
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Two approaches have been explored for undertaking the diagnosis of defective castings: 

The rule-based and the neural network approaches. These approaches have been 

discussed in this chapter so as to define the diagnostic problem and identify research 

goals for this thesis.

The rule-based expert system approach requires knowledge of the degree of influence of 

the related cause on the occurrence of each defect. In the authors’ experience, 

generating such a probability distribution for the entire relationship is extremely 

difficult if not impossible. The second approach i.e. the network-based approach, offers 

a convenient computational tool, which, unlike the rule based approach, can adapt, learn 

from past examples and may then be used to quantify highly complex and inter-linked 

relationships. Therefore, a neural network approach has been explored for analysing the 

cause and effect relationships. The defect-metacause-rootcause type of causal 

representation has been illustrated with sample examples. Such a representation of 

causal knowledge has certain definitive advantages over a rule-based representation of 

causal relationships. Hence, the objective of this research is to study whether a neural 

network ‘learning by examples’ paradigm could be used to automatically quantify 

causal linkages.
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Chapter 3

Feed Forward Neural Networks

In this chapter the basic structure and function of neural networks is introduced. The 
concept of neural networks is based on the human nervous system, which is built of 
cells called as neurons. This chapter introduces the feed-forward neural networks, which 
are the most commonly used networks, in which nodes (such as input, hidden and 
output nodes) are arranged in layers such that a node is only connected to nodes in the 
next layer. These networks are also classified as single and multi layer neural networks 
according to the number of hidden nodes in the network. A numerical value referred to 
as weight, is assigned to every connection between two nodes of consecutive layers. 
The process of learning or training a network is a m ethodology for changing 
weights within the network so as to achieve desired netw ork perform ance. The 
back propagation algorithm  - one of the most widely used algorithm s for neural 
network training is described and the effect of netw ork param eters on the 
perform ance of the network is studied in detail.

3.1 Introduction

Neural networks are systems composed of many sim ple-processing elements 

whose functions are determ ined prim arily by their pattern of connectivity. 

These systems are capable of high-level functions, such as adaptation or 

learning, along with lower level functions such as data processing for different 

kinds of inputs. Neural networks have been inspired both by biological nervous 

systems and m athem atical theories of learning, inform ation processing and
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control [1]. Historically, much of the inspiration in the field of neural networks 

came from the desire to produce artificial systems capable of sophisticated, 

perhaps “intelligent” , computations similar to those that the human brain 

routinely performs.

The structure and function of neural networks is based on our current 

understanding of the biological nervous system. Neural networks are built on a 

large number of simple, interconnected and adaptable processing units. 

Recently, neural network technology has gained more popularity because, these 

units store practical knowledge through learning from examples and, like 

biological systems, have the ability to take in hazy information from the outside 

world and process it without an explicit set of rules. This approach is in 

contrast to traditional expert system techniques, which analyze information 

according to a set of exact rules.

3.1.1 Biological prototype

The concept of neural networks is similar to the human nervous system, which 

is built of cells called neurons. A neuron is the fundamental building block of 

the nervous system. The human nervous system is extremely complex in terms 

of interconnections of neurons. It is estimated that 10n neurons participate in 

perhaps 1 0 15 interconnections over transmission paths that may range for a 

meter or more [1]. Each neuron shares many characteristics with other cells in a 

body, but has unique capabilities to receive, process, and transmit 

electrochemical signals over the neural pathways that comprise the brain’s 

communication system.

Figure 3.1 shows the structure of a pair of typical biological neurons, which 

consists of three sections: cell body, dendrites, and axon. Dendrites are branches 

that extend from the cell body (or the neuron A) to other neurons (e.g. neuron B). A 

neuron receives its input signals through dendrites (or a link connecting two neurons) at 

a connection point called a synapse. On the receiving side of the synapse, when
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traveling along these dendrites, input signals are conducted to the cell body, where they 

are aggregated (“summed”). An input may either excite the cell, or inhibit it’s firing. 

When the cumulative excitation in the cell body exceeds a threshold, the cell fires, 

sending a signal down the axon to other neurons. The neural network is a 

simplistic model of the complex human nervous system and has been described 

in the next section with an analogy of biological neurons.

CELL B O D Y

D EN D R ITES

Sy n a p s e .

A X O N

► A ssum ed flow  o f inform ation from neuron A to neuron B.

Figure 3.1 Neural Networks -  The Biological Prototype

3.1.2 Basic Structure of an individual neuron in a neural network

An artificial neuron is designed to mimic the characteristics of a biological 

neuron. The block diagram of Figure 3.2 shows the model of a neuron, which 

forms a basis for designing (artificial) neural networks. Three basic elements of 

the model have been identified as follows:
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1. As shown in Figure 3.2, ol represent a set of input signals, which

may also be an output of another neuron. The pre-synaptic activities are 

represented by these inputs corresponding to the signals into the synapses of 

a biological neuron. The figure also shows a set of synapses or connecting 

links, each of which is characterised by an adjustable parameter, called 

weight ( Wj j ,...w2j,... w..,... w tj).

(unit input is assumed for a bias node) 

o0 = 1 6: (where, 0  is bias)

o

O

o

Inputs

Linear Combiner
X  w u° ,

Synaptic wjeights

Sum of all Weighted Inputs

^  net , j

i

1

L

0

—  ^

® n e t , j

° j

Output of j 1 Neuron

Activation function of j th neuron

Figure 3.2 Model of a Neuron. Hashed rectangle encapsulates the processing involved

within a neuron.
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For an artificial neuron, a signal ot at the input of synapse i connected to

neuron j  is multiplied by the corresponding synaptic weight wijt which is

analogous to the synaptic strength. The first subscript refers to the input end 

of the synapse (connecting link) where as the second subscript refers to the 

neuron under consideration. Unlike a synapse in the brain, the synaptic 

weight of an artificial neuron may lie in the range that includes negative as 

well as positive values [2]. An external parameter referred to as bias 6 ;. , is

applied to the unit j ,  which also contributes to the activation of the j th node. 

The necessity and advantages of using the bias term are discussed in the 

following sub-section.

2. The Figure 3.2 also shows a linear combiner for summing the input signals, 

weighted by the respective synapses of the neuron. The summation of all 

weighted inputs is collectively called as the net input, anetJ. This describes

the total post-synaptic activity. A linear combiner in the artificial neuron 

replaces a dendrite in the human nervous system.

3. Net input a . is then passed through an activation function that is used for

limiting the amplitude of the output of a neuron. The activation function is 

also referred to as a ‘squashing function’ because it squashes (limits) or 

normalizes the permissible amplitude range of the post-synaptic activity 

(output signal). Typically, the normalized amplitude range for an artificial 

neuron is either a closed unit interval [0 , 1 ] or alternatively [-1 , + 1 ]. 

Probably, the most commonly used activation function is a sigmoid 

activation function.

Activation functions are also described later in this chapter. In general, for 

the j th node, a sigmoid activation function is a function of the following 

variables, viz.

1

And the neural network model of Figure 3.2 is mathematically, expressed as:
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ane 'J=( 'ZWij°i +6j
I <=1 J

(3.2)

where,

oi output signal from the i,h unit.

wtj weight of the link from unit i to unit j.

Oj output of the j th unit.

anet j net input activation for the j th unit.

6 , bias for the j th unit.
j j

cj gain describing the slope of the activation function.

3.1.3 Arrangement of Neurons in a network along with its associated

parameters

The network parameters, which may influence the diagnostic abilities of a 

neural network, are discussed in detail in this section.

1. Neurons (nodes): As introduced in the previous section, a neuron is an 

elementary processing unit of neural networks, which performs most of the 

processing. The neurons in a network are generally classified into three 

categories: input, output and hidden nodes. The input and output nodes 

interface with the outside world where as hidden nodes, as the name 

indicates, are internal nodes within the network.

i.Input nodes: Input to these nodes form an input to the network. The data 

for a given problem is generally filtered or processed before presenting 

to a neural network as input. Filtering process is problem specific, which 

can vary from simple ‘normalisation’ to a complex mathematical 

procedure (statistical). Input nodes are generally arranged in a layer 

referred to as an input layer (Figure 3.3).
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ii. Output nodes: Nodes whose outputs represent the output of a network 

are called as ‘output nodes’. All output nodes are also grouped 

together to form an output layer as shown in Figures 3.3 and 3.4.

Figure 3.3 A Single-Layer Feed-Forward Neural Network

iii. Hidden nodes: The remaining nodes are called as hidden nodes 

because they are not visible from outside. These nodes receive inputs 

from other nodes in the network and their output form an input to the 

nodes in the next layer of the network. The hidden nodes are also 

organised in layers as shown in Figure 3.4.

2. Weights: In feed-forward neural networks, which are also the most commonly used 

networks, nodes are arranged in layers such that a node is only connected to nodes 

in the next layer. A numerical value is assigned to every connection between two 

nodes of consecutive layers, which is referred to as weight (Figure 1.3). The 

knowledge, which the neural network learns, is stored in terms of weights and is one 

of the most important variables in a network. A weight associated with two nodes 

indicates the strength of the association. The effect of the output of a node on the 

successor node is influenced by the value of the weight associated with the link

Direction of information flow

Output Layer
Input Layer
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connecting the two nodes. In other words it means that the value of wi} determines

how strongly the output of the node i influences the activity of the node j. A weight 

can be exhibitory, inhibitory or neutral depending upon whether it is positive,

Direction of information flow

2 m

Weight array 
W

Weight array 
WHidden Layer

Input Layer Output Layer

Figure 3.4 A Multi-layer Feed-forward Neural Network

wtj > 0 ,  negative, via. < 0 ,  or zero, hv = 0  respectively. An inhibitory weight

results in the reduction of an activation value at the target node (j) whereas 

an excitory weight increases the activation value, i.e. effectively enhancing 

the activity. In other words, the weight is a measure of how frequent a target 

node (j) has been active simultaneously with an input node (/).

During a training phase, a node is made adaptive to new information 

presented. This is also referred to as the learning process. In other words, 

the process of learning or training a network is nothing but a methodology 

for changing weights within the network so as to achieve desired network 

performance.

Bias: Many times it is also necessary to add an additional parameter

referred to as bias ( 6 ) to the weighted sum (Equation 3.2). As shown in 

Figure 3.5, the bias changes the value of the weighted sum at which the



sigmoid function changes i t ’s output value from zero to one. In other words, 

the bias term does not restrict the decision hyper surface, which classifies 

the input space, to pass through the origin of the input co-ordinate system. 

This enhances the learning ability of a network. For the convenience of 

implementation, the effect of bias is incorporated by modifying the network 

as follows:

1. Adding a new input node with a fixed unit input value and

2. Adding a new synaptic weight equal to the bias 6  .

Effect of bias on sigmoidal function

bias = 0

—  bias = 5

— bias = 10

bias = -5
Q.

bias = -10

20-10-20 -15

weighted sum

Figure 3.5 Effect of bias on the sigmoid activation function

3.2 Influence of the layered arrangement of neurons onto network’s 

classification ability

3.2.1 Single-Layer Feed-forward Neural Networks

In the simplest form of a layered network, a layer of input nodes is connected to 

a layer of output nodes. Such a network (Figure 3.3) is called a single-layer 

network, where single-layer refers to the output layer of neurons. The input
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nodes do not perform any computation and are included in the diagram only for 

clarity. Therefore, it will not be counted as a layer in this work.

While describing a network, a set of inputs, labeled ol\ . . .o i , . . . ,ol , is applied to

the neural network and is collectively referred to as the input vector O. For a 

fully connected network, every node is connected to every other node in the 

next layer. Therefore, as shown in Figure 3.3, every input node is connected to 

all output nodes and the computation at output nodes is performed as shown in 

Figure 3.2.

3.2.2 Separability of Input Patterns and the Single Layered Networks

The ability of a single layered neural network to classify an input space has 

been demonstrated in this section with the help of a simple example (Figure

3.6). The network has two input nodes with inputs: xl a n d x 2, jq e  [0,1] and

x 2 E [0,1], respectively and one output node with output E [0, l ] . For a linearly

separable input pattern, the decision boundary, which partitions or classifies the input 

space into two regions, is linear as shown in Figure 3.7 and the equation of this line (or 

hyper line in a multidimensional input space) can be written as follows:

w1x] +w2x 2 +w3= 0 (3.3)

where, w] and w2 are weights for the corresponding linkages to the output node 

and w3 is an externally applied bias (Figure 3.6).

1 Region 2

0 0 0 0

Region 1

output node
input nodes

Figure 3.6 Single Layer Network Figure 3.7 Linearly Separable

Input Pattern
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This network will associate a point (x , ,x 2) to ‘region 1* (as shown in Figure

3.7) if the net input + w2x 2 + vv3 < 0 and to ‘region 2 ’ if the net input 

Wjjtj + w2x2 +w3 > 0 .  Note also that the effect of bias w3 is merely to shift the 

decision boundary away from the origin as the slope of this line is determined 

by weights w, and w2. Binary output values have been considered only for an 

illustration purpose so that the focus is retained on the linear-separability issue. 

If the single layer network correctly classifies a set of input signals into one of 

two regions, 1 or 2, the network is said to have learnt the training data. In other 

words, in neural network parlance, learning can be construed as an iterative 

procedure to arrive at an optimal decision boundary (or a hyper surface), which 

either correctly classifies the input space or maps every point in the input space 

correctly onto an output space. The mapping or the classification is done in 

such a way that the underlying relationship between input and output is learnt 

rather than merely memorising the training examples.

The linear decision boundary limits the use of single layer networks to 

classification problems in which the set of input and output points can be 

linearly separated. For a two-input case, as shown in Figure 3.6, the decision 

boundary is a straight line. For three input nodes, a plane will separate the 

resulting three-dimensional input space. For four or more inputs, although the 

visualization may break down, the n-dimensional input space is separated by an 

n-dimensional hyper plane.

However, if the two regions are as shown in Figures 3.8 and 3.9, the decision 

boundary becomes non-linear and the classification is beyond the computing 

capability of a single layer network. A multi-layered network as discussed in 

the next section then becomes necessary.
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Figure 3.8 Figure 3.9

Nonlinearly Separable Input Patterns

3.2.3 Multi-layer Feed-forward Networks

Although the linear separability problem has been well understood since early 

stages of neural network development and it is also known that this serious 

representational limitation of single-layer networks could be overcome by 

adding one or more layers. This topic has been introduced in this chapter as it is 

used for analyzing cause and effect relationships using neural networks during 

this research.

The term multi-layer perceptron has often been used as a synonym for the term 

‘multi-layer feed-forward neural network’, which represents a generalisation of 

a single layer perceptron. As shown in Figure 3.4, multi-layered neural 

networks are built by serially connecting layers of neurons. This class of feed

forward neural networks distinguishes itself by the presence of one or more 

hidden layers, whose computation nodes are correspondingly called hidden 

neurons or hidden units. The function of the hidden neurons is to intervene 

between external inputs, which are in fact the network input, and the network 

output in some useful manner, which has been discussed in detail in Chapter 5. 

In feed-forward networks, the input signal propagates from left to right 

throughout the network in a forward direction on a layer-by-layer basis.
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The output of a hidden unit is calculated in the same way as shown in Figure

3.2 which is based on the weighted sum of network input values. The output 

signal of the hidden layer is then used as an input to nodes in the next layer, 

which in this case is the output layer of the network. Typically, neurons in each 

layer of the network receive output values of nodes in the preceding layer as 

input values. The set of output values of neurons in the output layer of the 

network constitutes the overall response of the network to a given input pattern. 

In neural networks with more than one hidden layer, the first hidden layer is fed 

from input layer nodes. The resulting outputs from the first hidden layer are in 

turn applied as inputs to the second hidden layer and so on for the rest of the 

network.

The neural network in Figure 3.4 is a fully connected multi layer feed forward 

network in a sense that every node in each layer of the network is connected to 

every other node in the adjacent forward layer.

3.2.4 Separability of Input Patterns and Multi-Layered Networks

Consider a multi-layer network as shown in Figure 3.10 having two input nodes with 

inputs xl e  [0 ,1] and x 2 e  [0 ,1] respectively, one hidden layer with two hidden nodes 

and one output node with output aj e [0,l]. This network also partitions the input

space into two regions, but the decision boundary can be a curve similar to the 

one shown in Figure 3.11. Other examples of non-linearly separable patterns 

have already been shown in Figures 3.8 and 3.9. Detailed discussion on the 

development of decision hyper surface using neural network algorithms has 

been undertaken in Chapter 5.

Such networks can also generate decision boundaries, which surround a single 

convex region of the input space. Networks having three layers of weights can 

generate arbitrary decision regions, which may be non-convex and disjoint.
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Figure 3.11 Non-Linearly Separable 

Input Pattern

3.3 Activation functions

As shown earlier (Figure 3.2), the activation function generates an output for a 

node in a predefined range of (0 , 1 ) or ( - 1 , 1 ) as a function of the weighted 

inputs to that node. A number of activation functions have been used in the 

neural network algorithm. Among the popular activation functions are linear 

and sigmoid (logistic and ‘tanh’). Typically, an activation function generates 

either unipolar or bipolar signals. A brief introduction to activation functions 

has been given in this chapter, as during this work time was also spent on 

analysing the shape of the sigmoid activation function. The discussion of 

activation functions in this section will help to maintain the continuity in later 

chapters.

1. A linear function: The output in the j th node is same as the net input

(weighted sum of input values plus the bias term) to this node.

° j  = a n e t J  (3.4)

Such linear processing elements are studied in the theory of linear systems, 

for example in the “traditional” signal processing and the statistical
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regression analysis. They are also commonly used for output layer nodes, 

because the desired output is known during the training phase and it is not 

necessary to explicitly normalize the output.

2. Step function: The step function is the simplest and the most

straightforward.

Ojii

Figure 3.12 Unipolar Step Function

Neural networks with threshold units were studied by Rosenblatt (1962) 

under the name perceptrons  where it was used as a threshold element with a 

binary output. Widrow and Hoff (1960) also called these units as addalines.

The bias 6 y. (threshold) can be added to both unipolar and bipolar step

functions depending upon which unit produces an output signal of either ‘1 ’ 

or ‘O’. We then say that a neuron is “fired” , when the synaptic activity 

exceeds the threshold level, 6 y for unit j. The step function has only binary

output. Output of such a neuron is defined as follows:

(3.5)
[ 0  otherwise

i
where, amlJ = +0j

j=l

Such a neuron, in the literature, is referred to as the McCulloch-Pitts  model , 

in recognition of the pioneering work done by McCulloch and Pitts (1943) 

(Figure 3.12). In this model, the output of a neuron takes on the value of 1,

if  the net input i.e. a netj of that neuron is nonnegative, and 0  otherwise.

46



This statement also describes the all-or-none-property of the McCulloch- 

Pitts model.

3. Ramp function (Piecew ise-Linear function):

In this type of activation function (Figure 3.13), the threshold or a ramping 

function mirrors the input within a given range, say 0  to 1 , and functions as 

a hard limiter (step function) outside that range. It is a linear activation 

function that has been clipped to the minimum and maximum values, which 

then makes it non-linear. It gives an ’on’ or ’off’ response for activations well 

above or below the threshold value and will still give useful information if 

the activation is close to the threshold value. The function is defined as 

follows:

1

d j  =

1 if

1
' n e t  , j i f  +  —  >  a 

2

if

a n e t  J  >  +  2

n < ----
w  ne t  , j  ~  2

(3.6)

where, , = V  w o- + 6
t , j  A j  ij i j

/=i

- 1/2 0 172

3.13 Ramp Function

output

net input

Figure 3.14 Logistic Sigmoid

The following three situations may be viewed as special forms of the 

piecewise-linear function.

1. For small activation potential, the neuron works as a linear combiner.

2. For large activation potential, the neuron saturates and generates the 

output signal of either 0  or 1 .
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3. For large gains c —>°°, the piecewise-linear function is reduced to a step 

function.

The main disadvantage of this function is that the derivatives are 

discontinuous. A smooth S-shaped sigmoid function (Figure 3.14) 

overcomes this limitation and hence is widely used in neural network 

algorithms.

4. Sigm oidal Functions: The term sigmoid means ‘S-shaped’, and the logistic 

form of the sigmoid maps the interval (-oo5oo) onto (0 , 1 ) for unipolar 

functions and ( - 1 , 1 ) for bipolar functions.

(a) Unipolar: The logistic sigmoid function is an unipolar function which is 

defined as

1

a i = ------- 1--------
J  1  _ | _  £  C j a net  , j

I
where, a ,€[ J = £  vtr o, + 6 ,

1 =  1

and Cj is a constant value referred to as ‘gain’ which determines the slope of 

the sigmoid function.

This function is best suited for neural networks because it has advantages of 

the ramp and/or step activation functions and also has the following useful 

properties.

• It is a smooth and continuous function (this property is useful in deriving 

the weight updation expressions of the traditional neural networks).

• The function outputs values within the range 0 to 1. Traditional neural 

network generally has binary output of either 0 or 1. However, by using a 

sigmoid activation that outputs within the range 0  to 1 , neural networks can 

also have fractional output values.
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• The rate of change of output values for a given change of input a . is

minimum at output values close to 0  and 1 and maximum at output values

close to 0.5. Such exponential variation also assists the learning process.

• If anetJ is close to 0.5, then the logistic sigmoid function can be

approximated by a linear function, and so in this sense a network with

sigmoidal activation functions contains a linear network as a special case.

• The parameter gain Cj describes the slope of the activation function. By

varying c .,  sigmoid functions of different slopes are obtained. As the 

slope parameter gain, c. gets larger, the sigmoid approaches the behavior

of the step function. The effect of gain on the sigmoid function can be 

seen in Figure 3.15.

Effect of gain on sigmoidal function

----------------------------------------------------- 1-2—

 ̂ o 1C -  z
c -  3 ----------------------------

0.8 -

0.6

o A

-------------- 1-------------- 1-------------- 1---------- Q—

f / f f ^
! / /  c = 0.3  

c -  0.5  

c = 1

...........  I I l
-20 -15 -10 -5 0 5 10 15 20

weighted sum

Figure 3.15 Effect of gain on the sigmoid activation function

tb) Bipolar: The activation functions defined in Equations 3.1, 3.5 and 3.6 

range from 0 to +1. Another popular function has output in the range -1  to 

+ 1 as shown in Figure 3.16. The shape is anti-symmetric with respect to 

origin; i.e. the activation function is an odd function of the weighted sum. 

This bipolar sigmoid activation function is also known as the Anti-symmetric 

Sigmoid or the Hyperbolic Tangent function, mathematically defined as
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e Cane,J _  e ~canetJ
a . = t a n h  ^  + (3 .7 )

output

net input

Figure 3.16 Hyperbolic Tangent

The hyperbolic tangent (bipolar sigmoidal) function has also been widely used, 

specifically, in problems related to function mapping and approximation. It is often 

found that ‘tanh’ activation functions give rise to faster convergence of training 

algorithms than logistic functions, which has been further discussed in Chapter 4.

3.4 Neural Network Learning

The neural network learning process is accomplished in two stages.

1. Network Training: During this stage, the network parameters such as 

weights, biases, number of hidden nodes and hidden layers are determined 

by presenting an example set of known input and output pairs and 

minimizing the error between network prediction and known output during 

each presentation. The optimal values of network parameters are then used 

for testing the network.

2. Network Testing: During the training stage, care needs to be taken such 

that the network does not merely memorise the training data but instead 

learns the underlying relationship between input and output values. The 

performance of the network is tested on another set of known input and 

output examples. The values in testing data set are different from the 

training data set and are used to assess generalization abilities of the chosen
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neural network architecture. If the network performance is poor on the 

testing data, the network is retrained on the training data.

During training stage, the network parameters are updated either with 

supervised, or unsupervised learning algorithms as described in the following 

sub-section.

3.4.1 Supervised Learning

In a supervised learning process, one may think of a supervisor (teacher) as 

having knowledge of the environment, with that knowledge being presented by 

a set of input-output examples. The environment is, however, unknown to the 

neural network. The supervisor and the neural network are both exposed to an 

input vector. By virtue of the built-in knowledge, the supervisor is able to 

provide the neural network with a desired response for that input vector. 

Indeed, the desired response represents the optimum action to be performed by 

the neural network. The training process (Figure 3.17) is explained as follows. 

The network parameters are adjusted under the combined influence of the input 

vector and the error signal. The error signal  is defined as the difference 

between the desired response and the actual response of the network. The 

adjustment is carried out iteratively in a step-by-step fashion according to an 

algorithm that tends to minimize this error. This procedure is carried out until 

the error for the entire training set attains an acceptably low level, which may 

not necessarily mean a minimum value. This completes the learning procedure 

and the weights are then “frozen” and the network performance is tested on the 

testing data before its actual use.
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Figure 3.17 Supervised Learning

The aim is to eventually make the neural network emulate the teacher. In this 

way, the knowledge of the environment available to the teacher is transferred to 

the neural network through training so that it is able to deal with the 

environment completely by itself. A supervised learning system is usually able 

to perform tasks such as pattern classification and function approximation. 

Back-propagation learning method -  most widely used example of supervised 

learning -  has been described in Section 3.5.

3.4.2 Unsupervised Learning (e.g. competitive learning)

Unsupervised learning is sometimes referred to as self-supervised learning. As 

the name implies, there is no external supervisor or teacher or critic to oversee 

the learning process as indicated in Figure 3.18. Rather, the learning process is 

accomplished based on local information only. As target output is not known, 

the training set consists only of input vectors. The network looks for 

regularities or trends in input signals, and makes adaptations according to the
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function of the network. In this process, the network extracts underlying 

correlations within input examples and groups similar vectors and creates new 

classes automatically (Becker, 1991). This process also needs an internal 

monitoring of performance.

Environment

Input Vector

Neural Network with 
its Learning System

Figure 3.18 Unsupervised Learning

Competitive learning rule is an example of the unsupervised learning process. 

For example, we may use a neural network with an input layer and a 

competitive layer. The input layer receives the available data. The output or the 

competitive layer consists of neurons that compete with each other (in 

accordance with the competitive learning rule) for an opportunity to respond to 

the features contained in the input data. The neuron with the greatest total input 

wins the competition and is called a “winner-takes-all” neuron. All other 

neurons then switch off. The output signal of winning neuron is set equal to one 

and the output signals of all the neurons that lose the competition are set equal 

to zero. An important feature of competitive learning is that only a single 

output neuron is active at any one time. It is this feature that makes competitive 

learning highly suited to discover statistically salient features that may be used 

to classify a set of input patterns.
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3.5 Back-Propagation Algorithm (Supervised Learning)

Most training algorithms involve an iterative procedure for the minimization of an error 

function, with adjustments to weights being made in a sequence of steps. The 

procedure for supervised error-back-propagation is as follows:

1. Start the cycle by presenting input patterns to the neural network.

2. Specify desired outputs for each input pattern.

3. This input is then propagated forward through the network, layer-by-layer, 

as per Equations 3.1 and 3.2 until the output layer.

4. A set of output produced is considered as the actual response of the network. 

Steps 1, 2, 3 and 4 constitute the “Forward Propagation Phase” in that the signal 

propagates from nodes in the input layer to nodes in the output layer.

5. Error is calculated by comparing network output with the desired output as 

follows.

E = ± ± ( t t - o J  (3.8)
^  k = l

where,

n: number of output nodes in the output layer.

tk : Desired output of the k th output unit.

ok : Network output of the k th output unit.

6 . The error signal (E) is propagated backwards through the network and is used to 

adjust weights. The weights in the links connecting to output nodes {wjk) are then

modified based on the gradient descent method as follows.

4 w , = , ( - f )  (3.9)

= T) 6 t Oj

where,

Oj Output of the j ,h hidden unit.

The error is propagated backwards to compute the error specifically, at the 

hidden nodes.
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(3.10)

= r] 6 j oi

where,

*n

i, j ,  k

O: Output of the i th input unit (which is same as the 

output value), 

learning rate value

Subscripts i, j and k correspond to input, hidden and 

output nodes respectively 

Weight on the link from unit j to k.

Weight on the link from unit i to j.

= ok( l - ok - o k)...  for output units.

= O j^-O j^J^  Skwjk ... for hidden units.

In this way, the error is propagated backwards to modify weights so as to 

minimise the error. Steps 5 and 6  above are referred to as the “Backward  

Propagation Phase”.

7. Go back to step 1 until a satisfactory configuration is found.

3.5.1 Weight and Bias Update Expression for a Traditional Neural Network with 

a Variable Bias term

The network error E is defined as follows:

required. The respective weights would then be updated with the following 

equations.

(3.11)

For output units needs to be calculated where as for hidden units is
dw:;
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A  /  9 £  AA wjk = t] ( - - ----)
° W jk

Aw* =,7 (- a ^ )

(3.12)

(3.13)

The Calculation of dff
BWa,

dE dE do h

d w jk dok dwjk 

dE
=  ~ ° k )OOy

(3.14)

(3.15)

For the sigmoidal activation function,

o , ,  =
1

do

-I - C j .  V W : l O :  

/

3 w .

* _ 1

(3.16)

2 1 -Ot
=  O k C kOj

dE

= ok(l - o k)ckOj

■ = -(fk - ° k ) 0 k ( l - ° k ) c k ° j

(3.17)

(3.18)

Therefore, the weight update expression for the links connecting to output 

nodes with a bias is:

A Wjk =7] ( t k - o k ) o k ( l - o k ) c kOj (3.19)

Similarly, the bias update expressions for the output nodes would be:

&6k = v ( h ~ o k)ok( l - ok)ck (3.20)

The Calculation of dE
dw;;
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The calculation of i^L is not very simple as the error depends on the output of
dwij

hidden as well as output units. Therefore,

dE

3w. 3w,

dw„

(3.21)

(3.22)

The subscript j and k stand for hidden and output nodes respectively. To avoid 

the confusion while using other subscripts, superscripts h and o would be 

mentioned where necessary to denote for hidden and output nodes respectively.

Let’s calculate
do ■

term in Equation 3.22 is calculated as follows:

do01

dohj do01 dohj

0 2

=  . . .  +  ■

do°k dohj
2 "*1 /,o V

( t  n  O n )
do°n

do°n d o \

From equation 3.16,

do°k

\  + e~ĉ w JkOj
~ckYjW*°h

1 - o L
= ok ckwjk

(3.23)

= ok( l~ok)c kwjk (3.24)

57



Now,

do°,
= - ( ( ”* - o ‘t ) (3.25)

Therefore, Equation 3.23 becomes,

dot =  - ' Z c k w j k ° k ^ - ° k ) ( f k  ~ ° k )
(3.26)

Now, le t’s calculate the term _^L
0W„

d° j
0 W,;

r
- C  i  >  VV.,0 ;

1 + e jZj j
(■~ c j ° i )'

2 1~0j= 0, 0,— C,

(3.27)

Therefore, for each hidden unit j, substituting equations 3.26, 3.27 in Equation 

3.21 we get,

dE
d\V;

CjOjii-°j)o,  (3.28)

Therefore, the weight update expressions for the links connecting to hidden 

nodes is:

A Wy = rj

Similarly, the bias update expressions for the hidden nodes would be:
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3.6 Factors Affecting the Network Perform ance

Codes for traditional single and multi layer neural networks are developed by the 

author, and are written using C++ programming language, for supervised training using 

the back-propagation algorithm described in Section 3.5. The network parameters such 

as weights and biases for hidden and output nodes are initialised using small random 

numbers and updated using the weight and bias update expressions derived in Section 

3.5.1. The effect of different parameters on network training is studied.

1. Mode of Operation: One complete presentation of the entire training set 

during a learning process is called an epoch. The learning process is iterated 

on an epoch-by-epoch basis until the synaptic weights and bias levels of the 

network stabilize and the average squared error over the entire training set 

converges to an acceptable low value. For a given training set, back- 

propagation learning may proceed in one of two following ways:

• Sequential Mode: The sequential mode of back-propagation learning is also 

referred to as online mode. In this mode of operation, weight updating is 

performed after presentation of each training example.

• Batch Mode: In the batch mode of back-propagation learning, weight 

updating is performed after presenting the entire set of training examples 

that constitute an epoch.

Batch mode training usually requires less number of epochs for training, and is also 

less likely to give oscillations in weights as training progresses, however, the 

sequential mode of back-propagation learning is popular (particularly for solving 

pattern classification problems) for the following reasons:

• The algorithm is simple to implement.

• Coupled with random pattern selection strategies, it allows a weight correction that 

is somewhat random in nature.
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• From an “on-line” operational point of view, sequential mode is preferred over 

batch mode because it requires less local storage for each synaptic connection and 

may become computationally faster than the batch mode if there is a high degree of 

redundant information in the data set. As a simple example, suppose that we create a 

larger training set from the original one simply by replicating the original data set 

ten times. In this case, the contribution to error in both nodes will be different and 

batch mode algorithm will require longer time to find a solution. By contrast, the 

sequential algorithm updates the weights after each pattern presentation, and so will 

be unaffected by the replication of data.

However, training with batch mode becomes convenient when using more efficient 

optimization methods as compared with gradient descent method. Now the effect of 

both these modes on training is studied.

Consider a network (Figure 3.6), with two input nodes and one output node. 

The network is trained in sequential as well as batch modes for the same 

randomly chosen initial weight and bias values:

wi = -0.171131, w2 = -0.863562 and bias bi= -0.510387 for the output node.

Note that batch mode trains the network in 16 epochs as compared to the 

sequential mode, which trains in 477 epochs as indicated in Figures 

3.19(a) and 3.19(b) below.
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Figure 3.19: Training a network using mode (a) and mode (b) as above.
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2. Learning Rate

The effect of varying learning rate has been shown for the same network 

discussed in the previous paragraph. The network is trained over the training 

example set, starting with the same set of initial weights and biases, for five 

different learning rates. The results of the experim ent are compared directly. 

The learning curves so computed are plotted in Figure 3.20 below. It can be 

observed that increasing the learning rate results in faster training and 

decreasing the learning rate decreases the speed of training.
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Figure 3.20 Effect of Different Learning Rates (i.e. 0.1, 0.3, 0.5, 0.6, 0.8)

on Network Training

The learning rate determines the magnitude of w eight change along the 

chosen direction in weight space. M ost of the publications of neural network 

use a constant value between 0.3 and 0.6. If a larger value is chosen for the 

learning rate, it may speed up the learning process, however, may also result 

in large changes in the synaptic weights that make the network unstable. 

Sm aller values of learning rates may avoid oscillatory changes in weights,
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however, at the cost of excessive com putational time. A general rule is to 

use the largest learning rate that works and does not cause oscillation.

3. M omentum Constant: Another technique for im proving the learning speed 

without introducing divergent oscillations in w eight changes is to modify 

the weight update expression by including a m om entum  term [8]. A fraction 

of the weight change in the previous iteration is added to the weight change 

in the current iteration. This ensures a sm ooth change in weights by 

m inim izing oscillations leading to a better convergence rate. The momentum 

constant, jii, is a fraction which determines the proportion of weight change 

in the previous iteration that is added in the current weight change. The 

incorporation of a momentum term in the back-propagation algorithm 

modifies the weight and bias update expressions for output as well as hidden 

nodes as follows:

The weight update expression for a link connecting j th hidden node to k th 

output node is:

A w Jk(n + l)=J](tk - o k)ok( l - o k)ckOj +//A  wJk(n) (3.31)

Sim ilarly, the bias update expression for k th output node is:

A 6 k(n + l )=r i ( t k - o k)ok( l - o k)ck + m A 6 k(n) (3.32)

The weight update expression for a link connecting i,h input node to j th 

hidden node is:

Awij(n+l) = r] ~°k) cjOj(^-Oj)oi +ju A ^ (n )  (3.33)

Sim ilarly, the bias update expression for the hidden nodes would be:
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A 0 j ( n  +  l ) =  7/ Y ^ c kw j k ° k ^ - o k ) { t k - o k ) C j O j ( ^ - O j ) + j u  A 9 j ( n )  (3.34)

Although, the inclusion of momentum term leads to an improvement in the 

performance of the back-propagation algorithm, the algorithm still remains 

relatively inefficient as compared to more efficient optimisation methods. The 

inclusion of momentum term also introduces a second parameter ‘jn’, whose value 

needs to be chosen, in addition to that of the learning rate parameter r|. Several 

attempts have been made to explicate the influence of momentum term upon the 

back propagation [3] to suggest proper choice of the term [4-5]. In addition to the 

learning rate parameter, momentum term also greatly influences the convergence 

speed of the training procedure. As discussed before, the larger the learning rate rj, 

the larger the change in the weights. However, by using a moderate value of the 

learning rate and adding a momentum term filters out the oscillations [6, 9]. A 

relationship between the momentum constant ju , learning rate r] and learning speed 

in epochs has been reported in literature [3,4,7] that the learning speed is

proportional to Attoh-Okine [10] showed that learning rate of around 0.2
V

to 0.5 and momentum term of around 0.4-0.5 provides the appropriate combination 

rather than very small learning rate, roughly 0.001 and a relatively high momentum 

term between 0.5-0.9. It has also been observed that learning rate and momentum 

constant have a significant impact on the training speed, but not on the 

generalization ability [5].

3.7 Conclusion

Basic principles of neural networks have been introduced in this chapter. The network 

architecture comprises of input, hidden and output nodes arranged in appropriate layers. 

The processing at each neuron is almost the same and the final network architecture is 

generally determined by a trial and error method.
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The number of hidden layers and also hidden nodes in each layer determine the non- 

linearity of a mapping function in input and output space. The generalisation ability is 

directly determined by the number of hidden nodes in the network.

This chapter forms a foundation for some of the advanced concepts introduced in later 

chapters. Codes for single and multi layer feed forward neural networks have been 

developed by the author using C++ programming language.
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CHAPTER 4

Effect of Gain on the Learning Abilities of 

Neural Networks

The slope of the activation function determines the range over which output values are 
changed from zero to one for a given set of weighted inputs. In a ‘feed forward’ 
algorithm, this slope is directly influenced by a parameter referred to as ‘gain’. A unit 
value for gain has generally been used for most of the research reported in the literature. 
In this chapter, the influence of the variation of ‘gain’ on the learning ability of a neural 
network is analysed. The chapter begins with an introduction to gain and its geometric 
interpretation. Applications to both single layer and multi layer neural networks have 
been assessed.

During the work, it was discovered that ‘gain’ is not an independent parameter as 
perceived before undertaking this study. The relationship between network weights, 
learning rate and gain has also been highlighted. Although, it was not possible to extend 
the geometric interpretation of a ‘gain’ value to advance the learning abilities of the 
network to associate causes with observed effects, it is shown that the training time can 
be significantly reduced by changing the ‘gain’ value adaptively for each node.

4.1 Introduction
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The calculations performed during the forward phase of a feed forward neural network 

algorithm are described in Chapter 3. As shown in Equation 4.1, the weighted sum of 

the inputs is passed through a sigmoid activation function to generate the nodal output 

(Refer to Equation 3.1 for details).

1
Output of the j th node ° j  ~  ^  -cjanel j  (4.1)

where, the net input a . = ^  wioi + 6j
i

The activation function is graphically shown in Figure 4.1. The value of the gain 

parameter directly influences the slope of the activation function. For large gain values 

(c »  1), the activation function approaches a ‘step function’ (Figure 3.12, Chapter 3) 

whereas for 0 < c «  1, the output values change from zero to unity over a large range 

of the weighted sum of the input values. Before undertaking this study [1], it was felt 

that this particular feature of gain variation might influence the way input values are 

mapped to the output values. This was considered important because output values of 

diagnostic neural networks -  which are the focus of this study -  range from zero to 

unity. The following two diagnostic cases further support this argument.

Effect of gain on sigmoidal function

c = 0.3Q .

-10-20 -15
weighted sum

Figure 4.1 Sigmoid activation function with different slopes

69



Case 1: A cause is associated with two defect nodes in a single layer network as shown 

in Figure 4.2.

Defect 1

Cause

Defect 2

Figure 4.2 Simple network connecting two ‘defect’ nodes to a ‘cause’ node.

Case 2: A cause is associated with two defect nodes in a multi layer network (one 

hidden layer and two hidden nodes) as shown in Figure 4.3.

Defect 1

Cause

Defect 2

Hidden layer

Figure 4.3 Multi layer network connecting two ‘defect’ nodes to a ‘cause’ node.

As described in Chapter 2, for diagnostic networks, the input value represents the 

relative strength of occurrence of a defect in the rejection data and the output value 

represents the belief in the occurrence of a cause for a given relative strength of 

occurrences of both defects.

The interpretation of the output value is rather different from many of the traditional 

neural network applications, where output nodes generally have binary output values. In 

other words, the output of the diagnostic network is a vector of outputs with values

ranging from 0 to 1. These output values are classified into three regions, referred to as

A, B and C (Figures 4.4 and 4.6).

• Region A is the region of zero output values.

• Region B shows output values ranging from 0 to 1.
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• Region C has unit output values.

Figure 4.4 shows the classification of input patterns undertaken by the network shown 

in Figure 4.2. Similarly, Figure 4.6 shows the classification of input patterns undertaken 

by the multi layer network shown in Figure 4.3. In this case, the decision boundaries 

which separate the three regions are curves (Figure 4.6). The methodology used to plot 

these lines and curves is derived in Appendix 4A and 4B at the end of this chapter.

Figure 4.5 presents a detailed classification of output values shown in Figure 4.4. 

Region B, as shown in Figure 4.4, is termed as linearly separable because the 

boundaries of Region B are straight lines. Similarly, the classification of output values 

shown in Figure 4.6 is detailed in Figure 4.7. Hidden nodes, and the hidden layer, have 

introduced the non-linearity (curvature) in the decision boundary.

It can be observed in Figures 4.5 and 4.7 that the output values in the Region B vary 

exponentially from the central output value equal to 0.5. For the diagnostic problem 

under study, it was felt that the region of interest, where most of the training data values 

lie, would be Region B, which is a continuous space of output values between 0 and 1. 

By increasing or decreasing the width of region B, a greater number of network output 

values could be matched with the given output values. The alteration of this region is 

achieved by changing the gain value.
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a Unit Output Value
• Zero Output Value

Figure 4.4 Classification of Input Pattern for Single layer networks
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Figure 4.5 Detailed Classification of Input Pattern for Single layer networks
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Figure 4.6 Classification of Input Pattern for Multi-layer networks
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Figure 4.7 Detailed Classification of Input Pattern for Multi-layer networks
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4.2 Influence of the Gain Value on the Classification Abilities of the 

Neural Network

The same case studies, (Figures 4.2 and 4.3), are studied further to analyse the influence 

of different values of gain during the training as well as the testing phase.

4.2.1 Influence of the Gain Value on Network Testing

Example 1: Consider the single layer network as shown in Figure 4.2. An input pattern 

is presented to this network and the network is trained with a unit gain value. Then it is 

tested for different gain values such as c = 3 and c = 1/3 = 0.33. The decision 

boundaries are plotted for an output value equal to 0.1, 0.5 and 0.9. The region B, which 

is a continuous space of output values between zero and one is shown between the 

decision lines for an output value equal to 0.1 and an output value equal to 0.9. The 

effect of different gain values on this region is observed and plotted in Figure 4.8. The 

following observations are made.

• Increasing the gain value decreases the width of the region of values between 0 and 

1.

• Decreasing the gain value increases the width of the region of values between 0 and 

1.

• For all values of gain the straight line for output equal to 0.5 is the same.

• The equation of the line for an output equal to 0.5 is derived in Appendix 4A at the 

end of this chapter.

• The slope of the lines representing other output values such as 0.1, 0.5 and 0.9, 

remain the same but their intercepts are different (Figure 4.8). (Refer to Appendix 

4A at the end of this chapter.)

This also holds for an n-dimensional network i.e. a network with n input nodes.
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Exam ple 2: For the multi-layer network, as shown in Figure 4.3, we have the same set 

of observations (Figure 4.9). The only difference is that the decision boundary is non

linear.

Both single and multi layer networks are trained with a unit gain value. These networks 

predict fractional output values for only a small part of the training data due to the 

narrow region B. The performance of the network on different values of gain during a 

testing phase is analysed (Figures 4.8 and 4.9), and the following observations are 

made:

• With a sufficiently large region B, which can be achieved by decreasing the value of 

gain, the simple network can also predict fractional output values for most of the 

training data.

• However, the few data points that are still left outside this region have only binary 

output values.

/ *  
A A /  A

■Output = 0.5 fp /  
all^gain valued

/  Output =*0.9 
for gain = 0.33

A A 

A

Output = 0.9 
for gain = >

/
/

/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Input to First Node

Figure 4.8 Testing the single layer network for different values of gain
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Output = 0.9 
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Output = 0.9 
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0.6 Output = 0.9 
for gain = 0.5

0.5 -iK

Output ='©x1' 
for gain = S—;0.3

Output = 0.1 
>for gain = 1 ■

Output = 0.1 
,for gain = 0.5,

0.2 0.3 0.4 0.5 0.6

Inptu to First Node

0.7 0.8 0.9

Figure 4.9 Testing the multi-layer network for different values of gain

4.2.2 Influence of the Gain Value on Network Training

Example 1: The single layer network, as shown in Figure 4.2, is now trained for 

different values of gain such as c = 3, and c = 0.3. The decision boundaries are again 

plotted for output values equal to 0.1, 0.5 and 0.9 as shown in Figures 4.10 and 4.11. 

The following observations are made.

• Increasing the gain value decreases the width of the region of values between 0 and 

1.

• Decreasing the gain value increases the width of the region of values between 0 and

1.

• The widths of regions of fractional output values for different training sets are 

different.
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• The slopes of decision boundaries for different training sets are also different.

• Within a training set, the decision boundary for an output equal to 0.5 is the same 

for all values of gain.

• Within a training set, the slopes of the boundaries for all output values are also the 

same, but their intercepts are different.

After the network was trained for different gain values, the results file was studied and 

an important observation is made as follows:

As the gain value was increased, the error was reduced in a fewer number of epochs, 

and, the training process required a greater number of epochs as we decreased the value 

of gain. The training process required 4209 epochs to achieve the target error of 0.01 

with a gain value of 0.3 whereas the same network was trained in 64 epochs with a gain 

value of 3. This is illustrated in Figure 4.12. In other words, it was observed that the 

gain and learning rate influence the learning performance of the network in a similar 

way.

For the purpose of simplicity, the single layer network as shown in Figure 4.2 has been 

chosen and the effect of different values of gain on the training process has been 

analysed. From Figures 4.10 and 4.11, it can be observed that different values of gain 

used during the training process do not really achieve a desired positive control on all 

the output values. The width of the region B is decided by the final weights. Also, we 

still need to test the network by modifying the region B. Nevertheless, the value of gain 

used during training influences the rate of learning. Therefore, it was then decided to 

investigate whether the change in a gain value has the same effect as changing the 

learning rate.

77



Region B for 
gain = 3

2.5 -

v■oo
z
■O

8 0.5 1
V I
CO 0 1
o 1** 1

-0.5 ,
0.5 0.6 0.7 0.8

Region B for gain 
= 0.3 _

0.9
3ac

Region B'for 
gain = 1

-2.5

Input to First Node

Figure 4.10 Training the network with gain = 3
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Figure 4.11 Training the network with gain = 0.3
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Figure 4.12 Effect of gain on Network Training

4.3 Relationship between the Gain Value, the Learning Rate, and 

the Initial Weight Values

A relationship between the gain value, a set of initial weight values, and a learning rate 

value has been described in this section and shown for two back-propagation neural 

networks X and Y with identical topology as shown in Figures 4.13 and 4.14. The 

neurons in the networks have activation functions a} and a . respectively and Network

X has gain c ^  1 and Network Y has c = 1.

4.3.1 Calculation Procedure

1. Initialisation: Weights and biases are initialised randomly but the same set of initial 

weights and biases is used for both networks. However, for the second network (Y), 

the initial weights as well as the biases are multiplied by the gain value ‘c’ of the 

first network (X).
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2. Pattern presentation: Training data containing an input pattern with its 

corresponding target pattern is presented in the same order for training both 

networks.

3. The learning rate rj of the second network is the learning rate r\ of the first network 

multiplied by a factor c2.

The two networks X and Y are as follows. We will consider a j th node of both networks 

to prove the relationship.

output node

input nodes hidden nodes

C W r

cwz
output nodecwA

input nodes hidden nodes

Figure 4.13: Network X Figure 4.14: Network Y

Network X

weights w = [wj, w2, vv3, w4 ]

gain c *  1

learning rate r\ 

bias w0

O utput:

a . = ------------------
1 + e ca"" •'

where, 

weighted sum

a n e t J  = * 1 W 1 + * 2 W 2  +  W 0
(4.2)

Network Y

weights w = cw

gain c = 1

learning rate Jf = c 2rj

bias cw0

O utput:

a i  =
1 +  e ~ can,‘ J

where, 

weighted sum

a n e , J  =  +  * 2 C W 2  +  C W 0
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= c(x,w , + x 2w 2 + w 0) 

Substituting from Equation 4.2 we 

have,

a . = ca  , .n e t j  ^  n e t ,  j

a . =
1 1 + e c“"" '

This shows that for both networks, the activation value in any hidden node is 

exactly the same. Since the activation value is considered to be equal to the 

output value, for the hidden layer we have a,j = Oj and sim ilarly, for the output

layer it can be shown that ak =ok .

Oj=dj  and ok =dk (4.3)

As per the assumption, the following equation holds for the initial weights of both 

networks:

Weights for the first iteration: wl —  i iw, = cw,

i L

If we assume that this relationship holds for the n iteration of the training cycle, then to 

show that both networks are equivalent, we need to prove that the relationship also 

holds for the (n+l)th training iteration.

Weight Correction term: Awx

Weights for the (n+l)th iteration:
n + 1  n  , a

w, =  w x +  Aw,

Aw,

—  n + l  —  n  a —
W, =  W, +  A w ,

To prove that: if the weight correction term Aw, =cAw, , then w,n+1 = cw,n+1 holds, 

consider the following:
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Aw. = 77 * ------
1 3w,

For the output layer :

A w jk = tj (tk - o k) ok( l - o k)cOj

Awjk = rld'k ° j

=(*k - ° k ) 0k ^ - ° k ) c

   - * d E
Aw, =77 * ------

0W]

A w j k  =  V  d*' O j

dt =(h - o k )ok( l - o k )c 

v Oj = Oj , and ~c = 1, we have

a;= ^ (4.4)

For the hidden layer :

A w, = rj ’Z c w i t ° k ( 7 - ° i ) ( t k ~ ° k ) COjil-OjJo,

e w y ^ tfjO ,

d'j = 'Zd'kwik°A-Oi)c

a wit = n B'j o,

^ i  = Y f t * !i k ° ih - ° i 'F
k

Substituting for d 'k , wjk and c = 1,

jk c 

9 / = £ 9'*

3 '= c  3'.7 ; (4.5)

For the output layer:

The weight correction term: Amv  = n K ° j
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Substituting from Equations (4.3) and (4.4) we have Awjk = c2rj — Oj

AwJk = CT] d'kOj

A™,k = cAwjt (4 -6)

For the hidden layer:

Weight correction term: Awtj = rfd/joi

o d'Substituting from Equations (4.3) and (4.5) we have Aw.. = c rj — oi
c

Awtj = clj d'jOi

AWy = cAwi}. (4.7)

From both Equation (4.6) and (4.7) we can prove that,

Aw = cAw (4.8)

This relationship also holds when both networks have the same values of momentum

constants. Some sample numerical calculations to demonstrate the relationship have

been shown in Appendix 4D. The calculations demonstrate the following observations, 

which also confirm the relationship between initial weight values, the learning rate and 

the gain value.

1. For a gain value ‘c’ equal to 4, the final weight and bias values of Network 2 are

four times the final weights and biases of network 1.

2. The derivative terms for both the hidden and output nodes of Network 1 are four

times the derivative terms for both the hidden and output nodes of Network 2.

3. The output of both the networks is identical.

4. The decision boundary is also identical for both cases (Figure 4.15).
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Figure 4.15 Non-linear Classification using Network 1 and Network 2 of Example 2,

trained with different values of gain

4.4 Physical Interpretation of the Relationship between the Gain 

Value and Learning Rate

The effect of different values of gain on the slope of the sigmoid activation function is 

also analysed (Figure 4.16). The derivative of the output value with respect to the

weighted sum anel j = is calculated and plotted against the weighted

sum. The expression for the derivative is,

d o ;j _ ce
£ WijOi+dj

w o .ij i
1 + e

(4.9)

V y

The weights are updated with the following equation.
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Aw&. =7] ( - -  ) (4.10)
dw..

The slope of the activation function controls the learning speed. For higher 

values of gain, the slope of the activation function increases thereby increasing 

the value of &w.. [6]. This results in faster training. Therefore, the type of

activation function used has an influence on the learning speed, as the Gain 

value is different for various activation functions [3].

Effect of gain on the slope of the sigmoid activation function

0.7

3&
3O

<4-1ou
_ >

>■c
-8

0.6

0.5

c =0.5

c =0.3

-20 -15 -10 0 10■5 5 15 20
weighted sum

Figure 4.16 An analysis of the effect of gain on the slope of the sigmoid function

4.5 Physical Interpretation of Gain and Weight Values

Consider the sigmoid activation function as shown in Equation 4.1. The Gain parameter 

‘ Cj ’ of the j !h node is a multiplying factor of the net input, anetj = ^  wioi + 6j , of that
i

node. This means that the results obtained by using a different value of gain are 

equivalent to those obtained by multiplying the net input by a factor equal to the gain 

value. The following observations are made.
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1. The hyperbolic tangent activation function has a higher learning speed as compared 

to the logistic sigmoid activation function. This is because the gain value of the 

hyperbolic tangent activation function (Equation 4.11) is greater than that used in 

the logistic sigmoid activation function,

e c a n U ' j  _ e - c a .

a . = ta n h  (<2 , . )  = -----------------------  (4.11)
J  \  n e t , j  )  e c a " " - j  +  e ~ c a n e i . j  V '

In other words, a neural network whose hidden units use the activation function in 

Equation (4.11) is equivalent to one with hidden units using Equation (4.1), but 

having different values for the weights and biases.

2. A sigmoidal hidden unit approximates a linear hidden unit by using very small 

values of weights and biases. Similarly, a sigmoidal hidden unit can approximate a 

step function by setting the weights and bias feeding into that unit to very large 

values.

The above observations, coupled with the observations made in Section 4.3, show that, 

the same set of results can be achieved by either modifying the gain value or modifying 

the weights of the network.

4.6 Influence of Adaptive Gain on Network Training

Although the effect of different values of gain during training has been analysed in this 

chapter, these values are kept constant throughout the training process. In this section 

the advantages of using an adaptive gain value have been explored. Gain update 

expressions for output as well as the hidden nodes is derived in Section 4.6.1 below. For 

the sake of continuity, the weight, bias and gain update expressions for output as well as 

the hidden nodes are shown below.

The w eight update expression for the links connecting to output nodes with a 

bias is:

A wjk =77 (ft - o k)ok( l - o k)ckOj (4.12)
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Sim ilarly, the bias update expressions for the output nodes is:

A6 * (4.13)

The gain update expression for links connecting output nodes is:

A ck = V ( h~ ok) ok ( l - o k) ^ w jkOj+6t (4.14)

The weight update expressions for the links connecting to hidden nodes is:

A Wy = rj

Sim ilarly, the bias update expressions for the hidden nodes is:

A 6>j =1} (4.16)

The gain update expression for the links connecting hidden nodes is:

A C j - T ] 'Zckwjk°k(1-°k) {h-Ok) 0j{l~0j) 'Z%0i+ej (4.17)

It can be observed that (Equations 4.15, 4.16 and 4.17) the weight, bias and gain update 

expressions are coupled. Earlier research [2-5] on using adaptive gain values has not 

used this coupling, and to the authors’ knowledge such a coupled algorithm has been 

proposed for the first time. The algorithm has been proposed for sequential as well as 

batch training.
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4.6.1 Mathematical Derivation to find an Expression for the Gain Change similar 

to Weight Changes during the Learning Stage

Here we calculate error with respect to the gain. The network error E is defined 

as follows:

(4.18)

For output units, needs to be calculated whereas for hidden units. is
dc.

also required. The respective gain values would then be updated with the 

following equations.

(4.19)dE

dc,

The calculation of :
dc.

(4.20)

BE _  dE dok 

dck dok dck

dE

do.

(4.21)

(4.22)

For the sigmoidal activation function,

1
o ,,  =

do

I + \wjk°j+e‘

f  i V

dc.
k _ 1

i + e -c*'Lw*°j

+ 60

e- o l ^ ( _ ^ W jk 0 j+ e t)

2 1 - 0

= ok( i - o k) ( ^ W j kOj + e k)

(4.23)

(4.24)

dE

d c .
= - ( h - o k) ok( l - o k) ( ^ w jkO j + 0 k) (4.25)
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Therefore, the gain update expression for links connecting to output nodes is:

A c k (n + l)=rj(tk - o k)ok( l - o k) ( ^ w jkOj + 9 k ) (4.26)

W ith momentum term, the gain update expression for links connecting output 

nodes is:

A c k (n + l)=rj(tk - o k)ok( l - o k) ( ^ w jkOj + 0 k )+/*A c k (n) (4.27)

The calculation of —-:
dcj

dEThe calculation of _  is not very straightforw ard as the error depends on the
Bcj

output of the hidden as well as the output units. Therefore,

dE 
dc,

do,

dc,

(4.28)

(4.29)

The subscripts j  and k stand for hidden and output nodes respectively. To avoid 

confusion while using other subscripts, the superscripts h and o will be 

m entioned where necessary to stress the hidden and output nodes respectively.

Equation 4.29 is rew ritten as

d E _ J

d c ;

d o h;

d o h; dC;

do°k do)
dot doj dcj

(4.30)
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From Equation 4.23,

d o k 2 1 -  o k-  Ob C.W;' k  ' - k  rv  jk

= ° k ^ - ° k ) Ck W j k

Now,

do, = ~(h ~ok)

(4.31)

(4.32)

£  Lr

do,
= - Y j CkWj k ° k ^ - ° k ) ( h  - o k ) (4.33)

doNow, le t’s calculate the term — L
d c ;

For the sigm oidal activation function,

1

J 1 + e ~ĉ w‘J°i+eJ

do

dc

( (  \  \  
+ 6:

\ \  J y y
(4.34)

Therefore, for each hidden unit j ,  substituting equations 4.28, 4.27 in Equation 

4.22 we get,

dE  

d c . -'ZckWjk°k(l-°k)(tk-°k) °j^-°j) \ 'Zwij°i
iv J y y

(4.35)

Therefore, the gain update expression for the links connecting hidden nodes is:

A Cj (n + l)= Tj °i (x—°j ) +e (4.36)
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With momentum term, the gain update expression for links connecting hidden

nodes is:

4.6.2 Influence of using Adaptive Gain values with Sequential Mode of Training

The sequential mode of training requires an immediate updating of the weights, biases 

and gains after the presentation of a training example. An epoch is said to be complete 

after the presentation of the entire training set. A sum squared error value is calculated 

after the presentation of each training example and compared with the target error. 

Training is done on an epoch-by-epoch basis until the sum squared error value falls 

below the desired target error value.

The following iterative and coupled algorithm is proposed by the author for the 

sequential mode of training. Weights, biases and gains are calculated and updated for a 

training pair, which is being presented to the network. This algorithm is developed by 

the author and coded using C++ programming language. The algorithm uses the 

following terms.

For a given epoch,

For each example,

Calculate the weight and bias values using the previously converged gain 

value. (1 )

Use the weight and bias values calculated in step (1) to calculate the new 

gain value. (2 )

Repeat steps (1) and (2) by using the gain value calculated in step (2) in 

step (1 ) until the difference in consecutive weight, bias and gain values 

becomes less than the predefined value.

The speed of convergence achieved using this algorithm is demonstrated in the 

following example.
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Consider a single input-output two-layer network with one hidden layer having three 

hidden nodes. The training data set is created by using the function 

y = sin (p /* x )  where x e  [0,1] and by adding an approximate 20% random Gaussian

noise (Circles in Figure 4.17). The network is trained using 0.3 as the learning rate 

value to achieve a 6 % target error, using the Gradient Descent training algorithm in a 

sequential mode with coupled and adaptive changes in weight, bias and gain values. The 

network is trained with an adaptive gain with a unit initial value of gain for all output as 

well as hidden nodes. The network took 199 epochs to learn the target function. During 

each epoch, for each training example, the gain, weight and bias values for all hidden 

and output nodes converged to achieve a root mean square error of 0 . 0 0 1  for gain, 

weight and bias values respectively. The network output (black continuous curve) is 

shown against the training data points (circles) in Figure 4.17.

The gain values for the three hidden nodes at the end of training are 3.99, 2.05 and 1.35 

respectively.

The gain value for the output node at the end of training is 3.

The speed of convergence is high because the modified gain values are greater than 

unity.

The error versus number of epochs required to achieve the target error is plotted in 

Figure 4.18 (solid curve). The dotted curve represents the same graph for the network 

trained using a constant unit gain value in sequential mode.
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Figure 4.17 Output of neural network trained to learn a sine curve with 20% random 

Gaussian noise in sequential mode using the coupled algorithm.
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Figure 4.18 Error versus Number of Epochs required to achieve the Target Error of

0.06.
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4.6.3 Influence of Adaptive Gain using Batch Mode of Training

As opposed to sequential training, in batch training mode, the weight, bias and gain 

values are updated after the presentation of an entire training set which constitutes an 

epoch.

The following iterative and coupled algorithm is proposed by the author for the batch 

mode of training. Weight, bias and gain values are calculated and updated after the 

presentation of all the training example pairs that constitute an epoch. This algorithm is 

developed by the author and coded using C++ programming language. The algorithm 

uses the following terms.

For a given epoch,

Update the weight and bias values after the presentation of the entire example 

set using the previously converged gain value. (1)

Use the weight and bias values calculated in step (1) to calculate the new gain 

value. (2 )

Repeat steps (1) and (2) by using the gain value calculated in step (2) in step (1) 

until the difference in consecutive weight, bias and gain values becomes less 

than a predefined value.

The speed of convergence achieved using this algorithm is demonstrated using the same 

example as illustrated in Section 4.6.1. The network took only one epoch to converge to 

around 6 % error. During this epoch, hidden node 3 converged at the 45th iteration, 

output node converged at the 141th iteration, hidden node 1 and 2 both converged at the 

699th iteration to achieve a root mean square error of 0.001. The network output (black 

continuous curve) is shown against the training data points (circles) in Figure 4.19.

The values of gains for the three hidden nodes at the end of training are 5.18, 5 and 1.17 

respectively.

The value of gain for the output node at the end of training is 0.69.

The speed of convergence is high because the modified gain values are greater than 

unity.
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The error versus number of epochs required to achieve the target error is plotted in 

Figure 4.20 (solid curve). Figure 4.21 represents the same graph for the network trained 

using a constant unit gain value in batch mode.
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Figure 4.19 Output of neural network trained to learn a sine curve with 20% random 

Gaussian noise in batch mode using the coupled algorithm.

95



0.11

0.1

0.09

t  0.08

0.07

0.06

0.05
0 100 200 300 400 500 600 700

Number of Iterations in Epoch 1

Figure 4.20 Error versus Number of Epochs required to achieve the Target Error of 0.06

using Adaptive Gain.
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Figure 4.21 Error versus Number of Epochs required to achieve the Target Error of 0.06

using Constant Gain.
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4.6.4 Benefits of Adaptive Gain

An advantage of using the adaptive gain procedure is that it is easy to introduce into a 

back-propagation algorithm, and it also accelerates the learning process without the 

need to invoke solution procedures other than Gradient Descent. Adaptive gain has a 

positive effect in the learning process by modifying the magnitude, and not the 

direction, of the weight change. This greatly increases the learning speed by amplifying 

the directions in the weight space that are successfully chosen by Gradient - Descent on 

weights [5]. A coupled algorithm has also been proposed in this thesis for the efficient 

calculation of the adaptive gain value in sequential as well as batch learning modes.

4.7 Conclusion

Most of the application oriented papers on neural networks tend to advocate that neural 

networks operate like a “magic black box”, which can simulate the “learning from 

example” ability of our brain with the help of network parameters such as weights, 

biases, gain, hidden nodes etc. There are very few publications, or textbooks, which 

give a physical interpretation for various parameters used in the network. The influence 

of the variation of gain value on the performance of the network has been discussed in 

this chapter. It was observed that different values of gain used during the training 

process might not really achieve the desired positive control on all the output values. In 

fact, it is shown that the influence of variation in the gain value is similar to the 

influence of variation in the learning rate value. Furthermore, a relationship between the 

gain, the learning rate and the initial weights of a network has also been identified. 

Sample examples and calculations are shown, which support this relationship. This 

result has also been substantiated by independent research that was simultaneously done

[1]. The results obtained from a case study using back propagation neural networks for 

modelling environmental systems, also indicate that learning rate, momentum and the 

gain of the transfer function have a significant impact on training speed, and not on 

generalisation ability. As a result, learning speed is affected by a combination of these 

factors, and the same learning speed can be achieved by using different combinations of 

these parameters [3]. However, higher values of learning rate and/or gain cause
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instability [4]. A coupled algorithm has been proposed in this thesis to change the gain 

value adaptively. The influence of adaptive gain on the performance of the network has 

also been analysed in this chapter using sequential as well as batch modes of training. 

Codes have been developed by the author using C++ programming language.
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APPENDIX

4A. Procedure for calculating the equation of a line to classify input pattern for 

a single layer network (Example 1):

The equation of a line for an output equal to 0.5 is derived as follows.

From Equation 4.1, the output of the j th node is:

1
0.5 =

l + e~cane,J

where a n e t , j  is the weighted sum of the inputs and c is the gain parameter.

1
:A  + e~cane,J -

0.5

= 2 - 1  =  1

=0

= o

i.e. xxwx + x2w2 +bx = 0 (4.38)

where xl and x2 are inputs and bx is the bias for the output node.

The equation of the line for an output value equal to 0.5 for any value of gain can be 

expressed as xlwl + x2w2 +bx = 0 .

The input patterns are linearly separable when the decision boundary, which partitions 

the input space into two regions, is a straight line (Figure 4.4). The decision rule for the 

classification is to assign a point {xx,x 2) to region 1 if the net input 

xxwx + x2w2 +bx < 0  and to region 2  if the net input xlwl + x2w2 +bl > 0 .
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4B. Procedure for plotting of the curve that classifies the input pattern for a

multi layer network (Example 2).

1. To find Xi and X2 we first have to calculate Xi and X2. Xi and X2 are outputs of the 

hidden nodes 1 and 2 respectively, which are also inputs to the output node. Therefore, 

the expression for the sum of weighted inputs to the output layer is:

separable. The decision rule for the classification is to assign a point ( x x, x 2) to region C 

if the net input X xw5 + X 2w6 +b3 > 0 and to region A if the net 

input XjW5 + X 2w6 +b3 < 0 .

The second step is to derive an expression to find xi and X2 .

X xw5 + X 2w6 +£>3 = 0

Using this we can find values of X2 for different values of Xi. Xi and X2 are linearly

Output of the first hidden node X  j —
1

I  +  e ~ C ( X l W l + X 2 w 2 + b l )
(4.39)

Similarly, the output of the second hidden node X 2 —
1

I  e ~ c ( x l w 3 +  x 2 w 4 + h )  (4.40)

From Equation (4.39) we have,

■ĉ w,+x2w2+b1)

-c (xxwx+x2w2+bx) = I n  1

X{wl +x2w2 = -----
c

In —  - 1

(4.41)

Sim ilarly from Equation (4.40) we have,
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In
(  1  ̂

- 1

xlw3 + x2w4 =■
X,

(4.42)

Dividing Equation (4.41) by wi and Equation (4.42) by W3, and then undertaking a 

subtraction results in:

In
- V

2 - - i '
___ * -b ,

w.

- In - 1

(4.43)

Substituting values of x 2 in Equation (4.41) we get,

-In
X,

- 1

— b{ - x 2w2
x, = (4.44)

w,

Similarly we can find expressions for curves for various output values such as 0.1, 0.9 

etc.

4C. Sample numerical calculations to illustrate the relationship between the 

Gain Value, Learning Rate Value and Initial Weight Values of the network.

Consider two multi layer networks as shown in Figures 4.13 and 4.14 with two input 

nodes with inputs jq e  [0 ,1] and x 2 e  [0 ,1] respectively, one hidden layer with two 

hidden nodes and one output node with output a y. e  [0 ,l] each.

Sample calculations for Network 1 and Network 2 are as follows.
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Network 1 Network 2

weights w = [w],w 2,w 3,w 4,w5,w 6\

bias wn

weights w = cw 

bias = cwn

Initial weights and biases for links connecting output node for both networks :

Initial weights = 0.996784, 0.517971 

Initial bias = 0.735032

Initial weights and biases for links connecting the first hidden node for both networks:

Initial weights = -0.171131, -0.863562

Initial bias = -0.510387

Initial weights and biases for links connecting the second hidden node for both 

networks:

Initial weights = 0.499033, 0.00980157

Initial bias = 0.165547

gain c = 4

learning rate r\ = 0.25

gain c - 1

learning rate ff -  c2tj -  0.3

The network is trained for a target error equal to 0.01. The following sample 

calculations are shown for the first training example pair of the first epoch:

For first hidden node:

Sum of weighted inputs :

=0.242120

O utput: a j = 0.724817

aMJ =0.968481

Output: a j = 0.724817
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For second hidden node: 

Sum of weighted inputs :

aMJ =-0.240744

O utput: a j -  0.276283

For output node:

Sum of weighted inputs

amuj =132491

O utput: a j = 0.629474

Derivative = 0.932946

Error Inform ation term = -0.587265

For first hidden node:

Derivative = 0.932946

Error Inform ation term = -0.587265

For second hidden node:

Derivative = 0.799803

Error Inform ation term= -0.00115094

0.000287735

For output node:

Weight correction terms: -0.00798112,

Bias correction term:

-0.00204222

- 0.0110112

For first hidden node:

Weight correction terms: -3.78981 * 10"5,

-0.000566903 

Bias correction term: -0.00109601

For second hidden node:

= -0.962975

O utput: a j = 0.276283

amJ = 0.559963

O utput: a j ~ 0.629475

D erivative = 0.233236 

Error Inform ation term  = -0.146816

D erivative = 0.233236 

Error Inform ation term = -0.146816

Derivative = 0.199951

Error Inform ation term=

Weight correction terms: -0.0319245,

-0.0121689

Bias correction term: -0.0440449

Weight correction terms: -0.000151592,

-0.00226761

Bias correction term: -0.00438405
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Weight correction terms: -7.46201 *10'7, Weight correction terms: -2.98480*10'6

-1.11621 * 10"5 -4.46485* 10' 5

Bias correction term: -2.15801*10'5 Bias correction term: -8.63205*10'5

The target error has been minimised in 1352 epochs and at the end of training we have 

the following results.

Final weights and biases for links connecting first hidden node :

Final weights =-0.938798,2.20565 Final weights =-3.7551, 8.82252 

Final bias = -1.32148 Final bias = -5.28591

Final weights and biases for links connecting second hidden node :

Final weights = -2.55955,-1.42964

Final bias = 1.88456

Final weights = -10.238, -5.71878 

Final bias = 7.53814

Final weights and biases for links connecting output node :

Final weights = 2.08198,-2.59675

Final bias = 0.865063

Final weights = 8.32778, -10.3871 

Final bias =3.46011
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Chapter 5

Neural Networks as a Regression Analysis 

Tool

In this chapter, the author discusses how neural network based models relate with 
regression analysis models, and also compares their advantages and limitations. Neural 
networks are used to model complex functional mappings when prior knowledge 
between input and output relationships is unknown. However, regression analysis may 
become advantageous if some knowledge of the input-output relationship is already 
known. As the objective of this research work is to explore various techniques so that 
prior knowledge can be embodied into a neural network like implementation, the 
similarities and dissimilarities between neural networks and regression analysis based 
models are explored.

5.1 Introduction

Neural networks have been used for a wide variety of applications where statistical 

models are traditionally employed. They have been used in classification problems such 

as categorising student applicants and determining the likelihood that they will enrol at 

an institution if offered a place [1] or predicting the academic success of MBA students

[2]. There are many neural network applications in business, particularly in finance, e.g. 

bankruptcy prediction, stock market forecasting [3] and the prediction of exchange rate
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[4] and many more [5]. Neural networks have also been used in applications such as 

modelling the fluidised bed granulation process [6 ], prediction of Ozone indices [7], 

spatial prediction of fire ignition probabilities [8 ]. These problems would normally be 

solved through classical statistical models such as discriminant analysis [9] and multiple 

regression analysis [10-13]. Warner and Misra [14] have cited a few more examples in 

which comparative studies between statistical methods and neural networks have been 

done.

Effects

cause ‘c ’

Figure 5.1: Schematic representation of a ‘cause-effect relationship’.

If a linear multivariate regression analysis [15] is used for learning cause and effect 

relationships, as proposed in this research work, the belief values representing the 

strength of the effects will be associated with a belief value which quantifies the extent 

of occurrence of cause using an expression similar to Equation 5.1.

Belief in cause ‘c’ = wQ + w, ^ 1 + w2£ 2 + w3£ 3 + ... + w ^ 1 + ... + wp^ p (5.1)

In this equation the belief values for the ‘p ’ effects, associated with a cause ‘c’, are 

represented by ‘p ’ variables ,g 2 (as shown in Figure 5.1). Variables

Wj ( j  = 0  to p )  are referred to as either regression coefficients (in a regression analysis

108



context) or weights (in a neural network context). These coefficients, or weights are 

generally considered as independent variables and are mostly determined using least 

square minimisation techniques by comparing the belief value in the cause, calculated 

by Equation 5.1, with a previously known value for the same set of input values.

For a non-linear regression analysis, ( 7  = lto  p ) (in Equation 5.1) are replaced by 

‘m’ different functions z( (i = 1 to m) ranging from simple linear polynomials to higher

order, non-linear polynomials, logarithmic or exponential functions. Multi-layered feed 

forward neural network techniques [9], and a range of methods proposed in the family 

of intrinsically linear, multivariate regression analysis [15], generalise Equation 5.1 in 

the following way:

Belief in cause ‘c’ = w0 + wxzx + w2z2 + w3z3 +. . .  + wizi +. . .  + wmzm (5.2)

where each zt (i = 1 to m ) represents a function of %J ( 7  = 1 to p )

In this chapter, neural network techniques are compared with regression analysis 

methods in order to develop a method, which will retain the advantages of both 

techniques and at the same time overcome the limitations.

5.2 Similarity of Neural Network Algorithm with Generalised 

Regression Analysis

An example of a multi-layered network is shown in Figure 5.2. In this network there are 

T  input nodes, ‘m’ hidden nodes and V  output nodes. The feed forward neural 

network can have any number of hidden layers with a variable number of hidden units 

per layer. If the neural network algorithms are expressed as a regression tool, the 

expression for function ‘ zt ’ corresponding to Equation 5.2 and Figure 5.2 is obtained as 

follows.
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Bias x0 Bias

xi

xt

Input Nodes Hidden Nodes Output Nodes

Figure 5.2: An example of a feed-forward network having two layers of adaptive

weights. Biases are represented as weights associated with an extra input node x0

and an extra hidden node .

The output of the j th hidden node is obtained by a linear combination of I input values, 

which by adding a bias term, gives an expression for the net input to the j ,h hidden 

node as
/

a , « . i = ' Z WHX' + W iO (5 -3 )
/=i

We rewrite Equation 5.3 by including the bias term as a weight value connected to an 

input node of unit value.
i

ane,,j = Y J WMXi (5 '4 )
1=0

The output of the hidden node is then obtained by transforming the net input value, 

as given in Equation 5.4, and then using a non-linear activation function g(.) to give

hj = g{aM J )

= zj i xi)'i ( i = 0  to l)a n d  ( j  = 0  to m )
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The output of the output layered nodes is obtained by transforming the output value of 

hidden nodes using a second layer of processing elements. Thus, for each output node k, 

we calculate a linear combination of the output values of hidden nodes as follows.

m

an « ,t= Y ,Wtihi (5.6)
j=0

An output value of the k th output node is then obtained by transforming this linear 

combination, using a linear activation function, to give

°*(x )= (5.7)

Combining Equations 5.4, 5.5, 5.6 and 5.7, we obtain an explicit expression to relate the 

output and input variables which represent the network as shown in Figure 5.2:

Thus, the regression analysis expression, as given in Equation 5.2, will represent a 

forward pass in the neural network algorithm if the functions ‘ z . ’ are given by Equation

5.5. The network thus represents a multivariate non-linear functional mapping.

5.3 Neural Networks and Regression Analysis

The advantages of using neural networks and regression analysis, for associating belief 

values in causes with belief values in effects, are given below.

1. Research on the approximation capabilities and separability of multi layer feed 

forward neural networks has been done by e.g. Hornik [16], Hornik, Stinchcombe, 

White [17-18], Funahashi [19], Huang and Babri [20], Leshno, Vladimir, Pinkus,

m
(5.8)
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Schocken [21], Gallant and White [22], Bahrami [23] and Koiran [24]. Their studies 

show that multi layer feed forward neural networks, with a single hidden layer with 

a sigmoidal activation function for hidden layered nodes, are a class of universal 

approximators, that are capable of approximating an arbitrary function and its 

derivatives to any desired degree of accuracy, provided a sufficient number of 

hidden units are available. Furthermore, Huang, Chen and Babri [25] showed that 

these networks could form disjoint decision regions with arbitrary shapes in 

multidimensional cases.

2. The neural network model does not assume any functional form for the relationship 

between the independent and dependent variables.

3. Regression analysis performs better when some form of an underlying relationship 

between the dependent and independent variables is known.

4. Regression analysis can be a better alternative when the training data set is small.

5. If no data is available beyond the range of required predictions, then extrapolation 

abilities of regression analysis are better as compared to neural networks.

The next two subsections briefly explain the limitations of both approaches.

5.3.1 Limitations of Neural Networks for Learning Cause and Effect 

Relationships

1. It is difficult to select optimal values for certain network parameters e.g. the number 

of hidden nodes, the value for the learning rate parameter 77 and the initial weight 

values. It is also not easy to decide when to stop the training process so as to prevent 

the network from over fitting the data. The process of determining appropriate 

values for these variables is often of a ‘trial and error’ nature, and therefore, it can 

be time consuming. Hence it is difficult to use this technique, as a robust tool, by
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end users in a foundry environment or any other manufacturing industry, to analyse 

cause and effect relationships.

2. Conventional neural network techniques cannot constrain the shape of the resulting 

input-output mapping function to previously known patterns. It is also quite likely 

that the shape of the resulting input-output mapping function is unrealistic, if the 

training data is noisy and incomplete.

3. There is also a risk of the network over-fitting the training data. The noise and 

duplication in the data will further complicate the issue as it may result in the loss of 

the generalisation ability of the network.

4. Extrapolation abilities of neural networks are poor.

These limitations are also true for semantically constrained neural network architecture

as proposed in a previous work [26].

5.3.2 Limitations of Regression Analysis for Learning Cause and Effect 

Relationships

1. To decide the order of polynomials used in the regression model, some knowledge 

of the input and output analysis is necessary.

2. We can approximate a function to a reasonable accuracy, provided there are a 

sufficiently large numbers of higher ordered terms in the polynomial. However, this 

results in an exponential increase in the number of unknowns. (For d  input variables 

and one output variable, for an M-th order polynomial, the number of independent 

variables grow as d M). This renders the regression analysis technique as an 

impractical tool for analysing cause and effect relationships.
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5.4 Conclusion

Codes for traditional neural networks and regression analysis techniques have been 

developed by the author and written in Matlab. Neural network techniques and 

regression analysis methods have been discussed briefly and comments have been made 

on their advantages and limitations. Regression analysis imposes a functional form on 

the data as a result of which it has better extrapolation abilities as compared to neural 

network techniques. On the contrary, neural networks extract the functional form from 

the data and hence, are useful when we do not know the underlying relationship 

between the independent and dependent variables. Also, the network architecture for 

neural networks is not unique, as the number of hidden units is decided by trial and 

error, which is generally time consuming. For regression analysis, the number of 

unknowns increases exponentially with the dimensionality of the input space and this is 

a serious limitation. As a result of this, large training data becomes necessary. For 

analysing cause and effect relationships, it is generally difficult to get good quality 

training data. In the next Chapter, a novel method has been proposed which appears to 

retain the advantages of both techniques and overcomes their limitations.
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CHAPTER 6

Lagrange Interpolation Polynomial 

Regression Analysis for studying Causal 

Relationships

This chapter proposes a method for determining the likelihood of a cause of one or more 
effects, in which training data relating to previously identified relationships between 
one or more causes and one or more effects is used to learn the cause and effect 
relationship. A number of reference points are chosen in the input space created by 
belief values representing the strength of the effects. A Lagrange Interpolation 
polynomial and a weight value is associated with each of the said reference points. To 
reduce the number of independent unknowns in the network, the reference points are 
divided into two categories, referred to as primary and secondary reference points. 
Weight values associated with these primary reference points are considered as 
independent variables (primary weight values) and other weight values, which are 
associated with secondary reference points (secondary weight values), linearly depend 
on one or more primary weight values. The belief value in the occurrence of the likely 
causes of one or more given effects is determined using this method.

6.1 Introduction
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As described in earlier chapters, one of the major limitations of using neural network 

techniques is that any known information about the cause and effect relationship cannot 

effectively be stored within the network. As a result, the network performance becomes 

poor when the training data is noisy and may result in possible contradicting values. 

Also, in many real situations very few good quality training examples are generally 

available. As a result, to achieve the aims of this research it is necessary to a-priori store 

any known information about the cause -  effect relationship within the network. This 

may change the neural network architecture, however, the “learning from examples” 

ability of the network should be unaltered.

As discussed in Chapter 2, the semantically constrained neural network [6] incorporates 

some extra information about causal connectivity into the network and then modifies 

the learning algorithm accordingly. However, this is certainly not sufficient. From the 

authors’ discussion with foundry men as well as medical doctors, it was realised that the 

belief variation in the occurrence of a cause, with respect to a change in the belief value 

of the occurrence of an effect, follows a pattern. Such a variation is generally linear, 

quadratic or cubic and certainly not an arbitrary higher ordered polynomial. The 

network can achieve good extrapolation abilities if the computational algorithm uses 

this information along with the “learning from examples” ability of neural networks to 

calculate a belief value, which quantifies the extent of occurrence of a cause, given 

belief values, which quantify the occurrence, or non-occurrence, of associated effects of 

the cause. Some of the examples of the effects of a cause are the “symptoms” shown by 

patients in the medical domain, “defects” occurring in components in manufacturing 

industry or “effects” as generally meant in any “cause and effect” diagram.

A few examples of the variation in belief values in the occurrence of a cause, given a 

variation in the symptom strength, are given below. Medical experts generally 

characterise the strength of a symptom by adjectives e.g. low , medium , high and very 

high fever. Similarly the belief in the proposition that ‘typhoid is a cause for a symptom 

fever’ may also be characterised as low, medium , high and very high. The belief 

variation in such a one-dimensional cause and effect relationships can be graphically 

plotted. If the chest pain is very high then the belief that the patient is suffering from a 

‘heart attack’ is high and the belief that the patient has a ‘hair fracture or small muscular
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twist in the chest’ is low. Examples have been taken from the medical field, as they are 

easier to visualise. Such knowledge needs to be created for all symptoms and causes. 

One-dimensional cause and effect relationships are presented below, as these 

relationships become more complicated in a two, three or higher dimensional input 

space.

The ‘Output Value’ in the following Figures (6.2a-6.2e) represents a belief value in the 

occurrence of the cause corresponding to the strength of the effect. These Figures (6.2a- 

6.2e) show a graphical representation of some general one-dimensional cause and effect 

relationships (Figure 6.1).

cause ‘c ’

Input Node Output Node 
(effect)

Figure 6.1: Schematic representation of a ‘single effect - cause relationship’.

0

XI: The strength of a symptom-‘Fever’.

Output Value: Belief that ‘Typhoid’ is a 
cause for a symptom- ‘Fever’.

-1 - 0.5 0 0.5

X1

Figure 6.2a
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Figure 6.2c
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Output Value: Belief that ‘Hair Fracture 
in Ribs or Muscular Twist’ is a cause 
for a symptom- ‘Chest Pain’.

XI: The strength of a symptom-‘Fever’.

Output Value: Belief that ‘Over- 
Exertion’ is a cause for a symptom- 
‘Fever’.

Figure 6.2e
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Figures 6.2a to 6.2e are graphical representations of some general one-dimensional 

cause and effect relationships with associated belief values (based on the network 

illustrated in Figure 1). Figures 6.2a to 6.2e show possible examples of the variation in 

belief values, representing the extent of occurrence of the cause (output value), with 

respect to the belief values, representing the strength of one of the associated effects.

A linear variation in belief values is shown in Figure 6.2a, in which when the belief 

value representing the strength of the symptom ‘Fever’ is at its minimum, the belief that 

‘Typhoid’ is a cause for a symptom- ‘Fever’ is also at its minimum. As the strength of 

symptom or effect increases, the belief value in the occurrence of the cause also linearly 

increases.

A quadratic variation of cause and effect is shown in Figure 6.2b, in which when the 

belief value representing the strength of the effect or symptom ‘Chest Pain’ is at its 

minimum, then the belief that a ‘Heart Attack’ is a cause for a symptom- ‘Chest Pain’ is 

also at its minimum. As the strength of the effect starts to increase, the belief value in 

the occurrence of the corresponding cause also starts to slowly increase. As the strength 

of the effect increases to about half of its maximum value, so the belief value in the 

occurrence of the cause suddenly increases and reaches its maximum value when the 

strength of the effect reaches its maximum value.

A quadratic variation of cause and effect is shown in Figure 6.2c, in which, when the 

belief value representing the strength of the effect or symptom ‘Fever’ is at its 

minimum, then the belief that ‘Brain Fever (Encephalitis)’ is a cause for a symptom- 

‘Fever’ is also at its minimum. As the strength of the effect starts to increase, the belief 

value in the occurrence of the cause quickly starts to increase. When the strength of the 

effect is around half of its maximum value, the rate of increase in the belief value of the 

occurrence of the related cause slows down and reaches its maximum value when the 

strength of the effect also reaches its maximum value.

A quadratic variation of cause and effect is shown in Figure 6.2d, in which when the 

belief value representing the strength of the effect or symptom ‘Chest Pain’ is at its 

minimum, then the belief that ‘Hair Fracture in Ribs or Muscular Twist’ is a cause for a
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symptom- ‘Chest Pain’ is at its maximum. As the strength of the effect starts to 

increase, there is a quick reduction in the belief value in the occurrence of the cause. As 

the strength of the effect increases to about half of its maximum value, the belief value 

in the occurrence of the cause slowly decreases and reaches its minimum value when 

the strength of the effect is at its maximum.

A quadratic variation of cause and effect is shown in Figure 6.2e, in which when the 

belief value representing the strength of the effect or symptom ‘Fever’ is at its 

minimum, then the belief that ‘Over-Exertion’ is a cause for a symptom- ‘Fever’ is at its 

maximum. As the strength of the effect starts increasing, the belief value in the 

occurrence of the cause slowly starts to decrease. When the strength of the effect 

reaches around half of its maximum value, the belief value in the occurrence of the 

cause starts to decrease quickly and reaches its minimum when the strength of the effect 

is at its maximum.

The belief value quantifying the occurrence, or non-occurrence, of an effect associated 

with a particular cause is generally normalised between +1 to -1  or 0 to 1 respectively. 

This belief value is also interpreted as being the strength of the effect. The belief value, 

which quantifies the extent of occurrence of the cause under consideration, is also 

normalised from zero to unity or -1  to +1 to represent non-occurrence and occurrence, 

respectively.

The quadratic and linear relationships given in Figure 6.2a to 6.2e can be modelled by 

corresponding quadratic or linear polynomials based on regression analysis techniques. 

However, as described in Chapter 5, multivariate non-linear regression analyses are not 

suitable for analysing cause and effect relationships, as the regression analysis will 

result in an excessively large number of unknown parameters.

Also, if more than one effect is associated with a cause, the causes shown in Figures 

6.2a to 6.2e will generalise to multi-dimensional hyper surfaces. It is assumed that these 

hyper surfaces are also smoothed in a similar manner to their one-dimensional 

counterparts. Thus, the new computational procedure should be able to generate such 

smooth hyper surfaces by using the corresponding one-dimensional curves. For the first

125



time, the use of Lagrange Interpolation Polynomials has been proposed to construct the 

multi dimensional hyper surfaces from linear, quadratic or cubic one-dimensional 

Lagrange Interpolation Polynomials.

6.2 Construction of Multi Dimensional Lagrange Interpolation 

Polynomials

The proposed method calculates a belief value f , which quantifies the extent of 

occurrence of a cause, given belief values which quantify the occurrence or non

occurrence of associated effects of the cause. This belief value is also interpreted to 

represent the strength of the effect, which is normalised between +1 to -1. The belief 

value, which quantifies the extent of occurrence of the cause under consideration is also 

normalised from zero to unity, to represent non-occurrence and occurrence of the said 

cause respectively.

The relationship between the belief value, representing the strength of the effect, and the 

belief value, representing the extent of occurrence of the cause, is assumed to be either 

linear, quadratic, cubic and so on (Figures 6.2a to 6.2e). The order of the relationship 

(e.g. one for linear, two for quadratic, three for cubic etc.) can either be given or 

calculated iteratively starting from one. To define an nth order relationship along one- 

dimension, then (rc + l)  reference points which are equidistant between -1 to +1, are

chosen. For each reference point ‘f  (i = 1 to n + 1), a one-dimensional Lagrange 

Interpolation Polynomial is constructed based on the following formula:

where,

n\ order of the Lagrange Interpolation Polynomial (one for linear, two for 

quadratic, etc.)

k: A reference point at which the one-dimensional Lagrange Interpolation

i,(0=£(0
(6.1)
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Polynomial (£ )  is constructed. (k ranges from 0 to n). 

i: Ranges from one to total number of reference points i.e. (n +1 ).

are (« + l)  equidistant reference points from £0 = - l  to £n = + l  with 

corresponding (« + l)  Lagrange Interpolation Polynomials as given by Equation (6.1). 

The variable £ , which stores the belief value representing the strength of the 

corresponding effect, ranges from -1 to +1. For a “single effect -  cause relationship”, 

the Lagrange Interpolation Polynomial is one-dimensional and the reference points are 

drawn along this dimension. If the number of associated effects for a given cause is (p ’, 

the Lagrange Interpolation Polynomial at a reference point ‘f  will be ‘p ’ dimensional 

and is given by the following equation:

. .  . ? ) = / £  ( f  )*.Q (<f )*...... ■* i nt ;  (<T )* ... * (? •)  (6.2)

where,

k j  /  P i  _ P i  P i  _ P i  P i  _ P i  P i  _ P i  P i  _ P i  **■ P i  _ P i  bkj bo >̂kj bl hkj b2 ?kj r>kj-1 b .̂+l b jfc. b nj

rij: The order of one dimensional Lagrange Interpolation Polynomial

(I^  ^  corresponding to j th dimension that represents the relationship

between j th effect and the cause under consideration. 

k j : Reference point along j th dimension, at which the one dimensional

Lagrange Interpolation Polynomial lkJ. ) is evaluated, (k j ranges from 0 to rij.)

£o > fi7 >£2 »• • • ’ ■ are (nj + 1) reference points along the j th dimension.

i: For a ‘p ’ dimensional case, V ranges from one to total number of reference 

points ‘q (as given by Equation 6.4)’.

As kj independently varies from 0 to n] for each Lagrange Interpolation Polynomial, 

q = (n, + 1)* (n2 + 1)* (n3 + 1)*... * (jij + 1)*... * (np + l )  (6.4)

It should be noted that, the co-ordinates for a reference point ‘f , corresponding to each 

dimension, are given as (k1,k2i. . . ,k j , . . . ,k p}.
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6.3 Construction of the Decision Hyper Surface using Lagrange 

Interpolation Polynomials

The Lagrange Interpolation Polynomials given by Equation (6.2) are used to generate 

the decision surface representing belief values in the occurrence of a cause using the 

Equation 6.5.

The belief value in the occurrence of a cause, based on the known belief values 

{^], j  = \ to p ^  quantifying the strength of ‘p ’ associated effects, is given by the 

following equation:

q

The belief value in the cause = wf/f , . . . ,  £ p ) (6.5)
<=i

where,

q : Total number of reference points.

/. ( £ l , , . . . ,  ) is given by Equation (6.2).

wf : Weight variable associated with the ith reference point.

A weight variable with values constrained between zero and unity, is associated

with each reference point T . Therefore, the total number of weights is the same as the 

total number of reference points ‘q \  A weight value at a reference point is considered to 

be representative of the belief value in the cause. However, the disadvantage of this 

formulation is that as the number of dimensions increase, the total number of weights in 

a network increase exponentially. This rapidly increases the number of unknown 

variables within the network and this is impractical, as it will not only slow down the 

system but also will require an excessively large training data set. For diagnostic 

problems the training data set is always limited. Therefore, the number of unknowns in 

the network need to be reduced to a minimum level.

6.3.1 Primary and Secondary Weight Values

After analysing the real casting data [5] and interaction with experts from the medical 

domain as well as the manufacturing industry, it was discovered that the belief value in
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the occurrence of a cause, is a linear combination of belief values in the cause when 

only one effect is assumed to have occurred at a time. For example, assume that cause 

‘c’ is associated with two effects ‘£ l ’ and ‘£2’. The belief values in the occurrence of 

effects ’ and ‘£ 2’ are scaled between -1 to +1 and the expected belief value in the 

occurrence of a cause ‘c* will be between 0 and 1. Assuming a quadratic variation of 

belief values, corresponding to the occurrence of a cause along each axis representing 

belief values corresponding to the occurrence of effects, the total number of reference 

points ‘q’ will be equal to 9 ([using Equation 6.4, 6.7 = (2+l)*(2+l)]) as shown in 

Figure 6.3.

The observation, given in the previous paragraph, states that the belief value in the 

occurrence of a cause at reference point 5, can be represented as a linear function of the 

belief values in the occurrence of a cause at reference points 4 and 2 for the 

corresponding belief values in the effects ‘ ’ and ‘ £ 2 ’.

Belief in 
occurrence 
of effect £2 4

Belief in the occurrence of effect £

Figure 6.3 Dependent and Independent Weight Values Associated with

Reference Points 1 to 9.

This observation leads to an assumption that the weight values associated with reference 

points 1, 2, 3, 4 and 7 are independent and weight values associated with reference 

points 5, 6, 8 and 9 are dependent on the corresponding independent weight values. The 

independent weight values and their associated reference points are termed as the 

primary weight values and primary reference points respectively, whereas the dependent
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weight values are referred to as secondary weight values and are associated with 

secondary reference points. Thus, a secondary weight value can be represented as a 

linear combination of the corresponding primary weight values. It was also discovered 

that only one unknown is sufficient for this linear combination, which will be kept the 

same for all secondary weight variables.

With this implementation of encoding further known knowledge into the network, the 

number of unknowns requiring determination of optimal values reduces drastically. It 

will be seen later in this chapter, that the number of unknowns with this implementation 

are even less than the corresponding number of unknowns required with traditional 

neural network modelling.

The most important advantage of the research finding that the secondary weight values 

are a linear combination of the primary weight values is that the network can effectively 

learn on a small sized, noisy and conflicting data set and can attain exceptionally 

superior extrapolation abilities as compared with traditional neural networks. This 

advantage will be illustrated with the aid of an example later in this Chapter. The next 

subsection will complete the discussion of primary and secondary reference points.

6.3.2 Primary and Secondary Reference Points

The reference points, which lie along the dimensional axes, are special points and are 

referred to as “primary reference points”, i.e. the («;.+ l )  reference points

»• • •»£nj that lie along the j th dimension are the primary reference points. In

terms of co-ordinates, a reference point is along the dimensional axis if one and only 

one of its co-ordinates ( fc.) has a non-zero value and all other co-ordinates have a zero

value. For a *p9 dimensional problem, the total number of primary weights is

2 X + 1 - ( p - 1 ) (6.6)
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During the learning, or training process, the optimal values for primary weights 

(constrained between zero and one) and coefficients used in the linear combination 

expression are determined based on the Gradient Descent algorithm as frequently used 

in traditional neural networks or any other optimisation techniques [7-8]. The secondary 

weights are also constrained between zero and one.

6.4 A Num erical Exam ple o f the Proposed M ethod

Consider an example where two effects, and , are associated with a cause c. The 

numerical values between -1 and +1, associated with the variables f 1 and £ 2, represent 

the belief value representing the occurrence/non-occurrence of the corresponding effects 

£  and £2. Therefore, two-dimensional Lagrange Interpolation Polynomials /. ( £ \ £ 2)

will be used for defining the hyper surface. A quadratic relationship is assumed between 

belief values for the effect f 1 and the cause c, and also for the effect f 2 and the cause c.

0.80.8

0.60.6

0.40.4

0.20.2

CM
X

■0.2- 0.2

■0.4- 0.4

- 0.6- 0.6

•0.8- 0.8

X1

XI: Belief value in the 
occurrence of effect

X2: Belief value in the 
occurrence of effect

Figure 6.4 Data points used in the training data set of Table 6.1.
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Training set:
Input Input Target

XI X2 Output

-0.9 -0.8 0.04
-0.9 -0.4 0.12
-0.9 0.2 0.23
-0.9 0.7 0.34
-0.8 -0.8 0.05
-0.8 -0.3 0.14
-0.8 0.1 0.21
-0.8 0.6 0.31
-0.7 -0.9 0.04
-0.7 -0.4 0.12
-0.7 0.2 0.23
-0.7 0.7 0.34
-0.6 -0.9 0.06
-0.6 -0.3 0.15
-0.6 0.4 0.28
-0.6 0.8 0.36
-0.5 -0.7 0.1
-0.5 -0.1 0.19
-0.5 0.6 0.33
-0.4 -0.8 0.11
-0.4 -0.3 0.17
-0.4 0.4 0.29
-0.4 0.9 0.41
-0.3 -0.3 0.19
-0.3 0.4 0.31
-0.2 -0.7 0.16
-0.2 0.2 0.29
-0.1 -0.7 0.19
-0.1 0.3 0.33
0 -0.6 0.23
0 0.6 0.41
0.1 -0.8 0.25
0.1 0.3 0.38
0.2 -0.6 0.3
0.2 0.3 0.41
0.3 -0.7 0.33
0.3 0.4 0.46
0.4 -0.6 0.38
0.4 0.5 0.51
0.5 -0.8 0.42
0.5 0.1 0.5
0.6 -0.7 0.47
0.6 0.5 0.59
0.7 -0.1 0.57
0.8 -0.7 0.59
0.8 0.5 0.69
0.8 0.6 0.70
0.9 -0.3 0.67
0.9 0.9 0.79
1 -0.5 0.72
1 0.4 0.78 132
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Quadratic Interpolation
Polynomial

Quadratic Interpolation
Polynomial

Figure 6.5: Schematic diagram of two effects - one cause relationship.

Belief value in 
the occurrence 
of effect £2 4

1

Belief value in the occurrence of effect £

Figure 6.6: Two dimensional input space describing f 1 and £ 2axes. Numbers 1 to 9 

denote equidistant reference points. As a result of the quadratic relationship, («, 

and n2 equal to 2), three equidistant reference points are used along each 

dimension. Using Equation (6.4), it can be seen that the total number of reference

points is 9.

Using Equation (6.6), it can be seen that the total number of primary reference points is 

5. These points are also indicated in the following table (Table 6.2), which shows the 

co-ordinates of all nine-reference points in various forms.
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Weights associated with primary reference points 1, 2, 3, 4 and 7 are primary weights 

and are also independent parameters. The secondary weight values at locations 5, 6, 8 

and 9 are expressed as a linear combination of the primary weights and in particular

C(w2 + w4)
w5 = — (6. 7)

C (w, + vO
*»»= 2 ;  (6-8)

C(w9+w7)
*4 = V 22 11 (6.9)

C(w, + w7) _  ^
and w9 = —-— -----   (6.10)

Thus, the independent parameters, which are passed on to the optimisation algorithm 

during the learning process are w{, w2, w3, w4, w7 and the constant C.

Reference 

Points 

(i = 1 to q )

Coordinates in 

terms of kj

Coordinates in terms 

of £ J

Coordinates in terms of 

actual numerical values 

for *s

1. (0,0) Primary (§ U o ) (-1,-1)

2. (1,0) Primary ( £ > £ ) (0, -1)

3. (2,0) Primary (£ > fo ) (+1,-1)

4. (0,1) Primary (« .« ■ ) (-1,0)

5. (1,1) Secondary (& .& ) (0, 0)

6. (2,1) Secondary (f i.f i1) (1,0)

7. (0,2) Primary (f i.f i2) (-1,+D

8. (1,2) Secondary (f i.f i2) (0, +1)

9. (2,2) Secondary (f i.f i2) (+1.+1)

Table 6.2: Coordinates of Primary and Secondary Reference Points.
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The proposed network is trained with the training data given in Figure 6.4 and tabulated 

in Table 6.1, and the output surface, representing the belief values in the occurrence of 

cause for various belief values in the occurrence of effects ^  and f 2, is shown in 

Figure 6.7.

XI: Belief value in the 
occurrence of effect

# ' •

X2: Belief value in the 
occurrence of effect

e .

Output: Belief value in 
the occurrence of the 
associated cause c.

Figure 6.7: The optimal surface representing belief values in the occurrence of

cause c.

For this example, the belief value in the occurrence of cause c is calculated for a belief 

value for the first effect Q of 0.5 and a belief value for the second effect of -0.5, 

using the final (i.e. optimal) weights. The procedure is as follows.

The belief value, representing the extent of the occurrence of a cause, for a given belief 

value equal to 0.5 (representing the strength of effect Q ) and a given belief value £2 

equal to -0.5 (representing the strength of effect f 2) is calculated as:

9

The belief value in the occurrence of cause = ^  (0.5,-0.5)
/=i

0.8

0.6

0.4

0.2

0.50.5

- 0.5- 0.5
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Using Equations (6.2) and (6.3), Lagrange Interpolation Polynomials are constructed 

and then evaluated at (0.5, -0.5) at all reference points.

Lagrange Interpolation Polynomial for reference point 1: 

/ ,(# ', ? ) = $ ( ? ) * $ ( ? )

&-4i  S-fi 4S-&

i,(0.5,-0.5) = -0 .0469

Lagrange Interpolation Polynomial for reference point 2:

= ~ { ?  + l ) ( f

/2 (0.5,-0.5)= 0.2813

Lagrange Interpolation Polynomial for reference point 3:

'l N
* (42- 4 , \ 4 2- 4 2 >

-4 :1 [41-4 ,2 42-^L

;3(0,5-0 .5) =0.1406

Lagrange Interpolation Polynomial for reference point 4:

f f - 4 2

/4 (0 .5 ,-0 .5)=  -0.0938
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Lagrange Interpolation Polynomial for reference point 5:

f  e i
2_ * 
1

= (£ ‘ + l ) ( f - l ) ( f + l ) ( f - l )  

l5 (0.5 -0 .5 ) =0.5625

Lagrange Interpolation Polynomial for reference point 6: 

_  b bo *b bi *| b bo * b b;
62- l„ 2 #,2- £

Z6 (0.5,-0.5)= 0.2813

Lagrange Interpolation Polynomial for reference point 7:

f  ei 1 A

bo bl bo b2

= ^ ' ) ( £ ' - i ) ( f + i ) ( f )

/, (0.5,-0.5)= 0.0156

Lagrange Interpolation Polynomial for reference point 8: 

(£M 2) = li (£' )*% ( l2)
A ei

=-i(f+i)(f-i)(f+i)(i2)

18 (0.5,-0.5)=-0.0938
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Lagrange Interpolation Polynomial for reference point 9: 

{ ? ) * ! ! ( ? )

-51 \ 2 \

I, (0.5,--0.5)= -0.0469

Assuming that the independent parameters, which are passed on to the optimisation 

algorithm during the learning process have final values as w{ =0.0084, w2 =0.1972, 

vv3 =0.4179, w4 =0.1924, w7 =0.7359 and C = 1.5656, then using Equations (6.7), 

(6.8), (6.9) and (6.10) w5 = 0.3050, w6 = 0.4778, w8 = 0.7304 and w9 = 0.9032 .

9

Belief value in the cause = ^  w(/( (0.5,-0.5)
1=1

= 0.3024

6.5 Comparison of the Learning Abilities of the Lagrange 

Interpolation Polynomial Regression network with a Multi 

Layer Neural Network

Code for the Lagrange Interpolation Polynomial Regression Network, has been 

developed by the author using C++ programming Language. During the training 

process, the optimal values for primary weights and coefficients used in the linear 

combination expression are determined based on the Gradient Descent algorithm as 

frequently used in traditional neural networks. Three representative cases are designed 

to test the performance of the Lagrange Interpolation Polynomial Regression network 

and a multi layer neural network. The first test case assesses the learning ability of both 

networks on a small and noisy training data. The second and third test cases compare 

the learning performance on an unevenly spaced training data. Comments are made on 

the extrapolation abilities of both networks. In all test cases, the training data set is 

generated from the output belief variation as shown in Figure 6.7, corresponding to
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belief values giving the extent of occurrence of the effects ^  and £ 2. In creating the 

training data set, a few data points are chosen randomly and then a maximum of 20% 

noise is also randomly added to the training data set values to generate the 

corresponding target output.

Case 1: Extremely limited but approximately evenly distributed noisy training 

data.

A very limited training data set is chosen for this test case, which is shown in Table 6.3 

and graphically plotted in Figure 6.8. For a traditional neural network then a best least 

squares fit surface to the training data requires that the training data set has a greater 

number of data points than the number of unknowns in the network. In a multi layer 

neural network, the number of unknowns increases as the number of hidden nodes 

increase. For example, for a two input -  one output neural network, with three or five 

hidden nodes and one output node, will require at least 13 or 21 data points, 

respectively, in the training data set. This example has only seven data points. 

Therefore, it is a limitation of the multi-layer neural network that it cannot work with a 

very small training data set. However, the Lagrange Interpolation Polynomial 

Regression network has only six unknowns and hence this network can train even with 

very small data sets.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.8
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0.40.4
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—  - 0.2 ■0.2
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-0.6- 0.6

■0.8- 0.8

1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X I: Belief value in the 
occurrence of effect

X2: Belief value in the 
occurrence of effect

f .

Figure 6.8: Data points used in the 

training data set as tabulated in 

Table 6.3.

Input X1
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Training set:
Input Input Target

XI X2 Output

-0.7 0.2 0.4
-0.4 -0.3 0.19
0 -0.6 0.06
0.4 -0.6 0.56
0.5 0.1 0.41
0.6 0.5 0.51
0.8 -0.7 0.36

Table 6.3 The training data set used for test Case 1.

XI: Belief value in the 
occurrence of effect

X2: Belief value in the 
occurrence of effect

Output: Belief value in 
the occurrence of the 
associated cause c.

0.5

0.5

- 0.5
- 0.5

Figure 6.9: Output Surface from the Lagrange Interpolation Polynomial Regression 

network Trained with the Training Data of Table 6.3.



Case 2: Noisy training data set with values constrained to high values for within

the input space.

The training data set is shown in Figure 6.10 and tabulated in Table 6.4. A neural 

network with two input nodes, five hidden nodes and one output node is constructed and 

trained on the training data set with a learning rate equal to 0.4 and with a target error of 

0.01. The solution converged in 10139 epochs using the gradient descent algorithm. The 

optimal surface, representing the output belief values in the occurrence of the cause ‘c’ 

obtained by the neural network, is shown in Figure 6.12, whereas the optimal surface 

obtained by the Lagrange Interpolation Polynomial Regression network is shown in 

Figure 6.11. Comparing these surfaces with the original surface (Figure 6.7), it can be 

observed that the Lagrange Interpolation Polynomial Regression network outperforms 

the neural network in its extrapolation abilities. This has become possible because of the 

assumed interrelationship between the secondary and primary weight values.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.80.8
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■0.2- 0.2

■0.4-0.4

•0.6- 0.6

■0.8- 0.8

1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Input X1

Figure 6.10: Data points used in the training 

data set as tabulated in Table 6.4.
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Training set:
Input Input Target
XI X2 Output

0 -0.6 0.40
0 0.6 0.43
0.1 -0.8 0.08
0.1 0.3 0.55
0.2 -0.6 0.21
0.2 0.3 0.32
0.3 -0.7 0.11
0.3 0.4 0.54
0.3 0.7 0.32
0.4 -0.6 0.42
0.4 0.5 0.12
0.5 -0.8 0.27
0.5 -0.3 0.34
0.5 0.1 0.33
0.6 -0.7 0.70
0.6 0.5 0.47
0.6 0.8 0.59
0.7 -0.1 0.51
0.7 0.2 0.27
0.8 -0.7 0.21
0.8 0.5 0.80
0.8 0.6 0.53
0.9 -0.3 0.24
0.9 0.9 0.60
1 -0.5 0.76
1 0.4 0.88

Table 6.4: The training data set used for test Case 2.
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Figure 6.11: Output Surface from the Lagrange Interpolation Polynomial Regression 

network Trained using the Training Data of Table 6.4.
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Figure 6.12: Output Surface from the Multi Layer Neural Network Trained using the

Training Data of Table 6.4.
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Case 3: Noisy training data set with values constrained to low values for %2 within

the input space.

The training data set is shown in Figure 6.13 and tabulated in Table 6.5. A neural 

network with two input nodes, five hidden nodes and one output node is constructed and 

trained on the training data set with a learning rate equal to 0.4 and with a target error of 

0.01. The solution converged in 15893 epochs using the gradient descent algorithm. The 

optimal surface, representing the output belief values in the occurrence of the cause ‘c’ 

obtained by the neural network, is shown in Figure 6.15, whereas the optimal surface 

obtained by the Lagrange Interpolation Polynomial Regression network is shown in 

Figure 6.14. Comparing these surfaces with the original surface (Figure 6.7), it can be 

observed that the Lagrange Interpolation Polynomial Regression network outperforms 

the neural network in its extrapolation abilities due to the assumed interrelationship 

between the secondary and primary weight values. This strengthens the observations 

made in the previous test case.
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1 - 0.8 - 0.6  - 0.4 - 0.2  0 0.2 0.4  0.6  0.8  1

XI: Belief value in the 
occurrence of effect

X2: Belief value in the 
occurrence of effect

?■

Input X1

Figure 6.13: Data points used in 

the training data set as 

tabulated in Table 6.5.
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Training set:
Input Input Target

XI X2 Output

-0.9 -0.8 0.22
-0.9 -0.4 0.14
-0.8 -0.8 -0.12
-0.8 -0.3 0.31
-0.7 -0.9 -0.05
-0.7 -0.4 0.04
-0.6 -0.9 -0.16
-0.6 -0.3 0.23
-0.5 -0.7 -0.09
-0.5 -0.1 0.22
-0.4 -0.8 -0.29
-0.4 -0.3 0.02
-0.3 -0.3 0.08
-0.2 -0.7 -0.01
-0.1 -0.7 0.41
0 -0.6 0.11
0.1 -0.8 0.20
0.2 -0.6 0.24
0.3 -0.7 -0.01
0.4 -0.6 0.01
0.5 -0.8 0.53
0.6 -0.7 0.30
0.7 -0.1 0.15
0.8 -0.7 0.39
0.9 -0.3 0.71
1 -0.5 0.81

Table 6.5: The training data set used for test Case 3.
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Figure 6.14: Output Surface from the Lagrange Interpolation Polynomial Regression 

network Trained using the Training Data of Table 6.5.
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Figure 6.15: Output Surface from the Multi Layer Neural Network Trained using the

Training Data of Table 6.5.
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After observing the outputs from both the networks, for both examples, we see that the 

Lagrange Interpolation Polynomial Regression networks output is similar to that of 

Figures 6.7 (trained with all the data) and 6.9 (trained with a very small amount of 

original data), but the output from the traditional neural network shows that the output 

depends on the location and number of data points as well as the target output of each 

data point in the training data set.

6.6 Comparison of the Lagrange Interpolation Polynomial Regression Network 

with a Multi Layer Neural Network on a Real Data Set

The author has compared the outputs from both the Lagrange Interpolation Polynomial 

Regression network and a multi layer neural network on a real data set. The data was 

collected from ‘Kaye Preistigne’ -  a pressure die casting foundry. A total of 14 defects 

were identified and associated with 43 process, material or design parameters. The data 

was collected for similar components over a period of one year. A total of 60 

representative examples were finalised. A belief value in the occurrence of defects was 

calculated as described previously in Section 2.4 (Chapter 2). The corresponding belief 

values representing the occurrence and non-occurrence of associated process, design 

and material parameters were given by the experts in the foundry. To show the 

graphical variation of belief surfaces learnt by neural network and the Lagrange 

Interpolation Polynomial Regression network method, three defects identified as 

‘Porosity’, ‘Mismakes’ and ‘Dimensional’ were chosen and are represented as defect A, 

defect B and defect C in Table 6.6. Sixteen associated process, material and design 

parameters were identified to create a neural network with three input nodes 

corresponding to defects ‘defect A’, ‘defect B’ and ‘defect C’ and sixteen output nodes 

corresponding to the sixteen process, material and design parameters. The belief values 

which were used in a training data set are shown in Table 6.6. The neural network was 

chosen with five hidden nodes, and a quadratic variation between input and output 

relationship was assumed in the Lagrange Interpolation Polynomial Regression 

network. Both networks were trained on the training data set as shown in Figure 6.16. 

Codes for both, the Lagrange Interpolation Polynomial Regression Network and a multi 

layer neural network, have been rewritten by the author in Matlab. The performance of 

both the networks was tested and compared using faster optimisation algorithms such as
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the Quasi-Newton. Both networks achieved the target error of 0.01 and seemed to have 

learnt the training data set. However, a remarkable difference can be observed in the 

shape of the belief surface. The belief surface has been plotted for the three causes:

a) Number 8: The position of gate.

b) Number 12: Kind and area of die venting.

c) Number 16: The position of overflow.

“The position of gate” (cause number 8) influences the occurrence of “Porosity” (defect 

A) and “Mismakes” (defect B) whereas “Kind and area of die venting” (cause number 

12) and “The position of overflow” (cause number 16) influence the occurrence of all 

three defects, “Porosity” (defect A), “Mismakes” (defect B) and “Dimensional” (defect 

C). Figure 6.17 shows the variation in belief values in the occurrence of “The position 

of gate” given belief values for the three input values (-0.8, 0 and +0.8) for defect C i.e. 

“Dimensional” and for all belief values for defects “Porosity” and “Mismakes” using 

the Lagrange Interpolation Polynomial Regression network, and the corresponding 

neural network results are shown in Figure 6.18. Similarly, results are shown for other 

two causes: “Kind and area of die venting” and “The position of overflow” in Figures 

6.19 to 6.22.

It can be easily observed that although the target error value of 0.01 was the same for 

both techniques, the belief variation surface learned by the neural network is incorrect in 

almost all cases, particularly in regions where insufficient training data was available.
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Figure 6.16: Data points used in the 
training data set as tabulated in Table 6.6.
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XI: Belief value in the 
occurrence of defect 
“Porosity”.

X2: Belief value in the 
occurrence of defect 
“Mismakes”.

X3: Belief value in the 
occurrence of defect 
“Dimensional”.



Defects: Defect A Defect B Defect C
Strength of Defects:

1 0 0
1 0 0
0.7 0 0
1 1 0
0.7 1 0
1 0.8 0
0.7 1 0
0 1 0
0 1 0
0 1 0
0 0.8 1
0 0.7 1
0 0.9 1

Output node Numbers: 1 2 3 4 5 6 7 8
Target Output Values:

0.8 0 0 0 1 1 1 1
0.8 0 0 0 1 1 1 1
0 0 0 0 1 1 1 0.7
0.8 0.7 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0.8 0.7 0 0 1 1 1 1
0 0 0 0 0 0 0 0.8
0 0 0 0 0 0 0 0.8
0 0 0 0 0 0 0 0.9
0 0.7 1 0.7 0 0 0 0.7
0 0.7 1 0.7 0 0 0 0
0 0.8 1 0.7 0 0 0 0.8

Output Node Numbers:9 10 11 12 13 14 15 16
Target Output Values:

1 0.9 1 0.8 0 0 0 0.9
1 0.9 1 0.8 0 0 0 0.9
0.8 0.7 0.8 0 0 0 0 0
1 1 1 0.8 0.8 0.7 0 0.9
1 1 1 0.8 0.8 0.7 0 0.8
1 1 1 0.8 0.8 0.7 0 0.9
1 1 1 0.8 0.8 0.7 0 0.8
0 0.9 0.7 0 0.7 0 0 0
0 0.9 0.7 0 0.7 0 0 0
0 0.9 0.7 0 0.8 0 0 0
0 0.9 0 0.7 0.7 0 0 0
0 0.9 0 0 0 0 0 0
0 1 0.7 0.7 0.7 0 0 0

Table 6.6. The training data set with target output values for the input defects
plotted in Figure 6.16.
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defect.

X2: Belief value in the 
occurrence of defect 
“Mismake” defect.

Output: Belief value in the 
occurrence of “The position 
of gate”

Figure 6.17a:
For an input value of -0.8 for 
the “Dimensional” defect.

Figure 6.17b:
For an input value of 0 for 
the “Dimensional” defect.

0.4 r

Figure 6.17c:
For an input value of +0.8 for 
the “Dimensional” defect.

Figure 6.17: Output Surfaces generated by the Lagrange Interpolation Polynomial
Regression Network for a cause “The Position of gate”.
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Figure 6.18a:
For an input value of 0.1 for 
the “Dimensional” defect.
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Figure 6.18b:
For an input value of 0.5 for 
the “Dimensional” defect.
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Figure 6.18c:
For an input value of 0.9 for 
the “Dimensional” defect.

Figure 6.18: Output Surfaces generated by the traditional neural network for a cause
“The position of gate”.
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defect.

X2: Belief value in the 
occurrence of defect 
“Mismake” defect.

Output: Belief value in the 
occurrence of “Kind and area 
of die venting”.

Figure 6.19a:
For an input value of -0.8 for 
the “Dimensional” defect.

o f e

0.5 Figure 6.19b:
For an input value of 0 for 
the “Dimensional” defect.
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Figure 6.19c:
For an input value of +0.8 for 
the “Dimensional” defect.

Figure 6.19: Output Surfaces generated by the Lagrange Interpolation Polynomial
Regression Network for a cause “Kind and area of die venting”.
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defect.

X2: Belief value in the 
occurrence of defect 
“Mismake” defect.

Output: Belief value in the 
occurrence of “Kind and area 
of die venting”.

Figure 6.20a:
For an input value of 0.1 for 
the “Dimensional” defect.

3

Figure 6.20b:
For an input value of 0.5 for 
the “Dimensional” defect.
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Figure 6.20c:
For an input value of 0.9 for 
the “Dimensional” defect.

Figure 6.20: Output Surfaces generated by the traditional neural network for a cause
“Kind and area of die venting”.
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XI: Belief value in the
occurrence of “Porosity”
defect.

X2: Belief value in the 
occurrence of defect 
“Mismake” defect.

Output: Belief value in the 
occurrence of “The position 
of overflow”.

Figure 6.21a:
For an input value of -0.8 for 
the “Dimensional” defect.

Figure 6.21b:
For an input value of 0 for 
the “Dimensional” defect.

Figure 6.21c:
For an input value of +0.8 for 
the “Dimensional” defect.

Figure 6.21: Output Surfaces generated by the Lagrange Interpolation Polynomial
Regression Network for a cause “The position of overflow”.
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Figure 6.22a:
For an input value of 0.1 for 
the “Dimensional” defect.

3

Figure 6.22b:
For an input value of 0.5 for 
the “Dimensional” defect.
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For an input value of 0.9 for 
the “Dimensional” defect.

Figure 6.22: Output Surfaces generated by the traditional neural network for a cause
“The position of overflow”.
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6.7 Conclusion

An efficient algorithm has been presented in this chapter which retains the advantages 

of neural networks and overcomes their limitations in learning the input-output mapping 

function in the presence of noisy, limited and sparse data. It has also been shown that 

the algorithm has superior extrapolation abilities as compared to the multi layer neural 

network. The extrapolation ability was enhanced by the networks ability to constrain 

linear, quadratic or cubic relationships, which relates the belief values in the effects to 

the belief values in the causes. The dependence of the secondary weight values on the 

primary weight values reduced the number of unknowns to an acceptable number. 

Codes for both, the Lagrange Interpolation Polynomial Regression Network and a multi 

layer neural network, have been rewritten by the author in Matlab. Sample calculations 

of the proposed algorithm have been compared with the multi layer neural network for 

three representative cases and a real data set using the Quasi-Newton optimization 

algorithm.
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Chapter 7

Conclusions and Future Work

This chapter summarises the conclusions made for the diagnostic problem researched in 

this thesis. Recommendations are made on how to continue this research work.

The work presented in this thesis is a part of the ongoing research on the analysis of 

cause and effect relationships. The “Learning from examples” ability of neural networks 

has been studied in detail and the issues involved in quantifying cause and effect 

relationships have been discussed and remedies have been recommended. The aspects 

researched and refined were:

• Revisit the diagnostic problem in terms of relating belief values in the 

occurrence of the effects and causes.

• Choice of a neural network based approach for automatically quantifying the 

cause and effect relationships by generating a belief value in the occurrence of a
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cause (or a combination of causes), given a belief value in the associated effect 

(or a combination of effects).

• Analyse the effect of variation of the gain value on the learning efficiency.

• Recognise the limitations to generate ‘ideal’ training data sets and study its 

influence on the neural network modelling.

• Propose a novel algorithm to associate belief values in the causes and effects by 

overcoming the limitations of neural networks.

With regards to quantifying the cause and effect relationship, a traditional rule based 

expert system approach typically requires knowledge of the degree of influence of the 

related cause on the occurrence of each defect. In the authors’ experience, generating 

such a probability distribution for the entire relationship is extremely difficult if not 

impossible. The neural network approach offers a convenient computational tool, 

which, unlike the rule based approach, can adapt, learn from past examples and may 

then be used to quantify highly complex and inter-linked relationships. Therefore, a 

neural network approach was explored for analysing and quantifying cause and effect 

relationships.

The basic principles of neural networks, and the influence of network parameters, in 

conjunction with the back-propagation training algorithm for feed forward neural 

networks have been studied in detail. This study has shown that the number of hidden 

layers and also hidden nodes in each layer determines the non-linearity of a mapping 

function in the input and output space, which in turn determines the generalisation 

ability of the neural network. In a ‘feed forward’ algorithm, the slope of the activation 

function which determines the range over which output values are changed from zero to 

one for a given set of weighted inputs, is directly influenced by a parameter referred to 

as ‘gain’. The influence of the variation of ‘gain’ on the learning ability of a neural 

network has been analysed. It was observed that the different values of gain used during 

the training process might not really achieve the desired positive control on all output 

values. In fact, it is shown that the influence of variation in the gain value is similar to
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the influence of variation in the learning rate value. A relationship between the gain, the 

learning rate and the initial weights of a network has also been identified. Sample 

examples and calculations are shown, which support this relationship. The influence of 

adaptive gain on the performance of the network has also been analysed. The adaptive 

gain procedure is advantageous because it is easy to introduce into a back-propagation 

algorithm. Adaptive gain has a positive effect in the learning process by modifying the 

magnitude, and not the direction, of the weight change. This greatly increases the 

learning speed by amplifying the directions in the weight space that are successfully 

chosen by the Gradient - Descent algorithm. A coupled algorithm has also been 

proposed in this thesis for the efficient calculation of the adaptive gain value in

sequential as well as batch learning modes.

One of the major limitations of using neural network techniques is that any known 

information about the cause and effect relationship cannot effectively be stored within 

the network. As a result, when the training data set is noisy, limited, sparse and may

have possible contradicting values, the network performance becomes poor. Also, in

many real situations very few good quality training examples are generally available. As 

a result, in order to achieve the aims of this research it was necessary to store any 

known information about the cause -  effect relationship within the network without 

altering the “learning from examples” ability of the network.

Neural network techniques and regression analysis methods have been discussed 

briefly, and their advantages and limitations for analysing cause and effect relationships 

have been given. Regression analysis imposes a functional form on the data and as a 

result it has better extrapolation abilities as compared to neural network techniques. On 

the contrary, neural networks extract the functional form from the data and hence, are 

useful when we do not know the underlying relationship between the independent and 

dependent variables. Also, the network architecture for neural networks is not unique, as 

the number of hidden units is decided by trial and error, which is generally time 

consuming. For regression analysis, the number of unknowns increases exponentially 

with the dimensionality of the input space and this is a serious limitation. As a result of 

this, large training data becomes necessary. For analysing cause and effect relationships,
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it is generally difficult to get good quality training data. Therefore, regression analysis 

could not be used for solving this diagnostic problem.

It was also discovered during this research that the belief variation in the occurrence of 

a cause, with respect to a change in the belief value of the occurrence of an effect, 

follows a pattern. Such a variation is generally linear, quadratic or cubic and certainly 

not an arbitrary higher ordered polynomial. For the first time, the use of lower ordered, 

one-dimensional Lagrange Interpolation Polynomials has been proposed to construct the 

multi dimensional hyper surfaces. A number of equidistant reference points were chosen 

in the input space created by belief values representing the strength of the effects. A 

Lagrange Interpolation polynomial and a weight value is associated with each of the 

said reference points. A weight value at a reference point is considered to be 

representative of the belief value in the cause. The reference points have been divided 

into two categories, referred to as primary and secondary reference points. Weight 

values associated with these primary reference points have been considered as 

independent variables (primary weight values) and other weight values associated with 

secondary reference points (secondary weight values), have been considered to be 

linearly dependent on one or more primary weight values.

It has also been shown that the proposed algorithm has superior extrapolation abilities 

as compared to the multi layer neural network. The extrapolation ability was enhanced 

by the networks ability to constrain the shape of the resulting multi-dimensional hyper 

surface to the known variation in the belief values in causes and effects. Sample 

calculations of the proposed algorithm have been compared with the neural network for 

four representative cases.

7.1 Future Work

This type of research is a never ending process. Although, substantial academic 

advancement has been achieved during the work presented in this thesis, immediate 

further work is outlined here:
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• Generating a training data set is a time consuming task. The observations made 

in this thesis are based on the past training data gathered from foundries and the 

discussions with foundry experts along with the expertise available within the 

research group. The immediate future task is to collect the data, with the support 

of Rolls Royce Pic, on the manufacture of shells for an investment casting 

process and apply the algorithm developed in this thesis.

• Future research is necessary on linking primary weights with secondary weight 

values.

• The research needs to be extended to analyse general cause and effect 

relationships including the medical domain.

• The research codes need to be transformed into a user friendly software.

• Further research is required on the neural network side to study the influence of 

an adaptive gain value coupled with an adaptive learning rate using various 

optimisation methods.
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